

Lecture Notes in Computer Science 6795
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Giancarlo Mauri Alberto Leporati (Eds.)

Developments
in Language Theory

15th International Conference, DLT 2011
Milan, Italy, July 19-22, 2011
Proceedings

13

Volume Editors

Giancarlo Mauri
Università degli Studi di Milano-Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione
Viale Sarca 336, Edificio U14
20126 Milano, Italy
E-mail: mauri@disco.unimib.it

Alberto Leporati
Università degli Studi di Milano-Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione
Viale Sarca 336, Edificio U14
20126 Milano, Italy
E-mail: leporati@disco.unimib.it

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-22320-4 e-ISBN 978-3-642-22321-1
DOI 10.1007/978-3-642-22321-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011930930

CR Subject Classification (1998): F.2, F.1, G.2, E.1, F.3, F.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 15th International Conference on Developments in Language Theory (DLT
2011) was held in Milan, Italy, on the beautiful campus of the Milano–Bicocca
University. It was a four-day conference starting July 19 and ending July 22,
2011.

The DLT conference series is one of the major international conference series
in language theory. It started in Turku, Finland, in 1993. Initially, it was held
once every two years. Since 2001, it has been held every year, odd years in Europe
and even years in other continents.

The papers submitted to DLT 2011 were from 28 countries including Belgium,
Canada, Czech Republic, Estonia, Finland, France, Germany, Hungary, Iceland,
India, Iran, Israel, Italy, Japan, Malaysia, Poland, Portugal, Russian Federation,
Serbia, Slovakia, South Korea, Spain, Switzerland, Taiwan, Turkey, UK, and the
USA. Each paper was reviewed by three referees and discussed by the mem-
bers of the Program Committee. Finally, 34 regular papers were selected by the
Program Committee for presentation at the conference. There were five invited
talks given at the conference. They were given by (in alphabetic order) Maxime
Crochemore (Marne-la-Vallée), Antonio Restivo (Palermo), Arseny Shur (Eka-
terinburg), Thomas Wilke (Kiel), and Sheng Yu (London, Ontario). In addition,
there were seven posters on display at the conference. This volume includes all
the 34 contributed papers, the papers or abstracts from the 5 invited speakers,
and a 2-page abstract for each of the 7 poster papers.

We warmly thank all the invited speakers and all the authors of the submitted
papers. Their efforts were the basis of the success of the conference.

We would like to thank all the members of the Program Committee and the
external referees. Their work in evaluating the papers and comments during the
discussions were essential to the decisions on the contributed papers. We would
also like to thank all the members of the DLT Steering Committee, for their
ideas and efforts in forming the Program Committee and selecting the invited
speakers.

We wish to thank the conference sponsors: the University of Milano–Bicocca
and the European Association for Theoretical Computer Science.

We would also like to thank the staff of the Computer Science Editorial at
Springer, for their help in making this volume available before the conference.
Their timely instructions were very helpful to our preparation of this volume.

July 2011 Alberto Leporati
Giancarlo Mauri

Organization

DLT 2011 was organized by the Department of Informatics, Systems and Com-
munication, University of Milano–Bicocca.

Program Committee

Alberto Bertoni Milan, Italy
Christian Choffrut Paris, France
Stefano Crespi Reghizzi Milan, Italy
Aldo de Luca Naples, Italy
Manfred Droste Leipzig, Germany
Zoltán Ésik Szeged, Hungary
Paul Gastin Cachan, France
Hendrik Jan Hoogeboom Leiden, The Netherlands
Marcus Holzer Giessen, Germany
Oscar H. Ibarra Santa Barbara, USA
Lila Kari London, Ontario, Canada
Natasha Jonoska Tampa, USA
Giancarlo Mauri Milan, Italy, Chair
Anca Muscholl Bordeaux, France
Alexander Okhotin Turku, Finland
Michel Rigo Liège, Belgium
Wojciech Rytter Warsaw, Poland
Mikhail V. Volkov Ekaterinbug, Russia
Hsu-Chun Yen Taipei, Taiwan
Takashi Yokomori Tokyo, Japan

Organizing Committee

Paola Bonizzoni Milan, Italy
Paolo Cazzaniga Milan, Italy
Claudio Ferretti Milan, Italy
Alberto Leporati Milan, Italy, Chair
Dario Pescini Milan, Italy
Antonio E. Porreca Milan, Italy
Claudio Zandron Milan, Italy

VIII Organization

External Referees

Sayem Abu Sadat
Angela Angeleska
Marcella Anselmo
Vince Barany
Nicolas Bedon
Marcello Bersani
Valerie Berthe
Dietmar Berwanger
Daniela Besozzi
Maria Bianchi
Jean-Camille Birget
Henrik Björklund
Alexandre Blondin

Massé
Bernard Boigelot
Benedikt Bollig
Henning Bordihn
Laurent Braud
Luca Breveglieri
Michelangelo Bucci
Marie-Pierre Béal
Arnaud Carayol
Arturo Carpi
Olivier Carton
Alessandra Cherubini
Alexander Clark
Thomas Colcombet
Bo Cui
James Currie
Elena Czeizler
Flavio D’Alessandro
Jurgen Dassow
Alessandro De Luca
Rodrigo De Souza
Alberto Dennunzio
Egor Dolzhenko
Mike Domaratzki
Omer Egecioglu
Duchene Eric
Claudio Ferretti
Kaoru Fujioka
Jean-Marc Fédou
Julia Gamzova

Yuan Gao
Silvio Ghilardi
Amy Glen
Serge Grigorieff
Giuliano Grossi
Pierre Guillon
Tero Harju
Niko Haubold
Fritz Henglein
Sebastian Jakobi
Artur Jeź
Galina Jiraskova
Christos Kapoutsis
Ines Klimann
Satoshi Kobayashi
Hans-Joerg Kreowski
Dietrich Kuske
Martin Kutrib
Zbynek Krivka
Ruggero Lanotte
Tommi Lehtinen
Julien Leroy
Anthony Widjaja Lin
Chun-Cheng Lin
Markus Lohrey
Violetta Lonati
Kalpana Mahalingam
Andreas Malcher
Andreas Maletti
Roberto Mantaci
Conrado Martinez
Oliver Matz
Katja Meckel
Carlo Mereghetti
Martin Middendorf
Lukasz Mikulski
Benjamin Monmege
Aniello Murano
Filip Murlak
Judit Nagy-György
Chrystopher L. Nehaniv
Cyril Nicaud
Lasse Nielsen

Organization IX

Fumiya Okubo
Friedrich Otto
Paritosh Pandya
Matthieu Picantin
Giovanni Pighizzini
Jean-Eric Pin
Wojciech Plandowski
Libor Polak
Antonio E. Porreca
Matteo Pradella
Jakub Radoszewski
Michael Rao
Bala Ravikumar
Klaus Reinhardt
Antonio Restivo
Emanuele Rodaro
Jacques Sakarovitch

Pierluigi San Pietro
Sylvain Schmitz
Stefan Schwoon
Shinnosuke Seki
Carla Selmi
José M. Sempere
Arseny Shur
Giulia Simi
Amir Simjour
Ludwig Staiger
Štěpán Starosta
Camille Vacher
Leonardo Vanneschi
Bow-Yaw Wang
Claudio Zandron
Marc Zeitoun

Sponsoring Institutions

The University of Milano–Bicocca
European Association for Theoretical Computer Science

Table of Contents

Invited Talks

Hunting Redundancies in Strings . 1
Golnaz Badkobeh, Supaporn Chairungsee, and Maxime Crochemore

Some Remarks on Automata Minimality . 15
Antonio Restivo and Roberto Vaglica

Growth Properties of Power-Free Languages . 28
Arseny M. Shur

A Functional Program for Regular Expressions Matching
(Abstract of Invited Talk) . 44

Thomas Wilke

State Complexity Research and Approximation . 46
Sheng Yu and Yuan Gao

Regular Papers

Counting the Orderings for Multisets in Consecutive Ones Property
and PQ-Trees . 58

Giovanni Battaglia, Roberto Grossi, and Noemi Scutellà

Avoiding Abelian Powers in Partial Words . 70
Francine Blanchet-Sadri and Sean Simmons

Regular Splicing Languages Must Have a Constant 82
Paola Bonizzoni and Natasha Jonoska

The Average Transition Complexity of Glushkov and Partial Derivative
Automata . 93

Sabine Broda, António Machiavelo, Nelma Moreira, and Rogério Reis

Theory of Átomata . 105
Janusz Brzozowski and Hellis Tamm

Syntactic Complexity of Ideal and Closed Languages 117
Janusz Brzozowski and Yuli Ye

Generalized One-Unambiguity . 129
Pascal Caron, Yo-Sub Han, and Ludovic Mignot

Simulations over Two-Dimensional On-Line Tessellation Automata 141
Gérard Cécé and Alain Giorgetti

XII Table of Contents

Δ-Clearing Restarting Automata and CFL . 153
Peter Černo and Frantǐsek Mráz

Enumeration and Decidable Properties of Automatic Sequences 165
Émilie Charlier, Narad Rampersad, and Jeffrey Shallit

Languages vs. ω-Languages in Regular Infinite Games 180
Namit Chaturvedi, Jörg Olschewski, and Wolfgang Thomas

Solving Word Problems in Group Extensions over Infinite Words 192
Volker Diekert and Alexei G. Myasnikov

Abelian Primitive Words . 204
Michael Domaratzki and Narad Rampersad

Scattered Context-Free Linear Orderings . 216
Zoltán Ésik

On Prefix Normal Words . 228
Gabriele Fici and Zsuzsanna Lipták

On Non-complete Sets and Restivo’s Conjecture . 239
Vladimir V. Gusev and Elena V. Pribavkina

Self-organization in Cellular Automata: A Particle-Based Approach 251
Benjamin Hellouin de Menibus and Mathieu Sablik

Chop Operations and Expressions: Descriptional Complexity
Considerations . 264

Markus Holzer and Sebastian Jakobi

Nodes Connected by Path Languages . 276
Markus Holzer, Martin Kutrib, and Ursula Leiter

Characterizing the Regular Languages by Nonforgetting Restarting
Automata . 288

Norbert Hundeshagen and Friedrich Otto

On Two-Way Transducers . 300
Oscar H. Ibarra and Hsu-Chun Yen

There Does Not Exist a Minimal Full Trio with Respect to Bounded
Context-Free Languages . 312

Juha Kortelainen and Tuukka Salmi

Describing Periodicity in Two-Way Deterministic Finite Automata
Using Transformation Semigroups . 324

Michal Kunc and Alexander Okhotin

Deciding Networks of Evolutionary Processors . 337
Florin Manea

Table of Contents XIII

From Linear Partitions to Parallelogram Polyominoes 350
Roberto Mantaci and Paolo Massazza

On Brzozowski’s Conjecture for the Free Burnside Semigroup Satisfying
x2 = x3 . 362

Andrey N. Plyushchenko and Arseny M. Shur

Never Minimal Automata and the Rainbow Bipartite Subgraph
Problem . 374

Emanuele Rodaro and Pedro V. Silva

Boolean Algebras of Regular Languages . 386
Victor Selivanov and Anton Konovalov

Fife’s Theorem Revisited . 397
Jeffrey Shallit

Infinite Words Rich and Almost Rich in Generalized Palindromes 406
Edita Pelantová and Štěpán Starosta

Models of Pushdown Automata with Reset . 417
Nuri Taşdemir and A.C. Cem Say

Towards Dual Approaches for Learning Context-Free Grammars Based
on Syntactic Concept Lattices . 429

Ryo Yoshinaka

On Highly Repetitive and Power Free Words . 441
Narad Rampersad and Elise Vaslet

A Sufficient Condition for Erasing Productions to Be Avoidable 452
Georg Zetzsche

Short Papers

Encoding Centered Polyominoes by Means of a Regular Language 464
Daniela Battaglino, Jean Marc Fedou, Andrea Frosini, and
Simone Rinaldi

Computational Aspects of Asynchronous Cellular Automata 466
Jérôme Chandesris, Alberto Dennunzio, Enrico Formenti, and
Luca Manzoni

Short 3-Collapsing Words over a 2-Letter Alphabet 469
Alessandra Cherubini, Achille Frigeri, and Brunetto Piochi

A Cascade Decomposition of Weighted Finite Transition Systems 472
Manfred Droste, Ingmar Meinecke, Branimir Šešelja, and
Andreja Tepavčević

XIV Table of Contents

Morphic Characterizations in Terms of Insertion Systems with a
Context of Length One . 474

Kaoru Fujioka

Inference of Residual Finite-State Tree Automata from Membership
Queries and Finite Positive Data . 476

Anna Kasprzik

On the Representability of Line Graphs . 478
Sergey Kitaev, Pavel Salimov, Christopher Severs, and
Henning Úlfarsson

Author Index . 481

Hunting Redundancies in Strings

Golnaz Badkobeh1, Supaporn Chairungsee1, and Maxime Crochemore1,2

1 King’s College London, London, WC2R 2LS, United Kingdom
2 Université Paris-Est, France

{golnaz.badkobeh,supaporn.chairungsee,maxime.crochemore}@kcl.ac.uk

Abstract. The notion of redundancies in texts, regarded as sequences
of symbols, appear under various concepts in the literature of Combina-
torics on words and of Algorithms on strings: repetitions, repeats, runs,
covers, seeds, and palindromes, for example.

We explore some of the newest aspects of these redundancies.

1 Redundancy: A Versatile Notion

The notion of redundancies in texts, regarded as sequences of symbols, appear
under various concepts in the literature of Combinatorics on words and of Algo-
rithms on strings: repetitions, repeats, runs, covers, seeds, and palindromes, for
example. Combinatorial and algorithmic aspects of these elements are spread for
example in the Lothaire’s books [36,37,38].

Squares and cubes (concatenations of 2 or 3 copies of the same non-empty
word) are instances of repetitions whose exponent is at least 2 and have been
studied for more than a century after the seminal work of Thüe [53] who de-
scribed infinite words containing none of them.

Repeat often refers to less repetitive segments in text, that is, those having a
rational exponent smaller than 2. The frontier between repetitions and repeats
is indeed rather blurred in literature. The famous Dejean’s conjecture [21] refers
mainly to repeats and provides the repetition threshold of each alphabet size:
there exist infinite words whose maximal factor exponent is the threshold, and
below the threshold there are only finitely many words. After several partial
results, including the result of Dejean on the three-letter alphabet, the conjecture
has eventually been solved recently (see [47]).

Further works show that maximal exponent repeats, or repetitions on the bi-
nary alphabet, occurring in infinite words complying with the threshold can also
have a bounded length [51]. Their minimal number is also known for alphabets
of size 2 and 3 [4], introducing the finite-repetitions threshold attached to each
alphabet size.

The design of methods for computing all the occurrences of repetitions in
a string has lead to several optimal algorithms [9,2,41] running in O(n log n)
time. They have been extended to algorithms producing certain repetitions with
rational exponent [40], or a unique occurrence for each repetition [28]. They run
in O(n log a) time on an alphabet of size a.

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 1–14, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 G. Badkobeh, S. Chairungsee, and M. Crochemore

What seems to be the right concept on repetitions is that of runs, maximal oc-
currences of repetitions, whose computation can be done in linear time (see [34],
[14]). Their maximal number is an open question ([34]) but tight approximations
exist ([48,18]).

Local periodities in strings associated with roots of repetitions are softened by
the notion of covers whose consecutive occurrences may overlap or are at least
adjacent in the string. A seed instead covers a superstring of the initial string.
They reveal redundacies inside strings that are more difficult to discover than
runs. Finding the shortest cover of a string can be done in linear time, while its
shortest seed is done in O(n log n) time (see [1]).

Palindromes are yet another kind of redundancies. They can be generalised
with palindromes having a bounded-length center. If testing if a string is a
palindrome is straightforward, finding palindromic segments is more complex.
Under some constraints it can be done in time O(n log a) [35,7] and even in
linear-time using more sophisticated data structures [19].

Beyond theoretical aspect of the problems related to redundancies, they are
often the base for string modelling adapted to compression coding. They appear
in run-length and Ziv-Lempel compression for example (see [5]). But more is to
be done on this to account for all the notions described here.

Repetitions and palindromes receive intensive attentions for the analysis of
genetic sequences. Repetitions are called tandem repeats, satellites or SRS and
should accept some approximation. Some types of palindromes are crucial for
the prediction of the secondary structure of RNA molecules (see [6]).

2 Avoiding Repetitions and Repeats

In this section we show how some infinite string can avoid repeats. The property
depends on the alphabet size.

Avoidability in binary words. In 1906 A.Thue established that squares are
avoidable on a 3-letter alphabet and cubes are avoidable on a 2-letter alphabet
[53]. Iterating the morphism m defined by:{

m(0) = 01,
m(1) = 10.

gives Thue-Morse sequence: 011010011001011010010110... which is overlap-free.
Pansiot [44] observed that the only morphisms generating the Thue-Morse word
are powers of m. This was extended by Seebold to:

Theorem 1 ([50]). Let x be an infinite overlap-free word over the alphabet
{a, b} that is generated by iterating some morphism h. Then h is a power of m.

However squares are not avoidable in infinite binary words, but Fraenkel and
Simpson [23] proved that some of them can contain only three of them. Indeed all
factors of exponent at least 2 occurring in their word should be considered, which
adds two cubes to the three squares. Their proof uses a pair of morphisms, one to

Hunting Redundancies in Strings 3

get an infinite word by iteration, the other to produce the final translation to the
binary alphabet. Their result has been proved with different pairs of morphisms
by Rampersad et al. [46] (the first morphism is uniform), by Harju and Nowotka
[29] (the second morphism accepts any infinite square-free word), and eventually
by Badkobeh and Crochemore [4] with the two morphisms f0:

f0(a) = abc,
f0(b) = ac,
f0(c) = b.

and g0:
g0(a) = 01001110001101,
g0(b) = 0011,
g0(c) = 000111.

The infinite binary word g0 = g0(f0
∞(a)) containing only the three squares 00,

11 and (1010) and the two cubes 000 and (111).
Avoiding large squares in constraint infinite binary words was a noble idea

by Shallit [51] who showed extreme cases of infinite binary words under both
constrains, maximal exponent and the period length. In his paper he shows that
for all t, t ≥ 1, no infinite binary word simultaneously avoids all squares yy with
period |y| ≥ t and 7/3-powers. This implies that the number of squares in an
infinite binary word is unbounded if it is 7/3-power free. He considers also the
period length of the avoided squares when the maximal exponent increases to
5/2 and to 3. Here is the results summary:

Period of Avoidable Unavoidable
avoided squares power power

2 none all
3 3+ 3

4, 5, 6 5/2+ 5/2
≥ 7 7/3+ 7/3

By the way, the avoidability of some period lengths and maximal exponent
has been studied by Dekking in [22] and in more details by Ochem in [43].

In [4] the authors show that the two types of constraints for the binary alpha-
bet can be combined: producing an infinite word whose maximal exponent of
its factors is the smallest possible while containing the smallest (finite) number
of squares. With maximal exponent 7/3 the smallest number of squares is 12 to
which is to be added 7/3-powers.

It is known from Karhumäki and Shallit [33] that if an infinite binary word
avoids 7/3-powers it contains an infinite number of squares. Proving that it
contains more than 12 squares is indeed a matter of simple computation.

Shallit [51] has built an infinite binary word avoiding 7/3+-powers and all
squares of period at least 7 as mentioned above, However his word contains 18
squares. The infinite binary word in [4] avoids the same powers but contains only
12 squares, the largest having period 8. As before the proof relies on a pair of

4 G. Badkobeh, S. Chairungsee, and M. Crochemore

morphisms satisfying suitable properties. Both morphisms are almost uniform
(up to one unit).

The first morphism f0 is weakly square-free defined from A∗
6 to itself by:

f1(a) = abac, f1(b) = babd,
f1(c) = eabdf, f1(d) = fbace,
f1(e) = bace, f1(f) = abdf.

And the second morphism g1 from A∗
6 to B∗, does not even corresponds to a

uniquely-decipherable code but admits a unique decoding on the words produced
by the first morphism. It is defined by:

g1(a) = 10011, g1(b) = 01100,
g1(c) = 01001, g1(d) = 10110,
g1(e) = 0110, g1(f) = 1001.

Then the infinite word g1 = g1(f1
∞(a)) has the desired property. It contains

the 12 squares 02, 12, (01)2, (10)2, (001)2, (010)2, (011)2, (100)2, (101)2, (110)2,
(01101001)2, (10010110)2 only. Words 0110110 and 1001001 are the only factors
with an exponent larger than 2, that is 7/3.

Looking at repetitions in words on larger alphabets, the subject introduces
a new type of threshold, that we call the finite-repetition threshold. For the al-
phabet of a letters, it is defined as the smallest rational number FRt(a) for
which there exists an infinite word avoiding FRt(a)+-powers and containing a
finite number of r-powers, where r is Dejean’s repetitive threshold. Karhumäki
and Shallit [33] results as well as Badkobeh and Crochemore [4] show that
FRt(2) = 7/3, where the associated number of squares is 12.

Fewest repetitions vs maximal-exponent powers in infinite binary
words. In this section we provide extra results that deepen the question of
avoidable patterns in infinite binary words by introducing another point of view.
We analyse the trade-off between the number of (distinct) squares and the num-
ber of maximal-exponent repetitions in infinite binary words when the maximal
exponent is constant. The interesting results show the behavior of infinite binary
words when the maximal exponent varies between 3 to 7/3. The value 7/3 is the
Finite-repetition threshold. And the value 3 of the maximal exponent is where
the number of squares is the minimum. The next table summarises the results.

Maximal Allowed number Minimum number
exponent e of e-powers of squares

7/3 2 12 g1 = g1(f∞
1 (a))

1 14 g2 = g2(f∞
2 (a))

5/2 2 8 g3 = g3(f∞
2 (a))

1 11 g4 = g4(f∞
0 (a))

3 2 3 g0 = g0(f∞
0 (a))

1 4 g5 = g5(w)

Hunting Redundancies in Strings 5

The infinite binary word g2 = g2(f∞
2 (a)) contains 14 squares, no factor of

exponent larger than 7/3 and only one 7/3-power (see Badkobeh [3]). The mor-
phism f2 is defined from A∗

5 to itself by:

f2(a) = adcbebc,
f2(b) = adcbedc,
f2(c) = aebc,
f2(d) = aebedc,
f2(e) = aebedcbebc.

Then we translate f∞
2 (a) to binary using the second morphism g2 defined by:

g2(a) = 101001100101,
g2(b) = 1010011001001,
g2(c) = 101001011001,
g2(d) = 101001011001001,
g2(e) = 101001011001001100101,

The word g2 = g2(f2
∞(a)) satisfies the property, contains the 14 squares 02,

12, (01)2, (10)2, (001)2, (010)2, (100)2, (101)2, (0110)2, (1001)2, (100110)2,
(0100110)2, (0110010)2, (10010110)2, and only one 7/3-power, 1001001.

Proving that it is impossible to have less than 12 squares when avoiding 5/2
powers of binary words needs a simple computation, but there exist infinite
5/2+-free binary words with less than 12 squares [3]. Additionally the number
of squares varies according to the number of maximal-exponent powers: if there
is only one 5/2-power the minimum number of squares is 11, and if there are
two 5/2-powers, it becomes 8.

The infinite binary word g3 = g3(f∞
2 (a)) contains 8 squares, no factor of

exponent larger than 5/2, and only two 5/2-powers [3]. The morphism g3 is
defined by:

g3(a) = 001100101,
g3(b) = 0011001011,
g3(c) = 001101,
g3(d) = 001101011,
g3(e) = 00110101100101.

The 8 squares g3 contains are 02, 12, (01)2, (10)2, (0110)2, (1001)2, (011001)2,
(100110)2, and the two 5/2-powers are 01010, 10101.

The infinite binary word g4 = g4(f∞
0 (a)) is a 5/2+-free with only one 5/2-

power and no more than 11 squares [3], where g4, from A∗
3 to B∗, is defined

by:

g4(a) = 1001001101011001101001011001001101100
101101001101100100110100101100110101,

g4(b) = 100100110100101,
g4(c) = 1001001101100101101001101.

The 11 squares of g4 are 02, 12, (01)2, (10)2, (001)2, (010)2, (011)2, (100)2,
(101)2, (110)2, (0110)2, and its 5/2-power is 10101.

6 G. Badkobeh, S. Chairungsee, and M. Crochemore

Finally, proving that it is impossible to have less than 8 squares when avoid-
ing cubes needs another mere computation, but recalling Fraenkel and Simpson
result [23] and the word g0 = g0(f∞

0 (a)) shows the existence of infinite binary
word containing only 3 squares and 2 cubes. it has been shown that the number
of squares increases to 4 if only one cube is allowed in the infinite binary word.
Let us consider the morphism g5 defined by

g5(a) = 1100010110010100,
g5(b) = 1101000110010100,
g5(c) = 0110101100010100.

Then the infinite word g5 = g5(w), where w is any infinite 7/4+-free ternary
word, is 3+-free and contains the 4 squares 00, 11, 0101 and 1010, and the only
cube 000 [3].

3 Finding Repetitions

Repetitions and periods in strings constitute one of the most fundamental areas
of string combinatorics. They have been studied already in the papers of Axel
Thue [53], considered as having founded stringology. While Thue was interested
in finding long sequences with few repetitions, in recent times a lot of attention
has been devoted to the algorithmic side of the problem.

Detecting repetitions in strings is an important element of several questions:
pattern matching, text compression, and computational biology to quote a few.
Pattern matching algorithms have to cope with repetitions to be efficient as these
are likely to slow down the process; the large family of dictionary-based text
compression methods (see [54]) use a weaker notion of repeats (like the software
gzip); repetitions in genomes, called satellites or Simple Sequence Repeats, are
intensively studied because, for example, some over-repeated short segments are
related to genetic diseases [39]; some satellites are also used in forensic crime
investigations.

In this section, we recall some of the most significant achievements in the
area. We focus on algorithms for finding repetitions and on their analysis that
relies on counting various types of repetitions. The main result concerns the
linear-time computation of runs in a string as well as combinatorial estimation
on their number.

Initially people investigated mostly squares occurrences, but their number can
be as high as Θ(n log n) [9], hence algorithms computing all of them cannot run
in linear time, due to the potential size of the output. Indeed the same result
holds for any type of repetition having an integer exponent greater than 1 [11].
The optimal algorithms reporting all positioned squares or just a single square
were designed in [9,2,41,10].

Theorem 2 (Crochemore [9], Apostolico-Preparata [2], Main-Lorentz [41]).

There exists an O(n log n) worst-case time algorithm for computing all the oc-
currences of primitively-rooted squares in a string of length n.

Hunting Redundancies in Strings 7

Techniques used to design the algorithms are based on partitioning, suffix
trees, and naming segments, respectively. A similar result has been obtained by
Franek, Smyth, and Tang using suffix arrays [25].

Testing the existence of some repetitions can however be done faster as is the
case of squares.

Theorem 3 (Crochemore [10], Main-Lorentz [41]). Testing if a string of
length n is square-free can be done in worst-case time O(n log a), where a is the
alphabet size of the string.

Looking at (distinct) factors that are repetitions and not their occurrences as
discussed above, it is known for example that only O(n) (distinct) squares can
appear in a string of length n.

Corollary 1 (Fraenkel and Simpson [24]). Any string of length n contains
at most 2n (distinct) squares.

The proof is a direct consequence of a useful lemma known as the Three-square
Lemma (see [20]), but a simple direct proof is due to Ilie [30]. Based on numerical
evidence, it has been conjectured that the number of squares is at most n and
the best bound to date, 2n−Θ(log n), is by Ilie [31].

The structure of all squares and of unpositioned runs has been also computed
within the running time O(n log a) in [40] and [28].

Runs. The concept of maximal occurrence of repetitions, called runs in [32], has
been introduced to represent all repetitions in a succinct manner. The crucial
property of runs is that there are only O(n) many of them in a string of length
n [34,48,13,45].

Formally, a run in a string w is an interval [i . . j] of positions for which both
the associated string w[i . . j] is periodic (i.e. has period p ≤ (j−i+1)/2), and the
periodicity cannot be extended to the right nor to the left: w[i−1] �= w[x+p−1]
and w[j − p + 1] �= w[j + 1] have higher periods when these words are defined.
When the period p of a run is known, we call it a p-run.

As a consequence of the algorithms and of the estimation on the number
of squares, the most important result related to repetitions in strings can be
formulated as follows.

Theorem 4 (Kolpakov-Kucherov [34], Rytter [48], Crochemore-Ilie [13]).

(i) All runs in a string of length n over an alphabet of size a can be computed
in time O(n log a).
(ii) The number of all runs is linear in the length of the string.

Point (ii) of the statement is very intricate and of purely combinatorial nature.
The algorithm for (i) executes in time proportional to the number of runs (on a
fixed-size alphabet) which, by (ii), is linear. Indeed, with an reasonable hypoth-
esis on the alphabet, the running time of (i) can be reduced to O(n) as stated
in Theorem 5 below.

8 G. Badkobeh, S. Chairungsee, and M. Crochemore

Let ρ(n) be the maximal number of runs in a string of length n. By item (ii) we
have ρ(n) < cn for some constant c. Based on the experiments in [34] Kolpakovand
Kucherov conjectured that c = 1 for binary alphabets. A stronger conjecture was
proposed in [26] where a family of strings is given with the number of runs equal to
3
2Φ = 0.927 . . . (Φ is the golden ratio), thus proving c ≥ 0.927 The authors of
[26] conjectured that this bound is optimal, but the best known lower bound for c
has been shown to be 0.944 by Matsubara et al. [42] and by Simpson [52].

Computing runs. Next, we sketch shortly the basic components of the proof of
the point (i) of Theorem 4. The main idea is to use, as for the previous Theorem 3,
the f-factorisation of the input string (see [10]): a string w is decomposed into
factors u1, u2, . . . , uk, where ui is the longest segment which appears before its
position in w, i.e. in u1u2 . . . uiA

−1, possibly overlapping the present occurrence
of ui; if the segment is empty ui is the letter u[i]. The factorisation is similar
to Ziv-Lempel factorisation that plays an important role in data compression
algorithms.

The runs which fit in a single factor of the f-factorisation are called internal
runs, other runs are called here overlapping runs. There are three crucial facts:

– all overlapping runs can be computed in linear time,
– each internal run is a copy of an earlier overlapping run,
– the f-factorisation can be computed in linear time under some hypothesis on

the alphabet of the string (see Theorem 5 below).

It follows easily from the definition of the f-factorisation that if a run overlaps
two consecutive factors uk−1 and uk then its size is at most twice the total size
of these two factors.

The f-factorisation of a string is commonly computed with the suffix tree or
the suffix automaton of the string. When the alphabet of the string has a fixed
size, thanks to the efficient algorithms for building these data structures, the
whole process can be carried on in linear time. Two recent algorithms, in [14]
and [8] (see also [17]), use the suffix array of the string to provide linear-time
algorithms for integer alphabets (whose sequences of letters can be sorted in
linear time). This is done through a useful table called LPF for longest previous
factor, that provides for each position on the string the longest factor occurring
both at that position and before it. Its computation is done in linear time with
the suffix array of the string (see [14,17,16]).

Theorem 5 (Crochemore-Ilie [14], Chen-Puglisi-Smyth [8]). On an in-
teger alphabet, the f-factorisation of a string and its runs can be computed in
linear time.

Counting runs. The most intriguing question remains the asymptotically tight
bound for the maximum number of runs ρ(n) in a string of length n.

The first explicit upper bound, 5 n, on ρ(n) for general strings was given by Ryt-
ter [48] and improved in a structural and intricatemanner in [49] to 3.44 n, by intro-
ducing a sparse-neighbour technique. Another improvement of the ideas of [48] was
done in [45] where the bound 3.48 n is obtained. The neighbours are runs for which

Hunting Redundancies in Strings 9

both the distance between their starting positions is small and the difference be-
tween their periods is also proportionally small according to some fixed coefficient
of proportionality. The occurrences of neighbours satisfy certain sparsity proper-
ties which imply the linear upper bound. Several variations for the definitions of
neighbours and sparsity are possible. Considering runs having close centres (the
beginning position of the second period) the bound has been lowered to 1.6 n in
[13,15], improved to 1.52 n in [27], and further to 1.029 n as a result of the compu-
tation of a tight approximation of the maximal number of 60-runs (see [18]).

It is interesting to note that the approach of [13,15] is somewhat counterintu-
itive. On the one hand, it is known that there can be only logarithmically many
runs starting at the same position and this is how they are counted in [48]. On
the other hand, there can be linearly many runs with the same centre, and still
counting them this way in [13,15] yields a better bound. This is essentially due
to the fact that many runs with the same centre implies strong local periodicities
in the string, thus eliminating many other potential runs.

4 Palindromes in DNA Sequence

A palindrome is a word or phrase which reads the same backwards as forwards,
for instance “refer”, “level” and “stats.” Words with palindromic structure are
important elements of DNA and RNA sequences, as they reflect the capacity
of molecules to form double-stranded stems and loops, which insures a stable
state of those molecules with low free energy. Restriction endonucleases usually
recognize palindromic sequences of DNA as they are useful for gene isolation and
cloning, genetic recombination, examining chromosome structure, and sequenc-
ing long DNA fragments. When an RNA is sequenced (digitised) it appears in
the form of a mere string on the alphabet of nucleotides A, C, G and U that stand
for adenine, cytosine, guanine and uracil.

Meaningful palindromic genetic sequences include a gap (spacer) between left
and right parts. Those palindromes correspond to hair-pin structures of RNA
molecules and they are significant in DNA sequences. These structures are
widespread in the natural plasmids, viral and bacterial genomes, eukaryotic chro-
mosomes and cell organelles. The reverse part of a palindrome is to be combined
with the complementarity relation on nucleotides, where A and U are complements
as well as C and G are. For example, the (exact) complimentary strand of the se-
quence CGAATGGCTCTT is GCTTACCGAGAA. And CGAATGGCTCTTsAAGAGCCATTCG is a
gapped palindrome with spacer s.

Using LPrF to locate palindromes. In this section, we introduce an efficient
technique to find palindrome in a given string. This technique is based on the
notion of longest previous reverse factor, LPrF. The LPrF table is a concept close
to the LPF table for which the previous occurrence in not reversed (see [16]).
This latter table extends the Ziv-Lempel factorisation of a text [55] intensively
used for conservative text compression (see [5]). The LPrF table also generalises
a factorisation of strings used by Kolpakov and Kucherov [35] to extract certain

10 G. Badkobeh, S. Chairungsee, and M. Crochemore

types of palindromes in molecular sequences. These palindromes play an impor-
tant role in RNA secondary structure prediction because they signal potential
hair-pin loops in RNA folding (see [6]). In addition the reverse complement of a
factor has to be considered up to some degree of approximation.

One of the problems is to compute efficiently, for a given string y, the LPrF
table that stores at each index i the maximal length of factors that both start
at position i on y and occur reversed at a smaller position. Here is the example
table for the string y = aababaabab:

position i 0 1 2 3 4 5 6 7 8 9
y[i] a a b a b a a b a b

LPrF[i] 0 1 0 1 3 2 4 3 2 1

From the table above, we can find the palindrome of this string y by storing
the starting position of the LPrF value as shown in the table below.
position i 0 1 2 3 4 5 6 7 8 9

y[i] a a b a b a a b a b
LPrF[i] 0 1 0 1 3 2 4 3 2 1

Pal[i] - 0 - 1 0 0 2 2 1 2

One efficient technique to compute the LPrF table is to use a Suffix Automa-
ton. The Suffix Automaton of a string w, noted S(w), is the minimal determin-
istic automaton that accepts the set of suffixes of w (see [12]). Its construction
makes use of a table defined on its states, noted F , and known as the failure link
of S(w). We also consider the length function L. They are informally defined
as follows. If state q is associated with the nonempty string u, F [q] is the state
associated with the longest suffix of u leading from the initial state to a state
different from q. And L[q] denotes maximal length of labels of paths from the
initial state to q.

Using a Suffix Automaton to compute LPrF. A solution to compute
the LPrF table of the input string y in linear time is designed with the Suffix
Automaton S(yR). The structure includes the failure link F and the table L
recalled above as well as an additional attribute on states SC described below.
Figure 1 displays the Suffix Automaton of babaababaa used for computing the
LPrF table of the string aababaabab.

The next table gives the attributes (F , L and SC) of the states of the au-
tomaton displayed in Figure 1:

0 1 2 3 4 5 6 7 8 9 10

11

b a b a a b a b a a

a ba b
a

Fig. 1. The Suffix Automaton of babaababaa, reverse of aababaabab

Hunting Redundancies in Strings 11

state q 0 1 2 3 4 5 6 7 8 9 10 11
F [q] 0 0 11 1 2 11 3 4 3 4 5 0
L[q] 0 1 2 3 4 5 6 7 8 9 10 1

SC [q] 0 2 1 2 1 0 4 3 2 1 0 0

Here is how the computation is carried on according to the algorithm described
below. At a given step, i is a position on y, � is the length of the current match,
and q is the current state of the automaton. The principal invariant of the
computation is the equality δ(initial , y[i − � . . i − 1]) = q where δ denotes the
transition function of the automaton and initial its initial state.

The condition to extend the match by the letter a = y[i] is that δ(q, a) is
defined and that y[i − � . . i − 1]a occurs in yR at a position at least as large
as n− i + �. This can be tested efficiently on the automaton if the table SC is
available. For a state r, SC [r] is the minimal length of labels of paths from r
to a terminal state. The table can be pre-processed via a mere traversal of the
automaton. The test becomes i− � ≤ � +1 + SC [δ(q, a)] where the first member
is the length of y[0 . . i − � − 1] and the second member the minimal length of
suffixes of yR starting with the next match.

When the test is negative, the failure link F is applied to shorten the match
whose length is given by L. None of the suffixes of the match of length larger
than L[F [q]], which all correspond to the same state q, is able to change the value
of the test in line 4. Then, a batch of LPrF values are computed in lines 8–10.

In the code below we assume that F [initial] = initial . The value of F [initial]
is usually left undefined for Suffix Automata but the assumption simplifies the
presentation of the algorithm.

LPrF-automaton(y, n)
1 (q, �)← (initial , 0)
2 i← 0
3 repeat a← y[i]
4 while (i < n) and (δ(q, a) �= NULL)

and ((i− �) ≥ � + 1 + SC [δ(q, a)]) do
5 (q, �)← (δ(q, a), � + 1)
6 i← i + 1
7 a← y[i]
8 repeat LPrF[i− �]← �
9 �← max{0, �− 1}

10 until � = L[F [q]]
11 if q �= initial then
12 q ← F [q]
13 else i← i + 1
14 until (i = n) and (� = 0)
15 return LPrF

12 G. Badkobeh, S. Chairungsee, and M. Crochemore

Theorem 6. The algorithm LPrF-automaton computes the LPrF table of a
string of length n in time O(n) on a fixed-size alphabet.

For the computation of genetic palindromes in which the left part in not only
reverse but also complemented, a variant of the LPrF table is introduced ac-
cordingly (see [7]). The corresponding computation uses the Suffix Automaton
S(z), where z is the reverse complement of the input y.

Note that if the automaton is implemented in linear space on a potentially
infinite alphabet, the overall algorithm runs in O(n log a) time. But the running
time can be reduced to O(n) on an integer alphabet using the Suffix Array of
the input y and Range Minimum Queries data structures (see [19]).

References

1. Apostolico, A., Breslauer, D.: Of periods, quasiperiods, repetitions and covers, pp.
236–248 (1997)

2. Apostolico, A., Preparata, F.P.: Optimal off-line detection of repetitions in a string.
Theoret. Comput. Sci. 22(3), 297–315 (1983)

3. Badkobeh, G.: Fewest repetitions vs maximal-exponent powers in infinite binary
words (2011) (submitted)

4. Badkobeh, G., Crochemore, M.: Bounded number of squares in infinite repetition-
constrained binary words. In: Holub, J., Zd’árek, J. (eds.) Prague Stringology Con-
ference, pp. 161–166. Czech Technical University in Prague (2010) ISBN 978-80-
01-04597-8

5. Bell, T.C., Clearly, J.G., Witten, I.H.: Text Compression. Prentice Hall Inc., New
Jersey (1990)

6. Böckenhauer, H.-J., Bongartz, D.: Algorithmic Aspects of Bioinformatics. Springer,
Berlin (2007)

7. Chairungsee, S., Crochemore, M.: Efficient computing of longest previous re-
verse factors. In: Shoukourian, Y. (ed.) Seventh International Conference on Com-
puter Science and Information Technologies (CSIT 2009), pp. 27–30. The National
Academy of Sciences of Armenia Publishers, Yerevan (2009)

8. Chen, G., Puglisi, S.J., Smyth, W.F.: Fast and practical algorithms for computing
all the runs in a string. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580,
pp. 307–315. Springer, Heidelberg (2007)

9. Crochemore, M.: An optimal algorithm for computing the repetitions in a word.
Inf. Process. Lett. 12(5), 244–250 (1981)

10. Crochemore, M.: Transducers and repetitions. Theoretical Computer Science 45(1),
63–86 (1986)

11. Crochemore, M., Fazekas, S.Z., Iliopoulos, C., Jayasekera, I.: Number of occur-
rences of powers in strings. International Journal of Foundations of Computer
Science 21(4), 535–547 (2010)

12. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge Uni-
versity Press, Cambridge (2007)

13. Crochemore, M., Ilie, L.: Analysis of maximal repetitions in strings. In: Kučera, L.,
Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 465–476. Springer, Heidelberg
(2007)

Hunting Redundancies in Strings 13

14. Crochemore, M., Ilie, L.: Computing longest previous factors in linear
time and applications. Information Processing Letters 106(2), 75–80 (2008),
doi:10.1016/j.ipl.2007.10.006

15. Crochemore, M., Ilie, L.: Maximal repetitions in strings. J. Comput. Syst.
Sci. 74(5), 796–807 (2008)

16. Crochemore, M., Ilie, L., Iliopoulos, C., Kubica, M., Rytter, W., Waleń, T.: LPF
computation revisited. In: Fiala, J., Kratochv́ıl, J., Miller, M. (eds.) IWOCA 2009.
LNCS, vol. 5874, pp. 158–169. Springer, Heidelberg (2009)

17. Crochemore, M., Ilie, L., Smyth, W.F.: A simple algorithm for computing the
Lempel-Ziv factorization. In: Storer, J.A., Marcellin, M.W. (eds.) 18th Data Com-
pression Conference, March 25-27, pp. 482–488. IEEE Computer Society, Los
Alamitos (2008)

18. Crochemore, M., Ilie, L., Tinta, L.: The ”runs” conjecture. In: de Felice, C., Carpi,
A. (eds.) Theoretical Computer Science (2010) (in press, corrected proof)

19. Crochemore, M., Iliopoulos, C., Kubica, M., Rytter, W., Waleń, T.: Efficient algo-
rithms for two extensions of LPF table: The power of suffix arrays. In: van Leeuwen,
J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010. LNCS,
vol. 5901, pp. 296–307. Springer, Heidelberg (2010)

20. Crochemore, M., Rytter, W.: Squares, cubes and time-space efficient string-
searching. Algorithmica 13(5), 405–425 (1995)

21. Dejean, F.: Sur un théorème de Thue. J. Comb. Theory, Ser. A 13(1), 90–99 (1972)
22. Dekking, F.M.: On repetitions of blocks in binary sequences. J. Comb. Theory, Ser.

A 20(3), 292–299 (1976)
23. Fraenkel, A.S., Simpson, J.: How many squares must a binary sequence contain?

Electr. J. Comb. 2 (1995)
24. Fraenkel, A.S., Simpson, J.: How many squares can a string contain? J. Comb.

Theory, Ser. A 82(1), 112–120 (1998)
25. Franek, F., Smyth, W.F., Tang, Y.: Computing all repeats using suffix arrays.

Journal of Automata, Languages and Combinatorics 8(4), 579–591 (2003)
26. Franek, F., Yang, Q.: An asymptotic lower bound for the maximal-number-of-runs

function. In: Holub, J., Zdárek, J. (eds.) Proceedings of the Prague Stringology
Conference. Department of Computer Science and Engineering, Faculty of Electri-
cal Engineering, pp. 3–8. Czech Technical University (2006)

27. Giraud, M.: Not so many runs in strings. In: Martin-Vide, C. (ed.) 2nd International
Conference on Language and Automata Theory and Applications (2008)

28. Gusfield, D., Stoye, J.: Linear time algorithms for finding and representing all the
tandem repeats in a string. J. Comput. Syst. Sci. 69(4), 525–546 (2004)

29. Harju, T., Nowotka, D.: Binary words with few squares. Bulletin of the EATCS 89,
164–166 (2006)

30. Ilie, L.: A simple proof that a word of length has at most 2 distinct squares. J.
Comb. Theory, Ser. A 112(1), 163–164 (2005)

31. Ilie, L.: A note on the number of squares in a word. Theor. Comput. Sci. 380(3),
373–376 (2007)

32. Iliopoulos, C.S., Moore, D., Smyth, W.F.: A characterization of the squares in a
Fibonacci string. Theoret. Comput. Sci. 172(1-2), 281–291 (1997)

33. Karhumäki, J., Shallit, J.: Polynomial versus exponential growth in repetition-free
binary words. J. Comb. Theory, Ser. A 105(2), 335–347 (2004)

34. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time.
In: Proceedings of the 40th IEEE Annual Symposium on Foundations of Computer
Science, pp. 596–604. IEEE Computer Society Press, New York (1999)

14 G. Badkobeh, S. Chairungsee, and M. Crochemore

35. Kolpakov, R., Kucherov, G.: Searching for gapped palindromes. In: Ferragina, P.,
Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 18–30. Springer, Heidelberg
(2008)

36. Lothaire, M. (ed.): Combinatorics on Words, 2nd edn. Cambridge University Press,
Cambridge (1997)

37. Lothaire, M. (ed.): Algebraic Combinatorics on Words. Cambridge University
Press, Cambridge (2001)

38. Lothaire, M. (ed.): Appplied Combinatorics on Words. Cambridge University Press,
Cambridge (2005)

39. MacDonald, M., Ambrose, C.M.: A novel gene containing a trinucleotide repeat
that is expanded and unstable on huntington’s disease chromosomes. Cell 72(6),
971–983 (1993)

40. Main, M.G.: Detecting leftmost maximal periodicities. Discret. Appl. Math. 25,
145–153 (1989)

41. Main, M.G., Lorentz, R.J.: An O(n log n) algorithm for finding all repetitions in a
string. J. Algorithms 5(3), 422–432 (1984)

42. Matsubara, W., Kusano, K., Ishino, A., Bannai, H., Shinohara, A.: New lower
bounds for the maximum number of runs in a string. In: Holub, J., Zdárek, J. (eds.)
Proceedings of the Prague Stringology Conference. Prague Stringology Club, De-
partment of Computer Science and Engineering, Faculty of Electrical Engineering,
pp.140–145. Czech Technical University in Prague (2008)

43. Ochem, P.: A generator of morphisms for infinite words. ITA 40(3), 427–441 (2006)
44. Pansiot, J.J.: The morse sequence and iterated morphisms. Inf. Process. Lett. 12(2),

68–70 (1981)
45. Puglisi, S.J., Simpson, J., Smyth, W.F.: How many runs can a string contain?

Theor. Comput. Sci. 401(1-3), 165–171 (2008)
46. Rampersad, N., Shallit, J., Wei Wang, M.: Avoiding large squares in infinite binary

words. Theor. Comput. Sci. 339(1), 19–34 (2005)
47. Rao, M.: Last cases of Dejean’s conjecture. In: Carpi, A., de Felice, C. (eds.)

WORDS 2009. University of Salerno, Italy (2009)
48. Rytter, W.: The number of runs in a string: Improved analysis of the linear upper

bound. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp.
184–195. Springer, Heidelberg (2006)

49. Rytter, W.: The number of runs in a string. Inf. Comput. 205(9), 1459–1469 (2007)
50. Séébold, P.: Sur les morphismes qui engendrent des mots infinis ayant des facteurs

prescrits, pp. 301–311 (1983)
51. Shallit, J.: Simultaneous avoidance of large squares and fractional powers in infinite

binary words. Intl. J. Found. Comput. Sci. 15, 317–327 (2004)
52. Simpson, J.: Modified Padovan words and the maximum number of runs in a word.

Australasian J. of Comb. 46, 129–145 (2010)
53. Thue: Uber unendliche zeichenreihen. Norske vid. Selsk. Skr. I. Mat. Nat. Kl.

Christiana 7, 1–22 (1906)
54. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes. Van Nostrand Reinhold

(1994)
55. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE

Transactions on Information Theory, 337–343 (1977)

Some Remarks on Automata Minimality

Antonio Restivo and Roberto Vaglica

Dipartimento di Matematica e Informatica,
Università degli Studi di Palermo

Via Archirafi 34, 90123 Palermo, Italy
{restivo,vaglica}@math.unipa.it

1 Introduction

It is well known that the minimization problem of deterministic finite automata
(DFAs) is related to the indistinguishability notion of states (cf. [HMU00]). In-
deed, a well known technique to minimize a DFA, essentially, consists in finding
pairs of states that are equivalent (or indistinguishable), namely pairs of states
(p, q) such that it is impossible to assert the difference between p and q only
by starting in each of the two states and asking whether or not a given input
string leads to a final state. Since, in the testing states equivalence, the notion
of initial state is irrelevant, some of the main techniques for the minimization of
automata, such as Moore’s algorithm [Moo56] and Hopcroft’s algorithm [Hop71],
do not care what is the initial state of the automaton, when applied to acces-
sible automata (i.e. such that all states can be reached from the initial state).
Therefore a natural question that arises is, for accessible automata, on what does
minimality depend? Obviously, it depends on both the automata transitions and
the set of final states. In this paper, our main focus is to investigate to what
extent minimality depends on the particular subset of final states.

In order to investigate the dependence of minimality of the automaton on the
choice of final states, we follow a graph-theoretic approach. For any DFA A, we
introduce the state-pair graph G(A), having as set of vertices the family [Q]2

of subsets of Q of cardinality 2. We show that, for any choice of the set F of
final states, the minimality of A corresponds to the property that F separates
all closed components of G(A). A set F ⊂ Q separates S ⊆ [Q]2 if there exists
{p, q} ∈ S such that p ∈ F and q /∈ F . In this way, in order to check whether A
is minimal with respect to various sets of final states, we need to compute the
closed components of G(A) only once, and then test, for each F ⊂ Q, whether
F separates such closed components.
In this paper we consider strongly connected complete automata A = (Q, Σ, δ)
and, in order to exclude the trivial case, we choose the sets F of final states
among the proper subsets of Q.

The effectiveness of our approach is shown by analyzing some extremal cases.
We introduce the family of uniformly minimal automata, i.e. automata which
are minimal for any choice of the set of final states. The definitions is consistent:
indeed we show that for each positive integer n there exist uniformly minimal
automata with n states. We provide a characterization of such a family of au-
tomata in terms of closed components the corresponding state-pair graphs, from

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 15–27, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

16 A. Restivo and R. Vaglica

which one derives a polynomial algorithm to decide whether a given DFA is
uniformly minimal. Later we consider the opposite extremal case, i.e. automata
that are never-minimal, for any choice of the set of final states. Also in this case
we prove that there exists an infinite family of never-minimal automata. How-
ever, contrary to the previous cases, does not exist a polynomial algorithm for
checking whether an automaton is never-minimal, as shown in [RS11]. In the last
part of the paper the minimization properties of a DFA are analyzed by looking
at its transformation monoid. In particular, we show some connections between
the problem to decide whether an automaton is never-minimal and the syntactic
monoid problem of [GK98]. Synchronization properties of the automaton seem
to play a role in such investigation.

2 Basic Definitions and Notation

In this section we recall the basic definitions and fix the notation used in this
work. A deterministic finite automaton (DFA) is a triple A = (Q, Σ, δ) where Q
is a finite set of states, Σ is a finite alphabet of input symbols and δ is a map
from Q × Σ to Q called the transition function of the automaton. The action
of the letters in Σ on the states in Q can be extended in a natural way to Σ∗,
where Σ∗ is the free monoid over the alphabet Σ; this extension is here denoted
by δ∗. If the transition function δ is a total function, then we say that the DFA
is complete. An automaton A = (Q, Σ, δ) is said strongly connected if for every
ordered pair of states q, q′ ∈ Q there exists w ∈ Σ∗ such that δ∗(q, w) = q′.
A synchronizing word for a DFA A is a sequence of symbols in the input alphabet
which sends any state of A to the same state. A DFA is said to be synchronizing
if it has a synchronizing word. In this paper, when not specified, we consider only
complete and strongly connected automata. If we fix a state i ∈ Q as initial state
and a non-empty subset F ⊆ Q as set of final states for the automaton A, then
we say that the automaton recognizes a language. The language recognized by
A(i, F) is the set L(A(i, F)) = {w ∈ Σ∗ : δ∗(i, w) ∈ F}. The class of languages
recognized by DFAs is known as the class of regular languages.

Two automata that recognize the same language are called equivalent. Finally
a DFA is minimal if it has the minimum number of states among all its equivalent
DFAs. For any finite deterministic automaton A(i, F) there is a unique (up to
labeling of the states) minimal automaton that recognizes the same language as
the automaton A(i, F). As already mentioned in the introduction, the minimal
automaton equivalent to a given DFA, can be computed essentially by using the
indistinguishable equivalence I. More precisely, we say that two states p and q
are indistinguishable if, for all input strings w, δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F .

3 Some Graph-Theoretic Tools

In this section we introduce some graph-theoretic tools, whose usefulness in our
context will be clear shortly. Given an arbitrary set X , we denote by [X]k the

Some Remarks on Automata Minimality 17

family of subsets of X of cardinality k:

[X]k = {Y ⊂ X | |X | = k}.

Definition 1. Given a deterministic finite automaton A = (Q, Σ, δ), the state-
pair graph of A is the directed graph G(A) = (VG, EG) defined as follows:

i. VG = [Q]2;
ii. EG = {({p, q}, {p′, q′}) | δ(p, a) = p′, δ(q, a) = q′, a ∈ Σ}.
An example of state-pair graph of an automaton is given in Fig. 1.

1 2

34

12

23

34

14

13

24

A G(A)

a

b

a

b

aabb

Fig. 1. A DFA A and the corresponding state-pair graph G(A)

As regards the complexity of the state-pair graph G(A), one can verify that:

|VG| =
(|Q|

2

)
and

|EG| ≤ |Σ| · |VG|.
The following definition plays an important role in our paper.

Definition 2. Given a set F ⊆ Q and a set S ⊆ [Q]2, we say that F separates
S if there exists {p, q} ∈ S such that p ∈ F and q /∈ F .

Another useful notion for our investigation is that of closed component of a
directed graph.

Definition 3. A closed component of a directed graph G is a subset S of the
set of the vertices of G such that

– there exists a path from any element of S to any other element of S (i.e. S
is a strongly connected component), and

– there is no outgoing edge from one element of S to a vertex of G which is
not in S.

18 A. Restivo and R. Vaglica

23

14

13

24

12 34

S1 S3

S2

Fig. 2. The state-pair graph G(A) and its closed components marked: S1 =
{{1, 4}, {2, 3}}, S2 = {{1, 3}}, S3 = {{2, 4}}

The set of all closed components of G(A) is here denoted by S(A). Figure 2
shows the state-pair graph G(A) with the closed components marked.

Given an automaton A such that S(A) = {S1, S2, ..., Sk} for some integer k,
we denote by ‖S(A)‖ the number of vertices of G(A) that are in some closed
component:

‖S(A)‖ =
k∑

i=1

|Si|.

Lemma 1. If A = (Q, Σ, δ) is a strongly connected DFA, one has

1 ≤ ‖S(A)‖ ≤
(|Q|

2

)
,

and the bounds are tight.

The tightness of the upper bound in the previous lemma is proved by the
existence of automata having a strongly connected state-pair graph (see for in-
stance the example after Proposition 1). The tightness of the lower bound is
obtained by the following infinite family {Dn} of automata. The automaton Dn

has Q = {1, 2, ..., n} as set of states, Σ = {a, b} as symbol of input letters and
the transition function defined as follows:

δ(i, a) =
{

i + 1, if i < n,
i, if i = n; δ(i, b) = 1, ∀i ∈ Q.

The following result follows from the basic properties of minimal DFAs.

Theorem 1. Let A(i, F) be an accessible DFA. Then A(i, F) is minimal if and
only if F separates all the closed components of G(A).

Remark 1. The interest of Theorem 1 is that, in order to check whether A is
minimal with respect to various sets of final states, we need to compute the

Some Remarks on Automata Minimality 19

closed components of G(A) only once, and then test, for each F ⊂ Q, whether F
separates such closed component. Moreover, the advantage in considering only
the closed components of G(A) relies on the fact that, by Lemma 1, we have
that ‖S(A)‖ can be much smaller than the cardinality of G(A).

As an example, with reference to the automaton of Fig. 1, we have that the
set of final states F = {1, 2} separates all the elements of S(A) (see Fig. 2).
Thus, since A(i, F) is accessible for all i ∈ {1, ..., 4} (note that A is strongly
connected), A(i, {1, 2}) is minimal for all i. On the contrary, the set F = {1}
doesn’t separate the closed component S3 = {{2, 4}}, hence A(i, {1}) is not a
minimal DFA.

Given a set S ⊆ [Q]2, let QS = {q ∈ Q | {p, q} ∈ S} be the set of states
involved in S. To each closed component S ∈ S(A) one can associate the (undi-
rected) graph HS having QS as set of vertices and S as set of edges. Figure 3
illustrates the graphs associated to the closed components S1, S2 and S3 of S(A).
The graphs HS play an important role in the characterization of uniformly min-
imal automata (of Theorem 2).

1 2

34

1

3

2

4

HS1 HS2 HS3

Fig. 3. The graphs HS1 ,HS2 and HS3 associated to the elements of S(A)

4 Uniformly Minimal Automata

In this section we deal with the family of uniformly minimal automata which
was introduced firstly in [RV10] (cf. also [RV11]).

Definition 4. A strongly connected automaton A = (Q, Σ, δ) is called uni-
formly minimal if, for all proper subsets F ⊂ Q and i ∈ Q, A(i, F) is minimal.

Remark 2. We wish to point out that in [RV10] the automata of Definition 4 were
called “almost uniformly minimal”. The justification for this different terminol-
ogy is due to the fact that in that work we considered non-necessary complete
automata. Thus, in [RV10], we called uniformly minimal the deterministic au-
tomata which are minimal for all choices of the set of final states, included the
choice F = Q.

20 A. Restivo and R. Vaglica

The following statement is a consequence of the previous definition and of
Theorem 1.

Proposition 1. Given a strongly connected complete automaton A, if the state-
pair graph G(A) is strongly connected, then A is uniformly minimal.

We observe that a well-known family of uniformly minimal automata is that
of Černý automata {Cn}, namely the infinite family of n-state synchronizing
automata such that the length of the shortest synchronizing word reaches the
bound (n − 1)2 of Černý’s conjecture (cf. [Č64]). The automaton Cn has Q =
{1, 2, ..., n} as set of states, Σ = {a, b} as alphabet of input letters and the
transition function defined as follows:

δ(q, a) =
{

1 if q = n,
q if q < n; δ(q, b) =

{
1 if q = n,
q+1 if q < n.

The automaton Cn is illustrates in Fig. 4.

n-1

n-2 2

1

n a,bb

bb

aa

aa

Fig. 4. The Černý automaton Cn

For each of these automata, it is not hard to see that the corresponding state-
pair graph is strongly connected. Thus, by Proposition 1, every Černý automaton
is uniformly minimal. Contrary to what we might have expected, synchronization
doesn’t seem to play a role for the uniform minimality of an automaton. Indeed,
the uniformly minimal automata considered in [RV10] belong to an infinite family
{Mn} of non synchronizing uniformly minimal automata.

Remark 3. We point out that the condition given by Proposition 1 is not a
necessary condition, as shown by the example in Fig. 5.

The following result provides a characterization of uniformly minimal au-
tomata in terms of the graphs HS associated to the closed components S ∈ S(A).

Theorem 2. A strongly connected automaton A = (Q, Σ, δ) is uniformly mini-
mal if and only if, for any closed component S of G(A), QS = Q and the graph
HS is connected.

Some Remarks on Automata Minimality 21

1

2 3

4

5

b

a,b

b

bb

a

a

a

a

34

45 15

12

23

25

13 24

35

14

S1 S2

Fig. 5. A uniformly minimal automaton (on the left) and its state-pair graph hav-
ing the two closed components S1 = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 5}} and S2 =
{{1, 4}, {3, 5}, {2, 4}, {1, 3}, {2, 5}}

1

2 3

4

5

1

4 2

5

3

HS1 HS2

Fig. 6. The graphs associated to the closed components S1 and S2 of the state pair-
graph of the automaton depicted in Fig. 5

As a consequence of the above result we have the following corollary.

Corollary 1. There exists a polynomial-time algorithm to test the uniform min-
imality of an automaton.

Remark 4. The statement in Corollary 1 is not at all trivial. Indeed, in order to
test, by a naive method, the uniform minimality of a DFA A = (Q, Σ, δ), one
has to test its minimality for all F ⊂ Q, i.e. one has to repeat exponentially
many times a classical minimization algorithm.

5 Never-Minimal Automata

In this section we consider automata defined by the opposite extremal minimality
condition, namely the never-minimal automata (cf.[RV10, RV11]).

22 A. Restivo and R. Vaglica

Definition 5. A never-minimal automaton is a strongly connected automaton
A = (Q, Σ, δ) such that, for all F ⊆ Q and i ∈ Q, A(i, F) is not minimal.

The following theorem is an immediate consequence of the above definition and
of Theorem 1.

Theorem 3. The automaton A = (Q, Σ, δ) is never minimal if and only if, for
any F ⊆ Q, there exists a closed component S of G(A) which is not separated
by F .

For any a ∈ Σ, denote by δa the map δa : Q → Q defined by δa(q) = δ(q, a),
for all q ∈ Q. The following proposition gives a sufficient condition for a an
automaton to be never-minimal.

Proposition 2. Let A be a DFA. Suppose that there exists a set P = {p, q, r}
of three states such that, for all a ∈ Σ, the restriction of δa to P is either a
constant or the identity function. Then A is never-minimal.
The above result enables us to construct an infinite family of never-minimal au-
tomata. For instance, in [RV10] we have defined the family {Nn =(Qn, Σ, δ)}n≥4,
where Qn = {1, 2, ..., n}, Σ = {a, b} and δ is defined by

δ(i, a) =
{

1, if i ≤ 3;
i-1, if 4 ≤ i ≤ n;

δ(i, b) =

⎧⎨⎩
4, if i ≤ 3;
i+1, if 3 < i ≤ n− 1;
2, if i = n,

whose automata satisfy the hypothesis of Proposition 2. See Fig. 7 for the au-
tomaton N6.

1 2

43 5 6

b

a

a

b

a a

b
b

b

a

a

b

Fig. 7. The automaton N6

Remark that the condition of Proposition 2 is not necessary, as shown by
the never-minimal automaton given in Fig. 8. In [RV10] we raised the question
whether NEV ER−MINIMAL problem, that is the problem of establish if a
given automaton is never-minimal or not, can be solved in polynomial time (as
for uniform minimality). A negative answer has been recently given by Rodaro
and Silva in [RS11], were they prove the following theorem.

Theorem 4 (Rodaro, Silva). co-NEVER-MINIMAL is NP-complete.

Some Remarks on Automata Minimality 23

6 Automata Minimality and Transformation Monoid

Given a language L ⊆ Σ∗, the Nerode equivalence is defined as follows for two
strings x, y ∈ Σ∗:

x ∼L y ⇔ ∀z ∈ Σ∗ (xz ∈ L ⇔ yz ∈ L) .

The Nerode equivalence is right invariant, namely u ∼L v implies (∀x) ux ∼L vx,
but it not left invariant. So it is not a congruence, the latter being defined as an
equivalence which is both right and left invariant. In addiction, Nerode equiva-
lence is linked to the syntactic congruence σL, that is the coarsest congruence
on Σ∗ saturating L, defined by:

xσLy ⇔ ∀u, v ∈ Σ∗ (uxv ∈ L ⇔ uyv ∈ L).

An important theorem (Myhill–Nerode) says that a language L is regular (i.e.,
recognized by a DFA) if and only if the number of equivalence classes of σL is
finite. Moreover, given a regular language L, the quotient Σ∗/σL is a (finite)
monoid, called the syntactic monoid of L.

It is also possible to associate to every automaton A = (Q, Σ, δ), where the
initial and final states are not specified, a finite monoid, called the transformation
monoid of A. The transformation monoid of A is the quotient monoid M(A) =
Σ∗/γA where γA is the congruence on Σ∗ defined by

xγAy ⇔ (∀q ∈ Q) δ∗(q, x) = δ∗(q, y).

In addiction, if we choose an initial state i and a set of final states F for the au-
tomaton A, also γA saturates L = L(A(i, F)). Thus we have that σL is coarser
than γA (namely xγAy implies xσLy) and the syntactic monoid of a regular
language L coincides with the transformation monoid of the minimal DFA rec-
ognizing L. In other words, if A(i, F) is the minimal DFA recognizing L then
γA = σL.

Remark that the transformation monoid M(A) only depends on the triple
(Q, Σ, δ) that defines the automaton A, and it does not depend on the choice of
the initial state i ∈ Q and on the set F ⊂ Q of final states. However, if A(i, F) is
minimal for some choice of i ∈ Q and F ⊂ Q, then M(A) is the syntactic monoid
of the language L(A(i, F)). In the case the automaton A = (Q, Σ, δ) is never
minimal, can it happen that the monoid M(A) is the syntactic monoid of some
language L? Such a question relates our investigation to the “syntactic monoid
problem”introduced in [GK98]. Indeed, it is also possible to introduce the notion
of syntacticity of monoids without referring to any language. More precisely, if
M is a finite monoid and P a subset of M , there is a largest congruence σP

saturating P defined by:

xσP y ⇔ ∀s, t ∈M (sxt ∈ P ⇔ syt ∈ P).

24 A. Restivo and R. Vaglica

The set P is called disjunctive if σP is the equality in M . A monoid M is
syntactic if it has a disjunctive subset. In the case of the syntactic monoid of a
language L, a disjunctive set is {[w] |w ∈ L} ⊆ Σ∗/σL.

The syntactic monoid problem is to decide whether a finite monoid is syntac-
tic. It is an open problem whether the syntactic monoid problem is polynomial
or not. More precisely, in [GK98], Pavel Goralcik and Václav Koubek give a
polynomial-time algorithm (O(|M |3)) solving the syntactic monoid problem for
a large class of finite monoids and show that a slide generalization of syntac-
tic monoid problem makes it NP-complete. Thus, they conclude that, probably,
there is no chance to have a polynomial-time algorithm for the syntactic monoid
problem.

The following proposition relates the syntactic monoid problem to the
NEV ER−MINIMAL problem.

Proposition 3. Let M be a monoid isomorphic to the transformation monoid
of a DFA A. If M is non syntactic then A is never-minimal.

However, contrary to what we might have expected, this proposition cannot be
reversed.

We show this fact by an example illustrating a never-minimal automaton
whose transformation monoid coincides with the the syntactic monoid of some
language L.

In order to facilitate the computation of the transformation monoid of an
automaton A = (Q, Σ, δ), we observe that each word w ∈ Σ∗ defines a transfor-
mation γw : Q → Q such that, ∀q ∈ Q, γw(q) = δ∗(q, w) and each equivalence
class of the congruence γA corresponds exactly to the set of words that perform
the same transformation on Q. Thus, if Q = {1, 2, ..., n}, we may identify an
element [w] ∈ Σ∗/γA with the transformation(

1 2 · · · n
γw(1) γw(2) · · · γw(n)

)
.

Consider the never-minimal automaton A shown in Fig. 8. The elements of
the transformation monoid M(A) are given by

[ε] =
(

1 2 3 4 5
1 2 3 4 5

)
, [a]=

(
1 2 3 4 5
4 1 4 5 4

)
, [b]=

(
1 2 3 4 5
2 3 2 3 2

)
, [aa]=

(
1 2 3 4 5
5 4 5 4 5

)
,

[ab]=
(

1 2 3 4 5
3 2 3 2 3

)
, [ba]=

(
1 2 3 4 5
1 4 1 4 1

)
, [aaa]=

(
1 2 3 4 5
4 5 4 5 4

)
, [aba] =

(
1 2 3 4 5
4 1 4 1 4

)
.

The Cayley graph of M(A) is illustrated in Fig. 9.
It happens that, if we choose in A as set of final states the set F = {5},

the reduction algorithm gives the automaton B in Fig. 10. Now the reader can
verify that M(B) = M(A), i.e. the transformation monoid of the automaton
B coincides with (is isomorphic to) the transformation monoid of A, given in
Fig. 9. Since B(A, {C}) is minimal, M(B) = M(A) is the syntactic monoid of

Some Remarks on Automata Minimality 25

1 2 3 4 5
b b a a

b

a b b a

a

Fig. 8. A never-minimal automaton A

[ε]

[aba]

[a]

[b]

[aaa][ba]

[ab]

[aa]

b b

ab
b

b
a

b

a

a

a

b

a

a

a

b

Fig. 9. The Cayley graph of M(A)

the language L(B(A, {C})). So we have shown that the automaton A in Fig. 8 is
never-minimal and its transformation monoid M(A) (given in Fig.9) is syntactic.

In general, given a DFA A = (Q, Σ, δ) and a set F ⊂ Q of final states, denote
by μF (A) the automaton B that is obtained by applying the minimization algo-
rithm to the automaton A(i, F), for some i ∈ Q. It is well known (cf. [How91])
that μF induces a morphism ϕF from the transformation monoid M(A) to the
transformation monoid M(B), as illustrated by the following diagram:

Previous example shows that it can happen that A �= B and M(A) = M(B).
As a consequence, a proper reduction of the size of an automaton, by merging
some indistinguishable states, does not always lead to a reduction of the cardi-
nality of the corresponding transformation monoid. The next lemma shows that
the hypothesis that the automaton is synchronizing plays a special role in this
context.

Lemma 2. Let A = (Q, Σ, δ) be a strongly connected synchronizing DFA, and
let B = μF (A) for some F ⊂ Q. If B �= A, then M(B) �= M(A).

26 A. Restivo and R. Vaglica

A

D

B C

a a

ab
ba,b

b

Fig. 10. The automaton B = μF (A) with F = {5}

A

B

M(A)

M(B)

μ
F ϕ

Using the above lemma we can establish a “weak inverse”of Proposition 3 for
synchronizing automata. In order to state the next result, we need some nota-
tions. If A = (Q, Σ, δ) is a DFA, for all i ∈ Q and F ⊆ Q denote R(i, F) =
{[w] ∈M(A) | w ∈ L(A(i, F))}.
Theorem 5. Let A = (Q, Σ, δ) be a strongly connected synchronizing DFA. If
A is never-minimal, then, for all i ∈ Q and F ⊆ Q, R(i, F) is not a disjunctive
subsets of M(A).

We conclude that the relationship between the problem to decide whether an
automaton is never minimal and the syntactic monoid problem needs further
investigations.

References

[GK98] Goralcik, P., Koubek, V.: On the disjunctive set problem. Theor. Comput.
Sci. 204(1-2), 99–118 (1998)

[HMU00] Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata The-
ory, Languages, and Computation, 2nd edn. Addison Wesley, Reading
(2000)

[Hop71] Hopcroft, J.E.: An n log n algorithm for minimizing the states in a finite
automaton, pp. 189–196. Academic Press, London (1971)

[How91] Howie, J.M. (ed.): Automata and Languages. Oxford Science Publications.
Oxford University Press, Inc., New York (1991)

[Moo56] Moore, E.F.: Gedanken experiments on sequential machines. In: Moore, E.F.
(ed.) Automata Studies, pp. 129–153. Princeton U., Princeton (1956)

Some Remarks on Automata Minimality 27

[RS11] Rodaro, E., Silva, P.: Never minimal automata and the rainbow bipartite
subgraph problem. In: Proceedings of the 15th International Conference on
Developments in Language Theory. Springer, Heidelberg (2011)

[RV10] Restivo, A., Vaglica, R.: Automata with extremal minimality conditions.
In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp.
399–410. Springer, Heidelberg (2010)

[RV11] Restivo, A., Vaglica, R.: Extremal minimality conditions on automata
(2011) (submitted)

[Č64] Černy, J.: Poznámka k homogénnym experimenton s konečnými automatmi.
Mat.-Fyz. Cas. Slovensk. Akad. Vied. 14, 208–215 (1964)

Growth Properties of Power-Free Languages

Arseny M. Shur

Ural State University, Ekaterinburg, Russia

Abstract. The aim of this paper is to give a short survey of the area
formed by the intersection of two popular lines of investigation in for-
mal language theory. The first line, originated by Thue in 1906, con-
cerns about repetition-free words and languages. The second line is the
study of growth functions for words and languages; it can be traced back
to the classical papers by Morse and Hedlund on symbolic dynamics
(1938, 1940). Growth functions of repetition-free languages are investi-
gated since 1980’s. Most of the results were obtained for power-free lan-
guages, but some ideas can be applied for languages avoiding patterns
and Abelian-power-free languages as well.

In this paper, we present key contributions to the area, its state-of-
the-art, and conjectures that suggest answers to some natural unsolved
problems. Also, we pay attention to the tools and techniques that made
possible the progress in the area and suggest some technical results that
would be useful to solve open problems.

The growth properties of power-free (more generally, repetition-free) languages
constitute a popular area of investigations in formal language theory. For ex-
ample, one can found about twenty papers devoted to the growth of one par-
ticular language, namely, the square-free language over three letters. Since the
review by Berstel [1], the general appearance of the area changed significantly.
New powerful techniques were developed, and lots of new results were obtained.
Also, the boundaries of the area became well-defined after the confirmation of
Dejean’s conjecture: now we know exactly which power-free languages are infi-
nite (= possess nontrivial growth properties). So, the area certainly needs a new
overview and we try our best to provide it.

We start after necessary preliminaries and try to show the area in dynamics,
comparing new results and new techniques to the older ones.

1 Preliminaries

We study words over finite alphabets, using standard notions of factors, prefixes
and suffixes. The length of a word w is denoted by |w|. As usual, we write Σ∗ for
the set (free monoid) of all words over the alphabet Σ, including the empty word
λ. A language L ⊆ Σ is factorial if it is closed under taking factors of its words.
A word w is forbidden for a language L if it is a factor of no word from L. The set
of all minimal (w.r.t. factor order) forbidden words for a language is called the

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 28–43, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Growth Properties of Power-Free Languages 29

antidictionary of this language. A factorial language is uniquely determined by
its antidictionary. Languages with finite antidictionary (FAD-languages) form a
proper subclass of regular languages. A language is symmetric if it is preserved
by all automorphisms of Σ∗.

A positive integer p is a period of a word w if the ith and the (i+p)th letters
of w coincide for all possible values of i. For any rational number β ≥ 1 and any
word w, we define the β-power and the β+-power of w as follows:

wβ = w · · ·w︸ ︷︷ ︸
�β� times

w′, where w′ is a prefix of w,
|wβ |
|w| ≥ β, and

|wβ |−1
|w| < β ,

wβ+
= w · · ·w︸ ︷︷ ︸

�β� times

w′, where w′ is a prefix of w,
|wβ |
|w| > β, and

|wβ |−1
|w| ≤ β .

For convenience, β+ is considered just as a “number” that covers β in the usual
≤ order. Throughout the paper, β is either a rational number, or a “number
with plus”. The word w is called β-free if it contains no β-powers as factors.
By β-free languages we mean the languages of all β-free words over a given
alphabet. These languages are obviously factorial and are also called power-free
languages. 2-free, 3-free, and 2+-free words are known as square-free, cube-free,
and overlap-free, respectively.

Repetition threshold RT(k) is the infimum of all numbers β such that the k-
ary β-free language is infinite. Dejean’s conjecture [9] states that RT(3) = 7/4,
RT(4) = 7/5, and RT(k) = k/(k−1) for k = 2 and k ≥ 5. This conjecture is now
confirmed in all cases due to the efforts of Dejean, Pansiot, Moulin-Ollagnier,
Mohammad-Noori, Currie, Carpi, Rampersad, and Rao. The k-ary RT(k)+-free
language is the minimal infinite k-ary power-free language (threshold language).

A word w avoids a word u if there are no homomorphic images of u among the
factors of w. The word u in this case is called a pattern. A word w1 · · ·wn is an
Abelian n-th power if w1 = . . . = wn in any commutative monoid. Abelian-n-free
words and languages, and also languages avoiding patterns, are defined similar
to β-free words and languages.

We consider finite automata with partial transition function and view them as
digraphs. A trie is a deterministic finite automaton that is a tree such that the
initial vertex is its root and the set of terminal vertices is the set of all its leaves.
A strong component of a digraph G is its subgraph G′ maximal w.r.t. inclusion
such that there is a (directed) walk from any vertex of G′ to any other vertex of
G′. A digraph is strongly connected, if it has only one strong component.

Frobenius root of a nonnegative matrix is its maximal positive eigenvalue.
Frobenius root has a nonnegative eigenvector; for some matrices, including the
adjacency metrices of strongly connected digraphs, this eigenvector is positive.

For any language L, its growth properties result from the behaviour of its com-
binatorial complexity, which is the function CL(n) returning the number of words
of length n in L. The growth rate of L is defined by Gr(L) = lim supn→∞(CL(n))1/n.
By Fekete’s lemma, for any factorial language L we have

30 A.M. Shur

Gr(L) = lim
n→∞(CL(n))1/n = inf

n∈N
(CL(n))1/n. (1)

The inequality Gr(L) > 1 indicates that L is “big” (has exponential complexity).
If Gr(L) = 1, then L is “small” (has subexponential complexity). The complexity
CL(n) is polynomial if it is bounded from above by a polynomial in n. The
condition Gr(L) = 0 corresponds to the degenerate case of a finite language. The
complexity of a factorial language is either bounded by a constant or strictly
increasing.

Concluding the preliminary section, we outline the main directions in the
study of the growth properties of power-free languages.

1. Get sharp bounds for the parameters of growth for the most famous power-
free languages such as the binary cube-free and overlap-free languages, terna-
ry square-free language.

2. Study the behaviour of the growth rate for the smallset nontrivial (i.e., bi-
nary) alphabet.

3. Build universal algorithms for upper and lower bounds on the growth rate.
4. Establish asymptotic laws of behaviour of the growth rate for large alphabets.
5. Extend the line of Dejean’s conjecture; in particular, prove the following

Exponential conjecture: threshold languages over three and more letters have
exponential complexity1.

2 Small Languages: Polynomial Plateau

In this section, all words and languages are binary. It is no surprise that bi-
nary power-free languages attract great attention of researchers. The interest
was warmed up by the first two results that appears almost simultaneously.
Brandenburg [3] proved that the cube-free language CF grows exponentially,
while Restivo and Salemi [25] established the polynomial growth of the overlap-
free language OF. Kobayashi [15] asked about the “critical exponent”, separating
subexponential and exponential complexities. Karhumäki and Shallit proved [14]
that this exponent equals 7/3. Namely, they showed that the (7/3)-free language
has polynomial complexity, while the complexity of the (7/3)+-free language is
exponential. So, the complexities of binary power-free languages demonstrate an
interesting feature: the β-free languages with 2+ ≤ β ≤ 7/3 form a “polynomial
plateau” of complexity. It is very likely that such a plateau is unique, because
no arguments is known against Exponential conjecture.

The growth rate of any binary power-free language can be found up to the
sixth digit after the dot (or even with better precision), using the results of
Sect. 3, 4. So, this section is devoted to the analisys of polynomial complexities.
In addition, we point out some other “magic properties” of the constant 7/3.

1 This folklore conjecture is open in almost all cases. For 3 and 4 letters it is proved
by Ochem [21]. Kolpakov and Rao announced lower bounds for the growth rates of
threshold languages over 5, . . . , 10 letters, but no preprint is currently available.

Growth Properties of Power-Free Languages 31

The proof by Restivo and Salemi is based on the close connection between
overlap-free words and the Thue-Morse morphism defined by the equalities
θ(a) = ab, θ(b) = ba. It is known since Thue [38] that this morphism pre-
serves overlap-freeness. On the other hand, any overlap-free word is “almost” a
θ-image of some word, as the following lemma shows.

Lemma 1. Let w be an overlap-free word. Then w can be obtained from a θ-
image of some word by applying one transformation from each of the two lists

(a) delete the first letter / replace the first letter by different letter / do nothing;
(b) delete the last letter / replace the last letter by different letter / do nothing.

Moreover, if |w| > 5, then this pair of transformations is unique.

From this lemma, it is easy to see that any overlap-free word of an odd length
2n−1 is an “almost θ-image” of an overlap-free word of length n, while each
overlap-free word of length n has at most four such “almost θ-images”. Hence,
COF (2n) ≤ 8·COF (n), implying COF (n) = O(n3).

Of course, the cubic bound is very rough. It is not very hard to replace it with
n1.587, see [16]. But the real “bomb” was exploded by Cassaigne [5]: he discovered
that there is no number α such that COF (n) = Θ(nα). Moreover, he found “fast”
and “slow” subsequences of the sequence {COF (n)} and provided upper and
lower bounds to the growth of the fastest and the slowest subsequences. The
results of [5] were recently refined in [13] with the use of the joint spectral radius
of matrices. The following theorem can be considered as the final description of
the growth properties of the function COF (n). Recall that f(n) = Θ(nα) if and
only if lim

n→∞
log f(n)

log n = α.

Theorem 1 ([13]). (1) lim inf
n→∞

log COF (n)
log n ∈ [1.2690, 1.2736].

(2) lim sup
n→∞

log COF (n)
log n ∈ [1.3322, 1.3326].

(3) The ratio log COF (n)
log n has a limit as n → ∞ along some subset N′ ⊂ N of

density 1, and this limit belongs to the interval [1.3005, 1.3098].

Now we briefly discuss why we can expect similar results for any language
from the polynomial plateau. The reason is that all these languages possess the
same restrictive properties as the language OF, while all these restrictions get
raised beyond the point 7/3. We list some of the restrictions.

1. All β-free languages with 2+ ≤ β ≤ 7/3 satisfy Lemma 1 [14], and hence
their complexities have a cubic upper bound.

2. A morphism preserves β-freeness for some 2+ ≤ β ≤ 7/3 if and only if
it is equal to some power of θ or to the “negative” of some power of θ
(combined [23, 27, 28]).

3. A two-sided infinite word is β-free for some 2+ ≤ β ≤ 7/3 if and only if
the set of all its factors coincides with the set of all factors of the infinite
Thue-Morse word θ∞(a) (combined [10, 28]).

32 A.M. Shur

4. Let |w|a be the number of letters a in the word w, and let fa = lim inf
|w|→∞,w∈L

|w|a
|w|

be the minimum density of a in the language L. Then the minimum density
of a in the β-free language equals 1/2 if and only if 2+ ≤ β ≤ 7/3 [19].

5. If 2+ ≤ β ≤ 7/3, then any minimal β-power has the length 2n or 3·2n for
some n; if β > 7/3, then the minimal β-power can have any length except
for some finite set [35].

The listed properties show that combinatorial complexities of different languages
from the polynomial plateau must be quite close to each other. The only in-
teresting question is how fast the (7/3)-free language, i.e., the biggest one,
grows. For this language, the following analogs of the bounds given in Theo-
rem 1 (1, 2) were obtained in [2]: the exponent of the slowest growth is in the
interval [1.2690, 2.0035], and the one of the fastest growth is in [2.0121, 2.1050].

Overall, we can say that the knowledge about the polynomial plateau is quite
satisfactory.

3 Big Languages: Quest for Upper Bounds

The basic idea how to obtain an upper bound for the combinatorial complexity
of any factorial language L, is quite straightforward. One can take a “simple”
superset of L and estimate its complexity instead of the complexity of L. The
role of such “simple” languages is played by FAD-languages. For any factorial
language L over a finite alphabet Σ, one can take its antidictionary M and pick
up an arbitrary sequence {Mi} of finite subsets of M such that

M1 ⊆ M2 ⊆ . . . ⊆ Mi ⊆ . . . ⊆ M,

∞⋃
i=1

Mi = M.

For power-free languages, it is usually convenient to take the set of all words
from M of period ≤ i as Mi. The FAD-languages Li with the antidictionaries
Mi are called regular approximations of L. We have

L ⊆ . . . ⊆ Li ⊆ . . . ⊆ L1,

∞⋂
i=1

Li = L.

Due to (1), it is easy to check that limi→∞ Gr(Li) = Gr(L). Thus, it is possible
in principle to obtain the upper bounds that are arbitrarily close to the growth
rate of L. In order to make this possibility real, one needs to solve efficiently the
following two problems:

- given a factorial language L and an integer i, calculate the set Mi;
- given a finite antidictionary M , calculate the growth rate of the factorial

language L having this antidictionary.

Before presenting the solutions to these problems, we mention a simple result
that imposes two restrictions on the use of regular languages as approximations
of power-free languages. Namely, such approximations are useless for the study
of “small” languages and cannot be applied directly for lower bounds.

Growth Properties of Power-Free Languages 33

Proposition 1 ([29]). If all words in an infinite factorial language L are β-
free for some number β, then all regular approximations of L have exponential
complexity and all regular subsets of L are finite.

3.1 Finding Growth Rates of FAD-Languages

There are two approaches to this problem. The first approach uses generat-
ing functions for combinatorial complexity. The famous result by Chomsky and
Schützenberger [6] says that regular languages (in particular, FAD-languages)
have rational generating functions2. The least positive pole of such a function is
the reciprocal of the growth rate of the considered language. For FAD-languages,
this rational function can be derived from the antidictionary by the Goulden-
Jackson cluster method, see [11, 20]. After this, the roots of the polynomials
can be found with any degree of precision. This method was used for studying
the growth rates of some power-free languages, see [20, 6, 24]. Looking at this
method and its implementations, we can conclude that it consumes quite a lot
of resources. As a result, the capability of the method is restricted to processing
the antidictionaries of several hundred words. In some cases, the antidictionaries
of this size allows one to obtain reasonable upper bounds, but in many other
cases this is insufficient.

The second approach uses finite automata (or digraphs that can be viewed as
finite automata, like Rauzy graphs). For the best of our knowledge, this approach
was first used by Govorov [12]. The idea of this approach is to calculate walks
instead of words, and is based on the following folklore theorem. Recall that the
index Ind(G) of a digraph G is the Frobenius root of its adjacency matrix. By
the index of a finite automaton we mean the index of the underlying digraph.
A finite automaton is consistent if any of its vertices belongs to some accepting
path.

Theorem 2. The growth rate of a regular language L equals the index of any
consistent deterministic finite automaton recognizing L.

The same result holds for all unambiguous nondeterministic automata, in par-
ticular, for Rauzy graphs, see [33]. The original idea by Govorov (see also [15])
was as follows. Suppose that a FAD-language L with some antidictionary M
is given, and m is the maximum length of a word from M . Then a word w of
length ≥ m belongs to L if and only if all its factors of length m are in L. Let
us build the Rauzy graph R of order m for L. Its vertices are all words from L
of length m, and an edge u → v exists if and only if the longest proper suffix of
u coincides with the longest proper prefix of v. Clearly, any walk of length n in
R uniquely represents a word from L of length n+m. So, one can calculate the

2 In simpler terms, this means that for any regular language L there exist polyno-
mials p(x) and q(x) such that the ratio p(x)/q(x) can be expanded into the series∑∞

n=0 CL(n)xn.

34 A.M. Shur

characteristic polynomial of the adjacency matrix of R and find the Frobenius
root by any iterative method3.

The capability of the straightforward algorithm described above is more or
less the same as the capability of the Goulden-Jackson method; one can look,
for example, at the bounds obtained in [22, 18]. But the graph approach has
significant potential for improvement. Namely, it is possible

- to build from M a much smaller digraph with the same index;
- to calculate the index of a digraph in a much more efficient way.

Consider the calculation of the index of a k-vertex digraph G. Advanced meth-
ods of finding the characteristic polynomial or the minimal polynomial of a given
matrix, like the methods by Danilevski and Krylov, work in Θ(k3) steps using a
constant number of additional k×k matrices. In fact, the situation is a bit worse.
As follows from [8, Theorem 1.2], the coefficients of the characteristic polyno-
mial of a graph are likely to grow exponentially with k. So, the straightforward
algorithm actually spends Θ(k4) time and Θ(k3) memory.

Now we roughly describe the algorithm of [31,33], which drastically improves
the situation. We split G into strong components and process each component
separately, because the index of a digraph equals the maximum index of its
strong component. We apply a simple iteration method to find the Frobenius
root and the corresponding positive eigenvector; i.e., we calculate the sequence

x, Ax, . . . , Anx,

where x is some initial vector and A is the adjacency matrix of the processed
component. The convergence of the iteration method can be guaranteed by some
additional argument, and the convergence rate is exponential for the adjacency
matrices of all strongly connected digraphs. The approximation error can be
verified using the double inequality

min
j

[Ax]j
xj

≤ α(A) ≤ max
j

[Ax]j
xj

,

where x is an arbitrary positive vector and α(A) is the Frobenius root of A
(this inequality is a corollary of the Perron-Frobenius Theorem). Finally, the
calculation of the vector Ax from x can be performed without explicit use of
the adjacency matrix: instead, we use the representation of the digraphs by
adjacency lists or arrays, which are quite short for automata. As a result, we get
the following

Theorem 3 ([33]). Let G = (V, E) be a digraph. There is an algorithm which,
given G and a number δ, 0 < δ < 1, calculates Ind(G) with the absolute error at
most δ in time Θ(log(1/δ)·|E|) using Θ(log(1/δ)·|V |) additional space.

3 Since the Frobenius root is the root of a polynomial equation, in most cases it cannot
be found exactly. So, we say “find” or “calculate” it in a sense “approximate with
any prescribed absolute error”.

Growth Properties of Power-Free Languages 35

a)

a

b

a

b

a

b

a

a

b

b

b a

a b

b)

a

b

a

b

a

b

a

b

b

a

b

a

b

a

a

b

b

a

c)

a,b

a

b

a b

bb
a

b

Fig. 1. The trie (a), Aho-Corasick’s automaton (b), and the corresponding factor-
automaton (c) for the FAD-language with the antidictionary {aaa, bbb, ababa, babab}

Now we turn to the second improvement: building smaller graphs with the
same index Gr(L) from M . As was shown in [7], a rather small consistent de-
terministic finite automaton recognizing L can be constructed from M by a
modification of the textbook Aho-Corasick algorithm for pattern matching. We
illustrate this modification by an example. Obviously, any finite antidictionary is
recognized by a trie (see Fig. 1, a). Each vertex of this trie can be identified with
the word labeling the path from the root to this vertex. The trie is then modified
in order to get the required automaton, see Fig. 1, b. Processing all vertices in
the width-first order, one adds missing outgoing edges. The destination vertex
of the edge u

a−→ . . . is the destination vertex of the walk from the initial vertex
labeled by the longest proper suffix of the word ua. After processing all vertices,
the terminal vertices of the trie are deleted. The resulting Aho-Corasick’s au-
tomaton A(M) recognize exactly the language L (all states are final, and λ is
the initial state).

Aho-Corasick’s automaton is more compact than the Rauzy graph built from
the same antidictionary, but not compact enough. The following idea, described
in [33], uses symmetry of power-free languages and their antidictionaries to
shrink the size of the automaton A(M) by a factor of almost |Σ|!. Partition
all vertices of A(M) into classes such that the class of the vertex u consists
exactly of all automorphic images of u. This partition is equitable in the sense
that, given any two classes C1 and C2, each vertex of C1 has the same num-
ber of (forward) adjacent vertices in C2. This property allows one to build the
factor-graph of the original graph by the given partition, identifying all vertices
in each class. Figure 1, c exhibits the factor-graph of the automaton drawn in
Fig. 1, b (the meaning of the labels is described below). By F(M) we denote the
factor-graph of the automaton A(M). The number of walks of length n from
any given vertex of A(M) obviously equals the number of walks from its class
in F(M). Thus, the indices of A(M) and F(M) coincide.

The above “factorization” idea proved really useful, because the factor-graph
F(M) can be built without building the whole automaton A(M), see [33].
Namely, one can take the set M ′ ⊂ M consisting of all words that are lexi-
cographycally smaller than any of their automorphic images (any word with this

36 A.M. Shur

property is said to be a lexmin word). Then one builds the “factor-trie” rec-
ognizing M ′, and constructs the factor-graph directly from this factor-trie by a
simple modification of Aho-Corasick’s procedure:

- the destination vertex of the edge u
a−→ . . . is the destination vertex of the

walk from the initial vertex labeled by the lexicographycally least automorphic
image of the longest proper suffix of the word ua.

Thus, F(M) is built as a finite automaton, see Fig. 1, c (but the language it
recognizes is not related to L apart from the growth rate).

This modified procedure can be organized in a way that the factor-graph will
be built in time O(N log N), where N is the size of the factor-trie. Hence, the
space and time expenses needed to build the factor-graph are also approximately
|Σ|! times less than the expenses for the Aho-Corasick’s automaton.

Overall, the above improvements to Govorov’s idea allow one to get the
method that can be applied to any FAD-language and has very attractive char-
acteristics:

(�1) the growth rate of L can be calculated whenever M can be stored in mem-
ory;

(�2) if M is symmetric, then the growth rate of L can be calculated whenever
the set M ′ can be stored in memory.

3.2 Building Finite Antidictionaries

Suppose that L is a β-free language over Σ, M is its antidictionary, and i is
a positive integer such that we have to calculate the upper bound Gr(Li) for
Gr(L). According to the results discussed above, it is enough to find the set M ′

i

of lexmin forbidden words. This fact is of critical importance for the languages
over big alphabets, because |M ′

i | ≈ |Mi|/|Σ|!; actually, the 4-letter alphabet is
already big enough.

Due to (�1) and (�2), the performance of any algorithm building finite an-
tidictionaries can be evaluated by the following criterion. Assume that the i is
the minimal number such that the factor-trie M ′

i+1 is too big to be stored in the
memory of one’s computer. Can one build M ′

i in a reasonable amount of time?
The following simple algorithm satisfies this criterion in most cases.

The elements of Mi are minimal β-powers in the sense that they contain no
β-powers as proper factors. In particular, the root w of such a power wβ is a
β-free word. Thus, we need to check all lexmin β-free words up to the length
i as candidates to the roots of minimal β-powers. We perform this check in
width-first order, immediately adding each found minimal β-power to the trie.
The minimality of each processed β-power is then checked with the use of the
current trie. The details can be found in [33].

This algorithm has one bottleneck: if valid roots of minimal β-powers consti-
tute a small share of all β-free words, then storing the queue for the width-first
search became too expensive (this is the case of threshold languages over 6 and
more letters). A better strategy is the mix of width-first and depth-first search,

Growth Properties of Power-Free Languages 37

based on the fact that a non-minimal β-power contains a rather short β-power
inside:

Theorem 4. Let xy be a β-free word, 1 < β < 2. If the β-power (xy)β is not
minimal, then the word (xy)β contains a β-power (zt)β such that |(zt)β| < |xy|.
Moreover, if β ≤ (4/3)+, then |zt| ≤ |y|, and if β ≤ (5/4)+, then |zt| < |y|.
Concluding the section, we can say that the quest for upper bounds is successfully
completed. Some numerical results confirming this statement will be given in the
next sections.

4 Big Languages: Quest for Lower Bounds

Early attempts to estimate the growth rates of power-free languages from below
had a quite restricted goal: just prove that the analysed language has exponen-
tial complexity. Morphisms were the main instrument for such estimations. We
mention two ways to use morphisms for this purpose.

1. “Inherited” exponential growth. If a k-ary β-free language has exponential
complexity and some morphism maps k-ary words to k′-ary words such that the
image of any β-free word is β′-free, then the k′-ary β′-free language has expo-
nential complexity as well. For example, Karhumäki and Shallit [14] exhibited a
morphism that maps quaternary square-free words to binary (7/3)+-free words,
thus proving that the binary (7/3)+-free language has exponential complexity.
(Note that a morphism with the same property for ternary square-free words was
presented a few years earlier in [28].) The same idea was used by Ochem [21] to
prove that the ternary and quaternary threshold languages grow exponentially.

2. “Multiple” morphisms (sometimes referred to as Brinkhuis tuples). Sup-
pose we have nonempty sets W1, . . . , Wk of β-free words of length m > 1 over
{a1, . . . , ak}, minj∈{1,...,k} |Wj | = l > 1, and the following property holds: if some
word ai1 · · ·ain is β-free, then any word w1 · · ·wn such that wj ∈ Wij for any j
is β-free too. Then for any n, the number of k-ary β-free words of length nm is
at least ln times bigger than the number of such words of length n, yielding the
exponential lower bound on the number of these words. This method was first
used by Brandenburg [3] and Brinkhuis [4] for ternary square-free words (in [3],
the lower bound on the number of binary cube-free words is also given).

Both described methods produce quite weak bounds (the second one works a
bit better). What about getting sharp lower bounds?

A method allowing one to get really good lower bounds was proposed by
Kolpakov [17, 18] and then modified and extended by the author [32, 34]. The
method is based on the convertation of the upper bound obtained from a regular
approximation of the target language, to the two-sided bound. In brief, the basic
idea is the following. An automaton recognizing some regular approximation Li

of the target language L accepts the words from L and also the words from the
set Li\L. This set consists of words containing “long” β-powers; the number of
such words is not very big and can be estimated from above, thus giving us the
lower bound for the number of words in L. At the moment, we are able to get

38 A.M. Shur

sharp lower bounds for any β-free language such that β ≥ 2, while no algorithm
is known for such bounds in the case of smaller powers. The following theorem
is a slightly refined version of [32, Theorem 6].

Theorem 5. Suppose that β ≥ 2, k and i are positive integers, L is the k-ary β-
free language, Mi is the set of all words of period ≤ i from the antidictionary of L,
Li is the regular approximation of L with the antidictionary Mi, and the factor-
graph F(Mi) has a unique nonsingleton strong component. Then any number γ
such that γ + 1

γi−1(γ−1) ≤ Gr(Li) satisfies the inequality γ < Gr(L).

The condition on F(Mi) in Theorem 5 is not restrictive: we strongly believe
that it always holds true (even if β < 2) and have no counterexamples. But
the proof of this fact is probably far from easy. Indeed, this fact is equivalent
to the extended version of an old open problem by Restivo: let L be a k-ary
β-free language, containing infinitely many words with some fixed prefix u and
infinitely many words with some fixed suffix v. Does L certainly contain a word
of the form uwv?

We mention that Theorem 5 shows high universality of the described method.
Indeed, in order to get a lower bound for the growth rate of a power-free language
L, we does not need to know k or β; only the parameters i and Gr(Li) of the
regular approximation are required. In addition, the best possible bound γ can
be calculated with any prescribed error in an almost constant time (the condition
on F(Mi) is already checked during the calculation of Gr(Li), see Sect. 3).

We conclude this section exhibiting two-sided bounds on the growth rates of
some languages. More bounds can be found in [36]. All bounds were obtained
using a PC with a 3.0GHz CPU and 2Gb of memory, and are rounded off to 7
digits after the dot. If only one bound is given, then these digits are the same
for both lower and upper bounds.

Table 1. Bounds for the growth rates of β-free languages with β ≥ 2

k β bounds

2 (7/3)+ 1.2206318–1.2206448
2 (5/2)+ 1.3662971–1.3663011
2 3 1.4575732–1.4575773
2 3+ 1.7951246–1.7951264
2 4 1.8211000
2 4+ 1.9208015
3 2 1.3017597–1.3017619
3 2+ 2.6058789–2.6058791
3 3 2.7015614–2.7015616
3 3+ 2.9119240–2.9119242
3 4 2.9172846
3 4+ 2.9737546

k
∖
β 2 2+ 3 3+

4 2.6215080 3.7284944 3.7789513 3.9487867
5 3.7325386 4.7898507 4.8220672 4.9662411
6 4.7914069 5.8277328 5.8503616 5.9760100
7 5.8284661 6.8537250 6.8705878 6.9820558
8 6.8541173 7.8727609 7.8858522 7.9860649
9 7.8729902 8.8873424 8.8978188 8.9888625

10 8.8874856 9.8988872 9.9074705 9.9908932
11 9.8989813 10.9082635 10.9154294 10.9924142
12 10.9083279 11.9160348 11.9221106 11.9935831
13 11.9160804 12.9225835 12.9278022 12.9945010
14 12.9226167 13.9281788 13.9327109 13.9952350
15 13.9282035 14.9330157 14.9369892 14.9958311

Small alphabets Large alphabets

Growth Properties of Power-Free Languages 39

5 Big Languages: Asymptotic Formulas

Using the results of two previous sections, one can obtain numerical bounds for
the growth rates of power-free languages for a wide range of alphabets and pow-
ers. As a result, one can consider growth rate as a two variable function α(k, β)
and derive empirically some laws of behaviour of this function. An example of
such a law is the following: for a fixed k > 2, the function α(k, β) jumps by more
than a unit at k−1 points, namely, at the points RT(k), (k−1)/(k−2), . . . , 3/2, 2.
But how to prove this or other laws? In this section, we sketch the main idea and
the most important results and conjectures on the behaviour of α(k, β). More
details can be found in [34].

The key property that allows one to prove general facts about the function
α(k, β), is the similarity of the factor-graphs for the regular approximations of
different power-free languages. In order to illustrate one type of such similarity,
let us take a k-ary β-free language L with the antidictionary M and build the
factor-graph F(Mi) for some i small enough. This graph will have edges of
multiplicity 1 and of multiplicities k−cj for several different constants cj. If we
now replace k by k′, retaining the same β and i, then the new factor-graph
will be almost the same, with a single distinction: for multiple edges, k will be
everywhere replaced by k′. For example, the factor-graph F(M5) for the k-ary
(4/3)+-free language looks like in Fig. 2, for any k ≥ 5. From the adjacency
matrix, one can derive arbitrarily good asymptotics for the index of F(M5). In
particular, Ind(F(M5)) = k−2−3/k+O(1/k2) (compare to Conjecture 1 below).

λ 1 12 123 1234 12345

1231 12341 123451

×k ×k−1 ×k−2

×k−3 ×k−4

×k−3 ×k−4

×k−5

×k−5

1231
1234
12341
12345
123451

⎡⎢⎢⎢⎢⎣
0 k−3 0 0 0
1 0 1 k−4 0
1 0 0 k−4 0
1 0 1 k−5 1
1 0 1 k−5 0

⎤⎥⎥⎥⎥⎦

Fig. 2. The factor-graph F(M5) for the (4/3)+-free language over the alphabet
{1, . . . , k}. Vertices are associated with words. Multiple edges are drawn in boldface.
On the left, the adjacency matrix of the nontrivial strong component is given.

Using similarity of factor-graphs and Theorem 5, one can get uniform asymp-
totic formulas for α(k, β) in the case β ≥ 2. Thus, for β > 2 we have

Theorem 6. Let β ∈ [n+, n+1], where n ≥ 2 is an integer. Then

α(k, β) =
{

k − 1
kn−1 + 1

kn − 1
k2n−2 + O

(
1

k2n−1

)
, if β ∈ [n+, n+1

2],
k − 1

kn−1 + 1
kn + O

(
1

k2n−1

)
, if β ∈ [(n+ 1

2)+, n+1].

40 A.M. Shur

Corollary 1. For any fixed β ≥ 2+, the difference (k − α(k, β)) approaches
zero at polynomial rate as k → ∞. For any fixed k ≥ 2, the same difference
approaches zero at exponential rate as β →∞.

Corollary 2. For a fixed k, the jumps of the function α(k, β) at the endpoints of
the interval [n+, n+1] are much bigger than the variation of this function inside
this interval. Namely,

α(k, n+) − α(k, n) = 1
kn−2 + O

(
1

kn−1

)
,

α(k, n+1) − α(k, n+) = 1
k2n−2 + O

(
1

k2n−1

)
.

Next we analyze the behaviour of α(k, β) at the point β = 2.

Proposition 2. The following equalities hold:

α(k+1, 2) = k − 1
k − 1

k3 + O
(

1
k5

)
;

α(k, 2+) = k − 1
k − 1

k3 − 1
k4 + O

(
1
k5

)
.

Corollary 3. For any k, the function α(k, β) jumps by more than a unit at the
point β = 2. Namely, α(k, 2+)− α(k, 2) = 1 + 1

k2 + O(1
k3).

Corollary 4. At any point (k, 2), the increment of k by 1 and the addition of
+ to the power almost equally affect the growth rate of the power-free language.
Namely, α(k+1, 2)− α(k, 2+) = 1

k4 + O
(

1
k5

)
.

All asymptotic formulas given above work perfectly even for small alphabets,
predicting the values from Table 1 with a good precision. For β < 2, the situation
is worse, because Theorem 5 is no longer applicable. Consequently, only partial
advances were obtained, while the general results have the form of conjectures.

Conjecture 1. The following equalities hold for any fixed integers n, k such that
k > n ≥ 3:

α(k, n
n−1

+) = k+2−n−n−1
k +O

(
1
k2

)
,

α(k, n
n−1) = k+1−n−n−1

k +O
(

1
k2

)
.

Conjecture 1 predicts that the properties found above for the point β = 2
hold at any point β = n

n−1 such that 2 < n < k. Indeed, Conjecture 1 implies

Corollary 5. Let n and k be integers such that 2 < n < k. Then

α(k, n
n−1

+) − α(k, n
n−1) = 1 + O

(
1
k2

)
α(k, n

n−1) − α(k, n+1
n

+) = 1
k + O

(
1
k2

)
α(k+1, n

n−1) − α(k, n
n−1

+) = O
(

1
k2

)
.

If β is not a constant but depends on k, then the most interesting case is when
β stays close to repetition threshold (in particular, β = RT(k)+). The similarity
between factor-graphs in this case is of different nature than in the case of fixed
β. Due to space constraints, we give here only the main conjecture. The case
β = RT(k)+ is studied in detail in [37].

Growth Properties of Power-Free Languages 41

Conjecture 2. For any integer n ≥ 0, the limits

αn = lim
k→∞

α(k, k−n
k−n−1

+
) and α′

n = lim
k→∞

α(k, k−n
k−n−1)

exist. Moreover, α′
n+1 = αn and αn+1 − αn > 1.

In [37], it is argued that α0 ≈ 1.242. This Growth Rate conjecture strengthens
Exponential conjecture. Thus, the threshold languages are supposed to be big
enough in spite of the fact that it was tough to prove that they are even infinite.
We also suggest that α1 ≈ 2.326, α2 ≈ 3.376.

6 Extending the Techniques to Related Classes of
Languages

In this section we aim to show two possible applications of the methods described
in Sect. 3, 4 beyond the class of power-free languages. Regular approximations
(see Sect. 3) can be used to estimate the growth rate of a factorial language L
whenever the finite approximations of the antidictionary of L can be calculated.
Moreover, if L is symmetric, then factor-graphs can be built to provide better
upper bounds. Concerning the lower bounds, the case in which an analog of
Theorem 5 is applicable is rather exceptional. Now we exhibit such a case.

Recall that the binary overlap-free language grows polynomially, and that
overlap-freeness is equivalent to the avoidance of the set {xxx, xyxyx} of pat-
terns. We studied the growth of the binary languages avoiding two quite similar
sets of patterns: {xxx, xyxxyx} and {xxx, xxyxxy}. The question was whether
any of these two languages has polynomial growth. The answer is no: the first
language is finite (the longest word in the antidictionary has length 48), while
for the second language the analog of Theorem 5 allowed us to catch the growth
rate inside the interval [1.098814, 1.098891].

An interesting, and not easily predictable, effect was observed during the
study of the growth of Abelian-power-free languages, see [26]. Namely, the ap-
proximating sequences {Gr(Li)} for the growth rates of Abelian-power-free lan-
guages converge very slowly in comparison with such sequences for power-free
languages. For example, if L is the binary cube-free language, then the set M ′

7

contains only 25 words and Gr(L7) − Gr(L) < 0.001. On the other hand, if L is
the binary Abelian-4-free language, then M ′

12 contains almost 9 millions of words
(M ′

13 cannot be stored in memory), Gr(L12) ≈ 1.374, but it is impossible to guess
the value of Gr(L), because Gr(L8) − Gr(L9) ≈ 0.02, Gr(L9) − Gr(L10) ≈ 0.037,
Gr(L10) − Gr(L11) ≈ 0.011 and Gr(L11) − Gr(L12) ≈ 0.01. Thus, the words that
contain only long Abelian repetitions constitute a substantial share of all words.
As a result, for any reasonable notion of Abelian fractional power, one will get
huge but still finite Abelian-power-free languages. Hence, the problem of deter-
mining an Abelian analog of repetition threshold looks challenging even for small
alphabets.

42 A.M. Shur

References

1. Berstel, J.: Growth of repetition-free words – a review. Theor. Comput. Sci. 340(2),
280–290 (2005)

2. Blondel, V.D., Cassaigne, J., Jungers, R.: On the number of α-power-free binary
words for 2 < α ≤ 7/3. Theor. Comput. Sci. 410, 2823–2833 (2009)

3. Brandenburg, F.-J.: Uniformly growing k-th power free homomorphisms. Theor.
Comput. Sci. 23, 69–82 (1983)

4. Brinkhuis, J.: Non-repetitive sequences on three symbols. Quart. J. Math. Ox-
ford 34, 145–149 (1983)

5. Cassaigne, J.: Counting overlap-free binary words. In: STACS 1993. LNCS, vol. 665,
pp. 216–225. Springer, Berlin (1993)

6. Chomsky, N., Schützenberger, M.: The algebraic theory of context-free languages.
In: Computer Programming and Formal System, pp. 118–161. North-Holland, Am-
sterdam (1963)

7. Crochemore, M., Mignosi, F., Restivo, A.: Automata and forbidden words. Inform.
Processing Letters 67, 111–117 (1998)

8. Cvetković, D.M., Doob, M., Sachs, H.: Spectra of graphs. In: Theory and Applica-
tions, 3rd edn., p. 388. Johann Ambrosius Barth, Heidelberg (1995)

9. Dejean, F.: Sur un Theoreme de Thue. J. Comb. Theory, Ser. A 13, 90–99 (1972)

10. Gottschalk, W.H., Hedlund, G.A.: A characterization of the Morse minimal set.
Proc. of Amer. Math. Soc., 15, 70–74 (1964)

11. Goulden, I., Jackson, D.M.: An inversion theorem for cluster decompositions of se-
quences with distinguished subsequences. J. London Math. Soc. 20, 567–576 (1979)

12. Govorov, V.E.: Graded algebras. Math. Notes 12, 552–556 (1972)

13. Jungers, R.M., Protasov, V.Y., Blondel, V.D.: Overlap-free words and spectra of
matrices. Theor. Comput. Sci. 410, 3670–3684 (2009)

14. Karhumäki, J., Shallit, J.: Polynomial versus exponential growth in repetition-free
binary words. J. Combin. Theory. Ser. A 104, 335–347 (2004)

15. Kobayashi, Y.: Repetition-free words. Theor. Comput. Sci. 44, 175–197 (1986)

16. Kobayashi, Y.: Enumeration of irreducible binary words. Discr. Appl. Math. 20,
221–232 (1988)

17. Kolpakov, R.M.: On the number of repetition-free words. J. Appl. Ind. Math. 1(4),
453–462 (2007)

18. Kolpakov, R.: Efficient lower bounds on the number of repetition-free words. J.
Int. Sequences 10, # 07.3.2 (2007)

19. Kolpakov, R., Kucherov, G., Tarannikov, Y.: On repetition-free binary words of
minimal density. Theor. Comput. Sci. 218, 161–175 (1999)

20. Noonan, J., Zeilberger, D.: The Goulden-Jackson Cluster Method: Extensions, Ap-
plications, and Implementations. J. Difference Eq. Appl. 5, 355–377 (1999)

21. Ochem, P.: A generator of morphisms for infinite words. RAIRO Theor. Inform.
Appl. 40, 427–441 (2006)

22. Ochem, P., Reix, T.: Upper bound on the number of ternary square-free words.
In: Proc. Workshop on Words and Automata (WOWA 2006), S.-Petersburg, # 8
(2006) (electronic)

23. Rampersad, N.: Words avoiding (7/3)-powers and the Thue–Morse morphism. Int.
J. Foundat. Comput. Sci. 16, 755–766 (2005)

24. Richard, C., Grimm, U.: On the entropy and letter frequencies of ternary square-
free words. Electronic J. Combinatorics 11, # R14 (2004)

Growth Properties of Power-Free Languages 43

25. Restivo, A., Salemi, S.: Overlap-free words on two symbols. In: Perrin, D., Nivat,
M. (eds.) Automata on Infinite Words. LNCS, vol. 192, pp. 196–206. Springer,
Heidelberg (1985)

26. Samsonov, A.V., Shur, A.M.: On Abelian repetition threshold. In: Samsonov, A.V.,
Shur, A.M. (eds.) Proc. 13th Mons Days of Theoretical Computer Science, pp. 1–
11. Univ. de Picardie Jules Verne, Amiens (2010)

27. Séébold, P.: Overlap-free sequences. In: Perrin, D., Nivat, M. (eds.) Automata on
Infinite Words. LNCS, vol. 192, pp. 196–206. Springer, Heidelberg (1985)

28. Shur, A.M.: The structure of the set of cube-free Z-words over a two-letter alphabet.
Izvestiya Math. 64(4), 847–871 (2000)

29. Shur, A.M.: Factorial languages of low combinatorial complexity. In: Ibarra, O.H.,
Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 397–407. Springer, Heidelberg
(2006)

30. Shur, A.M.: Comparing complexity functions of a language and its extendable part.
RAIRO Inform. Theor. Appl. 42, 647–655 (2008)

31. Shur, A.M.: Combinatorial complexity of regular languages. In: Hirsch, E.A.,
Razborov, A.A., Semenov, A., Slissenko, A. (eds.) Computer Science – Theory
and Applications. LNCS, vol. 5010, pp. 289–301. Springer, Heidelberg (2008)

32. Shur, A.M.: Two-sided bounds for the growth rates of power-free languages. In:
Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 466–477. Springer,
Heidelberg (2006)

33. Shur, A.M.: Growth rates of complexity of power-free languages. Theor. Comput.
Sci. 411, 3209–3223 (2010)

34. Shur, A.M.: Growth of power-free languages over large alphabets. In: Ablayev, F.,
Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 350–361. Springer, Heidelberg
(2010)

35. Shur, A.M.: On the existence of minimal β-powers. In: Gao, Y., Lu, H., Seki, S.,
Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 411–422. Springer, Heidelberg (2010)

36. Shur, A.M.: Numerical values of the growth rates of power-free languages,
arXiv:1009.4415v1 (cs.FL) (2010)

37. Shur, A.M., Gorbunova, I.A.: On the growth rates of complexity of threshold lan-
guages. RAIRO Inform. Theor. Appl. 44, 175–192 (2010)

38. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske
Vid. Selsk. Skr. I, Mat. Nat. Kl. 1, 1–67 (1912)

A Functional Program for Regular

Expressions Matching

Abstract of Invited Talk

Thomas Wilke

Institut für Informatik, Christian-Albrechts-Universität zu Kiel
wilke@ti.informatik.uni-kiel.de

Regular expressions [4] and tools to handle them, especially tools for regular
expression matching—an early one is described in the seminal paper [5] by Ken
Thompson—, are one of the major achievements of formal language and au-
tomata theory. Google counts 303,000 results for “regular expressions matching”

Fig. 1. “Regular Expressions” by xkcd [6]

(May 4, 2011); there are numer-
ous command line tools for work-
ing with regular expressions such
as grep; Google released a regular
expression C++ library not long
ago [3]; almost every program-
ming language provides support
for regular expressions; and even
the text editor I am using to pro-
duce the source code of this La-
TeX document has an extensive
regular expression library.

In the talk, I demonstrate
that using ideas from Victor M.
Glushkov [2], it is straightfor-
ward to write a small Haskell
program for regular expression
matching that can compete with
Perl and Google’s regular expres-
sion library and, after a slight
modification, can check member-
ship in any context-free language. The program is very flexible, because it is
based on the theory of weighted automata.

I describe joint work with Sebastian Fischer and Frank Huch [1].

References

1. Fischer, S., Huch, F., Wilke, F.: A play on regular expressions: functional pearl. In:
Proceedings of the 15th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2010, pp. 357–368. ACM, New York (2010)

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 44–45, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

wilke@ti.informatik.uni-kiel.de

A Functional Program for Regular Expressions Matching 45

2. Glushkov, V.M.: On a synthesis algorithm for abstract automata. Ukr. Matem.
Zhurnal 12(2), 147–156 (1960)

3. Google: Re2: a principled approach to regular expression matching (March 11,
2010),
http://google-opensource.blogspot.com/2010/03/

re2-principled-approach-to-regular.html (press release)
4. Kleene, S.: Representation of events in nerve nets and finite automata. In: Shannon,

C., McCarthy, J. (eds.) Automata Studies, pp. 3–42. Princeton University Press,
Princeton (1956)

5. Thompson, K.: Programming techniques: Regular expression search algorithm.
Commun. ACM 11, 419–422 (1968)

6. xkcd.com: Regular expressions, http://xkcd.com/208/

http://google-opensource.blogspot.com/2010/03/re2-principled-approach-to-regular.html
http://google-opensource.blogspot.com/2010/03/re2-principled-approach-to-regular.html
http://xkcd.com/208/

State Complexity Research and Approximation

Sheng Yu and Yuan Gao

Department of Computer Science
University of Western Ontario

London, Ontario, Canada
{syu,ygao72}@csd.uwo.ca

Abstract. A number of basic questions concerning the state complexity
research are discussed, which include why many basic problems weren’t
studied earlier, whether there is a general algorithm for state complexity,
and whether there is a new approach in this area of research. The new
concept of state complexity approximation is also discussed. We show
that this new concept can be used to obtain good results when the exact
state complexities are difficult to find.

1 Introduction

In the past two decades, a large number of research results on state complexity
have been published. The state complexities of many individual operations and,
recently, the state complexities of a number of combined operations have been
studied.

Clearly, the state complexity research is fundamental in automata and formal
language theory. All the questions in this research are basic questions. They are
also well motivated by automata applications, especially the new applications.

State complexity is a descriptional complexity of regular languages based on
the number of states in a minimal finite automaton. It is a descriptional measure
of the resulting finite automaton after a transformation or an operation, which
are called transformational state complexity or operational state complexity, cor-
respondingly. Transformations, for example, include a nondeterministic finite
automaton (NFA) to an equivalent deterministic finite automaton (DFA) for a
subset of regular languages, regular expressions to finite automata, a multi-head
finite automaton to a single-head finite automaton, and an alternating finite
automaton to a DFA. Operations include catenation, Kleene star, left quotient,
intersection combined with reversal, etc.

The finite automata involved in the state complexity research can be either
NFAs or DFAs. So, we have deterministic state complexity and also nondeter-
ministic state complexity.

Note that when a class of languages are considered, the state complexity of
the class of languages can be the supremum among all the state complexities of
the languages in the class, or an average among them (assuming that a certain
distribution model is used). Thus, we have worst-case state complexity and also
average-case state complexity.

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 46–57, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

State Complexity Research and Approximation 47

Since the early 1990s, most results on state complexity have been on opera-
tional, deterministic, and worst-case state complexity.

There are many fundamental questions concerning the state complexity re-
search. We list some of them, which we consider as the most important questions,
in the following.

1. Why weren’t many of the state complexity questions studied in the 1960s
and 1970s? Those questions are very fundamental in automata theory. They
also look straightforward and basic.

2. Is there a general algorithm, for a given (individual or combined) operation
and a set of regular languages, that can compute the state complexity of
the operation on the set of languages? If we could find such an algorithm,
the state complexity research would be much easier and we would not have
much to do in the future.

3. If the answer to the previous question is no, what would be the best approach
for obtaining a state complexity result? We know that for obtaining a worst-
case state complexity result, the most difficult part usually is to find a general
worst-case example. A proper approach may make this process easier.

4. When the exact state complexity of an operation is extremely difficult to
obtain in some cases, is an approximation good enough for theoretical and/or
practical purposes? How is an approximation obtained?

We will discuss all these questions and give our thought on them in the following
sections, but first we will give the basic definitions and notations in the next
section. At the end of the paper, we will consider what would be the next possible
steps in state complexity research.

2 Preliminaries

We assume that the reader is familiar with the basics of finite automata and
regular languages. Whenever necessary, [20] or [25] should be consulted.

We use the customary notation

A = (Q, Σ, δ, q0, F)

for deterministic finite automata, DFAs. The five items are, respectively, the
state set, the input alphabet, the transition function, the initial state, and the
set of final states. A is considered a complete automaton if δ(q, a) is defined for
all q ∈ Q and a ∈ Σ.

The (regular) language accepted by the DFA A is denoted by L(A). The state
complexity of a regular language L is the number of states in the minimal DFA
A such that L = L(A).

Formally, the (deterministic) state complexity of a regular language L, de-
noted sc(L), is the number of states in the minimal complete DFA accepting
L. The (worst-case) state complexity of a class L of regular languages, denoted
sc(L), is the supremum among all sc(L), L ∈ L. The state complexity of an op-
eration or a transformation on regular languages is the state complexity of the

48 S. Yu and Y. Gao

language resulting from the transformation or operation. The nondeterministic
state complexity, as well as the average-case state complexity, can be similarly
defined.

3 Why Many State Complexity Questions Were Not
Studied Earlier

State complexity questions are more fundamental and basic than time and space
complexities in automata theory and applications. It is natural to ask why most
of those state complexity questions were not studied earlier in the 1960s and
1970s.

We think that there are at least the following two main reasons:

(1) Those questions were not strongly motivated in applications in e 1960s and
1970s.

(2) Many of the questions were difficult or impossible to solve then due to the
lack of the computer and software conditions.

One of the early applications of automata was the lexical analysis in compiler
construction. The sizes of the automata used were relatively small (no more than
several hundred states) and the main operations, e.g., membership, were simple.
Other applications, e.g., circuit design, did not use finite automata of large sizes.
Counting the number of states of finite automata was not well motivated at that
time.

In the last two decades, there have been many new applications of finite
automata that require automata of very large sizes. For example, in natural
language and speech processing, the Bell Lab’s multilingual TTS system needs
26.6 mbytes for German, 30.0 for French, and 39.0 for Mandarin [14]. Finite
automata have also been applied in many other areas, e.g., software testing [5],
parallel processing [22], and object-oriented modeling [19]. Finite automata used
in applications are becoming very large. State complexity questions are more and
more relevant to applications of automata.

Even if state complexity questions were well motivated in the 1960s and 1970s,
the research in the area might not go very far then. For example, we now know
that the state complexity of L(A)(L(B) ∩ L(C)), where A, B, and C are DFAs
of m, n, and p states, respectively, is m2np − 2np−1. If each of the three DFAs is
of 5 states, the resulting DFA will have 9 · 224 states. General examples, for this
combined operation, that can reach the upper bound would be very difficult to
construct in the 1960s and 1970s without powerful computers and well-developed
softwares. As we know, research in automata and formal language theory in the
1960s and 1970s were done by the researchers with basically only pens and pa-
per. There were some results on state complexity of transformation between
models and individual operations on regular languages, e.g., NFA to DFA trans-
formation [15,17] and several basic operations on regular languages [16]. More
complicated transformational and operational state complexities, especially for
combined operations, would not be able to obtain then.

State Complexity Research and Approximation 49

4 A General Algorithm for State Complexity?

For state complexity of operations, would it be possible to find a general algo-
rithm that, for an arbitrarily given combined operation and a class of regular
languages, computes the state complexity of the operation on the class of lan-
guages? If such an algorithm would be found, further research on state complex-
ity, especially on combined operations, would become unnecessary. Many efforts
in the state complexity research in the past would not be considered very useful.
However, the undecidability result proved in [21] implies that such an algorithm
does not exist.

The undecidability result in [21] is about the state complexity of the combined
operation of intersection and marked catenation. Let L = {L1, . . . , Lm} be a set
of arbitrary regular languages, m ≥ 2. A (∩, #)-composition C is a marked
catenation C1#C2# · · ·#Cn, for some n > 1, where each Ci, 1 ≤ i ≤ n, is an
intersection L1

i ∩ L2
i ∩ · · · ∩ Ll

i of l distinct languages from L, for some l ≥ 1.
Let x1, . . . , xm denote the state complexities of L1, . . . , Lm, respectively. Then
clearly, the state complexity C is a polynomial function of xi, 1 ≤ i ≤ m.

The proof of the undecidability is done by a reduction from the problem to a
variation of Hibert’s Tenth Problem [18], which is stated as follows [21]:

Theorem 1. There is no algorithm of deciding, given a positive integer i,
whether or not the inequality

Ri(x1, . . . , xm) + 1 ≤ Si(x1, . . . , xm)

holds for all m-tuples (x1, . . . , xm) of nonnegative integers. Here Ri and Si are
effectively constructible polynomials with positive integer coefficients, over a fixed
set of variables {x1, . . . , xm}.
We associate the polynomials Ri with the combined operation of intersection and
marked catenation, whereas the polynomials Si with the proposed state complex-
ity. Thus, the state complexity of such a combined operation on arbitrary regular
languages is proved to be undecidable by the reduction. This result implies that
there is no general algorithm for state complexity of combined operations.

5 New Approach in State Complexity Research

In the 1960s and 1970s, research in theoretical computer science was done by
researchers with pens and paper. The results in automata and formal language
theory then were mostly on what could and could not be done, e.g., many decid-
ability results were obtained. This traditional approach in theoretical computer
science research alone is no longer appropriate for solving state complexity prob-
lems, especially the state complexity of combined operations. Experiments are
essential to the research on state complexity and many other topics. Due to the
large numbers of states in the resulting automata, even for very small operands of
an operation, pens and paper are far from enough for experiments. So, computer
and appropriate software are very important to such type of research.

50 S. Yu and Y. Gao

The role of experiments using computer software systems in the research on
problems related to state complexity and other topics is described by the diagram
in Figure 1.

Example

Success

Success

Failure

Failure

Failure

Proposal

Experiment

Theorem

Proof

Fig. 1. The role of experiments

For solving a state complexity problem or a problem of a similar nature, we
usually first have certain proposed results in mind after studying the problem.
Examples are made according to our proposed results and sent to a software
system, e.g., Grail, for experiments. If the experiments show that the proposed
results are incorrect, we will modify the proposals and try new examples. If the
experiments are successful, we will try to prove the results. The results may still
be incorrect since we have only done experiments and usually the experiments
are limited to only a relatively small number of examples. After several attempts
and failures in proving the results, we may gain more insight into the problem
and possibly modify the proposal and do experiments again. If we can prove
the proposed results successfully, then we have obtained a theorem or theorems.
Note that although the experiment part of the process is not the final decisive
step, it plays a very important role in the process. Experiments in general cannot
prove a general result, but they can, sometime easily, disprove a proposal of a
general nature. So, experiments using computer software can greatly speed up
the whole process.

6 State Complexity Approximation

There are at least two prominent problems concerning the state complexities of
combined operations: (1) the state complexities of many combined operations are
extremely difficult to compute, and (2) a large proportion of the results that have
been obtained are pretty complex and impossible to comprehend. For example,

State Complexity Research and Approximation 51

the state complexity of the catenation for four regular languages accepted by
deterministic finite automata (DFAs) of m, n, p, q states, respectively, is

9(2m−1)2n+p+q−5−3(m−1)2p+q−2−(2m−1)2n+q−2+(m−1)2q+(2m−1)2n−2,

which is clearly not intuitive. Close estimations of state complexities are usually
good enough in many automata applications. In [24,4], estimations of state com-
plexity of combined operations have been proposed and studied. In this section,
we go further in the direction of the study in [24,4] and introduce the concept
of state complexity approximation [7].

6.1 Definition of State Complexity Approximation

Briefly speaking, an approximation of a state complexity is an estimate of the
state complexity with a ratio bound clearly defined. The ratio bound gives a
precise measurement on the quality of the estimate.

The idea of state complexity approximation is from the notion of approxima-
tion algorithms which was formalized in early 1970’s by David S. Johnson et al.
[8,12,13]. Many polynomial-time approximation algorithms have been designed
for a quite large number of NP-complete problems, which include the well-known
traveling-salesman problem, the set-covering problem, and the subset-sum prob-
lem. Obtaining an optimal solution for an NP-complete problem is considered
intractable. Near optimal solutions are often good enough in practice. Assuming
that the problem is a maximization or a minimization problem, an approxima-
tion algorithm is said to have a ratio bound of ρ(n) if for any input of size n,
the cost C of the solution produced by the algorithm is within a factor of ρ(n)
of the cost C∗ of an optimal solution [2]:

max
(

C

C∗ ,
C∗

C

)
≤ ρ(n).

The concept of state complexity approximation is in many ways similar to that
of approximation algorithms. A state complexity approximation is close to the
exact state complexity and normally not equal to it. The ratio bound shows the
error range of the approximation. In addition to the property of having a small
ratio bound in general, we also consider that a state complexity approximation
should be in a simple and intuitive form.

In spite of the similarities, there are fundamental differences between a state
complexity approximation and an approximation algorithm. The efforts in the
area of approximation algorithms are in finding polynomial algorithms for NP-
complete problems such that the results of the algorithms approximate the op-
timal results. In comparison, the efforts in the state complexity approximation
are in searching directly for the estimations of state complexities such that they
satisfy certain ratio bounds. The aim of designing an approximation algorithm
is to transform an intractable problem into one that is easier to compute and
the result is acceptable although not optimal. In comparison, a state complexity
approximation result may have two different effects: (1) it gives a reasonable

52 S. Yu and Y. Gao

estimation of certain state complexity, with some bound, the exact value of
which is difficult or impossible to compute; or (2) it gives a simpler and more
comprehensible formula that approximates a known state complexity.

Now we give a formal definition for state complexity approximation. Let ξ be
a combined operation on k regular languages. Assume that the state complexity
of ξ is θ. We say that α is a state complexity approximation of the operation
ξ with the ratio bound ρ if, for any large enough positive integers n1, . . . , nk,
which are the numbers of states of the DFAs that accept the argument languages
of the operation, respectively,

max
(

α(n1, . . . , nk)
θ(n1, . . . , nk)

,
θ(n1, . . . , nk)
α(n1, . . . , nk)

)
≤ ρ(n1, . . . , nk).

Note that in many cases, ρ is a constant. Since state complexity is a worst-
case complexity, an approximation that is not smaller than the actual state
complexity is preferred, which is the case for every approximation result in this
paper.

6.2 Some Basic Results on State Complexity Approximation

In [24], an estimation method through nondeterministic state complexities was
introduced for the (deterministic) state complexities of certain types of combined
operations. The method is described in the following.

Assume we are considering the combination of a language operation g1 with
k arguments together with operations gi

2, i = 1, . . . , k. The nondeterministic
estimation upper bound, or NEU-bound for the deterministic state complexity of
the combined operation g1(g1

2 , . . . , g
k
2) is calculated as follows:

(i) Let the arguments of the operation gi
2 be DFAs Ai

j with mi
j states, i =

1, . . . , k, j = 1, . . . , ri, ri ≥ 1.
(ii) The nondeterministic state complexity of the combined operation is at most

the composition of the individual state complexities, and hence the lan-
guage

g1(g1
2(L(A1

1), . . . , L(A1
r1

)), . . . , gk
2 (L(Ak

1), . . . , L(Ak
rk

)))

has an NFA with at most

nsc(g1)(nsc(g1
2)(m

1
1, . . . , m

1
r1

), . . . , nsc(gk
2)(mk

1 , . . . , mk
rk

))

states, where nsc(g) is the nondeterministic state complexity (as a function)
of the language operation g.

(iii) Consequently, the deterministic state complexity of the combined operation
g1(g1

2 , . . . , g
k
2) is upper bounded by

2nsc(g1)(nsc(g1
2)(m1

1,...,m1
r1

),...,nsc(gk
2)(mk

1 ,...,mk
rk

)) (1)

State Complexity Research and Approximation 53

The nondeterministic state complexity of the basic individual operations on reg-
ular languages has been investigated in [9,10,3].

In the following we show that this estimation method can produce nice ap-
proximation results for the state complexities of certain combined operations.
The table below shows the actual state complexities and their corresponding
NEU-bounds of the four combined operations [24]: (1) star of union, (2) star of
intersection, (3) star of catenation, and (4) star of reversal.

Operations State Complexity NEU-bound
(L(A) ∪ L(B))∗ 2m+n−1 − 2m−1 − 2n−1 + 1 2m+n+2

(L(A) ∩ L(B))∗ 3/4 2mn 2mn+1

(L(A)L(B))∗ 2m+n−1 + 2m+n−4 − 2m−1 − 2n−1 + m + 1 2m+n+1

(L(B)R)∗ 2n 2n+2

The next table shows clearly that each NEU-bound in the previous table gives
a very good approximation to its corresponding state complexity.

Operations Ratio bounds of the approximation
(L(A) ∪ L(B))∗ ≈ 8
(L(A) ∩ L(B))∗ 8/3
(L(A)L(B))∗ 4

(L(B)R)∗ 4

In the above cases, although the exact state complexities have been obtained,
the approximation results with small ratio bounds are good enough for practical
purposes, and they clearly have the advantage of being more intuitive and simpler
in formulation.

6.3 Approximation without Knowing Actual State Complexity

In this subsection, we consider two combined operations: (1) star of left quotient
and (2) left quotient of star. For each of the combined operations, we do not
have the exact state complexity; however, an approximation with a good ratio
bound is obtained.

Let R and L be two languages over the alphabet Σ. Then the left quotient of
R by L, denoted L\R, is the language

{y | xy ∈ R and x ∈ L}.

Let us first investigate a state complexity approximation of star of left quotient.
In the following, we assume that all languages are over an alphabet of at least
two letters.

Theorem 2. Let R be a language accepted by an n-state DFA M , n > 0, and
L be an arbitrary language. Then there exists a DFA of at most 2n states that
accepts (L\R)∗.

54 S. Yu and Y. Gao

Proof. Let M = (Q, Σ, δ, s, F) be a complete DFA of n states and R = L(M).
For each q ∈ Q, denote by L(Mq) the set {w ∈ Σ∗|δ(s, w) = q}. We construct
an NFA M ′ with multiple initial states to accept (L\R)+ as follows. M ′ is the
same as M except that the initial state s of M is replaced by the set of initial
states S = {q|L(Mq) ∩ L �= ∅} and ε-transitions are added from each final state
to the states in S. By using subset construction, we can construct a DFA A′ of
no more than 2n−1 states that is equivalent to M ′. Note that ∅ is not a state of
A′. From the DFA A′, we construct a new DFA A by just adding a new initial
state that is also a final state and the transitions from this new state that are
the same as the transitions from the original initial state of A′. It is easy to see
that L(A) = (L\R)∗ and A has 2n states. �

This result gives an upper bound for the state complexity of the combined op-
eration: star of left quotient. It means that for any n-state DFA language R,
n > 0, and an arbitrary language L, the state complexity of the star of the left
quotient of R by L is no more than 2n.

Theorem 3. For any integer n ≥ 2, there exist a DFA M of n states and a
language L such that any DFA accepting (L\L(M))∗ needs at least 2n−1 + 2n−2

states.

Proof. For n = 2, it is clear that R = {w ∈ {a, b}∗|#a(w) is odd} is accepted
by a two-state DFA, and

({ε}\R)∗ = R∗ = {ε} ∪ {w ∈ {a, b}∗|#a(w) ≥ 1}
cannot be accepted by a DFA with less than three states.

For n > 2, let M = (Q, {a, b}, δ, 0, {n− 1}) where Q = {0, 1, . . . , n − 1} and

δ(i, a) = i + 1 mod n, i = 0, 1, . . . , n− 1,

δ(0, a) = 0,

δ(j, b) = j + 1 mod n, j = 1, . . . , n− 1.

The transition function of M is shown in Figure 2. It has been proved in [26]
that the minimal DFA accepting L(M)∗ has 2n−1 + 2n−2 states. Let L = {ε}.
Then (L\L(M))∗ = L(M)∗. So, any DFA accepting (L\L(M))∗ needs at least
2n−1 + 2n−2 states. �

0

b

-1

a,b

a a,ba,ba,b
n21

Fig. 2. The transition diagram of DFA M

State Complexity Research and Approximation 55

This result gives a lower bound for the state complexity of star of left quotient.
Clearly, the lower bound does not coincide with the upper bound. We still do not
know the exact state complexity for this combined operation, yet, which could
be difficult to obtain. However, we can easily obtain a good state complexity
approximation for the operation. Let 2n be the approximation. Then the ratio
bound would be

2n

2n−1 + 2n−2
=

4
3

.

Next, we consider the combined operation: left quotient of star.

Theorem 4. Let R be a language accepted by an n-state DFA M and L be an
arbitrary language. Then there exists a DFA of at most 2n+1 − 1 states that
accepts L\R∗.

Proof. Let M = (Q, Σ, δ, s, F) be a complete DFA of n states and
R = L(M). Then we can easily construct an (n + 1)-state NFA M ′ =
(Q ∪ {s′}, Σ, δ′, s′, F ∪ {s′}) such that L(M ′) = R∗ by adding a new initial
state s′ and transitions δ′(s′, ε) = s and δ′(f, ε) = s′ for each final state f ∈ F .
For each q ∈ Q ∪ {s′}, we denote by L(Mq) the set {w ∈ Σ∗|q ∈ δ′(s′, w)}. We
construct an NFA N with multiple initial states to accept L\L(M ′) = L\R∗ as
follows. N is the same as M ′ except that the initial state s′ of M ′ is replaced by
the set of initial states S = {q|L(Mp) ∩ L �= ∅}. By using subset construction,
we can verify that there exists a DFA A of no more than 2n+1 − 1 states that is
equivalent to N . Note that ∅ is not a state of A. It is easy to see that

L(A) = L(N) = L\L(M ′) = L\R∗.

So, 2n+1 − 1 is an upper bound of the state complexity of the left quotient of
star operation. �

Theorem 5. For any integer n ≥ 2, there exist a DFA M of n states and a
language L such that any DFA accepting L\L(M)∗ needs at least 2n−1 + 2n−2

states.

Proof. For n = 2, we still use R = {w ∈ {a, b}∗|#a(w) is odd} which is
accepted by a two-state DFA. {ε}\R∗ = R∗ cannot be accepted by a DFA with
less than three states.

Again we use DFA M shown in Figure 2 for any integer n>2. As stated before,
it has been proved that the minimal DFA accepting L(M)∗ has 2n−1 + 2n−2

states. So any DFA accepting L\L(M)∗ needs at least 2n−1+2n−2 states. �

For this combined operation, we choose 2n+1 to be an approximation of its
state complexity. Then the ratio bound can be calculated easily as follows:

2n+1

2n−1 + 2n−2
=

8
3

.

56 S. Yu and Y. Gao

7 Future Directions

In the last two decades, many results on state complexity have been obtained.
By now, the state complexities of most individual operations and many com-
bined operation are known. Clearly, there are still many interesting operations,
especially combined operations, that should be further studied. We list in the
following only two possible new directions in research in state complexity and
closely related areas.

(1) In a complete DFA, the number of transitions is linear to the number of
states assuming that the size of the alphabet is a constant. However, in
practical applications, the size of the alphabet is usually very big (at least
over a hundred symbols) and each state has only a few useful transitions, i.e.,
transitions that are not to the sink state. Therefore, partial automata rather
than complete automata are usually constructed. In these cases, the number
of transitions rather than the number of states would decide the descriptional
size of an automaton. We call the number of transitions of an automaton
the transition complexity of the automaton. The transition complexity of
a regular language we are considering here is the minimum among all the
transition complexities of the partial DFAs that accept the language. The
transition complexity of NFAs have been studied in a number of papers.
However, the transition complexity of partial DFAs basically has not been
studied before. For example, the answer to the very basic question “What is
the transitional complexity of the catenation of two regular languages, that
are accepted by two partial DFAs of m and n transitions, respectively, in the
worst case” is not known, yet. Many questions in this direction can be done
in the near future.

(2) Average-case state complexities are clearly very important to automata ap-
plications. An essential question on average state complexity is the estab-
lishment of basic distribution models of automata. Until now only a few
results have been obtained. For practical applications, instead of theoretical
results on this topic, experimental results are in general satisfactory. The
experiments can be based on automata generated by a random generator [1]
or pools of examples from specific applications. Those results would be very
useful to general or specific applications of automata.

References

1. Almeida, M., Moreira, N., Reis, R.: Enumeration and generation with a string
automata representation. Theoretical Computer Science 387(2), 93–102 (2007)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms. The MIT
Press and McGraw-Hill, Massachusetts (1990)

3. Ellul, K.: Descriptional complexity measures of regular languages, Master’s Thesis,
University of Waterloo, Ontario (2002)

4. Ésik, Z., Gao, Y., Liu, G., Yu, S.: Estimation of state complexity of combined
operations. Theoretical Computer Science 410(35), 3272–3280 (2009)

State Complexity Research and Approximation 57

5. Fujiwara, S., Bochmann, G.V., Khendek, F., Amalou, M., Ghedamsi, A.: Test
development - based on finite state machine (FSM) models. IEEE Transactions on
Software Engineering 17(6), 591–603 (1991)

6. Gao, Y., Salomaa, K., Yu, S.: The state complexity of two combined operations: star
of catenation and star of reversal. Fundamenta Informaticae 83(1-2), 75–89 (2008)

7. Gao, Y., Yu, S.: State complexity approximation. In: Proceedings of Descriptional
Complexity of Formal Systems, pp. 163–174 (2009)

8. Garey, M.R., Graham, R.L., Ullman, J.D.: Worst-case analysis of memory alloca-
tion algorithms. In: Proceedings of the 4th Annual ACM Symposium on the Theory
of Computing, pp. 143–150 (1972)

9. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-
guages. International Journal ofFoundationsComputerScience 14, 1087–1102 (2003)

10. Holzer, M., Kutrib, M.: Unary language operations and their nondeterministic
state complexity. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp.
162–172. Springer, Heidelberg (2003)

11. Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages, and
computation. Addison-Wesley, Reading (1979)

12. Johnson, D.S.: Fast allocation algorithms. In: Proceedings of the 13th Annual IEEE
Symposium on Switching and Automata Theory, pp. 144–154 (1972)

13. Johnson, D.S.: Near-optimal bin packing algorithms, PhD Dissertation, Mas-
sachusetts Institute of Technology, Cambridge, MA (1993)

14. Kiraz, G.A.: Compressed storage of sparse finite-state transducers. In: Boldt, O.,
Jürgensen, H. (eds.) Proceedings of CIAA 2001. LNCS, vol. 2214, pp. 109–121.
Springer, Heidelberg (2001)

15. Lupanov, O.B.: A comparison of two types of finite automata. Problemy Kiber-
netiki 9, 321–326 (1963) (in Russian)

16. Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad.
Nauk SSSR 194, 1266–1268 (1970) (in Russian); English translation: Soviet Math.
Dokl. 11, 1372–1375 (1970)

17. Moore, F.: On the bounds for state-set size in the proofs of equivalence between de-
terministic, nondeterministic, and two-way finite automata. IEEE Trans. Comput.
C-20, 1211–1214 (1971)

18. Rozenberg, G., Salomaa, A.: Cornerstones of Undecidability. Prentice Hall, New
York (1994)

19. Rumbaugh, J., Jacobson, I., Booch, G.: The United Modeling Language Reference
Manual. Addison-Wesley, Reading (1999)

20. Salomaa, A.: Theory of automata. Pergamon Press, Oxford (1969)
21. Salomaa, A., Salomaa, K., Yu, S.: Undecidability of the state complexity of com-

posed regular operations. In: Proceedings of LATA 2011 (2011) (to be published)
22. Salomaa, K., Yu, S.: Synchronization Expressions with Extended Join Operation.

Theoretical Computer Science 207, 73–88 (1998)
23. Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations. The-

oretical Computer Science 383(2-3), 140–152 (2007)
24. Salomaa,K.,Yu, S.:On the state complexity of combined operations and their estima-

tion. International Journal ofFoundationsofComputerScience18(4), 683–698 (2007)
25. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of

formal languages, vol. 1, pp. 41–110. Springer, New York (1997)
26. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations

on regular languages. Theoretical Computer Science 125(2), 315–328 (1994)

Counting the Orderings for Multisets in

Consecutive Ones Property and PQ-Trees�

Giovanni Battaglia1, Roberto Grossi1, and Noemi Scutellà2

1 Dipartimento di Informatica, Università di Pisa, Pisa 56127, Italy
gbattag,grossi@di.unipi.it
2 List SpA, Pisa 56122, Italy
n.scutella@list-group.com

Abstract. A binary matrix satisfies the consecutive ones property (C1P)
if its columns can be permuted such that the 1s in each row of the
resulting matrix are consecutive. Equivalently, a family of sets F =
{Q1, . . . , Qm}, where Qi ⊆ R for some universe R, satisfies the C1P
if the symbols in R can be permuted such that the elements of each set
Qi ∈ F occur consecutively, as a contiguous segment of the permuta-
tion of R’s symbols. Motivated by combinatorial problems on sequences
with repeated symbols, we consider the C1P version on multisets and
prove that counting the orderings (permutations) thus generated is #P-
complete. We prove completeness results also for counting the permuta-
tions generated by PQ-trees (which are related to the C1P), thus showing
that a polynomial-time algorithm is unlikely to exist when dealing with
multisets and sequences with repeated symbols.

1 Introduction

A binary matrix M of size m × n satisfies the consecutive ones property (C1P)
if its n columns can be permuted such that the 1s in each row of the resulting
matrix are consecutive. An equivalent definition holds for the columns by per-
muting the rows. The property is often formulated in terms of sets: A family of
sets F = {Q1, . . . , Qm}, where each Qi is a subset of the universe of symbols
R = {r1, . . . , rn}, satisfies the C1P if the symbols in R can be permuted such that
the elements of each set Qi ∈ F occur consecutively as a contiguous segment of
the permutation of R’s symbols.

For example, consider the universe R = {a, b, c, d, e}. The C1P is not sat-
isfied by the family F = {{a, b}, {b, c}, {b, d}}, since b can have at most two
adjacent symbols in any permutation of R. On the other hand, the family
F = {{b, c}, {b, d}} satisfies the C1P: one feasible permutation of R is x = eacbd,
but not all permutations of R are feasible (e.g. y = abcde is not, because the
symbols {b, d} are not consecutive in y).

The C1P on sets can be formulated as a C1P problem on the binary matrix M
obtained by associating row i with set Qi ∈ F , and column j with element
rj ∈ R. Specifically, Mij = 1 iff rj ∈ Qi, as shown below for our example.
� Research partially supported by MIUR of Italy under project AlgoDEEP prot.

2008TFBWL4. Work done while the third author was at the University of Pisa.

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 58–69, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Consecutive Ones Property for Multisets 59

T1 T2 T3

a aa b

b bbb c cc d dd

e

Fig. 1. Some examples of PQ-trees.

a b c d e e a c b d
{b, c} 0 1 1 0 0 0 0 1 1 0
{b, d} 0 1 0 1 0 0 0 0 1 1

The problem of finding the orderings, namely, the permutations of R that are
generated by the C1P, arises in several situations. It was first solved efficiently
by Fulkerson and Gross [8] in their study on the incidence matrix of interval
graphs, using an O(mn2) time algorithm. Ghosh [10] applied the problem to
information retrieval, where R is the set of input records and each Qi is the set
of records satisfying a query: for each Qi, the C1P guarantees that the corre-
sponding records can be retrieved from consecutive storage locations. Booth and
Leuker [3,4] showed how to find any such ordering in linear time, with respect to
the number of 1s in M , with applications to some graph problems such as pla-
narity testing. They employed the PQ-tree data structure to represent compactly
all the orderings yielding the C1P for the given matrix M .

The PQ-tree corresponding to our example is denoted by T1 in Figure 1. The
leaves of the PQ-tree contain the symbols of R: when reading these symbols by
traversing the leaves in preorder, we obtain a string called the frontier of the
PQ-tree. As it can be seen, the frontier is one of the orderings yielding the C1P

in our example tree T1. Further orderings can be obtained by rearranging the
children of the nodes of the PQ-tree, since they implicitly encode the sets in F .
A round node in Figure 1 is called P-node, and its children can be rearranged
in any order. A square node is called Q-node, and its children can be only
rearranged in left-to-right or right-to-left order. By conceptually performing all
the feasible rearrangements of the nodes in the PQ-tree according to the above
rules, we obtain the set of frontiers that are generated by the PQ-tree. These
frontiers are in one-to-one correspondence with all the orderings yielding the
C1P for matrix M , as it can be verified by inspecting our example for T1: we can
represent them as the strings x1 = acbde, x2 = adbce, x3 = aecbd, x4 = aedbc,
x5 = cbdae, x6 = dbcae, x7 = cbdea, x8 = dbcea, x9 = ecbda, x10 = edbca,
x11 = eacbd, and x12 = eadbc.

Our problems. Since its inception, the C1P has found many applications un-
der several incarnations. Recent fields of application are stringology and bioin-
formatics, e.g. physical mapping [11,5] and gene analysis [7,12,14], providing
the inspiration for the problems in this paper. Motivated by the combinatorial

60 G. Battaglia, R. Grossi, and N. Scutellà

aspects of sequences with repeated symbols, we consider the scenario for the C1P

in which the symbols in the input set R are not necessarily distinct.
We investigate the problem of how to satisfy the C1P when R and the Qis

are multisets. To get the flavor of the problem, consider the universe R =
{a, b, b, c, d} and the family F = {{b, c}, {b, d}}. The situation arises from the
fact that the symbol b in both Q1 = {b, c} and Q2 = {b, d} can either match the
same occurrence of b in R or not. The former case gives rise to the PQ-tree T2

in Figure 1, while the latter gives rise to the PQ-tree T3. The set of frontiers are
now strings with repeated symbols: the set of frontiers generated by one PQ-tree
is not contained in the set of the other PQ-tree. However, the two occurrences
of b in R are indistinguishable.

In this paper, we consider problems arising from repeated symbols, and show
that dealing with the C1P on multisets is hard. Specifically, we study the prob-
lem of counting the number of orderings. This is “simpler” than listing all the
orderings. Note that the counting problem using standard PQ-trees on sets takes
polynomial time, since we can use the aforementioned one-to-one correspondence
between the orderings and the frontiers. The simple algorithm for sets is the fol-
lowing. For a given node u in the PQ-tree, apply a recursive post-order traversal:
If u is a leaf, it has just one frontier. Otherwise, let d be the number of children
of u, and fi be the number of frontiers for the ith child in u (where fi has been
recursively computed for 1 ≤ i ≤ d). Then, the number f of frontiers for u is
f = d! ×∏d

i=1 fi when u is a P-node, and f = 2 ×∏d
i=1 fi when u is a Q-node

(e.g. f = 12 = 3! × 2 frontiers for T1 in Figure 1). It is therefore interesting to
study the case of multisets.

Our results. Our first result is to prove that the problem (denoted #FRONT) of
counting the frontiers of a PQ-tree whose leaves store the (repeated) symbols of
a multiset is #P-complete [15]. We refer the reader to Section 3 for a discussion.

As for the original problem (denoted #FMO) of counting the orderings for the
C1P, one could hope that a polynomial solution might exist without relying on
PQ-trees. This is also unlikely to happen. Our second result is to prove that the
problem of counting the orderings for the C1P on multisets is #P-complete. We
refer the reader to Section 4 for a discussion.

An interesting implication of our findings is the relation with the well-known
counting version #HAM of the Hamiltonian path problem [9]. As previously
mentioned, a direct mapping of the orderings for the C1P in multisets into the
frontiers of PQ-trees has some intrinsic ambiguity. On the other hand, we can
prove that both the counting problems #FRONT and #FMO are #P-complete
using a reduction from #HAM. By the completeness properties, it follows that
there must exist a relation between the latter two problems. However, simply
composing the reductions does not immediately produce a single PQ-tree, having
the same properties as the input instance, which is an open problem.

Our approach is of independent interest, and the counting nature of the prob-
lems emphasizes the combinatorial properties of the strings (orderings) thus
generated by the reductions.

Consecutive Ones Property for Multisets 61

2 Definitions and Terminology

We consider a class of strings defined over multisets, where the usual notions of
inclusion, equality, and union, take into account the multiplicities of the elements
in the multisets. We say that a string s ≡ s1s2 · · · sn is drawn from a multiset R
of symbols if and only if the multiset S = {s1, s2, . . . , sn} satisfies the condition
S ⊆ R, where si denotes the symbol stored into position i of s, for 1 ≤ i ≤ n. We
also say that a multiset P occurs in a string s (or equivalently P is contained
in s), if there is a substring sisi+1 · · · sj of s, where 1 ≤ i, j ≤ n, such that
P = {si, si+1, . . . , sj}. In the latter case, we say that P occurs at position i in
s (and P is called π-pattern [1]). For example, P = {a, c, a} occurs at position
i = 1 in s = aacb, while P is not contained in s2 = aabc.

Given a decision problem A, we will denote by #A its counting version, where
we are required to count the number of the solutions of A [15]. We now introduce
the #FMO problem, that formalizes the problem of extending the Booth-Leuker
approach [4] for the C1P to multisets.

Problem 1 (#FMO = Counting Full Multiset Orderings). Input: an instance
〈R, F 〉, where R is a multiset of symbols, and F = {Q1, . . . , Qm} is a family
of multisets Qi ⊂ R. Output: how many strings x can be drawn from all sym-
bols in R (|x| = |R|), so that each Qi is contained in x?

For example, given R = {a, b, b, c, d} and F = {{b, c}, {b, d}}, x = abcbd, is
one of the feasible solution of the 〈R, F 〉 #FMO instance. We now introduce our
second problem, which requires some additional terminology and is related to
Problem 1.

Problem 2 (#FRONT= Counting PQ-trees Frontiers). Input: a PQ-tree T , where
its leaves are labeled with symbols that are not necessarily distinct. Output: what
is the size of the set of frontiers Fr(T) of T ?

We call the frontier of a PQ-tree T , denoted by F (T), the permutation of the
symbols obtained by reading the labels of the leaves from left to right. Given
two PQ-trees T and T ′, we say that T is equivalent to T ′ (written T ≡ T ′) if one
tree can be obtained from the other by possibly permuting the children of one
or more P-nodes, and by possibly reversing the children of some Q-nodes. The
set of the frontiers of all the trees that are equivalent to T is denoted by Fr(T).

Since a P-node (or a Q-node) having one child can be removed from T without
changing Fr(T), and a P-node with two children can be replaced by a Q-node (it
represents the “left to right” and “right to left” permutations only), we define
the canonical form constraining each Q-node to have at least two children, and
each P-node to have at least three children. In the rest of the paper, we assume
that each PQ-tree is in canonical form.

We are interested in counting the number of frontiers in Problem 2, namely,
the size of Fr(T) for a PQ-tree T . A formal description of the #P class is beyond
the scope of this paper, and we refer the reader to the textbooks in [2,9,13].

62 G. Battaglia, R. Grossi, and N. Scutellà

1 2 3 4 5

$ #

22 33 44

1 5 1 1 2 3 4 4

4221 31 41 32 43 54

$ #

G

TG

TV

TE

TV TE

TC TN

Fig. 2. The PQ-tree TG associated with the input graph G, where the source and the
destination vertices are w = 1 and s = 5, and TV and TE are shown individually

3 Counting the Frontiers of a PQ-tree

We begin by discussing the completeness of the #FRONT problem. We use a
reduction from the well-known counting version of Hamiltonian Path (#HAM).
We are given an undirected graph G, a source vertex w ∈ G, and a destination
vertex s ∈ G. We want to know how many paths H in G start in w and end
in s, such that all the vertices in G are traversed exactly once by each H . For
example, one such path is H = 〈1, 3, 2, 4, 5〉 in the graph G shown in Figure 2.
In the rest of the paper, we assume that G is connected, w and s have degree at
least one, and the other vertices have degree at least two (otherwise there is no
Hamiltonian path). We also assume that there are no self-loops.

3.1 Construction of the PQ-trees

The main idea is to code the structure of the given graph G in three suitable
PQ-trees, TG, TV , and TE , such that each Hamiltonian path H is in one-to-
many correspondence with a suitable set of strings from their frontiers. We now
describe our reduction from G = 〈V, E〉 to TG, TV , and TE, using Figure 2 as
an illustrative example.

The root of TG is a Q-node having two PQ-trees TV and TE as children.
Tree TE encodes all the feasible permutations of the edges in E. The root of

TE is a P-node having |E|+ 2 children. Two of them are special “endmarkers,”

Consecutive Ones Property for Multisets 63

and are labeled with $ and #. Each of the remaining children is a Q-node that
encodes an edge e = {i, j} by two leaves labeled with i and j, respectively, as
children. In our example, TE has |E| = 7 Q-nodes with children labeled by {1, 2},
{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, and {4, 5}, plus the endmarkers $ and #.

Tree TV enforces a classification of the edges as “coding” a Hamiltonian path,
or “non-coding” otherwise. Specifically, the root of TV is a Q-node with four
children: one leaf labeled with $, a PQ-tree TC for the coding edges, one more
leaf labeled with #, and a PQ-tree TN for the non-coding edges. The root of TC

is a Q-node with three children. The first child is a leaf labeled with the source w
and the last is a leaf labeled with the destination s. The middle child is a P-node
with |V |−2 children, each of which is a Q-node with two leaves labeled with the
same symbol i, for i ∈ V \ {w, s}. In our example w = 1, s = 5, and |V | = 5.
The root of the non-coding tree TN is a P-node having 2(|E|− |V |+1) leaves as
children. Letting di denote the degree of vertex i, there are dw −1 leaves labeled
with w, ds − 1 leaves labeled with s, and di − 2 leaves labeled with i �= w, s. In
our example, the leaves are labeled with 1, 1, 2, 3, 4, 4, where 2(|E|−|V |+1) = 6.

The above construction requires polynomial time, and the rationale will be
given in Section 3.2.

Lemma 1. Given an undirected graph G = 〈V, E〉, its corresponding PQ-trees
TG, TV , and TE can be built in O(|V | + |E|) time.

3.2 Properties of the PQ-trees

Consider the Hamiltonian path H = 〈1, 3, 2, 4, 5〉 in our example. (Observe that
the reversal of H , namely 〈5, 4, 2, 3, 1〉, is also a Hamiltonian path, but we con-
sider it to be different from H for the counting purposes.) The corresponding
strings αH belonging to the frontiers Fr(TG) are characterized as follows. First
at all, each αH is a square, namely, the concatenation αH = α α of two equal
strings α, where α belongs to both the frontiers Fr(TV) and Fr(TE), and is
of length 2|E| + 2. For example, α = $13322445#121434 is one such feasible
string. We can characterize the general structure of the strings α by observing
that they match one of the following two patterns. Let π denote an arbitrar-
ily chosen permutation of the pairs in {1, 2}, {1, 4}, {3, 4}, which represents the
edges not traversed by H . (That is, π belongs to the frontiers of the PQ-tree re-
sulting from {{1, 2}, {1, 4}, {3, 4}}.) The former pattern for α is $ 13322445 # π,
where the initial symbols are fixed and only π may vary; analogously, the lat-
ter is π # 13322445 $. For example, α = 413421 # 13322445 $ matches the latter
pattern.

Having introduced the structure of αH = α α in our example, we show how
to make α satisfy the implicit conditions encoded in TV and TE. Indeed, TE

guarantees that the two integers in each of the pairs corresponding to the edges
in E always occur consecutively in α. Moreover, the subtree TC in TV constraints
each vertex i ∈ V \ {w, s} to appear exactly twice in the chosen subset of edges,
while w and s are required to appear just once. Note that the purpose of the
subtree TN is that of “padding” the edges in E that are not traversed by H ,
since we do not know a priori which ones will be touched by H .

64 G. Battaglia, R. Grossi, and N. Scutellà

We now generalize the above observations on α. In the following we can re-
strict our focus on paths of the form i1, i2, . . . , i|V |, that are permutations of
{1, 2, . . . , |V |} with i1 = w and i|V | = s (otherwise they cannot be Hamilto-
nian paths from w to s). We introduce the notation Perm(Q) for a set Q =
{{a1, b1}, {a2, b2}, . . . , {ar, br}} of unordered pairs. It represents the set of all
the permutations of a1, b1, a2, b2, . . . , ar, br such that al and bl occupy contigu-
ous positions for 1 ≤ l ≤ r. For example, given Q = {{1, 2}, {1, 4}, {3, 4}}, we
have that 413421 is a valid permutation in Perm(Q), while 413241 is not.

We now show in Lemmas 2–4 that there exists a one-to-many correspondence
between the Hamiltonian path H in G and the strings α ∈ Fr(TV) ∩ Fr(TE).

Lemma 2. Let G = 〈V, E〉 be an undirected graph, and TG, TV , and TE be
its corresponding PQ-trees. For any string α ∈ Fr(TV) ∩ Fr(TE), there exists a
corresponding Hamiltonian path H of G from w to s.

Lemma 3. Let G = 〈V, E〉 be an undirected graph, and TG, TV , and TE be its
corresponding PQ-trees. For any Hamiltonian path H of G from w to s, there
exists at least one corresponding string α ∈ Fr(TV) ∩ Fr(TE).

Lemma 4. Let ΣH ⊆ Fr(TV) ∩ Fr(TE) denote the set of all the strings cor-
responding to a given Hamiltonian path H, as stated in Lemma 3. Then, for
any two Hamiltonian paths H �= H ′ of G from vertex w to vertex s, it is
ΣH ∩ ΣH′ = ∅.

3.3 Reduction from #HAM to #FRONT

We now show how to reduce the problem #HAM of counting the Hamiltonian
paths in G = 〈V, E〉, to the problem #FRONT of counting the frontiers of PQ-
trees, namely, TG, TV , and TE. We denote the number of frontiers for a PQ-tree T
by |Fr(T)|. Here is the polynomial time reduction for the input graph G and its
two vertices w and s:

– Build the PQ-trees TG, TV , and TE (see Lemma 1).
– Return the following as the number of Hamiltonian paths from w to s in G:

|Fr(TV) ∩ Fr(TE)|
|ΣH | =

2 |Fr(TV)| × |Fr(TE)| − |Fr(TG)|
2 (|E| − |V | + 1)!× 2|E|−|V |+1

(1)

Clearly, the formula in (1) can be computed in polynomial time. We now show
its correctness.

Lemma 5. Let ΣH ⊆ Fr(TV) ∩ Fr(TE) denote the set of strings corresponding
to a Hamiltonian path H. Then, for any Hamiltonian path H from w to s, we
have |ΣH | = 2 (|E| − |V | + 1)!× 2|E|−|V |+1.

Lemma 6. |Fr(TG)| = 2 |Fr(TV)| × |Fr(TE)| − |Fr(TV) ∩ Fr(TE)|
We now have all the ingredients to prove the following result.

Theorem 1. #FRONT is #P-complete.

Consecutive Ones Property for Multisets 65

1 2

43

G

Q1 = {1, d12, d13, d14, 2, 3, 4, c1}
Q2 = {2, d21, d24, 1, 4, c2}
Q3 = {3, 3, d31, d34, 1, 4}
Q4 = {4, 4, d41, d42, d43, 1, 2, 3}
R1 = {c1, c′1}
R2 = {c2, c′2}

Q12 = {d12, 2}
Q13 = {d13, 3}
Q14 = {d14, 4}
Q24 = {d24, 4}
Q34 = {d34, 4}

Q21 = {d21, 1}
Q31 = {d31, 1}
Q41 = {d41, 1}
Q42 = {d42, 2}
Q43 = {d43, 3}

F = { Q1, Q2, Q3, Q4, R1, R2, Q12, Q21, Q13, Q31, Q14, Q41, Q24, Q42, Q34, Q43 }
R = { d12, d21, d13, d31, d14, d41, d24, d42, d34, d43, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, c1, c′1, c2, c′2 }

x = c′1 c1 d122 d144 d133 1 d31d344 3 d43d411 d422 4 d24d211 c2 c′2

R1

Q1

Q3

Q4

Q2

R2

Fig. 3. Example of reduction from a Hamiltonian Path instance for a graph G, where
the source and the destination vertices are w = 1 and s = 2, into a #FMO instance
〈R,F 〉. Sets Qij are shown boxed in string x.

4 Hardness Results for #FMO

We now show how to reduce the #HAM problem to the counting version of the
Full Multiset Problem (#FMO). For the given undirected graph G = 〈V, E〉,
together with the source and the destination vertices, w and s, we make the
same assumptions as in Section 3.

4.1 Instance Construction

Consider the example in Figure 3. On the left we show the input undirected
graph G, where the source and the destination vertices w = 1 and s = 2 are
in boldface. The corresponding #FMO instance 〈R, F 〉 is reported on the right,
while one of the solution string x, corresponding to the Hamiltonian path H =
〈1, 3, 4, 2〉 is represented at the bottom.

We build an instance of #FMO as follows. For each vertex i, we construct
the multiset Qi containing two occurrences of the symbol i (if i �= w, s), or
one occurrence of i and one of the special symbol ci (if i = w, s). We also
add symbols dij and j to Qi, for every incident edge {i, j}. As a result, each
undirected edge {i, j} is represented by two different symbols dij ∈ Qi and
dji ∈ Qj . Formally,

Qi =
{⋃

{i,j}∈E{dij , j} ∪ {i, ci} i = w, s⋃
{i,j}∈E{dij , j} ∪ {i, i} i �= w, s

66 G. Battaglia, R. Grossi, and N. Scutellà

To guarantee the condition that w and s are the source and the destination
vertices, respectively, we introduce two symbols c′w and c′s, and two sets Rw =
{cw, c′w} and Rs = {cs, c

′
s}, which do not correspond to any vertex of the input

graph. They are used to guarantee that Qw and Qs will always occur as the first
and the last multiset of any solution string x for our #FMO instance.

In general, the intersection between two multisets Qi and Qj can contain more
symbols than just i and j. For example, the intersection between Q1 and Q4 is
I14 = {1, 4, 2, 3} because it contains also 2 and 3, each of them corresponding to
the vertex forming a triangle with 1 and 4, respectively. To avoid this situation,
2 |E| auxiliary multisets Qij = {dij , j} are used to constraint the intersection
between the multisets represented, such that it contains exactly two symbols.
Since multisets are represented as substrings, this intersection is represented
as a common substring inside each solution string x. Observe that each edge
{i, j} ∈ E gives rise to two multisets Qij and Qji. In the string x shown in
Figure 3, the purpose of the multisets Qij and Qji is to enforce the common
substring for Q1 and Q3 inside x to be 1, 3 or 1, 3, between Q3 and Q4 to be 3, 4
or 3, 4, and so on.

We finally choose the multiset R = Q \ R′ where Q =
⋃

i Qi ∪ {c′w, c′s} and
R′ =

⋃
i�=w,s{i, i} ∪ {w, s}. We also choose F = {Q1, . . . , Q|V |} ∪ {Rw, Rs} ∪

{Qij, Qji}{i,j}∈E . The idea behind the construction of R and F is illustrated in
our example. Each Hamiltonian path H from w = 1 to s = 2 contains only one
edge incident to w ({1, 3} in our example), one edge incident to s ({2, 4}), and
two edges incident to each of the other vertices in H ({1, 3} and {3, 4} incident
to 3, and {3, 4} and {2, 4} incident to 4). The path H can always be represented
by a string x having size |R|. The multisets Qi occur inside x in the same order
as that of the vertices i inside H . The common substring for consecutive Qi and
Qj is now guaranteed to contain just i, j or j, i in consecutive positions of x.
For example, Q1, Q3, Q4, and Q2 correspond to the vertices in H = 〈1, 3, 4, 2〉,
while their intersections correspond to the edges used in H . Here is the role of
R′: although we do not know a priori which edges will be traversed by H , we
known that the multiset of the endpoints of its edges contains one occurrence of
w and s, and two occurrences of each other vertex, thus giving rise to R′. Even
if we have to remove R′ from Q to obtain R, we still guarantee that 〈R, F 〉 is a
valid #FMO instance.

Lemma 7. Each multiset M ∈ F is contained in R.

Lemma 8. Given an undirected graph G = 〈V, E〉, together with a source and
a destination vertex, w and s, the corresponding instance 〈R, F 〉 of #FMO, can
be built in O(|V |+ |E|) time.

4.2 Characterization of the Solutions

We need some technical lemmas, as in Section 3.2. In particular, Lemmas 9–11
follow the same route as that traced in Lemmas 2–4 for #FRONT.

Consecutive Ones Property for Multisets 67

Rw Rs

Qi1

Qi2

Qi3

Qin−1

Qin

c′w cw c′scsdi2i1di1i2 di2i3 di3i2 din−1in
dinin−1

i1 i2i2 i3 in−1in

Fig. 4. The string x coding the Hamiltonian path H = 〈i1, . . . , in〉 of G. The common
substring for Qi and Qj has size 2 in x and is constrained to be i, j or j, i.

Lemma 9. Let G = 〈V, E〉 be an undirected graph, and 〈R, F 〉 be its correspond-
ing #FMO instance. For any string x that is solution of 〈R, F 〉, there exists a
corresponding Hamiltonian path H of G from w to s.

Lemma 10. Let G = 〈V, E〉 be an undirected graph, and 〈R, F 〉 be its corre-
sponding #FMO instance. For any Hamiltonian path H of G from w to s, there
exists at least one corresponding solution x of 〈R, F 〉.
Lemma 11. Let ΣH denote the set of all the solutions of 〈R, F 〉 corresponding
to a given Hamiltonian path H, as stated in Lemma 10. Then, for any two
Hamiltonian paths H �= H ′ of G from vertex w to vertex s, it is ΣH ∩ΣH′ = ∅.

We now prove Lemma 9, leaving the proof of Lemmas 10–11 at the end of the
section. We consider a solution x of 〈R, F 〉, and make three conceptual steps.

(a) We prove that the multisets Qi follow a total order ≺x induced by x.
(b) We show that each Qi occurs exactly once in x.
(c) For any two consecutive Qi and Qj in the total order ≺x, we demonstrate

that their intersection in x corresponds to edge {i, j} ∈ E.

Observe that steps (a) and (b) select all possible permutations of the vertices
in V , while step (c) selects only those permutations (if any) that correspond
to paths in G. Putting (a)–(c) together, we can see that the Hamiltonian path
corresponding to x is H = 〈i1, i2 . . . , i|V |〉, where Qi1 ≺x Qi2 ≺x · · · ≺x Qi|V | is
the total order induced by x.

We show a slightly more general property than that stated in (a), using the
following lemma.

Lemma 12 (Strict Sperner Property). The collection of multisets C =
{Rw, Rs, Q1, . . . , Q|V |}, is a Strict Sperner collection [6]: no multiset is con-
tained in the union of the others. Hence, there exists a total order ≺x on the
multisets in C.

We prove the property stated in step (c) by the following lemma.

Lemma 13 (Intersection Size). Let x be a string of size |R|, drawn from all
the symbols in R, and containing all the multisets in C2 = {Rw, Rs, Qi, Qij}.
Let Iij = Qi ∩Qj denote the intersection between two multisets Qi and Qj that
occur consecutively in x. Then, (i) |Iij | = 2; (ii) Iij = {i, j}; (iii) {i, j} ∈ E.

68 G. Battaglia, R. Grossi, and N. Scutellà

Finally, the property stated in step (b) is based on the lemma below.

Lemma 14 (Occurrence Uniqueness). Given a solution x of 〈R, F 〉, each
multiset Qi ∈ F occurs exactly once inside x.

We now prove Lemma 10 and Lemma 11.
Let us discuss Lemma 10. Given a Hamiltonian path H = 〈i1, i2, . . . , i|V |〉

of G, where i1 = w and i|V | = s, in order to construct a solution x of the
corresponding #FMO instance 〈R, F 〉, we arrange the multisets Qi in the same
order as the corresponding vertices in H , as shown in Figure 4. The first symbol
of x is c′w and the last one is c′s. Between them, Qi1 , Qi1 , . . . , Qi|V | appears in x,
where the first symbol of Qi1 is cw, and the last symbol is i1, and the first symbol
of Qi|V | is i|V | and the last symbol is cs. For the remaining Qil

, the first three
symbols are il,il−1, and dilil−1 , and the first two of them overlap with Qil−1 by
Lemma 13. Analogously, the last three symbols are dilil+1 , il+1 and il, and the
last two of them overlap with Qil+1 . The remaining symbols in Qil

are dilj , j for
all edges {il, j} ∈ E, such that j �= il−1, il+1.

Each multiset Qil
intersects Qil+1 in {il, il+1} ∈ E. Note that, since H is a

Hamiltonian path, the symbols belonging to the union of all the intersections are
R′ =

⋃
i�=w,s{i, i} ∪ {w, s}. To prove that x is a solution of 〈R, F 〉, note that x

contains each multiset Qi, Rw, Rs by construction. As for each Qij = {dij , j}, we
observe that its occurrence is contained in the occurrence of Qi in x. Moreover,
x contains the multiset R and x has size |R|, since x is drawn from the multiset⋃

i Qi ∪ {c′w, c′s} \ R′, that is exactly the way R is defined in 〈R, F 〉. The above
discussion proves Lemma 10.

To prove Lemma 11, consider a string x ∈ ΣH , and x′ ∈ ΣH′ where H ′ =
〈i′1, i′2, . . . , i′|V |〉. Since H �= H ′, they must differ in at least one position l (i.e.
il �= i′l). Assume w.l.o.g. that |Qil

| ≤ |Qi′
l
|, and select the position k of the

leftmost symbol dilj ∈ Qil
occurring in x for some j. Since the order of the

multisets in x is the same as that of the vertices in the Hamiltonian paths,
Qil

�= Qi′
l

(since il �= i′l). By construction of the multisets, we have dij �∈ Qi′
l
,

then the kth symbol in x and x′ differs, thus proving the claim.

4.3 Reduction from #HAM to #FMO

The #FMO problem is clearly in #P , so we focus on its completeness. We
are given an undirected graph G = 〈V, E〉, along with its source w and its
destination s. The reduction goes as follows.

– Build an instance 〈R, F 〉 as described in Section 4.1.
– Let z be the number of solutions for the instance 〈R, F 〉.
– Let a =

∏|V |
i=1 αi �= 0, where αi is defined for a vertex i of degree di as

αi =
{

2(di−1) (di − 1)! i = w, s

2(di−2) (di − 2)! i �= w, s

– Return the integer z/a.

Consecutive Ones Property for Multisets 69

The above reduction takes polynomial time. To see its correctness, it suffices to
show that |ΣH | = a for every Hamiltonian path H = 〈i1, i2, . . . , i|V |〉 in G.

We already proved in Section 4.2 that each solution x ∈ ΣH has the form
reported in Figure 4. Here, the occurrence of each Qi is a sequence of pairs
Qij = {dij , j} except the first and the last symbol of Qi. If i �= w, s, the first
and the last pairs always stay the same, while the remaining di − 2 pairs can
be permuted in (di − 2)! ways. For each such a way, we can permute each pair
internally, thus giving an extra factor of 2di−2. If i = w, s, we have d1 − 1 pairs
that can be permuted, yielding 2(di−1) (di − 1)! permutations.

Theorem 2. #FMO is #P-complete.

As a byproduct of the reduction adopted in this section, we have:

Corollary 1. Testing the C1P on multisets is NP-complete.

Acknowledgment. We thank the anonymous Referees for their useful
comments.

References

1. Amir, A., Apostolico, A., Landau, G.M., Satta, G.: Efficient text fingerprinting via
Parikh mapping. J. Discrete Algorithms 1(5-6), 409–421 (2003)

2. Arora, S., Barak, B.: Computational Complexity A Modern Approach. Cambridge
University Press, Cambridge (2009)

3. Booth, K.S.: PQ-tree algorithms. Ph.D. thesis, Univ. of California (December 1975)
4. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval

graphs, and graph planarity using PQ-tree algorithms. JCSS 13(3), 335–379 (1976)
5. Christof, T., Oswald, M., Reinelt, G.: Consecutive ones and a betweenness problem

in computational biology. In: Bixby, R.E., Boyd, E.A., Ŕıos-Mercado, R.Z. (eds.)
IPCO 1998. LNCS, vol. 1412, pp. 213–228. Springer, Heidelberg (1998)

6. Engel, K.: Sperner theory. Cambridge University Press, New York (1997)
7. Eres, R., Landau, G.M., Parida, L.: A combinatorial approach to automatic dis-

covery of cluster-patterns. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS
(LNBI), vol. 2812, pp. 139–150. Springer, Heidelberg (2003)

8. Fulkerson, D.R., Gross, D.A.: Incidence matrices and interval graphs. Pacific J.
Math. 15(3), 835–855 (1965)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, NY (1979)
10. Ghosh, S.P.: File organization: the consecutive retrieval property. Commun.

ACM 15(9), 802–808 (1972)
11. Jain, M., Myers, E.W.: Algorithms for computing and integrating physical maps

using unique probes. In: RECOMB 1997, pp. 151–161 (1997)
12. Landau, G.M., Parida, L., Weimann, O.: Gene proximity analysis across whole

genomes via PQ-trees. Journal of Computational Biology 12(10), 1289–1306 (2005)
13. Papadimitriou, C.M.: Computational complexity. Addison-Wesley, Reading (1994)
14. Parida, L.: Statistical significance of large gene clusters. Journal of Computational

Biology 14(9), 1145–1159 (2007)
15. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer

Science 8(2), 189–201 (1979)

Avoiding Abelian Powers in Partial Words�

Francine Blanchet-Sadri1 and Sean Simmons2

1 Department of Computer Science, University of North Carolina,
P.O. Box 26170, Greensboro, NC 27402–6170, USA

blanchet@uncg.edu
2 Department of Mathematics, The University of Texas at Austin,

1 University Station C1200, Austin, TX 78712–0233, USA

Abstract. We study abelian repetitions in partial words, or sequences
that may contain some unknown positions or holes. First, we look at the
avoidance of abelian pth powers in infinite partial words, where p > 2,
extending recent results regarding the case where p = 2. We investigate,
for a given p, the smallest alphabet size needed to construct an infinite
partial word with finitely or infinitely many holes that avoids abelian
pth powers. We construct in particular an infinite binary partial word
with infinitely many holes that avoids 6th powers. Then we show, in
a number of cases, that the number of abelian p-free partial words of
length n with h holes over a given alphabet grows exponentially as n
increases. Finally, we prove that we cannot avoid abelian pth powers
under arbitrary insertion of holes in an infinite word.

1 Introduction

The study of word structures, or combinatorics on words, plays an important
role in theoretical computer science. At the beginning of the twentieth century,
Thue discovered in [23] that the consecutive repetitions of non-empty factors,
also called squares, can be avoided by an infinite word over a ternary alphabet.
Such word is said to be 2-free or square-free. More generally, a word u is p-free
if it does not contain xp as a factor, where x is any non-empty factor of u.

The study of abelian repetitions was started by Erdös [14]. He raised the ques-
tion whether there exist infinite abelian square-free words over a given alphabet
(words in which no two consecutive factors are permutations of each other). For
example, abcbac is an abelian square since abc and bac are permutations of each

� This material is based upon work supported by the National Science Foundation
under Grant No. DMS–0754154. The Department of Defense is also gratefully ac-
knowledged. We thank Dimin Xu for very valuable comments and suggestions. A
research assignment from the University of North Carolina at Greensboro for the
first author is gratefully acknowledged. Some of this assignment was spent at the
LIAFA: Laboratoire d’Informatique Algorithmique: Fondements et Applications of
Université Paris 7-Denis Diderot, Paris, France. A World Wide Web server interface
has been established at www.uncg.edu/cmp/research/abelianrepetitions2 for au-
tomated use of the program.

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 70–81, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Avoiding Abelian Powers in Partial Words 71

other. It can easily be checked that no infinite abelian square-free word exists
over a three-letter alphabet because every word of length eight over three let-
ters contains an abelian square. Evdokimov in [15] showed that abelian squares
are avoidable over twenty-five letters. Pleasants [21] showed that there exists
an infinite abelian square-free word over five letters using a uniform morphism
of size 5 × 15. Keränen [17] reduced the alphabet size to four by introducing a
uniform abelian square-free morphism of size 4 × 85. Other constructions over
four letters appear in [9,18]. Computer-assisted music analysis is an application
area of abelian square-free words [19]. Cryptography is another application area
[3,22]. For instance, Rivest presented a new way of dithering for iterated hash
functions based on such square-free words. Abelian square-free words have also
been used in the study of free partially commutative monoids [10,13].

An abelian pth power consists of p consecutive factors which are permutations
of each other, and a word is abelian p-free if it does not contain any abelian
pth power. Results for p > 2 include: Justin in [16] showed that there exists an
abelian 5-free word over a binary alphabet with a uniform morphism of size 2×5.
Dekking in [12] proved that over a ternary alphabet, there exists an abelian 3-free
infinite word, and using a non-uniform morphism that abelian 4th powers are
avoidable over a binary alphabet (abelian cubes cannot be avoided over a binary
alphabet). Aberkane and Currie in [1] improved the latter result by introducing
a uniform morphism having an abelian 4-free fixed point.

The problem of avoiding abelian squares in partial words was initiated by
Blanchet-Sadri et al. in [6]. The idea of partial words was first introduced by
Berstel and Boasson in [4] and the one of freeness in partial words by Manea and
Mercaş in [20]. Partial words are sequences over a finite alphabet that may have
some unknown positions or holes, represented by �’s, which are compatible with,
or match, each letter of the alphabet. For instance, ab�b�c is a partial word with
two holes over the ternary alphabet {a, b, c}. A partial word u over an alphabet
A is an abelian square if it is possible to substitute letters from A for each hole in
such a way that u becomes an abelian square that is a full word (or a partial word
without holes). The partial word u is abelian square-free if it does not have any
full or partial abelian square, except those of the form �a or a�, where a ∈ A. For
example, abacaba is abelian square-free, while abcdad�ada is not (it contains the
abelian square cdad�a compatible with cdadca). In particular, in [6], lower and
upper bounds were given for the number of letters needed to construct infinite
abelian square-free partial words with finitely or infinitely many holes. It was
proved that there exists an infinite abelian square-free partial word with one hole
over a four-letter alphabet, and none exists with more than one hole. It was also
showed that the minimal alphabet size for the existence of an abelian square-free
partial word with more than one hole is five. Several of the constructions are
based on iterating morphisms.

In this paper, we build on previous work by studying abelian repetitions in
partial words. A partial word u is p-free if for every non-empty factor u0 · · ·up−1

of u, there does not exist a full word v compatible with ui, for all i ∈ {0, . . . , p−1}.
A partial word u is abelian p-free if for every non-empty factor u0 · · ·up−1 of u,

72 F. Blanchet-Sadri and S. Simmons

there does not exist a full word v compatible with some permutation of ui, for all
i ∈ {0, . . . , p − 1}. We are interested in the following three problems: (1) Study
avoidance of abelian pth powers, for p > 2. In the context of partial words, which
abelian powers can be avoided over a given alphabet? (2) Investigate the number
of abelian p-free partial words of a fixed length over an alphabet of a given size.
The number of abelian 2-free full words has been studied in [8] and [18] for an
alphabet of size four (work has also been done for higher powers [1,2,11]). (3)
Can we construct an infinite full word that remains abelian p-free even after
arbitrarily many positions are replaced with holes? In [20], a 3-free infinite full
word over an optimal alphabet size of four letters was given that remains 3-free
after such replacements, while in [7] a 2-free infinite full word over an optimal
size of eight letters was given that remains 2-free after such replacements. Here,
among other things, we prove that abelian 6th powers can be avoided over a
binary alphabet, while such is not the case for abelian 3rd powers. We also
show that there is a partial word with infinitely many holes over a three-letter
(resp., three-letter, four-letter) alphabet that avoids abelian 5th powers (resp.,
4th powers, 3rd powers). Due to the 12 page limit requirement, we have only
put sketches for some of the proofs to illustrate a few of our techniques.

We end this section with some background on partial words (we refer the
reader to [5] for more information). A partial word over an alphabet A is a
sequence of symbols from A� = A ∪ {�}, where � is the symbol representing an
unknown position. Any occurrence of � in a partial word is called a hole (a (full)
word is a partial word without holes). The length of a partial word u, denoted
by |u|, represents the number of symbols in u, while u(i) represents the symbol
at position i of u, where 0 ≤ i < |u|. The empty word is the sequence of length
zero and is denoted by ε. The set of distinct letters in u, or the cardinality of u,
is denoted by α(u). For instance, u = ab�bba�, where a, b are distinct letters of
the alphabet A, satisfies α(u) = {a, b}. The set of all words over A is denoted by
A∗, while the set of all partial words over A by A∗

�. A (right) (resp., two-sided)
infinite partial word is a function u : N → A� (resp., u : Z → A�).

Let u and v be partial words of equal length. Then u is contained in v, denoted
by u ⊂ v, if u(i) = v(i), for all i such that u(i) ∈ A. The partial words u and v
are compatible, denoted by u ↑ v, if there exists a partial word w such that u ⊂ w
and v ⊂ w. For example, a�bb� ↑ ab�b�, since a�bb� ⊂ abbb� and ab�b� ⊂ abbb�.
A partial word u is a factor or subword of a partial word v if there exist x, y
such that v = xuy. The factor u is proper if u �= ε and u �= v. We say that u is a
prefix of v if x = ε and a suffix of v if y = ε. The notation v[i..j) represents the
factor v(i) · · · v(j − 1), while v[i..j] the factor v(i) · · · v(j). The powers of u are
defined recursively as follows: u0 = ε, and for any integer p > 0, up = uup−1.

Given a ∈ A, |u|a denotes the number of occurrences of a in a partial word
u over alphabet A. If we write A = {a0, . . . , ak−1}, where the cardinality of A,
‖A‖, is k, then the Parikh vector of u, P (u), is P (u) = 〈|u|a0 , . . . , |u|ak−1〉. For
a positive integer p, a non-empty word u ∈ A∗ is an abelian pth power if we can
write u = u0 · · ·up−1 so that P (u0) = · · · = P (up−1). This is the same as saying
that each ui is a permutation of u0. A word u is abelian p-free if no factor of u is

Avoiding Abelian Powers in Partial Words 73

an abelian pth power. A non-empty partial word u ∈ A∗
� is an abelian pth power

if it is possible to substitute letters from A for each hole in such a way that u
becomes a full word that is an abelian pth power. In other words, u is an abelian
pth power if there exists a full word v, compatible with u, that is an abelian pth
power. For example, abca�b is an abelian 2nd power, or abelian square, since we
can replace the � with letter c and form abcacb. Whenever we refer to an abelian
pth power u0 · · ·up−1, it implies that there exists a non-empty word w such that
for each i, 0 ≤ i < p, some permutation of ui is compatible with w. The partial
word u is abelian p-free if it does not have any full or partial abelian pth power.

Let A and B be alphabets, and 2B∗
be the set of all subsets of B∗. A morphism

φ : A∗ → B∗ is called abelian p-free if φ(u) is abelian p-free whenever u is abelian
p-free. A multi-valued substitution is a function θ : A∗ → 2B∗

, with the property
that if u1 and u2 are words in A∗, then θ(u1u2) = θ(u1)θ(u2) = {v1v2 | vi ∈
θ(ui)}. The multi-valued substitution θ is said to be abelian p-free if, whenever
u ∈ A∗ is abelian p-free then so are all of the words in θ(u). See [11] for more
information on multi-valued substitutions.

Finally, inserting a hole in a word u is defined as replacing a position’s letter in
u with a �. An arbitrary insertion of holes is replacing any collection of positions’
letters in u with �’s, so that every pair of consecutive �’s is separated by at least
two letters. This restriction is to avoid some trivial occurrences of powers (a pth
power u0 · · ·up−1, |u0| = · · · = |up−1|, is trivial if ui = � for some i).

2 Avoiding Abelian Powers Greater Than Two

In [6], it is shown that abelian squares can be avoided by a partial word with
infinitely many holes over five letters, where the number of letters is minimal.
So we move on to higher abelian powers, that is, we investigate the minimal
alphabet size needed to construct partial words with infinitely many holes that
avoid abelian pth powers, where p > 2.

We begin by proving a result about abelian 4th powers.

Theorem 1. There exists a partial word with infinitely many holes over a three-
letter alphabet that avoids abelian 4th powers.

Proof. By [12], there exists an infinite word w over A = {a, b} which avoids
abelian 4th powers. Let c be any letter not in A, and write B = {a, b, c}. Let
ki = 5 × 6i. Then we can define an infinite partial word w′ over B as follows:

w′(j) =

⎧⎨⎩�, if j = ki for some i;
c, if j = ki + 1 or j = ki − 1 for some i;
w(j), otherwise.

Using a proof by contradiction, we can show that w′ contains no abelian 4th
powers. ��
The basic idea of the proof of Theorem 1 is to place the holes so far apart that
any abelian 4th power could contain only a few holes. This idea will be used
repeatedly in the sequel, and so it is made more precise in the following lemma.

74 F. Blanchet-Sadri and S. Simmons

Lemma 1. Let w be an infinite partial word over a finite alphabet, and let p > 1
be an integer. Assume that u0 · · ·up−1 = w[i0..i1 − 1] · · ·w[ip−1..ip − 1] is an
abelian pth power in w. Let k0 < k1 < · · · be a sequence of integers so that
k0 > 0, and ki > pki−1 for all i ≥ 1. Then the following hold:

– If q > 0, then there exists at most one j such that iq ≤ kj ≤ iq+1 − 1.
– If q1 < q2, and if there exist j1, j2 such that iq1 ≤ kj1 ≤ iq1+1 − 1 and

iq2 ≤ kj2 ≤ iq2+1 − 1, then q1 = 0.

Consequently, if k0 is the smallest integer such that w(k0) = �, k1 the next
smallest integer such that w(k1) = �, and so on, then the following hold: (1) if
j > 0, then uj contains at most one hole; (2) if i < j and both ui and uj contain
holes, then i = 0.

Then we move on to abelian cubes.

Theorem 2. There exists a partial word with infinitely many holes over a four-
letter alphabet that avoids abelian cubes.

Proof. Let A = {a, b, c} and B = {a, b, c, d}. Consider the morphism φ : A∗ →
A∗ defined as φ(a) = aabc, φ(b) = bbc and φ(c) = acc. Let w be the fixed point
of φ. It is known that w is abelian cube-free (see [12]).

Begin by noting that accaccbbc occurs infinitely often in w. We can thus find
a sequence k0 < k1 < · · · so that k0 > 20; for each i, ki+1 > 3ki; and for each
i, w[ki − 2..ki + 6] = accaccbbc. Then we can define an infinite partial word w′

over B as follows:

w′(j) =

⎧⎪⎪⎨⎪⎪⎩
�, if j = ki for some i, i ≡ 0 mod 19;
d, if j ∈ {ki − 1, ki + 2, ki + 3} for some i, i ≡ 0 mod 19;
d, if j = ki for some i, i �≡ 0 mod 19;
w(j), otherwise.

Using Lemma 1, we can show that w′ is abelian cube-free. ��

To study larger powers, we need the following lemma.

Lemma 2. Let w be an infinite word over a finite alphabet, and let p > 1 be
an integer. Assume that there exist infinitely many i’s so that, if w′ is defined
by w′(j) = � if j = i, and w′(j) = w(j) otherwise, then w′ is abelian p-free.
Then we can insert infinitely many holes in w so that the resulting partial word
is abelian (p + 1)-free.

Abelian 6th powers can be avoided over a binary alphabet. The construction
is not the result of simply inserting holes to a word produced by a morphism.

Theorem 3. There exists a partial word with infinitely many holes over a two-
letter alphabet that avoids abelian 6th powers.

Avoiding Abelian Powers in Partial Words 75

Proof. Let A = {a, b}. As mentioned before, there is an infinite binary word w
that avoids abelian 4th powers (see [12]). More specifically, it is the fixed point
of the morphism φ : A∗ → A∗ defined by φ(a) = aaab and φ(b) = bab. We also
define a morphism ψ : A∗ → A∗ by ψ(a) = b and ψ(b) = a. Let v0 = w[0..119]
and v1 = w[121..240]. Note that w(120) = a. In other words v0av1 is the prefix of
w where |v0av1| = 241. We can check with a computer that ψ(v0)�v1 is abelian
6-free. Similarly, we can check that if u is a subword of w, 30 ≤ |u| < 60, then
|u|a > |u|b. This implies that if |u| ≥ 30 and u is a subword of w then |u|a > |u|b,
since we can write u = u0 · · ·un for some n, where 30 ≤ |ui| < 60.

Since v0av1 appears once in w, it must appear infinitely often. Therefore define
a sequence k0 < k1 < · · · so that k0 > 120, w[ki − 120..ki + 120] = v0av1, and
ki > 7ki−1. Let k−1 = −1. Then define a partial word w′ as follows:

w′(j) =

⎧⎨⎩
�, if j = ki for some i;
w(j), if ki < j < ki+1 for some i, i odd;
ψ(w(j)), otherwise.

Our goal is to show that w′ is abelian 6-free. To see this, assume that
u0u1u2u3u4u5 is an abelian 6th power in w′. From Lemma 1, at most one of
u1, u2, u3, u4, or u5 contains a hole. This implies that u1u2u3u4u5 occurs as a
factor of w of the form ψ(w0v0)�v1w1 or w0v0�ψ(v1w1), where w0 and w1 are
subwords of w, since otherwise u1u2u3u4u5 would have to contain more than
one hole. Assume it occurs in a word of the form ψ(w0v0)�v1w1, the other case
being similar. Either u2, u3 or u4 must contain a hole, otherwise we would have
that either u1u2u3u4 or u2u3u4u5 is full, so � must occur as a factor in either
w or ψ(w). However, both w and ψ(w) are abelian 4-free, so this is impossible.
Then consider the possibility that |u0| < 30. However, this implies, since either
u2, u3 or u4 contains a hole, that u0u1u2u3u4u5 occurs in ψ(v0)�v1. As men-
tioned above, from computer testing ψ(v0)�v1 does not contain any abelian 6th
powers. Therefore, assume that |u0| ≥ 30. We know that u1u2u3u4u5 occurs as
a subword of ψ(w0v0)�v1w1. Moreover, since the hole is contained in either u2,
u3 or u4, we get that u5 is contained in v1w1, while u1 is contained in ψ(w0v0).
Since u1 and u5 are full and u1 ↑ u5, we get that |u1|a = |u5|a and |u1|b = |u5|b.
On the other hand, since u5 is a subword of w and |u5| ≥ 30 we know that
|u5|a > |u5|b, while |u1|a < |u1|b because u1 is a subword of ψ(w) and |u1| ≥ 30.
This is a contradiction, so w′ does not contain any abelian 6th powers. ��
In Section 5, a discussion wraps up what has been shown in this section and
what remains to be done.

3 Counting Abelian p-Free Partial Words

We begin by noting that Theorem 3 (resp., Theorem 1) allows us to give a lower
bound on the number of binary (resp., ternary) partial words of length n with
h holes that are abelian 6-free (resp., 4-free). More specifically, we count, for
p ∈ {4, 6}, such partial words that avoid abelian pth powers over an alphabet A,

76 F. Blanchet-Sadri and S. Simmons

where A is the smallest alphabet known to admit partial words with infinitely
many holes that avoid abelian pth powers.

Theorem 4. Let h > 0 be an integer. Let cn,h,6 (resp., cn,h,4) denote the number
of partial words over a two-letter (resp., three-letter) alphabet of length n with
h holes that avoid abelian 6th (resp., 4th) powers. Then there exist an integer
N > 0 and real numbers r > 1, β > 0 such that for all n > N , cn,h,6 ≥ βrn

(resp., cn,h,4 ≥ βrn).

Proof. We prove the result for 6th powers (the proof for 4th powers is similar
except that it uses Theorem 1 instead of Theorem 3). Assume that h is even,
the other case being similar. Let φ, ψ and w be as in Theorem 3. By the proof of
Theorem 3, there exists a word v = w0�ψ(w1)� · · · �ψ(wh−1)�wh, where each wi

is a subword of w, wh is infinite, and v avoids abelian 6th powers. There exist an
infinite subword u of w and a finite word x, |x| > 5|w0�ψ(w1)� · · · �ψ(wh−1)�|,
such that if u′ is any prefix of u then xφ(u′) is a prefix of wh.

We can then define the multi-valued substitution θ : A∗ → 2A∗
so that θ(a) =

{aaab} and θ(b) = {bab, abb}. From [11], θ is abelian 4-free. Therefore let N =
|w0�ψ(w1)� · · · �ψ(wh−1)�x|+ 16. Consider n > N and denote the prefix of v of
length n as vn. We can write wh = xφ(u′)y for some prefix u′ of u and some
word y. Since |φ(α)| ≤ 4 for all α ∈ A, we can choose u′ so that

|u′| ≥
⌊ |vn| − |w0�ψ(w1)� · · · �ψ(wh−1)�x|

4

⌋
=
⌊

n−N + 16
4

⌋
≥ n−N + 12

4

We claim that if γ ∈ θ(u′), then w0�ψ(w1)� · · · �ψ(wh−1)�xγy is abelian 6-
free. To see this, if w0�ψ(w1)� · · · �ψ(wh−1)�xγy contains an abelian 6th power
u0u1u2u3u4u5, then one of the ui’s must overlap with γ, since

w0�ψ(w1)� · · · �ψ(wh−1)�x
and y are abelian 6-free. However, since |x| > 5|w0�ψ(w1)� · · · �ψ(wh−1)�|, the
only ui that can intersect with w0�ψ(w1)� · · · �ψ(wh−1)� is u0, so u1u2u3u4

is contained in xγy. By construction xφ(u′)y is a factor of w, so xγy is a
factor of some word in θ(w). However, the fact that w is abelian 4-free im-
plies that all elements in θ(w) are as well, so xγy is abelian 4-free. It follows
that w0�ψ(w1)� · · · �ψ(wh−1)�xγy is abelian 6-free, which implies that |θ(u′)| ≤
cn,h,6. Moreover, since u′ is a factor of w, it does not have aaaa as a sub-

word. Therefore |u′|b ≥
⌊ |u′|

4

⌋
≥ |u′| − 3

4
. By construction, |θ(u′)| = 2|u

′|b .

Using the same analysis as in [11], this gives us that θ(u′) contains at least
2−

15
16 2

1
16 (n−N+16) words. Therefore, setting r = 2

1
16 and β = 2−

15
16− N

16+1, we get
that βrn ≤ |θ(u′)| ≤ cn,h,6, so the claim follows. ��

4 Inserting Arbitrarily Many Holes

We investigate whether infinite words can be constructed that remain abelian
p-free after an arbitrary insertion of holes. We begin by inserting finitely many
holes.

Avoiding Abelian Powers in Partial Words 77

Proposition 1. There exists an infinite word over a two-letter alphabet such
that, if we insert a hole anywhere in the word, the resulting partial word is
abelian 8-free. Furthermore, there exists an infinite abelian 3-free (resp., 4-free)
word over a nine-letter (resp., four-letter) alphabet such that, if we insert a
hole anywhere in the word, the resulting partial word is non-trivial abelian 3-free
(resp., 4-free).

Proof. To prove the existence of an abelian 4-free word satisfying the desired
properties, consider w = w0(0)w1(0)w0(1)w1(1) · · · , where w0 is an abelian 4-
free word over A0 = {a0, b0} and w1 is one over A1 = {a1, b1}. Suppose that
u0u1u2u3, where |u0| = |u1| = |u2| = |u3| = l, is a factor of w that becomes an
abelian 4th power after inserting a hole. If l is odd, then u0 and u2 contain one
more letter from one alphabet, while u1 and u3 contain one more letter from
the other alphabet, which is impossible. Thus l is even, and each ui contains l

2

letters from A0 and l
2 letters from A1. Since the hole replaces a letter from some

alphabet, say A0, we can remove all the letters from A0 that are in u0u1u2u3,
and the remaining word is an abelian 4th power in w1, a contradiction. ��
Our goal is now to prove that we cannot avoid abelian pth powers under arbitrary
insertion of holes. Moreover, we can make the abelian pth powers we get as large
as we want. We can also look at the following results as saying that every infinite
word has a subword that is almost an abelian pth power. We begin by proving
a lemma giving a necessary and sufficient condition for the existence of abelian
pth powers.

Lemma 3. Let p > 1 be an integer, and let v0 · · · vp−1 be a partial word over
a k-letter alphabet A = {a0, . . . , ak−1} such that |vi| = |v0|, for all i. Let mi =
max

j
{|vj |ai}, for 0 ≤ i < k. Then v0 · · · vp−1 is an abelian pth power if and only

if m0 + · · ·+ mk−1 ≤ |v0|.
Proof. First, assume that m0 + · · · + mk−1 ≤ |v0| = · · · = |vp−1|. Then vi has
|vi| − (|vi|a0 + · · ·+ |vi|ak−1) ≥ (m0 + · · · + mk−1) − (|vi|a0 + · · · + |vi|ak−1) ≥ 0
holes. We can then produce v′i from vi by replacing m0 − |vi|a0 holes with the
letter a0, m1 − |vi|a1 holes with a1, and so on. Replace the remaining holes with
the letter a0. The above procedure is possible due to the fact that vi has at
least m0 − |vi|a0 + m1 − |vi|a1 + · · · + mk−1 − |vi|ak−1 = m0 + · · · + mk−1 −
(|vi|a0 + · · · + |vi|ak−1) holes. Then |v′i|aj = mj = |v′0|aj for all j > 0, while
|v′i|a0 = |v0| − m1 − · · · − mk−1 = |v′0|a0 . Therefore each v′i is a permutation
of v′0, so v′0 · · · v′p−1 is an abelian pth power. Therefore v0 · · · vp−1 is an abelian
pth power. On the other hand, assume that v0 · · · vp−1 is an abelian pth power.
This implies that we can fill in the holes to get a full word v′0 · · · v′p−1 that is an
abelian pth power. However, |v′0|ai = |v′j |ai ≥ |vj |ai for every i, j, so |v′0|ai ≥ mi.
It follows that |v0| = |v′0| = |v′0|a0 + · · ·+ |v′0|ak−1 ≥ m0 + · · · + mk−1. ��
We now consider a generalization of arbitrary insertion. In our definition of
arbitrary insertion, we require two arbitrarily inserted holes to be separated by
at least two letters. Below, however, we consider an arbitrary positive integer m

78 F. Blanchet-Sadri and S. Simmons

and analyze what happens when we require each pair of consecutive holes to be
separated by at least m letters. It actually turns out that this generalization is
very useful for our purposes.

The next technical lemma says, in some sense, that if an infinite word contains
subwords that are arbitrarily close to being abelian pth powers, then it must
contain an abelian pth power under arbitrary insertion.

Lemma 4. Let w be an infinite word over a finite alphabet, and let p > 1, m > 0
be integers. Assume that for every integer l > 0 and real number ε > 0, there
exists a subword u0 · · ·up−1 of w so that |ui| > l for all i, and so that, if a ∈ A
then ||ui|a − |ui′ |a| < ε|uj| for all i, i′, j. Then we can insert holes in w so that
each pair of consecutive holes is separated by at least m letters, and so that the
resulting partial word contains an abelian pth power v0 · · · vp−1, where |vi| ≥ l
for all 0 ≤ i < p.

Proof. Let p, m and w be as above, and choose any l > 0. Let A = {a0, . . . , ak−1}.
Consider ε > 0 such that ε2k(k(m+1)+1)(2(2p−1)k+1) < 1. Similarly, consider
L > l such that L > 4m(k + 1). Then there exists a subword u0 · · ·up−1 of w so
that |ui| > L for all i and so that, if a ∈ A, then ||ui|a −|ui′ |a| < ε|uj | for all i, i′

and j. This implies that ||ui|−|ui′ || < εk|uj| for all i, i′ and j. Let μ = min |ui| >
L. Then it is clear that ||ui|a−|ui′ |a| < εμ, ||ui|−|ui′ || < εkμ, and ||ui|−μ| < εkμ
for all i, i′. Let v0 be the word consisting of the first μ letters of u0 · · ·up−1, v1

the next μ, and so on up to vp−1. Note that the length of the factor of u0 that
does not overlap with v0 is at most ||u0| − |v0|| = ||u0| − μ| < kεμ, the length of
the factor of v1 that does not overlap with u1 plus the length of the factor of u1

that does not overlap with v1 is at most ||u0| − |v0|| + ||u0u1| − |v0v1|| < 3kεμ,
and so on. In particular,

||v0|a − |u0|a| < kεμ, ||v1|a − |u1|a| < 3kεμ, . . . , ||vp−1|a − |up−1|a| < (2p− 1)kεμ

which implies that

||vi|a−|vi′ |a| ≤ ||vi|a−|ui|a|+ ||ui|a−|ui′ |a|+ ||ui′ |a−|vi′ |a| < (2(2p−1)k+1)εμ

for all a ∈ A, and all i, i′. Also |vi| = μ > L for all i.
Write v0 · · · vp−1 = w[i0..i1 − 1] · · ·w[ip−1..ip − 1] where vj = w[ij ..ij+1) for

all j. We can assume that |vi|a0 > μ
k − (2(2p − 1)k + 1)εμ for all i (to see this,

by the pigeonhole principle there exists an i such that |v0|ai ≥ μ

k
; we assume

that i = 0 without loss of generality, and using the fact that ||vi|a − |vi′ |a| <
(2(2p − 1)k + 1)εμ for all a ∈ A and all i, i′, we can get that the assumption
is safe to make). Let χ = min |vj |a0 , and let t = �χ−2m

m+1 �. Note that, since
μ > L > 4m(k + 1), we get

t >
μ
k −(2(2p−1)k+1)εμ−2m

(m+1) > μ
2k(m+1) − 2(2p−1)k+1

m+1 εμ

Consider 0 ≤ j < p. Then we can define k
(0)
j to be the position of the first

occurrence of a0 in vj , k
(1)
j the position of the (m + 2)nd occurrence, and in

Avoiding Abelian Powers in Partial Words 79

general k
(α)
j to be the position of the (αm+α+1)th occurrence. Assume that βj

is the largest integer where k
(βj)
j is defined. Then we produce w′ by inserting a

hole in w at position k
(α)
j for each j, and each 0 ≤ α < βj . Let v′j = w′[ij ..ij+1).

Each pair of consecutive holes is separated by at least m letters, and each v′i
contains at least t holes.

Let mi = max |v′j |ai . Then clearly mi < |v0|ai + (2(2p − 1)k + 1)εμ while
m0 < |v0|a0 + (2(2p− 1)k + 1)εμ− t. Then we get

m0 + · · · + mk−1 < μ + k(2(2p− 1)k + 1)εμ− (μ
2k(m+1) − 2(2p−1)k+1

m+1 εμ)
< μ = |v′0|

So it follows from Lemma 3 that v′0 · · · v′p−1 is an abelian pth power, since |v′0| > l,
the claim is proved. ��
Finally, we look at what happens in general. We can show that, no matter
how large p is or how many letters we require between each pair of consecutive
inserted holes, it is always possible to insert holes in an infinite word so that the
resulting partial word contains arbitrarily long abelian pth powers.

Theorem 5. Let w be an infinite word over a finite alphabet, and let p > 1,
m > 0, l > 0 be integers. Then we can insert holes in w so that each pair of
consecutive holes is separated by at least m letters, and so that the resulting
partial word contains an abelian pth power u0 · · ·up−1, where |ui| ≥ l for all
0 ≤ i < p.

Proof. We use Lemma 4 along with some topological arguments. ��
The next corollary relates back to partial words with infinitely many holes that
avoid abelian pth powers. In particular, it says that in such a word the holes
cannot be too close together.

Corollary 1. Let w be a partial word with infinitely many holes over a finite
alphabet, and let p > 1, μ > 0 be integers. If there are fewer than μ letters between
each pair of consecutive holes in w, then w contains an abelian pth power.

Corollary 1 leads to the question of how close infinitely many holes can be
inserted in an abelian p-free word so that the resulting partial word is abelian
p-free. We see that they cannot be separated by a constant distance. On the
other hand, we know from previous results that there are many cases in which
a partial word can be constructed with exponential spacing. We do not know
whether it is possible to do this with less separation, perhaps so that the distance
between each pair of consecutive holes be bounded by a polynomial.

5 Conclusion

In summary, we investigated the question whether there exist infinite abelian p-
free partial words over a given alphabet, that is, words in which we can replace

80 F. Blanchet-Sadri and S. Simmons

the holes with letters from the alphabet in such a way that no p consecutive
factors are permutations of each other. In previous work, infinite abelian 2-free
partial words with one hole were constructed over a minimal alphabet size of
four, while the minimal size needed for more than one hole was shown to be
five [6]. In this paper, we gave lower and upper bounds for the number of letters
needed to construct infinite abelian p-free partial words with infinitely many
holes, for any p > 2. We proved that the minimal alphabet size for 6th or higher
powers is two, while for 5th, 4th, and 3rd powers it is at most three, three,
and four respectively. We also investigated, in particular, the number of partial
words of length n with a fixed number of holes over a binary alphabet that avoid
abelian 6th powers and showed that this number grows exponentially with n. In
addition, we showed that we cannot avoid abelian pth powers under arbitrary
insertion of holes. More specifically, for the problem of avoiding abelian powers
in the infinitely many hole case, for any given p > 2, we gave lower and upper
bounds on the minimal alphabet size so that there exists a word with infinitely
many holes over that upper bounded alphabet which avoids abelian pth powers.
The following table provides the power p to be avoided, a lower bound on the
minimal alphabet size, and an upper bound, all based on results in this paper
for p > 2 and results in [6] for p = 2:

p LB UB
2 5 5
3 3 4
4 2 3
5 2 3
≥ 6 2 2

How many letters do we need to construct a partial word with infinitely many
holes that avoids abelian 3rd powers (resp., 4th powers, 5th powers)? For in-
stance, we have proved that there exists a partial word with infinitely many
holes over an alphabet of size four that avoids abelian 3rd powers, and none
exists over an alphabet of size two. Whether or not three is the minimal alpha-
bet size remains open. We also need to investigate whether three is the minimal
alphabet size for abelian 4th powers and 5th powers.

References

1. Aberkane, A., Currie, J.: A cyclic binary morphism avoiding abelian fourth powers.
Theoretical Computer Science 410, 44–52 (2009)

2. Aberkane, A., Currie, J., Rampersad, N.: The number of ternary words avoiding
abelian cubes grows exponentially. Journal of Integer Sequences 7, Article 04.2.7,
13 (2004) (electronic)

3. Andreeva, E., Bouillaguet, C., Fouque, P.A., Hoch, J., Kelsey, J., Shamir, A., Zim-
mer, S.: Second preimage attacks on dithered hash functions. In: Smart, N. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 270–288. Springer, Heidelberg (2008)

4. Berstel, J., Boasson, L.: Partial words and a theorem of Fine and Wilf. Theoretical
Computer Science 218, 135–141 (1999)

Avoiding Abelian Powers in Partial Words 81

5. Blanchet-Sadri, F.: Algorithmic Combinatorics on Partial Words. Chapman &
Hall/CRC Press, Boca Raton, FL (2008)

6. Blanchet-Sadri, F., Kim, J.I., Mercaş, R., Severa, W., Simmons, S.: Abelian square-
free partial words. In: Dediu, A.H., Fernau, H., Mart́ın-Vide, C. (eds.) LATA 2010.
LNCS, vol. 6031, pp. 94–105. Springer, Heidelberg (2010)

7. Blanchet-Sadri, F., Mercaş, R., Scott, G.: A generalization of Thue freeness for
partial words. Theoretical Computer Science 410, 793–800 (2009)

8. Carpi, A.: On the number of abelian square-free words on four letters. Discrete
Applied Mathematics 81, 155–167 (1998)

9. Carpi, A.: On abelian squares and substitutions. Theoretical Computer Science 218,
61–81 (1999)

10. Cori, R., Formisano, M.: Partially abelian square-free words. RAIRO-Theoretical
Informatics and Applications 24, 509–520 (1990)

11. Currie, J.: The number of binary words avoiding abelian fourth powers grows
exponentially. Theoretical Computer Science 319, 441–446 (2004)

12. Dekking, F.M.: Strongly non-repetitive sequences and progression-free sets. Journal
of Combinatorial Theory, Series A 27, 181–185 (1979)

13. Diekert, V.: Research topics in the theory of free partially commutative monoids.
Bulletin of the European Association for Theoretical Computer Science 40, 479–491
(1990)

14. Erdös, P.: Some unsolved problems. Magyar Tudományos Akadémia Matematikai
Kutató Intézete Közl 6, 221–254 (1961)

15. Evdokimov, A.A.: Strongly asymmetric sequences generated by a finite number of
symbols. Doklady Mathematics 9, 536–539 (1968)

16. Justin, J.: Characterization of the repetitive commutative semigroups. Journal of
Algebra 21, 87–90 (1972)

17. Keränen, V.: Abelian squares are avoidable on 4 letters. In: Kuich, W. (ed.) ICALP
1992. LNCS, vol. 623, pp. 41–52. Springer, Heidelberg (1992)

18. Keränen, V.: A powerful abelian square-free substitution over 4 letters. Theoretical
Computer Science 410, 3893–3900 (2009)

19. Laakso, T.: Musical rendering of an infinite repetition-free string. In: Gefwert, C.,
Orponen, P., Seppänen, J. (eds.) Logic, Mathematics and the Computer, vol. 14,
pp. 292–297. Finnish Artificial Intelligence Society, Symposiosarja, Hakapaino,
Helsinki (1996)

20. Manea, F., Mercaş, R.: Freeness of partial words. Theoretical Computer Sci-
ence 389, 265–277 (2007)

21. Pleasants, P.A.B.: Non repetitive sequences. Proceedings of the Cambridge Philo-
sophical Society 68, 267–274 (1970)

22. Rivest, R.L.: Abelian square-free dithering for iterated hash functions. MIT,
Cambridge (2005), http://people.csail.mit.edu/rivest/publications.html

23. Thue, A.: Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I, Mat. Nat. Kl.
Christiana 7, 1–22 (1906)

http://people.csail.mit.edu/rivest/publications.html

Regular Splicing Languages Must Have a

Constant

Paola Bonizzoni1 and Natasha Jonoska2

1 Dipartimento di Informatica Sistemistica e Comunicazione
Univ. degli Studi di Milano - Bicocca
Viale Sarca 336, 20126 Milano - Italy

bonizzoni@disco.unimib.it
2 Department of Mathematics and Statistics, University of South Florida, Tampa

FL, USA
jonoska@math.usf.edu

Abstract. In spite of wide investigations of finite splicing systems in
formal language theory, basic questions, such as their characterization,
remain unsolved. In search for understanding the class of finite splicing
systems, it has been conjectured that a necessary condition for a regular
language L to be a splicing language is that L must have a constant in
the Schützenberger’s sense. We prove this longstanding conjecture to be
true. The result is based on properties of strongly connected components
of the minimal deterministic finite state automaton for a regular splicing
language.

1 Introduction

A splicing system, originally introduced in [12], is a formal device to generate
languages called splicing languages by using contextual cross-over operation over
words. This operation formalizes the behaviour of basic biomolecular processes
involving cut and paste of DNA obtained by restriction enzymes and a ligase.

Restriction enzymes act on double stranded DNA molecules by cleaving cer-
tain recognized segments leaving short single stranded overhangs. Molecules with
the same overhangs can be joined (in a cross-over fashion) in presence of a lig-
ase enzyme. In the introductory paper, T. Head proved that if the splicing is
performed by certain simple rules, then finite splicing can generate the class of
strictly locally testable languages [9].

The splicing notion was reformulated by G. Paun at a less restrictive level of
generality, giving rise to the splicing operation that is commonly adopted and
appears nowadays as a standard [16].

Theoretical results in splicing systems have contributed to new research in
formal language theory focused on modeling of biochemical processes [17]. On
the other side, the field suggested new ideas in the framework of biomolecular
science, for example, the design of automated enzymatic processes.

In this paper, we focus on the original concept of finite splicing systems, called
here simply as splicing systems. It is closest to the actual biological process: the

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 82–92, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Regular Splicing Languages Must Have a Constant 83

splicing operation is meant to have a finite set of rules (modelling enzymes) on a
finite set of initial strings (modelling DNA sequences). A splicing system (or H-
system) is a triple H = (A, I, R), where A is a finite alphabet, I ⊆ A∗ is the initial
language and R is the set of rules, (see Section 4 for the definitions). The formal
language generated by the splicing system is the smallest language containing I
and closed under the splicing operation, which makes the rule intervene.

There have been successes in characterizing certain subclasses of splicing lan-
guages, for example those generated by reflexive rules (if (u1, u2), (u3, u4) is in R
then both (u1, u2), (u1, u2) and (u3, u4), (u3, u4) are in R) and those generated
by symmetric rules (if (u1, u2), (u3, u4) is in R then (u3, u4), (u1, u2) is in R) [2].

The general splicing systems have a set of rules R not necessarily symmet-
ric nor reflexive although reflexivity and symmetry are natural properties for
splicing systems as originally defined in [12]. Under the formal model, a splicing
system is a generative mechanism of a class of languages which turns out to be a
proper subclass of the regular languages. This basic result has been firstly proved
in [8], and later proved in several other papers by using different approaches (see
for example [18], [20]).

In spite of the vast literature on the topic, a characterization of the finite
splicing systems is still an open problem.

On the other hand, progress has been recently made towards the characteri-
zation of certain sub-clases of splicing systems.

Authors in [11] provide an example of a regular splicing language that is
neither reflexive nor symmetric, and prove that it is decidable whether a regular
language is a reflexive splicing language. A quite different characterization of
reflexive symmetric splicing languages is given in [3] and it has been extended
to the general class of reflexive regular languages in [4,5]. This characterization
has been given by using the concept of a constant introduced by Schützenberger
[19].

Understanding the role of constants for a splicing language seems to be essen-
tial to solve the open problem of finding a characterization of the whole class.
Indeed, it has been conjectured from the first introduction of splicing systems,
and more formally in [10] and in [11], that a necessary condition for a regu-
lar language to be splicing is that it must have a constant. In this paper we
solve this longstanding open question by proving this conjecture true. This re-
sult is proved by investigating structural properties of connected components
of the graph given by the minimal finite state automaton for a regular splicing
language. More precisely, properties of the factor language of components are
related to the notion of synchronizing words [7]. Synchronizing words have been
studied in automata theory for a long time and are of interest in both coding
theory [1] and symbolic dynamics [15,14]. Our proof uses an old observation that
a synchronizing word for an automaton is a constant for the language recognized
by the automaton [19].

The paper is organized as follows. In Section 2 we introduce preliminary con-
cepts, including the notion of transitive components of a finite state automaton
and the notion of a synchronizing word. In Section 3 we introduce the notion

84 P. Bonizzoni and N. Jonoska

of path-automaton and show results connecting terminal components and syn-
chronizing words. Finally, in Section 4 we present the main result of the paper.

2 Preliminaries

Let A∗ be the free monoid over a finite alphabet A and let A+ = A∗ \ 1, where
1 is the empty word. A deterministic finite state automaton (DFA) is a 5-tuple
A = (Q, A, δ, q0, T), where Q is a finite set of states, q0 ∈ Q is the initial
state, T ⊆ Q is the set of terminal (final) states, δ is the transition function
δ : Q × A → Q. We denote with L(A) the language recognized by A [13]. As
usual, δ is extended to a function on words Q×A∗ → Q. A deterministic finite
state automaton is usually depicted as a directed graph with vertices Q and a set
of directed edges E = {(q, a, q′) | δ(q, a) = q′}. For an edge (q, a, q′) we say that
a is its label. Given a regular language L ⊆ A∗ it is well known that there is a
unique minimal deterministic finite state automaton (mDFA) A that recognizes
L such that all other DFA that recognize L map homomorphically onto A [13].
This automaton is unique up to a possible renaming of the states, i.e., up to
an isomorphism. Given a deterministic finite state automaton A the transition
function δ defines an action of A∗ on Q. As usual, we use the standard notation
qw to denote δ(q, w) when δ is understood. Similarly, we write Qw for the image
of the set Q under the map w : Q → Q defined with w(q) = qw, which in fact is
determined by the action of A∗ on Q.

Given a language L, then F (L) is the set of all factors of words in L, where
x is a factor of word w iff w = zxy for z, y ∈ A∗.

The right context of a word w ∈ A∗ with respect to a language L is defined
with RL(w) = { x ∈ A∗ |wx ∈ L}.

Similarly, the right context of a word w ∈ A∗ with respect to a DFA A is
defined as follows: RA(w) = {x ∈ A∗ | ∃q ∈ Q , δ(q, wx) ∈ T }.

The right context of a state in A is RA(q) = { x ∈ A∗ | qx ∈ T }. It is well
known (see for ex. [13]) that given a regular language L, there is a one-to-one
correspondence between the right contexts of words with respect to L and the
right contexts of the states in the minimal deterministic finite state automaton
A = (Q, A, δ, q0, T) for L, i.e.,

q0w = q iff RL(w) = RA(q).

In fact, in the mDFA A it also holds RL(w) = RA(q) iff RL(wa) = RA(qa) for
all a ∈ A, and therefore RA(q) = RA(q′) implies q = q′.

When the language and the DFA are fixed, we drop the subscripts and write
R(w) and R(q).

Note that every state in an mDFA is accessible, i.e., for each state q ∈ Q there
is an x ∈ A∗ such that δ(q0, x) = q. Also, in an mDFA, there is at most one state
that is not co-accessible, since for each q ∈ Q, there is u ∈ A∗ such that qu ∈ T
iff R(q) �= ∅. So, q is not co-accessible, iff R(q) = ∅. If such a state in A exists, we
call it zero and denote it with z. A trimmed mDFA for language L is the DFA

Regular Splicing Languages Must Have a Constant 85

obtained from the mDFA for L by erasing the state z and all transitions that
terminate in z.

Finally, for a finite set S, by #S, we denote the cardinality of set S.
Recall the definition of a constant, introduced by Schützenberger in [19].

Definition 1. A word w ∈ A+ is a constant of a language L if w is a factor of
some word in L and for all words u1, u2, v1, v2 in A∗ we have:

u1wu2 ∈ L
v1wv2 ∈ L

⇒ u1wv2 ∈ L
v1wu2 ∈ L

A characterization of constants, which is more or less folklore, is stated below.

Proposition 1. Let L ⊆ A∗ be a regular language and let A be the mDFA
recognizing L. A word w ∈ A+ is a constant of L if and only if Qw \ {z} is
a singleton, i.e., there is a unique non-zero state qw such that qw �= z implies
qw = qw for all q ∈ Q.

In a finite state automaton, if for a word w there is a state qw such that
every path in the automaton with label w terminates in qw, we say that w is a
synchronizing word and we say that qw is a synchronizing state, synchronized
by w. By Proposition 1 in a trimmed mDFA A of a regular language L, the set
of synchronizing words for A coincides with the set of constants of L. In general,
if w is a synchronizing word for an automaton A then it is a constant for the
language recognized by A.

3 Path-Automata and Synchronizing Words

In this section we provide structural characterizations of a path-automaton
that does not have synchronizing words. More precisely, we show that a path-
automaton having no synchronizing words has a unique maximal component
which is terminal whose language includes all factors of the language accepted
by the path-automaton.

Recall the notion of transitive component in a deterministic automaton. A
strongly connected component of the directed graph for a deterministic automa-
ton A is called a transitive component for A. If in a transitive component, every
edge that starts at a state in this component also ends at the same component,
then the transitive component is called terminal. For every state in the mDFA
for a language L there is a path that leads from that state to a terminal compo-
nent. For a transitive component C we say that C is induced by q if q is a state in
C. We write L(C) for the set of labels of all paths in C. A transitive component
C is called trivial if L(C) = {1}.

Two transitive components C and C′ are called factor-equivalent if L(C) =
L(C′). In the following we often use the term component to denote a transitive
component.

Definition 2 (path-automaton). An automaton A with initial state q0 is
called a path-automaton if the following is satisfied:

86 P. Bonizzoni and N. Jonoska

(i) There is at most one transition in A which starts at the component induced
by q0 and terminates in another component.

(ii) There is only one terminal transitive component in A.
(ii) For every transitive component C which does not contain q0 there is precisely

one transition that starts in a state outside C but terminates in C, and if C

is not terminal, there is precisely one transition that starts at a state in C

but terminates in a state outside C.

Let A be a path automaton and Ci one of its transitive components. The state
of Ci that is the end point of the transition starting outside Ci but ending at
Ci is called the entrance state for Ci and the state that is the start point of a
transition that starts in Ci but terminates outside Ci is called the exit of Ci. The
initial component of A has no entrance, and the terminal component has no exit.

A path π from an initial state in an automaton A to a terminal component in A

induces a path-automaton Aπ which consists of π and all transitive components
in A induced by states visited by π.

Let C be a terminal component of the path-automaton Aπ and let q be the
entrance of C. We define the language accepted by the component C induced by
the path π, denoted by Lπ(C), as the language accepted by the automaton C

with initial state q.

Example 1. Let A be the mDFA depicted in Figure 1(a). Then A has two termi-
nal components C and C′ that are factor-equivalent, that is L(C) = L(C′) = a∗.
Moreover if the path π with label cb ends in component denoted C, and path

c

a

b

bc
d

a

aa

(a)

c

(b)

a

a

a

c

Fig. 1. Two automata, initial states are indicated with an arrow pointing to them and
the terminal states are circled; (a) non-reflexive splicing language, (b) path-automaton
with no synchronizing words recognizing a non-splicing language

π′ labeled ba3 ends in component denoted C′ of A, then Lπ(C) = (a)∗ and
Lπ′(C′) = (a3)∗.

The following lemma, stated without proof due to space constraints, charac-
terizes a path-automaton with no synchronizing words.

Lemma 1. Given a deterministic path-automaton A let CT be the terminal com-
ponent of A. Then one of the following holds:

(a) A has a synchronizing word, or,
(b) F (L(A)) ⊆ L(CT).

Regular Splicing Languages Must Have a Constant 87

Example 2. The automaton in Figure 1(b) is a path-automaton with no syn-
chronizing words. It has only one terminal component which is maximal and the
factors of all words in the language are labels of paths in the terminal component.
This illustrates the situation (b) in Lemma 1.

The following two results are used to prove the main result (Proposition 3) of
the paper. Although Corollary 1 straight follows Lemma 1, it can also be proved
independently.

Corollary 1. Every deterministic path-automaton with two transitive compo-
nents whose terminal component is trivial has a synchronizing word.

Proposition 2. Let L be a regular language, x ∈ F (L) and A be an mDFA for
L. At least one of the two cases holds:

(i) x is a factor of a constant for L,
(ii) there is a path-automaton containing a path labeled x having a non-trivial

terminal transitive component with two non-zero states.

Proof. Let A = (Q, A, δ, q0, T) be the mDFA for the language L. Suppose x ∈
F (L) is not a factor of a constant, i.e. for every v, v′ ∈ A∗, vxv′ is not a constant
for L, and therefore not synchronizing for A. Consider a word w such that
#Qxw = min #{Qxu |u ∈ A∗} and then pose Pw = Qxw \ {z} �= ∅. Since
xw is not synchronizing, by Proposition 1, #Pw > 1. Then for every word
u ∈ A∗ we have that either Qwu = ∅ or #Qwu = #Qw = #Pw. Therefore,
we can assume that all states in Pw are in terminal components of A, (if not,
we can concatenate w with words that are labels of paths that lead to terminal
components). Consequently we have that Pw has cardinality at least 2. If all
terminal components are trivial, then because A is reduced, there is only one
terminal transitive component and it is trivial, and hence #Pw = 1 which is a
contradiction with our assumption that x does not extend to a constant. Thus
there must be at least one terminal transitive component which is not trivial.
Assume that each state in Pw is in a transitive component consisting of only one
state having a loop at itself. Since Pwy �= ∅ implies Pwy = Pw, for every q ∈ Pw

we have qy = q, i.e., all states in Pw are terminal and their right contexts are
equal, hence they cannot be distinct in a reduced automaton, thus again implying
that Pw has cardinality 1, a contradiction. Hence, there must be at least two
states in Pw that belong to the same terminal transitive component, thus the
proposition holds. �
Our investigation produced several additional observation about the properties
of transitive components and path-automata with (or without) synchronizing
words. These are not necessary for our main result, but might be of interest in
general studies of constants and regular languages. They are available at [6].

4 Splicing Languages Must Have a Constant

As mentioned, in this paper we consider the general notion of the splicing oper-
ation and the splicing system given by Paun [16], as defined below.

88 P. Bonizzoni and N. Jonoska

Definition 3. A finite splicing system is a triple S = (A, I, R), where I ⊂ A∗

is a finite set of strings, called an initial language, R is a finite set of rules r =
(u1, u2)(u3, u4), with ui ∈ A∗, i = 1, 2, 3, 4. Given two words x = x1u1u2x2, y =
y1u3u4y2, x1, x2, y1, y2 ∈ A∗ and the rule r = (u1, u2)(u3, u4), the splicing rule
produces w = x1u1u4y2 denoted (x, y)�rw. We also say that u1u2, u3u4 are
splice sites of r and u1u4 is the paste site of r.

To simplify the notation, in the following by a splicing system we mean a finite
splicing system.

Let L ⊆ A∗. We denote σ(L) = {w ∈ A∗ | (x, y)�r w, x, y ∈ L, r ∈ R}.
The (iterated) splicing operation is defined as follows: σ0(L) = L, σi+1(L) =
σi(L) ∪ σ(σi(L)), i ≥ 0, σ∗(L) =

⋃
i≥0 σi(L).

Definition 4 (splicing language). Given a finite splicing system S =(A, I, R),
the language L(S) = σ∗(I) is the language generated by S. A language L is a
splicing language if there is a splicing system S such that L = L(S).

It is known that every splicing language generated by a finite splicing system is
always regular [8,18]. More precisely, regular splicing languages form a proper
subclass of the class of regular languages.

Recall that a splicing system S is said to be reflexive if for every rule r =
(u1, u2)(u3, u4) in R, both (u1, u2)(u1, u2) and (u3, u4)(u3, u4) are rules in R. A
language L is said to be reflexive splicing language if there is a reflexive splicing
system S such that L = L(S). The notion of a constant of a language turned out
to be essential in providing a characterization of the subclass of reflexive regular
splicing languages [11,3]. Indeed, a fundamental property of a reflexive regular
splicing language L is that there exists a splicing system generating L that has
rules whose splicing sites consist of constants for the language L.

An example of non-reflexive regular splicing language is the language L =
a∗b∗a∗b∗a∗ ∪ a∗b∗a∗ ∪ a∗ [11]. Considering the importance of constants in char-
acterization of sub-classes of regular splicing languages, it has been conjectured
that every splicing language must have a constant [10,11]. Our main result proves
this conjecture to be true.

Proposition 3 (Main result). If L is a regular splicing language, then L has
a constant.

Example 3. The path-automaton A of Figure 1(b) has no synchronizing word
(see Example 2) and thus the language L(A) = a∗c(c∗ac∗a)∗ has no constant.
By Proposition 3, L(A) is not a regular splicing language.

Example 4. The regular language L = b(a3)∗+cba∗+da(a3)∗ is another example
of non-reflexive splicing language, as proved in Lemma 2. Figure 1(a) shows the
mDFA graph for language L. Observe that not every path-automaton induced
by a path in the mDFA from the initial state q0 to a terminal component has
necessarily a constant. Indeed, the path-automaton recognizing language b(a3)∗

does not have any constant for language L.

Regular Splicing Languages Must Have a Constant 89

Lemma 2. The regular language L = b(a3)∗ + cba∗ + da(a3)∗ is a non-reflexive
splicing language.

Proof. First we note that L ⊆ A∗, for A = {a, b, c, d} is splicing. A splicing sys-
tem S = (A, I, R) for language L consists of rules R = {r1 = (cba, 1)(cb, a), r2 =
(daa3, 1)(da, 1), r3 = (b, a3)(da, 1)}, while the initial language I consists of lan-
guage I = {ba3, b, cba, cb, daa3, da}. By induction on the number k of iteration
steps of splicing rules, we first show that L(S) ⊆ L. If k = 0, since I ⊆ L(S),
the inclusion holds. Assume that w ∈ L(S) is generated with k > 0 iterations
by applying a rule r to a pair of words w1, w2 ∈ L(S). By induction w1, w2 ∈ L
are obtained with k − 1 iterations. Checking splice sites in w1 and w2 for all of
the rules, it is immediate to see that w ∈ L. In order to show that L ⊆ L(S), we
observe that language L1 = da(a3)∗ is generated by rule r2 applied to words in
the same language daa3. Similarly, we see that language L2 = cba∗ is generated
by rule r1 starting from words from the same language. Language L3 = b(a3)∗

is generated by rule r3 applied to words of language da(a3)∗ and of language
b(a3)∗. By induction on i ≥ 0, indeed we can observe that b(a3)i ∈ L(S), i ≥ 0.
If i = 0 or i = 1, being b, ba3 ∈ I, the result is immediate. Otherwise, given words
b(a3)i−1 ∈ L(S), for i > 1 and word da(a3)i ∈ L(S), by rule r3 is immediate to
generate word b(a3)i ∈ L(S).

Finally, notice that language L is not reflexive, that is, it cannot be generated
by a splicing system by reflexive splicing rules. Suppose L is reflexive splicing
language generated by a reflexive system S. We obtain a contradiction by consid-
ering generation of words in language b(a3)∗. Since in language L the only words
that start with a b are those in language b(a3)∗ and there must be splicing rules
in S to generate words of the form b(a3)k for arbitrarily large k, there must be a
rule r with splice site u1u2 that is a factor of b(a3)∗. But, because S is reflexive,
S must also contain a rule (u1, u2)(u1, u2). Then when the rule is applied to a
word b(a3)k, for some large k > 0 and to word cb(a)j for some suitable chosen
j > 0 , then word b(a2)l, for some l > 0 can also be generated by such a rule.
Therefore the language L cannot be generated by reflexive rules. �

4.1 The Main Result

The proof of Proposition 3 is based on the notions stated below that are used
to find special words in a regular splicing language L that must be generated by
a splicing rule whose splice site u3u4 is a constant of L. For a lack of a better
name, we call these words q-canonical and k-special words.

Informally, the q-canonical word of a component C is a word c such that
qc = q and every such path with label c crosses all states in the component, and
moreover, the word c is able to identify the language L(C) of the component C.

Definition 5 (q-canonical). Let A be an automaton and let C be a component
of A and q a state of C. Then a word c ∈ A+ such that c ∈ L(C), qc = q is
called q-canonical for C, if c ∈ L(C′), for C′ another component of A implies
that L(C) ⊆ L(C′).

90 P. Bonizzoni and N. Jonoska

We note that for a deterministic automaton A and a transitive component C

in A, there is a q-canonical word for each state q in C. We are interested in
q-canonical words whose factors include all possible labels of paths of a given
length k in the component. Such a word is called k-special for L(C) as defined
below.

Definition 6 (k-special). Let A be an automaton. A word c in L(A) is k-
special for the language L if every word of F (L) of length k is a factor of c.

The following lemma states the existence of a q-canonical word that is a k-special
word for every transitive component in A.

Lemma 3. Given a transitive component C in a DFA A let k = #Q ·#Q. Then
there is a state q in C with a q-canonical k-special word c ∈ L(C).

Proof. Let {x1, . . . , xn} = L(C)∩Ak. Being C a transitive component, there are
y1, . . . , yn−1 such that x1y1x2 · · · yn−1xn ∈ L(C). Set c = x1y1x2 · · · yn−1xn and
assume that c ∈ L(C′) for some transitive component C′. Take the shortest word
z ∈ L(C)\L(C′). Since L(C)\L(C′) = L(C)∩(L(C′))c, it can be recognized by an
automaton with at most #Q(C) · #Q(C′) ≤ k states [13], therefore the shortest
word in this language has length at most k. Thus |z| ≤ k and therefore z must
be a factor of c, i.e., z must be in L(C′), contradicting the existence of z. �

The proof of Proposition 3 depends on the existence of a splicing rule r =
(u1, u2)(u3, u4) such that word u1u4, ends in a terminal component of the mDFA
A.

Definition 7 (paste site). Let A be the mDFA for a regular splicing language
L. The word u1u4 is said to be a paste site at a state p ∈ Q for a splicing rule
r =(u1, u2)(u3, u4) if RL(u3u4) ⊆ RA(pu1u4) and pu1u2 �= z.

More precisely, the notion of a paste site at a state q is used to identify states
of the automaton where a rule is applied.

In what follows we assume that every splicing system is such that all rules
are applied at least once during the generation of the splicing language. The
following lemma shows an equivalence between splicing systems with respect to
the extension of sites and paste sites of rules.

Lemma 4. Let S = (A, I, R) be a finite splicing system and r =(u1, u2)(u3, u4)
be a splicing rule in R. Let c ∈ RL(S)(u1u4) ∩ RL(S)(u3u4) for some x, y ∈ A∗.
Then L(S) is the language generated with the splicing system S′ = (A, I, R′)
where R′ = R ∪ {r′} for r′ = (u1, u2)(u3, u4c).

Lemma 5. Let S = (A, I, R) be a finite splicing system and A a finite state au-
tomaton for L=L(S). If u1u4 is a paste site at state p for rule r=(u1, u2)(u3, u4)∈
R then for every x ∈ RL(u1u4)∩RL(u3u4) we have that u1u4x is a paste site at
p for rule r=(u1, u2)(u3, u4x).

We now sketch the main steps of the proof of Proposition 3.
Let L be a regular splicing language and A the mDFA for L.

Regular Splicing Languages Must Have a Constant 91

– Step 1:
Assuming that L has no constant, Proposition 2 applies. The mDFA for
L, denoted A, has non-trivial terminal components. We consider among all
terminal components in the mDFA for L, the component C and a state q
in C such that the language recognized by the automaton Cq induced by
the component C having the initial state q is minimal among all terminal
components that are factor-equivalent to C. In other words L(Cq) is minimal
among all languages of terminal components that have the same set of labels
of paths as C.

– Step 2:
Given such chosen C, then we consider splicing rules generation of words in
L of the form wc∗x, where w is label of a path in the mDFA from the initial
state to the component C. The word c is a q-canonical and k-special word
for k = #Q(A) · #Q(A).
We prove the existence of a rule r = (u1, u2)(u3, u4) such that for arbitrarily
large i’s, ci appears in the right-context R(u3u4) of word u3u4 (Lemmas 4,5).

– Step 3:
We show that every state q̄ in a terminal component C̄ reached by reading
u3u4 in automaton A, must be the same state p that is reached by reading
vu1u4 along the path labeled by wc∗x, for some word v ∈ A∗. This step
shows that u3u4 is synchronizing for state p, that is u3u4 must be constant
for L.
Observe that the proof that state q̄ reached by reading u3u4 in automaton
A is unique depends on the following fact: the component C̄ having state q̄
is terminal (using Corollary 1) and due to the minimality of Cq, C̄ must be
the same component as C. This fact also uses the property of splicing rules,
more precisely: R(q̄) ⊆ R(u3u4) ⊆ R(qu1u4) = R(p) and the minimality of
mDFA.

Acknowledgment. P.Bonizzoni is partially supported by MIUR Project “Math-
ematical aspects and emerging applications of automata and formal languages”,
N. Jonoska is supported in part by NSF grants CCF-0726396 and DMS-0900671.
Parts of this research were done during N. Jonoska’s visit to University of Milano-
Bicocca in the Spring of 2008.

References

1. Berstel, J., Perrin, D.: Theory of Codes. Academic Press Inc., Orlando (1985)
2. Bonizzoni, P., De Felice, C., Mauri, G., Zizza, R.: Regular Languages Generated by

Reflexive Finite Linear Splicing Systems. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003.
LNCS, vol. 2710, pp. 134–145. Springer, Heidelberg (2003)

3. Bonizzoni, P., De Felice, C., Zizza, R.: The structure of reflexive regular splicing
languages via Schützenberger constants. Theoretical Computer Science 334(1-3),
71–98 (2005)

4. Bonizzoni, P., Mauri, G.: Regular splicing languages and subclasses. Theoretical
Computer Science 340, 349–363 (2005)

92 P. Bonizzoni and N. Jonoska

5. Bonizzoni, P.: Constants and label-equivalence: A decision procedure for reflexive
regular splicing languages. Theoretical Computer Science 411(6), 865–877 (2010)

6. Bonizzoni, P., Jonoska, N.: Splicing languages and constants, manuscript (2011)
7. Černý, J.: Poznámka k homogénnym eksperimentom s konecnými automatami.

Matematicko-fyzikalny Časopis Slovenskej Akadémie Vied 14, 208–216 (1964)
8. Culik, K., Harju, T.: Splicing semigroups of dominoes and DNA. Discrete Applied

Math. 31, 261–277 (1991)
9. De Luca, A., Restivo, A.: A characterization of strictly locally testable languages

and its application to semigroups of free semigroup. Information and Control 44,
300–319 (1980)

10. Goode, E.: Constants and splicing systems, PHD Thesis, Binghamton University
(1999)

11. Goode, E., Pixton, D.: Recognizing splicing languages: Syntactic Monoids and
Simultaneous Pumping. Discrete Applied Mathematics 155, 989–1006 (2007)

12. Head, T.: Formal Language Theory and DNA: an analysis of the generative capac-
ity of specific recombinant behaviours. Bull. Math. Biol. 49, 737–759 (1987)

13. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, Reading (2001)

14. Jonoska, N.: Sofic Systems with Synchronizing Representations. Theoretical
Computer Science 158(1-2), 81–115 (1996)

15. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics. Cambridge Univer-
sity Press, New York (1995)

16. Paun, G.: On the splicing operation. Discrete Applied Math. 70, 57–79 (1996)
17. Paun, G., Rozenberg, G., Salomaa, A.: DNA computing, New Computing

Paradigms. Springer, Berlin (1998)
18. Pixton, D.: Regularity of splicing languages. Discrete Applied Math. 69, 101–124

(1996)
19. Schützenberger, M.P.: Sur certaines opérations de fermeture dans le langages

rationnels. Symposia Mathematica 15, 245–253 (1975)
20. Verlan, S.: Head systems and applications to bio-informatics. Ph. D. Thesis,

University of Metz (2004)

The Average Transition Complexity of Glushkov

and Partial Derivative Automata�

Sabine Broda, António Machiavelo, Nelma Moreira, and Rogério Reis

CMUP, Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 4169-007 Porto, Portugal

sbb@dcc.fc.up.pt, ajmachia@fc.up.pt, {nam,rvr}@dcc.fc.up.pt

Abstract. In this paper, the relation between the Glushkov automaton
(Apos) and the partial derivative automaton (Apd) of a given regular
expression, in terms of transition complexity, is studied. The average
transition complexity of Apos was proved by Nicaud to be linear in the
size of the corresponding expression. This result was obtained using an
upper bound of the number of transitions of Apos. Here we present a
new quadratic construction of Apos that leads to a more elegant and
straightforward implementation, and that allows the exact counting of
the number of transitions. Based on that, a better estimation of the
average size is presented. Asymptotically, and as the alphabet size grows,
the number of transitions per state is on average 2.

Broda et al. computed an upper bound for the ratio of the number
of states of Apd to the number of states of Apos, which is about 1

2
for

large alphabet sizes. Here we show how to obtain an upper bound for the
number of transitions in Apd, which we then use to get an average case
approximation. Some experimental results are presented that illustrate
the quality of our estimate.

1 Introduction

The conversion methods of regular expressions into equivalent nondeterministic
finite automata (NFA) are normally divided in two classes depending on whether
ε-transitions are allowed or not in the resulting NFA. Paradigmatic methods of
each class are the Thompson’s and Glushkov’s constructions, respectively. Sev-
eral optimizations and worst-case descriptional and computational complexity
results were obtained for both methods (see Holzer and Kutrib [HK10], and the
works cited therein). Given a regular expression with n letters the size of a ε-
NFA can be, in the worst-case, Θ(n). While the size of a Glushkov automaton
can be Θ(n2), Ω(n log n2) was proved to be a lower bound for the size of a ε-
free NFA. In this context, and for practical purposes, it is useful to carry out
average-case analysis, both for descriptional and computational complexities, of
these methods.
� This work was partially funded by Fundação para a Ciência e Tecnologia (FCT) and

Program POSI, and project CANTE (PTDC/EIA-CCO/101904/2008).

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 93–104, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

94 S. Broda et al.

The framework of analytic combinatorics, by relating the enumeration of com-
binatorial objects to the algebraic and complex analytic properties of generating
functions, provides a powerful tool for asymptotic average-case analysis. Using
this framework, Nicaud [Nic09] proved that the average transition complexity of
the Glushkov automaton (Apos) of a regular expression α of size n is Θ(n). This
result was obtained using an upper bound of the number of transitions of Apos.
Here we present a new quadratic construction of the Apos that leads to a more
elegant and straightforward implementation, and that allows the exact counting
of the number of transitions. Based on that, a better estimation of the average
size is presented. Asymptotically, and as the alphabet size grows, the number of
transitions per state is on average 2.

The partial derivative automaton (Apd) is a quotient of the Apos, and thus
the states of the former can be seen as mergings of states of the latter. In a pre-
vious paper [BMMR11b], we presented a technique for estimating some of those
state mergings. This enabled us, in the framework of analytic combinatorics, to
compute an upper bound for the ratio of the number of states of Apd to the
number of states of Apos, which is about 1

2 for large alphabet sizes. This upper
bound was obtained by estimating the number of regular expressions that have ε
as a partial derivative. In this paper, we use an analogous approach to compute
an upper bound for the number of transitions in Apd, and study its asymptotic
behaviour. As the alphabet size grows, this upper bound tends to the number
of letters of the regular expression, thus it is half the number of transitions in
Apos. The comparison with some experimental results suggests that this upper
bound has an error of less than 15%.

2 Regular Expressions and Automata

In this section we briefly review some basic definitions about regular expressions
and finite automata. For more details, we refer the reader to Kozen [Koz97] or
Sakarovitch [Sak09].

Given an alphabet (set of letters) Σ = {σ1, . . . , σk} of size k, the set R of
regular expressions, α, over Σ is defined by the following grammar:

α := ∅ | ε | σ1 | · · · | σk | (α + α) | (α · α) | α� (1)

where the operator · (concatenation) is often omitted. The language associated
to α is denoted by L(α) and defined as usual. The size |α| of α ∈ R is the
number of symbols in α (parentheses not counted); the alphabetic size |α|Σ is its
number of letters. For example, for τ = (a + b)(a� + ba� + b�)� one has |τ | = 15
and |τ |Σ = 6. We define ε(α) by ε(α) = ε if ε ∈ L(α), and ε(α) = ∅ otherwise.
Also, we denote by αε and αε, respectively, the regular expressions such that
ε(αε) = ε and ε(αε) = ∅.

A non-deterministic automaton (NFA) A is a quintuple (Q, Σ, δ, q0, F), where
Q is a finite set of states, Σ is the alphabet, δ ⊆ Q×Σ×Q the transition relation,
q0 the initial state, and F ⊆ Q the set of final states. The size of a NFA is |Q|+|δ|.
For q ∈ Q and σ ∈ Σ, we denote the set {p | (q, σ, p) ∈ δ} by δ(q, σ), and we can

The Average Transition Complexity 95

extend this notation to w ∈ Σ�, and to R ⊆ Q. The language accepted by A is
L(A) = {w ∈ Σ� | δ(q0, w) ∩ F �= ∅}.

2.1 The Glushkov Automaton

The Glushkov, or position, automaton was independently introduced by Glush-
kov [Glu61] and McNaughton and Yamada [MY60]. The states in the Glushkov
automaton, representing a regular expression α, correspond to the positions of
letters in α plus an additional initial state. Let α denote the regular expression
obtained by marking each letter with its position in α. The marked version of
the previous example is τ = (a1 + b2)(a�

3 + b4a
�
5 + b�

6)
�. The same notation is

used to remove the markings, i.e., α = α. Now, let Pos(α) = {1, 2, . . . , |α|Σ}
be the set of positions for α ∈ R, and let Pos0(α) = Pos(α) ∪ {0}. Then, the
construction of the Glushkov automaton is based on the position sets First(α),
Last(α), and Follow(α). These sets can be inductively defined as follows:

First(∅) = First(ε) = ∅
First(σi) = {i}
First(α�) = First(α)

First(α + β) = First(α) ∪ First(β)

First(αβ) =
{

First(α) ∪ First(β) if ε(α) = ε
First(α) otherwise.

The definition of Last is almost identical and differs only for the case of concate-
nation, which is

Last(αβ) =
{

Last(α) ∪ Last(β) if ε(β) = ε
Last(β) otherwise.

The set Follow can be computed as by

Follow(∅) = Follow(ε) = Follow(σj) = ∅
Follow(α + β) = Follow(α) ∪ Follow(β)

Follow(αβ) = Follow(α) ∪ Follow(β) ∪ Last(α) × First(β)
Follow(α�) = Follow(α) ∪ Last(α) × First(α).

The Glushkov automaton for α is Apos(α) = (Pos0(α), Σ, δpos, 0, F), with
δpos = {(0, σj, j) | j ∈ First(α)} ∪ {(i, σj , j) | (i, j) ∈ Follow(α)} and F =
Last(α) ∪ {0} if ε(α) = ε, and F = Last(α), otherwise. Note that the number of
states of Apos(α) is exactly n+1, where n = |α|Σ . On the other hand, the number
of transitions in Apos(α) is in the worst case n2 + n. Consequently, the time-
complexity of any construction algorithm for Apos(α) must be at least O(n2).
Considering the simplicity of the recursive definitions of the position sets used
for the construction of Apos(α), an algorithm of this complexity should not be
hard to find. Nevertheless, a naive implementation leads to a O(n3) algorithm,
such as the one proposed by Berry and Sethi [BS86]. This is due to possibly non-
disjoint unions of sets in the rule for α� in the recursive definition of Follow(α).
To overcome this problem, several techniques for the construction of Apos(α)
were proposed over the years. The first one, of order O(m + n2), where m = |α|,

96 S. Broda et al.

was proposed by Brüggemann-Klein in 1993 [BK93] and it is primarily based on
the prior transformation of α into star-normal form. Other quadratic, however
sophisticated, algorithms have been introduced in 1996 and 1997, respectively
in [PZC97] and [CP97].

Our goal in the next section, is to present an alternative recursive definition
of Follow(α), that only involves disjoint unions of sets, allowing for simple im-
plementations of that construction in time O(n2). This definition also allows us
to define a cost generating function of the exact number of transitions in the
Glushkov automaton in Section 4.

3 A New Algorithm for Computing Follow(α)

In this section we define a new function E, such that for every marked regular
expression α we have Follow(α) = E(α). This function has the advantage that
all unions in its definition are clearly disjoint. Our definition of E was inspired
by the construction of Apos(α) by Leiss [Lei80] and shows some similarities to
the transformation algorithm of α into star-normal-form by Brüggemann-Klein.
Let E be given by

E(∅) = E(ε) = E(σi) = ∅
E(α + β) = E(α) ∪ E(β)

E(αβ) = E(α) ∪ E(β) ∪ Last(α) × First(β)
E(α�) = E�(α)

(2)

E�(∅) = E�(ε) = ∅
E�(σi) = {(i, i)}

E�(α + β) = E�(α) ∪ E�(β) ∪ Cross(α, β)

E�(αβ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E�(α) ∪ E�(β) ∪ Cross(α, β) if ε(α) = ε(β) = ε

E�(α) ∪ E(β) ∪ Cross(α, β) if ε(β) = ε

E(α) ∪ E�(β) ∪ Cross(α, β) if ε(α) = ε

E(α) ∪ E(β) ∪ Cross(α, β) otherwise

E�(α�) = E�(α),

(3)

with Cross(α, β) = Last(α) × First(β) ∪ Last(β) × First(α).

Proposition 1. For every regular expression γ we have Follow(γ) = E(γ).

Proof.
The proof follows by induction on the structure of γ.The result is trivially true
for γ = ∅, ε, σi, α + β, αβ. For γ = δ�, it is sufficient to show that one has
Follow(δ) ∪ Last(δ) × First(δ) = E�(δ).

The Average Transition Complexity 97

For δ = ∅, δ = ε and δ = σi this equation evaluates to ∅ = ∅, ∅ = ∅ and
{(i, i)} = {(i, i)}, respectively. For δ = α + β we have

Follow(α + β) ∪ Last(α + β) × First(α + β) =
= (Follow(α) ∪ Last(α) × First(α)) ∪ (Follow(β) ∪ Last(β) × First(β)) ∪

∪ Last(α) × First(β) ∪ Last(β) × First(α) =
= E�(α) ∪ E�(β) ∪ Last(α) × First(β) ∪ Last(β) × First(α) = E�(α + β).

We illustrate the proof for δ = αβ with the case where ε(α) �= ε and ε(β) = ε:

Follow(αβ) ∪ Last(αβ) × First(αβ) =
= Follow(α) ∪ Follow(β) ∪ Last(α) × First(β) ∪

∪ Last(α) × First(α) ∪ Last(β) × First(α)
= E�(α) ∪ E(β) ∪ Last(α) × First(β) ∪ Last(β) × First(α) = E�(αβ).

Finally, for δ = α� we have

Follow(α�) ∪ Last(α�) × First(α�) =
= Follow(α) ∪ Last(α) × First(α) ∪ Last(α) × First(α)

= Follow(α) ∪ Last(α) × First(α) = E�(α) = E�(α�). ��

4 Counting the Number of Transitions in the Glushkov
Automaton

Nicaud [Nic09] showed that the average number of transitions in the Glushkov
automaton Apos(α) is O(|α|). However, his computation of the number of tran-
sitions was not exact because the definition used for the Follow function did
not take into account the possible non-disjoint unions of its results. In this sec-
tion, based on the algorithm E we compute the exact number of transitions in
Apos(α), Ek(z), as well as its average cardinality, Tk(z). This is done by the
use of the standard methods of analytic combinatorics as expounded by Flajolet
and Sedgewick [FS08]. These apply to generating functions A(z) =

∑
n anzn for

a combinatorial class A with an objects of size n, or cost generating functions
C(z) =

∑
α c(α)z|α|, where c(α) is some measure of the object α ∈ A.

In this section we compute and study the cost generating functions Ek(z) and
Tk(z), and their asymptotic behaviours. The other functions used herein, as well
as details on how to obtain them, can be found in the above cited article and in
Broda et al [BMMR11b]. A more detailed description of the below computations
can be found in a companion technical report of this paper [BMMR11a].

4.1 The Average Number of Transitions in Apos(α)

For counting purposes, we will consider regular expressions as defined in (1), but
without ∅. Note that this limitation only excludes the empty language.

98 S. Broda et al.

The functions that count the cardinalities of First(α), Last(α), and E(α), are
respectively denoted by f(α), l(α), and e(α). Given the definitions of f(α) and
l(α), e(α) satisfies the following:

e(σ) = e(ε) = 0,

e(α + β) = e(α) + e(β),
e(αβ) = e(α) + e(β) + l(α) · f(β),
e(α�) = e�(α),

(4)

where e�(α) is given by,

e�(ε) = 0, e�(σ) = 1,

e�(α + β) = e�(α) + e�(β) + c(α, β),
e�(αεβε) = e�(αε) + e�(βε) + c(αε, βε),
e�(αεβε) = e�(αε) + e(βε) + c(αε, βε),
e�(αεβε) = e(αε) + e�(βε) + c(αε, βε),
e�(αεβε) = e(αε) + e(βε) + c(αε, βε),

e�(α�) = e�(α).

(5)

with c(α, β) = l(α) · f(β) + l(β) · f(α). Then, the function

t(α) = f(α) + e(α)

computes the number of transitions in the Glushkov automaton of α. The cost
generating function associated to t is given by

Tk(z) = Fk(z) + Ek(z),

where Fk(z) and Ek(z) are the cost generating functions associated to f and e,
respectively. By symmetry, the cost generating function Lk(z) associated to l is
the same as Fk(z), i.e.

Lk(z) = Fk(z) =
kz

1 − z − 3zRk(z)− zRk,ε(z)
.

In this last expression Rk(z) and Rk,ε(z) denote respectively the generating
functions for regular expressions, and for regular expressions whose languages
contain ε and are given by

Rk(z) =
1 − z −√

Δk(z)
4z

and Rk,ε(z) =
z + zRk(z)
1− 2zRk(z)

, (6)

where Δk(z) = 1−2z− (7+8k)z2. Hence, for the number of regular expressions
of size n, one has

[zn]Rk(z) ∼
√

2(1− ρk)
8ρk

√
π

ρ−n
k n−3/2, where ρk =

1
1 +

√
8k + 8

. (7)

The Average Transition Complexity 99

From the equations in (4) one can compute the associated cost generating
functions Ek(z) and E�

k(z). For instance, the equation for concatenation con-
tributes with the term 2zEk(z)Rk(z) + zFk(z)2 in the equation for Ek(z). Col-
lecting all terms the following equations must be satisfied

Ek(z) = 4zEk(z)Rk(z) + zFk(z)2 + zE�
k(z)

E�
k(z) = kz + 2zE�

k(z)Rk(z) + 2zE�
k(z)Rk,ε(z)+

4zFk(z)2 + 2zEk(z)Rk,ε(z) + zE�
k(z).

After simplification one gets

Ek(z) =
kz2 + zFk(z)2Λk(z) + 4z2Fk(z)2

(1 − 4zRk(z))Λk(z)− 2z2Rk,ε(z)
, (8)

where Λk(z) = 1 − z − 2zRk,ε(z)− 2zRk(z). After substituting the functions in
(8) by their expressions in terms of z and k, one obtains

Tk(z) =
Pk(z)

Qk(z)
√

Δk(z)
, (9)

where Pk(z) is a polynomial in
√

Δk(z) over Q[z], with Qk(z) given by

Qk(z) =
(
1 − 2 z − 7 z2 + 4 (1 + z)

√
Δk(z) + 3 Δk(z)

)2

(
1 − 5 z2 + 2 (1 + 2z)

√
Δk(z) + Δk(z)

)
.

This function Qk(z) is positive for all values of z in the real segment [0, ρk],
because 1 − 2z − 7z2 = 8kz2 + Δk(z) and 1 − 5z2 = 2z + 2z2 + 8kz2 + Δk(z),
and Δk(z) is non-negative in that segment. By Pringsheim’s Theorem (Theorem
IV.6 of [FS08], p. 240) one can conclude that Tk(z) has radius of convergence
equal to ρk. Moreover, it can be shown that Tk(z) has no singularities on the
the boundary of its disc of convergence, ‖z‖ = ρk, besides the one at z = ρk.

Using exactly the same technique employed in the previously referred article,
one obtains

Tk(z) =
Pk(ρk)√

2 − 2ρk Qk(ρk)
1√

1 − z/ρk

+ o

(
1√

1 − z/ρk

)
, (10)

from which it follows that

[zn]Tk(z) ∼ Pk(ρk)√
π
√

2 − 2ρk Qk(ρk)
ρ−n

k n− 1
2 . (11)

Using the actual expression of Pk, which we omit due to lack of space, one
can get

[zn]Tk(z) ∼ (1 + ρk)(2 + 16ρk + 10ρ2
k − 12ρ3

k)
8ρk

√
π(1 − 5ρ2

k)
√

2 − 2ρk
ρ−n

k n− 1
2 . (12)

100 S. Broda et al.

Considering the cost generating function for the number of letters in an ele-
ment α ∈ R, computed by Nicaud to be equal to

Letk(z) =
kz√
Δk(z)

,

and for which
[zn]Letk(z) ∼ kρk√

π(2 − 2ρk)
ρ−n

k n−1/2,

one gets an asymptotic expression for the average number of transitions per
state:

[zn]Tk(z)
[zn]Letk(z)

∼ (1 + ρk)(2 + 16ρk + 10ρ2
k − 12ρ3

k)
(1 − 2ρk − 7ρ2

k)(1 − 5ρ2
k)

. (13)

And finally, one has for the average number of transitions per regular expres-
sion the following asymptotic estimation:

[zn]Tk(z)
[zn]Rk(z)

∼ (1 + ρk)(1 + 8ρk + 5ρ2
k − 6ρ3

k)
(1 − ρk)(1 − 5ρ2

k)
n. (14)

Since ρk tends to 0 as k goes to ∞, it follows that for large k the average
number of transitions per state is approximately 2, while the average number
of transitions per automaton is approximately the size of the original regular
expression.

5 The Average Number of Transitions in Apd

The partial derivative automaton Apd(α) of a regular expression α was defined
independently by Mirkin’s [Mir66] and Antimirov [Ant96]. Champarnaud and
Ziadi stated the equivalence of the two formulations [CZ01], and proved that
Apd is a quotient of the Glushkov automaton Apos [CZ02]. This means that
Apd(α) can be obtained from Apos(α) by the merging of states belonging to
the same equivalence class. That, on the other hand, may lead to the merging
of transitions. In this section, we estimate the average number of transitions
of Apd(α) when compared with the ones of Apos(α). For this, it is essential to
have the exact counting of the number of transitions of Apos(α) obtained in
Section 4.1.

The Apd(α) can be defined using the notion of partial derivative, introduced
by Antimirov as a non-deterministic version of Brzozowski’s derivative [Brz64].

For a regular expression α and a letter σ ∈ Σ, the set ∂σ(α) of partial deriva-
tives of α w.r.t. σ is defined inductively as follows:

∂σ(∅) = ∂σ(ε) = ∅

∂σ(σ′) =

{
{ε}, if σ′ = σ

∅, otherwise

∂σ(α�) = ∂σ(α)α�

∂σ(α + β) = ∂σ(α) ∪ ∂σ(β)
∂σ(αεβ) = ∂σ(αε)β ∪ ∂σ(β)
∂σ(αεβ) = ∂σ(αε)β

The Average Transition Complexity 101

where for any S ⊆ R, S∅ = ∅S = ∅, and Sε = εS = S. This definition
can be extended to sets of regular expressions, to words, and to languages
in the obvious way. The set of partial derivatives of α, {∂w(α) | w ∈ Σ�},
is denoted by P(α). The partial derivative automaton Apd(α) is defined by
Apd(α) = (P(α), Σ, δpd, α, {q ∈ P(α) | ε(q) = ε}), where δpd(q, σ) = ∂σ(q),
for all q ∈ P(α) and σ ∈ Σ. Antimirov proved that L(Apd(α)) = L(α).

Using Mirkin’s formulation one has P(α) = π(α) ∪ {α}, where the set π(α) is
inductively defined as follows:

π(∅) = ∅
π(ε) = ∅
π(σ) = {ε}

π(α + β) = π(α) ∪ π(β)
π(αβ) = π(α)β ∪ π(β)
π(α�) = π(α)α�.

(15)

5.1 Counting the Mergings of Transitions

Broda et al. [BMMR11b] gave a lower bound of the number of mergings of states
in π(α) with respect to Pos(α), which allowed to obtain an upper bound on the
average state complexity of Apd(α). There, it was observed that the merging of
states is primarily caused by sub-expressions γ of α such that ε ∈ π(γ). In fact,
in the presence of sub-expressions with this property, denoted by απε , during
the computation of π(α) some unions may not be disjoint.

In this section, and using the same technique, we determine a lower bound
of the number of mergings of transitions. Considering (2) and in particular,
the concatenation case, it is easy to see, that whenever there is a merging of
two states in the set Last(α), there are exactly f(β) = |First(β)| mergings of
transitions. Although there can be merging of states of First(β), they will not be
considered in the computation of that lower bound. We first compute a lower
bound for the number of mergings i�(α) of states i such that i ∈ Last(α).

In addition to αε and απε , we use the subclass of regular expressions αr,ε such
that αr,ε ∈ π(αr,ε) and ε(αr,ε) = ε.

The grammar for απε and its generating function Rk,πε(z) are the ones used
by Broda et al. For αr,ε one has

αr,ε := α�
πε

| αr,ε · αε, and Rk,r,ε(z) =
zRk,πε(z)

1 − zRk,ε(z)
.

Finally, in order to get a better approximation for the counting of the state
mergings, we define i�(α) by the following:

i�(∅) = i�(ε) = i�(σ) = 0,

i�(απε + απε) = i�(απε) + i�(απε) + 1,

i�(απε + απε) = i�(απε) + i�(απε),
i�(απε

+ α) = i�(απε
) + i�(α),

i�(α�) = i�(α),

i�(απεαr,ε) = i�(απε) + i�(αr,ε) + 1,

i�(απεαr,ε) = i�(αr,ε),
i�(απεαr,ε) = i�(απε) + i�(αr,ε),
i�(απεαr,ε) = i�(αr,ε),
i�(απε

αε) = i�(απε
) + i�(αε),

i�(απεαε) = i�(αε),

where γx denotes the complement of γx.

102 S. Broda et al.

To illustrate the previous rules, consider the case of i�(απεαr,ε). Here, one has
π(απεαr,ε) = π(απε)αr,ε ∪ π(αr,ε). By definition, ε ∈ π(απε) and αr,ε ∈ π(αr,ε).
Hence αr,ε belongs to both π(απε)αr,ε and π(αr,ε), which causes a merging of
two states in Last(α). This merging is accounted for by the 1 in the definition
of i�(απεαr,ε). On the other hand, since ε(αr,ε) = ε, one also has to count all
mergings of states in Last(απε) (counted by i�(απε)), besides those in Last(αr,ε).

The generating function, Ilk(z), of i� satisfies the following:

Ilk(z) =
zRk,πε(z)2 + zRk,πε(z)Rk,r,ε(z)

1 − z − 3zRk(z) − zRk,ε(z)
,

where Rk,πε(z) = z2+3zRk(z)−1+
√

(z2+3zRk(z)−1)2+4kz2

2z .
Using (2) and (3), one can easily define a function that computes a lower

bound for the number of transition mergings in the Glushkov automaton:

it(ε) = it(σ) = 0
it(α + β) = it(α) + it(β)

it(αβ) = it(α) + it(β) + i�(α). f(β)
it(α�) = i�t (α)
i�t (ε) = 0
i�t (σ) = 1

i�t (α + β) = i�t (α) + i�t (β) + ct(α, β)
i�t (αεβε) = i�t (αε) + i�t (βε) + ct(αε, βε)
i�t (αεβε) = i�t (αε) + it(βε) + ct(αε, βε)
i�t (αεβε) = it(αε) + i�t (βε) + ct(αε, βε)
i�t (αεβε) = it(αε) + it(βε) + ct(αε, βε)

i�t (α
�) = i�t (α)

where ct(α, β) = i�(α) · f(β)+ i�(β) · f(α). The corresponding generating function
satisfies the following:

Itk(z) =
zΛk(z)Ilk(z)Fk(z) + kz2 + 4z2Ilk(z)Fk(z)

(1 − 4zRk(z))Λk(z)− 2z2Rk,ε(z)
,

where Λk(z) = 1 − z − 2zRk(z) − 2zRk,ε(z). Analogously to what was done
before, one has

[zn]Itk(z) ∼ (1 + ρk) (a(ρk)b(ρk) + c(ρk))
16

√
π ρk

√
2 − 2ρk (1 − 5ρ2

k)d(ρk)
ρ−n

k n− 1
2 (16)

where

a(z) = −2− 23z − 77z2 − 50z3 + 92z4 + 77z5 − 13z6 − 4z7

b(z) =
√

9 − 10z − 55z2 − 24z3 + 16z4

c(z) = 10 + 89z + 54z2 − 603z3 − 1114z4 − 349z5+

+ 130z6 − 209z7 − 40z8 − 16z9

d(z) = (1 − 2z − 7z2)(2 + z − 3z2).

Therefore, a lower bound for the average number of mergings per transition of
the Glushkov automaton is given by

[zn]
Itk(z)
Tk(z)

∼ a(ρk)b(ρk) + c(ρk)
4(1 + 8ρk + 5ρ2

k − 6ρ3
k)d(ρk)

. (17)

The Average Transition Complexity 103

This means that, asymptotically with respect to k, the number of transitions in
Apd is at most half the number of transitions in Apos.

6 Comparison with Experimental Results

We compared the estimates obtained in the previous sections with some exper-
imental results. For each k ∈ {2, 3, 10, 30, 50}, the experiment consisted of the
comparison of the sizes of Apos and Apd, that were computed for each regular
expression in the samples of 1000 uniform random generated regular expressions
of size 1000. Table 1 presents the average values obtained, and columns eight
and ten give the asymptotic ratios obtained in (13) and in (17), respectively. The
quality of the approximation of the asymptotic average number of transitions
per state for Apos, and that the actual values are close to the limit even for rel-
atively small alphabets is evident from the table. The upper bound for the ratio
of the transition complexity of Apd to the one of Apos is within an error less
than 15%. The experimental values also suggest that the number of transitions
of Apd is on average, and as k grows, the alphabetic size of the original regular
expression.

Table 1. Experimental results for uniform random generated regular expressions

k |α| |α|Σ |δpos| |P(α)| |δpd| |δpos|
|α|Σ+1

[zn]Tk(z)
[zn]Letk(z)+1

|δpd|
|δpos| 1 − [zn]Itk(z)

[zn]Tk(z)

2 1000 276 3345 187 1806 12.1 12.2 0.54 0.68

3 1000 318 2997 206 1564 9.4 9.6 0.52 0.64

10 1000 405 2203 236 1079 5.4 5.3 0.49 0.58

30 1000 453 1676 247 796 3.7 3.6 0.47 0.54

50 1000 466 1516 250 718 3.3 3.2 0.47 0.53

100 — — — — — — 2.8 — 0.53

1000 — — — — — — 2.2 — 0.49

7 Conclusions

In this paper we presented a new algorithm for computing Follow, which is
quadratic in the alphabetic size of the original regular expression, and that leads
to a straightforward and direct implementation. This algorithm allowed us to
exactly count the number of transitions of the Glushkov automaton. Using this,
we computed the average number of transitions of that automaton, concluding
that, for large alphabets, it is approximately the double of the original regular
expression alphabetic size.

Considering special sub-classes of regular expressions that are primarily re-
sponsible for state mergings, we computed an upper bound for the number of
transitions in the partial derivative automaton. We, then, used analytic combina-
torial methods to obtain average values and asymptotic limits for that number,
concluding that, on average and asymptotically, the partial derivative automa-
ton has at most half the number of transitions of the Glushkov’s. Experimental
figures corroborate these results.

104 S. Broda et al.

References

[Ant96] Antimirov, V.M.: Partial derivatives of regular expressions and finite
automaton constructions. Theoret. Comput. Sci. 155(2), 291–319 (1996)

[BK93] Brüggemann-Klein, A.: Regular expressions into finite automata. Theo-
ret. Comput. Sci. 48, 197–213 (1993)

[BMMR11a] Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average size of
Glushkov and partial derivative automata. Technical Report DCC-2011-
03, FCUP & CMUP, Universidade do Porto (April 2011)

[BMMR11b] Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average state
complexity of partial derivative automata. International Journal of Foun-
dations of Computer Science (2011) (accepted to publication)

[Brz64] Brzozowski, J.A.: Derivatives of regular expressions. JACM 11(4),
481–494 (1964)

[BS86] Berry, G., Sethi, R.: From regular expressions to deterministic automata.
Theoret. Comput. Sci. 48, 117–126 (1986)

[CP97] Chang, C.-H., Paige, R.: From regular expressions to DFA’s using com-
pressed NFA’s. Theor. Comput. Sci. 178(1-2), 1–36 (1997)

[CZ01] Champarnaud, J.M., Ziadi, D.: From Mirkin’s prebases to Antimirov’s
word partial derivatives. Fundam. Inform. 45(3), 195–205 (2001)

[CZ02] Champarnaud, J.M., Ziadi, D.: Canonical derivatives, partial derivatives
and finite automaton constructions. Theoret. Comput. Sci. 289, 137–163
(2002)

[FS08] Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge Univer-
sity Press, Cambridge (2008)

[Glu61] Glushkov, V.M.: The abstract theory of automata. Russian Math.
Surveys 16, 1–53 (1961)

[HK10] Holzer, M., Kutrib, M.: The complexity of regular(-like) expressions. In:
Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp.
16–30. Springer, Heidelberg (2010)

[Koz97] Kozen, D.C.: Automata and Computability. Springer, Heidelberg (1997)
[Lei80] Leiss, E.: Constructing a finite automaton for a given regular expression.

SIGACT News 12(3) (September 1980)
[Mir66] Mirkin, B.G.: An algorithm for constructing a base in a language of

regular expressions. Engineering Cybernetics 5, 51–57 (1966)
[MY60] McNaughton, R., Yamada, H.: Regular expressions and state graphs for

automata. IEEE Transactions on Electronic Computers 9, 39–47 (1960)
[Nic09] Nicaud, C.: On the average size of glushkov’s automata. In: Dediu, A.,

Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp.
626–637. Springer, Heidelberg (2009)

[PZC97] Ponty, J.-L., Ziadi, D., Champarnaud, J.-M.: A new quadratic algo-
rithm to convert a regular expression into an automaton. In: Raymond,
D.R., Yu, S., Wood, D. (eds.) WIA 1996. LNCS, vol. 1260, pp. 109–119.
Springer, Heidelberg (1997)

[Sak09] Sakarovitch, J.: Elements of Automata Theory. CUP (2009)

Theory of Átomata�

Janusz Brzozowski1 and Hellis Tamm2

1 David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON, Canada N2L 3G1

brzozo@uwaterloo.ca
2 Institute of Cybernetics, Tallinn University of Technology,

Akadeemia tee 21, 12618 Tallinn, Estonia
hellis@cs.ioc.ee

Abstract. We show that every regular language defines a unique non-
deterministic finite automaton (NFA), which we call “átomaton”, whose
states are the “atoms” of the language, that is, non-empty intersections
of complemented or uncomplemented left quotients of the language. We
describe methods of constructing the átomaton, and prove that it is iso-
morphic to the normal automaton of Sengoku, and to an automaton of
Matz and Potthoff. We study “atomic” NFA’s in which the right lan-
guage of every state is a union of atoms. We generalize Brzozowski’s
double-reversal method for minimizing a deterministic finite automaton
(DFA), showing that the result of applying the subset construction to an
NFA is a minimal DFA if and only if the reverse of the NFA is atomic.

1 Introduction

Nondeterministic finite automata (NFA’s) introduced by Rabin and Scott [9] in
1959 play a major role in the theory of automata. For many purposes it is neces-
sary to convert an NFA to a deterministic finite automaton (DFA). In particular,
for each NFA there exists a minimal DFA, unique up to isomorphism. This DFA
is uniquely defined by every regular language, and uses the left quotients of the
language as states. As well, it is possible to associate an NFA with each DFA,
and this is the subject of the present paper. Our NFA is also uniquely defined
by every regular language, and uses non-empty intersections of complemented
and uncomplemented quotients—the “atoms” of the language—as states.

It appears that the NFA most often associated with a regular language is the
universal automaton, sometimes appearing under different names. A recent sub-
stantial survey by Lombardy and Sakarovitch [7] on the subject of the universal
automaton contains its history and a detailed discussion of its properties. We
refer the reader to that paper, and mention only that research related to the
universal automaton goes back to the 1970’s: e.g., in [3] as reported in [1], [4,6].
� This work was supported by the Natural Sciences and Engineering Research Council

of Canada under grant No. OGP0000871, by the Estonian Center of Excellence in
Computer Science, EXCS, financed by the European Regional Development Fund,
and by the Estonian Science Foundation grant 7520.

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 105–116, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

106 J. Brzozowski and H. Tamm

We call our NFA the “átomaton”1 because it is based on the atoms of a reg-
ular language; we add the accent to minimize the possible confusion between
“automaton” and “atomaton”. Automata isomorphic to our átomaton have pre-
viously appeared in 1992 in the little-known master’s thesis [10] of Sengoku, and
in the 1995 paper [8] by Matz and Potthoff.

We introduce “atomic” automata, in which the right language of any state is
a union of some atoms. This generalizes residual automata [5] in which the right
language of any state is a left quotient (which we prove to be a union of atoms),
and includes also átomata (where the right language of any state is an atom),
trim DFA’s, and the trim parts of universal automata.

We characterize the class of NFA’s for which the subset construction yields a
minimal DFA. More specifically, we show that the subset construction applied to
a trim NFA produces a minimal DFA if and only if the reverse automaton of that
NFA is atomic. This generalizes Brzozowski’s method for DFA minimization by
double reversal [2].

Section 2 recalls properties of regular languages, finite automata, and systems
of language equations. Atoms of a regular language and the átomaton are intro-
duced and studied in Section 3. In Section 4, we examine NFA’s in which the
right language of every state is a union of atoms. Brzozowski’s method of DFA
minimization is extended in Section 5, and Section 6 closes the paper.

2 Languages, Automata and Equations

If Σ is a non-empty finite alphabet, then Σ∗ is the free monoid generated by Σ.
A word is any element of Σ∗, and the empty word is ε. The length of a word w
is |w|. A language over Σ is any subset of Σ∗.

The following operations are defined on languages over Σ: complement
(L = Σ∗ \ L), union (K ∪ L), intersection (K ∩ L), product, usually called
concatenation or catenation, (KL = {w ∈ Σ∗ | w = uv, u ∈ K, v ∈ L}), pos-
itive closure (L+ =

⋃
i�1 Li), and star (L∗ =

⋃
i�0 Li). The reverse wR of a

word w ∈ Σ∗ is defined as follows: εR = ε, and (wa)R = awR. The reverse of a
language L is denoted by LR and defined as LR = {wR | w ∈ L}.

A nondeterministic finite automaton is a quintuple N = (Q, Σ, δ, I, F), where
Q is a finite, non-empty set of states, Σ is a finite non-empty alphabet, δ : Q×Σ →
2Q is the transition function, I ⊆ Q is the set of initial states, and F ⊆ Q is
the set of final states. As usual, we extend the transition function to functions
δ′ : Q×Σ∗ → 2Q, and δ′′ : 2Q×Σ∗ → 2Q. We do not distinguish these functions
notationally, but use δ for all three. The language accepted by an NFA N is
L(N) = {w ∈ Σ∗ | δ(I, w)∩F �= ∅}. Two NFA’s are equivalent if they accept the
same language. The left language of a state q of N is LI,q(N) = {w ∈ Σ∗ | q ∈
δ(I, w)}, and the right language of q is Lq,F (N) = {w ∈ Σ∗ | δ(q, w) ∩ F �= ∅}.
So L(N) = LI,F (N). A state is empty if its right language is empty. Two states
of an NFA are equivalent if their right languages are identical.

1 The word should be pronounced with the accent on the first a.

Theory of Átomata 107

A deterministic finite automaton is a quintuple D = (Q, Σ, δ, q0, F), where Q,
Σ, and F are as in an NFA, δ : Q×Σ → Q is the transition function, and q0 is
the initial state. A DFA is an NFA in which the set of initial states is {q0} and
the range of the transition function is restricted to singletons {q}, q ∈ Q.

An incomplete deterministic finite automaton (IDFA) is a quintuple I =
(Q, Σ, δ, q0, F), where δ is a partial function such that either δ(q, a) = p for
some p ∈ Q or δ(q, a) is undefined. Every DFA is also an IDFA. An IDFA is
minimal if no two of its states are equivalent.

We use the following operations on automata:
1. The determinization operation D applied to an NFA N yields a DFA ND

obtained by the well-known subset construction, where only subsets (including
the empty subset) reachable from the initial subset of ND are used.

4. The reversal operation R applied to an NFA N yields an NFA NR, where
initial and final states of N are interchanged in NR and all the transitions
between states are reversed.

2. The trimming operation T applied to an NFA N accepting a non-empty
language deletes from N every state q not reachable from any initial state (q �∈
δ(I, w) for any w ∈ Σ∗) and every state q that does not lead to any final state
(δ(q, w) ∩ F = ∅ for all w ∈ Σ∗), along with the incident transitions. An NFA
that has no such states is said to be trim. Note that, if N is trim, then so is NR.
Also, NRT = N TR for any NFA N .

If the trimming operation is applied to a DFA D, we obtain the IDFA DT,
which behaves like D, except that it does not have any empty states.

3. The minimization operation M applied to an IDFA (DFA) D yields the
minimal IDFA (DFA) DM equivalent to D.

A trim IDFA I is bideterministic if also IR is an IDFA. A language is bide-
terministic if its minimal IDFA is bideterministic.

Example 1. Figure 1 (a) shows an NFA N . Its determinized DFA ND is in
Fig. 1 (b), where braces around sets are omitted. The minimal equivalent D =
NDM of ND is in Fig. 1 (c), where the equivalent states {2}, {1, 3}, and {2, 3}
are represented by {1, 3}. The reversed and trimmed version DRT of the DFA D
of Fig. 1 (c) is in Fig. 1 (d).

(d) b

a
a b

2

1

b

b

∅
a

1

a

2, 3

1, 3 1, 3

b b

a

b
b

32 1 a

a
b

a, ba, b

a

b

1
a

b
b1, 3

∅ (c)(b)
(a)

Fig. 1. (a) An NFA N ; (b) N D; (c) N DM; (d) N DMRT

108 J. Brzozowski and H. Tamm

The left quotient, or simply quotient, of a language L by a word w is the
language w−1L = {x ∈ Σ∗ | wx ∈ L}. Left quotients are also known as right
residuals. Dually, the right quotient of a language L by a word w is the language
Lw−1 = {x ∈ Σ∗ | xw ∈ L}. Evidently, if N is an NFA and x is in LI,q(N),
then Lq,F (N) ⊆ x−1(L(N)).

The quotient DFA of a regular language L is D = (Q, Σ, δ, q0, F), where
Q = {w−1L | w ∈ Σ∗}, δ(w−1L, a) = a−1(w−1L), q0 = ε−1L = L, and F =
{w−1L | ε ∈ w−1L}. The quotient IDFA of a regular language L is DT.

The following is from [7]: If L ⊆ Σ∗, a subfactorization of L is a pair (X, Y) of
languages over Σ such that XY ⊆ L. A factorization of L is a subfactorisation
(X, Y) such that, if X ⊆ X ′, Y ⊆ Y ′, and X ′Y ′ ⊆ L for any pair (X ′, Y ′),
then X = X ′ and Y = Y ′. The universal automaton of L is UL = (Q, Σ, δ, I, F)
where Q is the set of all factorizations of L, I = {(X, Y) ∈ Q | ε ∈ X},
F = {(X, Y) ∈ Q | X ⊆ L}, and (X ′, Y ′) ∈ δ((X, Y), a) if and only if Xa ⊆ X ′.

For any language L let Lε = ∅ if ε �∈ L and Lε = {ε} otherwise. Also, let
n � 1 and let [n] = {1, . . . , n}. A nondeterministic system of equations (NSE)
with n variables L1, . . . , Ln is a set of language equations

Li =
⋃

a∈Σ

a(
⋃

j∈Ji,a

Lj) ∪ Lε
i i = 1, . . . , n, (1)

where Ji,a ⊆ [n], together with an initial set of variables {Li | i ∈ I}, where
I ⊆ [n] is an index set. The equations are assumed to have been simplified by the
rules a∅ = ∅ and K∪∅ = ∅∪K = K, for any language K. Let Li,a =

⋃
j∈Ji,a

Lj ;
then Li,a = a−1Li is the left quotient of Li by a. The language defined by an
NSE is L =

⋃
i∈I Li.

Each NSE defines a unique NFA N and vice versa. States of N correspond to
the variables Li, there is a transition Li

a→ Lj in N if and only if j ∈ Ji,a, the set
of initial states of N is {Li | i ∈ I}, and the set of final states is {Li | Lε

i = {ε}}.
If each Li is a left quotient (that is, a right residual) of the language L =⋃

i∈I Li, then the NSE and the corresponding NFA are called residual [5].
A deterministic system of equations (DSE) is an NSE

Li =
⋃

a∈Σ

aLia ∪ Lε
i i = 1, . . . , n, (2)

where ia ∈ [n], I = {1}, and the empty language ∅ is retained if it appears.
Each DSE defines a unique DFA D and vice versa. Each state of D corresponds

to a variable Li, there is a transition Li
a→ Lj in D if and only if ia = j, the

initial state of D corresponds to L1, and the set of final states is {Li | Lε
i = {ε}}.

In the special case when D is minimal, its DSE constitutes its quotient equations,
where every Li is a quotient of the initial language L1.

To simplify the notation, we write ε instead of {ε} in equations.

Example 2. For the NFA of Fig. 1 (a), we have the NSE

L1 = bL2,
L2 = aL1 ∪ b(L2 ∪ L3) ∪ ε,
L3 = aL1 ∪ bL3 ∪ ε,

Theory of Átomata 109

with the initial set {L1, L3}. The language L = L1 ∪L3 accepted by the DFA of
Fig. 1 (b) is obtained from this NSE as shown by the equations below on the left.
Renaming the unions of variables by new variables corresponding to subsets in
the subset construction, we get the equations on the right; for example, L1 ∪L3

is renamed as L{1,3}. This is the DSE for the DFA of Fig. 1 (b).

L1 ∪ L3 = aL1 ∪ b(L2 ∪ L3) ∪ ε, L{1,3} = aL{1} ∪ bL{2,3} ∪ ε,

L1 = a∅ ∪ bL2, L{1} = aL∅ ∪ bL{2},
L2 ∪ L3 = aL1 ∪ b(L2 ∪ L3) ∪ ε, L{2,3} = aL{1} ∪ bL{2,3} ∪ ε,

L2 = aL1 ∪ b(L2 ∪ L3) ∪ ε, L{2} = aL{1} ∪ bL{2,3} ∪ ε,

∅ = a∅ ∪ b∅. L∅ = aL∅ ∪ bL∅.

Noting that L{1,3}, L{2,3}, and L{2} are equivalent, we get the quotient equations
for the DFA of Fig. 1 (c), where L{1} = a−1L{1,3}, L{1,3} = b−1L{1,3}, etc.

L{1,3} = aL{1} ∪ bL{1,3} ∪ ε,
L{1} = aL∅ ∪ bL{1,3},

L∅ = aL∅ ∪ bL∅.

3 The Átomaton of a Regular Language

From now on we consider only non-empty regular languages. Let L be a regular
language, and let L1 = L, L2, . . . , Ln be its quotients. An atom of L is any non-
empty language of the form A = L̃1 ∩ L̃2 ∩ · · · ∩ L̃n, where L̃i is either Li or Li,
and at least one of the Li is not complemented (in other words, L1∩L2∩· · ·∩Ln

is not an atom). A language has at most 2n − 1 atoms.
An atom is initial if it has L1 (rather than L1) as a term; it is final if and only

if it contains ε. Since L is non-empty, it has at least one quotient containing ε.
Hence it has exactly one final atom, the atom L̂1 ∩ L̂1 ∩ · · · ∩ L̂n, where L̂i = Li

if ε ∈ Li, L̂i = Li otherwise. The atoms of L will be denoted by A1, . . . , Am. By
convention, I is the set of initial atoms and Am is the final atom.

Proposition 1. The following properties hold for atoms:
1. Atoms are pairwise disjoint, that is, Ai ∩Aj = ∅ for all i, j ∈ [m], i �= j.
2. The quotient w−1L of L by w ∈ Σ∗ is a (possibly empty) union of atoms.
3. The quotient w−1Ai of Ai by w ∈ Σ∗ is a (possibly empty) union of atoms.

Proof. 1. If Ai �= Aj , then there exists h ∈ [n] such that Lh is a term of Ai and
Lh is a term of Aj or vice versa. Hence Ai ∩Aj = ∅.

2. The empty quotient, if present, is the empty union of atoms. If Li �= ∅ is a
quotient of L, then Li is the union of all the 2n−1 intersections that have Li as
a term. This includes all the atoms that have Li as a term, and possibly some
empty intersections.

3. Consider the quotient equations of L. The quotient of each atom Ai by a
letter a ∈ Σ is an intersection X of complemented and uncomplemented quo-
tients of L. If a quotient Lj of L does not appear as a term in X , then we “add

110 J. Brzozowski and H. Tamm

it in” by using the fact that X = X ∩ (Lj ∪ Lj) = (X ∩ Lj) ∪ (X ∩ Lj). After
all the missing quotients are so added, we obtain a union of atoms. Note that
the intersection having all quotients complemented does not appear in this con-
struction. It follows that w−1Ai is a union of atoms of L for every w ∈ Σ∗. ��
Lemma 1. Let w, x ∈ Σ∗. If wx ∈ Ai and x ∈ Aj then wAj ⊆ Ai, for i, j ∈ [m].

Proof. Assume that wx ∈ Ai and x ∈ Aj , but suppose wy �∈ Ai for some
y ∈ Aj . Then x ∈ w−1Ai and y �∈ w−1Ai. By Proposition 1, Part 3, w−1Ai is
a union of atoms. So, on the one hand, x ∈ w−1Ai and x ∈ Aj together imply
that Aj ⊆ w−1Ai. On the other hand, from y �∈ w−1Ai and y ∈ Aj , we get
Aj �⊆ w−1Ai. So if wy �∈ Ai, we have a contradiction. Hence, wAj ⊆ Ai. ��
In the following definition we use a 1-1 correspondence Ai ↔ Ai between atoms
Ai of a language L and the states Ai of the NFA A defined below.

Definition 1. Let L = L1 ⊆ Σ∗ be any regular language with the set of atoms
Q = {A1, . . . , Am}, initial set of atoms I ⊆ Q, and final atom Am. The átomaton
of L is the NFA A = (Q, Σ, δ, I, {Am}), where Q = {Ai | Ai ∈ Q}, I = {Ai |
Ai ∈ I}, and Aj ∈ δ(Ai, a) if and only if aAj ⊆ Ai, for all Ai, Aj ∈ Q.

Example 3. Let L be defined by the quotient equations below on the left and
accepted by the quotient DFA of Fig. 2 (a).

L1 = aL2 ∪ bL1, L123 = a(L123 ∪ L123) ∪ b(L123 ∪ L123),
L2 = aL3 ∪ bL1 ∪ ε, L123 = aL1 23,

L3 = aL3 ∪ bL2. L123 = bL12 3,

L1 23 = b(L123 ∪ L123),
L12 3 = a(L123 ∪ L123),
L123 = ε.

We find the atoms using the quotient equations. Thus

L1 ∩ L2 ∩ L3 = (aL2 ∪ bL1) ∩ (aL3 ∪ bL1 ∪ ε) ∩ (aL3 ∪ bL2)
= (aL2 ∩ aL3 ∩ aL3) ∪ (bL1 ∩ bL1 ∩ bL2)
= a(L2 ∩ L3) ∪ b(L1 ∩ L2)
= a[(L1 ∩ L2 ∩ L3) ∪ (L1 ∩ L2 ∩ L3)]
∪ b[(L1 ∩ L2 ∩ L3) ∪ (L1 ∩ L2 ∩ L3)], etc.

To simplify the notation, we denote Li ∩ Lj by Lij , Li ∩ Lj by Lij , etc. Noting
that L123 is empty, we have the equations above on the right, from which we get
Fig. 2 (b) for the átomaton of L.

Lemma 2. For w ∈ Σ∗, Aj ∈ δ(Ai, w) if and only if wAj ⊆ Ai, for i, j ∈ [m].

Proof. The proof is by induction on the length of w. If |w| = 0 and Aj ∈ δ(Ai, ε),
then i = j and εAj ⊆ Ai. If |w| = 0 and εAj ⊆ Ai, then i = j, since atoms are
disjoint; hence Aj ∈ δ(Ai, ε). If |w| = 1, then the lemma holds by Definition 1.

Theory of Átomata 111

(b)

b
b

b

a

3
a

b

a
21

a

b a

bb
L1 23 L123L123

L123 L12 3L123a, b

1 2 3

4 5 6
aa

(a)

Fig. 2. (a) Quotient automaton; (b) átomaton of L

Now, let w = av, where a ∈ Σ and v ∈ Σ+, and assume that lemma holds
for v. Suppose that Aj ∈ δ(Ai, av). Then there exists some state Ak such that
Ak ∈ δ(Ai, a) and Aj ∈ δ(Ak, v). Thus, aAk ⊆ Ai by the definition of átomaton,
and vAj ⊆ Ak by the induction assumption, implying that avAj ⊆ Ai.

Conversely, let avAj ⊆ Ai. Then vAj ⊆ a−1Ai. Let x ∈ Aj . Then vx ∈ a−1Ai.
Since by Proposition 1, Part 3, a−1Ai is a union of atoms, there exists some
atom Ak such that vx ∈ Ak. Since x ∈ Aj , by Lemma 1 we get vAj ⊆ Ak.
Furthermore, because avAj ⊆ Ai and x ∈ Aj , we have avx ∈ Ai. Since vx ∈ Ak,
then aAk ⊆ Ai by Lemma 1.

As the lemma holds for v and a, vAj ⊆ Ak implies Aj ∈ δ(Ak, v), and
aAk ⊆ Ai implies Ak ∈ δ(Ai, a), showing that Aj ∈ δ(Ai, av). ��
Proposition 2. The right language of state Ai of átomaton A is the atom Ai,
that is, LAi,{Am}(A) = Ai, for all i ∈ [m].

Proof. Let w ∈ LAi,{Am}(A); then Am ∈ δ(Ai, w). By Lemma 2, we have
wAm ⊆ Ai. Since ε ∈ Am, we have w ∈ Ai.

Now suppose that w ∈ Ai. Then wε ∈ Ai, and since ε ∈ Am, by Lemma 1 we
get wAm ⊆ Ai. By Lemma 2, Am ∈ δ(Ai, w), that is, w ∈ LAi,{Am}(A). ��
Theorem 1. The language accepted by the átomaton A of L is L, that is,
L(A) = LI,{Am} = L.

Proof. We have L(A) =
⋃

Ai∈I LAi,{Am}(A) =
⋃

Ai∈I Ai, by Proposition 2.
Since I is the set of all atoms that have L = L1 as a term, we also have L =⋃

Ai∈I Ai. ��
Proposition 3. The left language of state Ai of átomaton A of a language L
is LI,Ai(A) = ((xR)−1LR)R, for every i ∈ [m] and every word x in Ai.

Proof. If w ∈ LI,Ai(A), then Ai ∈ δ(Ai0 , w) for some Ai0 ∈ I. Then wAi ⊆ Ai0

by Lemma 2. Since Ai0 ⊆ L, we also have wAi ⊆ L, that is, wx ∈ L for every
x ∈ Ai. Then xRwR ∈ LR, and wR ∈ (xR)−1LR. Thus, w ∈ ((xR)−1LR)R.

Now, let w ∈ ((xR)−1LR)R, where x ∈ Ai. Then wR ∈ (xR)−1LR, imply-
ing that wx ∈ L. By Theorem 1, there is some Ai0 ∈ I such that wx ∈
LAi0 ,{Am}(A). By Proposition 2, wx ∈ Ai0 . Since x ∈ Ai, by Lemma 1 we
have wAi ⊆ Ai0 . By Lemma 2, Ai ∈ δ(Ai0 , w), implying that w ∈ LI,Ai(A). ��

112 J. Brzozowski and H. Tamm

Proposition 4. The left language of state Ai of átomaton A is non-empty, that
is, LI,Ai(A) �= ∅, for every i ∈ [m].

Proof. Suppose that LI,Ai(A) = ∅ for some i ∈ [m]. Then by Proposition 3,
((xR)−1LR)R = ∅ for any x ∈ Ai. Then also (xR)−1LR = ∅, implying that for
any w ∈ Σ∗, wx �∈ L. However, since there is some quotient Lj of L, j ∈ [n],
such that Ai ⊆ Lj , and there is an x in Ai, we have x ∈ Lj. Let v ∈ Σ∗ be such
that Lj = v−1L. Then we get vx ∈ L, which is a contradiction. ��
Corollary 1. The átomaton of any regular language is trim.

Next we recall a (slightly modified version of a) theorem from [2]:

Theorem 2. For a trim NFA N , ND is minimal if NR is deterministic.

We have defined a unique NFA, the átomaton, directly from the quotient equa-
tions of a language L, that is, from the minimal DFA recognizing L. In contrast
to this, Sengoku [10] defined a unique NFA starting from any NFA accepting L:
The normal automaton of L is the NFA NRDMTR. Matz and Potthoff [8] (p. 78)
defined an NFA E as the reverse of the trim minimal DFA accepting LR, that is
E = BTR, where B is the minimal DFA accepting LR. We now relate a number
of concepts associated with regular languages:

Theorem 3. Let L be any regular language, and let A be its átomaton.
1. The reverse AR of A is an IDFA.
2. AR is minimal.
3. The determinization AD of A is the minimal DFA of L.
4. The normal NFA NRDMTR of any NFA accepting L is isomorphic to A.
5. Matz and Potthoff’s NFA E is isomorphic to A.
6. A is isomorphic to the quotient IDFA of L if and only if L is bideterministic.

Proof. Suppose that L has the quotients L1, . . . , Ln and atoms A1, . . . , Am.
1. Since A has one accepting state, AR has one initial state. Because atoms

are disjoint, a word w can belong to at most one atom. If w belongs to Ai,
then, by Proposition 2, w ∈ LAi,{Am}(A) and w �∈ LAj ,{Am}(A) if j �= i. Hence
wR ∈ L{Am},Ai

(AR) and wR �∈ L{Am},Aj
(AR) if j �= i. Thus AR is an IDFA.

2. Since A is trim, so is AR. Thus, if AR is not minimal, there must be states
Ai,Aj ∈ Q, Ai �= Aj , such that LAi,I(AR) = LAj ,I(AR). Let Lk = u−1L be
any non-empty quotient of L, where k ∈ [n] and u ∈ Σ∗. Then there are two
possibilities: either u ∈ LI,Ai(A), or u �∈ LI,Ai(A).

In the first case uR ∈ LAi,I(AR), and, since LAi,I(AR) = LAj ,I(AR), we have
uR ∈ LAj ,I(AR), implying that u ∈ LI,Aj (A). Thus, LAi,{Am}(A) ⊆ Lk and
LAj ,{Am}(A) ⊆ Lk. In view of Proposition 2, Ai and Aj are both subsets of Lk.

Now, assume that u �∈ LI,Ai(A). Then, as in the first case, we get u �∈
LI,Aj(A). If LAi,{Am}(A) ⊆ Lk, then ux ∈ L for some x ∈ LAi,{Am}(A). But
then xRuR ∈ LR. Since xR ∈ L{Am},Ai

(AR) and AR is deterministic, we must
have uR ∈ LAi,I(AR). This contradicts the assumption that u �∈ LI,Ai(A). Thus
LAi,{Am}(A) �⊆ Lk, and similarly, LAj,{Am}(A) �⊆ Lk, implying that neither Ai

nor Aj is a subset of Lk.

Theory of Átomata 113

So, for every k ∈ [n], either both atoms Ai and Aj are subsets of Lk or neither
of them is. Since Ai and Aj are distinct, there must be an h such that Ai ⊆ Lh

and Aj ⊆ Lh. This contradicts our earlier conclusion.
3. Since AR is deterministic, AD is minimal by Theorem 2.
4. Let N be any NFA accepting L. The DFA NRDM is the unique minimal

DFA accepting the language LR. By Parts 1 and 2, AR is a minimal IDFA,
and it accepts LR. Since NRDMT is isomorphic to AR, it follows that the normal
automaton NRDMTR is isomorphic to A.

5. Since B is isomorphic to NRDM of Part 4, the claim follows.
6. Let D be the quotient DFA of L, and suppose that A is isomorphic to DT.

By Part 1, AR is an IDFA. Since A is isomorphic to DT, A itself is an IDFA.
Hence A, and so also L, are bideterministic.

Conversely, let B be a trim bideterministic IDFA accepting L.
Since BR is deterministic, BD is minimal by Theorem 2. Since B is a trim

IDFA, we have BDT = B; hence B is isomorphic to the quotient IDFA of L.
Since B is deterministic, BRD is minimal by Theorem 2, that is BRDM = BRD.

Because B is trim, also BR is trim. Since BR is deterministic, we get BRDT =
BRT = BR. Thus BRDMTR = BRDTR = BRR = B is the átomaton of L by Part 4.
Hence B is both the minimal IDFA of L and its átomaton. ��
As noted in [8], for each word w in L there is a unique path in A accepting w,
and deleting any transition from A results in a smaller accepted language. It is
also stated in [8] without proof that the right language Lq,F (N) of any state q
of an NFA N accepting L is a subset of a union of atoms. This holds because
Lq,F (N) is a subset of a (left) quotient of L, and quotients are unions of atoms
by Proposition 1, Part 2.

Theorem 3 provides another method of finding the átomaton of L: simply
trim the quotient DFA of LR and reverse it. In view of this we have

Corollary 2. If L = LR and L is accepted by quotient DFA D, then A = DT.

Example 4. Let L = (b ∪ ba)∗; then LR = (b ∪ ab)∗, and it is accepted by the
minimal DFA D of Fig. 1 (c). Its trimmed reverse is shown in Fig. 1 (d). Hence
the NFA of Fig. 1 (d) is the átomaton of L.

4 Atomic Automata

We now introduce a new class of NFA’s and study their properties.

Definition 2. An NFA N = (Q, Σ, δ, I, F) is atomic if for every state q ∈ Q,
the right language Lq,F (N) of q is a union of some atoms of L(N).

Note that, if Lq,F (N) = ∅, then it is the union of zero atoms.
Recall that an NFA N is residual, if Lq,F (N) is a (left) quotient of L(N)

for every q ∈ Q. Since every quotient is a union of atoms (see Proposition 1,
Part 2), every residual NFA is atomic. However, the converse is not true: there
exist atomic NFA’s which are not residual. For example, the átomaton of Fig. 2

114 J. Brzozowski and H. Tamm

is atomic, but not residual. Note also that every trim DFA is a special case of a
residual NFA; hence every trim DFA is atomic.

Let us now consider the universal automaton UL = (Q, Σ, δ, I, F) of a language
L. We state some basic properties of this automaton based on [7]. Let (X, Y) be
a factorization of L such that X �= ∅ and Y �= ∅. Then

(1) Y =
⋂

x∈X x−1L and X =
⋂

y∈Y Ly−1.
(2) LI,(X,Y)(UL) = X and L(X,Y),F (UL) = Y .
(3) The universal automaton UL accepts L.
To recapitulate what was said above about residual NFA’s and DFA’s, and

also to show that the trim part of the universal automaton is atomic, we have

Theorem 4. Let L be any regular language. The following automata accepting
L are atomic: 1. The átomaton A. 2. Any trim DFA. 3. Any residual NFA.
4. The trim part of the universal automaton UL.

Proof. 1. The right language of every state of A is an atom of L, so A is atomic.
2. The right language of every state of any trim DFA accepting L is a quotient

of L. Since every quotient is a union of atoms, every trim DFA is atomic.
3. The right language of every state of any residual NFA of L is a quotient

of L, and hence a union of atoms. Thus, any residual NFA is atomic.
4. Let (X, Y) be a state of UT

L. Then X, Y �= ∅. By (1) and (2), L(X,Y),F (UL) =⋂
x∈X x−1L. Let L1, . . . , Ln be the quotients of L. Then for some H ⊆ [n],

L(X,Y),F (UL) =
⋂

i∈H Li. Now
⋂

i∈H Li = (
⋂

i∈H Li) ∩ (
⋂

j∈[n]\H(Lj ∪ Lj) =⋃
(
⋂

i∈H Li)∩(
⋂

j∈[n]\H L̃j), where L̃j is either Lj or Lj . Thus the right language
of (X, Y) is a union of atoms of L. Since L(UT

L) = L(UL), and L(UL) = L by
(3), then UT

L is atomic. ��

5 Extension of Brzozowski’s Theorem on Minimal DFA’s

Theorem 2 forms the basis for Brzozowski’s “double-reversal” minimization al-
gorithm [2]: Given any DFA (or IDFA) D, reverse it to get DR, determinize
DR to get DRD, reverse DRD to get DRDR, and then determinize DRDR to get
DRDRD. This last DFA is guaranteed to be minimal by Theorem 2, since DRD is
deterministic. Hence DRDRD is the minimal DFA equivalent to D.

Since this conceptually very simple algorithm carries out two determiniza-
tions, its complexity is exponential in the number of states of the original au-
tomaton in the worst case. However, its performance is good in practice, often
better than Hopcrofts’s algorithm [11,12]. Furthermore, this algorithm applied
to an NFA still yields an equivalent minimal DFA; see [12], for example.

We now generalize Theorem 2:

Theorem 5. For a trim NFA N , ND is minimal if and only if NR is atomic.

Proof. Let N = (Q, Σ, δ, I, F) be any trim NFA, and let NR = (Q, Σ, δR, F, I)
be its reverse. Let the atoms of NR be B1, . . . , Br, and let B be the átomaton
of L(NR).

Theory of Átomata 115

Assume first that ND is minimal. Let q be a state of N , and hence of NR;
since N is trim, so is NR, and there are w, x ∈ Σ∗ such that x ∈ LF,q(NR) and
w ∈ Lq,I(NR). Since Lq,I(NR) ⊆ x−1L(NR), and every quotient of L(NR) is a
union of atoms, there is some i ∈ [r] such that w ∈ Bi.

Suppose that NR is not atomic; then there must be a state q′ ∈ Q which is
not a union of atoms. This means that there is some i ∈ [r] and words u, v ∈ Bi

such that u ∈ Lq′,I(NR) but v �∈ Lq′,I(NR). Suppose that z is in LF,q′(NR).
Since u ∈ z−1L(NR), u ∈ Bi, and z−1L(NR) is a union of atoms, we must have
Bi ⊆ z−1L(NR). But now v ∈ Bi implies that zv ∈ L(NR). Hence there must
be a state q′′ ∈ Q, q′′ �= q′, such that v ∈ Lq′′,I(NR). Therefore, we know that
uR ∈ LI,q′(N), vR �∈ LI,q′(N), and vR ∈ LI,q′′(N).

Now, since every state of ND is a subset of the state set Q of N , there is a
state s′ of ND such that q′ ∈ s′ and uR ∈ LI,s′(ND), and there is a state s′′

of ND such that q′′ ∈ s′′ and vR ∈ LI,s′′(ND). Since vR �∈ LI,q′(N), we have
q′ �∈ s′′, implying that s′ �= s′′.

By Theorem 3, Part 4, (NR)RDMTR = NDMTR is isomorphic to the átomaton
B. By the assumption that ND is minimal, NDTR is isomorphic to B. Thus
Ls′,I(NDTR) = Bk and Ls′′,I(NDTR) = Bl for some k, l ∈ [r]. Since uR ∈
LI,s′(ND), we have u ∈ Ls′,I(NDR) = Ls′,I(NDRT) = Ls′,I(NDTR) = Bk. This
together with u ∈ Bi, yields k = i. Similarly, vR ∈ LI,s′′(ND) and v ∈ Bi, implies
l = i. Thus, Ls′,I(NDTR) = Ls′′,I(NDTR). But then LI,s′(NDT) = LI,s′′(NDT),
which contradicts the inequality s′ �= s′′. Therefore NR is atomic.

To prove the converse, assume that NR is atomic; then, for every state q of
NR, there is a set Hq ⊆ [r] such that Lq,I(NR) =

⋃
i∈Hq

Bi. This implies that
LI,q(N) =

⋃
i∈Hq

BR
i for every state q of N .

Let ND = (S, Σ, γ, I, G), and suppose that ND is not minimal. Then there
are at least two states s′ and s′′ of ND, s′ �= s′′, with Ls′,G(ND) = Ls′′,G(ND).
Let Dm = (Qm, Σ, δm, I, Fm) be a minimal DFA equivalent to ND. Then there
must be a state s of Dm such that Ls,Fm(Dm) = Ls′,G(ND) = Ls′′,G(ND). Then
LI,s′(ND) ⊂ LI,s(Dm) and LI,s′′(ND) ⊂ LI,s(Dm) must also hold.

Since NDM is isomorphic to Dm, and NDMTR is isomorphic to the átomaton
B of L(NR) by Part 4 of Theorem 3, also (Dm)TR is isomorphic to B. Thus
Ls,I((Dm)TR) = Bi for some i ∈ [r]. This implies that LI,s((Dm)T) = BR

i . Thus
LI,s′(ND) ⊂ BR

i .
On the other hand, the left language of state s′ of ND consists of all words u

such that u ∈ LI,q′(N) for every q′ ∈ s′, but u �∈ LI,q(N) for any q �∈ s′. That
is, LI,s′(ND) = (

⋂
q′∈s′

⋃
i∈Hq′

BR
i) \ (

⋃
q �∈s′

⋃
i∈Hq

BR
i). Since by Proposition 1,

Part 1, Bi ∩ Bj = ∅ for all i, j ∈ [r], i �= j, then also BR
i ∩ BR

j = ∅, and the
result of any boolean combination of sets BR

i where i ∈ [r], cannot be a proper
subset of any BR

i . Therefore, LI,s′(ND) ⊂ BR
i cannot hold and thus, ND must

be minimal. ��
Corollary 3. If N is a non-minimal DFA, then NR is not atomic.

Theorem 5 can be rephrased as follows:N is atomic if and only ifNRD is minimal.
Sengoku defines an NFA N to be in standard form [10] if and only if NRD is

116 J. Brzozowski and H. Tamm

minimal, and also shows that the right language of every state of an NFA in
standard form is equal to the union of right languages of some states of the
normal automaton (that is, our átomaton).

6 Conclusions

We have introduced a natural set of languages—the atoms—that are defined
by every regular language. We then defined a unique NFA, the átomaton, and
related it to other known concepts. We introduced atomic automata, and gen-
eralized Brzozowski’s method of minimization of DFA’s by double reversal.

References

1. Arnold, A., Dicky, A., Nivat, M.: A note about minimal non-deterministic
automata. Bull. EATCS 47, 166–169 (1992)

2. Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for def-
inite events. In: Proceedings of the Symposium on Mathematical Theory of Au-
tomata. MRI Symposia Series, vol. 12, pp. 529–561. Polytechnic Press, Polytechnic
Institute of Brooklyn, N.Y (1963)

3. Carrez, C.: On the minimalization of non-deterministic automaton. Technical re-
port, Lille University, Lille, France (1970)

4. Conway, J.: Regular Algebra and Finite Machines. Chapman and Hall, London
(1971)

5. Denis, F., Lemay, A., Terlutte, A.: Residual finite state automata. Fund. Inform. 51,
339–368 (2002)

6. Kameda, T., Weiner, P.: On the state minimization of nondeterministic automata.
IEEE Trans. Comput. C-19(7), 617–627 (1970)

7. Lombardy, S., Sakarovitch, J.: The universal automaton. In: Flum, J., Grädel, E.,
Wilke, T. (eds.) Logic and Automata: History and Perspectives. Texts in Logic
and Games, vol. 2, pp. 457–504. Amsterdam University Press, Amsterdam (2007)

8. Matz, O., Potthoff, A.: Computing small finite nondeterministic automata. In:
Engberg, U.H., Larsen, K.G., Skou, A. (eds.) Proceedings of the Workshop on Tools
and Algorithms for Construction and Analysis of Systems. BRICS Note Series, pp.
74–88. BRICS, Aarhus (1995)

9. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. Res.
and Dev. 3, 114–129 (1959)

10. Sengoku, H.: Minimization of nondeterministic finite automata. Master’s thesis,
Kyoto University, Department of Information Science, Kyoto University, Kyoto,
Japan (1992)

11. Tabakov, D., Vardi, M.: Experimental evaluation of classical automata construc-
tions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835,
pp. 396–411. Springer, Heidelberg (2005)

12. Watson, B.W.: Taxonomies and toolkits of regular language algorithms. PhD thesis,
Faculty of Mathematics and Computing Science. Eindhoven University of Technol-
ogy, Eindhoven, The Netherlands (1995)

Syntactic Complexity of Ideal and Closed

Languages �

Janusz Brzozowski1 and Yuli Ye2

1 David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON, Canada N2L 3G1

{brzozo@uwaterloo.ca }
2 Department of Computer Science, University of Toronto

Toronto, ON, Canada M5S 3G4
{y3ye@cs.toronto.edu}

Abstract. The state complexity of a regular language is the number of
states in the minimal deterministic automaton accepting the language.
The syntactic complexity of a regular language is the cardinality of its
syntactic semigroup. The syntactic complexity of a subclass of regular
languages is the worst-case syntactic complexity taken as a function of
the state complexity n of languages in that class. We prove that nn−1 is
a tight upper bound on the complexity of right ideals and prefix-closed
languages, and that there exist left ideals and suffix-closed languages of
syntactic complexity nn−1 +n−1, and two-sided ideals and factor-closed
languages of syntactic complexity nn−2 + (n− 2)2n−2 + 1.

Keywords: automaton, closed, complexity, ideal, language, monoid, reg-
ular, reversal, semigroup, syntactic.

1 Introduction

There are two fundamental congruence relations in the theory of regular lan-
guages: the Nerode congruence [16], and the Myhill congruence [15]. In both
cases, a language is regular if and only if it is a union of congruence classes of a
congruence of finite index. The Nerode congruence leads to the definitions of left
quotients of a language and the minimal deterministic finite automaton (DFA)
recognizing the language. The Myhill congruence leads to the definitions of the
syntactic semigroup and the syntactic monoid of the language.

The state complexity of a language is the number of states in the minimal
DFA recognizing the language. This concept has been studied quite extensively;
for surveys and references see [4,25]. Syntactic complexity of various types of
graph languages has been studied by Bozapalidis and Kalampakas [1,2,3,11] in
the framework of magmoids. However, in spite of suggestions that syntactic

� This work was supported by the Natural Sciences and Engineering Research Council
of Canada under grant No. OGP0000871 and a Postgraduate Scholarship, and by a
Graduate Award from the Department of Computer Science, University of Toronto.

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 117–128, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

118 J. Brzozowski and Y. Ye

c

c

2

c

0 1
b

bb

c
1

2

0
a

c

a, b
0 1

2

a, b

aa, c

b

a

a

A1

a b, c

A2

a, b, c

A3

c

b

Fig. 1. Automata with various syntactic complexities

semigroups of subsets of free monoids deserve to be studied [9,13], little has
been done on the syntactic complexity of a regular language, which we define as
the cardinality of its syntactic semigroup. This semigroup is isomorphic to the
semigroup of transformations of the set of states of the minimal DFA recognizing
the language, where these transformations are performed by non-empty words.

The following example illustrates the significant difference between state com-
plexity and syntactic complexity. The DFA’s in Fig. 1 have the same alphabet,
are all minimal, and all have the same state complexity. However, the syntactic
complexity of A1 is 3, that of A2 is 9, and that of A3 is 27. This shows that
syntactic complexity is a much finer measure of complexity than state complex-
ity. The question then arises: Is it possible to find upper bounds to the syntactic
complexity of a regular language from its properties or from the properties of its
minimal DFA? We shed some light on this question for ideal and closed regular
languages.

The set of all nn transformations of a set Q is a monoid under composition of
transformations, with identity as the unit element. The set of all n! permutations
of Q is a group, the symmetric group of degree n. The fact that two generators
are sufficient to form a basis for the set of all permutations of a set of n elements
has been known for many years. For example, such a result is stated in the
1895 paper by Hoyer [10], and later in the 1938 paper by Piccard [18]. The fact
that three functions suffice to generate all transformations of a set of n elements
was proved in 1935 by Piccard [17]. Also in 1935, Eilenberg showed that no
two functions suffice, as reported by Sierpiński [24]. Related later work includes
that of Salomaa (1960-63) [20,21,22] and Dénes (1968) [8]. In 1970, Maslov [14]
dealt with the generators of the semigroup of all transformations in the setting
of finite automata. Holzer and König [9], and independently Krawetz, Lawrence
and Shallit [12] studied the syntactic complexity of automata with unary and
binary alphabets. See also the recent work in [13,23].

The state complexity in prefix-, suffix-, factor-, and subword-closed languages
was studied in 2010 by Brzozowski, Jirásková and Zou [6]. A study of state
complexity in ideal languages was done in 2010 by Brzozowski, Jirásková and
Li [5]. We refer the reader to these papers for a discussion of past work on this
topic and additional references. Closed languages are related to ideal languages
as follows: A non-empty language is a right (left, two-sided) ideal if and only its
complement is a prefix(suffix, factor)-closed language. Since syntactic complexity
is preserved under complementation, our proofs use ideals only.

Syntactic Complexity of Ideal and Closed Languages 119

In Section 2 we define our terminology and notation, and some basic proper-
ties of syntactic complexity are given in Section 3. The syntactic complexity of
right, left, and two-sided ideals is treated in Sections 4–6, some comments about
reversal are in Section 7, and Section 8 concludes the paper. For a full version
of this paper and omitted proofs see [7].

2 Preliminaries

If Σ is a non-empty finite alphabet, then Σ∗ is the free monoid generated by
Σ, and Σ+ is the free semigroup generated by Σ. A word is any element of Σ∗,
and the empty word is ε. The length of a word w ∈ Σ∗ is |w|. A language over
Σ is any subset of Σ∗.

If w = uxv for some u, v, x ∈ Σ∗, then u is a prefix of w, v is a suffix of w,
and x is a factor of w. A prefix or suffix of w is also a factor of w. A language
L is prefix-closed if w ∈ L implies that every prefix of w is also in L. In an
analogous way, we define suffix-closed and factor-closed. A language L ⊆ Σ∗

is a right ideal (respectively, left ideal, two-sided ideal) if it is non-empty and
satisfies L = LΣ∗ (respectively, L = Σ∗L, L = Σ∗LΣ∗). We refer to all three
types as ideal languages or simply ideals.

A transformation of a set Q is a mapping of Q into itself, whereas a per-
mutation of Q is a mapping of Q onto itself. In this paper we consider only
transformations of finite sets, and we assume without loss of generality that
Q = {0, 1, . . . , n− 1}. An arbitrary transformation has the form

t =
(

0 1 · · · n − 2 n − 1
i0 i1 · · · in−2 in−1

)
,

where ik ∈ Q for 0 � k � n− 1. The image of element i under transformation t
will be denoted by it. The identity transformation maps each element to itself,
that is, it = i for i = 0, . . . , n−1. A transformation t contains a cycle of length k if
there exist elements i1, . . . , ik such that i1t = i2, i2t = i3, . . . , ik−1t = ik, ikt = i1.
A cycle is denoted by (i1, i2, . . . , ik). For i < j, a transposition is the cycle (i, j),
and (i, i) is the identity. A singular transformation, denoted by

(
i
j

)
, has it = j,

and ht = h for all h �= i, and
(
i
i

)
is the identity. A constant transformation,

denoted by
(
Q
j

)
, has it = j for all i. The following facts are well-known:

Theorem 1. The complete transformation monoid Tn of size nn can be gener-
ated by any cyclic permutation of n elements together with a transposition and
a “returning” transformation r =

(
n−1

0

)
. In particular, Tn can be generated by

c = (0, 1, . . . , n− 1), t = (0, 1) and r =
(
n−1

0

)
.

The left quotient, or simply quotient, of a language L by a word w is the
language Lw = {x ∈ Σ∗ | wx ∈ L}. An equivalence relation ∼ on Σ∗ is a
left congruence if, for all x, y ∈ Σ∗, x ∼ y ⇔ ux ∼ uy, for all u ∈ Σ∗. It is
a right congruence if, for all x, y ∈ Σ∗, x ∼ y ⇔ xv ∼ yv, for all v ∈ Σ∗.

120 J. Brzozowski and Y. Ye

It is a congruence if it is both a left and a right congruence. Equivalently, ∼ is
a congruence if x ∼ y ⇔ uxv ∼ uyv, for all u, v ∈ Σ∗.

For any language L ⊆ Σ∗, define the Nerode congruence [16] →L of L by

x →L y if and only if xv ∈ L ⇔ yv ∈ L, for all u, v ∈ Σ∗. (1)

Evidently, Lx = Ly if and only if x →L y. Thus, each equivalence class of this
congruence corresponds to a distinct quotient of L.

The Myhill congruence [15] ↔L of L is defined by

x ↔L y if and only if uxv ∈ L ⇔ uyv ∈ L for all u, v ∈ Σ∗. (2)

This congruence is also known as the syntactic congruence of L. The semigroup
Σ+/ ↔L of equivalence classes of the relation ↔L , is the syntactic semigroup
of L, and Σ∗/ ↔L is the syntactic monoid of L. The syntactic complexity σ(L)
of L is the cardinality of its syntactic semigroup. The monoid complexity μ(L)
of L is the cardinality of its syntactic monoid. If the equivalence class of ε is a
singleton in the syntactic monoid, then σ(L) = μ(L)−1; otherwise, σ(L) = μ(L).

A (deterministic) semiautomaton is a triple, S = (Q, Σ, δ), where Q is a finite,
non-empty set of states, Σ is a finite non-empty alphabet, and δ : Q×Σ → Q is
the transition function. A deterministic finite automaton (DFA) is a quintuple
A = (Q, Σ, δ, q0, F), where Q, Σ, and δ are as defined in the semiautomaton
S = (Q, Σ, δ), q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states.
By the language of a state q of A we mean the language L(Aq) accepted by the
automaton Aq = (Q, Σ, δ, q, F). States p and q are equivalent if L(Ap) = L(Aq).
A DFA is minimal if every state is reachable from the initial state, and no two
states are equivalent.

The ε-function Lε of a regular language L is Lε = ∅ if ε �∈ L; Lε = {ε} if
ε ∈ L. The quotient automaton of a regular language L is A = (Q, Σ, δ, q0, F),
where Q = {Lw | w ∈ Σ∗}, δ(Lw, a) = Lwa, q0 = Lε = L, F = {Lw | Lε

w = {ε}},
and Lε

w = (Lw)ε. The number of states in the quotient automaton of L is the
quotient complexity κ(L) of L. The quotient complexity is the same as the state
complexity, but there are advantages to using quotients [4].

In terms of automata, each equivalence class [w] →L is the set of words w that
take the automaton to the same state from the initial state. In terms of quotients,
it is the set of words w that can all be followed by the same quotient Lw. In
terms of automata, each equivalence class [w] ↔L of the syntactic congruence is
the set of all words that perform the same transformation on the set of states.

3 Basic Properties of Syntactic Complexity

The transformation semigroup of an automaton is the set of transformations
performed by words of Σ+ on the set of states. The transformation semigroup
of the quotient automaton of L is isomorphic to the syntactic semigroup of L.

Proposition 1. For any L ⊆ Σ∗ with κ(L) = n > 1, n− 1 � σ(L) � nn.

Syntactic Complexity of Ideal and Closed Languages 121

Proof. Let A = (Q, Σ, δ, q0, F) be the quotient automaton of L. Since every state
other than q0 has to be reachable from the initial state by a non-empty word,
there must be at least n− 1 transformations. If Σ = {a} and L = an−1a∗, then
κ(L) = n, and σ(L) = n− 1; so the lower bound n− 1 is achievable. The upper
bound is nn, and by Theorem 1 this upper bound is achievable if |Σ| � 3. ��
If one of the quotients of L is ∅ (respectively, {ε}, Σ∗, Σ+), then we say that
L has ∅ (respectively, {ε}, Σ∗, Σ+). A quotient Lw of a language L is uniquely
reachable (ur) [4] if Lx = Lw implies that x = w. If Lwa is uniquely reachable for
a ∈ Σ, then so is Lw. Thus, if L has a uniquely reachable quotient, then L itself
is uniquely reachable by ε, i.e., the minimal automaton of L is non-returning.

Theorem 2 (Special Quotients). Let L ⊆ Σ∗ and let κ(L) = n � 1.
1. If L has ∅ or Σ∗, then σ(L) � nn−1.
2. If L has {ε} or Σ+, then σ(L) � nn−2.
3. If L is uniquely reachable, then σ(L) � (n− 1)n.
4. If La is uniquely reachable for some a ∈ Σ, then σ(L) � 1 + (n − 2)n.
Moreover, all the bounds shown in Table 1 hold.

Table 1. Upper bounds on syntactic complexity for languages with special quotients

∅ Σ∗ {ε} Σ+ L is ur La is ur√
nn−1 (n− 1)n−1 1 + (n− 3)n−2

√
nn−1 (n− 1)n−1 1 + (n− 3)n−2

√ √
nn−2 (n− 1)n−2 1 + (n− 4)n−2

√ √
nn−2 (n− 1)n−2 1 + (n− 4)n−2

√ √
nn−2 (n− 1)n−2 1 + (n− 4)n−2

√ √ √
nn−3 (n− 1)n−3 1 + (n− 5)n−2

√ √ √
nn−3 (n− 1)n−3 1 + (n− 5)n−2

√ √ √ √
nn−4 (n− 1)n−4 1 + (n− 6)n−2

Proof. Suppose that L ⊆ Σ∗, n � 1, and κ(L) = n.
1. Since ∅a = ∅ for all a ∈ Σ, there are only n − 1 states in the quotient

automaton with which one can distinguish two transformations. Hence there are
at most nn−1 transformations. If L has Σ∗, then (Σ∗)a = Σ∗, for all a ∈ Σ, and
the same argument applies.

2. Since {ε}a = ∅ for all a ∈ Σ, L has ∅ if L has {ε}. Now there are two
states that do not contribute to distinguishing among different transformations.
Dually, (Σ+)a = Σ∗ for all a ∈ Σ, and the same argument applies.

3. If L is uniquely reachable then Lw = L implies w = ε. Thus L does not
appear in the image of any transformation by a word in Σ+, and there remain
only n− 1 choices for each of the n states.

4. If La is uniquely reachable, then so is L. Hence L never appears and La

appears only in one transformation. Therefore there can be at most (n − 2)n

other transformations.
The remaining entries in Table 1 are easily verified. ��

122 J. Brzozowski and Y. Ye

4 Right Ideals and Prefix-Closed Languages

In this section we characterize the syntactic complexity of right ideals. The DFA
of Fig. 2 plays an important role here. For n � 4, let An = (Qn, Σ, δ, 0, {n−1}),
where Qn = {0, 1, . . . , n − 1}, Σ = {a, b, c, d}, a = (0, 1, . . . , n − 2), b = (0, 1),
c =

(
n−2

0

)
, and d =

(
n−2
n−1

)
. This DFA accepts a right ideal and is minimal.

b

0 1 2 n − 1n − 2
a a aa, b

n − 3

c, d c, d b, c, d b, c, d a, b, c, d

· · · a

b

d

a, c

Fig. 2. Automaton An of a right ideal with nn−1 transformations

Theorem 3 (Right Ideals and Prefix-Closed Languages). Suppose that
L ⊆ Σ∗ and κ(L) = n. If L is a right ideal or a prefix-closed language, then
σ(L) � nn−1. Moreover, this bound is tight for n = 1 if |Σ| � 1, for n = 2 if
|Σ| � 2, for n = 3 if |Σ| � 3, and for n � 4 if |Σ| � 4.

Proof. If L is a right ideal, it has Σ∗ as a quotient. By Theorem 2, σ(L) � nn−1.
For n = 1, n = 2, and n = 3, the languages a∗, b∗a{a, b}∗ and A3 restricted

to alphabet {a, c, d}, respectively, meet the bound.
Next we prove that the language L(An) accepted by the automaton of Fig. 2

meets this bound for n � 4. Consider any transformation t of the form

t =
(

0 1 2 · · · n− 3 n− 2 n− 1
i0 i1 i2 · · · in−3 in−2 n− 1

)
,

where ik ∈ {0, 1, . . . , n− 1} for 0 � k � n− 2. There are two cases:
1. Suppose ik �= n − 1 for all k, 0 � k � n − 2. By Theorem 1, since all the
images of the first n − 1 states are in {0, 1, . . . , n − 2}, An can do t.
2. If ih = n−1 for some h, 0 � h � n−2, then there exists some j, 0 � j � n−2
such that ik �= j for all k, 0 � k � n − 2. Define i′k for all 0 � k � n − 2 as
follows: i′k = j if ik = n− 1, and i′k = ik if ik �= n− 1. Then let

s =
(

0 1 2 · · · n − 3 n − 2 n − 1
i′0 i′1 i′2 · · · i′n−3 i′n−2 n − 1

)
.

Also, let r = (j, n − 2). Since all the images of the first n − 1 states in s and r
are in {0, 1, . . . , n − 2}, by Theorem 1, s and r can be performed by An.

We show now that t = srdr, which implies that t can also be performed by An.
If kt = n− 1, then ks = j, jr = n− 2, (n− 2)d = n− 1, and (n− 1)r = n− 1. If
kt = n−2, then n−2 �= j. Now ks = n−2, (n−2)r = j, jd = j, and jr = n−2.
If kt = ik < n− 2, then also k(srdr) = ik. In all cases t = srdr.

Since there are nn−1 transformations like t, L(An) meets the bound. ��

Syntactic Complexity of Ideal and Closed Languages 123

Table 2. Syntactic complexity bounds for right ideals

n = 1 n = 2 n = 3 n = 4 n = 5 . . . n = n

|Σ| = 1 1 1 2 3 4 . . . n − 1

|Σ| = 2 − 2 7 31 167 . . . ?

|Σ| = 3 − − 9 61 545 . . . ?

|Σ| = 4 − − − 64 625 . . . nn−1

Table 2 summarizes our result for right ideals. All the bounds are tight. The
bounds for n � 5 have all been verified by a computer program.

5 Left Ideals and Suffix-Closed Languages

We provide strong support for the following conjecture:

Conjecture 1 (Left Ideals and Suffix-Closed Languages). If L is a left
ideal or a suffix-closed language with κ(L) = n � 1, then σ(L) � nn−1 + n− 1.

We show that the bound can be reached, but first we recall a result from [19].
Consider a semiautomaton S = (P ∪{0}, Σ, δ), where 0 is a sink state, meaning
that δ(0, a) = 0 for all a ∈ Σ, and P is strongly connected. Such a semiautomaton
is uniformly minimal if the automaton A = (P ∪ {0}, Σ, δ, q0, F) is minimal for
every q0 ∈ P and every F such that ∅ �= F ⊆ P . One can test whether a
semiautomaton is uniformly minimal by the method of [19].

Let n � 3, and Sn = (Q, Σ, δ), where Q = {0, . . . , n − 1}, Σ = {a, b, c, d, e},
a = (1, 2, . . . , n−1), b = (1, 2), c =

(
n−1

1

)
, d =

(
n−1

0

)
, and e =

(
Q
1

)
; see Fig. 3. For

n = 3, a and b coincide; then we use Σ = {b, c, d, e}. Let Σ′ = Σ \{e} and let Rn

be the semiautomaton Rn = (Q, Σ′, δ′), where Q = P ∪{0}, P = {1, . . . , n−1},
and δ′ is the restriction of δ to Q×Σ′. Note that 0 is a sink state of Rn.

a, c, e

0 1 n − 2
a

2 3 n − 1

a, b, c, d b, c, d b, c, d

e a a aa, b

b, e

c, d, e

· · ·

bc, d

e

e

d

Fig. 3. Semiautomaton Sn with nn−1 + n− 1 transformations

Lemma 1. The set P is strongly connected and Rn is uniformly minimal.

Proof. Since a is a cycle of the states in P , Rn is strongly connected. It can be
shown that Rn is uniformly minimal by using a state-pair graph as in [19]. ��

124 J. Brzozowski and Y. Ye

Theorem 4 (Left Ideals and Suffix-Closed Languages). For n � 3, let
Bn = (Q, Σ, δ, 0, F), where (Q, Σ, δ) = Sn of Fig. 3, and F is any non-empty
subset of Q \ {0}. Then Bn is minimal, and the language L = L(Bn) accepted by
Bn is a left ideal and has syntactic complexity σ(L) = nn−1 + n− 1.

Proof. Since semiautomaton Rn is uniformly minimal, automaton Bn is minimal
for every choice of F . Hence L has n quotients.

To prove that L is a left ideal it suffices to show that, for any w ∈ L, we also
have hw ∈ L for every h ∈ Σ. This is obvious if h ∈ Σ \ {e}, since all transitions
from state 0 under h lead to state 0. If w ∈ L, then w has the form w = uev,
where δ(0, u) = 0, δ(0, ue) = 1, and v ∈ Le. But δ(0, eue) = 1, since δ(i, eue) = 1
for all i ∈ Q, and v ∈ Le gives us euev = ew ∈ L. Thus L is a left ideal.

Consider any transformation t of the form

t =
(

0 1 2 · · · n− 3 n− 2 n− 1
0 i1 i2 · · · in−3 in−2 in−1

)
,

where ik ∈ {0, . . . , n−1} for 1 � k � n−1; there are nn−1 such transformations.
We have two cases:
1. If ik �= 0 for all k, 1 � k � n − 1, then all the images of the last n − 1 states
are in the set {1, . . . , n− 1}. By Theorem 1, t can be performed by Bn.
2. If ih = 0 for some h, 1 � h � n − 1, then there exists some j, 1 � j � n − 1
such that ik �= j for all k, 1 � k � n − 1. Define i′k for all 1 � k � n − 1 as
follows: i′k = j if ik = 0, and i′k = ik, otherwise. Let

s =
(

0 1 2 · · · n− 3 n− 2 n − 1
0 i′1 i′2 · · · i′n−3 i′n−2 i′n−1

)
,

and r = (j, n − 1). By Theorem 1, s and r can be performed by Bn.
Now consider srdr. If kt = 0, then ks = j, jr = n − 1, (n − 1)d = 0, and

0r = 0. If kt = n − 1, then ks = n − 1, (n − 1)r = j, jd = j, and jr = n − 1.
Finally, if kt is a state other than 0 or n − 1, then srdr maps k to that same
state. Hence we have t = srdr, and t can be performed by Bn as well.

Now consider any transformation t =
(
Q
j

)
that maps all the states to some

state j �= 0; there are n− 1 such transformations. We have two cases:
1. If j = 1, then t = e; therefore t can be performed by Bn.
2. Otherwise, let s = (1, j). By Theorem 1, s can be performed by Bn. Since
t = es, t can also be performed by Bn as well.

There are no other transformations, since e maps all the states to 1. ��
Before considering the cases n � 3, we require some auxiliary results. Let

A = (Q, Σ, δ, q0, F) be the quotient automaton of a left ideal. For every word
w ∈ Σ∗, consider the sequence q0 = p0, p1, p2 . . . of states obtained by applying
powers of w to the initial state q0, that is, let pi = δ(q0, w

i). Since A has n states,
we must eventually have a repeated state in that sequence, that is, we must have
some i and j > i such that p0, p1, . . . , pi, pi+1, . . . pj−1 are distinct and pj = pi.
The sequence q0 = p0, p1, . . . , pi, pi+1, . . . pj−1 of states with pj = pi is called the

Syntactic Complexity of Ideal and Closed Languages 125

Table 3. Syntactic complexity bounds for left ideals

n = 1 n = 2 n = 3 n = 4 n = 5 n = n

|Σ| = 1 1 1 2 3 4 . . . n − 1

|Σ| = 2 − 2 7 17 34 . . . ?

|Σ| = 3 − 3 9 25 65 . . . ?

|Σ| = 4 − − 11 64 453 . . . ?

|Σ| = 5 − − − 67 629 . . . nn−1 + n− 1

behavior of w on A, and the integer j − i is the period of that behavior. We will
use the notation 〈p0, p1, . . . , pi, pi+1, . . . pj−1; pj = pi〉 for such behaviors. If the
period of w is 1, then its behavior is aperiodic; otherwise, it is periodic.

Lemma 2. If A is the quotient automaton of a left ideal L, then the behavior of
every word w ∈ Σ∗ is aperiodic. Moreover, L does not have the empty quotient.

Proof. Suppose that w has the behavior 〈q0 = p0, p1, . . . , pi, pi+1, . . . pj−1; pj =
pi〉, where j − i � 2; then j − 1 � i + 1. Since A is minimal, states pi and
pj−1 must be distinguishable, say by word x ∈ Σ∗. If wix ∈ L, then wj−1x =
wiwj−i−1x = wj−i−1(wix) �∈ L, contradicting the assumption that L is a left
ideal. If wj−1x ∈ L, then wjx = w(wj−1x) �∈ L, again a contradiction.

For the second claim, a left ideal is non-empty by definition. If w ∈ L and L
has the empty quotient, say Lx = ∅, then xw �∈ L, which is a contradiction. ��
Theorem 5 (Left Ideals and Suffix-Closed Languages for n � 3). If 1 �
n � 3 and L is a left ideal or a suffix-closed language with κ(L) = n, then
σ(L) � nn−1 +n−1. Moreover, the bound is tight for n = 1 if |Σ| � 1, for n = 2
if |Σ| � 3, and for n = 3 if |Σ| � 4.

Table 3 summarizes our results. The figures in bold type are tight bounds,
verified by a computer program.

6 Two-Sided Ideals and Factor-Closed Languages

Conjecture 2 (Two-Sided Ideals and Factor-Closed Languages). If L is
a two-sided ideal or a factor-closed language with κ(L) = n � 2, then σ(L) �
nn−2 + (n − 2)2n−2 + 1.

We show that this complexity can be met. For n = 2 and Σ = {a, b}, Σ∗aΣ∗

meets the bound. For n = 3 and Σ = {a, b, c}, (b + c + ac∗b)∗ac∗aΣ∗ meets the
bound. Now let n � 4, and let Cn = (Q, Σ, δ, 0, {n−1}), where Q = {0, . . . , n−1},
Σ = {a, b, c, d, e, f}, a = (1, 2, . . . , n − 2), b = (1, 2), c =

(
n−2

1

)
, d =

(
n−2

0

)
,

δ(i, e) = 1 for i = 0, . . . , n− 2 and δ(n− 1, e) = n− 1, and f =
(

1
n−1

)
. For n = 4,

a and b coincide.

Theorem 6 (Two-Sided Ideals and Factor-Closed Languages). DFA Cn

is minimal and L = L(Cn) is a two-sided ideal with σ(L) = nn−2+(n−2)2n−2+1.

126 J. Brzozowski and Y. Ye

Proof. For i = 1, . . . , n − 2, state i is the only non-final state that accepts
an−1−if ; hence all these states are distinguishable. State 0 is distinguishable from
these states because it does not accept any words in a∗f . Hence Cn is minimal.
The proof that Cn is a left ideal is like that in Theorem 4. Since Lef = Σ∗ is the
only accepting quotient, L is a right ideal. Hence it is two-sided.

First consider any transformation t of the form

t =
(

0 1 2 · · · n− 3 n− 2 n− 1
0 i1 i2 · · · in−3 in−2 n− 1

)
,

where ik ∈ {0, 1, 2, . . . , n − 2, n − 1} for 1 � k � n − 2; there are nn−2 such
transformations. We have two cases:

1. If ik �= n− 1 for all k, 1 � k � n− 2, then all the images of the first n− 2
states are in the set {0, . . . , n− 2}. Without input f and state n− 1 we have the
semiautomaton of Theorem 4. By that theorem, t can be done by Cn.

2. If ih = n − 1 for some h, 1 � h � n − 2, then there exists some j,
1 � j � n − 2 such that ik �= j for all k, 1 � k � n − 2. Define i′k for all
1 � k � n− 2 as follows: i′k = j if ik = n− 1, and i′k = ik if ik �= n− 1. Let

s =
(

0 1 2 · · · n− 3 n− 2 n − 1
0 i′1 i′2 · · · i′n−3 i′n−2 n − 1

)
,

and let r = (1, j). By Theorem 4, s and r can be performed by Cn.
Now consider srfr. If kt = n − 1, then ks = j, jr = 1, 1f = n − 1, and

(n − 1)r = n − 1. If kt = 1, then ks = 1, 1r = j, jf = j, and jr = 1. Finally, if
t maps k to a state other than 1 or n− 1, then srfr maps k to the same state.
Hence we have t = srfr, and t can be performed by Cn as well.

Next, refer to states in {1, . . . , n − 2} as the middle states. Take any trans-
formation t that maps 0 to h ∈ {1, . . . , n− 2}, and every middle state to either
{n− 1} or to h. There are (n− 2)2n−2 such transformations. First consider any
middle entry i that is mapped to n − 1 by t. We can map i to n − 1 without
changing any other states. First, apply an−1−i to “rotate all the middle states
clockwise”, so that i is mapped to 1. Then apply f to map i to n− 1, and then
ai to return all the states other than n − 1 to their original positions. This is
repeated for all the middle states that are mapped to n − 1 by t. After this is
done, apply e to replace all the remaining middle states by 1, and apply ah−1 to
change 1 to h. Hence t can be done.

Finally, the constant transformation
(

Q
n−1

)
is done by ef .

In summary, if L = L(Cn) then σ(L) � nn−2 + (n− 2)2n−2 + 1.
If 0 is mapped to a middle state i, then the input word must contain an e.

But every word of the form xe leaves the automaton in a state in {1, n − 1}.
Applying any other word can only result in a state in {i, n−1}, for some middle
state i. Hence no transformations other than the ones we have considered can
be done by Cn, and the syntactic complexity of the language accepted by Cn is
precisely nn−2 + (n − 2)2n−2 + 1. ��
Table 4 summarizes our results for two-sided ideals.

Syntactic Complexity of Ideal and Closed Languages 127

Table 4. Syntactic complexity bounds for two-sided ideals

n = 1 n = 2 n = 3 n = 4 n = 5 n = n

|Σ| = 1 1 1 2 3 4 . . . n − 1

|Σ| = 2 − 2 5 11 19 . . . ?

|Σ| = 3 − − 6 16 47 . . . ?

|Σ| = 4 − − − 23 90 . . . ?

|Σ| = 5 − − − 25 147 . . . ?

|Σ| = 6 − − − − 150 . . . nn−2 + (n− 2)2n−2 + 1

7 Reversal

It is interesting to note that, for our ideals with maximal syntactic complexity,
the reverse languages have maximal state complexity. It was shown in [5] that
the reverse of a right (left, two-sided) ideal with n quotients has at most 2n−1

(2n−1 + 1, 2n−2 + 1) quotients, and that these bounds can be met.

Theorem 7. If L(An), L(Bn) and L(Cn) are the languages in Theorems 3,
4, and 6, then their reverses have 2n−1, 2n−1 + 1, and 2n−2 + 1 quotients,
respectively.

8 Conclusions

Despite the fact that the Myhill congruence has left-right symmetry, there are
significant differences between left and right ideals. The major open problem is
the upper bound for left ideals. Also, the relation between syntactic complexity
and reversal deserves further study.

Acknowledgment. We thank Arto Salomaa for providing some early references.

References

1. Bozapalidis, S., Kalampakas, A.: Recognizability of graph and pattern languages.
Acta Inform. 42(8/9), 553–581 (2006)

2. Bozapalidis, S., Kalampakas, A.: On the complexity of the syntax of tree languages.
In: Bozapalidis, S., Rahonis, G. (eds.) CAI 2009. LNCS, vol. 5725, pp. 189–203.
Springer, Heidelberg (2009)

3. Bozapalidis, S., Kalampakas, A.: On the syntactic complexity of tree series.
RAIRO-Theor. Inf. Appl. 44, 257–279 (2010)

4. Brzozowski, J.: Quotient complexity of regular languages. In: Dassow, J.,
Pighizzini, G., Truthe, B. (eds.) Proceedings of the 11th International Workshop on
Descriptional Complexity of Formal Systems, DCFS, pp. 25–42 (2009), Extended
abstract at http://arxiv.org/abs/0907.4547

5. Brzozowski, J., Jirásková, G., Li, B.: Quotient complexity of ideal languages. In:
López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 208–221. Springer, Hei-
delberg (2010), Full paper at http://arxiv.org/abs/0908.2083

http://arxiv.org/abs/0907.4547
http://arxiv.org/abs/0908.2083

128 J. Brzozowski and Y. Ye

6. Brzozowski, J., Jirásková, G., Zou, C.: Quotient complexity of closed languages. In:
Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 84–95. Springer,
Heidelberg (2010)

7. Brzozowski, J., Ye, Y.: Syntactic complexity of ideal and closed languages (October
2010), http://arxiv.org/abs/1010.3263

8. Dénes, J.: On transformations, transformation semigroups and graphs. In: Erdös,
P., Katona, G. (eds.) Theory of Graphs. Proceedings of the Colloquium on Graph
Theory held at Tihany, 1966, pp. 65–75. Akadémiai Kiado (1968)

9. Holzer, M., König, B.: On deterministic finite automata and syntactic monoid size.
Theoret. Comput. Sci. 327, 319–347 (2004)

10. Hoyer, M.: Verallgemeinerung zweier sätze aus der theorie der substitutionengrup-
pen. Math. Ann. 46(4), 539–544 (1895)

11. Kalampakas, A.: The syntactic complexity of eulerian graphs. In: Bozapalidis, S.,
Rahonis, G. (eds.) CAI 2007. LNCS, vol. 4728, pp. 208–217. Springer, Heidelberg
(2007)

12. Krawetz, B., Lawrence, J., Shallit, J.: State complexity and the monoid of trans-
formations of a finite set (2003), http://arxiv.org/abs/math/0306416

13. Krawetz, B., Lawrence, J., Shallit, J.: State complexity and the monoid of trans-
formations of a finite set. Internat. J. Found. Comput. Sci. 16(3), 547–563 (2005)

14. Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad.
Nauk SSSR 194, 1266–1268 (1970) (Russian); English translation: Soviet Math.
Dokl. 11 , 1373–1375 (1970)

15. Myhill, J.: Finite automata and representation of events. Wright Air Development
Center Technical Report 57–624 (1957)

16. Nerode, A.: Linear automaton transformations. Proc. Amer. Math. Soc. 9, 541–544
(1958)

17. Piccard, S.: Sur les fonctions définies dans les ensembles finis quelconques. Fund.
Math. 24, 298–301 (1935)

18. Piccard, S.: Sur les bases du groupe symétrique et du groupe alternant. Commen-
tarii Mathematici Helvetici 11(1), 1–8 (1938)

19. Restivo, A., Vaglica, R.: Automata with extremal minimality conditions. In: Gao,
Y., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 399–410. Springer,
Heidelberg (2010)

20. Salomaa, A.: A theorem concerning the composition of functions of several variables
ranging over a finite set. J. Symbolic Logic 25, 203–208 (1960)

21. Salomaa, A.: Some completeness criteria for sets of functions over a finite domain.
Ann. Univ. Turkuensis, Ser. AI 53 (1962)

22. Salomaa, A.: On basic groups for the set of functions over a finite domain. Ann.
Acad. Scient. Fenn., Ser. A 338 (1963)

23. Salomaa, A.: Composition sequences for functions over a finite domain. Theoret.
Comput. Sci. 292, 263–281 (2003)

24. Sierpiński, X.: Sur les suites infinies de fonctions définies dans les ensembles quel-
conques. Fund. Math. 24, 209–212 (1935)

25. Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221–234
(2001)

http://arxiv.org/abs/1010.3263
http://arxiv.org/abs/math/0306416

Generalized One-Unambiguity

Pascal Caron1, Yo-Sub Han2,�, and Ludovic Mignot1

1 LITIS, Université de Rouen, 76801 Saint-Étienne du Rouvray Cedex, France
{pascal.caron,ludovic.mignot}@univ-rouen.fr

2 Dept. of Computer Science, Yonsei University, Seoul 120-749, Republic of Korea
emmous@cs.yonsei.ac.kr

Abstract. Brüggemann-Klein and Wood have introduced a new family
of regular languages, the one-unambiguous regular languages, a very im-
portant notion in XML DTDs. A regular language L is one-unambiguous
if and only if there exists a regular expression E over the operators of
sum, catenation and Kleene star such that L(E) = L and the position
automaton of E is deterministic. It implies that for a one-unambiguous
expression, there exists an equivalent linear-size deterministic recognizer.
In this paper, we extend the notion of one-unambiguity to weak one-
unambiguity over regular expressions using the complement operator ¬.
We show that a DFA with at most (n+ 2) states can be computed from
a weakly one-unambiguous expression and that it is decidable whether
or not a given DFA recognizes a weakly one-unambiguous language.

1 Introduction

Regular expressions are basic tools for numerous domains such as pattern-match-
ing or electronic document specification. A regular expression is a compact rep-
resentation for a set of words. A recurrent question is the membership problem
which is to decide whether or not a word belongs to the language denoted by an
expression. This problem can be solved by computing a recognizer called automa-
ton from a regular expression. One of the best-known automata construction is
the position construction [6,9]. If a regular expression E has n occurrences of
symbols, then the corresponding position automaton, which is not necessarily
deterministic, has exactly (n+1) states. There always exists a deterministic rec-
ognizer equivalent to the position automaton but its size can be exponentially
larger.

Brüggemann-Klein and Wood [3] introduced a subfamily of regular languages
called one-unambiguous regular languages: A regular language is one-unambiguous
if and only if there exists an equivalent regular expression the position automa-
ton of which is deterministic. XML DTDs are specified by extended context-free
grammars in which the right-hand side of the productions (content models) are
one-unambiguous [2]. These content models allow efficient compiling and testing.
It turned out that one-unambiguity is very important in XML DTDs. Therefore it
� Han was supported by the Basic Science Research Program through NRF funded by

MEST (2010-0009168).

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 129–140, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

130 P. Caron, Y.-S. Han, and L. Mignot

is important to investigate the properties of one-unambiguous regular languages.
One-unambiguous regular languages are strictly included into regular languages.
We want to expand the size of the family of expressions for which there exists
a method to compute a deterministic linear-size recognizer. In this purpose, we
study generalized expressions since they often enable us to write more compact
regular expressions. For instance, Gelade and Neven [4,5] have shown that the size
of the smallest regular expression without intersection operators for the intersec-
tion of two languages denoted by simple regular expressions can be exponential.

In Section 2, we define some basic notions. We demonstrate in Section 3 that
one-unambiguous regular languages are closed neither under intersection nor un-
der complement. Note that Brüggemann-Klein and Wood [3] have shown that
one-unambiguous regular languages are closed neither under union, catenation
nor under Kleene star. A new family of regular languages closed under comple-
ment and containing the one-unambiguous regular languages is then introduced
in Section 4. We define weakly one-unambiguous regular expressions and show
that a linear-size recognizer can be computed from such an expression. We then
structurally characterize the minimal DFA of weakly one-unambiguous regular
languages.

2 Preliminaries

A deterministic finite automaton (DFA) A = (Σ, Q, i, F, δ) is a 5-tuple defined
by Σ a finite set of symbols called the alphabet, Q a finite set of states, i ∈
Q the initial state, F ⊂ Q the set of final states and δ : Q × Σ → Q the
transition function. The function δ is equivalent to the set defined by: (q, a, q′) ∈
δ if and only if q′ = δ(q, a). The function δ is extended to 2Q × Σ∗ → 2Q as
follows: ∀P ⊂ Q, ∀a ∈ Σ, ∀w ∈ Σ∗, δ(P, ε) = P , δ(P, a) =

⋃
p∈P δ(p, a) and

δ(P, a · w) = δ(δ(P, a), w). The automaton A recognizes the language L(A) =
{w ∈ Σ∗ | δ(i, w) ∈ F}. The set of recognizable languages defined by {L |
∃A a DFA, L(A) = L} is written Rec(Σ∗). A DFA is complete if ∀(q, a) ∈ Q×Σ,
Card(δ(q, a)) = 1. For every DFA A, there exists an equivalent complete DFA
A′ such that L(A′) = L(A) [13]. The left language (resp. right language) of a
state q of A is the set of words L←

q (A) = {w ∈ Σ∗ | δ(i, w) = q} (resp. L→
q (A) =

{w ∈ Σ∗ | δ(q, w) ∈ F}). A state q in Q is accessible (resp. coaccessible) if
and only if L←

q (A) �= ∅ (resp. L→
q (A) �= ∅). We say that q is a sink state if

L→
q (A) = ∅. The automaton A is trim if all the states of A are accessible and

coaccessible. Two states q and q′ are equivalent with respect to the Myhill-Nerode
congruence [11,12] if and only if L→

q (A) = L→
q′ (A). We assume that A has a

single sink state since all sink states are equivalent. A DFA A is minimal if there
exists no DFA recognizing L(A) with less states than A. Notice that for a given
language L, all minimal DFAs recognizing L(A) are isomorphic. The minimal
DFA of L is computable from any trim DFA recognizing L by merging equivalent
states (For computation of the minimal DFA, see [1,7,10]). For a state q in a
DFA A, we denote by [q] the equivalent class of q which is a state of the minimal
DFA of A. A regular expression E over an alphabet Σ is inductively defined by

Generalized One-Unambiguity 131

E = a, E = ∅, E = ε, E = (F + G), E = (F · G), E = (F ∗), E = ¬(F) with
F and G two regular expressions and a a symbol of Σ. The alphabetical width
|E| of E is the number of occurrences of symbols of E. Let L1 and L2 be two
languages. We define L1 ·L2 = {w = w1 ·w2 | w1 ∈ L1∧w2 ∈ L2}, (L1)∗ = {w =
w1 · · ·wk | k ∈ N∧∀j ∈ {1, . . . , k}, wj ∈ L1} and ¬L1 = {w ∈ Σ∗ | w /∈ L1}. The
language denoted by a regular expression E over an alphabet Σ is inductively
computed by L(a) = {a}, L(∅) = ∅, L(ε) = {ε}, L(F + G) = L(F) ∪ L(G),
L(F · G) = L(F) · L(G), L(F ∗) = (L(F))∗, and L(¬F) = ¬(L(F)), with F and
G two regular expressions and a a symbol in Σ. The regular expression E is
said to be a simple expression if it only contains sum, catenation and Kleene
star operators. As a consequence, the set of regular languages, Rat(Σ∗) = {L |
there exists a simple expression E such that L(E) = L}, is the smallest family
containing ∅ and {a} for all symbol a in Σ and which is closed under catenation,
Kleene star and sum. Kleene’s Theorem [8] asserts that Rat(Σ∗) = Rec(Σ∗).
Moreover, given a complete DFA A, a DFA cA such that L(cA) = ¬L(A) can be
computed by switching non-final the final states and vice versa. The automaton
cA is the complement of A. Therefore, the set of regular languages is closed
under complement.

A subset O of states of a DFA A is an orbit if and only if, for every pair of
states (q, q′) in O2, there exists a string w in Σ+ such that q′ = δ(q, w) and
if for every state q in Q \ O, either there exists no word w in Σ∗ such that
δ(q, w) ∈ O, or there exists no word w in Σ∗ such that δ(O, w)∩{q} �= ∅. Notice
that a strongly connected component is not necessarily an orbit, since a singleton
without a loop is a strongly connected component but not an orbit. The gates
of an orbit O are the states belonging to the set gates(O) defined by: {o ∈ O |
∃a ∈ Σ, q ∈ Q \ (O ∪ sink(A)), δ(o, a) = q} ∪ (O ∩F). Let j be a state of O. The
automaton of the orbit O for j is the automaton AO,j = (Σ, O, j, gates(O), δO)
where δO = δ ∩ (O ×Σ × O). The language recognized by the automaton AO,j

is called the orbit language of O for j. The orbit O is transverse if and only if
the two following conditions are checked:

(1) ∀q, q′ ∈ gates(O), ∀a ∈ Σ: δ(q, a) /∈ O \ sink(A) ⇒ δ(q, a) = δ(q′, a).
(2) ∀q, q′ ∈ gates(O), q and q′ are both either final or non-final.

A symbol a in Σ is A-consistent if and only if there exists a state f(a) such that
every final state of A has a transition to f(a) labelled by a. A set Σ′ ⊂ Σ is
A-consistent if and only if every symbol a of Σ′ is A-consistent. If Σ′ is an A-
consistent set of symbols, the Σ′-cut of A, denoted by AΣ′ , is obtained by delet-
ing every transition labelled by a symbol a in Σ′ and starting from a final state.
The position automaton or Glushkov automaton of a simple regular expression
E is an (n + 1)-state automaton that recognizes L(E) (see [6,9] for construction
rules). A simple expression E is one-unambiguous if and only if its Glushkov au-
tomaton is deterministic [3]. A regular language is one-unambiguous if and only
if there exists a one-unambiguous regular expression denoting it. For details on
one-unambiguous regular languages and properties, refer to Brüggemann-Klein
and Wood [3].

132 P. Caron, Y.-S. Han, and L. Mignot

3 One-Unambiguous Languages are Not Closed under
Boolean Operators

Regular languages are closed for basic operators such as catenation, union,
Kleene star, intersection or complement. On the other hand, for one-unambiguous
regular languages, Brüggemann-Klein and Wood [3] noticed that they are closed
neither under union, catenation nor under Kleene star. We show that one-
unambiguous regular languages are closed neither under intersection (Example 1)
nor under complement (Example 2).

Example 1. Let E1 = (b(c + ε))∗ and E2 = b(c(b + ε))∗ + c(b + ε)(c(b + ε))∗ be
two one-unambiguous regular expressions. Their minimal DFAs A1 and A2 are
given in Figure 1. The minimal DFA A3 of the language L(A1)∩L(A2) is given
Figure 2. We can see that L(A3) is not one-unambiguous, since there does not
exist nonempty A-consistent subset of Σ (see Theorem F [3]).

1 2

b

c

b

1 2 3
b

c

c

b

c

Fig. 1. The Automata A1 and A2

{1, 1} {2, 2} {1, 3}b

c

b

Fig. 2. The Automaton A3

Example 2. Let A1 and A2 be two minimal DFAs given in Figure 3. The
automaton A2 recognizes the language ¬(L(A1)). The language L(A1) is one-
unambiguous, while L(A2) is not, since there does not exist nonempty
A-consistent subset of Σ (see Theorem F [3]).

1

2

3

a a

a 1

2

3

a a

a

Fig. 3. The Automata A1 and A2

From the results (union, catenation and Kleene star) of Brüggemann-Klein
and Wood [3] and Examples 1 and 2, we establish the following statement:

Generalized One-Unambiguity 133

Proposition 1. One-unambiguous regular languages are closed neither under
union, catenation, Kleene star, intersection nor under complement.

We have seen that one-unambiguous languages are not closed under com-
plement. As a consequence, the characterization theorem for one-unambiguous
languages has to be rewritten in order to deal with the complement operator. It
leads to a new notion, the weak one-unambiguity.

4 The Weak One-Unambiguity

We exhibit a new family of languages closed under complement and containing
the one-unambiguous languages family. The Kleene-like theorem of Brüggemann-
Klein and Wood (Theorem D [3]) is transformed in order to deal with comple-
ment closure. This new family of regular languages is called the weakly one-
unambiguous languages. We first define two particular subsets of symbols in Σ.
Let L be a language over an alphabet Σ. The sets First(L) and FollowLast(L)
are defined as follows: First(L) = {a ∈ Σ | ∃w ∈ Σ∗, aw ∈ L}, FollowLast(L) =
{a ∈ Σ | ∃w, w′ ∈ Σ∗, w �= ε, w ∈ L ∧ waw′ ∈ L}.
Definition 1. The family of weakly one-unambiguous expressions over an al-
phabet Σ is the family E inductively defined as follows:
(1) ∅, ε, and a are in E, for each symbol a in Σ,
(2) if E1, E2 ∈ E and First(L(E1)) ∩ First(L(E2)) = ∅, then E1 + E2 ∈ E,
(3) if E1, E2 ∈ E, FollowLast(L(E1)) ∩ First(L(E2)) = ∅ and (ε /∈ L(E1) ∨
First(L(E1)) ∩ First(L(E2)) = ∅), then E1 · E2 ∈ E,
(4) if E1 ∈ E and FollowLast(L(E1)) ∩ First(L(E1)) = ∅, then E∗

1 ∈ E,
(5) if E1 ∈ E, then ¬(E1) ∈ E.

Definition 2. A language L is weakly one-unambiguous if and only if there
exists a weakly one-unambiguous expression denoting L.

The two following definitions are used to characterize the minimal DFA of a
weakly one-unambiguous language.

Definition 3. Let A be a complete DFA and cA be its complement. The au-
tomaton A satisfies the transverse property if and only if for all orbit O in A,
one of the two following propositions is satisfied:
(1) O is transverse in A and ∀i ∈ O, AO,i satisfies the consistence property;
(2) O is transverse in cA and ∀i ∈ O, (cA)O,i satisfies the consistence property.

Definition 4. Let A be a complete DFA and cA be its complement. The au-
tomaton A satisfies the consistence property if and only if for all orbit O in A,
one of the two following propositions is satisfied:
(1) there exists a nonempty subset Σ′ of Σ such that Σ′ is A-consistent and
AΣ′ satisfies the transverse property;
(2) there exists a nonempty subset Σ′ of Σ such that Σ′ is cA-consistent and
(cA)Σ′ satisfies the transverse property.

134 P. Caron, Y.-S. Han, and L. Mignot

Even if the two previous definitions seem to be dependent, each one checks
the other on a smaller automaton (an orbit automaton or a Σ′-cut). Since there
are no more orbits at the end, this dependency stops eventually. Note that both
properties are satisfied by an acyclic automaton. The transverse property char-
acterizes the minimal DFA of weakly one-unambiguous languages.

Theorem 1. A regular language is weakly one-unambiguous if and only if its
complete minimal DFA satisfies the transverse property. Furthermore, if E is
an n symbol weakly one-unambiguous expression, the minimal DFA of L(E) has
at most n + 2 states.

In order to prove this theorem, we first show that minimization preserves the
transverse property (Section 4.1), and then we demonstrate the necessity and the
sufficiency of the transverse property to characterize the weak one-unambiguity
(Section 4.2 and Section 4.3).

4.1 Minimization Preserves the Transverse Property

Lemma 1. Let A be a DFA and A′ be its minimal DFA. For all orbit O′ in
A′, there exists an orbit O in A such that ∀p ∈ O, [p] ∈ O′ ∧ (p ∈ gates(O) ⇔
[p] ∈ gates(O′)). The orbit O is said to be a a lift of O′.

Proof. Let A = (Σ, Q, i, F, δ) and A′ = (Σ, Q′, i′, F ′, δ′). Let O′ be an orbit
in A′ and [p] be a state in O′. There exists p in A such that p ∈ [p]. (1)
For all [q] in O′, there exist two words w1 and w2 such that δ′([p], w1) = [q]
and δ′([q], w2) = [p]. As a consequence, there exists a state q ∈ [q] such that
δ(p, w1) = q and δ(q, w2) = p′ ∈ [p]. This does not imply that p and q are in
a same orbit O. However, by repeating these words and since A is a DFA, an
orbit O is accessible from p such that for all p′ in O, [p′] ∈ O′. (2a) Let [p]
be in gates(O′) and p be a state in O such that p ∈ [p]. If [p] is final, so does
p. If there exists a symbol a in Σ such that δ′([p], a) /∈ O′ ∪ sink(A′), it holds
δ(p, a) /∈ O ∪ sink(A) (otherwise contradiction with p ∈ [p]). As a consequence,
p is in gates(O). (2b) Let O be one of the last accessible orbist in A satisfying
(1) (considering the partial order of accessible orbits). Let p be a gate of O.
Suppose that [p] is not a gate. Consequently, p has to be a non-final state. As
a consequence, there exists a transition from p going out of O (but not in the
sink state) by a letter a such that δ′([p], a) ∈ O′ ∪ sink(A′). This implies either
δ(p, a) = sink(A) or there is another orbit O2 accessible from δ(p, a) satisfying
(1). Contradiction in both cases.

Lemma 2. Let A′ be a minimal DFA and O′ be a transverse orbit in A′. For
every j′ in O′, A′

O′,j′ is minimal.

Proof. Let j′ be a state in O′. We consider the automata A′ = (Σ, Q′, i′, F ′, δ′)
and A′

O′,j′ = (Σ, O′, j′, gates(O′), δ′′). Let p′1 and p′2 be two equivalent states
in (A′

O′,j′). For all w in Σ∗, δ′′(p′1, w) and δ′′(p′2, w) are equivalent. Since O′

is transverse, for every word w such that δ′(p′1, w) /∈ O′, δ′(p′2, w) = δ′(p′1, w).
This equivalence is preserved in A′. Therefore if p′1 �= p′2, contradiction with the
minimality of A′.

Generalized One-Unambiguity 135

Lemma 3. Let A be a complete DFA and A′ be its complete minimal DFA. Let
O′ be an orbit in A′ and O be a lift of O′. For all j in O, if there exists an
AO,j-consistent symbol a in Σ, then a is A′

O′,[j]-consistent and (A′
O′,[j]){a} is

the minimal automaton of L((AO,j){a}).

Proof. Let j be a state in O. Let A′
O′,[j] = (Σ, Q′, [j], F ′, δ′) and (A′

O′,[j]){a} =
(Σ, Q′, [j], F ′, δ′′). (1) If there is a symbol a in Σ such that a is not A′

O′,[j]-
consistent, there exist two gates [q′1] and [q′2] in O′ such that δ′([q′1], a) ∈ O′

and δ′([q′1], a) �= δ′([q′2], a). As a consequence, there exist two gates q1 and q2

of O such that q1 ∈ [q′1], q2 ∈ [q′2] and δ(q1, a) ∈ O and δ(q1, a) �= δ(q2, a).
Finally, a is not AO,j -consistent. (2) Let us prove that (A′

O′,[j]){a} is minimal
and that L((AO,j){a}) = L((A′

O′,[j]){a}). If AO,j is a-consistent, (I) implies that
A′

O′,[j] is a-consistent. (a) Let p′1 and p′2 be two nonequivalent states in A′
O′,[j].

By definition, there exists a symbol b �= a in Σ such that δ′(p′1, b) �= δ′(p′2, b),
and by construction of (A′

O′,[j]){a}, δ′′(p′1, b) �= δ′′(p′2, b). By Lemma 2, A′
O′,[j]

is minimal, and so is (A′
O′,[j]){a}. (b) Let (AO,j){a} = (Σ, Q, j, F, δ). The word

w is in L((AO,j){a}) ⇔ δ(j, w) ∈ F ⇔ δ′′([j], w) ∈ F ′′ ⇔ The word w is in
L((A′

O′,[j]){a}).

Proposition 2. Let A be a complete DFA and A′ be its complete minimal DFA.
If A satisfies the transverse property, so does A′.

Proof. Assume that A′ does not satisfy the transverse property. Then there
exists an orbit O′ in A′ such that one of the four following cases occurs: (I)
Suppose that O′ is not transverse in A′. Let p′ and q′ be two gates in O′.
According to Lemma 1, there exists an orbit O in A containing two nonequivalent
states p and q such that p is merged into p′ and q is merged into q′; moreover,
since p′ and q′ are two gates of O′, so are p and q in O. (a) If p′ and q′ do
not have the same finality, neither do p nor q. (b) Let a be a symbol in Σ
such that δ′(p′, a) /∈ (O′ ∪ sink(A′)) and δ′(q′, a) �= δ′(p′, a). As a consequence,
δ(q, a) �= δ(p, a) and δ(p, a) /∈ (O∪sink(A)). In both cases, O is not transverse in
A. (II) If O′ is an orbit which is not transverse in cA

′, the same argument as (I)
leads to the existence of an orbit O which is not transverse in cA. (III) Suppose
that O′ is transverse in A′ and there exists [k] in O′ such that A′

O′,[k] does not
satisfy the consistence property. Let O be a lift of O′. Let j be a state in O which
is in [k]. Then [k] = [j]. (a) Suppose that there exists no nonempty subset Σ′ of Σ
which is A′

O′,[j]-consistent. As a consequence, every symbol a in Σ is not A′
O′,[j]-

consistent. If a in Σ is not A′
O′,[j]-consistent, according to Lemma 3, a is not

AO,j-consistent. (b) Suppose that a is a AO,j-consistent symbol. According to
Lemma 3, the automaton (A′

O′,[j]){a} is the minimal automaton of L((AO,j){a}).
By recurrence on the number of transitions of the automata, according to (I)
and (II), if (A′

O′,[j]){a} does not satisfy the transverse property, neither does
(AO,j){a}. (IV) If O′ is an orbit which is transverse in cA

′, we let O be a lift
of O′ and j be a state in O such that A′

O′,[j] does not satisfy the consistence

136 P. Caron, Y.-S. Han, and L. Mignot

property. A similar argument as (III) leads to the fact that AO,j does not satisfy
the consistence property.

Finally, if A′ does not satisfy the transverse property, neither does A.

4.2 From a Weakly One-Unambiguous Expression to a Linear-Size
DFA Satisfying the Transverse Property

We show how to inductively compute a minimal DFA from a weakly one-unambi-
guous expression E. In a complete minimal DFA, we distinguish, if they exist,
two particular states: the sink state and the c-sink, the only state q such that
L→

q = Σ∗. Notice that the c-sink of A is the sink state of cA. For a set Q of states
in A, we denote by Q+ the set {q ∈ Q | ∃w ∈ Σ+, δ(i, w) = q ∧ q /∈ sink(A) ∪
sink(cA)}}. We show that Q+ has at most |E| elements. As a consequence, since
Q = Q+ ∪ {i} ∪ sink(cA), Q has at most |E| + 2 elements.

Lemma 4. Let A1 = (Σ, Q1, i1, F1, δ1) and A2 = (Σ, Q2, i2, F2, δ2) be two min-
imal DFAs satisfying the transverse property such that

First(L(A1)) ∩ First(L(A2)) = ∅.
Let A = (Σ, Q, i, F, δ) be the minimal DFA of L(A1)∪L(A2). The two following
propositions are satisfied:

(1) the automaton A satisfies the transverse property,
(2) Card(Q+) ≤ Card(Q+

1) + Card(Q+
2).

Proof. Let us consider the automaton A′ = (Σ, Q′, i, F ′, δ′) defined by Q′ =
Q1 ∪Q2 ∪ {i}, F ′ = F1 ∪F2 ∪ {i} if ε ∈ L(A1)∪L(A2), F ′ = F1 ∪F2 otherwise,
and δ′ = δ1 ∪ δ2 ∪ {(i, a, p) | (i1, a, p) ∈ δ1 ∨ (i2, a, p) ∈ δ2}. As First(L(A1)) ∩
First(L(A2)) = ∅, A′ is deterministic.
By construction, since an orbit in
A′ is an orbit in A1 or in A2,
A′ satisfies the transverse prop-
erty; moreover, w ∈ L(A′) ⇔
δ′(i, w) ∈ F ′ ⇔ δ1(i1, w) ∈ F1 ∨
δ2(i2, w) ∈ F2 ⇔ w ∈ L(A1) ∨
w ∈ L(A2). Consequently, A′ rec-
ognizes L(A1) ∪ L(A2). According
to Proposition 2, the complete min-
imal DFA of L(E) satisfies the
transverse property. By construc-
tion, Card(Q′+) = Card(Q+

1) +
Card(Q+

2); finally, Card(Q+) ≤
Card(Q+

1) + Card(Q+
2).

i

Firsti1 Last

Firsti2 Last

A1

A2

Σ1

Σ1

Σ2

Σ2

Fig. 4. The Automaton of L(A1) ∪ L(A2)

Lemma 5. Let A1 = (Σ, Q1, i1, F1, δ1) and A2 = (Σ, Q2, i2, F2, δ2) be two min-
imal DFAs satisfying the transverse property such that

(ε /∈ L(A1) ∨ First(L(A1)) ∩ First(L(A2)) = ∅)
and FollowLast(L(A1)) ∩ First(L(A2)) = ∅.

Generalized One-Unambiguity 137

Let A = (Σ, Q, i, F, δ) be the minimal DFA of L(A1) · L(A2). The following
propositions are satisfied:

(1) the automaton A satisfies the transverse property,
(2) Card(Q+) ≤ Card(Q+

1) + Card(Q+
2).

Proof. Let us consider the automaton A′ = (Σ, Q′, i, F ′, δ′) defined by Q′ =
Q1 ∪ Q2 ∪ {i}, F ′ = F1 ∪ F2 ∪ {i} if ε ∈ L(A1) ∧ ε ∈ L(A2), F ′ = F1 ∪ F2

if ε /∈ L(A1) ∧ ε ∈ L(A2), F ′ = F2 otherwise, and δ′ = δ1 ∪ δ2 ∪ {(i, a, p) |
(i1, a, p) ∈ δ1 ∨ (i1 ∈ F1 ∧ (i2, a, p) ∈ δ2} ∪ {(p, a, p′) | p ∈ F1 ∧ (i2, a, p′) ∈ δ2}.
Since (ε /∈ L(A1) ∨ First(L(A1)) ∩ First(L(A2)) = ∅) and FollowLast(L(A1)) ∩
First(L(A2)) = ∅, A′ is deterministic. By construction, an orbit O in A′ is an
orbit in A1 or in A2; if O is in A2, the transverse property is preserved; if O is
in A1, as the only transitions added are going out of O, the orbit languages are
preserved; moreover, the new transitions preserve transversality: if a transition
is added, its origin q is a final state, which is a gate in O; if O is transverse in
A1, all the other gates are final and transitions are also added.
If q is a non-final gate in cA1, all
these gates are non final in cA1 and
final in A1, consequently transitions
out of them are also added. If q is a
final state in A1 which is not a gate
in cA1, for all symbol a in Σ, either
δ′(q, a) = sink(cA1) or δ′(q, a) ∈ O.
As a consequence, every symbol a
in Σ is in FollowLast(L(E1)). Ei-
ther L(A2) = ∅ or L(A2) = {ε} and
there is no transition added, or con-
tradiction with FollowLast(L(A1))∩
First(L(A2)) = ∅.

i

Firsti1 Last

Firsti2 Last

A1

A2

Σ1

Σ1

Σ2

Σ2

Fig. 5. The Automaton of L(A1) ·L(A2) in
the case where ε /∈ L(A1) and ε /∈ L(A2)

As a consequence, A′ satisfies the transverse property. Moreover, w ∈ L(A)
⇔ δ′(i, w) ∈ F ′ ⇔ (w = w′aw′′ ∧ δ2(δ′(δ1(i1, w′), a), w′′) ∈ F2) ∨ (δ′(i2, w) ∈
F2 ∧ i1 ∈ F1)∨ (δ1(i1, w) ∈ F1 ∧ ε ∈ L(A2)) ⇔ w ∈ L(A1) ·L(A2). Consequently,
A′ recognizes L(A1) · L(A2). According to Proposition 2, the complete minimal
DFA of L(E) satisfies the transverse property. By construction, Card(Q′+) =
Card(Q+

1) + Card(Q+
2); finally, Card(Q+) ≤ Card(Q+

1) + Card(Q+
2).

Lemma 6. Let A1 = (Σ, Q1, i1, F1, δ1) be a minimal DFA satisfying the trans-
verse property such that

FollowLast(L(A1)) ∩ First(L(A1)) = ∅.
Let A = (Σ, Q, i, F, δ) be the minimal DFA of L(A1)∗. The two following

propositions are satisfied:
(1) the automaton A satisfies the transverse property,
(2) Card(Q+) ≤ Card(Q+

1).

Proof. Let us consider the automaton A′ = (Σ, Q′, i, F ′, δ′) defined by Q′ =
Q1 ∪ {i}, F ′ = F1 ∪ {i}, and δ′ = δ1 ∪ {(i, a, p) | (i1, a, p) ∈ δ1} ∪ {(p, a, p′) |

138 P. Caron, Y.-S. Han, and L. Mignot

p ∈ F1 ∧ (i1, a, p′) ∈ δ1}. Since FollowLast(L(A1)) ∩ First(L(A1)) = ∅, A′ is
deterministic. By construction, there is only one orbit which is transverse.
Furthermore, the set First(L(A1)) is
A′-consistent, and the First(L(A1))-
cut of A′ is A1. As a consequence,
A′ satisfies the transverse property.
Moreover, w ∈ L(A) ⇔ δ′(i, w) ∈ F ′

⇔ w = w1w2 · · · · · ·wk ∧ δ′(i, w1) ∈
F ′ ∧ δ′(i, w2) ∈ F ′ . . . δ′(i, wk) ∈
F ′ ⇔ w1 ∈ L(A1) ∧ w2 ∈
L(A1) . . . wk ∈ L(A1) ⇔ w ∈
L(A1)∗. Consequently, A′ recognizes
L(A1)∗.

i

Firsti1 Last

A1

Σ1

Σ1

Σ1

Fig. 6. The Automaton of L(A1)
∗

According to Proposition 2, the complete minimal DFA of L(A′) satisfies the
transverse property. By construction, Card(Q′+) = Card(Q+

1); finally, Card(Q+)
≤ Card(Q+

1).

Lemma 7. Let A1 = (Σ, Q1, i1, F1, δ1) be a minimal DFA satisfying the trans-
verse property. Let A = (Σ, Q, i, F, δ) be the minimal DFA of ¬L(A1). The two
following propositions are satisfied:

(1) the automaton A satisfies the transverse property,
(2) Card(Q+) = Card(Q+

1).

Proof. By construction, cA1 is the complete minimal DFA of ¬(L(A1)), which
satisfies the transverse property. By construction, Card(Q′+) = Card(Q+

1); fi-
nally, Card(Q+) = Card(Q+

1).

Proposition 3. Let E be a weakly one-unambiguous expression and A′ be the
minimal DFA of L(E). Then A satisfies the transverse property and A has at
most |E| + 2 states.

Proof. According to Lemma 4, Lemma 5, Lemma 6 and Lemma 7.

4.3 From a Minimal Automaton Satisfying the Transverse Property
to a Weakly One-Unambiguous Expression

We show that the language denoted by a DFA satisfying the transverse property
is weakly one-unambiguous. Let A = (Σ, Q, i, F, δ) be a DFA and q be a state
in Q. The q-starting automaton Aq of A is the accessible part of the automaton
(Σ, Q, q, F, δ). Note that Aq is a subautomaton of A and L(Aq) = L→

q (A).

Proposition 4. Let A be a DFA satisfying the transverse property. Then L(A)
is weakly one-unambiguous.

Proof. We show how to inductively compute LA
q = L(Aq) from A = (Σ, Q, i, F, δ)

and we show that LA
q is weakly one-unambiguous.

(I) Suppose that Q is not an orbit.

Generalized One-Unambiguity 139

(a) If i is in an orbit O which is transverse in A, let Σ′ be the subset {a ∈ Σ |
∀q ∈ gates(O), δ(q, a) /∈ O}. Let us consider the language L′ defined by L′ =
(LO,i) ·(

⋃
a∈Σ′({a}·LA

f(a))) if gates(O)∩F = ∅ or L′ = (LO,i) ·({ε}∪
⋃

a∈Σ′({a}·
LA

f(a))) otherwise, where, LO,i is the orbit language of O beginning in the state i

(see (II)). A word w is in LA
i if and only if it can be split into w = w1w2 where w1

is a path from i to a gate g of O and w2 a path from g to a final state of A which is
a nonempty path in Ag if w2 �= ε. As a consequence, LA

i = L′. By recurrence on
the number of transitions and according to (II), LO,i and L′′ =

⋃
a∈Σ′({a}·LA

f(a))
are weakly one-unambiguous. If ε ∈ LO,i ∧ First(LO,i) ∩ First(L′′) �= ∅, then
there exist two transitions labelled by the same symbol going out of i, which
contradicts the determinism. If FollowLast(LO,i) ∩ First(L′′) �= ∅, then there
exist two transitions labelled by the same symbol going out of a gate of O,
one going in O, and the other in f(a), which contradicts the determinism. As a
consequence, L′ is weakly one-unambiguous.
(b) If i is in an orbit O which is transverse in cA, then LA

i = ¬(LcA
i) which is

weakly one-unambiguous according to (a).
(c) If i is not in an orbit, LA

i =
⋃

a∈Σ({a}·LA
δ(i,a)) if i /∈ F , LA

i = {ε}∪⋃a∈Σ({a}·
LA

δ(i,a)). By recurrence on the number of transitions, LA
i =

⋃
a∈Σ({a} · LA

δ(i,a))
is weakly one-unambiguous.
(II) Suppose that Q is an orbit. Let Σ′ be a subset of Σ.
(a) If Σ′ is A-consistent, let us consider the language L′ = L

AΣ′
i · (⋃a∈Σ′({a} ·

L
AΣ′
f(a)))∗. Since AΣ′ satisfies the transverse property, according to (I), L

AΣ′
i is

weakly one-unambiguous. By recurrence on the number of transitions, L′′ =⋃
a∈Σ′({a} · LAΣ′

f(a)) is weakly one-unambiguous. Suppose that FollowLast(L′′) ∩
First(L′′) �= ∅; then there exist two transitions labelled by the same symbol
going out of a gate of the orbit, one leading to f(a) and the other to another
state of O. Contradiction with determinism. The same contradiction is implied
if ε ∈ L

AΣ′
i ∧First(LAΣ′

i)∩Σ′ �= ∅ or FollowLast(LAΣ′
i)∩First(L′′) �= ∅. Finally,

since a word w in L(A) can be split up into w1 · w2 such that w1 is the label of
a path from i to a final state and w2 the label of a path from a final state to
another final state, w is in L′.
(b) If Σ′ is cA-consistent, then LA

i = ¬(LcA
i), which is weakly one-unambiguous

according to (a).

Example 3. Consider the automaton A in Figure 7. It is composed by the four
orbits O1 = {2, 3}, O2 = {4, 5} and the singleton {1} and {6}. The singletons
trivially satisfy the transverse property. The orbit O1 is transverse in A and O2

1 2 3 4 5 6

b

a

b
a

b

a

b
a

b

a

a,b

Fig. 7. The automaton A

140 P. Caron, Y.-S. Han, and L. Mignot

is transverse in the complement of A. As a consequence, it can be denoted by the
weakly one-unambiguous expression E = b∗ab∗a(bb∗a)∗(ε + a¬(b∗a(bb∗a)∗))).

5 Conclusion

Content models of XML DTD are one-unambiguous [3]. Usually, the size of a
regular expression can be reduced using the complement operator. Thus the
closure property of one-unambiguous regular languages is important in XML
applications. We have demonstrated that one-unambiguous regular languages are
closed neither under intersection nor under complement. We have also considered
one-unambiguous regular languages with complement closure property (weak
one-unambiguity). We have investigated the closure properties of weakly one-
unambiguous regular languages and the state complexity of the languages on
some operations. Finally, we have shown that as far as weakly one-unambiguous
regular expressions are concerned, a linear-size deterministic recognizer can be
computed in order to decide whether or not a word belongs to the language
denoted by a non-simple regular expression.

References
1. Blum, N.: An O(n log n) implementation of the standard method for minimizing
n-state finite automata. Inform. Process. Lett. 57(2), 65–69 (1996)

2. Bray, T., Paoli, J., Sperberg-Mc Queen, C.M., Maler, E., Yergeau, F.: Extensible
Markup Language (XML) 1.0, 4th edn. (2006),
http://www.w3.org/TR/2006/REC-xml-20060816

3. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Inform.
Comput. 140, 229–253 (1998)

4. Gelade, W.: Succinctness of regular expressions with interleaving, intersection and
counting. Theor. Comput. Sci. 411(31-33), 2987–2998 (2010)

5. Gelade, W., Neven, F.: Succinctness of the complement and intersection of regular
expressions. In: Albers, S., Weil, P. (eds.) STACS. Dagstuhl Seminar Proceedings,
vol. 08001, pp. 325–336 (2008)

6. Glushkov, V.M.: The abstract theory of automata. Russian Mathematical Sur-
veys 16, 1–53 (1961)

7. Hopcroft, J.E.: An n log n algorithm for minimizing the states in a finite automa-
ton. In: Kohavi, Z. (ed.) The Theory of Machines and Computations, pp. 189–196.
Academic Press, New York (1971)

8. Kleene, S.: Representation of events in nerve nets and finite automata. In: Au-
tomata Studies, Ann. Math. Studies, vol. 34, pp. 3–41. Princeton U. Press (1956)

9. McNaughton, R.F., Yamada, H.: Regular expressions and state graphs for au-
tomata. IEEE Transactions on Electronic Computers 9, 39–57 (1960)

10. Moore, E.F.: Gedanken experiments on sequential machines. In: Automata Studies,
pp. 129–153. Princeton Univ. Press, Princeton (1956)

11. Myhill, J.: Finite automata and the representation of events. WADD, TR-57-624,
112–137 (1957)

12. Nerode, A.: Linear automata transformation. In: Proceedings of AMS, vol. 9, pp.
541–544 (1958)

13. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J.
Res. 3(2), 115–125 (1959)

http://www.w3.org/TR/2006/REC-xml-20060816

Simulations over Two-Dimensional On-Line

Tessellation Automata�

Gérard Cécé1,2 and Alain Giorgetti1,3

1 LIFC - EA 4269 - University of Franche-Comté - France
2 Centre Numerica, 1 cours Leprince-Ringuet,

BP 21126, 25201 MONTBELIARD Cedex
Gerard.Cece@univ-fcomte.fr

3 INRIA/CASSIS
16 route de Gray, 25030 BESANCON Cedex

Alain.Giorgetti@univ-fcomte.fr

Abstract. We study the notion of simulation over a class of automata
which recognize 2D languages (languages of arrays of letters). This class
of two-dimensional On-line Tessellation Automata (2OTA) accepts the
same class of languages as the class of tiling systems, considered as the
natural extension of classical regular word languages to the 2D case. We
prove that simulation over 2OTA implies language inclusion. Even if the
existence of a simulation relation between two 2OTA is shown to be a
NP-complete problem in time, this is an important result since the in-
clusion problem is undecidable in general in this class of languages. Then
we prove the existence of a unique maximal autosimulation relation in a
given 2OTA and the existence of a unique minimal 2OTA which is sim-
ulation equivalent to this given 2OTA, both computable in polynomial
time.

Keywords: Simulation, 2D words, Tiling systems, Picture languages,
Picture automata.

1 Introduction

We are involved in the ‘Smart Surface’ project [14] whose aim is the realization of
an active surface to automatically position and convey micro-items. This active
surface is made of an array of smart micromodules. Under the abstraction that
a micromodule can evolve only within a small number of states, we can consider
those states as letters of a given alphabet. Then, what about representing a set of
reachable configurations of the whole system as a recognizable two-dimensional
(2D) language and using the regular model-checking (RMC) paradigm [3] on
it? Let us recall that the RMC paradigm consists in representing infinite sets

� This work is supported by the ANR, the French national research agency (Agence
Nationale de la Recherche), project ANR-06-ROBO-0009-03 and by the INRIA CAS-
SIS project.

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 141–152, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

142 G. Cécé and A. Giorgetti

of configurations of a system by recognizable languages, and developing meta-
transitions which can compute infinite sets of successors in one step.

To do this, we first need to clarify what could be recognizable 2D languages.
The most accepted class is that recognized by tiling systems [9]. Unfortunately,
an important property of classical regular languages is missing in this class,
namely decidability of the inclusion problem, which is a necessary property in
the RMC paradigm. This led us to seek sufficient conditions to decide inclusion.
For words and trees, the existence of a simulation relation (in the sense of [13])
between the underlying automata of two recognizable languages is such a suf-
ficient condition. Moreover, the existence of an autosimulation relation, bigger
than the identity, between the states of a finite automaton makes it possible to
construct a smaller equivalent automaton by quotient. But tiling systems are not
defined in terms of automata with straightforward notions of states and transi-
tions. Fortunately, several kinds of automata recognizing the same class of 2D
languages have been defined. Among them, there are two-dimensional On-line
Tessellation Automata (2OTA) [10], Wang automata [12] and quadripolic au-
tomata [5]. This paper describes our results concerning simulations over 2OTA.1

Contributions. We first define simulation relations between two 2OTA. We
show that simulation implies language inclusion. From any given autosimulation
relation – i.e. a simulation relation between the states of a given automaton –
we construct a quotient automaton smaller than the given automaton, simula-
tion equivalent to it (one simulates the other) and which therefore accepts the
same language. In a 2OTA A we prove the existence of a unique maximal au-
tosimulation relation. We show that the quotient automaton constructed from
this maximal autosimulation relation is the smallest one which is simulation
equivalent to A. Then we show how to compute this maximal autosimulation
in polynomial time. We also prove that deciding the existence of a simulation
relation between two different 2OTA is unfortunately NP-complete in time.

Related work. The study of two-dimensional languages is an active field of
research, see [8] for a recent overview. To our knowledge, this is the first work
on simulations concerning 2D automata. In the last few years, several works
have been done about simulations over tree automata [3,1,2] but mainly to re-
duce them. For example the complexity of the existence of an upward simula-
tion between two different tree automata has not been investigated. Moreover,
the search for a minimal automaton which is simulation equivalent to a given
one has not been done for tree automata. Our result concerning this smallest
simulation-equivalent automaton in 2OTA is inspired from the one of [6] on
Kripke structures. A main difference is that we directly remove what is called
“little brothers” in the quotient automata instead of removing them in a second
step.

1 “2OTA” indifferently abbreviates the plural “two-dimensional on-line tessellation
automata” and the singular “two-dimensional on-line tessellation automaton”.

Simulations over 2OTA 143

Outline. The next section introduces pictures (two-dimensional arrays of let-
ters), picture languages and tiling systems. Section 3 is dedicated to 2OTA and
some of their properties. Then we define simulation relations over two 2OTA in
Section 4, and give the first results of the paper: simulation implies language
inclusion, there are a unique maximal autosimulation relation in a given 2OTA
and a unique minimal 2OTA which is simulation equivalent to it. We treat the
algorithmic and complexity issues in Section 5. Section 6 is about backward sim-
ulations between 2OTA. We show that they do not imply language inclusion,
contrarily to backward simulations between tree automata. Section 7 finally con-
cludes the paper and suggests some future directions. Detailed proofs for all the
results in this paper can be found in [7].

2 Picture Languages and Tiling Systems

A picture is a two-dimensional array of letters from a given finite alphabet Σ.
The set of all pictures over Σ is noted Σ∗∗. The size of a picture p is a couple of
integers, size(p) = (m, n), where m is the number of rows and n is the number of
columns. By convention, we note ε the empty picture, whose size is (0, 0). There
is no picture of size (0, k) or (k, 0) with k positive. For a given picture p, we note
pi,j the letter found at the intersection of the ith line and the jth column and we
note p̂ the picture which consists of p surrounded with a special symbol # �∈ Σ.

In the following example we show a square picture p of size (5, 5) made of b
but the main diagonal which is made of a. The corresponding p̂, which size is
(7, 7), is also given.

p =

a b b b b
b a b b b
b b a b b
b b b a b
b b b b a

and p̂ =

#
a b b b b
b a b b b
b b a b b
b b b a b
b b b b a
#

(1)

A picture language on Σ is a subset of Σ∗∗. For a language L ⊆ Σ∗∗, we
define L̂ = {p̂ ∣∣ p ∈ L}. A tiling system (TS) is a tuple T = (Σ, Γ, Θ, π) such
that Σ and Γ are finite alphabets, π : Γ → Σ is a mapping and Θ, the set
of tiles, is a finite set of pictures of size (2, 2) on the alphabet Γ . A language
L ⊆ Σ∗∗ is said recognized by T if there exists a language L′ ⊆ Γ ∗∗ such that

L = π(L′) and all sub-pictures of L̂′ of size (2, 2) belong to Θ. If the tile
#
#

belongs to Θ we consider by convention that the empty picture ε belongs to L.
Given a tiling system T , we note L(T) the language recognized by T . The family
of languages recognized by tiling systems is noted L(TS) and is called the class
of recognizable picture languages.

144 G. Cécé and A. Giorgetti

As an example, consider the tiling system T = (Σ, Γ, Θ, π) with: Σ = {a, b},
Γ = {0, 1, 2}, π(0) = π(2) = b, π(1) = a, and Θ the set of all the seventeen
sub-pictures of size (2, 2) of the following picture:

#
1 0 0 0 0
2 1 0 0 0
2 2 1 0 0
2 2 2 1 0
2 2 2 2 1
#

It is easy to show that the picture p in (1) belongs to L(T) and furthermore
that L(T) is the set of all non empty square pictures whose main diagonal is
made of a while the other positions are labeled by b.

3 Two-Dimensional On-Line Tessellation Automata

We consider 2OTA as an extension of classical finite automata from words to pic-
tures. The intuition is as follows. In a finite automaton over words, a transition
goes from one state to another state while reading a letter. In the 2D case, two
directions have to be taken in account: downward and rightward. A transition
in a 2OTA goes from two states to a third state while reading a letter, moving
at the same time downward from the first state and rightward from the second
state. In [10,9] a 2OTA is considered as a cellular automaton where cells change
state in a synchronous way, diagonally across the array. This constraint is not
necessary. Therefore, we relax it, and consider a run in a 2OTA like a run in a
non-deterministic word automaton or tree automaton: a state is non determin-
istically associated to each position in the picture and we verify afterwards that
this association satisfies the transition relation. Moreover, we do not force the
set of initial states to be a singleton.

A (non-deterministic) two-dimensional on-line tessellation automaton (2OTA)
is a tuple A = (Σ, Q, I, F, δ) where Σ is a finite alphabet, Q is a finite set of
states, I ⊆ Q is the set of initial states, F ⊆ Q is the set of final, or accepting,
states, and δ ⊆ Q2 × Σ × Q is the transition relation. Given three states q1,
q2, q3 ∈ Q and a letter a ∈ Σ, we can note more graphically the transition

(q1, q2, a, q3) by q1

q2 a q3

. This emphasizes the fact that q1 and q2 are respectively

above q3 and to the left of q3.
Let p ∈ Σ∗∗ be a nonempty picture of size (m, n) over the alphabet Σ. A

run of the automaton A on the picture p is a sequence of states qi,j for (i, j) in
{0, . . . , m} × {0, . . . , n} \ {(0, 0)} such that there exists q0 ∈ I and for all valid i

and j: qi,0 = q0,j = q0, qm,n ∈ F and
qi−1,j

qi,j−1 pi,j qi,j

∈ δ. A run of the automaton

A on the empty picture ε is a state q in I ∩ F .

Simulations over 2OTA 145

A two-dimensional on-line tessellation automaton A accepts a picture p if and
only if there exists a run of A on p. The language recognized by A is the set L(A)
of pictures accepted by A. The family of picture languages recognized by 2OTA
is denoted L(2OTA).

As an example (inspired from one in [9]), a 2OTA recognizing square pictures
with a in the main diagonal and b elsewhere is A = (Σ, Q, I, F, δ) with Σ =

{a, b}, Q = {0, 1, 2}, I = {0}, F = {2} and δ =
{

0

0 a 2
,

0

2 b 1
,

0

1 b 1
,

2

0 b 1
,

1

1 a 2
,

1

2 b 1
,

1

1 b 1
,

1

0 b 1
,

2

1 b 1

}
. A visual way to represent a run of A on a picture p

is to surround the letters in p with states such that the three surrounding states
of a letter form with this letter a transition in δ. For instance:

0 0 0 0

0 a 2 b 1 b 1 b 1

0 b 1 a 2 b 1 b 1

0 b 1 b 1 a 2 b 1

0 b 1 b 1 b 1 a 2

represents a run of A on p =

a b b b
b a b b
b b a b
b b b a

.

Let A = (Σ, Q, I, F, δ) be a 2OTA. It is an undecidable problem to know
whether a state is useful (whether it appears in a run of a recognized picture) or
not, see the next proposition. However, the set of reachable states of A is easily
computable as the sets I, Q and δ are finite. Furthermore, given a 2OTA, we
can obviously restrict its set of states to its reachable states without changing
its recognized picture language. We call the resulting automaton the restriction
of the given 2OTA.

The following proposition summarizes some of the principal properties con-
cerning 2OTA and tiling systems.

Proposition 1.

1. The class of recognizable picture languages is closed under union, intersection
and projection, but not under complement.

2. L(2OTA) = L(TS).
3. From a 2OTA, a tiling system recognizing the same language is computable

in polynomial time (and vice versa).
4. The membership problem for the language of some 2OTA is NP-complete.
5. The inclusion problem for recognizable picture languages is undecidable.
6. Knowing whether a given state belongs to a run of a given 2OTA is an

undecidable problem.

The proofs are given in [9] for (1), (2), and (3). In [11] it is shown that the
membership problem in L(TS) is NP-complete. With (2) and (3) we therefore
have (4). In [9] it is shown that the universality problem (whether a picture
language is indeed the set of all pictures) is undecidable in L(TS), we therefore
deduce (5). In [9] it is shown that the emptiness problem (whether a picture
language is empty) is undecidable in L(TS) and thus also in L(2OTA). Since
it is easy to transform a 2OTA such that it has a single accepting state, we
therefore deduce (6).

146 G. Cécé and A. Giorgetti

4 Simulations

The first motivation of this paper is to obtain a test of inclusion between the
languages accepted by two 2OTA. This is done by the possible existence of a
simulation between them. The following definition is therefore an extension of
the definition of simulations from the case of classical finite word automata.

Definition 1. Let A = (Σ, Q, I, F, δ) and A′ = (Σ, Q′, I ′, F ′, δ′) be two 2OTA.
A relation S ⊆ Q × Q′ is a simulation over A × A′, and A′ is said to simulate
A if:

1. for all q ∈ I there exists r ∈ I ′ such that (q, r) ∈ S,
2. for all (q1, r1), (q2, r2) ∈ S and (q1, q2, a, q3) ∈ δ there exists r3 ∈ Q′ such

that (r1, r2, a, r3) ∈ δ′ and (q3, r3) ∈ S, and
3. (q, r) ∈ S and q ∈ F imply r ∈ F ′.

For a simulation S we will occasionally note xSy for (x, y) ∈ S. A and A′

are said simulation equivalent if there exist a simulation over A × A′ and a
simulation over A′ ×A.

From this definition, we get the following expected theorem.

Theorem 1. Let A, A′ be two 2OTA and S a simulation over A × A′. Then
L(A) ⊆ L(A′).

Proof. A detailed proof can be found in [7]. ��

4.1 Autosimulations

The second motivation of this study on simulations over 2OTA is to reduce them
thanks to an autosimulation relation. We obtain more: the existence of a minimal
2OTA which is simulation equivalent to a given 2OTA.

Definition 2. Let A = (Σ, Q, I, F, δ) be a 2OTA. A relation S ⊆ Q × Q is a
simulation, or more precisely an autosimulation, over A if:

1. S is reflexive,
2. for all (q1, r1), (q2, r2) ∈ S and (q1, q2, a, q3) ∈ δ there exists a state r3 such

that (r1, r2, a, r3) ∈ δ and (q3, r3) ∈ S, and
3. (q, r) ∈ S and q ∈ F imply r ∈ F .

From this definition, autosimulations and simulations over 2OTA are related as
follows.

Proposition 2. Let A = (Σ, Q, I, F, δ) be a 2OTA. A relation S ⊆ Q×Q is an
autosimulation over A iff S is a reflexive simulation over A ×A.

The finite set of autosimulations over a given 2OTA A is partially ordered by
inclusion. It consequently admits maximal elements. The following lemma ad-
dresses the question of their uniqueness.

Simulations over 2OTA 147

Theorem 2. For any 2OTA A there exists a unique maximal autosimulation,
denoted �A, over A. This maximal autosimulation is furthermore reflexive and
transitive.

Proof. A proof can be found in [7]. ��
We will henceforth only consider transitive autosimulations, i.e. autosimulations
which are preorders.

4.2 Quotienting 2OTA

From an autosimulation S (that we assume transitive), we can define the equiv-
alence relation (reflexive, symmetric and transitive) S ∩ S−1. We note [q]S , or
simply [q] if S is obvious from the context, the class of the state q by the equiva-
lence relation S∩S−1. We extend S on equivalence classes such that ([q], [r]) ∈ S
iff (q, r) ∈ S.

Definition 3. Let A = (Σ, Q, I, F, δ) be a 2OTA and S a (transitive) autosim-
ulation over A. The quotient automaton A/S = (Σ, Q/S, I/S , F/S , δ/S), of A by
S, is such that:

1. Q/S = {[q] ∣∣ q ∈ Q} is the set of equivalence classes of S ∩ S−1,
2. I/S = {[q] ∣∣ q ∈ I ∧ ∀r ∈ I, (qSr ⇒ rSq)},
3. F/S = {[q] ∣∣ q ∈ F},

4. δ/S =

⎧⎪⎪⎨⎪⎪⎩
[q1]

[q2] a [q]

∣∣ q1

q2 a q
∈ δ ∧ ∀q′1, q′2, r ∈ Q,(

[q′1] = [q1] ∧ [q′2] = [q2] ∧ qSr ∧ q′
1

q′
2 a r

∈ δ

)
⇒ rSq

⎫⎪⎪⎬⎪⎪⎭ .

Our definition of the quotient automaton is not the classical one. The idea is to
forget unnecessary transitions. In the case of a classical word automaton, this
amounts at forgetting a transition q′ a−→ q if there already exists a transition
q′ a−→ r with qSr. In this case, q is said to be a little brother of r. We have also
adapted the initial set with the same idea: we keep only maximal initial states,
maximality being defined with respect to the preorder S. From a 2OTA A and
a simulation S over A the quotient A/S can be computed in polynomial time.

Lemma 1. Let (α1, α2, a, α3) ∈ δ/S be a transition in the quotient automaton.
Then for all r1 ∈ α1, r2 ∈ α2 there exists r3 ∈ α3 such that (r1, r2, a, r3) ∈ δ.

Proof. By definition of δ/S there exist three states q1, q2 and q3 such that [q1] =
α1, [q2] = α2, [q] = α3, (q1, q2, a, q3) ∈ δ and

∀q′1, q′2, r ∈ Q, ([q′1] = [q1] ∧ [q′2] = [q2] ∧ q3Sr ∧ (q′1, q
′
2, a, r) ∈ δ) ⇒ rSq3. (2)

Let r1 ∈ α1 = [q1] and r2 ∈ α2 = [q2]. Then we have q1Sr1 and q2Sr2. From
(q1, q2, a, q3) ∈ δ and the definition of an autosimulation, there exists a state r3

such that (r1, r2, a, r3) ∈ δ and q3Sr3. Finally, applying (2) when q′1 is r1, q′2 is
r2 and r is r3 leads to r3Sq3. Consequently r3 ∈ α3 completes the proof. ��

148 G. Cécé and A. Giorgetti

Lemma 2. Let (q1, q2, a, q3) ∈ δ be a transition in A. Then there exists q such
that q3Sq and ([q1], [q2], a, [q]) ∈ δ/S.

Proof. Let

R =
{
r
∣∣ q3Sr ∧ ∃r1, r2 ∈ Q, [r1] = [q1] ∧ [r2] = [q2] ∧ (r1, r2, a, r) ∈ δ

}
.

Let q be such a maximal element of R for the preorder S, i.e. an element of R
such that ∀q′ ∈ R, qSq′ ⇒ q′Sq. The state q always exists since R is a subset
of the finite set Q. By definition of R and q, we have q3Sq. Let r1 and r2 be
such that [r1] = [q1], [r2] = [q2] and (r1, r2, a, q) ∈ δ. It remains to prove that
([q1], [q2], a, [q]) ∈ δ/S .

Let q′1, q′2 and r be any three states in Q such that qSr and

[q′1] = [r1] ∧ [q′2] = [r2] ∧ (q′1, q
′
2, a, r) ∈ δ. (3)

By transitivity of S, q3Sr holds and means together with (3) that r is an element
of R. Consequently rSq. By definition of δ/S it results from (r1, r2, a, q) ∈ δ that
([r1], [r2], a, [q]) is in δ/S . The equalities [r1] = [q1] and [r2] = [q2] complete the
proof. ��
Theorem 3. Let A = (Σ, Q, I, F, δ) be a 2OTA and S be a simulation over A.
Then A and A/S are simulation equivalent.

Proof. Let S′ and S′′ be the binary relations respectively defined over A×A/S

and A/S × A by S′ = {(q, [r]) ∣∣ qSr} and S′′ = {([q], q) ∣∣ q ∈ Q}. We separately
prove that S′ and S′′ are simulations. A detailed proof can be found in [7]. ��

As an immediate consequence, doing such a quotient does not modify the
recognized language.

Corollary 1. Let A = (Σ, Q, I, F, δ) be a 2OTA and S be a simulation over A.
Then A and A/S recognize the same picture language.

4.3 The Minimal Simulation-Equivalent 2OTA

In the preceding sections, we have proved the existence of a maximal autosimu-
lation. Then we have used this maximal autosimulation to reduce a given 2OTA
more than by doing a classical quotient. We are now ready to prove that the
restriction of this reduced 2OTA to its reachable part is indeed the minimal one
which is still simulation equivalent with the given 2OTA.

Theorem 4. Let A and A′ be two 2OTA. Let �A and �A′ be their respective
maximal simulation relations. Then the restrictions of A/�A

and of A′
/�A′ are

simulation equivalent if and only if they are isomorphic.

Proof. The reverse implication is straightforward. Two isomorphic 2OTA are
obviously simulation equivalent. To prove the direct implication we name S
(resp. S′) a simulation over A/�A

×A′
/�A′ (resp. A′

/�A′ ×A/�A
). Then we define

Simulations over 2OTA 149

the binary relation f = S ∩ S′−1 and we successively prove that f is a partial
function, f is total, f is one-to-one and finally that f is an isomorphism between
the respective restrictions of A/�A

and A′
/�A′ . Due to lack of space, the complete

proof is not reproduced here. It can be found in [7]. ��
Corollary 2. Let A be a 2OTA and �A its maximal simulation relation. Then
the restriction of A/�A

is the smallest 2OTA which is simulation equivalent to A.

Proof. A proof can be found in [7]. ��

5 How to Compute Simulations

A transition in a 2OTA resembles a transition in a tree automaton. Indeed,
the transition (q1, q2, a, q) can be viewed as the rule (q1, q2)

a−→ q in a tree
automaton. In [1] a polynomial time algorithm is given to compute what is
called the maximal upward simulation in a tree automaton. In this section we
reduce computation of maximal simulations in 2OTA to computation of maximal
upward simulations in tree automata. Before that we shortly recall useful results
about upward simulations in binary tree automata. In particular we do not define
the semantics of tree automata which is not related to the present subject.

Definition 4. A binary Tree Automaton (bTA) is a tuple T = (Σ, Q, F, δ)
where Σ is a finite alphabet, Q is a finite set of states, F ⊆ Q is a set of final
states and δ ⊆ Q2 ×Σ ×Q is a finite set of transitions.

As usual, we can note (q1, q2)
a−→ q whenever (q1, q2, a, q) ∈ δ. If we forget that

2OTA recognize pictures and bTA recognize binary trees, their definitions are
similar, up to an extra set of initial states for 2OTA. This similarity is used in
the remainder of this section. An upward simulation over a bTA T = (Σ, Q, F, δ)
is a relation S ⊆ Q× Q such that (q1, q2)

a−→ q and qiSri for a given i ∈ {1, 2}
imply the existence of a state r such that qSr and (r1, q2)

a−→ r if i = 1 and
(q1, r2)

a−→ r if i = 2. Note that the set of final states is not present in this
definition. So let us call a simulation without final states (wfs-simulation) a
relation S ⊆ Q×Q such that (q1, q2)

a−→ q and qiSri for all i ∈ {1, 2} imply the
existence of a state r such that (r1, r2)

a−→ r and qSr. We immediately get the
following lemma.

Lemma 3. Let T be a bTA and S a reflexive and transitive relation over T .
Then S is a wfs-simulation over T iff it is an upward simulation over T .

Proof. The fact that a reflexive wfs-simulation is also an upward simulation
is obvious. Now let us consider a transitive upward simulation S over T =
(Σ, Q, F, δ), a transition (q1, q2)

a−→ q in δ and two states r1, r2 ∈ Q such that
qiSri for all i ∈ {1, 2}. As S is an upward simulation there exists a state r′ and
a transition (r1, q2)

a−→ r′ such that qSr′. By the same argument on this new
transition there also exists a state r and a transition (r1, r2)

a−→ r such that
r′Sr. By transitivity of S we get qSr, which concludes the proof. ��

150 G. Cécé and A. Giorgetti

In [3], the existence and the uniqueness of a maximal upward simulation over
a bTA T are shown. This maximal upward simulation, noted �T , is furthermore
shown reflexive and transitive. As argued in [1], given a preorder R, it can still
be shown that there is a unique maximal upward simulation included in R,
noted �R

T , over a given bTA T . This relation �R
T is reflexive and transitive.

Still in [1], a polynomial time algorithm is given to compute �T . But indeed, a
straightforward extension of the construction used in their proof (adding R as a
constraint on the initial partition-relation pair) leads to the following stronger
result.

Theorem 5. Let T = (Σ, Q, F, δ) be a bTA and R ⊆ Q × Q be a reflexive and
transitive relation (preorder). The maximal upward simulation �R

T included in
R is reflexive, transitive and computable in polynomial time.

Corollary 3. The maximal autosimulation over a 2OTA A is computable in
polynomial time.

Proof. Let A = (Σ, Q, I, F, δ) be a 2OTA. Then T = (Σ, Q, F, δ) is a bTA. Let
R ⊆ Q × Q be the preorder such that qRr iff (q ∈ F ⇒ r ∈ F). This preorder
simply defines a partition of Q in two blocks: F and Q\F , with (Q\F)×F ⊆ R.
By Condition (3) of Definition 2 any autosimulation over A is included in R.
This means that the maximal autosimulation �A over A is also the maximal
reflexive and transitive wfs-simulation over T included in R. By Lemma 3 it is
also the maximal upward simulation �R

T included in R, since �R
T is reflexive and

transitive. By Theorem 5 it is computable in polynomial time. ��
Unfortunately, unlike in word automata, deciding the existence of a simulation

between two 2OTA is not feasible in polynomial time.

Theorem 6. Deciding whether a 2OTA is simulated by another 2OTA is a NP-
complete problem.

Proof. A proof can be found in [7]. ��
However, in 2OTA the inclusion problem is undecidable. In this perspective, the
simulation test is a sufficient condition of inclusion which does not have a worst
time complexity than the one of the membership problem.

6 The Case of Backward Simulations

In word automata or tree automata, there are two different simulations: a for-
ward simulation, from initial states to final states, and a backward simulation,
from final states to initial states. They both imply language inclusion. The sim-
ulations in 2OTA considered so far in this paper are forward simulations. This
section establishes the noticeable fact that what could correspond to backward
simulation in the case of 2OTA does not imply language inclusion.

Definition 5. Let A = (Σ, Q, {q0}, F, δ) and A′ = (Σ, Q′, {q′0}, F ′, δ′) be two
2OTA. A relation S ⊆ Q×Q′ is a backward simulation over A×A′ if:

Simulations over 2OTA 151

1. (q0, q
′
0) ∈ S,

2. for all (q3, r3) ∈ S and (q1, q2, a, q3) ∈ δ there exist r1, r2 ∈ Q′ such that
(r1, r2, a, r3) ∈ δ′, (q1, r1) ∈ S and (q2, r2) ∈ S,

3. for all q ∈ F there exists r ∈ F ′ such that (q, r) ∈ S.

In order to simplify the problem, initial sets are restricted to singletons (this
is implicitly done in the case of tree automata where the initial state indeed
corresponds to rules with an empty left hand side).

Proposition 3. In 2OTA, backward simulation does not imply language inclu-
sion.

Proof. A proof can be found in [7]. ��

7 Conclusion and Future Work

In this paper, we have applied the notion of simulation to a class of 2D automata,
namely the one of two dimensional on-line tessellation automata. We have ob-
tained many desired results. A first result is a non trivial sufficient condition to
decide the inclusion problem between the languages recognized by two 2OTA.
This is an important result since this problem is undecidable in general. The
fact established here that this sufficient condition is decidable in NP-complete
time is the trade-off to pay. We also show how to reduce the size of a 2OTA and
obtain the minimal automaton with respect to simulation equivalence. This is
also an important result since, although decidable, the membership problem in
all comparable classes of 2D automata is NP-complete in time, and reducing the
size of a given automaton dramatically reduces the time to obtain a response to
the membership question (less states have to be tried). We have shown that this
reduction can fortunately be done in polynomial time.

Now that we have a first test for inclusion we can come back to our initial
motivation: the extension of the regular model-checking paradigm to two dimen-
sional languages. This will probably require to relax our definition of simulation
and take into account the scanning strategy to recognize a picture [4,12] and
identify meta-transitions. This will be done in accordance with the examples we
will treat.

The structure of 2OTA is similar to the one of binary tree automata. Indeed,
both can be viewed as relational structures with two successors relations S1 and
S2 [15]. The difference lies in the fact that in 2OTA, we necessarily have that
the composition of the two relations commutes, i.e. S1 ◦ S2 = S2 ◦ S1. With this
point of view, our work can be seen as the extension of the notion of simulation
from trees to tree structures with a constraint. Another noticeable difference be-
tween the two models is that in 2OTA what corresponds to downward simulation
in trees does not imply language inclusion. The similarity with tree automata
has allowed us to use the algorithm of [1] for the computation of the maximal
autosimulation in a 2OTA. In the other direction the study of simulations in
trees can benefit from our work. For example, applications of the existence of a
minimal simulation-equivalent tree automaton have not been investigated. We
plan to make this study.

152 G. Cécé and A. Giorgetti

Acknowledgement. The authors are grateful to the anonymous referees for
helpful comments and suggestions.

References

1. Abdulla, P.A., Bouajjani, A., Hoĺık, L., Kaati, L., Vojnar, T.: Computing Simula-
tions over Tree Automata. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 93–108. Springer, Heidelberg (2008)

2. Abdulla, P.A., Chen, Y.F., Hoĺık, L., Mayr, R., Vojnar, T.: When Simulation Meets
Antichains. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015,
pp. 158–174. Springer, Heidelberg (2010)

3. Abdulla, P.A., Legay, A., d’Orso, J., Rezine, A.: Tree regular model checking: A
simulation-based approach. J. Log. Algebr. Program. 69(1-2), 93–121 (2006)

4. Anselmo, M., Giammarresi, D., Madonia, M.: A computational model for tiling
recognizable two-dimensional languages. Theor. Comput. Sci. 410(37), 3520–3529
(2009)

5. Bozapalidis, S., Grammatikopoulou, A.: Recognizable Picture Series. Journal of
Automata, Languages and Combinatorics 10(2/3), 159–183 (2005)

6. Bustan, D., Grumberg, O.: Simulation-based minimization. ACM Trans. Comput.
Logic 4(2), 181–206 (2003)

7. Cécé, G., Giorgetti, A.: Simulations for a Class of Two-Dimensional Automata.
Research Report RR-7425, INRIA (October 2010),
http://hal.inria.fr/inria-00527077/en/

8. Cherubini, A., Pradella, M.: Picture Languages: From Wang Tiles to 2D Grammars.
In: Bozapalidis, S., Rahonis, G. (eds.) CAI 2009. LNCS, vol. 5725, pp. 13–46.
Springer, Heidelberg (2009)

9. Giammarresi, D., Restivo, A.: Two-Dimensional Languages. In: Salomaa, A.,
Rozenberg, G. (eds.) Handbook of Formal Languages, Beyond Words, vol. 3, pp.
215–267. Springer, Berlin (1997)

10. Inoue, K., Nakamura, A.: Some properties of two-dimensional on-line tessellation
acceptors. Inf. Sci. 13(2), 95–121 (1977)

11. Lindgren, K., Moore, C., Nordahl, M.: Complexity of Two-Dimensional Patterns.
Journal of Statistical Physics 91(5-6), 909–951 (1998)

12. Lonati, V., Pradella, M.: Deterministic recognizability of picture languages with
Wang automata. Discrete Math. & Theor. Comput. Sci. 12(4), 73–94 (2010)

13. Milner, R.: An Algebraic Definition of Simulation Between Programs. In: IJCAI,
pp. 481–489 (1971)

14. The Smart Surface Project (2010), http://www.smartsurface.cnrs.fr/
15. Thomas, W.: Uniform and nonuniform recognizability. Theor. Comput. Sci. 292(1),

299–316 (2003)

http://hal.inria.fr/inria-00527077/en/
http://www.smartsurface.cnrs.fr/

Δ-Clearing Restarting Automata and CFL�

Peter Černo and Frantǐsek Mráz

Department of Computer Science
Charles University, Faculty of Mathematics and Physics

Malostranské nám. 25, 118 00 PRAHA 1, Czech Republic
petercerno@gmail.com, mraz@ksvi.ms.mff.cuni.cz

Abstract. Δ-clearing restarting automata represent a new restricted
model of restarting automata which, based on a limited context, can
either delete a substring of the current content of its tape or replace a
substring by a special auxiliary symbol Δ, which cannot be overwrit-
ten anymore, but it can be deleted later. The main result of this pa-
per consists in proving that besides their limited operations, Δ-clearing
restarting automata recognize all context-free languages.

Keywords: analysis by reduction, context-free languages, Δ-clearing
restarting automata, formal languages.

1 Introduction

Restarting automata [6] were introduced as a tool for modeling some techniques
used for natural language processing. In particular, they are used for analysis
by reduction, which is a method for checking (syntactical) correctness or non-
correctness of a sentence. Analysis by reduction consists in iterative application
of (non)correctness preserving simplifications to the given input sentence until it
cannot be simplified anymore. If we obtain a correct simple sentence, we accept,
otherwise we reject. While restarting automata are quite general (see [11]), they
still lack some properties which could facilitate their wider use. Among others
they could benefit from simpler definition.

Recently, Kutrib et al. in [8] and [9] introduced stateless restarting automata.
For monotone and/or deterministic version of these automata, if they can use
auxiliary symbols in rewriting, then they have the same power as the corre-
sponding versions with states ([8,10]). However, the stateless versions of restart-
ing automata without auxiliary symbols are strictly weaker than the respective
versions which can use states.

Černo and Mráz [2] introduced an even more simplified version of restarting
automata called clearing restarting automata. While general restarting automata
see the whole part of the current sentence (word) to the left (and possibly also

� This work was partially supported by the Grant Agency of Charles University under
Grant-No. 272111/MFF/A-INF and by the Czech Science Foundation under Grant-
No. P103/10/0783 and Grant-No. P202/10/1333.

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 153–164, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

154 P. Černo and F. Mráz

to the right) of the place they rewrite, the rewriting done by clearing restarting
automata depends only on a fixed context around the rewritten subword. More-
over, clearing restarting automata can only “clear” a subword, i.e. completely
delete a subword based on limited context around the “cleared” subword. Hence
the automata have no states and in one cycle they rewrite (exactly once) at
any place according to some of their finitely many instructions. Obviously, such
automata are more restricted than the weakest version of the stateless restart-
ing automata (the so-called stateless R-automata). It turned out that clearing
restarting automata are rather limited. While they can recognize all regular lan-
guages and even some languages that are not context-free, they cannot recognize
all context-free languages (see [2]). Hence there were introduced Δ-clearing au-
tomata and Δ∗-clearing automata that can use an auxiliary symbol Δ. Besides
deleting a subword, Δ-clearing automata can rewrite a subword by the special
symbol Δ, which can be deleted in later cycles, too. Δ∗-clearing automata are
even stronger, as they can also rewrite a subword by Δi, where i is not greater
than the length of the rewritten word.

In [1] we have shown that a Δ-clearing automaton can accept the Greibach’s
“hardest context-free language” and later in [2] there was shown that Δ∗-clearing
automata can recognize all context-free languages. [2] conjectured that also Δ-
clearing automata can recognize all context-free languages (CFL). In this paper
we prove the conjecture.

The paper is divided into several sections. In Section 2 we introduce a general
concept called context rewriting system which will serve us as a framework for
Δ-clearing restarting automata and their extended version Δ∗-clearing restart-
ing automata. The main source for this section is [2]. In Section 3 we describe a
special coding used by Δ-clearing restarting automata to encode some informa-
tion into the tape. In Section 4 we describe the algorithm behind the Δ-clearing
restarting automaton recognizing a given context-free language. Because of the
page limit we omit most of the proofs in this paper and refer the interested reader
to the technical report [3] (http://popelka.ms.mff.cuni.cz/cerno/files/
cerno mraz dclra and cfl.pdf).

We use the standard notation from the theory of formal languages and au-
tomata as in Hopcroft and Ullman [5].

2 Theoretical Background

In this section we introduce a general concept called context rewriting system
which will serve us as a framework for Δ-clearing restarting automata and their
extended version Δ∗-clearing restarting automata.

Definition 1 ([2]). Let k be a positive integer. A k-context rewriting system
(k-CRS for short) is a system R = (Σ, Γ, I), where Σ is an input alphabet,
Γ ⊇ Σ is a working alphabet not containing the special symbols ¢ and $, called
sentinels, and I is a finite set of instructions of the form:

(x, z → t, y) ,

http://popelka.ms.mff.cuni.cz/cerno/files/

Δ-Clearing Restarting Automata and CFL 155

where x is called left context, x ∈ Γ k ∪ ¢ · Γ≤k−1, y is called right context,
y ∈ Γ k ∪ Γ≤k−1 · $ and z → t is called rule, z, t ∈ Γ ∗.

A word w = uzv can be rewritten into utv (denoted as uzv →R utv) if and
only if there exists an instruction i = (x, z → t, y) ∈ I such that x is a suffix of¢ ·u and y is a prefix of v ·$. We often underline the rewritten part of the word w,
and if the instruction i is known we use →(i)

R instead of →R, i.e. uzv →(i)
R utv.

The relation →R ⊆ Γ ∗ × Γ ∗ is called rewriting relation.
The reduction language (reduction characteristic language, respectively) as-

sociated with R is defined as L−(R) = {w ∈ Σ∗ | w →∗
R λ} (L−

C(R) = {w ∈ Γ ∗ |
w →∗

R λ}, respectively), where →∗
R is the reflexive and transitive closure of →R.

Note that, by definition, λ ∈ L−(R) (λ ∈ L−
C(R), respectively).

Naturally, if we increase the length of contexts used in instructions of a CRS, we
do not decrease their expressiveness ([2]).

It is easy to see that general k-CRS can simulate any type 0 grammar (accord-
ing to the Chomsky hierarchy [5]). Hence we will study their restricted versions
only. First we introduce a clearing restarting automaton which is a k-CRS such
that Σ = Γ and all rules in its instructions are of the form z → λ, where z ∈ Σ+.

Definition 2 ([2]). Let k be a positive integer. A k-clearing restarting automa-
ton (k-cl-RA for short) is a system M = (Σ, I), where R = (Σ, Σ, I) is a k-CRS
such that for each instruction i = (x, z → t, y) ∈ I it holds z ∈ Σ+ and t = λ.
Since t is always the empty word, we use the notation i = (x, z, y). The width
of the instruction i = (x, z, y) is |i| = |xzy|.

The k-cl-RA M recognizes the language L(M) = {w ∈ Σ∗ | w �∗
M λ} =

L−(M), where �M is the rewriting relation →R of R.

Example 1. Let M = (Σ, I) be the 1-cl-RA with Σ = {a, b} and I consisting of
the following two instructions:

(1) (a, ab, b),
(2) (¢, ab, $).

Then we have aaaabbbb �(1)
M aaabbb �(1)

M aabb �(1)
M ab �(2)

M λ which means that
aaaabbbb �∗

M λ. So the word aaaabbbb is accepted by M . It is easy to see that
M recognizes the language L(M) = {anbn | n ≥ 0}.
In the following, k-cl-RA (cl-RA, respectively) denotes the class of all k-clearing
restarting automata (clearing restarting automata, respectively), where cl-RA =⋃∞

k=1 k-cl-RA.

Remark 1. By definition, each cl-RA accepts λ. If we say that a cl-RA M recog-
nizes (or accepts) a language L, we always mean that L(M) = L ∪ {λ}. This
implicit acceptance of the empty word can be avoided by a slight modification of
the definition of clearing restarting automata, or even context rewriting systems,
but in principle, we would not get a more powerful model.

156 P. Černo and F. Mráz

Clearing restarting automata are studied in [2]. We only mention that they can
recognize all regular languages, some context-free languages and even some non-
context-free languages.

In [2] there were introduced two extended versions of clearing restarting au-
tomata – the so-called Δ-clearing restarting automata and Δ∗-clearing restarting
automata. Both of them can use a single auxiliary symbol Δ only. Δ-clearing
restarting automata can leave a mark – a symbol Δ – at the place of deleting
besides rewriting into the empty word λ. Δ∗-clearing restarting automata can
rewrite a subword w into Δk where k is bounded from above by the length of w.

Definition 3 ([2]). Let k be a positive integer. A k-Δ-clearing restarting au-
tomaton (k-Δcl-RA for short) is a system M = (Σ, I), where R = (Σ, Γ, I) is
a k-CRS such that Δ /∈ Σ, Γ = Σ ∪ {Δ}, and for each instruction i = (x, z →
t, y) ∈ I: z ∈ Γ+ and either t = λ, or t = Δ.

Analogously, a k-Δ∗-clearing restarting automaton (k-Δ∗cl-RA for short) is a
system M = (Σ, I), such that for each instruction i = (x, z → t, y) ∈ I: z ∈ Γ+

and t = Δi, where 0 ≤ i ≤ |z|.
The k-Δcl-RA (k-Δ∗cl-RA) M recognizes the language L(M) = {w ∈ Σ∗ |

w �∗
M λ} = L−(M), where �M is the rewriting relation →R of R = (Σ, Γ, I).

The characteristic language of M is the language LC(M) = L−
C(M).

In what follows we will first repeat a result from [2] showing that 1-Δ∗cl-RA
are powerful enough to recognize all context-free languages. The following proof
utilizes the same idea as in [2], but a little modified encoding of nonterminals of
a context-free grammar using Δ’s.

Theorem 1. For each context-free language L there exists a 1-Δ∗cl-RA-automa-
ton M recognizing L.

Proof. Let L be a context-free language. Then there exists a context-free gram-
mar G = (VN , VT , S, P) in Chomsky normal form generating the language
L(G) = L � {λ}. Let VN = {N1, . . . , Nm}, S = N1 and Δ �∈ VN ∪ VT , and let
G′ = (VN , V ′

T , S, P ′) be the grammar obtained from G by adding a new terminal
symbol Δ to VT (V ′

T = Σ ∪{Δ}), and adding new productions Ni → aΔib to P ,
for all 1 ≤ i ≤ m and all a, b ∈ VT . Obviously, L(G′)∩Σ∗ = L(G). We will show
that we can effectively construct a 1-Δ∗cl-RA M such that LC(M) = L(G′)∪{λ}
and L(M) = LC(M) ∩Σ∗ = (L(G′) ∪ {λ}) ∩ Σ∗ = L(G) ∪ {λ}.

For the automaton M all the words aΔib for all a, b ∈ Σ represent “codes” for
the nonterminal Ni. The letters a, b ∈ Σ serve as separators for distinguishing
several consecutive encoded nonterminals.

The automaton M works in a bottom-up manner. If the automaton recognizes
that some subword w of the input tape can be derived from some nonterminal
Ni, then the automaton can (nondeterministically) replace this subword w by a
corresponding code Δi. Or to be more precise, the automaton M replaces only
the inner part of the subword w by the code Δi in order to leave the first and
the last letter of w as a separator. If the word on the input tape is short enough

Δ-Clearing Restarting Automata and CFL 157

and belongs to the language L(G′) then the automaton M just erases the whole
input word in a single step.

The next proposition ([3]) ensures that for correct recognition of L(G′) the
automaton M can be restricted to replacing only subwords of length limited by
a constant.

Proposition 1 ([3]). Let G′ = (VN , V ′
T , S, P ′) be the grammar constructed

above and w be a word from L(G′) of length |w| > c = |VN | + 2. Then there
exist words x, y, z from (V ′

T)∗ such that |z| ≤ 2c and S ⇒∗
G′ xNiy ⇒∗

G′ xzy = w
for some nonterminal Ni ∈ VN .

Now we construct the 1-Δ∗cl-RA M = (Σ, I), where Σ = VT , Γ = Σ∪{Δ} = V ′
T .

First, we set:
I1 = {(¢, w → λ, $) | w ∈ L(G′), |w| ≤ c}.

For every i ∈ {1, 2, . . . , m} let us define:

Li = {z ∈ Γ ∗ | Ni ⇒∗
G′ z, c < |z| ≤ 2c}.

For every such z ∈ Li, z = z1z2 . . . zs−1zs, consider the instruction:

(z1, z2 . . . zs−1 → Δi, zs) .

This instruction rewrites the inner part of the word z to Δi leaving z1 and zs as
separators. Let I2 be the set of all such instructions. (Observe that z1, zs ∈ Σ,
and both I1 and I2 are finite sets of instructions). Then M = (Σ, I1 ∪ I2) is the
required automaton.

This completes the proof of Theorem 1. ��
We have shown that 1-Δ∗cl-RA are able to recognize all context-free languages
(containing the empty word λ – see Remark 1). This result opens an interesting
question whether it is possible to transform each Δ∗cl-RA into an equivalent
Δcl-RA. If we are interested only in the problem whether Δcl-RA can recog-
nize all context-free languages, then we do not need to do this transformation
to all Δ∗cl-RA. We just need to do this transformation to such Δ∗cl-RA which
were obtained from a context-free grammar, as was shown above. Moreover,
the aforementioned construction can be generalized, i.e. we can put some ex-
tra restrictions on the instructions of the resulting Δ∗cl-RA. We can generalize
the construction of the grammar G′ and the corresponding Δ∗cl-RA M in the
following four ways:

1. We can choose a minimal length m0 ≥ 1 of codes for nonterminals, i.e. we
code Ni by using at least m0 consecutive letters Δ.

2. We can choose a minimal length m1 ≥ 1 of shortening for each reduction,
i.e. for each instruction (x, u → Δr, y) such that r ≥ 1, we guarantee that
|u| − |Δr| ≥ m1.

3. We can choose a number of codes m2 ≥ 1 representing one nonterminal, i.e.
we code Ni by using m0 + m2(i − 1) + j − 1 consecutive letters Δ, for all
j ∈ {1, 2, . . .m2}.

158 P. Černo and F. Mráz

4. We can choose a length k ≥ 1 of the separator, i.e. instead of one letter we
use k consecutive arbitrary letters from Σ as a separator.

The details of the construction can be found in the technical report [3]. One of
the important consequences we obtain is the following Lemma 1.

Lemma 1. For each t ≥ 1, we can set the parameters m1 and k (depending
only on t) in such a way, that for each instruction (x, u → Δr, y) ∈ I2, there
exists a subword v ∈ Σ∗ (not containing Δ) in the word u with the length |v| ≥ t.
Moreover, m1, k = Θ(t). The parameters m0 and m2 can be chosen arbitrarily.

Now we will outline the basic idea behind the transformation of a k-Δ∗cl-RA
M obtained from the generalized construction into an equivalent Δcl-RA N .
Clearly, by transforming each instruction φ = (x, u → Δr, y) of M , where r > 1
and u = u1 . . . us, into the following set of instructions:

φ1 = (x, u1 → Δ, u2u3 . . . usy),
φ2 = (xΔ, u2 → Δ, u3u4 . . . usy),
. . .
φr−1 = (xΔr−2, ur−1 → Δ, urur+1 . . . usy),
φr = (xΔr−1, urur+1 . . . us → Δ, y),

we get only the inclusion L(M) ⊆ L(N). The opposite inclusion is not guaran-
teed, as there can exist two different instructions φ and ψ in M such that they
have different partial instructions φi and ψj applicable in the same context. One
possible way how to avoid such situations is to introduce some new special in-
structions, which will encode some extra information into u by rewriting some
letters with auxiliary Δ-symbols. Lemma 1 guarantees a long enough subword
v ∈ Σ∗ in u, which we can use to encode this information. In the rest of this
paper we describe how to accomplish this task by using one specific coding.

3 Coding

We would like to encode information in an arbitrary, sufficiently long word w ∈
Σ∗ only by replacing some letters of w by symbols Δ �∈ Σ. Moreover, we require
that it should be possible to recover the original word w at any time. Such
encoding is guaranteed by the following theorem which can be easily proven by
using Hall’s Theorem [4].

Theorem 2 (Coding 1 [3]). Let Σ be a finite nonempty alphabet and Δ /∈ Σ.
Then there exist a positive integer B and a table T of triples (x, z, y), xzy ∈ ΣB,
z ∈ Σ, such that:

1. {xzy | (x, z, y) ∈ T } = ΣB,
2. For each pair (x, y), xy ∈ ΣB−1 there exists exactly one z ∈ Σ : (x, z, y) ∈ T .

Δ-Clearing Restarting Automata and CFL 159

This theorem guarantees that if we take any word w ∈ ΣB then there exists a
factorization w = xzy, such that (x, z, y) ∈ T . Now if we replace the letter z by
Δ, we do not lose any information, since we are able to recover the letter z from
the context (x, y) by using the table T .

Example 2. For Σ = {a, b, c} we only give the resulting bijection:

aaa ↔ Δaa, aab ↔ Δab, aac ↔ aaΔ, aba ↔ Δba, abb ↔ aΔb,
abc ↔ abΔ, aca ↔ aΔa, acb ↔ acΔ, acc ↔ aΔc, baa ↔ bΔa,
bab ↔ bΔb, bac ↔ baΔ, bba ↔ bbΔ, bbb ↔ Δbb, bbc ↔ Δbc,
bca ↔ Δca, bcb ↔ bcΔ, bcc ↔ bΔc, caa ↔ cΔa, cab ↔ caΔ,
cac ↔ Δac, cba ↔ cbΔ, cbb ↔ cΔb, cbc ↔ cΔc, cca ↔ ccΔ,
ccb ↔ Δcb, ccc ↔ Δcc.

Next consider the following sample word w = accbabccacaabbcabcbcacaa. We
can factorize it into the groups of B = 3 letters:

w = acc | bab | cca | caa | bbc | abc | bca | caa.

We can encode some information, e.g. i = 11001010, into the word w without
losing any information. Using the above bijection, we mark the groups of w that
correspond to 1’s in the information i by Δ:

w′ = aΔc | bΔb | cca | caa | Δbc | abc | Δca | caa.

It is easy to see that we can recover the original word w.

By applying the encoding from Example 2 we can store an n-bit information in
any word w of length at least nB. However, we need to “see” the whole word w
in order to correctly define the groups of B letters.

The problem with Coding 1 is that by seeing only a factor w of a whole input
word we may not be able to decode Δ symbols. If w does not start with the
left sentinel ¢ then we are not able to correctly factorize w into the groups of B
letters, and thus we are not able to recover Δ symbols occurring in the word w.

Fortunately, there exists a simple trick how to avoid this problem. In order
to correctly factorize the input word w into the groups of B letters we need
only some “fixed point”, which exactly defines the starting position of the first
group of the correct factorization. The left sentinel ¢ is one example of such
fixed point. Thus in the first phase we distribute such fixed points throughout
the whole input tape starting at the left sentinel ¢. The distances between two
consecutive fixed points will be approximately constant. We illustrate this idea
on the following simplified example. Suppose that we have the following factor:

w = abaccΔbacbbacacbcbaacbcbacbacabab

The symbol Δ in w represents our fixed point and defines the following factoriza-
tion w = abaccΔ | bac | bba | cac | bcb | aac | bcb | acb | aca | bab. We

160 P. Černo and F. Mráz

place the next fixed point into the 9th group to the right from the highlighted
fixed point Δ (by using the bijection from Example 2):

w′ = abaccΔ | bac | bba | cac | bcb | aac | bcb | acb | aca | bΔb

As you can see, the number of letters between two consecutive fixed points is
either 3 × 8, or 3 × 8 + 1, or 3 × 8 + 2. We place another fixed point whenever
the factor w is of the form w ∈ ¢ · Σ≥3×9 or w ∈ Σ∗ · Δ · Σ≥3×9.

4 Idea of the Algorithm

As we already know, every Δ-clearing restarting automaton is defined by some
finite set of instructions. However, in this section we prefer the following algorith-
mic viewpoint. Imagine a Δ-clearing restarting automaton as a nondeterministic
machine N which repeatedly executes the following two steps. In the first “choos-
ing” step it nondeterministically chooses a subword w of the input tape ¢u$, such
that the length of this subword is limited from above by some constant K. In
the second “solving” step it runs a computation on this selected word w which
either rejects, or replaces some subword of w by either λ or Δ, while preserving
the sentinels (¢ and $). The automaton N accepts u if and only if there exists a
computation starting from ¢u$ which clears the whole word u.

If we want to define a Δ-clearing restarting automaton, we only need to define
the solving algorithm S, called the solver, behind the second step of the above
schema, and then show the existence of a suitable limit K. We put no resource
limits on the solver S, because due to the constant K there are only finitely
many inputs we may ask S.

Now consider a k-Δ∗cl-RA M whose construction was based on a given context-
free grammar G as described in Section 2. Our goal is now to construct a solving
algorithm S which will somehow imitate the work of the automaton M in such a
way, that S will split one instruction of M into several steps. The automaton M
works in a bottom-up manner. If the automaton recognizes that some subword
w of the input tape can be derived from a nonterminal Ni, then it can replace
the inner part of this subword w by the code Δr, where r = m0+m2(i−1)+j−1
for some j ∈ {1, 2, . . . , m2}, leaving the first k letters and the last k letters of
w as separators. The segment Δr together with its separators represents a code
for the nonterminal Ni. These separators have a nice and useful property: if one
changes some letters in these separators, the acceptance of the whole word on
the input tape remains unchanged.

Our solver S is not obliged to preserve the representation used by the au-
tomaton M . Moreover, because of some technical reasons, we will not represent
the nonterminal Ni by using a continuous segment Δr. Instead, we will use the
segment ΔxΔr−4yΔ, where x, y ∈ Σ are the so-called “holes”. These holes are
useful in the sense that they can unambiguously identify the start and the end
of the segment ΔxΔr−4yΔ inside any word marked by other symbols Δ.

As we have already explained, if we want to encode the information into some
word w ∈ Σ∗, we need to know the factorization of this word w into the groups

Δ-Clearing Restarting Automata and CFL 161

of B letters (see Section 3). This factorization (once defined) cannot be changed
in the course of the algorithm. Otherwise, we could misinterpret the symbols Δ
occurring in the word w. In order to correctly factorize the input word we need
to find the so-called fixed point. We recognize three types of fixed points:

1. Fixed point ¢: In the word ¢ ·w, where w ∈ Γ ∗, the fixed point ¢ defines the
following groups: ¢ | w1 | w2 | w3 | . . . ,
where w = w1w2w3 . . ., and |w1| = |w2| = |w3| = . . . = B.

2. Fixed point Δr with holes : In the word uw, where u is the segment Δr with
holes, r = m0 +m2(i− 1)+ j− 1 for some j ∈ {1, 2, . . . , m2}, the fixed point
u defines the following groups:

w0 | w1 | w2 | w3 | . . . ,
where uw = w0w1w2 . . ., |w0| = m0 + m2(i − 1), and |w1| = |w2| = |w3| =
. . . = B.

3. Fixed point uΔvΔ: In the word uΔvΔw, where u ∈ Σ2B, v ∈ Σ≤2B−2,
w ∈ Σ · Γ ∗, the fixed point uΔvΔ defines the following groups:

uΔvΔ | w1 | w2 | w3 | . . . ,
where w = w1w2w3 . . ., and |w1| = |w2| = |w3| = . . . = B.

To prevent the accidental creation of fixed points of the type uΔvΔ we introduce
the following convention. We do not encode the information straight into the
groups of length B, but rather to the so-called units. A unit is defined as three
consecutive groups of length B. If we want to mark a unit in order to encode one
bit of information we always mark the middle group of the unit. The first and the
third group of the unit serves as separators. Thanks to these separators any two
consecutive symbols Δ in any two neighboring units are separated by at least 2B
letters from Σ. If we mark two consecutive units, we never get the fixed point of
the type uΔvΔ. However, we can always obtain such a fixed point by marking
two consecutive groups, provided that there are at least two unmarked groups
preceding the first marked group. We use this observation in the first phase of
the algorithm, in which we distribute the fixed points of this type throughout
the whole input tape.

In the following we introduce the term working area. Consider an input tape
with all its fixed points. If we erase these fixed points, the input tape will split
into the segments, which we refer to as the working areas (see Figure 1).

Fixed points exactly define the factorization into the groups of length B and
thus they also define the corresponding units inside these working areas. The
term working space refers to the longest subword of the working area containing
only the whole units that can be used to encode some information.

Now we are going to sketch the solving algorithm S which imitates the work
of the automaton M . Because of the page limit we omit most of the details and
refer the reader to the technical report [3]. Suppose that S is given an input word

162 P. Černo and F. Mráz

Fig. 1. The segmentation of the input tape into the working areas

w of lenght at most K which represents some bounded part of the current tape
content. If w contains both sentinels ¢ and $, then we either reject or accept,
depending on whether w belongs to the target language (there are only finitely
many cases to consider). Suppose that w does not contain both sentinels. If w
is too short, we reject. Otherwise, we identify all fixed points within w. Suppose
that w = z0o0z1o1 . . . zdod, where zi are the fixed points in w. If it is not possible
to factorize w in this way, especially if w does not start with the fixed point,
we reject. If od ∈ Σ≥c · {λ, $}, where c is a suitable constant, we place another
fixed point of the type uΔvΔ into w. This can be handled in two separate
steps – each for one symbol Δ. Otherwise, we recover all symbols Δ in w that
can be recovered. Suppose that the instruction φ = (x, u → Δr, y) of M can
be applied to the recovered w. If there is a working area oγ in w which already
contains some encoded information, then suppose that φ is compatible with that
information. If there is no such working area, then we choose one such area. The
existence of such area is guaranteed by Lemma 1. Note that in our coding this
word v can be interrupted by fixed points of the type uΔvΔ. Now suppose
that we want to imitate the instruction φ = (x, u → Δr, y), where x, y ∈ Σk,
r = m0 + m2(i − 1) + (j − 1), 1 ≤ i ≤ m, 1 ≤ j ≤ m2. The number i is fixed
for this instruction. However, we can choose j ∈ {1, 2, . . . , m2} arbitrarily. We
will explain later which value we have to choose for j. Let us suppose that u
contains the subword zαoα . . . zβoβ , where zα is the first and zβ is the last fixed
point contained in u. We unfold the process of the realization of the instruction
φ into several individual steps inside some working area oγ , α ≤ γ ≤ β − 1. The
interpretation of the corresponding working space pγ is illustrated in Figure 2.
1. Mark the unit D2 of pγ . The corresponding Δ is called the reference point.
The reference point not only reserves the working area oγ , but it also exactly
defines the relative positions of the first and the last letter of the word u.
Let left be the position of the first letter of u relative to the reference point, right
be the position of the last letter of u relative to the reference point. Compute
j and s = m0 + m2(i − 1) + (j − 1). We need to choose the parameter j in

Fig. 2. The interpretation of the working space pγ

Δ-Clearing Restarting Automata and CFL 163

Fig. 3. Problem with the fixed point of the type uΔvΔ

such a way, that the newly defined groups of length B, defined by the newly
created fixed point of the type Δr (with holes), are exactly the same groups as
the original groups before creating this fixed point.
2. Encode left into the units Dλ1 , . . . , Dλ2 . Mark the unit Dλ.
3. Encode right into the units Dρ1 , . . . , Dρ2 . Mark the unit Dρ.
4. Encode s into the units Dσ1 , . . . , Dσ2 . Mark the unit Dσ.
5. Mark the unit Dδ.
6. Encode the segment Δr (with holes) into the units Dδ1 , . . . , Dδ2 .
7. Clear all letters from the end of the segment Δr to the position right.
8. Clear all letters from the position left to the beginning of the segment Δr.

The aforementioned algorithm is designed in such a way, that at any time it is
possible to determine which steps were already executed and which were not.
Each step of the algorithm is consistent with some instruction φ of the simulated
automaton M , therefore the resulting solver cannot accept more than M . On
the other hand, it is possible to define the parameters and constants used in the
solver in such a way, that each instruction of M can be simulated by the solver.
Moreover, by using the length-reducing version of coding it is possible to obtain
a length-reducing solver which shortens the word in each step.

We conclude this section by mentioning one specific problem concerning Step
7 and Step 8. The problem is, that the position left (right, respectively) can cross
the fixed point of the type uΔvΔ (see Figure 3).

The positions left and right are fixed and cannot be changed (since they are
defined by the instruction φ). Fortunately, it does not matter if we damage the
fixed point of the type uΔvΔ, because the newly created fixed point of the type
Δr (with holes) defines the groups of length B in exactly the same way as did
the damaged fixed point. Moreover, thanks to the holes in the newly created
fixed point, we do not lose even the ability to exactly define the borders of this
newly created fixed point. We only lose the ability to recover the Δ symbol(s)
of the damaged fixed point. Fortunately, these Δ symbols are situated in the
separator of the newly created fixed point. Since the letters in the separator can
be set arbitrarily, we can use any letters we want to recover these Δ symbols.

Note that the position left (right, respectively) cannot cross the fixed point of
the type Δr (with holes), because the word xuy covers always the whole code of
the nonterminal (including its separators).

164 P. Černo and F. Mráz

5 Conclusion

Δcl-RA are very limited in their operations. They can in one step either com-
pletely delete a subword or they can delete a subword and simultaneously mark
its position by a single symbol Δ. Surprisingly, they can accept any context-free
language. We have designed a rather complicated coding of information used for
encoding nonterminals during a bottom-up analysis. It would be interesting to
find a simpler encoding, e.g. without the fixed points.

Another open problem is to characterize exactly the class of languages rec-
ognized by Δcl-RA and Δ∗cl-RA. Obviously, L(Δcl-RA) ⊆ L(Δ∗cl-RA), but we
do not know whether this inclusion is strict. Of course, Δcl-RA and Δ∗cl-RA
should be more precisely related to the stateless restarting automata from [9]
and [10]. In contrast to the stateless restarting automata, Δcl-RA- and Δ∗cl-RA
can use only single auxiliary symbol Δ, but on the other hand, they need not to
be length reducing.

References

1. Černo, P., Mráz, F.: Clearing restarting automata. In: Bordinh, H., Freund, R.,
Holzer, M., Kutrib, M., Otto, F. (eds.)Workshop on Non-Classical Models for Au-
tomata and Applications (NCMA), vol. 256, pp. 77–90. Österreichisches Computer
Gesellschaft (2009), books@ocg.at

2. Černo, P., Mráz, F.: Clearing restarting automata. Fundamenta Informati-
cae 104(1), 17–54 (2010)

3. Černo, P., Mráz, F.: Delta-clearing restarting automata and CFL. Tech.
rep., Charles University, Faculty of Mathematics and Physics, Prague (2011),
http://popelka.ms.mff.cuni.cz/cerno/files/cerno_mraz_dclra_and_cfl.pdf

4. Hall, P.: On Representatives of Subsets. Journal of the London Mathematical So-
ciety s1-10(1), 26–30 (1935)

5. Hopcroft, J.E., Ullman, J.D.: Formal Languages and their Relation to Automata.
Addison-Wesley, Reading (1969)

6. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H.
(ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995)

7. Kutrib, M., Messerschmidt, H., Otto, F.: On stateless two-pushdown automata
and restarting automata. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) Proc. of Automata
and Formal Languages, AFL, pp. 257–268. Computer and Automation Research
Institute, Hungarian Academy of Sciences, Budapest (2008)

8. Kutrib, M., Messerschmidt, H., Otto, F.: On stateless deterministic restarting au-
tomata. In: Nielsen, M., Kučera, A., Miltersen, P.B., Palamidessi, C., Tůma, P.,
Valencia, F. D (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 353–364. Springer, Hei-
delberg (2009)

9. Kutrib, M., Messerschmidt, H., Otto, F.: On stateless deterministic restarting au-
tomata. Acta Inf. 47, 391–412 (2010)

10. Kutrib, M., Messerschmidt, H., Otto, F.: On stateless two pushdown automata and
restarting automata. International Journal of Foundations of Computer Science 21,
781–798 (2010)

11. Otto, F.: Restarting automata. In: Ésik, Z., Mart́ın-Vide, C., Mitrana, V. (eds.)
Recent Advances in Formal Languages and Applications. Studies in Computational
Intelligence, vol. 25, pp. 269–303. Springer, Berlin (2006)

http://popelka.ms.mff.cuni.cz/cerno/files/cerno_mraz_dclra_and_cfl.pdf

Enumeration and Decidable Properties of

Automatic Sequences

Émilie Charlier1, Narad Rampersad2, and Jeffrey Shallit1

1 University of Waterloo, Waterloo, ON N2L 3G1 Canada
echarlier@uwaterloo.ca, shallit@cs.uwaterloo.ca

2 Department of Mathematics, University of Liège, Grande Traverse, 12 (Bat. B37),
4000 Liège, Belgium

narad.rampersad@gmail.com

Abstract. We show that various aspects of k-automatic sequences —
such as having an unbordered factor of length n — are both decidable
and effectively enumerable. As a consequence it follows that many re-
lated sequences are either k-automatic or k-regular. These include many
sequences previously studied in the literature, such as the recurrence
function, the appearance function, and the repetitivity index. We also
give a new characterization of the class of k-regular sequences. Many
results extend to other sequences defined in terms of Pisot numeration
systems.

1 Introduction

Let x = (a(n))n≥0 be an infinite sequence over a finite alphabet Δ. We write
x[i] = a(i), and we let x[i..i + n− 1] denote the factor of length n beginning at
position i.

An infinite sequence x is said to be k-automatic if it is computable by a finite
automaton taking as input the base-k representation of n, and having a(n) as
the output associated with the last state encountered [5].

For example, in Figure 1, we see an automaton generating the Thue-Morse
sequence t = t0t1t2 · · · = 011010011001 · · · . The input is n, expressed in base 2,
and the output is the number contained in the state last reached.

0

0 1

0
1

1

Fig. 1. A finite automaton generating a sequence

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 165–179, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

166 É. Charlier, N. Rampersad, and J. Shallit

Honkala [21] showed that, given an automaton, it is decidable if the sequence
it generates is ultimately periodic. Later, Leroux [23] gave a polynomial-time
algorithm for the problem.

Recently, Allouche, Rampersad, and Shallit [2] found a different proof of
Honkala’s result using a more general technique. They showed that their tech-
nique suffices to show that the following properties (and many more) are decid-
able for k-automatic sequences:

(a) Given a rational number r > 1, whether x is r-power-free;
(b) Given a rational number r > 1, whether x contains infinitely many occur-

rences of r-powers;
(c) Given a rational number r > 1, whether x contains infinitely many distinct

r-powers;
(d) Given a length l, whether x avoids palindromes of length ≥ l.

Related results have recently been given by Halava, Harju, Kärki, and Rigo [20].
In this paper we first show that many additional properties of automatic

sequences are decidable using the same general technique. More significantly,
we also show that related enumeration questions on automatic sequences (such
as counting the number of distinct factors of length n) can be solved using a
similar technique, in an entirely effective manner. As a consequence, we recover
or improve results due to Mossé [24]; Allouche, Baake, Cassaigne, and Damanik
[1]; Currie and Saari [16]; Garel [19]; Fagnot [17]; and Brown, Rampersad, Shallit,
and Vasiga [8].

2 Connection with Logic

After the publication of [2], the third author noticed that the technique used
there was, at its core, very similar to previous techniques developed by Büchi,
Bruyère, Michaux, Villemaire, and others, involving formal logic; see, e.g., [10].
This was later independently observed by the first author, as well as by Véronique
Bruyère. As it turns out, the properties (a)–(d) above are decidable because they
are expressible as predicates in the first-order structure 〈N, +, Vk〉, where Vk(n)
is the largest power of k dividing n.

We briefly recall the technique discussed in [2] in the context of a particular
example. Suppose we want to decide if an automatic sequence x is squarefree
(contains no nonempty square factor). Given an automaton M generating a
k-automatic sequence x, we create, via a series of transformations, a new au-
tomaton M ′ that accepts the base-k representations of integers corresponding
to the squares in x. For example, M ′ could accept those integers corresponding
to the starting position of each square, or those integers corresponding to the
lengths of the squares. The operations we can use in constructing M ′ include
digit-by-digit addition or subtraction (with carry, if necessary), comparison, and
lookup of the corresponding term in x (which comes from simulation of M).
Nondeterminism can be used to implement “∃”, and “∀” can be implemented
by nondeterminism combined with suitable negations.

Enumeration and Decidable Properties of Automatic Sequences 167

Ultimately, then, deciding if x is squarefree corresponds to verifying that
L(M ′) = ∅ for the M ′ we construct. Deciding whether x contains only finitely
many square occurrences corresponds to verifying that L(M ′) is finite. Both can
easily be done by the standard methods for automata.

In this paper, we always assume that numbers are encoded in base k using the
digits in Σk = {0, 1, . . . , k−1}, and are expressed with their least significant digit
first. Thus, 13 can be represented in base 2 by 1011. The canonical encoding of n
is the one with no leading zeroes (actually, trailing zeroes, since we are working
with the reversed representation) and is denoted (n)k.

Sometimes we will need to encode pairs, triples, or r-tuples of integers. We
handle these by first padding the reversed representation of the smaller integer
with trailing zeroes, and then coding the r-tuple as a word over Σr

k. For example,
the pair (20, 13) could be represented in base-2 as

[0, 1][0, 0][1, 1][0, 1][1, 0],

where the first components spell out 00101 and the second components spell out
10110. Of course, there are other possible representations, such as

[0, 1][0, 0][1, 1][0, 1][1, 0][0, 0],

which correspond to non-canonical representations having trailing zeroes. In gen-
eral, we permit these.

Thus, the main idea of [2] can be restated as follows:

Theorem 1. If we can express a property of a k-automatic sequence x using
quantifiers, logical operations, integer variables, the operations of addition, sub-
traction, indexing into x, and comparison of integers or elements of x, then this
property is decidable.

We illustrate the idea with the following new result. A word w is bordered if it
begins and ends with the same word x with 0 < |x| ≤ |w|/2. (An example in
English is ingoing.) Otherwise it is unbordered.

Theorem 2. Let x = a(0)a(1)a(2) · · · be a k-automatic sequence. Then the
associated infinite sequence b = b(0)b(1)b(2) · · · defined by

b(n) =

{
1, if x has an unbordered factor of length n;
0, otherwise;

is k-automatic.

Proof. The sequence x has an unbordered factor of length n

iff
∃j ≥ 0 such that the factor of length n beginning at position j of x is unbordered

168 É. Charlier, N. Rampersad, and J. Shallit

iff
there exists an integer j ≥ 0 such that for all possible lengths l with 1 ≤ l ≤ n/2,
there is an integer i with 0 ≤ i < l such that the i’th letter in the supposed border
of length l beginning and ending the factor of length n beginning at position j
of x actually differs in the i’th position

iff
there exists an integer j ≥ 0 such that for all integers l with 1 ≤ l ≤ n/2 there
exists an integer i with 0 ≤ i < l such that a(j + i) �= a(j + n− l + i).

To carry out this test, we first create an NFA that given the encoding of (j, l, n)
guesses the base-k representation of i, digit-by-digit, checks that i < l, computes
j+i and j+n−l+i on the fly, and checks that a(j+i) �= a(j+n−l+i). If such an
i is found, it accepts. We then convert this to a DFA, and interchange accepting
and nonaccepting states. This DFA M1 accepts (j, l, n) such that there is no i,
0 ≤ i < l such that a(j + i) = a(j + n − l + i). We then use M1 as a subroutine
to build an NFA M2 that on input (j, n) guesses l, checks that 1 ≤ l ≤ n/2, and
calls M1 on the result. We convert this to a DFA and interchange accepting and
nonaccepting states to get M3. Finally, this M3 is used as a subroutine to build
an NFA M4 that on input n guesses j and calls M3.

The set of such integers n then forms a k-automatic sequence. ��
Example 1. Consider the problem of determining for which lengths the Thue-
Morse sequence has an unbordered factor. Currie and Saari [16] proved that if
n �≡ 1 (mod 6), then there is an unbordered factor of length n. (Also see [26,
Lemma 4.10 and Problem 4.1].) However, this is not a necessary condition, as

t[39..69] = 0011010010110100110010110100101,

which is an unbordered factor of length 31. They left it as an open problem to give
a complete characterization of the lengths for which t has an unbordered factor.
Our method shows the characteristic sequence of such lengths is 2-automatic.

Further, we conjecture that there is an unbordered factor of length n in t if
and only if the base-2 expansion of n (starting with the most significant digit)
is not of the form 1(01∗0)∗10∗1.

In principle this could be verified, purely mechanically, by our method, but
we have not yet done so.

We now turn to deciding if a given automatic sequence has infinite critical ex-
ponent (e.g., [22]).

Theorem 3. The following question is decidable: given a k-automatic sequence,
does it contain powers of arbitrarily large exponent?

Proof. x has powers of arbitrarily high exponent
iff

Enumeration and Decidable Properties of Automatic Sequences 169

the set of pairs

S :={(n, j) : ∃i ≥ 0 such that for all t with 0≤ t< n we have x[i + t]=x[i + j + t] }

contains pairs (n, j) with n/j arbitrarily large
iff

for all i ≥ 0 S contains a pair (n, j) with n > j · 2i

iff
L, the set of base-k encodings of pairs in S, contains, for each i, strings ending
in

i︷ ︸︸ ︷
[∗, 0][∗, 0] · · · [∗, 0][b, 0]

for some b �= 0, where * means any digit.
But we can easily decide if a regular language contains strings ending in

arbitrarily long strings of this form. ��
In a similar fashion we can show

Theorem 4. The following question is decidable: given a k-automatic sequence
x, does x contain arbitrarily large unbordered factors?

Now we turn to questions of recurrence.
An infinite word a = (a(n))n≥0 is said to be recurrent if every factor that

occurs at least once in a occurs infinitely often. Equivalently, a word is recurrent
if and only if for each occurrence of a factor of a, there exists a later occurrence
of that factor in a. Equivalently, for every n ≥ 0, r ≥ 1, there exists m > n such
that a(n + j) = a(m + j) for 0 ≤ j < r.

Similarly, an infinite word a = (a(n))n≥0 is said to be uniformly recurrent if
every factor that occurs at least once in a occurs infinitely often, with bounded
gaps between consecutive occurrences. Equivalently, a word a = (a(n))n≥0 is
uniformly recurrent iff for every r ≥ 1 there exists t > 0 such that for every
n ≥ 0 there exists m ≥ 0 with n < m < n + t such that a(n + i) = a(m + i) for
0 ≤ i < r.

Thus we recover the following recent result of Nicolas and Pritykin [25]:

Theorem 5. It is decidable if a k-automatic sequence is recurrent or linearly
recurrent.

We now turn to questions of factors shared by two k-automatic sequences. Fagnot
[17] showed that it is decidable whether two such sequences x = a(0)a(1) · · · and
y = b(0)b(1) · · · have exactly the same set of factors. This is also decidable by
our methods, as follows:

The sequences x = a(0)a(1) · · · and and y = b(0)b(1) · · · have the same set
of factors

iff
for all i ≥ 0, n ≥ 1 there exists j ≥ 0 such that x[i..i + n− 1] = y[j..j + n− 1]

170 É. Charlier, N. Rampersad, and J. Shallit

iff
for all i ≥ 0, n ≥ 1 there exists j ≥ 0 such that for all t, 0 ≤ t < n we have
a(i + t) = b(j + t).

In a similar fashion, the question of whether the set of factors of one k-
automatic word form a subset of the set of factors of another k-automatic word
is decidable.

3 Enumeration

In this section we show that many sequences counting aspects of k-automatic
sequences are k-regular. Recall that a sequence (a(n))n≥0 is k-regular if the
module generated by the set of all subsequences of the form

{(a(ken + c))n≥0 : e ≥ 0, 0 ≤ c < ke}
is finitely generated [3,4,5]. Alternatively, (a(n))n≥0 is k-regular if

∑
n≥0 a(n)(n)k

is a noncommutative rational series [7], where (n)k is the canonical base-k encod-
ing of n. The k-regular sequences play the same role for integer-valued sequences
as the k-automatic sequences play for sequences over a finite alphabet. Classi-
cal examples of k-regular sequences include polynomials in n with non-negative
coefficients and sk(n), the sum of the base-k digits of n.

The idea is based on the following simple lemma:

Lemma 1. Let Σ be a finite alphabet, and let B be a new symbol not contained
in Σ. Let Δ be another finite alphabet, and define Σ′ = (Σ ∪ {B}) × Δ.
For x = [a1, b1][a2, b2] · · · [an, bn] ∈ (Σ′)∗ define the projection onto the first
coordinate π1(x) = a1a2 · · · an.

Then the formal series f : Σ∗ → N is recognizable if and only if there exists
a deterministic finite automaton M = (Q, Σ′, δ, q0, F) such that

(f, x) = | {z ∈ L(M) : π1(z) ∈ xB∗} |
for all strings x.

Furthermore, given the linear representation of such a formal series, we can
compute the corresponding DFA, and vice versa.

Proof. Given M , for each state q define the machine Mq = (Q, Σ′, δ, q, F), which
is the same as M except that the initial state q0 is replaced by q.

For each q ∈ Q, define the formal series fq : Σ∗ → N by

(fq, x) = | {z ∈ L(Mq) : π1(z) ∈ xB∗} |.
Now for a ∈ Σ we have

(fq, ax) =
∑
b∈Δ

(fδ(q,[a,b]), x).

Hence, using [7, Proposition I.5.1], f is recognizable.

Enumeration and Decidable Properties of Automatic Sequences 171

On the other hand, if f is recognizable, then it has a linear representation
(λ, μ, γ) satisfying (f, w) = λμ(w)γ, where λ is a row vector, μ : Σ∗ → Nm×m

is a matrix-valued morphism, and γ is a column vector, all with entries in N.
Furthermore, using [27, Ex. III.3.3, p. 426], we can assume that λ = [1 0 · · · 0]
and γ = [0 · · · 0 1]T .

Now choose Δ to have as many elements as the largest entry of μ(a) for
a ∈ Σ. Construct a DFA M = (Q′, Σ′, δ, q0, F) where Q = {q0, q1, . . . , qm−1}
and Q′ = Q ∪ {d} such that, for all a ∈ Σ, p, q ∈ Q, there exist exactly
μ(a)p,q distinct letters b ∈ Δ with δ(p, [a, b]) = q. Set F = {qm−1}. By our
construction, there are exactly (f, x) paths from q0 to qm−1 labeled with x in
the first component. Here d is a dead state and transitions on B go to this state;
the effect is that transitions on B are not really used. Hence by the construction

(f, x) = | {z ∈ L(M) : π1(z) = x} |. ��

The utility of this lemma is illustrated in the following examples.

Theorem 6. Let x = a(0)a(1)a(2) . . . be a k-automatic sequence. Let b(n) be
the number of distinct factors of length n in x. Then (b(n))n≥0 is a k-regular
sequence.

Proof. To count distinct factors of length n, we count the number of the first
occurrences of each factor.

The number of distinct factors of length n in x equals the number of indices
i such that there is no index j < i with the factor of length n beginning at
position i equal to the factor of length n beginning at position j.

Consider the set

S = {(n, i) : for all j with 0 ≤ j < i there exists an integer
t with 0 ≤ t < n such that a(i + t) �= a(j + t)}.

Then, by Theorem 1, the language S′ defined to be the base-k encoding of
elements of S, forms a regular language. We assume without loss of generality
that if one representation of (n, i) appears in S′, then they all do, including the
ones with leading (actually, trailing zeroes).

We now apply a transducer to S′, changing every representation of (n, i) as
follows: we change every 0 after the last nonzero digit in the first component to
B. This transformation preserves the regularity of S′. Finally, we discard every
representation that ends with [B, 0]. The effect of this is to ensure that n in the
first component, up to ignoring the B’s, has a single representation, and that each
i corresponding to a particular n has a unique representation. Using Lemma 1,
we see that b(n) is k-regular. ��
Remark 1. Mossé [24] proved, among other things, that a sequence that is the
fixed point of a k-uniform morphism has a k-regular subword complexity func-
tion. With our technique, we obtain her result for these sequences and also the
slightly more general case of k-automatic sequence.

172 É. Charlier, N. Rampersad, and J. Shallit

Theorem 7. The sequence counting the number of palindromic factors of length
n is k-regular.

Proof. The number of distinct palindromes of length n in x
is equal to

the number of indices i such that x[i..i+n−1] is a palindrome and x[i..i+n−1]
does not appear previously in x

is equal to
the number of indices i such that x[i..i + n − 1] = x[i..i + n − 1]R and for all j
with 0 ≤ j < i, x[i..i + n − 1] is not the same as x[j..j + n − 1]

is equal to
the number of indices i such that for all t, 0 ≤ t ≤ n/2, a(i+t) = a(i+n−1−t) and
for all j with 0 ≤ j < i, there exists u with 0 ≤ u < n such that a(i+u) �= a(j+u).
Now apply Theorem 1 and Lemma 1. ��
Remark 2. Allouche, Baake, Cassaigne, and Damanik [1, Theorem 10] proved
that the palindrome complexity of the fixed point of a primitive k-uniform mor-
phism is k-automatic. Our result is more general: it shows that the palindrome
complexity of a k-automatic sequence is k-regular, and hence is k-automatic iff
it is bounded.

Jean-Paul Allouche kindly informs us that our result has just been obtained
independently by Carpi and D’Alonzo [12].

Example 2. Let f(n) denote the number of unbordered factors of length n of the
Thue-Morse sequence.

Here is a brief table of the values of f(n):

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

f(n) 2 2 4 2 4 6 0 4 4 4 4 12 0 4 4 8 4 8 0 8 4 4 8 24 0 4 4 8 4 8 4 16

By Lemma 1 we know that f is 2-regular. Conjecturally, f is given by the
system of recurrences

f(4n + 1) = f(2n + 1)
f(8n + 2) = f(2n + 1) − 8f(4n) + f(4n + 3) + 4f(8n)
f(8n + 3) = 2f(2n)− f(2n + 1) + 5f(4n) + f(4n + 2) − 3f(8n)
f(8n + 4) = −4f(4n) + 2f(4n + 2) + 2f(8n)
f(8n + 6) = 2f(2n)− f(2n + 1) + f(4n) + f(4n + 2) + f(4n + 3)− f(8n)

f(16n) = −2f(4n) + 3f(8n)
f(16n + 7) = −2f(2n) + f(2n + 1) − 5f(4n) + f(4n + 2) + 3f(8n)
f(16n + 8) = −8f(4n) + 4f(4n + 2) + 4f(8n)

f(16n + 15) = −8f(4n) + 2f(4n + 3) + 4f(8n) + f(8n + 7).

Enumeration and Decidable Properties of Automatic Sequences 173

In principle this could be verified by our method, but we have not yet done so.

Theorem 8. Let x = a(0)a(1)a(2) · · · be a k-automatic sequence. Then the
following sequences are also k-automatic:

(a) b(i) = 1 if there is a square beginning at position i; 0 otherwise
(b) c(i) = 1 if there is a square centered at position i; 0 otherwise
(c) d(i) = 1 if there is an overlap beginning at position i; 0 otherwise
(d) e(i) = 1 if there is a palindrome beginning at position i; 0 otherwise
(e) f(i) = 1 if there is a palindrome centered at position i; 0 otherwise

Remark 3. Brown, Rampersad, Shallit, and Vasiga proved results (a)–(c) for the
special case of the Thue-Morse sequence [8].

Theorem 9. Let x and y be k-automatic sequences. Then the following are
k-regular:

(a) the number of distinct square factors in x of length n;
(b) the number of squares in x beginning at (centered at, ending at) position n;
(c) the length of the longest square in x beginning at (centered at, ending at)

position n;
(d) the number of palindromes in x beginning at (centered at, ending at) position

n;
(e) the length of the longest palindrome in x beginning at (centered at, ending

at) position n;
(f) the length of the longest fractional power in x beginning at (ending at) posi-

tion n;
(g) the number of distinct recurrent factors in x of length n;
(h) the number of factors of length n that occur in x but not in y.
(i) the number of factors of length n that occur in both x and y.

Remark 4. Brown, Rampersad, Shallit, and Vasiga proved results (b)–(c) for the
special case of the Thue-Morse sequence [8]. In some cases (e.g., (b)) we may
have to define these sequences over N ∪ {+∞}.
We now turn to some other measures that have received much attention. If an
infinite word x is recurrent, then its recurrence function Rx(n) = R(n) is the
smallest integer t such that every factor of length t of x contains as a factor
every factor of length n. Said otherwise, it is the size of the smallest “window”
one can slide along x and always contain all length-n factors.

Theorem 10. If x is k-automatic, then Rx(n) is k-regular.

Proof. We translate the predicate “R(n) > t”, as follows:
R(n) > t

iff
there exists i ≥ 0, j ≥ 0 such that x[j..j +n−1] appears nowhere in x[i..i+ t−1]

174 É. Charlier, N. Rampersad, and J. Shallit

iff
there exists i ≥ 0, j ≥ 0 such that for all integers l with i ≤ l < i + t− 1− n we
have x[l..l + n− 1] �= x[j..j + n− 1]

iff
there exists i ≥ 0, j ≥ 0, such that for all integers l with i ≤ l < i + t − 1 − n
there exists m, 0 ≤ m < n such that x[l + m] �= x[j + m].

Now for any fixed n, the number of non-negative integers t for which R(n) > t
is equal to R(n)+1. Hence R(n)+1 is k-regular and hence, by a standard result
[5, Thm. 16.2.1], so is R(n). ��
Another measure is called “appearance” [5, §10.10]. The appearance function
Ax(n) = A(n) is the smallest integer t such that every factor of length n appears
in a prefix of length t of x. This can be proved in an analogous manner.

Theorem 11. If x is k-automatic, then Ax(n) is k-regular.

Next, we consider a measure due to Garel [19]. The separator length Sx(n) is the
length of the smallest factor that begins at position n of x and does not occur
previously.

Theorem 12. If x is k-automatic, then Sx(n) is k-regular.

Proof. The predicate “Sx(n) > t” is the same as saying that for every i ≤ t
the word of length i beginning at position n of x occurs previously in x, which
is the same as saying for all i, 0 ≤ i ≤ t, there exists j, 0 ≤ j < n such that
x[n..n + i− 1] = x[j..j + i − 1]. Now look at the pairs (n, t) satisfying this. For
each n there are exactly Sx(n) + 1 different t’s that work. ��
Remark 5. Garel [19] proved this for the case of a fixed point of a uniform
circular morphism; our proof works for the more general case of an arbitrary
k-automatic sequence.

Finally, Carpi and D’Alonzo have introduced a measure they called repetitivity
index [11]. This measure Ix(n) is the minimum distance between two consecutive
occurrences of the same length-n factor in x. But “Ix(n) > t” is the same as
saying for all i, j ≥ 0 with i �= j, the equality x[i..i + n − 1] = x[j..j + n − 1]
implies that j − i > t. Hence we get

Theorem 13. If x is k-automatic, then its repetitivity index is k-regular.

4 A New Characterization of k-Regular Sequences

Carpi and Maggi [13] defined the class of k-synchronized sequences, a class
which contains the k-automatic sequences and is properly contained in the class
of k-regular sequences. A sequence (un)n≥0 is k-synchronized if the relation
{((n)k, (un)k) : n ≥ 0} is a right-synchronized rational relation. Roughly speak-
ing, this means that the relation is realized by a length-preserving rational trans-
duction, except that we also permit the presence of “padding” symbols at the end

Enumeration and Decidable Properties of Automatic Sequences 175

of one or the other component of the input. Here we give a similar transducer-
based characterization of the more general class of k-regular sequences.

For us, a j-uniform transducer is a nondeterministic finite state machine T =
(Q, Σ, δ, q0, τ, Δ, F) where δ : Q × Σ → 2Q and τ : Σ → Δj is a j-uniform
morphism. An accepting path P begins at q0 and ends at a state of F . The
output associated with P is the concatenation of the outputs associated with
the transitions. The output of T on an input x is the union of outputs associated
with all accepting paths labeled x.

We work with strings over the alphabet Σ′ = Σk×Δ, where Σk = {0, 1, . . . , k−
1}. For x ∈ (Σ′)∗ we let πi(x) denote projection onto the i’th coordinate. For
x ∈ Σ∗

k, y ∈ Δ∗ with |x| = |y| we let x × y denote the element of (Σ′)∗ with
π1(x × y) = x and π2(x × y) = y.

Theorem 14. Let (b(n))n≥0 be a sequence taking values in N ∪ {+∞}. Let
(n)k ∈ Σ∗

k denote the canonical base-k encoding of n in base k, starting with the
least significant digit.

Then the following are equivalent:
(1) (b(n))n≥0 is k-regular (more precisely, (N, k)-regular; see [3]);
(2) there exist an integer m and vectors λ ∈ N1×m, γ ∈ Nm×1, and a matrix-

valued morphism μ : Σ∗
k → Nm×m such that b(n) = λμ((n)k)γ;

(3) there exist an alphabet Δ and a DFA M = (Q, Σk ×Δ, δ, q0, F) such that

b(n) = |{x ∈ (Σk ×Δ)∗ : π1(x) = (n)k}|

for all n ≥ 1;
(4) there exist an integer j ≥ 1 and a j-uniform transducer T with inputs and

outputs in Σ∗
k such that b(n) = |T ((n)k)| for all n ≥ 1. ��

Proof. (1) ⇐⇒ (2): See [3].
(2) ⇐⇒ (3): Follows from Lemma 1.
(3) =⇒ (4): Choose j sufficiently large so that |Δ| ≤ kj . We can then identify

elements of Δ uniquely with elements of Σj , using, say, a morphism σ. On input
x = (n)k, our transducer T nondeterministically guesses an element y ∈ Δ∗ with
|x| = |y|, simulates M on x × y, and outputs the corresponding string σ(y). If
the transducer guessed correctly and x×y ∈ L(M), then the transducer accepts.

(4) =⇒ (3): Similar to the previous direction. Here we create Δ such that
single symbols correspond to blocks of size j output by the transducer.

Remark 6. In (4), by ensuring that the outputs of the transducer have no 0’s, we
can also ensure that each transduction of (n)k corresponds to a unique integer
in base k. This handles the “trailing zeroes” problem.

As an application we have:

Theorem 15. Let E be any finite set of integers, and consider b(n), the se-
quence that counts the number of base-k representations where the digits are
chosen only from E. Then b(n) is k-regular.

176 É. Charlier, N. Rampersad, and J. Shallit

Proof. We construct a transducer obeying characterization (4) above. On input
(n)k, it guesses a possible representation of the same length (with trailing zeroes),
outputs it, and simultaneously “normalizes” it, and checks that it is equal to the
input. ��

5 Linear Bounds

Yet another application of our method allows us to obtain linear bounds on many
quantities associated with automatic sequences. As a first example, we recover
an old result of Cobham [14] on “subword” complexity.

Theorem 16. The number of distinct factors of length n of an automatic se-
quence is O(n).

Proof. Let x be a k-automatic sequence. By Theorem 1 we know that the base-k
encoding S′ of

S = {(n, I) : for all j < I the factor of length n starting at position j

is different from the one starting at position I}
is a regular language.

Suppose that the factor complexity of x is not O(n). Then for every L there
exists some pair (n, I) ∈ S such that the length of the canonical encoding of I
is longer than that of n by at least L digits. So in S′ there is some word of the
form (n)kB≥L × (I)k, where (u)k denotes the canonical encoding of u in base k
and × is how we join separate components to form a word.

Since the length of (I)k is very much longer than that of (n)k, we can apply the
pumping lemma to this word, where we only pump in the portion of (I)k that is
longer than (n)k. Hence when we pump, we only add B’s to the first component,
and so its value remains unchanged. In this way by pumping we obtain infinitely
many values I ′ such that (n, I ′) ∈ S. In other words, there are infinitely many
distinct factors of length n, which is clearly absurd. The contradiction proves
the result. ��
In a similar manner we can prove that all the quantities in Theorem 9 are either
linearly bounded, or unbounded.

6 Other Numeration Systems

All our results transfer, mutatis mutandis, to the setting of other numeration
systems where addition can be performed on numbers using a transducer that
processes numbers starting with the least significant digit.

A (generalized) numeration system is given by an increasing sequence of
integers U = (Ui)i≥0 such that U0 = 1 and CU := limi→+∞ Ui+1/Ui ex-
ists and is finite. Then the canonical U -representation of n (with least sig-
nificant digit first), which is denoted by (n)U , is the unique finite word w

Enumeration and Decidable Properties of Automatic Sequences 177

over the alphabet ΣU = {0, . . . , CU − 1} not ending with 0 and satisfying
n =

∑|w|−1
i=0 w[i] Ui and ∀t ∈ {0, . . . , |w| − 1}, ∑t

i=0 w[i] Ui < Ut+1. The notion
of k-automatic sequence extends naturally to this context: an infinite sequence
x is said to be U -automatic if it is computable by a finite automaton taking as
input the U -representation (n)U of n, and having x[n] as the output associated
with the last state encountered.

A numeration system U is called linear if U satisfies a linear recurrence relation
over Z. A Pisot system is a linear numeration system U whose characteristic
polynomial is the minimal polynomial of a Pisot number. Recall that a Pisot
number is an algebraic integer greater than 1, all of whose conjugates have
moduli less than 1. For example, all integer base numeration systems and the
Fibonacci numeration system are Pisot systems. Frougny and Solomyak [18]
proved that addition is U -recognizable within all Pisot systems U , i.e., it can be
performed by a finite letter-to-letter transducer reading U -representations with
least significant digit first. Bruyère and Hansel [9] then proved the following
logical characterization of U -automatic sequences for Pisot systems: a sequence
is U -automatic if and only if it is U -definable, i.e., it is expressible as a predicate
of 〈N, +, VU 〉, where VU (n) is the smallest Ui occurring in (n)U with a nonzero
coefficient. Therefore, if U is a Pisot system, any combinatorial property of U -
automatic words that can be described by a predicate of 〈N, +, VU 〉 is decidable.

The notion of k-regular sequences extends to Pisot numeration systems: an
infinite sequence x is said to be U -regular if the series

∑
n≥0 xnU is a non-

commutative rational series. Thus we obtain

Theorem 17. Let U be a Pisot numeration system and let x be any U -automatic
word. The following sequences are U -automatic:

(a) a(n) = 1 if there is a square beginning at (centered at, ending at) position n
of x, 0 otherwise;

(b) b(n) = 1 if there is a palindrome beginning at (centered at, ending at) position
n of x, 0 otherwise;

(c) c(n) = 1 if there is an unbordered factor beginning at (centered at, ending
at) position n of x, 0 otherwise.

The following sequences are U -regular:

(a) The number of distinct square factors beginning at (centered at, ending at)
position n of x;

(b) The number of distinct palindromic factors beginning at (centered at, ending
at) position n of x, 0 otherwise;

(c) The number of distinct unbordered factors beginning at (centered at, ending
at) position n of x, 0 otherwise.

Berstel showed that the cardinality of the set of unnormalized Fibonacci repre-
sentations is Fibonacci-regular [6], a result also obtained (but not published) by
the third author about the same time. In analogy with Theorem 15 we have

Theorem 18. The number of unnormalized representations of n in a Pisot nu-
meration system U is U -regular.

178 É. Charlier, N. Rampersad, and J. Shallit

7 Closing Remarks

It may be worth noting that the explicit constructions of automata we have
given also imply bounds on the smallest example of (or counterexample to) the
properties we consider. The bounds are essentially given by a tower of exponents
whose height is related to the number of alternating quantifiers. For example,

Theorem 19. Suppose x and y are k-automatic sequences generated by au-
tomata with at most q states. If the set of factors of x differs from the set of

factors of y, then there exists a factor of length at most 2222q2

that occurs in one
word but not the other.

We also note that a question left open in [2], regarding the description of the
lexicographically least word in the orbit closure of the Rudin-Shapiro sequence,
was recently solved by Currie [15].

Acknowledgments

We thank Jean-Paul Allouche for his helpful comments.

References

1. Allouche, J.-P., Baake, M., Cassaigne, J., Damanik, D.: Palindrome complexity.
Theoret. Comput. Sci. 292, 9–31 (2003)

2. Allouche, J.-P., Rampersad, N., Shallit, J.: Periodicity, repetitions, and orbits of
an automatic sequence. Theoret. Comput. Sci. 410, 2795–2803 (2009)

3. Allouche, J.-P., Shallit, J.O.: The ring of k-regular sequences. Theoret. Comput.
Sci. 98, 163–197 (1992)

4. Allouche, J.-P., Shallit, J.O.: The ring of k-regular sequences, II. Theoret. Comput.
Sci. 307, 3–29 (2003)

5. Allouche, J.-P., Shallit, J.: Automatic Sequences: Theory, Applications, General-
izations. Cambridge University Press, Cambridge (2003)

6. Berstel, J.: An exercise on Fibonacci representations. RAIRO Inform. Théor.
App. 35, 491–498 (2001)

7. Berstel, J., Reutenauer, C.: Noncommutative Rational Series With Applications.
Encyclopedia of Mathematics and Its Applications, vol. 137. Cambridge University
Press, Cambridge (2011)

8. Brown, S., Rampersad, N., Shallit, J., Vasiga, T.: Squares and overlaps in the
Thue-Morse sequence and some variants. RAIRO Inform. Théor. App. 40, 473–484
(2006)

9. Bruyère, V., Hansel, G.: Bertrand numeration systems and recognizability. Theoret.
Comput. Sci. 181, 17–43 (1997)

10. Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-recognizable sets
of integers. Bull. Belgian Math. Soc. 1, 191–238 (1994); Corrigendum, Bull. Belg.
Math. Soc. 1, 577 (1994)

11. Carpi, A., D’Alonzo, V.: On the repetitivity index of infinite words. Internat. J.
Algebra Comput. 19, 145–158 (2009)

Enumeration and Decidable Properties of Automatic Sequences 179

12. Carpi, A., D’Alonzo, V.: On factors of synchronized sequences. Theor. Comput.
Sci. (to appear 011)

13. Carpi, A., Maggi, C.: On synchronized sequences and their separators. RAIRO
Inform. Théor. App. 35, 513–524 (2001)

14. Cobham, A.: Uniform tag sequences. Math. Systems Theory 6, 164–192 (1972)
15. Currie, J.D.: Lexicographically least words in the orbit closure of the Rudin-Shapiro

word (2010), http://arxiv.org/pdf/0905.4923
16. Currie, J.D., Saari, K.: Least periods of factors of infinite words. RAIRO Inform.

Théor. App. 43, 165–178 (2009)
17. Fagnot, I.: Sur les facteurs des mots automatiques. Theoret. Comput. Sci. 172,

67–89 (1997)
18. Frougny, C., Solomyak, B.: On representation of integers in linear numeration sys-

tems. In: Pollicott, M., Schmidt, K. (eds.) Ergodic Theory of Zd Actions (Warwick,
1993–1994), London Mathematical Society Lecture Note Series, vol. 228, pp. 345–
368. Cambridge University Press, Cambridge (1996)

19. Garel, E.: Séparateurs dans les mots infinis engendrés par morphismes. Theoret.
Comput. Sci. 180, 81–113 (1997)

20. Halava, V., Harju, T., Kärki, T., Rigo, M.: On the periodicity of morphic words.
In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 209–217.
Springer, Heidelberg (2010)

21. Honkala, J.: A decision method for the recognizability of sets defined by number
systems. RAIRO Inform. Théor. App. 20, 395–403 (1986)

22. Krieger, D., Shallit, J.: Every real number greater than 1 is a critical exponent.
Theoret. Comput. Sci. 381, 177–182 (2007)

23. Leroux, J.: A polynomial time Presburger criterion and synthesis for number de-
cision diagrams. In: 20th IEEE Symposium on Logic in Computer Science (LICS
2005), pp. 147–156. IEEE Press, Los Alamitos (2005)

24. Mossé, B.: Reconnaissabilité des substitutions et complexité des suites automa-
tiques. Bull. Soc. Math. France 124, 329–346 (1996)

25. Nicolas, F., Pritykin, Y.: On uniformly recurrent morphic sequences. Internat. J.
Found. Comp. Sci. 20, 919–940 (2009)

26. Saari, K.: On the Frequency and Periodicity of Infinite Words. PhD thesis,
University of Turku, Finland (2008)

27. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press,
Cambridge (2009)

http://arxiv.org/pdf/0905.4923

Languages vs. ω-Languages in Regular Infinite
Games

Namit Chaturvedi�, Jörg Olschewski��, and Wolfgang Thomas

Lehrstuhl Informatik 7, RWTH Aachen University, Germany
{chaturvedi,olschewski,thomas}@automata.rwth-aachen.de

Abstract. Infinite games are studied in a format where two players,
called Player 1 and Player 2, generate a play by building up an ω-word
as they choose letters in turn. A game is specified by the ω-language
which contains the plays won by Player 2. We analyze ω-languages
generated from certain classes K of regular languages of finite words
(called ∗-languages), using natural transformations of ∗-languages into
ω-languages. Winning strategies for infinite games can be represented
again in terms of ∗-languages. Continuing work of Selivanov (2007) and
Rabinovich et al. (2007), we analyze how these “strategy ∗-languages”
are related to the original language class K. In contrast to that work, we
exhibit classes K where strategy representations strictly exceed K.

1 Introduction

The theory of regular ω-languages is tied to the theory of regular languages of
finite words (regular ∗-languages) in at least two different ways. First, one obtains
all regular ω-languages as finite unions of sets U · V ω where U, V are regular
∗-languages. This representation is obtained via the model of nondeterministic
Büchi automata over infinite words. Second, if one works with deterministic
Muller automata, one obtains a representation of all regular ω-languages as
Boolean combinations of sets lim(U) with regular U (cf. [5,17]), where

lim(U) = {α ∈ Σω | infinitely many finite α-prefixes are in U}.

In this paper we focus on the latter approach as we study the connection be-
tween ∗-languages and ω-languages in the context of infinite games, where the
deterministic model of automata is needed. Another canonical transformation of
∗-languages into ω-languages is the extension of words of a ∗-language U :

ext(U) = {α ∈ Σω | some finite α-prefix is in U}.

Boolean combinations of such languages with regular U are recognized by deter-
ministic weak Muller automata (also known as Staiger-Wagner automata [13]).
� Supported by DFG-Graduiertenkolleg AlgoSyn.
�� Supported by ESF-Eurocores LogICCC project GASICS.

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 180–191, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Languages vs. ω-Languages in Regular Infinite Games 181

We write BC(lim(REG)), respectively BC(ext(REG)), for the Boolean combina-
tions of sets lim(U), respectively ext(U), with regular U . In each case we refer
to a fixed alphabet Σ so that complementation is done with respect to Σω. We
prefer the notation ext(U) over the other popular alternative, U · Σω, only for
the purpose of emphasizing analogies or differences to lim(U).

The purpose of this paper is to study the connection between ∗-languages and
ω-languages in two dimensions of refinement. First, the class REG is replaced
by small subclasses, such as the class of piecewise testable languages or levels
within the dot-depth hierarchy of star-free languages. In particular, for such a
class K of ∗-languages, we consider the classes BC(lim(K)) and BC(ext(K)),
defined as above for the case REG. Secondly, we study a natural approach for
the reverse direction, from ω-languages back to ∗-languages. Here the concept of
infinite games is used, in which ω-languages enter as “winning conditions”, and
∗-languages arise as representations of “winning strategies”. We shall study the
question whether games with a winning condition in classes such as BC(ext(K))
or BC(lim(K)) can be “solved” with winning strategies representable in K.

Let us recall the framework of infinite games in a little more detail. These
games are played between two players, namely Player 1 and Player 2. In each
round, first Player 1 picks a letter from an alphabet Σ1 and then Player 2 a
letter from an alphabet Σ2. An infinite play of the game is thus an ω-word
over Σ := Σ1 ×Σ2. One decides the winner of this play by consulting an ω-lan-
guage L ⊆ Σω, also called the winning condition: If the play belongs to L, then
Player 2 is the winner, otherwise Player 1 is. Games whose winning conditions
belong to the class BC(ext(K)) are referred to as weak games while those whose
winning conditions belong to BC(lim(K)) are called strong games.

A strategy for either player gives the choice of an appropriate letter a ∈ Σ1,
resp. a ∈ Σ2, for each possible play prefix where it is Player 1’s, resp. Player 2’s,
turn. We can capture a strategy for a player by collecting, for each letter a, the
set Ka of those finite play prefixes that induce the choice of a. For a strategy
of Player 1 we have Ka ⊆ Σ∗, for Player 2 we have Ka ⊆ Σ∗Σ1. We say that a
strategy is in K if each language Ka is.

The fundamental Büchi-Landweber Theorem [1] (also see [3,17]) says that for
a winning condition defined by any regular ω-language L ∈ BC(lim(REG)), one
of the two players has a winning strategy, that one can decide who is the winner,
and that one can present a regular winning strategy (in the sense mentioned
above) for the winner. In short, we say that regular games are determined with
regular winning strategies. An analogous result for the class SF of star-free lan-
guages was shown in [9] (see also [10]) and later, by a different method, also in
[8]: Star-free games are determined with star-free winning strategies. We shall
focus in this paper on subclasses of SF, where – as it will turn out – the situation
is more complicated. For instance, we show that for the class DD1 of languages
of dot-depth 1, games with winning conditions in classes BC(ext(DD1)) and
BC(lim(DD1)) are in general determined, not with winning strategies in DD1,
but only with those in classes DD2 and DD3 respectively. In contrast to this,
we show that for games in the more restricted class BC(ext(pos-DD1)), we have

182 N. Chaturvedi, J. Olschewski, and W. Thomas

determinacy with winning strategies in DD1. The class pos-DD1 is the closure of
languages w0Σ

∗w1 . . .Σ
∗wn, where wi ∈ Σ∗, under positive Boolean operations,

i.e. union and intersection. The Boolean closure of pos-DD1 is DD1.
The paper is structured as follows. In Section 2 we summarize technical pre-

liminaries on infinite games, well known subclasses of the class SF of star-free
languages, and the subclasses of infinite languages that we consider in this paper.
Subsequently, in Sections 3 to 5 we consider games over these classes of infinite
languages and present results pertaining to winning strategies in these games.
We conclude with some open questions and perspectives.

2 Technical Preliminaries

2.1 Languages, Automata, Games

We use standard notations [4] regarding languages and automata. As a model of
automata with output we use Moore machines, which transform words over an
alphabet Σ into words of an alphabet Γ via an output function λ : Q→ Γ over
the state set Q.

Over ω-words we use the models of SW-automata (Staiger-Wagner automata
or weak Muller automata) and Muller automata. These are deterministic au-
tomata whose acceptance component is a family F of state sets. An ω-word α
is accepted by an SW-automaton if the set of visited states in the unique run
over α belongs to F ; for Muller automata one refers instead to the set of states
visited infinitely often.

For any alphabet Σ = Σ1 × Σ2, an ω-language L ⊆ Σω induces a game
with winning condition L; we shall just speak of the “game L”. In this game, a
strategy for Player 1 is a mapping σ : Σ∗ → Σ1 and a strategy for Player 2 is a
mapping τ : Σ∗ → Θ, where Θ := Σ2

Σ1 is the (finite) set of all mappings fromΣ1
to Σ2. An infinite word α = (ai, xi)i∈N ∈ Σω is said to be consistent with σ, if for
all positions i ∈ N we have σ(α[0, i)) = ai. Analogously, α is consistent with τ ,
if for all i ∈ N we have τ(α[0, i))(ai) = xi. For two strategies σ and τ there is a
(uniquely determined) word α(σ, τ) that is consistent with both σ and τ .

If α(σ, τ) ∈ L for every Player 1 strategy σ, then τ is called a winning strategy
for Player 2. The other way around, if α(σ, τ) /∈ L for all Player 2 strategies τ ,
then σ is a winning strategy for Player 1. We say that a strategy σ for Player 1 is
in the class K if for every a ∈ Σ1 the languageKa = {w ∈ Σ∗ | σ(w) = a} is in K.
A strategy τ for Player 2 belongs to K if the languageKa�→x = {w | τ(w)(a) = x}
is in K for every (a, x) ∈ Σ. For the language classes we consider, this definition
is consistent with the one presented in the introduction.

In this paper we focus on “finite-state strategies” realized by Moore machines.
A Moore machine implementing a strategy τ for Player 2, is given by Mτ =
(Q,Σ,Θ, q0, δ, λ) with λ : Q→ Θ such that for all w ∈ Σ∗ it holds λ(δ(q0, w)) =
τ(w). A Moore machineMσ for Player 1 is obtained analogously by replacing Θ
with Σ1.

For all games of this paper, winning strategies of this kind suffice. In order to
obtain this format of a strategy, the given winning condition L has to be cast

Languages vs. ω-Languages in Regular Infinite Games 183

into automata theoretic form. For ω-languages in a class BC(ext(K)), where
K ⊆ REG, it is known that SW-automata (over Σ := Σ1×Σ2) can be used; for
ω-languages in a class BC(lim(K)) we may take Muller automata.

Usually, classical two-player games are considered in the literature over a
graph with two different types of nodes: one type belonging to Player 1, the
other to Player 2. Such a game graph can be obtained from the ω-automaton
recognizing the winning condition by expanding the state space and splitting the
moves by letters of Σ into moves via Σ1 and Σ2. However, for our purposes it is
more convenient to consider a game graph G = (Q,Σ, q0, δ) with only one type
of nodes, and in every node q we first let Player 1 choose an action from Σ1 and
after that let Player 2 choose fromΣ2. With this “unified” model, the conversions
between ω-automata, game graphs, and Moore machines are straightforward.

As is well-known, the nodes (or: states) of the game graph in general do not
suffice as states of a Moore machine defining a winning strategy. If each state
of the game graph determines the move of the strategy, we speak of a positional
strategy, which can be represented as a mapping σ : Q → Σ1 or τ : Q → Θ,
respectively. Positional winning strategies suffice in the case of “reachability
games”, “Büchi games”, and “parity games” (see e.g. [18]). The former two of
which correspond to games L of the form ext(K) or lim(K) respectively, for
some regular ∗-language K. The latter parity condition refers to a coloring of
game graph vertices by natural numbers, and a play is won by Player 2 iff the
maximal color occurring infinitely often in it is even.

The key results about positional determinacy also hold in our unified model
of game graphs. This can easily be shown by splitting the nodes of a unified
game graph as mentioned above, and copying the color of the original node to
the new ones, thereby transforming it to a game on a classical game graph.

The Boolean combinations as they appear in games with the Staiger-Wagner
winning condition or Muller winning condition are handled by converting the
winning condition into a parity condition while expanding the game graph by an
extra “memory component” [18]. For weak games (with Staiger-Wagner winning
conditions), one replaces a state q of the game graph by a pair (q,R) where R
is the set of those states visited in the play up to the current point. The set R
is called the AR (“appearance record”). For strong games (with Muller winning
conditions), one refines this information by listing the visited states in the order
of most recent visits, and with a pointer to that place in the sequence where the
current state was located in the preceding step. In a normalized presentation over
a space {q1, . . . , qk}, we deal with expanded states (q,R) where R is an LAR
(“latest appearance record”): a pair consisting of a permutation of (q1, . . . , qk)
and a number h ∈ {1, . . . , k}. Over the expanded state-space it suffices to satisfy
the mentioned parity condition.

2.2 Classes of Regular Languages

In the subsequent definitions we recall some basic subclasses of the star-free
languages; for more background see [6,15].

184 N. Chaturvedi, J. Olschewski, and W. Thomas

A ∗-language K ⊆ Σ∗ is piecewise testable if it is a Boolean combination of
basic PT-sets Σ∗a1Σ

∗a2 · · ·Σ∗anΣ∗ where a1, a2, . . . , an ∈ Σ. Denote the class
of piecewise testable languages by PT. The class of positive Boolean combinations
of basic PT-sets (in which only ∪ and ∩ are used) is denoted by pos-PT.

A ∗-language K ⊆ Σ∗ is generalized definite if it is a Boolean combination
of sets wΣ∗ and Σ∗w with w ∈ Σ∗. We denote the class of generalized definite
languages by GDEF.

The dot-depth hierarchy, introduced by Cohen and Brzozowski [2], is a se-
quence of language classes DD0,DD1, . . . where DD0 = GDEF and DDn+1 can
be obtained as the class of Boolean combinations of languages K1 · K2 · . . . ·K�
(over a given alphabet) with K1, . . . ,K� ∈ DDn. As a special case let us men-
tion the languages of dot-depth 1 ; they are the Boolean combinations of basic
DD1-sets w0Σ

∗w1Σ
∗ · · ·wn−1Σ

∗wn where w0, w1, . . . , wn ∈ Σ∗. Also note that
PT � DD1. In analogy to the class pos-PT we define pos-DD1 as the class of
positive Boolean combinations of basic DD1-sets.

The dot-depth hierarchy is strict, and it exhausts the class SF of star-free lan-
guages. For later use we also recall a logical characterization of DDn (see [16]):
L (not containing the empty word) is in DDn iff it can be defined by a first-order
sentence that is a Boolean combination of Σn sentences (first-order sentences in
prenex normal form with n alternating quantifier blocks starting with an exis-
tential block) where the signature has symbols for the minimal and the maximal
position of a word, the predecessor and successor functions, the ordering < of
positions, and the predicates Qa giving the positions with letter a.

The study of the language classes above is based on corresponding congruences
over a given alphabet. We recall these congruences for the case of languages of
dot-depth 1.

For k,m ∈ N and an m-tuple ν = (w1, . . . , wm) of words of length k + 1, we
say that ν appears in a word u if for 1 ≤ i ≤ m, u can be written as u = uiwivi
with suitable words ui, vi such that 1 ≤ i < j ≤ m implies |ui| < |uj |. We say
that ν appears in an ω-word α if for 1 ≤ i ≤ m, α can be written as u = uiwiαi
with suitable words ui, αi such that 1 ≤ i < j ≤ m implies |ui| < |uj|. With
μm,k(w) (resp. μm,k(α)) we denote the set of allm-tuples of words of length k+1
that appear in w (resp. in α).

Two words u, v ∈ Σ∗ are (m, k)-equivalent (u ∼m,k v) if

1. u and v have the same k first letters,
2. the same m-tuples of words of length k + 1 appear in u and v, and
3. u and v have the same k last letters.

Then we have: (∗) A ∗-language K ⊆ Σ∗ is of dot-depth one iff it is a union of
Σ∗/∼m,k equivalence classes for some m, k ∈ N [11]. (In the definition of ∼m,k
we refer to possibly overlapping infixes; this does not affect statement (∗).)

Let us proceed to ω-languages. For two ω-words α, β we write α ∼m,k β
if α and β have the same k first letters, and the same m-tuples of words of
length k+1 appear in α and β. Then we clearly have: (∗∗) An ω-language L ⊆ Σω
is in BC(ext(pos-DD1)) iff it can be written as a union of Σω/∼m,k equivalence
classes for some m, k ∈ N.

Languages vs. ω-Languages in Regular Infinite Games 185

3 Winning Strategies in Restricted Weak Games

We start with games in BC(ext(pos-DD1)) which coincides with the class of
Boolean combinations of sets ext(K) where K is a basic DD1-set, or in other
words: Boolean combinations of sets w0Σ

∗w1Σ
∗ · · ·wn−1Σ

∗wnΣω.

Theorem 1. Games in BC(ext(pos-DD1)) are determined with winning strate-
gies in DD1.

Proof. By the characterization (∗∗) at the end of the preceding section, we can
write an ω-language L in BC(ext(pos-DD1)) as a union of Σω/∼m,k equivalence
classes L =

⋃n
i=1[αi] where each αi ∈ Σω. We show how to obtain a game

graph with a parity winning condition that captures the game with winning
condition L.

In the graph, the play prefix w will lead to the ∼m,k-class [w] of w. The game
graph consists of the set of nodes Q = Σ∗/∼m,k. For every (a, x) ∈ Σ, we have
edges from [w] to [w(a, x)]. Note that this relation is well-defined, as from the
set of m-tuples of length k+1 occurring in w, the suffix of length k of w, and the
new letter (a, x), one can determine the set of m-tuples of length k+1 occurring
in w(a, x). We designate q0 = [ε] as the start node of a play. For the winning
condition, we assign a color χ(q) to every node q, namely χ([w]) = 2 · |μm,k(w)| if
there is an α ∈ L such that the prefix of α of length k equals the length k prefix
of w and μm,k(α) = μm,k(w); χ([w]) = 2 · |μm,k(w)| − 1 otherwise. Note that χ
is increasing since for w ∈ Σ∗, and (a, x) ∈ Σ we have χ([w]) ≤ χ([w(a, x)]). A
play is won by Player 2 in the game for L iff the corresponding play in the graph
game reaches ultimately an even color (and stays there).

By a well-known result on parity games, the parity game is determined, and
the winning player has a uniform positional winning strategy. This means in
particular, that in the parity game the winning player has a positional winning
strategy from q0. We show that she also has a DD1 winning strategy in the
original game.

Let λ : Q→ Σ1 be a positional winning strategy of Player 1 in the parity game.
Define σ : Σ∗ → Σ1 to be σ(w) = λ([w]). The strategy σ is in DD1, because for
each a ∈ Σ1 we know that σ−1(a) =

⋃
λ(w)=a[w] is in DD1. We still have to

show that σ is winning for Player 1 in the game with winning condition L. For
this purpose, let α = (a0, x0)(a1, x1)(a2, x2) · · · ∈ Σω be consistent with σ. We
have to show that α /∈ L. Then

ρ = [ε], [(a0, x0)], [(a0, x0)(a1, x1)], . . .

is a play in the parity game that is consistent with λ. So Player 1 wins ρ and
thus the maximal color p that occurs infinitely often in ρ is odd. Let i ∈ N such
that χ(ρ(i)) = p. Then all following positions must have the same priority p =
χ(ρ(i)) = χ(ρ(i+ 1)) = . . ., because χ is increasing. This means the set μm,k(w)
of m-tuples appearing in a word w from ρ(i) does not change from i onwards.
So the set of m-tuples of α is μm,k(α) = μm,k(w) for any w ∈ ρ(i). Furthermore
the prefix of α of length k is equal to the length k prefix of w for any w ∈ ρ(i).

186 N. Chaturvedi, J. Olschewski, and W. Thomas

Since p is odd, and by the definition of χ there does not exist such a word α ∈ L,
so α /∈ L. This proves that σ is winning for Player 1.

In the analogous way it is shown that if Player 2 has a positional winning
strategy in the parity game from q0, then Player 2 has a DD1 winning strategy
in the game L.
�
Next we turn to pos-PT, the class of positive combinations of basic piecewise
testable languages; basic piecewise testable languages are languages of the form
Σ∗a1Σ

∗a2 . . . anΣ
∗. We show that in this case we can proceed with a much

simpler approach that avoids the formation of equivalence classes.
As a preparation we recall a result of I. Simon [12] about the transition

structure of automata that accept piecewise testable languages. For a DFA
A = (Q,Σ, q0, δ, F) and any Γ ⊆ Σ, let G(A, Γ) denote the directed graph
underlying the automaton A, such that it only retain edges of A that are la-
beled with elements of Γ .

Proposition 2 ([12]). Let A be the minimal DFA accepting the ∗-language K.
Then K is piecewise testable iff

1. G(A, Σ) is acyclic, and
2. for every Γ ⊆ Σ, each component of G(A, Γ) has a unique maximal state.

Theorem 3. Games in BC(ext(pos-PT)) are determined with winning strate-
gies in PT.

Proof. For every ω-language L ∈ BC(ext(pos-PT)), there exists a regular lan-
guage K ∈ PT such that L = lim(K). This is shown easily by induction over
Boolean combinations (cf. [7]). The minimal DFA A = (Q,Σ, q0, δ, F) accept-
ing K can be considered as an ω-automaton accepting L. We thus obtain a game
graph with a Büchi winning condition. Since Büchi games are determined with
positional winning strategies (see e.g. [3]), the strategy of the winning player
only depends on the current state in the play. Assume, without loss of general-
ity, that Player 2 has a winning strategy. Then for every mapping θ : Σ1 → Σ2,
let Fθ ⊆ Q be the set of states that induce a choice of θ. Consider the au-
tomaton Aθ = (Q,Σ, q0, δ, Fθ). Since G(Aθ, Σ) = G(A, Σ), we conclude from
the proposition above that the language accepted by Aθ is a piecewise testable
language.
�
It is worth noting that the game graphs for games in BC(ext(pos-PT)) are ob-
tained directly from the finite automata that recognize the piecewise testable lan-
guages in question, and that piecewise testable winning strategies are obtained
by observing a certain form of the associated transition graphs. For games in
BC(ext(pos-DD1)) we had to resort to the domain of congruences or, in algebraic
terms, to the concept of syntactic monoids. This results in exponentially larger
game graphs. In order to avoid this blow-up one might try to apply a result
of Stern [14] that gives a property of transition graphs of (minimal) automata
which characterizes the languages in DD1; however, it seems that the necessary
step towards obtaining parity games (as done in Theorem 1) spoils this property
– which prevents a direct approach as that for pos-PT.

Languages vs. ω-Languages in Regular Infinite Games 187

4 Winning Strategies in Weak Games

Theorem 4. There are games in BC(ext(PT)), and therefore in BC(ext(DD1)),
that do not admit DD1 winning strategies.

Proof. Let Σ := {a, b, c, d} × {0, 1}, and define ∗-languages K1 := (a, 0)∗(b, 0),
K2 := Σ∗(d, 1)Σ∗, and Kd := Σ∗(d, 0)Σ∗ ∪ Σ∗(d, 1)Σ∗, and for every letter
x ∈ {a, b, c} define Kx := Σ∗(x, 1)Σ∗. Let L be the ω-language over Σ, that
contains all ω-words α such that
[
α ∈ ext(Kd)⇒

(
α ∈ ext(K1)⇔ α ∈ ext(K2)

)] ∧ ∧
x∈{a,b,c}

α ∈ ext(Kx)

All the ∗-languages above are in PT, so L is in BC(ext(PT)) and a fortiori in
BC(ext(DD1)). We see that L is won by Player 2: she remembers whether a pre-
fix in K1 has occurred; if so, then she responds to a later occurrence of d with 1,
otherwise with 0. We claim there is no DD1 winning strategy (and a fortiori
no PT winning strategy) for Player 2. Assume there is such a winning strat-
egy τ : Σ∗ → Θ, which is implemented by a DD1 Moore machine. Then there
are ∗-languages Kθ1, . . . , Kθn of dot-depth one, implementing this strategy. In
particular, Kd1 := {w | τ(w)(d) = 1} is a dot-depth one language as a finite
union of Kθi languages. So it is a finite union of equivalence classes [wi]∼m,k .

Note that in the word w := (akbkckakckbkak)m all possible m-tuples of length
k + 1 over the alphabet {a, b, c} appear. Let Player 1 play a strategy σ1 that
chooses w · d · aω. Consider the unique word α1 that is consistent with both
σ1 and τ . Since τ is a winning strategy for Player 2 and σ1 plays akb in the
beginning, we have (d, 1) occurring in α. So the word w × {0} is in Kd1.

Now let Player 1 play the strategy σ2 which chooses akck ·w ·d ·aω . The word
w2 := akck · w contains all possible m-tuples of length k + 1 over the alphabet
{a, b, c}, as well. Then we have w1 ∼m,k w2 and thus w2 × {0} ∈ Kd1. Then the
unique word α2 that is consistent with both σ2 and τ contains (d, 1) as an infix.
This contradicts that τ is a winning strategy for Player 2.
�

Theorem 5. For each i ∈ N, games in BC(ext(DDi)) are determined with win-
ning strategies in DDi+1.

Proof. Given the language L as a Boolean combination of ω-languages ext(K)
with K ∈ DDi, we first proceed to a game graph where every node is a DDi
equivalence class (and hence a ∗-language in DDi). The game graph is equipped
with a Staiger-Wagner winning condition.

As explained in Section 2.1, we transform the game graph via the AR con-
struction to a new game graph with the parity winning condition. A state in
the new game graph is a pair (q,R) consisting of a state q ∈ Σ∗/∼DDi of the
original graph and an AR R. Over this game graph (with the parity winning
condition), the winner has a positional winning strategy. We have to show that
each node (q,R) corresponds to a DDi+1 language in the sense that the play

188 N. Chaturvedi, J. Olschewski, and W. Thomas

prefixes leading to (q,R) form a language K(q,R) in DDi+1. (Then the play pre-
fixes that cause the winner to choose a fixed letter a are obtained as a union of
languages K(q,R) and hence in DDi+1 as desired.)

For this purpose, it is convenient to apply the logical characterization of
DDi-languages as mentioned in Section 2.2. Each vertex q corresponds to the
language Kq consisting of play prefixes leading to q. Each Kq is a language
in DDi, defined by a Boolean combination ψq of Σi-sentences. For clarity we
write ψq(max) emphasizing the last position max of the current play prefix; so
ψq(x) expresses that the play prefix up to position x belongs to q. We have to
express the restriction that such a play prefix leads to the AR R ⊆ Q for the
state space Q. This is formalized by the sentence

ϕ(q,R) = ψq(max) ∧
∧
r∈R
∃xψr(x) ∧

∧
r �∈R
¬∃xψr(x).

Since ψr is a Boolean combination of Σi-sentences, we obtain (in prenex form) a
Boolean combination of Σi+1-sentences. In this way we obtain the membership
of K(q,R) in DDi+1.
�

5 Winning Strategies in Strong Games

Theorem 6. Games in BC(lim(PT)) are determined with winning strategies
in PT.

Proof. For every ω-language L ∈ BC(lim(PT)), there exists a regular language
K ∈ PT such that L = lim(K) (see [7]). The remainder of this proof is identical
to that of Theorem 3.
�
Theorem 7. There are games in the class BC(lim(DD1)) that do not admit
DD1 winning strategies.

Proof. Let L be the ω-language over {a, b} × {0, 1} where (a, 1) does not occur
and where (b, 0) occurs infinitely often iff (b, 1) occurs infinitely often. The lan-
guage L is in BC(lim(DD1)). We can easily see that L is won by Player 2. We
claim there is no DD1 winning strategy for Player 2. Assume there is such a
winning strategy τ : Σ∗ → Θ, which is implemented by a DD1 Moore machine.
Then there are ∗-languagesKa0,Ka1,Kb0, andKb1 of dot-depth one, implement-
ing this strategy (cf. the proof of Theorem 4). In particular Kb0 and Kb1 are
dot-depth one languages, and we have that Kb0 is a finite union of equivalence
classes [w]∼m,k :

Kb0 =
n⋃
i=1

[wi]∼m,k

Let Player 1 play a strategy σ which chooses (bak)ω . Consider the unique
word α that is consistent with both σ and τ . Since τ is a winning strategy for
Player 2 and σ plays infinitely many letters b, we have both (b, 0) and (b, 1)
occurring infinitely often in α.

Languages vs. ω-Languages in Regular Infinite Games 189

For any prefix ui := α[0, i) of α, the set ofm-tuples of words of length k+1 that
appear in ui is a subset of the set of m-tuples that appear in ui+1. This means
that there exists a j ∈ N such that the set of m-tuples is the same for all uj+i,
i ∈ N. We choose ĵ ≥ j such that k+1 divides ĵ, which yields that the suffix of uĵ
of length k is equal to (a, 0)k. But then we have [uĵ]∼m,k = [uĵ+i(k+1)]∼m,k , i ∈ N,
since uĵ and uĵ+i(k+1) have the same m-tuples, the same prefix (b, 0)(a, 0)k−1

resp. (b, 1)(a, 0)k−1, and the same suffix (a, 0)k of length k.
We conclude that either uĵ+i(k+1) ∈ Kb0 for all i ∈ N, or uĵ+i(k+1) ∈ Kb1 for

all i ∈ N. In the first case, we have only finitely many occurrences of (b, 1) in α,
whereas in the second case we have only finitely many letters (b, 0) in α. This
contradicts that τ is a winning strategy for Player 2.
�

While staying at the same level of the dot-depth hierarchy does not yield win-
ning strategies for strong games, the final result shows that there are winning
strategies at most two levels higher in the hierarchy. Whether winning strategies
are also located in the level between remains open.

Theorem 8. For each i ∈ N, games in BC(lim(DDi)) are determined with win-
ning strategies in DDi+2.

Proof. We proceed as in the proof of Theorem 5. We first construct a graph
where every node is a DDi equivalence class – a ∗-language in DDi. Now, for
languages K ∈ DDi, we are given a game over the ω-language L ∈ BC(lim(K)).
We obtain the game graph for L when we equip the graph constructed above
with a Muller winning condition. As explained in Section 2.1, we transform this
game graph via the LAR construction into a new game graph with a parity
winning condition. A state in the new game graph is a pair (q,R) consisting of
a state q ∈ Σ∗/∼DDi and an LAR R. Over this parity game graph, the winner
has a positional winning strategy.

We know that each vertex q collects the play prefixes that belong to a language
Kq ∈ DDi, defined by a Boolean combination ψq ofΣi-sentences (cf. Section 2.2).
Let ψq(x) express the fact that the play prefix up to position x belongs to q,
with ψq(max) qualifying the last position of the current play prefix. With the
help of these formulae, we now express the fact that each play prefix leading to
any state (q,R) in the parity game graph forms a language K(q,R) ∈ DDi+2.

Given a permutation perm of the state space of the original Muller game, and
an index h, an LAR can be defined as R = (perm, h). Let the sentence ϕR express
the fact that a play prefix has led to R, then it is evident thatK(q,R) = ψq(max)∧
ϕR. In order to avoid overloaded notation, we only provide a description for an
example: the most recent prefix types in perm are q, r, s, in that order; the index
value is h = 3. With ϕR, we express that the most recent prefix types are q, r, s
in this order and that for the previous prefix this sequence is r, s, q: (1) the
current play prefix (at position max) is q, at the previous position is r, and any
preceding position that is not occupied by r is occupied by s, and (2) for the
play prefix at position max−1 the most recent play prefixes are in r, s, q in this
order. This can be formally described as:

190 N. Chaturvedi, J. Olschewski, and W. Thomas

ϕR = ψq(max) ∧ ψr(max − 1)
∧ ∃x, y, z(max > x > y > z ∧ ψr(x) ∧ ψs(y) ∧ ψq(z)

∧ ∀x′(max > x′ > x→ ψr(x′))
∧ ∀y′(x > y′ > y → ψs(y′))

)
Since ψq, ψr, and ψs are Boolean combinations of Σi-sentences, we obtain (in
prenex form) a Σi+2-sentence. Thus, we obtain languages K(q,R) ∈ DDi+2.
�

6 Conclusion

The present paper continues the study of a question that was raised already
by Büchi and Landweber in their pioneering paper [1, Sect.3]: to analyze “how
simple winning strategies do exist” for a given class of games. Complementing
the results of [1,8,9] where solvability of regular and star-free infinite games
was established with corresponding winning strategies (again regular and star-
free strategies, respectively), we showed in this paper that for games of lower
complexity three levels need to be distinguished.

1. When we take the basic (pattern-) languages K underlying the piecewise
testable languages and the languages of dot-depth 1 and work with Boolean
combinations of sets ext(K), then determinacy with piecewise testable win-
ning strategies, respectively of dot-depth 1, holds.

2. Games with winning conditions in BC(ext(K)), where K is now the full class
of piecewise testable languages or languages of dot-depth 1, are determined
only with winning strategies beyond K, namely in DD2.

3. This situation is no better when games in BC(lim(DD1)) are considered;
there are winning strategies in DD3 but not in DD1. For BC(lim(PT)) we
fall back to case 1, and obtain winning strategies again in PT.

Finally, there remain some open problems. First, it is left open here whether the
bound i + 2 of Theorem 8 can be improved to i + 1. We also did not exclude
the possibility that from some level onward the classes of dot-depth languages
become rich enough to describe the winning strategies for weak or strong games.
A more general problem is to study complexity issues, e.g. how the sizes of au-
tomata for game presentations and strategy presentations can diverge. Finally,
the results of this paper motivate setting up an abstract framework of passing
from ∗-language classes to corresponding ω-language classes (as winning con-
ditions of games) and back (by considering winning strategies), so that classes
beyond the special cases of the present paper are covered as well.

References

1. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Transactions of the American Mathematical Society 138, 295–311 (1969)

2. Cohen, R.S., Brzozowski, J.A.: Dot-depth of star-free events. Journal of Computer
and System Sciences 5, 1–16 (1971)

Languages vs. ω-Languages in Regular Infinite Games 191

3. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002)

4. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, lan-
guages, and computation, 2nd edn. Addison-Wesley series in computer science.
Addison-Wesley-Longman (2001)

5. Perrin, D., Pin, J.-É.: Infinite Words. Elsevier, Amsterdam (2004)
6. Pin, J.-É.: Varieties of Formal Languages. In: North Oxford, London (1986)
7. Pin, J.-É.: Positive varieties and infinite words. In: Lucchesi, C.L., Moura, A.V.

(eds.) LATIN 1998. LNCS, vol. 1380, pp. 76–87. Springer, Heidelberg (1998)
8. Rabinovich, A., Thomas, W.: Logical refinements of church’s problem. In: Duparc,

J., Henzinger, T. (eds.) CSL 2007. LNCS, vol. 4646, pp. 69–83. Springer, Heidelberg
(2007)

9. Selivanov, V.L.: Fine hierarchy of regular aperiodic ω-languages. In: Harju, T.,
Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 399–410.
Springer, Heidelberg (2007)

10. Selivanov, V.L.: Fine hierarchy of regular aperiodic ω-languages. International
Journal of Foundations of Computer Science 19(3), 649–675 (2008)

11. Simon, I.: Hierarchies of events with dot-depth one. PhD thesis, University of
Waterloo (1972)

12. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) Automata Theory and
Formal Languages. LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975)

13. Staiger, L., Wagner, K.W.: Automatentheoretische und automatenfreie Charakter-
isierungen topologischer Klassen regulärer Folgenmengen. Elektronische Informa-
tionsverarbeitung und Kybernetik 10(7), 379–392 (1974)

14. Stern, J.: Characterizations of some classes of regular events. Theoretical Computer
Science 35, 17–42 (1985)

15. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser
Verlag, Basel (1994)

16. Thomas, W.: Classifying regular events in symbolic logic. Journal of Computer and
System Sciences 25(3), 360–376 (1982)

17. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, vol. 3, pp. 389–455. Springer, New York
(1997)

18. Thomas, W.: Church’s problem and a tour through automata theory. In: Avron, A.,
Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800,
pp. 635–655. Springer, Heidelberg (2008)

Solving Word Problems in Group Extensions over
Infinite Words

Volker Diekert1 and Alexei G. Myasnikov2

1 FMI, Universität Stuttgart, Universitätsstr. 38, D-70569 Stuttgart, Germany
2 Department of Mathematics, Stevens Institute of Technology, Hoboken, NJ 07030, USA

Abstract. Non-Archimedean words have been introduced as a new type of infi-
nite words which can be investigated through classical methods in combinatorics
on words due to a length function. The length function, however, takes values
in the additive group of polynomials Z[t] (and not, as traditionally, in N), which
yields various new properties. Non-Archimedean words allow to solve a number
of algorithmic problems in geometric and algorithmic group theory. There is a
connection to the first-order theory in free groups (Tarski Problems), too.

In the present paper we provide a general method to use infinite words over a
discretely ordered abelian group as a tool to investigate certain group extensions
for an arbitrary group G. The central object is a group E(A,G) which is defined
in terms of a non-terminating, but confluent rewriting system. The group G as
well as some natural HNN-extensions of G embed into E(A,G) (and still ”be-
have like” G), which makes it interesting to study its algorithmic properties. The
main result characterizes when the Word Problem (WP) is decidable in all finitely
generated subgroups of E(A,G). We show that this property holds if and only if
the Cyclic Membership Problem ”u ∈ 〈v〉?” is decidable for all v ∈ G. Our
methods combine combinatorics on words, string rewriting, and group theory.

Introduction

Combinatorics on words is a basic tool for various theories in theoretical computer
science and mathematics, [7]. It has a long history dating back to the classic work of
Thue at the beginning of the 20th century, [3]. Traditionally one studies finite words
or words over linear orders in connection with logic and formal languages, [1]. Other
generalizations use ordinals or (algebraic) linear orders, see e.g. [4,2,11].

The theory of non-Archimedean words appeared first in [17] in connection with
group actions on trees. Group actions split naturally in two cases. The Archimedean
case concerns with group actions on R-trees. A complete description of finitely gener-
ated groups acting freely on R-trees was obtained in a series of papers. It is known now
as Rips’ Theorem, see [6] for a detailed discussion. For non-Archimedean actions the
focus is on groups acting freely on Zn-trees. This gives the link to non-Archimedean
words. Elements in these groups can be represented as words where the length takes
values in the ring of integer polynomials Z[t]. It turned out that the representation of
group elements as infinite words over Z[t] is quite intuitive and leads to the solution
of various algorithmic problems for F Z[t] using the standard Nielsen cancellation ar-
gument for the length function, [17]. The importance of Lyndon’s group F Z[t] became

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 192–203, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Solving Word Problems in Group Extensions over Infinite Words 193

prominent due to its relation to algebraic geometry over groups and the solution of the
Tarski Problems [12].

There are several contributions here. We start with any group G, and we use infinite
words over a discretely ordered abelian group as a tool to investigate certain extensions
of G. All precedent papers on this topic were restricted to the consideration of free
groups. However, even for free groups we provide an important new result.

Studying free groups in the context of words means to work over an alphabet Σ
where first, every letter a has an inverse a−1 ∈ Σ−1, and second, aa−1 and a−1a are
forbidden patterns. This generalizes immediately to infinite words and yields the notion
of being freely-reduced. However, inside infinite words infinitely many cancellations
may appear (see Fig. 1), and it is not clear how to cope with them. The only solution
so far has been to define the concatenation as a partially defined operation. Our first
main result shows that we can extend the concatenation to a totally defined function
without collapsing the free group F (Σ). Thereby we obtain a natural group extension
E(A, F (Σ)) of a free group F (Σ). The proof that F (Σ) embeds into its extension
E(A, F (Σ)) is rather tedious. The good news is that it generalizes to all groups, see
Cor. 1. The result is obtained by the proof that some (non-terminating) rewriting sys-
tem is strongly confluent, thus confluent. Non-terminating and strongly confluent string
rewriting systems were successfully applied in [8], too.

The second part of the paper addresses algorithmic questions. Back in 1910 Max
Dehn formulated the Word Problem (WP): ”Given a presentation of a group G. De-
cide on an input word w whether w is the trivial element 1G in G.” It was only in the
1950s when Boone and Novikov independently showed that there is a fixed finitely
presented group with an undecidable WP. Since then WP in groups became an active
research area and various aspects are studied today in geometric and algorithmic group
theory [10].

Our main result characterizes when the WP is decidable in all finitely generated
subgroups of E(A, G). We show in Thm. 2 that the Word Problem is decidable in all
finitely generated subgroups of E(A, G) if and only if the Cyclic Membership Prob-
lem ”u ∈ 〈v〉?” is decidable for all v ∈ G. Thus, it is a transfer result with a non-
trivial condition. There are known examples where G has a soluble Word Problem, but
Cyclic Membership Problem is not decidable for some specific v. On the other hand,
the Cyclic Membership Problem is uniformly decidable in many natural classes (which
encompasses classes of groups with decidable Membership Problem w.r.t. subgroups)
like hyperbolic groups, one-relator groups or effective HNN-extensions, see Rem. 1. In
the final section we show that some interesting HNN extensions can be embedded into
E(A, G), see Prop. 2. Thus, natural extensions of G still ”behave like” G and the theory
of non-Archimedean words applies to them.

Our methods combine combinatorics on words ([13]), string rewriting ([5]) and
group theory ([14]). The proof techniques are non-trivial but elementary. No particu-
lar knowledge about non-Archimedean words or any deep results from group theory is
required. Missing proofs will appear in the journal version of this abstract. A prelimi-
nary version with full proofs is accessible on-line on the ArXiv [9], too.

194 V. Diekert and A.G. Myasnikov

1.1 Preliminaries

Rewriting techniques provide a convenient tool to prove that certain constructions have
the expected properties. Typically we extend a given group by new generators and defin-
ing equations and we want that the original group embeds in the resulting quotient
structure. We assume that the reader is familiar with the basic concepts about rewriting
systems (over monoids) such as (strong) confluence, termination or the Church-Rosser
property. The material can be found in the text books like [5]. If S is a rewriting system,
then IRR(S) means the set of (irreducible) elements where no rule can be applied. If a
quotient monoid is given by a finite, confluent and terminating (i.e., finite and conver-
gent) string rewriting system S ⊆ Γ ∗×Γ ∗ over some alphabet Γ , then the monoid has
a decidable WP, which yields a major interest in these systems.

Example 1. Let Σ be a set and Σ−1 be a disjoint copy. Then the set of rules{
aa−1 −→ 1

∣∣ a ∈ Σ
} ∪ {

a−1a −→ 1
∣∣ a ∈ Σ

}
defines a strongly confluent and terminating system over (Σ ∪ Σ−1)∗. The quotient
monoid yields the free group F (Σ) with basis Σ.

Discretely ordered abelian groups. An ordered abelian group is an abelian group A
together with a linear order ≤ such that x ≤ y implies x + z ≤ y + z. It is discretely
ordered, if, in addition, there is a least positive element 1A. Here, as usual, an element
x is positive, if 0 < x. An ordered abelian group is Archimedean, if for all 0 < a ≤ b
there is some n ∈ N such that b < na, otherwise it is non-Archimedean.

If B is any ordered abelian group, then the group A = Z × B is discretely ordered
with 1A = (1, 0) and the lexicographical ordering:

(a, b) ≤ (c, d) if b < d or b = d and a < c.

In particular, Z×Z is a non-Archimedean discretely ordered abelian group. It serves as
our main example. Iterating the process all finitely generated free abelian Zk are viewed
as being discretely ordered; and by a transfinite iteration we can consider arbitrary direct
sums of Z. In the paper we deal with A ⊆ Z [t], only. Thus, A is a subgroup of the
additive group of the polynomial ring over Z in one variable t. Elements of A are finite
sums α =

∑
i nit

i with i ∈ N and ni ∈ Z. Since the sum is finite, either α = 0 or there
is a greatest d = deg(α) ∈ N (its degree) with nd �= 0. By convention, deg(0) = −∞.
The additive group of integers Z is viewed as a subgroup of Z[t] via the embedding
n '→ nt0. An element α =

∑
i nit

i ∈ A is called positive, if ndeg(α) > 0. We let
α ≤ β, if α = β or β−α is positive. Thus, 1 ∈ N is also the smallest positive element in
A. If, for example, A = Z×Z, then we have identified 1 ∈ N with the pair 1A = (1, 0).
Moreover, for α, β ∈ A we define the closed interval [α, β] = {γ ∈ A | α ≤ γ ≤ β}.
Its length is defined to be β−α+1. A typical interval contains infinitely many elements.
For Z× Z the interval [(−3, 0), (2, 1)] has length (6, 1).

Sometimes we simply illustrate intervals of length (m, 1) as [· · ·)(· · ·] and intervals
of length (m, 2) as [· · ·)(· · ·)(· · ·]. This will become clearer later.

Solving Word Problems in Group Extensions over Infinite Words 195

Non-Archimedean words over a group G. A monoid with involution is a monoid M
with a bijection x '→ x such that x = x and xy = yx for all x, y ∈ M and, as a
consequence, 1 = 1. Every group is a monoid with involution x '→ x−1. If M is a
monoid with involution x '→ x, then the quotient M/ {xx = 1 | x ∈ M} is a group.

Let a '→ a denote a bijection between sets Σ and Σ, hence Σ = {a | a ∈ Σ}. The
map a '→ a, a '→ a is an involution on Σ ∪ Σ with a = a. It extends to an involution
x '→ x on the free monoid (Σ ∪ Σ)∗ with basis Σ ∪Σ by a1 · · ·an = an · · · a1.

Throughout G denotes a finitely generated group with group generators in a finite
alphabet Σ. We let Γ = Σ ∪ Σ, where Σ = Σ−1 ⊆ G and a = a−1 for a ∈ Γ . The
inclusion Γ ⊆ G induces the canonical homomorphism (presentation) π : Γ ∗ → G
from Γ ∗ onto the group G. Clearly, for every word w ∈ Γ ∗ we have π(w) = π(w)−1.

A partial A-map is a map p : D → Γ with domain D ⊆ A. Two partial maps
p : D → Γ and p′ : D′ → Γ are termed equivalent, if p′ is an α-shift of p for some
α ∈ A, i.e., D′ = {α + β | β ∈ D} and p′(α + β) = p(β) for all β ∈ D. This is
an equivalence relation on partial A-maps, and an equivalence class of partial A-maps
is called a partial A-word. If the domain D = [α, β] = {γ ∈ A | α ≤ γ ≤ β} is an
interval, then the equivalence class of p : [α, β] → Γ is called a closed A-word. Its
length |p| is defined by β−α+1 ∈ A. For simplicity, a closed (resp. partial) A-word is
called a word (resp. partial word), too. A word p : [α, β] → Γ is finite if the set [α, β] is
finite, otherwise it is infinite. Usually, we identify finite words with the corresponding
elements in Γ ∗. A (one-sided) infinite ω-word is a special case of a partial A-map, but
its domain N is not an interval, hence it is a partial word, which is not closed.

If p : [α, β] → Γ and q : [γ, δ] → Γ are closed A-words, then we define their
concatenation as follows. (Due to shift equivalence we may assume that γ = β + 1.)

p · q : [α, δ] → Γ
x '→ p(x) if x ≤ β
x '→ q(x) otherwise.

It is clear that this operation is associative. Hence, the set of closed A-words forms a
monoid, which we denote by W (A, Γ). It is the natural analog of the free monoid Γ ∗

over non-Archimedean words. The empty word is denoted by 1. The standard repre-
sentation of an A-word p is a mapping p : [1, α] → Γ , where 0 ≤ α. In particular,
|p| = α. The degree of p is the degree of α; we also write deg(p) = deg(α). For a
partial word p : D → Γ and [α, β] ⊆ D we denote by p[α, β] the restriction of p to
the interval [α, β]. Hence p[α, β] is a closed word. Sometimes we write p[α] instead of
p[α, α]. Thus, p[α] = p(α). The monoid W (A, Γ) is a monoid with involution p '→ p
where for p : [1, α] → Γ we define p ∈ W (A, Γ) by p : [−α,−1] → Γ , −β '→ p(β).

If x ∈ W (A, Γ) and x = pfq for some p, f, q ∈ W (A, Γ) then p is called a prefix,
q is called a suffix, and f is called a factor of x. If 1 �= f �= x then f is called a proper
factor. As usual, a factor is finite, if |f | ∈ N. Thus, a finite factor can be written as
x[α, β] where β = α + n, n ∈ N.

A closed word x : [1, α] → Γ is called freely reduced if x(β) �= x(β + 1) for all
1 ≤ β < α. It is called cyclically reduced if x2 is freely reduced. As a matter of fact
we need a stronger condition than being freely reduced. A closed word word x is called
G-reduced , if no finite factor x[β, β + n] with n ∈ N, n ≥ 1, becomes the identity
1 in the group G. Note that all G-reduced words are freely reduced by definition. By

196 V. Diekert and A.G. Myasnikov

R(A, G) we denote the set of all G-reduced words in W (A, Γ), and by R∗(A, G) we
mean the submonoid of W (A, Γ) which is generated by R(A, G).

Fig. 2 shows a word w with a sloppy notation [aaa · · ·)(· · · abab · · ·)(· · · bbb]. For
the same word w we have aw �= wb (because aw[(0, 1)] = a and wb[(0, 1)] = b), but
we have aaw = wbb in the monoid W (A, Γ). Recall, that two elements x, y in a monoid
M are called conjugated, if xw = wy for some w ∈ M . Note that all finite words
x, y ∈ Γ ∗ are conjugated in W (A, Γ) provided they have the same length |x| = |y|
and A contains Z × Z. Indeed w = [xxx · · ·)(· · · yyy] does the job xw = wy. This
phenomenon is in sharp contrast to the behavior of free monoids. The fact that all non-
Archimedean words of the same length are conjugated is a main feature in applications.

1.2 The Group Extension E(A, G) of G by Infinite Words over A

We realize E(A, G) inside the following quotient monoid of W (A, Γ):

M(A, G) = W (A, Γ)/ {u�r u = 1 | u is G-reduced, �, r ∈ Γ ∗, π(�) = π(r)} .

We define E(A, G) as the image of R∗(A, G) in M(A, G) under the canonical epimor-
phism W (A, Γ) →M(A, G).

Our goal here is to construct a confluent rewriting system S over the monoid W (A, Γ)
such that M(A, G) = W (A, Γ)/S and S has the following form:

S = S0 ∪ {uu → 1 | u ∈ R(A, G) and u is infinite} (1)

where S0 ⊆ Γ ∗ × Γ ∗ is a rewriting system for G satisfying the following conditions:

1. Γ ∗/S0 = G and S0 is confluent. Moreover, 1 ∈ Γ ∗ is S0-irreducible.
2. For all a ∈ Γ we have (aa, 1) ∈ S0; and if (�, r) ∈ S0, then (�, r) ∈ S0, too.

It is easy to see that for every finitely generated group G there is a rewriting system
S0 ⊆ Γ ∗ × Γ ∗ satisfying the conditions above. In general S0 is neither finite nor
terminating. However, if G is finitely presented, then one can choose S0 to be finite.

Due to Eq. 1 we have M(A, G) = W (A, Γ)/S. The following lemma is crucial.

Lemma 1. Let x ∈ R(A, G) be a non-empty G-reduced word. Then x
∗=⇒
S

y implies

both x
∗=⇒

S0
y and y is a non-empty word.

Theorem 1. The system S ⊆ Γ ∗ × Γ ∗ ∪R(A, G)×R(A, G) defined in Equation 1 is
confluent on W (A, Γ).

The theorem above yields our first main result:

Corollary 1. The canonical homomorphism G → E(A, G) is an embedding.

Proof. Let x, y ∈ Γ ∗ be finite words such that x = y in E(A, G). Then we have
x

∗=⇒
S

w
∗⇐=
S

y for some w ∈ Γ ∗. But this implies x
∗=⇒
S0

w
∗⇐=

S0
y. Hence x = y in G.

Corollary 2. The canonical mapping IRR(S0) ∩ R(A, G) → E(A, G) is injective.

Solving Word Problems in Group Extensions over Infinite Words 197

A main idea in the proof of Thm. 1 is to replace the rewrite system =⇒
S

by a new system

=⇒
Big

= ∗=⇒
S0

◦ =⇒
S

◦ ∗=⇒
S0

. The complicated part in the proof of Thm. 1 is to show that

the (non-terminating!) rewriting system =⇒
Big

is strongly confluent on W (A, Γ). Once,

strong confluence is established, the assertion of Thm. 1 is immediate.

Example 2. Let S0 be the system of Ex. 1 defining the free group F (Σ). Let a ∈ Σ
and u, v ∈ F (Σ) be represented by non-empty cyclically reduced words in Γ ∗. (For
example u, v are themselves letters.) Consider the following two infinite closed words:

w = [uuu · · ·)(· · · vvv]
z = [uuu · · ·)(· · · aaa][aaa · · ·)(· · · vvv]

The words uw and wv are freely reduced and hence irreducible. By Cor. 2 we have
uw = wv in E(A, G) if and only if |u| = |v|.

The word z is not freely reduced, and if z = z′ ∈ E(A, G), then S0 is not terminating
on z′. No rules from S \ S0 apply to z and w �= z ∈ E(A, G). Although the word z has
no well-defined length one can infer the same conclusion as for w. First let |u| = |v|,
then z = uzv in E(A, G) and hence uz = zv. For the other direction write z = z′v as
words and let uz = zv = z′ in E(A, G). Then uz

∗=⇒
S

z̃
∗⇐=
S

z′ for some word z̃. After

cancellation of factors amam inside (· · · aaa] · [aaa · · ·) the borderline between a’s
and a’s must match inside z̃. So exactly |u| more cancellations of type aa −→ 1 inside
uz took place than in z′. Hence |u| = |v|.

1.3 Group Extensions over A = Z [t]

Proper periods. Let w ∈ W (A, Γ) be a word of length α ∈ A, given as a mapping
w : [1, α] → Γ . An element π ∈ A is called a period of w, if for all β ∈ A such that
1 ≤ β, β+π ≤ α we have w(β) = w(β+π). A period π is called a proper period of w,
if deg(π) < deg(w). In the following we are interested in proper periods, only. We have
the following basic fact: Let w ∈ W (A, Γ) of degree deg(w) = d with 0 ≤ d, then
the set Π(w) of proper periods forms a subgroup of Adeg<d = {α ∈ A | deg(α) < d}.
This leads to the following proposition:

Proposition 1. Let w0, w1, w2, w3, . . . be an infinite sequence of elements of W (A, Γ)
such that wi+1 is always a non-empty factor of wi. Let

Π0, Π1, Π2, Π3, . . .

be the corresponding sequence of proper periods in A. Then this sequence of groups
becomes stationary, i.e., there exists m such that Πm = Πn for all m ≤ n.

Deciding the WP in E(A, G). Recall that for a finitely generated group the decidabil-
ity of the WP is a property of the group and does not depend on its presentation. The
main difficulty for deciding the WP in E(A, G) is due to periodicity.

198 V. Diekert and A.G. Myasnikov

Let S be the system defined in Equation 1 which is confluent by Thm. 1. If we have
x

∗=⇒
S

y then we have deg(x) ≥ deg(y). Thus, we can define the reduced degree by

red-deg(x) = min
{
deg(y)

∣∣∣ x
∗=⇒
S

y
}

.

Note that red-deg(x) is well-defined for group elements x ∈ E(A, G) due the conflu-
ence of S. The following lemma is an easy consequence of Lem. 1:

Lemma 2. Let u ∈ R(A, G) be a non-empty G-reduced word. Then we have 0 ≤
deg(u) = red-deg(u).

Our goal is to solve the WP in E(A, G) via the following strategy. We compute on
input w ∈ W (A, Γ) some w′ ∈ W (A, Γ) such that both w

∗⇐⇒
S

w′ and deg(w′) =

red-deg(w). If deg(w′) > 0, then w �= 1 in E(A, G). Otherwise w′ is a finite word
over Γ and we can use the algorithm for G which decides whether or not w′ = 1
in G ⊆ E(A, G). Our main result is the following theorem, which gives the precise
answer in terms of the group G whether or not the WP in finitely generated subgroups
of E(A, G) is decidable.

Theorem 2. The following assertions are equivalent:

i) For each v ∈ Γ ∗ there exists an algorithm C(v) which decides on input u ∈ Γ ∗ the
Cyclic Membership Problem ”u ∈ 〈v〉?”

ii) The WP is decidable for each finitely generated subgroup of E(A, G).

Observe that ii) implies that G itself has a decidable WP. But this is a weaker con-
dition than i) Indeed, there is a finitely presented group G with a decidable WP, for
which one can construct a specific word v such that the Cyclic Membership Problem
”u ∈ 〈v〉?” is undecidable, see [18]. Thus, the assertion of Thm. 2 constitutes a non-
trivial transfer result.

Proof of Thm. 2: For lack of space we restrict ourselves to show the more difficult
and more important direction that i) implies ii). It is enough to show that for each finite
subset Δ ⊆ R(A, G) of G-reduced words, there is an algorithmA(Δ), which computes
on input w ∈ Δ∗ its reduced degree and some w′ ∈ W (A, Γ) such that both w

∗⇐⇒
S

w′

and deg(w′) = red-deg(w).

PART I: Preprocessing: It is clear that we may replace Δ by any other finite set Δ̂
such that Δ ⊆ Δ̂∗. We apply the following transformation rules in any order as long as
possible, and we stop if no rule changes Δ anymore. The result is Δ̂ which is, as we
will see, still a set of G-reduced words. (This will follow from the fact that every factor
of a G-reduced word is G-reduced).

1.) Replace Δ by (Δ ∪ Γ) \ {1}. (Recall that Γ is finite.)
2.) If we have g ∈ Δ, but g �∈ Δ, then insert g to Δ.
3.) If we have g ∈ Δ with g = fh in W (A, Γ) and deg(g) = deg(f) = deg(h), then

remove g and g from Δ and insert f and h to Δ.

Solving Word Problems in Group Extensions over Infinite Words 199

Define g ∼ h, if for some x, y, z, t, u ∈ W (A, Γ) with deg(xyzt) < deg(u):

g = xuy and h = zut.

Note that the condition implies deg(g) = deg(u) = deg(h). The effect of the next rule
is that for each equivalence class there is at most one group generator in Δ.

4.) If we have g, h ∈ Δ with g �∈ {
h, h

}
, but g = xuy and h = zut for some x, y, z, t,

and u with deg(xyzt) < deg(u), then remove g, h, g, h from Δ and insert x, y, z, t
(those which are non-empty) and u to Δ.

5.) If we have g ∈ Δ with g �= g, but g = xuy = zut for some x, y, z, t, and u
with deg(xyzt) < deg(u), then write u = pq (or write u = pq) with deg(p) <
deg(q) = deg(u) and q = q. Remove g and g from Δ and insert x, y, z, t, p, p
(those which are non-empty) and q to Δ. (Note that g ∼ q.)

The next rules deal with periods.

6.) If we have g ∈ Δ and g = xuy for some x, y, and u with deg(xy) < deg(u) such
that u has a proper period which is not a period of g, then remove g, g from Δ and
insert x, y (those which are non-empty) and u to Δ.

The following final rule below makes Δ larger again, and the rule adds additional infor-
mation to each generator. For each g ∈ Δ let Π(g) ⊆ A the group of proper periods.
Let B(g) be a set of generators of Π(g). We may assume that for each possible degree
d there is at most one element β ∈ B(g) of degree d. Moreover, we may assume 0 ≤ β
and for each g the set B(g) is fixed. In particular, for π ∈ Π(g) with deg(π) = d ≥ 0
there is exactly one β ∈ B(g) such that deg(β) = d and π = mβ + � for some unique
m ∈ Z and � ∈ Π(g) with deg(�) < d. For each β ∈ B(g) let r(β) be the prefix and
s(β) be the suffix of length β of g. (In particular, r(β) g = g s(β) in W (A, Γ).) Note
that the number of r(β), s(β) is bounded by 2 deg(g).

7.) If we have g ∈ Δ, then let B(g) be a set of generators for the set of proper periods
Π(g) as above. If necessary, enlarge Δ by finitely many elements of degree less
than deg(g) (and which are factors of elements of Δ) such that r(β), s(β) ∈ Δ∗

for all β ∈ B(g).

Note that the rules 1.) to 7.) can be applied only a finite number of times (König’s
Lemma and Prop. 1). The preprocessing is not asked to be effective.

PART II: An algorithm to compute the reduced degree: We may assume that Δ has
passed the preprocessing, i.e., Δ = Δ̂ and no rule above changes Δ anymore. The input
w (to the algorithm we are looking for) is given as a word g1 · · · gn with gi ∈ Δ. Let

d = max {deg(gi) | 1 ≤ i ≤ n} .

We may assume that d > 0. Either deg(w) = red-deg(w) (and we are done) or
deg(w) > red-deg(w) and w ∈ W (A, Γ) contains a factor uvu such that:

200 V. Diekert and A.G. Myasnikov

1.) The word u is G-reduced and has length |u| = td + � with deg(�) < d,
2.) deg(v) < d and v

∗=⇒
S

1.

We may assume that the factor uvu starts in some gi and ends in some gj with i < j,
because the leading coefficient of each length |gi| ∈ Z [t] is 1. Moreover, by making
u smaller and thereby v larger, we may in fact assume that u is a factor of gi and u is
a factor of gj . Thus, deg(gi) = deg(u) = deg(gj) = d and we can write gi = xuy
and gj = zuz′. By preprocessing on Δ (Rule 4), we must have gi ∈ {gj, gj}. Assume
gi = gj , then we have gi = xuy = zuz′ and, by preprocessing on Δ (Rule 5), we may
conclude gi = gi. Thus in any case we know gi = gj .

Thus, henceforth we can assume that for some 1 ≤ i < j ≤ n we have in addition
to the above:

3.) gi = xuy, v = ygi+1 · · · gj−1z, and gj = zuz′ = gi.

Since gj = zuz′ = gi we have xuy = z′uz, and by symmetry (in i and j) we may
assume that |y| ≥ |z|. This implies y = qz for some q ∈ W (A, Γ) with deg(q) < d
and uq = q′u for z′ = xq′.

Therefore |q| is a proper period of u, and hence, by preprocessing on Δ (Rule 6), we
see that |q| is a proper period of gi. Thus there are p′, p ∈ Δ∗ with |p′| = |p| = |q| such
that p′gi = gip. But z and y are suffixes of gi, hence y = zp. Therefore:

4.) pgi+1 · · · gj−1
∗=⇒
S

1, where p is a suffix of gi and |p| is a proper period of gi.

We know deg(gi+1 · · · gj−1) < d. Hence by induction on d we can compute h ∈
Δ∗ such that both gi+1 · · · gj−1

∗⇐⇒
S

h and deg(h) = red-deg(gi+1 · · · gj−1). This

implies deg(h) = red-deg(p), too. But p is a factor of a G-reduced word, hence actually
deg(h) = deg(p) by Lem. 2.

We distinguish two cases. Assume first that deg(h) ≤ 0. Then h, p ∈ Γ ∗ are finite
words. If h = 1 in G, then we can replace the input word w by

g1 · · · gi−1gj+1 · · · gn

since gigi+1 · · · gj−1gi
∗=⇒
S

1, and we are done by induction on n.

If h ∈ Γ ∗ is a finite word, but h �= 1 in G, then p = h−1 �= 1 in G, too. Consider
the smallest element ρ ∈ B(gi) and let r ∈ Γ ∗ be the suffix of gi with |r| = ρ. It
follows that p is a positive power of r because |p| is a period of gi. This means that
h is in the subgroup of G generated by r. For this test we have the algorithm C(r) at
our disposal by our hypothesis on G. (Note that r belongs to a finite list depending
on Δ and not on the specific input word to the WP.) According to our assumption
deg(w) > red-deg(w) (about the input word w), the answer of the algorithm C(r) is
”Yes”: h is in the subgroup generated by r. This allows to find m ∈ Z with h = rm in
the group G. We find some finite word s of length |s| = |rm| such that sgi = gir

m; and
we can replace the input word w by g1 · · · gi−1sgj+1 · · · gn. We are done by induction
on the number of generators of degree d (because gi is missing and deg(gi) = d > 0).

The final case is deg(h) > 0. We write |h| = m′te + � with deg(�) < e = deg(h).
According to our preprocessing on Δ (Rule 7) there are words r, s ∈ Δ∗ such that

Solving Word Problems in Group Extensions over Infinite Words 201

deg(r) = deg(h), r is a suffix of gi with sgi = gir. Note that we effectively find such
r and s (or we detect w �= 1), and we know m′, too.

For some m with m ≤ m′ we must have red-deg(rmh) < e. By induction we can
compute some word f with deg(f) = red-deg(rmh) and f

∗⇐⇒
S

rmh. Like above we

can replace the input word w by

g1 · · · gi−1s
mgifgj · · · gn.

We are done by induction on the degree e which is the reduced degree of the factor
rmgi+1 · · · gj−1. We can apply this induction since gir

mgi+1 · · · gj−1gj now has a fac-
tor uv′u such that the following conditions hold (with e < d):

1.) The word u is G-reduced and deg(u) = d > 0, 2.) deg(v′) < e and v′ ∗=⇒
S

1.

��
Remark 1. The assertions in Thm. 2 hold, if G has a decidable Generalized Word
Problem, i.e., the Membership Problem w.r.t. finitely generated subgroups is decid-
able. Examples of groups G where the Generalized Word Problem is decidable include
metabelian, nilpotent or, more general, abelian by nilpotent groups, see [20]. However,
there are also large classes of groups, where the Membership Problem is undecidable,
but the Cyclic Membership Problem is easy. For example, the Cyclic Membership Prob-
lem is decidable in linear time in a direct product of free groups, but as soon as G
contains a direct product of free groups of rank 2, the Generalized Word Problem be-
comes undecidable by [16]. For hyperbolic groups a construction of Rips shows that the
Generalized Word Problem is undecidable ([19]), but the Cyclic Membership Problem
”u ∈ 〈v〉?” is decidable by [15]. Decidability of the Cyclic Membership Problem is also
preserved e.g. by effective HNN extensions. This means, if H is an HNN-extension of
G by a stable letter t such that we can effectively compute Britton reduced forms c.f.
[14]. In particular the Cyclic Membership Problem is decidable in one-relator groups,
but it is a long standing open problem, whether the Generalized Word Problem is de-
cidable for this class.

1.4 Realization of Some HNN-Extensions

The purpose of this section is to show that the group E(A, G) contains some important
HNN-extensions of G which therefore can be studied within the framework of infinite
words. Moreover, we show that E(A, G) realizes more HNN-extensions than it is pos-
sible in the approach of [17]. The reason is that [17] is working with cyclically reduced
decompositions, only. We need a few more technical terms which have not been intro-
duced so far. A non-empty word w ∈ W (A, G) is called primitive, if first, w does not
appear as a factor of ww other than as its prefix or as its suffix, and second, w is not a
factor of ww. In particular, a primitive word does not have any non-trivial proper period.
We say x ∈ W (A, G) is cyclically G-reduced , if every finite power xk with k ∈ N
is G-reduced. Over a free group G with basis Σ a word is G-reduced if and only if it
is freely-reduced; and it is cyclically G-reduced if and only if x2 is freely-reduced. As
usual the centralizer of an element u in a group H is the subgroup {v ∈ H | uv = vu}.

202 V. Diekert and A.G. Myasnikov

Proposition 2. Let H be a finitely generated subgroup of E(A, G) and let u, v, w ∈ H
be (not necessarily different) cyclically G-reduced elements such that |u| = |v| = |w|
and such that w is primitive. Let u and v have cyclic centralizers in H . Then the HNN
extension of H with stable letter s H ′ =

〈
H, s | s−1us = v

〉
embeds into E(A, G).

(1, 0)

b b b b

a a a a a a−1 a−1 a−1 a−1

b b b b

Fig. 1. Infinitely many cancellations aa−1 in the middle line

(1, 0)

(0, 2)

a a a a

b a b a b a b a b

b b b b b

Fig. 2. A word w = [aaa · · ·)(· · · abab · · ·)(· · · bbb] where aw �= wb but aaw = wbb

References

1. Bedon, N., Bès, A., Carton, O., Rispal, C.: Logic and rational languages of words indexed
by linear orderings. Theory Comput. Syst. 46(4), 737–760 (2010)

2. Bedon, N., Rispal, C.: Schützenberger and eilenberg theorems for words on linear orderings.
In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 134–145. Springer,
Heidelberg (2005)

3. Berstel, J., Perrin, D.: The origins of combinatorics on words. Eur. J. Comb. 28(3), 996–1022
(2007)

4. Bogopolski, O., Zastrow, A.: The word problem for some uncountable groups given by count-
able words. ArXiv e-prints (March 2011)

Solving Word Problems in Group Extensions over Infinite Words 203

5. Book, R., Otto, F.: Confluent String Rewriting. Springer, Heidelberg (1993)
6. Chiswell, I.: Introduction to Λ-trees. World Scientific, Singapore (2001)
7. Choffrut, C., Karhumäki, J.: Combinatorics of words. In: Rozenberg, G., Salomaa, A. (eds.)

Handbook of Formal Languages, vol. 1, pp. 329–438. Springer, Heidelberg (1997)
8. Diekert, V., Duncan, A.J., Myasnikov, A.G.: Geodesic rewriting systems and pregroups. In:

Bogopolski, O., Bumagin, I., Kharlampovich, O., Ventura, E. (eds.) Combinatorial and Geo-
metric Group Theory. Trends in Mathematics, pp. 55–91. Birkhäuser, Basel (2010)

9. Diekert, V., Myasnikov, A.G.: Group extensions over infinite words. ArXiv e-prints (Novem-
ber 2010)

10. Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S., Thurston, W.P.: Word
Processing in Groups. Jones and Bartlett, Boston (1992)

11. Ésik, Z., Bloom, S.L.: Algebraic linear orderings. International Journal of Foundations of
Computer Science (2011)

12. Kharlampovich, O., Myasnikov, A.: Elementary theory of free non-abelian groups. J. of Al-
gebra 302, 451–552 (2006)

13. Lothaire, M.: Combinatorics on Words. Encyclopedia of Mathematics and its Applications,
vol. 17. Addison-Wesley, Reading (1983) (reprinted by Cambridge University Press, 1997)

14. Lyndon, R., Schupp, P.: Combinatorial Group Theory. Classics in Mathematics. Springer,
Heidelberg (2001)

15. Lysenok, I.: On some algorithmic problems of hyperbolic groups. Math. USSR Izvestiya 35,
145–163 (1990)

16. Mihailova, K.A.: The occurrence problem for direct products of groups. Dokl. Akad. Nauk
SSSR 119, 1103–1105 (1958); english translation in: Math. USSR Sbornik, 70, 241–251
(1966)

17. Myasnikov, A., Remeslennikov, V., Serbin, D.: Regular free length functions on Lyndon’s
free Z[t]-group F Z[t]. Contemp. Math. Amer. Math. Soc. 378, 37–77 (2005)

18. Olshanskii, A.Y., Sapir, M.V.: Length functions on subgroups in finitely presented groups.
In: Groups — Korea 1998 (Pusan), de Gruyter, Berlin (2000)

19. Rips, E.: Subgroups of small cancellation groups. Bull. London Math. Soc. 14, 45–47 (1982)
20. Romanovskii, N.S.: The occurrence problem for extensions of abelian by nilpotent groups.

Sib. Math. J. 21, 170–174 (1980)

Abelian Primitive Words�

Michael Domaratzki1 and Narad Rampersad2

1 Department of Computer Science, University of Manitoba, Winnipeg, MB,
R3T 2N2, Canada

mdomarat@cs.umanitoba.ca
2 Department of Mathematics, University of Liège, 4000 Liège, Belgium

narad.rampersad@gmail.com

Abstract. We investigate Abelian primitive words, which are words
that are not Abelian powers. We show the set of Abelian primitive words
is not context-free. We can determine whether a word is Abelian primi-
tive in linear time. Also different from classical primitive words, we find
that a word may have more than one Abelian root. We also consider
enumeration of Abelian primitive words.

1 Introduction

Repetition in words is a well-studied topic, and many of the results in this
area can be classified into two distinct research areas: the theory of formal lan-
guages and the study of combinatorics on words. In these two areas, the focus
on repetition is slightly different: in formal language theory, research focuses on
the properties of languages containing words with different types of repetition,
while in combinatorics on words, research typically concentrates on the exis-
tence or non-existence of individual words which avoid certain repetitions, and
combinatorial enumeration of words with or without repetitions.

An example of a long-standing area of research relating to repetition in both
the theory of formal languages and combinatorics on words are primitive words:
a word x is primitive if it cannot be expressed as a repetition of some shorter
word y. In combinatorics on words, an elegant proof of the number of primitive
words of a given length is given using Möbius inversions (see, e.g., Lothaire [11]).
However, in formal language theory, it is unknown whether the set of primitive
words is a context-free language or not (see, e.g., Dömösi et al. [8]). However, it is
known that a closely related set, the set of Lyndon words, is not context-free [4].

In combinatorics on words, a parallel notion to standard repetition is Abelian
repetition. A word x is an Abelian power if it can be divided into blocks x =
x1x2 · · ·xn where every block xi is a permutation of every other block.

In this paper, we consider the application of Abelian repetition to the concept
of primitivity. Despite the naturalness of this application, the concept does not

� A full version of this paper, including proofs omitted for space reasons, is available
at arXiv:1006.4104v2.

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 204–215, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Abelian Primitive Words 205

appear to have attracted much attention before1. In a related concept, Czeizler et
al. [6] study repetitions with only limited rearrangement. We study the language
of Abelian primitive words, a formal language theoretic question, and find that
the set of Abelian primitive words is not context-free. We give a linear time
algorithm for determining if a word is Abelian primitive or not. We also consider
the problem of counting the number of Abelian primitive words of a given length,
a problem from combinatorics on words.

2 Definitions

For additional background in formal languages and automata theory, see Rozen-
berg and A. Salomaa [14]. Let Σ be a finite set of letters, called an alphabet. A
word over Σ is any finite sequence of letters from Σ. The word containing no
symbols, the empty word, is denoted ε. The set Σ∗ is the set of all words over
Σ. A language L is any subset of Σ∗. If x = a1a2 · · · an is a word, with ai ∈ Σ,
then the length of x, denoted by |x|, is n. For a ∈ Σ and w ∈ Σ, |w|a is the
number of occurrences of a in w. Given words x, y, x is a subword of y (also
called a factor) if there exist words u, v such that y = uxv.

For languages L1, L2 ⊆ Σ∗ the left quotient of L1 by L2, denoted L−1
2 L1, is

defined by

L−1
2 L1 = {x ∈ Σ∗ : ∃y ∈ L2 such that yx ∈ L1}.

Given an (ordered) alphabet Σ = {a1, . . . , an}, the Parikh vector of a word
w ∈ Σ∗ is Ψ(w) = (|w|a1 , |w|a2 , . . . , |w|an). For the alphabet Σ = {a, b}, we
assume a < b. Thus, for example Ψ(abbab) = (2, 3).

We first recall the standard notion of primitive words. A word w is primitive
if w cannot be written as zk for z ∈ Σ∗ and k ≥ 2. If w is not primitive, then
there is a unique primitive word u such that w = uk for some k ≥ 2. For an
alphabet Σ, the set of all primitive words w ∈ Σ∗ is denoted Q(Σ) or simply Q
if Σ is understood.

We now turn to the generalization of these notions to Abelian repetitions.
A word w is a n-th Abelian power if w = u1u2 · · ·un for some u1, u2, . . . , un

such that for all 1 ≤ i, j ≤ n, Ψ(ui) = Ψ(uj). That is, each uj with j ≥ 2 is a
permutation of u1.

We say that a word w is Abelian primitive (or A-primitive, for short) if w
fails to be a k-th Abelian power for every k ≥ 2. For an alphabet Σ, the set
of all A-primitive words w ∈ Σ∗ is denoted by AQ(Σ) or simply AQ if Σ is
understood.

Example 1. The word w = aabbab is A-primitive, while u = aabbabab is not, as
u = xy where Ψ(x) = Ψ(y) = (2, 2).

1 We have found a reference to a research project studying Abelian primitive words
on the web at http://bit.ly/9NWqSI, but have been unable to obtain a copy of any
associated works.

http://bit.ly/9NWqSI

206 M. Domaratzki and N. Rampersad

Let w be an Abelian power. Then we say that a word u is an Abelian root (or
A-root) of w if w = uu1u2 · · ·un for some u1, . . . , un ∈ Σ∗ with Ψ(u) = Ψ(ui)
for all 1 ≤ i ≤ n. If w has an A-root u which is also A-primitive, then we say
that u is an A-primitive root of w. Two A-primitive roots u, v of a word w are
distinct if |u| does not divide |v| or vice versa. On the other hand, we note the
following simple but useful fact:

Observation 1. If a word x of length n has an A-root of length k, then x also
has an A-root of length k′ for all k′ where k divides k′ and k′ divides n.

We recall some notation from number theory. Recall that if r, z are integers,
r | z denotes that r divides z, i.e., z = rk for some k ≥ 0. We say that a set of
integers S is division-free if x � y for all distinct elements x, y ∈ S. For all n ≥ 2,
let ω(n) denote the number of prime divisors of n, while ω′(n) is the number of
prime divisors of n with multiplicity2. Thus, if n ≥ 2 and n = pα1

1 pα2
2 · · · pαk

k is
its prime factorization, then ω(n) = k and ω′(n) =

∑k
i=1 αi. We also let d(n) be

the number of divisors of n, i.e., d(n) =
∏k

i=1(1 + αi).

3 Non-context-Freeness of AQ

We now show that the set AQ of all A-primitive words is not context-free. This
is in contrast to the set of ordinary primitive words Q, for which it is unknown
whether they are a context-free language or not. We begin with two preliminary
lemmas.

Lemma 1. Let p ≥ 2 be a prime and x = aabb(ab)p−2. Then x is A-primitive.

Proof. Note that |x| = 2p. If x is not A-primitive, then one of three cases occurs:

(a) x = u2p for some letter u,
(b) x = u1u2 · · ·up for words u1, . . . , up of length two, or
(c) x = v1v2 for words v1, v2 of length p.

The first of these possibilities cannot occur, as x contains occurrences of both a
and b. The second case is also not possible, since if so, we would have u1 = aa
and u2 = bb, which do not have matching Parikh vectors. Thus, we must have
that x = v1v2 for |v1| = |v2| = p. We have three subcases:

(a) if p = 2, then we are in the previous case, i.e., v1 = aa.
(b) if p = 3, then v1 = aab and v2 = bab.
(c) otherwise p > 3 and v1 = aabb(ab)(p−5)/2a which has Parikh vector ((p −

5)/2 + 3, (p − 5)/2 + 2), and v2 = b(ab)(p−1)/2 which has Parikh vector
((p− 1)/2, (p− 1)/2+1). We can see that the number of occurrences of a in
v1 is even, while in v2 it is odd or vice versa.

��
2 The notation Ω(n) is also used for what we call ω′(n), but we reserve Ω for denoting

asymptotic function growth. Our notation is from Bach and Shallit [3].

Abelian Primitive Words 207

Lemma 2. Let M = AQ∩aabb(ab)∗. Then M = {aabb(ab)p−2 : p is prime. }.
Proof. The right-to-left inclusion is immediate from Lemma 1.

For the reverse inclusion, let x ∈ M . Then |x| = 2n for some n ≥ 2. Suppose,
contrary to what we want to prove, that x is not of the form aabb(ab)p−2 for
some prime p. Then we must have that n is not prime. Let q be a prime factor
of n and note that

x = (aabb(ab)q−2) · ((ab)q)n/q−1

and that all factors of length 2q have q occurrences of a and q occurrences of
b. Further, aabb(ab)q−2 is an A-primitive root by Lemma 1. Thus, x is not A-
primitive, a contradiction to our choice of x ∈ M . ��
We can now show that the set of all A-primitive words is not context-free.

Theorem 1. The set AQ is not context-free.

Proof. We prove that M is not context-free. Let M ′ = h−1({aabb}−1M) where
h : {a}∗ → {a, b}∗ is the morphism h(a) = ab. Then M ′ = {ap−2 : p is prime }.
As the context-free languages are closed under quotient by regular sets and
inverse homomorphism, M ′ is context-free if M is. But as M ′ is unary, if it is
a context-free language then it is also regular. But by the pumping lemma, we
can see that M ′ is not regular. Thus, neither M nor AQ are context-free.

The set of all non-trivial Abelian powers, AQ, is also non-context-free, as can
be seen through, e.g., the intersection AQ ∩ a∗ba∗ba∗b = {anbanbanb : n ≥
0}. Using the interchange lemma, Gabarró [9] has proven that the language
{uw1w2v : u, w1, w2, v ∈ Σ∗, Ψ(w1) = Ψ(w2)} of words containing an Abelian
square is not context-free.

4 Complexity of AQ

Through an elegant pattern matching algorithm [12, Thm. 13], it is known that
we can determine whether a word is primitive in linear time. We now consider
this problem for A-primitive words. Throughout this section, we consider the size
of the alphabet to be a fixed constant. In order to illustrate the basic principles
of the algorithm, we begin with an O(n log n/ log log n) algorithm:

def isAbelPrim(w):
n = len(w)
if n==1:
return True

PF = { p : p is prime, p | n }
D = { n/p : p in PF }
for d in D:
if w has an A-root of length d:

return False
return True

208 M. Domaratzki and N. Rampersad

Suppose that w ∈ AQ. Then w certainly does not have an A-root whose length
is any of the periods in D, thus isAbelPrim returns true. On the other hand,
if w /∈ AQ with |w| > 1, then w has an A-root of length r for some r | n with
r < n. There exists dr ∈ D such that r | dr (r may also divide other d ∈ D,
but it is enough to know it divides some dr). By Observation 1, on the loop of
isAbelPrim with d = dr, the algorithm will return false.

One iteration of the loop in isAbelPrimwill take time O(n), by walking across
w and computing the Parikh vectors for each block of length d ∈ D. Thus, the
runtime of the algorithm is O(ρ(n) + nω(n)) where ρ(n) is the time required to
calculate the set PF.

We claim that even using trial division, we have ρ(n) ∈ O(
√

n log n). In par-
ticular, we repeatedly find the least prime p dividing n and factor out the largest
power of pα dividing n. This process is then repeated on n/pα. In this way, we
can compute the prime factors of n. If n =

∏k
i=1 pαi

i is the prime factorization of
n, we find the smallest prime dividing n ω(n) times, once for each pi dividing n.
Upon finding such a pi, calculating αi takes O(

√
n+αi) time. Thus, the total run-

time is O(
∑

pi|n(
√

n + αi)) = O(
√

nω(n) + ω′(n)). As ω(n) ∈ O(log n/ log log n)
[3, Thm. 8.8.10] and ω′(n) ∈ O(log n) [10, Sect. 22.10], this gives the claimed
worst case running time for calculating PF.

Thus, the running time of isAbelPrim is O(nω(n)). Using the same estimate
on the worst-case growth of ω(n), we obtain the following result:

Theorem 2. Given x, there is an algorithm to determine if x ∈ AQ which runs
in O(n log n

log log n) time in the worst case.

4.1 A Linear Time Algorithm for Recognizing AQ

We can improve the algorithm isAbelPrim from the previous section by caching
commonly used Parikh vectors, and obtain a linear time algorithm. Let gpf(n)
be the greatest prime factor of n. Then we note that if gpf(n)2 | n, every d ∈ D
is divisible by gpf(n), while if gpf(n)2 � n, then every d ∈ D is divisible by gpf(n)
except d = n/gpf(n). In both cases, we will precompute the Parikh vectors of
length gpf(n) in order to compute the Parikh vectors of length d for all d ∈ D
which are divisible by gpf(n).

Let w be our input word of length n and write w = w1w2 · · ·wn/gpf(n) where
each block has length gpf(n). Let ui = Ψ(wi) for 1 ≤ i ≤ n/gpf(n). Note then
that if gpf(n) | d, then the blocks of w of length d have Parikh vectors of the
form

d/gpf(n)∑
j=1

ukd/gpf(n)+j

for some 1 ≤ k < gpf(n). Thus, we can compute these Parikh vectors quickly by
summing the precomputed ui.

def isAbelPrimLin(w):
n = len(w)

Abelian Primitive Words 209

PF = { p : p is prime, p|n }
gpf = max(PF)
D = { n/p : p in PF }
if (n % (gpf**2) != 0):
D.remove(n/gpf)
calculate Parikh vectors of length n/gpf.
if w has an A-root of length n/gpf:

return False
for i in range(0,n/gpf):
u[i] = Parikh(w,i,gpf)

for d in D:
calculate Parikh vectors of length d (using u[i])
if w has an A-root of length d:

return False
return True

Here, we let Parikh(w,i,j) be a method which computes the i-th Parikh
vector of length j in the word w.

This modified implementation has the same correctness as the previous im-
plementation, as the same tests are performed. We now show the claimed O(n)
run time. Computing D and PF is the same as in isAbelPrim and can be done in
linear time. While computing PF, we can also keep track of gpf(n). In the case
where gpf(n)2 � n, the time to execute the additional statements is O(n) time.
Similarly, the computation of the Parikh vectors u[i] takes time O(n).

Consider the execution of the final for loop. For d ∈ D, we need O(d/gpf(n))
time to compute one Parikh vector of a subword of w of length d, so to compute
all n/d such vectors requires time O(n/gpf(n)). To test the equalities of all these
n/d vectors (implied by the if statement) requires time O(n/d) = O(p) where
d = n/p. Thus, the worst case running time of the loop is

∑
p|n

(
O

(
n

gpf(n)

)
+ O(p)

)
= O

(
n

ω(n)
gpf(n)

)
+ O

⎛⎝∑
p|n

p

⎞⎠ .

We now give an estimate of the first quantity. The following lemma is easily
established:

Lemma 3. For all integers n, ω(n)/gpf(n) ≤ 2/3.

Finally, we have that
∑

p|n p ≤ n. Thus, the total running time of the loop is
O(n).

Theorem 3. Given x, there is an algorithm to determine if x ∈ AQ which runs
in time O(n) time in the worst case.

5 Number of Abelian Primitive Roots

We now turn to the number of A-primitive roots a word may have, as a function
of its length. We show that unlike classical primitive words, a word may have

210 M. Domaratzki and N. Rampersad

multiple distinct A-primitive roots. This fact was essentially noted by Constan-
tinescu and Ilie [5] who constructed an infinite word w with two distinct Abelian
periods. We generalize this to show a tight bound on the number of A-primitive
roots a word may have.

We begin with the following proposition which is of independent interest:

Proposition 1. If w has two distinct A-primitive roots u, v where |u| = �1,
|v| = �2, then gcd(�1, �2) ≥ 2.

Proof. Assume that w has two distinct A-primitive roots: w = u1u2 · · ·um and
w = v1v2 · · · vn where |ui| = �1 for all 1 ≤ i ≤ m and |vj | = �2 for all 1 ≤ j ≤ n.
Assume, contrary to what we want to prove that gcd(�1, �2) = 1.

First note that m ≥ �2. To see this, note that |w| = m�1 = n�2 and so we
have that �2 | �1m. Since we assume that �1 and �2 are coprime, then we must
have that �2 | m, which implies that m ≥ �2.

Thus m ≥ �2 and n ≥ �1 as well. As gcd(�1, �2) = 1, there exist r, s ≥ 0 such
that r�1 = s�2 − 1 (or r�1 = s�2 + 1, which is proven similarly). As m ≥ �2 and
n ≥ �1, we can assume that s ≤ n and r ≤ m.

Thus, the prefix v′ = v1v2 · · · vs of w of length s�2 is one letter longer than
the prefix u′ = u1u2 · · ·ur. Without loss of generality, let a be the last symbol of
vs, which is also the first symbol of ur+1. Let α = |u1|a and β = |v1|a. Counting
the occurrences of a in u′ and v′, we get

rα = sβ − 1. (1)

Now consider that the prefix of w of length �1�2 is u1 · · ·u�2 = v1 · · · v�1 . Consid-
ering v′′ = vs+1 · · · v�1 and u′′ = ur+1 · · ·u�2 , and again counting the occurrences
of a, we also have

(�2 − r)α = (�1 − s)β + 1. (2)

Equating both (1) and (2) in terms of α, we get

r((�1 − s)β + 1) = (�2 − r)(sβ − 1).

Solving for β gives β = �2. Thus, we have that v1 ∈ a+ and thus w only has
A-primitive root a, a contradiction. Thus, gcd(�1, �2) ≥ 2. ��

5.1 Upper Bound

We next give an upper bound on the number of A-primitive roots a word may
have. We first need the estimate d(n) ∈ O(2log n/ log log n). We will also use a
result by de Bruijn et al. [7] (see also Anderson [2]):

Theorem 4. Let n = pα1
1 pα2

2 · · · pαk

k be the prime factorization of n ≥ 2. Let
D(n) be the set of integers defined by

D(n) = {pβ1
1 pβ2

2 · · · pβk

k : ∀i(βi ≤ αi) and
k∑

i=1

βi = ω′(n)/2�}.

Then D(n) is a maximal anti-chain in the divisor lattice of n.

Abelian Primitive Words 211

In other words, D(n) is the largest division-free set of divisors of n. Anderson
[2] gives the following estimate on the size of D(n), which we denote s(n):

Theorem 5. Let n = pα1
1 pα2

2 · · · pαk

k be the prime factorization of n ≥ 2. Let
A(n) = 1

3

∑k
i=1 αi(αi + 2). Then the maximal anti-chain in the divisor lattice of

n has size s(n) = Θ(d(n)/
√

A(n)).

Now a word w of length n has at most |D(n)| A-primitive roots: if r is an A-
primitive root, then |r| divides |w| and |r| is not divisible by the length of any
other A-primitive root. Thus, we can obtain the following result:

Theorem 6. If w is a word of length n, the number of distinct A-primitive roots
is s(n) ∈ o(2log n/ log log n).

Proof. By Theorem 4, if w is a word of length n, then w has at most s(n) distinct
A-primitive roots. By Theorem 5, s(n) ∈ o(2log n/ log log(n)). ��
We can use a result of Anderson [1] which gives the average order of s(n):

Theorem 7. As ω′(n) → ∞, we have

s(n) ≤
(√

2
π

+ o(1)

)
d(n)√
ω′(n)

.

As n → ∞, ∑
m≤n

d(m)√
ω′(m)

∼ n log n√
2 log log n

.

5.2 Lower Bound

For a lower bound on the number of A-primitive roots a word may have, we give
an explicit construction. For any n ≥ 2, let T (n) = {kd : k ∈ N, d ∈ D(n), kd ≤
n}. Let t1 < t2 < · · · < tmn = n be the mn elements of T (n) in sorted order.
Define

zn = at1bt1

mn∏
i=2

ati−ti−1bti−ti−1 .

Note that zn is a word of length 2n with Ψ(zn) = (n, n).

Example 2. If n = 30, then D(30) = {2, 3, 5}. In this case

T (30) = {2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30}.
With this, we have

z30 = aabbababababaabbababaabbaabbababaabbaabbababaabbababababaabb.

Proposition 2. Let n ≥ 2 and t ∈ D(n). Then zn has an A-primitive root of
length 2t.

212 M. Domaratzki and N. Rampersad

Proof. Let 1 ≤ j ≤ mn be the index such that t = tj . As t ∈ D(n) ⊂ T (n), we
have that the prefix of zn of length 2t is

wn = at1bt1at2−t1bt2−t1 · · · at−tj−1bt−tj−1 .

Note that Ψ(wn) = (t, t). Now, each additional block of length 2t from has the
form

atαbtα · · · atβbtβ

for some α, β which are differences of successive ti. To see this, note that these
factors of zn begin and end at positions which are multiples of t ∈ D(n), so each
of the breakpoints are elements of T (n). By telescoping, each of these factors
has Parikh vector (t, t). Thus, zn is a n/t-th A-power.

Further, wn must be an A-primitive root of zn. Otherwise, there is some
z ∈ T (n) such that z | t, but in this case, z is divisible by some element in D(n),
by definition of T (n). But this gives a contradiction, since t ∈ D(n) and D(n) is
an anti-chain of divisors. ��
Corollary 1. For all n ≥ 2, there exists a word of length 2n with s(n) distinct
A-primitive roots.

6 Counting Abelian Primitive Words

Let ψk(n) be the number of primitive words of length n over a k-letter alphabet,
ψA

k (n) be the number of A-primitive words of length n over a k-letter alphabet
and Δk(n) = ψk(n)−ψA

k (n). Note that Δk(n) ≥ 0 for all n, but we can observe,
e.g., that Δk(p) = 0 for all primes p. Small values of ψA

k (n) are given in Figure 1.

↓ k n→ 1 2 3 4 5 6 7 8 9 10

2 2 2 6 10 30 36 126 186 456 740

3 3 6 24 66 240 612 2184 5922 19302 54300

4 4 12 60 228 1020 3792 16380 62820 260952 1016880

5 5 20 120 580 3120 15000 78120 382740 1950420 9637400

Fig. 1. Number of A-primitive words ψA
k (n) by length (n) and alphabet size (k)

The function ψk(n) is well-known (see, e.g., Lothaire [11]). The formula ψk(n) =∑
d|n μ(d)kn/d expresses ψk in terms of the Möbius function μ defined by μ(1) =

1, μ(n) = (−1)k if n is a product of k distinct primes and μ(n) = 0 if p2 | n for
some prime p.

We can characterize Δk for prime powers exactly:

Lemma 4. For all primes p and all r ≥ 2,

Δk(pr) =
∑

n1+n2+···+nk=pr−1

(
pr−1

n1 n2 . . . nk

)((
pr−1

n1 n2 . . . nk

)p−1

− 1

)
.

Here, the sum is taken over all partitions n1 + n2 + · · · + nk of pr−1.

Abelian Primitive Words 213

Proof. Let x ∈ Q − AQ of length pr. As x is not A-primitive, it has an A-
primitive root of length pi for some 1 ≤ i < r. But then x can also be written as
x = x1x2 · · ·xp where |xi| = pr−1 and Ψ(xi) = Ψ(xj) for all 1 ≤ i, j ≤ p. Thus,
it suffices to count only those x of this form.

Consider that there are
(

pr−1

n1 n2...nk

)
different words x1 of length pr−1 such that

Ψ(x1) = (n1, n2, . . . , nk) for each partition n1 + n2 + · · · + nk = n. As recently
noted by Richmond and Shallit [13], for a fixed choice of x1, the remainder of the
words x2, . . . , xp must satisfy Ψ(xj) = Ψ(x1), which can be done in

(
pr−1

n1 n2...nk

)
ways for each 2 ≤ j ≤ p. Thus, we get a total of

(
pr−1

n1 n2...nk

)p−1
possibilities,

and we must exclude the choice x1 = x2 = x3 = · · · = xp, as this word is not
primitive.

Thus, multiplying the number of choices of the word x1 and the words
x2, . . . , xp and summing over all possible Parikh vectors, we get the result. ��
The problem of giving a closed form of Δk(n) or ψA

k (n) for all values of n is still
open.

7 Equivalence Relations on A-Primitive Words

In this section, we consider classical results such as the Lyndon-Schützenberger
Theorem for classical words in the context of Abelian primitivity. To do so, we
define appropriate equivalence relations to replace equality.

We first note that the A-primitive words are not closed under conjugation. For
example, note that bbababaa ∈ AQ but aabbabab /∈ AQ. For all n ≥ 1, let ∼n be
the binary relation defined on words by u ∼n x if we can write u = α1α2 · · ·αm

and x = β1β2 · · ·βm where

(a) for all 1 ≤ i ≤ m, |αi| = |βi| = n.
(b) for all 1 ≤ i, j ≤ m, Ψ(αi) = Ψ(βj).

Thus, ∼n represents that two words can be broken into blocks of length n, all
of which have the same image under Ψ .

Example 3. Let n = 3. Then abc acb abc ∼3 cba bca bca as each block β of length
three in both words satisfies Ψ(β) = (1, 1, 1).

We use ∼n to investigate relationships with the theory of codes in the context
of commutation.

Theorem 8. For all words u, x ∈ Σ∗, ux ∼n xu if and only if there exists r ≥ 1,
α1, . . . , αr, β1, . . . , βr ∈ Σ∗ such that

(a) for all 1 ≤ i ≤ r, |αiβi| = n.
(b) for all 1 ≤ i, j ≤ r, Ψ(αi) = Ψ(αj) and Ψ(βi) = Ψ(βj).
(c) there exists 1 ≤ s < r such that

u = α1β1 · · ·αs−1βs−1αs and x = βsαs+1βs+1 · · ·αrβr.

214 M. Domaratzki and N. Rampersad

Example 4. If x = abca and u = cbabc then xu ∼3 ux (which was shown in
Example 3). Note that x and u have different lengths and thus cannot share an
A-primitive root.

The case where both x and u have A-primitive roots of length n is of particular
interest:

Corollary 2. Let u, x ∈ Σ∗ with ux ∼n xu. If u has an A-primitive root of
length n, then x does as well, and these A-roots are the same.

Corollary 2 is analogous to the second Lyndon-Schützenberger theorem (see e.g.,
Lothaire [11]) which can be interpreted (in part) as ux = xu if and only if x and
u both have the same primitive root.

8 Conclusions

We have studied the formal language theoretic and combinatorial properties of
Abelian primitive words. Unlike classical primitive words, the number of Abelian
primitive words is a nontrivial combinatorial problem. On the other hand, we
show that the set of Abelian primitive words are not context-free, unlike the long-
standing open problem for primitive words. Future research problems include an
exact enumeration of the number of Abelian primitive words of length n.

Acknowledgments. The authors would like to thank Jeff Shallit for making
several helpful comments and corrections on an earlier version of the paper. We
are also grateful to Terry Visentin for helpful discussions.

References

1. Anderson, I.: On primitive sequences. Journal London Math. Soc. 42, 137–148
(1967)

2. Anderson, I.: Combinatorics of finite sets. Dover Publications, Mineola (2002)
3. Bach, E., Shallit, J.: Algorithmic Number Theory, vol. 1. MIT Press, Cambridge

(1997)
4. Berstel, J., Boasson, L.: The set of Lyndon words is not context-free. Bull.

EATCS 63, 139–140 (1997)
5. Constantinescu, S., Ilie, L.: Fine and Wilf’s theorem for Abelian periods. Bull.

EATCS 89, 167–170 (2006)
6. Czeizler, E., Kari, L., Seki, S.: On a special class of primitive words. Theoretical

Computer Science 411, 617–630 (2010)
7. de Bruijn, N., van Ebbenhorst Tengbergen, C., Kruyswijk, D.: On the set of divisors

of a number. Nieuw Arch. Wiskunde 23, 191–193 (1951)
8. Dömösi, P., Horváth, S., Ito, M., Kászonyi, L., Katsura, M.: Formal languages

consisting of primitive words. In: Ésik, Z. (ed.) FCT 1993. LNCS, vol. 710, pp.
194–203. Springer, Heidelberg (1993)

9. Gabarró, J.: Some applications of the interchange lemma. Bull. EATCS 25, 19–21
(1985)

Abelian Primitive Words 215

10. Hardy, G., Wright, E.: An Introduction to the Theory of Numbers, 5th edn. Oxford
Science Publications, Oxford (2000)

11. Lothaire, M.: Combinatorics on words. Cambridge University Press, Cambridge
(1997)

12. Petersen, H.: The ambiguity of primitive words. In: Enjalbert, P., Mayr, E., Wag-
ner, K. (eds.) STACS 1994. LNCS, vol. 775, pp. 679–690. Springer, Heidelberg
(1994)

13. Richmond, L.B., Shallit, J.: Counting Abelian squares. Elec. J. Combinatorics 16,
R72 (2009)

14. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, vol. 1. Springer,
Heidelberg (1997)

Scattered Context-Free Linear Orderings

Zoltán Ésik�

Department of Informatics
University of Szeged

Szeged, Hungary

Abstract. We show that it is decidable in exponential time whether
the lexicographic ordering of a context-free language is scattered, or a
well-ordering.

1 Introduction

When the alphabet A of a language L ⊆ A∗ is linearly ordered, L may be
equipped with the lexicographic order turning L into a linearly ordered set. Ev-
ery countable linear ordering may be represented as the lexicographic ordering of
a language (over the two-letter alphabet). A (deterministic) context-free linear
order is a linear ordering that can be represented as the lexicographic order-
ing of a (deterministic) context-free language. The study of context-free linear
orderings has been initiated in [3]. In [4], it was shown that a well-ordering is
deterministic context-free (or equivalently, definable by an algebraic recursion
scheme) iff its order type is less than ωωω

. Then, in [5] it was shown that the
Hausdorff rank of any scattered deterministic context-free linear ordering is less
than ωω. For an extension of these results to linear orderings definable by higher
order recursion schemes we refer to [2].

Any monadic second-order definable property is decidable for deterministic
context-free linear orders (given by LR(1) grammars, say). This fact follows
form a general decidability result for graphs in the pushdown hierarchy [6], more
exactly from the “uniform version” of this result. In particular, it is decidable
whether a deterministic context-free linear ordering is dense, or scattered, or
a well-ordering. The results of [4,5] implicitly give rise to practical algorithms
for deterministic context-free languages and algebraic recursion schemes. In con-
trast, as shown in [9], it is undecidable for a context-free linear ordering whether
it is dense. The main results of this paper show that on the contrary, there is
an exponential time algorithm to decide whether a context-free linear ordering
is scattered, or a well-ordering. The fact that these properties are decidable for
context-free linear orderings was first announced in [7].
� Partially supported by the project TÁMOP-4.2.1/B-09/1/KONV-2010-0005 “Cre-

ating the Center of Excellence at the University of Szeged”, supported by the
European Union and co-financed by the European Regional Fund, the TÁMOP-
4.2.2/08/1/2008-0008 program of the Hungarian National Development Agency, and
by the National Foundation of Hungary for Scientific Research, grant no. K 75249.

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 216–227, 2011.
� Springer-Verlag Berlin Heidelberg 2011

Scattered Context-Free Linear Orderings 217

2 Linear Orderings

In this paper, by a linear ordering L = (L, <) we shall mean a countable linear
ordering. We will use standard terminology as in [11]. The isomorphism class of
a linear ordering is its order-type.

A linear ordering L is dense if it has at least two elements and for all x, y ∈ L,
if x < y then there is some z with x < z < y. Up to isomorphism there are four
(countable) dense linear orderings, the ordering of the rationals whose order-
type is denoted η, possibly endowed with a least or greatest element, or both. A
scattered linear order is a linear ordering that has no dense sub-order. A well-
ordering is a linear ordering that has no sub-ordering isomorphic to the ordered
set of the negative integers. Every well-ordering is scattered.

A linear ordering is quasi-dense if it is not scattered. It is well-known that any
scattered sum or finite union of scattered linear orderings is scattered. Thus, if
I is a scattered linear ordering and for each i ∈ I, Li is a scattered linear
ordering, then so is

∑
i∈I Li. Moreover, if a linear ordering L is the finite union

of sub-orderings Li, i = 1, . . . , n, then L is quasi-dense iff at least one the Li is
quasi-dense.

Suppose that A is an alphabet whose letters are ordered by a1 < . . . < ak.
Then we define the strict order <s on the set of words A∗ by u <s v iff u = xaiy
and v = xajy for some x, y, y′ ∈ A∗ and letters ai and aj with ai < aj. The
prefix order is defined by u <p v iff u is a proper prefix of v. The strict order
and the prefix order are partial orders. The lexicographic order <� is the union
of the two, so that x <� y iff x <s y or x <p y. Clearly, (A∗, <�) is a linear
ordering.

If L ⊆ A∗ then (L, <�) is a linear ordering, called the lexicographic ordering
of L. We call L dense, scattered or well-ordered if (L, <�) has the appropriate
property. When L is a (deterministic) context-free language, we call (L, <�), and
sometimes any linear ordering isomorphic to (L, <�) a (deterministic) context-
free linear ordering. Every (deterministic) context-free linear ordering is isomor-
phic to the lexicographic ordering of a (deterministic) context-free language over
the alphabet {0, 1}, ordered by 0 < 1. Indeed, when L ⊆ A∗ and A has k letters
a1 < . . . < ak, say, then we may encode each letter ai with a binary word h(ai) of
length �log k� over {0, 1} so that h(ai) <� h(aj) whenever ai < aj , then (L, <�)
is isomorphic to (h(L), <�).

When L ⊆ {0, 1}∗ then T (L) is the binary tree whose vertices are the words
in the prefix closure of L. T (L) is nonempty if L is nonempty. A vertex y is a
descendant of vertex x if x is a prefix of y. The following fact is quite standard:

Proposition 1. Suppose that L ⊆ {0, 1}∗ and consider the corresponding tree
T (L). Then L is quasi-dense iff the full binary tree has an embedding in T (L).

For completeness, a proof of Proposition 1 is given in the Appendix.

Proposition 2. Suppose that L, L′ ⊆ {0, 1}∗. If (L, <�) and (L′, <�) are both
scattered, then so is (LL′, <�).

218 Z. Ésik

Proof. We will prove that if (LL′, <�) is quasi-dense, then one of (L, <�) and
(L′, <�) is quasi-dense. Assuming that LL′ is quasi-dense, T (LL′) has an em-
bedded copy T0 of the full binary tree. Let us color a vertex u of T (LL′) blue if
uv ∈ L for some v ∈ {0, 1}∗, i.e., when u has a descendant in L. There are two
cases to consider, either each subtree of T0 contains a blue vertex, or there is a
subtree of T0 having no blue vertex.

Case 1. Suppose that each subtree of T0 contains a blue vertex. Then each
vertex of T0 is colored blue, so that L is quasi-dense.

Case 2. Suppose that T0 contains a subtree having no blue vertex. Let T1

denote such a subtree and let u denote the root of T1. Let u0, . . . , uk be all the
(proper) prefixes of u that are in L. Now let us color each vertex x of T1 with
the set of all integers i, 0 ≤ i ≤ k, such that x has a descendant in T (LL′) which
is a word in uiL

′. Then each vertex x of T1 is labeled by a nonempty subset of
the set {0, . . . , k}, and if x′ is a descendant of x in T1, then the label of x′ is
included in the label of x. Let H be a minimal set that appears as the label of
a vertex v of T1. Then all descendants of v in T1 are labeled H . Thus, if i ∈ H ,
then the full binary tree embeds in T (uiL

′) and thus in T (L′), so that L′ is
quasi-dense. �

3 Scattered Context-Free Linear Orderings

In this section, we assume that G = (N, {0, 1}, P, S) is a context-free grammar
with nonterminal alphabet N , terminal alphabet {0, 1}, rules P and start symbol
S that contains no useless nonterminals or ε-rules. Moreover, we assume that G
is left-recursion free and that L(G) is not empty. These can be assumed for the
results of the paper, since there is an easy polynomial time transformation of a
context-free grammar to a grammar over the alphabet {0, 1} that generates an
isomorphic language (with respect to the lexicographic order) not containing ε,
and each grammar not generating the empty word can be transformed in poly-
nomial time into an equivalent grammar that contains no useless nonterminals
or ε-rules or any left-recursive nonterminal. See [1,8].

We let X, Y, Z (sometimes decorated) denote nonterminals, u, v, w, x, y termi-
nal words in {0, 1}∗, and we let p, q, r denote words in (N ∪ {0, 1})∗. For every
word p, we denote by L(p) the set of all words w ∈ {0, 1}∗ with p ⇒∗ w. Thus,
the language L(G) generated by G is L(S). The length of p is denoted |p|.

For nonterminals X and Y we define Y � X iff there exist p, q with X ⇒∗ pY q,
and we define X ≈ Y if both X � Y and Y � X hold. When X ≈ Y , we say
that X and Y belong to the same strong component. When Y � X but X �≈ Y ,
we also write Y ≺ X . The height of a nonterminal X is the length k of one of
the longest sequences Y1 ≺ . . . ≺ Yk = X . When C is a strong component and
X ∈ C has height k, we also say that C has height k.

A primitive word is a nonempty word that is not a proper power. For elemen-
tary properties of primitive words and conjugacy of words we refer to [10].

Scattered Context-Free Linear Orderings 219

Theorem 1. The following conditions are equivalent for a context-free grammar
G = (N, {0, 1}, P, S):

1. (L(G), <�) is a scattered linear ordering.
2. There exist no nonterminal X and words u, v ∈ {0, 1}∗ such that neither u

is a prefix of v nor v is a prefix of u, moreover, X ⇒∗ uXp and X ⇒∗ vXq
hold for some p, q.

3. For each recursive nonterminal X there is a primitive word u0 = uX
0 such

that whenever X ⇒+ wXp then w ∈ u+
0 .

4. For each strong component C containing a recursive nonterminal there is a
primitive word u0 = uC

0 , unique up to conjugacy, such that for all X, Y ∈ C
there is a (necessarily unique) conjugate v0 of u0 and a proper prefix v1 of
v0 such that if X ⇒+ wY p for some w ∈ {0, 1}∗ and p ∈ (N ∪ {0, 1})∗ then
w ∈ v∗0v1.

Proof. It is easy to prove that the first condition implies the second. Suppose
that L(G) is scattered and let X ⇒∗ uXp and X ⇒∗ vXq. If neither u is a
prefix of v nor v is a prefix of u, then u and v are nonempty and comparable
with respect to the strict order, say u <s v. Suppose that S ⇒∗ wXp. The
vertices w(u+v)∗ determine an embedding of the full binary tree in T (L). Thus,
by Proposition 1, L is quasi-dense, a contradiction. Thus, either u is a prefix of
v or vice versa.

Suppose now that the second condition holds. We prove that the third condi-
tion also holds. Let X be a recursive nonterminal and suppose that X ⇒+ uXp.
Then u is nonempty (since G is left recursion free) and thus has a primitive
root u0. We claim that whenever X ⇒+ wXq then w is a power of u0. Indeed,
if X ⇒+ wXq then w is also nonempty and thus there exist m, n > 0 with
|un| = |wm|. Since X ⇒+ unXpn and X ⇒+ wmXqm, it follows that un = wm,
so that u0 is also the primitive root of w.

Next we prove that the third condition implies the fourth. So assume that
the third condition holds. Note that if a strong component contains a recursive
nonterminal, then all nonterminals in that strong component are recursive.

Lemma 1. Suppose that X, Y are different recursive nonterminals that belong
to the same strong component. Then uX

0 and uY
0 are conjugate.

Proof. Since X, Y belong to the same strong component, there exist x, y and p, q
with X ⇒+ xY p and Y ⇒+ yXq. Thus, X ⇒+ xyXqp and Y ⇒+ yxY pq. Thus,
xy is a power of uX

0 and yx is a power of uY
0 . Since xy and yx are conjugate and

uX
0 and uY

0 are primitive, this is possible only if uX
0 and uY

0 are conjugate. �

Using the lemma, we now complete the proof of the fact that the third condition
implies the fourth.

Suppose that the strong component C contains a recursive nonterminal and
X0 ∈ C. Let uC

0 = uX0
0 . For the sake of simplicity, below we will just write u0

for this word. Let X, Y ∈ C with X ⇒+ wY p and Y ⇒∗ xXq, where w, x, p, q
are appropriate words, so that X ⇒+ wxXqp. By Lemma 1 we have that wx is

220 Z. Ésik

a power of a primitive word v0 which is a conjugate of u0. It is clear that v0 is
unique. Also, w = vn

0 v1 for some n ≥ 0 and some proper prefix v1 of v0.
We still need to show that if X ⇒+ w′Y p′ for some w′ and p′, then w′ can

be written as vm
0 v1 for some m. But in this case X ⇒+ w′xXqp′ and w′x is a

power of v0. Since the length of w′ is congruent to the length of w modulo the
length of v0, it follows that w′ = vm

0 v1 for some m ≥ 0. This ends the proof of
the fact that the third condition implies the fourth.

Suppose finally that the fourth condition holds. Then clearly, the third con-
dition also holds. We want to prove that L(G) is scattered. To this end, we
establish several preliminary facts.

Definition 1. Suppose that X is a recursive nonterminal and let u0 = uX
0 . For

each n ≥ 0 and prefix ui of u0, where i = 0, 1, let L(X, n, ui) denote the set of
all words of the form un

0uiw in L(X), where w ∈ {0, 1}∗ and i = 1 iff i = 0.

Let X be a recursive nonterminal. The following facts are clear. (Below we
continue writing u0 for uX

0 .)

Proposition 3. Each word in L(X) is either in L(X, n, ui) for some n ≥ 0 and
prefix ui of u0, or is a word of the form un

0u where n ≥ 0 and u is a proper prefix
of u0.

Proposition 4. For each n ≥ 0 and prefix ui of u0 there is only a finite number
of left derivations

X ⇒∗
� wY p ⇒� un

0uiq (1)

such that un
0ui is not a prefix of w.

Let us denote by F (X, n, ui) the finite set of all words q that occur in derivations
(1).

Proposition 5. If Y is a nonterminal that occurs in a word q ∈ F (X, n, ui) for
some n ≥ 0 and prefix ui of u0, then Y ≺ X.

Proof. Suppose that (1) is a left derivation and Y occurs in q, so that q = q1Y q2

for some q1, q2. If X ≈ Y then there exist some r1, r2 with Y ⇒∗ r1Xr2. Thus,
q = q1Y q2 ⇒∗ q1r1Xr2q2. Let v denote a terminal word with q1r1 ⇒∗ v. Then
we have

X ⇒∗ un
0uiq ⇒∗ un

0uivXr2q2.

Since un
0uiv is not a power of u0, this contradicts the third condition. �

We now complete the proof of Theorem 1.
Let X be a nonterminal. We prove the following fact: If (L(Y), <�) is scattered

for all nonterminals Y whose height is less than the height of X , then (L(X), <�)
is scattered.

If X is not a recursive nonterminal, then the height of each nonterminal
appearing on the right side of a rule X → p is less than the height of X .

Scattered Context-Free Linear Orderings 221

Thus L(X) is the finite union of all languages L(p) where X → p is in P .
By the induction hypothesis and Proposition 2, each linear ordering (L(p), <�)
is scattered. Since any finite union of scattered linear orderings is scattered,
(L(X), <�) is also scattered.

Suppose now that X is recursive. Then by Proposition 3,

L(X) = L0 ∪
⋃

n≥0, ui∈Pref(u0)

L(X, n, ui)

where ui ranges over the prefixes of u0 = uX
0 and each word of L0 is of the form

un
0v for some n ≥ 0 and some proper prefix v of u0. It is clear that L0 is scattered

(in fact, either a finite linear ordering or an ω-chain). Thus, it suffices to show
that

(
⋃

n≥0, ui∈Pref(u0)

L(X, n, ui), <�)

is scattered. But this linear ordering is isomorphic to the ordered sum∑
n≥0, u1∈Pref(u0)

(L(X, n, u1), <�) +
∑

n≤0, u0∈Pref(u0)

(L(X,−n, u0, <�)

where integers are ordered as usual. Since a scattered sum of scattered linear
orderings is scattered, it remains to show that each L(X, n, ui) is scattered. But
by Proposition 4 and Proposition 5, for each n and ui, L(X, n, ui) is a finite
union of languages of the form un

0uiL(q) where q contains only nonterminals of
height strictly less than the height of X . Thus, by the induction hypothesis and
Proposition 2, each such language is scattered. Since any finite union of scattered
linear orderings is scattered, it follows that L(X, n, ui) is scattered. This ends
the proof of the fact that the fourth condition implies the first. The proof of
Theorem 1 is complete. �

Theorem 2. L(G) is well-ordered iff L(G) is scattered and there is no recursive
nonterminal X such that L(X) contains a word w such that un

0 <s w for some
n, where u0 = uX

0 .

Proof. Note that the extra condition is equivalent to that for all recursive non-
terminals X and for any prefix u0 of u0 = uX

0 , the language L(X, n, u0) is empty.
Now by repeating the last part of the proof of Theorem 1, it follows that under
this condition, if L(G) is scattered, then L(X) is well-ordered for all X . One
uses the well-known fact that if a linear order is a finite union of well-orderings,
then it is also a well-ordering, and that a well-ordered sum of well-orderings is
well-ordered.

On the other hand, if the extra condition is not satisfied for the recursive
nonterminal X , then L(X) is not well-ordered. For suppose that L(X, n, u0)
contains the word un

0u1x. We know that there is some m ≥ 1 and some w with
X ⇒+ um

0 Xw. Thus, the words ukm
0 un

0u1xvkm for k = 0, 1, . . . form a strictly
decreasing sequence in L(X). We conclude by noting that if L(X) is not well-
ordered for some X , then L(G) is not well-ordered either, since G contains no
useless nonterminals. �

222 Z. Ésik

At this point, we are already able to show that it is decidable whether L(G)
is scattered, or well-ordered.

Corollary 1. There exists an algorithm to decide whether L(G) is scattered.

Proof. As before, we may assume that G = (N, {0, 1}, P, S) contains no useless
nonterminals or ε-rules. Moreover, we may assume that G is left-recursion free
and that L(G) is not empty. By Theorem 1 we know that L(G) is scattered iff for
each recursive nonterminal X there is a primitive word u0 such that whenever
X ⇒+ wXp then w ∈ u+

0 . We are going to test this condition. Given a recursive
nonterminal X in the strong component C, we find a word u such that X ⇒+

uXp for some p. Clearly, u �= ε. Let u0 denote the primitive root of u. Then
consider the following grammar GX . The nonterminals are the nonterminals of
G together with the nonterminals Y , where Y ∈ C. The rules are those of G
together with the rules

Y → pZ

such that Y, Z ∈ C and there is some q with Y → pZq ∈ P . There is one more
rule, X → ε. Let X be the start symbol. Then L(GX) ⊆ u∗

0 iff for all w such
that X ⇒+ wXp for some p in G, it holds that w ∈ u+

0 . Now L(GX) ⊆ u∗
0

iff the intersection of L(GX) with the complement of u∗
0 is empty, which is

decidable. �

Corollary 2. There exists an algorithm to decide whether L(G) is well-ordered.

Proof. The extra condition introduced in Theorem 2 can be effectively tested,
since it says that for each recursive nonterminal X , the intersection of L(X)
with the regular language of all words of the form un

0u1x, where n ≥ 0 and u0
is a prefix of u0, is empty. �

4 Decidability in Exponential Time

In this section, we give somewhat more efficient algorithms. First we need some
preparation.

Suppose that u0 ∈ {0, 1}∗ is a fixed primitive word, and consider the set S of
all pairs (x1, x2), where x1 is a proper suffix of u0 and x2 is a proper prefix of
u0. In particular, (ε, ε) ∈ S. With each (x1, x2) ∈ S we associate the language
L(x1, x2) = x1u

∗
0x2, if |x1x2| < |u|, and L(x1, x2) = x1u

∗
0x2+z where z is the suf-

fix of x1x2 obtained by removing its prefix of length |u0|, if |x1x2| ≥ |u0|. (Note
that the prefix of length |u0| of x1x2 is a primitive word which is a conjugate of
u0.) We call a word w legitimate if it belongs to L(x1, x2) for some (x1, x2) ∈ S.
Clearly, a word is legitimate iff it is a factor of some power of u0 iff it is in v∗0z
for some conjugate v0 of u0 and some necessarily unique proper prefix z of v0.
Moreover, for each (x1, x2) ∈ S there is a unique conjugate v0 of u0 and a unique
proper prefix z of v0 with L(x1, x2) = v∗0z. It follows from this fact that any two
languages L(x1, x2) and L(y1, y2) for (x1, x2) �= (y1, y2) in S are either disjoint

Scattered Context-Free Linear Orderings 223

or have a single common element which is a proper factor of u0. In particular,
for any legitimate word u with |u| ≥ |u0| there is a unique (x1, x2) ∈ S with
u ∈ L(x1, x2).

It is also clear that any factor of a legitimate word is legitimate, and if u ∈
L(x1, x2), say, and v is obtained from u by removing a factor of length |u0|,
then v is legitimate with v ∈ L(x1, x2). Also, if v is obtained by duplicating a
factor of u of length |u0| then v is legitimate with v ∈ L(x1, x2). Moreover, when
u, v ∈ L(x1, x2), then |u| is congruent to |v| modulo |u0|.

Let (x1, x2), (y1, y2) ∈ S. Then L(x1, x2)L(y1, y2) contains only legitimate
words iff x2y1 ∈ {u0, ε}, in which case L(x1, x2)L(y1, y2) ⊆ L(x1, y2). This mo-
tivates the following definition. For any (x1, x2) and (y1, y2) in S, let

(x1, x2) ⊗ (y1, y2) =
{

(x1, y2) if x2y1 ∈ {u0, ε}
undefined otherwise,

so that ⊗ is a partial operation on S. Thus, if (x1, x2)⊗ (y1, y2) = (x1, y2), then
L(x1, x2)L(y1, y2) ⊆ L(x1, y2), moreover, (x1, y2) is the only element (z1, z2) of
S with L(x1, x2)L(y1, y2) ⊆ L(z1, z2).

Now let (x1, x2) ∈ S and consider a word y. Then L(x1, x2)y contains only
legitimate words iff y ∈ L(y1, y2) for some (y1, y2) ∈ S such that x2y1 ∈ {u0, ε},
in which case (x1, y2) is the unique element of S with L(x1, x2)y ⊆ L(x1, y2).
Thus we define (x1, x2) ⊗ y = (x1, y2) if this holds, otherwise (x1, x2) ⊗ y is
not defined. We define y ⊗ (x1, x2) symmetrically. The partial operation ⊗ is
associative in a strong sense.

Using the above notions, the fourth condition of Theorem 1 can be rephrased
as follows. For each strong component C containing a recursive nonterminal there
is a primitive word u0 = uC

0 (unique up to conjugacy) such that for all X, Y ∈ C
there is (a necessarily unique) (x1, x2) ∈ S such that whenever X ⇒+ wY p then
w ∈ L(x1, x2).

As before, let us assume that G = (N, {0, 1}, P, S) is a context-free grammar
that contains no useless nonterminals or ε-rules. Moreover, we assume that G is
left-recursion free and that L(G) is not empty.

Lemma 2. Suppose that the fourth condition of Theorem 1 holds and let C be a
strong component containing a recursive nonterminal. Let u0 = uC

0 , and suppose
that each nonterminal generates at least two terminal words. Then for each X
such that X0 ⇒∗ pXqY r for some X0, Y ∈ C and words p, q, r there is a unique
(x1, x2) ∈ S with L(X) ⊆ L(x1, x2).

Proof. Let (y1, y2) denote the unique element of S such that w ∈ L(y1, y2)
whenever X0 ⇒+ wY s for some s. Then L(pXq) ⊆ L(y1, y2), so that uL(X)v ⊆
L(y1, y2) for any fixed u ∈ L(p) and v ∈ L(q). This is possible only if L(X) ⊆
L(x1, x2) for some (x1, x2) ∈ S. Since L(X) contains at least two words, (x1, x2)
is unique. �

224 Z. Ésik

Theorem 3. Suppose that each nonterminal generates a language of at least
two words. Then (L(G), <�) is a scattered linear ordering iff the following holds
for each strong component C containing a recursive nonterminal: There exists a
primitive word u0 such that for any two not necessarily different nonterminals
X and Y in C there is some ϕ(X, Y) ∈ S and for each nonterminal Z there is
some ψ(Z) ∈ S such that

ϕ(X, Y) ⊗ ϕ(Y, Z) = ϕ(X, Z) (2)

for all X, Y, Z ∈ C, and such that the following hold for all productions X →
w0Y1 . . . Ykwk:

1. If X ∈ C and Yi ∈ C for some i, then

ϕ(X, Yi) = w0 ⊗ ψ(Y1) ⊗ w1 ⊗ . . . ⊗ ψ(Yi−1) ⊗ wi−1. (3)

2. If there is derivation X0 ⇒∗ pXqY r for some X0, Y ∈ C, then

ψ(X) = w0 ⊗ ψ(Y1) ⊗ . . . ⊗ ψ(Yk) ⊗ wk. (4)

(In the degenerate case when k = 0 in the last equation, we mean that w0 belongs
to the language L(ψ(X)).

Proof. Suppose that the conditions of the Theorem hold. Consider a strong
component C containing a recursive nonterminal and the corresponding primitive
word u0. Then for any X such that there is derivation X0 ⇒∗ pXqY r for some
X0, Y ∈ C we have that L(X) ⊆ L(ψ(X)):

Claim 1. Suppose that (4) holds for all appropriate rules. Then for each X
such that there is a derivation X0 ⇒∗ pXqY r for some X0, Y ∈ C it holds that
L(X) ⊆ L(ψ(X)).

Indeed, suppose that X ⇒∗ w. We prove that w ∈ L(ψ(X)) by induction
on the length of the derivation. When the length of the derivation is 1, the
claim is clear by (4). Suppose that the length is greater than 1. Then there exist
some rule X → w0Y1w1 . . . Ykwk and words z1, . . . , zk with w = w0z1 . . . zkwk

and Yi ⇒∗ zi for all i. By the induction hypothesis we have that each zi is in
L(ψ(Yi)). Since (4) holds, we conclude that w = w0z1 . . . zkwk ∈ L(ψ(X)). This
ends the proof of Claim 1.

Also, for any X, Y ∈ C and words w and p with X ⇒+ wY p we have that
w ∈ L(ϕ(X, Y)) as shown by the following claim:

Claim 2. Suppose that (2), (3) and (4) hold. Then if X ⇒+ wY p, where
X, Y ∈ C, then w ∈ L(ϕ(X, Y)).

To see this, consider a derivation tree whose root is labeled X and whose
frontier is wY p. Let Y1 = X, Y2, . . . , Y�, Y�+1 = Y be all the nonterminal labels
along the path from the root to the leaf labeled Y . Moreover, let Yi → piYi+1qi

denote the rule used to rewrite Yi, for i = 1, . . . , �. By (3) we have that

ϕ(Y1, Y2) = ψ(p1), . . . , ϕ(Y�, Y�+1) = ψ(p�)

Scattered Context-Free Linear Orderings 225

where if pi = z0Z1 . . . Zkzk, say, then ψ(pi) = z0 ⊗ ψ(Z1) ⊗ . . . ⊗ ψ(Zk) ⊗ zk+1.
Now let us write w = w1 . . . w� with pi ⇒∗ wi for all i. Using Claim 1 and the
equality ϕ(Yi, Yi+1) = ψ(pi), we obtain wi ∈ L(ϕ(Yi, Yi+1)). Since this holds for
all i, we obtain by (2) that w ∈ L(ϕ(X, Y)).

We conclude that the fourth condition of Theorem 1 holds, so that L(G) is
scattered.

Suppose now that L(G) is scattered. Then the fourth condition of Theorem 1
holds. Suppose that C is a strong component containing a recursive nonterminal.
Let u0 = uC

0 . By assumption, for each X, Y ∈ C there exists a unique (x1, x2) ∈ S
such that whenever X ⇒+ wY p then w ∈ L(x1, x2). Define ϕ(X, Y) = (x1, x2).
By Lemma 2, for each X such that there is derivation X0 ⇒∗ pXqY r for some
words p, q, r and nonterminals X0, Y ∈ C, there is a unique (x1, x2) ∈ S with
L(X) ⊆ L(x1, x2). Define ψ(X) = (x1, x2). The pairs so defined solve the system
of equations in the Theorem. �

Theorem 4. It is decidable in exponential time whether a context-free grammar
G generated a scattered language.

Proof. Without loss of generality we may assume that the terminal alphabet
is {0, 1} and that the grammar G contains no useless nonterminals or ε-rules.
Moreover, we may assume that G is left-recursion free and each nonterminal
generates at least two terminal words.

First, for each C containing a recursive nonterminal, one can compute in ex-
ponential time a primitive word u0 which is the only candidate for uC

0 . This is
done by finding in exponential time a left derivation X ⇒+ wXp, with X ∈ C,
then u0 is the primitive root of w. Second, in the same way, for any X, Y ∈ C, we
can determine in exponential time the only candidate for ϕ(X, Y) by computing
a left derivation X ⇒+ wY p, where the length of w is between |u0| and 2|u0|.
Also, we can compute in exponential time the only candidate for ψ(X), for all
appropriate X . Then it remains to check that the equations of Theorem 3 hold.
But there are a polynomial number of them, and the validity of each can be
checked in exponential time. �

The same result holds for deciding whether a context-free language is well-
ordered.

Theorem 5. It is decidable in exponential time whether a context-free grammar
generates a well-ordered language.

Proof. Again, we may restrict the grammars as in the previous proof. The extra
condition introduced in Theorem 2 can be tested in exponential time. Hint: if
X ⇒+

� un
0u1Y p ⇒ un

0u1q is a left derivation, where u0 is a prefix of u0, then the
length of the derivation can be bounded by a exponential. �

Acknowledgement

In a previous version of this paper, the algorithm presented in the last section
was claimed to run in polynomial time. The author would like to thank Jean

226 Z. Ésik

Berstel, Luc Boasson, Olivier Carton and Isabelle Fagnot for pointing out this
error. As communicated by them, recently they have also found a proof of the fact
that it is decidable for a context-free grammar whether it generates a scattered
language.

References

1. Blum, N., Koch, R.: Greibach normal form transformation. Information and Com-
putation 150, 112–118 (1999) (revisited)

2. Braud, L., Carayol, A.: Linear orders in the pushdown hierarchy. In: Abramsky, S.,
Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP
2010. LNCS, vol. 6199, pp. 88–99. Springer, Heidelberg (2010)

3. Bloom, S.L., Ésik, Z.: Regular and Algebraic Words and Ordinals. In: Mossakowski,
T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 1–15.
Springer, Heidelberg (2007)

4. Bloom, S.L., Ésik, Z.: Algebraic ordinals. Fundamenta Informaticæ 99, 383–407
(2010)

5. Bloom, S.L., Ésik, Z.: Algebraic linear orderings. In: Int. J. Foundations of Com-
puter Science (to appear)

6. Caucal, D.: On infinite graphs having a decidable monadic theory. Theoretical
Computer Science 290, 79–115 (2003)

7. Ésik, Z.: Algebraic and context-free linear orderings. Slides Presented at, Workshop
on Higher-Order Recursion Schemes & Pushdown Automata, Paris, March 10–12
(2010), http://www.liafa.jussieu.fr/~serre/WorkshopSchemes/

8. Ésik, Z., Iván, S.: Büchi context-free languages. Theoretical Computer Science 412,
805–821 (2011)

9. Ésik, Z.: An undecidable property of context-free linear orders. Information Pro-
cessing Letters 111, 107–109 (2001)

10. Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge
(1997)

11. Rosenstein, J.G.: Linear Orderings. Pure and Applied Mathematics, vol. 98. Aca-
demic Press, New York (1982)

Appendix

Proof of Proposition 1. Let L0 be the regular prefix language (00+11)∗01 whose
lexicographic ordering has order type η, and consider the tree T (L0). If the full
binary tree embeds in T (L), then so does T (L0). Consider an embedding of
T (L0) in T (L) which maps each vertex x of T (L0) to a vertex h(x) of T (L). For
each leaf x of T (L0) select a leaf vx of T (L) which is a descendant of h(x). The
words vx form a dense subset of L with respect to the lexicographic order. (Note
also that any two words vx are actually related by the strict order.)

For the reverse direction, suppose that L is quasi-dense. Let us color a vertex
x of T (L) blue if x ∈ L. Call a vertex x of T (L) appropriate if the blue vertices
of the subtree Tx rooted at x form a quasi-dense linear ordering with respect
to the lexicographic order. If x is appropriate, then it has at least two proper
descendants y and z which are appropriate vertices with y <s z. Indeed, x has

http://www.liafa.jussieu.fr/~serre/WorkshopSchemes/

Scattered Context-Free Linear Orderings 227

a proper descendant x′ such that both the set of blue vertices y′ of Tx with
y′ <s x′ and the set of blue vertices z′ of Tx with x′ <� z′ form quasi-dense
linear orderings with respect to the lexicographic order. Suppose that x′ = xu,
where u is a nonempty word. Then one of the vertices xv0 where v1 is a prefix
of u is appropriate, as is one of the vertices xv1 and x′, where xv0 is a prefix of
x. Let y and z be these vertices.

Thus, starting from the root of T (L), we can construct a set V of appropriate
vertices such that each x ∈ V has two (proper) descendants y and z in V with
y <s z. The vertices in V determine an embedding of the full binary tree in
T (L). �

On Prefix Normal Words

Gabriele Fici1 and Zsuzsanna Lipták2

1 I3S, CNRS & Université de Nice-Sophia Antipolis, France
fici@i3s.unice.fr

2 AG Genominformatik, Technische Fakultät, Bielefeld University, Germany
zsuzsa@cebitec.uni-bielefeld.de

Abstract. We present a new class of binary words: the prefix normal
words. They are defined by the property that for any given length k,
no factor of length k has more a’s than the prefix of the same length.
These words arise in the context of indexing for jumbled pattern match-
ing (a.k.a. permutation matching or Parikh vector matching), where the
aim is to decide whether a string has a factor with a given multiplicity of
characters, i.e., with a given Parikh vector. Using prefix normal words,
we give the first non-trivial characterization of binary words having the
same set of Parikh vectors of factors. We prove that the language of
prefix normal words is not context-free and is strictly contained in the
language of pre-necklaces, which are prefixes of powers of Lyndon words.
We discuss further properties and state open problems.

Keywords: Parikh vectors, pre-necklaces, Lyndon words, context-free
languages, jumbled pattern matching, permutation matching, non-
standard pattern matching, indexing.

1 Introduction

Given a finite word w over a finite ordered alphabet Σ, the Parikh vector of w
is defined as the vector of multiplicities of the characters in w. In recent years,
Parikh vectors have been increasingly studied, in particular Parikh vectors of
factors (substrings) of words, motivated by applications in computational biol-
ogy, e.g. mass spectrometry [1, 5, 9, 10]. Among the new problems introduced in
this context is that of jumbled pattern matching (a.k.a. permutation matching or
Parikh vector matching), whose decision variant is the task of deciding whether
a given word w (the text) has a factor with a given Parikh vector (the pattern).
In [8], Cicalese et al. showed that in order to answer decision queries for binary
words, it suffices to know, for each k, the maximum and minimum number of
a’s in a factor of length k. Thus it is possible to create an index of size O(n)
of a text of length n, which contains, for every k, the maximum and minimum
number of a’s in a factor of length k, and which allows answering decision queries
in constant time.

In this paper, we introduce a new class of binary words, prefix normal words.
They are defined by the property that for any given length k, no factor of length
k appearing in the word has more a’s than the prefix of the word of the same

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 228–238, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On Prefix Normal Words 229

length. For example, the word aabbaaba is not a prefix normal word, because
the factor aaba has more a’s then the prefix of the same length, aabb.

We show that for every binary word w, there is a prefix normal word w′ such
that, for every 0 ≤ k ≤ |w|, the maximum number of a’s in a factor of length k
coincide for w and w′ (Theorem 1). We refer to w′ as the prefix normal form of
w (with respect to a).

Given a word w, a factor Parikh vector of w is the Parikh vector of a factor
of w. An interesting characterization of words with the same multi-set of factor
Parikh vectors was given recently by Acharya et al. [1]. In this paper, we give the
first non-trivial characterization of the set of factor Parikh vectors, by showing
that two words have the same set of factor Parikh vectors if and only if their
prefix normal forms, with respect to a and b, both coincide (Theorem 2).

We explore the language of prefix normal words and its connection to other
known languages. Among other things, we show that this language is not context-
free (Theorem 3) by adapting a proof of Berstel and Boasson [3] for Lyndon
words, and that it is properly included in the language of pre-necklaces, the
prefixes of powers of Lyndon words (Theorem 4). We close with a number of
open problems.

Connection to Indexed Jumbled Pattern Matching. The current fastest
algorithms for computing an index for the binary jumbled pattern matching
problem were concurrently and independently developed by Burcsi et al. [6] and
Moosa and Rahman [14]. In order to compute an index of a text of length n,
both used a reduction to min-plus convolution, for which the current best algo-
rithms have a runtime of O(n2/ log n). Very recently, Moosa and Rahman [13]
introduced an algorithm with runtime O(n2/ log2 n) which uses word-RAM op-
erations. Our characterization of the set of factor Parikh vectors in terms of
prefix normal forms yields a new approach to the problem of indexed jumbled
pattern matching: Given the prefix normal forms of a word w, the index for the
jumbled pattern matching problem can be computed in linear time O(n). This
implies that any algorithm for computing the prefix normal form with runtime
o(n2/ log2 n) will result in an improvement for the indexing problem for binary
jumbled pattern matching. Since on the other hand, the prefix normal forms can
be computed from the index in O(n) time, we also have that a lower bound for
the computation of the prefix normal form would yield a lower bound for the
binary jumbled pattern matching problem.

2 The Prefix Normal Form

We fix the ordered alphabet Σ = {a, b}, with a < b. A word w = w1 · · ·wn over
Σ is a finite sequence of elements from Σ. Its length n is denoted by |w|. We
denote the empty word by ε. For any 1 ≤ i ≤ |w|, the i-th symbol of a word w
is denoted by wi. As is standard, we denote by Σn the words over Σ of length
n, and by Σ∗ = ∪n≥0Σ

n the set of finite words over Σ. Let w ∈ Σ∗. If w = uv
for some u, v ∈ Σ∗, we say that u is a prefix of w and v is a suffix of w. A factor
of w is a prefix of a suffix of w (or, equivalently, a suffix of a prefix). We denote

230 G. Fici and Zs. Lipták

by Pref(w), Suff(w), Fact(w) the set of prefixes, suffixes, and factors of the word
w, respectively.

For a letter a ∈ Σ, we denote by |w|a the number of occurrences of a in the
word w. The Parikh vector of a word w over Σ is defined as p(w) = (|w|a, |w|b).
The Parikh set of w is Π(w) = {p(v) | v ∈ Fact(w)}, the set of Parikh vectors
of the factors of w.

Finally, given a word w over Σ and a letter a ∈ Σ, we denote by Pa(w, i) =
|w1 · · ·wi|a, the number of a’s in the prefix of length i of w, and by posa(w, i)
the position of the i’th a in w, i.e., posa(w, i) = min{k : |w1 · · ·wk|a = i}. When
w is clear from the context, we also write Pa(i) and posa(i). Note that in the
context of succint indexing, these functions are frequently called rank and select,
cf. [15]: We have Pa(w, i) = ranka(w, i) and posa(w, i) = selecta(w, i).

Definition 1. Let w ∈ Σ∗. We define, for each 0 ≤ k ≤ |w|,

Fa(w, k) = max{|v|a | v ∈ Fact(w) ∩ Σk},

the maximum number of a’s in a factor of w of length k. When no confusion can
arise, we also write Fa(k) for Fa(w, k). The function Fb(w) is defined analogously
by taking b in place of a.

Example 1. Take w = ababbaabaabbbaaabbab. In Table 1, we give the values of
Fa and Fb for w.

Table 1. The sequences Fa and Fb for the word w = ababbaabaabbbaaabbab

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fa 0 1 2 3 3 4 4 4 5 5 6 7 7 7 8 8 9 9 9 10 10

Fb 0 1 2 3 3 3 4 4 5 5 6 6 7 7 7 8 8 9 9 10 10

Lemma 1. Let w ∈ Σ∗. The function Fa(·) = Fa(w, ·) has the following prop-
erty:

Fa(j) − Fa(i) ≤ Fa(j − i) for all 0 ≤ i ≤ j ≤ |w|.
Proof. Assume otherwise. Then there are indices i ≤ j such that Fa(j)−Fa(i) >
Fa(j − i). Let v ∈ Fact(w) be a word that realizes Fa(j), i.e., |v| = j and
|v|a = Fa(j). Let us write v = v1v2 · · · vj . Then for the word u = vi+1 · · · vj , we
have |u|a = |v|a − |v1 · · · vi|a ≥ Fa(j)−Fa(i) > Fa(j − i), in contradiction to the
definition of Fa, since |u| = j − i. ��
We are now ready to show that for every word w there is a word w′ which realizes
the function Fa(w) as its prefix function Pa(w′).

On Prefix Normal Words 231

Theorem 1. Let w ∈ Σ∗. Then there exists a unique word w′ s.t. for all 0 ≤ k ≤
|w|, Fa(w, k) = Fa(w′, k) = Pa(w′, k). We call this word w′ the prefix normal
form of w (with respect to a), and denote it PNFa(w). Analogously, there exists a
unique word w′′, such that for all 0 ≤ k ≤ |w|, Fb(w, k) = Fb(w′′, k) = Pb(w′′, k),
the prefix normal form of w with respect to b, denoted PNFb(w).

Proof. We only give the proof for w′. The construction of w′′ is analogous. It
is easy to see that for 1 ≤ k ≤ |w|, one has either Fa(w, k) = Fa(w, k − 1) or
Fa(w, k) = 1 + Fa(w, k − 1). Now define the word w′ by

w′
k =

{
a if Fa(w, k) = 1 + Fa(w, k − 1)
b if Fa(w, k) = Fa(w, k − 1)

for every 1 ≤ k ≤ |w|.
By construction, we have Pa(w′, k) = Fa(w, k) for every 1 ≤ k ≤ |w|. We still

need to show that Pa(w′, k) = Fa(w′, k) for all k, i.e., that w′ is in prefix normal
form. By definition, Pa(w′, k) ≤ Fa(w′, k) for all k. Now let v ∈ Fact(w′), |v| = k,
and v = wi+1 · · ·wj . Then |v|a = Pa(w′, j) − Pa(w′, i) = Fa(w, j) − Fa(w, i) ≤
Fa(w, j − i) = Pa(w′, j− i) = Pa(w′, k), where the inequality holds by Lemma 1.
We have thus proved that Fa(w′, k) ≤ Pa(w′, k), and we are done. ��
Example 2. Let w = ababbaabaabbbaaabbab. The prefix normal forms of w are
the words

PNFa(w) = aaababbabaabbababbab,

and
PNFb(w) = bbbaababababaabababa.

The operators PNFa and PNFb are idempotent operators, that is, if u =
PNFx(w) then PNFx(u) = u, for any x ∈ Σ. Also, for any w ∈ Σ∗ and x ∈ Σ, it
holds that PNFx(w) = PNFx(w̃), where w̃ = wnwn−1 · · ·w1 is the reversal of w.

The prefix normal forms of a word allow one to determine the Parikh vectors
of the factors of the word, as we will show in Theorem 2. We first recall the
following lemma from [8], where we say that a Parikh vector q occurs in a word
w if w has a factor v with p(v) = q.

Lemma 2 (Interval Lemma, Cicalese et al. [8]). Let w ∈ Σ∗. Fix 1 ≤ k ≤
|w|. If the Parikh vectors (x1, k − x1) and (x2, k − x2) both occur in w, then so
does (y, k − y) for any x1 ≤ y ≤ x2.

The lemma can be proved with a simple sliding window argument.

Theorem 2. Let w, w′ be words over Σ. Then Π(w) = Π(w′) if and only if
PNFa(w) = PNFa(w′) and PNFb(w) = PNFb(w′).

Proof. Let fa(w, k) denote the minimum number of a’s in a factor of w of length
k. As a direct consequence of Lemma 2, we have that for a Parikh vector q =
(x, y), q ∈ Π(w) if and only if fa(w, x+y) ≤ x ≤ Fa(w, x+y). Thus for two words

232 G. Fici and Zs. Lipták

w, w′, we have Π(w) = Π(w′) if and only if Fa(w) = Fa(w′) and fa(w) = fa(w′).
It is easy to see that for all k, fa(w, k) = k − Fb(w, k), thus the last statement
is equivalent to Fa(w) = Fa(w′) and Fb(w) = Fb(w′). This holds if and only if
PNFa(w) = PNFa(w′) and PNFb(w) = PNFb(w′), and the claim is proved. ��
There is a simple geometrical construction for computing the prefix normal forms
of a word w, and hence, by Theorem 2, the set Π(w) of Parikh vectors occurring
in w. An example of this construction is given in Fig. 1.

Draw in the Euclidean plane the word w by linking, for every 0 ≤ i ≤ |w|, the
points (i, j), where j is the difference between the number of a’s and the number
of b’s in the prefix of w of length i. That is, draw w by representing each letter
a by an upper unit diagonal and each letter b by a lower unit diagonal, starting
from the origin (0, 0).

Then draw all the suffixes of w in the same way, always starting from the
origin. The region of the plane so delineated is in fact the region of points (x, y)
such that there exists a factor v of w such that x = |v| = |v|a + |v|b and
y = |v|a − |v|b. Hence (|v|a, |v|b) = (x+y

2 , x−y
2) = p(v) belongs to Π(w).

The region is connected by Lemma 2, in the sense that all internal points
belong to Π(w). The prefix normal forms PNFa(w) and PNFb(w) are obtained
by connecting the upper and the lower points of the region, respectively.

w

PNFa(w)

PNFb(w)

Fig. 1. The word w = ababbaabaabbbaaabbab, its prefix normal forms PNFa(w) =
aaababbabaabbababbab and PNFb(w) = bbbaababababaabababa, and the region delin-
eated by Π(w), the Parikh set of w

3 The Language of Prefix Normal Words

In this section, we take a closer look at those words which are in prefix normal
form, which we refer to as prefix normal words. For simplicity of exposition, from
now on we only refer to prefix normality with respect to the letter a.

Definition 2. A prefix normal word is a word w ∈ Σ∗ such that for every
0 ≤ k ≤ |w|, Fa(w, k) = Pa(w, k). That is, a word such that w = PNFa(w). We
denote by La ⊂ Σ∗ the language of prefix normal words.

The following proposition gives some characterizations of prefix normal words.
Recall that Pa(w, i) = |w1 · · ·wi|a is the number of a’s in the prefix of length i,

On Prefix Normal Words 233

and posa(w, i) = min{k : |w1 · · ·wk|a = i} is the position of the i’th a. When no
confusion can arise, we write simply Pa(i) and posa(i). In particular, we have
Pa(posa(i)) = i and posa(Pa(i)) ≤ i.

Proposition 1. Let w ∈ Σ∗. The following properties are equivalent:

1. w is a prefix normal word;
2. ∀i, j where 0 ≤ i ≤ j ≤ |w|, we have Pa(j) − Pa(i) ≤ Pa(j − i);
3. ∀v ∈ Fact(w) such that |v|a = i, we have |v| ≥ posa(i);
4. ∀i, j such that i+j−1 ≤ |w|a, we have posa(i)+posa(j)−1 ≤ posa(i+j−1).

Proof. (1) ⇒ (2). Follows from Lemma 1, since Pa(w) = Fa(w).
(2) ⇒ (3). Assume otherwise. Then there exists v ∈ Fact(w) s.t. |v| < posa(k),

where k = |v|a. Let v = wi+1 · · ·wj , thus j − i = k. Then Pa(j)−Pa(i) = k. But
Pa(j − i) = Pa(|v|) ≤ k − 1 < k = Pa(j) − Pa(i), a contradiction.

(3) ⇒ (4). Again assume that the claim does not hold. Then there are i, j s.t.
posa(i + j − 1) < posa(i) + posa(j) − 1. Let k = posa(j) and l = posa(i + j − 1)
and define v = wk · · ·wl. Then v has i many a’s. But |v| = posa(i + j − 1) −
posa(j) + 1 < posa(i) + posa(j) − 1 − posa(j) + 1 = posa(i), in contradiction to
(3).

(4) ⇒ (1). Let v ∈ Fact(w), |v|a = i. We have to show that Pa(|v|) ≥ i.
This is equivalent to showing that posa(i) ≤ |v|. Let v = wl+1 · · ·wr, thus
Pa(r)−Pa(l) = i. Let j = Pa(l)+ 1, thus the first a in v is the j’th a of w. Note
that we have l < posa(j) and r ≥ posa(i + j − 1). By the assumption, we have
posa(i) ≤ posa(i + j − 1) − posa(j) + 1 ≤ r − l = |v|. ��
We now give some simple facts about the language La.

Proposition 2. Let La be the language of prefix normal words.

1. La is prefix-closed, that is, any prefix of a word in La is a word in La.
2. If w ∈ La, then any word of the form akw or wbk, k ≥ 0, also belongs to La.
3. Let |w|a < 3. Then w ∈ La iff either w = bn for some n ≥ 0 or the first

letter of w is a.
4. Let w ∈ Σ∗. Then there exist infinitely many v ∈ Σ∗ such that vw ∈ La.

Proof. The claims 1., 2., 3. follow easily from the definition. For 4., note that
for any n ≥ |w|, the word anw belongs to La. ��
We now deal with the question of how a prefix normal word can be extended to
the right into another prefix normal word.

Lemma 3. Let w ∈ La. Then wa ∈ La if and only if for every 0 ≤ k < |w| the
suffix of w of length k has less a’s than the prefix of w of length k + 1.

Proof. Suppose wa ∈ La. Fix k and let va be the suffix of wa of length k + 1.
By definition of La one has |va|a ≤ Pa(k + 1), and therefore |v|a < Pa(k + 1).

Conversely, let v be the suffix of w of length k. Since w ∈ La one has |v|a ≤
Pa(k). We cannot have |v|a = Pa(k) and wk+1 = b since by hypothesis we must
have |v|a < Pa(k + 1). Thus either |v|a < Pa(k) or wk+1 = b. In both cases we
have then |va|a ≤ Pa(k + 1). Since no suffix of wa has more a’s than the prefix
of wa of the same length, and since w ∈ La, it follows that wa ∈ La. ��

234 G. Fici and Zs. Lipták

We close this section by proving that La is not context-free. Our proof is an easy
modification of the proof that Berstel and Boasson gave for the fact that the
language of binary Lyndon words is not context-free [3].

Theorem 3. La is not context-free.

Proof. Recall that Ogden’s iteration lemma (see e.g. [2]) states that, for every
context-free language L there exists an integer N such that, for any word w ∈ L
and for any choice of at least N distinguished positions in w, there exists a
factorization w = xuyvz such that

1. either x, u, y each contain at least one distinguished position, or y, v, z each
contain at least one distinguished position;

2. the word uyv contains at most N distinguished positions;
3. for any n ≥ 0, the word xunyvnz is in L.

Now, assume that the language La is context-free, and consider the word w =
aN+1baNbaN+1 where N is the constant of Ogden’s Lemma. It is easy to see that
w ∈ La. Distinguish the central run of N letters a. We claim that for every factor-
ization w = xuyvz of w, pumping u and v eventually results in a word in which
the first run of a’s is not the longest one. Such a word cannot belong to La.

If x, u, y each contain at least one distinguished position, then u is non-empty
and it is contained in the central run of a’s. Now observe that every word obtained
by pumping u and v is prefixed by aN+1b. Pumping u and v, we then get a word
aN+1bams, for some word s, where m > N + 1. This word is not in La.

Suppose now that y, v, z each contain at least one distinguished position. Then
v is non-empty and it is contained in the central run of a’s.

If u is contained in the first run of a’s and it is non-empty, then, pumping
down, one gets a word of the form akbambaN+1 with k ≤ N . This word is not in
La. In all other cases (u is contained in the second run of a’s and it is non-empty,
or u = ε, or u contains the first b of w), every word obtained by pumping u and
v is prefixed by aN+1b. Again, pumping u and v, we obtain a word in which the
first run of a’s is not the longest one. ��

4 Prefix Normal Words vs. Lyndon Words

In this section, we explore the relationship between the language La of prefix
normal words and some known classes of words defined by means of lexicographic
properties.

A Lyndon word is a word which is lexicographically (strictly) smaller than
any of its proper non-empty suffixes. Equivalently, w is a Lyndon word if it is
the (strictly) smallest, in the lexicographic order, among its conjugates, i.e., for
any factorization w = uv, with u, v non-empty words, one has that the word vu
is lexicographically greater than w [12]. Note that, by definition, a Lyndon word
is primitive, i.e., it cannot be written as w = uk for a u ∈ Σ∗ and k > 1. Let
us denote by Lyn the set of Lyndon words over Σ. One has that Lyn �⊆ La and

On Prefix Normal Words 235

La �⊆ Lyn. For example, the word w = abab belongs to La but is not a Lyndon
word since it is not primitive. An example of Lyndon word which is not in prefix
normal form is w = aabbabaabbb.

A power of a Lyndon word is called a prime word [11] or necklace (see [4] for
more details and references on this definition).

Let us denote by PL the set of prefixes of powers of Lyndon words, also called
sesquipowers (or fractional powers) of Lyndon words [7], or preprime words [11],
or also pre-necklaces [16]. It is easy to see that PL is in fact the set of prefixes
of Lyndon words plus the powers of the letter b.

The next proposition shows that any prefix normal word different form a
power of the letter b is a prefix of a Lyndon word.

Proposition 3. Let w ∈ La with |w|a > 0. Then the word wb|w| is a Lyndon
word.

Proof. We have to prove that any non-empty suffix of wb|w| is greater than wb|w|.
Suppose by contradiction that there exists a non-empty suffix v of wb|w| that is
smaller than wb|w|, and let u be the longest common prefix between v and wb|w|.
This implies that u is followed by different letters when it appears as prefix of
v and as prefix of wb|w|. Since we supposed that v is smaller than wb|w|, we
conclude that ub is prefix of wb|w| and ua is prefix of v. Since ua is a factor of
wb|w| ending with a, ua must be a factor of w and therefore ub is a prefix of w.
Thus the factor ua of w has one more a than the prefix ub of w, contradicting
the fact that w is a prefix normal word. ��

We can now state the following result.

Theorem 4. Every prefix normal word is a pre-necklace. That is, La ⊂ PL.

Proof. If w is of the form bn, n ≥ 1, then w is a power of the Lyndon word b.
Otherwise, w contains at least one a and the claim follows by Proposition 3. ��

The languages La and PL, however, do not coincide. The shortest word in PL
that does not belong to La is w = aabbabaa. Below we give the table of the
number of words in La of each length, up to 16, compared with that of pre-
necklaces. This latter sequence is listed in Neil Sloane’s On-Line Encyclopedia
of Integer Sequences [17].

Table 2. The number of words in La and in PL for each length up to 16

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

La ∩Σn 2 3 5 8 14 23 41 70 125 218 395 697 1273 2279 4185 7568

PL ∩Σn 2 3 5 8 14 23 41 71 127 226 412 747 1377 2538 4720 8800

236 G. Fici and Zs. Lipták

5 The Prefix Normal Equivalence

The prefix normal form PNFa induces an equivalence relation on Σ∗, namely
u ≡PNFa

v if and only if PNFa(u) = PNFa(v). In Table 3, we give all prefix
normal words of length 4, and their equivalence classes.

An interesting question is how to characterize two words that have the same
prefix normal form. The classes of this equivalence do not seem to follow regu-
lar patterns. For example, the words aabababa, aabbaaba, abaababa, abaabbaa,

Table 3. The classes of words of length 4 having the same prefix normal form

PNFa class card.

aaaa {aaaa} 1
aaab {aaab, baaa} 2
aaba {aaba, abaa} 2
aabb {aabb, baab, bbaa} 3
abab {abab, baba} 2
abba {abba} 1
abbb {abbb, babb, bbab, bbba} 4
bbbb {bbbb} 1

Table 4. The cardinalities of the 70 classes of words of length 8 having the same prefix
normal form. There are 7 classes of length 1, 24 classes of length 2, 5 classes of length
3, 16 classes of length 4, 2 classes of length 5, 9 classes of length 6, 1 class of length 7,
4 classes of length 8, 1 class of length 9 and 1 class of length 10.

PNFa card. PNFa card. PNFa card. PNFa card.

aaaaaaaa 1 aaabaabb 6 aabababa 6 abababba 2
aaaaaaab 2 aaababaa 2 aabababb 9 abababbb 4
aaaaaaba 2 aaababab 6 aababbaa 2 ababbaba 1
aaaaaabb 3 aaababba 4 aababbab 8 ababbabb 6
aaaaabaa 2 aaababbb 8 aababbba 4 ababbbab 4
aaaaabab 4 aaabbaaa 1 aababbbb 10 ababbbba 2
aaaaabba 2 aaabbaab 4 aabbaabb 3 ababbbbb 6
aaaaabbb 4 aaabbaba 2 aabbabab 4 abbabbab 2
aaaabaaa 2 aaabbabb 6 aabbabba 3 abbabbba 2
aaaabaab 4 aaabbbaa 2 aabbabbb 8 abbabbbb 5
aaaababa 3 aaabbbab 4 aabbbaab 2 abbbabbb 4
aaaababb 6 aaabbbba 2 aabbbaba 2 abbbbabb 3
aaaabbaa 2 aaabbbbb 6 aabbbabb 6 abbbbbab 2
aaaabbab 4 aabaabaa 1 aabbbbaa 1 abbbbbba 1
aaaabbba 2 aabaabab 4 aabbbbab 4 abbbbbbb 8
aaaabbbb 5 aabaabba 2 aabbbbba 2 bbbbbbbb 1
aaabaaab 2 aabaabbb 4 aabbbbbb 7
aaabaaba 4 aababaab 2 abababab 2

On Prefix Normal Words 237

ababaaba, abababaa all have the same prefix normal form aabababa, so that no
simple statement about the lengths of the runs of the two letters seems to pro-
vide a characterization of the classes. This example also shows that the prefix
normal form of a word w is in general more complicated that just a rotation of
w or of its reversal (which is in fact the case for small lengths).

Recall that for word length n ≤ 16, we listed the number of equivalence classes
in Table 2. The sizes of the equivalence classes seem to exhibit an irregular be-
haviour. We report in Table 4, for each of the 70 equivalence classes for words
of length 8, the prefix normal form and the number of words in the class. Fur-
thermore, we report the cardinality of the largest class of words for each length
up to 16 (Table 5).

Table 5. The maximum cardinality of a class of words having the same prefix normal
form

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

max |[w]| 1 2 3 4 5 6 8 10 12 18 24 30 40 60 80 111

6 Conclusion and Open Problems

In this paper, we introduced the prefix normal form of a binary word. This
construction arises in the context of indexing for jumbled pattern matching and
provides a characterization of the set of factor Parikh vectors of a binary word.
We then investigated the language La of words which are in prefix normal form
(w.r.t. the letter a).

Many open problems remain. Among these, the questions regarding the prefix
normal equivalence were explored in Section 5: How can we characterize two
words that have the same prefix normal form? Can we say anything about the
number or the size of equivalence classes for a given word length?

Although we showed that the language La is strictly contained in the language
of pre-necklaces (prefixes of powers of Lyndon words), we were not able to find a
formula for enumerating prefix normal words. A possible direction for attacking
this problem would be finding a characterization of those pre-necklaces which
are not prefix normal. Indeed, an enumerative formula for the pre-necklaces is
known [17].

Another open problem is to find an algorithm for testing whether a word is
in prefix normal form. The best offline algorithms at the moment are the ones
for computing an index for the jumbled pattern matching problem, and thus the
prefix normal form [6, 14, 13]; these have running time O(n2/ logn) for a word
of length n, or O(n2/ log2 n) in the word-RAM model. However, testing may be
easier than actually computing the PNF. Note also that Lemma 3 gives us an
online testing algorithm, with time complexity O(n2). Another, similar, online
testing algorithm is provided by condition 4. of Proposition 1, with running time
O(|w|2a), which is, of course, again O(n2) in general.

238 G. Fici and Zs. Lipták

Acknowledgements. We would like to thank Bill Smyth for interesting dis-
cussions on prefix normal words. We are also grateful to an anonymous referee
who helped us improve the proof of Theorem 3.

References

1. Acharya, J., Das, H., Milenkovic, O., Orlitsky, A., Pan, S.: Reconstructing a string
from its substring compositions. In: Proceedings of IEEE International Symposium
on Information Theory, ISIT 2010. pp. 1238–1242 (2010)

2. Berstel, J., Boasson, L.: Context-free languages. In: Handbook of Theoretical Com-
puter Science, Volume B: Formal Models and Sematics (B), pp. 59–102. Elsevier,
Amsterdam (1990)

3. Berstel, J., Boasson, L.: The set of Lyndon words is not context-free. Bull. Eur.
Assoc. Theor. Comput. Sci. EATCS 63, 139–140 (1997)

4. Berstel, J., Perrin, D.: The origins of combinatorics on words. Eur. J. Comb. 28,
996–1022 (2007)

5. Böcker, S.: Simulating multiplexed SNP discovery rates using base-specific cleavage
and mass spectrometry. Bioinformatics 23(2), 5–12 (2007)

6. Burcsi, P., Cicalese, F., Fici, G., Lipták, Zs.: On table arrangements, scrabble
freaks, and jumbled pattern matching. In: Boldi, P., Gargano, L. (eds.) FUN 2010.
LNCS, vol. 6099, pp. 89–101. Springer, Heidelberg (2010)

7. Champarnaud, J., Hansel, G., Perrin, D.: Unavoidable sets of constant length.
Internat. J. Algebra Comput. 14, 241–251 (2004)

8. Cicalese, F., Fici, G., Lipták, Zs.: Searching for Jumbled Patterns in Strings. In:
Holub, J., Zdárek, J. (eds.) Prague Stringology Conference, PSC 2009. Proceedings,
pp. 105–117. Czech Tech. Univ. in Prague (2009)

9. Cieliebak, M., Erlebach, T., Lipták, Zs., Stoye, J., Welzl, E.: Algorithmic com-
plexity of protein identification: combinatorics of weighted strings. Discrete Appl.
Math. 137(1), 27–46 (2004)

10. Eres, R., Landau, G.M., Parida, L.: Permutation pattern discovery in biosequences.
J. Comput. Biol. 11(6), 1050–1060 (2004)

11. Knuth, D.E.: Generating All Tuples and Permutations. The Art of Computer Pro-
gramming, Vol. 4, Fascicle 2. Addison-Wesley, Reading (2005)

12. Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics
and its Applications. Cambridge Univ. Press, Cambridge (2002)

13. Moosa, T.M., Rahman, M.S.: Sub-quadratic time and linear size data structures
for permutation matching in binary strings . J. Discrete Algorithms (to appear)

14. Moosa, T.M., Rahman, M.S.: Indexing permutations for binary strings. Inf. Pro-
cess. Lett. 110, 795–798 (2010)

15. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comput. Surv. 39(1)
(2007)

16. Ruskey, F., Savage, C., Wang, T.M.Y.: Generating necklaces. J. Algorithms 13(3),
414–430 (1992)

17. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences, Sequence
A062692, available electronically at http://oeis.org

http://oeis.org

On Non-complete Sets and Restivo’s Conjecture

Vladimir V. Gusev and Elena V. Pribavkina�

Ural State University, Lenina st. 51, 620083, Ekaterinburg, Russia
vl.gusev@gmail.com, elena.pribavkina@usu.ru

Abstract. A finite set S of words over the alphabet Σ is called non-
complete if Fact(S∗) �= Σ∗. A word w ∈ Σ∗ \ Fact(S∗) is said to be
uncompletable. We present a series of non-complete sets Sk whose mini-
mal uncompletable words have length 5k2 − 17k+13, where k ≥ 4 is the
maximal length of words in Sk. This is an infinite series of counterex-
amples to Restivo’s conjecture, which states that any non-complete set
possesses an uncompletable word of length at most 2k2.

1 Introduction

Let Σ be a finite alphabet. A finite set S of words over the alphabet Σ is called
complete if Fact(S∗) = Σ∗, i.e. every word over the alphabet Σ is a factor of
a word of S∗. If S is not complete, Σ∗ \ Fact(S∗) is not empty and a word of
minimal length in this set is called a minimal uncompletable word (with respect
to the non-complete set S). Its length will be denoted by uwl(S).

The problem of finding minimal uncompletable words and their length was
introduced in 1981 by Restivo. In his paper [6] he conjectured that a non-
complete set S always possesses an uncompletable word w of length at most
2k2, where k is the maximal length of words in S, and w is of the form w =
uv1uv2 · · ·uvk−1u, where u /∈ S, |u| = k and |vi| ≤ k for all i = 1, 2, . . . , k − 1.
An example giving a lower bound k2 + k − 1 for the length of minimal uncom-
pletable words was presented in [4]. However Restivo’s conjecture appeared to
be false by means of a counterexample found in [2]. Namely, let k > 6 and let
Rk = Σk \ {ak−2bb} ∪Σbak−4Σ ∪Σba ∪ b4 ∪ Jk, where Jk =

⋃k−3
i=1 (baiΣ ∪ aib).

In [2] the authors computed for 7 ≤ k ≤ 12 that the length of a minimal un-
completable word for Rk is equal to 3k2 − 9k + 1 but were unable to prove it in
general.

In this paper we present a new series of non-complete sets Sk whose minimal
uncompletable words have length 5k2 − 17k + 13 for k ≥ 4.

As far as the upper bound is concerned, only trivial exponential one is known.
More precisely, the length of a minimal uncompletable word is at most 2‖S‖−m+1,
where m is the number of elements in S and ‖S‖ is the sum of lengths of all
elements in S. It comes from the connection between non-complete sets and
� The authors acknowledge support from the Russian Foundation for Basic Re-

search, grant 10-01-00524, and from the Federal Education Agency of Russia, grant
2.1.1/13995.

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 239–250, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

240 V.V. Gusev and E.V. Pribavkina

synchronizing automata studied in [4]. However this bound is not likely to be
precise.

An interesting related question is to decide whether a given regular language
L satisfies one of the properties Σ∗ = Fact(L), Σ∗ = Pref(L), Σ∗ = Suff(L).
Computational complexity of the aforementioned problems has been recently
considered by Rampersad et al. in [5]. They gave complete solution in case
L is represented by a deterministic or non-deterministic finite automaton. In
particular case L = S∗ for S being a finite set of words the authors mention
that the complexity of deciding whether or not Σ∗ = Fact(S∗) is still an open
problem.

2 The Set Sk

We assume the reader’s acquaintance with the basics of combinatorics on words.
Additional information on the subject can be found in [3]. To fix the notation,
let us recall some basic definitions. By |w| we denote the length of a word w. The
length of the empty word ε is equal to zero. By Σ+ we denote the set of all non-
empty words over the alphabet Σ; by Σk – the set of all words of length exactly
k over Σ and by Σ≤k – the set of all words of length at most k over Σ. A word
u ∈ Σ+ is a factor of w (prefix or suffix respectively) if w can be decomposed as
w = xuy (w = uy or w = xu respectively) for some x, y ∈ Σ∗. A factor (prefix,
suffix) u of w is called proper if u �= w. Given a word u = a1a2 · · · an with ai ∈ Σ
by u[i . . . j] with 1 ≤ i, j ≤ n we denote the factor aiai+1 · · ·aj if i ≤ j, and the
empty word if i > j. Moreover, we put u[0] = ε.

Let Σ = {a, b}. Consider the set

Sk =
(
Σk \ {bak−1, bk−1a}) ∪ (

Σk−1 \ {ak−1, bk−1}) .

In section 3 we show that this set is not complete for k ≥ 4 and possesses an
uncompletable word of length 5k2−17k+13. In section 4 we show that this upper
bound is precise. Our results considerably rely upon the notion of a forbidden
position in a word. This notion was introduced in [4]. Let S be any non-complete
set and let w be an uncompletable word for the set S. We say that 0 ≤ j ≤ |w|−1
is a forbidden position in w with respect to S, if w[j + 1, . . . , |w|] /∈ Pref(S∗),
i.e. the suffix of the word w starting from position j is not a prefix of any word
in S∗. If the set S is clear from context we will omit reference to S. Note that,
if S ⊆ Σ≤k and positions 0, 1, . . . , k − 1 are forbidden in some word w, then w
is uncompletable for S. So to prove that a set S ⊆ Σ≤k is not complete, it is
enough to find a word with first k forbidden positions.

Lemma 1. Let j ≥ k be a forbidden position in a word w with respect to Sk.
The position j − k is forbidden in w with respect to Sk if and only if one of the
following conditions holds true:

(i) j − 1 is forbidden with respect to Sk;
(ii) w[j − k + 1, . . . , j − 1] ∈ {ak−1, bk−1}.

On Non-complete Sets and Restivo’s Conjecture 241

Proof. Let j − k be forbidden in w. Then by definition w[j − k + 1, . . . , |w|] /∈
Pref(S∗

k). Suppose j − 1 is not forbidden in w, i.e. w[j, . . . , |w|] = x ∈ Pref(S∗
k).

If the factor y = w[j − k + 1, . . . , j − 1] of length k − 1 is in Sk, then w[j − k +
1, . . . , |w|] = yx ∈ Pref(S∗

k), which is a contradiction. Hence y ∈ Σk−1 \ Sk =
{ak−1, bk−1}.

Conversely, arguing by contradiction suppose j−k is not forbidden. Then since
the length of the suffix w[j−k+1, . . . , |w|] is at least k, it can be factorized as xy
where x ∈ Sk and y ∈ Pref(S∗

k). The case |x| = k contradicts the condition that
j is forbidden, since we get w[j + 1, . . . , |w|] = y ∈ Pref(S∗

k). Hence |x| = k − 1
and since x ∈ Sk we have that x is different both from ak−1 and bk−1. But then
position j − 1 is not forbidden, which is a contradiction.

In the rest of the paper we strictly fix the following notation: u = bak−1 and
v = bk−1a. We will consider forbidden positions only in occurrences of u and
v in w. In each such occurrence for convenience we will enumerate forbidden
positions locally from 0 to k − 1.

Example 1. Consider the following word:

w = ′b′a′a︸ ︷︷ ︸
{0,1,2}

a′b ︸︷︷︸
{0,2}

′
b

{1}︷︸︸︷
b′aa a ′bba︸︷︷︸

{0}
.

Using the definition and lemma 1 it is easy to calculate the set of its forbidden
positions with respect to S3: {0, 1, 2, 4, 5, 7, 10}. There are two occurrences of u
and two occurrences of v in w (the first occurrence of v overlaps with the second
occurrence of u). Locally enumerated sets of forbidden positions are: {0, 1, 2} in
the first occurrence of u, {1} in the second occurrence of u, {0, 2} in the first
occurrence of v, and {0} in the second occurrence of v. Note that, since first
three positions are forbidden in w, this word is uncompletable for S3.

Position 0 may be forbidden in an occurrence of u or v. The following state-
ment gives necessary and sufficient conditions for this to happen. It is an easy
consequence of lemma 1.

Lemma 2. Position 0 is forbidden in an occurrence of u in a word w iff position
k − 1 is forbidden in the same occurrence of u. Position 0 is forbidden in any
occurrence of v in w.

Two occurrences p, q ∈ {u, v} in a word w are said to be consecutive if they
either overlap or are the only occurrences from {u, v} in the factor pxq of w.

Lemma 3. Let p, q ∈ {u, v} be two consecutive occurrences without overlap in
a word w, and let pxq be a factor of w with x ∈ Σ∗. Let Fp and Fq be the sets
of forbidden positions in p and q respectively. Then

Fp ⊆ {j + |x| mod k | j ∈ Fq} ∪ {0}.

242 V.V. Gusev and E.V. Pribavkina

Proof. Consider a forbidden position i in p such that i �= 0 and consider the
factor y of length multiple of k in w from position i in p to some position j in q
(0 ≤ j < k). This factor is in S+

k , since p and q are consecutive occurrences of
words from Σk \Sk. Thus, if position j /∈ Fq, then neither position i is forbidden.
On the one hand, we have |y| ≡ 0 mod k, on the other hand |y| = k− i+ |x|+ j,
hence i ≡ j + |x| mod k.

Note that, two words from Σk \ Sk overlap only in case of v and u. More pre-
cisely, two last letters of v overlap with first two letters of u leading to the word
bk−1ak−1. The following statement can be easily proved using the same argument
as in the previous lemma.

Lemma 4. Let v and u be two consecutive overlapping occurrences in a word
w, and let Fv and Fu be the corresponding sets of forbidden positions. Then

Fv ⊆ {j − 2 mod k | j ∈ Fu} ∪ {0}.

Previous lemmas allow us to make the following observation. Let p, q ∈ {u, v}
be two consecutive occurrences in w. Then forbidden positions in p except 0
are inherited from forbidden positions in q, and position 0 may appear in Fp

according to lemma 2. In our proofs we will trace backwards forbidden positions
only in occurrences of words from Σk \Sk starting from the last one. Besides, the
number of forbidden positions in consecutive occurrences increases by at most 1.

Example 2. Let k = 5 and let paaaq be a factor of some word w such that
p = q = u = baaaa. Let Fp and Fq be the sets of forbidden positions in p and
q respectively. Let Fq = {1, 3} (see Fig. 1). Since |x| = |aaa| = 3 by lemma 3
we have Fp ⊆ {0, 1, 4}. The position 4 is forbidden in p. Indeed, the only word
in Sk which can be read from this position is a4b of length 5 leading to the
forbidden position 1 in q. This means that the condition (ii) of lemma 1 holds.
By lemma 2 the position 0 is in Fp. The position 1 is not forbidden in p, since
from this position we can read the word aaaaa·aaba ∈ S+

k and get to the position
2 in Fq, which is not forbidden. Informally speaking, the forbidden position 3 in
q is lost as we step backwards by 5 letters.

′baaa′a aaa b′aa′aa

� �
� �

� �� 	

Fig. 1. Inheritance of forbidden positions

3 Upper Bound for uwl(Sk)

In this section we prove that the set Sk is non-complete by presenting an un-
completable word w of length 5k2 − 17k + 13 for k ≥ 4.

On Non-complete Sets and Restivo’s Conjecture 243

Theorem 1. For k ≥ 4 the set Sk is not complete and there exists an uncom-
pletable word of length 5k2 − 17k + 13.

Proof. For clarity by r we denote overlapping occurrences of v and u, i.e. r =

bk−1ak−1. Consider the word ω = u .
k−3∏
i=1

(rai . bk−2−ir .)v, where . can be re-

placed by any letter of the alphabet Σ. Let us enumerate occurrences of v
counting backwards from the last one (the first occurrence of v in this order
will have number 0), and let F i

v ⊆ {0, . . . , k − 1} be the set of forbidden posi-
tions in the ith occurrence of v. Occurrences of u are counted in the same way
(but starting from 1 instead of 0) and F i

u are defined analogously. Note that,
F 0

v = {0} by lemma 2. By lemma 1 applied to the position 0 in F 0
v we get

F 1
u = {1}. Note that, the position 1 in F 1

u has number k − 1 in F 1
v . By lemma 2

we have 0 ∈ F 1
v . Thus, F 1

v = {0, k− 1}. Lemma 3 implies F 2
u ⊆ {0, k− 2, k− 1}.

After applying lemma 1 consecutively to positions k − 1 and 0 in F 1
v we obtain

that positions k − 2 and k − 1 are in F 2
u . Finally, by lemma 2 we have 0 ∈ F 2

u .
So, F 2

u = {0, k − 2, k − 1}. Now we aim to show that F 2
v = {0, k − 3, k − 2}.

Lemma 4 implies F 2
v ⊆ {0, k − 4, k − 3, k − 2}. By lemma 2 we get 0 ∈ F 2

v . Note
that, the position 0 in F 2

u is the same position as k−2 in F 2
v . Since the condition

(i) of lemma 1 applied to the position k − 1 ∈ F 2
u is satisfied, the corresponding

position k − 3 is in F 2
v . When we apply the same lemma to the position k − 2

in F 2
u we see that none of the conditions (i), (ii) holds true. Thus, k − 4 �∈ F 2

v .
Finally, we have F 2

v = {0, k − 3, k − 2}.
Now assume by induction F 2i

v = {0, k−i−2, . . . , k−2} for some 1 ≤ i ≤ k−4,
and let us show that F

2(i+1)
v = {0, k − i − 3, . . . , k − 2}. Applying step by step

lemmas 1-4 we obtain the following sets of forbidden positions:

F 2i+1
u = {0, 1, k − i, . . . , k − 1},

F 2i+1
v = {0, k − i − 1, . . . , k − 1},

F 2i+2
u = {0, k − i − 2, . . . , k − 1},

F 2i+2
v = {0, k − i − 3, . . . , k − 2}.

Thus, for i = k − 3 we have F
2(k−3)
v = {0, 1, . . . , k − 2}. It is not hard to see

that the set of forbidden positions in the last occurrence of u is F
2(k−3)+1
u =

{0, 1, . . . , k − 1}, which means that the word ω is uncompletable. Its length
equals 5k2 − 17k + 13.

4 Lower Bound for uwl(Sk)

First we prove some nice properties of a minimal uncompletable word in Sk.

Theorem 2. Consider a minimal uncompletable word w. Then u is a prefix of
w and v is its suffix.

Proof. The word w has either u or v as a factor, otherwise w ∈ Pref((Sk∩Σk)∗).
Let w = w′x, where |x| = k, and suppose x �= v. Let x = x′z, where z ∈ Σ. Since

244 V.V. Gusev and E.V. Pribavkina

w is minimal, we conclude that w′x′ ∈ Fact(S∗
k), which means rw′x′ = qy, for

some r ∈ Σ∗, q ∈ S∗
k and |y| ≤ k − 1. If |y| < k − 1, then yz ∈ Pref(Sk), because

all the words of length at most k − 1 are prefixes of some words in Sk. Thus,
rw = qyz ∈ Pref(S∗

k) and w ∈ Fact(S∗
k), which is impossible. If |y| = k − 1, then

yz = x. If x �= u, then yz ∈ Sk, and qyz = rw ∈ S∗
k . If x = u, then y = bak−2,

z = a and we have for instance rwak−1 = rw′(bak−2)(ak) ∈ S∗
k . In any case we

get a contradiction with the fact that w is uncompletable. Thus, w has v as a
suffix.

Now we are going to investigate one particular symmetry property of uncom-
pletable words for Sk. It is trivial that the mirror image

←−
S of a non-complete

set S is again non-complete. Moreover, mirror images ←−w of uncompletable words
w for S are uncompletable for

←−
S . The same property holds true for renaming

morphism: ϕ(a) = b and ϕ(b) = a. Applying these statements to our set we get
Tk =

←−
Sk = ϕ(Sk), where

Tk =
(
Σk \ {ak−1b, abk−1}) ∪ (

Σk−1 \ {ak−1, bk−1}) .

So, if w is an uncompletable word for Sk, then ϕ(←−w) is also uncompletable for
Sk. As we have already shown, every minimal uncompletable word has v as a
suffix. From the symmetry property it follows that every such word has u as a
prefix.

The suffix v of a minimal uncompletable word w has only one forbidden position,
namely 0, and in the prefix u of w all the positions from 0 to k−1 are forbidden.
Thus, we have to analyze how forbidden positions change from one occurrence
of a word from Σk \ Sk to the next one.

Consider an arbitrary occurrence of a word from Σk \ Sk in w. Let F be the
set of its forbidden positions. We will make use of the following representation
of F :

F = [f1,1, f1,2, . . . , f1,m1 ; f2,1, . . . , f2,m2 ; . . . ; fn,1, . . . , fn,mn],

where fi,j+1 ≡ fi,j + 1 mod k, fi+1,1 > fi,mi and n ≥ 1. Simply speaking,
we partition the set F into blocks of consecutive (with respect to cyclic order)
forbidden positions.

Example 3. Consider the word ba10, and let F = {0, 1, 2, 5, 6, 8, 10} be the set of
its forbidden positions with respect to S11. Then according to our representation
F = [5, 6; 8; 10, 0, 1, 2].

Theorem 3. Let p and q be two consecutive occurrences of words from {u, v}
in a minimal uncompletable word w. Let Fp and Fq be the sets of forbidden
positions in p and q respectively. If |Fp| > |Fq|, then one of the following holds
true:

(i) p = q = u, Fp = {0, k−j, . . . , k−1} and Fq = {1, . . . , j}, where 1 ≤ j ≤ k−2;
(ii) p = v, q = u, these occurrences overlap, Fp = {0, k − 1} and Fq = {1};
(iii) p = u, q = v, Fp = {0, j − i − 1, . . . , k − 1}, Fq = {0, . . . , i, j, . . . , k − 1},

where j �≡ i + 1 mod k and there are k− 1− i mod k letters between these
occurrences;

On Non-complete Sets and Restivo’s Conjecture 245

Proof. Let Fq = [f1,1, . . . , f1,m1; . . . ; fn,1, . . . , fn,mn]. First assume that p and q
do not overlap, so let pxq be the corresponding factor of w.

Case 1. Let p = q = u. Consider the case n ≥ 2. Then there exists 1 ≤ i ≤ n
such that fi,1 ≥ 2. If fi,1 > 2, then by lemma 1 applied to fi,1 we obtain that
fi,1 + |x| mod k /∈ Fp. Indeed, let � be the number of position fi,1 according
to the global enumeration. The position fi,1 − 1 is not forbidden by our block
representation. Thus, the condition (i) of lemma 1 is not satisfied. Since w[�−k+
1, . . . , �−1] contains ba as a factor we conclude that the codition (ii) of lemma 1
is not satisfied. Thus, position �− k is not forbidden. Note, that the factor from
position fi,1+|x| mod k in p to position �−k in w belongs to S∗

k . Since the length
of this factor is multiple of k, and p, q are consecutive occurrences. Therefore,
position fi,1 + |x| mod k /∈ Fp. In what follows we will apply lemma 1 without
repeating the reasoning as above. If fi,1 = 2, then applying lemma 1 to position
fi,1 in q we see that, fi,1 + |x| mod k ∈ Fp implies x = x′bk−2. But then v
is a factor of pxq which contradicts the fact that p and q are two consecutive
occurrences from {u, v}. Thus, fi,1 + |x| mod k is not forbidden in p. From
lemma 3 it follows that Fp ⊆ {j + |x| mod k | j ∈ Fq}∪{0}, whence |Fp| ≤ |Fq|,
a contradiction. Consequently n = 1 and Fq = [f1,1, . . . , f1,m]. If f1,1 ≥ 2, then
following the same argument as above, we conclude that |Fp| ≤ |Fq|, hence
f1,1 ∈ {0, 1}. Note that, if f1,1 = 0, by lemma 2 we have k − 1 ∈ Fq. It means
that Fq = {0, 1, . . . , k − 1} which contradicts minimality of w. Thus f1,1 = 1.
If f1,m = k − 1, then by lemma 2 we obtain that 0 ∈ Fq and in this case f1,1

cannot be equal to 1. So f1,m ≤ k − 2. Now it remains to prove that Fp has
form as stated in (i). Since |Fp| > |Fq|, by lemma 3 we have 0 ∈ Fp. Then by
lemma 2 we obtain that k − 1 is also in Fp. So there exists a position i ∈ Fq

satisfying i + |x| ≡ k − 1 mod k. If i < f1,m, then i + 1 + |x| ≡ 0 mod k, hence
|Fp| ≤ |Fq |. Thus i = f1,m, |x| ≡ k−f1,m−1 mod k and by lemma 3 we deduce
Fp = {0, k − f1,m, . . . , k − 1}.

Case 2. Let p = v, q = u. We are to show that either f1,1 + |x| mod k is not
forbidden in p or f1,1 + |x| ≡ 0 mod k, so in both cases by lemma 3 we have
|Fp| ≤ |Fq|. It holds for f1,1 ≥ 2 by the argument as in the previous case. Note
that, f1,1 �= 0, otherwise by lemma 2 position k − 1 ∈ Fq, which contradicts our
block representation. Therefore, we have f1,1 = 1. Suppose 1 + |x| ≡ i mod k.
If 0 < i < k − 1, then by lemma 1 applied to position f1,1 in q we conclude that
i is not forbidden in p. If i = 0, then lemma 3 implies |Fp| ≤ |Fq|. If i = k − 1,
then by lemma 1 we have i ∈ Fp only if ak−2 is a prefix of x, but then p and q
are not consecutive occurrences from {u, v}.

Case 3. Let p = u, q = v. Suppose n ≥ 2, and consider arbitrary positions
fi,1 < fj,1 ∈ Fq. We show that either fi,1 + |x| mod k /∈ Fp or fj,1 + |x|
mod k /∈ Fp. Arguing by contradiction, suppose both positions are forbidden
in p. Then by lemma 1 applied to position fj,1 in q the word x must have suffix
bk−fj,1 (if |x| < k − fj,1, then fj,1 + |x| mod k /∈ Fp by lemma 1). Analogously
bk−fi,1 must be the suffix of x, and if |x| < k − fi,1, then fi,1 + |x| mod k /∈ Fp

by lemma 1. But then by the same lemma k + (k − fj,1) last letters of x are
b’s. Continuing this argument we get that �k − fj,1 last letters of x are b’s for

246 V.V. Gusev and E.V. Pribavkina

any positive integer �. It means that there exists no finite word x such that both
positions fi,1 + |x| mod k and fj,1 + |x| mod k are forbidden in p. Hence n = 1,
and Fq = [f1,1, . . . , f1,m]. Since |Fp| > |Fq|, by lemmas 3 and 2 there is no j
such that f1,j + |x| ≡ 0 mod k. Besides f1,i + |x| ≡ k − 1 mod k for some i. If
i < m, then f1,i+1+ |x| ≡ 0 mod k, which is impossible. Thus, i = m. Moreover,
|x| ≡ k − 1− f1,m mod k. Since 0 is always forbidden in v, we can represent Fq

as {0, . . . i, j, . . . , k − 1} for some 0 ≤ i < j ≤ k − 1. Then by lemma 3 we have
Fp = {0, j − i − 1, . . . , k − 1}.

Case 4. Let p = v, q = v. Let i ≡ f1,1 + |x| mod k. Suppose 0 < i < k − 1.
Let � be the number of the position i in the global enumeration. Note that
y = w[� + 1, . . . , � + k − 1] contains ba as a factor, thus y ∈ Sk. It is not hard to
see that the length of the factor of w from the position � + k − 1 to the position
f1,1 − 1 mod k in q is a multiple of k, and this factor belongs to S∗

k . Since the
position f1,1 − 1 mod k is not forbidden in q due to our block representation,
the position i is not forbidden in p. But then |Fp| ≤ |Fq|. Thus, we have either
f1,1 + |x| ≡ 0 mod k or f1,1 + |x| ≡ k − 1 mod k. In the first case by lemma 3
we get |Fp| ≤ |Fq|. In the latter case by lemma 1 the word ak−2 have to be the
prefix of x, which contradicts the fact that p and q are consecutive occurrences.

Now assume that p = v, q = u, and they overlap. If there exists i such
that fi,1 > 2 then by lemma 1 applied to position fi,1 in q we have fi,1 − 2 �∈
Fp. Therefore, lemma 4 implies |Fp| ≤ |Fq|. Note that, f1,1 �= 0, otherwise by
lemma 2 position k−1 ∈ Fq, which contradicts our block representation. Hence,
for all i we have fi,1 ∈ {1, 2}. It immediately implies that n = 1. If f1,j = 2 for
some j then by lemma 4 we get that f1,j − 2 is equal to 0 and |Fp| ≤ |Fq|. Thus
Fq = {1} and Fp = {0, k − 1}.

Lemma 5. Let p and q be two consecutive occurrences of u in a word w, Fp

and Fq be the corresponding sets of forbidden positions. If Fq = {0, i, . . . , k − 1}
and |Fp| = |Fq|, then Fp = Fq.

Proof. If i = 1, then the statement of lemma obviously holds true. So we may
assume i > 1. Let pxq be the factor of w. Then by lemma 3 we have Fp ⊆
{0, |x| mod k, i + |x| mod k, i + 1 + |x| mod k, . . . , k − 1 + |x| mod k}. We
aim to show that the position i + |x| mod k �∈ Fp. Suppose i = 2, and i + |x|
mod k ∈ Fp. Then by lemma 1 we must have bk−2 as a suffix of x. But then
we have overlapping occurrences of v and u, which contradicts the fact that
p and q are consecutive occurrences. So we may assume i > 2. We see that
neither condition (i) nor (ii) of lemma 1 applied to the position i is satisfied.
Therefore, in this case we also have i + |x| mod k �∈ Fp. Thus in order to
have |Fp| = |Fq|, it is necessary that 0 ∈ Fp and j + |x| �≡ 0 mod k for all
i+1 ≤ j ≤ k. Lemma 2 implies k−1 ∈ Fp. It means that j + |x| ≡ k−1 mod k
for some i + 1 ≤ j ≤ k. It is straightforward that j = k, |x| ≡ k − 1 mod k and
Fp = {0, i, i + 1, . . . , k − 1} = Fq.

Lemma 6. Let p and q be consecutive occurrences of v and u respectively in
a minimal uncompletable word w. Let Fp and Fq be the corresponding sets of

On Non-complete Sets and Restivo’s Conjecture 247

forbidden positions. If Fq = {0, i, . . . , k − 1} and |Fp| = |Fq|, then these occur-
rences overlap and Fp = {0, i− 1, . . . , k − 2}.
Proof. If i = 1, then trivially w is not a minimal uncompletable word, so i > 1.
Suppose p and q do not overlap, so there exists x such that pxq is a factor of w.
By lemma 3 we have Fp ⊆ {0, |x| mod k, i+|x| mod k, i+1+|x| mod k, . . . , k−
1 + |x| mod k} and from lemma 1 it follows that either i + |x| mod k /∈ Fp or
i + |x| ≡ 0 mod k. Moreover, if j + |x| ≡ 0 mod k for some i + 1 ≤ j ≤ k,
then we immediately get |Fp| < |Fq|. So we may assume that j + |x| �≡ 0 mod k
for all i + 1 ≤ j ≤ k. First let |x| > k − (i + 1). Then by lemma 1 if position
i + 1 + |x| mod k is forbidden in p, then either i + 1 + |x| ≡ 0 mod k or
i + 1 + |x| ≡ k − 1 mod k. The first case contradicts our assumption. In the
latter case x = ak−2x′, but this contradicts the fact that p and q are consecutive
occurrences. Thus, both cases are impossible. So 0 ≤ |x| ≤ k − (i + 1), but then
we have i+1 ≤ j = k−|x| ≤ k. It means that j mod k is a forbidden position in
q and j+|x| ≡ 0 mod k, which again contradicts our assumption that j+|x| �≡ 0
mod k for all i+1 ≤ j ≤ k. Therefore occurrences p and q overlap. By lemmas 1
and 4 we get Fp = {0, i− 1, . . . , k − 2}.
Lemma 7. Let p and q be two consecutive occurrences of v in a minimal un-
completable word w, and let Fp and Fq be the corresponding sets of forbidden
positions. If Fq = {0, i, . . . , k − 2} then |Fp| < |Fq|.
Proof. Consider the factor pxq of w. By lemma 3 we get Fp ⊆ {0, |x| mod k, i+
|x| mod k, i + 1 + |x| mod k, . . . , k − 2 + |x| mod k}. We are going to show
that |x| mod k is not forbidden in p. From lemma 1 it trivially follows that the
position |x| mod k ∈ Fp if either |x| ≡ 0 mod k or |x| ≡ k − 1 mod k. The
first case contradicts minimality of w, for we would have Fp = Fq. In the latter
case by the same lemma we conclude x = ak−2x′, which contradicts the fact
that p and q are consecutive occurrences. Similar arguments can be applied to
i + |x| mod k. Namely, if i + |x| ≡ k − 1 mod k, then again x = ak−2x′, a
contradiction. So either i + |x| ≡ 0 mod k or i + |x| mod k /∈ Fp. In both cases
we have |Fp| < |Fq|.
Lemma 8. Let p and q be consecutive occurrences of u and v respectively in a
word w. Let Fp and Fq be the corresponding sets of forbidden positions, and let
|Fp| = |Fq|. If Fq = {0, i, . . . , k − 2} with i > 1 and Fp = [f1,1, . . . , f1,m], then
either Fp = {0, 1, i + 2, i + 3, . . . , k − 1} or Fp = {0, i + 1, i + 2, . . . , k − 1}.
Proof. Consider the factor pxq of w. By lemma 3 we get Fp ⊆ {0, |x| mod k, i+
|x| mod k, i+1+ |x| mod k, . . . , k−2+ |x| mod k}. Arguing as in case 3 of the
theorem 3 we easily obtain that either |x| mod k /∈ Fp or i + |x| mod k /∈ Fp.
Suppose that position |x| mod k is not forbidden in Fp. Since |Fp| = |Fq| it is
necessary that 0 ∈ Fp, therefore k−1 is also in Fp by lemma 2. Every i ≤ j ≤ k−3
satisfies j + |x| �≡ k − 1 mod k, since otherwise we would have j + 1 + |x| ≡ 0
mod k, which would imply |Fp| < |Fq|. Therefore, k − 2 + |x| ≡ k − 1 mod k,
whence |x| ≡ 1 mod k and Fp = {0, i+1, . . . , k− 1}. Assume now that position

248 V.V. Gusev and E.V. Pribavkina

i + |x| mod k /∈ Fp. Following the same argument as in the previous case, we
get k − 1 ∈ Fp and either |x| ≡ k − 1 mod k or k − 2 + |x| ≡ k − 1 mod k.
In the first case Fp = {0, i, . . . , k − 3, k − 1}, and it has more than one block of
consecutive forbidden positions, which contradicts the statement of lemma. In
the latter case |x| ≡ 1 mod k and Fp = {0, 1, i + 2, . . . , k − 1}.

Theorem 4. The length of a minimal uncomletable word for Sk is at least 5k2−
17k + 13 for k ≥ 4.

Proof. Let w be an arbitrary minimal uncomletable word for Sk. By theo-
rem 2 the word u is a prefix of w and v is its suffix. Note that, we have
Fu = {0, 1, . . . , k − 1} and Fv = {0} in the aforementioned occurrences of u
and v.

If s and t are two consecutive occurrences from {u, v} such that |Fs| > |Ft|,
then we say that s is an increasing occurrence. Recall that by lemma 3 it means
that |Fs| = |Ft|+ 1. Since there is only one forbidden position in the last occur-
rence of v in w and k forbidden positions in the first occurrence of u, there must
be at least k − 1 increasing occurrences in w. Now we are going to estimate the
length of a factor between two consecutive such occurrences. Consider a factor
pxq of w such that p and q are the only increasing occurrences inside this factor.
Note that, for an occurrence r ∈ {u, v} in pxq, different from p and q (if any),
|Fr| = |Fq|. Otherwise p and q are not consecutive increasing occurrences.

Let 3 ≤ |Fq| < |Fp| ≤ k. Since q is an increasing occurrence and |Fq| ≥ 3 by
theorem 3 we must have q = u and Fq = {0, i, . . . , k − 1}. Analogously, p = u
and Fp = {0, i − 1, . . . , k − 1}. Moreover, p and q are not the only occurrences
from {u, v} in pxq. Assume first i > 2, i.e. |Fp| < k.

Suppose that there is only one occurrence r ∈ {u, v} in pxq different from p
and q. Then from lemma 5 it follows that r = v and since |Fr| = |Fq|, applying
lemma 6 we obtain Fr = {0, i − 1, . . . , k − 2}. But then since i > 2 the set Fr

does not have the form required by theorem 3 for the condition |Fp| > |Fr| to
hold true.

Assume now that r1, r2 ∈ {u, v} are the two occurrences in pxq different from
p and q. By the same argument as above r2 = v and Fr2 = {0, i− 1, . . . , k − 2}.
If r1 = u, then on the one hand by theorem 3 it should be Fr1 = {1, 2, . . . , k −
i + 1}. On the other hand by lemma 8 position 0 have to be forbidden in Fr1 ,
a contradiction. If r2 = v, then by lemma 7 we have |Fr1 | < |Fr2 |, which is
impossible. So there are at least three occurrences of words from {u, v} in pxq
except p and q.

Suppose that r1, r2, r3 ∈ {u, v}. As we have already seen before r3 = v and
Fr3 = {0, i − 1, . . . , k − 2}. It immediately follows from lemma 7 that r2 = u.
Then Fr2 is either {0, 1, i+1, i+2, . . . , k−1} or {0, i, i+1, . . . , k−1} by lemma 8.
The latter case contradicts minimality of w, since we would have |Fr2 | = |Fq|.
Assume r1 = u, then by theorem 3 we have Fr1 = {1, 2, . . . , k − i + 1}. Let
r1yr2 be a factor of pxq. Note that, 0 /∈ Fr1 and by lemma 1 position i + 1 + |y|
mod k /∈ Fr1 . Thus |Fr1 | < |Fr2 |, a contradiction. Therefore r1 = v. This case is
possible and exactly this situation takes place in the word presented in theorem 1.

On Non-complete Sets and Restivo’s Conjecture 249

Now we are going to estimate the length of x in this case. By lemma 6 the
factor r3 overlaps with q, so we can factorize x in the following way: either
x = y1r1y2r2y3b

k−2 or, if r1 and r2 overlap, x = z1b
k−1ak−1z2b

k−2. By the proof
of lemma 8, since Fr2 = {0, 1, i + 1, i + 2, . . . , k − 1}, we have |y3| ≡ |z2| ≡ 1
mod k. Let us first estimate the length of z1. Since r1 and r2 overlap, lemma 4
implies Fr1 = {0, i, i + 1 . . . , k − 1}. Then by theorem 3 there are k − 1 mod k
letters between p and r1, thus |z1| ≡ k − 1 mod k. So in this case we have
|x| ≥ 4k−4. Now let us assume that r1 and r2 are not overlapping. By theorem 3
the factor r1 must have only one block of consecutive forbidden positions. By
lemma 3 we have Fr1 ⊆ {0, i+1+ |y2| mod k, i+2+ |y2| mod k, . . . , k−1+ |y2|
mod k, |y2| mod k, |y2| + 1 mod k}. Note that, by lemma 1 either i + 1 + |y2|
mod k /∈ Fr1 or i+1+ |y2| ≡ 0 mod k. So for the set Fr1 to have only one block
of consecutive forbidden positions and the same cardinality as Fr2 we must have
either 1 + |y2| ≡ k − 1 mod k or i + 2 + |y2| ≡ 1 mod k. In the first case we
have |y2| ≡ k − 2 mod k and Fr1 = {0, i, i + 1, . . . , k − 1}, but this is the same
as in the case of overlapping occurrences r1 and r2, so this is impossible in a
minimal uncompletable word. In the second case we have |y2| ≡ k− i−1 mod k
and Fr1 = {0, 1, 2, . . . , k − i}. Then by theorem 3 we conclude that |y1| ≡ i − 1
mod k. Therefore in this case we have |x| ≥ 4k − 3.

It is not hard to see that, if there are more than 3 occurrences from {u, v}
different from p and q in pxq, then even if some of them overlap, the total length
of the word x is at least 4k − 4. So we conclude that |x| ≥ 4k − 4. Note that,
|x| = 4k − 4 for the word from theorem 1.

Now let i = 2, i.e. Fp = {0, 1, . . . , k − 1} and Fq = {0, 2, 3, . . . , k − 1}. Ar-
guing as above, by lemmas 5 and 6 there is an occurrence r = v just before
q, overlapping with q and Fr = {0, 1, . . . , k − 2}. If this is the only occur-
rence and pxq = pybk−2q, then by theorem 3 we have |y| ≡ 1 mod k and
Fp = {0, 1, . . . , k−1}, so here we have |x| ≥ k +1. More occurrences from {u, v}
inside pxq will obviously give a longer factor x.

The previous argument implies that any minimal uncompletable word has
prefix pybk−2q with p = q = u and |y| ≡ 1 mod k. From the symmetry property
observed in theorem2 we deduce that any minimal uncompletable word has suffix
q′ak−2ŷp′ with p′ = q′ = v and |ŷ| ≡ 1 mod k. Clearly Fp′ = {0}. To calculate
Fq′ note that, there is an occurrence r = u overlapping with q′ and Fr = {1}.
From theorem 3 we deduce that q′ is an increasing occurrence and Fq′ = {0, k−
1}. Let p be the next increasing occurrence. If |Fp| = 3, then the same theorem
implies that p = u, Fp = {0, k − 2, k − 1} and there are at least k − 1 letters
between p and q′. If |Fp| ≤ 2, then we would obviously require at least k letters
between q′ and an increasing occurrence with three forbidden positions.

Thus to increase the number of forbidden positions from 1 in the suffix v of
w to 2 we need at least k− 1 letters; from 2 to 3 – at least k− 1; from � to � + 1
for 3 ≤ � ≤ k − 2 we need at least 4k − 4 letters, and finally, from k − 1 to k

250 V.V. Gusev and E.V. Pribavkina

we need k − 1 letters. Besides we have at least k − 1 increasing occurrences and
the suffix v of w with only one forbidden position. Thus the length of a minimal
uncompletable word is at least 3(k − 1) + (4k − 4)(k − 4) + k(k − 1) + k =
5k2 − 17k + 13.

5 Conclusion

The series of sets Sk was found during exhaustive computational experiment.
We searched for maximal with respect to inclusion non-complete sets among
all the subsets of Σ≤3; we were interested in such sets having longest possible
minimal uncompletable word. We have found two extreme sets up to renaming
letters and taking mirror image. Namely, S3 =

(
Σ3 \ {baa, bba})∪(Σ2 \ {aa, bb})

and
(
Σ3 \ {baa, bba})∪ (

Σ2 \ {ab, ba}). Computation was based on representa-
tion of a set S∗ as a flower automaton and on the fact that S is non-complete
if and only if the corresponding non-deterministic automaton is synchronizing.
Moreover, the set of uncompletable words coincides with the language of syn-
chronizing words, see [1] and [4] for more details. The same task for k = 4
was unfeasible for a typical laptop, so the search was performed with restriction
|Σ4 ∩ S| ≥ 11. There is only one extreme non-complete set up to renaming let-
ters and taking mirror image in this class. Namely,

(
Σ4 \ {aabb, abaa, abbb}) ∪(

Σ3 \ {aba, bba, bbb}). The length of a minimal uncompletable word for this ex-
ample is 31 compared to 25 for the set Sk. So Sk is not optimal even for k = 4.
Thus, the lower bound 5k2− 17k+13 is likely to be improved. Nevertheless, the
most interesting question whether the tight bound is quadratic remains open.

References

1. Berstel, J., Perrin, D., Reutenauer, C.: Codes and automata. Cambridge University
Press, Cambridge (2009)

2. Fici, G., Pribavkina, E., Sakarovitch, J.: On the Minimal Uncompletable Word Prob-
lem. In: CoRR (2010), http://arxiv.org/abs/1002.1928

3. Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge
(1997)

4. Pribavkina, E.V.: Slowly synchronizing automata with zero and incomplete sets. In:
CoRR (2009), http://arxiv.org/abs/0907.4576

5. Rampersad, N., Shallit, J., Xu, Z.: The computational complexity of universality
problems for prefxes, suffixes, factors, and subwords of regular languages. In: CoRR
(2009), http://arxiv.org/abs/0907.0159

6. Restivo, A.: Some remarks on complete subsets of a free monoid. Quaderni de ”La
ricerca Scientifica”, CNR Roma 109, 19–25 (1981)

http://arxiv.org/abs/1002.1928
http://arxiv.org/abs/0907.4576
http://arxiv.org/abs/0907.0159

Self-organization in Cellular Automata:

A Particle-Based Approach

Benjamin Hellouin de Menibus1 and Mathieu Sablik2

1 Laboratoire d’Informatique Fondamentale,
Université de Provence, Marseille, France

benjamin.hellouin-de-menibus@ens-lyon.fr
2 Laboratoire d’Informatique Fondamentale,

Université de Provence, Marseille, France
sablik@latp.univ-mrs.fr

Abstract. For some classes of cellular automata, we observe empiri-
cally a phenomenon of self-organization: starting from a random con-
figuration, regular strips separated by defects appear in the space-time
diagram. When there is no creation of defects, all defects have the same
direction after some time. In this article, we propose to formalise this phe-
nomenon. Starting from the notion of propagation of defect by a cellular
automaton formalized in [Piv07b, Piv07a], we show that, when iterating
the automaton on a random configuration, defects in one direction only
remain asymptotically.

1 Introduction

Cellular automata (CA) were introduced by J. von Neumann and S. Ulam as
simplified models of biological systems which can exhibit self-reproduction and
universal computation. A cellular automaton is a complex system defined by a
local rule which acts synchronously and uniformly on the configuration space.
These simple models have a wide variety of dynamical behaviours.

A first empirical classification was suggested by S. Wolfram [Wol84]. He in-
troduced four behaviour classes and we are interested in the fourth one: “The
fourth class of cellular automata exhibits still more complicated behaviour [...].
Even starting from disordered or random initial configurations, cellular automata
evolve to generate characteristic patterns. Such self-organizing behaviour occurs
by virtue of the irreversibility of cellular automaton evolution.” Indeed, for some
cellular automata, starting from a random configuration we observe the emer-
gence and the persistence of homogeneous regions separated by particles which
propagate and sometimes collide over time (see Fig. 1).

The persistence of these regions under the action of a CA was studied em-
pirically [Wol84, BNR91, HC97] and theoretically [Elo94]. M. Pivato proposed
a general formalism to describe this phenomenon: regions are characterized by
a subshift Σ and particles are defects in a configuration of Σ. In particular, he
develops some invariants to characterize the persistence of a defect [Piv07b] and
he describes the different dynamics of propagation of a defect [Piv07a].

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 251–263, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

252 B.H. de Menibus and M. Sablik

Rule 184 (trafic rule) Rule 54

3-state cyclic CA 4-state cyclic CA

5-state cyclic CA One-sided captive such that f(ab)=f(ba)

Fig. 1. Space-time diagrams of some cellular automata starting from a random
configuration

To explain the emergence of a particular subshift when starting from a con-
figuration chosen randomly according to a measure μ, P. Kůrka and A. Maass
introduced the μ-limit set, which is the subshift whose forbidden patterns are
exactly those for which the probability to appear tends to zero as time tends
to infinity [KM00]. This set corresponds to the configurations observed when a
random configuration is iterated. The μ-limit set of an arbitrary CA is difficult
to compute: for example, it is undecidable to determine if it contains only one
configuration [BPT06]. In order to compute it in some given cases, P. Kůrka
suggests an approach based on particle weight function which assigns weights to
certain words [Kůr03]. However, this method does not explain why some defects
remain in the μ-limit set.

In this article we combine the notions of defect of a subshift Σ and μ-limit
set to explain how structures can emerge from interactions of defects. More
precisely, we show that for a subshift Σ such that defects have good collision
properties, only defects in one particular direction can remain in the μ-limit set
for a given σ-ergodic measure μ. In the last section, we show that this theorem
can be applied to different cellular automata, thus explaining the behaviours
observed in the examples shown in Fig. 1.

Self-organization in Cellular Automata: A Particle-Based Approach 253

2 Definitions

2.1 Configurations and Cellular Automata

Let A be a finite alphabet. We consider the spaces A∗ = ∪n∈NA[0,n] of finite
words and AZ of bi-infinite configurations. For n ∈ N, u ∈ A∗, a ∈ AZ, we write
u �n a for a[n,n+|u|−1] = u and u � a for ∃n, u �n a. The product topology on
AZ is metrizable with the Cantor metric on AZ defined by d(a, b) = 2−Δ(a,b),
where Δ(a, b) = min{|z| : z ∈ Z and az �= bz}. For u ∈ A∗ and m ∈ Z, we define
the cylinder [u]m = {a ∈ AZ : u �m a}, if m = 0 we denote [u] = [u]0. Cylinders
are clopen sets and a base for the Cantor topology. If U ⊆ A∗, we also note
[U]m =

⋃
u∈U [u]m ⊆ AZ which is a borelian and [U] = [U]0.

The shift function σ : AZ → AZ is defined by (σ(a))v = av+1 for all v ∈ Z.
The language of a set Σ ⊆ AZ is L(Σ) = {u ∈ A∗ : ∃x ∈ Σ, u � x}. Also, we
note Lr(Σ) = L(Σ) ∩ A[0,r−1]. A subset Σ ⊆ AZ is a subshift if it is closed for
Cantor topology and σ-invariant (i.e. σ(Σ) ⊆ Σ). In particular, Σ is a subshift
of finite type (SFT) if there is an order r > 0 such that Σ is entirely defined by
Lr(Σ), in the sense that Σ = {a ∈ AZ : ∀z ∈ Z, a[z,z+r−1] ∈ Lr(Σ)}. A subshift
is transitive if there exists an a ∈ Σ such that the orbit {σz(a)}z∈N is dense in
Σ. For a word u ∈ A∗, we note ∞u∞ the σ-periodic configuration of period |u|
such that (∞u∞)[0,|u|−1] = u.

A cellular automaton is a continuous function F : AZ → AZ which commutes
with σ. Equivalently [Hed69], F is defined by a local rule f : ABr → A such that
F (a)z = f(az+Br) (r is the radius of the automaton) where Br = [−r, r]. We
study the action of F on AZ, and especially the values of (Fn(x))n∈N for some
initial configuration x, which we represent as a space-time diagram.

2.2 Measures and Density of Configuration

We consider probability measures on the borelians of AZ, noted M(AZ). For
some property P , if μ({x ∈ AZ : P (x)}) = 1, we say that P is true for μ-almost
all x.

A probability measure μ is σ-invariant if for any borelian set X , we have
μ(σ(X)) = μ(X). A probability measure μ is σ-ergodic if it is σ-invariant and
if for any σ-invariant borelian X ⊆ AZ (i.e. σ(X) ⊆ X) one has μ(X) = 0 or
1. We call Mσ(AZ) and Merg

σ (AZ), respectively, the set of σ-invariant measures
and the set of σ-ergodic measures. Of course Merg

σ (AZ) ⊂ Mσ(AZ) ⊂ M(AZ).
For a configuration a ∈ AZ, we define the Dirac measure as δa(U) = 1 if

a ∈ U and 0 if not for any borelian U . We also define the Bernoulli measure μ
associated at a sequence (pa)a∈A (which verifies

∑
a∈A pa = 1) as μ([u]0) =

pu0pu1 · · · pu|u|−1 . The action of F on a probability measure μ is Fμ(X) =
μ(F−1(X)) for any borelian X . Thus we obtain a function F : Mσ(AZ) →
Mσ(AZ), with F (Merg

σ (AZ)) ⊆ Merg
σ (AZ).

254 B.H. de Menibus and M. Sablik

Define the density of U ⊆ Z as dU = lim sup 1
2n+1 |U ∩ Bn|. For a set U ⊆ A∗

and a ∈ AZ denote U(a) = {n ∈ Z : ∃u ∈ U, u �n a} ⊆ Z the set of positions of
U in a. For μ ∈ Merg

σ (AZ) and if U is a finite set of words, the Birkhoff ergodic
theorem [Wal00] applied to characteristic functions of cylinders can be restated
in terms of density:

For μ-almost all a ∈ AZ, dU (a) = dU(a) = lim sup
n→∞

1
2n + 1

|U(a) ∩ Bn| = μ([U]).

Moreover, we also have for any two open sets A and B:

1
N

N∑
k=0

μ(A ∩ σ−k(B)) −→
N→∞

μ(A) · μ(B)

2.3 Limit and μ-Limit sets

The study of self-organization leads to an interest in the behaviour of the cellular
automaton when time tends to infinity. The set of configurations which appear
infinitely often is the limit set of F defined by Ω(F) =

⋂∞
n=0 Fn(AZ). This set

can be viewed as the largest attractor: a closed set A is an attractor if there
exists an open set X such that F (X) ⊂ X and A =

⋂∞
n=0 Fn(X) [Hur90a].

However, these topological notions do not capture the empirical point of view
where the initial configuration is randomly chosen according to a measure μ.
That is why the notion of μ-attractor is introduced by [Hur90b]: for μ ∈ Mσ(AZ),
a closed set A is a μ-attractor if A is an attractor of X and μ(X) > 0. As dis-
cussed in [KM00] with many examples, this notion is not satisfactory empirically
and the authors introduced the notion of μ-limit set. It corresponds to the con-
figurations whose subwords are actually observed in simulations:

Λμ(F) =
{

x ∈ AZ : ∀u � x, Fnμ([u]0) �−→
n→+∞

0
}

.

3 Defects

In this section, we recall the formalism introduced in [Piv07b, Piv07a] to describe
defects with respect to a subshift Σ, and we introduce a formalism to study their
dynamics under the action of a cellular automaton. More precisely, we focus our
study on interfaces and dislocations.

3.1 General Definitions

The defect field of a ∈ AZ with respect to a subshift Σ is defined for all z ∈ Z

by FΣ
a (z) = max

{
r ∈ N : az+[−� r−1

2 �,� r
2 �] ∈ Lr(Σ)

}
where the result is possibly

0 or ∞ if the set is empty or infinite. Intuitively, this function returns the size

Self-organization in Cellular Automata: A Particle-Based Approach 255

of the largest admissible word centered on a cell. The set of defects DΣ(a) is the
set of local minima of FΣ

a . The successor of d ∈ DΣ(a) is sDΣ(a)(d) = min{z ∈
DΣ(a) : z > d}, and the interval [d+1, sDΣ(a)(d)] is a homogeneous region in the
sense that a[d+1,s

DΣ(a)(d)] ∈ L(Σ). If there is no ambiguity, we write D and s(d).
If Σ is a SFT of order r, any defect d of a satisfies Fa(d) ≤ r, thus this notion

can be extended to finite words of size ≥ r except for the first r−1
2 � and last

 r
2� cells. Thus for a word u ∈ A[0,n−1], we have D(u) ⊆ [r−1

2 �;n − 1 − r
2�].

The examples given in Fig. 1 suggest that, in each case, defects can be clas-
sified according to their behaviour in two ways:

– Regions correspond to different subshifts and defects behave according to
their surrounding regions (interfaces - e.g. cyclic automaton);

– Regions correspond to the same periodic subshift and defects correspond to
a “phase transition” (dislocations - e.g. rule 184 automaton).

3.2 Interfaces

We now assume that the subshift Σ can be decomposed as a disjoint union
Σ1 � · · · � Σn of σ-transitive SFT. Since the different domains (Σk)k∈[1,n] are
disjoint SFTs, Σ is also an SFT, and there is some α > 0 such that u ∈ Lα(Σ) ⇔
∃!k, u ∈ L(Σk): we say that u belongs to the domain k. Thus, for a configuration
a, we can associate a domain with each homogeneous region [d + 1; s(d)], and
only one choice is possible if s(d) > d + α.

A domain signature is a continuous σ-invariant function κd : AZ → {1 . . . n}Z

that satisfies the following conditions:

– κd(a)z �= κd(a)z+1 only if z ∈ D(a);
– if ∀z ∈ [d + 1, s(d)], κd(a)z = k, then a[d+1,s(d)] ∈ L(Σk).

We can classify interfaces according to the domain signatures of the surround-
ing regions: we write Dκd

i,j(a) = {d ∈ D(a) : κd(a)d = i, κd(a)d+1 = j}. It is
possible to define those sets for finite words except for the first α− 1 and last α
cells.

1

7

1

5

1

3

1

1

0

2

0

4

0

5

0

3

0

1

2

2

2

4

2

6

2

8Fa

κd(a)

.

Fig. 2. Interfaces between monochromatic domains

3.3 Dislocations

Let Σ be a σ-transitive SFT of order r > 1. We say that Σ is P -periodic if there
exists a partition V1, . . . , VP of Lr−1(Σ) such that a1, . . . , ar ∈ Lr(Σ) if and only
if there exists i ∈ Z/PZ such that a1, . . . , ar−1 ∈ Vi and a2, . . . , ar ∈ Vi+1. The
period of Σ is the maximal P ∈ N such that Σ is P -periodic.

256 B.H. de Menibus and M. Sablik

We thus associate to each a ∈ Σ its phase ϕ(a) ∈ Z/PZ such that a[0,r−2] ∈
Vϕ(a). Obviously, ϕ(σk(a)) = ϕ(a)+k. For a ∈ AZ, we say that the homogeneous
region [d+1, s(d)] is in phase k if ∃b ∈ Σ,ϕ(b) = k, a �d+1 b. If s(d) > d+ r−2,
the phase is unique and corresponds to a[d+1,d+r−1] ∈ Vk+d+1.

A phase signature κϕ : AZ → (Z/PZ)Z is a continuous function that satisfies:

– κϕ(a)z �= κϕ(a)z+1 only if z ∈ D(a);
– if ∀z ∈ [d + 1, s(d)], κϕ(a)z = k, then ∃b ∈ Σ,ϕ(b) = k and a[d+1,s(d)] �d+1 b

– κϕ(σ(a))z = κϕ(a)z + 1

When s(d) > d + r − 2, the second condition is equivalent to κϕ(a)z =
ϕ(a[d+1,d+r−1])+d+1 and shows that the phase signature is defined locally. Since
we want our classification of defects to be σ-invariant, and considering the last
condition, we define D

κϕ

i,j (a) = {d ∈ D(a) : κϕ(a)d +d = i, κϕ(a)d+1 +d+1 = j}.
These sets can be extended to defects in finite words except for the first r − 2
and last r − 1 cells.

1

7

1

5

1

3

1

1

0

2

0

4

0

6

0

5

0

3

0

1

1

2

1

4

1

6

1

8Fa

κd(a)

.

Fig. 3. Dislocations in the checkerboard subshift

3.4 Dynamics

We now consider the general case: assume that Σ can be decomposed into disjoint
transitive SFTs Σ1 � · · · �Σn of respective periods P1 . . . Pn (possibly 1). More-
over, we suppose that the Σi are F -invariant to give sense to the notion of dynam-
ics of defects. κ = (κd, κϕ) : AZ → SZ, where S = {(i, x) : i ∈ [1;n], x ∈ Z/PiZ}
is a generalized signature if κd and κϕ respect the conditions of sections 3.2
and 3.3, respectively. We classify the defects according to the signature of the
surrounding phases D =

⋃
s1,s2∈S Ds1,s2 and there is some α such that we can

extend this classification to finite words except for the first and last α cells.
To describe the dynamics of defects, we study the evolution from D(a) to

D(F (a)) for a ∈ AZ. An interpretation of the action of F on a configuration
a ∈ AZ is a function ψa : D(a) → I(D(F (a))), where I(U) is the set of intervals
of U, that satisfies:

Locality ∀d ∈ D(a), ∀d′ ∈ ψa(d), |d′ − d| ≤ r;
Growth If d1 < d2∈D(a), then ψa(d1)=ψa(d2) or max(ψa(d1)) < min(ψa(d2))

(where max ∅ = −∞ and min ∅ = ∞).
Surjectivity D(F (a)) =

⋃
d∈D(a) ψa(d).

Equivalently, an interpretation is a decomposition of D(a) and D(F (a)) into
disjoint “increasing” intervals Ik and I ′k (k ∈ Z) of size ≤ 2r + 1, satisfying
locality (we have ψa(Ik) = I ′k). We distinguish different situations:

Self-organization in Cellular Automata: A Particle-Based Approach 257

a

F (a)

. . .

. . .

ψa

∈ Ddis ∈ Dcol ∈ Dcol ∈ Ddis

∅

. . .

. . .

Fig. 4. An interpretation for the 3-state cyclic automaton

�����|Ik|
|I ′k| 1 > 1 0

1 displacement explosion (destructive)
> 1 collision collision collision

Thus, we decompose D(a) into Ddis(a) � Dcol(a) � Dexpl(a). If we have a set
of interpretations (ψa)a∈AZ , we consider the iterated interpretation ψ2

a : d →⋃
d′∈ψa(d) ψF (a)(d′), which is an interpretation for F 2, and it extends to n > 2.
An interpretation ψa is coalescent if it contains only displacements (|Ik| =

|I ′k| = 1) and decreasing collisions (|Ik| > |I ′k|). In this case, a defect d ∈ Ds1,s2(a)
has speed (p, q) ∈ Z×N∗ if ∀k < q, ψk

a(d) ⊆ Ddis(F k(a)) and ψq
a(d) = {d + p} ⊆

Ds1,s2(F
k(a)). An interpretation ψa respects a velocity function V : S2 → Z×N∗

if for any s1, s2 ∈ S and any d ∈ Ds1,s2(a), writing V (s1, s2) = p
q , either ψk

a(d) ⊆
Dcol(F k(a)) for some k < q, or d has speed V (s1, s2). The order of a velocity
function is the least common multiple of the q appearing in the image of V .

4 A Step towards Self-organization

Proposition 1. Let F be a CA, Σ = Σ1 � · · · � Σn a decomposition into F -
invariant SFTs, κ a signature, a ∈ AZ and ψa a coalescent interpretation. Then,

1. dD(F (a)) ≤ dD(a) − 1
2r+1dDcol

(a);
2. if ψa respects V of order q, dDs1,s2

(F q(a)) ≤ dDs1,s2
(a)+

∑q
k=0 dDcol

(F k(a)).

Proof (of 1). By surjectivity and locality,

∀n ∈ N, D(F (a)) ∩ Bn ⊆ ψa(D(a) ∩ Bn+r).

Besides, |ψa(Ddis(a) ∩ Bn+r)| = |Ddis(a) ∩ Bn+r |, and |ψa(Dcol(a) ∩ Bn+r)| ≤
2r

2r+1 |ψ−1
a (ψa(Dcol(a) ∩ Bn))| ≤ 2r

2r+1 |Dcol(a) ∩ Bn+2r |.
Since the automaton is coalescent, there is no defect in explosion. Therefore,

we have ∀n ∈ N, |D(F (a)) ∩ Bn+r| ≤ |Ddis(a) ∩ Bn+r | + 2r
2r+1 |Dcol(a) ∩ Bn+2r |,

and we conclude by passing to the upper limit. ��
Proof (of 2). We only prove the case q=1. Again,

∀n ∈ N, Ds1,s2(F (a)) ∩ Bn ⊆ ψa(D(a) ∩ Bn+r).

258 B.H. de Menibus and M. Sablik

If d ∈ Ddis(a) and ψa(d) ∈ Ds1,s2(F (a)), we have d ∈ Ds1,s2(a) since ψa respects
V . Since D(a) = Ddis � Dcol, we conclude by passing to the upper limit. ��

Theorem 1 (Main result). Let F be a CA, Σ = Σ1 � · · · � Σn a decompo-
sition into σ-transitive F -invariant SFTs, κ a signature and (ψa)a∈AZ a set of
coalescent interpretations that respect a velocity function V .

Then for all μ ∈ Merg
σ (AZ), there is a speed v ∈ Q such that

∀s1, s2 ∈ S, ∀a ∈ Λμ(F), Ds1,s2(a) �= ∅ ⇒ V (s1, s2) = (p, q) with
p

q
= v.

We only prove the result for velocity functions of order 1; the result can be
easily extended by considering F q. We note V (s1, s2) = p instead of (p, 1). Let
α be the order of Σ and κ a signature, we introduce the following sets of words:

Is1,s2 = {u ∈ A2α+1 : α + 1 ∈ Ds1,s2(u)}
Js1,s2,s3,s4(n) = {u ∈ An+2α+1 : α + 1 ∈ Ds1,s2(u), n + α + 1 ∈ Ds3,s4(u)}

I =
⋃

s1,s2∈S

Is1,s2

It is obvious that for a ∈ AZ, for all s1, s2 ∈ S, dIs1,s2(a) = dDs1,s2(a) (recall that
U is the set of positions of U).

Lemma 1. Under the previous assumptions, let si ∈ S such that V (s1, s2) >
V (s3, s4). Then:

∀a ∈ AZ, ∀n ∈ N, dD(Fn(a)) ≤ dD(a) − 1
4r + 2

dJs1,s2,s3,s4(n)(a).

Proof. For a ∈ AZ, we proceed by induction on n.
• Initialization (n = 1): let x ∈ Js1,s2,s3,s4(1), that is z = x+α+1 ∈ Ds1,s2(a)

and z + 1 ∈ Ds3,s4(a).
Assume that z, z + 1 ∈ Ddis(a): then ψa(z) = z + V (s1, s2) ≥ ψa(z + 1) =

z + 1 + V (s3, s4), which is a contradiction with the growth property. Therefore,
either z or z + 1 is in collision, and dDcol

(a) ≥ 1
2dJs1,s2,s3,s4(1)(a). We conclude

by Proposition 1 (1).
• Heredity (n > 1): we assume the lemma is true for all k < n, and we consider

x ∈ Js1,s2,s3,s4(n), that is z = x + α + 1 ∈ Ds1,s2(a) and z + n ∈ Ds3,s4(a).
Assume that z, z + n ∈ Ddis(a): then ψa(z) = z + V (s1, s2) and ψa(z + n) =

z + n + V (s3, s4), and so x + V (s1, s2) ∈ Js1,s2,s3,s4(k)(F (a)) where k = n −
V (s1, s2) + V (s3, s4) < n. We conclude that z ∈ Dcol(a) or z + n ∈ Dcol(a) or
z, z + n ∈ Ddis(a) and x + V (s1, s2) ∈ Js1,s2,s3,s4(k)(F (a)).

Therefore, we have dJs1,s2,s3,s4 (n)(a) ≤ 2dDcol
(a) + dJs1,s2,s3,s4(k)(F (a)).

Self-organization in Cellular Automata: A Particle-Based Approach 259

If we apply the induction hypothesis,

dD(F k+1(a)) ≤ dD(F (a)) − 1
4r + 2

dJs1,s2,s3,s4 (k)(F (a))

≤ dD(a) − 1
2
dDcol

(a) − 1
4r + 2

dJs1,s2,s3,s4(k)(F (a))

≤ dD(a) − 1
4r + 2

dJs1,s2,s3,s4(k)(a)

Since dD(Fn(a)) ≤ dD(F k+1(a)) (Proposition 1 (1)), we conclude. ��
Proof (of Theorem 1). By Birkhoff’s theorem, we have for almost all a ∈
AZ, Fnμ([I]) = dD(Fn(a)). By prop. 1 (1), (Fnμ([I]))n∈N is decreasing and has
a limit d∞.

First step. Assume ∃si∈S, V (s1, s2) > V (s3, s4) and Fnμ([Is1,s2])·Fnμ([Is3,s4])
�→ 0; let ε > 0 such that ∀n0, ∃n ≥ n0, F

nμ([Is1,s2]) · Fnμ([Is3,s4]) > ε.
Consider n large enough so that (Fnμ([I])) − d∞ < ε

8r+4 and Fnμ([Is1,s2]) ·
Fnμ([Is3,s4]) > ε. Since Fnμ ∈ Merg

σ (AZ), we have:

1
N

N∑
k=0

Fnμ([Is1,s2] ∩ σk([Is3,s4])) −→
N→∞

Fnμ([Is1,s2]) · Fnμ([Is3,s4])

1
N

N∑
k=0

Fnμ([Js1,s2,s3,s4(k)]) −→
N→∞

Fnμ([Is1,s2]) · Fnμ([Is3,s4])

We can choose N large enough so that 1
N

∑N
k=0 Fnμ([Js1,s2,s3,s4(k)]) > ε

2 , so we
have Fnμ([Js1,s2,s3,s4(k0)]) > ε

2 for some k0.
By the preliminary lemma, we have:

∀a ∈ AZ, dD(Fn+k0(a)) ≤ dD(Fn(a)) − 1
4r + 2

dJs1,s2,s3,s4 (k0)(F
n(a))

Fn+k0μ([I]) ≤ Fnμ([I]) − ε

8r + 4

Which is in contradiction with Fnμ([I]) − d∞ < ε
8r+4 .

Second step. Assume ∃si ∈ S such that V (s1, s2) > V (s3, s4) and Fnμ([Is1,s2])
�→ 0, Fnμ([Is3,s4]) �→ 0. Since Fnμ([Is1,s2]) · Fnμ([Is3,s4]) → 0, 0 is an accumu-
lation point of at least one of the sequences. Let ε > 0: w.l.o.g, we can choose n
large enough so that Fnμ([I]) − d∞ < ε

4r+2 and Fnμ([Is1,s2]) ≤ ε
2 .

By applying iteratively proposition 1 (1) and (2), we have

∀a ∈ AZ, ∀k ∈ N, dDs1,s2
(F k(a))−dDs1,s2

(a) ≤ (2r+1) · (dD(a) − dD(F k(a))
)

∀k ∈ N, F kμ([Is1,s2])−μ([Is1,s2]) ≤ (2r + 1) · (μ([I]) − F kμ([I])
)

By applying this to the measure Fnμ, we have:

∀k ∈ N, Fn+kμ([Is1,s2]) ≤
ε

2
+

ε

2

260 B.H. de Menibus and M. Sablik

From which we deduce Fnμ([Is1,s2]) −→
n→∞ 0, a contradiction.

Summary : For all s1, s2, s3, s4 such that V (s1, s2) �= V (s3, s4), Fnμ([Is1,s2]) →
0 or Fnμ([Is3,s4]) → 0. ��

5 Applications

5.1 n-state Cyclic Automaton

The n-state cyclic automaton is a particular captive cellular automaton defined
on the alphabet A = Z/nZ by the local rule

f(ai−1, ai, ai+1) =
{

ai + 1 if ai−1 = ai + 1 or ai+1 = ai + 1
ai otherwise

This automaton was introduced by [Fis90]. In this paper, the author shows
that for all Bernoulli measure μ, the set [i]0 (for i ∈ A) is a μ-attractor iff
n ≥ 5. Simulations starting from a random configuration suggest the following:
for n = 3 or 4, monochromatic regions keep increasing in size; for n ≥ 5, we
observe the convergence to a fixed point where small regions are delimited by
vertical lines. We are going to apply the main result to explain this observation.

We consider the decomposition Σ =
⊔

i∈A Σi where Σi = {∞i∞} of periods
Pi = 1 (no dislocations). Here, κd(a, z) = az and since κϕ = 1, we write κ(a, z) =
i for (i, 1). Defects are exactly transitions between colors, and we define the
velocity function as V (i + 1, i) = (1, 1), V (i, i + 1) = (−1, 1) and V (i, j) = (0, 1)
for i, j ∈ A with i + 1 �= j �= i − 1.

For any a ∈ AZ, we define Dk(a) =
⋃

V (i,j)=(k,1) Di,j(a). We also define for
any a ∈ AZ the function ψa by:

∀d ∈ Dk, ψa(d) =
{ ∅ if ∃d′ ∈ Dk′ , sign(d − d′) �= sign(d + k − (d′ + k′))
{d + k} otherwise

This interpretation corresponds to the behaviour of defects as observed in
simulations. It is straightforward to prove that it is well-defined (that is, it maps
a defect to a interval of defects) and that it satisfies the properties of locality,
growth and surjectivity.

Since no image interval has size bigger than 1, it is coalescent and respects
the velocity function V . By applying the main result, we show that for all μ ∈
Merg

σ (AZ), defects in only one direction remain in the μ-limit set, that is ∃k ∈
{−1, 0, 1}, ∀a ∈ Λμ(F), D(a) = Dk(a).

In particular, for any Bernoulli measure μ, if we consider the “mirror” applica-
tion γ((ai)) = (a−i), we have μ(γ([u])) = μ([u−1]) = μ([u]), where u1 . . . u−1

n =
un . . . u1. But d ∈ D1(a) ⇔ −d ∈ D−1(γ(a)), and conversely; since this is true
for any F kμ, one has D1(a) = D−1(a) = ∅ for all a ∈ Λμ(F). We deduce the
following properties of Λμ for each n-cyclic cellular automaton:

– If n = 3, there is no defect of speed 0. Therefore, one has D(a) = ∅ for
all a ∈ Λμ(F), which means that Λμ(F) = Σ is a set of monochromatic
configurations.

Self-organization in Cellular Automata: A Particle-Based Approach 261

– If n = 4, the result of [Fis90] shows that [i]0 cannot be a μ-attractor for all
i. Thus one has D0(a) = ∅ for all a ∈ Λμ(F), and Λμ(F) = Σ is a set of
monochromatic configurations.

– If n ≥ 5, the result of [Fis90] shows that [i]0 is a μ-attractor for all i. Thus
for some a ∈ Λμ(F) one has D(a) = D0(a) �= ∅. This means that they contain
homogeneous regions separated by vertical lines.

5.2 Automaton #184

On the #184 “traffic” cellular automaton, we consider the defects according
to Σ = {∞(01)∞,∞(10)∞} (checkerboard pattern) with P = 2 (no interfaces).
Since κd = 1, we write κ(a, z) = i for (1, i). If we define the phases ϕ(∞(01)∞) =
0 and ϕ(∞(10)∞) = 1, we can see that κ is unambiguous and that κ(a, z) = 0 if
az = z mod 2, 1 otherwise. We define the velocity function as V (0, 0) = (1, 1)
and V (1, 1) = (−1, 1) (this corresponds to {��} and {��}, respectively).

For any a ∈ AZ, we define ψa by

∀d ∈ D0,0, ψa(d) =
{ ∅ if d + 2 ∈ D1,1

{d + 1} otherwise

And symetrically for d ∈ D1,1(a). Similarly, we can check that this interpretation
is well-defined, respects the properties of locality, surjectivity and growth, is co-
alescent and respects the velocity function V . By applying the previous theorem,
we have for all μ ∈ Merg

σ (AZ) either D0,0(a) = ∅ (checkerboard and monochro-
matic black patterns) or D1,1(a) = ∅ (checkerboard and monochromatic white
patterns).

In particular, for the uniform Bernoulli measure μ, we consider the application
γ′((ai)) = (1 − a−i), and we can see that μ(γ′([u])) = μ([u−1]) = μ([u]), where
u1 . . . un = (1 − u1) . . . (1 − un). But d ∈ D0,0(a) ⇔ −d ∈ D1,1(γ′(a)), and
conversely; therefore, for all a ∈ Λμ(F), D0,0(a) = D1,1(a) = ∅. We deduce that
Λμ(F) is the checkerboard subshift and by σ-invariance, (Fnμ) admits a single
accumulation point 1

2δ∞01∞ + 1
2δ∞10∞ .

5.3 Captive One Sided Cellular Automata

Now consider a captive cellular automaton F : AZ → AZ of neighborhood [0; 1],
which means that the local rule f : A[0;1] → A verifies f(a0a1) ∈ {a0, a1}.
Captive cellular automata were introduced in [The04] and have some interesting
algebraic propeties.

We consider the decomposition Σ =
⊔

i∈A Σi where Σi = {∞i∞} of periods
Pi = 1 (no dislocations). We define the velocity function as V (i, j) = (−1, 1) if
f(ij) = j and V (i, j) = (0, 1) if f(ij) = i, and we define D−1 and D0 as in 5.1.
For all a ∈ AZ, we define:

∀d ∈ D−1(a), ψa(d) =
{ ∅ if d − 1 ∈ D0

{d − 1} otherwise

262 B.H. de Menibus and M. Sablik

and symetrically if d ∈ D0. As in the two previous examples, we can check that
this is well-defined and respects the properties of locality, growth, surjectivity,
coalescence and the velocity function.

Thus, for any σ-ergodic measure μ, Λμ(F) contains defects in one direction
only. If moreover, for all a, b ∈ A, the local rule verifies f(ab) = f(ba) and μ
verifies μ([ab]) = μ([ba]) (e.g. Bernoulli measures), we have Λμ(F) = Σ.

6 Conclusion

In this article we have presented a formalism to link the notion of defect with
respect to a subshift Σ introduced by M. Pivato and the emergence of homo-
geneous regions separated by defects when we iterate a random configuration.
Under some assumptions on the collisions of defects, we proved the only defects
that possibly remain in the μ-limit set all have the same direction. This explains
the behaviour observed in simulations for large classes of cellular automata.

Acknowledgments

The authors are grateful to Guillaume Theyssier for pointing out the problematic
around the captive cellular automata class. We also thank the project ANR
EMC: ANR-09-BLAN-0164 for financial support.

References

[BNR91] Boccara, N., Nasser, J., Roger, M.: Particlelike structures and their interac-
tions in spatiotemporal patterns generated by one-dimensional deterministic
cellular-automaton rules. Phys. Rev. A 44(2), 866–875 (1991)

[BPT06] Boyer, L., Poupet, V., Theyssier, G.: On the Complexity of Limit Sets of
Cellular Automata Associated with Probability Measures. In: Královič, R.,
Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 190–201. Springer,
Heidelberg (2006)

[Elo94] Eloranta, K.: The dynamics of defect ensembles in one-dimensional cel-
lular automata. Journal of Statistical Physics 76, 1377–1398 (1994),
doi:10.1007/BF02187067

[Fis90] Fisch, R.: The one-dimensional cyclic cellular automaton: A system with
deterministic dynamics that emulates an interacting particle system with
stochastic dynamics. Journal of Theoretical Probability 3, 311–338 (1990),
doi:10.1007/BF01045164

[HC97] Hanson, J.E., Crutchfield, J.P.: Computational mechanics of cellular au-
tomata: An example. Physica D: Nonlinear Phenomena 103(1-4), 169–189
(1997)

[Hed69] Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical
system. Theory of Computing Systems 3(4), 320–375 (1969)

[Hur90a] Hurley, M.: Attractors in cellular automata. Ergodic Theory Dynam.
Systems 10(1), 131–140 (1990)

Self-organization in Cellular Automata: A Particle-Based Approach 263

[Hur90b] Hurley, M.: Ergodic aspects of cellular automata. Ergodic Theory Dynam.
Systems 10(4), 671–685 (1990)

[KM00] Kůrka, P., Maass, A.: Limit sets of cellular automata associated to proba-
bility measures. Journal of Statistical Physics 100(5), 1031–1047 (2000)

[Kůr03] Kůrka, P.: Cellular automata with vanishing particules. Fundamenta Infor-
maticae 58, 1–19 (2003)

[Piv07a] Pivato, M.: Defect particle kinematics in one-dimensional cellular automata.
Theoretical Computer Science 377(1-3), 205–228 (2007)

[Piv07b] Pivato, M.: Spectral domain boundaries in cellular automata. Fundamenta
Informaticae 78(3), 417–447 (2007)

[The04] Theyssier, G.: Captive cellular automata. In: Fiala, J., Koubek, V., Kra-
tochv́ıl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 427–438. Springer, Hei-
delberg (2004)

[Wal00] Walters, P.: An introduction to ergodic theory. Springer, Heidelberg (2000)
[Wol84] Wolfram, S.: Computation theory of cellular automata. Communications in

Mathematical Physics 96(1), 15–57 (1984)

Chop Operations and Expressions: Descriptional

Complexity Considerations

Markus Holzer and Sebastian Jakobi

Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany

{holzer,jakobi}@informatik.uni-giessen.de

Abstract. The chop or fusion operation was recently introduced in
[S. A. Babu, P. K. Pandya: Chop Expressions and Discrete Duration
Calculus. Modern Applications of Automata Theory, World Scientific,
2010], where a characterization of regular languages in terms of chop ex-
pressions was shown. Simply speaking, the chop or fusion of two words is
a concatenation were the touching letters are coalesced, if both letters are
equal; otherwise the operation is undefined. We investigate the descrip-
tional complexity of the chop operation and its iteration for deterministic
and nondeterministic finite automata as well as for regular expressions.
In most cases tight bounds are shown. Moreover, we also consider the
conversion problem between finite automata, regular expressions, and
chop expressions. Again, for most conversions we get tight bounds in or-
der of magnitude. It is worth mentioning that regular expressions can be
transformed into equivalent chop expressions of polynomial size, but chop
expressions can be exponentially more succinct than regular expressions.

1 Introduction

Regular languages obey a legion of lovely characterizations. The most prominent
ones are deterministic (DFAs) and nondeterministic finite automata (NFAs), and
regular expressions (REs). Although these models are computationally equiva-
lent, their descriptional complexity may vary significantly. It is well known that
NFAs can offer exponential saving in space compared with DFAs. More precisely,
if A is an n-state NFA, then 2n states are sufficient and necessary in the worst
case for a DFA to accept the language L(A) [21,23,24,25]. For the other conver-
sions, from regular expressions to finite automata a tight bound of n + 1 states
is shown in [10], and for converting NFAs to regular expressions an asymptotic
bound of 2Θ(n) expression size (alphabetic width) is known [8,9,11]. The study of
the descriptional complexity of certain devices is not limited to conversion prob-
lems. From the very beginning of the field of descriptional complexity operation
problems were also investigated. That is, determine how the size of the descrip-
tion changes when applying an (regularity preserving) operation to the accepted
language, staying with the same device type for accepting the new language. For
instance, consider the Kleene star operation. There a tight bound of 3 · 2n−2

states is known for DFAs [29] to accept the Kleene star of a language accepted

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 264–275, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Chop Operations and Expressions: Descriptional Complexity Considerations 265

Table 1. Descriptional complexity result for the chop �, chop-star ⊗, and chop-plus ⊕
operation on deterministic finite automata (DFA), nondeterministic finite automata
(NFA), and regular expressions (RE); all bounds are tight. Here t is the number of
accepting states of the “left” automaton.

Operation DFA NFA RE

� m · 2n − t · 2n−min(|Σ|,n) + 1 m+ n |Σ| · O(n2)

⊗ 2n − 1 + min(|Σ|, n) n+ 2 2Θ(n), for |Σ| = n

⊕ 2n n+ 1 2O(|Σ|) · O(n4)

by an n-state DFA. For NFAs this bound is n + 1 on the number of states [17],
and thus linear, and for regular expressions the operation under consideration is
trivial. Some of these results emphasize even more the difference in descriptional
complexity of certain devices, even if they are computationally equivalent.

Recently, an alternative characterization of regular languages in terms of so
called chop expressions (CEs) was introduced in [1]. These expressions are in-
spired by logic, to be more precise by the duration calculus, which is an interval
logic for real time systems. It was shown that the model checking problem for
the discrete duration calculus can be reduced to so-called (extended) chop ex-
pressions (with tests). Simply speaking a CE is nothing but a RE, where the
operations of concatenation and Kleene star are replaced by the chop operation
and its iterated version. The chop1 or fusion of two words is built by coalescing
the last and first letter of the first and second word, respectively, if these letters
coincide; otherwise the operation is not defined. Thus, the chop operation can
be seen as a generalization of concatenation that allows one to verify whether
the end of a the first word overlaps by a single letter with the beginning of the
second word. The chop operation is well known in the logic community. Vari-
ous other operations that are more or less closely related to the herein studied
chop operation can be found in [4,6,16,19,20,22]. The focus in [1] was more on
the connection to the duration calculus and on the computational complexity of
CEs than on descriptional complexity issues. Nevertheless, a few upper bounds
for conversion problems were shown, namely a linear upper bound for CEs to au-
tomata and an exponential upper bound for the conversion to REs. On the other
hand, it turned out that polynomial size CEs can be build from REs. Whether
these bounds are tight, was left open in [1]. We solve most of these open prob-
lems on the descriptional complexity of chop operations and expressions. Many
upper bounds from that paper turn out to be optimal.

We concentrate on two topics: (i) the operation problem for the chop operation
and its iteration, and (ii) on conversion problems between automata, REs, and
CEs and vice versa. For the operation problem we obtain tight bounds in the
exact number of states for DFAs and NFAs and tight asymptotic bounds for
1 One should not confuse our operation with the chop operation discussed in [26,

Example 8.21, page 181], which deletes the middle letter of a word if its length is
odd, and is not regularity preserving.

266 M. Holzer and S. Jakobi

Table 2. Descriptional complexity results for conversions between (non)deterministic
finite automata (NFA), regular expressions (RE), and chop expressions (CE) and vice
versa. For automata the size is the number of states, while for expressions the mea-
sure of alphabetic width is used (appropriately generalized to chop expressions). For
comparison we have listed also the known conversions between NFAs and REs.

Convert . . . to . . . NFA RE CE

NFA − 2Θ(n), for |Σ| ≥ 2 2O(n), for |Σ| = nO(1)

RE − |Σ| ·O(n2)

CE
Θ(n)

2Θ(n), for |Σ| = n −

REs. The former bounds on finite automata are similar to those bounds for
concatenation, Kleene star, and Kleene plus. The main difference is that for
some chop operations the size of the alphabet is an explicit parameter in some of
our tight bounds. For instance, the chop of two languages over the alphabet Σ
accepted by m- and n-state DFAs, respectively, requires at most m · 2n − t ·
2n−min(|Σ|,n) + 1 states, where t is the number of accepting states of the “left”
automaton, while for NFAs m+n states are sufficient. In both cases these bounds
are tight in the exact number of states. For REs an upper bound of |Σ|·O(n2) for
the chop of two REs is determined. We summarize our results on the operation
problem for chop operations in Table 1. More on the descriptional complexity of
chop operations, in particular on unary and finite languages, can be found in [15].
For the conversion problems, we also obtain tight bounds. Here it turns out
that chop expressions are exponentially more succinct than regular expressions,
while still having a linear descriptional complexity bound for the conversion to
finite automata. It is worth mentioning again, that regular expressions can be
converted to equivalent chop expressions by only a polynomial increase in size.
Our results on conversion problems are summarized in Table 2. Most proofs are
omitted due to space constraints.

2 Definitions

We introduce some basic notions in formal language and automata theory—for a
thorough treatment, the reader might want to consult a textbook such as [18]. In
particular, let Σ be a finite alphabet and Σ∗ the set of all words over Σ, including
the empty word λ. The length of a word w is denoted by |w|, where |λ| = 0.
A formal language over the alphabet Σ is a subset of Σ∗.

A nondeterministic finite automaton (NFA) is a quintuple A = (Q,Σ, δ, q0, F),
where Q is the finite set of states, Σ is the finite set of input symbols, q0 ∈ Q
is the initial state, F ⊆ Q is the set of accepting states, and δ : Q × Σ → 2Q

is the transition function, where 2Q refers to the powerset of Q. If p ∈ δ(q, a),
for q ∈ Q and a ∈ Σ, then we say that (q, a, p) is a transition of A. As usual
the transition function is extended to δ : Q × Σ∗ → 2Q reflecting sequences of
inputs: δ(q, λ) = {q} and δ(q, aw) =

⋃
p∈δ(q,a) δ(p, w), for q ∈ Q, a ∈ Σ, and

Chop Operations and Expressions: Descriptional Complexity Considerations 267

w ∈ Σ∗. A word w ∈ Σ∗ is accepted by A if δ(q0, w) ∩ F �= ∅. The language
accepted by A is L(A) = {w ∈ Σ∗ | w is accepted by A }. A finite automaton is
deterministic (DFA) if and only if |δ(q, a)| = 1, for all q ∈ Q and a ∈ Σ. In this
case we simply write δ(q, a) = p for δ(q, a) = {p} assuming that the transition
function is a mapping δ : Q × Σ → Q. So, any DFA is complete, that is, the
transition function is total, whereas for NFAs it is possible that δ maps to the
empty set.

It is well known that finite automata and regular expressions (REs) are equally
powerful, i.e., for every finite automaton one can construct an equivalent regular
expression and vice versa. Here we allow both ∅ and λ as regular expression
primitives. The size or alphabetic width of a RE r over the alphabet Σ, denoted
by alph(r), is defined as the total number of occurrences of letters of Σ in r. For
a regular language L, we define its alphabetic width, alph(L), as the minimum
alphabetic width among all REs describing L.

We investigate the descriptional complexity of the chop operation, which was
recently used in [1] to describe chop expressions—here we use the notation
from [7]: the chop or fusion of two words u and w in Σ∗ is defined as u!v = u′av′

if u = u′a and v = av′, for u′, v′ ∈ Σ∗, and a ∈ Σ, otherwise u! v is undefined.
This is extended to languages by L1 ! L2 = { u ! v | u ∈ L1 and v ∈ L2 }, for
languages L1, L2 ⊆ Σ∗. We like to point out that this operation differs from
the latin product defined in [22] only if the words have no overlap. In that case,
the latin product is just the concatenation of both words. For the chop itera-
tion, we set the ith iteration, for i ≥ 0, to L⊗0 = Σ, and L⊗i = L ! L⊗i−1 ,
for i ≥ 1. Then the iterated chop or chop-star of a language L is defined as
L⊗ =

⋃
i≥0 L⊗i . Moreover the chop-plus is denoted by L⊕ =

⋃
i≥1 L⊗i . It is

easy to see that the chop operation ! is associative, and by definition the set Σ
acts as the neutral element on all languages L from Σ+. This is compatible with
the definition of chop-star, because ∅⊗ = Σ. In general, an application of the
chop operation with Σ will cancel λ from the language L. Therefore, for every
language L ⊆ Σ∗, we have Σ ! L = L ! Σ = L \ {λ}.

Finally we introduce chop expressions [1] in a similar vein as regular ex-
pressions. More precisely, the chop expressions (CEs) over an alphabet Σ and
the languages they describe are defined inductively as follows:2 ∅, λ, every let-
ter a with a ∈ Σ, and Δ are CEs, and when s and t are CEs, then (s + t),
(s ! t), and (s)⊗ are also CEs. The language defined by a CE r, denoted by
L(r), is defined as follows: L(∅) = ∅, L(λ) = {λ}, L(a) = {a}, L(Δ) = Σ2,
L(s+ t) = L(s)∪L(t), L(s! t) = L(s)!L(t), and L(s⊗) = L(s)⊗. In accordance
with REs we define the size of a CE r over the alphabet Σ to be the total number
of occurrences of letters of Σ plus the number of occurrences of Δ symbols in r.
In our definition we have slightly deviated from that given in [1] also allowing λ
as a primitive element. Otherwise one could describe λ-free regular languages
only. Hence our CEs are equally powerful to ordinary REs.

2 As for regular expression, for convenience, parentheses in chop expressions are some-
times omitted. The priority of operators is specified in the usual fashion: chop is
performed before union, and chop-star before both chop and union.

268 M. Holzer and S. Jakobi

3 State Complexity of Chop Operations

In this section we investigate the state complexity of the operations !, ⊗, and ⊕.
Since ! is some sort of concatenation, the results in this section are very similar
to those for concatenation and its iteration. Let us briefly recall the known result
from the literature for comparison reasons. For DFAs with m and n states,
respectively, tight bounds of m · 2n − t · 2n−1 for concatenation, where t is the
number of accepting states of the “left” automaton, and 3 · 2n−2 for Kleene star
and Kleene plus in the exact number of states for DFAs were shown in [29]. For
NFAs the situation is slightly different as proven in [17], where tight bounds of
m + n for concatenation, n + 1 for Kleene star, and n for Kleene plus can be
found for NFAs. In fact, we obtain a similar scenario since the chop operation
variants will be cheap for NFAs but costly for DFAs. On the other hand, some
of the tight bounds for the considered operations will depend on the size of the
alphabet. We first give constructions for the operation under consideration for
NFAs and show that they are best possible. Then, in the next subsection, the
constructed NFAs will be determinized to obtain (tight) upper bounds for DFAs.

3.1 Nondeterministic State Complexity

In [1] it is shown how to construct an NFA for the chop of two languages. We
prove this construction to be optimal in general.

Theorem 1. Let A be an m-state and B be an n-state nondeterministic finite
automaton for any integers m,n ≥ 1. Then m + n states are sufficient and
necessary in the worst case for any nondeterministic finite automaton to accept
the language L(A) ! L(B). ��
Next we show how to construct an NFA for the chop-star language of any given
NFA. Our construction is a slight modification of the one given in [1], which works
for non-returning NFAs only—an automaton is non-returning if the initial state
doesn’t have any ingoing transitions.

Theorem 2. Let A be an n-state nondeterministic finite automaton for n ≥ 4.
Then n + 2 states are sufficient and necessary in the worst case for any nonde-
terministic finite automaton to accept L(A)⊗.

Proof. We start by giving a construction that provides the upper bound. Given an
NFA A = (Q,Σ, δ, q0, F) with |Q| = n, we define A⊗ = (Q∪{s, f}, Σ, δ⊗, s, F⊗),
with F⊗ = F ∪ {f}, and transition function δ⊗ such, that for all states p, q ∈ Q
and a ∈ Σ we have δ(p, a) ⊆ δ⊗(p, a), and additionally (i) q ∈ δ⊗(s, a) if
q ∈ δ(q0, a), (ii) f ∈ δ⊗(s, a) if δ(q0, a)∩F = ∅, (iii) q ∈ δ⊗(p, a) if δ(p, a)∩F �= ∅
and q ∈ δ(q0, a). The proof of L(A⊗) = L(A)⊗ is left to the reader.

For the lower bound consider the language (an)∗, for n > 3, accepted by
a minimal finite automaton having a circle of states 0, 1, . . . , n − 1 with the
transitions (q, a, (q + 1) mod n). State 0 is the initial and sole accepting state.
Constructing an NFA for the corresponding chop-star language L as described

Chop Operations and Expressions: Descriptional Complexity Considerations 269

above, results in two additional states s and f , where s is the new initial and f
is a new accepting state, and additionally we get the transitions (n − 1, a, 1),
(s, a, 1), and (s, a, f). One can show the minimality of this automaton, using the
fooling set technique [2]. It remains to prove that

S = { (ai, an−i) | 2 ≤ i ≤ n − 2 }
∪ {(λ, a), (a, λ), (an−1, an+1), (an+1, an−1), (an, an)}

is a fooling set for L. The tedious details are left to the reader. ��
Since ⊕ does not add Σ to the language, there is no need for the additional
accepting state f as in the construction for ⊗. So we obtain the following.

Theorem 3. Let A be an n-state nondeterministic finite automaton for n ≥ 1.
Then n + 1 states are sufficient and necessary in the worst case for any nonde-
terministic finite automaton to accept L(A)⊕.

3.2 Deterministic State Complexity

The foregoing constructions will be adapted via subset construction to DFAs.
As for (iterated) concatenation, we get an exponential blow-up for all three
operations. But unlike (iterated) concatenation on DFAs, for the chop and chop-
star operations on DFAs, the obtained bounds will also depend on the size of
the alphabet.

Theorem 4. Let A be an m-state and B be an n-state deterministic finite au-
tomaton, both over alphabet Σ with m ≥ 2, and n, |Σ| ≥ 3. Let F1 be the set
of final states of A. Then m · 2n − |F1| · 2n−min(|Σ|,n) + 1 states are sufficient
and necessary in the worst case for any deterministic finite automaton to accept
L(A) ! L(B).

Proof. The upper bound can be seen as follows: Let Ai = (Qi, Σ, δi, si, Fi), for
i ∈ {1, 2}, be two DFAs and A = (Q,Σ, δ, q0, F) be a DFA with Q = Q1 × 2Q2 ,
q0 = 〈s1, ∅〉, F = { 〈q, P 〉 | P ∩ F2 �= ∅ }, and

δ(〈q, P 〉, a) =

{
〈 δ1(q, a),

⋃
p∈P δ2(p, a) 〉 if δ1(q, a) /∈ F1,

〈 δ1(q, a),
⋃

p∈P δ2(p, a) ∪ δ2(s2, a) 〉 if δ1(q, a) ∈ F1.

It should be clear that L(A) = L(A1)!L(A2) and |Q| = |Q1| ·2|Q2|. This bound
can be further improved, since some states may not be reachable. In the following
let k = min(|Σ| , n). Note that for all reachable states 〈q, P 〉 ∈ Q1×2Q2 different
from the initial state 〈s1, ∅〉, we have q /∈ F1 or P ∩ { δ2(s2, a) | a ∈ Σ } �= ∅.
So, out of all states in Q1 × 2Q2 , besides the initial state, we can reach at
most (m − |F1|) · 2n states where the first component is not in F1, and at most
|F1| · (2k − 1) · 2n−k states with first component an element from the set F1

and the second component contains a nonempty subset of states that are a

270 M. Holzer and S. Jakobi

successor of the initial state from A2. Together with the initial state we get at
most m · 2n − |F1| · 2n−k + 1 states.

We now prove that this bound is tight, where it suffices to consider the al-
phabet Σ = {a, b, c}∪Σd for some possibly empty Σd ⊆ {d4, d5, . . . , dk}. Define
DFAs Ai = (Qi, Σ, δi, 1, Fi) for i ∈ {1, 2} with state sets Q1 = {1, 2, . . . ,m} and
Q2 = {1, 2, . . . , n}, final states F1 = Q1\{2, . . . , t} with 2 ≤ t ≤ m and F2 = {1}
and transitions as follows. For any state q ∈ Q1, A1 goes to (q mod m) + 1 on
input a, and stays in q on all other inputs. In any state q ∈ Q2, A2 stays in q
on input a, and goes to (q mod n) + 1 on input b; input c takes A2 from state q
to state (q mod n) + 1 if 4 ≤ q ≤ n and to state 3 if q ≤ 3; on inputs di, au-
tomaton A2 stays in state q for any q ∈ Q2 \ {1}, while state 1 leads A2 to
state i.

Let A be the DFA for L(A1) ! L(A2) with transition function δ constructed
as above. We first prove that any distinct states 〈q, P 〉 and 〈q′, P ′〉 are pairwise
inequivalent, starting with the case P �= P ′. In the forthcoming % refers to the
operation of the symmetric difference of two sets. If 1 ∈ P %P ′, both states are
inequivalent. Otherwise, for r = max(P % P ′), the states can be distinguished
by reading the word bn−r+1. Consider now states 〈q, P 〉 and 〈q′, P 〉 with q �= q′.
By reading enough a symbols, we may assume q = 2 and 1 ∈ P , and after
reading enough c symbols, we reach the states 〈2, {3}〉 and 〈q′, {3}〉. If q′ ∈ F1,
then input b leads to 〈2, {4}〉 and 〈q′, {2, 4}〉, which are already proven to be
inequivalent. If q′ /∈ F1, then 2 < q′ ≤ t, and the states can be distinguished by
reading at+1−q′

.
Finally we prove that exactly m ·2n−|F1| ·2n−k +1 states are reachable in A.

In detail, we show that all (m−|F1|)·2n states of the form 〈q, P 〉 with q /∈ F1 and
all |F1| · (2k − 1) · 2n−k states 〈q, P 〉 with P ∩ { δ2(1, e) | e ∈ Σ } �= ∅ and q ∈ F1

are reachable from the initial state 〈1, ∅〉, which proves the claim. Let q /∈ F1,
then 〈q, ∅〉 is reachable with the word aq−1. Continuing by induction, assume all
states 〈q, P 〉 with q /∈ F1 and |P | ≤ i to be reachable, and consider q′ ∈ Q1 \ F1

and P ′ = {p0, p1, . . . , pi} ⊆ Q2 with 1 ≤ p0 < p1 < · · · < pi ≤ n. Then 〈q′, P ′〉 is
reachable from 〈2, {p1 − (p0 − 1), . . . , pi − (p0 − 1)}〉 by reading am+q′−2bp0−1.
So all states 〈q, P 〉 with q /∈ F1 and P ⊆ Q2 are reachable. Now let q ∈ F1 and
S = P ∩ { δ2(1, e) | e ∈ Σ } �= ∅. If 1 ∈ P , then 〈q, P 〉 = δ(〈2, P 〉, am+q−2).
If δ2(q, di) ∈ P for some i ≥ 4, then 〈q, P 〉 is reachable from 〈2, P 〉 with the
word am+q−2di. Otherwise it must be S ⊆ {2, 3}. Let P−1 = { p − 1 | p ∈ P },
then 〈q, P 〉 is reachable from 〈2, P−1〉 with the word am+q−2b if 2 ∈ S, and
with am+q−2c, if S = {3}. This concludes our proof. ��

We now investigate deterministic state complexity of ⊗, where we get an
exponential blow-up of states. We prove the upper bound to be tight already for
a binary alphabet, which is best possible in the sense that for unary languages,
the upper bound is strictly less than in the general case [15].

Theorem 5. Let A be an n-state deterministic finite automaton with n ≥ 3
over an alphabet Σ with |Σ| ≥ 2. Then 2n − 1 + min(|Σ| , n) states are sufficient
and necessary in the worst case for a deterministic finite automaton to accept
the language L(A)⊗. ��

Chop Operations and Expressions: Descriptional Complexity Considerations 271

For ⊕ there is no dependency on the alphabet size since, unlike ⊗, the oper-
ation ⊕ does not add the elements of the alphabet to the resulting language.

Theorem 6. Let A be an n-state deterministic finite automaton for n ≥ 3.
Then 2n states are sufficient and necessary in the worst case for a deterministic
finite automaton to accept L(A)⊕. ��

4 Complexity of Chop Expressions

We consider the descriptional complexity of conversion results for CEs to equiv-
alent finite automata or REs, and vice versa. Briefly recall what is known for
REs and finite automata. The simplest way to transform REs into equivalent
finite automata is Thompson’s construction [28], which yields an NFA with λ-
transitions with a linear number of states, which in turn is transformed into an
ordinary NFA without increasing the number of states. Simple examples, such
as the singleton set {an} show that this bound is asymptotically tight. For the
backward conversion, i.e., from finite automata to equivalent REs, most classi-
cal approaches are reformulations [27] of the same underlying algorithmic idea
of state elimination [3], which produces REs of alphabetic width at most 2O(n),
where n is the number of states of the finite automaton over an alphabet poly-
nomial in n. While this exponential bound was known to be tight for growing
size alphabets [8], recent research effort [9,11] resulted in a tight lower bound
of 2Ω(n), even for constant alphabets with at least two letters.

Now let us turn to the descriptional complexity of CEs. Due to the similarities
in the definition of chop and regular expressions it is obvious that Thompson’s
construction applies to CEs as well, if appropriately adapted, leading to an
equivalent NFA with a linear number of states—this conversion approach is also
undertaken in [1]. Since the singleton set {an} can be written as a! (Δ!a)⊗n−1

in the form of a CE, this linear bound is asymptotically tight.

Theorem 7. Let r be a chop expression of size n. Then O(n) states are suffi-
cient and necessary in the worst case for a nondeterministic finite automaton to
accept the language L(r). ��

What about the other conversion direction from finite automata to CEs? Be-
fore we discuss this direction in more detail, we take a closer look at conversions
between expressions. The conversion of REs to equivalent CEs results in expres-
sions of polynomial size, where alphabet size appears as a parameter. This was
shown in [1]. For the convenience of the reader we recall this theorem.

Theorem 8. Let r be a regular expression over the alphabet Σ of alphabetic
width n. Then size |Σ| · O(n2) is sufficient for a chop expression describing the
language L(r).

This result can be used for the conversion of finite automata to equivalent
chop expressions by converting to regular expressions first, and then applying
Theorem 8. This naive approach results in an upper bound of 2O(n), where n is
the number of states of the finite automaton.

272 M. Holzer and S. Jakobi

Theorem 9. Let A be an n-state finite automaton over an alphabet polynomial
in n. Then size 2O(n) is sufficient for a chop expression to describe the lan-
guage L(A). ��

We come back to conversion problems between expressions. For the backward
conversion from CEs of size n to equivalent REs an exponential upper bound
of 2nO(1)

was shown in [1]. Here the naive approach to construct a RE by con-
verting the given CE into an NFA, and in turn into a RE is doing better because
it gives an exponential upper bound of 2O(n). Thus we can state the following:

Theorem 10. Let r be a chop expression of size n over an alphabet of size
polynomial in n. Then alphabetic width 2O(n) is sufficient for a regular expression
to describe the language L(r). ��

Now the question arises whether this bound is tight in order of magnitude. Our
arguments on lower bounds for the alphabetic width of regular languages is based
on a recent result that utilizes the star height of regular languages [11]. The star
height of a regular language L, denoted by h(L), is then defined as the minimum
star height among all REs describing L.

Theorem 11. Let L ⊆ Σ∗ be a regular language. Then alph(L) ≥ 2
1
3 (h(L)−1)−1.

The star height of a regular language appears to be more difficult to determine
than its alphabetic width, see, e.g., [13]. Fortunately, the star height is known
for some languages. For instance, the next theorem is due to [5].

Theorem 12. Let Jn be the complete digraph on n vertices with self-loops, where
each edge (i, j) carries a unique label aij. Let Wn denote the set of all walks
ai0i1ai1i2 · · · air−2ir−1air−1ir in Jn, including the empty walk λ. Then the star
height of language Wn equals n.

This means that any RE describing Wn requires at least 2Ω(n) alphabetic
width. This exponential lower bound holds even if we apply a star height pre-
serving morphism σ to Wn in order to decrease the size of the alphabet—for
star height preserving morphisms we refer to [14]. We utilize these facts in the
next theorem, proving an exponential lower bound for the conversion of CEs into
equivalent REs.

Theorem 13. There exists an infinite family of languages Ln over an alphabet
of size n having chop expressions of size O(n), such that the alphabetic width of
any regular expression describing Ln is at least 2Ω(n).

Proof. We show that a star height preserving encoding of the set of walks Wn

in a complete n-vertex digraph as defined in Theorem 12 allows a compact
representation using CEs. Let E = { aij | 1 ≤ i, j ≤ n } denote the set of edges
in the digraph. Then we define the alphabet Σ = { ai | 1 ≤ i ≤ n } and the star
height preserving morphism σ : E∗ → Σ∗ by σ(aij) = aiaj , for aij ∈ E. Now

Chop Operations and Expressions: Descriptional Complexity Considerations 273

we show how to describe σ(Wn) in terms of a linear size CE. Then consider the
finite set M = { abb | a, b ∈ Σ } and observe that

σ(Wn) = M⊗ ! Δ + λ = M⊕ ! Δ + Δ + λ, (1)

since the iterated chop forces to fuse the same letters in a possible extension
of a valid walk described by a word with an element of M . Finally, we have to
describe M by a CE. This expression reads as

∑
a∈Σ Δ ! a ! Δ ! a and has

size 4n. Since by Theorems 11 and 12 the set σ(Wn) has alphabetic width at
least 2Ω(n) w.r.t. REs, but CE size at most O(n), the proof is complete. ��

Obviously, the RE (
∑

a∈Σ a)(
∑

b∈Σ bb) of alphabetic width 3n describes the
set M from the previous proof. Because of Equation (1) both languages M⊗

and M⊕ must still have alphabetic width at least 2Ω(n), because otherwise we
would get a contradiction on the alphabetic width for σ(Wn) and Wn, respec-
tively. Thus, we can state the following corollary.

Corollary 14. There exists an infinite family of languages Ln over an alphabet
of size n with alph(Ln) = O(n), such that alph(L⊗

n) = 2Ω(n). A similar result
holds when considering the alphabetic width of L⊕

n instead. ��

The corresponding upper bound of alphabetic width 2O(n) for a RE describing
L(r)⊗ or L(r)⊕ for any RE r of alphabetic width n is seen as follows. First
convert r into an O(n)-state NFA A for the language L(r), then apply the ⊗
or ⊕ construction described earlier, which results in an O(n)-state NFA accept-
ing L(r)⊗ or L(r)⊕, respectively, which in turn can be converted to a RE of
alphabetic width of at most 2O(n). Together with Corollary 14 we obtain:

Corollary 15. Let r be regular expression of alphabetic width n over an alphabet
of size n. Then alphabetic width 2Θ(n) is sufficient and necessary in the worst
case for a regular expression to describe the language L(r)⊗. A similar tight
bound holds when describing the language L(r)⊕ instead. ��

An immediate question is whether the size of the alphabet can be further im-
proved in the previous corollary to, e.g., binary alphabet. Unfortunately it seems
that the lower bound proof breaks down, because ⊗ can only fuse letters and
not small length subwords. For the slightly easier setting, the chop-star problem
for REs, as described in Corollary 14 we can prove that this is in fact the case.
To this end we need some notation. The (left) derivative of a language L with
respect to a letter a, written as a−1L, is defined as { x | ax ∈ L }. The right
derivative of L by a, written as La−1, is similarly defined. The next theorem is
from [12].

Theorem 16. Let r be a regular expression of alphabetic width n denoting the
language L ⊆ Σ∗, and let a ∈ Σ. Then there is a regular expression of alphabetic
width O(n2) denoting a−1L. A similar statement is valid for regular expressions
describing La−1.

274 M. Holzer and S. Jakobi

Consider the chop operation problem for REs. Let r = s! t for two REs s and t.
Then there are two REs sa and at describing the languages L(s)a−1 and a−1L(t),
respectively, and we have L(r) =

∑
a∈Σ

(
L(sa) · a) ·L(at). Since by Theorem 16

both REs sa and at are of polynomial size the chop operation problem for REs
results in an upper bound of |Σ| ·O(n2). The idea for the simulation of the chop
operation can be generalized to the chop-star problem for REs. We do so in the
proof of the next theorem.

Theorem 17. Let r be a regular expression over the alphabet Σ of alphabetic
width n. Then alphabetic width 2O(|Σ|)·O(n4) is sufficient for a regular expression
to describe the language L(r⊗). ��

Therefore the iterated chop of a regular language over a constant size alphabet
transforms into an equivalent ordinary RE of polynomial size. This is in sharp
contrast to the lower bound for growing size alphabet as given in Corollary 14.
We believe that a similar statement is valid for the conversion of CEs in general
to equivalent REs, too, but we have no proof yet. It is worth mentioning that a
positive answer to this would induce a tight exponential lower bound of 2Ω(n) for
the conversion of finite automata to equivalent CEs—compare with Theorem 9.
This is seen as follows: in [11] it was shown, that there exists an infinite family
of n-state finite automata An over a binary alphabet, such that alph(L(An)) =
2Ω(n). If the conversion of CEs over a constant alphabet into an equivalent REs
would be polynomial, the conversion of a finite automata into an equivalent REs
via CEs must induce that the first conversion, namely that from the automaton
to the CE, is at least 2Ω(n). Otherwise, this would contradict the aforementioned
result of [11]. We have to leave open, whether this is in fact the case.

References

1. Babu, S.A., Pandya, P.K.: Chop expressions and discrete duration calculus. In:
D’Souza, D., Shankar, P. (eds.) Modern Applications of Automata Theory. IISc
research Monographs Series, vol. 2. World Scientific, Singapore (2010)

2. Birget, J.-C.: Intersection and union of regular languages and state complexity.
Inform. Process. Lett. 43, 185–190 (1992)

3. Brzozowski, J.A., McCluskey, E.J.: Signal flow graph techniques for sequential
circuit state diagrams. IEEE Trans. Comput. C-12(2), 67–76 (1963)

4. Cărăuşu, A., Păun, G.: String intersection and short concatenation. Rev. Roumaine
Math. Pures Appl. 26, 713–726 (1981)

5. Cohen, R.S.: Star height of certain families of regular events. J. Comput. System
Sci. 4(3), 281–297 (1970)

6. Domaratzki, M.: Minimality in Template-Guided Recombination. Inform. and
Comput. 207, 1209–1220 (2009)

7. Harel, D., Peleg, D.: Process logic with regular formulas. Theoret. Comput. Sci. 38,
307–322 (1985)

8. Ehrenfeucht, A., Zeiger, H.P.: Complexity measures for regular expressions. J.
Comput. System Sci. 12(2), 134–146 (1976)

Chop Operations and Expressions: Descriptional Complexity Considerations 275

9. Gelade, W., Neven, F.: Succinctness of complement and intersection of regular
expressions. In: STACS, Bordeaux, France, pp. 325–336. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, Dagstuhl (2008)

10. Glushkov, V.M.: The abstract theory of automata. Russian Math. Surveys 16, 1–53
(1961)

11. Gruber, H., Holzer, M.: Finite automata, digraph connectivity, and regular ex-
pression size. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 39–50. Springer, Heidelberg (2008)

12. Gruber, H., Holzer, M.: Language operations with regular expressions of polyno-
mial size. Theoret. Comput. Sci. 410(35), 3281–3289 (2009)

13. Hashiguchi, K.: Algorithms for determining the relative star height and star height.
Inform. Comput. 78(2), 124–169 (1988)

14. Hashiguchi, K., Honda, N.: Homomorphisms that preserve star height. Inform.
Comput. 30(3), 247–266 (1976)

15. Holzer, M., Jakobi, S.: State complexity of chop operations on unary and finite
languages (2011) (in preparation)

16. Holzer, M., Jakobi, S., Kutrib, M.: The chop of languages. In: AFL, Debrecen,
Hungary (to appear, 2011)

17. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-
guages. Internat. J. Found. Comput. Sci. 14(6), 1087–1102 (2003)

18. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

19. Ito, M., Lischke, G.: Generalized periodicity and primitivity. Math Logic Q 53,
91–106 (2007)

20. Kallas, J., Kufleitner, M., Lauser, A.: First-order fragments with successor over
infinite words. In: STACS, Dortmund, Germany, pp. 356–367. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, Dagstuhl (2011)

21. Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math.
Dokl. 11, 1373–1375 (1970)

22. Mateescu, A., Salomaa, A.: Parallel composition of words with re-entrant symbols.
An. Univ. Bucuresti, Mat.-Inform. 45, 71–80 (1996)

23. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: SWAT, pp. 188–191. IEEE Computer Society Press, Los Alami-
tos (1971)

24. Moore, F.R.: On the bounds for state-set size in the proofs of equivalence be-
tween deterministic, nondeterministic, and two-way finite automata. IEEE Trans.
Comput. C-20, 1211–1219 (1971)

25. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3, 114–125 (1959)

26. Rich, E.A.: Automata, Computability, and Complexity: Theory and Applications.
Prentice Hall, Englewood Cliffs (2007)

27. Sakarovitch, J.: The language, the expression, and the (small) automaton. In: Farré,
J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS, vol. 3845, pp. 15–30. Springer,
Heidelberg (2006)

28. Thompson, K.: Regular expression search algorithm. Com. ACM 11(6), 419–422
(1968)

29. Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221–234
(2001)

Nodes Connected by Path Languages

Markus Holzer, Martin Kutrib, and Ursula Leiter

Institut für Informatik, Universität Giessen,
Arndtstraße 2, 35392 Giessen, Germany

{holzer,kutrib}@informatik.uni-giessen.de

Abstract. We investigate reachability problems on different types of
labeled graphs constrained to formal languages from a family L . If ev-
ery language in L is accepted by a one-way nondeterministic storage
automaton, then we give an appealing characterization of the compu-
tational complexity of the labeled graph reachability problem in terms
of two-way nondeterministic storage automata with auxiliary worktape
that is logarithmic-space bounded. Moreover, we also consider acyclic
graphs in the underlying reachability instance, obtaining a lower bound
result for auxiliary storage automata that are simultaneously space and
time restricted.

1 Introduction

Many problems in computer science can be reformulated as (labeled) graph
reachability or accessibility problems, which are defined as follows. Given a
graph G with designated nodes s and t and with a single label attached to
each edge, and a language L from the family L , does there exist a path from
node s to node t such that the concatenation of the labels along the path be-
longs to L. For instance, in [7] the complexity of the solution concept of iterated
(weak) dominance on self-anonymous strategic games with two actions is shown
to be closely related to a labeled grid graph reachability problem (GGR), where
the solution path must fulfill a certain matching condition described by means
of a regular expression. Another example where labeled graph reachability prob-
lems play an important role is the field of model checking (see for example [3]),
which has gained a lot of interest in the research community during the last two
decades. It is not surprising that the complexity of (labeled) graph reachability
problems vary for different path forms such as, paths in general, shortest paths,
simple paths, etc., and for different formal language families. From the litera-
ture it is known that the labeled graph reachability problem (GR) constrained
to context-free languages is P-complete in general, and LOGCFL-complete if G
is acyclic [11,19]. Restricted to shortest paths the problem remains efficiently
solvable in polynomial time, while it becomes NP-complete for simple paths [4],
even when considering regular instead of context-free languages. As seen from
this examples, there are a lot of parameters such as, graph topology, formal
language family, path property, which significantly influence the computational
complexity of (labeled) graph reachability.

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 276–287, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Nodes Connected by Path Languages 277

The complexity of unlabeled graph reachability is partially solved and related
to complexity classes in the hierarchy AC0 ⊂ NC1 ⊆ L = SL ⊆ NL ⊆ P. All
the relationships depicted in the inclusion chain are known for a quarter of a
century, except for L = SL, shown in [18]. Alternatively the class NL can be
characterized by the sets of problems logarithmic-space reducible to the directed
graph reachability (GR) problem. Similarly, the class SL is characterized by the
sets of problems logarithmic-space reducible to the undirected graph reachabil-
ity (UGR) problem. Besides general graphs, reachability on grid graphs is of
particular interest. A grid graph is an n×n grid of nodes such that an edge only
connects immediate vertical or horizontal neighbors. The undirected grid graph
reachability problem (UGGR) is solvable in deterministic logarithmic-space [6],
which has been known long before is was shown that the general undirected
graph reachability problem (UGR) is in L [18]. In contrast to UGR, which is
actually L-complete [18], the problem UGGR is only known to be NC1-hard [2]
and, thus, seems to be of lower complexity, because even the general grid graph
reachability problem (GGR) is not known to be hard for L under AC0 reductions.

In this paper our focus is on the influence of graph topology and formal
language family to the complexity of labeled graph reachability. We study this
question in the general setting of abstract storage automata, which were intro-
duced in [10]. Simply speaking, an abstract storage automata is a device with
a finite control and an additional storage such as, for example, a pushdown,
that can be manipulated by a finite number of operations. Abstract storage
automata obey the attractive closure property of a (full) TRIO [13], namely
closure under intersection with regular sets, inverse homomorphism, and homo-
morphism. In a first step we prove that the graph topology is irrelevant when
the formal language family L is an effectively closed TRIO, that is, the la-
beled versions of GR, UGR, GGR, and UGGR are computationally equivalent.
Secondly we give a precise characterization of the complexity of labeled graph
reachability constrained to a language from family L . If L is accepted by a
one-way nondeterministic abstract storage automaton, then GR for languages
from L is logarithmic-space many-one complete for two-way nondeterministic
abstract storage automata with an auxiliary worktape that is logarithmic-space
bounded. This is a very general result that applies to a variety of formal language
families, such as, for example, regular languages, linear context-free languages,
context-free languages, and stack automata languages and variants. Hence in
turn, one adds complete problems to the complexity classes NL, P, PSPACE,
and DTIME(2nO(1)

). Finally, we also discuss the change in complexity if acyclic
graphs are used in the reachability instances. There it turns out that in this case
our approach leads to a lower bound proof for simultaneously space and time
restricted auxiliary storage automata.

The paper is organized as follows: in the next section we introduce the neces-
sary notation on labeled graphs and labeled graph reachability. Then Section 3
is two-folded. In the first subsection we show that labeled GR, UGR, GGR,
and UGGR are all computationally equivalent with respect to logarithmic-space
many-one reducibilities under weak closure properties of the formal language

278 M. Holzer, M. Kutrib, and U. Leiter

family, while in the second subsection we prove our main result on the com-
plexity of labeled GR in terms of automata with abstract storage. Finally we
summarize our results and discuss some directions for future research.

2 Preliminaries

We assume the reader to be familiar with some basic notions of formal language
theory as presented in [13], and with the basic concepts of complexity theory [17].
Concerning our notations, we denote the powerset of a set S by 2S . We write Σ∗

for the set of all words over the finite alphabet Σ. The empty word is denoted
by λ, and Σ+ = Σ∗ \ {λ}. The reversal of a word w is denoted by wR and for
the length of w we write |w|. We use ⊆ for inclusions and ⊂ for strict inclusions.

Next we turn to the problem in question, that is, graph reachability on graphs
with labeled edges. A labeled (un)directed graph is a triple (G,Σ, μ), where G
is an (un)directed graph with nodes V and edges E ⊆ V × V , alphabet Σ, and
a finite labeling function μ : E → 2Σ∗

, such that μ(e) is a regular language,
for every e ∈ E. The regular languages are represented by the state transition
graphs of nondeterministic finite automata. The labeled graph is said to be
normalized, if all of its edges e are labeled by letters from Σ, that is, μ(e) = {a},
for some a in Σ. In order to define the reachability problems we need the concept
of a paths and its value. A path of length k from node s to node t in G is
a sequence of edges (e1, e2, . . . , ek), such that e1 = (s, v1), ek = (vk, t), and
ei = (vi−1, vi), for 1 < i < k. The value of a path p = (e1, e2, . . . , ek) is defined
as μ(p) = μ(e1)μ(e2) · · ·μ(ek), that is, a formal language which is obtained by
concatenating the labels of the edges of the path in sequence. Then the labeled
graph reachability problem for a family of formal languages L is defined as
follows:

– Given an (un)directed labeled graph G, with designated nodes s and t, and a
formal language L from L . Is there a path p from node s to node t, such that
there exists a word w in μ(p) belongs to L, that is, such that μ(p) ∩ L �= ∅?

The reachability problems on undirected grid graphs, directed grid graphs, undi-
rected graphs, and directed graphs constrained to languages from the formal lan-
guage family L are referred to as UGGR[L], GGR[L], UGR[L], and GR[L].

In order to classify the computational complexity of the reachability prob-
lems constrained to a formal language, we consider formal language families
with effective closure properties. We say that a family of languages L is effec-
tively closed under a binary operation ◦, if there is an effective deterministic
logarithmic-space bounded construction that, given some pair of descriptors A1

and A2 such that both languages L(A1) and L(A2) belong to L , yields a descrip-
tor for L(A1) ◦ L(A2), which is again in L . Effective closure under other types
of language operations is similarly defined. A formal language family is called an
effective TRIO [13], if it is effectively closed under λ-free homomorphism, inverse
homomorphism, and intersection with regular languages. Well-known examples
for effective TRIOs are the families of regular, context-free, and context-sensitive

Nodes Connected by Path Languages 279

languages. Every TRIO is also effectively closed under concatenation with regu-
lar languages. Although we do not need the closure under λ-free homomorphism
in the sequel, we will require language families to be TRIOs, since these prop-
erties are well established and widely known.

3 Reachability Problems on Labeled Graphs

First we prove some basic computational equivalences between different reach-
ability problems on labeled graphs by varying the topology and the proper-
ties of the underlying graph structure. For these equivalences we mostly use
logarithmic-space many-one reductions denoted by ≤log

m .

3.1 Relations between Reachability Problems on Labeled Graphs

We start with the two obvious relations, which also hold in the unlabeled case:
UGGR[L] is logarithmic-space many-one reducible to UGR[L] and GGR[L]
is logarithmic-space many-one reducible to GR[L], where L is an arbitrary
language family. Second, an undirected graph can be turned into a directed
graph without changing the reachability problem by replacing one undirected
edge by two directed edges with the same edge label. Therefore, UGGR[L] is
logarithmic-space many-one reducible to GGR[L] and UGR[L] is logarithmic-
space many-one reducible to GR[L].

For our investigations on labeled reachability problems we utilize a special
normal form. The next theorem shows that is suffices to consider normalized
graphs. Due to space constraints we omit the proof.

Theorem 1. Let L be an effective TRIO. Then both problems GGR[L] and
GR[L] are logarithmic-space many-one reducible to normalized GR[L]. ��
The reduction of the previous theorem does not preserve the property of being
a grid graph. However, we next show that any normalized GR instance can be
reduced to a normalized grid graph.

Theorem 2. Let L be an effective TRIO. Then normalized GR[L] is loga-
rithmic-space many-one reducible to normalized GGR[L].

Proof. Let (G,Σ, μ) be a labeled graph, G = (V,E), and L ⊆ Σ∗ be a formal lan-
guage from L forming a normalized GR instance. We assume V = {1, 2, . . . , n}
without loss of generality.

Now, a normalized GGR instance (G′, Σ′, μ′) with language L′ is constructed.
A schematic drawing of the construction is depicted in Figure 1. Grid graph G′ is
of size ((n+1)·n)×((n+1)·n). We refer to the nodes by pairs (i, j), for 0 ≤ i ≤ n,
1 ≤ j ≤ n. Consider n + 1 copies of the nodes of G and arrange them in the
order (0, 1), (0, 2), . . . , (0, n), (1, 1), . . . , (1, n), . . . , (n, 1), . . . , (n, n) from top left
to bottom right in a diagonal fashion in G′. In order to simplify our presentation
we say that the nodes (i, 1), (i, 2), . . . , (i, n) form the ith block, 0 ≤ i ≤ n, where

280 M. Holzer, M. Kutrib, and U. Leiter

1

2 3

4

1
2

3
4

1
2

3
4

Fig. 1. Example of the normalized GR[L] to normalized GGR[L] reduction. Labels
on edges are not depicted. The dashed drawn edge (2, 4) with label μ(2, 4) of the GR
instance on the left is represented by the dashed path of the GGR instance on the
right. The value of the path is 2r15d14μ(2, 4)2 concatenated with 4�13u134.

we can refer to the jth node within the block, for 1 ≤ j ≤ n. The alphabet
of the labeled grid graph instance has to be chosen in such a way that we
can encode some path information of the given graph G. To this end, we set
Σ′ = Σ ∪ V ∪ {�, r, u, d} (the unions being disjoint). Now each edge from a
node j to a node k of G is represented by a path from node (0, j) to (k, j) to
(0, k) of G′ as follows.

1. Starting from the jth node of the zeroth block (0, j) the path goes horizon-
tally to the right, and then vertically down to meet the jth node of the kth
block (k, j). The value of the path is a subset of jr∗d∗μ(j, k)j, where r labels
edges to the right and d edges down.

2. From node (k, j) the path goes horizontally to the left and then vertically
up to meet the kth node of the zeroth block (0, k). The value of the path is
of the form k�∗u∗k, where � labels edges to the left and u edges up.

Observe, that these paths may intersection each other. The labeling func-
tion μ′ can be easily deduced from the above given description. Finally, we
choose the start node as sth node of the zeroth block (0, s) and the target node
as the tth node of the zeroth block (0, t). This completes the construction of the
labeled grid graph instance (G′, Σ′, μ′).

Next, we modify the language L to L′ = h−1(L) ∩ R, where h is the homo-
morphism mapping Σ′∗ to Σ∗ by h(a) = a, for a ∈ Σ, h(i) = λ, for 1 ≤ i ≤ n,
and h(�) = h(r) = h(u) = h(d) = λ. The regular language R is defined to be

R =

⎛⎝ ⋃
(j,k)∈E

jr∗d∗μ(j, k)jk�∗u∗k

⎞⎠∗

.

Nodes Connected by Path Languages 281

It remains to be shown that the construction is in fact a logarithmic-space
many-one reduction from the given normalized GR instance to the normalized
GGR instance constructed as (G′, Σ′, μ′) with language L′.

By construction we have inserted control information into the language L′

which allows us to show that one cannot deviate from a given path. So, assume
that (G,Σ, μ) with language L ⊆ Σ∗, start node s, and target node t has a
solution. That is, there is a path p linking s with t such that there is a word w
in μ(p) which also belongs to L. Let p = (e1, e2, . . . , ez) be this solution. Then,
by construction, for each edge ei = (j, k), for 1 ≤ i ≤ z, there is a path (0, j) to
(k, j) to (0, k) of G′ whose value is of the form jr∗d∗μ(j, k)jk�∗u∗k. This implies
that (G′, Σ′, μ′) with language L′, start node (0, s), and target node (0, t) has a
solution.

Conversely, language L′ forces any path of G′ starting in some node (0, j),
1 ≤ j ≤ n, to move to the right and then down until it meets a node on the
diagonal. In order to be a subpath of a solution the value of this path which
starts with j has to end with j. This implies that the path meets a node on the
diagonal that is the jth node in some block k, for 1 ≤ k ≤ n. The only possibility
to continue the path according to L′ is to move left and then up until it meets
a node in the zeroth block. Since this second part of the subpath starts with an
edge labeled by k it has to end with an edge labeled by k. Therefore, it ends at
node (0, k). Altogether the subpath has a value of the form jr∗d∗μ(j, k)jk�∗u∗k.
Its existence ensures that there is a path from node j to node k in G labeled
by μ(j, k). This implies that (G,Σ, μ) with language L, start node s, and target
node t has a solution.

Concerning the space complexity of the reduction we recall the remark at the
end of the proof of Theorem 1. ��

Hence, up to this point we have obtained the following chain of reductions:

GGR[L] ≤log
m GR[L] ≤log

m norm. GR[L] ≤log
m norm. GGR[L]

≤l
o
g

m ≤l
o
g

m

UGGR[L] ≤log
m UGR[L]

Finally, we show that, in fact, all of these previous problems are computationally
equivalent, that is, they are logarithmic-space many-one reducible to each other.
To this end, it suffices to close the previous chain of reductions by proving that
normalized GGR is logarithmic-space many-one reducible to normalized UGGR.
In addition, this shows that directed edges may be replaced by undirected ones.

Theorem 3. Let L be an effective TRIO. Then normalized GGR[L] is loga-
rithmic-space many-one reducible to normalized UGGR[L]. ��
Altogether we obtain the following corollary.

Corollary 4. Let L be an effective TRIO. Then the reachability problems on
labeled graphs (normalized) UGGR[L], (normalized) UGR[L], (normalized)
GGR[L], and (normalized) GR[L] are computationally equivalent with respect
to logarithmic-space many-one reductions. ��

282 M. Holzer, M. Kutrib, and U. Leiter

This shows that there is a significant difference between ordinary reachability
problems and labeled reachability problems on graphs (unless NC1 = NL). In
fact, the technique to encode information on paths and, thus, on the structure of
the given graph into the formal language can be used to obtain further relations,
even for simpler instances than undirected grid graphs.

Theorem 5. Let L be an effective TRIO. Then normalized acyclic GR[L]
and normalized acyclic GGR[L] are computationally equivalent with respect to
logarithmic-space many-one reductions. ��

3.2 Reachability of Labeled Graphs and Word Problems of
Language Families

In this subsection we show that the reachability problem for labeled graphs has
close relations to general word problems. Here the language families are rep-
resented by certain types of automata. For example, it is well known that the
reachability problem for directed graphs is NL-complete [16]. The reachability
problem for directed graphs over the regular languages (represented by nonde-
terministic finite automata) is still in NL and, thus, NL-complete. On the other
hand, the word problem of a nondeterministic automaton which is equipped with
a two-way input head and a logarithmic-space bounded working tape is clearly
NL-complete. In fact, there is a general relation of this type which is shown next.
To this end, we have to introduce the concept of (two-way) abstract storage au-
tomata. Here we follow the lines of [10] with the slight modifications introduced
in [9].

A storage type is a quintuple S = (C,P, I, C0, Cf), where C is a set of storage
configurations, P is the finite set of predicates over C, I is the finite set of storage
modification instructions, and C0 ⊆ C and Cf ⊆ C are the sets of initial and final
configurations. In order to clarify our notation we give a small example (cf. [10]).

Example 6. The storage type pushdown (PD) is defined by (C,P, I, C0, Cf),
where C = Γ ∗, for some fixed alphabet Γ of pushdown symbols, the set of
predicates P = { topa | a ∈ Γ }∪{bottom}, the set of instructions I = { pusha |
a ∈ Γ } ∪ {pop}, the set of initial configurations C0 = {λ}, and the set of final
configurations Cf = C. The predicates are defined to be

topa(bx) =

{
true if a = b

false otherwise
and bottom(x) =

{
true if x = λ

false otherwise

for x ∈ Γ ∗ and a, b ∈ Γ . Finally, let pusha(x) = ax and pop(ax) = x, for x ∈ Γ ∗

and a ∈ Γ , and pop(λ) is undefined. ��
Based on a storage type S = (C,P, I, C0, Cf), we define a two-way (nondeter-
ministic) S-automaton as a 6-tuple A = (Q,Σ, δ, w0, c0, F), where Q is a finite
set of states, Σ is the input alphabet, q0 ∈ Q is the initial state, c0 ∈ C0 is
the initial storage configuration, F ⊆ Q is the set of accepting states, and the

Nodes Connected by Path Languages 283

transition relation δ is a finite subset of Q × Σ × B(P) × Q × {L,N,R} × I∗,
where L, N , and R are interpreted as moves of the input head to the left, no
move, and right, and B(P) denotes the set of Boolean expressions over P .

The computation of A is naturally defined on configurations. Here a configu-
ration is a quintuple (q, u, v, c), where q is a state in Q, both u and v are words
of input symbols, and c is a storage configuration. A two-way S-automaton A
is said to be in configuration (q, u, v, c), if A is in state q, word uv is the in-
scription of the input tape, the input head is scanning the leftmost symbol of v,
and the storage configuration is c. A transition (p, a,B, p′, d, g) is applicable to
a configuration (q, u, v, c) if and only if p = q, the leftmost symbol of v is a, and
the Boolean expression B over predicates evaluates to true on c. Then the suc-
cessor configuration is determined by the new state p′, an input head movement
according to d ∈ {L,N,R}, and a new storage configuration that is obtained
by applying the instructions g to c. As usual the transition relation between
configurations is denoted by 'A and its reflexive and transitive closure by '∗

A.
The language accepted by A is defined as

L(A) = {w ∈ Σ∗ | (q0, λ, w, c0) '∗
A (q, u, v, c) for some q ∈ F and c ∈ Cf }.

An S-automaton is a one-way S-automaton, if the head cannot move to the
left. The family of languages accepted by nondeterministic two-way (one-way,
respectively) S-automata is denoted by 2N-S-A (1N-S-A, respectively). Let S be
a family of storage types, then 2N-S-A =

⋃
S∈S 2N-S-A. Similarly we define the

family of languages 1N-S-A = ∪S∈S1N-S-A.
The next theorem shown in [9] reveals the relation between S-automata and

effective TRIOs.

Theorem 7. Let S be a storage type. Then the language family 1N-S-A is an
effective TRIO.

As mentioned before, we are interested in S-automata that are equipped with
an additional working tape, so-called auxiliary S-automata. One can see these
devices as Turing machines having access to a type S storage in addition to its
working tape. Note that the available type-S storage may be unlimited and is,
in fact, not subject to possible restrictions of the Turing machine such as space
or time bounds. We denote the family of languages accepted by auxiliary S-
automata with s(n)-space bounded working tape by the infix Aux and the suffix
(s(n)), that is, 2AuxN-S-A(s(n)) and 1AuxN-S-A(s(n)), and adapt the notation
for families of storage types.

Now we are prepared for the main theorem of this subsection. Its proof resem-
bles an idea used in the proof to show the relation between 2AuxN-S-A(log n)
and the non-emptiness problem for 1N-S-A in [9].

Theorem 8. Let S be a storage type. Then the (normalized) (un)directed graph
reachability problem constrained to languages from the family 1N-S-A and the
general membership problem for 2AuxN-S-A(log n) are computationally equiva-
lent with respect to logarithmic-space many-one reductions.

284 M. Holzer, M. Kutrib, and U. Leiter

Proof (Sketch). By Corollary 4 we may assume without loss of generality that
the graph reachability instance is directed and normalized. So, let (G,Σ, μ) be a
labeled graph, G = (V,E), and L ⊆ Σ∗ be a formal language from 1N-S-A
forming a normalized GR instance with starting node s and target node t.
Then there is an S-automaton A1 = (Q,Σ, δ, q0, c0, F) with storage type S =
(C,P, I, C0, Cf) accepting language L. We construct a two-way S-automaton
A2 = (Q′, Σ, δ′, q′0, c0, F

′) with Q′ = Q × (V ∪ E), q′0 = (q0, s), and F ′ =
F × ({t} ∪ (V × {t})). The transition relation δ′ is specified as follows. We fix a
letter a ∈ Σ, and set for all p, q ∈ Q, i, j ∈ V , e ∈ E, B ∈ B(P), and g ∈ I∗,

1. ((p, i), a, B, (q, j), N, g) ∈ δ′, if (p, μ(e), B, q, R, g) ∈ δ and e = (i, j),
2. ((p, i), a, B, (q, e), N, g) ∈ δ′, if (p, μ(e), B, q,N, g) ∈ δ and e = (i, j),
3. ((p, e), a, B, (q, j), N, g) ∈ δ′, if (p, μ(e), B, q, R, g) ∈ δ and e = (i, j),
4. ((p, e), a, B, (q, e), N, g) ∈ δ′, if (p, μ(e), B, q,N, g) ∈ δ.

Basically, the idea is that transitions from (1) to (4) cause A2 to simulate A1

step-by-step while simultaneously following a path from s to t in G. In the
simulation we have to distinguish two cases, namely whether A1 will make a
right move of the input head or will stay stationary. The former case is covered
by the transitions in (1) and (3), while the latter is simulated by the transitions
in (2) and (4). We have to deal with the latter case separately, because A1 may
read an edge label without moving the head, and then read the same edge label
again. So, A2 cannot follow this edge while simulating the first reading of A1.
Instead, A2 has to remember the edge for a correct simulation of the next step
of A1. The only word that may belong to language L(A2) is a. So, it is easy
to see that there is a solution to the normalized GR instance if and only if the
two-way auxiliary S-automaton A2 accepts the word a.

Conversely, let A2 be a two-way auxiliary S-automaton whose working tape
is logarithmic-space bounded, and w the input word. In order to construct a
normalized GR instance with respect to a language accepted by a 1N-S-A, we
first sketch the idea of the 1N-S-A A1. Since content w of the input tape is
a parameter of the construction, and we consider logarithmic-space many-one
reductions, the entire input word w and any possible content of the working
tape can be encoded into the states of the 1N-S-A A1 to be constructed. So, the
two-way movement can be simulated in the finite control of A1 while A1 does not
move its input head at all. Automaton A1 reads the same input symbol, say a,
in every transition. As above the only word that may belong to language L(A1)
is a. Now, the normalized GR instance (G,Σ, μ) with respect to language L(A1)
can be chosen as G = ({1}, {(1, 1)}), Σ = {a}, and μ((1, 1)) = a. The starting
and target node is 1. By construction, automaton A2 accepts the input w if and
only if A1 accepts the input a, and the normalized GR instance has a solution
if and only if automaton A1 accepts the input a. Therefore, the claim stated
follows. ��
Since in [9] it has been shown that the general membership problem for
2AuxN-S-A(log n) and the non-emptiness problem for 1N-S-A are computation-
ally equivalent with respect to logarithmic-space many-one reductions, we obtain
the next corollary.

Nodes Connected by Path Languages 285

Corollary 9. Let S be a storage type. Then the (normalized) (un)directed graph
reachability problem constrained to languages from the family 1N-S-A and the
non-emptiness problem for 1N-S-A are computationally equivalent with respect
to logarithmic-space many-one reductions. ��
In the remainder of this subsection we give some applications utilizing known
complexity results for the word problem of language families characterized by
different types of two-way auxiliary S-automata. We start with some language
families from the Chomsky hierarchy, and denote the family of storage types
that are pushdown storages by PD, and the empty family of storage types
by F. Obviously, 2AuxNFA(s(n)) = NSPACE(s(n)) and Cook’s [8] seminal re-
sult reads as 2AuxNPDA(s(n)) =

⋃
DTIME(2c·s(n)), where unions are over c and

s(n) ≥ log n. Restricting the pushdown storage to act as counter (C) we ob-
tain 2AuxNCA(s(n)) = NSPACE(s(n)), for space bounds s(n) ≥ log n. A similar
characterization is true for one-turn pushdown storages. So, applying Theorem 8
and specializing the characterizations of auxiliary finite automata, pushdown au-
tomata, one-turn pushdown, and counter automata to s(n) = log n we obtain:

Corollary 10. The directed graph reachability problem constrained to (i) regular
languages, counter languages, or linear context-free languages is NL-complete and
(ii) to context-free languages is P-complete. ��
What about the context-sensitive languages? It is clear that the directed graph
reachability problem constrained to context-sensitive languages is already unde-
cidable, which follows by a direct construction, since the emptiness problem for
context-sensitive languages is undecidable. This shows that Theorem 8 has its
limitations.

Next we consider variants of stack automata. A stack (S) is a pushdown
storage allowing its interior content (that is, symbols other than the topmost
symbol) to be read at any time, a nonerasing stack (NES) is a stack which
cannot be popped, and a checking stack (CS) is a nonerasing stack which forbids
any push operation once an interior stack symbol has been read. The previous
characterizations are in sharp contrast with Ibarra’s [14] results, who proved that
2AuxNSA(s(n)) =

⋃
DTIME(22c·s(n)

), 2AuxNNESA(s(n)) =
⋃

DSPACE(2c·s(n)),
and 2AuxNCSA(s(n)) =

⋃
NSPACE(2c·s(n)), where again unions are over c and

s(n) ≥ log n. These results turn into the following corollary, where we write
DEXPTIME short for DTIME(2nO(1)

).

Corollary 11. The directed graph reachability problem constrained to (i) non-
erasing stack or checking stack languages is PSPACE-complete and (ii) to stack
languages is DEXPTIME-complete. ��
It is worth mentioning that the indexed languages introduced in [1] as a gen-
eralization of context-free can be characterized by an automaton model that
is a variant of stack automata. These so-called nested stack automata (NestS)
also have an S-automata characterization. Auxiliary nested stack automata were
considered in the literature [5], and it was shown that the family of languages

286 M. Holzer, M. Kutrib, and U. Leiter

accepted by two-way nondeterministic nested stack automata with s(n)-space
bounded auxiliary working tape is equal to the family of languages accepted by
two-way nondeterministic stack automata with the same space bound on the
auxiliary working tape. The latter family in turn equals

⋃
DTIME(22c·s(n)

). So,
from our previous discussion on stack automata we obtain the following com-
pleteness result.

Corollary 12. The directed graph reachability problem constrained to indexed
languages is DEXPTIME-complete. ��
Finally, Theorem 8 also applies to certain Lindenmayer language families. Here
one has to be careful because, for instance, the automaton model of pushdown
array of counters cannot be described in terms of S-automata.

In the remainder of this subsection we discuss the complexity of the labeled
acyclic GR problem. For the next theorem we have to adapt our notation on two-
way nondeterministic auxiliary S-automata to cope with simultaneously space-
and time-bounded automata. If an s(n)-space bounded 2AuxN-S-A is also t(n)
time bounded we address the language family by 2AuxN-S-A(s(n), t(n)).

Theorem 13. Let S be a storage type. Then the general membership problem for
2AuxN-S-A(log n, nO(1)) logarithmic-space many-one reduces to the normalized
directed acyclic graph reachability problem constrained to languages from the
family 1N-S-A. ��
It has to be left open whether the converse relation of Theorem 13 and, thus,
computational equivalence holds. A problem is that a 1N-S-A may perform λ-
moves on the input while operating on the storage structure for more than a
polynomial number of steps. In order to handle this situation we need explicit
knowledge about the storage structure.

An immediate consequence of Theorem 13 is, for instance, that normalized
acyclic GR constrained to regular languages is NL-hard, and for context-free
languages it becomes hard for LOGCFL. The latter follows from the equality
LOGCFL = 2AuxNPDA(log n, nO(1)) [20]. Further NP-hardness results follow
from normalized acyclic GR instances, where the constrained languages are
from one of the various aforementioned stack language families, since NP =
2AuxNSA(log n, nO(1)) = 2AuxNNESA(log n, nO(1)) = 2AuxNCSA(log n, nO(1))
by [12,15]. A closer look reveals that in all these cases we, in fact, obtain com-
pleteness results with respect to logarithmic-space many-one reductions by direct
constructions of upper bounds.

4 Conclusions

We have investigated the computational complexity of labeled graph reachabil-
ity problems constrained to language families in the setting of abstract storage
automata. The advantage of our approach is proven in a series of corollaries
applying well-known characterizations of complexity classes in terms of non-
deterministic abstract storage automata. Finally, let us stress that some of the

Nodes Connected by Path Languages 287

results obtained can be generalized to deterministic language families such as, for
example, deterministic context-free languages or deterministic stack languages.

References

1. Aho, A.V.: Indexed grammars–An extension of context-free grammars. J. ACM 15,
647–671 (1968)

2. Allender, E., Barrington, D.A.M., Chakraborty, T., Datta, S., Roy, S.: Planar and
grid graph reachability problems. Theoret. Comput. Sci. 45, 675–723 (2009)

3. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

4. Barrett, C.L., Jacob, R., Marathe, M.V.: Formal-language-constrained path prob-
lems. SIAM J. Comput. 30, 809–837 (2000)

5. Beeri, C.: Two-way nested stack automata are equivalent to two-way stack au-
tomata. J. Comput. System Sci. 10 (1975)

6. Blum, M., Kozen, D.: On the power of the compass (or, why mazes are easier to
search than graphs). In: Symposium on Foundations of Computer Science (FOCS
1978), pp. 132–142. IEEE, Los Alamitos (1978)

7. Brandt, F., Fischer, F.A., Holzer, M.: On iterated dominance, matrix elimination,
and matched paths. In: Symposium on Theoretical Aspects of Computer Science
(STACS 2010). LIPIcs, vol. 5, pp. 107–118. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2010)

8. Cook, S.A.: Characterizations of pushdown machines in terms of time-bounded
computers. J. ACM 18, 4–18 (1971)

9. Dassow, J., Lange, K.J.: Computational calculus and hardest languages of au-
tomata with abstract storages. In: Budach, L. (ed.) FCT 1991. LNCS, vol. 529, pp.
200–209. Springer, Heidelberg (1991)

10. Engelfriet, J., Hoogeboom, H.J.: Automata with storage on infinite words. In:
Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989.
LNCS, vol. 372, pp. 289–303. Springer, Heidelberg (1989)

11. Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to Parallel Computation: P-
Completeness Theory. Oxford University Press, Oxford (1995)

12. Holzer, M., McKenzie, P.: Alternating and empty alternating auxiliary stack au-
tomata. Theoret. Comput. Sci. (1-3), 307–326 (2003)

13. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

14. Ibarra, O.H.: Characterizations of some tape and time complexity classes of turing
machines in terms of multihead and auxiliary stack automata. J. Comput. System
Sci. 5, 88–117 (1971)

15. Jenner, B., Kirsig, B.: Characterizing the polynomial hierarchy by alternating aux-
iliary pushdown automata. RAIRO Inform. Theor. 23, 87–99 (1989)

16. Jones, N.D., Lien, Y.E., Laaser, W.T.: New problems complete for nondeterministic
log space. Math. Systems Theory 10, 1–17 (1976)

17. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
18. Reingold, O.: Undirected connectivity in log-space. J. ACM 55, 1–24 (2008)
19. Ruzzo, W.L.: Complete pushdown languages (1979),

http://www.cs.washington.edu/homes/

ruzzo/papers/complete-pushdown-languages.pdf
20. Sudborough, I.H.: On the Tape Complexity of Deterministic Context-Free Lan-

guages. J. ACM 25, 405–414 (1978)

http://www.cs.washington.edu/homes/ruzzo/papers/complete-pushdown-languages.pdf
http://www.cs.washington.edu/homes/ruzzo/papers/complete-pushdown-languages.pdf

Characterizing the Regular Languages by

Nonforgetting Restarting Automata

Norbert Hundeshagen and Friedrich Otto

Fachbereich Elektrotechnik/Informatik
Universität Kassel, 34109 Kassel, Germany

{hundeshagen,otto}@theory.informatik.uni-kassel.de

Abstract. We study nonforgetting R- and nonforgetting deterministic
RR-automata of window size one, that is, nf-R(1)- and det-nf-RR(1)-
automata. Our main result shows that the monotone variants of these
two types of restarting automata characterize the regular languages. On
the other hand, we prove that already the non-monotone determinis-
tic nonforgetting R(1)-automata accept a class of languages that is in-
comparable to the class of semi-linear languages with respect to inclu-
sion, but that properly includes the class of languages that are accepted
by globally deterministic cooperating distributed systems of stateless
deterministic R(1)-automata.

1 Introduction

Restarting automata can be seen as an extension of finite-state acceptors by
certain restricted rewrite and restart operations (see, e.g., [2]). Therefore it is
not surprizing that each type of restarting automaton accepts a superclass of
the regular languages. In fact, also characterizations of the regular languages
in terms of certain restricted types of restarting automata have been obtained:
in [11] Mráz has shown that (deterministic) R-automata with window size one
(R(1)-automata) accept only regular languages, and Reimann has carried this
result over to deterministic RR(1)-automata in [14]. Here we extend these results
even further by showing that the monotone variants of nonforgetting R(1)- and
nonforgetting deterministic RR(1)-automata only accept regular languages.

Nonforgetting restarting automata were introduced by Messerschmidt and
Stamer in [10]. In contrast to the situation for standard restarting automata,
the restart operations of a nonforgetting restarting automaton are combined
with a change of its internal state just like the other operations, that is, it is not
reset to the initial state when it executes a restart operation. As shown in [7,8]
(deterministic) nonforgetting R- and RR-automata correspond to (globally deter-
ministic) cooperating distributed systems (CD-systems) of R- and RR-automata
working in mode = 1. Therefore, we also compare the expressive power of non-
monotone deterministic nonforgetting R-automata to that of the CD-systems of
stateless deterministic R(1)-automata studied in [12].

This paper is structured as follows. In Section 2 we repeat in short the defi-
nitions of the various types of restarting automata we are interested in in this

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 288–299, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Characterizing the Regular Languages 289

paper. Then in Section 3 we prove our main result characterizing the regular
languages in terms of nonforgetting R(1)- and deterministic nonforgetting RR(1)-
automata, and in Section 4 we study the non-monotone det-nf-R(1)-automaton.
In the concluding section we address the question of the descriptional complexity
for monotone nf-R(1)- and det-nf-RR(1)-automata in short.

2 Nonforgetting Restarting Automata

A nonforgetting RR-automaton (nf-RR-automaton, for short) is a one-tape ma-
chine with a finite-state control and a read/write window. It is described by a
7-tuple M = (Q,Σ, c, $, q0, k, δ). Here Q is a finite set of internal states, Σ is
a finite (tape) alphabet, the symbols c, $ �∈ Σ serve as markers for the left and
right border of the workspace, respectively, q0 ∈ Q is the initial state, the size of
the read/write window is k ≥ 1, and δ is the transition relation that associates
a finite set of transition steps to pairs of the form (q, u), where q ∈ Q is a state
and u is a possible contents of the read/write window. There are four types of
transition steps: move-right steps of the form (q′,MVR), which shift the window
one step to the right and change the internal state to q′, rewrite steps of the form
(q′, v), where v is a proper scattered subword of u, that replace the contents u of
the read/write window by the word v and change the internal state to q′, restart
steps of the form (q′,Restart) that place the read/write window over the left end
of the tape and change the internal state to q′, and accept steps (Accept), which
cause the automaton to halt and accept. Some additional restrictions apply in
that the sentinels c and $ must not be deleted, and that the window must not
move right across the $-symbol. Further, M is deterministic if δ is a partial
function. We use the prefix det- to denote deterministic types of RR-automata.

A configuration of M is described by a word αqβ, where q ∈ Q and either
α = ε (the empty word) and β ∈ {c} ·Σ∗ · {$} or α ∈ {c} ·Σ∗ and β ∈ Σ∗ · {$};
here q is the current internal state, αβ is the current content of the tape, and it
is understood that the head scans the first k symbols of β (or all of β if |β| ≤ k).
A restarting configuration is of the form qcw$, and an initial configuration is of
the form q0cw$. By 'M we denote the single-step computation relation of M ,
and '∗

M denotes the reflexive transitive closure of 'M .
The automaton M proceeds as follows. Starting from a restarting configura-

tion qcw$, the window is shifted to the right by a sequence of move-right steps
until a configuration of the form cxquy$ is reached such that (q′, v) ∈ δ(q, u),
where w = xuy. Now the latter configuration can be transformed into the con-
figuration cxvq′y$, and the computation proceeds with further move-right steps
until eventually a restart operation is executed, which yields a restarting con-
figuration of the form pcxvy$. This sequence of computational steps, which is
called a cycle, is expressed as qcw$ 'c

M pcxvy$. A computation of M consists
of a finite sequence of cycles that is followed by a tail computation, which con-
sists of a sequence of move-right operations (and possibly a single application
of a rewrite operation) that is possibly followed by an accept step. An input
word w ∈ Σ∗ is accepted by M , if there exists a computation of M which starts

290 N. Hundeshagen and F. Otto

with the initial configuration q0cw$ and finishes by executing an accept step. By
L(M) we denote the language consisting of all words accepted by M .

Each cycle C of a restarting automaton M contains a unique configuration
αqβ in which a rewrite step is applied. Then |β| is called the right distance
of C, denoted as Dr(C). A sequence of cycles (C1, C2, . . . , Cn) of M is called
monotone if Dr(C1) ≥ Dr(C2) ≥ · · · ≥ Dr(Cn). A computation of M is called
monotone if the corresponding sequence of cycles is monotone. Finally, M itself
is called monotone if all its computations that start from an initial configuration
are monotone. We use the prefix mon- to denote monotone types of restarting
automata.

M is called a nonforgetting R-automaton (nf-R-automaton, for short) if it is
a nonforgetting RR-automaton for which each rewrite operation is immediately
followed by a restart operation. To simplify the description we combine each
rewrite operation of an R-automaton with the subsequent restart operation. Of
course, the notions of determinism and monotonicity also apply to R-automata.

Observe that nonforgetting R- and RR-automata differ from the standard R-
and RR-automata as defined in [2] in that they are not necessarily reset to
their initial states when executing a restart operation. This feature increases the
expressive power of nonforgetting R- and RR-automata considerably. In fact, it is
shown in [7,8] that (deterministic) nonforgetting R- and RR-automata correspond
to (globally deterministic) cooperating distributed systems (CD-systems) of R-
and RR-automata working in mode = 1. In Section 4 we will consider certain
restricted variants of these CD-systems.

3 Characterizing the Regular Languages

The following results are known on the expressive power of deterministic (mono-
tone) restarting automata. Here L(X) denotes the class of languages that are
accepted by restarting automata of type X, DCFL denotes the class of determin-
istic context-free languages, and CRL is the class of Church-Rosser languages [6].

Proposition 1. [4,9,10]

(a) L(det-mon-RR) = L(det-mon-R) = L(det-mon-nf-R) = DCFL
� L(det-mon-nf-RR) � CRL.

(b) L(det-nf-R) and L(det-nf-RR) are incomparable to CRL under inclusion.

Of course, L(det-nf-R) ⊆ L(det-nf-RR), but it is still open whether this inclu-
sion is strict. For each k ≥ 1, let X(k) denote the restarting automata of type
X that have a read/write window of size k. Concerning the expressive power
of restarting automata with window size one, the following results have been
obtained in [3,11,14], where REG denotes the class of regular languages. Ob-
serve that each rewrite operation of a nf-RR(1)-automaton simply erases a single
symbol from the tape.

Proposition 2. (a) L(R(1)) = L(mon-R(1)) = L(det-R(1)) = REG.
(b) L(det-RR(1)) = REG � L(RR(1)).
(c) L(det-R(5)) contains a language that is not context-free.

Characterizing the Regular Languages 291

It is easily verified that deterministic R(1)- and RR(1)-automata are necessar-
ily monotone. Here we extend the above characterizations of REG to nonforget-
ting restarting automata.

Theorem 1. L(det-mon-nf-R(1)) = REG.

Proof. It remains to prove the inclusion from left to right. Let M = (Q,Σ,
c, $, q0, 1, δ) be a det-mon-nf-R(1)-automaton for L ⊆ Σ∗. W.l.o.g. we may as-
sume that Q = {q0, q1, . . . , qn−1}, and that M executes Accept-instructions only
on reading the $-symbol. Below we describe a deterministic finite-state acceptor
(DFA) A = (QA, Σ ∪{$}, q(A)

0 , F, δA) for L · $. In its finite-state control A stores
the following information on the computation of M that it tries to simulate:

- The current restart state CRS that contains the state q ∈ Q with which the
cycle of M starts that is currently active. Initially CRS is set to q0.

- A state table T that initially contains the list of all pairs (qi, q
′
i) (i =

0, 1, . . . , n − 1), where q′i is the state that M enters from state qi on see-
ing the c-symbol. If δ(qi, c) is undefined, then T contains the item (qi,−).

- A buffer B of length n that is initially empty. It will be used to store infor-
mation on possible rewrite (that is, delete) operations encountered during
the current simulation.

The intended simulation of M by the DFA A crucially depends on the property
of M of being monotone. Consider an accepting computation of M on input w,
and assume that this computation consists of a sequence of at least two cycles
that is followed by a tail computation, that is, it has the following form:

q0cw$ = q0cuav$ '+
MVR cup0av$ 'M qi1cuv$ = qi1cxby$ '+

MVR cxpi1by$

'M qi2cxy$ 'c∗
M qimcz$ '+

MVR czpim$ 'M Accept.

The right distance of the first cycle is d1 = |v| + 2, and the right distance of
the second cycle is d2 = |y| + 2. As M is monotone, we have d1 ≥ d2, that is,
|v| ≥ |y|. Since uv = xby, this means that y is a suffix of v. If y is a proper suffix
of v, then v = x2by for a suffix x2 of x. In this case w = uav = uax2by, which
implies that the second delete operation is executed at a place that is strictly
to the right of the place where the first delete operation was executed. In this
situation A first encounters the letter a deleted in the first cycle and later it
encounters the letter b deleted in the second cycle.

If, however, v = y, then uv = xby = xbv implies that u = xb, and so w =
uav = xbav. Thus, in this situation the second delete operation is executed
immediately to the left of the place where the first delete operation was executed.
Hence, in this case the b deleted in the second cycle is encountered by A before
the a that is deleted in the first cycle. However, this can happen only if M
completes the first cycle by restarting in the correct state qi1 . In addition, as M
is deterministic, we have qi1 �= q0.

Obviously, the second case above can occur more than once in a row. However,
as all the corresponding restarting states must differ from one another, the length
of such a sequence is bounded from above by the number n of states of M .

292 N. Hundeshagen and F. Otto

The DFA A will use its buffer B to record information on sequences of delete
operations of M of the form described above. Because of the restriction on the
length of such sequences, the size of B is sufficient for this task. In the situation
above A will store the following information:

- CRS still contains the initial state q0;
- the table T contains the pairs (qi, pi) (i = 0, 1, . . . , n − 1), where pi is the

state that M reaches from the restarting configuration qicw$ = qicxbav$ by
moving right across the prefix cx;

- on realizing that M can execute the rewrite operation δ(pi1 , b) = (qi2 , ε), A
stores the pair (b, (qi1 , pi1 , qi2 , Tb)) in B, and moves right to the next letter.
Here Tb is the table that is obtained from T by replacing each pair (qi, pi)
by (qi, p

′
i), if δ(pi, b) = (p′i,MVR), by leaving it as it is, if δ(pi, b) is a rewrite

operation, and by replacing it by (qi,−) if δ(pi, b) is undefined. In fact, the
second component of the above pair stored in B contains a 4-tuple of the
form (qi, pi, p

′
i, Tb) for each index i such that δ(pi, b) is a rewrite operation.

Next A realizes that M can execute the rewrite operation δ(p0, a) = (qi1 , ε).
Hence, it has detected that the computation of M on input w = xbav begins
with a sequence of two cycles that deletes the factor ba. In this case A sets CRS
to qi2 , it leaves T unchanged, and it empties the buffer B. Thus, A now simulates
the computation of M that begins with the restarting configuration qi2cxv$, and
as M is deterministic, A can do so by starting with the first letter of v and by
considering the state transitions of M that are induced by moving right across
the prefix cx which are already recorded in table T .

In general the situation can be more complicated than in the above example.
In fact, there are three cases that we need to deal with.

Case 1. The word w has a factorization of the form w = xamam−1 · · ·a1v such
that the computation of M on input w begins with a sequence of m cycles such
that, in the j-th cycle (1 ≤ j ≤ m), the letter aj is deleted. Thus, while the first
cycle has the form

q0cw$ = q0cxam · · · a2a1v$ '+
MVR cxam · · ·a2p0a1v$ ' qi1cxam · · ·a2v$,

the j-th cycle (2 ≤ j ≤ m) has the form

qij−1cxam · · ·aj+1ajv$ '+
MVR cxam · · · aj+1pij−1ajv$ ' qij cxam · · ·aj+1v$.

This case is dealt with in analogy to the example above.

Case 2. The word w has a factorization of the form w = xam · · · as+1asv such
that, for each j = s + 1, . . . ,m, there is a possible cycle of M of the form

qij−1cxam · · ·aj+1ajasv$ '+
MVR cxam · · · aj+1pij−1ajasv$ ' qij cxam · · · aj+1asv$,

but from the restarting configuration qicxam · · · as+1asv$, M does not apply a
rewrite operation to the letter as for any state qi ∈ Q. While reading the prefix
xam · · · as+1, A has collected the following information in its finite-state control:

Characterizing the Regular Languages 293

- CRS is q0;
- the table T contains the pairs of the form (qi, q

′
i) (i = 0, 1, . . . , n− 1), where

q′i is the state that M reaches from the restarting configuration qicw$ =
qicxam · · · asv$ by moving right across the prefix cx;

- the buffer B contains the sequence of pairs(
(am, (qim−1 , pim−1 , qim , Tm)), . . . , (as+1, (qis , pis , qis+1 , Ts+1))

)
,

where Tj is obtained from T by replacing each pair (qi, q
′
i) by the pair

(qi, r
(j)
i). Here r

(j)
i is the state that M reaches from state q′i by a sequence of

MVR-steps that reads across the word am · · · aj if that is possible. Otherwise,
the pair (qi, q

′
i) is replaced by (qi,−).

On encoutering the letter as, A realizes that M cannot execute a rewrite step
that completes the partial computation on input w consisting of the sequence
of cycles above in the sense of Case 1. In fact, as M cannot execute any rewrite
step on as, no matter in which state it starts the current cycle, monotonicity
of M implies that the partial computation above cannot be part of the compu-
tation of M on input w. Therefore, A empties the buffer B completely, and it
replaces each pair (qi, q

′
i) of T by the pair (qi, q̂i), if starting from the restarting

configuration qicxam · · ·as+1asv$, M reaches state q̂i by moving right across the
prefix cxam · · · as.

Case 3. This case is a combination of the two cases above. The word w has
a factorization of the form w = xam · · ·as+1as · · · a1v such that, for each j =
s + 1, . . . ,m, there is a possible cycle of M of the form

qij−1cx · · · ajas · · · a1v$ '+
MVR cx · · · pij−1ajas · · · a1v$ ' qij cx · · · aj+1as · · ·a1v$,

and from a restarting configuration q′is−1
cxam · · ·as+1as · · · a1v$, M executes a

rewrite operation of the form δ(p′is−1
, as) = (q′is

, ε) for some state q′is
�= qis . In

addition, for each μ = 1, . . . , s − 1, there is a possible cycle of M of the form

q′iμ−1
cxam · · · aμ+1aμv$ '+

MVR cxam · · ·aμ+1p
′
iμ−1

aμv$ ' q′iμ
cxam · · · aμ+1v$

such that q′i0 = q0. While reading the prefix xam · · · as+1, A has collected the
same information as in Case 2.

On encoutering the letter as, A realizes that M cannot execute a rewrite step
that extends the partial computation on input w consisting of the sequence of
cycles above in the sense of Case 1. As, however, there is a rewrite operation
that M may apply to the letter as, A continues as follows:

- CRS remains unchanged;
- the table T remains unchanged;
- the buffer B is extended by the pair (as, (q′is−1

, p′is−1
, q′is

, Ts)), where Ts is

obtained from T by replacing each pair (qi, r
(s+1)
i) by the pair (qi, r

(s)
i).

Here r
(s)
i is the state that M reaches from state r

(s+1)
i by a MVR-step that

reads across the letter as if that is possible. Otherwise, the pair (qi, r
(s+1)
i)

is replaced by (qi,−).

294 N. Hundeshagen and F. Otto

For each letter as−1, . . . , a2, A extends the buffer B in the same way as before.
Observe that m ≤ n must still hold due to the fact that M is deterministic. On
encoutering the letter a1, A realizes that it has found a sequence of s cycles that
is the first part of the computation of M on input w. Accordingly, it acts as in
Case 1. Of course, the above situation may appear repeatedly, but the overall
length of the longest sequence of possible rewrite operations that is stored in B
is always bounded in length from above by the number n of states of M . This
completes the description of Case 3.

Now the overall computation of A on input w proceeds as follows. Assume
that A reads the letter a.

- If, for no pair (qi, q
′
i) stored in the table T , δ(q′i, a) is a rewrite operation, and

if the buffer B is empty, then the table T is updated by replacing (qi, q
′
i), for

all i, by (qi, q̂i), if δ(q′i, a) = (q̂i,MVR), and by (qi,−), if δ(q′i, a) is undefined.
In this situation, CRS remains unchanged.

- If, for no pair (qi, q
′
i) stored in the table T , δ(q′i, a) is a rewrite operation,

but the buffer is non-empty, then we are in the situation described by Case 2
above.

- If CRS is qi, and for the pair (qi, q
′
i) stored in T , δ(q′i, a) = (qj , ε), then the

rewrite operation of the current cycle of M has been detected. If B is empty,
then CRS is set to qj , and T and B remain unchanged. Observe that this is a
special case of Case 1 above. If B is non-empty, then A proceeds as detailed
in Cases 1 and 3 above.

- If δ(q′i, a) = (qj , ε) for a pair (qi, q
′
i) stored in T , where qi is different from

the state stored in CRS, then the corresponding information is pushed onto
the buffer B as in Cases 1 and 3.

The finite-state acceptor A keeps on reading the word w letter by letter from
left to right until it encounters the right sentinel $. Now the actual state of A
is accepting, if the pair (qi, q

′
i) in the current table T that corresponds to the

current state qi of M stored in CRS satisfies the condition that δ(q′i, $) = Accept.
It follows that L(A) = L · $. Since the class of regular languages is closed under
right quotients, this implies that the language L is regular. This completes the
proof of Theorem 1. �

Actually, Theorem 1 even extends to nondeterministic nf-R-automata.

Theorem 2. L(mon-nf-R(1)) = REG.

Proof. Let M = (Q,Σ, c, $, q0, 1, δ) be a mon-nf-R(1)-automaton for L ⊆ Σ∗.
Then M can be simulated by a nondeterministic finite-state acceptor (NFA)
A = (QA, Σ ∪ {$}, q(A)

0 , F, δA) for the language L · $ by using exactly the same
strategy as in the proof of Theorem 1. It only remains to verify the following
claim.

Claim. Let w = xamam−1 · · · a1v be an input word such that M has a compu-
tation on input w that begins with a sequence of m cycles such that, in the j-th

Characterizing the Regular Languages 295

cycle (1 ≤ j ≤ m), the letter aj is deleted. Then m ≤ n, where n is the number
of internal states of M .

Thus, whenever in some simulation of a computation of M by A a sequence
of cycles is detected that contains a repetition of a restarting state, then this
sequence of cycles cannot possibly be part of a computation of M that begins
with a proper initial configuration. Accordingly, the actual computation of A
can be terminated in a non-accepting state. It follows that L(A) = L · $, which
in turn implies that the language L itself is regular. �

Finally we want to extend Theorem 1 to nonforgetting RR-automata. For doing
so we need the following technical result on deterministic two-way finite-state
acceptors (2DFA) from [1] (pages 212–213).

Lemma 1. Let B be a DFA. For each word x and each integer i, 1 ≤ i ≤ |x|, let
qB(x, i) be the internal state of B after processing the prefix of length i of x. Then
there exists a 2DFA B′ such that, for each input x and each i ∈ {2, 3, . . . , |x|},
if B′ starts its computation on x in a state corresponding to qB(x, i) with its
head on the i-th symbol of x, then B′ finishes its computation in a state that
corresponds to qB(x, i − 1) with its head on the (i − 1)-th symbol of x. During
this computation B′ only visits (a part of) the prefix of length i of x.

Theorem 3. L(det-mon-nf-RR(1)) = REG.

Proof. Obviously it remains to prove the inclusion from left to right. So let M =
(Q,Σ, c, $, q0, 1, δ) be a det-mon-nf-RR(1)-automaton for L ⊆ Σ∗. W.l.o.g. we
may assume that Q = {q0, q1, . . . , qn−1}, and that M executes Restart- and
Accept-instructions only on reading the $-symbol. Below we describe a 2DFA
A = (QA, Σ∪{c, $}, q(A)

0 , F, δA) for c ·L ·$. Essentially, A works in the very same
way as the DFA in the proof of Theorem 1, but there is a technical problem that
we must overcome:

Whenever M executes a rewrite operation, then we need to know whether
this operation is within an accepting or a rejecting tail computation, or whether
it is part of a cycle of M . In the latter case, we also need to know which state
of M is entered by the restart operation of this cycle.

To solve this problem A will execute a preprocessing stage given an input of
the form cw$ (w ∈ Σ∗).

Preprocessing Stage: Let w ∈ Σ∗, and let cw$ be the input for A.

Step 1. Starting from the initial configuration q
(A)
0 cw$, A scans its input from

left to right until it encounters the $-symbol, that is, q
(A)
0 cw$ '+

A cwq
(A)
1 $.

Step 2. For each suffix v of w, and for each state q ∈ Q, let

Pv$(q) = { p ∈ Q | ∃p′ ∈ Q : cpv$ '|v|
MVR cvp′$ 'Restart qcv$ },

and let

Pv$(+) = { p ∈ Q | ∃p′ ∈ Q : cpv$ '|v|
MVR cvp′$ ' Accept }.

296 N. Hundeshagen and F. Otto

The initial sets P$(q) and P$(+), which are easily obtained from M , are stored
in A’s finite-state control.

Step 3. Now A reads its tape from right to left, letter by letter. Assume that
w = xav, where x, v ∈ Σ∗ and a ∈ Σ, and that A has moved left across the
suffix v thereby computing the sets Pv$(q) (q ∈ Q) and Pv$(+). Now A moves
left reading the symbol a, and while doing so it updates the set Pv$(q) to

Pav$(q) = { p ∈ Q | ∃p′ ∈ Pv$(q) : δ(p, a) = (p′,MVR) }

for each q ∈ Q, and it updates the set Pv$(+) to

Pav$(+) = { p ∈ Q | ∃p′ ∈ Pv$(+) : δ(p, a) = (p′,MVR) }.

This process continues until A reaches the c-symbol. At that moment it has
stored the sets Pw$(q) (q ∈ Q) and Pw$(+) in its finite-state control.

Unfortunately, A can only store one collection of sets in its finite-state control,
that is, when storing the sets Pav$(q) (q ∈ Q) and Pav$(+), it forgets the sets
Pv$(q) (q ∈ Q) and Pv$(+). Fortunately, we can now apply Lemma 1 to the DFA
realizing Steps 2 and 3 of the above preprocessing stage. Just observe that this
acceptor works from right to left, and so we need the symmetric version of the
above lemma.

We combine this 2DFA with the DFA from the proof of Theorem 1. For each
rewrite operation of the form δ(q′, a) = (p, ε) encountered in the simulation of M ,
we check whether p ∈ Pv$(+) or whether p ∈ Pv$(q) for some q ∈ Q, where v
is the corresponding suffix of the input word w. Based on this information the
simulation then continues as in the proof of Theorem 1. �

As the non-regular language L = { anbn, anbn+1 | n ≥ 0 } is accepted by a
monotone RR(1)-automaton, we see that Theorem 3 does not extend to nonde-
terministic nonforgetting RR(1)-automata.

4 Deterministic Nonforgetting R(1)-Automata

In [5] the stateless variants of R-automata were introduced, and in [12] cooper-
ating distributed systems (CD-systems) of stateless deterministic R(1)-automata
were studied. Here an R(1)-automaton M = (Q,Σ, c, $, q0, 1, δ) is called stateless
if Q = {q0} holds. Thus, in this case M can simply be described by the 5-tuple
M = (Σ, c, $, 1, δ). A CD-system of stateless deterministic R(1)-automata (or
a stl-det-local-CD-R(1)-system, for short) consists of a finite collection M =
((Mi, σi)i∈I , I0) of stateless deterministic R(1)-automata Mi = (Σ, c, $, 1, δi)
(i ∈ I), successor relations σi ⊆ I (i ∈ I), and a subset I0 ⊆ I of initial
indices. It is required that I0 �= ∅ and that σi �= ∅ for all i ∈ I.

The computation of M (in mode = 1) on an input word w proceeds as follows.
First an index i0 ∈ I0 is chosen nondeterministically. Then the R-automaton Mi0

starts the computation with the initial configuration that corresponds to input w

Characterizing the Regular Languages 297

and executes one cycle. Thereafter an index i1 ∈ σi0 is chosen nondeterministi-
cally, and Mi1 continues the computation by executing one cycle. This continues
until, for some l ≥ 0, the automaton Mil

accepts. Should at some stage Mil
be

unable to execute a cycle or to accept, then the computation fails.
By L(M) we denote the language that the CD-R-system M accepts. It con-

sists of all words w ∈ Σ∗ that are accepted by M as described above. By
L(stl-det-local-CD-R(1)) we denote the class of languages that are accepted by
stl-det-local-CD-R(1)-systems.

A stl-det-local-CD-R(1)-system M = ((Mi, σi)i∈I , I0) is called globally deter-
ministic if |I0| = 1, and if each restart operation of Mi (i ∈ I) is associated
with a successor j ∈ σi of Mi. Thus, while computations of locally deterministic
CD-R(1)-systems are in general still nondeterministic, those of globally determin-
istic CD-R(1)-systems are completely deterministic. By L(stl-det-global-CD-R(1))
we denote the class of languages that are accepted by stl-det-global-CD-R(1)-
systems. It is known that L(stl-det-local-CD-R(1)) only contains languages
with a semi-linear Parikh image, and that it contains all rational trace lan-
guages [12]. On the other hand, it has been shown that the language class
L(stl-det-global-CD-R(1)) is incomparable to the class of rational trace languages
with respect to inclusion [13].

As globally deterministic CD-systems can be simulated by deterministic non-
forgetting restarting automata [8], we have the following inclusion result.

Proposition 3. L(stl-det-global-CD-R(1)) � L(det-nf-R(1)).

This inclusion is strict, as witnessed by the language Lpr = {wc ∈ {a, b}∗ |
|w|a ≥ |w|b ≥ 0 } ∈ L(det-nf-R(1)), which is not accepted by any stl-det-global-
CD-R(1))-system [13]. In fact, the language class L(det-nf-R(1)) even contains
languages that are not semi-linear.

Lemma 2. Lex2 = { (ab)2
n

(cd)ne2 | n ≥ 0 } ∈ L(det-nf-R(1)).

Proof. It can be shown that Lex2 is accepted by the det-nf-R(1)-automaton
Mex2 that is given through the following meta-instructions (see, e.g., [9]):

(1) (q0, c · (ab)+ · (cd)∗ · e, e → ε, q1), (5) (q2, ca, a → ε, q2),
(2) (q1, cae$,Accept), (6) (q2, c · (ab)+ · a, a → ε, q2),
(3) (q1, c · (aab)∗ · a, b → ε, q1), (7) (q2, c · (ab)+, d → ε, q1).
(4) (q1, c · (aab)+, c → ε, q2), �

As the Parikh image of Lex2 is not a semi-linear subset of N5, it follows that
L(det-nf-R(1)) is not contained in the class of semi-linear languages.

The language L∨ = {w ∈ {a, b}∗ | ∃n ≥ 0 : |w|a = n and |w|b ∈ {n, 2n} }
is a rational trace language that is not accepted by any stl-det-global-CD-R(1)-
system [13]. Actually, the following stronger result can be shown.

Lemma 3. L∨ �∈ L(det-nf-R(1)).

Together with the above result on Lex2 this lemma yields the following in-
comparability results.

298 N. Hundeshagen and F. Otto

semi-linear languages L(det-nf-R)

L(stl-det-local-CD-R(1))

��

L(det-nf-R(1))

��

L(stl-det-global-CD-R(1))

�� �����������

L(mon-nf-R(1))

��

L(det-mon-nf-RR(1))

REG L(R(1)) L(det-RR(1))

Fig. 1. Hierarchy of language classes accepted by various types of nonforgetting R-
automata with window size 1. Each arrow represents a proper inclusion.

Corollary 1. L(det-nf-R(1)) is incomparable to L(stl-det-local-CD-R(1)) and to
the class of semi-linear languages with respect to inclusion.

In fact, we think that Lemma 3 even extends to L(det-nf-R). One can easily
design a det-nf-R(2)-automaton that accepts the language Lpal = {w ∈ {a, b}∗ |
w = wR }. On the other hand, it can be shown that Lpal �∈ L(det-nf-R(1)) holds.
Thus, we have the following proper inclusion.

Corollary 2. L(det-nf-R(1)) � L(det-nf-R).

Figure 1 summarizes the inclusion relations on L(det-nf-R(1)).

5 Concluding Remarks

As monotone nf-R(1)- and det-nf-RR(1)-automata accept just the regular lan-
guages, the question for their descriptional complexity arises: Do these more
involved types of automata offer more succinct representations for regular lan-
guages than (standard) R(1)- and det-RR(1)-automata? Here we have the fol-
lowing first preliminary result.

Proposition 4. For each n ≥ 2, there exists a language Ln ⊆ {a, b}∗ that is
accepted by a det-mon-nf-RR(1)-automaton with O(n) states, but every (standard)
det-RR(1)-automaton accepting Ln has at least O(2n) many states.

Proof. For n ≥ 2, let Ln = {w ∈ {a, b}m | m > n, wn = a, and wm+1−n = b },
where wi (1 ≤ i ≤ |w|) denotes the i-th symbol of w. A det-mon-nf-RR(1)-
automaton M for Ln can be described by the following meta-instructions, where
x ∈ {a, b}:

(1) (q0, c, x → ε, {a, b}n−2 · a · {a, b}+ · $, q1),
(2) (q1, c · a∗, b → ε, {a, b}n−1 · {a, b}+ · $, q1),
(3) (q1, c · a∗, b → ε, {a, b}n−1 · $,Accept).

For realizing these meta-instructions O(n) states suffice, as M must be able to
count from 1 to n. On the other hand, a deterministic RR(1)-automaton M ′ for

Characterizing the Regular Languages 299

Ln must accept each word w ∈ Ln satisfying |w| = m ≤ 2n in a tail computation
because of the correctness preserving property (see, e.g., [4]). Hence, it behaves
essentially just like a DFA, which implies that it needs O(2n) states to check the
condition wm+1−n = b. �

In [14] Reimann studied the descriptional complexity of R(1)-automata and of
deterministic RR(1)-automata. It remains to carry his studies over to (determin-
istic) mon-nf-R(1)- and det-mon-nf-RR(1)-automata.

References

1. Aho, A., Hopcroft, J., Ullman, J.: A general theory of translation. Math. Systems
Theory 3, 193–221 (1969)

2. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H.
(ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995)

3. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: On restarting automata with rewrit-
ing. In: Păun, G., Salomaa, A. (eds.) New Trends in Formal Languages. LNCS,
vol. 1218, pp. 119–136. Springer, Heidelberg (1997)

4. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: On monotonic automata with a restart
operation. J. Autom. Lang. Comb. 4, 287–311 (1999)

5. Kutrib, M., Messerschmidt, H., Otto, F.: On stateless two-pushdown automata
and restarting automata. In: Csuhaj-Varju, E., Esik, Z. (eds.) Proc. of AFL 2008,
pp. 257–268. Computer and Automation Research Institute, Hungarian Academy
of Sciences (2008)

6. McNaughton, R., Narendran, P., Otto, F.: Church-Rosser Thue systems and formal
languages. J. ACM 35, 324–344 (1988)

7. Messerschmidt, H., Otto, F.: Cooperating distributed systems of restarting auto-
mata. Intern. J. Found. Comp. Sci. 18, 1333–1342 (2007)

8. Messerschmidt, H., Otto, F.: On deterministic CD-systems of restarting automata.
Intern. J. Found. Comp. Sci. 20, 185–209 (2009)

9. Messerschmidt, H., Otto, F.: A hierarchy of monotone deterministic nonforgetting
restarting automata. Theory Comput. Syst. 48, 343–373 (2011)

10. Messerschmidt, H., Stamer, H.: Restart-Automaten mit mehreren Restart-
Zuständen. In: Bordihn, H. (ed.) Proc. of Workshop ‘Formale Sprachen in der
Linguistik’ und 14. Theorietag ‘Automaten und Formale Sprachen’, pp. 111–116.
Institut für Informatik, Universität Potsdam (2004)

11. Mráz, F.: Lookahead hierarchies of restarting automata. J. Autom. Lang. Comb. 6,
493–506 (2001)

12. Nagy, B., Otto, F.: CD-systems of stateless deterministic R(1)-automata accept all
rational trace languages. In: Dediu, A., Fernau, H., Mart́ın-Vide, C. (eds.) LATA
2010. LNCS, vol. 6031, pp. 463–474. Springer, Heidelberg (2010)

13. Nagy, B., Otto, F.: Globally deterministic CD-systems of stateless R(1)-automata.
In: Dediu, A.-H., Inenaga, S., Martin-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638,
pp. 390–401. Springer, Heidelberg (2011)

14. Reimann, J.: Beschreibungskomplexität von Restart-Automaten. PhD thesis,
Naturwissenschaftliche Fachbereiche, Justus-Liebig-Universität Giessen (2007)

On Two-Way Transducers

Oscar H. Ibarra1,� and Hsu-Chun Yen2,��

1 Dept. of Computer Science, Univ. of California, Santa Barbara, CA 93106, USA
ibarra@cs.ucsb.edu

2 Dept. of Electrical Engineering, National Taiwan Univ., Taipei, Taiwan 106, ROC
yen@cc.ee.ntu.edu.tw

Abstract. We look at some classes of two-way transducers with
auxiliary memory and investigate their containment and equivalence
problems. We believe that our results are the strongest known to date
concerning two-way transducers.

Keywords: two-way transducer, containment problem, equivalence
problem.

1 Introduction

It is known that the equivalence problem for two-way deterministic finite trans-
ducers is decidable [4]. We generalize this result for some models of two-way
transducers with auxiliary memory.

We consider two-way transducers, i.e., two-way finite automata (with in-
put end markers # and $) augmented with reversal-bounded counters and a
one-way output tape. Call the nondeterministic (resp., deterministic) version
2NCMT (resp., 2DCMT). The relation defined by such a transducer A is R(A) =
{(x, y) | A, when started in its initial state on the left end marker of #x$, outputs
y and falls off the right end marker in an accepting state }. The transducer is
finite-crossing if there is some fixed k such that in every accepting computation
on any input #x$, the number of times the input head crosses the boundary
between any two adjacent symbols of #x$ is at most k. Note that the number
of turns (i.e., changes in direction from left-to-right and right-to-left and vice-
versa) the input head makes on the input may be unbounded. Also note that
the requirement is only for accepting computations. So if R(A) = ∅, then A is
finite-crossing and, in fact, k-crossing for any k. We assume that when we are
given a finite-crossing machine, the integer k for which the machine is k-crossing
is also specified. Unfortunately, as we will see, it is undecidable to determine if
a 2DCMT is finite-crossing, or k-crossing for a given k.

We show that the following problems are decidable:

1. Given a finite-crossing 2NCMT A1 and a finite-crossing 2DCMT A2, is
R(A1) ⊆ R(A2)? Hence, equivalence of finite-crossing 2DCMTs is decidable.

� Supported in part by NSF Grant CCF-0524136.
�� Supported in part by NSC Grant NSC-97-2221-E-002-095-MY3, Taiwan.

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 300–311, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On Two-Way Transducers 301

2. Given a one-way nondeterministic pushdown transducer with reversal
-bounded counters (1NPCMT) A1 and a finite-crossing 2DCMT A2, is R(A1)
⊆ R(A2)?

3. Given a finite-crossing 2NCMT A1 and a 1DPCMT A2 (the deterministic
version of 1NPCMT), is R(A1) ⊆ R(A2)?

4. Given a finite-crossing 2DCMT A1 and a 1DPCMT A2, is R(A1) = R(A2)?

We believe that these results are the strongest known to date concerning
containment and equivalence of transducers. We note that in the above results,
the “finite-crossing” assumption is necessary, since when the two-way input is
unrestricted, the equivalence problem becomes undecidable, as we shall see. We
also note that the 1NPCMT and 1DPCMT in (2), (3) and (4) above cannot be
generalized to be two-way, since we can show that it is undecidable to determine,
given a 2DPCMT A, whether R(A) = ∅, even when A makes only two turns on
the input. However, we show:

5. It is decidable to determine, given two finite-crossing 2DPCMTs whose in-
puts come from a bounded language (i.e., from w∗

1 · · ·w∗
k for some non-null

strings w1, . . . , wk) A1 and A2, whether R(A1) ⊆ R(A2). (Hence, equivalence
is also decidable.)

The proofs for the results above use the decidability of emptiness for a large
class of acceptors, called 3-phase finite-crossing 2NPCMs, which we introduce
in Section 3. We show that it is decidable to determine, given a 3-phase finite-
crossing 2NPCM M , whether the language it accepts is empty.

It should also be noted that, as we shall see later, the assumption of A2 being
“deterministic” in (1) - (4) above is required. In fact, the equivalence problem
is known to be undecidable even for one-way nondeterministic finite transducers
(1NFTs) [3,9].

As “single-valuedness” is a natural extension of the notion of determinism and
equivalence of single-valued 1NFTs (i.e., 1NFTs that output at most one value
for every input) is decidable [1,12], we also study containment and equivalence
between single-valued finite-crossing two-way nondeterministic finite transducers
(2NFTs) and various finite-crossing two-way transducers with auxiliary memory.
We show the following to be decidable:

6. Given a finite-crossing 2NCMT (or a 1NPCMT) A1 and a single-valued
finite-crossing 2NFT A2, is R(A1) ⊆ R(A2)?

7. Given a single-valued finite-crossing 2NFT A1 and a finite-crossing 2DCMT
(or a 1DPCMT) A2, is R(A1) ⊆ R(A2)?

8. Given a single-valued finite-crossing 2NFT A1 and a finite-crossing 2DCMT
(or a 1DPCMT) A2, is R(A1) = R(A2)?

To put our results into proper perspective, main decidability and undecidability
results of the containment problem for a variety of transducers considered in
this paper are summarized in Table 1. The undecidability results follow from
the fact that the emptiness and universality problems for 2-way deterministic
reversal-bounded counter machines are undecidable [8] and that the containment
problem for deterministic pushdown automata is undecidable [2].

302 O.H. Ibarra and H.-C. Yen

Table 1. Decidability/undecidability of the question ”R(A1) ⊆ R(A2)?”. (D: decid-
able; U : undecidable; fc-2DCMT: finite-crossing 2DCMT; fc-2NCMT: finite-crossing
2NCMT; sv-fc-2NFT: single-valued finite-crossing 2NFT.)

R(A1) ⊆ R(A2)? A2

A1 2DCMT fc-2DCMT 1DPCMT sv-fc-2NFT

2DCMT U U U U

fc-2NCMT U D D D

1NPCMT U D U D

sv-fc-2NFT U D D D

2 Preliminaries

A one-way nondeterministic reversal-bounded multicounter machine (1NCM) M
is a one-way NFA augmented with multiple 1-reversal counters which are initially
set to zero. At each step, every counter can be incremented by 1, decremented
by 1, or left unchanged, and can be tested for zero. A zero counter cannot be
decremented. M is 1-reversal in that it has the property that once a counter
is decremented, it can no longer be incremented. A 1NCM augmented with a
pushdown stack is called a 1NPCM. The deterministic versions are called 1DCM
and 1DPCM, respectively. A machine has reversal-bounded counters if there is a
given r such that each counter makes at most r reversals during the computation.
Clearly, a counter that makes r reversals can be simulated by � r+1

2 � counters each
of which makes 1 reversal. Hence, in this paper, when the number of reversal-
bounded counters is not a parameter in the problem being investigated, we may
assume that the counters are 1-reversal. The following result is known [8]:

Theorem 1. The emptiness problem (given M , is L(M) = ∅?) for 1NPCMs
(hence, also for 1NCMs) is decidable.

A 2NCM (2DCM) is a two-way NCM (DCM) with input left and right end
markers # and $. A 2NCMT (2DCMT) A is a 2NCM (2DCM) with outputs.
The relation it defines is R(A) = {(x, y) | A, when started in its initial state
on the left end marker of #x$, outputs y and falls off the right end marker
in an accepting state }. Let k be a positive integer. Transducer A is said to
be k-valued if for every input x, the cardinality of the set {y | (x, y) ∈ R(A)}
is ≤ k. A is finite-valued if it is k-valued for some k. A 2NFT (2DFT) is a
2NCMT (2DCMT) with no reversal-bounded counters. The one-way versions
(with no input end markers) are denoted by 1NCMT, 1DCMT, 1NFT, 1DFT.
For machines with reversal-bounded counters, we write the suffix “(k)” to denote
the fact that there are k counters. So, e.g., 2DCM(k) means a 2DCM with k
reversal-bounded counters.

It is known that the emptiness problem for 2DCM(2)s is undecidable [8]. In
fact, this result holds for machines operating on letter-bounded languages (i.e.,
subsets of a∗

1 · · · a∗
k for some k and distinct symbols a1, . . . , ak). Since a 2DCM

On Two-Way Transducers 303

can trivially be made a 2DCMT by having it output ε at each step, it follows
that it is undecidable to determine, given a 2DCMT(2) A, whether R(A) = ∅.
Hence,

Proposition 1. The containment and equivalence problems for 2DCMT(2)s
(even on letter-bounded language inputs) are undecidable.

A finite-crossing 2NCM (2DCM, 2NCMT, 2DCMT) is a machine with the
property that for some specified k, in every accepting computation on any input
#x$, the number of times the input head crosses the boundary between any two
adjacent symbols of #x$ is at most k. Note that the number of turns the input
head makes on the input may be unbounded. We assume that when we are given
a finite-crossing machine, we are also given the integer k for which the machine
is k-crossing. This is because of the following undecidability result:

Proposition 2. It is undecidable to determine, given a 2DCMT(2) A, whether
it is finite-crossing (or whether it is k-crossing for a given k).

Proof. Let A be a 2DCMT(2) with input alphabet Σ. Let d be a new symbol not
in Σ. We construct a 2DCMT(2) A′, which when given xdn, where x ∈ Σ∗ and
n ≥ 1, simulates the computation of A on x. When A accepts, then A′ makes n
left-to-right and right-to-left turns on x and accepts. Clearly, A′ is k-crossing for
any k if and only if R(A) = ∅, which is undecidable by Proposition 1. It should be
noted that the finite crossing condition involves only accepting computations. ��
We will need the following result which was shown in [5].

Theorem 2. We can effectively construct, given a finite-crossing 2NCM M , a
1NCM M ′ such that L(M ′) = L(M). Hence, the emptiness problem for finite-
crossing 2NCMs is decidable.

Consider the language L = {x |x in {a, b, c, d}+, the sum of the lengths of all
runs of c’s occurring between symbols a and b in this order (i.e., in substring
ayb for some y in {c, d}∗) equals the number of d’s }. L can be accepted by a
5-crossing 2DCM with only one 1-reversal counter M . However, as noted in [5], L
cannot be accepted by any 1DCM or by a 2DCM which makes a fixed number of
turns on the input. Clearly, we can construct a 5-crossing 2DCMT A from the 5-
crossing 2DCM which outputs ε on every move. The relation defined by A is then
R(A) = L×{ε}, which cannot be defined by any 1DCMT. Hence, finite-crossing
2DCMTs can define more relations than 1DCMTs. Note that L can easily be
accepted by a 1NCM (with one 1-reversal counter) by just guessing and verifying,
as it moves left-to-right on the input x, the locations of the substrings of the
form ayb in x.

From Theorems 1 and 2, we get the following corollary:

Corollary 1. It is decidable to determine, given a finite-crossing 2NCM M1

and a 1NPCM M2, whether L(M1) ∩ L(M2) = ∅.

304 O.H. Ibarra and H.-C. Yen

Proof. From Theorem 2, we construct a 1NCM M ′
1 from finite-crossing 2NCM

M1 such that L(M ′
1) = L(M1). Then we construct a 1NPCM M which, on a

given input, simulates M ′
1 and M2 in parallel. Then L(M1) ∩L(M2) = ∅ if and

only if L(M) = ∅, which is decidable by Theorem 1. ��

3 3-Phase Finite-Crossing 2NPCMs

We can generalize Theorems 1 and 2. Define a 3-phase finite-crossing 2NPCM
M which operates in three phases: In the first phase, M operates as a finite-
crossing 2NCM without using the stack. In the second phase, with the configu-
ration (state, input head position, and counter values) the first phase left off, M
operates as a 1NPCM where the head can only move right on the input. Finally,
in the third phase with the configuration (state, head position, counter values
but not the stack) the second phase left off, M operates again as a finite-crossing
2NCM without using the stack. Note that not all phases may be present. So,
e.g., M can accept with only Phase 1, or with only Phases 1 and 2.

We will need the following result for the proofs in the next section.

Theorem 3. It is decidable to determine, given a 3-phase finite-crossing
2NPCM M , whether L(M) = ∅.

Proof. Assume that M has disjoint state set and input alphabet. Suppose M
has n counters. Let 0, 1 be new symbols. Define the following languages:

1. L1 = {q1i01j10 · · · 01jnxp1s01k10 · · · 01kn | in Phase 1, M on input x ends
the phase in state q with the input head on position i of x and the 1-reversal
counters with values j1, . . . , jn}.

2. L2 = {q1i01j10 · · · 01jnxp1s01k10 · · · 01kn | in Phase 2, M when started in
state q with the input head on position i of x and the counters with values
j1, . . . , jn, ends the phase in state p with the input head on position s of x
and the 1-reversal counters with values k1, . . . , kn}.

3. L3 = {q1i01j10 · · · 01jnxp1s01k10 · · · 01kn | in Phase 3, M when started in
state p with the input head on position s of x and the counters with values
k1, . . . , kn, accepts}.

We construct a finite-crossing 2NCM M1 which, when given input
q1i01j10 · · · 01jnxp1s01k10 · · · 01kn

simulates Phase 1 of M on x and at the end of Phase 1, checks that the state is
q and, using additional counters, checks that the head is on position i and the
counters have values j1, . . . , jn.

Similarly, we can construct a 1 NPCM M2 and a finite-crossing 2NCM M3

accepting L2 and L3, respectively. One can easily verify that L(M) = ∅ if
and only if L(M1) ∩ L(M2) ∩ L(M3) = ∅. We then construct a finite-crossing
2NCM M4 such that L(M4) = L(M1) ∩ L(M3). Then L(M) = ∅ if and only if
L(M4) ∩ L(M2) = ∅, which is decidable by Corollary 1. ��

On Two-Way Transducers 305

Theorem 3 seems to be the strongest result that we can prove in the sense
that we cannot generalize the 1NPCM in the second phase to be a finite-crossing
2NPCM. In fact, as we will see in the next section, a 2DPDA which makes only
3 reversals on the stack and 2-turns on the input has an undecidable empti-
ness problem. However, for machines accepting bounded languages, we have the
following:

Theorem 4. It is decidable to determine, given a finite-crossing 2DPCM M
accepting a bounded language (i.e., L(M) ⊆ w∗

1 · · ·w∗
k for some given k ≥ 1 and

strings w1, . . . , wk), whether L(M) = ∅.

Proof. It was recently shown in [11] that the set Q = {(i1, . . . , ik) | wi1
1 · · ·wik

k

is in L(M)} is a semilinear set effectively constructable from M . The theorem
then follows since emptiness of semilinear sets is decidable. ��

4 Proofs of the Main Results

We begin with the following lemma.

Lemma 1. We can effectively convert a finite-crossing 2DCM M1 to an equiv-
alent finite-crossing 2DCM M2 such that on every input, M2 eventually falls off
the right end marker in either an accepting state or a rejecting state.

Proof. Let M1 be a k-crossing 2DCM with s transition rules and d 1-reversal
counters. Suppose x = a1 · · ·an is an input (where a1 and a2 denote the end
markers) accepted by M1 (hence M1 halts on x). Denote by v(i), the number of
times the head of M1 moves to the right or to the left of symbol ai during the
computation. We do not count (i.e., v(i) does not include) the times when the
head remains on symbol ai , which can be unbounded. Clearly, v(1)+· · ·+v(n) ≤
skn.

We construct a halting finite-crossing 2DCM M2 simulating M1 as follows.
M2 will have a new counter C, in addition to the d counters of M1. M2 starts by
moving its head on the input incrementing C by sk for each symbol (thus, M2

remains on each symbol sk times, since it can only increment the counter by 1
at each step). When skn has been stored in C, M2 increments C by 1 (hence C
will have value skn + 1) and moves the input head back to the left end marker.
Then M2 simulates M1 keeping track of the following situations:

1. If the input head remains on a symbol ai more than sk steps without a
counter being decremented, then M1 is in an infinite loop. M2 moves the
input head to the right and falls off the right end marker in a rejecting state.

2. If the input head remains on a symbol ai more than sk steps but with at
least one counter getting decremented during this time period, the simulation
continues.

3. Every time the input head moves left or right of a symbol, M2 decrements
C.

306 O.H. Ibarra and H.-C. Yen

4. If during the simulation C becomes zero, then M1 is in an infinite loop. M2

moves the input head to the right and falls off the right end marker in a
rejecting state.

5. If M1 enters a configuration where there is no next move, M2 moves the
input head to the right and falls off the right end marker in a rejecting state.

Since the counters are 1-reversal, when a counter becomes zero, it remains zero.
It follows that only the 5 situations above can happen. ��

Notation: If R is a relation, domain(R) = {x | (x, y) is in R for some y}. If A s
a transducer, the underlying acceptor M of A is the transducer with its outputs
suppressed. Thus, L(M) = domain(R(A)).

Theorem 5. The following problems are decidable:

1. Given a finite-crossing 2NCMT A1 and a finite-crossing 2DCMT A2, is
R(A1) ⊆ R(A2)?

2. Given two finite-crossing 2DCMTs A1 and A2, is R(A1) = R(A2)?

Proof. Clearly, we only need to prove (1). Let M1 be the underlying finite-
crossing 2NCM of A1 and M2 be the underlying finite-crossing 2DCM of A2.
Thus, L(M1) = domain(R(A1)) and L(M2) = domain(R(A2)). By Lemma 1,
we may assume that M2 always accepts or rejects a given input.

Clearly, R(A1) � R(A2) if and only if there exists an x such that the following
two conditions are satisfied:

(a) For some y, (x, y) is in R(A1).
(b) x is not in domain(R(A2)), or x is in domain(R(A2)) and the only z such

that (x, z) is in R(A2) is different from y.

Given A1,M1, A2,M2, we construct a finite-crossing 2NCM M such that L(M) �=
∅ if and only if the conditions above are satisfied. The details of the operation
of M are as follows:

1. M stores a nondeterministically chosen number r in two special counters
C1 and D1. (Thus, M increments these counters simultaneously r times.)
Then M simulates an accepting computation of A1 (suppressing the outputs)
and determines the r-th symbol, say a, of output y of the computation. M
decrements counter D1 to locate the symbol. Note that a = ε if r > |y|.

2. M then simulates M2 on x. If M2 rejects x (thus x is in domain(R(A1))
but not in domain(R(A2))), then M accepts. If M2 accepts x (thus, x is in
domain(R(A1)) and in domain(R(A2))), then, as in (1), M stores a non-
deterministically chosen number s in another set of counters C2 and D2.
M then simulates A2 and determines the s-th symbol, say b, of z. M uses
counter D2 for this purpose. Again, b = ε if s > |z|. Then M verifies that
a �= b and C1 = C2 (by decrementing these counters to check that they
become zero at the same time), and accepts.

The result follows since we can decide if L(M) = ∅ by Theorem 2. ��

On Two-Way Transducers 307

We note that the condition that A2 in Theorem 5 is deterministic is necessary,
as the following shows.

Proposition 3. There is a fixed single-valued real-time 1-reversal 1NCMT(1)
A (thus the transducer has one 1-reversal counter and the input head moves right
at every step and only outputs one value for every input string) over some input
alphabet Σ such that it is undecidable to determine, given a positive integer d,
whether R(Ad) = Σ∗ × {ε}, where Ad denotes A with initial counter value d.
(Note that d is the only parameter in the decision problem.)

Proof. Theorem 1 in a recent paper [10] showed that there is a fixed nonde-
terministic real-time machine M with one 1-reversal counter over some input
alphabet Σ such that it is undecidable to determine, given an arbitrary positive
integer d, whether L(Md) = Σ∗ (where Md denotes M with initial counter value
d.)

We construct from M a fixed real-time 1-reversal 1NCMT(1) that outputs ε
at every step. Hence, R(Ad) = L(Md)× {ε}, and R(Ad) = Σ∗ × {ε} if and only
if L(Md) = Σ∗, which would be undecidable. ��
Proposition 3 contrasts the decidability of equivalence for finite-valued 1NFTs
(i.e., when transducers have no counter) [6,1,12]. However, the following result
(which we will need later) shows that we can decide if a finite-crossing 2NCMT
is k-valued for a given k.

Theorem 6. It is decidable to determine, given a finite-crossing 2NCMT A and
a positive integer k, whether A is k-valued.

Proof. First consider k = 1. Given a finite-crossing 2NCMT A, we construct a
finite-crossing 2NCM M , which on input #x$, simulates A and uses two addi-
tional counters C1 and C2. M simulates A suppressing the output and storing
in counter C1 a position (which is nondeterministically selected) on the output
in this accepting computation where another accepting computation may differ.
It also remembers the output symbol a in this location. When A accepts, M
resets all the counters (except C1) to zero and simulates another accepting com-
putation of A and stores in counter C2 a position (again nondeterministically
selected) of a symbol b in this second accepting computation and makes sure
that a �= b. When A accepts, M checks that counters C1 and C2 have the same
values by decrementing C1 and C2 simultaneously.

Clearly the above idea generalizes for any k. In this case, M nondeterministi-
cally simulates k+1 accepting computations, say T1, . . . , Tk+1 of A on input #x$
and verifies that these computations produce pair-wise distinct outputs (without
actually generating the outputs). M uses two 1-reversal counters to check that
two computations give different outputs (i.e., disagree on the output symbols in
some position). Thus, M uses a total of k(k + 1) 1-reversal counters. Then A is
not k-valued if and only if L(M) �= ∅, which is decidable by Theorem 2. ��
We also note that Theorem 5 cannot be generalized to the case when A1 or A2

has an unrestricted counter, even when the input head is constrained to make
only 2 turns, as the following result shows:

308 O.H. Ibarra and H.-C. Yen

Proposition 4. There is a fixed 2DCAT (i.e., a 2DFA transducer with one
unrestricted counter) A which makes only 2 input head turns such that it is
undecidable to determine, given an arbitrary positive integer d, whether R(Ad) =
∅, where Ad is A with initial counter value d. (Thus, d is the only parameter to
the decision problem.)

Proof. It was shown in [10] (Theorem 9) that there is a fixed deterministic real-
time counter machine M and a fixed deterministic real-time counter machine
M ′ such that it is undecidable to determine, given an arbitrary positive integer
d, whether L(Md) ∩ L(M ′) = ∅, where Md is M with initial counter value
d. (M ′ always starts with counter value 0.) The counters of the machines are
unrestricted.

Clearly, we can construct a fixed 2DCAT A that outputs ε at every step
which, with initial counter value d, simulates A and when it accepts, zeros out
the counter, returns the head to the left end marker and simulates M ′. Then
R(Ad) = (L(Md) ∩L(M ′))× {ε}. It follows that it is undecidable to determine,
given Ad, whether R(Ad) = ∅. ��
We can generalize Theorem 5. A finite-crossing 2UDCMT A is a finite union of
finite-crossing 2DCMTs. Thus, R(A) = R(A1) ∪ · · · ∪ R(An) for some n, where
Ai is a finite-crossing 2DCMT. We assume that the state sets of A1, . . . , An are
disjoint. Note that A is a special case of a 2NCMT in that the only nondeter-
ministic move of A is at the start of the computation: With its input head on
the left end marker, A outputs ε, remains on the end marker, and has a choice
of entering the initial state qi

0 of Ai, i = 1, . . . , n.

Theorem 7. The following problems are decidable:

1. Given a finite-crossing 2NCMT A1 and a finite-crossing 2UDCMT A2, is
R(A1) ⊆ R(A2)?

2. Given two finite-crossing 2UDCMTs A1 and A2, is R(A1) = R(A2)?

Proof. Again, we only need to prove (1). Let M1 be the underlying finite-crossing
2NCM of A1 (hence L(M1) = domain(R(A1))) and let n finite-crossing 2DCMTs
A1

2, . . . , A
n
2 (for some n) be such that R(A2) = R(A1

2) ∪ . . . ∪R(An
2). Let M i

2 be
the underlying finite-crossing 2DCM of Ai

2 (hence L(M i
2) = domain(R(Ai

2))) for
1 ≤ i ≤ n. Then R(A1) � R(A2) if and only if there exists an x such that the
following two conditions are satisfied:

(a) For some y, (x, y) is in R(A1).
(b) For 1 ≤ i ≤ n: x is not in domain(R(Ai

2)), or if x is in domain(R(Ai
2)),

then there is a zi such that (x, zi) is in R(Ai
2) and y �= zi. (Note that zi is

unique.)

We construct from finite-crossing 2NCMT A1 and its underlying finite-crossing
NCM M1, finite-crossing 2DCMTs A1

2, . . . , A
n
2 and their underlying finite-crossing

2DCMs M1
2 , . . . ,Mn

2 , a finite crossing 2NCM M , which when given an input
x, accepts if conditions (a) and (b) of the Claim above are satisfied. Hence
L(M) �= ∅ if and only if R(A1) � R(A2).

On Two-Way Transducers 309

The construction of M generalizes the idea in the construction in the proof of
Theorem 5. Since x may be in the domain of all the Ai

2’s (i.e., accepted by all the
M i

2’s), and M needs to check that y is different from all the zi’s, M may need to
use 4n 1-reversal counters for this purpose. Note that M i

2 is used to determine
if there exists a zi such that (x, zi) is in R(Ai

2). We omit the details. ��
Lemma 2. We can effectively convert a 1DPCM M1 to an equivalent 1DPCM
M2 that always accepts or rejects a given input.

Proof. (Sketch) The proof is similar to that of showing the class of languages
accepted by deterministic pushdown automata (DPDA) to be closed under com-
plementation (see pp. 235-239 in [7] for a proof, see also [2]). The key in the
conversion is to be able to identify the situation when M1 falls into an infinite
loop comprising of only ε-moves. Due to space limitation, the details are omitted
here. ��

Next we show that Theorem 7 part 1 also holds when A1 is a 1NPCMT.

Theorem 8. The following problems are decidable:

1. Given a 1NPCMT A1 and a finite-crossing 2UDCMT A2, is R(A1) ⊆ R(A2)?
2. Given a finite-crossing 2NCMT A1 and a 1DPCMT A2, is R(A1) ⊆ R(A2)?
3. Given a finite-crossing 2UDCMT A1 and a 1DPCMT A2, is R(A1) = R(A2)?

Proof. Again, (3) follows from (1) and (2). The proof of (1) is similar to the
proof of part 1 of Theorem 7, but now M would be a 3-phase finite-crossing
2NPCM operating only with phases 2 and 3, and noting that emptiness of 3-
phase finite-crossing 2NPCM is decidable (Theorem 3).

A similar construction applies to (2), noting that, according to Lemma 2, the
underlying 1DPCM of a 1DPCMT can always be converted to one that always
accepts or rejects a given input. The finite-crossing M will be a 3-phase finite-
crossing 2NPCM operating only with phases 1 and 2. We omit the details. ��

Parts (2) and (3) of Theorem 8 cannot be strengthened by generalizing the
1DPCMT to be a finite-crossing 2DPCMT as the following shows.

Proposition 5. There is a fixed 3-reversal 2DPDT (i.e., a 2DPDA transducer
A which makes only 3 reversals on its stack) which makes only 2 input head
turns such that it is undecidable to determine, given an arbitrary non-null string
z, whether R(Az) = ∅, where Az is A with initial stack content z. (Thus, the
only parameter to the decision problem is the initial stack content z.)

Proof. Theorem 5 in [10] showed that there is a fixed deterministic real-time
1-reversal 1DPDA M (i.e., the stack makes 1 reversal) and a fixed deterministic
real-time 1-reversal 1DPDA M ′ such that it is undecidable to determine, given
an arbitrary non-null string z, whether L(Mz) ∩ L(M ′) = ∅, where Mz is M
with initial stack content z. (M ′ always starts with a fixed stack symbol.)

As in Proposition 4. we can construct a fixed 3-reversal 2DPDA which with
initial stack content z, simulates M and when it accepts returns the head to the
left end marker and simulates M ′. Then R(Az) = (L(Mz) ∩ L(M ′)) × {ε}. It
follows that is undecidable to determine, given Az , whether R(Az) = ∅. ��

310 O.H. Ibarra and H.-C. Yen

Special Case: Define a 3-phase finite-crossing 2NPCMT to be a 3-phase finite-
crossing 2NPCM with outputs. The deterministic version is called a 3-phase
finite-crossing 2DPCMT. Then Theorem 8 can be generalized so that the
1NPCMT A1 in part (1) is a 3-phase finite-crossing 2NPCMT and the 1DPCMT
A2 in parts (2) and (3) is a 3-phase 2DPCMT. (We omit the proof.)

A finite-crossing 2UDPCMT A is a finite union of finite-crossing 2DPCMTs.
Thus, R(A) = R(A1) ∪ · · · ∪ R(An) for some n, where Ai is a finite-crossing
2DPCMT.

Theorem 9. Over bounded inputs (i.e., the inputs to the transducers come from
w∗

1 · · ·w∗
k for some non-null strings w1, . . . , wk), the following problems are de-

cidable:

1. Given a finite-crossing 2NCMT A1 and a finite-crossing 2UDPCMT A2, is
R(A1) ⊆ R(A2)?

2. Given two finite-crossing 2UDPCMTs A1 and A2, is R(A1) = R(A2)?

Proof. (Idea) By a rather intricate construction (which we do not give here), it
can be shown that over bounded inputs, any finite-crossing 2UDPCMT A can
effectively be converted to an equivalent finite-crossing 2UDCMT (i.e., the stack
can be removed). The result then follows from Theorem 7. ��

5 Finite-Crossing 2NFTs

In this section, we look at the special case of finite-crossing 2NFTs (i.e., there are
no counters). Equivalence of 1NFTs is undecidable [3,9], although equivalence
of single-valued (in fact, even for finite-valued) 1NFTs is decidable [1,12].

Recall from Theorem 6 that it is decidable to determine, given a finite-crossing
2NCMT A and a positive integer k, whether A is k-valued; hence this result
applies to the special case when A is a finite-crossing 2NFT.

Here we show that containment (hence, also equivalence) of single-valued
finite-crossing 2NFTs is decidable.

Theorem 10. The following problems are decidable:

1. Given a finite-crossing 2NCMT A1 and a single-valued finite-crossing 2NFT
A2, is R(A1) ⊆ R(A2)?

2. Given a single-valued finite-crossing 2NFT A1 and a finite-crossing 2DCMT
A2, is R(A1) ⊆ R(A2)?

3. Given a single-valued finite-crossing 2NFT A1 and a finite-crossing 2DCMT
A2, is R(A1) = R(A2)?

Proof. Part (3) follows from (1) and (2). Part (2) is a special case of (1) of
Theorem 5. Part (1) is similar to the proof of (1) of Theorem 5 by noting the fact
that we can effectively construct from the underlying 2NFA M2 of the 2NFT A2

a 1DFA M ′
2 accepting the (regular) language L(M2) and, therefore, M ′

2 always
accepts or rejects any given input. Hence, we can decide if L(M1) � L(M2),
where M1 is the underlying finite-crossing 2NCM of A1, as described in the
proof of Theorem 5. ��

On Two-Way Transducers 311

We also have the following theorem whose proof is omitted.

Theorem 11. The following problems are decidable:

1. Given a 3-phase finite-crossing 2NPCMT A1 and a single-valued finite-
crossing 2NFT A2, is R(A1) ⊆ R(A2)?

2. Given a single-valued finite-crossing 2NFT A1 and a 3-phase finite-crossing
2DPCMT A2, is R(A1) ⊆ R(A2)?

3. Given a single-valued finite-crossing 2NFT A1 and a 3-phase finite-crossing
2DPCMT A2, is R(A1) = R(A2)?

References

1. Culik, K., Karhumaki, J.: The equivalence of finite valued transducers (on HDTOL
languages) is decidable. Theoret. Comput. Sci. 47, 71–84 (1986)

2. Ginsburg, S., Greibach, S.: Deterministic context-free languages. Inform. and Con-
trol 9, 620–648 (1966)

3. Griffiths, T.: The unsolvability of the equivalence problem for Λ-free nondeter-
ministic generalized sequential machines. J. Assoc. Comput. Mach. 15, 409–413
(1968)

4. Gurari, E.: The equivalence problem for deterministic two-way sequential trans-
ducers is decidable. SIAM J. Comput. 11, 448–452 (1982)

5. Gurari, E., Ibarra, O.H.: The complexity of decision problems for finite-turn mul-
ticounter machines. J. Comput. Syst. Sci. 22, 220–229 (1981)

6. Gurari, E., Ibarra, O.H.: A note on finite-valued and finitely ambiguous transduc-
ers. Math. Systems Theory 16, 61–66 (1983)

7. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

8. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-
lems. J. Assoc. Comput. Mach. 25, 116–133 (1978)

9. Ibarra, O.H.: The unsolvability of the equivalence problem for ε-free NGSM’s with
unary input (output) alphabet and applications. SIAM J. Computing 7, 524–532
(1978)

10. Ibarra, O.H.: On the universe, disjointness, and containment problems for simple
machines. Inf. Comput. 208, 1273–1282 (2010)

11. Ibarra, O.H., Seki, S.: Characterizations of bounded semilinear languages by one-
way and two-way deterministic machines. In: Proc. 13th Int. Conf. on Automata
and Formal Languages (to appear, 2011)

12. Weber, A.: Decomposing finite-valued trasnsducers and deciding their equivalence.
SIAM. J. on Computing 22, 175–202 (1993)

There Does Not Exist a Minimal Full Trio with

Respect to Bounded Context-Free Languages

Juha Kortelainen1 and Tuukka Salmi2

1 Department of Information Processing Science, University of Oulu, Finland
2 Elektrobit Corporation, Oulu

Abstract. We solve an old conjecture of Autebert et al. [1] saying
that there does not exist any minimal full trio with respect to bounded
context-free languages1.

1 Introduction

Small subfamilies of context-free languages were quite extensively studied some
decades ago [1-4, 8, 10]. It was, and still is, believed that the structure of almost
regular languages can illustrate the properties of other context-free and even of
certain nonalgebraic languages. The notion of a full trio or cone (i.e., a language
family closed under morphism, inverse morphism and intersection with regular
languages) is in these considerations quite natural: we wish to keep the struc-
ture of the (sub)families adequately simple but still nontrivial. The concept of
smallness is connected to set inclusion: given language families L1 and L2, we
say that L1 is smaller than L2 if L1 � L2. Obviously the family of all regular
languages LREG is a full trio contained in any other trio. To avoid this negligible
case, we define a minimal full trio to be a smallest nontrivial full trio, i.e., a full
trio containing nonregular languages. The following important conjecture has
been stated by Autebert et al. [3] (see also [1]):

Conjecture 1. There does not exist a minimal full trio in the family LCF of
context-free languages.

The claim above appeared to be difficult to prove, so it was reasonable to restrict
the concept of minimality to fixed, in our case, bounded families of languages.
Since a minimal full trio is always generated by a single language, we say that
a full trio L is minimal with respect to a language family K if L ∩ K contains
nonregular languages and any nonregular language in L∩K generates L. Recall
that, for each nonnegative integer n, a language L is n-bounded if there exist
words w1, w2, . . . , wn such that L ⊆ w∗

1w
∗
2 · · ·w∗

n. The language L is bounded if
it is n-bounded for some n. In this paper we give a proof of the old claim of
Autebert et al [1]:

Conjecture 2. There does not exist any minimal full trio with respect to bounded
context-free languages.
1 The main results of this paper appear originally in the dissertation [2].

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 312–323, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

There Does Not Exist a Minimal Full Trio 313

Let N be the set of all nonnegative integers. Define the bounded languages S<,
S>, and S �= as follows: S< = {ambn|m,n ∈ N,m < n}, S> = {ambn|m,n ∈
N,m > n}, and S �= = {ambn|m,n ∈ N,m �= n}. For each language L, let T (L)
be the full trio generated by L, i.e., the smallest family of languages containing
L and closed under morphism, inverse morphism and intersection with regular
sets. Berstel and Boasson have verified in [4] that the families T (S<), T (S>),
and T (S �=) are the (only) three distinct minimal full trios with respect to 2-
bounded context-free languages. Moreover, they showed that none of them is a
minimal full trio with respect to k-bounded context-free languages for k > 2.

The rest of the paper is organized as follows. In Section 2 some basic concepts
are defined and results given. The third section is divided into four subsections
and contains the sequence of lemmata and theorems needed to verify the main
result. The final section contains some conclusive remarks , we also introduce an
open problem and a topic for further research.

2 Preliminaries

In this section we introduce definitions, notations and some auxiliary results
needed in the sequel. The reader is referred to theb old classics [5] and [6] for
any unexplained notation.

Let N+ the set of all positive natural numbers. Suppose that n ∈ N+, r ∈ N
and c, p1, p2, . . . , pr ∈ Nn. Denote by L(c; p1, p2, . . . , pr) the linear set with
constant (vector) c and periods p1, p2, . . . , pr. We say that the linear set
L(c; p1, p2, . . . , pr) is proper if the periods p1, p2, . . . , pr are linearly indepen-
dent over Q, the field of rationals. Recall that a set is semilinear if it is a finite
union of linear sets. By the Eilenberg-Schützenberger theorem [7] (see also [8])
every semilinear set is a finite union of disjoint proper linear sets.

A linear set L(c; p1, p2, . . . , pr) ⊆ Nn is stratified if
(i) for each the i ∈ {1, 2, ..., r}, the vector pi contains at most two nonzero

coordinates; and
(ii) for all d, t ∈ {1, 2, ..., r}, and i, j, k, l ∈ {1, 2, ..., n} such that i < j < k <

l the vectors pd = (pd1, pd2, ..., pdn) and pt = (pt1, pt2, ..., ptn) satisfy the
equality pdiptjpdkptl = 0.

Let A = L(c; p1, p2, . . . , pr) ⊆ Nn be a linear set. The integer closure of the
set A is the set intc(A) = {c + l1p1 + l2p2 + · · · + lrpr|li ≥ 0, li ∈ Q} ∩ Nn.

Let the set A ⊆ Nn be linear and T ⊆ Nn an arbitrary set. We say that A is
structured by T if A = intc(A) ∩ T . A semilinear set S is semistructured by T if
there exist m ∈ N+ and linear sets S1, S2, ..., Sm such that

S =
m⋃

i=1

Si =
m⋃

i=1

(
intc(Si) ∩ T

)
.

Let Σ be an alphabet. For each word w ∈ Σ∗ and symbol a ∈ Σ, let |w|
denote the length of w, and |w|a the number of occurrences of a in w. The
empty word is denoted by ε. Let L ⊆ Σ∗ be a language. If there exist k ∈ N+

314 J. Kortelainen and T. Salmi

distinct letters a1, a2, . . . , ak ∈ Σ such that L ⊆ a∗
1a

∗
2 · · · a∗

k, then L is strictly
k-bounded. The language L is strictly bounded if it is strictly k-bounded for some
k ∈ N+. We shall denote the set of strictly k-bounded languages by Bk. Given
that L ⊆ a∗

1a
∗
2 · · ·a∗

k, define L = a∗
1a

∗
2 · · ·a∗

k \ L. Denote by LREG (LCF , resp.)
the set of all regular (context-free, resp.) languages.

Let n ∈ N+, let Σn = {a1, a2, . . . , an}. Define the Parikh-map Ψn : Σ∗
n → Nn

by the equality Ψn(w) = (|w|a1 , |w|a2 , . . . , |w|an). Let L ⊆ Σ∗
n, and Ψn(L) =

{Ψn(w) |w ∈ L}. The set Ψn(L) is the Parikh-image of a language L. When n is
understood, we write Ψ instead of of Ψn.

Ginsburg ([5], Lemma 5.4.2) gives a necessary and sufficient condition for a
strictly bounded language to be context-free: A strictly bounded language is
context-free if and only if its Parikh-image is a finite union of stratified linear
sets.

Assume k ∈ N+ and let L,K ⊆ a∗
1a

∗
2 · · · a∗

k be languages with semilinear
Parikh-images. Then the language L is (semi)structured by K ⊆ a∗

1a
∗
2 · · ·a∗

k if
the set Ψk(L) is (semi)structured by Ψk(K).

Let Σ and Δ be alphabets and L ⊆ Σ∗ and L′ ⊆ Δ∗ languages. By an
important theorem of Nivat (for a proof, see [9]), the language L′ is in the full
trio T (L) if and only if there exist an alphabet Γ , a regular language R ⊆ Γ ∗

and alphabetic morphisms h : Γ ∗ → Δ∗ and g : Γ ∗ → Σ∗ such that L′ =
h(g−1(L) ∩ R).

Let k ∈ N. Denote by Lk the family of all languages L such that there exist
n ∈ N+ and words xip, wiq , i = 1, 2, . . . , n, p = 0, 1, . . . k, and q = 1, 2, . . . , k,
such that L ⊆ ⋃n

i=0 xi0w
∗
i1xi1w

∗
i2xi2 · · ·w∗

ikxik .
Let Rk = Lk ∩ LREG. By the properties of bounded regular sets, the lan-

guage R is in Rk if and only if R is a finite union of languages of the form
x0w

∗
1x1w

∗
2x2 · · ·w∗

kxk where x0, w1, x1, w2, x2, . . . , wk, xk are words.

3 Full Trios Generated by Almost Regular Bounded
Context-Free Languages

For a language L over an alphabet Σ, let ΣL = {a ∈ Σ | ∃w ∈ L : a occurs in w}.
For each k ∈ N+, define

Ck = {L ∈ LCF | ∀x0, w1, x1, w2, x2, . . . , wk, xk ∈ Σ∗
L :

L ∩ x0w
∗
1x1w

∗
2 · · ·w∗

kxk ∈ LREG} .

and C∞ = ∩∞
i=1Ci. Clearly Ck+1 ⊆ Ck for all k ∈ N+. It follows directly from the

definition that LREG ⊆ C∞ and Ck ⊆ LCF for all k ∈ N+.
We shall proceed by the following sequence of arguments. For all k ∈ N+:

1. the sets Ck \ Ck+1 (and the set C∞ \ LREG as well) are nonempty;
2. any bounded nonregular context-free language is contained in Ck \ Ck+1

for some k;
3. any language in Ck \ Ck+1 can be transformed into a language in Ck+1 \

Ck+2 using only trio-operations; and
4. the family Ck is a full trio.

There Does Not Exist a Minimal Full Trio 315

Note that items 1 and 4 imply that, as a nonempty (albeit infinite) intersection
of full trios, the family C∞ is a full trio, too. It should now be clear that picking
any language in the chain C1 \ C2, C2 \ C3, . . . and applying appropriate trio-
operations to L, we can always proceed downwards as far as we wish, but never
upwards. Our main result becomes thus proved.

The majority of the proofs of results presented are omitted because of lack of
space and included to the full version of the paper.

3.1 Examples and Basic Properties of Languages in Ck \ Ck+1,
k ∈ N+

Let k ∈ N+ and θ1, θ2, . . . , θk ∈ {<,>, �=}. For each i ∈ {1, 2, . . . , k}, define the
language

Si(θ1, θ2, . . . , θk) = {an1
1 an2

2 · · · ank

k |n1, n2, . . . , nk ∈ N and ∨k
j=1 niθjnj}.

Example 1. Let us consider the language S1(�=, >) = {an1
1 an2

2 |n1 > n2}. Cer-
tainly S1(�=, >) = S2(<, �=). For example, S1(�=, >) ∩ a∗

1a2 = a1a
+
1 a2 ∈ LREG

and S1(�=, >) ∩ a1a
∗
2 = a1 ∈ LREG. It is clear that S1(�=, >) ∈ C1 \ C2.

Example 2. Let us consider the language

S1(�=, �=, �=) = {an1
1 an2

2 an3
3 |n1 �= n2 or n1 �= n3} .

Surely S1(�=, �=, �=) = S2(�=, �=, �=) = S3(�=, �=, �=) = a∗
1a

∗
2a

∗
3 \ {an

1an
2an

3 |n ∈ N}.
Now, for instance, S1(�=, �=, �=)∩a∗

1a
∗
2a3 = a∗

1a
∗
2a3 \{a1a2a3} ∈ LREG. It is easily

seen that S1(�=, �=, �=) ∈ C2 \ C3. Thus it is quite obvious that S1(�=, �=, �=, �=) ∈
C3 \ C4 and furthermore S1(�=, �=, . . . , �=︸ ︷︷ ︸

k+1 times

) ∈ Ck \ Ck+1 for all k ∈ N+.

Goldstine defined a nonregular context-free language

LG =
{
ai1
2 a1a

i2
2 a1 · · ·aip

2 a1 | p ∈ N+, ∃j ∈ {1, 2, . . . , p} : ij �= j
}

= (a∗
2a1)+ \ {a2a1a

2
2a1a

3
2a1 · · ·ap

2a1|p ∈ N+}.
and showed that all bounded languages in the full trio T (LG) are regular [10].
Thus LG ∈ C∞ \LREG. On the other hand, certainly L∩x0w

∗
1x1 is in LREG for

each L in LCF and words x0, w1, x1 ∈ Σ∗
L. Thus C1 = LCF and

LCF = C1 � C2 � · · · � C∞ � LREG .

Theorem 1. Let n ∈ N+ and L ⊆ a∗
1a

∗
2 · · · a∗

n. Given k ∈ N+, with k ≤
n, the language L is in Ck if and only if L ∩ aα1

1 aα2
2 · · · aαn

n ∈ LREG for all
α1, α2, . . . , αn ∈ N ∪ {∗}, where |{i ∈ {1, 2, . . . , n}|αi = ∗}| = k.

Our next theorem gives a necessary and sufficient condition for the language
Si(θ1, θ2, . . . , θk+1) (where k ∈ N+ and i ∈ {1, 2, ..., k + 1}) to belong to the
family Ck \ Ck+1 .

316 J. Kortelainen and T. Salmi

Theorem 2. Let k ≥ 2 be an integer and i ∈ {1, 2, . . . , k + 1}. Then the lan-
guage Si(θ1, θ2, . . . , θk+1) is in Ck \ Ck+1 if and only if θj ∈ {>, �=} for all
j ∈ {1, 2, . . . , k + 1} such that j �= i.

The next result says that if we are searching for a language generating a minimal
full trio inside the family Ck \ Ck+1, we may always restrict to look it inside the
family of strictly (k + 1)-bounded languages.

Theorem 3. Let k ∈ N+ and L ∈ Ck \ Ck+1. Then there exists a language
L1 ∈ T (L) such that L1 ∈ Bk+1 ∩ (Ck \ Ck+1).

Proof. (sketch) Since L /∈ Ck+1, we have x0, x1, . . . , xk+1 ∈ Σ∗ and
w1, w2, . . . , wk+1 ∈ Σ∗ such that

L′ = L ∩ x0w
∗
1x1w

∗
2 · · ·xkw

∗
k+1xk+1 /∈ LREG.

Hence, L′ /∈ Ck+1. Since L ∈ Ck, we have L′ ∈ Ck \ Ck+1.
Applying full trio-operations on L′, one first finds a (k+1)-bounded language

L′′ ⊆ w∗
1w

∗
2 · · ·w∗

k+1 in Ck \ Ck+1, and then a strictly (k + 1)-bounded language
L1 ⊆ a∗

1a
∗
2 · · · a∗

k+1 in Ck \ Ck+1. ��

3.2 Simplifying the Structure of Bounded Languages in Ck \ Ck+1,
k ∈ N+

General strictly (k+1)-bounded languages provide still too much redundant data
for deeper analysis of the family Ck \ Ck+1. We shall see that every nonregular
strictly bounded context-free language can be intersected with a regular strictly
bounded language R so that the result is nonregular and semistructured by
R. The inner structure of these (nonregular and semistructured) languages is
simple, but they possess all the important features of languages in Ck \ Ck+1.

Note that the Parikh image of a strictly bounded regular language may always
be represented as a semilinear set whose periods are parallel with a coordinate
axis. In [11] it is proved that for each integer k ∈ N+ and proper linear set
S ⊆ Nk

+ there exists a regular language R ⊆ a∗
1a

∗
2 · · ·a∗

k such that S is structured
by Ψ−1(R).

Lemma 1. Let k ∈ N+ and L ⊆ a∗
1a

∗
2 · · · a∗

k be a language such that Ψ(L) is a
semilinear set and L is semistructured by a regular language R ⊆ a∗

1a
∗
2 · · · a∗

k.
Let R′ ⊆ a∗

1a
∗
2 · · · a∗

k be another regular language. Then L ∩R′ is semistructured
by R ∩ R′.

Proof. Let n ∈ N+ and L1, L2, . . . , Ln be linear components of L such that
L =

⋃n
i=1 Li =

⋃n
i=1(intc(Li) ∩ R). For each i ∈ {1, 2, . . . , n}, let n(i) ∈ N+

and Li,1, Li,2, . . . , Li,n(i) be linear components of Li ∩ R′. Then for each i ∈
{1, 2, . . . , n}, we have

n(i)⋃
j=1

intc(Li,j) ⊆ intc(Li).

There Does Not Exist a Minimal Full Trio 317

By the above relation and the fact that L is semistructured by R, we have

n⋃
i=1

n(i)⋃
j=1

intc(Li,j) ∩ R ∩ R′ ⊆
n⋃

i=1

intc(Li) ∩ R ∩ R′ = L ∩ R′.

On the other hand, since L ⊆ R and L∩R′ =
⋃

i,j Li,j ⊆ ⋃
i,j intc(Li,j), we have

L ∩R′ =
⋃
i,j

intc(Li,j) ∩R ∩R′. ��

The next lemma is slightly modified version of Lemma 3 in [11]. This result
and Theorem 3 will imply that if we are searching for a language generating a
minimal full trio inside the family Ck \ Ck+1, we may always restrict to look it
inside the family of strictly (k + 1)-bounded languages that are semistructured
by some regular language.

Lemma 2. Let k ∈ N+ and L ⊆ a∗
1a

∗
2 · · · a∗

k be a language such that Ψ(L) is a
semilinear set. Then there exist n ∈ N+ and regular languages R1, R2, . . . , Rn ⊆
a∗
1a

∗
2 · · · a∗

k such that

1. Ψ(Ri) is a linear set for all i ∈ {1, 2, . . . , n};
2. L ∩ Ri is semistructured by Ri for all i ∈ {1, 2, . . . , n};
3. L =

⋃n
i=1(L ∩ Ri).

Let us have an example of the construction of Lemma 2

Example 3. Let L = {a2n1
1 an2

2 |n1 < n2}∪{a4n1
1 an2

2 |n1 > n2}. Then the languages

L1 = L ∩ (a2
1)

∗(a2)∗ ∩ (a4
1)

∗a∗
2 = {a4n1

1 an2
2 |2n1 < n2 ∨ n1 > n2}

and
L2 = L ∩ (a2

1)
∗(a2)∗ ∩ (a4

1)∗a
∗
2 = {a4n1+2

1 an2
2 |2n1 + 1 < n2}

are semistructured by (a2
1)

∗(a2)∗∩ (a4
1)

∗a∗
2 = (a4

1)
∗a∗

2 and (a2
1)

∗(a2)∗ ∩ (a4
1)∗a∗

2 =
a2
1(a4

1)∗a∗
2, respectively. Moreover, L = L1 ∪ L2.

We next state a geometrically obvious lemma.

Lemma 3. Let k ∈ N+ and L ⊂ a∗
1a

∗
2 . . . a∗

k be a semistructured language by a
language K ⊂ a∗

1a
∗
2 . . . a∗

k. Then either L or K \ L does not contain as a subset
any language from the family Rk \ Rk−1.

We can reformulate the previous result as follows.

Lemma 4. Let k ∈ N+, j ∈ {1, 2, . . . , k + 1} and L ⊂ a∗
1a

∗
2 · · · a∗

k+1 be a
semistructured language by a regular language R ⊂ a∗

1a
∗
2 · · · a∗

k+1 such that Ψ(R)
is linear and

L ∩ a∗
1a

∗
2 · · · a∗

j−1a
m
j a∗

j+1a
∗
j+2 · · ·a∗

k+1 ∈ LREG

318 J. Kortelainen and T. Salmi

for all m ∈ N. If for each m0 ∈ N, there exists m ≥ m0 such that

L ∩ a∗
1a

∗
2 · · ·a∗

j−1a
m
j a∗

j+1a
∗
j+2 · · · a∗

k+1 ∈ Rk \ Rk−1, (1)

then there exists m′
0 ∈ N such thuntitled folderat

(R \ L) ∩ a∗
1a

∗
2 · · · a∗

j−1a
m
j a∗

j+1a
∗
j+2 · · ·a∗

k+1 ∈ Rk−1

for all m ≥ m′
0.

Let us generalize the definition of the family Ck by setting

Ĉk = {L ∈ Σ∗|L ∩ x0w
∗
1x1w

∗
2 · · ·xk−1w

∗
kxk ∈ LREG ∀xi, wi ∈ Σ∗

L}
for all k ∈ N+.

The following result gives us information of crucial importance about lan-
guages in L ∈ Ĉk\Ĉk+1 for which Ψ(L) is a semilinear set; we need to characterize
any presentation of Ψ(L) as a finite union of linear sets.

Theorem 4. Let k ∈ N+ and L ⊂ a∗
1a

∗
2 · · · a∗

k+1 be a language such that Ψ(L)
is a semilinear set and L ∈ Ĉk \ Ĉk+1. Let J be the set of all j ∈ {1, 2, . . . , k + 1}
for which there exist m0 ∈ N such that

L ∩ a∗
1a

∗
2 · · ·a∗

ji−1a
m
ji

a∗
ji+1a

∗
ji+2 · · ·a∗

k+1 ∈ Rk−1 (2)

for all m ≥ m0. Then Ψ(L) contains a period with at least min{k + 1, |J | + 1}
nonzero coordinates in every representation of Ψ(L) as a finite union of linear
sets.

Let us now give three simple examples of Theorem 4.

Example 4. Let L = {an
1an

2an
3 |n ∈ N}. We have L ∩ am

1 a∗
2a

∗
3 = L ∩ a∗

1a
m
2 a∗

3 =
L∩a∗

1a
∗
2a

m
3 = {am

1 am
2 am

3 } ∈ R0 ⊂ R1 for all m ∈ N. Therefore we have L ∈ Ĉ2\Ĉ3

and l = 3. Theorem 4 states that Ψ(L) contains a period with min{3, 4} = 3
nonzero coordinates in every representation of Ψ(L) as a finite union of linear
sets.

Example 5. Let L = {an1
1 an2

2 an3
3 |n1 < n2∧n1 < n3 ∈ N}. We have L∩am

1 a∗
2a

∗
3 ∈

R2 \ R1 and L ∩ a∗
1a

m
2 a∗

3, L ∩ a∗
1a

∗
2a

m
3 ∈ R1 for all m ∈ N. Therefore we have

L ∈ Ĉ2 \ Ĉ3 and l = 2. Theorem 4 states that Ψ(L) contains a period with
min{3, 3} = 3 nonzero coordinates in every representation of Ψ(L) as a finite
union of linear sets.

Example 6. Let

L = {an1
1 an2

2 an3
3 an4

4 | (n1 < n2 ∧ n1 < n3 ∧ n1 < n4)
∨(n4 < n1 ∧ n4 < n2 ∧ n4 < n3)}.

It can be easily seen that L ∩ am
1 a∗

2a
∗
3a

∗
4, L ∩ a∗

1a
∗
2a

∗
3a

m
4 ∈ R3 \ R2 and L ∩

a∗
1a

m
2 a∗

3a
∗
4, L ∩ a∗

1a
∗
2a

m
3 a∗

4 ∈ R2 \ R1 for all m ∈ N. Therefore L ∈ Ĉ3 \ Ĉ4 and

There Does Not Exist a Minimal Full Trio 319

l = 2. Theorem 4 states that Ψ(L) contains a period with at least min{3, 5} = 3
nonzero coordinates in every representation of Ψ(L) as a finite union of linear
sets. It is quite obvious that Ψ(L) contains a period with 4 nonzero coordinates in
every representation of Ψ(L) as a finite union of linear sets. Hence the statement
of the theorem is not optimal in that sense. It is also obvious that Ψ(L) has
representations such that Ψ(L) does not contain a period with exactly 3 nonzero
coordinates. Thus the expression “at least” is necessary in the result.

The next theorem states that a strictly bounded language L ∈ Ck \ Ck+1 that
is semistructured by a regular language R ⊆ a∗

1a
∗
2 · · · a∗

k+1 is always big, i.e. it
contains almost the whole language R as a subset. Since by Theorems 3 and 2,
every language L ∈ Ck \Ck+1 can be transformed to a language of this form with
the trio-operations, this theorem gives us important knowledge of the structure of
weak languages2 in the family Ck\Ck+1. The theorem and its variation (Theorem
6) play crucial role in this paper; they are later used for proving that (1) Ck is
closed under morphism and (2) we can transform any language from the family
Ck \ Ck+1 into the family Ck+1 \ Ck+2 with the full trio-operations.

Theorem 5. Let k ≥ 2 be an integer and L ∈ Ck \ Ck+1 a semistructured lan-
guage by a regular language R ⊆ a∗

1a
∗
2 · · · a∗

k+1 such that Ψ(R) is linear. Then
there exist m0 ∈ N and j0 ∈ {1, 2, . . . , k + 1} for which

(R \ L) ∩ a∗
1a

∗
2 · · · a∗

j−1a
m
j a∗

j+1a
∗
j+2 · · ·a∗

k+1 ∈ Rk−1

for all m ≥ m0 and j ∈ {1, 2, . . . , k + 1} such that j �= j0.

Corollary 1. Let k ≥ 2 be an integer and L ∈ Ck \ Ck+1 a semistructured
language by a regular language R ⊂ a∗

1a
∗
2 · · · a∗

k+1 such that Ψ(R) is linear. Then
R \ L does not contain as a subset any language from the family Rk+1 \ Rk.

Let us now consider two examples of Theorem 5.

Example 7. Consider the language

S1(�=, �=, �=) = {an1
1 an2

2 an3
3 |n1 �= n2 ∨ n1 �= n3}.

We have S1(�=, �=, �=) ∩ a∗
1a

∗
2a

∗
3 = {an1

1 an2
2 an3

3 |n1 = n2 = n3}. Thus all the lan-
guages S1(�=, �=, �=) ∩ am

1 a∗
2a

∗
3, S1(�=, �=, �=) ∩ a∗

1a
m
2 a∗

3, S1(�=, �=, �=) ∩ a∗
1a

∗
2a

m
3 are

singletons, and the index j0 of Theorem 5 may be chosen freely.

Example 8. Let

S1(�=, >,>) = {an1
1 an2

2 an3
3 |n1 > n2 ∨ n1 > n3}.

We have S1(�=, >,>) ∩ a∗
1a

∗
2a

∗
3 = {an1

1 an2
2 an3

3 |n1 ≤ n2 ∧ n1 ≤ n3}. Thus in this
case the language S1(�=, >,>) ∩ am

1 a∗
2a

∗
3 = am

1 am
2 a∗

2a
m
3 a∗

3 is in ∈ R2 \ R1 and
the languages S1(�=, >,>)∩a∗

1a
m
2 a∗

3, S1(�=, >,>)∩a∗
1a

∗
2a

m
3 are in R1. Hence the

index j0 of Theorem 5 is one.
2 By the informal term ’weak languages’, we mean languages which generate a full

trio containing only a small set of nonregular languages.

320 J. Kortelainen and T. Salmi

Next we state a variation of Theorem 5.

Theorem 6. Let k ≥ 2 be an integer and L ∈ Ck \ Ck+1 such that L ⊆
a∗
1a

∗
2 · · · a∗

k+1. Then there exist j0 ∈ {1, 2, . . . , k + 1} and R ∈ LREG such that
L ∪ R ∈ Ck \ Ck+1 and

L ∪ R ∩ a∗
1a

∗
2 · · · a∗

j−1a
m
j a∗

j+1a
∗
j+2 · · · a∗

k+1 ∈ Rk−1

for all m ∈ N and j ∈ {1, 2, . . . , k + 1} such that j �= j0.

Theorem 7. Let k ∈ N+ and L ∈ Ck \ Ck+1 be such that L ⊆ a∗
1a

∗
2 · · · a∗

k+1.
Then Ψ(a∗

1a
∗
2 · · · a∗

k+1 \ L) contains a period with k + 1 nonzero coordinates in
every representation of Ψ(a∗

1a
∗
2 · · · a∗

k+1 \ L) as a finite union of linear sets.

Corollary 2. Let k ≥ 2 be an integer and L ∈ Bk+1 ∩ (Ck \ Ck+1). Then L is
not context-free.

Let L ∈ Ck \ Ck+1 be a strictly (k + 1)-bounded semistructured language by
a regular language R. In Corollary 1 we saw that R \ L does not contain any
language as a subset from the family Rk+1 \ Rk. However, the next theorem
states that R \ L contains always a language from the family Lk+1 \ Lk.

Theorem 8. Let k ∈ N+. If L ∈ Ck \ Ck+1 is a semistructured language by a
regular language R ⊂ a∗

1a
∗
2 · · ·a∗

k+1, then R \ L ∈ Lk+1 \ Lk.

So far all our example languages Si(θ1, θ2, . . . , θk+1) have had a property such
that Ψ(Si(θ1, θ2, . . . , θk+1)) has a representation such that each linear component
of Ψ(Si(θ1, θ2, . . . , θk+1)) contains only one period with two nonzero coordinates.
One could ask whether this is a global property for all the strictly (k+1)-bounded
languages in the family Ck \ Ck+1. However, this is not the case as seen in the
next example.

Example 9. Consider the language

L = {an1
1 an2

2 an3
3 |n1 > 2n2 ∨ n1 > 2n3 ∨ n1 = n2 + n3}.

Then L ∈ C2 \ C3. Moreover L contains a linear component with periods (1, 1, 0)
and (1, 0, 1) in the most natural representation of Φ(L). It seems also quite obvi-
ous that there exists a linear component with periods (n1, n2, 0) and (n3, 0, n4),
where ni > 0, in every representation of Φ(L).

3.3 Propagation in the Chain

The following theorem expresses that we can proceed in a controlled way proceed
downwards in the chain C1 \ C2, C2 \ C3, . . . by applying full trio-operations.

Theorem 9. Let k ∈ N+. For each language L ∈ Ck\Ck+1, there exists a strictly
(k + 1)-bounded language L′ ∈ T (L) such that L′ ∈ Ck+1 \ Ck+2.

Theorem 10. A full trio L is minimal with respect to the (k + 1)-bounded
context-free languages if and only if it is minimal respect to Ck \ Ck+1.

There Does Not Exist a Minimal Full Trio 321

3.4 Closure Properties of the Language Families Ck, k ∈ N+

In this section we will prove that the family Ck is a full trio for each k ∈ N+.
This will be done in two phases. First we will prove that Ck is closed under mor-
phism, inverse morphism and intersection with regular languages. Closure under
morphism is cosiderable harder to prove than the other full trio-operations and
it is verified in the separate theorem. Finally, we are able to prove Conjecture 2.

Theorem 11. The language family Ck is closed under inverse morphism and
intersection with regular languages for each k ∈ N+.

Proof. Let us prove the claim concerning the families Ck, where k ∈ N+. There-
fore the claim concerning the family C∞ follows from the fact that C∞ is the
intersection of the families Ck.

Let L1, L2 ∈ Ck, x0, x1, . . . , xk ∈ Σa∗ and w1, w2, . . . , wk ∈ Σ∗ be arbitrary.
Denote R = x0w

∗
1x1w

∗
2 · · ·xk−1w

∗
kxk. Hence L1∩R ∈ LREG and L2∩R ∈ LREG.

Let us first prove closure under intersection with regular languages. Let R1

be a regular language. Since (L ∩ R1) ∩ R = (L ∩ R) ∩ R1 ∈ LREG, we have
L ∩ R1 ∈ Ck.

Let us next consider closure under inverse morphism. Let L ∈ Ck and h :
Σ∗ → Σ∗

L be a morphism. Since R ⊂ h−1(h(R)), we have

h−1 (L) ∩ R

= h−1 (L) ∩ h−1 (h (R)) ∩R

= h−1(L ∩ h(R)) ∩ R.

Furthermore, since L ∩ h(R) ∈ LREG, we have h−1(L) ∩ R ∈ LREG. ��
Corollary 3. The language family C∞ is closed under inverse morphism and
intersection with regular languages.

It is quite straightforward to see that Theorem 11 holds also for a greater
family

Ĉk = {L ∈ Σ∗|L ∩ x0w
∗
1x1w

∗
2 · · ·xk−1w

∗
kxk ∈ LREG ∀xi, wi ∈ Σ∗

L} .

It is easily seen that the family Ĉk is even closed under intersection. However,
the assumption that the languages considered are context-free is necessary for
closure under morphism, as seen in the example below.

Example 10. Let L = {an
1an

2an
3 |n ∈ N} and h : {a1, a2, a3}∗ → {a1, a2}∗ be the

projection. Obviously, L ∈ Ĉ2 but h(L) = {an
1an

2 |n ∈ N} /∈ Ĉ2.

Before proving closure under morphism, we need two auxiliary results for noting
that it suffices to prove closure under morphism for strictly bounded languages.
In [12], Blattner and Latteux show that for each context-free language L ⊂ Σ∗,
there exists a bounded context-free language L′ ⊆ Σ∗ such that Ψ(L′) = Ψ(L)
and L′ ⊆ L.

322 J. Kortelainen and T. Salmi

Lemma 5. Let k ∈ N+ and L ∈ Ck a language over the alphabet Σ. Let Δ be an
alphabet and h1 : Σ∗ → Δ∗ a morphism such that h1(L) is strictly bounded. Then
there exist a strictly bounded language L′ ∈ Ck and a morphism h2 : Σ∗ → Δ∗

such that h2(L′) = h1(L).

One more technical result is needed to prove the closure under morphism.

Lemma 6. Let L ⊂ Δ∗, L′ ⊆ Σ∗ be languages and h : Σ∗ → Δ∗ a morphism.
Then h(h−1(L) ∩ L′) = h(h−1(L) ∩ L′).

Theorem 12. The language family Ck is closed under morphism for each k ∈
N+.

Corollary 4. The language family C∞ is closed under morphism.

Combining Theorems 11 and 12, we get the following result.

Theorem 13. The language family Ck is a full trio for each k ∈ N+. Moreover,
the language family C∞ is a full trio.

We are finally able to state our last theorem, the main result of this research:

Theorem 14. There does not exist a minimal full trio with respect to the family
of bounded context-free languages.

Proof. Let L be an arbitrary nonregular bounded context-free language. Then
L ∈ Ck\Ck+1 for some k ∈ N+. By Theorem 9, there exists a nonregular bounded
language L′ ∈ T (L) such that L′ ∈ Ck+1 \ Ck+2. Hence T (L′) ⊆ T (L). On the
other hand, by Theorem 13, the language L is not in T (L′). Thus T (L′) � T (L).
Hence T (L) cannot not be minimal with respect to the bounded context-free
languages. Since L was chosen to be an arbitrary nonregular bounded context-
free language, the proof is complete. ��

4 Conclusions

The Conjecture 1 still remains open. On the other hand, the family of context-
free languages L such that T (L) does not contain a nonregular bounded language
is fairly lean. These languages are a good topic for further investigation.

It can be shown that the language familiy Ck is closed under concatenation
and Kleene*, i.e., it is a full AFL for each k ∈ N+. This certainly implies that
C∞ ia a full AFL, too. In [2], it is also proven, with great help of Michel Latteux,
that Ck is also closed under substitution for each k ∈ N+.

It should be noted that as a corollary of Theorem 14, none of the languages
Si(θ1, θ2, . . . , θk+1) can be minimal with respect to the bounded context-free
languages. Autebert et al. have stated a conjecture that the full trios generated
by the languages S1(�=, �=, . . . , �=︸ ︷︷ ︸

k+1 times

) would be minimal with respect to the (k + 1)-

bounded context-free languages [1]. It is reasonable to expand the question of
the conjecture a little bit.

There Does Not Exist a Minimal Full Trio 323

Open Problem 1. Let k ≥ 2 be an integer, i ∈ {1, 2, . . . , k + 1} and θj ∈ {>,
�=} for all j ∈ {1, 2, . . . , k + 1}. Are the full trios generated by the languages
Si(θ1, θ2, . . . , θk+1) minimal with respect to the family of (k+1)-bounded context-
free languages?

Research Problem 2. For each k ∈ N+, characterize the full trios that are
minimal with respect to (k + 1)-bounded context-free languages.

References

1. Autebert, J.-M., Beauquier, J., Boasson, L., Latteux, M.: Very small families of
algebraic nonrational languages. In: Formal Language Theory, Perspectives and
Open Problems, pp. 89–107. Academic Press, Orland (1980)

2. Salmi, T.: Very Small Families Generated by Bounded and Unbounded Context-
Free Languages. PhD thesis, University of Oulu, Department of Mathematical Sci-
ences (2009)

3. Autebert, J.M., Beauquier, J., Boasson, L., Nivat, M.: Quelques problèmes ouverts
en théorie des langages algébriques. RAIRO Informatique Theorique/Theoretical
Informatics 13(4), 363–378 (1979)

4. Berstel, J., Boasson, L.: Une suite décroissante de cônes rationnels. In: Proceedings
of the 2nd Colloquium on Automata, Languages and Programming, pp. 383–397.
Springer, London (1974)

5. Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill,
Inc., New York (1966)

6. Ginsburg, S.: Algebraic and Automata-Theoretic Properties of Formal Languages.
Elsevier Science Inc., New York (1975)

7. Eilenberg, S., Schützenberger, M.P.: Rational sets in commutative monoids. Jour-
nal of Algebra 13, 173–191 (1969)

8. Ito, R.: Every semilinear set is a finite union of disjoint linear sets. Journal of
Computer and System Sciences 3(2), 221–231 (1969)

9. Berstel, J.: Transductions and Context-Free Languages. Teubner Studienbücher,
Stuttgart (1979)

10. Goldstine, J.: Substitution and bounded languages. Journal of Computer and Sys-
tem Sciences 6(1), 9–29 (1972)

11. Kortelainen, J.: Every commutative quasirational language is regular. In: Proceed-
ings of the 12th Colloquium on Automata, Languages and Programming, pp. 348–
355. Springer, London (1985)

12. Blattner, M., Latteux, M.: Parikh-bounded languages. In: Proceedings of the 9th
Colloquium on Automata, Languages and Programming, pp. 316–323. Springer,
London (1981)

Describing Periodicity in Two-Way

Deterministic Finite Automata Using
Transformation Semigroups

Michal Kunc1,� and Alexander Okhotin2,3,��

1 Masaryk University, Czech Republic
kunc@math.muni.cz

2 Department of Mathematics, University of Turku, Finland
3 Academy of Finland

alexander.okhotin@utu.fi

Abstract. A framework for the study of periodic behaviour of two-
way deterministic finite automata (2DFA) is developed. Computations
of 2DFAs are represented by a two-way analogue of transformation semi-
groups, every element of which describes the behaviour of a 2DFA on a
certain string x. A subsemigroup generated by this element represents
the behaviour on strings in x+. The main contribution of this paper is
a description of all such monogenic subsemigroups up to isomorphism.
This characterization is then used to show that transforming an n-state
2DFA over a one-letter alphabet to an equivalent sweeping 2DFA re-
quires exactly n+ 1 states, and transforming it to a one-way automaton
requires exactly max0���n G(n − �) + � + 1 states, where G(k) is the
maximum order of a permutation of k elements.

1 Introduction

Two-way deterministic finite automata (2DFA) were introduced in the famous
paper by Rabin and Scott [15] alongside the one-way nondeterministic automata
(1NFA). Both kinds of automata recognize the same language family as the
one-way deterministic finite automata (1DFA). However, they are substantially
different in terms of succinctness of description, and the number of states needed
to represent a language by one type of finite automata is sometimes much greater
than for another type.

While the methods for determining the number of states in one-way automata,
both deterministic and nondeterministic, are well-known, and the main descrip-
tional complexity questions [6] have been researched to extinction, the succinct-
ness issues of two-way automata have proved to be truly challenging. The ques-
tion of whether 2DFAs can simulate their nondeterministic counterparts (2NFA)
with only a polynomial blowup has attracted a lot of attention due to its relation
� Supported by the project MSM0021622409 of the Ministry of Education of the Czech

Republic and by Grant 201/09/1313 of the Grant Agency of the Czech Republic.
�� Supported by the Academy of Finland under grant 134860.

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 324–336, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Describing 2DFAs by transformation semigroups 325

to the L vs. NL problem in the complexity theory [2,16], yet no definite answers
could be found. Even such a basic question as the precise number of states in
a 1DFA needed to simulate an n-state 2DFA had not been settled for almost
half a century: the (n+1)n+1 upper bound by Shepherdson [17] was approached
by a relatively close (n−5

2)
n−5

2 lower bound by Moore [13], but only a few years
ago the exact value n(nn − (n − 1)n) was finally determined by Kapoutsis [8].
Simulations of 2NFAs by simpler automata, first studied by Vardi [19], were also
determined precisely by Kapoutsis [8]. The complexity of operations on 2DFAs
has recently been investigated by Jirásková and Okhotin [7].

In spite of some individual results on the succinctness of 2DFAs, what exactly
can a 2DFA with a given number of states do, remains a mystery. This paper
undertakes to study the behaviour of 2DFAs in one particular case: on a con-
catenation of multiple instances of the same string, on which an automaton may
first keep track of the number of instances, but eventually loses count and follows
a periodic trajectory, repeatedly passing through the same sequence of states.
The paper develops a general framework for reasoning about such computations,
which describes both the periodic and the non-periodic behaviour in a unified
way.

Consider the well-known algebraic representation of a 1DFA by a monoid of
partial transformations of its set of states [14]. A generalization of this concept to
semigroups of two-way transformations representing bi-directional motion was
given in the work of Birget [3], who used it to represent 2DFAs of a special form.
Recalling this notion, this paper applies it to arbitrary 2DFAs in Section 2.
Each element of a two-way transformation semigroup defines the behaviour of
some 2DFA on some nonempty string x, that is, for the 2DFA entering x from
a given side in a given state, the two-way transformation specifies the result of
its computation: whether the 2DFA ever leaves the string, and if it does, then
from which side and in which state it emerges. The behaviour of the 2DFA on all
strings in x+ is then represented by the subsemigroup generated by the two-way
transformation corresponding to x.

The properties of such monogenic subsemigroups of the semigroup of two-
way transformations are gradually worked out in Section 3. For each two-way
transformation on n states, an ordinary transformation on n + 1 states is con-
structed, so that the subsemigroups generated by these transformations are
isomorphic. The final result is the precise characterization of monogenic semi-
groups of two-way transformations on n states: their index � (that is, the start-
ing point of the periodicity) and period lcm(p1, . . . , pk) satisfy the inequality
p1 + · · · + pk + � � n + 1.

The most direct application of this framework is to the state complexity of
2DFAs over a one-letter alphabet. The first study of unary 2DFAs was under-
taken by Chrobak [4], who has sketched an argument that an n-state 2DFA over
a unary alphabet can be simulated by a Θ(G(n))-state 1DFA, where G(n) =
e(1+o(1))

√
n ln n is the maximal order of a permutation on n elements, known as

Landau’s function [9]. Further work in this direction was done by Mereghetti and
Pighizzini [10] and by Geffert, Mereghetti and Pighizzini [5], who similarly esti-

326 M. Kunc and A. Okhotin

mated the 2NFA–1DFA tradeoff. Their approach lies with considering only the
periodic part of the language and using a general upper bound on the starting
point of its periodicity, and thus leads only to asymptotic succinctness tradeoffs.
No exact values of succinctness tradeoffs between unary two-way and one-way
automata are known up to date. The first such results are obtained in this paper.

Based on the analysis of monogenic two-way transformation semigroups, the
use of the states by a unary 2DFA is explained as follows. It is in fact found that
2DFAs can do just two things using fewer states than 1DFAs:

1. count divisibility separately for several numbers, where an equivalent 1DFA
would need to count modulo the least common multiple of those numbers;

2. when counting up to a finite bound �, they can count one step less than
one would expect, and then use one of the cycles to distinguish the string of
length � from longer strings.

In Section 4, this understanding is used to show that every 2DFA over a unary
alphabet can be transformed to an equivalent sweeping 2DFA with at most one
extra state, thus more or less confirming the unproved claim by Chrobak [4],
who stated that this can be done without increasing the number of states. The
next Section 5 considers the standard question of converting an n-state unary
2DFA to an equivalent 1DFA. Chrobak’s [4] asymptotic estimation Θ(G(n)) is
hereby improved to the precise expression, which is max0���n G(n − �) + � + 1.
The same function applies to the 2DFA to 1NFA transformation.

2 Two-Way Transformation Semigroups

A (partial) 1DFA is a quintuple A = (Σ,Q, q1, δ, F), where Σ is a finite alphabet,
Q is a finite set of states, of which q1 ∈ Q is the initial state and F ⊆ Q are the
accepting states, and δ : Q×Σ → Q is a (partially defined) transition function.
For every string w ∈ Σ∗, if A reads the string w beginning in a state q ∈ Q, it
can either finish reading it in a state q′, or reach an undefined transition. This
is represented by a (partial) function δAw : Q → Q, called the behaviour of A on
w ∈ Σ∗. The language recognized by a 1DFA is L(A) = {w | δAw (q1) ∈ F }.

Behaviours of 1DFAs on different strings can be analyzed within the monoid
PT Q of partial functions from Q to Q (also known as partial transformations
of Q) with the function composition ◦ as the product. The computations of the
1DFA A are characterized by its transition monoid, which is the submonoid
of PT Q consisting of the automaton’s behaviours δAw on all strings w ∈ Σ∗.
This submonoid is generated by the behaviours on letters, and the function
composition takes the form δAv ◦ δAu = δAuv. A detailed introduction was given
by Perrin [14]. In this section, this construction of a monoid associated with an
automaton is generalized to the case of bi-directional motion.

Consider 2DFAs operating on strings 'w+ bounded by end-markers, which
begin their computation at ', and accept by going beyond either of the markers.
Thus, a 2DFA is defined as a quadruple A = (Σ,Q, q1, δ), in which Σ is a finite
alphabet with ',+ /∈ Σ, Q is a finite set of states, q1 ∈ Q is the initial state and

Describing 2DFAs by transformation semigroups 327

δ : Q × (Σ ∪ {',+}) → Q × {−1,+1} is a partially defined transition function:
for A in a state q observing a symbol a, the value δ(q, a) indicates the next state
and the direction of motion. Consider the behaviour of a 2DFA on any nonempty
string w. It enters the string in a certain state either from its first or from its
last symbol. Then the automaton may either loop inside the string, or reach an
undefined transition, or eventually leave the string by going to the left of its first
symbol or to the right of its last symbol in a certain new state.

This behaviour is represented similarly to the behaviour of a 1DFA, using
additional notation for the right and the left sides of the string. Entering the
leftmost symbol of w in a state q is described using the notation −→q . Then,
leaving w by going to the right of its last symbol in a state r is denoted by−→r , because this means entering the string to the right of w on its first symbol.
Symmetrically, the notation ←−q represents entering a string from the right in
a state q, and if such a computation results in leaving w by going to the left
beyond its first symbol in a state r, this is denoted by ←−r .

Thus the behaviour of a 2DFA with the set of states Q on any string can be
represented as a partial transformation of a set N =

−→
Q ∪←−

Q , where
−→
Q = {−→q |

q ∈ Q } and
←−
Q = {←−q | q ∈ Q }. Transformations of this kind were introduced by

Birget [3], who used them to describe the behaviour of a restricted case of 2DFAs.
These transformations will be called two-way transformations on Q, denoted by
symbols f and g, and depicted by oriented graphs, such as in Figure 1. Let
fA

w : N → N denote the behaviour of a 2DFA A on a string w ∈ (Σ ∪ {',+})∗.
Then, the language recognized by A is L(A) = {w ∈ Σ∗ | fA

�w�(−→q1) is defined }.
A natural question is whether all two-way transformations may occur as be-

haviours of some automata on some strings, and the answer is negative. Let f

be a behaviour of some automaton on a string w ∈ Σ+, let −→q ∈ −→
Q and assume

f(−→q) = −→r ∈ −→
Q . Then the computation of the automaton going through w to

the state r beyond w should pass through the last symbol of w in some state p,
from where the automaton went to the right. Accordingly, there should exist a
state p with f(←−p) = −→r .

A symmetric condition applies to elements of
←−
Q , and the entire necessary

condition can be succinctly stated as follows. For all α, β ∈ N , if both α and
β belong to

−→
Q or both belong to

←−
Q , this is denoted by α ∼ β and represents

entering strings in the same direction. Then

∀α ∈ N : f(α) ∼ α =⇒ ∃β ∈ N : β � α ∧ f(β) = f(α). (1)

Denote by T T Q the set of two-way transformations on Q satisfying this condi-
tion.

Two-way transformations that occur as behaviours of some automata on one-
symbol strings w = a ∈ Σ must satisfy a stronger condition:

fA
a (−→q) = fA

a (←−q) (for all q ∈ Q) (2)

And conversely, if a two-way transformation satisfies condition (2), then it is a
behaviour of some letter in some 2DFA. Such two-way transformations shall be
called distinguished.

328 M. Kunc and A. Okhotin

Fig. 1. Composition of behaviours on u and on v as a product fv • fu

Once the behaviour of a 2DFA on some strings u, v ∈ Σ+ is known to be
f and g, respectively, its behaviour on their concatenation uv can be inferred
from f and g, as depicted in Figure 1. It is calculated as a certain product g • f
of two-way transformations f, g : N → N , defined by Birget [3]. This product
faithfully represents the behaviour of 2DFAs on the concatenation of two strings,
that is, fA

uv = fA
v • fA

u for any strings u, v ∈ (Σ ∪ {',+})+ and for any 2DFA A.
It can be shown that T T Q equipped with the product • is a semigroup. This

semigroup is generated by distinguished two-way transformations, and there-
fore, elements of T T Q are precisely behaviours of some 2DFA on some string.
More precisely, every element of T T Q can be obtained as a product of two
distinguished transformations. Note that T T Q is not a monoid for the lack of
an identity element. Though there exists an identity two-way transformation
defined by e(α) = α, it does not satisfy condition (1). For this reason, the semi-
group representation of two-way automata considers only their computations
on nonempty inputs. The empty string can be reintroduced later, when turning
from semigroups back to automata.

There is the following formal connection between computations of 2DFAs and
semigroups T T Q:

Proposition 1. Let A = (Σ,Q, q1, δ) be a 2DFA, and consider the subsemi-
group of T T Q generated by distinguished two-way transformations fA

a , for a ∈
Σ ∪ {',+}. Then

L(A) =
{

a1 . . . a�

∣∣ (fA
� • fA

a	
• · · · • fA

a1
• fA

�)(−→q1) is defined
}
.

In particular, for a given fixed automaton A, the membership of a string a1 . . . a�

∈ Σ+ in L(A) depends only on the element fA
a1...a	

= fA
a	

• · · · • fA
a1

of the
subsemigroup generated by { fA

a | a ∈ Σ }.

3 Monogenic Subsemigroups of T T Q

Let f ∈ T T Q be any fixed element of the two-way transformation semigroup.
This element represents the behaviour of some 2DFA A on some string w. By
Proposition 1, for arbitrary u, v ∈ Σ∗, the string uw�v belongs to L(A) if and
only if the two-way transformation fA

v� • (f)•� • fA
�u is defined on −→q1 , where f•�

Describing 2DFAs by transformation semigroups 329

Fig. 2. Computation on a bi-infinite string of ws

stands for f • · · · • f , � times. Beginning with a certain j � 1, two-way trans-
formations in the sequence {f•�}��1 repeat periodically. Then, by the above
observation, the membership of strings uw�v in L(A) becomes periodic no later
than starting from j, and the period divides the period of the powers of f . There-
fore, any upper bound on the periodicity of powers f•�, which is described by the
structure of the monogenic subsemigroup generated by f in T T Q, constitutes a
bound on the periodicity of the membership of strings uw�v.

In order to describe the structure of a monogenic subsemigroup S generated
by some element s in a finite semigroup, one has to determine two numbers. The
least positive integer i, for which there exists j > i with si = sj , is called the
index of S, and the least number p � 1 with si = si+p is called the period of S.
The index and period determine a monogenic semigroup up to isomorphism.

3.1 The Distance Travelled After i Steps

For a string w ∈ Σ∗, assume a bi-infinite string of copies of w, numbered by
integers. Let f ∈ T T Q be the behaviour of some 2DFA on w. Consider a com-
putation of this 2DFA, that begins by entering copy number 0 from the left in a
certain state, which is represented by α ∈ −→

Q . At every j-th step, the automaton
proceeds to the neighbouring instance of w: to the right if f j(α) ∈ −→

Q , and to the
left if f j(α) ∈ ←−

Q . Such a computation is illustrated in Figure 2, where f(α) = β,
f2(α) = γ, . . . , f6(α) = α, etc. Similarly, one can consider computations starting
from α′ ∈ ←−

Q , numbering the instances of w in the reverse direction.
Consider the distance travelled in such a computation. In Figure 2, three steps

of computation move the head back by one square, while six steps of computation
result in moving forward by two squares. This shall be denoted by d(α, 3) = −1
and d(α, 6) = 2, respectively.

Definition 1. For every α ∈ N and i � 0, such that f i(α) is defined, let

d(α, i) =
∣∣{ j | 1 � j � i, f j(α) ∼ α }∣∣− ∣∣{ j | 1 � j � i, f j(α) � α }∣∣ .

In other words, d(α, i) expresses how far one moves from the original position in
the bi-infinite string of fs by means of i steps of the computation represented

330 M. Kunc and A. Okhotin

by the two-way transformation f , where positive numbers mean continuing in
the direction of α, while negative numbers mean that the direction was reversed.
Observe that d(α, i) and d(α, i + 1) always differ exactly by one.

In the following, it will be investigated how the graph structure of any f ∈
T T Q determines its behaviour as a two-way transformation.

For any m � 1 and α ∈ N , the value f•m(α) represents the computation on
a block of m instances of f . This computation begins on the first or on the last
instance of f in this block, depending on whether α ∈ −→

Q or α ∈ ←−
Q . Consider

the case of α ∈ −→
Q . Then the computation begins on the first instance of f , and

at every j-th step the computation proceeds to the neighbouring instance as
described above. Unless f•m(α) is undefined, the computation eventually leaves
the block to the right or to the left.

The condition of leaving the block can be defined in terms of d as d(α, i) ∈
{−1,m} for some i. This is formally established in the following lemma, which
handles the cases of α ∈ −→

Q and α ∈ ←−
Q uniformly.

Lemma 1. For every m ∈ N and α ∈ N , f•m(α) = f i(α), where i ∈ N is the
smallest number with d(α, i) /∈ {0, . . . ,m − 1}, or, equivalently, with d(α, i) ∈
{−1,m}. If such an i does not exist, then f•m(α) is undefined.

3.2 f̃ : Moving by f Until Advancing by One Position

Consider the example in Figure 2. What the f -cycle of length 6 does is, starting
from α, first going one step forward, then two steps back and finally three steps
forward. Provided that there is an extra instance of w in position −1, this results
in going 2 steps forward. However, if the instance of w in position 0 is the leftmost
one, then this computation would not take place.

In order to deal with computations on long blocks of ws, it is useful to as-
sume that there is an unbounded supply of ws on both sides, and consider the
computation starting from α that results in advancing by one position (that is,
to the right if α ∈ −→

Q and to the left if α ∈ ←−
Q).

Definition 2. For every f ∈ T T Q, define a partial transformation f̃ ∈ PT N

by the rule f̃(α) = f i(α), where i ∈ N is the smallest number with d(α, i) = 1.
If such an i does not exist, f̃(α) is undefined.

Returning to Figure 2, f̃(α) = f(α) = β, since d(α, 1) = 1. The value of f̃(β)
is given by f5(β) = α, because {d(β, n)}n�1 = {−1,−2,−1, 0,1, . . .}. For the
elements γ, δ ∈ ←−

Q , f̃ represents going by one step to the left, and accordingly,
f̃(γ) = δ and f̃(δ) is undefined.

Since for every α ∈ N , the last step of the computation defining f̃(α) is a
move in the same direction as α, one has f̃(α) ∼ α. Therefore, f̃ is formed of
two separate partial transformations on each of the sets

−→
Q and

←−
Q .

While the partial transformation f̃ corresponds to advancing by one position,
the m-th power of f̃ represents advancing by m positions, that is, f̃m(α) = f i(α),
where i ∈ N is the smallest number with d(α, i) = m.

Describing 2DFAs by transformation semigroups 331

The first step in describing the subsemigroup generated by f in T T Q is to
prove that it is isomorphic to the subsemigroup generated by f̃ in PT N . This
amounts to showing the following statement:

Lemma 2. For all positive integers m and k, f•m = f•k if and only if f̃m = f̃k.

The forward implication follows immediately from the equality f̃m = f̃•m,
which means that making m steps forward over f is the same as making one
step forward over a block of m instances of f . The converse is more difficult
to verify, since the inequality f•m(α) �= f•k(α) does not necessarily imply that
f̃m(α) �= f̃k(α). However, a detailed analysis shows that one can always find
some node β ∈ N , reachable from α by several applications of f , which satisfies
f̃m(β) �= f̃k(β).

3.3 Index and Period of the Subsemigroup Generated by f̃

It is well known how to calculate the index and the period of a subsemigroup
of PT N generated by a partial transformation h, using the structure of h as
a directed graph of out-degree 1, with the set of nodes N and with h(α) = β
represented by an arc α → β. Every node from N belongs either to an h-cycle,
or to an h-tail, which is any maximal subset of N consisting of elements not
belonging to any h-cycle, and in which for any two elements α and β, either
β is reachable from α or vice versa. Note that every h-tail leads either into a
cycle, or into a dead element where h is not defined. The number of elements of
N that belong to a given tail is called the length of the tail. Then the index of
the subsemigroup generated by h is equal to the length of the longest h-tail (it
equals 1 if there is no tail) and its period is equal to the least common multiple
of the lengths of all h-cycles.

Therefore, both the index and the period of the subsemigroup generated by
f are determined by the lengths of f̃ -cycles and the longest f̃ -tail. Let C be the
set of all nodes from N belonging to f̃ -cycles, and fix one of the longest f̃ -tails.
Let T denote this f̃ -tail and denote D = C ∪ T ⊆ N . Denote the restriction of
f̃ to D by f̂ ∈ PT D.

Then the subsemigroups generated by f̃ and f̂ have the same index and
period, and hence are isomorphic. Therefore, some information about the index
and period of the subsemigroup generated by f can be obtained by finding an
upper bound on the size of D with respect to |Q|. However, it can be shown that
condition (1), which is imposed on f by the fact that it arises as a behaviour of
a 2DFA, significantly restricts the possible lengths of cycles and tails of f̃ . More
precisely, the sum of the lengths of its cycles and the length of the longest tail
never exceeds |Q|+ 1, and it can reach |Q|+ 1 only in a very special case, which
corresponds to the ability of a 2DFA to use one of its cycles to save one state
when counting to a certain bound (an example of such an automaton is given in
the following section).

The verification of the inequality |D| � |Q| + 1 is rather simple if f is a
distinguished transformation, because it can be easily shown that there exists at

332 M. Kunc and A. Okhotin

most one such state q, that both −→q and ←−q belong to D. Indeed, assume there is
such a q ∈ Q. Since f(−→q) = f(←−q), at least one of the nodes −→q and ←−q (say the
former one) belongs to an f -tail. As they cannot belong to the same f -tail, the
other node ←−q belongs to an f -cycle. Therefore, −→q is the last node of the unique
f -tail, which contains some element of D. This implies that such q is uniquely
determined. Moreover, one can also see that if such a q exists, then f̂ contains
a cycle (the node −→q cannot belong to the only f̂ -tail due to −→q � ←−q) and there
exists a node in D (namely, the last node of the f̂ -tail of −→q), on which f̂ is not
defined.

This argument can be generalised to arbitrary two-way transformations by
proving that if a node γ is in the image of f̂ , then γ = f(α) for some node α
satisfying α � γ and not belonging to D. There is only one exception to this
rule, namely when γ is the node where the unique f -tail containing elements of
D joins an f -cycle. This leads to the following upper bound on the size of D.

Lemma 3. It holds that |N | � 2 |D| − 2. Additionally, if |N | = 2 |D| − 2, then
f̂ is undefined on some element of D and contains a cycle.

3.4 The Main Theorem and Its Implications

Because the subsemigroup generated by f in T T Q is isomorphic to the subsemi-
group generated by f̂ in PT D, Lemma 3 can be used to describe the structure
of all monogenic subsemigroups of T T Q:

Theorem 1. For every monogenic subsemigroup S of T T Q there exist k � 1
and numbers p1, . . . , pk � 1 and � � 1, with p1 + · · ·+ pk + � � |Q|+1, such that
S has index � and period lcm(p1, . . . , pk). More precisely, if S is generated by
f ∈ T T Q, then � can be obtained as the length of the longest f̃-tail and numbers
p1, . . . , pk as the lengths of all f̃ -cycles (if there is no cycle in f̃ , let k = p1 = 1).

Conversely, for any integers k � 1, p1, . . . , pk � 1 and � � 1 satisfying p1 +
· · ·+pk+� � |Q|+1, the semigroup T T Q contains a distinguished transformation,
which generates a subsemigroup with index � and period lcm(p1, . . . , pk).

This result provides a lower bound on the size of any such Q, that T T Q

contains a monogenic subsemigroup with a certain index and period:

Corollary 1. Let S be a monogenic subsemigroup of T T Q, which has index �
and period p. Let p = p1 · · · pk, where p1, . . . , pk are powers of distinct primes,
be the prime factorization of p. Then, |Q| must be at least p1 + · · ·+ pk + �− 1.

For a 2DFA A, Proposition 1 guarantees that any strings u, v ∈ Σ+ satisfying
fA

u = fA
v represent the same element of the syntactic semigroup of L(A). This

means that the bounds on the size of monogenic subsemigroups of T T Q given
in Theorem 1 and Corollary 1 are valid also for monogenic subsemigroups of the
syntactic semigroup of any language accepted by an n-state 2DFA.

Consider computations of a 2DFA A on inputs uxiv, in which the behaviour
on the infix xi is described by the two-way transformation (fA

x)•i. Due to Propo-
sition 1, the membership of a string uxiv in the language L(A) depends only

Describing 2DFAs by transformation semigroups 333

on the element fA
uxiv = fA

v • (fA
x)•i • fA

u of T T Q. Therefore, the periodic be-
haviour of the set { i � 1 | uxiv ∈ L(A) } depends only on the structure of the
subsemigroup generated in T T Q by fA

x . More precisely, the period of this set
divides the period of the subsemigroup, and its index is bounded by the index
of the subsemigroup. This leads to the following consequences of Theorem 1 and
Corollary 1.

Corollary 2. Let A be an n-state 2DFA over an arbitrary finite alphabet Σ, and
let u, v ∈ Σ∗ and x ∈ Σ+ be any strings. Then, there exist k � 1 and numbers
p1, . . . , pk � 1 and � � 1, with p1+· · ·+pk+� � n+1, such that the set of numbers
{ i � 1 | uxiv ∈ L(A) } is periodic from � with period p = lcm(p1, . . . , pk).

Corollary 3. Let L be a regular language over an arbitrary finite alphabet Σ,
and let u, v ∈ Σ∗ and x ∈ Σ+ be any strings. Let the set of numbers { i � 1 |
uxiv ∈ L(A) } have period p beginning from �. Let p = p1 · · · pk, where p1, . . . , pk

are powers of distinct primes, be the prime factorization of p. Then, every 2DFA
recognizing L must have at least p1 + · · · + pk + � − 1 states.

4 Transformation to Sweeping Automata

A 2DFA is called sweeping [18] if in every computation its head changes the direc-
tion of motion only on the markers. For an arbitrary alphabet, as independently
proved by Berman [1] and by Micali [12], the succinctness blowup from general
2DFAs to sweeping 2DFAs is exponential. For a unary alphabet, Mereghetti and
Pighizzini [11] established a transformation of an n-state 2NFA to a sweeping
2NFA with O(n2) states. Regarding the deterministic case, Chrobak [4] men-
tioned in passing that “it is easy to show that any unary 2DFA can be substituted
by an equivalent sweeping 2DFA without increasing the number of its states”.
This claim was not substantiated, and the best result known in the literature is
the O(n2) bound for unary 2NFAs due to Mereghetti and Pighizzini [11]. The
framework developed in this paper allows finally settling this question:

Theorem 2. Let n � 1. Then for every unary deterministic two-way automa-
ton A with n states, there exists an equivalent sweeping deterministic two-way
automaton with n + 1 states. For n � 2, this bound is the best possible.

In short, the intuition of Chrobak was generally right, though one extra state
is needed.

The upper bound is proved by constructing a new sweeping automaton, that
simulates the transformation f̃ , where f is the behaviour of the original 2DFA on
the letter. The construction is straightforward in itself: it produces p1+· · ·+pk+�
states, where p1, . . . , pk are the lengths of the cycles in f̃ , and � is the length of
its longest tail. The nontrivial part of the argument is the upper bound n+1 on
this sum, given in Theorem 1.

The lower bound is witnessed by the following language.

334 M. Kunc and A. Okhotin

Fig. 3. Computation of the 2DFA for Ln with n = 4 in Theorem 2

Example 1. Let n � 2 and consider the language Ln = a(a2)∗ ∪ {an−2} if n is
even, or Ln = (a2)∗ ∪ {an−2} for n odd. Then Ln is recognized by an n-state
2DFA with acceptance only on the right-end marker (that is, with the standard
definition). However, every sweeping 2DFA for Ln needs n + 1 states.

The obvious automaton for this language is an (n + 1)-state 1DFA, and a
sweeping 2DFA cannot have fewer states. However, one state can be saved at
the expense of losing the sweeping property, as follows. Consider the case of
n = 4, presented in Figure 3. The automaton begins by traversing the string
from left to right, counting modulo 2. Once the right-end marker is reached, the
string is either accepted because of its parity, or the automaton proceeds back to
the left, counting up to n − 2. A sweeping 2DFA would need an extra rejecting
state, reached if the string is of length n or greater; the proposed 2DFA can
reuse the first two states instead, rejecting by entering an infinite loop.

5 Transformation to One-Way Automata

Now consider the question of the number of states in 1DFAs and 1NFAs needed
to represent languages recognized by n-state unary 2DFAs. Chrobak [4] was the
first to find out that both tradeoffs are asymptotically equivalent to the function

G(n) = max{ lcm{p1, . . . , pk} | p1 + · · · + pk � n },

known as Landau’s function and estimated as G(n) = e(1+o(1))
√

n ln n [9].
For a 2DFA over an alphabet {a}, with f ∈ T T Q representing the behaviour

on a, the numbers p1, . . . , pk in the definition of G correspond, according to
Theorem 1, to the cycles in f̃ . The length of the tail � in Theorem 1 is actually
reflected by the number n +1− (p1 + · · ·+ pk). The contribution of � to the size
of a 1DFA is taken into account in the precise expression for the 2DFA-to-1DFA
tradeoff given in the following theorem.

Theorem 3. Let n � 1. Then for every unary two-way automaton A with n
states, where the transitions on the letter are deterministic, there exists an equiv-
alent complete 1DFA with max1���n+1 G(n + 1 − �) + � states. For n � 3, this
bound is tight already for the transformation of complete 2DFAs with acceptance
on both sides to 1NFAs.

Describing 2DFAs by transformation semigroups 335

The upper bound follows from Corollary 2 with x = a and u = v = ε. Proving
that this bound is tight requires some efforts. Given n � 3, let k � 1, � � 1, and
let p1, . . . , pk � 2 be powers of distinct primes, such that p1+· · ·+pk+(�−1) = n
and G(n+1− �) = p1 · · · pk = p. A lower bound max1���n+1 G(n+1− �)+ �−1
on the 2DFA to 1DFA tradeoff is obtained straightforwardly by constructing an
(n + 1)-state 2DFA for such language as, for instance, ap+�−1(ap)∗. To see that
one extra state is necessary, one has to embed within such an example the same
idea as in the lower bound in Theorem 2. This is achieved in the language

Ln = ap+�−1(ap)∗ ∪ { ai | i ≡ � (mod pk) and i ≡ � − 1 (mod p1 · · · pk−1) },
which is nontrivially recognized by a 2DFA with n states, while every 1DFA for
this language obviously requires p + � states.

References

1. Berman, P.: A note on sweeping automata. In: de Bakker, J.W., van Leeuwen, J.
(eds.) ICALP 1980. LNCS, vol. 85, pp. 91–97. Springer, Heidelberg (1980)

2. Berman, P., Lingas, A.: On complexity of regular languages in terms of finite
automata. Report 304, Institute of Computer Science, Polish Academy of Sciences,
Warsaw (1977)

3. Birget, J.-C.: Concatenation of inputs in a two-way automaton. Theoretical Com-
puter Science 63(2), 141–156 (1989)

4. Chrobak, M.: Finite automata and unary languages. Theoretical Computer Science
47, 149–158 (1986); Errata 302, 497–498 (2003)

5. Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic
unary automata into simpler automata. Theoretical Computer Science 295(1-3),
189–203 (2003)

6. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite au-
tomata. In: Dediu, A.H., Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS,
vol. 5457, pp. 23–42. Springer, Heidelberg (2009)

7. Jirásková, G., Okhotin, A.: On the state complexity of operations on two-way finite
automata. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 443–454.
Springer, Heidelberg (2008)

8. Kapoutsis, C.A.: Removing bidirectionality from nondeterministic finite automata.
In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 544–
555. Springer, Heidelberg (2005)

9. Landau, E.: Uber die Maximalordnung der Permutationen gegebenen Grades (On
the maximal order of permutations of a given degree). Archiv der Mathematik und
Physik, Ser. 3 5, 92–103 (1903)

10. Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata.
SIAM Journal on Computing 30(6), 1976–1992 (2001)

11. Mereghetti, C., Pighizzini, G.: Two-way automata simulations and unary lan-
guages. Journal of Automata, Languages and Combinatorics 5(3), 287–300 (2000)

12. Micali, S.: Two-way deterministic finite automata are exponentially more succinct
than sweeping automata. Information Processing Letters 12(2), 103–105 (1981)

13. Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic, and two-way finite automata. IEEE Transactions
on Computers 20, 1211–1214 (1971)

336 M. Kunc and A. Okhotin

14. Perrin, D.: Finite Automata. In: van Leeuwen, J. (ed.) Handbook of Theoretical
Computer Science vol. B, pp. 1–57. MIT Press, Cambridge (1990)

15. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal
of Research and Development 3, 114–125 (1959)

16. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite automata.
In: STOC 1978, pp. 275–286 (1978)

17. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM
Journal of Research and Development 3, 198–200 (1959)

18. Sipser, M.: Lower bounds on the size of sweeping automata. In: STOC 1979, pp.
360–364 (1979)

19. Vardi, M.: A note on the reduction of two-way automata to one-way automata.
Information Processing Letters 30(5), 261–264 (1989)

Deciding Networks of Evolutionary Processors

Florin Manea�

Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik
PSF 4120, D-39016 Magdeburg, Germany

manea@iws.cs.uni-magdeburg.de

Abstract. In this paper we discuss the usage of Accepting Networks of
Evolutionary Processors (ANEPs for short) as deciding devices. In this
context we define a new halting condition for this model, which seems
more coherent with the rest of the theory than the previous such defini-
tion, and show that all the computability results reported so far remain
valid in the new framework. Moreover, we give a direct and efficient
simulation of an arbitrary ANEP by a complete ANEP, thus, showing
that the efficiency of deciding a language by ANEPs is not influenced by
the network’s topology. Finally, we obtain a surprising characterization
of PNP[log] as the class of languages that can be decided in polynomial
time by ANEPs.

1 Introduction

The accepting networks of evolutionary processors (ANEPs, for short) are a bio-
inspired computational mode, introduced in [1], and having its roots in [2,3].
An ANEP consists in a graph having in each node a processor, which is able
to perform very simple operations, namely point mutations in a DNA sequence
(insertion, deletion or substitution of nucleotides); these processors are called
evolutionary processor. Furthermore, each node contains data, which are orga-
nized in the form of multisets of words, each word appearing in an arbitrarily
large number of copies, and all copies are processed in parallel such that all
the possible events that can take place do actually take place. Following the
biological motivation, each node may be viewed as a cell containing genetic in-
formation encoded in DNA sequences, which may evolve by local evolutionary
events, i.e., point mutations; moreover, each node is specialized just for one of
these evolutionary operations.

The computation of an ANEP is conducted as follows. Initially, only one spe-
cial node, the input node, contains a certain word, the input word. Further, the
words are processed in alternative evolutionary and communication steps. In an
evolutionary step, the words found in each node are rewritten according to the
rules of that node. In a communication step, the words of a node are commu-
nicated to the other nodes, as permitted by some filtering condition associated
� Also at: Faculty of Mathematics and Computer Science, University of Bucharest,

Str. Academiei 14, RO-010014 Bucharest, Romania (flmanea@fmi.unibuc.ro). The
work of Florin Manea is supported by the Alexander von Humboldt Foundation.

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 337–349, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

338 F. Manea

with both the sending and the receiving node. The classical definition assumes
that a computation halts and accepts, when a word enters a special node of the
network, the output node, or halts and rejects, when the words contained in each
node do not change consecutive evolutionary or communication steps.

In this paper we propose a new halting condition for such a computation.
Namely, a computation halts (and is called finite) as soon as at least one word
enters the output node. The input word is accepted if the computation of the
ANEP on this word is finite, and at least one word that is found in the output
node at the end of the computation contains a special symbol; otherwise, the
computation is either infinite, or, when it is finite, rejecting. The motivations
behind this new halting condition are discussed in Section 3.

Results on ANEPs, seen as formal languages accepting devices, were surveyed
recently in [4]. In this paper we see how these results change when the new
halting condition is used. While the computational power of the ANEPs remains
the same, the time complexity results are not preserved. To this end, we obtain
a surprising characterization of PNP[log] as the class of languages that can be
decided in polynomial time by ANEPs.

We also show that an arbitrary ANEP can be simulated efficiently by an
ANEP with complete underlying graph. This answers a question from [5] and
shows that one cannot expect to decide a language faster, using ANEPs with
special topology, than when complete ANEPs are used.

For the full proofs of the results presented in this paper see [10].

2 Basic Definitions

We start by summarizing the notions used throughout the paper; for all unex-
plained notions the reader is referred to [6]. An alphabet is a finite and nonempty
set of symbols. The cardinality of a finite set A is written card(A). Any sequence
of symbols from an alphabet V is called word over V . The set of all words over
V is denoted by V ∗ and the empty word is denoted by λ. The length of a word
x is denoted by |x| while alph(x) denotes the minimal alphabet W such that
x ∈ W ∗. For a word x ∈ W ∗, xr denotes the reversal of the word.

In the following, we introduce a series of rewriting operations, called evolu-
tionary operations as they may be viewed as linguistic formulations of local gene
mutations. We say that a rule a → b, with a, b ∈ V ∪ {λ} is a substitution rule if
both a and b are not λ; it is a deletion rule if a �= λ and b = λ; it is an insertion
rule if a = λ and b �= λ. The sets of all substitution, deletion, and insertion rules
over an alphabet V are denoted by SubV , DelV , and InsV , respectively.

Given a rule σ as above and a word w ∈ V ∗, we define the following actions
of σ on w:

If σ ≡ a → b ∈ SubV , then σ∗(w) =
{{ubv | ∃u, v ∈ V ∗ (w = uav)},
{w | w contains no a},

If σ ≡ a → λ ∈ DelV , then: σ∗(w) =
{{uv | ∃u, v ∈ V ∗ (w = uav)},
{w | w contains no a},

σr(w) =
{{u}, w = ua,
{w}, otherwise, σl(w) =

{{v}, w = av,
{w}, otherwise,

Deciding Networks of Evolutionary Processors 339

If σ ≡ λ → a ∈ InsV , then
σ∗(w) = {uav | ∃u, v ∈ V ∗ (w = uv)}, σr(w) = {wa}, σl(w) = {aw}.

We say that α ∈ {∗, l, r} expresses the way of applying a deletion or insertion
rule to a word, namely at any position (α = ∗), in the left (α = l), or in the
right (α = r) end of the word, respectively. For every rule σ, action α ∈ {∗, l, r},
and L ⊆ V ∗, we define the α-action of σ on L by σα(L) =

⋃
w∈L σα(w). Given a

finite set of rules M , we define the α-action of M on the word w and the language
L by Mα(w) =

⋃
σ∈M σα(w) and Mα(L) =

⋃
w∈L Mα(w), respectively.

For two disjoint subsets P and F of an alphabet V and a word w over V , we
define the predicates:

ϕ(s)(w;P, F) ≡ P ⊆ alph(w) ∧ F ∩ alph(w) = ∅
ϕ(w)(w;P, F) ≡ alph(w) ∩ P �= ∅ ∧ F ∩ alph(w) = ∅.

The construction of these predicates is based on random-context conditions
defined by the two sets P (permitting contexts/symbols) and F (forbidding con-
texts/symbols). Informally, the first condition requires that all permitting sym-
bols are present in w and no forbidding symbol is present in w, while the second
one is a weaker variant of the first, requiring that at least one permitting symbol
appears in w and no forbidding symbol is present in w.

For every language L ⊆ V ∗ and β ∈ {(s), (w)}, we define:
ϕβ(L,P, F) = {w ∈ L | ϕβ(w;P, F)}.

An evolutionary processor over V is a tuple (M,PI, FI, PO, FO), where:
– M is a set of substitution, deletion or insertion rules over the alphabet V ,
the set of rules of the processor. Formally (M ⊆ SubV) or (M ⊆ DelV) or
(M ⊆ InsV). A processor is “specialized” in one type of operations only.
– PI, FI ⊆ V are the input permitting, respectively forbidding, contexts of the
processor, while PO,FO ⊆ V are the output permitting, respectively forbidding,
contexts of the processor. Informally, the permitting input (output) contexts are
the set of symbols that should be present in a word, when it enters (respec-
tively, leaves) the processor, while the forbidding contexts are the set of symbols
that should not be present in a word in order to enter (respectively, leave) the
processor.

We denote the set of evolutionary processors over V by EPV .
Next we define the central notion of our paper, namely Accepting Networks of

Evolutionary Processors (ANEPs for short). Our definition is slightly different
from the one that was used in literature so far (see [4] for a survey) by the usage
of a special accepting symbol μ.

An accepting hybrid network of evolutionary processors (ANEP for short) is
a 9-tuple Γ = (V, U, μ,G,N , α, β, xI , xO), where:
– V and U are the input and network alphabets, respectively, V ⊆ U ; the symbol
μ ∈ U \ V is a distinguished symbol, called accepting symbol.
– G = (XG, EG) is a directed graph, with the set of nodes XG and the set of
edges EG ⊆ XG×XG. The graph G is called the underlying graph of the network,
and card(XG) is the size of Γ .
– N : XG −→ EPU is a mapping which associates with each node x ∈ XG the
evolutionary processor N (x) = (Mx, P Ix, F Ix, POx, FOx).

340 F. Manea

– α : XG −→ {∗, l, r}; α(x) gives the action mode of the rules of node x on the
words existing in that node.
– β : XG −→ {(s), (w)} defines the type of the input/output filters of a node.
More precisely, for every node, x ∈ XG, the following filters are defined:

input filter: ρx(·) = ϕβ(x)(·;PIx, F Ix),
output filter: τx(·) = ϕβ(x)(·;POx, FOx).

That is, ρx(w) (respectively, τx(w)) indicates whether or not the word w can
pass the input (respectively, output) filter of x.
– xI and xO ∈ XG are the input node, and, respectively, the output node of Γ .

An ANEP is said to be complete if the underlying graph G has the edges
EG = {(x, y) | x �= y and x, y ∈ XG}.

A configuration of an ANEP Γ is a mapping C : XG −→ 2V ∗
, associating a

set of words with every node of the graph. A configuration may be understood
as the sets of words which are present in any node at a given moment; it can
change either by an evolutionary step or by a communication step.

When changing by an evolutionary step each component C(x) of the config-
uration C is changed in accordance to the set of evolutionary rules Mx, of node
x, and α(x), the way these rules should be applied. Formally, the configuration
C′ is obtained in one evolutionary step from the configuration C, written as
C =⇒ C′, if and only if C′(x) = M

α(x)
x (C(x)), for all x ∈ XG.

When changing by a communication step, each node-processor x ∈ XG sends
one copy of each word it contains, and is able to pass its output filter, to all
the node-processors connected to x, and receives all the words sent by all the
other node processor connected with x, provided that they can pass its input
filter. Formally, the configuration C′ is obtained in one communication step from
configuration C, written as C ' C′, if and only if C′(x) = (C(x) − τx(C(x))) ∪⋃

(y,x)∈EG
ρx(τy(C(y))), for all x ∈ XG. Note that the words which leave a node

are eliminated from that node; if such a word cannot pass the input filter of any
node, it is lost.

The computation of Γ on the input word w ∈ V ∗ is a (potential infinite)
sequence of configurations C

(w)
0 , C

(w)
1 , C

(w)
2 , The initial configuration C

(w)
0

is defined by C
(w)
0 (xI) = {w} and C

(w)
0 (x) = ∅ for all x ∈ XG, x �= xI . Further,

C
(w)
2i =⇒ C

(w)
2i+1 and C

(w)
2i+1 ' C

(w)
2i+2, for all i ≥ 0.

The acceptance symbol μ is important when defining the accepting computa-
tions of an ANEP. A computation as above halts when it reaches a configuration
Cw

t in which the output node xO contains a word; we say that Γ halts on the
input word w. We distinguish two situations:

i. There exists u ∈ Cw
t (xO), such that u contains the symbol μ. In this case, the

computation is an accepting computation, and Γ accepts w.
ii. Any word u ∈ Cw

t (xO) does not contain the symbol μ. In this case, the
computation is a rejecting computation, and Γ rejects w.

The language accepted by Γ is La(Γ) = {w ∈ V ∗ | the computation of Γ on
w is an accepting one}. We say that an ANEP Γ decides the language L ⊆ V ∗,
and write L(Γ) = L if and only if La(Γ) = L and Γ halts on all input words.

Deciding Networks of Evolutionary Processors 341

Let Γ be an ANEP deciding the language L.
The time complexity of the finite computation Cw

0 , Cw
1 , Cw

2 , . . . Cw
m of Γ on w ∈ L

is denoted by T imeΓ (w) and equals m. The time complexity of Γ is the function
T imeΓ (n) = max{T imeΓ (x) | |x| = n}. We say that Γ works in polynomial
time, if there exists a polynomial function f such that f(n) ≥ T imeΓ (n).

For a function f : N −→ N we define TimeANEP (f(n)) = {L | there exists
the ANEP Γ, such that L(Γ) = L, T imeΓ (n) ≤ f(n), for all n ∈ IN}. Moreover,
we write PTimeANEP =

⋃
k≥0 TimeANEP (nk).

One can define in a similar manner space and length complexity classes ([4]).

3 The New Halting Condition and Computability Results

The single difference between the initial definition of ANEPs ([1]) and ours is
the presence and usage of the symbol μ. The way a computation of an ANEP is
conducted remains basically the same, but the halting conditions (both in the
case of acceptance and rejection) are essentially different.

But let us first recall the definition of a halting ANEP-computation from the
literature (see the seminal work [1], the survey [4], and the references therein).
A computation halts and accepts if there exists a configuration in which the set
of words existing in the output node is non-empty. A computation halts and
rejects if there exist two identical configurations obtained either in consecutive
evolutionary steps or in consecutive communication steps. The language accepted
by the ANEP Γ is La(Γ) = {w ∈ V ∗ | the computation of Γ on w accepts}.
Also, it was said that an ANEP Γ decides the language L ⊆ V ∗ iff La(Γ) = L
and L halts on every input.

The reasons that made us switch to the new definition are related mainly to
the rejecting computations.

First, the rejecting condition did not seem coherent with the other conditions
verified in a ANEP. The filters verify the existence or absence of several symbols
in the communicated words; the application of a rule by a processor consists
(in the more complicated cases of substitution and deletion rules) in looking for
the occurrences of a symbol in the words of that node (if it contains any), and
replacing an arbitrary such occurrence with a symbol or with λ. The rejecting
condition assumed a very different process: one checked whether the configura-
tions of all the nodes, in two consecutive steps of the same kind, were equal.

Also, the processes executed by an ANEP are localized: filters are associated
with nodes, rules are associated with nodes, and the accepting condition con-
cerned only one node, the output node. In the case of a rejecting computation
the definition took us to a global level: we looked at all the words present at a
given moment in the network. The condition seemed an artificial formalization
of the case when the network enters in an infinite loop, and the computation
should halt. However, only infinite loops in which the configurations are repeated
in consecutive steps were detected. Although avoiding infinite loops seems to us
a good-practice in programming (regardless of the computational model), we do
not see a reason for it to be ruled out from the definition.

342 F. Manea

Nevertheless, verifying the equality between two configurations required to
memorize, at any moment, all the words from the last two configurations. Thus,
an additional memory-device was needed, and this was not (explicitly) part of
an ANEP. This affected the self-containment of the definition.

The new halting conditions seem to overcome these problems. The compu-
tation halts as soon as a word enters in a special node. Although it seems to
be also a condition of a different nature from the ones that are checked in an
ANEP, it is natural to think that before each processing step a processor checks
whether it contains some words, and then it looks for the places where the rules
can be applied. Further, the decision of a computation is taken according to a
test in which we check for the existence of a symbol in the words of a node; this
seems coherent with the rest of the definition of a ANEP. Moreover, we do not
use any auxiliary devices (as it was the memory we needed in the former case).

It only remains to be settled in which measure the results already reported
for ANEPs ([4]) still hold, with respect to the new definition.

Accepting a language. All the ANEP constructions proposed in the literature
(for instance, in [7,8,9]), where one was interested only in accepting a language by
complete ANEPs, can be still be used. However, we must modify such an ANEP
in order to work properly in the new setting: the former output node becomes an
insertion node where the symbol μ is inserted in the words that were accepted
inside, and then we add a new output node, in which all the words containing
μ are allowed to enter. Thus, one can construct, for a recursively enumerable
language, an ANEP accepting it, w.r.t. the new definition.

Deciding a language. In [7] one shows that the class of languages decided by
an ANEP, with respect to the classical halting condition, is the class of recur-
sive languages. The proof was based on simulating, in parallel, all the possible
computations of a nondeterministic Turing machine; the words communicated
in the network were encodings of the Turing machine configurations. As we have
already mentioned, these proofs can be used, as long as we are not interested
in deciding the language, but only in accepting it. However, any recursive lan-
guage can be decided by a deterministic Turing machine that for each input
either enters a single final state and accepts, or enters a single blocking state
and rejects. The ANEP simulating a Turing machine, presented in [7], can be
easily modified to decide a recursive language L: we simulate the deterministic
Turing machine deciding L and allow in the former output node all the words
that contain the final state or the blocking state; if a word containing the final
state enters the output node, then the network accepts, otherwise, it rejects. In
conclusion, the languages decided by ANEPs, w.r.t. the new definition, are the
recursive languages.

Computational Complexity. The results regarding polynomial space com-
plexity or polynomial deterministic time complexity reported in [7] can be also
proved by simulating deterministic Turing machines by ANEPs and vice versa,
so they remain valid when the new acceptance/rejection conditions are used.

Deciding Networks of Evolutionary Processors 343

However, the results on time-efficient simulations of nondeterministic machines
(e.g., the characterization of NP [7]) are not preserved, as we show in Section 5.

4 Complete ANEPs

It is worth mentioning that most of the computability and computational com-
plexity results reported so far in literature deal with complete ANEPs or with
ANEPs with a restricted topology (see [4] and the references therein). More
precisely, there are many results stating that particular types of networks are
accepting all the recursively enumerable languages or perform a series of tasks
efficiently (e.g. solving NP-complete problems, or simulating efficiently different
types of universal devices).

A natural question arises: in which measure is the topology of the networks
important, with respect to the computational power or the efficiency of the
computations? Such a result would be interesting if we consider that sometimes
it is easier to construct an ANEP with a particular topology, solving a given
problem efficiently, than to construct a complete one (thus, it is simpler to solve
a problem by a non-uniform approach than by an uniform one). For instance,
in [5] it was left as an open problem to see if the reported results still hold for
complete ANEPs.

A first answer is immediate, but unsatisfactory. Complete ANEPs can sim-
ulate (with respect to the former halting conditions) nondeterministic Turing
machines, and nondeterministic Turing machines can simulate ANEPs of any
kind (see [7]). So one can construct a complete ANEP simulating an arbitrary
ANEP via the simulation by Turing machines. However, such a simulation is not
time-efficient since the Turing machine simulates a computation of t steps of the
ANEP on an input word of length n in time O(max (t2, tn)); this approach is
also complicated due to the construction of the intermediate Turing machine.
Such an approach leads to complete ANEPs that solve quite inefficiently a given
problem (see, for instance, Example 1).

In the following we propose a new answer to the above question: we can
accept (respectively, decide) with a complete ANEP any language accepted (re-
spectively, decided) by an ANEP with an arbitrary underlying graph, within
the same computing time. The new halting conditions play an important role.
As we have already explained, they are not relevant in the case when we are
interested only in accepting languages: if we use these conditions, we still obtain
that given an arbitrary ANEP one can construct a complete ANEP accepting,
as efficiently as the arbitrary ANEP, the same language. They come into play
in the case of deciding languages. Basically, the proof of our result consists in
simulating an ANEP by a complete ANEP. Two consecutive steps of the initial
ANEP are simulated in exactly 54 consecutive steps of the complete ANEP. In
the classical setting, the initial ANEP rejected when the configurations obtained
in two consecutive steps of the same kind were identical; but these configurations
do not occur in the complete ANEP consecutively so the new network would not
reject, but enter in an infinite cycle. Thus, such a simulation would not preserve

344 F. Manea

the halting property of a computation. However, when the new conditions are
used the halting property is preserved canonically.

The proof of the announced results is based on the following two Lemmas.

Lemma 1. Given an ANEP Γ = (V, U, μ, G, N , α, β, In, Out), one can
construct an ANEP Γ ′ = (V, U, μ, G′, N ′, α′, β′, In′, Out′) such that Γ ′

accepts (decides) the same language as Γ accepts (respectively, decides), each
node of Γ ′ has at most one rule and In′ has no rules. Moreover, two consecutive
steps of Γ (an evolutionary and a communication step) are simulated in exactly
6 consecutive steps (3 evolutionary and 3 communication steps) of Γ ′. ��
Lemma 2. Given an ANEP Γ = (V, U, μ, G, N , α, β, In, Out), such that all
the processors Γ have at most one rule and In has no rules, one can construct a
complete ANEP Γ ′ = (V, U ′, μ, G′, N ′, α′, β′, In′, Out′) such that Γ ′ accepts
(decides) the same language as Γ accepts (respectively, decides). Two consecutive
steps of Γ are simulated in exactly 18 consecutive steps of Γ ′.

Proof. Let U1 = {#x,#◦
x,#′

x,#′′
x,#b

x,#x,y | b ∈ U, x, y ∈ XG, (x, y) ∈ EG}.
The complete network Γ ′ simulates the computation of Γ using the following

strategy. We try to construct for each node x, of Γ , a subnetwork s(x), of Γ ′,
that simulates the computation of the processor N (x); we denote by set(s(x))
the nodes of the subnetwork s(x). The underlying graph of Γ ′ is complete and
has the nodes

⋃
x∈XG

set(s(x)). All the words processed in the new network
have a special symbol from U1. The symbols of U1 that encode one processor of
the initial network indicate the nodes whose actions must be simulated at that
point, thus which of the subnetworks should act on the word. The symbols that
encode two nodes indicate a possible way to communicate the word containing
it between the subnetworks of Γ ′. The symbol #In is inserted in the input word
at the beginning of the computation, so we should start by simulating the input
node of Γ . Further, the way the computation is conducted, described below, and
the way symbols of U1 are inserted, deleted or modified, in the processed words
enable us to simulate, in parallel, all the possible derivations of the input word
in Γ , and ensure that the subnetworks act independently.

The alphabet of Γ ′ is defined as U ′ = U ∪ {b′, b′′ | b ∈ U} ∪ {#(i) | 1 ≤ i ≤
8} ∪ U1. In the following, we define the rest of the network.

We have to analyze more cases, according to the type of the node, the way
the operations are applied and the type of the filters.

Assume that the node x verifies N (x) = (∅, P I, FI, PO, FO). Then, we have
set(s(x)) = {x0, x1}. In s(x) we only change the symbol #x into a new symbol
#y, indicating that the word can now go towards the nodes of the subnetwork
s(y), and cannot enter the nodes of any other subnetwork. The only trick is that
we must do this change in nine steps, instead of a single rewriting step. The
rest of the word is left unchanged, as it was also the case in the node x of the
initial network, where the whole word stayed unchanged. In the case of the input
node In of Γ , the only difference is that we add a new node In′

0, which is an
insertion node, where #′

In is inserted. The input node of the network is In′
0.

This node does not allow any word to enter, and allows all the words to exit.

Deciding Networks of Evolutionary Processors 345

The subnetwork associated with the output node Out has only the node Out0,
which is the output node of the new network.

We analyze next the case of substitution nodes. For a node x with N (x) =
({a → b}, P I, FI, PO, FO), a ∈ FO, α(x) = s and β(x) = ∗, we have
set(s(x)) = {x0, x1, x2, x3, x4, x5, x6}. The simulation implemented by the sub-
network s(x) is, in this case, more involved. Let us assume that w is a word
that was sent towards the node x in a communication step of Γ , and the word
w1#xw2, with w1w2 = w, was communicated in the network Γ ′. Our construc-
tion ensures that the word w can enter x if and only if w1#xw2 can also enter
x0 (and no other node of Γ ′). In the node x we obtain from w a word w′ by
substituting several a symbols with b symbols (actually, we either substitute
exactly one occurrence of an a, if a /∈ FO, all of them, if a ∈ FO, or none, if
w contains no a) and w′ leaves the node if it verifies the output conditions. In
the network Γ ′ the word is processed as follows. In x0 it becomes w1#′

xw2 and
is sent out. It can only enter x1, if it contains at least one a, or x2, otherwise.
In the first case it becomes w′

1#′
xw′

2, by substituting exactly one a symbol with
a b′ symbol. In the second case, the word becomes w1#′′

xw2 (only the symbol
encoding the current node is changed, and the rest of the word remains the same
because it contains no a). In the both cases, the obtained words enter x5 where
we obtain, in 5 processing steps, all the words w3#x,yw4, for a node y such that
(x, y) ∈ EG and w3w4 = w′, where w′ was obtained from w by substituting
at most one a symbol with a b symbol. Such words can only be communicated
x6, if they w′ verifies the output filters of x. In x6 they are transformed into
w3#yw4, and can go to the nodes of the subnetwork associated with the node
y of Γ . There is one more thing to be analyzed: the words that leave x2 and
contain a, in the case when a ∈ FO. These words can go to x3, where they
become w′

1#◦
xw′

2 and, further, can only enter x4 (but only if they do not contain
any more forbidden output symbols of x, or their primed copies). In this node,
b′ becomes b and #◦

x becomes #′
x, after 6 processing steps are made, and the

obtained words are sent back to x2, where another processing step of x is simu-
lated. It is not hard to see now that the action of the node x in Γ was correctly
simulated by the subnetwork s(x) in Γ ′; more precisely one processing and one
communication step of Γ are simulated in 9 processing and 9 communication
steps of Γ ′.

If a /∈ FO then we simply delete the nodes x3 and x4 from s(x). The cases of
other types of substitution nodes can be treated in a similar fashion.

Now, we present the simulation of the deletion nodes. We can have left, right
or arbitrary deletion rules and strong or weak filters. However, all the cases are
based on the same general idea so we discuss here only the case of left deletion
nodes, with strong filters.

Let us assume that the node x verifies N (x) = ({a → λ}, P I, FI, PO, FO),
α(x) = s and β(x) = l. First, we will assume that a ∈ FO. In this case, we
have set(s(x)) = {x0, x1, x2, x3, x5} ∪ {xb, x

b | b ∈ U}. Let us assume that w is
a word that was sent towards the node x in a communication step of Γ , and
the word w1#xw2, with w1w2 = w, was communicated in the network Γ ′. If the

346 F. Manea

word w can pass the input filters of x then w1#xw2 can also enter x0, and vice
versa. In the node x we obtain from w a word w′ by deleting all the a symbols
from the left end of the word, and this word leaves the node if it verifies the
output conditions. In the network Γ ′ the word is processed as follows. In x0

it becomes w1#xw2#′
x and is sent out. It can only enter x1 where it becomes

w#′
x. Now it can only go to x2. Here it is transformed into w′

1b
′w′

2#
′
x, for all

b ∈ U and w′
1, w

′
2 ∈ U∗ such that w′

1bw
′
2 = w. Now these word enter x3, and

the network obtains from them the words w′
1b

′w′
2#c

x, with c ∈ U . From these,
only the words w′

1b
′w′

2#
b
x are further processed. More precisely, the node xb

permits these words to enter, and transforms them into w′
2#

b
x, if and only if

w′
1 = λ. Next, the obtained words can only go to node xb. If b �= a it means

that we simulated a deletion that should not have happened, so we remake the
word into b′′w′

2#
b
x; otherwise, the deletion was correct, and we get in xa the

word w′
2#

′′
x. In the first case, the words can enter x5 (if they do not contain

any of the forbidden output symbols of node x) where they are transformed into
w′#x,y, with (x, y) ∈ EG, in two processing steps, and sent out; finally, they
can enter only the node x6, but if and only if w′ verifies the permitting output
filters of x, and here are transformed into w′#y and go out in the network
(and can only enter the nodes of the subnetwork constructed for the node y).
In the second case, the word w′

2#
′′
x can either enter x5, and be processed as

above, or, if it still contains a symbols, which are forbidden output symbols
for x, it goes to node x4; in this node they are transformed into w′

2#′
x (in 5

steps), go back to node x2, and the whole process described above is repeated.
It is not hard to see now that the action of the node x in Γ was correctly
simulated by the subnetwork s(x) in Γ ′; more precisely, one processing and one
communication step of Γ are simulated in 9 processing and 9 communication
steps of Γ ′.

In the case when a /∈ FO we just have to delete the node x4 from s(x).
Finally, the simulation of the insertion nodes is based on a strategy that

follows the ideas used for the other types of nodes.
From the way the subnetworks s(x), with x ∈ XG, work we see that the

following statements are equivalent:
i. w is a word that entered the node x in Γ , was transformed by this node into
w′ in one step, and w′ was communicated to node y (when w′ cannot exit x we
assume that y = x);
ii. the word w1#xw2, with w1w2 = w, entered the node x0, from the subnetwork
s(x) of Γ ′, and it was transformed, by the nodes of s(x), into w′

1#yw
′
2, with

w′
1w

′
2 = w′, in exactly 9 evolutionary and 9 communication steps.

Note that Γ ′ accepts a word w if and only if a word w1#Outw2, with w1w2 ∈
U∗, can be derived from it; but such a word can be derived only in a number of
steps divisible by 9.

According to the above, the computation of Γ on w ends (and accepts) in t
steps if and only if the computation of Γ ′ on w ends (and, respectively, accepts)
in 9t steps. Therefore, L(Γ) = L(Γ ′). �

Deciding Networks of Evolutionary Processors 347

Theorem 1. Given an ANEP Γ = (V, U, μ,G,N , α, β, In,Out), one can con-
struct a complete ANEP Γ ′ = (V, U ′, μ,G′,N ′, α′, β′, In′, Out′) such that Γ ′

accepts (decides) the same language as Γ accepts (respectively, decides). Two
consecutive steps of Γ are simulated in exactly 54 consecutive steps of Γ ′. ��
Compared to the afore mentioned simulation via Turing machines, we also pro-
pose a 2-steps construction, but the only computational model we use is the
ANEP model. Also, the both steps rely on the same idea: we replace the nodes
of the initial network with a group of nodes that simulate its job; this makes
the construction simpler to apply, and easier to follow. Moreover, the complete
network simulates in linear time the arbitrary network.

The result in Theorem 1 has a series of consequences. First, it provides a
normal topology for ANEPs, allowing us to specify all the results and defini-
tions in an uniform manner, without taking into account the particular topol-
ogy of the network. Further, the number of nodes in the complete networks is
greater only by a constant factor than the number of nodes of the simulated
one. Our simulation preserves the computational properties of the initial ANEP,
thus, complete networks can be used to prove lower bounds: the most time-
efficient ANEP-based solution of a problem can be implemented on a complete
ANEP.

The proof of Lemma 2 is an example on how one can design an ANEP by
putting together multiple subnetworks; this approach seems close to that of
procedural programming. Theorem 1 shows that building a greater ANEP from
smaller subnetworks is an approach that can be used without being afraid that
such a solution is no longer uniform (i.e., the network has very specific properties,
and cannot be transformed efficiently to a general network, such as a complete
one). Moreover, if an ANEP constructed from subnetworks works efficiently, so
will do the complete variant of that ANEP.

5 Computational Complexity

We recall from [11] the following definition:

Definition 1. Let M be a nondeterministic polynomial Turing machine and w
be a word over the input alphabet of M . The word w is accepted by M with respect
to the shortest computations if one of the possible shortest computations of M
on w is accepting; w is rejected by M w.r.t. the shortest computations if all the
possible shortest computations of M on w are rejecting. We denote by Lsc(M)
the language decided by M w.r.t. the shortest computations and by PT imesc the
class of all the languages decided in this manner.

It is not hard to see that the class of languages decided w.r.t. shortest computa-
tions by nondeterministic polynomial Turing machines with a single tape equals
PT imesc. In [11] the following result is shown:

348 F. Manea

Theorem 2. PT imesc = PNP[log].1

Further, one can show that ANEPs simulate efficiently Turing machines that
decide w.r.t. shortest computations, and vice versa.

Theorem 3. i. For an ANEP Γ , deciding a language L in polynomial time,
there exists a nondeterministic polynomial single-tape Turing machine M , de-
ciding L w.r.t. shortest computations.
ii. For a nondeterministic polynomial single-tape Turing machine M , deciding
a language L w.r.t. shortest computations, there exists a (complete) ANEP Γ ,
deciding L in polynomial time. ��
As in the case of the former halting conditions, the machine M simulates a
computation of t steps of Γ , on an input word of length n, in O(max (t2, tn))
time; on the other hand, Γ simulates the computations of M in linear time.

As a consequence of Theorem 3 we obtain the following Theorem.

Theorem 4. PTimeANEP = PNP[log]. ��
This result seems interesting to us as we are not aware of any other charac-
terization of the class PNP[log] by computational complexity classes defined for
bio-inspired computing models.

Finally, we show that, in fact, one can design complete ANEPs working faster
than nondeterministic Turing machines. This shows that solving a problem by
nondeterministic Turing machines and then simulating such machines by NEPs
does not lead to an optimal ANEP-based solution to that problem.

Example 1. Let L = {anb | n ∈ IN, n ≥ 1}. Any Turing machine, deciding L in
the classical way, w.r.t. shortest computations or using oracles, with an arbitrary
number of tapes, makes at least a linear number of moves before stopping on an
input word. But L can be accepted in constant time by a complete ANEP.

References

1. Margenstern, M., Mitrana, V., Jesús Pérez-J́ımenez, M.J.: Accepting Hybrid Net-
works of Evolutionary Processors. In: Ferretti, C., Mauri, G., Zandron, C. (eds.)
DNA 2004. LNCS, vol. 3384, pp. 235–246. Springer, Heidelberg (2005)

2. Hillis, W.D.: The Connection Machine. MIT Press, Cambridge (1986)
3. Csuhaj-Varjú, E., Salomaa, A.: Networks of Parallel Language Processors. In:

Păun, G., Salomaa, A. (eds.) New Trends in Formal Languages. LNCS, vol. 1218,
pp. 299–318. Springer, Heidelberg (1997)

4. Manea, F., Mart́ın-Vide, C., Mitrana, V.: Accepting networks of evolutionary word
and picture processors: A survey. In: Mart́ın-Vide, C. (ed.) Scientific Applications
of Language Methods, pp. 525–560. World Scientific, Singapore (2010)

5. Bottoni, P., Labella, A., Manea, F., Mitrana, V., Sempere, J.M.: Filter Position in
Networks of Evolutionary Processors Does Not Matter: A Direct Proof. In: Deaton,
R., Suyama, A. (eds.) DNA 15. LNCS, vol. 5877, pp. 1–11. Springer, Heidelberg
(2009)

1 PNP[log] is the class of problems solvable by a deterministic polynomial machine, that
can make O(log n) queries to an NP oracle (where n is the length of the input).

Deciding Networks of Evolutionary Processors 349

6. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages. Springer, New York
(1997)

7. Manea, F., Margenstern, M., Mitrana, V., Perez-Jimenez, M.J.: A New Character-
ization of NP, P and PSPACE with Accepting Hybrid Networks of Evolutionary
Processors. Theor. Comp. Sys. 46(2), 174–192 (2010)

8. Loos, R., Manea, F., Mitrana, V.: Small Universal Accepting Hybrid Networks of
Evolutionary Processors. Acta Inf. 47(2), 133–146 (2010)

9. Alhazov, A., Csuhaj-Varjú, E., Mart́ın-Vide, C., Rogozhin, Y.: On the size of com-
putationally complete hybrid networks of evolutionary processors. Theor. Comput.
Sci. 410(35), 3188–3197 (2009)

10. Manea, F.: Deciding networks of evolutionary processors. Technical report (2010),
http://theo.cs.uni-magdeburg.de/pubs/preprints/pp-afl-2011-05.pdf

11. Manea, F.: Deciding according to the shortest computations. In: Normann, D. (ed.)
CiE 2011. LNCS, vol. 6735, pp. 191–200. Springer, Heidelberg (2011)

http://theo.cs.uni-magdeburg.de/pubs/preprints/pp-afl-2011-05.pdf

From Linear Partitions to Parallelogram

Polyominoes

Roberto Mantaci1 and Paolo Massazza2,�

1 LIAFA, CNRS UMR 7089, Université Paris Diderot - Paris 7,
Case 7014, 75205 Paris Cedex 13, France

mantaci@liafa.jussieu.fr
2 Università degli Studi dell’Insubria, Dipartimento di Informatica e Comunicazione,

Via Mazzini 5, 21100 Varese, Italy
paolo.massazza@uninsubria.it

Abstract. We provide a bijection between parallelogram polyominoes
and suitable pairs of linear partitions. This lets us design a CAT (Con-
stant Amortized Time) algorithm for generating all parallelogram poly-
ominoes of size n using O(

√
n) space.

Keywords: Polyominoes, Exhaustive generation, CAT algorithms.

1 Introduction

As combinatorial objects, polyominoes are simply defined as finite connected
sets of edge-to-edge adjacent square unit cells in the cartesian two-dimensional
plane. Polyominoes and their applications appear more and more often in several
contexts, with interesting overlaps and interactions betweens them.

In enumerative combinatorics, where several families of polyominoes have been
characterized and enumerated according to several characteristics (area, perime-
ter, ...), providing in some cases their generating functions [4,8];

In bijective combinatorics; a polyomino P can be described by a pair of ap-
propriate paths in the N × N lattice. This consideration relates polyominoes to
lattice paths theory [1,10,17];

In two-dimensional language theory and image treatment, where a polyomino
is considered as a two-dimensional word and appropriate families of polyominoes
turn out to be two-dimensional languages with specific properties [5,6], or where
the problem of its reconstruction from partial informations is considered [2,12];

In tiling theory, where tile shapes can be described by polyominoes [11,16].
Here we are interested in particular polyominoes called Parallelogram Poly-

ominoes. This class consists of all polyominoes bounded by two paths in the N×N
lattice composed of north and east steps and intersecting each other only in the
initial and the final points. This class has first been studied by Polya [18], who
counted the number of parallelogram polyominoes with respect to the perimeter,
� Partially supported by Project M.I.U.R. PRIN 2007–2009: Mathematical aspects

and forthcoming applications of automata and formal languages.

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 350–361, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

From Linear Partitions to Parallelogram Polyominoes 351

and provided a (non closed) formula for the generating function by perimeter and
area. A nice bijection between parallelogram polyominoes of perimeter 2n + 2
and Dick words of length 2n was given in [8] and used in [7] to produce an
equation for the generating function according to the area, the width and the
number of left path corners. The relation between parallelogram polyominoes
and two-dimensional languages has also been studied. In particular, in [6] it is
shown that parallelogram polyominoes can be represented by two-dimensional
words of a tiling recognizable language. This class of polyominoes has also been
investigated from the exhaustive generation point of view. More precisely, in [3]
the ECO method has been applied to the recursive generation of parallelogram
polyominoes with semi-perimeter n. This method has also been used later to
generate and enumerate some classes of convex polyominoes, see [1,9].

In this paper, we highlight a natural bijection between parallelogram poly-
ominoes having size (or area) equal to n and pairs (s, t) of integer partitions,
where t is a partition of an integer m and s a partition of the integer m + n.

Using this bijection, we provide an algorithm for the exhaustive generation of
all parallelogram polyominoes of a given area. This algorithm runs in constant
amortized time (CAT), that is, if N is the number of all parallelogram poly-
ominoes of area n, our algorithm generates them all in time kN where k is a
constant. Its space complexity is O(

√
n).

The algorithm provided is based on an idea of the second author and R. Radi-
cioni, who in their article [14] describe a CAT algorithm to generate particular
linear partitions of an integer n called ice piles. The algorithm is based on the
preorder traversal of a spanning tree for the Hasse diagram of the partial order
defined by the dominating relation between two partitions.

The article is divided into two main sections and ends with a short conclusion
presenting some possible developments of this work.

In section 2 we provide the definitions, the order structure of the set of par-
titions and the combinatorial results allowing to define the bijection between
parallelogram polyominoes and pairs of partitions. In section 3 we describe the
algorithm by providing its pseudo-code and analyze its complexity.

2 Preliminaries

A linear partition of n is a non-increasing sequence of nonnegative integers with
sum n. We indicate by LP(n) the set of the linear partitions of n.
For any two integers x, p with p > 0, we denote by x[p] the sequence (x, . . . , x︸ ︷︷ ︸

p

) and

by · the catenation product of sequences. The length of s = (s1, . . . , sl) ∈ LP(n)
is l(s) = l, the height is h(s) = s1 and the size (or weight) is w(s) =

∑
si = n.

Moreover, we define Δ(s) =
∑

i<l(si − si+1) = h(s) − sl. Note that s can be
univocally written as s = s

[m1]
1 · s[m2]

j2
· . . . · s[mk]

jk
with s1 > sj2 > · · · > sjk

and
mi > 0. The following notations are useful when dealing with sequences, s<i =
(s1, . . . , si−1) (s≤i = (s1, . . . , si)) and s>i = (si+1, . . . , sl) (s≥i = (si, . . . , sl)).

352 R. Mantaci and P. Massazza

The set LP(n) can be ordered with respect to the negative lexicographic order:

Definition 1. Let s = (s1, . . . , sl) and t = (t1, . . . , tm) belong to LP(n). Then,
s <nlex t if and only if there is i such that s<i = t<i and si > ti.

Covering Partitions On the set of integer partitions we define a binary relation
	 that is of particular interest for generating parallelogram polyominoes.

Definition 2. Let s ∈ LP(n1) and t ∈ LP(n2). Then, s strongly covers t, de-
noted as s 	 t, if and only if l = l(s) = l(t), s1 > t1 and sj > tj−1 for all j with
1 < j ≤ l.

From the previous definition we immediately get:

Lemma 1. Let s ∈ LP(n1), t ∈ LP(n2) and s 	 t. Then n1 ≥ n2 + l(t) + Δ(t).

Proof. By Definition 2 one has

n1 =s1+
l(s)∑
i=2

si ≥ t1+1+
l(t)−1∑
i=1

(ti+1)= tl(t)+Δ(t)+l(t)+
l(t)−1∑
i=1

ti = n2+l(t)+Δ(t).

��
Figure 1 shows the linear partition s of smallest weight that strongly covers a
linear partition t. It clearly follows that w(s) = w(t) + l(t) + Δ(t).

s

(t)Δ

1

t

Fig. 1. The smallest covering partition

Given t ∈ LP(n2), the set of linear partitions of n1 that strongly cover t is
denoted by LP(n1|t) = {s ∈ LP(n1)|s 	 t}. Observe that for all v ∈ LP(n1|t)
one has l(v) = l(t) and that LP(n1) =

⋃
r=1...n1

LP(n1|0[r]). Definitions 1 and 2
let us easily characterize ŝ = min <nlex

(LP(n1|t)).
Lemma 2. Let t = (t1, . . . , tl) ∈ LP(n2). Then, for n1 ≥ n2 + l + Δ(t) one has

ŝ = (t1 + 1 + n1 − n2 − Δ(t) − l, t1 + 1, t2 + 1, . . . , tl−1 + 1).

From Linear Partitions to Parallelogram Polyominoes 353

We can interpret the elements of LP(n1|t) as states of a simple discrete dynam-
ical system which simulates the movements occurring into a heap of n1 − n2

grains stacked into a (two-dimensional) silo of radius l(t) and whose bottom is
shaped like the profile of t. This system has an evolution rule called Move which
corresponds to moving one grain from column i of s to the first column k, with
k > i, such that si > si+1 and si − sk ≥ 2. Figuratively, the rightmost grain of
a plateau can slide on the plateau on its right and find place at the bottom of
the next cliff. More formally, one has:

Definition 3. Given t ∈ LP(n2), s ∈ LP(n1|t) and an integer i, let

k =

⎧⎨⎩ i + 1 if si − si+1 ≥ 2
j if si − sj ≥ 2 ∧ si+1 = sj−1 = si − 1
⊥ otherwise

Then

Move(s, t, i)=
{

s<i · (si − 1, si+1, . . . , sk−1, sk + 1) · s>k if k �= ⊥, si − 1 > ti−1

⊥ otherwise

The initial state of the dynamical system is ŝ, corresponding to the configuration
where all the grains are in column 1, with the exception of those that create
a covering layer of height 1 at the bottom of the silo. Figure 2 shows s and
Move(s, t, 2) for t = (3, 3, 3, 2, 1, 1, 1). Note that Move(s, t, i) = ⊥ for i = 3, 4, 6, 7.
We write s

i,t⇒ s′ if s′ = Move(s, t, i) and, more generally, s
�⇒ v if there is a

Fig. 2. s = (6, 5, 4, 4, 4, 2, 2) and Move(s, t, 2) = (6, 4, 4, 4, 4, 3, 2)

sequence of moves leading from s to v. The dynamical system has a set of states
denoted by G(ŝ|t) = {v ∈ LP(n1|t)|ŝ �⇒ v}, which turns out to be equal to
LP(n1|t), that is, all partitions of n1 covering t can be generated starting from
the minimum in the neglex order.

Lemma 3. Let t = (t1, . . . , tl) ∈ LP(n2). Then, for any n1 ≥ n2 + l + Δ(t) one
has LP(n1|t) = G(ŝ|t).
Proof. Suppose G(ŝ|t) � LP(n1|t) and let s′ = min<nlex

(LP(n1|t) \ G(ŝ|t)).
Let i be the largest integer such that s′i > ti−1 + 1. If i = 1 then s′>1 = ŝ>1

and so s′ = ŝ. Thus, let j1 = min{k ≤ i|s′k = s′i}, j2 = min{k < j1|s′k =
s′j1−1} and set either j = j1 (if j1 < i) or j = j2 (if j1 = i). Now, consider
s′′ = s′<j · (s′j + 1, s′j+1, . . . , s

′
i−1, s

′
i − 1) · s′>i and note that s′′ ∈ LP(n1|t) and

s′′ <nlex s′. This implies s′′ ∈ G(ŝ|t). Lastly, from s′′
j,t⇒ s′ we get s′ ∈ G(ŝ|t). ��

354 R. Mantaci and P. Massazza

The set of moves of s ∈ LP(n1|t) is defined as the set of integers M(s|t) =
{i|Move(s, t, i) �= ⊥}. LP(n1|t) admits exactly one element v such that M(v|t) =
∅, called fixed point and denoted as FP(n1|t). In particular, LP(n1|t) turns out
to be a lattice with respect to the relation induced by ⇒, with the top and the
bottom given by ŝ and FP(n1|t), respectively.

We denote by s↓ the linear partition in LP(n1 + 1|t) given by s↓ = s<i · (si +
1) · s>i, where i is the largest integer such that i ≤ l(s) and si−1 > si (i = 1 if
l(s) = 1). The following lemma provides a characterization of FP(n1|t).
Lemma 4. Let t = (t1, . . . , tl) ∈ LP(n2) and n1 ≥ n2 + l + Δ(t). Then

v = FP(n1|t) =
{

(t1 + 1, t1 + 1, t2 + 1, . . . , tl−1 + 1) if n1 = n2 + l + Δ(t)
FP(n1 − 1|t)↓ otherwise

Proof. The case n1 = n2 + l + Δ(t) follows by noting that v ∈ LP(n1|t) and
Move(v, t, i) = ⊥ for all i. Otherwise, let u = FP(n1 − 1|t) and let i be the only
integer such that ui �= u↓

i . Since u is a fixed point, it is sufficient to prove that
Move(u↓, t, i) = ⊥. This follows from u>i = u↓

>i and ui = ui+1 = . . . = ul. ��

Figure 3 shows the linear partition t = (5, 4, 4, 2, 2, 2, 1) together with the two
fixed points s = FP(31|t) and r = FP(36|t) (note that r �	 s).

t
s

r

Fig. 3. s = FP(31|t) and r = FP(36|t)

We associate with each linear partition in LP(n1|t) its grand ancestor, that
is, a particular element of LP(n1|t) playing an important role in the process
of generating LP(n1|t). To enumerate the elements in neglex order, we should
apply to the current partition s the rightmost move, in order to preserve the
longest possible prefix. However, whenever such move is also yet to be done in
another partition s′ previously generated (and hence s′ <neglex s), the move
needs to be applied not to s, but to s′ that is still waiting to make that move. s′

is the grand ancestor of s, it is the smallest partition for which max(M(s|t)) is
still a valid move. Proper grand ancestors correspond to branching nodes in the
implicit spanning tree that is being traversed to generate the partitions.

Definition 4. Let s ∈ LP(n1|t). The grand ancestor of s is the linear partition
A(s|t) = min <nlex

{v ∈ LP(n1|t)|s≤i = v≤i, i = max(M(s|t)) ∈ M(v|t)}.
The grand ancestor of a linear partition is characterized in

From Linear Partitions to Parallelogram Polyominoes 355

Lemma 5. Let s ∈ LP(n1|t), i = max(M(s|t)) and q =
∑

j>i(sj − tj−1 − 1). If
p is the largest integer such that d =

∑i+p
j=i+1(si − 1− tj−1 − 1) ≤ q, then A(s|t)

is the linear partition

s′ = s≤i · (si − 1)[p] · (ti+p + 1 + q − d, ti+p+1 + 1, . . . , tl−1 + 1).

Proof. First, note that s′ ∈ LP(n1|t), i ∈ M(s′|t) and s′≤i = s≤i. Thus we have
only to prove that s′ is the smallest linear partition with such properties. In fact,
suppose that z ∈ LP(n1|t) satisfies z <nlex s′, with z≤i = s≤i and i ∈ M(z|t).
Let j be the smallest integer such that zj > s′j (obviously j > i + p). Then,
one has

∑
e>j ze <

∑
e>j s′e =

∑
e>j(te−1 + 1). This implies the existence of an

index ĵ such that zĵ < tĵ−1 + 1 and so z �	 t. ��
Example 1. Let t = (5, 4, 4, 3, 2, 2, 2, 1, 1, 1, 1) and s = (8, 8, 8, 8, 6, 5, 5, 4, 4, 4, 4).
Then, A(s|t) = (8, 8, 8, 8, 6, 5, 5, 5, 5, 4, 2) (see Figure 4). Note how A(s|t) has the
same prefix as s up to position max(M(s|t)), whereas the remaining suffix has
the leftmost entries as large as possible, while ensuring the covering condition.

t

s

s

not change

minimal
covering of t covering of t

minimal

same prefix
as

A(s|t)

t

prefix that does

Fig. 4. A linear partition and its grand ancestor (right)

When n1 and t are clear from the context, we denote by s(e) the eth linear
partition in LP(n1|t). We can obtain a spanning tree associated with the lattice
LP(n1|t) by defining, for e > 1, A(s(e−1)|t) as the father of s(e) (ŝ = s(1) is the
root). The following lemma shows how we can implicitly traverse such tree in
order to generate the sequence of elements in LP(n1|t).
Lemma 6. Let t ∈ LP(n2) and n1 ≥ n2 + l(t) + Δ(t). Then, for any e > 0, we
have

A(s(e)|t) ie⇒ s(e+1), with ie = max(M(s(e)|t)).
Proof. It is sufficient to follows the proof of [14, Lemma 2.16], where the same
result is stated with respect to the states of a dynamical system associated with
the Ice Pile Model. We have only to take into account the (slightly) different
definition of the evolution rule (the function Move). ��
We define a function Next which, having as inputs s(e), t, determines first i =
max(M(s(e)|t)) and s′ = A(s(e)|t), and then outputs s(e+1) = Move(s′, t, i)
(Next(s(e),t) = ⊥ if s(e) = FP(n1|t)). Hence, Algorithm 1 generates LP(n1|t).

356 R. Mantaci and P. Massazza

Theorem 1. LinPartGen(n1, t) generates LP(n1|t) in time O(�LP(n1|t)) us-
ing O(

√
n1) space.

Proof. (Outline) The space requirement follows from section 3.1 and by imple-
menting M(s|t) as a stack of links to nodes (in the list of s) where moves occur.
With respect to the time, the result follows by reasoning as in [14, Lemma 4.2]
and showing that, by Lemma 5, s′ = A(s(e)|t) can be computed in time O(de),
where de is the distance between s′ and s(e) in the spanning tree of LP(n1|t). ��

Algorithm 1. Exhaustive Generation of LP(n1|t).
1: Procedure LinPartGen(n1, t)
2: s:=MinLinPart(n1, t); {s = min <nlex

(LP(n1|t))}
3: while M(s|t) �= ∅ do
4: s:=Next(s, t);
5: end while

Similarly, we can easily generate the set {v ∈ LP(n1|t)|s �⇒ v} for any s ∈
LP(n1|t). Then, one has:

Corollary 1. For any s ∈ LP(n1|t) the set V = {v ∈ LP(n1|t)|s �⇒ v} can be
generated in time O(�V) using O(

√
n1) space.

Parallelogram Polyominoes A parallelogram polyomino is a polyomino whose
boundary consists of two north-east lattice paths which are non-crossing (apart
the starting and ending points). Without loss of generality, we suppose that
the starting point of such paths is (1, 0). Thus, a polyomino P can be speci-
fied by a pair of paths (p, q) where p = (1, 0), (1, 1), . . . , (x − 1, y), (x, y) and
q = (1, 0), (2, 0), . . . , (x, y − 1), (x, y). The height of P is y, the width is x − 1,
while its size (or area) is the number of unit squares within the boundary iden-
tified by p and q. The following theorem provides a useful bijection between
polyominoes of size n and suitable pairs of linear partitions.

Theorem 2. The set of parallelogram polyominoes of size n is in bijective cor-
respondence with the set of pairs of linear partitions (s, t) such that

– 1 ≤ l = l(t) ≤ n;
– tl = 1;
– l + Δ(t) ≤ n;
– t ∈ LP(m) with l ≤ m ≤ (l − 1)(Δ(t) + 1) + 1;
– s ∈ LP(m + n|t).

Proof. First, let us see how a polyomino P with area n univocally identifies
a pair (s, t) of linear partitions. Let p = (1, 0), (1, 1), (x1, y1), . . . , (xk, yk), (x −
1, y), (x, y) and q = (1, 0), (2, 0), (x′

1, y
′
1), . . . , (x

′
k, y

′
k), (x, y− 1), (x, y) be the two

From Linear Partitions to Parallelogram Polyominoes 357

paths defining P . Obviously one has y + x − 1 ≤ n. Note that there is h such
that the first h + 2 steps of p

(1, 0), (1, 1), (x1, y1), . . . , , (xh, y − 1), (xh+1, y),

with xh = xh+1 ≤ x−1, identify a linear partition t = (t1, . . . , tl) with l = y ≤ n,
t1 = xh, tl = 1 and Δ(t) = xh − 1. Thus, one has l + Δ(t) = y + xh − 1 ≤ n and
t ∈ LP(m) for a suitable integer m with l ≤ m ≤ (l − 1)t1 + 1 = (l − 1)(Δ(t) +
1)+1. Similarly, by considering q we can find an index r such that the sequence
(x′

r, 0), (x′
r+1, 1), . . . , (x′

k, y
′
k), (x, y−1), (x, y) identifies a partition s of size m+n

with s 	 t (recall that the two paths are non-crossing), that is, s ∈ LP(m+n|t).
Lastly, observe that if two different polyominoes of size n are identified by two
pairs of paths, say (p, q) and (p′, q′), then one necessarily has p �= p′ or q �= q′,
and the associated pairs of linear partitions are different.

Now, we show how a pair (s, t) of linear partitions satisfying the given condi-
tions uniquely defines two non-crossing paths p, q which start at (1, 0) and end
at (s1, l(t)). Indeed, p is the only north-east path passing through the points

– for all j, with 1 ≤ j ≤ l, (tj , l − j);
– if tj−1 > tj (tj , l − j + 1), (tj + 1, l − j + 1), . . . , (tj−1 − 1, l − j + 1);
– (t1 + 1, l), (t1 + 2, l), . . . , (s1 − 1, l).

Analogously, q is identified by the points

– (1, 0), (2, 0), . . . , (sl − 1, 0);
– for all j, with 1 ≤ j ≤ l, (sj , l − j);
– if sj−1 > sj (sj , l − j + 1), (sj + 1, l − j + 1), . . . , (sj−1 − 1, l − j + 1).

Note that p and q are non-crossing since s 	 t. Lastly, the size of the polyomino
is just w(s)−w(t) = n. Moreover, if (s, t) �= (s′, t′) then the pair (p, q) identified
by (s, t) is different from the pair (p′, q′) associated with (s′, t′) and the two
polyominoes are different. ��
Example 2. Figure 5 illustrates the parallelogram polyomino of size 27 identified
by (s, t) with t = (8, 8, 6, 5, 5, 5, 2, 2, 1, 1) and s = (9, 9, 9, 8, 8, 6, 6, 6, 6, 3). The
two north-east paths p, q associated with (s, t) are drawn as dashed and dotted
lines, respectively. You can see the two partitions s and t represented in the
usual way by turning the picture 90 degrees counterclockwise.

We denote by PPol(n) the set of parallelogram polyominoes of size n. In the
sequel, the generation of PPol(n) respects the following ordering which can be
obtained by considering the bijection in Theorem 2.

Definition 5. Let (s, t) and (s′, t′) be two pairs of linear partitions identifying
P, P ′ ∈ PPol(n), respectively. Then P < P ′ if and only if

l(s) > l(s′)

or
l(s) = l(s′), t ∈ LP(m), t′ ∈ LP(m′),m > m′

358 R. Mantaci and P. Massazza

(t)=7

2 3 4 5 6 7 8 9

10
9
8
7
6
5

3
4

2
1

l=10
t=(8,8,6,5,5,5,2,2,1,1)
s=(9,9,9,8,8,6,6,6,6,3)
m=43, n=27, Δ

1

Fig. 5. A parallelogram polyomino identified by two linear partitions

or
l(s) = l(s′), t, t′ ∈ LP(m), t <nlex t′

or
l(s) = l(s′), t = t′, s <nlex s′.

3 The Algorithm

Here we present an algorithm which solves the following problem:

Problem Parallelogram Polyominoes Generation (PPG)
Input an integer n
Output the ordered sequence of parallelogram polyominoes in PPol(n).

Our approach is that of producing the sequence of parallelogram polyominoes
(ordered with respect to Definition 5)

..... ...

. ..

...

.

by generating the associated sequence of pairs (s, t) of linear partitions charac-
terized in Theorem 2. Thus, Definition 5 directly leads to Algorithm 2 shown
below.

Procedure GenParPol generates the sequence of pairs (s, t) of linear par-
titions associated with PPol(n). The two loops at lines 2, 3 are used to set
the height l of the polyomino, that is, the length of t (from n down to 1)
and its size m, respectively. Because of Lemma 1 and Theorem 2, one has
n + m ≥ m + l + Δ(t): this means that the largest value for Δ(t) is n − l
and thus m has to satisfy the relation l ≤ m ≤ (l − 1)(n − l) + l. The code

From Linear Partitions to Parallelogram Polyominoes 359

Algorithm 2. Generation of parallelogram polyominoes of size n.
1: Procedure GenParPol(n)
2: for l:=n downto 1 do
3: for m:=(l − 1)(n− l) + l downto l do
4: t:= InitLinPart(m, l, n− l + 1);
5: while M(t, 0) �= ∅ do
6: s:= MinLinPart(m+ n, t);
7: while M(s, t) �= ∅ do
8: s:=Next(s, t);
9: end while

10: t:=Next(t, 0[l]);
11: end while
12: end for
13: end for

at lines 4–11 generates all the pairs (s, t) such that l(t) = l, t ∈ LP(m) and
s ∈ LP(m + n|t). InitLinPart(m, l, n− l + 1) returns the representation of the
smallest linear partition of weight m and length l having height n− l + 1, while
MinLinPart(m + n, t) returns min <nlex

(LP(m + n|t)). Next(s, t) returns the
linear partition in LP(m + n|t) which follows s (w.r.t <nlex), while Next(t, 0[l])
returns the linear partition of length l following t.

3.1 The Data Structure

In order to efficiently deal with a pair (s, t) of linear partitions with s 	 t, we
define a data structure consisting of two double-linked lists. The list representing
t has as many elements as different values in t, that is, it has d = �{i|ti > ti+1}
nodes which contain two integers (a value ti and the largest k such that tk = ti),

(t1, k1), (tj2 , k2), . . . , (tjd
, kd) ≈ t

[k1]
1 · t[k2]

j2
· . . . · t[kd]

jd
= t.

The list representing s has a similar structure, with the only difference that
each node (sip , hp) has a link to the node (tjq , kq) in the list of t such that
kq−1 < hp ≤ kq. Moreover, in order to consider t itself as a covering partition,
we add a zero node representing LP(0). Figure 6 illustrates the representation of
the linear partitions s and t drawn in Figure 5. Obviously, the sum of the lengths
of the lists representing t and s ∈ LP(n|t) is O(

√
n). This data structure is used

in Algorithm 1 and its properties are useful to prove Theorem 1. In particular,
it lets develop an implementation of function Move running in time O(1), while
permitting to update M(s|t) in time O(1) too. Lastly, one has:

Property 1. Let t ∈ LP(m) and n > l(t) + Δ(t). If k is the length of the list
representing s = min <nlex

(LP(m + n|t)) then:

– k = 2 if and only if s is a fixed point;
– �{v ∈ LP(m + n|t)|s �⇒ v} = Ω(k).

360 R. Mantaci and P. Massazza

0,10

s

t 8,2 6,3 5,6 2,8 1,10

3,106,98,59,3

Fig. 6. Representing (s, t)

3.2 Complexity

By considering the data structure in Section 3.1, it is immediate to see that
procedure InitLinPart runs in time O(1) since it creates a list of length at
most 3. Similarly, MinLinPart(m + n, t) returns a list of length l(t) and so it
runs in time O(l(t)). Then, we can state:

Theorem 3. GenParPol(n) runs in time O(�PPol(n)) and uses O(
√

n) space.

Proof. First, note that the two for-loops at lines 2,3 set O(n2) different inte-
ger pairs (l,m). Moreover, each pair (l,m) is used (lines 4-11) to generate all
polyominoes identified by a pair (s, t) with t ∈ LP(m|0[l]) and s ∈ LP(m + n|t).
Therefore, it is sufficient to prove that the code consisting of lines 4-11 is CAT. To
this aim, by Theorem 1 and Property 1, for each fixed t, the cost of instructions
at lines 6-9 is O(�V), where V = {v|s ∗⇒ v} and s = min <nlex

(LP(m + n|t)).
Similarly, by Corollary 1 the generation of all t ∈ LP(m|0[l]) with h(t) ≤
n − l + 1 (the outer while -loop) is CAT. Hence, the set F (l,m) = {(s, t)|t ∈
LP(m|0[l]), s ∈ LP(m + n|t), h(t) ≤ n − l + 1} is CAT generated and, since
�PPol(n) =

∑n
l=1

∑(l−1)(n−l)+l
m=l �F (l,m), the result follows. With respect to the

space complexity, we recall that the length of the lists representing s and t is
O(

√
n). ��

4 Conclusions

It is noteworthy that the idea behind the initial algorithm intended to generate
ice piles has proved to be extremely adaptable, allowing to provide CAT algo-
rithms for the exhausting generation of a still growing set of classes of combina-
torial objects : (linear) integer partitions, symmetric ice and sand piles [13,15],
unimodal sequences, plain partitions, standard Young tableaux and now par-
allelogram polyominoes. It seems to be possible to modify the algorithms to
generates other families of combinatorial objects, such as semi-standard Young
tableaux. This raises a more general question in order theory, namely, finding a

From Linear Partitions to Parallelogram Polyominoes 361

characterization of posets whose Hasse diagram admits a spanning tree having
a natural way to be traversed, defining this way a total order on the elements of
the poset. Our approach to generate all the elements of such posets could likely
be applied to all of them.

References

1. Barcucci, E., Frosini, A., Rinaldi, S.: Direct-convex polyominoes: ECO method and
bijective results. In: Brak, R., Foda, O., Greenhill, C., Guttman, T., Owczarek,
A. (eds.) Proceedings of Formal Power Series and Algebraic Combinatorics 2002,
Melbourne (2002)

2. Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Reconstructing convex
polyominoes from horizontal and vertical projections. Theoret. Comp. Sci. 155(2),
321–347 (1996)

3. Barcucci, E., Del Lungo, A., Pergola, E., Pinzani, R.: ECO:a methodology for the
enumeration of combinatorial objects. J. of Diff. Eq. and App. 5, 435–490 (1999)

4. Bousquet-Mélou, M.: A method for the enumeration of various classes of column-
convex polygons. Discrete Math. 154, 1–25 (1996)

5. Castiglione, G., Vaglica, R.: Recognizable Picture Languages and Polyominoes.
In: Bozapalidis, S., Rahonis, G. (eds.) CAI 2007. LNCS, vol. 4728, pp. 160–171.
Springer, Heidelberg (2007)

6. De Carli, F., Frosini, A., Rinaldi, S., Vuillon, L.: On the Tiling System Recogniz-
ability of Various Classes of Convex Polyominoes. Ann. Comb. 13, 169–191 (2009)

7. Delest, M., Dubernard, J.P., Dutour, I.: Parallelogram Polyominoes and Corners.
J. Symb. Comp. 20, 503–515 (1995)

8. Delest, M., Viennot, X.G.: Algebraic languages and polyominoes enumeration. The-
oret. Comp. Sci. 34, 169–206 (1984)

9. Del Lungo, A., Duchi, E., Frosini, A., Rinaldi, S.: On the generation and enumer-
ation of various classes of convex polyominoes. Electronic Journal of Combina-
torics 11, 60 (2004)

10. Del Lungo, A., Mirolli, M., Pinzani, R., Rinaldi, S.: A Bijection for Directed-Convex
Polyominoes. In: Proc. of DM-CCG 2001, Discrete Mathematics and Theoretical
Computer Science AA, pp. 133–144 (2001)

11. Golomb, S.W.: Checker Boards and Polyominoes. The American Mathematical
Monthly 61, 675–682 (1954)

12. Kuba, A., Balogh, E.: Reconstruction of convex 2D discrete sets in polynomial
time. Theoret. Comp. Sci. 283(1), 223–242 (2002)

13. Massazza, P.: A CAT algorithm for sand piles. PU.M.A. 19(2-3), 147–158 (2008)
14. Massazza, P., Radicioni, R.: A CAT algorithm for the exhaustive generation of ice

piles. RAIRO Theoretical Informatics and Applications 44, 525–543 (2010)
15. Massazza, P., Radicioni, R.: On the Exhaustive Generation of Symmetric Sand

Piles. In Proc. of GASCom 2010, Montréal, September 2-4 (2010)
16. Ollinger, N.: Tiling the Plane with a Fixed Number of Polyominoes. In: Dediu,

A.H., Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp.
638–647. Springer, Heidelberg (2009)

17. Pergola, E., Sulanke, R.A.: Schröder Triangles, Paths, and Parallelogram Polyomi-
noes. Journal of Integer Sequences, 1 Article 98.1.7 (1998)

18. Polya, G.: On the number of certain lattice polygons. J. Comb. Theory 6, 102–105
(1969)

On Brzozowski’s Conjecture for the Free

Burnside Semigroup Satisfying x2 = x3

Andrey N. Plyushchenko and Arseny M. Shur

Ural State University, Ekaterinburg, Russia

Abstract. In this paper we examine Brzozowski’s conjecture for the
two-generated free Burnside semigroup satisfying x2 = x3. The elements
of this semigroup are classes of equivalent words, and the conjecture
claims that all elements are regular languages. The case of the identity
x2 = x3 is the only one, for which Brzozowski’s conjecture is neither
proved nor disproved. We prove the conjecture for all the elements con-
taining an overlap-free or an “almost” overlap-free word. In addition, we
show that all but finitely many of these elements are “big” languages in
terms of growth rate.

Introduction

In order to introduce the notion of a free Burnside semigroup, let us take a finite
alphabet Σ, |Σ| = k, and positive integers n and m. As usual, we write Σ∗ for
the monoid of all words over Σ (including the empty word λ) and Σ+ for the
semigroup of all non-empty words over Σ. Two words U and V are neighbours if
and only if one of them can be obtained from the other by replacing some factor
of the form Y n by the factor Y n+m. Then we get the neighbourhood relation

πn,m,k = {(XY nZ,XY n+mZ), (XY n+mZ,XY nZ) | X,Y, Z ∈ Σ∗} ;

its transitive closure is a semigroup congruence, denoted by ∼n,m,k. The quotient
semigroup B(n,m, k) = Σ+/∼n,m,k is called the k-generated free Burnside semi-
group satisfying xn = xn+m. Thus, the elements of free Burnside semigroups are
classes of equivalent words. The congruence class of a word U is denoted by [U].

The structure of free Burnside semigroups is far from being completely de-
scribed. However, a considerable progress was achieved in the 1990’s, when many
structural properties of such semigroups were discovered. The reader is referred
to the survey [10] for the history and the formulations of remarkable results. The
most important problems related to free Burnside semigroups are the finiteness
problem (to determine for each triple (n,m, k), whether the semigroup B(n,m, k)
is finite or not) and the word problem (to decide for arbitrary pair (U, V) of words,
whether or not U ∼n,m,k V).

Obviously, the free Burnside semigroups B(n,m, 1) are cyclic and finite, and
the word problem for B(n,m, 1) is decidable. Suppose k > 1 from now on. Due
to Green and Rees [4] and later Kad’ourek and Polák [7], the finiteness problem
and the word problem for semigroups B(1,m, k) were solved modulo periodic

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 362–373, 2011.
� Springer-Verlag Berlin Heidelberg 2011

On Brzozowski’s Conjecture for the Free Burnside Semigroup 363

groups (more precisely, they were reduced to the corresponding problems for the
groups satisfying xm = 1).

Using Thue-Morse words [18], Brzozowski, Culik, and Gabrielian proved [2]
that free Burnside semigroups B(n,m, k) are infinite whenever n ≥ 2. On the
other hand, Brzozowski suggested that these semigroups should possess some
finiteness properties. In 1969, he conjectured that all elements of semigroups
B(n, 1, k) are regular languages. Later McCammond generalized this conjecture
for all semigroups B(n,m, k) with n ≥ 2. Note that Brzozowski-McCammond’s
conjecture implies decidability of the word problem: for any given words U and
V , one can construct an automaton recognizing the class [U] and try to accept
V by this automaton (see [5, 6]).

So, Brzozowski-McCammond’s conjecture became the key problem in the
area of free Burnside semigroups. Due to de Luca and Varricchio [11], McCam-
mond [12], Guba [5, 6], and do Lago [8, 9], this conjecture was proved for all
semigroups B(n,m, k) with n ≥ 3. However, the conjecture does not hold for
semigroups B(2,m, k) with m ≥ 2 (see [8]). For the case n = 2,m = 1, this
problem is still open. Note that this particular case was explicitly mentioned by
Brzozowski [3] and was considered to be the hardest one to analyze [8]. Recently,
the first author [14] showed that Brzozowski’s conjecture and the word problem
for any semigroup B(2, 1, k) can be reduced to the corresponding problems for
the particular semigroup B(2, 1, 2). So, the semigroup B(2, 1, 2) now is the key
object in the study of free Burnside semigroups. In what follows, we consider
only this semigroup and write π and ∼ instead of π2,1,2 and ∼2,1,2, respectively.

In [13], it was proved that each congruence class [U] contains at most one
overlap-free word. Later we generalized this result for “almost” overlap-free
words and showed that such a word in a given class, if any, can be efficiently
found [15,16]. Thus, we constructed an algorithm that partially solves the word
problem for the semigroup B(2, 1, 2). The aim of this paper is to prove the
regularity of the congruence class [U] for any almost overlap-free word U . In ad-
dition, we show that these classes are rather big in terms of growth rates, so that
the particular case, in which Brzozowski’s conjecture is now confirmed, is wide
enough. Our argument heavily uses the previously developed technique [15, 16].

The text is subdivided into four sections. In Section 1 we introduce the main
tools and techniques. Section 2 contains the construction and the analysis of
procedure Ancestor, which was introduced in [15, 16]. This procedure is used to
describe the congruence classes of almost overlap-free words. Section 3 is devoted
to the proof of the main result (Theorem 1). Finally, in the last section we find
an exponential lower bound for the combinatorial complexity of the congruence
classes containing long almost overlap-free words.

1 Preliminaries

From now on, let Σ = {a, b}. We study only finite words over Σ and use stan-
dard notions of prefixes, suffixes, and factors. For a word W , its length is de-
noted by |W | and its i-th letter is denoted by W [i]; thus, W = W [1] . . .W [|W |].

364 A.N. Plyushchenko and A.M. Shur

Negation is an automorphism of Σ∗, defined by the rules ā = b, b̄ = a. We also
put L = {W | W ∈ L} for any L ⊆ Σ∗.

A word U is called overlap-free if it contains no factor of the form XY XY X for
any X ∈ Σ+, Y ∈ Σ∗. If U contains no proper factor (that is, not equal to U) of
the form above, then we call U almost overlap-free. The Thue-Morse morphism θ
of Σ+ is defined by the equalities θ(a) = ab, θ(b) = ba. This morphism preserves
overlap-freeness [18]. Words from the set θ(Σ+) are called θ-images.

Combinatorial complexity of a language L ∈ Σ∗ is the function cL(n) =
|Σn ∩L|. That is, cL(n) is the number of words of length n in L. Growth rate of
a language L is the number α(L) = lim supn→∞

n
√

cL(n).
Regular expressions, regular languages, deterministic and nondeterminis-

tic finite automata (dfa and nfa) are defined in the usual way. For an nfa
A = (Q, δ,Σ, q0, T), the set of transitions δ is viewed as a ternary relation
δ ⊆ Q×Σ×Q. Thus, an nfa is considered as a labeled digraph. In what follows,
Ã (resp., B̃) abbreviates the language aba(ba)∗ (resp., bab(ab)∗).

Now we proceed with some tools and techniques. As it was shown in [16], any
word from the congruence class of an almost overlap-free word can be trans-
formed to a θ-image by performing a sequence of reductions described below.
Surprisingly, all these reductions, applied to a pair of words, preserve the con-
gruence ∼ under certain conditions.

The simplest reduction operation is r1-reduction. It replaces all factors of the
form cn, where c ∈ Σ and n > 2, by c2. We write r1(U) for the word obtained
from the word U by this operation. We say that U is r1-reduced if U = r1(U).

Now let U be an r1-reduced word. Then r(U) is the word obtained from U by
performing all possible reductions of the form W → aa, where W ∈ aÃa, and the
form W → bb, where W ∈ bB̃b. The operation r is called complete reduction. Its
result is independent of the order of reductions [1]. We call a word U r-reduced
if r(U) = U . Clearly, any θ-image and all its factors are r-reduced. It appears
that the completely reduced words are exactly the factors of θ-images.

Proposition 1. ([16]) A word U is completely reduced if and only if U is a
factor of a θ-image.

In the sequel, we denote the set of all r1-reduced (r-reduced) words that are
equivalent to a given word U by [U]r1 (resp., [U]r). We put r1(L) = {r1(U) |
U∈L}, r(L) = {r(U) | U∈L} for any language L. Clearly, r1(U) ∼ U for any
word U ∈ Σ∗, therefore r1([U]) = [U]r1 . In contrast to r1-reduction, the condi-
tion r(U) ∼ U does not hold in general case. However, under certain restrictions,
the words r(U) and U are equivalent, see Proposition 2 below. These restrictions
use the notion of ÃB-whole word introduced in [1]. An r1-reduced word W is
ÃB-whole if any factor X ∈ aÃa (X ∈ bB̃b) occurs in W inside the factor abXba

(resp., baXab). Obviously, the r-reduced words are ÃB-whole.

Proposition 2. ([16]) Suppose that an ÃB-whole word U has no prefix from the
set (aba)(aba)∗(ab)2(ab)∗aa and no suffix from the set aa(ba)∗(ba)2(aba)∗(aba),
up to negation. Then U ∼ r(U).

On Brzozowski’s Conjecture for the Free Burnside Semigroup 365

We refer to the prefixes and the suffixes mentioned in Proposition 2 as non-
reducible tails. As it was shown in [16], the property of a word to have non-
reducible tails is preserved by the congruence ∼. Since the almost overlap-free
words have no non-reducible tails, we get the following proposition.

Proposition 3. Let a word U be equivalent to an almost overlap-free word.
Then U has no non-reducible tails.

Let V be an almost overlap-free word. As it was proved in [1], the property of a
word to be ÃB-whole is preserved by the congruence ∼. So, if V is ÃB-whole,
then any word from [V]r1 is ÃB-whole as well. Now we investigate the case when
the word V is not ÃB-whole. Define

S′ = {aaa, aabaa, aabaab, baabaa, baabaab, aabaabb,

bbaabaa, aabaaba, abaabaa, aabaabbaabaa}

and let S1 = S′ ∪ S′. It is easy to see that any word from S1 is not ÃB-whole.
As it was proved in [17, 13], the word V either belongs to S1 or has the prefix
aabaabba and/or the suffix abbaabaa, up to negation. For any word U ∈ Σ+,
its prefix (suffix) from the set [aabaabba]r1 or [bbabbaab]r1 (resp., [abbaabaa]r1 or
[baabbabb]r1) is called its non-uniform left (resp., right) tail. So, there are four
sets of equivalent non-uniform tails:

[aabaabba]r1 = (aab)∗aabaabba, [abbaabaa]r1 = abbaabaa(baa)∗ , (1)

and their negations. Tail reduction rT [13] is the operation that reduces any left
non-uniform tail of a word U to the last 7 symbols and any right such tail to
the first 7 symbols. (Note that a tail of an almost overlap-free word, if any, has
exactly 8 symbols. Hence the operation rT deletes exactly one letter from such
a tail.) If a word U has no non-uniform tails, then rT (U) = U . Also we put
rT (L) = {rT (U) | U ∈ L} for any language L.

Proposition 4. ([13]) Let V be an almost overlap-free word such that V �∈ S1

and let U ∈ [V]r1 . Then
(1) if one of the words V and U has a non-uniform tail T , then the other has a

tail T ′ ∼ T ;
(2) the words rT (V) and rT (U) are ÃB-whole;
(3) rT (V) ∼ rT (U).

Note that Proposition 4 includes the case when the word V is ÃB-whole.
In the sequel, we use some sort of inverses of the reduction operations intro-

duced above. Namely, for any word U , we put

r−1
1 (U) = {W ∈ Σ∗ | r1(W) = U},

r−1(U) = {W ∈ Σ∗ | W is ÃB-whole and has no non-reducible tails, r(W) = U},
r−1
T (U) = {W ∈ Σ∗ | W is r1-reduced, W ∼ U , and rT (W) = rT (U)} .

366 A.N. Plyushchenko and A.M. Shur

In a natural way, we define r−1
1 (L) =

⋃
U∈L r−1

1 (U), r−1(L) =
⋃

U∈L r−1(U), and
r−1
T (L) =

⋃
U∈L r−1

T (U) for any language L. The next statement immediately
follows from the definition of r1 and Proposition 2.

Proposition 5. For any word U , (1) [U]r1 = r1([U]) and [U] = r−1
1 ([U]r1),

(2) if U is ÃB-whole and has no non-reducible tails, then [U]r = r([U]r1) and
[U]r1 = r−1([U]r).

By Proposition 1, any r-reduced word U is a factor of a θ-image. Hence,

r(U) = cQ1 . . . Qkd, where Q1, . . . , Qk ∈ {ab, ba}, c, d ∈ {a, b, λ} .

This representation is unique if U has the factor aa or bb. If U has no such
factors, we additionally require c = λ to get a unique representation as well.
Now put η(U) = Q1 . . . Qk in order to transform the word U to a θ-image. We
denote h(U) = c, t(U) = d. Note that the function η does not preserve the
congruence ∼ in general case. We say that a pair (U1, U2) of r-reduced words is
bad if U1 ∼ U2, but η(U1) �∼ η(U2). If a pair (r(W1), r(W2)) is bad and the words
W1,W2 are ÃB-whole and have no non-reducible tails, then the pair (W1,W2)
will be also called bad. Otherwise we say that a pair (W1,W2) is good. The
function η and bad pairs were investigated in [16].

2 Procedure Ancestor and Primary Series of Words

The algorithm, constructed in [16] to solve partially the word problem for the
semigroup B(2, 1, 2), contains the following essential procedure.
Procedure Ancestor.
Input. A word U ∈ Σ+.
Output. A word Anc(U) ∈ Σ+, an integer k, length k arrays L, R, h, t of letters.
Step 0. Let k := 0.
Step 1. Let U := r1(U); k := k + 1; L[k] := R[k] := h[k] := t[k] := λ.
Step 2. If |U | ≤ 2 or U ∼ W for some W ∈ S1, then Anc := U ; stop.
Step 3. If U has a non-uniform left tail, set L[k] := U [1]; if U has a non-uniform
right tail, set R[k] := U [|U |]; let U ′ := rT (U).
Step 4. If U ′ is not ÃB-whole or U ′ has a non-reducible tail, then Anc := U ;
stop.
Step 5. Let U ′ := r(U ′).
Step 6. Let h[k] := h(U ′); t[k] := t(U ′); U := θ−1(η(U ′)); GOTO step 1.

Starting with U1 = r1(U), procedure Ancestor constructs the sequence of
words U1, U2, . . . by the rule:

Uk+1 = r1(θ−1(η(r(rT (Uk)))))

until one of the stop conditions is fulfilled. The sequence {Uk} is called the
primary U -series, its length (that is, the number of words in it) is denoted by

On Brzozowski’s Conjecture for the Free Burnside Semigroup 367

�(U). We say that the output word Anc(U) = U�(U) is the ancestor of U , and the
arrays L = LU , R = RU , h = hU , and t = tU returned by Procedure Ancestor
are associated with U . We omit the index U if it is clear from context.

Let V be an almost overlap-free word and let U ∼ V . We apply procedure
Ancestor to the pair (U, V). In view of the definition of r1 and Propositions 2–4,
all steps of this procedure except for Step 6 preserve the congruence ∼. The case
when the last step preserves ∼ as well, is described by the next lemma.

Lemma 1. ([16]) Let U and V be equivalent words and let {Uk}�(U)
k=1 , {Vk}�(V)

k=1

be the primary U - and V -series respectively. If all pairs (rT (Vk), rT (Uk)) are
good for k < min{�(U), �(V)}, then
(1) �(U) = �(V);
(2) Uk ∼ Vk for each k = 1, . . . , �(V); in particular, Anc(U) ∼ Anc(V);
(3) LU = LV , RU = RV , hU = hV , and tU = tV .

If some pairs (rT (Vk), rT (Uk)) for k < min{�(V), �(U)} are bad, we get a more
difficult case, described in Lemmas 2, 3 below. For a word U , we define the word
U3/2 as follows: if U = Y Y for some Y ∈ Σ∗, then U3/2 = Y Y Y ; if U is not a
square of any word, we put U3/2 = U .

Lemma 2. ([16]) Let U ∼ V , where V is an almost overlap-free word, and let
{Uk}�(U)

k=1 , {Vk}�(V)
k=1 be the primary U - and V -series respectively. Assume that

there exists an integer k′ < min{�(V), �(U)} such that all pairs (rT (Vk), rT (Uk))
are good for k < k′ and the pair (rT (Vk′), rT (Uk′)) is bad. Then rT (Vk′) is a
square. Denote by W and {Wj}�(W)

j=1 the word rT (Vk′)3/2 and its primary series
respectively. Then
(1) �(V) − 1 ≤ �(U) = (k′ − 1) + �(W) ≤ �(V);
(2) Uk ∼ Vk for each k = 1, . . . , k′ and Uk ∼ Wk−k′+1 �∼ Vk for each k =

k′ + 1, . . . , k′−1+�(W); in particular, Anc(U) ∼ Anc(W) �∼ Anc(V);
(3) LU [k] = LV [k], RU [k] = RV [k], hU [k] = hV [k], and tU [k] = tV [k] for all

k ≤ �(U); hW [j] = hV [k′−1+j] and tW [j] = tV [k′−1+j] for all j ≤ �(W)−1;
LW [j] = RW [j] = LV [k′−1+j] = RV [k′−1+j] = λ for all j ∈ [2, �(W)];

(4) The words Vk and Wj are not squares for all k ∈ [k′+1, �(V)−1] and all
j ∈ [2, �(W)−1]. Moreover, they are r-reduced.

For an almost overlap-free word V , its primary series {Vk}�(V)
k=1 , define

k = max{k < �(V) | Anc(rT (Vk)3/2) �∼ Anc(V)}
if the set in the right-hand side is nonempty. We call the value k critical (for V).
Using Lemma 2 (2, 3), it is not hard to prove that the following holds.

Lemma 3. Let U ∼ V , where V is an almost overlap-free word, and let
{Vk}�(V)

k=1 , {Uk}�(U)
k=1 be the primary V - and U -series respectively. Then the pair

(rT (Vk), rT (Uk)) is good for any non-critical k < �(V).

Let us define S′′ = {aa, aabaabaa, abaabaab, baabaaba} and let S2 = S′′ ∪ S′′.
The next lemma provides a recursive description of the congruence class [V] for
any almost overlap-free word V .

368 A.N. Plyushchenko and A.M. Shur

Lemma 4. Suppose that V is an almost overlap-free word and {Vk}�(V)
k=1 is its

primary series. For each k = 1, . . . , �(V)−1, let mk = �(rT (Vk)3/2) and let
{V 3/2

k,j }mk

j=1 be the primary rT (Vk)3/2-series. Then
(1) Anc(V) ∈ S1 ∪ {a, b, aa, bb, ab, ba};
(2) [rT (Vk)]r = h[k]θ([Vk+1])t[k] for all non-critical k ≤ �(V)−1;
(3) [rT (Vk)]r = h[k]θ([Vk+1])t[k] ∪ h[k]θ([V 3/2

k, 2
])t[k] for the critical value k (if

such value exists);
(4) Anc(rT (Vk)3/2) ∈ S2 for the critical value k (if such value exists);
(5) [V 3/2

k, j
]r = h[k−1+j] θ([V 3/2

k, j+1
]) t[k−1+j] for the critical k and each j =

2, . . . ,mk−1 (if the critical value exists);
(6) [V 3/2

k, j
]r1 = r−1([V 3/2

k, j
]r) for the critical k and each j = 2, . . . ,mk−1 (if the

critical value exists);
(7) [rT (Vk)]r1 = r−1([rT (Vk)]r) for each k = 1, . . . , �(V)−1;
(8) [Vk]r1 = r−1

T (L[k][rT (Vk)]r1R[k]) for each k = 1, . . . , �(V)−1;
(9) [Vk] = r−1

1 ([Vk]r1), [V 3/2
k, j] = r−1

1 ([V 3/2
k, j]r1) for each k = 1, . . . , �(V)−1 and

each j = 2, . . . ,mk−1.

Proof. Statements 1 and 4 were proved in [16], statements 6, 7, and 9 follow
from Proposition 5. Let us prove statements 2 and 3. Clearly, if U ∼ Vk+1 or
U ∼ V

3/2
k, 2 for some k < �(V), then the word h[k]θ(U)t[k] is equivalent to the word

h[k]θ(Vk+1)t[k] = r(rT (Vk)) or the word h[k]θ(V 3/2
k, 2)t[k] = r(rT (Vk)3/2), respec-

tively. By Proposition 2 and the construction of procedure Ancestor, we have
r(rT (Vk)3/2) ∼ rT (Vk)3/2 ∼ rT (Vk) ∼ r(rT (Vk)). Since the word h[k]θ(U)t[k] is
r-reduced (as a factor of a θ-image), we conclude that, for any k < �(V),

h[k]θ([Vk+1])t[k] ∪ h[k]θ([V 3/2
k, 2])t[k] ⊆ [rT (Vk)]r .

Conversely, suppose that U ∈ [rT (Vk)]r for some k < �(V), that is, U is an
r-reduced word and U ∼ rT (Vk). We aim to prove that U ∈ h[k]θ(U)t[k] if k is
not critical and U ∈ h[k]θ([Vk+1])t[k] ∪ h[k]θ([V 3/2

k, 2])t[k] for the critical k. One
can easily check that the words Vk are almost overlap-free for all k ≤ �(V).
Let {Uj}�(U)

j=1 be the primary U -series. Obviously, the primary rT (Vk)-series is
rT (Vk), Vk+1, . . . , V�(V) = Anc(V). Since the word U is r-reduced, it has no non-
uniform tails and r(rT (U)) = U . By Lemma 3, if k is not critical, then the
pair (rT (Vk), U) is good. This implies U2 ∼ Vk+1 whence U = h[k]θ(U2)t[k] ∈
h[k]θ([Vk+1])t[k], as desired.

Now suppose that k is the critical value for V . Then the value 1 is critical for
rT (Vk). Clearly, if the pair (rT (Vk), U) is good, we get U ∈ h[k]θ([Vk+1])t[k], as
before. Otherwise we have U2 ∼ V

3/2
k, 2 by Lemma 2 whence U ∈ h[k]θ([V 3/2

k, 2])t[k],
as desired. The proof of statements 2 and 3 is complete. Note that the congruence
class [V 3/2

k, 2] coincides with [Vk+1] if and only if k is not critical.
Statement 5 can be proved in the same way (as it was shown in [16], if k is

critical, then any pair (V 3/2

k, j
, U), where 2 ≤ j ≤ mk − 1 and U is an r1-reduced

word, is good).

On Brzozowski’s Conjecture for the Free Burnside Semigroup 369

Finally, we prove statement 8. Suppose that the word U is r1-reduced and
U ∼ Vk. Since k < �(V), we have Vk �∈ S1. Therefore, rT (U) ∼ rT (Vk)
by Proposition 4. Hence we get L[k]rT (U)R[k] ∈ L[k][rT (Vk)]r1R[k]. Con-
sider the arrays LU and RU associated with U . From Lemmas 1,2 it follows
that LV [k] = LU [1] and RV [k] = RU [1]. So, we have LV [k]rT (U)RV [k] =
LU [1]rT (U)RU [1] ∼ U by definitions of rT and non-uniform tails. Moreover,
we have rT (LU [1]rT (U)RU [1]) = rT (U). According to the definition of r−1

T , we
conclude that U ∈ r−1

T (LV [k] [rT (Vk)]r1 RV [k]).
Conversely, let U ∈ r−1

T (L[k] [rT (Vk)]r1 R[k]). This means that U is r1-reduced
and there exists a word U ′ ∈ [rT (Vk)]r1 such that U ∼ L[k]U ′R[k] and rT (U) =
rT (L[k]U ′R[k]). Thus we have U ∼ L[k]U ′R[k] ∼ L[k]rT (Vk)R[k] = Vk, as
required. This completes the proof of the lemma. ��
By mere construction of regular expressions, one can prove that the following
holds.

Proposition 6. ([16]) For any V ∈ S1 ∪S2, the class [V] is a regular language.

3 The Proof of the Main Result

Theorem 1. For any almost overlap-free word V , the congruence class [V] is a
regular language.

The proof is based on two lemmas.

Lemma 5. If U is an ÃB-whole word without non-reducible tails, and [U]r is
a regular language, then the language [U]r1 is regular as well.

Proof. For any word U ∈ Σ∗ and any positive integer k, we define suff(U, k) to
be the k-letter suffix of U if |U | ≥ k and to be the word U itself otherwise.

Now suppose that [U]r is a regular language and A = (Σ,Q, δ, q0, T) is a dfa
recognizing [U]r. We construct a new dfa A′ = (Σ,Q′, δ′, q′0, T

′) such that

Q′ = {(q,W) | q ∈ Q,W∈Σ∗, |W |≤7}, q′0 = (q0, λ), T ′ = {(t,W)∈Q′ | t ∈ T },
and δ′((q,W), c) = (δ′(q, c), suff(Wc, 7)) for any (q,W) ∈ Q′, c ∈ Σ .

In fact, we introduce multiple copies of each state of the automaton A to store the
last 7 symbols of the processed input. It can be directly verified that δ′(q′0,W) =
(δ(q0,W), suff(W, 7)). Hence, the dfa’s A′ and A accept the same language [U]r.

Now we take A′ and add some states and transitions to it, getting an nfa
A′′ = (Σ,Q′′, δ′′, q′′0 , T ′′). Namely, we add 18 new copies of each state q ∈ Q:
Q′′ = Q′ ∪ {(q, la), (q, lb) | q ∈ Q, l ∈ [1, 9]}. The states (q, 5a) and (q, 5b) are
terminal whenever q ∈ T , while all other added states are nonterminal. For
each state q ∈ Q, we introduce six sets of transitions, called A-sets and B-sets,
concerning the states that are copies of q. Three A-sets are shown in Fig. 1, and
three B-sets are defined in a symmetric way.

370 A.N. Plyushchenko and A.M. Shur

q, abaaba q, 1a q, 2a
a b

a
1-A-set:

q, babaaba q, 3a q, 4a
a b

a
2-A-set:

q, babaaba q, 5a q, 6a q, 7a q, 8a q, 9a

δ′((q, abaabab), c)

c

b a a b a

b

a
b3-A-set:

Fig. 1. A-sets of transitions. The dashed transition is defined for each c ∈ {a, b}.

Note that for each q ∈ Q, the states (q, 5a) and (q, 5b) “duplicate” the states
(q, abaabab) and (q, babbaba) respectively. As we will see below, the 3-sets allow
us to process the factors from the sets abaÃ∗aba and babB̃∗bab. The 1-sets and
2-sets deal with the case when the input word begins with abaaba and/or ends
by abaaba (up to negation), in order to provide non-acceptance of the words that
have non-reducible tails.

We claim that the automaton A′′ recognizes the language [U]r1 . Take a word
W ∈ [U]r and consider the set r−1(W). Any word from this set is obtained from
W by a sequence of insertions of the words from Ã (between two a’s) and the
words from B̃ (between two b’s). Since the words from aÃa (resp., bB̃b) do not
contain bb (resp., aa), these two types of insertions can be studied separately. Due
to symmetry, we consider only insertions from Ã. Since any word V ∈ r−1(W)
is ÃB-whole, the insertions are to be made in the middle of the factors abaaba.
If this factor is a prefix or a suffix of W , then only the word aba can be inserted
into it (possibly, several times), because V has no non-reducible tails. Further,
W has no factor aabaa. As a result, the word V can be obtained from W by
replacing, up to negation, the prefix abaaba and/or the suffix abaaba by a word
from aba(aba)∗aba (if such a prefix and/or suffix exists) and replacing all factors
babaabab by some words from the set baba(Ã)∗abab.

Using 1-sets and 2-sets, nfa A′′ accepts any word from the set aba(aba)∗abaX
(resp., Xaba(aba)∗aba) whenever the word abaabaX (resp., Xabaaba) is accepted
by A′. Further, if a word X ′babaababX ′′ is accepted by dfa A′, then nfa A′′ ac-
cepts any word from X ′baba(aba)∗ababX ′′ (using 2-sets only) and any word from
X ′baba(aba)∗(abab(ab)∗a)Ã∗ababX ′′ (using 2-sets and 3-sets). Hence, nfa A′′ ac-
cepts any word from the set r−1([U]r), which equals [U]r1 by Proposition 5 (2).

Now suppose that a word W is accepted by A′′ and prove that W ∈ [U]r1 .
Let α = (q′′0 , q′′1 , . . . , q′′|W |) be an accepting path labeled by W . Let us replace the
state q′′i = (q, 5a) in α by the state (q, abaabab) whenever q′′i−1 = (q, babaaba)

On Brzozowski’s Conjecture for the Free Burnside Semigroup 371

and W [i] = b; the symmetric replacement should be also done for the states
(q, 5b). After that, we delete all states from Q′′ \ Q′ in the path α. As a result,
we get an accepting path α′ that belongs to the dfa A′ and is labeled by some
word W ′. Thus, W ′ ∈ [U]r.

The deletion of all states of 1-sets and 2-sets from α induces the reductions
of the form aba(aba)∗aba → abaaba and bab(bab)∗bab → babbab in the word W .
The deletion of all states of 3-sets from α induces the reductions of the form

babaAabab → babaabab, ababBbaba → ababbaba,

where A ∈ Ã∗ and B ∈ B̃∗, and some reductions of the form

abab(ab)k → abab and baba(ba)k → baba,

where k ≥ 1. Since these reductions turn W into an r-reduced word, we conclude
that W is an ÃB-whole word and has no non-reducible tails. Then we have
r(W) ∼ W ′ ∼ U , implying r(W) ∈ [U]r and finally W ∈ r−1([U]r) = [U]r1 , as
required. ��
Lemma 6. If U is a word such that [U]r1 is a regular language, then the lan-
guage [U] is regular as well.

Proof. Suppose that the language [U]r1 is recognized by a dfa A=(Σ,Q, δ, q0, T).
Similar to the proof of Lemma 5, we define a new dfa A′ = (Σ,Q′, δ′, q′0, T ′) as
follows:

Q′ = {(q,W) | q ∈ Q,W∈Σ∗, |W |≤2}, q′0 = (q0, λ), T ′ = {(t,W)∈Q′ | t ∈ T },
and δ′((q,W), c) = (δ′(q, c), suff(Wc, 2)) for any (q,W) ∈ Q′, c ∈ Σ .

Obviously, the automata A and A′ accept the same language. The second com-
ponent of each state from Q′ stores the last two letters of the processed input.
Now we add loops labeled by a (by b) for all states (q, aa) (resp., (q, bb)). Clearly,
the resulting automaton recognizes the language r−1

1 ([U]r1) = [U]. ��
Proof (of Theorem 1). Let V be an almost overlap-free word and let {Vk}�(V)

k=1 be
its primary series. For any k < �(V),. let {V 3/2

k, j }mk

j=1, where mk = �(rT (Vk)3/2),
be the primary rT (Vk)3/2-series.

First, we prove by induction that if the primary V -series has a critical value
k, then the language [V 3/2

k, j
] is regular for each j = mk, . . . , 2. For inductive

base, note that Anc(rT (Vk)3/2) ∈ S2 by Lemma 4. In view of Proposition 6,
the congruence class [Anc(rT (Vk)3/2)] is a regular language. For inductive step,
assume that the language [V 3/2

k, j+1
] is regular for some j ≥ 2. Since the class of

regular languages is closed under product and morphisms, from Lemma 4 (5) we
derive that [V 3/2

k, j
]r is a regular language. According to Lemmas 5, 6, and 2 (4),

the language [V 3/2

k, j
] is regular as well, and we are done with the inductive step. In

particular, we have proved that the congruence class [V 3/2

k, 2
] is a regular language.

372 A.N. Plyushchenko and A.M. Shur

Now we prove by induction that the congruence class [Vk] is regular for each
k = �(V), . . . , 1. For k = �(V), this is true in view of Lemmas 4 (1) and Proposi-
tion 6. Suppose that the congruence class [Vk+1] is a regular language for some
k > 1 and prove the regularity of [Vk]. Since the class of regular languages is
closed under union, from Lemma 4 (2, 3) it follows that [rT (Vk)]r is a regular lan-
guage. By Lemma 5, the language [rT (Vk)]r1 is regular. Hence, L[k][rT (Vk)]r1R[k]
is a regular language as well. Using (1), one can easily check that

r−1
T (L[k][rT (Vk)]r1R[k]) = (L[k]L[k]L[k])∗L[k][rT (Vk)]r1R[k](R[k]R[k]R[k])∗ .

Thus, in view of Lemma 4 (8), the language [Vk]r1 is regular. Then [Vk] is a
regular language by Lemma 6. By induction, we conclude that the congruence
class [V1] is a regular language. But [V1] = [V]r1 , and one more reference to
Lemma 6 completes the proof. ��

4 Growth Rates of Congruence Classes

If V is a long almost overlap-free word, then the congruence class [V] is big
enough, as the following theorem shows.

Theorem 2. Let V be an almost overlap-free word such that |V | > 50. Then
α([V]) ≥ ϕ, where ϕ = (1 +

√
5)/2 is the golden ratio.

Proof. First, consider the languages LA = (a + Ã)∗ and LB = (b + B̃)∗. It is
easy to show that α(LA) = α(LB) = ϕ.

Now suppose that the word V has the factor ababbaba, say, V = XababbabaZ.
Since r(r1(ababBbaba)) = ababbaba and the word r1(ababBbaba) is obviously
ÃB-whole for any B ∈ LB , we get ababBbaba ∼ ababbaba by Proposition 2.
Hence, XababLBbabaZ ⊆ [V]. As a result, we obtain, for any n ≥ |V | and some
constant C > 0,

c[V](n) ≥ cLB (n − |V |) ≥ Cϕ−|V | · ϕn,

whence α([V]) ≥ ϕ. The same argument works in the case when V contains
babaabab. So, in order to prove the theorem, it remains to show that any almost
overlap-free word V with |V | > 50 has a factor ababbaba or babaabab. Consider
the word

θ5(a) = abba baab baab abba baab abab abba baab abab abba baab abba abba baab .

Its prefix and suffix of length 18 both contain the mentioned factors. The same
is true for the word θ5(b). Any factor of length ≥ 35 of the infinite Thue-Morse
word θ∞(a) obviously contains either an 18-letter prefix or an 18-letter suffix
of one of the words θ5(a), θ5(b). Hence, any 35-letter factor of the Thue-Morse
word contains ababbaba or babaabab.

Now apply the main theorem of [17], which says that any overlap-free word
U contains a factor of the Thue-Morse word of length ≥ 7|U |/10. Thus, any
overlap-free word of length ≥ 50 contains a factor of the Thue-Morse word of
length 35. Since V has an overlap-free factor of length |V | − 1 by definition, we
have proved the required property. ��

On Brzozowski’s Conjecture for the Free Burnside Semigroup 373

References

1. Bakirov, M.F., Sukhanov, F.V.: Thue-Morse words and D-structure of the free
Burnside semigroup. Proc. Ural State Univ. Ser. Mathematics and Mechanics 18(3),
5–19 (2000) (Russian)

2. Brzozowski, J., Culik, K., Gabrielian, A.: Classification of non-counting events. J.
Computer and System Sci. 5, 41–53 (1971)

3. Brzozowski, J.: Open problems about regular languages. In: Formal language the-
ory: perspectives and open problems, pp. 23–47. Academic Press, New York (1980)

4. Green, J. A., Rees, D.: On semigroups in which xr = x. Proc. Cambridge Phil.
Soc. 48, 35–40 (1952)

5. Guba, V.S.: The word problem for the relatively free semigroups satisfying tm =
tm+n with m ≥ 4 or m ≥ 3, n = 1. Internat. J. Algebra Comput. 3(2), 125–140
(1993)

6. Guba, V.S.: The word problem for the relatively free semigroups satisfying tm =
tm+n with m ≥ 3. Internat. J. Algebra Comput. 3(3), 335–348 (1993)

7. Kad’ourek, L., Polák, J.: On free semigroups satisfying xr � x. Simon Stevin 64(1),
3–19 (1990)

8. do Lago, A.P.: On the Burnside semigroups xn = xn+m. Internat. J. Algebra
Comput. 6(2), 179–227 (1996)

9. do Lago, A.P.: Maximal groups in free Burnside semigroups. In: Lucchesi, C.L.,
Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 70–81. Springer, Heidelberg
(1998)

10. do Lago, A.P., Simon, I.: Free Burnside semigroups. RAIRO Theoret. Inform.
Appl. 35(6), 579–595 (2001)

11. de Luca, A., Varricchio, S.: On non-counting regular classes. In: Proc. ICALP 1990.
LNCS, vol. 443, pp. 74–87. Springer, Berlin (1990)

12. McCammond, J.: The solution to the word problem for the relatively free semi-
groups satisfying ta = ta+b with a ≥ 6. Internat. J. Algebra Comput. 1(1), 1–32
(1991)

13. Plyushchenko, A.N.: Overlap-free words and the two-generated free Burnside semi-
group satisfying x2 = x3. Siberian Electron. Math. Rep. 6, 166–181 (2009)

14. Plyushchenko, A.N.: On the word problem for the free Burnside semigroups satis-
fying x2 = x3. Russian Math, Iz. Vuz. (2011) (submitted)

15. Plyushchenko, A.N., Shur, A.M.: Almost overlap-free words and the word problem
for the free Burnside semigroup satisfying x2 = x3. In: Proceedings of WORDS
2007, Marseille, France, pp. 245–253 (2007)

16. Plyushchenko, A.N., Shur, A.M.: Almost overlap-free words and the word problem
for the free Burnside semigroup satisfying x2 = x3. Internat. J. Algebra Comput.
(submitted), http://arxiv.org/abs/1102.4315

17. Shur, A.M.: Overlap-free words and Thue-Morse sequences. Internat. J. Algebra
Comput. 6(3), 353–367 (1996)

18. Thue, A.: Uber die gegenseitige Lage gleicher Teile gewisser Zeichentreihen. Norske
Videnskabssellskabets Skrifter I Mat. Nat. Kl. 1, 1–67 (1912)

http://arxiv.org/abs/1102.4315

Never Minimal Automata and the Rainbow

Bipartite Subgraph Problem

Emanuele Rodaro and Pedro V. Silva

Departamento de Matemática, Faculdade de Ciências
Universidade do Porto, 4169-007 Porto, Portugal

{emanuele.rodaro,pvsilva}@fc.up.pt

Abstract. Never minimal automata, introduced in [4], are strongly con-
nected automata which are not minimal for any choice of their final
states. In [4] the authors raise the question whether recognizing such
automata is a polynomial time task or not. In this paper, we show that
the complement of this problem is equivalent to the problem of checking
whether or not in an edge-colored graph there is a bipartite subgraph
whose edges are colored using all the colors. We prove that this graph
theoretic problem is NP-complete, showing that checking the property
of never-minimality is unlikely a polynomial time task.

1 Introduction

Let A = 〈Q,Σ, δ〉 be a deterministic (not necessarily complete) finite-state
automaton (DFA). The action of the transition function δ can naturally be
extended to the free monoid Σ∗. This extension will still be denoted by δ. For
convenience for each v ∈ Σ∗ and q ∈ Q we will write q . v = δ(q, v) and put
S . v = {q . v | q ∈ S} for any S ⊆ Q. The set q−1F , with q ∈ Q,F ⊆ Q, denotes,
as usual, the set {w ∈ Σ∗ : q . w ∈ F}.
An equivalence relation σ on a set Q is said to saturate a subset F ⊆ Q if F
is union of equivalence classes of σ. A congruence σ of the automaton A is an
equivalence relation on Q such that if qσq′ then (q . u)σ(q′ . u) for all u ∈ Σ∗.
By M(A) we denote the set of minimal (non-trivial) congruences of A . In [4]
the authors introduce some classes of automata with extremal conditions. The
class of uniformly minimal automata is formed by strongly connected automata
which are minimal for any choice of the final states. In [4] the authors provide a
characterization in terms of the state-pair graph which leads to a polynomial time
algorithm to decide whether a given DFA is uniformly minimal. This class has
also interesting connections with multi-entry automata and symbolic dynamics.
The other interesting case introduced in [4] is the opposite extremal case of
never-minimal automata which is considered in our paper.

Definition 1. Except for the last section, we restrict our attention to strongly
connected automata. We say that a DFA A = 〈Q,Σ, δ〉 is never-minimal if and
only if for any F ⊆ Q and i ∈ Q the automaton Ai,F = 〈Q,Σ, δ, i, F 〉 is not
minimal.

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 374–385, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Never Minimal Automata and the Rainbow Bipartite Subgraph Problem 375

In [4] the authors exhibit an infinite sequence of never-minimal automata and
raise the problem of characterizing such property in order to give a polynomial
time algorithm for recognizing such automata. Formally NEVER-MINIMAL is the
problem that given as input a strongly connected DFA A checks whether or
not A is never-minimal. In this paper we prove that co-NEVER-MINIMAL is NP-
complete showing that NEVER-MINIMAL is unlikely in P.
The paper is organized as follows. In Section 2 we introduce the concept of a
syntactic graph which is useful in characterizing never-minimal automata. In
Section 3 we introduce some graph theoretic problems which are proved to be
NP-complete. These graph theoretic problems turn out to be equivalent to the
DISJUNCTIVE SET problem already considered in [1] in which the authors show
the NP-completeness. However our reduction gives the NP-completeness for
a smaller class. In Section 4 we prove that co-NEVER-MINIMAL is equivalent to
the DISJUNCTIVE SET problem showing that the former problem is also NP-
complete. In Section 5 we explore some connections with the SYNTACTIC MONOID
problem (cf. [1]) and we end with Section 6 where we pose some open problems.

2 The Syntactic Graphs

In this paper we deal with graphs which are simple undirected and without
loops. Given a symmetric, reflexive relation R ⊆ V ×V , there is a natural way to
associate to R a graph G(R) = (V,E). Namely for each pair of distinct elements
x, y we say that {x, y} ∈ E if (x, y) ∈ R. Conversely a graph G gives rise to a
symmetric reflexive relation R(G) in the obvious way. We say that a family R of
equivalence relations on a set V is orthogonal (or pairwise separating in [1]) if for
any pair R,R′ ∈ R of distinct relations, R ∩ R′ = 1V , where 1V is the identity
relation on V . In [4] the authors introduce the state-pair graphs as a tool to
characterize uniformly minimal automata. We introduce an analogous tool which
is a slight generalization of these graphs. This will be useful to characterize never-
minimal automata. For any pair x, y of distinct states we associate an undirected
graph Gx,y called the syntactic graph generated by the pair x, y.

Definition 2 (syntactic graph of the pair {x, y}). Let x �= y be two states
of the automaton A = 〈Q,Σ, δ〉. The syntactic graph of the pair {x, y} is the
undirected graph Gx,y = (Q,Ex,y) having as set of vertices Q and the set of
edges Ex,y formed by the pairs {α, β} with α �= β such that there is some u ∈ Σ∗

with {x, y} . u = {α, β}. We denote by Γ i
x,y, for i = 1, . . . , C(x, y), the connected

components of Gx,y.

Given a set F ⊆ Q, the syntactic congruence ∼F generated by F is the largest
congruence saturating F and it is defined by x ∼F y if ∀w ∈ Σ∗ x .w ∈ F ⇔
y . w ∈ F or equivalently if x−1F = y−1F . The following proposition character-
izes the syntactic congruences ∼F , F ⊆ Q with x ∼F y in terms of the connected
components of the syntactic graph Gx,y. Using the notation of Definition 2 we
have the following proposition.

376 E. Rodaro and P.V. Silva

Proposition 1. Let x �= y be two states of the automaton A and let F ⊆ Q.
Then ∼F is a syntactic congruence with x ∼F y if and only if

F =
⋃
i∈I

Γ i
x,y

for some I ⊆ {1, . . . , C(x, y)}. Moreover the number of sets F ⊆ Q such that
x ∼F y is 2|C(x,y)|.

Proof. This is a consequence of Definition 2. ��
Therefore, given x, y, the connected components of Gx,y describe all the possible
subsets F ⊆ Q such that x, y are identified via the syntactic congruence ∼F .
We have a first characterization of never-minimal automata given in terms of
their syntactic graphs.

Theorem 1. A strongly connected DFA A = 〈Q,Σ, δ〉 is never-minimal if and
only if for all F ⊆ Q there are a pair of distinct states x, y and a subset I ⊆
{1, . . . , C(x, y)} such that

F =
⋃
i∈I

Γ i
x,y

Proof. Clearly A is never-minimal if and only if for all F ⊆ Q there is a pair of
distinct states x, y such that x ∼F y. By Proposition 1 this is equivalent to say

F =
⋃
i∈I

Γ i
x,y

for some I ⊆ {1, . . . , C(x, y)}. ��
We have the following fact.

Proposition 2. The equivalence relation σx,y ⊆ Q × Q defined by ασx,yβ if
α, β ∈ Γ i

x,y for some i ∈ {1, . . . , C(x, y)} is a congruence. Moreover it is the
smallest congruence which identifies x with y.

Proof. Suppose that α . a ∈ Γ j
x,y for some α ∈ Σ and j ∈ {1, . . . , C(x, y)}.

Let α1, α2, . . . , αn be a path in Γ i
x,y connecting α = α1 with β = αn. Since

{αi, αi+1} ∈ Ex,y then the image of this path through the action . a is also a
path contained in some connected component which contains also α thus this
path is contained in Γ j

x,y, whence β . a ∈ Γ j
x,y. The last statement is also an easy

consequence of the definition of syntactic graph. ��
Definition 3. Let G be the set of all syntactic graphs of the automaton A . We
define a preorder in G by Gx,y � Gx′,y′ if for every i ∈ {1, . . . , C(x, y)} there is
a j ∈ {1, . . . , C(x′, y′)} such that Γ i

x,y ⊆ Γ j
x′,y′ . Equivalently Gx,y � Gx′,y′ if and

only if the partition induced by the connected components of Gx,y is a refinement
of the partition induced by the connected components of Gx′,y′ , i.e. σx,y ⊆ σx′,y′ .

We have the following lemma.

Never Minimal Automata and the Rainbow Bipartite Subgraph Problem 377

Lemma 1. Let x, y be two distinct states of the automaton A = 〈Q,Σ, δ〉 and
let Γ i

x,y be a connected component of Gx,y. For any pair x′, y′ ∈ Γ i
x,y of distinct

states we have Gx′,y′ � Gx,y.

Proof. We remark that the statement of the lemma is equivalent to the follow-
ing: if x′, y′ are two distinct states with (x′, y′) ∈ σx,y then σx′,y′ ⊆ σx,y. By
Proposition 2, σx,y is a congruence, moreover by the definition x′σx,yy

′. Since
σx′,y′ is the smallest congruence which identifies x′ with y′, then σx′,y′ ⊆ σx,y,
i.e. Gx′,y′ � Gx,y. ��
We remark that the relation ≡ defined on (G ,�) by Gx′,y′ ≡ Gx,y if Gx′,y′ � Gx,y

and Gx,y � Gx′,y′ is an equivalence relation such that G / ≡ is endowed with an
obvious partial order which is isomorphic to the partial order ({σx,y : x �= y},⊆).
In view of Proposition 2 it is not difficult to see that M(A) coincides with the
set of minimal elements of ({σx,y : x �= y},⊆)). We have the following property.

Proposition 3. The family of equivalence relations M(A) is orthogonal. More-
over the automaton A = 〈Q,Σ, δ〉 is never-minimal if and only if for any non-
empty subset F ⊆ Q there is a σ ∈ M(A) such that F is union of equivalence
classes of σ.

Proof. The intersection of two minimal non-trivial congruences is the identity
congruence, thus M(A) is an orthogonal family. The last statement is a conse-
quence of Theorem 1 and the definition of M(A). ��

3 The Rainbow Bipartite Subgraph Problem

In this section we introduce some graph theoretic problems and we study their
computational complexity class. In this paper a colored graph is a pair (G,ϕ)
where G = (V,E) is a graph and ϕ is a function, called coloring, from the set of
edges E to a set C = {1, . . . , N} of colors. This definition can be extended to the
case of list colored graphs (G,ϕ), where the list coloring is a function ϕ : E → 2C .
For each i ∈ C by G(i) we denote the maximal subgraph of G formed by the edges
whose lists contain i. We call the subgraphs G(i) = (V,EG(i)), i = 1, . . . , n, the
maximal monochromatic components of (G,ϕ). It is clear that a list coloring ϕ is
completely described by all the maximal monochromatic components {G(i)}i∈C .
Namely ϕ({α, β}) = {i ∈ C : {α, β} ∈ EG(i)}.

We say that a coloring ϕ is splittable if there is a partition of the set of vertices
of V into two sets V1, V2 such that for any i ∈ {1, . . . , n} there is an edge {v1, v2}
with v1 ∈ V1, v2 ∈ V2 such that ϕ({v1, v2}) = i. In this case we say that the
partition V1, V2 splits ϕ. A more graph-theoretic way to see this property is via
the concept of rainbow subgraphs (cf. [2]), i.e. subgraphs (in the weakest sense)
such that all the edges are colored differently. Indeed a coloring ϕ is splittable if
there is a bipartite rainbow subgraph of G colored using all the colors {1, . . . , n}.
Everything extends naturally to the case of the list coloring. Indeed we say that
a list coloring ϕ is list splittable (for short splittable) if there is a partition of V
into two sets V1, V2 such that for any i ∈ {1, . . . , N} there is an edge {v1, v2}

378 E. Rodaro and P.V. Silva

with v1 ∈ V1, v2 ∈ V2 such that i ∈ ϕ({v1, v2}). Also in this case a similar
characterization holds in terms of bipartite subgraphs. Indeed a list coloring ϕ
is splittable if there is a bipartite subgraph such that each color is contained in
the color list of some edge. Extending the definition of n-bounded coloring (cf.
[2]) from colored graphs to list colored graphs, we say that a list coloring ϕ of a
graph G is n-bounded if each color appears at most n times in the lists of colors
associated to the edges.

With the previous definitions it makes sense defining the problem SPLITTABLE.
This is the problem of determining, given a colored graph (G,ϕ), whether ϕ is
splittable. Analogously LIST-SPLITTABLE is the problem of determining, given
a list colored graph (G,ϕ) whether ϕ is list splittable. The n-SPLITTABLE prob-
lem is the sub-problem of checking, given an n-bounded colored graph (G,ϕ),
whether ϕ is splittable. n-LIST-SPLITTABLE is defined analogously. We say that
the (list) coloring ϕ on a graph G = (V,E) is anti-incidence if for all pairs of
incident edges {v, v1}, {v, v2}, ϕ({v, v1}) ∩ ϕ({v, v2}) = ∅.

Although LIST-SPLITTABLEmay appear a more difficult problem with respect
to SPLITTABLE, the following proposition shows that this is not the case.

Proposition 4. There is a reduction η from LIST-SPLITTABLE to SPLITTABLE

bringing an n-bounded list colored graph (G,ϕ) into an n-bounded colored graph
(G′, ϕ′). Moreover we can find a reduction η′ which brings an n-bounded colored
graph (G,ϕ) into an n-bounded colored graph (G′′, ϕ′′) such that ϕ′′ is anti-
incidence.

Proof. Given an instance (G,ϕ) with G = (V,E) of LIST-SPLITTABLE, where ϕ
is a list coloring on the set of colors C = {1, . . . , N}, we reduce it to an instance
(G′, ϕ′) with G′ = (V ′, E′) of SPLITTABLE. Starting from (G,ϕ) we iteratively
apply the following construction. For each edge {v, v′} of a list colored graph
(H,ψ) with H = (Y, T) such that ψ({v, v′}) = {i0, . . . , ik} with k ≥ 1, we add
k +1 new vertices v, v1, . . . , vk, 2k +1 new edges and k +1 new colors c0, . . . , ck.
For each j ∈ {1, . . . , k} we add an edge {v′, vj} colored by ψ′({v′, vj}) = ij and
take ψ′({v′, v}) = i0. Putting v0 = v we also add for each j ∈ {0, . . . , k} edges
{vj , v} colored by ψ′({vj , v}) = cj (see Fig. 1). Leaving ψ = ψ′ for the other
edges, we obtain a new list colored graph (H ′, ψ′) with H ′ = (Y ′, T ′) such that
|T ′| − |T | ≤ 2N − 1 and the number of added colors is upper bounded by N .

Fig. 1. One step of the iterated construction of Proposition 4

Never Minimal Automata and the Rainbow Bipartite Subgraph Problem 379

It is clear that after at most |E| iterations we get a colored graph (G′, ϕ′) with
|E′| ≤ 2N |E| whose number of colors is upper bounded by N |E| + N . Then
to prove that η is a reduction we have to show that ϕ is list splittable iff ϕ′

is splittable. To prove it, it is enough to show that the splittability property is
preserved in each step of the previous iteration. Indeed suppose that ψ′ is list
splittable in H ′ and let Y ′

1 , Y
′
2 be the associated partition. We observe that, since

the edges {vj , v} for j ∈ {0, . . . , k} are the only edges in H ′ colored by c0, . . . , ck,
then v ∈ Y ′

l for some l ∈ {1, 2} iff v0, . . . , vk ∈ Y ′
3−l. We claim that Y ∩Y ′

1 , Y ∩Y ′
2

is a partition that splits ψ. Indeed let c ∈ {1, . . . , N}. Since ψ′ is splittable there
is an edge {w, z} with c ∈ ψ′({w, z}) and w ∈ Y ′

l , z ∈ Y ′
3−l. If w, z ∈ Y we are

done, hence we may assume without loss of generality that w = v′ ∈ Y and z
belongs to the added vertices {v1, . . . , vk}, say z = vj . Since w = v′ ∈ Y ′

l ∩Y and
z = vj ∈ Y ′

3−l, it follows from the previous remark that v ∈ Y ′
l and v ∈ Y ′

3−l∩Y .
Since c ∈ ψ({v, v′}), we get that Y ∩ Y ′

1 , Y ∩ Y ′
2 splits ψ.

Conversely suppose that Y1, Y2 splits the list coloring ψ. Suppose that {v, v′} ∈
T with v ∈ Yl, v

′ ∈ Yk for some k, l ∈ {1, 2}. We put all the added vertices
{v1, . . . , vk} in Y ′

l and v in Y ′
3−l. In this way all the added colors are splitted

by Y ′
l , Y ′

3−l. Thus, by the construction of the graph H ′, we get that Y ′
l , Y ′

3−l

splits ψ′.
It is easy to check that if ϕ is an n-bounded coloring then also ϕ′ is n-bounded.
The last statement can be obtained in a similar way. Indeed starting from

the previous colored graph (G′, ϕ′), to obtain (G′′, ϕ′′) it is enough to apply the
following construction iteratively. Suppose that the colored graph (H,ψ) has a
vertex v such that there are two incident edges {v, v1}, {v, v2} with ϕ({v, v1}) =
ϕ({v, v2}) = i. Then build a new colored graph (H ′, ψ′) erasing from H the edge
{v, v2} and adding two new vertices v, v′ and the following three new edges:
{v′, v2}, colored by ψ′({v′, v2}) = i, and the edges {v, v}, {v, v′} colored by two
new colors ψ′({v, v}) = c, ψ′({v, v′}) = c′. Since c, c′ are new colors it is easy
to see that in a splitting, v, v′ belong to the same component of the partition.
Therefore ψ′ is spittable iff ψ is splittable. Since in each iteration we reduce the
number of incident edges having the same colors, the number of iterations is
upper bounded by N(|V ′| − 2) where N is the number of colors of (G′, ϕ′) and
G′ = (V ′, E′). Thus |E′′| ≤ 2N(|V ′| − 2) and so η′′ is a reduction. ��

Since SPLITTABLE is a sub-problem of LIST-SPLITTABLE, from Proposition 4 we
have that actually SPLITTABLE and LIST-SPLITTABLE are equivalent problems.
It is easy to see that both 1-LIST-SPLITTABLE and 1-SPLITTABLE coincide with
the problem of checking if a graph is bipartite and so they belong to the com-
putational class P. The following theorem shows that things change radically
when we consider 2-SPLITTABLE, indeed we have the following:

Theorem 2. 2-SPLITTABLE is NP-complete.

Proof. The problem is clearly in NP. To prove the completeness we reduce
NAESAT to 2-SPLITTABLE. NAESAT is the problem of checking, given a boolean
formula in CNF

380 E. Rodaro and P.V. Silva

F =
m∧

i=1

Ci

where in each clause Ci there are three literals, whether there is a truth assign-
ment such that in no clause all three literals are equal in truth value (neither all
true nor all false). This is a well know NP-complete problem [3].

Suppose that the boolean formulaF is on the set of variables X = {x1, . . . , xn}.
We build a graph G = (V,E) and a 2-bounded list coloring ϕ in the follow-
ing way. The set of vertices is V = X ∪ {¬x : x ∈ X}. The set of colors
C = {1, . . . ,m, t1, . . . , tn} corresponds to the set of clauses and the set of vari-
ables. The set of edges contains all pairs {x,¬x} for x ∈ X and tj ∈ ϕ({xj ,¬xj})
for all j ∈ {1, . . . , n}. Moreover for each color i ∈ {1, . . . ,m} suppose that the
clause Ci = li1∨li2∨li3. Then {li1, li2}, {li2, li3} ∈ E and i ∈ ϕ({li1, li2}), i ∈ ϕ({li2, li3}).
Clearly (G,ϕ) is a 2-bounded list colored graph. Let us prove that ϕ is list split-
table if and only if there is a truth assignment such that in no clause all the
three literals are all equal in truth value.

Suppose that ϕ is list splittable, and consider the corresponding partition of
V into two disjoint sets V1, V2. Since for each i = 1, . . . , n, ti is contained only
in the list coloring of the the edge {xi,¬xi}, it is clear that if a literal l ∈ V1

then ¬l ∈ V2. Therefore there is a truth assignment that makes (for instance) all
the literals of V1 true and all the literals of V2 false. Since ϕ is list splittable, for
each clause Ci = li1 ∨ li2 ∨ li3 there is one edge {α, β} among {li1, li2}, {li2, li3} such
that α ∈ V1, β ∈ V2. Hence in each clause there is a literal which is true and one
which is false.

Conversely suppose that there is a truth assignment such that in no clause
all the three literals are equal in truth value. Let V1 be the set of literals in
V that are true and V2 = V \ V1 be the one that are false. Clearly if l ∈ V1

then ¬l ∈ V2 thus the colors ti, i = 1, . . . , n which are contained only in the
edges {xi,¬xi} are clearly splitted. Moreover in each clause Ci = {li1, li2, li3}
there are two literals say α, β ∈ Ci which are respectively true and false, whence
α ∈ V1, β ∈ V2. Since {li1, li2}, {li2, li3} ∈ E it is not difficult to see that there is
an edge {α′, β′} ∈ {{li1, li2}, {li2, li3}} with α′ ∈ V1, β

′ ∈ V2 and so the color i is
splitted. Since this holds for all the colors i ∈ {1, . . . ,m} we can conclude that
V1, V2 splits ϕ.

By now we have reduced NAESAT to LIST-SPLITTABLEwith a 2-bounded list col-
oring graph. Hence by Proposition 4 we can reduce NAESAT to 2-SPLITTABLE. ��

Let (G,ϕ) be a list colored graph with G = (V,E) and ϕ : E → 2C for some
set of colors C. We say that ϕ is chromatic-transitive if for any i ∈ C the con-
nected components of G(i) are complete subgraphs. Equivalently iff the associ-
ated relation R(G(i)) is an equivalence relation on V . Therefore we can define
the chromatic-transitive closure of (G,ϕ) as the list colored graph (G,ϕ) with
vertex set V and whose maximal monochromatic components are{

G
(
R(G(i))

tr
)}

i∈C

Never Minimal Automata and the Rainbow Bipartite Subgraph Problem 381

where ·tr is the transitive closure operator. The definition of chromatic-transitive
closure is interesting under the following proposition.

Proposition 5. Let (G,ϕ) be a list colored graph. Then (G,ϕ) is list splittable
if and only if (G,ϕ) is list splittable.

Proof. Since G is a subgraph of G and ϕ is an extension of ϕ, then if (G,ϕ) is
list splittable then also (G,ϕ) is list splittable. Conversely, assume that (G,ϕ)
is list splittable and let V1, V2 be a corresponding partition of V . Given a color
i ∈ C, we have an edge {v0, w} in G(i) with v0 ∈ V1 and w ∈ V2. Then we have
a sequence of edges {v0, v1}, . . . , {vm−1, vm} in G(i) with vm = w. Since v0 ∈ V1

and w ∈ V2, there is a j ∈ {1, . . . ,m} such that (vj−1, vj) ∈ V1 × V2 ∪ V2 × V1

and so (G,ϕ) is list splittable by considering the partition V1, V2. ��
In view of this proposition and the fact that a list coloring is determined by its
maximal monochromatic components we define the problem SEPARATING. Given
a set R of equivalence relations on a set V as input, SEPARATING is the problem
of checking whether or not there is a set F ⊆ V which is not saturated by any
equivalence relation of R, i.e. for any σ ∈ R, F is not union of equivalence classes
of σ. The following lemma is an easy consequence of the definitions.

Lemma 2. Let R = {σ1, . . . , σk} be a family of equivalence relations on a set
V and let (G,ϕ) be the associated list colored graph:

G = G(∪σ∈Rσ), ϕ({x, y}) = {i ∈ {1, . . . , k} : (x, y) ∈ σi}
There is a set F ⊆ V which is not saturated by any σ ∈ R if and only if (G,ϕ)
is splittable.

By Proposition 5 and Lemma 2 it immediately follows that LIST-SPLITTABLE
and SEPARATING are equivalent problems. The problem ORTHOGONAL-SEPARATING
is the analogous problem but with the difference that the input R is a family
of orthogonal equivalence relations. This problem has been introduced in [1]
under the name DISJUNCTIVE SET as a clue of the possible NP-completeness of
the SYNTACTIC MONOID problem. The same article provides a proof of the NP-
completeness of DISJUNCTIVE SET, even when the instances of the problem are
restricted to families of the following kind:

1. (Corollary 2.5 [1]) Orthogonal families R such that each equivalence relation
σ ∈ R has at most three non-singleton classes and these non-singleton classes
have exactly two elements.

2. (Corollary 2.4 [1]) Orthogonal families R such that each equivalence relation
σ ∈ R has exactly one non-singleton class and this non-singleton class has
at most four elements.

We remark that ORTHOGONAL-SEPARATING restricted to the case (2) with families
R such that each equivalence relation σ ∈ R has exactly one non-singleton class
and this non-singleton class has at most two elements elements is equivalent
to 1-SPLITTABLE, i.e. to check whether or not the associated colored graph as

382 E. Rodaro and P.V. Silva

in Lemma 2 is bipartite. Therefore in this case ORTHOGONAL-SEPARATING is in
P. The same occurs if we restrict it to the case (1) allowing the equivalence
relations to have at most one non-trivial equivalence class. The following theorem
establishes the exact borderline for which ORTHOGONAL-SEPARATING turns out to
be NP-complete.

Theorem 3. ORTHOGONAL-SEPARATING is still NP-complete if we assume

1. Orthogonal families R such that each equivalence relation σ ∈ R has at most
two non-singleton classes and these non-singleton classes have exactly two
elements.

2. Orthogonal families R such that each equivalence relation σ ∈ R has ex-
actly one non-singleton class and this non-singleton class has at most three
elements.

Proof. We prove the statement (1). Case (2) can be obtained analogously by the
structure of the obtained graph of Theorem 2, Lemma 2 and a similar technique
of Proposition 4 to pass from a list coloring to a coloring.

By Theorem 2, 2-SPLITTABLE is NP-complete. Thus given a 2-bounded col-
oring graph (G,ϕ) with G = (V,E) and ϕ : E → C, by Proposition 4 we can
suppose without loss of generality that ϕ is anti-incidence. Therefore for each
color i ∈ C, R(G(i))

tr
= R(G(i)) and so the transitive closure (G,ϕ) is equal to

(G,ϕ). Moreover since (G,ϕ) is a colored graph, the associated family of equiv-
alence relations R = {R(G(i)) : i ∈ C} is orthogonal. By Lemma 2, R is in
ORTHOGONAL-SEPARATING if and only if ϕ splits. Since ϕ is a 2-bounded coloring
and (G,ϕ) = (G,ϕ), it is also evident that the family R = {R(G(i)) : i ∈ C} is
formed by equivalence classes composed by at most two elements and there are
at most two equivalence classes which are not singletons. ��

4 NP-Completeness of co-NEVER-MINIMAL

In this section we show that, given an orthogonal family R of equivalence rela-
tions, we can always build a strongly connected DFA A having R as the set of
minimal non-trivial congruences of A . Indeed we have the following theorem.

Theorem 4. Let R = {σ1, . . . , σm} be an orthogonal family of equivalence re-
lations on a set Q and let G = G(∪σ∈Rσ) with G = (Q,E). There is a strongly
connected DFA AR = 〈Q,Σ, δ〉 with

|Σ| ≤ 3
∑
σ∈R

|Q/σ| +
(|Q|

2

)
− |E|

such that M(AR) = R.

Proof. For each σ ∈ R suppose that in Q/σ there are [q0]σ, . . . , [qt−1]σ non
singleton classes and [qt]σ, . . . , [qn]σ singleton classes, where n = |Q/σ|. Putting
[qi]σ = {q0

i , . . . , q
ni−1
i } for i = 0, . . . , t − 1, we define an alphabet

Σσ = {a(σ)0, b(σ)0, . . . , a(σ)t−1, b(σ)t−1, c(σ)0, . . . c(σ)t−1, d(σ)t−1, . . . , d(σ)n}

Never Minimal Automata and the Rainbow Bipartite Subgraph Problem 383

Notice that |Σσ| = 2t + (n + 1) ≤ 3n if t < n, otherwise |Σσ| = 3n. The action
of Σσ on Q is defined by the following rules

δ(qj
i , a(σ)i) = qj+1 mod ni

i ,

δ(q0
i , b(σ)i) = q0

i , δ(q
ni−1
i , b(σ)i) = q0

i , δ(q
s
i , b(σ)i) = qs+1

i for s = 1, . . . , ni − 2,

δ(q0
i , c(σ)i) = q0

i+1 mod t, δ(q1
i , c(σ)i) = q1

i+1 mod t,

δ(q0
t−1, d(σ)t−1) = qt, δ(qn, d(σ)n) = q0

t−1, δ(qi, d(σ)i) = qi+1 for t ≤ i < n.

The alphabet Σ = ∪σ∈RΣσ∪Σ′ is the disjoint union of the alphabets Σσ, σ ∈ R
and an alphabet Σ′ used to satisfy the minimality condition M(AR) = R. The
action of Σ′ is defined in the following way. For any pair p, q of distinct elements
such that (p, q) does not belong to ∪σ∈Rσ we have to satisfy the condition
σ ⊆ σp,q for some σ ∈ R. Therefore, if G = (Q,E) = G(∪σ∈Rσ), we define
Σ′ = {a(p, q) : {p, q} /∈ E}. Regarding the action we first fix two states q, q′ such
that (q, q′) ∈ σ for some σ ∈ R and we put

δ(p, a(p, q)) = q, δ(q, a(p, q)) = q′.

It is not difficult to see that A is strongly connected (in particular it is strongly
connected even if we restrict the action to Σσ for any σ ∈ R). Moreover the
action δ is transitive on each σ ∈ R in the sense that if (x, y), (x′, y′) ∈ σ are
two distinct pairs with x �= y and x′ �= y′, then there is a word w ∈ Σ∗

σ such
that δ({x, y}, w) = {x′, y′}. Moreover since R is orthogonal the action of any
letter in Σ \Σσ brings any pair of distinct elements {x, y} with (x, y) ∈ σ into a
singleton. Thus for each σ ∈ R and for each pair (x, y) ∈ σ with x �= y, we have
σx,y = σ. The minimality condition is also satisfied since for any {p, q} /∈ E we
have Gq,q′ � Gp,q, i.e. σ ⊆ σp,q , hence M(AR) = R. Moreover, since |Σσ| ≤
3|Q/σ| for all σ ∈ R and |Σ′| =

(|Q|
2

)− |E| the bound for |Σ| of the statement
immediately follows. ��
This theorem gives also a way to build never-minimal automata. Indeed to build
a never-minimal DFA, by Proposition 3, it is enough to consider an orthogonal
family R which is not in ORTHOGONAL-SEPARATING, and then apply the construc-
tion of Theorem 4 to R. A very simple class of orthogonal families which are not
ORTHOGONAL-SEPARATING are the families obtained from graphs which are not
bipartite. Indeed consider a non-bipartite graph G = (V,E), color it using the
identity map 1E : E → E where E is now the set of colors. Therefore the set
RG = {R(G(e)) : e ∈ E} is clearly an orthogonal family of equivalence relations
which saturates all the subsets of V since, by Lemma 2, (G, 1E) is not splittable.
We also remark that condition C3 defined in [4] is translated to the condition
that the colored graph associated to the DFA which satisfies C3 contains a rain-
bow triangle and no other edge is colored using colors of this triangle, whence
this graph is clearly non-splittable and so the automaton is never-minimal. We
conclude the section with the following consequences of Theorem 4.

Theorem 5. co-NEVER-MINIMAL is equivalent to ORTHOGONAL-SEPARATING.

384 E. Rodaro and P.V. Silva

Proof. By Proposition 3, A = 〈Q,Σ, δ〉 is not never-minimal if and only if
M(A) is a family of orthogonal relations belonging to ORTHOGONAL-SEPARATING.
It is straightforward to check that computing M(A) is a polynomial time and
space task since the construction of the syntactic graphs is polynomial and there
are at most

(|Q|
2

)
such graphs. Thus co-NEVER-MINIMAL is reducible to ORTHOGON

AL-SEPARATING. Conversely given an orthogonal family R = {σ1, . . . , σm} of
equivalence relations on a set Q by Theorem 4 we can build in polynomial time
an automaton AR = 〈Q,Σ, δ〉 with M(AR) = R. By Proposition 3, R is in
ORTHOGONAL-SEPARATING if and only if AR is not never-minimal. ��
From Theorems 3, 5 we have also the following consequence.

Corollary 1. co-NEVER-MINIMAL is NP-complete.

5 Connections with the Syntactic Monoid Problem

As already mentioned in [4], NEVER-MINIMAL is related to the SYNTACTIC MONOID
problem (cf. [1]). A finite monoid (M, ·) is called syntactic if there is a P ⊆ M
such that the congruence ∼P on M defined by

x ∼P y ⇔ ∀a, b ∈ M(axb ∈ P ⇔ ayb ∈ P)

is the identity congruence on M . If a monoid M is the transition monoid of a
DFA A , and it is not syntactic, then A is never-minimal. However the problem
of the positioning among the complexity classes of this problem is still open.

As a concluding result we give a characterization of the monoids which are not
syntactic in terms of never-minimal automata. This result places the SYNTACTIC
MONOID problem as a subproblem of NEVER-MINIMAL problem when the class of
automata considered are the two-side Cayley automata associated to a monoid.

We consider complete automata here, hence an automaton 〈Q,Σ, δ, i, F 〉 is
minimal if and only if every vertex is accessible from the initial vertex i and the
Nerode equivalence defined by pN q if p−1F = q−1F is the identity relation on
Q. Let (M, ·) be a finite monoid and let A ⊆ M be a set of generators for M .
The two-side Cayley automaton of M is the automaton Γ̂A(M) = 〈M,A∪A′, δ〉
where A′ = {a′ : a ∈ A} is a disjoint copy of A and ◦′ is an involution in (A∪A′)∗

such that (uv)′ = v′u′ for all u, v ∈ (A ∪ A′)∗. The action δ is defined by:

∀a ∈ A, δ(u, a) = u · a, ∀a ∈ A′, δ(u, a′) = a · u

We have the following characterization.

Theorem 6. M is not syntactic if and only if Γ̂A(M) is never-minimal.

Proof. Assume first that M is syntactic. Then there exists some P ⊆ M such
that ∼P = 1M . We claim that (Γ̂A(M), 1, P) is a minimal automaton. Since
every vertex is accessible from 1, it remains to show that the Nerode equivalence
is trivial. Let u, v ∈ M be different. Then (x, y) /∈∼P , hence we may assume

Never Minimal Automata and the Rainbow Bipartite Subgraph Problem 385

without loss of generality that xuy ∈ P and xvy /∈ P for some x, y ∈ M . It
follows that δ(u, x′y) = xuy ∈ P and δ(v, x′y) = xvy /∈ P , hence (u, v) /∈ N as
required.

Conversely suppose that (Γ̂A(M), i, P) is a minimal automaton. We claim that
∼P = 1M . Indeed, take u, v ∈ M distinct. Since (u, v) /∈ N , we may assume that
δ(u,w) ∈ P and δ(v, w) /∈ P for some w ∈ (A ∪ A′)∗. Now there exist x, y ∈ M
such that δ(u,w) = xuy and δ(v, w) = xvy, hence u �∼P v and so ∼P = 1M .
Therefore M is syntactic. ��

6 Conclusions and Open Problems

In Theorem 4 it is shown how to build, from an orthogonal family R of equiva-
lence relations on a set of n elements, an automaton AR with M(AR) = R
over an alphabet of dimension O(n2). This is a key fact to prove the NP-
completeness of co-NEVER-MINIMAL. In Theorem 6 the SYNTACTIC MONOID prob-
lem on a monoid M is reduced to check whether or not an automaton over an
alphabet of O(|M |) elements is never-minimal. Therefore, to have a more pre-
cise clue about the complexity class of the SYNTACTIC MONOID problem, it seems
natural to ask if Theorem 4 still holds also in the case of automata over a con-
stant or linear growing alphabets. This leads also to the problem of finding the
complexity class of co-NEVER-MINIMAL in the class of automata with a constant
or linear growing alphabets.

Acknowledgments

Both authors acknowledge the support of the Centro de Matemática da Universi-
dade do Porto financed by FCT through the programmes POCTI and POSI, with
Portuguese and European Community structural funds. The first-named author
acknowledges also the support of the FCT project SFRH/BPD/65428/2009.

References

1. Goralcik, P., Koubek, V.: On the disjunctive set problem. Theoretical Computer
Science 204, 99–118 (1998)

2. Kano, M., Li, X.: Monochromatic and heterochromatic subgraphs in edge-colored
graphs-a survey. Graphs and Combinatorics 24, 237–263 (2008)

3. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley Longman, Ams-
terdam (1995)

4. Restivo, A., Vaglica, R.: Automata with extremal minimality conditions. In: Gao,
Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 399–410. Springer,
Heidelberg (2010)

Boolean Algebras of Regular Languages

Victor Selivanov1 and Anton Konovalov1

1 A.P. Ershov Institute of Informatics Systems
Siberian Division Russian Academy of Sciences

and Novosibirsk State University
vseliv@iis.nsk.su

2 Institute of Informatics Systems
Siberian Division Russian Academy of Sciences

Jack@sibmail.ru

Abstract. We characterize up to isomorphism the Boolean algebras of
regular languages and of regular aperiodic languages, and show decid-
ability of classes of regular languages related to these characterizations.

Keywords: Boolean algebra, Frechét ideal, regular language, aperiodic
language.

1 Introduction

Boolean algebras (BA’s) are of principal importance for several branches of math-
ematics. Accordingly, characterization of naturally arising BA’s attracts atten-
tion of many researchers. As examples we mention characterizations of natural
BA’s in logic and computability theory [Han75, LPS02, Se91, Se92, Se03].

In automata theory, people consider many classes of languages which form
BA’s but apparently there was so far no attempt to characterize those BA’s up to
isomorphism. At the same time, such characterizations could be of some interest
because they provide new information on well-known classes of regular languages.
Due to Stone duality, this contributes to understanding of the corresponding
Stone spaces which are closely related to the profinite topology [Pip97, GGP08].

In this note, we start investigations of such questions and characterize some
fundamental BA’s of regular languages up to isomorphism.

If B is a BA and α an ordinal, let Fα(B) be the α-th iterated Frechét ideal of
B, B(α) = B/Fα(B) is the α-th Frechét derivative of B and B′ = B(1). (See [Go96]
for a detailed treatment, some definitions are recalled in the next section.)

For a finite alphabet Σ, let RΣ (resp. AΣ) denote the BA of all regular (resp.
of all regular aperiodic) languages over Σ. The main result of this paper looks
as follows:

Theorem 1. 1. For any alphabet Σ, RΣ is an atomic BA with infinitely many
atoms, and R′

Σ is a countable atomless BA.
2. For a unary alphabet Σ, AΣ is an atomic BA with infinitely many atoms,

and A′
Σ is a two-element BA.

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 386–396, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Boolean Algebras of Regular Languages 387

3. For any alphabet Σ with at least two symbols, F0(AΣ) ⊂ F1(AΣ) ⊂ · · · ⊂
Fω(AΣ) = Fω+1(AΣ), for each n < ω the BA A

(n)
Σ is atomic with infinitely

many atoms, and A(ω)
Σ is a countable atomless BA.

From the well-known facts on BA’s (see Chapter 1 of [Go96]) it follows that
the assertions 1 — 3 characterize the corresponding BA’s up to isomorphism.
Moreover, our proofs imply decidability of the classes of regular languages related
to the main theorem.

While the assertions 1 and 2 above are in fact easy exercises, the assertion
3 is less trivial. The classes of languages Fk(AΣ) turn out to be closely related
to subclasses of sparse regular languages investigated in [SY92] (see also the
surveys [Yu97, Pin1?]).

In Sections 2 and 3 we provide the necessary background on BA’s and regular
languages, respectively. In Section 4 we characterize the BA RΣ and some other
classes of regular languages. In Section 5 we characterize the BA AΣ and some
other classes of aperiodic languages, and we conclude in Section 6.

2 Preliminaries on Boolean Algebras

In this section we briefly recall some notions and facts on BA’s used in the
sequel. We assume the reader to be familiar with basic notions related to BA’s
like ideal of a BA, quotient-algebra of a BA modulo a given ideal, and canonical
homomorphism of a BA onto its quotient-algebra (for detailed treatments of
BA’s see e.g. [Go96, Si64]). BA’s are considered in the signature {∪,∩,̄ , 0, 1}.

It is often useful to extend the notion of a BA to the notion of Ershov algebra
(EA for short). EA’s, known also as relatively complemented distributive lattices
with 0, are considered in the signature {∪,∩, \, 0}. Up to isomorphism, EA’s are
the ideals of BA’s with the natural interpretation of ∪,∩, \, 0. EA is a BA iff it
has a greatest element. For any element a of a EA A = (A;∪,∩, \, 0), the set
â = {x | x ≤ a} with the induced operations is a BA. Here ≤ is the partial order
on A such that x ≤ y iff x ∩ y = x. If a ∈ A and I is an ideal of A, a/I denotes
the correspondent element of the quotient-algebra A/I.

Recall that an element a of a EA A is an atom if a �= 0 and x < a implies
x = 0. A EA A is called atomless if it has no atom, and it is called atomic if
below any non-zero element there is an atom. The ideal of a EA A generated by
atoms is called Frechét ideal of A. It consists of all finite unions (including the
empty union which coincides with 0) of atoms and it is denoted by F (A). The
quotient-algebra A/F (A) is called the Frechét derivative of A and is denoted by
A′. The following result is well known [Go96]:

Proposition 1. For any countable atomic EA’s A and B, A - B iff A′ - B′.

Define the transfinite sequence {Fα(A)} of iterated Frechét ideals of a EA A
as follows: F0(A) = {0}, Fβ+1(A) = {x | x/Fβ(A) ∈ F (A(β))} where A(β) =
A/Fβ(A), and Fα(A) =

⋃
β<α Fβ(A) for a limit ordinal α. This sequence is

ascending under inclusion, and Fα(A) = Fα+1(A) for some α; the least ordinal

388 V. Selivanov and A. Konovalov

α with this property is called the ordinal type of A and is denoted σ(A). Note
that if A is a BA then the ordinal σ(A) is not limit (i.e., it is either zero or a
successor).

A EA A is called superatomic if A(α) is singleton for some α. Relate to any
such EA its superatomicity type as follows: if A(γ) is not a BA for each γ < σ(A)
then the type is (σ(A), σ(A), 0) (in this case σ(A) is a limit ordinal), otherwise
the type is (σ(A) − 1, β, k) where β is the least ordinal for which A(β) is a BA
and k is the number of atoms in the finite BA A(σ(A)−1) (in this case σ(A) is a
successor ordinal). The next characterization of countable superatomic EA’s is
due to Yu.L. Ershov (cf. Proposition 1.8.4 of [Go96]).

Proposition 2. For any countable superatomic EA’s A and B, A - B iff A and
B have the same superatomicity type.

It is well known (see Proposition 1.8.3 of [Go96]) that there are exactly two
isomorphism types of countable atomless EA’s which are determined by the
presence or absence of the greatest element.

There is also a nice characterization of isomorphism types of arbitrary count-
able BA’s A (due to J. Ketonen [Ke78]), which was extended to countable EA’s
by Yu.L. Ershov [Er79], in terms of the superatomic EA Fσ(A)(A) and the atom-
less BA A(σ(A)). Since we do not need this rather technical result in full generality,
we formulate only the following very particular case relevant to this paper.

Proposition 3. There is a unique, up to isomorphism, countable BA B with
the properties specified (for the case of BA AΣ) in item 3 of the main result in
Introduction.

We conclude this section by mentioning the close relationship of BA’s to linear
orderings. Relate to any linear ordering L = (L;≤) the BA BL generated (in
the BA of subsets of L) by the sets {x | a ≤ x} and {x | a ≤ x < b} where
a, b ∈ L. It is well known (see e.g. Section 1.6 of [Go96]) that any countable BA
is isomorphic to the BA BL for some countable ordering L with a least element.
For instance, for a unary alphabet Σ we have BA AΣ - Bω because the last BA
satisfies the conditions of item 2 of Theorem 1, B1+η (where 1+ η is a countable
dense linear ordering with a least element and without a greatest element) is
a countable atomless BA, RΣ - Bω·(1+η) (where ω · (1 + η) is obtained from
1 + η by replacing any point with a copy of ω) because the last BA satisfies the
conditions of item 1 of Theorem 1, and for a non-unary alphabet Σ we have
AΣ - Bωω ·(1+η) (where ωω = sup{ω, ω2, ω3, . . .}) because the last BA satisfies
the conditions of item 3 of Theorem 1.

3 Preliminaries on Regular Languages

Here we briefly recall some notation, notions and facts on regular languages used
in the sequel. Let Σ∗ denote the set of words over Σ including the empty word
ε. For any n < ω, let Σn be the set of words over Σ of length n. The length of

Boolean Algebras of Regular Languages 389

a word w is denoted by |w|. Let . be the prefix partial order on Σ∗, i.e. u . v
iff ux = v for some x ∈ Σ∗.

We freely use some standard definitions and notation on words, regular lan-
guages and finite automata like regular expressions or deterministic finite au-
tomata (DFA) denoted as A = (Q,Σ, f, q0, F) (for a more systematic treatment
see e.g. [Str94, PP04, Th96, Yu97]). The automaton A recognizes the language
LA = {u ∈ Σ∗ | q0 · u ∈ F} where q · u = f(q, u) is the state reached by A
when it reads the word u started from a state q. Let RΣ denote the class of
regular languages over Σ (i.e., languages recognized by DFA’s or, equivalently,
denoted by regular expressions) For L ∈ RΣ , ML denotes the minimal DFA
that recognizes L; the minimal DFA is unique up to isomorphism.

The following fact is the simplest form of pumping lemma (see e.g. [Yu97] for
more details).

Proposition 4. For any language L ∈ RΣ there is k < ω such that any word
w ∈ L with |w| ≥ k may be factorized as w = xyz where |xy| ≤ k, |y| ≥ 1 and
xynz ∈ L for each n < ω.

For k < ω, a language L ∈ RΣ is called k-sparse if the function pL(n) = |Σn∩L|
is O(nk) (cf. [SY92, Yu97]). Let Sk denote the class of regular k-sparse languages
over Σ. Note that S0 ⊂ S1 ⊂ · · · . Languages from Sω =

⋃
k<ω Sk are called

sparse languages. 0-sparse languages are also known as slender languages. We
will need the following characterizations of k-sparse languages in terms of regular
expressions (cf. [SY92, Yu97, Pin1?]).

Proposition 5. For any L ∈ RΣ and k < ω, L ∈ Sk iff L is a finite union of
languages xy∗

0z0 · · · y∗
kzk where x, yi, zi ∈ Σ∗.

There is also a nice characterization of sparse languages in terms of (graphs of)
their minimal automata (cf. [Pin1?]). We say that a DFA A has an ω-pattern if
there are u, v1, v2, w ∈ Σ∗ such that v1, v2 are .-incomparable (i.e., v1(i) �= v2(i)
for some i < |v1|, |v2|), q0 · u = q0 · uv1 = q0 · uv2 and q0 · uv1w ∈ F .

Proposition 6. For any L ∈ RΣ , L ∈ Sω iff the minimal DFA of L has no
ω-pattern.

For q ∈ Q and u ∈ Σ∗, let (q, u) denote the path in A along u started at q,
and let Q(q, u) = {q · v | v . u}. We say that a path (q, u) meets a set of states
G ⊆ Q if Q(q, u) ∩ G �= ∅. A path (q, u) is a cycle of A if u is nonempty and
q · u = q. A cycle is simple if it has no repeated vertices other that the starting
and ending vertices. Let CA be the set of all Q(q, u) where (q, u) is a cycle of A.
Define the preorder ≤ on CA as follows: G ≤ H if there is a path of A starting in
G and ending in H . Let ≡ denote the equivalence relation on CA induced by ≤.

Note that if G ≡ H then K ≡ G for some K ⊇ G ∪ H , i.e. any element
[G] of the quotient-set CA/ ≡ has a greatest set under inclusion; these greatest
sets are called strongly connected components (SCC’s) of A and they may serve
as canonical representatives for the equivalence classes [G]. The next result is
known (cf. [Pin1?]) and easy to check:

390 V. Selivanov and A. Konovalov

Proposition 7. For any sparse language L = LA ∈ RΣ and any u ∈ L, if the
path (q0, u) meets a SCC of A then [G] = {G} for some G ∈ CA, and G = Q(s, v)
for some simple cycle of A.

We also recall the following classical fact of automata theory. A DFA A is called
counter-free if q · un = q implies q · u = q, for all q ∈ Q, nonempty word u ∈ Σ∗

and n > 0.

Proposition 8. For any L ∈ RΣ the following conditions are equivalent:
1. There is n < ω such that xynz ∈ L iff xyn+1z ∈ L for all x, y, z ∈ Σ∗.
2. The minimal DFA of L is counter-free.

Languages satisfying the conditions in the last proposition are called aperiodic.
By aperiodicity index of an aperiodic language L we mean the least number n
satisfying the condition 1 above. There are several other important characteriza-
tions of the class AΣ of aperiodic languages but in this paper we use only those
mentioned above. The class AΣ is closed under the Boolean operations.

4 Boolean Algebra RΣ

First we characterize the BA RΣ formed by the class RΣ of regular languages
over Σ. Thus, we prove item 1 of the main theorem from Introduction.

Proposition 9. 1. For any alphabet Σ, RΣ is an atomic BA with infinitely
many atoms, and R′

Σ is a countable atomless BA.
2. The class F (RΣ) of regular languages is decidable.

Proof. 1. Obviously, the atoms of RΣ are exactly the singleton languages, hence
the first assertion holds. For the second assertion, it suffices to show that for any
infinite language L ∈ RΣ there is an infinite regular language M ⊆ L such that
L \ M is infinite. By Proposition 4, there are x, y, z ∈ Σ∗ such that |y| ≥ 1 and
xy∗z ⊆ L. Then the language M = x(yy)∗z has the desired properties.

2. The assertion is well-known because F (RΣ) is the class of finite languages.
�

According to Proposition 1 and Proposition 1.8.3 of [Go96]), the item 1 of Propo-
sition 9 characterizes the BA RΣ up to isomorphism. This immediately implies

Corollary 1. For any alphabet Σ, the BA RΣ is isomorphic to the BA of com-
putable subsets of ω.

We conclude this section with some remarks on sparse languages.

Lemma 1. Let L ∈ RΣ,let the minimal DFA ML has no ω-pattern and let F0 <
· · · < Fk+1 be SCC’s of ML such that a final state of ML is reachable from Fk+1.
Then there exist x, yi, zi ∈ Σ∗ and si ∈ Fi such that xy∗

0z0 · · · y∗
k+1zk+1 ⊆ L,

Fi = Q(si, yi) for each i ≤ k + 1, (si, yi) is a simple cycle of ML, q0 · x ∈ F0,
q0 · xz0 ∈ F1, . . ., q0 · xz0 · · · zk ∈ Fk+1, xz0 · · · zk+1 ∈ F , the words zi are
nonempty, and for each i ≤ k + 1 the first letters in yi, zi are distinct.

Boolean Algebras of Regular Languages 391

Proof. Choose a path u in ML that meets all SCC’s F0, . . . , Fk+1. Then existence
of the desired objects (except maybe the property that the first letters in yi, zi

are distinct) follows from Proposition 7. The last property may be achieved by
“shifting” the cycles (si, yi) if needed. �
The next result extends the corresponding folklore fact on slender languages in
[Pin1?].

Proposition 10. For any L ∈ RΣ and k < ω, L ∈ Sk iff the minimal DFA
ML has no ω-pattern and there is no chain F0 < · · · < Fk+1 of SCC’s of ML

such that a final state of ML is reachable from Fk+1.

Proof. Let L ∈ Sk, then ML has no ω-pattern by Proposition 6. Suppose,
for a contradiction, that a chain as above exists. Consider the language
xy∗

0z0 · · · y∗
k+1zk+1 where the words from the previous lemma are used. By Lem-

mas 1,2 in [SY92] we get xy∗
0z0 · · · y∗

k+1zk+1 �∈ Sk which is a contradiction.
For the opposite direction, assume that there is no chain of length k + 1 as in

the formulation. There are only finitely many of such chains of length ≤ k. By
Proposition 7, L is a finite union of languages of the form xy∗

0z0 · · · y∗
t zt, t ≤ k

constructed as in the last paragraph. By Proposition 5 L ∈ Sk. �
As an immediate consequence, we obtain

Proposition 11. The classes of regular languages Sω ,S0,S1, . . . are ideals of
the BA RΣ and they are decidable.

Proof. The first assertion is obvious. The decidability of Sω follows from Propo-
sition 6. The decidability of Sk for k < ω follows from Proposition 10. �
We finish this section with remarks on some EA’s related to sparse languages.
For any k ≤ ω, let Sk be the EA formed Sk and let Tk be the BA formed by the
sets in Sk and their complements, with the usual set-theoretic operations.

Proposition 12. 1. The EA’s SωS0, S1, . . . are atomic with infinitely many
atoms, and their first Frechét derivatives are countable atomless EA’s without
greatest elements.

2. The BA’s TωT0, T1, . . . are atomic with infinitely many atoms, and their first
Frechét derivatives are countable atomless BA’s.

3. The quotient-algebra RΣ/Sω is a countable atomless BA.

Proof. Items 1 and 2 are checked in a straightforward way, as in the proof of
Proposition 9.

3. We have to show that for any non-sparse language L ∈ RΣ there is a non-
sparse regular language M ⊆ L such that L \M is not sparse. By Proposition 6,
the minimal automaton for L has an ω-pattern with some words u, v1, v2, w as in
Section 3. Let us take M = uv1(v1 + v2)∗w, then uv2(v1 + v2)∗w ⊆ L \M . Since
both languages uv1(v1 +v2)∗w and uv2(v1 +v2)∗w are not sparse by Proposition
6, this completes the proof. �
By Proposition 1, the EA’s in items 1 and 2 above are characterized up to
isomorphism, so we have

392 V. Selivanov and A. Konovalov

Corollary 2. 1. The EA’s SωS0, S1, . . . are pairwise isomorphic.
2. The BA’s TωT0, T1, . . . are pairwise isomorphic.

5 Boolean Algebra AΣ

First we characterize the BA AΣ formed by the class AΣ of aperiodic regular
languages over a unary alphabet Σ. Thus, we prove item 2 of the main theorem
from Introduction.

Proposition 13. For any unary alphabet Σ = {a}, AΣ is an atomic BA with
infinitely many atoms, and A′

Σ is a 2-element BA.

Proof. Obviously, the atoms of AΣ are exactly the singleton languages, hence the
first assertion holds. For the second assertion, it suffices to show that any infinite
aperiodic language L ∈ AΣ is cofinite. By Proposition 4, there are x, y, z ∈ Σ∗

such that |y| ≥ 1 and xy∗z ⊆ L. In other words, am ∈ L for infinitely many m.
By Proposition 8, am ∈ L for all m ≥ n where n is the aperiodicity index of L. �
According to Proposition 1, the assertion above characterizes the BA AΣ up to
isomorphism. This immediately implies

Corollary 3. For any unary alphabet Σ, the BA AΣ is isomorphic to the BA
of finite and cofinite subsets of ω.

For the sequel we need the following lemma which follows easily from Proposition
8 and Theorem 2.1 in [CK97]. A non-empty word u ∈ Σ∗ is called primitive if
vn = u implies n = 1 (and hence v = u).

Lemma 2. For any u ∈ Σ∗, u∗ ∈ AΣ iff u is either empty or primitive.

The next two lemmas relate the iterated Frechét ideals of AΣ to sparse languages.

Lemma 3. For any k < ω and x, yi, zi ∈ Σ∗ with y∗
1 , · · · , y∗

k ∈ AΣ , the element
xy∗

1z1 · · · y∗
kz/Fk(AΣ) is either zero or an atom of the BA A

(k)
Σ . If L is a finite

union of such languages xy∗
1z1 · · · y∗

kzk then L ∈ Fk+1(AΣ).

Proof. Since the second assertion follows from the first one, it suffices to check
the first assertion by induction on k. For k = 0 the assertion is obvious because
{x} is an atom of AΣ = A

(0)
Σ .

Let k = 1. The case y1 = ε is trivial, so assume y1 to be non-empty (hence,
primitive by Lemma 2). Then L = xy∗

1z1 is infinite and we have to show that if
A is an infinite aperiodic subset of L then L \ A is finite. We have xym

1 z1 ∈ A
for infinitely many m. By Proposition 8, xym

1 z1 ∈ A for all m ≥ n where n is
the aperiodicity index of A. Therefore, L \ A is finite.

Let now k ≥ 2. For any n < ω, set Ln = xyn
1 y∗

1z1 · · · yn
k y∗

kzk, then L =
L0 ⊃ L1 ⊃ L2 ⊃ · · · where L = xy∗

1z1 · · · y∗
kzk. It suffices to show that for any

aperiodic language A ⊆ L at least one of languages A,L \ A is in Fk(AΣ). We
distinguish two cases.

Boolean Algebras of Regular Languages 393

Case 1. Ln ⊆ A for some n. Then A = L \A ⊆ L \Ln ∈ Fk(AΣ) by induction
on k. Thus, A ∈ F2(AΣ).

Case 2. Ln �⊆ A for all n, i.e. for any n there are m1, . . . ,mk ≥ n such
that xym1

1 z1 · · · ymk

k zk ∈ A. By Proposition 8, xym1
1 z1 · · · ymk

k zk ∈ A for all
m1, . . . ,mk ≥ m where m is the aperiodicity index of A. Then Lm ⊆ A, hence
L \ A ⊆ L \ Lm ∈ Fk(AΣ), hence L \ A ∈ Fk(AΣ). �

Lemma 4. Let u, v1, v2, w ∈ Σ∗ be such that the words v1, v2 are primitive and
.-incomparable. Then uv∗1w �∈ F1(AΣ), uv∗1v2v

∗
1w �∈ F2(AΣ), uv∗1v2v

∗
1v2v

∗
1w �∈

F3(AΣ) and so on.

Proof. The assertion uv∗1w �∈ F1(AΣ) is clear because the language uv∗1w is
infinite while F1(AΣ) is the class of finite languages.

The language uv∗1v2v
∗
1w is a disjoint union of languages Kn = uvn

1 v2v
∗
1w,

and, for each n, Kn/F1(AΣ) is an atom of A′
Σ by the previous lemma. There-

fore, uv∗1v2v
∗
1w �∈ F2(AΣ). Continuing in this manner, we derive the desired

assertions. �

Lemma 5. For any L ∈ Fω(AΣ), the minimal DFA of L has no ω-pattern.

Proof. By contraposition, assume that the minimal DFA of L has an ω-pattern
with some words u, v1, v2, w as in Section 3. By Proposition 8, the words v1, v2 are
primitive. We have to show that L �∈ Fω(AΣ). Since u(v1 +v2)∗w ⊆ L, it suffices
to show that uv∗1w �∈ F1(AΣ), uv∗1v2v

∗
1w �∈ F2(AΣ), uv∗1v2v

∗
1v2v

∗
1w �∈ F3(AΣ)

and so on. But this holds by the previous lemma. �
We are ready to provide useful characterizations of the iterated Frechét ideals
of AΣ .

Theorem 2. For any L ∈ RΣ the following conditions are equivalent:
1. L ∈ Fω(AΣ).
2. The minimal DFA of L is counter-free and has no ω-pattern.
3. L ∈ AΣ ∩ Sω.
4. L is a finite union of languages xy∗

0z0 · · · y∗
kzk where k < ω, x, yi, zi ∈ Σ∗

and y∗
0 , · · · , y∗

k ∈ AΣ.

Proof. 1→2. Follows from the previous lemma and Proposition 8.
2↔3. Follows from Propositions 8 and 6.
2→4. The desired representation of L follows from Lemmas 1 and 2.
4→1. Follows from Lemma 3. �

Corollary 4. The class of regular languages Fω(AΣ) is decidable.

Next we characterize Fk(AΣ) for k < ω. Note that F0(AΣ) = {∅} and F1(AΣ)
is the class of finite languages over Σ.

Theorem 3. For any k < ω and L ∈ RΣ the following conditions are
equivalent:

394 V. Selivanov and A. Konovalov

1. L ∈ Fk+2(AΣ).
2. The minimal DFA of L is counter-free, has no ω-pattern, and there is no

chain F0 < · · · < Fk+1 of SCC’s of ML such that a final state of ML is
reachable from Fk+1.

3. L ∈ AΣ ∩ Sk.
4. L is a finite union of languages xy∗

0z0 · · · y∗
kzk where x, yi, zi ∈ Σ∗ and

y∗
0 , · · · , y∗

k ∈ AΣ.

Proof. 1→2. Follows from Proposition 8, Lemma 5 and the proofs of Lemma 5
and Proposition 10.

2↔3. Follows from Propositions 8 and 10.
2→4. The desired representation of L follows from Lemmas 1 and 2.
4→1. Follows from Lemma 3. �

Corollary 5. For any k < ω, the class of regular languages Fk(AΣ) is decidable.

Next we prove the item 3 of the main theorem in Introduction.

Theorem 4. Item 3 of the main theorem in Introduction holds.

Proof. First we check that Fk(AΣ) ⊂ Fk+1(AΣ) for each k < ω. For k = 0 the
inclusion is trivial. Let a, b ∈ Σ, a �= b. Let y = ab and z = aab, then y, z are
primitive .-incomparable words. It suffices to show that y∗ ∈ F2(AΣ) \F1(AΣ),
y∗zy∗ ∈ F3(AΣ)\F2(AΣ), y∗zy∗zy∗ ∈ F4(AΣ)\F3(AΣ), and so on. By Theorem
2 and Lemma 3, y∗ ∈ F2(AΣ), y∗zy∗ ∈ F3(AΣ), y∗zy∗zy∗ ∈ F4(AΣ), and so on.
By Lemma 4, y∗ �∈ F1(AΣ), y∗zy∗ �∈ F2(AΣ), y∗zy∗zy∗ �∈ F3(AΣ), and so on.

By Lemmas 3 — 5, elements y∗/F1(AΣ), y∗zy∗/F2(AΣ), . . . are atoms re-
spectively in A

(1)
Σ , A

(2)
Σ , . . ., and, for each n < ω, the same applies to the ele-

ments zny∗/F1(AΣ), zny∗zy∗/F2(AΣ), Since the languages zny∗ (as well as
the languages zny∗zy∗ and so on) are pairwise disjoint for distinct n, the BA’s
A

(1)
Σ , A

(2)
Σ , . . . have infinitely many atoms (as well as the BA A

(0)
Σ = AΣ).

Next we check that the BA A
(k)
Σ is atomic for each k < ω. For k < 2 this is

again obvious, so it remains to show that for any k < ω and L ∈ AΣ \Fk+2(AΣ)
there is an aperiodic language A ⊆ L such that A/Fk+2(AΣ) is an atom of
A

(k+2)
Σ . We distinguish the cases L �∈ Fω(AΣ) and L ∈ Fω(AΣ).
In the first case, by Propositions 6 and 8 the minimal DFA of L has an ω-

pattern, hence A exists by Theorem 2 and Lemma 4. In the second case, by
Theorem 2 and Lemma 1 there are SCC’s F0 < · · · < Fk+1 and the words
specified there. The words z0, . . . , zk are non-empty and the first letters in zi, yi

are distinct for each i ≤ k. Then the language A = xy∗
0z0 · · · y∗

kzk has the desired
property.

It remains to show that for any L ∈ AΣ \ Fω(AΣ) there is an aperiodic
language M ⊆ L such that M,L \M �∈ Fω(AΣ). By Proposition 8 and Theorem
2, the minimal DFA ML of L is counter-free and has an ω-pattern with some

Boolean Algebras of Regular Languages 395

words u, v1, v2, w as in Section 3. Since ML is counter-free, v∗1 , v
∗
2 ∈ AΣ . By the

proof of Proposition 12, we can take M = uv1(v1 + v2)∗w. �
From the results above we immediately obtain characterizations of the EA’s
Fk(AΣ) formed by the ideals Fk(AΣ) (k ≤ ω) and of the BA’s Gk(AΣ) formed
by the languages in Fk(AΣ) and their complements.

Corollary 6. Let Σ be an alphabet with at least two letters.
1. For any k ≤ ω, Fk(AΣ) is a superatomic EA of superatomicity type (k, k, 0).
2. For any k ≤ ω, Gk(AΣ) is a superatomic BA of superatomicity type (k, 0, 1).

6 Conclusion

We hope that results of this paper demonstrate that characterizing of other
well-known BA’s (and, more generally, of lattices) of regular languages and ω-
languages may be also of interest. In particular, it is instructive to characterize
the BA’s formed by levels of the dot-depth hierarchy.

After presenting the main theorem at the Mal’tsev Meeting-2010 in Novosi-
birsk we learned from Andrea Sorbi that he with his colleagues independently
started an investigation of natural BA’s in formal language theory, and they
independently obtained the assertion 1 of the main result in Introduction. Ac-
cording to Andrea, this is the only intersection of their (yet unpublished) results
with ours.

Acknowledgement. We are grateful Sergey Goncharov for useful hints on BA’s
and to Jean-Eric Pin for a useful discussion of slender and sparse languages and
for providing a part of his yet unpublished manuscript [Pin1?].

References

[CK97] Choffrut, C., Karhumäki, J.: Combinatorics of Words. In: Handbook of For-
mal Languages. Springer, Berlin (1997)

[Er79] Ershov, Y.L.: Relatively complemented distributive lattices. Algebra and
Logic 18(6), 680–722 (1979) (Russian, there is an English translation)

[GGP08] Gehrke, M., Grigorieff, S., Pin, J.-É.: Duality and equational theory of reg-
ular languages. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS,
vol. 5126, pp. 246–257. Springer, Heidelberg (2008)

[Go96] Goncharov, S.S.: Countable Boolean Algebras and Decidability. Plenum,
New York (1996)

[Han75] Hanf, W.: The boolean algebra of logic. Bull. Amer. Math. Soc. 20(4), 456–
502 (1975)

[Ke78] Ketonen, J.: The structure of countable Boolean algebras. Annals of Math-
ematics 108, 41–89 (1978)

[LPS02] Lempp, S., Peretyat’kin, M., Solomon, R.: The Lindenbaum algebra of the
theory of the class of all finite models. Journal of Mathematical Logic 2(2),
145–225 (2002)

396 V. Selivanov and A. Konovalov

[Pin1?] Pin, J.-E.: Unpublished manuscript on regular languages
[Pip97] Pippenger, N.: Regular languages and Stone duality. Theory of Computing

Systems 30(2), 121–134 (1997)
[PP04] Perrin, D., Pin, J.-E.: Infinite Words. Pure and Applied Mathematics,

vol. 141. Elsevier, Amsterdam (2004)
[Se91] Selivanov, V.L.: Universal Boolean algebras with applications. In: Abstracts

of Int. Conf. in Algebra, Novosibirsk, p. 127 (1991) (in Russian)
[Se92] Selivanov, V.L.: Hierarchies, Numerations, Index Sets. Handwritten Notes,

290 pp (1992)
[Se03] Selivanov, V.L.: Positive structures. In: Barry Cooper, S., Goncharov, S.S.

(eds.) Computability and Models, Perspectives East and West, pp. 321–350.
Kluwer Academic/Plenum Publishers, New York (2003)

[Si64] Sikorski, R.: Boolean Algebras. Springer, Berlin (1964)
[Str94] Straubing, H.: Finite automata, formal logic and circuit complexity.

Birkhäuser, Boston (1994)
[SY92] Szilard, A., Yu, S., Zhang, K., Shallit, J.: Characterizing Regular Languages

with Polynomial Densities. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992.
LNCS, vol. 629, Springer, Heidelberg (1992)

[Th96] Thomas, W.: Languages, automata and logic. In: Handbook of Formal Lan-
guage Theory, vol. B, pp. 133–191 (1996)

[Yu97] Yu, S.: Regular Languages. In: Rozenberg, G., Salomaa, A. (eds.) A chapter
of Handbook of Formal Languages. Springer, Heidelberg (1997)

Fife’s Theorem Revisited

Jeffrey Shallit

University of Waterloo, Waterloo, ON N2L 3G1 Canada
shallit@cs.uwaterloo.ca

Abstract. We give another proof of a theorem of Fife — understood
broadly as providing a finite automaton that gives a complete descrip-
tion of all infinite binary overlap-free words. Our proof is significantly
simpler than those in the literature. As an application we give a complete
characterization of the overlap-free words that are 2-automatic.

1 Introduction

Repetitions in words is a well-researched topic. Among the various themes stud-
ied, the binary overlap-free words play an important role, both historically and
as an example exhibiting interesting structure. Here by an overlap we mean a
word of the form axaxa, where a is a single letter and x is a (possibly empty)
word.

It is easy to see that neither the finite nor the infinite binary overlap-free words
form a regular language. Nevertheless, in 1980, Earl Fife [7] proved a theorem
characterizing the infinite binary overlap-free words as encodings of paths in a
finite automaton. His theorem was rather complicated to state and the proof
was difficult. Berstel [3] later simplified the exposition, and both Carpi [5] and
Cassaigne [6] gave an analogous analysis for the case of finite words. Also see [4].

In this note we show how to use the factorization theorem of Restivo and
Salemi [10] to give an alternate (and, we hope, significantly simpler) proof of
Fife’s theorem — here understood in the general sense of providing a finite
automaton whose paths encode all infinite binary overlap-free words.

2 Notation

Let Σ be a finite alphabet. We let Σ∗ denote the set of all finite words over Σ
and Σω denote the set of all (right-) infinite words over Σ. We say y is a factor
of a word w if there exist words x, z such that w = xyz.

If x is a finite word, then xω represents the infinite word xxx · · · .
As mentioned above, an overlap is a word of the form axaxa, where a ∈ Σ

and x ∈ Σ∗. An example of an overlap in English is the word alfalfa. A finite
or infinite word is overlap-free if it contains no finite factor that is an overlap.

From now on we fix Σ = {0, 1}. The most famous infinite binary overlap-free
word is t, the Thue-Morse word, defined as the fixed point, starting with 0, of
the Thue-Morse morphism μ, which maps 0 to 01 and 1 to 10. We have

t = t0t1t2 · · · = 0110100110010110 · · · .

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 397–405, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

398 J. Shallit

The morphism μ has a second fixed point, t = μω(1), which is obtained from t
by applying the complementation coding defined by 0 = 1 and 1 = 0.

We let O denote the set of (right-) infinite binary overlap-free words.
We now recall the infinite version of the factorization theorem of Restivo and

Salemi [10] as stated in [1, Lemma 3].

Theorem 1. Let x ∈ O, and let P = {p0, p1, p2, p3, p4}, where p0 = ε, p1 = 0,
p2 = 00, p3 = 1, and p4 = 11. Then there exists y ∈ O and p ∈ P such
that x = pμ(y). Furthermore, this factorization is unique, and p is uniquely
determined by inspecting the first 5 letters of x.

We can now iterate the factorization theorem to get

Corollary 1. Every infinite overlap-free word x can be written uniquely in the
form

x = pi1μ(pi2μ(pi3μ(· · ·))) (1)

with ij ∈ {0, 1, 2, 3, 4} for j ≥ 1, subject to the understanding that if there exists
c such that ij = 0 for j ≥ c, then we also need to specify whether the “tail” of
the expansion represents μω(0) = t or μω(1) = t. Furthermore, every truncated
expansion

pi1μ(pi2μ(pi3μ(· · · pin−1μ(pin) · · ·)))
is a prefix of x, with the understanding that if in = 0, then we need to replace 0
with either 1 (if the “tail” represents t) or 3 (if the “tail” represents t).

Proof. The form (1) is unique, since each pi is uniquely determined by the first
5 characters of the associated word.

Thus, we can associate each infinite binary overlap-free word x with the essen-
tially unique infinite sequence of indices i := (ij)j≥0 coding elements in P , as
specified by (1). If i ends in 0ω, then we need an additional element (either 1
or 3) to disambiguate between t and t as the “tail”. In our notation, we sep-
arate this additional element with a semicolon so that, for example, the string
000 · · · ; 1 represents t and 000 · · · ; 3 represents t.

Other sequences of interest include 203000 · · · ; 1, which codes 001001t, the
lexicographically least infinite word, and 2(31)ω, which codes the word having,
in the i’th position, the number of 0’s in the binary expansion of i.

Of course, not every possible sequence of (ij)j≥1 of indices corresponds to
an infinite overlap-free word. For example, every infinite word coded by 21 · · ·
represents 00μ(0μ(. . .)) and hence begins with 000 and has an overlap. Our goal
is to characterize precisely, using a finite automaton, those infinite sequences
corresponding to overlap-free words.

We recall some basic facts about overlap-free words.

Lemma 1. Let a ∈ Σ. Then

(a) x ∈ O ⇐⇒ μ(x) ∈ O;
(b) a μ(x) ∈ O ⇐⇒ ax ∈ O;

Fife’s Theorem Revisited 399

(c) a a μ(x) ∈ O ⇐⇒ ax ∈ O and x begins aa a.

Proof. See, for example, [1].

We now define 11 subsets of O:

A = O
B = {x ∈ Σω : 1x ∈ O}
C = {x ∈ Σω : 1x ∈ O and x begins with 101}
D = {x ∈ Σω : 0x ∈ O}
E = {x ∈ Σω : 0x ∈ O and x begins with 010}
F = {x ∈ Σω : 0x ∈ O and x begins with 11}
G = {x ∈ Σω : 0x ∈ O and x begins with 1}
H = {x ∈ Σω : 1x ∈ O and x begins with 1}
I = {x ∈ Σω : 1x ∈ O and x begins with 00}
J = {x ∈ Σω : 1x ∈ O and x begins with 0}
K = {x ∈ Σω : 0x ∈ O and x begins with 0}

Next, we describe the relationships between these classes:

Lemma 2. Let x be an infinite binary word. Then

x ∈ A ⇐⇒ μ(x) ∈ A (2)
x ∈ B ⇐⇒ 0μ(x) ∈ A (3)
x ∈ C ⇐⇒ 00μ(x) ∈ A (4)
x ∈ D ⇐⇒ 1μ(x) ∈ A (5)
x ∈ E ⇐⇒ 11μ(x) ∈ A (6)
x ∈ D ⇐⇒ μ(x) ∈ B (7)
x ∈ B ⇐⇒ 0μ(x) ∈ B (8)
x ∈ E ⇐⇒ 1μ(x) ∈ B (9)
x ∈ B ⇐⇒ μ(x) ∈ D (10)
x ∈ D ⇐⇒ 1μ(x) ∈ D (11)
x ∈ C ⇐⇒ 0μ(x) ∈ D (12)
x ∈ I ⇐⇒ μ(x) ∈ E (13)
x ∈ C ⇐⇒ 0μ(x) ∈ E (14)
x ∈ F ⇐⇒ μ(x) ∈ C (15)
x ∈ E ⇐⇒ 1μ(x) ∈ C (16)
x ∈ J ⇐⇒ 0μ(x) ∈ I (17)
x ∈ G ⇐⇒ 1μ(x) ∈ F (18)
x ∈ K ⇐⇒ μ(x) ∈ J (19)
x ∈ J ⇐⇒ μ(x) ∈ K (20)

400 J. Shallit

x ∈ B ⇐⇒ 0μ(x) ∈ J (21)
x ∈ C ⇐⇒ 0μ(x) ∈ K (22)
x ∈ H ⇐⇒ μ(x) ∈ G (23)
x ∈ G ⇐⇒ μ(x) ∈ H (24)
x ∈ D ⇐⇒ 1μ(x) ∈ G (25)
x ∈ E ⇐⇒ 1μ(x) ∈ H (26)

Proof.

(2): Follows immediately from Lemma 1 (a).

(3), (5), (7), (10): Follow immediately from Lemma 1 (b).

(4), (6), (9), (12): Follow immediately from Lemma 1 (c).

(8): 0μ(x) ∈ B ⇐⇒ 10μ(x) = μ(1x) ∈ O ⇐⇒ 1x ∈ O.

(11): Just like (8).

(13): μ(x) ∈ E ⇐⇒ (0μ(x) ∈ O and μ(x) begins with 010) ⇐⇒ (1x ∈ O
and x begins with 00).

(15): Just like (13).

(14): 0μ(x) ∈ E ⇐⇒ (00μ(x) ∈ O and 0μ(x) begins with 010) ⇐⇒ (1x ∈ O
and x begins with 101).

(16): Just like (14).

(17): 0μ(x) ∈ I ⇐⇒ (10μ(x) ∈ O and 0μ(x) begins with 00) ⇐⇒ (μ(1x) ∈
O and x begins with 0) ⇐⇒ (1x ∈ O and x begins with 0).

(18): Just like (17).

(19): μ(x) ∈ J ⇐⇒ (1μ(x) ∈ O and μ(x) begins with 0) ⇐⇒ (0x ∈ O and
x begins with 0).

(23), (20), (24): Just like (19).

(21): 0μ(x) ∈ J ⇐⇒ (10μ(x) ∈ O and 0μ(x) begins with 0) ⇐⇒ μ(1x) ∈
O ⇐⇒ 1x ∈ O.

(25): Just like (21).

(22): 0μ(x) ∈ K ⇐⇒ (00μ(x) ∈ O and 0μ(x) begins with 0) ⇐⇒ (1x ∈ O
and x begins with 101).

(26): Just like (22).

We can now use the result of the previous lemma to create an 11-state au-
tomaton that accepts all infinite sequences (ij)j≥1 over Δ := {0, 1, 2, 3, 4} such

Fife’s Theorem Revisited 401

that pi1μ(pi2μ(pi3μ(· · ·))) is overlap-free. Each state represents one of the sets
A,B, . . . ,K defined above, and the transitions are given by Lemma 2.

Of course, we also need to verify that transitions not shown correspond to the
empty set of infinite words. For example, a transition out of B on the symbol 2
would correspond to the set {x : 100μ(x) ∈ O}. But if x begins with 0, then
100μ(x) = 10001 · · · contains the overlap 000 as a factor, whereas if x begins
with 10, then 100μ(x) = 1001001 · · · contains the overlap 1001001 as a factor,
and if x begins with 11, then 100μ(x) = 1001010 · · · contains 01010 as a factor.
Similarly, we can (somewhat tediously) verify that all other transitions not given
in Figure 1 correspond to the empty set:

δ(B, 4) = {x ∈ Σω : 111μ(x) ∈ O} = ∅
δ(D, 2) = {x ∈ Σω : 000μ(x) ∈ O} = ∅
δ(D, 4) = {x ∈ Σω : 011μ(x) ∈ O} = ∅
δ(C, 1) = {x ∈ Σω : 10μ(x) ∈ O and 0μ(x) begins with 101} = ∅
δ(C, 2) = {x ∈ Σω : 100μ(x) ∈ O and 00μ(x) begins with 101} = ∅
δ(C, 4) = {x ∈ Σω : 111μ(x) ∈ O and 11μ(x) begins with 101} = ∅
δ(E, 2) = {x ∈ Σω : 000μ(x) ∈ O and 00μ(x) begins with 010} = ∅
δ(E, 3) = {x ∈ Σω : 01μ(x) ∈ O and 1μ(x) begins with 010} = ∅
δ(E, 4) = {x ∈ Σω : 011μ(x) ∈ O and 11μ(x) begins with 010} = ∅
δ(F, 0) = {x ∈ Σω : 0μ(x) ∈ O and μ(x) begins with 11} = ∅
δ(F, 1) = {x ∈ Σω : 00μ(x) ∈ O and 0μ(x) begins with 11} = ∅
δ(F, 2) = {x ∈ Σω : 000μ(x) ∈ O and 00μ(x) begins with 11} = ∅
δ(F, 4) = {x ∈ Σω : 011μ(x) ∈ O and 11μ(x) begins with 11} = ∅
δ(J, 2) = {x ∈ Σω : 100μ(x) ∈ O and 00μ(x) begins with 0} = ∅
δ(J, 3) = {x ∈ Σω : 11μ(x) ∈ O and 1μ(x) begins with 0} = ∅
δ(J, 4) = {x ∈ Σω : 111μ(x) ∈ O and 11μ(x) begins with 0} = ∅
δ(K, 2) = {x ∈ Σω : 000μ(x) ∈ O and 00μ(x) begins with 0} = ∅
δ(K, 3) = {x ∈ Σω : 01μ(x) ∈ O and 1μ(x) begins with 0} = ∅
δ(K, 4) = {x ∈ Σω : 011μ(x ∈ O) and 11μ(x) begins with 0} = ∅

The proof of most of these is immediate. (We have not listed δ(I, a) for a ∈
{0, 2, 3, 4}, nor δ(G, a) for a ∈ {1, 2, 4}, nor δ(H, a) for a ∈ {1, 2, 4}, as these are
symmetric with other cases.) The only one that requires some thought is δ(F, 4):

– If x begins 00, then 011μ(x) = 0110101 · · · , which has 10101 as a factor.

– If x begins 01, then 011μ(x) = 0110110 · · · , which has 0110110 as a factor.

– If x begins 1, then 011μ(x) = 01110 · · · , which has 111 as a factor.

402 J. Shallit

1
0

0

31

0

D

C

F

G

HK

J

I

E

B

A

3

31

3

1

3

3

1

0

3

0

00

0

1

0

24

1

Fig. 1. Automaton coding infinite binary overlap-free words

From Lemma 2 and the results above, we get

Theorem 2. Every infinite binary overlap-free word x is encoded by an infinite
path, starting in A, through the automaton in Figure 1.

Every infinite path through the automaton not ending in 0ω codes a unique
infinite binary overlap-free word x. If a path i ends in 0ω and this suffix corre-
sponds to a cycle on state A or a cycle between states B and D, then x is coded
by either i; 1 or i; 3. If a path i ends in 0ω and this suffix corresponds to a cycle
between states J and K, then x is coded by i; 1. If a path i ends in 0ω and this
suffix corresponds to a cycle between states G and H, then x is coded by i; 3.

Corollary 2. Each of the 11 sets A,B, . . . ,K is uncountable.

Proof. We prove this for K, with the proof for the other sets being similar.
Elements in the set K correspond to those infinite paths leaving the state K
in Figure 1. It therefore suffices to produce uncountably many distinct paths
leaving K. One way to do this, for example, is by {13010, 1301000}ω.

3 The Lexicographically Least Overlap-Free Word

We now recover a theorem of [1]:

Theorem 3. The lexicographically least infinite binary overlap-free word is
001001t.

Fife’s Theorem Revisited 403

Proof. Let x be the lexicographically least infinite word, and let y be its code.
Then y[1] must be 2, since any other choice codes a word that starts with 01
or something lexicographically greater. Once y[1] = 2 is chosen, the next two
symbols must be y[2..3] = 03. Now we are in state G. We argue that the lexico-
graphically least string that follows causes us to alternate between states G and
H on 0, producing 100 · · · . For otherwise our only choices are 30, 31, or (if we are
in G) 33 as the next two symbols, and all of these code a word lexicographically
greater than 100. Hence y = 203 0ω; 1 is the code for the lexicographically least
sequence, and this codes 001001t.

4 Automatic Infinite Binary Overlap-Free Words

As a consequence of Theorem 2, we can give a complete description of the in-
finite binary overlap-free words that are 2-automatic [2]. Recall that an infinite
word (an)n≥0 is k-automatic if there exists a deterministic finite automaton with
output that, on input n expressed in base k, produces an output associated with
the state last visited that is equal to an.

Theorem 4. An infinite binary overlap-free word is 2-automatic if and only if
its code is both specified by the DFA given above in Figure 1, and is ultimately
periodic.

First, we need two lemmas:

Lemma 3. An infinite binary word x = a0a1a2 · · · is 2-automatic if and only
if μ(x) is 2-automatic.

Proof. For one direction, we use the fact that the class of k-automatic sequences
is closed under uniform morphisms ([2, Theorem 6.8.3]). So if x is 2-automatic,
so is μ(x).

For the other, we use the well-known characterization of automatic sequences
in terms of the k-kernel [2, Theorem 6.6.2]: a sequence (cn)n≥0 is k-automatic if
and only if its k-kernel defined by

{(cken+i)n≥0 : e ≥ 0 and 0 ≤ i < ke}

is finite. Furthermore, each sequence in the k-kernel is k-automatic.
Now if y = μ(x) = b0b1b2 · · · , then b2n = an. So one of the sequences in the

2-kernel of y is x, and if y is 2-automatic, then so is x.

Now we can prove Theorem 4.

Proof. Suppose the code of x is ultimately periodic. Then we can write its code
as yzω for some finite words y and z. Since the class of 2-automatic sequences
is closed under appending a finite prefix [2, Corollary 6.8.5], by Lemma 3, it
suffices to show that the word coded by zω is 2-automatic.

404 J. Shallit

The word zω codes an overlap-free word w satisfying w = tϕ(w), where t is
a finite word and ϕ is a power of μ. If t is empty the result is clear. Otherwise,
by iteration, we get that

w = tϕ(t)ϕ2(t) · · · . (27)

The 2-kernel of a sequence is obtained by repeated 2-decimation, that is,
recursively splitting a sequence into its even- and odd-indexed terms. When we
apply 2-decimation to μk(t), where t is a finite word, we get μk−1(t) and μk−1(t).
These words are both of even length, provided k is at least 1. Hence iteratively
applying 2-decimation to w, as given in (27), shows that if ϕ = μk, then the
2-kernel of w is contained in

S := {uμi(v)μi+k(v)μi+2k(v) · · · : |u| ≤ |t| and v ∈ {t, t} and 1 ≤ i ≤ k},
which is a finite set.

On the other hand, suppose the code for x is not ultimately periodic. Then we
show that the 2-kernel is infinite. To see this, note that the code for x contains
a 2 or 4 only at the beginning, so we can assume without loss of generality that
the code for x contains only the letters 0, 1, 3. Now it is easy to see that if the
code for x is ay for some letter a ∈ {0, 1, 3} and infinite string y ∈ {0, 1, 3}ω,
then one of the sequences in the 2-kernel (obtained by taking either the odd-
or even-indexed terms) is either coded by y or its complement is coded by y.
Since the code for x is not ultimately periodic, there are infinitely many distinct
sequences in the orbit of the code for x, under the shift. (By the orbit of y we
mean the set of sequences of the form y[i..∞] for i ≥ 1.) Now infinitely many
of these sequences correspond to a sequence in the 2-kernel, or its complement.
Hence x is not 2-automatic.

5 Remarks

According to a theorem of Karhumäki and the author [8], there is a similar
factorization theorem for all exponents α with 2 < α ≤ 7

3 . Recently we have
proven similar results for α = 7

3 [9].
I am grateful to the referees for a careful reading of the manuscript.

References

1. Allouche, J.-P., Currie, J., Shallit, J.: Extremal infinite overlap-free binary words.
Electronic J. Combinatorics 5(1), R27 (1998) (electronic),
http://www.combinatorics.org/Volume_5/Abstracts/v5i1r27.html

2. Allouche, J.-P., Shallit, J.: Automatic Sequences: Theory, Applications, General-
izations. Cambridge University Press, Cambridge (2003)

3. Berstel, J.: A rewriting of Fife’s theorem about overlap-free words. In: Karhumäki,
J., Rozenberg, G., Maurer, H. (eds.) Results and Trends in Theoretical Computer
Science. LNCS, vol. 812, pp. 19–29. Springer, Heidelberg (1994)

4. Blondel, V.D., Cassaigne, J., Jungers, R.M.: On the number of α-power-free binary
words for 2 < α ≤ 7/3. Theoret. Comput. Sci. 410, 2823–2833 (2009)

http://www.combinatorics.org/Volume_5/Abstracts/v5i1r27.html

Fife’s Theorem Revisited 405

5. Carpi, A.: Overlap-free words and finite automata. Theoret. Comput. Sci. 115,
243–260 (1993)

6. Cassaigne, J.: Counting overlap-free binary words. In: Enjalbert, P., Wagner, K.W.,
Finkel, A. (eds.) STACS 1993. LNCS, vol. 665, pp. 216–225. Springer, Heidelberg
(1993)

7. Fife, E.D.: Binary sequences which contain no BBb. Trans. Amer. Math. Soc. 261,
115–136 (1980)

8. Karhumäki, J., Shallit, J.: Polynomial versus exponential growth in repetition-free
binary words. J. Combin. Theory. Ser. A 105, 335–347 (2004)

9. Rampersad, N., Shallit, J., Shur, A.: Fife’s theorem for 7
3
-powers (2011) (preprint)

10. Restivo, A., Salemi, S.: Overlap free words on two symbols. In: Perrin, D., Nivat,
M. (eds.) Automata on Infinite Words. LNCS, vol. 192, pp. 198–206. Springer,
Heidelberg (1985)

Infinite Words Rich and Almost Rich

in Generalized Palindromes

Edita Pelantová and Št̀ıpán Starosta

Department of Mathematics, FNSPE, Czech Technical University in Prague,
Trojanova 13, 120 00 Praha 2, Czech Republic

Abstract. We focus on Θ-rich and almost Θ-rich words over a finite
alphabet A, where Θ is an involutive antimorphism over A∗. We show
that any recurrent almost Θ-rich word u is an image of a recurrent
Θ′-rich word under a suitable morphism, where Θ′ is again an involutive
antimorphism. Moreover, if the word u is uniformly recurrent, we show
that Θ′ can be set to the reversal mapping. We also treat one special
case of almost Θ-rich words. We show that every Θ-standard word with
seed is an image of an Arnoux-Rauzy word.

Keywords: palindrome, pseudopalindrome, palindromic defect, richness.

1 Introduction

In this paper we deal with infinite words over a finite alphabet A. Given a
word u ∈ AN we are interested whether its language L(u) is saturated, in a
certain sense, by generalized palindromes, here called Θ-palindromes. We use
the symbol Θ for an involutive antimorphism, i.e., a mapping Θ : A∗ → A∗ such
that Θ2 = Id and Θ(uv) = Θ(v)Θ(u) for all u, v ∈ A∗. Fixed points of Θ are
called Θ-palindromes.

A strong impulse for study of palindromes recently came from outside of
mathematics. Physicists discovered a role of classical palindromes in the de-
scription of the spectrum of Schrödinger operators with aperiodic potentials,
see [14]. In genetics, the so called Watson-Crick palindromes play, for instance,
an important role in the description of unwanted bindings of nucleotides in a
DNA strand, see [15]. In our terminology, the Watson-Crick palindromes are
Θ-palindromes where the involutive antimorphism Θ acts on a quaternary al-
phabet and has no fixed point of length one.

The most common antimorphism used in combinatorics on words is the re-
versal mapping. We denote it by R. The reversal mapping associates to every
word w = w1w2 . . . wn its mirror image R(w) = wnwn−1 . . . w1. In the case
w = R(w), we sometimes say that w is a palindrome or classical palindrome
instead of R-palindrome.

The set of distinct Θ-palindromes occurring in a finite word w is denoted
PalΘ(w). Since the empty word ε is a Θ-palindrome for any Θ, we have a simple
lower bound #PalΘ(w) ≥ 1.

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 406–416, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Infinite Words Rich and Almost Rich in Generalized Palindromes 407

In 2001, Droubay et al. gave in [12] an upper bound for the reversal mapping
R. They deduced that #PalR(w) ≤ |w| + 1, where |w| denotes the length of
the word w. In [4], Blondin Massé et al. studied involutive antimorphisms with
no fixed points of length 1. For such Θ they decreased the upper bound, in
particular, they showed that #PalΘ(w) ≤ |w| for all non-empty word w. In
[18], the upper bound is more precise. The following estimate is valid for any
involutive antimorphism Θ:

#PalΘ(w) ≤ |w| + 1 − γΘ(w), (1)

where γΘ(w) := #
{{a,Θ(a)} | a ∈ A, a occurs in w, and a �= Θ(a)

}
. Let us note

that if Θ = R, then γΘ(w) = 0, and the upper bound in (1) is the same as for
classical palindromes.

According to the terminology for classical palindromes introduced in [13] and
for Θ-palindromes in [18], we say that a finite word w is Θ-rich if the equality in
(1) holds. An infinite word u ∈ AN is Θ-rich if every factor w ∈ L(u) is Θ-rich.
In [5], the authors introduced the palindromic defect of a finite word w as the
difference between the upper bound |w| + 1 and the actual number of distinct
palindromic factors. We define analogously the Θ-palindromic defect of w as

DΘ(w) := |w| + 1 − γΘ(w) − #PalΘ(w).

We define for an infinite word u its Θ-palindromic defect as

DΘ(u) = sup{DΘ(w) | w ∈ L(u)}.

Words with finite Θ-palindromic defect are referred to as almost Θ-rich. The
notion of almost richness for classical palindromes was introduced and studied
in [13].

In [7], it is shown that rich words (i.e. R-rich words) can be characterized
using an inequality shown in [2] for infinite words with languages closed under
reversal. Results of both mentioned papers were generalized in [18] for an arbi-
trary involutive antimorphism. In particular, it is shown that if an infinite word
has its language closed under Θ, the following inequality holds

C(n + 1) − C(n) + 2 ≥ PΘ(n) + PΘ(n + 1) for all n ≥ 1, (2)

where C(n) is the factor complexity defined by C(n) := #{w ∈ L(u) | n = |w|}
and PΘ(n) is the Θ-palindromic complexity defined by PΘ(n) := #{w ∈ L(u) |
w = Θ(w) and n = |w|}. The gap between the left-hand side and the right-
hand side in (2) decides about Θ-richness. Let us therefore denote by TΘ(n) the
quantity

TΘ(n) := C(n + 1) − C(n) + 2 − PΘ(n + 1) − PΘ(n).

In [18], it is also shown that an infinite word with language closed under Θ is
Θ-rich if and only if

TΘ(n) = 0 for all n ≥ 1.

408 E. Pelantová and Š. Starosta

The list of infinite words which are R-rich is quite extensive. See for instance
[2,9,11,13]. Examples of Θ-rich words can be found in the class of words called
Θ-episturmian words. A condition when such a word is Θ-rich can be found
in [18]. In [1], the authors also deal with Θ-episturmian words (they are called
pseudopalindromic in the paper). However, the result of Theorem 2 in [1] is valid
only for the subset of Θ-rich Θ-episturmian words, not for all Θ-episturmian
words as stated in the paper.

Fewer examples of words with finite non-zero palindromic defect are known.
Periodic words with finite non-zero R-defect can be found in [5], aperiodic ones
are studied in [13] and [3]. To our knowledge, examples of words with 0 <
DΘ(u) < +∞ and Θ �= R have not yet been explicitly exhibited. As we will
show, such examples are Θ-standard words with seed defined in [10] and thus
also their subset, standard Θ-episturmian words, which can be constructed from
standard episturmian words, see [8].

The main aim of this paper is to show that among words with finite Θ-pa-
lindromic defect, Θ-rich words, i.e. words with DΘ(u) = 0, play an important
role. We will show the following theorems.

Theorem 1. Let Θ1 : A∗ → A∗ be an involutive antimorphism. Let u ∈ AN be
a recurrent infinite word such that DΘ1(u) < +∞. Then there exist an involutive
antimorphism Θ2 : B∗ → B∗, a morphism ϕ : B∗ → A∗ and an infinite recurrent
word v ∈ BN such that

u = ϕ(v) and v is Θ2-rich.

A stronger statement can be shown if uniform recurrency is assumed.

Theorem 2. Let Θ : A∗ → A∗ be an involutive antimorphism. Let u ∈ AN be
a uniformly recurrent infinite word such that DΘ(u) < +∞. Then there exist a
morphism ϕ : B∗ → A∗ and an infinite uniformly recurrent word v ∈ BN such
that

u = ϕ(v) and v is R-rich.

One can conclude that rich words, using the classical notion of palindrome, play
somewhat a more important role than Θ-rich words for an arbitrary Θ �= R.

The proofs of the two stated theorems do not provide any relation between
the size of the alphabet B of the word v and the size of the original alphabet A.
In the following special case, the size of B can be bounded. Moreover, the word
v is more specific, namely it is Arnoux-Rauzy. Let us recall that an infinite word
v is an Arnoux-Rauzy word if for every n we have C(n) = (#A − 1)n + 1 and
there is exactly one factor w ∈ L(v) of length n which can be extended to the
left in more than one way, i.e., is left special. Ternary Arnoux-Rauzy words were
first metioned in [17].

Theorem 3. Let Θ : A∗ → A∗ be an involutive antimorphism and u ∈ AN be a
Θ-standard word with seed. Then there exist an Arnoux-Rauzy word v ∈ BN and
a morphism ϕ : B∗ → A∗ such that

u = ϕ(v) and #B ≤ #A.

Infinite Words Rich and Almost Rich in Generalized Palindromes 409

One of the reviewers of this paper pointed out to us the fact that the last
theorem is in fact a restatement in a weak form of Theorem 1 in [6]. We keep it
here with a proof for the sake of completeness in the context of Θ-richness.

All three mentioned theorems present an almost Θ1-rich word as an image of
a Θ2-rich word by a suitable morphism. The opposite question when a morphic
image of a Θ1-rich word is almost Θ2-rich is not tackled here. In [13], a type of
morphisms preserving the set of almost R-rich words is studied.

2 Properties of Words with Finite Θ-Defect

We consider mainly infinite words u = (un)n∈N ∈ AN having their language
L(u) closed under a given involutive antimorphism Θ. In other words, for any
factor w ∈ L(u) we have Θ(w) ∈ L(u).

For any factor w ∈ L(u) there exists an index i such that w is a prefix of the
infinite word uiui+1ui+2 Such an index is called an occurrence of w in u. If
each factor of u has infinitely many occurrences in u, the infinite word u is said
to be recurrent. It is easy to see that if the language of u is closed under Θ,
then u is recurrent. For a recurrent infinite word u, we may define the notion of
a complete return word of any w ∈ L(u). It is a factor v ∈ L(u) such that w is
a prefix and a suffix of v and w occurs in v exactly twice. By a return word of
a factor w we mean a word q ∈ L(u) such that qw is a complete return word of
w. If every factor w of a recurrent word u has only finitely many return words,
then the infinite word u is called uniformly recurrent.

An important role for the description of languages closed under Θ is played
by the so-called super reduced Rauzy graphs Gn(u), introduced in [7]. Before
defining them, we introduce some necessary notions.

We say that a factor w ∈ L(u) is left special (LS) if w has at least two left
extensions, i.e., if there exist two letters a, b ∈ A, a �= b, such that aw, bw ∈ L(u).
A right special (RS) factor is defined analogously. If a factor is LS and RS, we
refer to it as bispecial. The fact that L(u) is closed under Θ assures the following
relation: a factor w is LS if and only if the factor Θ(w) is RS.

An n-simple path e is a factor of u of length at least n + 1 such that the only
special (right or left) factors of length n occurring in e are its prefix and suffix
of length n. If w is the prefix of e of length n and v is the suffix of e of length n,
we say that the n-simple path e begins with w and ends with v. We denote by
Gn(u) an undirected graph whose set of vertices is formed by unordered pairs
{w,Θ(w)} such that w ∈ L(u), |w| = n, and w is RS or LS. We connect two
vertices {w,Θ(w)} and {v,Θ(v)} by an unordered pair {e,Θ(e)} if e or Θ(e) is
an n-simple path beginning with w or Θ(w) and ending with v or Θ(v). Note
that the graph Gn(u) may have multiple edges and loops.

As first shown for classical palindromes in [7], the super reduced Rauzy graph
Gn(u) can be used to detect the equality in (2). Let us cite Corollary 7 from [18].

Proposition 4. Let n ∈ N and L(u) be closed under Θ. Then TΘ(n) = 0 if and
only if

410 E. Pelantová and Š. Starosta

1. all n-simple paths forming a loop in Gn(u) are Θ-palindromes and
2. the graph obtained from Gn(u) by removing all loops is a tree.

Analogous to the case of the reversal mapping, one can see from the definition
of Θ-defect that an infinite word u has finite Θ-defect if and only if there exists
an integer H such that every prefix p of u of length greater than H has a
unioccurrent Θ-palindromic suffix, i.e., a suffix occurring exactly once in p. We
use this fact to prove the following lemma, which generalizes Proposition 4.4.
in [13].

Lemma 5. Let u be a recurrent infinite word with finite Θ-defect. Then L(u)
is closed under Θ.

Proof. Let H be an integer such that every prefix of u of length greater than H
has a unioccurrent Θ-palindromic suffix. Suppose that w is a factor of u such
that Θ(w) �∈ L(u). Since u is recurrent, we can find two consecutive occurrences
i and j of the factor w such that i, j > H and i < j. Denote p the prefix of
u ending with w occurring at j, i.e., |p| = j + |w|. Since |p| > H , there ex-
ists a unioccurrent Θ-palindromic suffix of p. Denote s to be such a suffix. If
|s| ≤ |w|, then s is a factor of w and thus occurs at least twice in p - a contra-
diction with the unioccurrence of s. If |s| > |w|, the w is a factor of s which is a
Θ-palindrome and thus contains Θ(w) as well - a contradiction with the assump-
tion that Θ(w) �∈ L(u).

In [3], various properties are shown for words with finite R-palindromic defect.
These properties and their proofs are valid even if we replace the antimorphism
R by an arbitrary Θ.

Proposition 6. Let u be a recurrent infinite word such that DΘ(u) < +∞.
Then there exists a positive integer H such that

– every prefix of u longer than H has a unioccurent Θ-palindromic suffix;
– for any factor w ∈ L(u) such that |w| > H, occurrences of w and Θ(w) in

the word u alternate;
– for any w ∈ L(u) such that |w| > H, every factor v ∈ L(u) beginning

with w, ending with Θ(w), and with no other occurrences of w or Θ(w) is a
Θ-palindrome;

– TΘ(n) = 0 for any integer n > H.

The main difference for an arbitrary Θ is that there can be non-Θ-palindromic
letters. However, this can be dealt with by a good choice of the constant H , and
one can then follow the proofs for Θ = R in [3]. Therefore, we do not give a
proof of the previous proposition.

Let us recall that in case of the reversal mapping and DR(u) = 0, the listed
properties are generalizations of properties already shown in [13] and [11]. In
this case we have H = 0.

As already mentioned, the first property stated in the previous proposition,
in fact, characterizes words with finite Θ-defect. We do not know whether this

Infinite Words Rich and Almost Rich in Generalized Palindromes 411

is the case of the remaining properties. If we restrict our attention to uniformly
recurrent words, only then several characterizations of words with finite Θ-defect
can be shown. The next proposition states two of them that we use in what
follows. Again, the proposition is based on the work done in [3] for Θ = R. No
modifications besides replacing R by Θ in its proof are needed, therefore, we
omit it.

Proposition 7. Let u be a uniformly recurrent infinite word with language
closed under Θ. The following statements are equivalent.

– DΘ(u) < +∞;
– there exists a positive integer K such that for any Θ-palindrome w ∈ L(u)

of length |w| ≥ K, all complete return words of w are Θ-palindromes;
– there exists a positive integer H such that for any w ∈ L(u), |w| > H, the

longest Θ-palindromic suffix of w is unioccurrent in w.

A Θ-standard word with seed is an infinite word defined by using Θ-palindromic
closure, for details see [10]. Construction of such word u guarantees that u is uni-
formly recurrent (cf. Proposition 3.5. in [10]). The authors of [10] showed (Propo-
sition 4.8) that any complete return word of a sufficiently long Θ-palindromic
factor is a Θ-palindrome as well. Therefore, Θ-standard words with seed serve
as an example of almost Θ-rich words.

Corollary 8. Let u be a Θ-standard word with seed. Then DΘ(u) < +∞.

3 Proofs

In this section we give proofs of all three theorems stated in Introduction. Al-
though Theorem 2 seems to be only a refinement of Theorem 1, constructions
of the morphisms ϕ in their proofs differ substantially. It is caused by stronger
properties we may exploit for a uniformly recurrent word.

Proof (Proof of Theorem 1). Recall that according to Theorem 5 the language
L(u) is closed under Θ1.

If u is an eventually periodic word with language closed under Θ1, then u is
purely periodic. Any purely periodic word is a morphic image of a word v over
one-letter alphabet under the morphism which assigns to this letter the period of
u. Therefore we may assume without loss of generality that u is not eventually
periodic.

Since DΘ1(u) < +∞, according to Theorems 4 and 6, there exists H ∈ N
such that

1. ∀w ∈ L(u), |w| > H , occurrences of w and Θ1(w) alternate;
2. ∀w ∈ L(u), |w| > H , every factor beginning with w, ending with Θ1(w) and

with no other occurrences of w or Θ1(w) is a Θ1-palindrome;
3. ∀n ≥ H , every loop in Gn(u) is a Θ1-palindrome and the graph obtained

from Gn(u) by removing all loops is a tree.

412 E. Pelantová and Š. Starosta

Fix n > H . If an edge {b, Θ1(b)} in Gn(u) is a loop, then, according to Prop-
erty 3, we have b = Θ1(b). If the edge {b, Θ1(b)} connects two distinct vertices
{w1, Θ1(w1)} and {w2, Θ1(w2)}, then there exist exactly two n-simple paths b
and Θ1(b) such that without loss of generality the n-simple path b begins with
w1 and ends with w2 and the n-simple path Θ1(b) begins with Θ1(w2) and ends
with Θ1(w1).

We assign to every n-simple path b a new symbol [b], i.e., we define the
alphabet B as

B := {[b] | b ∈ L(u) is an n-simple path}
and on this alphabet we define an involutive antimorphism Θ2 : B∗ → B∗ in the
following way:

Θ2([b]) := [Θ1(b)].

We are now going to construct a suitable infinite word v ∈ BN. Let (si)i∈N

denote a strictly increasing sequence of indices such that si is an occurrence of
a LS or RS factor of length n and every LS and RS factor of length n occurs at
some index si. We define v = (vi)i∈N by the formula

vi = [b] if b = usiusi+1usi+2 . . . usi+1+n−1.

This construction can be done for any n > H . Since infinitely many prefixes
of u are LS or RS factors, we can choose n > H such that the prefix of u of
length n is LS or RS, i.e., s0 = 0.

According to Proposition 12 in [18], to prove that v is Θ2-rich we need to
show the following:

(i) for every non-empty factor w ∈ L(v), any factor v beginning with w
and ending with Θ2(w), with no other occurrences of w or Θ2(w), is a
Θ2-palindrome;

(ii) for every letter [b] ∈ B such that [b] �= Θ2([b]), the occurrences of [b] and
Θ2([b]) in the word v alternate.

Let us first verify (i). Let e and f be factors of v such that e is a prefix of
f and Θ2(e) is a suffix of f and there are no other occurrences of e or Θ2(e)
in f . In that case there exist integers r ≤ k such that f = [b1][b2] . . . [bk] and
e = [b1][b2] . . . [br]. The case r = k is trivial. Suppose r < k. Since v is defined
as a coding of consecutive occurrences of n-simple paths in u, factor f codes a
certain segment of the word u. Let us denote that segment F = uj . . . ul where
j = st for some t ∈ N and l = st+k−1 + n− 1. Factor e codes in the same way a
factor E = uj . . . uh where h = st+r−1 + n − 1.

Due to the definition of Θ2, the fact that e is a prefix of f and Θ2(e) is a suffix
of f ensures that E is a prefix of F and Θ(E) is a suffix of F . Suppose f is not
a Θ2-palindrome. This implies that F is not a Θ1-palindrome which contradicts
Property 3.

Let us now verify (ii). Consider [b] ∈ B such that [b] �= Θ2([b]). Moving
along the infinite word u = u0u1u2 . . . from the left to the right with a window
of width n corresponds to a walk in the graph Gn(u). The pair b and Θ1(b) of

Infinite Words Rich and Almost Rich in Generalized Palindromes 413

n-simple paths in u represents an edge in Gn(u) connecting two distinct vertices.
Moreover, moving along the n-simple path b and moving along Θ1(b) can be
viewed as traversing that edge in opposite directions. Since the graph obtained
from Gn(u) by removing all loops is a tree, the only way to traverse an edge is
alternately in one direction and in the other. Thus, the occurrences of letters [b]
and Θ2([b]) in v alternate.

We have shown that v is Θ2-rich. It is now obvious how to define a morphism
ϕ : B∗ → A∗. If an n-simple path b equals b = usiusi+1 . . . usi+1+n−1, then we
set ϕ([b]) := usiusi+1 . . . usi+1−1.

Proof (Proof of Theorem 2). Recall again that according to Theorem 5 the lan-
guage L(u) is closed under Θ.

Next, we show that infinitely many Θ-palindromes are also prefixes of u.
Consider an integer H whose existence is guaranteed by Proposition 6 and denote
by w a prefix of u longer than H . Since occurrences of factors w and Θ(w) in
u alternate, according to the same proposition, the prefix of u ending with the
first occurrence of Θ(w) is a Θ-palindrome.

Let us denote by p a Θ-palindromic prefix of u of length |p| > K where
K is the constant from Proposition 7. All complete return words of p are
Θ-palindromes. Since u is uniformly recurrent, there exist only finite number
of complete return words to p. Let r(1), r(2), . . . , r(M) be the list of all these
complete return words. Any complete return word r(i) has the form q(i)p =
r(i) for some factor q(i), usually called return word of p. Since r(i) and p are
Θ-palindromes, we have

pΘ(q(i)) = q(i)p for any return word q(i). (3)

Let us define a new alphabet B = {1, 2, . . . ,M} and morphism ϕ : B∗ → A∗

by the prescription

ϕ(i) = q(i), for i = 1, 2, . . . ,M .

First, we shall check the validity of the relation

Θ
(
ϕ(w)p

)
= ϕ

(
R(w)

)
p for any w ∈ B∗ . (4)

Let w = i1i2 . . . in. Then Θ
(
ϕ(i1i2 . . . in)p

)
equals to

Θ(p)Θ
(
ϕ(in)

)
Θ
(
ϕ(in−1)

)
. . . Θ

(
ϕ(i1)

)
= pΘ

(
q(in)

)
Θ
(
q(in−1)

)
. . .Θ

(
q(i1)

)
and we may apply gradually n times the equality (3) to rewrite the right-hand
side as

q(in)q(in−1) . . . q(i1)p = ϕ(in)ϕ(in−1) . . . ϕ(i1)p = ϕ
(
R(i1i2 . . . in)

)
p.

This proves the relation (4).
An important property of the morphism ϕ is its injectivity. Indeed, in accor-

dance with the definition, the number of occurrences of the factor p in ϕ(w)p

414 E. Pelantová and Š. Starosta

equals to the number of letters in w plus one. Moreover, each occurrence of
p in ϕ(w)p indicates a beginning of an image of a letter under ϕ. Therefore,
ϕ(w)p = ϕ(v)p necessarily implies w = v.

Let us finally define the word v. As p is a prefix of u, the word u can be
written as a concatenation of return words q(i) and thus we can determine a
sequence v = (vn) ∈ BN such that

u = q(v0)q(v1)q(v2) . . .

Directly from the definition of v we have u = ϕ(v). Since u is uniformly recur-
rent, the word v is uniformly recurrent as well. To prove that v is an R-rich word,
we shall show that any complete return word of any R-palindrome in the word
v is an R-palindrome as well. According to Theorem 2.14 in [13], this implies
the R-richness of v.

Let s be an R-palindrome in v and w its complete return word. Then ϕ(w)p
has precisely two occurrences of the factor ϕ(s)p. Since s is an R-palindrome, we
have according to (4) that ϕ(s)p is a Θ-palindrome of length |ϕ(s)p| ≥ |p| > K.
Therefore ϕ(w)p is a complete return word of a long enough Θ-palindrome and
according to our assumption ϕ(w)p is a Θ-palindrome as well. Therefore by using
(4) we have

ϕ(w)p = Θ
(
ϕ(w)p

)
= ϕ

(
R(w)

)
p

and injectivity of ϕ gives w = R(w), as we claimed.

Theorem 6.1 in [8] states that every standard Θ-episturmian word is an image
of a standard episturmian word. Again, the role of R can be perceived as more
important. Also, compared to Theorem 2, it may be seen as a special case since
Θ-episturmian words, according to Theorem 8, have finite Θ-defect.

Proof (Proof of Theorem 3).
If u is periodic, then the claim is trivial. Suppose u is aperiodic.
We are going to repeat the proof of Theorem 2 with a more specific choice of

p. Theorem 4.4 in [10] implies that there exists L ∈ N such that any LS factor of
u longer than L is a prefix of u. Without loss of generality, we may assume that
the constant L is already chosen in such a way that all prefixes of u longer than
L have the same left extensions. Let us denote their number by M . According
to the same theorem, infinitely many prefixes of u are Θ-palindromes and thus
bispecial factors as well.

According to Corollary 8, u has finite Θ-palindromic defect. Let K be the
constant from Theorem 7. Altogether, there exists a bispecial factor p, |p| >
max{L,K}, such that it is a prefix of u and a Θ-palindrome. Since p is longer
than K, all complete return words to p are Θ-palindromes. As p is the unique left
special factor of length |p| in u, its return words (i.e., complete return words after
erasing the suffix p) end with distinct letters. It means that there are exactly M
return words of p, denoted again q(i). Let us recall that by M we denoted the
number of left extensions of some factor, therefore M ≤ #A.

Infinite Words Rich and Almost Rich in Generalized Palindromes 415

The construction of the word v and the definition of the morphism ϕ over the
alphabet B = {1, 2, . . . ,M} can be done in exactly the same way as in the proof
of Theorem 2. It remains to show that v is an Arnoux-Rauzy word.

According to Theorem 2 we know that v is R-rich and uniformly recurrent.
Applying Theorem 5 we deduce that the language L(v) is closed under reversal.

Suppose there exist v, w ∈ L(v), two LS factors such that |v| = |w| and
v �= w. Since the words q(i) end with distinct letters, it is clear that ϕ(w)p is
a LS factor of u and it has the same number of left extensions as w. The same
holds for ϕ(v)p. Since both these factors have their length greater than or equal
to |p| > L and are both LS, one must be prefix of another. Let without loss of
generality ϕ(w)p be a prefix of ϕ(v)p, i.e., ϕ(v)p = ϕ(ww′)p. The injectivity of
ϕ implies w′ = ε and thus v = w – a contradiction.

Remark 9. Note that the proof of Theorem 3 is in fact a combination of methods
used in the preceding proofs of Theorems 1 and 2 in the sense that the set of
complete return words r(i) of the factor p and the set of |p|-simple paths in
u coincide.

4 Conclusion

All presented results concern infinite words whose language is closed under one
antimorphism. In particular, we proved that any uniformly recurrent Θ-rich
word u is a morphic image of an R-rich word, or equivalently, that the reversal
mapping R is more important than other antimorphisms. The question whether
this statement is valid even in case when u is not uniformly recurrent is still open.

Infinite words whose languages are invariant under more antimorphisms are
not treated at all in the paper. The famous Thue-Morse word belongs among such
words. Recently the authors proved that words with a larger group of symmetries
cannot be Θ-rich for any antimorphisms Θ from the group. Therefore, a new
definition of richness which respects all symmetries presented in infinite word is
suggested, see [16].

Acknowledgement

We would like to thank the reviewers of this paper for their fruitful remarks. We
acknowledge financial support by the Czech Science Foundation grant
GAČR 201/09/0584, by the grants MSM6840770039 and LC06002 of the Min-
istry of Education, Youth, and Sports of the Czech Republic, and by the grant of
the Grant Agency of the Czech Technical University in Prague grant
No. SGS11/162/OHK4/3T/14.

References

1. Anne, V., Zamboni, L.Q., Zorca, I.: Palindromes and pseudo-palindromes in epis-
turmian and pseudo-episturmian infinite words. In: Brlek, S., Reutenauer, C. (eds.)
Words 2005, vol. (36), pp. 91–100. LACIM (2005)

416 E. Pelantová and Š. Starosta

2. Baláži, P., Masáková, Z., Pelantová, E.: Factor versus palindromic complexity of
uniformly recurrent infinite words. Theoret. Comput. Sci. 380(3), 266–275 (2007)

3. Balková, L., Pelantová, E., Starosta, Š.: Infinite words with finite defect. To appear
in Adv. Appl. Math., (2011), preprint available at
http://arxiv.org/abs/1009.5105

4. Blondin Massé, A., Brlek, S., Garon, A., Labbé, S.: Combinatorial properties of
f-palindromes in the Thue-Morse sequence. Pure Math. Appl. 19(2-3), 39–52 (2008)

5. Brlek, S., Hamel, S., Nivat, M., Reutenauer, C.: On the palindromic complexity of
infinite words. Internat. J. Found. Comput. 15(2), 293–306 (2004)

6. Bucci, M., De Luca, A.: On a family of morphic images of arnoux-rauzy words. In:
Dediu, A.H., Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457,
pp. 259–266. Springer, Heidelberg (2009)

7. Bucci, M., De Luca, A., Glen, A., Zamboni, L.Q.: A connection between palin-
dromic and factor complexity using return words. Adv. in Appl. Math. 42(1),
60–74 (2009)

8. Bucci, M., de Luca, A., De Luca, A.: Characteristic morphisms of generalized
episturmian words. Theor. Comput. Sci. 410, 2840–2859 (2009)

9. Bucci, M., de Luca, A., De Luca, A.: Rich and periodic-like words. In: Diekert, V.,
Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 145–155. Springer, Heidelberg
(2009)

10. Bucci, M., de Luca, A., De Luca, A., Zamboni, L.Q.: On different generalizations
of episturmian words. Theoret. Comput. Sci. 393(1-3), 23–36 (2008)

11. Bucci, M., de Luca, A., De Luca, A., Zamboni, L.Q.: On theta-episturmian words.
European J. Combin. 30(2), 473–479 (2009)

12. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of
de Luca and Rauzy. Theoret. Comput. Sci. 255(1-2), 539–553 (2001)

13. Glen, A., Justin, J., Widmer, S., Zamboni, L.Q.: Palindromic richness. European
J. Combin. 30(2), 510–531 (2009)

14. Hof, A., Knill, O., Simon, B.: Singular continuous spectrum for palindromic
Schrödinger operators. Comm. Math. Phys. 174, 149–159 (1995)

15. Kari, L., Magalingam, K.: Watson-Crick palindromes in DNA computing. Nat.
Comput. (9), 297–316 (2010)

16. Pelantová, E., Starosta, Š.: Languages invariant under more symmetries:
overlapping factors versus palindromic richness. (2011), preprint available at
http://arxiv.org/abs/1103.4051

17. Rauzy, G.: Suites à termes dans un alphabet fini. Séminaire de Théorie des Nombres
de Bordeaux Anné 1982–1983(exposé 25) (1983)

18. Starosta, Š.: On theta-palindromic richness. Theoret. Comput. Sci. 412(12-14),
1111–1121 (2011)

http://arxiv.org/abs/1009.5105
http://arxiv.org/abs/1103.4051

Models of Pushdown Automata with Reset

Nuri Taşdemir and A.C. Cem Say

Boğaziçi University Department of Computer Engineering
P.K. 2 TR-34342 Bebek, Istanbul, Turkey

{nuri.tasdemir,say}@boun.edu.tr
http://www.cmpe.boun.edu.tr

Abstract. We examine various pushdown automaton variants that are
architecturally intermediate between the one-way PDA and the two-way
PDA (2PDA), where leftward moves of the input head can only reset it
to the left end of the tape, and some component of the machine config-
uration may be “forgotten”, that is, reset to its initial value, whenever
such a move is performed. Most of these model variants are shown to
be equivalent in power to either the 2PDA or the one-way PDA. One
exception is the Resettable Pushdown Automaton (RPDA), where the
stack contents are lost every time the input is reset, and which we prove
to be intermediate in power between the PDA and the 2PDA. We give
full characterizations of the classes of languages recognized by both the
deterministic and the nondeterministic versions of the RPDA.

Keywords: automata and formal languages, two-way PDAs.

1 Introduction

The differences in computational power caused by restricting the input head of
an automaton to a one-way, rather than two-way traversal of the tape content
have been studied in great detail for various types of automata [1,11,12,13,16].
One interesting restriction is to allow leftward movements to only “reset” the
head to the beginning of the tape [7,8], an action that would cause the machine
to “forget” where it was looking at the input, if the input head is read-only, and
no further worktape is available, as in the recently introduced probabilistic and
quantum finite automata with restart [15].

In this paper, we consider one of the simplest classical computation models
where the one-way and two-way versions have different computational power,
namely, the pushdown automaton (PDA), and examine various variants that
are architecturally intermediate between these two “extremes”. None of these
variants can move its input head one tape square to the left, but each is en-
dowed with a different instruction that allows it to simultaneously reset some
components of its configuration to its initial value. Most of these model vari-
ants are shown to be equivalent in power to either the one-way or the two-way
PDA. The only exception is what we call the Resettable Pushdown Automa-
ton (RPDA), where the stack contents are also lost every time the input head

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 417–428, 2011.
� Springer-Verlag Berlin Heidelberg 2011

http://www.cmpe.boun.edu.tr

418 N. Taşdemir and A.C. Cem Say

is reset, and which we prove to be intermediate in power. We prove that gen-
eral (nondeterministic) RPDAs recognize precisely the languages in the finite
intersection closure of the context-free languages (CFLs), whereas the class of
languages recognized by deterministic RPDAs equals the Boolean closure of the
deterministic CFLs.

The rest of this paper is structured as follows: Sect. 2 covers the necessary
background. Our findings about PDAs with various alternative types of reset
instructions are presented in Sect. 3. Section 4 is a conclusion.

2 Preliminaries

2.1 Basic Notation

In this paper, Σ denotes the input alphabet not containing the end markers � and
$, and Σ̃ = Σ ∪{�, $}. The empty string is denoted by ε. Σε stands for Σ ∪{ε}.
W ∈ Σ∗ represents an input string. W (i) is the ith character of W , where i is a
natural number, and W (0) is the first character of W . |W | is the length (number
of symbols) of W . W (i, j) denotes the substring of W containing characters from
index i to j, including i, and excluding j. Γ is the finite stack alphabet. Q is
the finite set of states. p, q, s represent states in Q. a, b, c represent characters
in Σ. x, y, z represent characters in Γ . Z ∈ Γ ∗ represents the stack content.
d ∈ {−1, 0, 1} denotes the direction of the input head. C∗(L) is the smallest
family of languages containing the class L and closed under operation ∗.

2.2 Basic Computation Models

We provide the standard definitions of the one- and two-way PDAs in this
subsection.

Pushdown Automata. In simple terms, a pushdown automaton (PDA) is a
finite state machine augmented with a last-in first-out infinite storage. A formal
definition is given below. In the literature, there are several alternative definitions
with minor variations, but all of them recognize the same language family, the
context-free languages (CFLs).

A pushdown automaton is a 7-tuple, (Q,Σ, Γ, δ, q0, z0, F) [4], where

1. Q is a finite nonempty set (of states),
2. Σ is a finite nonempty set (of input symbols),
3. Γ is a finite nonempty set (of stack symbols),
4. δ is any function from (Q × Σε × Γ) into finite subsets of Q × Γ ∗,
5. q0 ∈ Q is the initial state,
6. z0 ∈ Γ is the initial stack symbol, and
7. F ⊆ Q is the set of accept states.

The PDA is a nondeterministic model by definition, and its deterministic coun-
terpart is strictly less powerful. A PDA is deterministic if it satisfies the following
conditions:

Models of Pushdown Automata with Reset 419

1. ∀q ∈ Q∀a ∈ Σε∀x ∈ Γ [|δ(q, a, x)| ≤ 1]
2. ∀q ∈ Q∀x ∈ Γ [(|δ(q, ε, x)| = 1) ⇒ (∀a ∈ Σ[|δ(q, a, x)| = 0])]]
3. ∀q ∈ F∀x ∈ Γ [(|δ(q, ε, x)| = 0)]
4. ∀q ∈ Q∀a ∈ Σε[(|δ(q, a, z0)| �= 0) ⇒ (∃q′∈ Q∃Z ∈ Γ ∗[(q′, z0Z) ∈ δ(q, a, z0)])]

The first two conditions guarantee that there is at most one applicable instruc-
tion in every situation. The third condition guarantees that we do not have to
choose between accepting the string or continuing the computation. And the last
condition guarantees the perpetual existence of z0 at the bottom of the stack.
Therefore until the end of input there exists one and only one computation path.

The languages recognized by deterministic PDAs (DPDAs) are called the
deterministic CFLs (DCFLs).

Two-Way Pushdown Automata. Gray et al. introduced the two-way PDA
model in [3]. A two-way pushdown automaton (2PDA) is basically a PDA which
can move its reading head leftward, as well as rightward, on its input. The stan-
dard PDAs of the previous subsection can be thought of as one-way machines.

A 2PDA M is a 9-tuple (Q,Σ, �, $, Γ, δ, q0, z0, F), where

1. Q is a finite nonempty set (of states),
2. Σ is a finite nonempty set (of input symbols),
3. � /∈ Σ and $ /∈ Σ are the left and right input end-markers,
4. Γ is a finite nonempty set (of stack symbols),
5. δ is any function from Q × Σ̃ × Γ into finite subsets of {−1, 0, 1}×Q×Γ ∗,
6. q0∈Q is the initial state,
7. z0 ∈ Γ is the initial stack symbol, and
8. F⊆Q is the set of accept states.

The collection of its current state, contents of the stack and input tapes, and
the position of the reading head on the input tape make up the instantaneous
configuration of a 2PDA. We can represent a configuration as a 3-tuple of the
form (q, A, Z), where A ∈ ((
 �Σ∗$) ∪ (�Σ∗
 Σ∗$) ∪ (�Σ∗$
)). A represents
the contents of the input tape, with
 marking the place of the reading head.
A 2PDA starts its computation in the initial state q0, with z0 in its stack and
with input in the form of �W$ where W ∈ Σ∗. The reading head of the 2PDA
is initially on the � symbol. Therefore, the initial configuration of a 2PDA is of
the form (q0,
 �Σ∗$, z0).

The configurations of a 2PDA evolve according to its transition function δ.
If (d, q′, Z) ∈ δ(q, a, z), then any configuration where the state is q, the scanned
input symbol is a1, and the topmost stack symbol is z will yield a new configu-
ration that is obtained by

– changing the state to q′,
– moving the input head to the left if d = −1, to the right if d = 1, and leaving

it on the same place if d = 0, and
1 The transition will take place regardless of the input tape content if a = ε.

420 N. Taşdemir and A.C. Cem Say

– popping z from the stack, and then pushing Z. (If nonempty, the first symbol
of Z is written first, and so its last symbol of Z will be on top.)

For convenience and without loss of generality we assume that the 2PDA does
not attempt to move to the left when it is scanning � on the input tape.

If configuration c1 yields c2, we denote this by c1 ' c2. '∗ is the reflexive and
transitive closure of '. We say that 2PDA M accepts string W iff ∃q ∈ F∃Z ∈
Γ ∗[(q0,
 �W$, z0) '∗ (q, �W$
, Z)]. Then L(M), the language recognized by
2PDA M , is equal to {W ∈ Σ∗|M accepts W}.

We call a 2PDA deterministic if it satisfies the following two conditions:

1. ∀(q, a, z) ∈ Q × Σ̃ × Γ [|δ(q, a, z)| ≤ 1] (Therefore we will use δ(q, a, z) =
(d, q′, Z) instead of δ(q, a, z) = {(d, q′, Z)})

2. ∀q ∈ Q∀a ∈ Σ̃[(δ(q, a, z0) = (d, q′, Z)) ⇒ (Z ∈ z0Γ
∗)]

3 PDA with Reset States

We enumerate the intermediate PDA variants that will be considered in our
study in the following manner: The instantaneous configuration of a pushdown
automaton has three variable components; input head position, stack contents,
and internal state. In each of the considered variants, we will augment the one-
way PDA model with an instruction which resets a different subset of these con-
figuration components to their initial values simultaneously. This will be realized
by including special states (called reset states) in the machine description. The
associated reset operation is performed whenever such a reset state is entered,
after which point the computation proceeds as usual from the newly attained
configuration.

Let us now start going through our PDA variants. There are seven nonempty
subsets of our set ({state, stack, input}) of potentially resettable components.
The four variants which have reset instructions corresponding to the subsets
{state}, {stack}, {state,stack}, and {state, stack, input} are easily seen to be
equivalent in power to the one-way PDA: We can of course simulate a {state}-
reset simply with a transition to the initial state. A {stack}-reset can be sim-
ulated by emptying the stack symbol by symbol. A {state,stack}-reset can be
handled by combining the two aforementioned operations. Any accepting com-
putation path of a machine that visits {state, stack, input}-reset states has a
final segment that goes from the starting configuration to an accepting one with-
out visiting any reset states, so the language recognized by any such machine is
context-free.

The remaining types of reset combinations require detailed analysis. In Sect.
3.1, we show that resetting the input head and the stack simultaneously yields
machines, which we call Resettable Pushdown Automata (RPDAs), that are
more powerful than PDAs, but weaker than two-way PDAs. The remaining two
variants are demonstrated to be equivalent to the 2PDA in Sect. 3.2.

Models of Pushdown Automata with Reset 421

3.1 Resettable Pushdown Automata

Nondeterministic Version. Briefly put, a RPDA is just a restricted 2PDA
that cannot move its input head just one square to the left. The only way the
input head can go leftward is by jumping all the way to the left end of the tape,
and each such jump is accompanied by the complete loss of the current stack
contents. A formal definition follows.

Definition 1. A resettable pushdown automaton is a 9-tuple (Q, Σ, $, Γ ,
δ, q0, z0, F , R), where Q, Σ, Γ , F and R are all finite sets, and

1. Q is a finite nonempty set of states,
2. Σ is a finite nonempty set of input symbols,
3. $ /∈ Σ is the input end-marker,
4. Γ is a finite nonempty set of stack symbols,
5. δ is any function from Q × Σε,$ × Γ into finite subsets of Q×Γ ∗,
6. q0 ∈ Q is the initial state,
7. z0 ∈ Γ is the initial stack symbol,
8. F ⊆ Q is the set of accept states, and
9. R ⊆ Q is the set of reset states.

Note that Σε,$ = Σ ∪{ε, $} and Γε = Γ ∪{ε}. The condition that states that all
legal moves should leave z0 at the bottom of the stack is same as in Sect. 2.2.

A resettable pushdown automaton M = (Q,Σ, $, Γ, δ, q0, z0, F,R) computes
as follows: It accepts string W if and only if there exist sequences of states p0, p1,
. . ., pm ∈ Q, natural numbers k0, k1, . . ., km ∈ N , strings Z0, Z1, . . ., Zm ∈ Γ ∗,
and five-tuples of Q × Σε,$ × Γε × Q × Γ ∗ t0, t1, . . ., tm−1 (t = (s, a, y, s′, Y))
that satisfy the nine conditions listed below when it runs on input W$. Here, pi

is the state the machine is in at step i. ki represents the location of the input
reading head. And the string Zi represents the stack content. The five-tuples
represent valid transitions from one step to the next.

1. p0 = q0, k0 = 0 and Z0 = z0 (This condition signifies that M starts out
properly, in the initial state with input reading head on the left end, and
with only z0 in the stack.)

2. For each ti, (s′i, Yi) ∈ δ(si, ai, yi) and pi = si and pi+1 = s′i
3. If ai �= ε then ai = W (ki)
4. yi = Zi(|Zi| − 1)
5. If pi+1∈R then ki+1 = 0 and Zi+1 = z0

6. If pi+1 /∈R and ai �= ε then ki+1 = ki + 1
7. If pi+1 /∈R and ai = ε then ki+1 = ki

8. If pi+1 /∈R then Zi+1 = Zi(0, |Zi| − 1) + Yi

9. pm ∈ F and km = |W | (This condition states that an accept state comes
into effect only when the input head is at the right end-marker)

Theorem 1. The class of languages recognizable by (nondeterministic) RPDAs
is the finite-intersection closure of the context-free languages.

422 N. Taşdemir and A.C. Cem Say

Proof. This requires a two-way proof. First we will show that every language
which can be obtained by intersecting finitely many CFLs can be recognized by
an RPDA. We will then show that every language which can be recognized by
an RPDA can be written as the intersection of finitely many CFLs.

Part I. L = L1 ∩L2 . . . Lk where Li is a CFL for i = 1. . .k. Say that Mi = (Qi,
Σi, Γi, δ, qi,0, Fi) is a PDA for the language Li, where qi,j is the jth state of
Qi. Now we will construct an RPDA M = (Q, Σ, $, Γ , δ, q0, F , R) using the
Mi. Basically we will run the input first on M1. If it accepts, then we will reset
the input head and the stack and pass control to M2. This will continue all the
way to Mk if all the submachines accept the input. The formal construction of
the RPDA is described below.

– Q =
⋃

(Qi) ∪ {r1, r2. . .rk−1}(i �=j ⇒ Qi ∩ Qj = ∅)
– Σ =

⋃
(Σi) Γ =

⋃
(Γi) q0 = q1,0 F = Fk

– R = {r1, r2. . .rk−1}(∀i[Qi∩R = ∅])

– δ(q, a, z) =

⎧⎪⎪⎨⎪⎪⎩
δi(qi,j , a, z) if q = qi,j∈Qi, a ∈ Σi ∪ {ε} and z ∈ Γi

{(ri, ε)} if q∈Fi, a = $ and z ∈ Γi

{(qi+1,0, z)} if q = ri ∈ R, a = ε and z ∈ Γi

∅ otherwise

Part II. Now we will show that every language L which can be recognized by
an RPDA can be written as the intersection of finitely many CFLs. We will
construct finitely many PDAs from the RPDA for L, and write L as the finite
intersection of some context-free languages.

We have a RPDA M = (Q, Σ, $, Γ , δ, q0, z0, F , R) which recognizes L.
k = |R|, and ri ∈ R is the ith reset state. We define PDA M0 = (Q, Σ, Γ , δ0,
q0, F) and Mi = (Q, Σ, Γ , δi, ri, F) for i = 1. . .k. Note that ri acts as a start
state for Mi. We will construct Mi such that it will accept exactly the set of
strings which are accepted by M without the need of any further reset after ri,
assuming that they reach ri somehow. We will also define M j

i = (Q, Σ, Γ , δj
i ,

pi, {rj}) for i = 0. . .k, j = 1. . .k and i �= j and pi = ri for i > 0 and pi = q0 for
i = 0. And M j

i will represent a passage between ri and rj . It will accept exactly
the set of strings which reach reset state rj without the need of any further reset
after reset at ri, assuming that they reach ri somehow. (Or for the case i = 0,
the set of strings which reach reset state rj without the need of any extra reset
after starting computation from q0.)

δ0 of M0 and δi of the Mi are the same.

δ0(q, a, z) = δi(q, a, z) = δ(q, a, z) − {(q′, Z)|q′∈R,Z∈Γ ∗}
However M j

i has a different transition function.

δj
i (q, a, z) =

{
δ(q, a, z) − {(q′, Z)|q′∈(R − {rj}), Z∈Γ ∗} if q∈(Q − {rj})

{(rj , z)} if q = rj

Let us say that the languages recognized by Mi and M j
i are Li and Lj

i ,
respectively. Note that, Li

0 ∩ Lj
i ∩ Lj is a subset of L and it consists of exactly

Models of Pushdown Automata with Reset 423

the strings which are accepted by M , after resetting at ri, then at rj , and finally
reaching an accept state at the end of the input. Also we should note that if a
string is accepted by M , it may do so by visiting every reset state at most once.
We will now express L using these languages, but first let us define P k

i as the
set of permutations of the set {1, 2, . . . , k} with i elements. Then we will define
Ci as

Ci =
⋃

p∈P k
i

(Lp(1)
0 ∩L

p(2)
p(1) ∩ . . .Lp(i))

Now, we can write

L = L0 ∪
k⋃

i=1

Ci

Using the fact that union distributes over intersection, we obtain an expression
depicting intersections of languages which are themselves unions of CFLs. Since
the unions of CFLs are also CFLs, L is the intersection of finitely many CFLs. ��
We should note that Okhotin proposes conjunctive grammars in [10]. This gram-
mar recognizes intersection closure of CFLs and more. It adds intersection op-
eration to the CFG. Though this intersection operation occurs not on strings of
the language but parts of the strings. This intersection can be thought as a reset
operation which only clears the stack and the restores the input up to a specific
point. This is the essence of the extra recognition power.

Deterministic Version. We will now characterize the languages recognized by
deterministic RPDAs (DRPDAs). These are defined by restricting the RPDA
model in the same way one restricts the PDA to obtain the DPDA.

After analyzing the two constructions given in the proof for Theorem 1, it
can be seen that those constructions obtain nondeterministic machines from
nondeterministic ones, and deterministic machines from deterministic ones.

Corollary 1. Every language in the finite intersection closure of DCFLs is rec-
ognizable by DRPDAs.

Proof. Due to the Part I of the proof for Theorem 1, such a DRPDA can be
constructed. ��
However, we cannot say that the class of languages recognized by DRPDAs is
exactly the finite intersection closure of the DCFLs. Since the class of DCFLs
is not closed under union, Part II of the proof of Theorem 1 no longer stands.
Instead, we are going to show that the class of languages recognized by DRPDAs
is exactly the finite Boolean closure of the DCFLs.

Now we will prove some lemmata in order to prove the main theorem.

Lemma 1. The class of languages recognizable by DRPDAs is closed under the
finite union operation.

424 N. Taşdemir and A.C. Cem Say

Proof. Let us say that L1 and L2 are any two languages recognizable by DRPDAs
and M1 = (Q1, Σ1, $, Γ1, δ1, q1,0, z0, F1, R1) and M2 = (Q2, Σ2, $, Γ2, δ2, q2,0, z0,
F2, R2) are their respective DRPDA recognizers. We will show that L = L1∪L2

is DRPDA recognizable by constructing a DRPDA M for it.
For convenience and without loss of generality, we assume that q0 is the initial

state, and qi for i = 1 . . . |R| are reset states. And through preprocessing of
DRPDA we make sure that DRPDA consumes its input in finite time. This can
be done via the process given in Lemma 12.1 in [5].

In the constructed machine, computations of M1 and M2 are done in a merged
way. M1 starts computation. If it accepts, the combined machine accepts, oth-
erwise (upon termination of computation of M1 or reaching a reset state,) com-
putation continues with M2. The copy of M2 that is simulated at this point
“knows” which reset state M1 was left in, and is able to transit to the correct
state of M1 when it is time to pass control back to M1. This method handles
the cases where one of the machines is stuck in a loop of resets. Formally, the
combined machine is2

M = (Q,Σ, $, Γ, δ, q1,0,0, z0, F,R) where

– Q = (
⋃i=|R2|

i=0 Q1,i) ∪ (
⋃i=|R1|

i=0 Q2,i) ∪ R where Qi,j is jth copy of Qi

– Σ = Σ1 ∪Σ2 Γ = Γ1 ∪ Γ2

– δ(q, a, z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δi(qk, a, z) if q = qi,j,k ∈ Qi,j , qk /∈ Ri and a �= $
(si′,j,0, z) if q = qi,j,k ∈ Qi,j , qk /∈ Ri and a = $
(si′,j,k, z) if q = qi,j,k ∈ Qi,j and qk ∈ Ri

(qi,k,l, Z) if q = si,j,k, z = z0 and (qi,l, Z) = δi(qi,j , a, z0)
∅ otherwise

where i′ = mod(i, 2) + 1
– F = {q|q = qi,j,k ∈ Q and qi,j ∈ Fi}
– R = {si,j,k|i ∈ {1, 2}, j ∈ {1 . . . |Ri|} and k ∈ {1 . . . |Rmod(i,2)+1|}} ��

Lemma 2. The set of languages recognizable by DRPDAs is C∪(C∩(DCFL)).

Proof. This requires a two-way proof. First we will show that every language
which can be expressed by finitely many unions of finitely many intersections of
DCFLs can be recognized by a DRPDA. And after that we will show that every
language which can be recognized by a DRPDA can be written as such a union
of intersections of DCFLs.

Part I. Due to Corollary 1, we know that languages that are intersections of
finitely many DCFLs can be recognized by a DRPDA. And from Lemma 1, we
know that the set of languages recognizable by DRPDAs is closed under finite
union. Therefore, a language which can be obtained by taking finitely many
unions of finitely many intersections of DCFLs can be recognized by a DRPDA.

Part II. Due to part II of Theorem 1, a language which can be recognized by
a DRPDA can be written in the form of finitely many unions of finitely many
intersections of DCFLs. ��
2 We do not use set notation in the description of the values of δ for DRPDAs, since

there is at most one possible member. However we continue to use ∅ for expressing
the cases where there are no possible continuations.

Models of Pushdown Automata with Reset 425

Theorem 2. The set of languages recognizable by DRPDAs is the finite Boolean
closure of the deterministic context free languages.

Proof. From [14], we know that

CBool(DCFL) = C∩(C∪(DCFL)) = C∪(C∩(DCFL))

This is due to the closure of DCFLs under the complementation operation and
the distribution property of ∩ over ∪ and vice versa.

Therefore, due to Lemma 2, Theorem 2 is obvious. ��
We can now use the known relationships [14] between CFL, C∩(CFL), and
CBool(DCFL) to compare the computational powers of the machine variants
in question. The context-free language {wcx|w, x ∈ {a, b}∗ and w �= x} is not
in CBool(DCFL). It is also well-known that the non-CFL {anbncn|n > 0} is in
CBool(DCFL), and so we conclude that one-way nondeterministic PDAs and
DRPDAs are incomparable in power, and general nondeterministic RPDAs are
strictly more powerful than DRPDAs. Finally, the language {wcw|w ∈ {a, b}∗}
is not in C∩(CFL), and therefore cannot be recognized by an RPDA, whereas
it can be recognized by a deterministic 2PDA. It is easy to see that any RPDA
can be simulated easily by a nondeterministic 2PDA.

3.2 Variants Equivalent to the 2PDA

We will now prove that forcing a 2PDA to jump all the way back to the beginning
of the input and simultaneously switch to the initial state whenever it requires
the input head to move left does not affect its computational power. The machine
can store the information that is apparently lost during the reset in the stack,
which is left intact in this type of reset. Just for this section, we will use the
name MPDA (Modified PDA) for PDAs with {input,state}-reset states.

Theorem 3. PDAs with {input,state}-reset states are equivalent in power to
2PDAs.

Proof. It is easy to see that a 2PDA can simulate an {input,state}-reset by just
moving the input head to the left end square by square, and then switching
to the initial state. Now let us prove that any 2PDA can be simulated by an
MPDA. The difficulty here is to simulate the behavior of 2PDA when its input
head stays at the same place, or moves to the left. (Staying on the same place
is a problem because a MPDA moves to the right automatically whenever it
reads a symbol from input.) To simulate such moves, the MPDA must use its
reset capability, but before that, it must store the information that would be
lost by the reset (the internal state and the input head position) on the stack.
It is simple to represent the state by a stack symbol, but how can the MPDA
store the input head position (say, i) in its stack?

This problem is solved (see Fig. 1) by first pushing m = n− i symbols, where
n is the overall input length, on the stack. The MPDA then resets, and pops
these symbols to help move the input head to the mth position. From there, the

426 N. Taşdemir and A.C. Cem Say

input head moves once again to the right end, guiding us to push exactly the
requied i symbols on the stack. The machine then resets again, and is guided to
the proper configuration by making use of the information in the stack.

The formal construction follows.
If we have a 2PDA T (QT , Σ, �, $, ΓT , δT , z0, q0, F), then we can simulate

T with MPDA M (QM , Σ, $, ΓM , δM , z0, qs, F , R).

– QM = QT ∪ Q1
T ∪ {qs, qr, qA, qB, qC , qD, qE , qF , qG, qH , qI}

– R = {qr}
– ΓM = ΓT ∪ QT ∪ {qB, qD, qF , qH , α} (ΓT ∩ (QT ∪ {qB, qD, qF , qH , α}) = ∅)

– δM (q, a, z) =

⎧⎪⎪⎨⎪⎪⎩

{(q1
0 , z0)} if q = qs, a = ε and z = z0

{(qB, ε)} if q = qs, a = ε and z = qB

{(qD, ε)} if q = qs, a = ε and z = qD

{(qF , ε)} if q = qs, a = ε and z = qF

{(qH , ε)} if q = qs, a = ε and z = qH

T (is given below) if q ∈ QT

U (is given below) if q = q1
i and a = ε

{(qA, zα)} if q = qA and a ∈ Σ
{(qr, zqB)} if q = qA and a = $
{(qB, ε)} if q = qB, a ∈ Σ and z = α
{(qC , z)} if q = qB, a = ε and z ∈ QT

{(qC , zα)} if q = qC and a ∈ Σ
{(qr, zqD)} if q = qC and a = $
{(qD, ε)} if q = qD, a ∈ Σ and z = α
{(qi, ε)} if q = qD, a = ε and z = qi

{(qE , zα)} if q = qE and a ∈ Σ
{(qr, zqF)} if q = qE and a = $
{(qF , ε)} if q = qF , a ∈ Σ and z = α
{(qG, z)} if q = qF , a = ε and z ∈ QT

{(qG, zα)} if q = qG and a ∈ Σ
{(qr, zqH)} if q = qG and a = $

{(q1
i , ε)} if q = qH , a = ε and z = qi

{(qI , ε)} if q = qH , a = ε and z = α
{(qI , ε)} if q = qI , a ∈ Σ and z = α
{(qi, ε)} if q = qI , a = ε and z = qi

∅ otherwise

where T =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{(qi, Z)|(qi, Z, 1) ∈ δT (q, a, z)}∪

{(qA, Zqiα)|a ∈ Σ and (qi, Z, 0) ∈ δT (q, a, z)}∪
{(qr, ZqiqB)|a = $ and (qi, Z, 0) ∈ δT (q, a, z)}∪

{(qE , Zqiα)|a ∈ Σ and (qi, Z,−1) ∈ δT (q, a, z)}∪
{(qr, ZqiqF)|a = $ and (qi, Z,−1) ∈ δT (q, a, z)}

and U = {(q1
j , Z)|(qj , Z, 0) ∈ δT (qi, �, z)} ∪ {(qj , Z)|(qj , Z, 1) ∈ δT (qi, �, z)}

��
The corresponding proof for the version with {input}-reset states is similar.

Models of Pushdown Automata with Reset 427

...input

stack

ai-1 ai ai+1 ... an-1 $

z0 z1 ... zs

z0 z1 ... zs

m

m

i

a0 a1

... ai-1 ai ai+1 ... an-1 $a0 a1

...

... am-1 am am+1 ... an-1 $a0 a1

m

z0 z1 ... zs

z0 z1 ... zs g g

i

i

... am-1 am am+1 ... an-1 $a0 a1

...

input

stack

input

stack

input

stack

Fig. 1. Using the stack to store the input head position

4 Conclusion

Figure 2 illustrates the comparative powers of the machines examined in this
paper. Note that we do not know exactly where to place the deterministic 2PDA,
whose relationships with both one-way and two-way nondeterministic PDAs have
formed open questions for many decades, in this figure. One question that arises
from the work reported here is

d-PDA
d-RPDA

PDA
RPDA TWPDA

Fig. 2. Recognition powers

Open Problem 1. Does limiting the maximum number of reset operations al-
lowed during RPDA computation result in a language class hierarchy? That is,
if Ln is the class of languages recognized by an RPDA whose reset states stop
resetting and behave as non-resetting states after a total of n reset operations,
is Ln � Ln+1 for n � 0?

Hierarchy of intersections of CFL is investigated in [9]. This work may play an
important role in solving Open Problem 1.

428 N. Taşdemir and A.C. Cem Say

We plan to extend this study to probabilistic [6] and quantum [2] versions of
PDAs. It would also be interesting to examine a similar setup to our Section 3.1
in the context of sublinear-space Turing machines whose read-only input tape
head can only move leftward by resetting to the left end, and losing the contents
of the worktape.

Acknowledgement

The authors wish to thank Oscar Ibarra for his helpful answers to their questions
about 2PDAs.

References

1. Freivalds, R., Karpinski, M.: Lower space bounds for randomized computation. In:
ICALP 1994, pp. 580–592 (1994)

2. Golovkins, M.: Quantum pushdown automata. In: Jeffery, K., Hlaváč, V., Wieder-
mann, J. (eds.) SOFSEM 2000. LNCS, vol. 1963, pp. 336–346. Springer, Heidelberg
(2000)

3. Gray, J.N., Harrison, M.A., Ibarra, O.H.: Two-way pushdown automata. Informa-
tion and Control 11(1-2), 30–70 (1967)

4. Hoogeboom, H.J., Engelfriet, J.: Pushdown automata. In: Formal Languages and
Applications. SFSC, ch. 6, vol. 148, pp. 117–138. Springer, Berlin (2004)

5. Hopcroft, J.E., Ullman, J.D.: Formal languages and their relation to automata.
Addison-Wesley Longman Publishing Co., Boston (1969)

6. Hromkovic, J., Schnitger, G.: On probabilistic pushdown automata. Information
and Computation 208(8), 982–995 (2010)

7. Jančar, P., Mráz, F., Plátek, M., Procházka, M., Vogel, J.: Deleting automata with
a restart operation. In: Bozapalidis, S. (ed.) Proceedings of DLT 1997, Greece, pp.
191–202 (1997)

8. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. LNCS, vol. 965,
pp. 283–292 (1995)

9. Liu, L.Y., Weiner, P.: An infinite hierarchy of intersections of context-free lan-
guages. Mathematical Systems Theory 7, 185–192 (1973)

10. Okhotin, A.: Conjunctive grammars. J. A. Lang. Comb. 6, 519–535 (2001)
11. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM

Journal of Research and Development 3, 198–200 (1959)
12. Stearns, R.E., Hartmanis, J., Lewis II, P.M.: Hierarchies of memory limited com-

putations. In: SWCT 1965, pp. 179–190 (1965)
13. Szepietowski, A.: Turing Machines with Sublogarithmic Space. Springer, Heidel-

berg (1994)
14. Wotschke, D.: Nondeterminism and boolean operations in PDA’s. Journal of Com-

puter and System Sciences 16, 456–461 (1978)
15. Yakaryılmaz, A., Cem Say, A.C.: Succinctness of two-way probabilistic and quan-

tum finite automata. DMTCS 12(4), 19–40 (2010)
16. Yakaryılmaz, A., Cem Say, A.C.: Unbounded-error quantum computation with

small space bounds. Technical Report arXiv:1007.3624 (2010)

Towards Dual Approaches for Learning

Context-Free Grammars Based on Syntactic
Concept Lattices

Ryo Yoshinaka�

ERATO MINATO Discrete Structure Manipulation System Project,
Japan Science and Technology Agency

ry@ist.hokudai.ac.jp

Abstract. Recent studies on grammatical inference have demonstrated
the benefits of “distributional learning” for learning context-free and
context-sensitive languages. Distributional learning models and exploits
the relation between strings and contexts in the language of the learn-
ing target. There are two main approaches. One, which we call primal,
constructs nonterminals whose language is characterized by strings. The
other, which we call dual, uses contexts to characterize the language of
a nonterminal of the conjecture grammar. This paper demonstrates and
discusses the duality of those approaches by presenting some powerful
learning algorithms along the way.

1 Introduction

Recent studies on grammatical inference have demonstrated how powerful the
idea of “distributional learning” is for learning context-free and context-sensitive
languages. Distributional learning algorithms exploit information on combina-
tions of strings and contexts that form grammatical sentences. Clark [6] has
discussed two main approaches in distributional learning, which are called pri-
mal and dual, respectively. In fact, many concrete algorithms of distributional
learning proposed so far can be classified into those two approaches. The pri-
mal approach is taken in [4, 8, 13, 14, 15, 16] and the dual approach is taken
in [12,2,5,7]. Among those, let us compare the learning of congruential cfgs by
Clark [4] and that of c-deterministic cfgs by Shirakawa and Yokomori [12] as
examples of those two approaches. A cfg G is said to be congruential if

X
∗⇒
G

w, X
∗⇒
G

w′ and uwv ∈ L(G) implies uw′v ∈ L(G)

for all nonterminal symbols X , where L(G) denotes the language of G. A cfg
G is said to be c-deterministic if

S
∗⇒
G

uXv implies L(G,X) = {w | uwv ∈ L(G) }
� The author is concurrently working in Hokkaido University.

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 429–440, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

430 R. Yoshinaka

for all nonterminal symbols X , where L(G,X) denotes the language of X .
Roughly speaking, the former requires that one string w (actually any of L(G,X))
characterizes the context set of strings in L(G,X): whatever occurs as a context
of w, it is a context of all other strings in L(G,X) as well. The latter requires
that one context 〈u, v〉 is enough to characterize the strings in L(G,X): whatever
occurs in that context, it is a member of L(G,X). In Clark’s learning algorithm
for congruential cfgs, nonterminals are assigned strings (or string sets) and
the conjecture grammar is designed so that the language of a nonterminal is
characterized by the assigned string(s) along the way consistent with the con-
gruentiality. The primal approach uses strings to determine the language that
should be generated by a nonterminal.1 Contexts are rather auxiliary but play
an important role to determine production rules by which nonterminals generate
the desired languages. The dual approach takes the opposite way. The conjecture
grammar is constructed so that the language generated by a nonterminal is char-
acterized by contexts assigned to that nonterminal. Shirakawa and Yokomori’s
algorithm takes the dual approach, which favors the property of c-determinism.

Clark [2] has proposed to use the concept lattice based on the Galois con-
nection between strings and contexts in an arbitrary language L and named
them syntactic concept lattices. He has proposed variants of powerful learning
algorithms based on syntactic concept lattices taking the dual approach [2,5,7].
Although the concept of syntactic concept lattices is neutral, no learning algo-
rithms based on syntactic concept lattices that takes the primal approach has
been proposed so far. Actually the duality between strings and contexts is not
so perfect, as we can concatenate strings to generate strings, while we cannot do
the same on contexts.

This paper aims to give a clearer view on the duality of distributional learning
by proposing concrete algorithms for learning cfgs, which include an algorithm
based on the syntactic concept lattice that takes the primal approach. We tackle
the question to what extent we have the symmetry in the dual approaches and
where it will be violated. After preliminaries, Section 3 reviews Clark’s syntactic
concept lattices and discusses how the dual approaches would work on them. We
give some concrete distributional learning algorithms of the primal and of the
dual approach in Section 4. We then conclude the paper.

2 Preliminaries

Let Σ be a nonempty finite set of letters. We denote the empty string by λ. Any
element of Σ∗×Σ∗ is called a context. Z denotes the set of integers and N is the
set of non-negative integers. This paper is concerned with the learning of cfgs,
but we limit our attention to cfgs in a variant of the Chomsky normal form.
A cfg is a tuple G = 〈Σ, V, P, I〉, where Σ is the set of terminal symbols, V
is the set of nonterminal symbols, P ⊆ V × (V V ∪ Σ ∪ {λ}) is the set of rules,
1 Clark [6] uses a more general term “primitives” in stead of “nonterminals”. In fact

distributional lattice grammars [2] directly use sets of strings and contexts as prim-
itive objects in generation rules instead of nonterminals.

Dual Approaches for Learning CFGs Based on Syntactic Concept Lattices 431

and I ⊆ V is the set of initial symbols. The derivation relation of G is denoted
by ⇒∗

G. The language generated by each nonterminal symbol X is denoted by
L(G,X) = {w | X ⇒∗

G w } and the language of G is L(G) =
⋃

X∈I L(G,X).
Our learning paradigm is identification in the limit from positive data and

membership queries. A positive presentation of a language L∗ over Σ is an infinite
sequence w1, w2, · · · ∈ Σ∗ such that L∗ = {wi | i ≥ 1 }. A learner is given a
positive presentation of the language L∗ = L(G∗) of the target grammar G∗
and each time a new example wi is given, it outputs a grammar Gi computed
from w1, . . . , wi with the aid of a membership oracle. One may query the oracle
whether an arbitrary string w is in L∗, and the oracle answers in constant time.
We say that a learning algorithm identifies G∗ in the limit from positive data and
membership queries if for any positive presentation w1, w2, . . . of L(G∗), there
is an integer n such that Gn = Gm for all m ≥ n and L(Gn) = L(G∗). Trivially
every grammar admits a successful learning algorithm. An algorithm should learn
a rich class of grammars in a uniform way. We say that a learning algorithm
identifies a class G of grammars in the limit from positive data and membership
queries iff it identifies all G ∈ G. We remark that as we have membership queries,
learning algorithms based on exhaustive enumeration will work, hence a learner
should have further favorable properties in terms of efficiency.

3 Syntactic Concept Lattices

3.1 Overview

To make this paper self-contained, this section reviews the syntactic concept
lattices proposed by Clark [2, 3], but we do not have enough space to discuss
them in detail. The readers are referred to his original papers for further details.

For a context 〈x, z〉 and a string y ∈ Σ∗, we define a binary operation ! by
〈x, z〉 ! y = xyz, which is naturally extended to sets of contexts and strings as
C ! S = { xyz | 〈x, z〉 ∈ C, y ∈ S } for C ⊆ Σ∗ × Σ∗ and S ⊆ Σ∗. We write
C ! S1S2 to mean C ! (S1S2).

Let us fix a language L ⊆ Σ∗. A pair 〈S,C〉 is called a biclique2 on L if
C ! S ⊆ L. We denote the set of contexts for a string set S by S′ and the set of
strings admitted by a context set C by C′:

S′ = { 〈x, z〉 ∈ Σ∗ × Σ∗ | xyz ∈ L for all y ∈ S },
C′ = { y ∈ Σ∗ | xyz ∈ L for all 〈x, z〉 ∈ C }.

In other words, S′ and C′ are the maximum sets such that 〈S, S′〉 and 〈C′, C〉 are
bicliques on L, respectively. Hence 〈S′′, S′〉 and 〈C′, C′′〉 are maximal bicliques on
L induced from S and C, respectively. We call such maximal bicliques concepts.
A biclique 〈S,C〉 is a concept iff S′ = C and C′ = S. When two sets S1 and S2

induce the same concept, i.e., S′
1 = S′

2, we write S1 ≡L S2. Those notions depend

2 We may think of 〈S,C〉 as a biclique of the bipartite graph with the node set Σ∗ ∪
Σ∗ ×Σ∗ where w ∈ Σ∗ and 〈u, v〉 ∈ Σ∗ ×Σ∗ are adjacent iff uwv ∈ L.

432 R. Yoshinaka

on L, but our notation usually suppresses L for legibility, provided that it is
understood from the context. It is useful to note that for any S1, S2, S3, S4 ⊆ Σ∗,{

S′
1 = S′′′

1 and hence S1 ≡ S′′
1 ,

if S1 ≡ S3 and S2 ≡ S4, then S1S2 ≡ S3S2 ≡ S3S4.
(1)

Let us denote the set of all concepts of L by B(L). It is easy to see that for
any two concepts 〈S1, C1〉 and 〈S2, C2〉 of B(L), we have S1 ⊆ S2 iff C1 ⊇ C2.
Let us write 〈S1, C1〉 ≤ 〈S2, C2〉 if S1 ⊆ S2. With this partial order ≤, B(L)
forms a lattice. Among the concepts in B(L), the one induced from the singleton
of the empty context Λ = {〈λ, λ〉} is special: 〈Λ′, Λ′′〉 = 〈L,L′〉, which is induced
by L as well. It is not hard to see that w ∈ L iff 〈{w}′′, {w}′〉 ≤ 〈L,L′〉. Two
concepts 〈S1, C1〉 and 〈S2, C2〉 are concatenated by

〈S1, C1〉 ◦ 〈S2, C2〉 = 〈(S1S2)′′, (S1S2)′〉.

Example 1. Let L = { anbn | n ≥ 0 }. Then

B(L) = {⊥,3, E} ∪ {Ak | k ≥ 1 } ∪ {Bk | k ≥ 1 } ∪ {Dk | k ∈ Z }, where
⊥ = 〈∅, Σ∗ × Σ∗〉, 3 = 〈Σ∗, ∅〉, E = 〈{λ}, { 〈u, v〉 | uv ∈ L }〉,

Ak = 〈{ak}, { 〈ai, ajbi+j+k〉 | i, j ≥ 0 }〉, Bk = 〈{bk}, { 〈ai+j+kbi, bj〉 | i, j ≥ 0 }〉,
Dk = 〈{ aibj | i, j ≥ 1, i − j = k }, { 〈ai, bj〉 | i, j ≥ 0, j − i = k }〉.

We note that D0 = 〈Λ′, Λ′′〉 = 〈L,L′〉, E ≤ D0, and ⊥ ≤ X ≤ 3 for any
X ∈ B(L). The following table summarizes the concatenation operation over
B(L):

◦ ⊥ 3 E Al Bm Dn

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
3 ⊥ 3 3 3 3 3
E ⊥ 3 E Al Bm Dn

Ai ⊥ 3 Ai Ai+l Di−m Di+n

Bj ⊥ 3 Bj 3 Bj+m 3
Dk ⊥ 3 Dk 3 Dk−m 3

where i, j, l,m are positive integers and k, n are integers.

3.2 Grammatical Representation of Syntactic Concept Lattices

This paper assumes L to be context-free, and we try to capture the structure
of B(L) in terms of cfgs. It seems quite a natural idea to treat concepts as
nonterminals and we would like the language of a nonterminal 〈S,C〉 to be S.
If we were allowed to have infinitely many nonterminals and rules, the following
rules are compatible with that idea:

– 〈S,C〉 → w for w ∈ S,
– 〈S,C〉 → 〈S1, C1〉〈S2, C2〉 if 〈S,C〉 ≥ 〈S1, C1〉 ◦ 〈S2, C2〉,

Dual Approaches for Learning CFGs Based on Syntactic Concept Lattices 433

with the initial symbol 〈L,L′〉. This grammar correctly characterizes every string
in the sense that the grammar derives w from 〈S,C〉 iff w ∈ S. Yet such a
grammar is impossible, because it is infinite in two respects. First, unless the
language is regular, the grammar has infinitely many nonterminals. Second, each
nonterminal is represented by a pair of (possibly) infinite sets.

Actually the first point is not a real problem as long as we assume that the
target language L is context-free. It is enough to have concepts 〈SX , CX〉 =
〈L(G,X)′′,L(G,X)′〉 induced from L(G,X) for each nonterminal X of a cfg
G where L = L(G), if what we need to know is whether w ∈ L rather than
whether w ∈ S for an arbitrary concept 〈S,C〉. In general, it is not necessarily
the case that L(G,X) = SX , but the fact L(G,X) ≡ SX guarantees the grammar
constructed in this way still defines the same language. Moreover, we can restrict
w to be a letter in Σ in the rule of the form 〈S,C〉 → w. For L = { anbn | n ≥ 0 }
in Example 1, the following five rules suffice:

A1 → a, B1 → b, D0 → λ, D0 → A1D−1, D−1 → D0B1,

where D0 is the initial symbol of our grammar. We now have lost the knowledge
about what the concatenation of A1 and A1 produces, for example, but it does
not matter to decide whether a given string is generated by D0.

The second problem is crucial for learning algorithms. We need to construct
nonterminals and rules from finitely many strings and contexts. Suppose that we
have a finite set K ⊆ Σ∗ of strings such that λ ∈ K and a finite set F ⊆ Σ∗×Σ∗

of contexts such that 〈λ, λ〉 ∈ F . We use finite bicliques 〈S,C〉 ⊆ K×F as finite
imitations of concepts. There are two interpretations of 〈S,C〉 as a concept. One
focuses on S and assumes that 〈S,C〉 is a finite approximation of 〈S′′, S′〉 and the
other presumes 〈C′, C′′〉. In general, 〈C′, S′〉 may not be a biclique. We call the
former idea primal and the latter dual. Suppose that 〈S,C〉, 〈S1, C1〉, 〈S2, C2〉
are finite bicliques. According to the former interpretation, we should have a
rule

〈S,C〉 → 〈S1, C1〉〈S2, C2〉 if 〈S′′, S′〉 ≥ 〈S′′
1 , S′

1〉 ◦ 〈S′′
2 , S′

2〉. (2)

We cannot compute the polar map (·)′, but, with the aid of the membership
oracle, the following restricted polar maps (·)(F) and (·)(K) are computable:

S(F) = { 〈x, z〉 ∈ F | xyz ∈ L for all y ∈ S },
C(K) = { y ∈ K | xyz ∈ L for all 〈x, z〉 ∈ C }.

Because we always have S1S2 ≡ (S1S2)′′ ≡ S′′
1 S′′

2 by (1), the condition (2) is
approximated by S(F) ! S1S2 ⊆ L, where (·)(F) is substituted for (·)′. In the
dual approach, we should have 〈S,C〉 → 〈S1, C1〉〈S2, C2〉 if 〈C′, C′′〉 ≥ 〈C′

1, C
′′
1 〉◦

〈C′
2, C

′′
2 〉, which is approximated as the condition C ! C

(K)
1 C

(K)
2 ⊆ L. In that

way one can construct a cfg as a finitely describable imitation of B(L).
We want such a finite approximation to work effectively and efficiently. Thus

we target cfgs such that the concept associated with a nonterminal can be
approximated by a relatively small set.

434 R. Yoshinaka

Definition 1. For a positive integer k, we say that a cfg G has the k-fkp
(finite kernel property) if each nonterminal X admits a finite set SX ⊆ Σ∗ such
that |SX | ≤ k and SX ≡L(G) L(G,X). We call such a set SX a k-kernel of X .

Definition 2. For a positive integer f , we say that a cfg H has the f -fcp
(finite context property) if each nonterminal X admits a finite set CX ⊆ Σ∗×Σ∗

such that |CX | ≤ f and C′
X ≡L(H) L(H,X). We call such a set CX an f -context

of X .

The notion of the fkp by Clark et al. [9] corresponds to the 1-fkp in this paper.
The 1-fkp is not too strong a restriction as all regular languages and the Dyck
language over m ∈ N pairs of parentheses, for example, are generated by cfgs
with the 1-fkp. The following examples show that the k-fkp properly generalizes
Clark et al.’s original definition of the fkp.

Example 2. The palindrome language Lpal = {w ∈ Σ∗ | wR = w } with |Σ| ≥ 2,
where λR = λ and (wz)R = z(wR) for z ∈ Σ and w ∈ Σ∗, is generated by a cfg
with the 2-fkp, but not by a cfg with the 1-fkp. Let G consist of the following
rules:

I0 → z, I0 → XzYz , Xz → YzI0, Yz → z for each z ∈ Σ, and I0 → λ,

where I0 is the initial symbol of G. Each nonterminal has the following 2-kernel,
respectively:

I0 : {a, b}, Xz : {za, zb}, Yz : {z},
where a, b ∈ Σ are arbitrary distinct terminals. To see that {a, b} ≡ L(G, I0), i.e.,
{a, b}′ = L(G, I0)′, it suffices to show {a, b}′ ⊆ L(G, I0)′, because the opposite
inclusion {a, b}′ ⊇ L(G, I0)′ immediately follows from the fact {a, b} ⊆ L(G, I0).
Suppose that 〈u, v〉 ∈ {a, b}′, i.e., 〈u, v〉 ! {a, b} ⊆ Lpal. If |u| < |v|, by uav =
vRauR ∈ Lpal, one has v = xauR for some x ∈ Σ∗, whereas the fact ubv =
vRbuR ∈ Lpal implies v = ybuR for some y ∈ Σ∗, which is a contradiction. The
opposite assumption |u| > |v| leads a contradiction as well. Hence |u| = |v| and
v = uR. It is clear that 〈u, v〉 !L(G, I0) ⊆ Lpal, i.e., 〈u, v〉 ∈ L(G, I0)′. Similarly
one can check that {za, zb} is a 2-kernel of Xz for all z ∈ Xz. Trivially {z} is a
2-kernel of Yz .

On the other hand, the palindrome language cannot be generated by any cfg
with the 1-fkp. If a cfg generates Lpal, it must have an initial nonterminal
symbol I1 that generates at least two palindromes of the form aibx and ajby
for some x, y ∈ Σ∗ and i, j ∈ N with i �= j. Suppose that {w} could be a 1-
kernel of I1. By 〈λ,wR〉 ∈ {w}′, it holds that aibxwR ∈ Lpal. If |w| > i, w must
have the form aibz for some z ∈ Σ∗, but 〈λ,wR〉 ! ajby = ajbyzRbai is not a
palindrome, since i �= j. If |w| ≤ i, we have w ∈ {a}∗. Then 〈λ, ai+1〉 ∈ {w}′,
but 〈λ, ai+1〉 ! aibx = aibxai+1 is not a palindrome. Thus {w}′ �= L(G, I1)′. No
cfg with the 1-fkp generates Lpal.

Other examples that distinguish the expressive power of the 2-fkp and the 1-fkp
are Lm = { anbkn | n ≥ 0 and 1 ≤ k ≤ m } for every m ≥ 2. Furthermore, the
language Mk = { an1

1 an2
2 . . . ank

k | ni = nj for some i �= j } separates the k-fkp
from the (k − 1)-fkp for k ≥ 3. The hierarchy formed by the k-fkp is proper.

Dual Approaches for Learning CFGs Based on Syntactic Concept Lattices 435

4 Learning of Context-Free Grammars

When we can work only on finite sets K ⊆ Σ∗ and F ⊆ Σ∗ × Σ∗, it is a
natural idea to take maximal bicliques with respect to K and F in order to
get closer to concepts in B(L). Clark’s [5] algorithm takes as nonterminals only
maximal bicliques. Just like the ideal polar map (·)′, every maximal biclique
can be induced by S ⊆ K and C ⊆ F as 〈S(F)(K), S(F)〉 and 〈C(K), C(K)(F)〉,
respectively. This paper, however, does not take this idea. Actually the restricted
polar maps (·)(F) and (·)(K) do not demonstrate properties as nice as the ideal
one (·)′. While S′′ ≡ S always holds, it is not necessarily the case that S(F)(K) ≡
S. This means there can be a concept that is approximated only by a non-
maximal biclique.

The algorithm presented in Section 4.1 takes the primal approach, where we
have bicliques of the form 〈S, S(F)〉 as nonterminals, in which S may be non-
maximal and S(F) is maximal. Section 4.2 presents an algorithm dual to the
preceding subsection.

4.1 Primal Approach

In what follows, we fix a target language L∗ which is generated by a cfg G∗
with the k-fkp, and use the polar maps and other notations with respect to L∗.

Before we present the overall view of our learning algorithm, we describe how
we construct a cfg from finite sets K ⊆ Sub(D) and F ⊆ Con(D) which are
computed from given positive data set D in some way, where

Sub(D) = { y ∈ Σ∗ | xyz ∈ D for some 〈x, z〉 ∈ Σ∗ × Σ∗ },
Con(D) = { 〈x, z〉 ∈ Σ∗ × Σ∗ | xyz ∈ D for some y ∈ Σ∗ }.

We define a cfg Gk(K,F) = 〈Σ, VK , PK,F , IK〉 as follows. The set of nonterminal
symbols is

VK = { [[S]] | S ⊆ K and |S| ≤ k }.
The intended meaning of [[S]] is the biclique 〈S, S(F)〉, which can be seen as an
approximation of the concept 〈S′′, S′〉. The initial symbols are those [[S]] such
that S ⊆ L∗. We have two types of rules:

– [[S]] → a with a ∈ Σ ∪ {λ} if S(F) ! a ⊆ L∗;
– [[S]] → [[S1]][[S2]] if S(F) ! S1S2 ⊆ L∗,

which are constructed with the aid of the membership oracle. The grammar
Gk(K,F) shows the following beautiful monotonicity.

Lemma 1. If J ⊆ K then L(Gk(J, F)) ⊆ L(Gk(K,F)).

Proof. Every rule of Gk(J, F) is also a rule of Gk(K,F). ��
Lemma 2. If E ⊆ F then L(Gk(K,F)) ⊆ L(Gk(K,E)).

Proof. Every rule of Gk(K,F) is also a rule of Gk(K,E). ��

436 R. Yoshinaka

We want a rule [[S]] → [[S1]][[S2]] to be correct in the sense that 〈S′′, S′〉 ≥
〈S′′

1 , S′
1〉〈S′′

2 , S′
2〉, which is equivalent to S′!S′′

1 S′′
2 ⊆ L∗. We approximate S′, S′′

1

and S′′
2 with S(F), S1 and S2, respectively. We know that S′′

1 ≡ S1 and S′′
2 ≡ S2,

while it is not certain that S′ ≡ S(F). If a rule [[S]] → [[S1]][[S2]] is not correct,
there is 〈x, z〉 ∈ S′ such that 〈x, z〉 ! S′′

1 S′′
2 � L∗. If 〈x, z〉 is in F , then such

an incorrect rule is not constructed. That is, for every triple [[S]], [[S1]], [[S2]] of
nonterminals that forms an incorrect rule, one context is enough to prevent the
algorithm from constructing the incorrect rule. Similarly we say that [[S]] → a
is correct if S′ ! a ⊆ L∗. If [[S]] → a is not correct, having one context in F
is enough to suppressing this rule. We remark that whenever Gk(K,E) has no
incorrect rules and E ⊆ F , Gk(K,F) has no incorrect rules.

Lemma 3. For every K, there is a finite set F ⊆ Con(L∗) consisting of at most
|VK |3 + |VK |(|Σ|+1) contexts such that Gk(K,F) has no incorrect rules. In such
a case, we have L(Gk(K,F)) ⊆ L∗.

Proof. Let Ĝ = Gk(K,F). We prove by induction that [[S]]⇒∗
Ĝ

w implies S′!w ⊆
L∗. Particularly when [[S]] is an initial symbol, S ⊆ L∗ implies that 〈λ, λ〉 ∈ S′

and thus w ∈ L∗. Suppose that [[S]]⇒∗
Ĝ

a for some a ∈ Σ ∪ {λ}. Since the rule
[[S]] → a is correct, we have S′!a ⊆ L∗. Suppose that [[S]]⇒

Ĝ
[[S1]][[S2]]⇒∗

Ĝ
w1w2

where wi ∈ L(Ĝ, [[Si]]) for i = 1, 2. By the induction hypothesis, we have S′
i!wi ⊆

L∗, which implies wi ∈ S′′
i for i = 1, 2. Since [[S]] → [[S1]][[S2]] is correct, we have

S′ ! S′′
1 S′′

2 ⊆ L∗. Hence S′ ! w1w2 ⊆ S′ ! S′′
1 S′′

2 ⊆ L∗. ��
Lemma 4. Let L∗ be generated by a cfg G∗ with the k-fkp. Then L∗ ⊆
L(Gk(K,F)) if K includes k-kernels SX of all nonterminals X of G∗.

Proof. Let Ĝ = Gk(K,F). We show that each nonterminal X of G∗ is simulated
by [[SX]] in Ĝ. Suppose that X → a is a rule of G∗. By a ∈ L(G,X) ≡ SX ,
we have SX ! a ∈ L∗. Ĝ has the rule [[SX]]⇒

Ĝ
a. Suppose that X → Y Z is

a rule of G∗. Since SY SZ ≡ L(G∗, Y)L(G∗, Z) ⊆ L(G∗, X) ≡ S′′
X , we have

S
(F)
X ! SY SZ ⊆ S′

X ! SY SZ ⊆ L. Thus Ĝ has the rule [[SX]] → [[SY]][[SZ]]. If X
is an initial symbol of G∗, then SX ≡ L(G,X) ⊆ L∗, which implies that [[SX]] is
an initial symbol of Ĝ. ��
Due to the nice properties shown through Lemmas 1 to 4, our learning strategy
is quite simple. Whenever we get a positive example that is not generated by
our current conjecture, we expand K. On the other hand, to suppress incorrect
rules, we keep expanding F .

Theorem 1. Algorithm 1 identifies cfgs with the k-fkp in the limit from pos-
itive data and membership queries.

Proof. Let Dn = {w1, . . . , wn}. Lemma 4 ensures that Algorithm 1 does not
update K infinitely many times, because k-kernels of nonterminals of G∗ are
finite subsets of Sub(L∗) and there is a point in time when the positive examples
cover all the k-kernels of G∗. Let Km0 = Sub(Dm0) be the limit. There is a

Dual Approaches for Learning CFGs Based on Syntactic Concept Lattices 437

Algorithm 1. Learning cfgs with k-fkp

Data: A positive presentation w1, w2, . . . of L∗; membership oracle O;
Result: A sequence of cfgs G1, G2, . . . ;
let D := ∅; K := ∅; F := ∅; Ĝ := Gk(K,F);
for n = 1, 2, . . . do

let D := D ∪ {wn}; F := Con(D);
if D � L(Ĝ) then

let K := Sub(D);
end if
output Ĝ = Gk(K,F) as Gn;

end for

point n0 such that Gk(Km0 , Fn0) has no incorrect rules for Fn0 = Con(Dn0). By
Lemma 3, we see that for any n ≥ max{m0, n0}, Algorithm 1 outputs Ĝn =
Gk(Km0 , Fn0), which generates the learning target L∗. ��
We remark on the efficiency of our algorithm. It is easy to see that the description
sizes of K and F are bounded by the square of that of D, and VK consists of
at most (|K| + 1)k nonterminals. We need an at most polynomial number of
membership queries to determine rules among those nonterminals. All in all,
Algorithm 1 updates its conjecture in polynomial time in ‖D‖. Moreover, we do
not need too much data. To get k-kernels of all nonterminals, k|V∗| examples are
enough, where V∗ is the set of nonterminals of the target cfg G∗. To suppress
incorrect rules, O(|VK |3) contexts are enough by Lemma 3.

4.2 Dual Approach

Clark [5] has proposed a learning algorithm for cfgs with the f -fcp that takes
maximal bicliques as nonterminals. This subsection presents an even simpler
learning algorithm for the same class. Our algorithm demonstrates the exact
symmetry to the one presented in the previous subsection. Due to the simplicity
of the definition of nonterminals, proofs of lemmas that support the correctness
of the algorithm are much easier than Clark’s.

For two finite sets K ⊆ Σ∗ and F ⊆ Σ∗ × Σ∗, we define a cfg Hf (F,K) as
follows. The set of nonterminal symbols is

VF = { [[C]] ⊆ F | C ⊆ F and |C| ≤ f }.
The initial symbols are those [[C]] such that 〈λ, λ〉 ∈ C. The intended meaning
of [[C]] is the biclique 〈C(K), C〉, which can be seen as an approximation of the
concept 〈C′, C′′〉. We have rules of the following two types:

– [[C]] → a with a ∈ Σ ∪ {λ} if C ! a ⊆ L∗;
– [[C]] → [[C1]][[C2]] if C ! C

(K)
1 C

(K)
2 ⊆ L∗.

We again have monotonicity lemmas, which work in the direction opposite to
Lemmas 1 and 2.

438 R. Yoshinaka

Lemma 5. If E ⊆ F then L(Hf (E,K)) ⊆ L(Hf (F,K)).

Lemma 6. If J ⊆ K then L(Hf (F,K)) ⊆ L(Hf (F, J)).

We say that a rule [[C]] → [[C1]][[C2]] is correct if C′′ ! C′
1C

′
2 ⊆ L∗. If [[C]] →

[[C1]][[C2]] is not correct, there are wi ∈ C′
i for i = 1, 2 such that C′′ ! w1w2 ≡

C ! w1w2 � L∗. If w1, w2 ∈ K, such an incorrect rule is suppressed.

Lemma 7. Every F admits a finite set K ⊆ Sub(L∗) consisting of at most
2|VF |3 strings such that all rules of Ĥ = Hf (F,K) are correct. In such a case,
L(Ĥ) ⊆ L∗.

Proof. One can prove by induction that [[C]]⇒∗
Ĥ

w implies C ! w ⊆ L∗. ��
Lemma 8. Let L∗ be generated by a cfg H∗ with the f -fcp. If F includes
f -contexts of all nonterminals of H∗, then L∗ ⊆ L(Hf (F,K)).

Proof. Each nonterminal X of H∗ is simulated by [[CX]] in Hf (F,K). ��

Algorithm 2. Learning cfgs with f -fcp

Data: A positive presentation w1, w2, . . . of L∗; membership oracle O;
Result: A sequence of cfgs H1,H2, . . .
let D := ∅; F := ∅; K := ∅; Ĥ := Hf (F,K);
for n = 1, 2, . . . do

let D := D ∪ {wn}; K := Sub(D);
if D � L(Ĥ) then

let F := Con(D);
end if
output Ĥ = Hf (F,K) as Hn;

end for

Now it is clear that Algorithm 2 efficiently learns cfgs with the f -fcp just
like Algorithm 1 learns cfgs with the k-fkp.

Theorem 2. Algorithm 2 identifies cfgs with the f -fcp in the limit from pos-
itive data and membership queries.

4.3 Learning with the Maximal Bicliques

In the previous two subsections, we have presented two learning algorithms that
have the same rule construction schemes with different sets of nonterminals, or
bicliques. It is interesting to see that those rule construction schemes show the
opposite monotonicity on K and F just depending on the choice of the bicliques
we use as nonterminals. On the other hand, if we take maximal bicliques as
nonterminals, we lose the monotonicity of both directions.

For Ĝ = Gk(K,F) with k ≥ |K|, it is easy to see that [[S]]⇒∗
Ĝ

w iff [[S(F)(K)]]
⇒∗

Ĝ
w for any S ⊆ K and w ∈ Σ∗. This suggests that we may merge [[S1]]

Dual Approaches for Learning CFGs Based on Syntactic Concept Lattices 439

and [[S2]] such that S
(F)
1 = S

(F)
2 into [[S(F)(K)

1]]. That is, maximal bicliques are
sufficient for constructing a reasonable conjecture. Yet this does not imply that
we may consider only nonterminals of the form [[S(F)(K)]] before constructing
rules, though one may merge such [[S1]] and [[S2]] after all rules are determined.
This observation leads us to the following construction scheme of a conjecture:

– V = { [[S(F)(K)]] | S ⊆ K and |S| ≤ k },
– [[S]] → a with a ∈ Σ ∪ {λ} if S(F) ! a ⊆ L∗, i.e., a ∈ S,
– [[S]] → [[S1]][[S2]] if there are Ti ⊆ Si such that |Ti| ≤ k, Si = T

(F)(K)
i for

i = 1, 2 and S(F) ! T1T2 ⊆ L∗.

The rule construction scheme looks a little more complex, but it is essentially
the same as the one presented in Section 4.1. The new learning algorithm based
on this grammar construction still identifies cfgs with the k-fkp and this mod-
ification reduces the size of the output grammar.

On the other hand, for Ĥ = Hf (F,K), it does not holds that [[C]]⇒∗
Ĥ

w iff
[[C(K)(F)]]⇒∗

Ĥ
w. Thus the idea from the previous paragraph does not apply to

the dual approach. The grammar constructed by Clark’s learning algorithm [5]
for cfgs with the f -fcp can be described by our notation as follows:

– V = { [[C(K)(F)]] | C ⊆ F and |C| ≤ f },
– [[C]] → a with a ∈ Σ ∪ {λ} if C ! a ⊆ L∗,
– [[C]] → [[C1]][[C2]] if C ! (C(K)

1 C
(K)
2)(F)(K) ⊆ L∗.

This does not look symmetric to the one in the previous paragraph.

5 Concluding Remarks

Algorithms 1 and 2 demonstrate a clear symmetry of the dual approaches of
distributional learning. On the other hand, when we work on maximal bicliques,
which can be seen as a neutral choice of nonterminals, we do not have such a
perfect symmetry.

The original paper [9] that proposes the notion of the 1-fkp works on Binary
Feature Grammars, which are more expressive than cfgs. One can generalize
the discussion of [9] with the k-fkp.

We remark the analogy between cfgs with the 1-fcp and residual finite state
automata (rfsas [10]) by translating strings to suffixes and contexts to prefixes.
Each state of an rfsa corresponds to the residual language x−1L = { y | xy ∈ L }
for some x ∈ Σ∗, while each nonterminal of a cfgs with 1-fcp corresponds to
the language {〈x, z〉}′ = { y ∈ Σ∗ | xyz ∈ L } for some 〈x, z〉. In fact Denis et
al. [11] and Bollig et al. [1] have proposed efficient learning algorithms for rfsas.
Analogously to cfgs with f -fcp, one may think of learning of f -rfsas for f ≥ 1,
whose states correspond to S−1L = { y | xy ∈ L for all x ∈ S } for some S with
|S| ≤ f , which could be even more succinct representations of regular languages.

440 R. Yoshinaka

Acknowledgement

The author is grateful to Alexander Clark and Anna Kasprzik for helpful dis-
cussions. This work was supported in part by Mext Kakenhi (B-20700124).

References

1. Bollig, B., Habermehl, P., Kern, C., Leucker, M.: Angluin-style learning of NFA.
In: Boutilier, C. (ed.) IJCAI, pp. 1004–1009 (2009)

2. Clark, A.: A learnable representation for syntax using residuated lattices. In: Pro-
ceedings of the 14th Conference on Formal Grammar, Bordeaux, France (2009)

3. Clark, A.: Three learnable models for the description of language. In: Dediu, A.-
H., Fernau, H., Mart́ın-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 16–31.
Springer, Heidelberg (2010)

4. Clark, A.: Distributional learning of some context-free languages with a minimally
adequate teacher. In: [17], pp. 24–37 (2010)

5. Clark, A.: Learning context free grammars with the syntactic concept lattice. In:
[17], pp. 38–51 (2010)

6. Clark, A.: Towards general algorithms for grammatical inference. In: Hutter, M.,
Stephan, F., Vovk, V., Zeugmann, T. (eds.) ALT 2010. LNCS, vol. 6331, pp. 11–30.
Springer, Heidelberg (2010)

7. Clark, A.: Efficient, correct, unsupervised learning of context-sensitive languages.
In: Proceedings of CoNLL. Association for Computational Linguistics, Uppsala
(2010)

8. Clark, A., Eyraud, R.: Polynomial identification in the limit of substitutable
context-free languages. Journal of Machine Learning Research 8, 1725–1745 (2007)

9. Clark, A., Eyraud, R., Habrard, A.: Using contextual representations to efficiently
learn context-free languages. Journal of Machine Learning Research 11, 2707–2744
(2010)

10. Denis, F., Lemay, A., Terlutte, A.: Residual finite state automata. Fundam. In-
form. 51(4), 339–368 (2002)

11. Denis, F., Lemay, A., Terlutte, A.: Learning regular languages using RFSAs. Theor.
Comput. Sci. 313(2), 267–294 (2004)

12. Shirakawa, H., Yokomori, T.: Polynomial-time MAT learning of c-deterministic
context-free grammars. Transaction of Information Processing Society of Japan 34,
380–390 (1993)

13. Yoshinaka, R.: Identification in the limit of k,l-substitutable context-free languages.
In: Clark, A., Coste, F., Miclet, L. (eds.) ICGI 2008. LNCS (LNAI), vol. 5278, pp.
266–279. Springer, Heidelberg (2008)

14. Yoshinaka, R.: Learning mildly context-sensitive languages with multidimensional
substitutability from positive data. In: Gavaldà, R., Lugosi, G., Zeugmann, T.,
Zilles, S. (eds.) ALT 2009. LNCS, vol. 5809, pp. 278–292. Springer, Heidelberg
(2009)

15. Yoshinaka, R.: Polynomial-time identification of multiple context-free languages
from positive data and membership queries. In: [17], pp. 230–244 (2010)

16. Yoshinaka, R., Clark, A.: Polynomial time learning of some multiple context-free
languages with a minimally adequate teacher. In: Proceedings of the 15th Confer-
ence on Formal Grammar, Copenhagen, Denmark (2010)

17. Sempere, J.M., Garćıa, P. (eds.): ICGI 2010. LNCS, vol. 6339. Springer, Heidelberg
(2010)

On Highly Repetitive and Power Free Words

Narad Rampersad1 and Elise Vaslet2

1 Department of Mathematics, University of Liège, Belgium
narad.rampersad@gmail.com

2 Institut de Mathématiques de Luminy, Université Aix-Marseille II, France
vaslet@iml.univ-mrs.fr

Abstract. Answering a question of Richomme, Currie and Rampersad
proved that 7/3 is the infimum of the real numbers α > 2 such that
there exists an infinite binary word that avoids α-powers but is highly
2-repetitive, i.e., contains arbitrarily large squares beginning at every
position. In this paper, we prove similar statements about β-repetitive
words, for some other β’s, on the binary and the ternary alphabets.

1 Introduction

In this paper we study words that are non-repetitive, in the sense that they avoid
α-powers for some α, but yet are highly repetitive, in the sense that for some
β close to α, they contain infinitely many β-powers starting at every position.
First we recall some basic definitions. A finite, non-empty word v can be written
as v = pke, where k ≥ 1, the word e is a prefix of p, and the length of p is
minimal. We say that v has period p, excess e, and exponent expo(v) = |v|/|p|.
A word with exponent α is called an α-power. An α+-power is a word that is a
β-power for some β > α. A 2-power is called a square; a 2+-power is called an
overlap. A word is α-free if none of its factors is a β-power for any β ≥ α. A
word is α+-free if none of its factors is an α+-power.

Thue [TH2] proved that there exist infinite overlap-free binary words. Dekking
[DEK] later showed that any infinite overlap-free binary word must contain arbi-
trarily large squares. Currie, Rampersad, and Shallit [CRS] constructed 7/3-free
words containing infinitely many overlaps. Their motivation came from the fol-
lowing result of Shur [SHU]: Any bi-infinite 7/3-free binary word is overlap-free.
The analogue of this surprising result is not true for one-sided infinite words:
There are infinite 7/3-free binary words that are not overlap-free. The result
of Currie et al. shows that in fact the infinite 7/3-free binary words can be
significantly different from the infinite overlap-free binary words.

Currie and Rampersad [CR] continued this line of study in order to respond
to the following question of Richomme [RIC]: What is the infimum of the real
numbers α > 2 such that there exists an infinite word that avoids α-powers
but contains arbitrarily large squares beginning at every position? They showed
that over the binary alphabet the answer to Richomme’s question is α = 7/3. In
this paper we show that if instead of requiring arbitrarily large squares at every
position, we only ask for arbitrarily large β-powers at every position for some

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 441–451, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

442 N. Rampersad and E. Vaslet

fixed β < 2, then the answer of 7/3 for Richomme’s question can be replaced by
2. We also answer the analogous question for the ternary alphabet.

We also mention here the related work of Saari [SAA], who also studied infinite
words containing squares (not necessarily arbitrarily large) beginning at every
position. He called such words squareful, but he imposed the additional condition
that the word contain only finitely many distinct minimal squares.

2 Preliminary Definitions and Results

In this paper, Ak will denote the k-letter alphabet, for an integer k.
Let α be a real number.

Definition 1. A finite word is an α-repetition (resp. α+-repetition) if it is a
β-power for some β ≥ α (resp. β > α).

Definition 2. A word (finite or infinite) is highly α-repetitive (resp. highly α+-
repetitive) if it contains infinitely many α-repetitions (resp. α+-repetitions) be-
ginning at every position.

Definition 3. A word (finite or infinite) is α-free (resp. α+-free) if it contains
no α-repetition (resp. α+-repetition).

Definition 4. A morphism μ : A∗ → B∗ is α-free (resp. α+-free) if for any
word w ∈ A∗, the following equivalence holds:

w is α-free ⇔ μ(w) is α-free.

We now define three particular morphisms which we will use in the paper
because of their α-freeness for certain α.

The Thue-Morse morphism is defined by

μTM :

{
0 �→ 01
1 �→ 10.

Proposition 1 ([TH2]). μTM is a 2+-free morphism.

Dejean’s morphism is defined by

μD :

⎧⎪⎨
⎪⎩
a �→ abc acb cab c bac bca cba
b �→ π(μ(a)) = bca bac abc a cba cab acb
c �→ π2(μ(a)) = cab cba bca b acb abc bac,

where π is the morphism that cyclically permutes the alphabet {a, b, c}.
Proposition 2 ([DEJ]). μD is a 7/4+-free morphism.

On Highly Repetitive and Power Free Words 443

The following morphism was given by Brandenburg in [BRA]:

μB :

⎧⎪⎨
⎪⎩
a �→ abacbabcbac
b �→ abacbcacbac
c �→ abcbabcacbc.

Proposition 3 ([BRA]). μB is a 2-free morphism.

3 Highly Repetitive Binary Words

The results of Currie and Rampersad in [CR, Theorems 4 and 5] state that
for any α > 7/3, there exists an infinite binary word which is both α-free and
highly 2-repetitive, and that such a word does not exist if α ≤ 7/3. The following
proposition gives a similar result in the case of highly β-repetitive words, with
β < 2: for any α > 2 and any β < 2, there exists an infinite binary word which
is both α-free and highly β-repetitive.

Theorem 1. For any real number β < 2, there exists an infinite binary word
which is both 2+-free and highly β-repetitive.

Proof. Let β < 2 be a real number. There exists an integer m ≥ 1 such that
β ≤ 2− 1

2m < 2. Let r = 2− 1
2m , and let us construct a binary infinite word with

infinitely many r-powers at every position, and which is 2+-free. We recall that
μTM is the Thue-Morse morphism.

We remark that μmTM (11) is a factor of μm+3
TM (1). Indeed, μ3

TM (1) = 10010110,
and so μm+3

TM (1) = μmTM (10010110) = uμmTM (11)μmTM (0), where u = μmTM (10010).
Let us define q = m+ 3. We define the following sequence of finite words:

A0 = μmTM (11)
A1 = (u)−1μqTM (A0)

...
An = (u)−1μqTM (An−1),

where we denote by (x)−1y the word obtained by removing the prefix x from the
word y (here, the word μqTM (An) always has u as a prefix, since An always has
1 as a prefix). As 11 and μTM are 2+-free, then for any n ≥ 0, An is 2+-free.

We show that for any n ≥ 0, An is a prefix of An+1. This is clearly true for
n = 0. If An−1 is a prefix of An, then we can write An = An−1S, where S
is a binary word. Then, An+1 = (u)−1μqTM (An−1S) = AnμqTM (S). Thus, the
sequence An converges to an infinite limit word we denote by w, and this limit
is 2+-free. We now prove that w contains infinitely many r-powers beginning at
every position. It can easily be seen that for any n ≥ 1,

An = (u)−1[μqTM (u)]−1 · · · [μq(n−1)
TM (u)]−1μqnTM (A0).

444 N. Rampersad and E. Vaslet

Let us denote by pn the word μq(n−1)
TM (u) · · ·μqTM (u)u. Then we have An =

(pn)−1μqnTM (A0), since for any words u and v, (uv)−1 = (v)−1(u)−1. Moreover,
we can see that pn is a prefix of μqnTM (1). Indeed,

|pn| = |u|
n−1∑
i=0
|μTM (1)|qi

= |u|
n−1∑
i=0

2qi

< 2qn = |μqnTM (1)|,

since |u| ≤ 2q − 1. So, we can write μqnTM (1) = pnsn, where sn is a binary word.
For any n ≥ 1, An = (pn)−1μqnTM (A0) = (pn)−1μqnTM (μmTM (11)). We know that
μmTM (1) begins with the letter 1, and let us denote its last letter by a ∈ {0, 1}. We
can write μmTM (1) = 1xa, where x ∈ {0, 1}∗. We can also write μqnTM (a) = p̃ns̃n,
with p̃n and s̃n two binary words such that |p̃n| = |pn| and |s̃n| = |sn|. Then,

An = snμqnTM (x)p̃ns̃npnsnμqnTM (x)p̃ns̃n.

It follows that at all positions 0 ≤ j ≤ |sn|, there begins a repetition with period
a conjugate of snμqnTM (x)p̃ns̃npn, and of length

|snμqnTM (x)p̃ns̃npnsnμqnTM (x)p̃n|
= 2 · |x| · 2qn + 3 · 2qn
= 2qn(2m+1 − 1),

since |x| = |μmTM (1)|−2 = 2m−2. These repetitions have exponents 2qn(2m+1−1)
2qn|x|+2·2qn =

2m+1−1
2m = r. As n can be taken arbitrarily large, the result follows.
�

Moreover, this result is optimal. Indeed, on the one hand, it is easy to see that
for α ≤ 2, there is no infinite binary α-free word. On the other hand, Currie and
Rampersad proved the following result.

Proposition 4 ([CR]). If w is an infinite overlap-free binary word, then there
is a position i such that w does not contain a square beginning at position i.

4 Highly Repetitive Ternary Words

In this part, we will state some similar results in the case of the ternary alphabet.
We recall that the repetition threshold of the ternary alphabet is 7/4, so for any
α ≤ 7/4, there is no infinite α-free ternary word.

Theorem 2. For any real number β < 7/4, there exists an infinite ternary word
that is both 7/4+-free and highly β-repetitive.

On Highly Repetitive and Power Free Words 445

Proof. For any real number β < 7/4, there exists an integer m ≥ 1 such that
β ≤ 7/4 − 1

19m+2 < 7/4. Let r = 7/4 − 1
19m+2 , and let us construct a 7/4+-free

word which contains infinitely many r-powers at every position. We recall that
μD is Dejean’s morphism.

We remark that μmD(abcbabc) is a factor of μm+2
D (a). Indeed,

μ2
D(a) = μD(a)μD(b)cabcbabcabacbabcbacμD(acbcabcbacbcacba),

and so

μm+2
D (a) = uμmD(abcbabc)μmD(abacbabcbac)μm+1

D (acbcabcbacbcacba),

where u = μm+1
D (ab)μmD(c). Let us define q = m+ 2.

We define the following sequence of finite words:

A0 = μmD(abcbabc)
A1 = (u)−1μqD(A0)

...
An = (u)−1μqD(An−1).

(Here, the word μqD(An) always has u as a prefix, since An always has a as a
prefix). As abcbabc and μD are 7/4+-free, then for any n ≥ 0, An is 7/4+-free.

Similar arguments as in the proof of Theorem 1 prove that the sequence An
converges to an infinite limit word we denote by w, and this limit is 7/4+-free. We
now prove that w contains infinitely many α-powers beginning at every position.
Again with similar arguments as in the proof of Theorem 1, we can see that for
any n ≥ 1,

An = (pn)−1μqnD (A0),

where pn is the word μq(n−1)
D (u) · · ·μqD(u)u. Moreover, we can see that pn is a

prefix of μqnD (a). Indeed,

|pn| = |u|
n−1∑
i=0
|μD(a)|qi

= |u|
n−1∑
i=0

19qi

< 19qn = |μqnD (a)|.
So, we can write μqnD (a) = pnsn, where sn is a ternary word. For any n ≥ 1,

An = (pn)−1μqnD (A0) = (pn)−1μqnD (μmD (abcbabc)). We know that μmD(a) begins
with the letter a, and let us denote its last letter by x ∈ {a, b, c}. We can write
μmD(a) = aXx, where X ∈ {a, b, c}∗. Similarly, let us write μmD(c) = cY y, where
Y ∈ {a, b, c}∗, and y ∈ {a, b, c}. We can also write μqnD (y) = p̃ns̃n, with p̃n and
s̃n two ternary words such that |p̃n| = |pn| and |s̃n| = |sn|. Then,

An = snμqnD (XxμmD(b)cY)p̃ns̃nμqn+m
D (b)pnsnμqnD (XxμmD(b)cY)p̃ns̃n.

446 N. Rampersad and E. Vaslet

It follows that at all positions 0 ≤ j ≤ |sn|, there begins a repetition with period
a conjugate of snμqnD (XxμmD(b)cY)p̃ns̃nμqn+m

D (b)pn, and of length

l = |snμqnD (XxμmD(b)cY)p̃ns̃nμqn+m
D (b)pnsnμqnD (XxμmD(b)cY)p̃n|

= 2 · |XxμmD(b)cY | · 19qn + 19qn+m + 3 · 19qn

= 19qn · (7 · 19m − 1),

since |X | = |Y | = |μmD(a)| − 2 = 19m − 2. These repetitions have exponent

19qn(7 · 19m − 1)
19qn|XxμmD(b)cY |+ 19qn+m + 2 · 19qn

=
7 · 19m − 1

4 · 19m
= α.

As n can be taken arbitrarily large, the result follows.
�
Now, we will consider the problem for highly 7/4-repetitive words. This would
be Richomme’s question for the ternary alphabet : what is the infimum of the
real numbers α such that there exists an infinite ternary word which is both
α-free and highly 7/4-repetitive?
Proposition 5. There is no 7/4+-free ternary word which is highly 7/4-repetitive.
Proof. Let us suppose there exists such a word w. Then, any factor of w is left-
special (i.e., has two left extensions). Indeed, let u be a factor of w, and let
i denote its position in w. w is recurrent (every factor occurs infinitely often)
because it is highly repetitive, so we can suppose i ≥ 1. There is a long enough
7/4-repetition v beginning at position i. We denote its period by p. Then, u is
repeated in the excess of v : pu is a factor of v. Now, let x1 = wi−1 and x2 = p|p|.
It is clear that x1 �= x2, since otherwise, x1v would be a 7/4+-repetition, which
is impossible since w is 7/4+-free. So u has two left extensions. Moreover, as the
factors aa, bb and cc are clearly forbidden, we can see that w contains the factor
abab (by extending b on the left). But abab is a square, which contradicts the
fact that w is 7/4+-free.
�
Theorem 3. There exists an infinite ternary word which is both 2-free and
highly 7/4-repetitive.
Proof. We use the morphism of Brandenburg, which is a square-free morphism :

μB :

⎧⎪⎨
⎪⎩
a �→ abacbabcbac
b �→ abacbcacbac
c �→ abcbabcacbc.

We use it to give a similar construction as in the proofs of Theorems 1 and 2.
We consider the sequence:

A0 = cbacμB(cbc)abac = cbacabcbabcacbcabacbcacbacabcbabcacbcabac
A1 = (u)−1μ3

B(A0)
...

An = (u)−1μ3
B(An−1),

On Highly Repetitive and Power Free Words 447

where u = μ2
B(a)μB(ab)abacbab. The sequence An converges to a limit we de-

note by w, which is a square-free word because μB is square-free. For any
n ≥ 1, if we denote by pn the word μ3(n−1)

B (u) · · ·μ3
B(u)u, we can see that

An = (pn)−1μ3n
B (A0). But pn is a prefix of μ3n

B (c), since

|pn| = |u|
n−1∑
i=0
|μB(a)|3i

= |u|
n−1∑
i=0

113i

< 113n = |μ3n
B (c)|.

So, we can write μ3n
B (c) = pnsn, where sn is a ternary word. Then, for any n ≥ 1,

An = (pn)−1μ3n
B (A0)

= snμ3n
B (bacabcbabcacbcaba)pnsnμ3n

B (bca)pnsnμ3n
B (bacabcbabcacbcaba)pnsn.

It follows that at all positions 0 ≤ j ≤ |sn|, there begins a repetition with period
a conjugate of snμ3n

B (bacabcbabcacbcaba)pnsnμ3n
B (bca)pn, and of length

l = |snμ3n
B (bacabcbabcacbcaba)pnsnμ3n

B (bca)pnsnμ3n
B (bacabcbabcacbcaba)pn|

= 40 · 113n.

These repetitions have exponents 40/22 = 20/11 ≥ 7/4. As n can be taken
arbitrarily large, the result follows.
�
Remark 1. In fact, with this proof, we have the result: There exists an infinite
2-free ternary word which is highly 20/11-repetitive.

So the problem of finding the infimum of the real numbers α such that there
exists an infinite ternary α+-free word which is highly 7/4-repetitive is open. We
proved that this infimum is between 7/4 and 2.

5 Weaker Results on Ternary Words

In the following section, we will prove some weaker results for words over the
ternary alphabet. First, instead of considering highly repetitive words, we con-
sider words with powers at every positions. Then, we will discuss words contain-
ing infinitely many powers, but not necessary at every position. These questions
were asked at the end of [CR] by Currie and Rampersad.

The following results concern Dejean’s morphism μD and its behaviour re-
garding repetitions and synchronizing properties, and were proved in [VAS]. If
v is a word, we denote by δ the application that removes the first letter of v
(and so, δt(v) removes the first t letters of v). Moreover, we denote by FD the
set Fact(μD(A∗3)) of factors of μD(A∗3).

448 N. Rampersad and E. Vaslet

Lemma 1 ([VAS]). Let α ∈]7/4, 2[be given. Let s, t be natural numbers such
that μsD(b) = xabcbabcy, with |x| = t. Let β = 2− t

4·19s . Suppose that 7/4 < β <
α, and that abcbabcv ∈ FD is α-free. Consider the word w = δtμsD(babcbabcv).
Then, we have:

1. w has a prefix with exponent β.
2. If abcbabcv has a factor with exponent γ and period p, then, w has a factor

with exponent γ and a period of length 19s|p|.
3. w is α-free.

Definition 5 ([VAS]). A real number β < α is said to be obtainable if β can
be written as β = 2− t

4·19s , where the natural numbers s and t verify:

* s ≥ 3
* the word δt(μsD(b)) begins with abcbabc.

We note that for any given s ≥ 3, it is possible to choose t such that

* 7/4 < β = 2− t
4·19s < α

* |α− β| ≤ 192

4·19s .

Indeed, μ2
D(a), μ2

D(b), and μ2
D(c) have length 192, and each has abcbabc as a

factor. Therefore, choosing a large enough s, we can always find some obtainable
real numbers β arbitrarily close to α.

Theorem 4. For every real number α > 7/4, there exists an infinite α-free
ternary word that contains 7/4-powers beginning at every position.

Proof. Theorem 3.4 in [CR] established the result for any α > 2. Let us consider
7/4 < α ≤ 2. Let β be an obtainable number (see Definition 5), that is, it can
be written as:

β = 2− t

4 · 19s
,

where s ≥ 3, and δtμsD(b) begins with abcbabc.
For any word v in FD, we denote by Φ(v) the word δtμsD(bv) (we recall that

δ(u), for some word u, removes the first letter of u) and we consider the sequence:

v1 = Φ(abcbabc) = δtμsD(babcbabc)
v2 = Φ(v1) = δtμsD(bδtμsD(babcbabc))

...
vn = Φ(vn−1)

...

Let w = lim vn (possible because each vi is clearly a prefix of vi+1). By iteration
of Lemma 1, as abcbabc is α-free, each vi is α-free, and then w is α-free.

For any n ≥ 0, w begins with a prefix of the form

δtμsD(b)μsD(δtμsD(b)) · · ·μnsD (δtμsD(b))μ(n+1)s
D (abcbabc).

On Highly Repetitive and Power Free Words 449

Thus, w contains the word μnsD (δt(μsD(b))μ(n+1)s
D (abcbabc) at position

pn = |δtμsD(b)μsD(δtμsD(b)) · · ·μ(n−1)s
D (δtμsD(b))|

=
n∑
i=1
|μisD(b)| −

n−1∑
i=0
t · 19is

= (19s − t)
n−1∑
i=0

19is

= (19s − t)19ns − 1
19s − 1

Moreover, the word μnsD (δtμsD(b))μ(n+1)s
D (abcbabc) contains 7/4-powers at ev-

ery position between 1 and qn = |μnsD (δtμsD(b))| = (19s− t) ·19ns. So, in w, there
is a 7/4-repetition starting at every position j, for every j ∈ [pn, pn + qn − 1].
Since pn+1 = pn + qn, every position j in N is reached.
�
Theorem 5. For every real number α ≥ 7/4 there exists a real number β, with
7/4 ≤ β < α, arbitrarily close to α, such that there is an infinite β+-free ternary
word containing infinitely many β-powers.

Proof. Theorem 3.4 in [CR] established the result for any α > 2. Let us consider
7/4 < α ≤ 2. Let β be an obtainable number, that is, it can be written as:

β = 2− t

4 · 19s
,

where s ≥ 3, and δtμsD(b) begins with abcbabc.
Similarily to the proof of Theorem 4, we consider the sequence:

v1 = Φ(abcbabc) = δtμsD(babcbabc)
v2 = Φ(v1) = δtμsD(bδtμsD(babcbabc))

...
vn = Φ(vn−1)

...

Let w = lim vn. w is α-free, and it is β+-free, since β < α. Moreover, for any
n ≥ 1, w contains the word μnsD (δtμsD(babcbabc)), which has length 19ns(8·19s−t)
and exponent β.
�

6 Conclusion

We propose the following definition. For an integer k, consider the set

Sk = {(α, β) ∈ R2 : there exists a word in Aωk which is α-free and
highly β-repetitive}.

450 N. Rampersad and E. Vaslet

The combined results of Currie and Rampersad [CR], and of Sections 3 and
4 of this paper, give a partial desciption of Sk for k = 2 and k = 3. This is
summarized in Figures 1 and 2.

β

α
2 7

3

2

7
3

?

∈ S2

�∈ S2

Fig. 1. k = 2

β

α
27

4

7
4

?

∈ S3

�∈ S3

Fig. 2. k = 3

On Highly Repetitive and Power Free Words 451

References

[BER] Berstel, J.: Axel Thue’s papers on repetitions in words: a translation. In:
Publications du LACIM, vol. 20 (1994)

[BRA] Brandenburg, F.J.: Uniformly growing k-th powerfree homomorphisms. The-
oret. Comput. Sci. 23, 69–82 (1983)

[CAR] Carpi, A.: On Dejean’s conjecture over large alphabets. Theor. Comput.
Sci. 385, 137–151 (2007)

[CUR] Currie, J., Rampersad, N.: For each α > 2 there is an infinite binary word
with critical exponent α. Electron. J. Combinatorics 15, #N34 (2008)

[CURR] Currie, J., Rampersad, N.: Dejean’s conjecture holds for n ≥ 30. Theoret.
Comput. Sci. 410, 2885–2888 (2009)

[CR] Currie, J., Rampersad, N.: Infinite words containing squares at every posi-
tion. Theor. Inform. Appl. 44, 113–124 (2010)

[CRS] Currie, J., Rampersad, N., Shallit, J.: Binary words containing infinitely
many overlaps. Electron. J. Combinatorics 13, #R82 (2006)

[DEJ] Dejean, F.: Sur un théoréme de Thue. J. Combin. Theory Ser. A 13 (1972)
[DEK] Dekking, F.M.: On repetitions in binary sequences. J. Comb. Theory Ser.

A 20, 292–299 (1976)
[KRI] Krieger, D., Shallit, J.: Every real number greater than 1 is a critical expo-

nent. Theoret. Comput. Sci. 381 (2007)
[MIG] Mignosi, F., Pirillo, G.: Repetitions in the Fibonacci infinite word. RAIRO

Inform. Theor. Appl. 26 (1992)
[PAN] Pansiot, J.-J.: A propos d’une conjecture de F. Dejean sur les répétitions

dans les mots. Discrete Appl. Math. 7 (1984)
[RIC] Richomme, G.: Personal communication (2005)
[SAA] Saari, K.: Everywhere α-repetitive sequences and Sturmian words. Europ. J.

Combin. 31, 177–192 (2010)
[SHU] Shur, A.M.: The structure of the set of cube-free Z-words in a two-letter al-

phabet. Izv. Ross. Akad. Nauk Ser. Mat. 64, 201–224 (2000); English trans-
lation in Izv. Math. 64, 847–871 (2000)

[TH1] Thue, A.: Uber unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I. Mat.
Nat. Kl. Christiana (7) (1906)

[TH2] Thue, A.: Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen.
Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana (10) (1912)

[VAS] Vaslet, E.: Critical exponents of words over 3 letters (submitted)

A Sufficient Condition for Erasing Productions

to Be Avoidable

Georg Zetzsche

Fachbereich Informatik, Technische Universität Kaiserslautern,
Postfach 3049, 67653 Kaiserslautern, Germany

zetzsche@cs.uni-kl.de

Abstract. In each grammar model, it is an important question whether
erasing productions are necessary to generate all languages. Using the
concept of grammars with control languages by Salomaa, which offers a
uniform treatment of a variety of grammar models, we present a condition
on the class of control languages that guarantees that erasing productions
are avoidable in the resulting grammar model. On the one hand, this
generalizes the previous result that in Petri net controlled grammars,
erasing productions can be eliminated. On the other hand, it allows us
to infer that the same is true for vector grammars.

1 Introduction

Since it had become evident that the classical grammar models of the Chomsky
Hierarchy either lack the ability to generate many important languages or do not
admit sufficient means of analysis, many grammar models have been proposed
with the aim of extending the generative power of context-free languages while
retaining the decidability of relevant questions. These extensions are commonly
referred to as grammars with regulated rewriting. In most cases, these models
consist of context-free productions and some mechanism that restricts the set of
valid derivations.

For every such grammar model, it is an important question whether each
grammar has an equivalent that does not utilize erasing productions. This is
due to the fact that in the absence of erasing productions, a given word cannot
be derived from a sentential form of length greater than that of the word. Thus,
in the search for a derivation of a given word, the set of possible intermediate
sentential forms is finite. Another reason for studying the generative capacity
of erasing productions is that sometimes, the erasing and non-erasing variant
correspond to language classes whose relation is of independent interest.

For some grammar models, the generative capacity of erasing productions has
been determined. Aho obtained a normal form result for indexed grammars in
the same article that introduced this grammar model [1]. Furthermore, Fernau
and Stiebe proved that for valence grammars over commutative monoids (and
thus unordered vector grammars) analogs of the Chomsky and Greibach nor-
mal forms are available [7]. In both cases, the normal forms imply that erasing
productions can be eliminated. Moreover, it has recently been shown that in

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 452–463, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Sufficient Condition for Erasing Productions to Be Avoidable 453

permitting random context grammars, erasing productions can be avoided [10].
Finally, in Petri net controlled grammars, erasing productions can be eliminated
as well [11].

For matrix grammars, a partial result and reformulations have been obtained
[10,11], but the problem is still open1. In addition, to the knowledge of the au-
thor, it is open wether erasing productions are necessary in forbidding random
context grammars. Up to date, it was also not known whether in vector gram-
mars, erasing productions increase the generative capacity.

This work provides a general condition with respect to grammars with control
languages that guarantees that erasing productions are avoidable. The concept of
grammars with control languages, introduced by Salomaa [9], unifies some of the
grammar models with regulated rewriting 2. Such a grammar consists of context-
free productions and a control language whose words specify the sequences of
productions that correspond to valid derivations. On the one hand, our sufficient
condition is fulfilled for Petri net controlled grammars, which allows us to recover
the result from [11]. On the other hand, it applies to vector grammars, which
means that erasing productions do not increase their capacity.

2 Basic Notions

Let Σ be a fixed countable set of abstract symbols, the finite subsets of which
are called alphabets. For an alphabet X , we will write X∗ for the set of words
over X . The empty word is denoted by λ. In particular, ∅∗ = {λ}. We will
regard every x ∈ X as an element of X∗, namely the word consisting of only one
occurence of x. For a symbol x ∈ X and a word w ∈ X∗, let |w|x be the number
of occurrences of x in w. For a subset Y ⊆ X , let |w|Y :=

∑
x∈Y |w|x. By |w|,

we will refer to the length of w. Given an alphabet X , subsets of X∗ are called
languages. We define the shuffle L1 L2 of two languages L1, L2 ⊆ X∗ to be
the set of all words w ∈ X∗ such that w = u1v1 · · ·unvn for some ui, vi ∈ X∗,
1 ≤ i ≤ n, with u1 · · ·un ∈ L1, v1 · · · vn ∈ L2. The shuffle closure L of a
language L is defined as L :=

⋂
K K, where K ranges over those K ⊆ X∗ such

that λ ∈ K and K L ⊆ K. Equivalently, L is the smallest language in X∗ that
contains λ and contains u v whenever u ∈ K and v ∈ L. The Dyck language
over a and b, a, b ∈ X , a �= b, is the set {ab} . Equivalently, it is the set of all
words w ∈ {a, b}∗ such that |w|a = |w|b and |p|b ≤ |p|a for every prefix p of
w. A language L ∈ X∗ is called a Dyck language if there are symbols a, b ∈ X ,
a �= b, such that L = {a, b} . A languages class is a set of languages. A language
class C is said to be closed under shuffling with Dyck languages if L D is in C
whenever L is in C and D is a Dyck language. For a language class C, we denote
by D(C) the smallest language class that contains C and is closed under shuffling
with Dyck languages.

1 In [4, Theorem 2.1, p. 106], it is claimed that erasing productions cannot be avoided.
However, none of the given references contains a proof for this claim.

2 Control sets on grammars were also considered by Ginsburg and Spanier [8]. They,
however, require all derivations to be leftmost.

454 G. Zetzsche

For a set A, let ℘(A) denote the set of subsets of A. Given alphabets X and Y ,
a letter substitution is a map α : X → ℘(Y). For u = u1 · · ·un, u1, . . . , un ∈ X ,
α(u) is the set of words v ∈ Y ∗ such that v = v1 · · · vn, v1, . . . , vn ∈ Y , and
vi ∈ α(ui), 1 ≤ i ≤ n. The map is extended to languages by means of α(L) =⋃

w∈L α(w). A class of languages is said to be closed under letter substitutions
if α(L) is in C whenever L is in C and α is a letter substitution. The smallest
language class that contains C and that is closed under letter substitutions is
denoted by S(C).

For an alphabet X and a subset Y ⊆ X , we have the homomorphisms δY :
X∗ → (X \ Y)∗ and πY : X∗ → Y ∗, defined by πY (y) = y for y ∈ Y and
πY (x) = λ for x ∈ X \ Y and δY = πX\Y .

Furthermore, we write X⊕ for the set of multisets over the set X , that is,
X⊕ is the set of mappings α : X → N. The operation + on X⊕ is defined by
(α + β)(x) := α(x) + β(x) for all x ∈ X . Together with the neutral element
0, defined by 0(x) := 0 for every x ∈ X , X⊕ is a (commutative) monoid. We
write α . β if α(x) ≤ β(x) for every x ∈ X . As in the case of words, we will
regard X as a subset of X⊕ by identifying each x ∈ X with μx ∈ X⊕, which
is defined by μx(x) := 1 and μx(y) := 0 for y ∈ X , y �= x. For a multiset
μ ∈ X⊕, let |μ| :=

∑
x∈X μ(x). Here, |μ| is called the size of μ. For α . β, let

(β − α)(x) := β(x) − α(x). The Parikh mapping is the mapping Ψ : X∗ → X⊕

defined by Ψ(w)(x) := |w|x for all w ∈ X∗ and x ∈ X .
A finite automaton is a tuple A = (Q,X,E, q0, F), where Q is a finite set of

states, X is an alphabet, E is a finite subset of Q × X∗ × Q called the set of
edges, an initial state q0 ∈ Q and a set F ⊆ Q of final states. The binary relation
→A on X∗ × Q is defined by (u, p) →A (v, q) iff there is an edge (p, w, q) such
that v = uw. For p, q ∈ Q, the set Lp,q(A) is then

Lp,q(A) := {w ∈ X∗ | (λ, p) →∗
A (w, q)}.

The language accepted by A is L(A) :=
⋃

q∈F Lq0,q(A). A language is said to be
regular if it is accepted by a finite automaton.

A controlled grammar is a tuple G = (N,T, P, S, Λ, ρ, C), in which

– N and T are disjoint alphabets, called the nonterminal and terminal sym-
bols, respectively,

– P ⊆ N × (N ∪ T)∗ is a finite set of productions,
– S ∈ N is the start symbol,
– Λ is an alphabet of labels,
– ρ : Λ → P assigns a production to each label, and
– C ⊆ Λ∗ is a non-empty language, called the control language.

For a controlled grammar G, a configuration is a pair (u, c) ∈ (N ∪ T)∗ × Λ∗.
The derivation relation is a binary relation on the set of configurations and is
defined as follows. For u, v ∈ (N ∪ T)∗ and c, d ∈ Λ∗, let (u, c) =⇒G (v, d) iff
there are words r, s ∈ (N ∪ T)∗ and a label t ∈ Λ such that u = rAs, v = rws,
and d = ct, where ρ(t) = A → w. The language generated by G is then

A Sufficient Condition for Erasing Productions to Be Avoidable 455

L(G) := {w ∈ T ∗ | ∃c ∈ C : (S, λ) =⇒∗
G (w, c)}.

A production A → w in P is called erasing if w = λ and otherwise non-erasing.
We now come to the definition of non-erasing controlled grammars. If we would

define them to be those grammars that contain no erasing productions, we would
forbid them to generate the empty word. This problem is usually addressed by
allowing non-erasing grammars to have a single erasing production S → λ such
that S does not appear on any right side. With this definition, however, it would
still be impossible to generate the empty word when the control language at
hand does not provide a control word of length one. Therefore, we relax this
condition even further and allow a non-erasing grammar to have productions
Si → Si+1, 1 ≤ i ≤ n−1, and Sn → λ such that S = S1 and none of the symbols
Si appears on any other right side. This definition enables the generation of λ
by control languages without short words and still retains desirable properties
of non-erasing grammars. That is, it is still possible to conclude that from a
sentential form of length ≥ n, no word of length < n can be derived, with the
only exception of the unique derivation S =⇒∗

G λ. Furthermore, if a language
L is generated by a non-erasing grammar with control language, then it can be
written as either L = K or L = K ∪ {λ}, where K is generated by a grammar
with the same control language that has no erasing productions at all (for a
partial converse, see Lemma 2).

Thus, we call a controlled grammar G = (N,T, P, S, Λ, ρ, C) non-erasing if
either

– P does not contain any erasing productions or
– there is a subset {S1, . . . , Sn} ⊆ N and productions Si → Si+1 for 1 ≤ i ≤

n − 1 and Sn → λ such that S = S1 and no Si, 1 ≤ i ≤ n, appears on the
right side of any other production than these.

Let C be a language class. The class of languages generated by arbitrary and
non-erasing controlled grammars with a control language in C is denoted by
CFλ(C) and CF(C), respectively.

3 Control Languages and Erasing Productions

It is a well-known fact that in context-free grammars, erasing productions can
be avoided. This is due to the fact that, in a derivation, all nonterminals are
rewritten independently. That is, it has no effect on the other nonterminals
how a particular occurrence is rewritten. Therefore, in order to avoid erasing
productions, one can introduce productions that, instead of creating and then
deleting instances of nonterminals, prevent them from being generated.

However, in the case of grammars with some additional control mechanism,
preventing the generation of nonterminals could interfere with the rest of the
derivation. Specifically, the process of generating and then deleting instances
of nonterminals could be necessary to obey the control mechanism. Thus, in
order to eliminate erasing productions in grammars with regulated rewriting,
the strategy above cannot be applied.

456 G. Zetzsche

Here, we will make assumptions about the control mechanism that allow us
to use it as a storage for the part of the sentential form that will eventually be
rewritten to the empty word. Specifically, we require a closure property that en-
ables us to transform one control language into another one. This new language
poses the same restriction on the set of derivations, except that it allows addi-
tional labels that correspond to operations on counters (increase and decrease)
such that the words in the control language describe valid sequences of these
operations (i.e., the counters are never negative and are zero in the end). Thus,
the new control language constitutes a control mechanism that (in addition to
the control executed by the original language) acts like a storage (of natural
numbers). This will allow us to transfer occurrences of later deleted nontermi-
nals back and forth between the sentential form and the storage. The latter will
then be used to reduce the number of such later deleted symbols in the sentential
form below a bound that only depends on the grammar: After generating a later
deleted symbol, it can be moved to the storage. When it is to be rewritten, it is
brought back to the sentential form so that the production can be applied and
the inserted right hand side can be moved to the storage, etc.

Thus, in each sentential form, there is only a bounded number of symbols that
will eventually be rewritten to the empty word. These can then be accounted for
by “attaching” multisets to nonterminals that can hold a finite number of occur-
rences. Attaching means that the new set of nonterminals will consist of pairs of
old (terminal or nonterminal) symbols and multisets. The idea to seperate later
deleted symbols from other symbols, reduce the number of their occurrences and
then account for the remaining occurrences via attached multisets has also been
used in [10] to obtain an analogous result for permitting random context gram-
mars. However, in the latter work, the technique used for the reduction step is
completely different from the one used here.

Some of our proofs involve the construction of a controlled grammar G′ =
(N ′, T, P ′, S′, Λ′, ρ′, C′) from a grammar G = (N,T, P, S, Λ, ρ, C) such that C′ =
α(C), where α is a letter substitution. This will be the case when for every
production p in G, there is a set of productions in G′ that in some way correspond
to p, i.e., we are given a relation R ⊆ P ′×P , the simulation (relation), such that
(p′, p) ∈ R whenever p′ corresponds to p. The substitution α is then defined such
that for a label t ∈ Λ, the set α(t) ⊆ Λ′ consists of labels of those productions
that correspond to ρ(t). Thus, we define

Λ′ := {�t,p | t ∈ Λ, p ∈ P ′, (p, ρ(t)) ∈ R},

where the �t,p are new symbols. That is, for every pair (t, p) ∈ Λ × P ′ such
that p corresponds to the production of t, we have a unique label in Λ′. The
maps ρ′ : Λ′ → P ′ and α : Λ → ℘(Λ′) are then defined as ρ′(�t,p) := p and
α(t) := {�t,p ∈ Λ′ | p ∈ P ′}. The triple (Λ′, ρ′, α) will be called the triple induced
by R.

The first step in the proof of our main result is to establish a normal form
for grammars with control languages. An analogous concept was used in [10]
for permitting random context grammars. This normal form requires the set of

A Sufficient Condition for Erasing Productions to Be Avoidable 457

nonterminals to be partitioned into two subsets. One of these subsets contains
only symbols from which no terminal word but the empty one can be derived.
The other set contains only symbols from which only non-empty words can be
derived. Thus, this normal form allows us to determine whether an occurrence
will be rewritten to the empty word just by looking at its symbol.

A controlled grammar G = (N,T, P, S, Λ, ρ, C) is in erasing normal form if
there is a subset Δ ⊆ N such that for each production A → w ∈ P we have
that A ∈ Δ if and only if w ∈ Δ∗. Since a symbol A ∈ Δ can only be directly
rewritten to words in Δ∗, the only terminal word derivable from A is the empty
word. Furthermore, in every word derivable from a symbol A ∈ N \ Δ, there
occurs at least one symbol outside of Δ. Thus, symbols outside of Δ cannot
derive the empty word. If G = (N,T, P, S, Λ, ρ, C) is in erasing normal form
with Δ ⊆ N , we also write G = (N,Δ, T, P, S, Λ, ρ, C).

Lemma 1. Let G be a controlled grammar with control language C such that
λ /∈ L(G). Then, there is an equivalent grammar with control language α(C) in
erasing normal form, such that α is a letter substitution.

Proof. Let G = (N,T, P, S, Λ, ρ, C) be a controlled grammar. Let Ā be a new
symbol for each A ∈ N and let Δ := {Ā | A ∈ N} and N ′ := N∪Δ. Furthermore,
let ϕ : (N ′ ∪ T)∗ → (N ∪ T)∗ and ψ : N∗ → Δ∗ be the homomorphisms defined
by ϕ(Ā) = A for A ∈ N and ϕ(x) = x for x ∈ N ∪ T and ψ(A) = Ā for A ∈ N .
Let P = {Ai → wi | 1 ≤ i ≤ n} such that wi ∈ N∗ iff i ≤ m for some m ≤ n. For
each i, 1 ≤ i ≤ n, we include the productions Ai → u for each u ∈ (N ′∪T)∗ \Δ∗

such that ϕ(u) = wi and let Ai → u simulate Ai → wi. Furthermore, for each i,
1 ≤ i ≤ m, we add ψ(Ai) → ψ(wi) and let it simulate Ai → wi.

This defines a set of productions P ′ and a simulation R ⊆ P ′×P . Let (Λ′, ρ′, α)
be the triple induced by R. The grammar G′ = (N ′, Δ, T, P ′, S′, Λ′, ρ′, C′) with
S′ := S and C′ = α(C) is in erasing normal form. This is due to the fact that
in the productions A → u, u ∈ (N ′ ∪ T)∗ \ Δ∗, none of the sides is in Δ∗ and
in the productions ψ(A) → ψ(w), both sides are. Thus, it remains to be shown
that L(G′) = L(G).

Since for every production A → w in P ′, the production ϕ(A) → ϕ(w) exists
in P and is simulated by A → w, it follows immediately that L(G′) ⊆ L(G).

In order to prove that L(G) ⊆ L(G′), one can show by induction on n that for
every derivation (w1, c1) =⇒G · · · =⇒G (wn, cn), where c1 = λ, wn ∈ T ∗, there
is a derivation (w′

1, c
′
1) =⇒G′ · · · =⇒G′ (w′

n, c′n) such that ϕ(w′
i) = wi and c′i ∈

α(ci) for 1 ≤ i ≤ n. Then, every derivation (S, λ) =⇒∗
G (w, c), w ∈ T+, yields a

derivation (A, λ) =⇒∗
G′ (w′, c′) with ϕ(A) = S, ϕ(w′) = w, and c′ ∈ α(C) = C′.

Since w ∈ T+, this means that w′ = w and that A = S or A = S̄. However,
A = S̄ would imply w = λ and thus we have A = S, and hence w ∈ L(G′). Since
L(G) ⊆ T+, this proves L(G) ⊆ L(G′). ��

The following lemmas can be proven using standard techniques. Therefore,
we omitted them in order to meet the space restrictions.

Lemma 2. For each L in CF(C), the language L∪{λ} is contained in CF(S(C)).

458 G. Zetzsche

Lemma 3. Let L be in CFλ(C) and K be a regular language. Then, L ∩ K is
in CFλ(S(C)).

We now come to the key lemma in the proof of our main result. It shows that
shuffling with Dyck-languages allows us to reduce the number of Δ-symbols in
the sentential forms below a fixed bound.

A controlled grammar G = (N,Δ, T, P, S, Λ, ρ, C) in erasing normal form is
called Δ-bounded iff there is a constant k ∈ N such that each word w ∈ L(G) has
a derivation S = w1 =⇒G · · · =⇒G wn = w such that |wi|Δ ≤ k for 1 ≤ i ≤ n.

Lemma 4. For each language L in CFλ(C) with λ /∈ L, there is a Δ-bounded
controlled grammar with a control language in S(D(C)).

Proof. Let G = (N,Δ, T, P, S, Λ, ρ, C) be a controlled grammar for L in erasing
normal form. We shall construct the grammar G′ = (N,Δ, T, P ′, Λ′, ρ′, C′), for
L = L(G), where C′ is in S(D(C)), and prove that it is Δ-bounded.

For each A ∈ Δ and B ∈ Δ, let xA, x̄A, and x̄A,B be new symbols and
DA ⊆ {xA, x̄A}∗ be the Dyck language over xA and x̄A. Furthermore, let Γ :=
{xA, x̄A,B | A,B ∈ Δ}. With these, let Λ′ := Λ ∪ Γ .

The new set of productions is P ′ := P∪Q, where Q consists of the productions
A → λ and B → BA for each A,B ∈ Δ. The assignment of labels is given by
ρ′(t) := ρ(t) for t ∈ Λ and

ρ′(xA) := A → λ, ρ′(x̄A,B) := B → BA

for A,B ∈ Δ. Thus, the production with label xA removes an occurrence of
A from the sentential form and the production with label x̄A,B creates an oc-
currence of A by using B as a left hand side. For A ∈ Δ, the homomorphism
ϕA : Λ′∗ → {xA, x̄A}∗ is defined by ϕA(t) = λ for t ∈ Λ, ϕA(xA) = xA,
ϕA(x̄B,C) = ϕA(xB) = λ for B,C ∈ Δ, B �= A, and ϕA(x̄A,B) = x̄A for B ∈ Δ.
The letter substitution α is given by

α(t) =

{
{t} if t ∈ Λ ∪ {xA | A ∈ Δ},
{x̄A,B | B ∈ Δ} if t = x̄A for some A ∈ Δ.

Finally, let

C′ := α

(
C

A∈Δ

DA

)
.

It remains to be shown that L(G′) = L(G) and that G′ is Δ-bounded. The
constant for Δ-boundedness will be k := 1 + max{|w|Δ | A → w ∈ P}. In order
to describe the relationship between configurations in G and in G′, we define
the following multisets. For a word w ∈ (T ∪ N)∗, let μ(w) := Ψ(πΔ(w)). Thus,
μ(w) contains the number of occurrences of each Δ-symbol in w. Furthermore,
when for c ∈ Λ′∗ the word ϕA(c) ∈ {xA, x̄A}∗ is a prefix of a word in DA, then
we have |ϕA(c)|x̄A ≤ |ϕA(c)|xA and can define ν(c)(A) := |ϕA(c)|xA − |ϕA(c)|x̄A

to obtain ν(c) ∈ Δ⊕.
We say that a configuration (w′, c′), w′ ∈ (N ∪ T)∗, c′ ∈ C′, represents a

configuration (w, c), w ∈ (N ∪ T)∗, c ∈ C, iff

A Sufficient Condition for Erasing Productions to Be Avoidable 459

1. for each A ∈ Δ, ϕA(c′) is a prefix of a word in DA.
2. δΔ(w′) = δΔ(w),
3. δΓ (c′) = c, and
4. μ(w) = μ(w′) + ν(c′).

First, we claim that whenever there is a derivation (S, λ) = (w1, c1) =⇒G

· · · =⇒G (wn, cn), then there is a derivation (S, λ) = (w′
1, c1) =⇒G′ · · · (w′

m, c′m)
such that (w′

m, c′m) represents (wn, cn) and

|μ(w′
m)| ≤ 1, if ν(c′m) �= 0, then |μ(w′

m)| = 1. (∗)
and |w′

i|Δ ≤ k for each 1 ≤ i ≤ m.
We prove this by induction on n. The claim clearly holds for n = 1, so let

n > 1 and assume that there is a derivation (w′
1, c

′
1) =⇒G′ · · · =⇒G′ (w′

m, c′m)
such that |w′

i|Δ ≤ k and (w′
m, c′m) respresents (wn−1, cn−1) and (∗) holds. Let

A → w be the production applied in (wn−1, cn−1) =⇒G (wn, cn). We distinguish
the following cases.

– A ∈ Δ, w ∈ Δ∗, μ(w′
m)(A) = 1 and w = λ. In order to make sure that

(∗) is fulfilled we might have to introduce another nonterminal from Δ. If
ν(c′m) �= 0, choose a B ∈ Δ with ν(c′m)(B) ≥ 1 and apply the production
A → AB with label x̄B,A. Then, apply the production A → λ.

– A ∈ Δ, w ∈ Δ∗, μ(w′
m)(A) = 1 and w �= λ. Then, write w = Bw′ with

B ∈ Δ, w′ ∈ Δ∗. In this case, we have to bring the Δ-occurrences introduced
by A → w into the storage of the control mechanism, except the occurrence
of B, which is needed to fulfill (∗): Apply A → w and then |w′|E times the
production E → λ with label xE for each E ∈ Δ.

– A ∈ Δ, w ∈ Δ∗, and μ(w′
m)(A) = 0. Then, by condition 4, we have

ν(c′m)(A) ≥ 1 and by (∗), we have μ(w′
m)(B) ≥ 1 for some B ∈ Δ. First we

bring A into the sentential form and apply B → BA with label x̄A,B. Then,
we apply A → w and then bring its right side into the storage: Apply |w|E
times the production E → λ with label xE for each E ∈ Δ.

– A /∈ Δ, w /∈ Δ∗, |w|Δ > 0, and μ(w′
m) = 0. The production A → w

introduces Δ-occurrences into a sentential form that does not contain any
up to that point. We want to keep one of those occurrences in the sentential
form and thus write μ(w) = B + γ for some B ∈ Δ and γ ∈ Δ⊕. Apply
A → w and then, apply γ(E) times the production E → λ with label xE for
each E ∈ Δ.

– A /∈ Δ, w /∈ Δ∗, |w|Δ > 0, and μ(w′
m) �= 0. There already is one occurrence of

a Δ-symbol. Thus, we can apply A → w and then transfer all Δ-occurrences
in w to the storage: Apply |w|E times the production E → λ with label xE .

– A /∈ Δ, w /∈ Δ∗, and |w|Δ = 0. We just apply A → w and leave the storage
mechanism unused.

Note that, in all cases, there are at most k occurrences of Δ-symbols in the
sentential form at any time. Furthermore, after applying the mentioned produc-
tions, we reach a pair (w′

m+�, c
′
m+�) that represents (wn, cn). This proves our

claim.

460 G. Zetzsche

In particular, we have L(G) ⊆ L(G′). Indeed, if (S, λ) =⇒∗
G (w, c) for some

c ∈ C, then the derivation (S, λ) =⇒∗
G′ (w′, c′) where (w′, c′) represents (w, c)

has the following properties. By condition 2, we have w′ = w, since both are in
T ∗. Condition 4 then implies ν(c′) = 0 and thus c′ is contained in C′ by condition
1. This proves L(G) ⊆ L(G′) and that all words in L(G) can be derived using
at most k occurrences of Δ-symbols in each sentential form.

Conversely, let (u′, c′) =⇒G′ (v′, d′) and let (u′, c′) represent (u, c). If the
production in (u′, c′) =⇒G′ (v′, d′) is in P , then we have (u, c) =⇒G (v, d) such
that (v′, d′) represents (v, d). If the production is one added to obtain P ′, then
(v′, d′) also represents (u, c). Thus, when (S, λ) =⇒∗

G′ (w′, c′) for some w′ ∈ T ∗

and c′ ∈ C′, then we have (S, λ) =⇒∗
G (w, c) such that (w′, c′) represents (w, c).

This means in particular that w = w′, c ∈ C, and therefore w ∈ L(G). Thus,
L(G′) ⊆ L(G), which concludes the proof. ��
We are now ready to prove the main result of the article.

Theorem 1. For any language class C, we have CFλ(C) ⊆ CF(S(D(C))).

Proof. Let L be in CFλ(C). Then, we can assume that λ /∈ L, since otherwise,
we have L ∩ T+ ∈ CFλ(S(C)) by Lemma 3 and the theorem yields L ∩ T+ ∈
CF(SDS(C)) and thus L = (L∩T+)∪{λ} ∈ CF(SSDS(C)) by Lemma 2. Since
SSDS(C) = SD(C), this means L ∈ CF(S(D(C))).

Therefore, we can use Lemma 4 to find a (possibly erasing) Δ-bounded gram-
mar G = (N,Δ, T, P, S, Λ, ρ, C) in erasing normal form for L such that C ∈
S(D(C)). We shall construct a non-erasing grammarG′ = (N ′, T ′, P ′, S′, Λ′, ρ′, C′)
for L such that C′ = α(C) for some letter substitution α. This implies that L ∈
CF(SSD(C)), which together with the fact SSD = SD proves the theorem.

For the sake of simplicity, the constructed grammar G′ will have a terminal set
T ′ such that there is a bijection ϕ : T → T ′ and L(G′) = ϕ(L(G)). This clearly
implies that G′ can be modified so as to obtain a grammar that is equivalent to
G and is still non-erasing.

In the construction of G′, we will prevent the symbols in Δ from being gen-
erated. This, however, has to be done in a way that retains their influence on
the derivation. Thus, their occurrences will be stored in multisets attached to
nonterminals. Since this means we only have a certain amount of space to store
these occurrences, we will make use of the fact that G is Δ-bounded.

Let G be Δ-bounded with the constant k ∈ N. The set of nonterminals is

N ′ :={(x, μ) | x ∈ N \ Δ, μ ∈ Δ⊕, |μ| ≤ k}
∪ {(x, μ) | x ∈ T, μ ∈ Δ⊕ \ {0}, |μ| ≤ k}.

and the terminal symbols are T ′ := {(x,0) | x ∈ T } and ϕ : T → T ′ is defined
by ϕ(x) = (x,0). The homomorphism ι : (T ∪N \Δ)∗ → (T ′ ∪N ′)∗ is given by
ι(x) := (x,0) for x ∈ T ∪N \Δ. The set of productions P ′ is defined as follows.
For each production A → w ∈ P , we distinguish two cases.

A Sufficient Condition for Erasing Productions to Be Avoidable 461

– Suppose A /∈ Δ and w /∈ Δ∗. Then δΔ(w) �= λ. Hence, write δΔ(w) = w1w
′,

w1 ∈ T ∪N \ Δ, where w′ ∈ (T ∪ N \ Δ)∗. We include the production

(A, μ) → (w1, μ + Ψ(πΔ(w)))ι(w′)

for each μ ∈ Δ⊕ with |μ| ≤ k and |μ + Ψ(πΔ(w))| ≤ k and let it simulate
A → w.

– Suppose A ∈ Δ and w ∈ Δ∗. Then, we include

(x, μ) → (x, μ − A + Ψ(w))

for each x ∈ T ∪ N \ Δ and each μ ∈ Δ⊕ such that |μ| ≤ k, μ(A) ≥ 1, and
|μ − A + Ψ(w)| ≤ k. Again, these productions will all simulate A → w.

We have thus defined a simulation R ⊆ P ′ × P . Let (Λ′, ρ′, α) be the triple
induced by R. Together with S′ := (S,0), this defines the grammar G′.

In order to prove L(G′) = ϕ(L(G)), we have the homomorphisms

(T ∪ N)∗
β �� (T ∪ N \ Δ)∗ × Δ⊕ (T ′ ∪N ′)∗,

γ��

with β(x) = (x,0) for x ∈ T ∪ N \ Δ, β(x) = (λ, x) for x ∈ Δ, and γ((x, μ)) =
(x, μ) for (x, μ) ∈ T ′∪N ′. We say that a configuration (w′, c′) ∈ (T ′∪N ′)∗×Λ′∗

of G′ represents a configuration (w, c) ∈ (T ∪ N)∗ × Λ∗ of G iff β(w) = γ(w′)
and c′ ∈ α(c).

The central argument for the equality L(G′) = ϕ(L(G)) is illustrated in the
following diagrams. Here, a dotted line means that the lower configuration repre-
sents the upper configuration. Furthermore, the framed configuration is claimed
to exist.

(u, c)
G
�� (v, d)

(u′, c′)
G′
�� (v′, d′)

(u, c)
G
�� (v, d)

(u′, c′)
G′
�� (v′, d′)

Let (u, c), (v, d) be configurations in G such that |u|Δ ≤ k and |v|Δ ≤ k. Fur-
thermore, let (u′, c′) be a configuration in G′ such that (u, c) =⇒G (v, d) and
(u′, c′) represents (u, c). Then, there clearly exists a configuration (v′, d′) that
represents (v, d) such that (u′, c′) =⇒G′ (v′, d′). On the other hand, for con-
figurations (u′, c′), (v′, d′) in G′ and (u, c) in G such that (u′, c′) represents
(u, c), there exists a configuration (v, d) in G represented by (v′, d′) such that
(u, c) =⇒G (v, d). This immediately implies that for every derivation (S, λ) =
(w1, c1) =⇒G · · · =⇒G (wn, cn) with wn ∈ T ∗ and |wi|Δ ≤ k for 1 ≤ i ≤ n,
there is a derivation (S′, λ) = (w′

1, c
′
1) =⇒G′ · · · =⇒G′ (w′

n, c′n) such that
(w′

i, c
′
i) represents (wi, ci) for 1 ≤ i ≤ n. In particular, w′

n = ϕ(wn) and thus
ϕ(L(G)) ⊆ L(G′). Analogously, one obtains L(G′) ⊆ ϕ(L(G)). ��
Corollary 1. Let C be closed under letter substitutions and shuffling with Dyck
languages. Then, CFλ(C) = CF(C).

462 G. Zetzsche

4 Applications

We will now apply the main result to concrete grammar models.
A labeled Petri net is a tuple N = (X,P, T, ∂0, ∂1, σ, μ0, F), where X is a

finite alphabet, P is a finite set of places, T is a finite set of transitions, ∂0, ∂1 :
T⊕ → P⊕ are homomorphisms (where ∂0(t) and ∂1(t) specifies the pre- or post-
multiset, respectively, for each transition t ∈ T), σ : T → X ∪ {λ} is the labeling
function, μ0 ∈ P⊕ is the initial marking, and F ⊆ P⊕ is a finite set of final
markings.

The binary relation →N on X∗×P⊕ is defined by (w, μ) →N (w′, μ′) iff there
exists a t ∈ T such that w′ = wσ(t), ∂0(t) . μ and μ′ = (μ− ∂0(t)) + ∂1(t). The
language generated by N is given by

L(N) := {w ∈ X∗ | ∃μ ∈ F : (λ, μ0) →∗
N (w, μ)}.

A language is called Petri net language if it is generated by a labeled Petri net. A
Petri net controlled grammar is a grammar with a Petri net language as control
language. These grammars have been introduced by Dassow and Turaev [6] and
we will denote the class of languages generated by arbitrary and non-erasing
Petri net controlled grammars by PNλ and PN, respectively. Since it is a well-
known fact that Petri net languages contain the Dyck languages and are closed
against shuffling and letter substitutions, Corollary 1 implies the following, which
has been shown directly in [11].

Theorem 2. PNλ = PN.

A vector grammar is a grammar with a control language of the form V , where
V is a finite set of words. The class of languages generated by arbitrary and non-
erasing vector grammars is denoted by Vλ and V, respectively. Vector grammars
were introduced by Cremers and Mayer [2] and were originally dubbed general-
ized vector grammars (we follow the terminology of [3]). Up to date, it was not
known whether vector grammars with and without erasing productions have the
same generative capacity. Here, this question can be answered positively using
Corollary 1. In order to do this, we just have to convince ourselves that the class
of languages of the form V is closed against letter substitutions and shuffling
with Dyck languages. The former follows from the fact that α(V) = α(V) for a
letter substitution α. The latter can be seen by noting that V D = (V ∪{ab})
if D is the Dyck language over a and b. This proves the following theorem.

Theorem 3. Vλ = V.

While this result is of interest itself, it has other noteworthy consequences: A
matrix grammar is a controlled grammar with a control language of the form
M∗, where M is finite set of words. We denote the class of languages generated by
arbitrary and non-erasing matrix grammars by MATλ and MAT, respectively.
As mentioned above, it is a longstanding open problem whether every matrix
grammar has a non-erasing equivalent. It is a classic result that vector grammars
are equivalent to matrix grammars, when in both models, erasing productions

A Sufficient Condition for Erasing Productions to Be Avoidable 463

are allowed (see [3, Theorem 2.1.2]). Combining this with Theorem 3 yields
that V = MATλ, which in turn means that we have a new reformulation for
the question about erasing productions in matrix grammars: Are non-erasing
matrix grammars as powerful as non-erasing vector grammars? A restatement
of a similar form has been presented in [11] and is a consequence of Theorem 2.
Both restatements have the advantage of avoiding any reference to erasing and
thus providing a different perspective on the problem. The problem on matrix
grammars was also linked to the problem of whether permitting random context
grammars are strictly less powerful than non-erasing matrix grammars [10].

Another consequence is that there are several subclasses of PNλ, introduced
by Dassow and Turaev [5], that were shown by them to lie between V and Vλ.
By Theorem 3, all these classes conincide.

Acknowledgements. I would like to thank Reiner Hüchting and Matthias
Jantzen for valuable comments, which have improved the presentation of the
paper. Furthermore, I’m grateful to one of the anonymous referees, whose careful
review helped correct many typing errors.

References

1. Aho, A.V.: Indexed grammars—an extension of context-free grammars. Journal of
the ACM 15, 647–671 (1968)

2. Cremers, A.B., Mayer, O.: On matrix languages. Information and Control 23(1),
86–96 (1973)

3. Dassow, J., Păun, G.: Regulated rewriting in formal language theory. Springer,
Berlin (1989)

4. Dassow, J., Păun, G., Salomaa, A.: Grammars with controlled derivations. In:
Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2, pp.
101–154. Springer, Berlin (1997)

5. Dassow, J., Turaev, S.: Petri net controlled grammars: the case of special petri
nets. Journal of Universal Computer Science 15(14), 2808–2835 (2009)

6. Dassow, J., Turaev, S.: Petri net controlled grammars: the power of labeling and
final markings. Romanian Journal of Information Science and Technology 12(2),
191–207 (2009)

7. Fernau, H., Stiebe, R.: Sequential grammars and automata with valences. Theo-
retical Computer Science 276, 377–405 (2002)

8. Ginsburg, S., Spanier, E.H.: Control sets on grammars. Mathematical Systems
Theory 2(2), 159–177 (1968)

9. Salomaa, A.: On grammars with restricted use of productions. Annales Academiæ
Scientiarum Fennicæ. Series A I. Mathematica 454 (1969)

10. Zetzsche, G.: On erasing productions in random context grammars. In: Abramsky,
S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP
2010. LNCS, vol. 6199, pp. 175–186. Springer, Heidelberg (2010)

11. Zetzsche, G.: Toward understanding the generative capacity of erasing rules in
matrix grammars. International Journal of Foundations of Computer Science 22,
411–426 (2011)

Encoding Centered Polyominoes by Means of a

Regular Language

Daniela Battaglino1, Jean Marc Fedou2, Andrea Frosini3, and Simone Rinaldi1

1 Dipartimento di Matematica e Informatica
Università di Siena, Siena, Italy

battaglino3@unisi.it, rinaldi@unisi.it
2 Departement d’Informatique

UNS, Nice, France
Jean-Marc.Fedou@unice.fr

3 Dipartimento di Sistemi e Informatica
Università di Firenze, Firenze, Italy

andrea.frosini@unifi.it

In [3] the authors proposed a classification of convex polyominoes based on
the number of changes of direction in the paths connecting any two cells of a
polyomino. More precisely, a convex polyomino is k-convex if every pair of its
cells can be connected by a monotone path with at most k changes of direction.
In 1-convex (also called L-convex) polyominoes, any two cells can be connected
by a path with at most one change of direction. The polyomino in Fig. 1 (a) is
L-convex, while the polyominoes (b), (c) are not, but are 2-convex.

(c)(a) (b)

Fig. 1. (a) an L-convex polyomino, and a monotone path with a single change of
direction joining two of its cells; (b) a Z-convex but not L-convex polyomino; (c) a
centered polyomino (not L-convex)

In [1] it was proved that the number ln of L-convex polyominoes with semi-
perimeter n + 2 satisfies the recurrence relation ln = 4ln−1 − 2ln−2, for n ≥ 3,
with l0 = 1, l1 = 2, l2 = 7. Successively, in [2], the authors proved the same
result by encoding L-convex polyominoes by words of a regular language of four
letters. Then we have considered 2-convex polyominoes (also called Z-convex
polyominoes), which do not inherit the most interesting properties of L-convex
polyominoes: the generating function of Z-convex polyominoes with respect to
the semi-perimeter is algebraic [4] (not rational) and Z-convex polyominoes are
not uniquely determined by their orthogonal projections.

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 464–465, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Encoding Centered Polyominoes by Means of a Regular Language 465

Here, we consider the class of horizontally centered (or simply centered) convex
polyominoes. A convex polyomino is said to be centered if it contains at least one
row touching both the left and the right side of its minimal bounding rectangle
(see Fig. 1 (c)). We observe that any L-convex polyomino is centered, and,
more importantly for us, any centered polyomino is Z-convex, while the converse
statement does not hold. Figure 1 (c) shows a centered polyomino which is not L-
convex, and Figure 1 (b) a Z-convex polyomino which is not centered. Centered
convex polyominoes can also be described as made of two stack polyominoes
glued together at their basis. This class of objects was first considered in [4],
where – by means of purely analytical techniques – the authors proved that the
number cn of centered convex polyominoes having semi-perimeter equal to n+2
satisfies the recurrence relation:

cn = 6cn−1 − 8cn−2, n ≥ 3, with c0 = 1, c1 = 2, c2 = 7. (1)

Comparing the asymptotic behavior of the three classes, the number of Z-convex
polyominoes with semi-perimeter n + 2 grows asymptotically like n · 4n, while
the number of L-convex polyominoes grows only like (2+

√
2)n, and the number

of centered polyominoes grows like 4n. The reason for the interest in centered
polyominoes is that they effectively constitute a bridge between L-convexity
and Z-convexity. In fact, they have a rational generating function and they
can be easily reconstructed by a tomographical point of view (like L-convex
polyominoes), but their asymptotic growth is dominated by the factor 4n (like Z-
convex polyominoes). Moreover, until now, they resisted standard decomposition
technics leading to rational generating functions.

Our main goal is to give a combinatorial explanation to (1). In practice,
we tackle the problem of proving the rationality of centered polyominoes by
encoding them by means of a regular language, of a six letter alphabet, extending
the language encoding L-convex polyominoes in [2]. The computation of the
generating function of centered polyominoes can easily be obtained from the
regular expression of the language encoding centered polyominoes, and we re-
obtain the formula in (1). To reach our goal, we need introduce an auxiliary
class of objects, the bi-colored stack polyominoes. Then, the encoding of centered
polyominoes as words of a regular language consists of two steps: first we map
each centered polyomino into a bi-colored stack, then we represent each bi-colored
stack as a word of a non-ambiguous regular language.

References

1. Castiglione, G., Frosini, A., Restivo, A., Rinaldi, S.: Enumeration of L-convex poly-
ominoes by rows and columns. Theoret. Comput. Sci. 347, 336–352 (2005)

2. Castiglione, G., Frosini, A., Munarini, E., Restivo, A., Rinaldi, S.: Combinatorial
aspects of L-convex polyominoes. European J. Combin. 28, 1724–1741 (2007)

3. Castiglione, G., Restivo, A.: Reconstruction of L-convex Polyominoes. Electron.
Notes Discrete Math. 12 (2003)

4. Duchi, E., Rinaldi, S., Schaeffer, G.: The number of Z-convex polyominoes. Advances
in Applied Math. 40, 54–72 (2008)

Computational Aspects of
Asynchronous Cellular Automata�

Jérôme Chandesris2, Alberto Dennunzio2, Enrico Formenti2,��,
and Luca Manzoni1

1 Università degli Studi di Milano–Bicocca,
Dipartimento di Informatica, Sistemistica e Comunicazione,

Viale Sarca 336, 20126 Milano, Italy
luca.manzoni@disco.unimib.it

2 Université Nice-Sophia Antipolis, Laboratoire I3S,
2000 Route des Colles, 06903 Sophia Antipolis, France
{enrico.formenti,alberto.dennunzio}@unice.fr,

chandesris@i3s.unice.fr

Cellular Automata (CA) are a computational model widely used in many sci-
entific fields. A CA consists of identical finite automata arranged over a regular
lattice (i.e. every configuration of a CA is an element of AZ where A is a finite
set of local states). Each automaton updates its state on the basis of its own
state and the one of its neighbors according to a local rule. All updates are
synchronous.

Even if CA has been successfully used to model natural systems [3], the syn-
chronicity of the updates can be inadequate to simulate many natural processes
that are inherently asynchronous (e.g. [9]). Asynchronous CA (ACA) has been
introduced to overcame this limitation. Many models for ACA has been proposed
(purely asynchronous [5], α-asynchronous [8], etc.). This work focuses on fully
asynchronous CA (i.e. two cells are never updated simultaneously). An (fully)
ACA is defined with the same components of a classical CA (a finite set A, a
local rule λ and a radius r) with the addition of a sequence (θt)t>0 with cell
positions θt ∈ Z to be updated. For every time t ∈ N only the cell in position θt

is updated.
ACA are capable of complex computational tasks. Indeed, both CA and

ACA are Turing universal (see [7,5,6,4,10]). However, the computational cost
of simulating an universal Turing machine (TM) has never been taken into ac-
count. This is the main concern of the present paper. We analyze two simulation
schemes: strict and scattered strict simulation (see [2] for precise definitions and
results).

Strict simulation requires that the ACA exactly reproduces the tape of the
TM under simulation allowing cells of the ACA to store only a limited additional
information. In this case the simulation can be correctly completed by universal
updating sequences θ i.e. such that every z ∈ Z appears infinitely often inside it.

� This work has been partially supported by the French National Research Agency
project EMC (ANR-09-BLAN-0164).

�� Corresponding author.

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 466–468, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Computational Aspects of Asynchronous Cellular Automata 467

In fact, for every updating sequence θ and for any TM M, there exists an ACA
that strictly simulates M iff θ is universal. To allow a bound on the simulation
time a specific set of sequences must be chosen. In particular, the sequences
that touches all the cells between −n and n for larger and larger n allow the
simulation to be performed in O

(
T (n)2

)
if the TM halts in T (n) time when

started on inputs of size n. Even when the ACA is designed with a specific
sequence (i.e. the simulation will not be carried on by all universal sequences)
the time can be reduced only by a multiplicative factor.

Scattered strict simulation is similar to strict simulation but a subset of the
cells of the simulating ACA is allowed to be “inactive”. Given two positions on
the TM tape the corresponding cells of the automaton can be non-consecutive
(i.e. they are separated by a set of “inactive” cells). The possibility to build
an ACA that simulates a TM in this way depends on the properties of the
sequence of updates. Given an updating sequence θ, for any TM there exists an
ACA that scatter strictly simulates it iff there exists a syndetic subset of θ on
which θ is universal. Also in this case no bound can be given on the simulation
time if a specific set of sequences has not been chosen. For particular sequences
the running time of the simulation can be show to be O

(
T (n)2

)
, as before

T (n) is the halting time of the TM on inputs of size n. This means that a
scattered simulation could require only more space but not necessarily more
time.

The simulation of TM could be considered artificial, but some models of real
life processes (e.g. [1]) are actually disguised ACA with the update sequence
given by some stochastic process. When this process is a 1D random walk the
updating sequence will be almost surely universal, allowing computation to be
performed. The authors are currently investigating the bound on time complex-
ity of the simulation when the updating sequence is generated by a stochastic
process.

References

1. Amar, P., Bernot, G., Norris, V.: Hsim: a simulation programme to study large
assemblies of proteins. Journal of Biological Physics and Chemistry 4, 79–84 (2004)

2. Chandesris, J., Dennunzio, A., Formenti, E., Manzoni, L.: Computational aspects
of asynchronous cellular automata (2010),
http://arxiv.org/find/all/1/all:+239813/0/1/0/all/0/1

3. Chopard, B.: Modelling physical systems by cellular automata. In: Rozenberg, G.,
et al. (ed.) Handbook of Natural Computing: Theory, Experiments, and Applica-
tions. Springer, Heidelberg (to appear, 2011)

4. Lee, J., Adachi, S., Peper, F., Mashiko, S.: Delay-insensitive computation in asyn-
chronous cellular automata. J. Comput. Syst. Sci. 70, 201–220 (2005)

5. Nakamura, K.: Asynchronous cellular automata and their computational ability.
Systems, Computers, Control 5, 58–66 (1974)

6. Nehaniv, C.L.: Evolution in asynchronous cellular automata. Artificial Life VIII,
65–73 (2002)

http://arxiv.org/find/all/1/all:+239813/0/1/0/all/0/1

468 J. Chandesris et al.

7. Ollinger, N.: Universalities in cellular automata. In: Rozenberg, G., et al.
(ed.) Handbook of Natural Computing: Theory, Experiments, and Applications,
Springer, Heidelberg (to appear, 2011)

8. Regnault, D., Schabanel, N., Thierry, E.: Progresses in the analysis of stochastic
2d cellular automata: A study of asynchronous 2d minority. Theoretical Computer
Science 410, 4844–4855 (2009)

9. Schönfisch, B., de Roos, A.: Synchronous and asynchronous updating in cellular
automata. BioSystems 51, 123–143 (1999)

10. Worsch, T.: A note on (intrinsically?) universal asynchronous cellular automata
(2010) (preprint)

Short 3-Collapsing Words over a 2-Letter
Alphabet

Alessandra Cherubini1, Achille Frigeri1, and Brunetto Piochi2

1 Politecnico di Milano {alessandra.cherubini,achille.frigeri}@polimi.it
2 Università di Firenze
piochi@math.unifi.it

Let A = (Q,Σ, δ) be a finite deterministic complete automaton. A is called k-
compressible if there is a word w ∈ Σ+ such that the image of the state set Q
under the action of w has at most size |Q| − k, in such case the word w is called
k-compressing for A. A word w ∈ Σ+ is k-collapsing if it is k-compressing for
each k-compressible automaton of the alphabet Σ and it is k-synchronizing if it
is k-compressing for each k-compressible automaton with k + 1 states (see [1,2]
for details).

For each alphabet Σ and k ≥ 1, k-collapsing words always exist [4], and
are k-full, i.e contain as factors each word of length k on Σ. Let |Σ| = t,
c(k, t) denotes the length of the shortest k-collapsing words on the alphabet
Σ. Exact values of c(k, t) are known only for k = 2 and t = 2, 3; more-
over the shortest 3-synchronizing words for |Σ| = 2 (i.e., the word s3,2 =
ab2aba3b2a2babab2a2b3aba2ba2b2a and its dual s̄3,2) have length 33 [1], hence
by the construction in [3], one gets 33 ≤ c(3, 2) ≤ 154, and more precisely, since
we prove that neither s3,2 nor s̄3,2 are not 3-collapsing (see Fig. 1), 34 ≤ c(3, 2) ≤
154. Nevertheless, we observe that any 3-compressible 5-states automaton over
a two letter alphabet, is 3-compressed either by s3,2 or by s̄3,2.

We are interested in 3-compressible

0 1

2 3 4

b

a

b

ab

a

b

a

a b

Fig. 1. An automaton which is not 3-
compressed by s3,2: δ(Q, s3,2) = {0, 1, 3},
δ(Q, s̄3,2) = {3}.

proper automata, i.e, 3-compressible
automata such that no word of length
3 is 3-compressing for them. So identi-
fying each letter of the alphabet with
its action on Q we can assume that
each letter acts as a permutation or
as a transformation α of one of the
following types (different letters rep-
resent different states):

1. [x, y, z]/x, y;
2. [x, y][z, v]/x, z;
3. [x, y]/x;
4. [x, y]/z with zα = x;

where this notation means that the states in the same square brackets are the
unique states identified by α, the state after the slash do not belong to Im(α).

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 469–471, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

470 A. Cherubini, A. Frigeri, and B. Piochi

We say that A is a (i., j.)-automaton, 1 ≤ i, j ≤ 4, if a letter is of type i.
and the other letter is of type j., and we say that A is a (i.,p)-automaton, with
1 ≤ i ≤ 4, if a letter is of type i. and the other letter is a permutation. Then we
can prove that:

Lemma 1. A 3-compressible (i., j.)-automaton, with i ∈ {1, 2} and j ∈ {1, 2, 4}
on the alphabet {a, b}, is not proper.

Considering exhaustively the case of (i.,p)-automata, we give a necessary and
sufficient condition for such automata to be not 3-compressible. In the proof of
such proposition, we produce for each proper 3-compressible (i.,p)-automaton
a short 3-compressing word, leading to the following corollary:

Corollary 1. Let A be a 3-compressible proper automaton with input alphabet
Σ = {a, b} in which b acts as a permutation. Then:

1. if letter a is of type 1., then the word ab2a 3-compress the automaton;
2. if letter a is of type 2., then either the words ab2a or ab3a 3-compress the

automaton;
3. if letter a is of type 3., then one of the following words 3-compresses the

automaton:

ababa, abab2a, aba2ba, abab2aba, ab2ab2a, ab2a2b2a,

ab2abab2a, ab2aba, ab3aba, abab3a, ab3ab3a;

4. if letter a is of type 4., then one of the following words 3-compress the au-
tomaton:

a2ba, a2b2a, aba2, a2b2a2, ababa, a2ba2, ab2a2, ab3a2, a2b3a, a2b3a2.

One can also prove again via an exhaustive search, or proving that for each proper
3-compressible (i., j)-automaton A there exists an associated (i.,p)-automaton
A′ such that a word 3-compressing A′ also 3-compresses A, that at least a
word in Corollary 1 or a dual of one of such words 3-compresses all proper
3-compressible automata of the remaining cases (i.e., (1.,3)-, (2.,3)-, (3.,3)-,
(3.,4)-, and (4.,4)-automata). It follows that the word

a2b3a3b2ab2abab2aba3ba3bab3ab3aba2baba2ba2b2a2b2a

which has length 55 and is a shortest word having all the above words and their
duals as factors, is 3-collapsing, improving the known upper bound. We also
recall that a short 3-collapsing word, can be used in the procedure arising from
([3], Theorem 3.5) to obtain shorter k-collapsing words for k ≥ 4, e.g., one have
c(4, 2) ≤ 1803 and c(5, 2) ≤ 113847, instead of the known upper bound of 4872
and 307194, respectively [3].

Short 3-Collapsing Words over a 2-Letter Alphabet 471

References

1. Ananichev, D.S., Petrov, I.V., Volkov, M.V.: Collapsing words: A progress report.
In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 11–21. Springer,
Heidelberg (2005)

2. Cherubini, A.: Synchronizing and collapsing words. Milan J. Math. 75, 305–321
(2007)

3. Margolis, S.W., Pin, J.-E., Volkov, M.V.: Words guaranteeing minimum image. In-
ternat. J. Foundations Comp. Sci. 15, 259–276 (2004)

4. Sauer, N., Stone, M.G.: Composing functions to reduce image size. Ars. Combina-
toria 1, 171–176 (1991)

A Cascade Decomposition
of Weighted Finite Transition Systems�

Manfred Droste1, Ingmar Meinecke1, Branimir Šešelja2, and Andreja Tepavčević2,��

1 Institut für Informatik, Universität Leipzig,
D-04109 Leipzig, Germany

{droste,meinecke}@informatik.uni-leipzig.de
2 Department of Mathematics and Informatics, University of Novi Sad,

Trg Dositeja Obradovica 4, 21000 Novi Sad, Serbia
{seselja,andreja}@dmi.uns.ac.rs

Abstract. We consider weighted finite transition systems with weights from nat-
urally ordered semirings. Such semirings comprise distributive lattices as well as
the natural numbers with ordinary addition and multiplication, and the max-plus-
semiring. For these systems we explore the concepts of covering and cascade
product. We show a cascade decomposition result for such weighted finite transi-
tion systems using special partitions of the state set of the system. This extends a
classical result of automata theory to the weighted setting.

Synthesis and analysis of automata have been a central topic of computer science since
its beginning. By Kleene’s famous result [6], combinations of very simple automata
have the full power of all automata. On a related strand, cascade and wreath products of
transition systems and semigroups were investigated, leading to the fundamental theo-
rem of Krohn-Rhodes [7], cf. [2,9,11]; see also Holcombe [5] for various applications
of cascade products. In our work, we have investigated coverings by cascade products
for the class of weighted automata.

In weighted automata, the transitions may carry weights modeling, e.g., the re-
sources used during the execution of the transition. Already Schützenberger [10] ex-
tended Kleene’s fundamental result to this model of quantitative automata whose theory
quickly developed, cf. [4] and recently [3]. Here, the weights are taken from a semiring;
multiplication is used to define the weights of paths and addition gives the total weight
of all paths realizing a given word.

In our work, assuming that the semiring carries a partial order compatible with the
semiring operations, we introduce a notion of covering for weighted transition systems
(WTS); if a WTS M ′ covers M , then a subset of the states of M ′ can be mapped onto
the states of M such that the weights of the transitions of M ′ bound the weight of
the corresponding transition of M . This extends the corresponding notion for classical
(unweighted) transition systems, and it is related to (but different from) other notions of

� This research was partially supported by the DAAD-Serbia project “Weighted Automata over
Semirings and Lattices”.

�� The research of the last two authors is supported by Serbian Ministry of Science and Tech.
Develop., Grant No. 174014.

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 472–473, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Cascade Decomposition of Weighted Finite Transition Systems 473

coverings from the literature, cf., e.g. [1]. We also extend the classical notion of cascade
products to weighted transition systems, and we derive that cascade products preserve
the covering relation. Next, we turn to admissible equivalence relations for WTS; they
naturally lead to a quotient WTS covered by the original system.

For our main results, we assume that the naturally ordered semiring S satisfies the
condition that s ≤ s2 for all s ∈ S. This assumption is satisfied by many important
semirings including the semiring of natural numbers, the max-plus-semiring, all dis-
tributive lattices, and non-commutative semirings of formal languages, but not by e.g.
the min-plus-semiring. Examples show that our main results do not hold without this
condition on S. Assuming the condition, we show that we can cover any given WTS by
a sequence of cascade products of smaller WTS. Furthermore, in case there are two ad-
missible equivalence relations which are orthogonal, the original WTS can be covered
by a direct product of the two corresponding quotient WTS. We obtain the classical
results for unweighted transition systems as an immediate consequence by choosing S
as the Boolean semiring ({0, 1},∨,∧).

In Mordeson-Malik [8], such a cascade decomposition result was claimed for the
fuzzy semiring ([0, 1],∨,∧) and a stronger notion of covering with equality of weights
(instead of bounds by weights). We give a counter-example showing that the proposed
proof method does not work for such strong coverings.

To the best of our knowledge, this is the first paper dealing with cascade products of
general semiring weighted transition systems. It remains open whether suitable wreath
products could also be defined leading (ideally) to a weighted Krohn-Rhodes theory,
and whether the applications of cascade products for e.g. neural networks (cf. Hol-
combe [5]) could also be developed for a quantitative setting.

References
1. Béal, M.-P., Lombardy, S., Sakarovitch, J.: On the equivalence of Z-automata. In: Caires, L.,

Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580,
pp. 397–409. Springer, Heidelberg (2005)

2. Dömösi, P., Nehaniv, C.L.: Algebraic Theory of Automata Networks. In: SIAM Monographs
on Discrete Mathematics and Applications, vol. 11. Society for Industrial and Applied Math-
ematics, Philadelphia (2004)

3. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. EATCS Mono-
graphs in Theoretical Computer Science. Springer, Heidelberg (2009)

4. Eilenberg, S.: Automata, Languages, and Machines, vol. A. Academic Press, London (1974)
5. Holcombe, W.M.L.: Algebraic Automata Theory. Cambridge University Press, Cambridge

(1982)
6. Kleene, S.: Representations of events in nerve nets and finite automata. In: Shannon, C.,

McCarthy, J. (eds.) Automata Studies, pp. 3–42. Princeton University Press, Princeton (1956)
7. Krohn, K., Rhodes, J.L.: Algebraic theory of machines, I. Prime decomposition theorem for

finite semigroups and machines. Trans. Amer. Math. Soc. 116, 450–464 (1965)
8. Mordeson, J.N., Malik, D.S.: Fuzzy Automata and Languages – Theory and Applications.

Computational Mathematics Series. Chapman & Hall, CRC (2002)
9. Rhodes, J.L., Steinberg, B.: The q-Theory of Finite Semigroups. Springer, Heidelberg (2008)

10. Schützenberger, M.: On the definition of a family of automata. Information and Control 4,
245–270 (1961)

11. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkäuser, Basel
(1994)

Morphic Characterizations in Terms of

Insertion Systems with a Context of Length One

Kaoru Fujioka

Office for Strategic Research Planning, Kyushu University,
6-10-1 Hakozaki Higashi-ku Fukuoka-shi, 812-8581, Japan

kaoru@tcslab.csce.kyushu-u.ac.jp

Representing a class of languages through operations on its subclasses is a tradi-
tional issue within formal language theory. Among the variety of representation
theorems for context-free languages, Chomsky-Schützenberger theorem is unique
in that it consists of Dyck languages, regular languages, and simple operations.
In this work, we obtain some characterizations and representation theorems of
context-free languages and regular languages in Chomsky hierarchy by insertion
systems, strictly locally testable languages, and morphisms in the framework of
Chomsky-Schützenberger theorem.

For insertion systems, we focus on the one of weight (i, 1) with i ≥ 1, that is,
the insertion operation is controlled by a context of length 1 and inserts a string
of length i. In the general case, for i, j ≥ 0, let INSj

i be the class of all languages
generated by insertion systems of weight (i′, j′) with i′ ≤ i and j′ ≤ j.

On the other hand, for each k ≥ 1, a strictly k-testable language is prescribed
by a triplet of finite sets consisting of strings of length k. It has already been
known the proper inclusion LOC(1) ⊂ LOC(2) ⊂ · · · ⊂ LOC(k) ⊂ · · · ⊂ REG,
where REG is the class of regular languages and LOC(k) is the class of strictly
k-testable languages for k ≥ 1.

For languages L1, L2, and a morphism h, we use the following notation: h(L1∩
L2) = {h(w) | w ∈ L1 ∩ L2}. For language classes L1 and L2, we introduce the
following language class:

H(L1 ∩ L2) = {h(L1 ∩ L2) | h is a morphism, Li ∈ Li (i = 1, 2)}.

Within the framework of this notation, we consider characterizations and repre-
sentation theorems of language families in Chomsky hierarchy.

In our previous research, using insertion systems of weight (i, 0) for i ≥ 1,
in which no insertion operation can be controlled by contexts, we proved the
following concerning the class of regular languages denoted by REG and the
class of context-free languages denoted by CF [1]:

– REG = H(INS0
1 ∩ LOC(k))) with k ≥ 2.

– H(INS0
1 ∩ LOC(1)) ⊂ REG ⊂ H(INS0

i ∩ LOC(k)) with i, k ≥ 2.
– CF = H(INS0

i ∩ LOC(k)) with i, k ≥ 2.

In this work, first of all, we consider the generative power of insertion systems
of weight (i, 1) with i ≥ 1. As is shown in [3], INS1

i is known to be a proper

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 474–475, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Morphic Characterizations in Terms of Insertion Systems 475

subset of the class of context-free languages, CF . We prove that INS1
i with

i ≥ 1 is incomparable with the class of regular languages, REG.
With the help of strictly 1-testable languages and simple operations, we can

show the inclusion INS1
i ⊆ H(INS1

i ∩ LOC(1)). The inclusion can be proved
easily if we consider the fact V ∗ ∈ LOC(1) for any alphabet V .

Furthermore, we show a characterization of context-free languages using in-
sertion systems of weight (i, 1) with i ≥ 1 and strictly 1-testable languages. The
inclusion H(INS1

i ∩LOC(1)) ⊆ CF (i ≥ 1) can be derived directly from the fact
INS1

i ⊂ CF [3], LOC(1) ⊂ REG [2], and the closure property of context-free
languages. We prove the proper inclusion H(INS1

i ∩ LOC(1)) ⊂ CF (i ≥ 1)
by showing that for a context-free language L = {anban | n ≥ 1}, there are no
insertion system γ of weight (i, 1), strictly 1-testable language R, and morphism
h such that L = h(L(γ) ∩ R).

In contrast to this, we prove the representation theorem for the class of
context-free languages with insertion systems of weight (1, 1) and strictly 2-
testable languages, that is, H(INS1

1 ∩ LOC(2)) = CF .
To show the representation theorem, from Chomsky-Schützenberger theo-

rem CF = H(Dyck ∩REG), we consider the inclusion H(INS1
1 ∩ LOC(2)) ⊇

H(Dyck ∩REG), where Dyck is the class of Dyck languages. For any language
L = h(D ∩L(G)) with Dyck language D, regular grammar G, and morphism h,
we construct an insertion system γ of weight (1, 1), a strictly 2-testable language
R, and a morphism h′ and prove that h′(L(γ) ∩R) = L holds.

The converse inclusion H(INS1
1 ∩ LOC(2)) ⊆ CF can be derived directly

from the fact that INS1
1 ⊂ CF , LOC(2) ⊂ REG, and the closure property of

context-free languages.
From the representation theorem, we have a corollary that for any i ≥ 1,

k ≥ 2, H(INS1
i ∩ LOC(k)) = CF .

In this work, we contribute to the study of insertion systems controlled by
a context of length 1 for new characterizations of context-free and regular lan-
guages. Specifically, we showed that

– H(INS1
i ∩ LOC(1)) ⊂ CF with i ≥ 1.

– H(INS1
i ∩ LOC(k)) = CF with i ≥ 1, k ≥ 2.

Acknowledgments. This work was supported in part by Grants-in-Aid for
scientific research from the Ministry of Education, Culture, Sports, Science and
Technology of Japan (No. 23740081).

References

1. Fujioka, K.: Morphic characterizations of languages in chomsky hierarchy with in-
sertion and locality. Inf. Comput. 209(3), 397–408 (2011)

2. McNaughton, R., Papert, S.A.: Counter-Free Automata (M.I.T. research mono-
graph), vol. (65). The MIT Press, Cambridge (1971)

3. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing. In: New Computing
Paradigms. Springer, Heidelberg (1998)

Inference of Residual Finite-State Tree

Automata from Membership Queries and
Finite Positive Data

Anna Kasprzik

FB IV (Theoretical Computer Science), University of Trier, Germany
kasprzik@informatik.uni-trier.de

Poster – Abstract

The area of Grammatical Inference centers on learning algorithms: Algorithms
that infer a description (e.g., a grammar or an automaton) for an unknown for-
mal language from given information in finitely many steps. Various conceivable
learning settings have been outlined, and based on those a range of algorithms
have been developed. One of the language classes studied most extensively with
respect to its algorithmical learnability is the class of regular string languages.

Possible sources of information include membership queries (MQs) where a
learner may query an oracle if a certain element is in the target language L, and
equivalence queries (EQs) where a learner may ask if the current hypothesis is
correct and is given a counterexample if this is not the case. Moreover, a learner
can for example be presented with a positive sample, i.e., a finite subset of L.

A significant part of the existing algorithms, of which Angluin’s well-known
lstar [1] learning regular string languages via MQs and EQs was one of the first,
use the device of an observation table. If such a table fulfils certain conditions we
can directly derive a DFA from it, and if the information entered into the table
is sufficient this DFA is isomorphic to the minimal DFA AL for L. The states of
AL correspond to the equivalence classes of L under the Myhill-Nerode relation.

However, there is a price to pay for the uniqueness of the DFA AL: In a
worst case it can have exponentially many more states than a minimal NFA for
the same language, and as for many applications a small number of states is a
desirable feature it seems worth tackling the question if there is a way to obtain
an NFA instead. In [2], Denis et al. introduce a special case of NFA, so-called
residual finite-state automata (RFSA), where each state represents a residual
language of the language recognized. There is a natural correspondence between
the residual languages and the equivalence classes of a language. Thus, contrary
to NFA in general, RFSA also have the advantageous property that there is a
unique minimal RFSA RL for every regular language L which makes them an
attractive choice for descriptions in the design of learning algorithms due to their
succinctness since RL can still be exponentially smaller than AL.

There are algorithms learning regular string languages from MQs and EQs
(e.g., [1]), and from MQs and positive samples (e.g., [3]). Moreover, the scope

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 476–477, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Inference of RFTA from MQs and positive data 477

of interest has been extended from strings to trees – [4] and [5] present algo-
rithms learning regular tree languages from MQs and EQs, and an algorithm
learning regular tree languages from MQs and positive samples is given in [6].
The outputs of all algorithms mentioned so far are deterministic finite-state
automata. However, in [7] Denis et al. also present an algorithm learning regular
string languages from given data using RFSA, and finally Bollig et al. [8] describe
an algorithm for the inference of regular string languages from MQs and EQs
that in case of success returns an RFSA as well.

The notion of RFSA can equally be extended to trees: Residual finite-state
tree automata (RFTA) have been defined and studied in [9]. As in the case of
strings, for every regular tree language there is a unique minimal RFTA, which
moreover can be exponentially more succinct than the corresponding determi-
nistic tree automaton (DFTA). The algorithm in [8] inferring an RFSA from
MQs and EQs can be adapted to trees in a rather straightforward manner.

We present a learning algorithm that infers a regular tree language from MQs
and a positive sample, and returns an RFTA. The algorithm RESI is of polyno-
mial complexity which benefits further from a technique that is parallel to and
slightly improves the one used in [6] for the inference of DFTA.

Potential applications are all those that particularly benefit from a succinct
description. One application named in [8] is verification. Other areas specifically
related to trees include the extraction of information from semi-structured data
(p.ex., http://mostrare.lille.inria.fr), or applications in computational
linguistics since linguistic structure is often represented in tree form and one can
imagine various situations where one might want to derive a succinct description
from huge amounts of data contained in treebanks or similar databases.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87–106 (1987)

2. Denis, F., Lemay, A., Terlutte, A.: Residual finite state automata. Fundamentae
Informaticae 51, 339–368 (2002)

3. Angluin, D.: A note on the number of queries needed to identify regular languages.
Information and Control 51(1), 76–87 (1981)

4. Sakakibara, Y.: Learning context-free grammars from structural data in polynomial
time. Theoretical Computer Science 76(2-3), 223–242 (1990)

5. Drewes, F., Högberg, J.: Learning a regular tree language from a teacher. In: Ésik, Z.,
Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 279–291. Springer, Heidelberg (2003)

6. Besombes, J., Marion, J.-Y.: Learning tree languages from positive examples and
membership queries. Theoretical Computer Science 382, 183–197 (2007)

7. Denis, F., Lemay, A., Terlutte, A.: Learning regular languages using RFSA. In:
Abe, N., Khardon, R., Zeugmann, T. (eds.) ALT 2001. LNCS (LNAI), vol. 2225,
pp. 348–363. Springer, Heidelberg (2001)

8. Bollig, B., Habermehl, P., Kern, C., Leucker, M.: Angluin-style learning of NFA. In:
Online Proceedings of IJCAI, vol 21 (2009)

9. Carme, J., Gilleron, R., Lemay, A., Terlutte, A., Tommasi, M.: Residual finite tree
automata. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 171–182.
Springer, Heidelberg (2003)

On the Representability of Line Graphs

Sergey Kitaev1,2,�, Pavel Salimov1,��, Christopher Severs1,���,
and Henning Úlfarsson1,†

1 Reykjavik University, School of Computer Science,
Menntavegi 1, 101 Reykjavik, Iceland

2 University of Strathclyde, Department of Computer and Information Sciences,
Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, UK

1 Introduction

A graph G = (V,E) is representable if there exists a word W over the alphabet
V such that letters x and y alternate in W if and only if (x, y) ∈ E for each
x �= y. Such a W is called a word-representant of G. Note that in this paper we
use the term graph to mean a finite, simple graph, even though the definition of
representable is applicable to more general graphs.

The notion of a representable graph comes from algebra, where it was used
by Kitaev and Seif to study the growth of the free spectrum of the well known
Perkins semigroup [5]. There are also connections between representable graphs
and robotic scheduling as described by Graham and Zang in [1]. Moreover, rep-
resentable graphs are a generalization of circle graphs, which was shown by
Halldórsson, Kitaev and Pyatkin in [2], and thus they are interesting from a
graph theoretical point of view. Finally, representable graphs are interesting
from a combinatorics on words point of view as they deal with the study of
alternations in words.

Not all graphs are representable. Examples of minimal (with respect to the
number of nodes) non-representable graphs given by Kitaev and Pyatkin in [4]
are presented in Fig. 1.

It was remarked in [2] that very little is known about the effect of the line
graph operation on the representability of a graph. We attempt to shed some
light on this subject by showing that the line graph of the smallest known non-
representable graph, the wheel on five vertices, W5, is in fact non-representable.
In fact we prove a stronger result, which is that L(Wn) (where L(G) denotes the
line graph of G) is non-representable for n � 4. From the non-representability
of L(W4) we are led to a more general theorem regarding line graphs. Our
main result is that Lk(G), where G is not a cycle, a path or the claw graph,

� Supported by a grant from Iceland, Liechtenstein and Norway through the EEA
Financial Mechanism. Supported and coordinated by Universidad Complutense
de Madrid.

�� Supported by the Russian Foundation for Basic Research grants no. 10-01-00616,
11-01-00997 and by the Icelandic Research Fund grant no. 090038013.

��� Supported by grant no. 090038012 from the Icelandic Research Fund.
† Supported by grant no. 090038011 from the Icelandic Research Fund.

G. Mauri and A. Leporati (Eds.): DLT 2011, LNCS 6795, pp. 478–479, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On the Representability of Line Graphs 479

Fig. 1. Minimal non-representable graphs

is guaranteed to be non-representable for k � 4. However an important open
question still remains: Is the line graph of a non-representable graph always
non-representable.

2 Results

The wheel graph, denoted by Wn, is a graph we obtain from a cycle Cn by adding
one external vertex adjacent to every other vertex.

A line graph L(G) of a graph G is a graph on the set of edges of G such that
in L(G) there is an edge (a, b) if and only if edges a, b are adjacent in G.

Theorem 1. The line graph L(Wn) is not representable for each n � 4.

Theorem 2. The line graph L(Kn) is not representable for each n � 5.

It was shown by van Rooji and Wilf [6] that iterating the line graph operator
on most graphs results in a sequence of graphs which grow without bound. This
unbounded growth results in graphs that are non-representable after a small
number of iterations of the line graph operator since they contain the line graph
of a large enough clique.

Theorem 3. If a connected graph G is not a path, a cycle, or the claw graph
K1,3, then Ln(G) is not representable for n � 4.

References

1. Halldórsson, M., Kitaev, S., Pyatkin, A.: Graphs capturing alternations in words.
In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 436–437.
Springer, Heidelberg (2010)

2. Halldórsson, M., Kitaev, S., Pyatkin, A.: On representable graphs, semi-transitive
orientations, and the representation numbers, arXiv:0810.0310v1 (math.CO) (2008)

3. Halldórsson, M., Kitaev, S., Pyatkin, A.: Graphs capturing alternations in words.
In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 436–437.
Springer, Heidelberg (2010)

4. Kitaev, S., Pyatkin, A.: On representable graphs. Automata, Languages and Com-
binatorics 13, 1, 45–54 (2008)

5. Kitaev, S., Seif, S.: Word problem of the Perkins semigroup via directed acyclic
graphs. Order (2008), doi:10.1007/s11083-008-9083-7

6. vanRooij,A.C.M.,Wilf,H.S.:MvanRooij andH.S.Wilf.The interchange graph of afi-
nite graph. ActaMathematica Academiae Scientiarum Hungaricae 16, 263–269 (1965)

Author Index

Badkobeh, Golnaz 1
Battaglia, Giovanni 58
Battaglino, Daniela 464
Blanchet-Sadri, Francine 70
Bonizzoni, Paola 82
Broda, Sabine 93
Brzozowski, Janusz 105, 117

Caron, Pascal 129
Cécé, Gérard 141
Cem Say, A.C. 417
Černo, Peter 153
Chairungsee, Supaporn 1
Chandesris, Jérôme 466
Charlier, Émilie 165
Chaturvedi, Namit 180
Cherubini, Alessandra 469
Crochemore, Maxime 1

Dennunzio, Alberto 466
Diekert, Volker 192
Domaratzki, Michael 204
Droste, Manfred 472

Ésik, Zoltán 216

Fedou, Jean Marc 464
Fici, Gabriele 228
Formenti, Enrico 466
Frigeri, Achille 469
Frosini, Andrea 464
Fujioka, Kaoru 474

Gao, Yuan 46
Giorgetti, Alain 141
Grossi, Roberto 58
Gusev, Vladimir V. 239

Han, Yo-Sub 129
Hellouin de Menibus, Benjamin 251
Holzer, Markus 264, 276
Hundeshagen, Norbert 288

Ibarra, Oscar H. 300

Jakobi, Sebastian 264
Jonoska, Natasha 82

Kasprzik, Anna 476
Kitaev, Sergey 478
Konovalov, Anton 386
Kortelainen, Juha 312
Kunc, Michal 324
Kutrib, Martin 276

Leiter, Ursula 276
Lipták, Zsuzsanna 228

Machiavelo, António 93
Manea, Florin 337
Mantaci, Roberto 350
Manzoni, Luca 466
Massazza, Paolo 350
Meinecke, Ingmar 472
Mignot, Ludovic 129
Moreira, Nelma 93
Mráz, Frantǐsek 153
Myasnikov, Alexei G. 192

Okhotin, Alexander 324
Olschewski, Jörg 180
Otto, Friedrich 288

Pelantová, Edita 406
Piochi, Brunetto 469
Plyushchenko, Andrey N. 362
Pribavkina, Elena V. 239

Rampersad, Narad 165, 204, 441
Reis, Rogério 93
Restivo, Antonio 15
Rinaldi, Simone 464
Rodaro, Emanuele 374

Sablik, Mathieu 251
Salimov, Pavel 478
Salmi, Tuukka 312
Scutellà, Noemi 58
Selivanov, Victor 386
Šešelja, Branimir 472
Severs, Christopher 478

482 Author Index

Shallit, Jeffrey 165, 397
Shur, Arseny M. 28, 362
Silva, Pedro V. 374
Simmons, Sean 70
Starosta, Štěpán 406

Tamm, Hellis 105
Taşdemir, Nuri 417
Tepavčević, Andreja 472
Thomas, Wolfgang 180

Úlfarsson, Henning 478

Vaglica, Roberto 15
Vaslet, Elise 441

Wilke, Thomas 44

Ye, Yuli 117
Yen, Hsu-Chun 300
Yoshinaka, Ryo 429
Yu, Sheng 46

Zetzsche, Georg 452

	Title
	Preface
	Organization
	Table of Contents
	Invited Talks
	Hunting Redundancies in Strings
	Redundancy: A Versatile Notion
	Avoiding Repetitions and Repeats
	Finding Repetitions
	Palindromes in DNA Sequence
	References

	Some Remarks on Automata Minimality
	Introduction
	Basic Definitions and Notation
	Some Graph-Theoretic Tools
	Uniformly Minimal Automata
	Never-Minimal Automata
	Automata Minimality and Transformation Monoid
	References

	Growth Properties of Power-Free Languages
	Preliminaries
	Small Languages: Polynomial Plateau
	Big Languages: Quest for Upper Bounds
	Finding Growth Rates of FAD-Languages
	Building Finite Antidictionaries

	Big Languages: Quest for Lower Bounds
	Big Languages: Asymptotic Formulas
	Extending the Techniques to Related Classes of Languages
	References

	A Functional Program for Regular Expressions Matching Abstract of Invited Talk
	References

	State Complexity Research and Approximation
	Introduction
	Preliminaries
	Why Many State Complexity Questions Were Not Studied Earlier
	A General Algorithm for State Complexity?
	New Approach in State Complexity Research
	State Complexity Approximation
	Definition of State Complexity Approximation
	Some Basic Results on State Complexity Approximation
	Approximation without Knowing Actual State Complexity

	Future Directions
	References

	Regular Papers
	Counting the Orderings for Multisets in Consecutive Ones Property and PQ-Trees
	Introduction
	Definitions and Terminology
	Counting the Frontiers of a PQ-tree
	Construction of the PQ-trees
	Properties of the PQ-trees
	Reduction from #HAM to #FRONT

	Hardness Results for #FMO
	Instance Construction
	Characterization of the Solutions
	Reduction from #HAM to #FMO

	References

	Avoiding Abelian Powers in Partial Words
	Introduction
	Avoiding Abelian Powers Greater Than Two
	Counting Abelian p-Free Partial Words
	Inserting Arbitrarily Many Holes
	Conclusion
	References

	Regular Splicing Languages Must Have a Constant
	Introduction
	Preliminaries
	Path-Automata and Synchronizing Words
	Splicing Languages Must Have a Constant
	The Main Result

	References

	The Average Transition Complexity of Glushkov and Partial Derivative Automata
	Introduction
	Regular Expressions and Automata
	The Glushkov Automaton

	A New Algorithm for Computing Follow()
	Counting the Number of Transitions in the Glushkov Automaton
	The Average Number of Transitions in Apos()

	The Average Number of Transitions in Apd
	Counting the Mergings of Transitions

	Comparison with Experimental Results
	Conclusions
	References

	Theory of Átomata
	Introduction
	Languages, Automata and Equations
	The Átomaton of a Regular Language
	Atomic Automata
	Extension of Brzozowski's Theorem on Minimal DFA's
	Conclusions
	References

	Syntactic Complexity of Ideal and Closed Languages
	Introduction
	Preliminaries
	Basic Properties of Syntactic Complexity
	Right Ideals and Prefix-Closed Languages
	Left Ideals and Suffix-Closed Languages
	Two-Sided Ideals and Factor-Closed Languages
	Reversal
	Conclusions
	References

	Generalized One-Unambiguity
	Introduction
	Preliminaries
	One-Unambiguous Languages are Not Closed under Boolean Operators
	The Weak One-Unambiguity
	Minimization Preserves the Transverse Property
	From a Weakly One-Unambiguous Expression to a Linear-Size DFA Satisfying the Transverse Property
	From a Minimal Automaton Satisfying the Transverse Property to a Weakly One-Unambiguous Expression

	Conclusion
	References

	Simulations over Two-Dimensional On-Line Tessellation Automata
	Introduction
	Picture Languages and Tiling Systems
	Two-Dimensional On-Line Tessellation Automata
	Simulations
	Autosimulations
	Quotienting 2OTA
	The Minimal Simulation-Equivalent 2OTA

	How to Compute Simulations
	The Case of Backward Simulations
	Conclusion and Future Work
	References

	Δ-Clearing Restarting Automata and CFL
	Introduction
	Theoretical Background
	Coding
	Idea of the Algorithm
	Conclusion
	References

	Enumeration and Decidable Properties of Automatic Sequences
	Introduction
	Connection with Logic
	Enumeration
	A New Characterization of k-Regular Sequences
	Linear Bounds
	Other Numeration Systems
	Closing Remarks
	References

	Languages vs. ω-Languages in Regular Infinite Games
	Introduction
	Technical Preliminaries
	Languages, Automata, Games
	Classes of Regular Languages

	Winning Strategies in Restricted Weak Games
	Winning Strategies in Weak Games
	Winning Strategies in Strong Games
	Conclusion
	References

	Solving Word Problems in Group Extensions over Infinite Words
	Preliminaries
	The Group Extension E(A,G) of G by Infinite Words over A
	Group Extensions over A=Z[t]
	Realization of Some HNN-Extensions
	References

	Abelian Primitive Words
	Introduction
	Definitions
	Non-context-Freeness of AQ
	Complexity of AQ
	A Linear Time Algorithm for Recognizing AQ

	Number of Abelian Primitive Roots
	Upper Bound
	Lower Bound

	Counting Abelian Primitive Words
	Equivalence Relations on A-Primitive Words
	Conclusions
	References

	Scattered Context-Free Linear Orderings
	Introduction
	Linear Orderings
	Scattered Context-Free Linear Orderings
	Decidability in Exponential Time
	References

	On Prefix Normal Words
	Introduction
	The Prefix Normal Form
	The Language of Prefix Normal Words
	Prefix Normal Words vs. Lyndon Words
	The Prefix Normal Equivalence
	Conclusion and Open Problems
	References

	On Non-complete Sets and Restivo’s Conjecture
	Introduction
	The Set Sk
	Upper Bound for uwl(Sk)
	Lower Bound for uwl(Sk)
	Conclusion
	References

	Self-organization in Cellular Automata: A Particle-Based Approach
	Introduction
	Definitions
	Configurations and Cellular Automata
	Measures and Density of Configuration
	Limit and -Limit sets

	Defects
	General Definitions
	Interfaces
	Dislocations
	Dynamics

	A Step towards Self-organization
	Applications
	n-state Cyclic Automaton
	Automaton #184
	Captive One Sided Cellular Automata

	Conclusion
	References

	Chop Operations and Expressions: Descriptional Complexity Considerations
	Introduction
	Definitions
	State Complexity of Chop Operations
	Nondeterministic State Complexity
	Deterministic State Complexity

	Complexity of Chop Expressions
	References

	Nodes Connected by Path Languages
	Introduction
	Preliminaries
	Reachability Problems on Labeled Graphs
	Relations between Reachability Problems on Labeled Graphs
	Reachability of Labeled Graphs and Word Problems of Language Families

	Conclusions
	References

	Characterizing the Regular Languages by Nonforgetting Restarting Automata
	Introduction
	Nonforgetting Restarting Automata
	Characterizing the Regular Languages
	Deterministic Nonforgetting R(1)-Automata
	Concluding Remarks
	References

	On Two-Way Transducers
	Introduction
	Preliminaries
	3-Phase Finite-Crossing 2NPCMs
	Proofs of the Main Results
	Finite-Crossing 2NFTs
	References

	There Does Not Exist a Minimal Full Trio with Respect to Bounded Context-Free Languages
	Introduction
	Preliminaries
	Full Trios Generated by Almost Regular Bounded Context-Free Languages
	Examples and Basic Properties of Languages in CkCk+1, kN+
	Simplifying the Structure of Bounded Languages in CkCk+1, kN+
	Propagation in the Chain
	Closure Properties of the Language Families Ck, kN+

	Conclusions
	References

	Describing Periodicity in Two-Way Deterministic Finite Automata Using Transformation Semigroups
	Introduction
	Two-Way Transformation Semigroups
	Monogenic Subsemigroups of
	The Distance Travelled After i Steps
	: Moving by f Until Advancing by One Position
	Index and Period of the Subsemigroup Generated by
	The Main Theorem and Its Implications

	Transformation to Sweeping Automata
	Transformation to One-Way Automata
	References

	Deciding Networks of Evolutionary Processors
	Introduction
	Basic Definitions
	The New Halting Condition and Computability Results
	Complete ANEPs
	Computational Complexity
	References

	From Linear Partitions to Parallelogram Polyominoes
	Introduction
	Preliminaries
	The Algorithm
	The Data Structure
	Complexity

	Conclusions
	References

	On Brzozowski’s Conjecture for the FreeBurnside Semigroup Satisfying $x^2 = x^3$
	Preliminaries
	Procedure Ancestor and Primary Series of Words
	The Proof of the Main Result
	Growth Rates of Congruence Classes
	References

	Never Minimal Automata and the Rainbow Bipartite Subgraph Problem
	Introduction
	The Syntactic Graphs
	The Rainbow Bipartite Subgraph Problem
	NP-Completeness of co-NEVER-MINIMAL
	Connections with the Syntactic Monoid Problem
	Conclusions and Open Problems
	References

	Boolean Algebras of Regular Languages
	Introduction
	Preliminaries on Boolean Algebras
	Preliminaries on Regular Languages
	Boolean Algebra R
	Boolean Algebra A
	Conclusion
	References

	Fife’s Theorem Revisited
	Introduction
	Notation
	The Lexicographically Least Overlap-Free Word
	Automatic Infinite Binary Overlap-Free Words
	Remarks
	References

	Infinite Words Rich and Almost Rich in Generalized Palindromes
	Introduction
	Properties of Words with Finite -Defect
	Proofs
	Conclusion
	References

	Models of Pushdown Automata with Reset
	Introduction
	Preliminaries
	Basic Notation
	Basic Computation Models

	PDA with Reset States
	Resettable Pushdown Automata
	Variants Equivalent to the 2PDA

	Conclusion
	References

	Towards Dual Approaches for Learning Context-Free Grammars Based on Syntactic Concept Lattices
	Introduction
	Preliminaries
	Syntactic Concept Lattices
	Overview
	Grammatical Representation of Syntactic Concept Lattices

	Learning of Context-Free Grammars
	Primal Approach
	Dual Approach
	Learning with the Maximal Bicliques

	Concluding Remarks
	References

	On Highly Repetitive and Power Free Words
	Introduction
	Preliminary Definitions and Results
	Highly Repetitive Binary Words
	Highly Repetitive Ternary Words
	Weaker Results on Ternary Words
	Conclusion
	References

	A Sufficient Condition for Erasing Productions to Be Avoidable .
	Introduction
	Basic Notions
	Control Languages and Erasing Productions
	Applications
	References

	Short Papers
	Encoding Centered Polyominoes by Means of a Regular Language
	References

	Computational Aspects of Asynchronous Cellular Automata
	References

	Short 3-Collapsing Words over a 2-Letter Alphabet
	References

	A Cascade Decomposition of Weighted Finite Transition Systems
	References

	Morphic Characterizations in Terms of Insertion Systems with a Context of Length One
	References

	Inference of Residual Finite-State Tree Automata from Membership Queries and Finite Positive Data
	References

	On the Representability of Line Graphs
	Introduction
	Results
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

