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Message from the Program Chairs

The 2011 Privacy-Enhancing Technologies Symposium was held at the Univer-
sity of Waterloo in Waterloo, Canada, during July 27-29, 2011. It was the 11th
in this series of meetings, and the fourth after the transition from workshop to
symposium. PETS remains a premier forum for publishing research on both the
theory and the practice of privacy-enhancing technologies, and has a broad scope
that includes all facets of the field.

The PETS program this year included a diverse set of 15 peer-reviewed pa-
pers, selected from 61 submissions. Each submission was reviewed by at least
three members of the Program Committee. This was the fourth year of the popu-
lar HotPETs session, designed as a venue to present exciting but still preliminary
and evolving ideas, rather than formal and rigorous completed research results.
As in past years, there were no published proceedings for HotPETs. PETS also
included the traditional “rump session,” with brief presentations on a variety of
topics, and a panel entitled “On the Ethics of Research on Tor Users.”

In addition to the peer-reviewed sessions, PETS 2011 included an invited
panel dedicated to the memory of Andreas Pfitzmann, who passed away in
September 2010. Andreas was a pioneer in privacy research, and one of the
founders of this symposium. As a computer scientist with the rare ability to
clearly explain important positions to both scientists and policy makers, he was
influential in shaping both German and European technology policy. His absence
is a great loss to our community and we dedicated this meeting to his memory.

We are grateful to all of the authors who submitted, to the PETS and Hot-
PETs speakers who presented their work selected for the program, and to the
rump session participants. We are also grateful to the Program Committee mem-
bers, and to the external reviewers who assisted them, for their thorough reviews
and participation in discussions – they were central to the resulting high-quality
program. The following subset of these reviewers gracefully volunteered to con-
tinue their work as shepherds helping the authors improve their papers and ad-
dress the reviewer comments and suggestions: Simson Garfinkel, Gregory Neven,
Matthew Wright, Tom Benjamin, and Roger Dingledine. It is also a pleasure to
acknowledge the contribution of our General Chairs, Katrina Hanna and Ian
Goldberg, and our webmaster since 2007, Jeremy Clark, who did his usual out-
standing job at evolving and maintaining the symposium’s website. Our grati-
tude also goes to the HotPETs Chairs, Carmela Troncoso and Julien Freudiger,
who put together an outstanding HotPETs program. Finally, we are particularly
grateful to Microsoft for its continued sponsorship and support.

May 2011 Simone Fischer-Hübner
Nicholas Hopper
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How Unique and Traceable Are Usernames?

Daniele Perito, Claude Castelluccia, Mohamed Ali Kaafar, and Pere Manils

INRIA Rhone Alpes, Montbonnot, France
{perito,ccastel,kaafar,manils}@inrialpes.fr

Abstract. Usernames are ubiquitously used for identification and au-
thentication purposes on web services and the Internet at large, ranging
from the local-part of email addresses to identifiers in social networks.
Usernames are generally alphanumerical strings chosen by the users and,
by design, are unique within the scope of a single organization or web
service. In this paper we investigate the feasibility of using usernames
to trace or link multiple profiles across services that belong to the same
individual. The intuition is that the probability that two usernames refer
to the same physical person strongly depends on the “entropy” of the
username string itself. Our experiments, based on usernames gathered
from real web services, show that a significant portion of the users’ pro-
files can be linked using their usernames. In collecting the data needed
for our study, we also show that users tend to choose a small number
of related usernames and use them across many services. To the best of
our knowledge, this is the first time that usernames are considered as a
source of information when profiling users on the Internet.

1 Introduction

Online profiling is a serious threat to users privacy. In particular, the ability
to trace users by linking multiple identities from different public profiles may
be of great interest and commercial value to profilers, advertisers and the like.
Indeed, it might be possible to gather information from different online services
and combine it to sharpen the knowledge of users identities. This knowledge
may then be exploited to perform efficient social phishing or targeted spam, and
might be as well used by advertisers.

Recent scraping services’ activities illustrate well the threats introduced by
the ability to match up user’s pseudonyms on different social networks [1]. For
instance, PeekYou.com has lately applied for a patent for a way to match people’s
real names to pseudonyms they use on blogs, OSN services and online forums
[11]. The methodology relies on public information collected for an user, that
might help in matching different online identities. The algorithm empirically
assigns weights to each of the collected information to link different identities
to the same individual. However, the algorithm is ad-hoc and not robust to
false or mismatching information. In light of these recent developments, it is
desirable that the research community investigates the capabilities and limits of
these profiling techniques. This will, in turn, allow for the design of appropriate
countermeasures to protect users’ privacy.

S. Fischer-Hübner and N. Hopper (Eds.): PETS 2011, LNCS 6794, pp. 1–17, 2011.
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In general, profiling unique identities from multiple public profiles is a chal-
lenging task, as information from public profiles is often incorrect, misleading
or altogether missing [9]. Techniques designed for the purpose of profiling need
to be robust to these occurrences. Recent works [2,3] showed how it is possible
to retrieve users information from different online social networks (OSN). All of
these works mainly exploit flaws in the OSN’s API design (e.g., Facebook friend
search). Other approaches [14] use the topology of social network friend graphs
to de-anonymize its nodes.

In this paper, we propose a novel methodology that uses usernames — an easy
to collect information — to tie user online identities. In this context usernames
offer the advantage of being used and publicly accessible on almost all current
web services (e.g., Twitter, Facebook, eBay, Skype, etc.). The techniques devel-
oped in this work can link different user profiles only knowing their associated
usernames and it is widely applicable to all web services that publicly expose
usernames. Our purpose is to show that users’ pseudonyms allow simple, yet
efficient tracking of online activities.

This paper has several contributions. First, we introduce the problem of link-
ing multiple online identities relying only on usernames. This problem is, to the
best of our knowledge, novel and has not been exlpored in the literature.

Second, we devise an analytical model to estimate the uniqueness of a user-
name, which can in turn be used to assign a probability that a single username,
from two different online services, refers to the same user. Our tool can cor-
rectly classify a username like sarah82 as non-identifying, also it can identify
the username dan.perito as probably identifying. Based on language models
and Markov Chain techniques, our model validates an intuitive observation:
usernames with low “entropy” (or to be precise Information Surprisal) will have
higher probabilities of being picked by multiple persons, whereas higher entropy
usernames will be very unlikely picked by multiple users and refer in the vast
majority of the cases to unique users.

Third, we extend this model to cases when usernames are different across
many online services . In essence, given two usernames (e.g., daniele.perito
and d.perito) our technique returns the probability that these usernames refer
to the same user. We build a classifier upon this probability estimation that,
given two usernames, can classify with high accuracy whether the usernames
belong to the same individual. This tool could allows to effectively link and
trace users identities across multiple web services using their usernames only.
These results are tested and validated on real world data, 10 million usernames
collected from eBay and Google Profiles.

Fourth, by studying the usernames from our dataset, we discover that users
tend to choose their usernames from a small set and re-use them across different
services. Also, we discover that users tend to choose usernames that are highly
related to each other, like the aforementioned example daniele.perito and
d.perito. These two findings give an explanation of the high accuracy of our
tool on the task of linking public profiles using usernames.
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We envision several possible uses of these techniques, not all of them mali-
cious. In particular, users might use our tool to test how unique their username
is and, therefore, take appropriate decision in case they wish to stay anony-
mous. To this extent we provide an online tool that can help users choose
appropriate usernames by measuring how unique and traceable their user-
names are. The tool is available at http://planete.inrialpes.fr/projects/
how-unique-are-your-usernames. Furthermore, spammers could gather infor-
mation across the web to send extremely targeted spam, which we dub E-mail
spam 2.0. For example, by matching a Google profile and an eBay account spam-
mers could send spam emails that mention a recent sale to lure users into a
scam. In fact, while eBay profiles do not show much personal information (like
real names) they do show recent transactions indexed by username. This would
enable very targeted and efficient phishing attacks.

Paper organization. In Section 2, we overview the related work on privacy and
introduce the machine learning tools used in our analysis. In Section 3, we in-
troduce our measure to estimate the uniqueness of usernames and in Section 4,
we extend our model to compute the probability that two usernames refer to
the same person and validate it using the dataset we collected from eBay and
Google (Section 2.3). Different techniques are introduced and evaluated. Finally,
in Section 5 we discuss potential impact of our proposed techniques and present
some possible countermeasures.

2 Related Work and Background

2.1 Related Work

Tracking OSNs users In [9] the authors propose to use what they call the online
social footprint to profile users on the Internet. This footprint would be the
collection of all little pieces of information that each user leaves on web services
and OSNs. While the idea is promising this appears to be only a preliminary
work and no model, implementation or validation is given.

Similarly in [3], Bilge et al. discuss how to link the membership of users to two
different online social networks. Noticing that there might be discrepancies in
the information provided by a single user in two social networks, the authors rely
on Google search results to decide the equivalence of selected fields of interest
(as for assigning uniqueness of a user). Typically, the input of their algorithm is
the name and surname of a user, that is augmented by the education/occupation
as provided in two different social networks. They use such input to start two
separate Google searches, and if both appear in the first top three hits, these are
deemed to be equivalent. The corresponding users are consequently identified as
a single user on both social networking sites. Bilge et al.’s work illustrates well
how challenging the process of identifying users from multiple public profiles is.
Despite the usage of customized crawler and parser for each social network, the
heterogeneity of information as provided by users (if correct) makes the process
hard to deploy, if not unfeasible, at a large scale.

http://planete.inrialpes.fr/projects/how-unique-are-your-usernames
http://planete.inrialpes.fr/projects/how-unique-are-your-usernames
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Record linkage. Record linkage (RL)(or alternatively Entity Resolution) [8,4]
refers to the task of finding records that refer to the same entity in two or
more databases. This is a common task when databases of users records are
merged. For example, after two companies merge they might also want to merge
their databases and find duplicate entries. Record linkage is needed in this case
if there are no unique identifiers available (e.g., social security numbers). In
RL terminology two records that have been matched are said to be linked (we
will use the same term throughout this work). The application of record linkage
techniques to link public online user profiles is novel to the best of our knowledge
and presents several challenges of its own.

De-anonymizing sparse database and graph data [14] proposes an identification
algorithm targeting anonymized social network graphs. The main idea of this
work is to de-anonymize online social graph based on information acquired from
a secondary social network users are known to belong to as well. Similarity
identified in the network topologies of both services allows then to identify users
belonging to the anonymized graph.

2.2 Background

Information Surprisal. Self-information or Information Surprisal measures
the amount of information associated to a specific outcome of a random vari-
able. If X is a random variable and x one possible outcome, we denote the
information surprisal of x as I(x) [5]. Information Surprisal is computed as
I(u) = − log2(P (u)) and hence depends only on the probability of x. The smaller
the probability of x the higher is the associated surprisal. Entropy, on the other
hand, measures the information associated to a random variable (regardless of
any specific outcome), denoted H(X). Entropy and Surprisal are deeply re-
lated as entropy can be seen as the expected value of the information surprisal,
H(X) = E(I(X)). Both are usually measured in bits. Suppose there exists a dis-
crete random variable that models the distribution of usernames in a population,
call this variable U . The random variable U follows a probability mass function
PU that associates to each username u a probability P (u). In this context, the
information surprisal of P (u) is the amount of identifying information associated
to a username u. Every bit of surprisal adds one bit of identifying information
and thus allows to cut the population in which u might lie in half.

If we assume that there are w users in a population, then a username u
identifies uniquely a user in the population if I(u) > log2(w). In this sense,
information surprisal gives a measure of the “uniqueness” of a username u and
it is the measure we are going to use in this work. The challenge lies in estimating
the probability P (u), which we will address in Section 3.

Our treatment of information surprisal and its association to privacy is similar
to the one recently suggested in [7] in the context of fingerprinting browsers.

2.3 The Dataset

Our study was conducted on several different lists of usernames: (a) a list of 3.5
million usernames gathered from public Google profiles; (b) a list of 6.5 million
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usernames gathered from eBay accounts; (c) a list of 16000 usernames gathered
from our research center LDAP directory; (d) two large username lists found
online used in a previous study from Dell’Amico et al. [6]: a “finnish” dataset
and a list of usernames collected from Myspace.

The “finnish” dataset comes from a list publicly disclosed in October 20071.
The dataset contains usernames, email addresses and passwords of almost 79000
user accounts. This information has been collected from — most likely by hacking
— the servers of several Finnish web forums. The MySpace dataset comes from
a phishing attack, setting a fake MySpace login web page. This data has been
disclosed in October 2006 and it contains more than 30000 unique usernames.

The use we made of these datasets was threefold. First, we used the combined
list of 10 million usernames (from eBay and Google) to train our Markov Chain
model needed for the probability estimations. Second, we used the information
on Google profiles to gather ground truth evidence and test our technique to link
multiple public profiles even in case of slightly different usernames (Section 4).
Third, we used all the datasets to characterize username uniqueness and depict
Surprisal information distributions as seen in the wild.

Notably, a feature of Google Profiles2, allowed us to build a ground truth we
used for validation purposes. In fact, users on Google Profiles can optionally de-
cide to provide a list of their other accounts on different OSNs and web services.
This provided us with a ground truth, for a subset of all profiles, of linked ac-
counts and usernames. In our experiments we observed that web services differ
significantly in their username policies. However, almost all services share a com-
mon alphabet of letters and numbers and the dot (.) character. We note that
usernames in different alphabets would need a training dataset in the proper
alphabet. However, most services enforce strict rules on the username that can
only be Latin alphanumerical characters.

3 Estimating Username Uniqueness

As we explained above, we would like to have a measure of username uniqueness,
which can quantify the amount of identifying information each username carries.
Information Surprisal is a measure, expressed in bits, that serves this purpose.
However, in order to compute the Information Surprisal associated to usernames,
we need a way to estimate the probability P (u) for each username u.

A naive way to estimate P (u), given a dataset of usernames coming from
different services, would be to use Maximum Likelihood Estimation (MLE). If
we have N usernames then we can estimate the probability of each username
u as count(u)

N , if u belongs to our dataset, and 0 otherwise. Where count(u) is
simply the number of occurrences of u in the sample. In this case we are assigning
maximum probability to the observed samples and zero to all the others. This
approach has several drawbacks, but the most severe is that it cannot be used

1 http://www.f-secure.com/weblog/archives/00001293.html
2 http://www.google.com/profiles

http://www.f-secure.com/weblog/archives/00001293.html
http://www.google.com/profiles
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to give any estimation for the usernames not in the sample. Furthermore, the
estimation given is very coarse.

Instead, we would like to have a probability estimation that allows us to
give estimate probabilities for usernames we have never encountered. Markov-
Chains have been successfully used to extrapolate knowledge of human language
from small corpuses of text. In our case, we apply Markov Chain techniques on
usernames to estimate their probability.

3.1 Estimating Username Probabilities with Markov Chains

Markov models are successfully used in many machine learning techniques that
need to predict human generated sequences of words, as in speech recognition
[12]. In a very common machine learning problem, one is faced with the challenge
of predicting the next word in a sentence. If for example the sentence is “The
quick brown fox”, the word jumps would be a more likely candidate than car. This
problem is usually referred to as Shannon Game following Shannon’s seminal
work on the topic[15]. This task is usually tackled using Markov-Chains and
modeling the probability of the word jumps depending of a number of words
preceding it.

In our scenario, the same technique can be used to estimate the probability of
username strings instead of sentences. For example, if one is given the beginning of
a username like sara, it is possible to predict that the next character in the user-
name will likely be h. Notably Markov-Chain techniques have been successfully
used to build password crackers [13] and analyse the strength of passwords [6].

Mathematical treatment with Markov Chains. Without loss of generality, the
probability of a given string c1, ..., cn can be written as Πn

i=1P (ci|c1, ..., ci−1),
where the probability of each character is computed based on the occurrence all
the characters preceding it. In order to make calculation possible a Markovian
assumption is introduced: to compute the probability of the next character, only
the previous k characters are considered. This assumption is important because
it simplifies the problem of learning the model from a dataset. The probability
of any given username can be expressed as:

P (c1, ..., cn) = Πn
i=1P (ci|ci−k+1, ..., ci−1)

To utilize Markov-Chain for our task we need to estimate, in a learning phase,
the model parameters (the conditional probabilities) using a suitable dataset. In
our experiments we used the database of approximately 10 million usernames
populated by collecting Google public profiles and eBay user accounts (see Sec-
tion 2.3). In general, the conditional probabilities are computed as:

P (ci|ci−k+1, ..., ci−1) =
count(ci−k+1, ..., ci−1, ci)
count(ci−k+1, ..., ci−1)

by counting the number of n-grams that contain character ci and dividing it by
the total number of n − 1-grams without the character ci. Where an n-gram is
simply a sequence of n characters.
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Fig. 1. Information surprisal distribution for all the datasets used

Markov-Chain techniques benefit from the use of longer n-grams, because
longer “histories” can be captured. However longer n-grams result into an ex-
ponential decrease of the number of samples for each n-gram. In our experi-
ments we used 5-grams for the computation of conditional probabilities. Once
we have calculated P (u), we can trivially compute the information surprisal of
u as − log2(P (u)). In Appendix 6 we give a different, yet related, probabilistic
explanation of username uniqueness.

3.2 Experiments

We conducted experiments to estimate the surprisal of the usernames in our
dataset and hence how unique and identifying they are. As explained above,
our Markov-Chain model was trained using the combined 10 million usernames
gathered from eBay and Google. The dataset was used for both training and
testing by using leave-one-out cross validation. Essentially, when computing the
probability of a username u using our Markov-Chain tool, we excluded u from the
model’s occurrence counts. This way, the probability estimation for u depended
on all the other usernames but u.
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Fig. 2. Cumulative distribution function for the surprisal of all the services

We computed information surprisal for all the usernames in our dataset and
the results are shown in Figure 1(a). The entropy of both distributions is higher
than 35 bits which would suggest that, on average, usernames are extremely
unique identifiers.

Notice the overlap in the distributions that might indicate that our surprisal
measure is stable across different services. Notably, the two services have largely
different username creation policies, with eBay accepting usernames as short as
3 characters from a wider alphabet and Google giving more restrictions to the
users. Also, the account creation interfaces vary greatly across the two services.
In fact, Google offers a feature that suggests usernames to new users derived
from first and last names. Probably this is the reason why Google usernames
have a higher Information Surprisal (see Figure 2). It must also be noted that
both services have hundreds of millions of reported users. This raises the entropy
of both distributions: as the number of users increases they are forced to choose
usernames with higher entropies to find available ones. Overall it appears clear
that usernames constitute highly identifying piece of information, that can be
used to track users across websites.

In Figure 1(b) we plot information surprisal for three datasets gathered from
different services. This graph is motivated by our need to understand how much
surprisal varies across services. The results are similar to the ones obtained for
eBay and Google usernames. The Finnish list is noteworthy, these usernames
come from different Finnish forums and most likely belong to Finnish users.
However, Suomi (the official language in Finland) shares almost no common roots
with Roman or Anglo-Saxon languages. This can be seen as a good representative
of the stability of our estimation for different languages.

Furthermore, notice that the dataset coming from our own research center
(INRIA) has a higher surprisal than all the other datasets. While there are a
possible number of explanations for this, the most likely one comes from the
username creation policies in place that require usernames to be the concatena-
tion of first and last name. The high surprisal comes despite the fact that the
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center has only around 16000 registered usernames and lack of availability does
not pressure users to choose more unique usernames.

Comparing the distributions of Information surprisal of our different datasets
is enlightening, as illustrated in Figure 2. This confirms that usernames collected
from the INRIA center exhibit the highest information surprisal, with almost
75% of usernames with a surprisal higher than 40 bits. We also observe that
both Google and MySpace CDF curves closely match. In all cases, it is worth
noticing that the maximum (resp. the minimum) fraction of usernames that do
exhibit an information surprisal less than 30 bits is 25% (resp. less than 5%).
This shows that a vast majority of users from our datasets can be uniquely
identified among a population of 1 billion users, relying only on their usernames.

4 Linking Different Username Strings

The technique explained above can only estimate the uniqueness of a single
username across multiple web services. However, there are cases in which users,
either willingly or forced by availability, decide to change their username. For
example, the username dan.perito and daniele.perito likely belong to the
same individual. Before embarking in this study, we would like to know whether
users change their usernames in any predictable and traceable way. For this
purpose, we use a subset of Google Profiles, in which the users explicitly gave
information about the usernames of linked accounts.

In Figure 3(a) and 3(b) is plotted the distribution of the Levenshtein (or
Edit) Distance for linked username couples. In particular, Figure 3(a) depicts
the distribution for 104 username couples we can verify to belong to single users
(we call this set L for linked), using our dataset. On the other hand, Figure 3(b)
shows the distribution for a sample of random username couples that do not
belong to a single user (we call this set NL for non-linked). In the first case the
mean distance is 4.2 and the standard deviation is 2.2, in the second case the
mean Levenshtein distance is 12 and the standard deviation is 3.1.

Clearly, linked usernames are much closer to each other than non linked ones.
This suggests that, in many occurrences, users choose usernames that are related.
The difference in the two distributions is remarkable and so it might be possible
to estimate the probability that two different usernames are used by the same
person or, in record linkage terminology, to link different usernames.

However, as illustrated in Section 3, and differently from record linkage, an
almost perfect username match does not always indicate that the two usernames
belong to the same person. The probability that two usernames, e.g. sarah and
sarah2, are linked (we call it Psame(sarah, sarah2)) should depend on: (1) how
“unique” is in the common part of the usernames (in this case sarah); and (2)
how likely is that a user will change one username into the other (in this case
the addition of a 2 at the end).

Our goal is to establish a similarity measure that lies in [0, 1] between two
username strings u1 and u2, that can then be used to build a classifier to decide
whether u1 and u2 are linked or not. We will show two different novel approaches
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Fig. 3. Levenshtein distance distribution for username couples gathered from 3.5 mil-
lion Google profiles. Only couples that different at least in 1 character were considered.

at solving this problem. The first approach uses a combination of Markov Chains
and a weighted Levenshtein Distance using probabilities. The second approach
makes use of the theory and techniques used for information retrieval in order
to compute document similarity, specifically using TF-IDF.

We compare these two techniques to well-known record linkage techniques for
a base-line comparison. Specifically we use string-only metrics like the Normal-
ized Levenshtein Distance (NLD) and Jaro distance to link username couples.
However, because of lack of space, we will not explain them in detail.

Method 1: Linkage using Markov-Chains. First of all, we need to compute
the probability of a certain username u1 being changed into u2. We denote this
probability as P (u2|u1). Going back to our original example, P (sarah2|sarah) is
equal to the probability of adding the character 2 at the end of the string sarah.
This same principle can be extended to deletion and substitution. In general, if
two strings u1 and u2 differ by a sequence of basic operations o1, o2, ..., on, we
can estimate P (u2|u1) ≡ P (u1|u2) = p(o1) × p(o2) × ... × p(on).

In order to estimate the probability that username u1 and u2 belong to the
same person, we need to consider that there are two different possibilities on
how u1 and u2 were chosen in the first place. The first possibility is that they
were picked independently by two different users. The second possibility is that
they were picked by the same user, hence they are not independent.

In the former case we can compute P (u1 ∧ u2) as P (u1)×P (u2) since we can
assume independence. In the latter, P (u1 ∧ u2) equals P (u1)×P (u2|u1) in case
the user is the same. Note that using Markov Chains and the our estimation
of P (u2|u1), we can compute all the terms involved. Estimating the probability
Psame(u1, u2) is now a matter of estimating and comparing the two probabilities
above.

The formula for Psame(u1, u2) is derived from the probability P (u1∧u2) using
Bayes’ Theorem. In fact, we can rewrite the probability above as P (u1 ∧ u2|S)
where the random variable S can have values 0 or 1 and it is 1 if u1 and u2

belong to the same person and 0 otherwise. Hence without loss of generality:
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P (S|u1 ∧ u2) =
P (u1 ∧ u2|S)P (S)∑

S=0,1(P (u1 ∧ u2|S) ∗ P (S))

which leads to P (S = 1|u1 ∧ u2) equal to

P (u1)P (u2|u1)P (S = 1)
P (u1)P (u2)P (S = 0) + P (u1)P (u2|u1)P (S = 1)

where P (S = 1) is the probability of two usernames belonging to the same
person, regardless of the usernames. We can estimate this probability to be 1

W ,
where W is the population size. Conversely P (S = 0) = W−1

W . And so we can
rewrite Psame(u1, u2) as P (S = 1|u1 ∧ u2) equal to

P (u1)P (u2|u1)
W ∗ P (u1)P (u2)W−1

W + W ∗ P (u1)P (u2|u1) 1
W

Please note that when u1 = u2 = u then the formula above becomes

Psame(u, u) =
1

(W − 1)P (u) + 1
= Puniq(u)

which is the same estimation we devised for the username uniqueness in Ap-
pendix.

Method 2: Linkage using TF-IDF. In this case we use a well known infor-
mation retrieval tool called TF-IDF. However, TF-IDF similarity measures the
distance between two documents (or a search query and a document), which
are set of words. We need to slightly alter the TF-IDF measure to apply it to
username strings instead.

The term frequency-inverse document frequency (TF-IDF) is a weight used
to evaluate how important is a word to a document that belongs to a corpus
[10]. The weight assigned to a word increases proportionally to the number of
times the word appears in the corpus but the importance decreases for common
words in the corpus.

If we have a collection of documents D in which each document d ∈ D is
a set of terms, then we can compute the term frequency of term ti ∈ d as:
tfi,j = ni,j

Σknk,j
where ni,j is the number of times term ti appears in document dj .

The inverse document frequency of a term ti in a corpus D is idfi = |D|
ci

where ci

is the number of documents in the corpus that contain the term ti. The TF-IDF
is computed as (tf − idf)i,j = tfi,jidfi. The TF-IDF is often used to measure the
similarity between two documents, say d and d′, in the following way: first the
TF-IDF is computed over all the term in d and d′ and the results are stored in
two vectors v and v′; then the similarity between the two vectors is computed,
for example using a cosine similarity measure sim(d, d′) = v·v′

‖v‖‖v′‖ .
In our case we need to measure the distance between usernames composed

of a single string. The way we solved this problem is pragmatical: we consider
all possible substrings, of size q, of a string u to be a document du. Where
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du can be seen as the building blocks of the string u. The similarity between
username u1 and u2 is computed using the similarity measure described above.
This similarity measure is referred to in the literature as q-gram similarity [16],
however it has been proposed for fuzzy string matching in database applications
and its application to online profiling is novel.

4.1 Validation

Our goal is to assess how accurately usernames can be used to link two different
accounts. For this purpose we design and build a classifier to separate the two
sets L and NL, respectively of linked usernames and non-linked usernames.

For our tests the ground-truth evidence was gathered from Google Profiles
and the size the number of linked username couples |L| is 10000. In order to
fairly estimate the performance of the classifier in a real world scenario we also
randomly paired 10000 non-linked usernames to generate the NL set. The user-
name couples were separated, shuffled and a list of usernames derived from L
and NL was constructed. The task of the classifier is to re-link the usernames in
L maximizing the username couples correctly linked while linking as few incor-
rect couples as possible. In practise for each username in the list our program
computed the distance to any other username and kept only the link to the sin-
gle username with highest similarity. If this value is above a threshold then the
candidate couple is considered linked otherwise non-linked.

Measuring the performance of our binary classifier. Binary classifiers
are primarily evaluated in terms of Precision and Recall, where precision is
defined in terms of true positives (TP ) and false positives (FP ) as follows
precision = TP

TP+FP and recall takes into account the true positives compared
to false negatives recall = TP

TP+FN . The recall is the proportion of usernames
couples that where correctly classified as linked (TP ) out of all linked usernames
(TP + FN).

In our case, we are interested in finding usernames couples that are actually
linked (true positives) while minimizing the number of couples that are linked
by mistake (false positives). Precision for us is a measure of exactness or fidelity
and higher precision means less profiles linked by mistake. Recall measures how
complete our tool is, which is the ratio of linked profiles that are found out of all
linked ones. Precision and recall are usually shown together in a precision/recall
graph. The reason is that they are often closely related: a classifier with high
recall usually has sub-optimal precision while one with high precision has lower
recall. An ideal classifier has both a high precision and recall of 1.

Our classifier looks for potentially matching usernames. Once a set of potential
matches is identified our scoring algorithms are used to calculate how likely it
is that the two usernames represent the same individual. By using our labeled
test data, score thresholds can be selected that yield a desired trade-off between
recall and precision. Figure 4 shows the precision and recall of the two methods
discussed in this paper and known string metrics (Jaro and NLD) at various
threshold levels.
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In general the metric based on Markov models outperforms the other metrics.
Our Markov-Chain method has the advantage of having the highest precision
values especially at recalls up 0.71. Remember that a recall of 0.71 means that
71% of all matching username couples have been successfully linked. Depending
on the application, one might favor TF-IDF based approach (method 2) which
has good precision at higher recalls or the Markov chain approach (method 1)
which has the highest precision up to recall 0.7.

Table 1 shows specific examples of the performance of our classifier3. The
similarity estimation is derived computing Psame as described in this Section.
Username couples like johnsmith and johnsmith82, even though very similar,
are deemed too common and therefore are correctly not linked by our classifier.
Higher “entropy” usernames couples like daniele.perito and d.perito are
correctly classified as likely belonging to the same person, even though there are
6 letters that differ out of 14. Example number 6 shows two slightly different
usernames that contain the name Mohamed in them. However, since Mohamed
is a very common Arabic first name, the model successfully deems the usernames
as common and therefore does not link them.

Table 1. Classifier similarity threshold fixed at 5.6 × 10−4 to maximize accuracy in
the training set. All the username couples with a similarity above this threshold are
classified as linked, the ones below non-linked. I1 and I2 stand for information surprisal
of username 1 and 2 respectively.

Example # Username 1 Username 2 Similarity I1 I2 Classifier
Decision

1 ladygaga ladygaga87 9.34 × 10−9 24.37 bits 34.63 bits Non-linked

2 johnsmith john.smith 5.08 × 10−9 21.87 bits 24.34 bits Non-linked

3 johnsmith johnsmith82 2.94 × 10−10 21.87 bits 30.51 bits Non-linked

4 mohamed.ali mohamed.ali.ka 3.28 × 10−7 28.28 bits 38.23 bits Non-linked

5 daniele.perito claude.castelluccia 1.75 × 10−10 39.76 bits 52.76 bits Non-linked
6 ccastel claude.castelluccia 1.10 × 10−10 24.76 bits 52.76 bits Non-linked
7 johnsmith8219 john.smith8219 0.73 37.74 bits 40.21 bits Linked
8 daniele.perito d.perito 0.006 39.97 bits 31.79 bits Linked
9 c.castelluccia claude.castelluccia 0.046 45.64 bits 52.76 bits Linked
10 uniquextrxyqm kswaquniquextrxyqm 0.999 60.09 bits 88.65 bits Linked
11 uniquextrxyqm kswaquni1q3u4extrxyqm 0.996 60.09 bits 130.64 bits Linked

Discussion of Results. Our results show that it is possible, with high precision,
to link accounts solely based on usernames. This is due to the high average
entropy of usernames and the fact that users tend to choose usernames that are
related to each other. Clearly users could completely change their username for
each service they use and, in this case, our technique would be rendered useless.
However, our analysis shows that users indeed choose similar and high entropy
usernames.

This technique might be used by profilers and advertiser trying to link multiple
online identities together in order to sharpen their knowledge of the users. By
crawling multiple web services and OSNs (a crawl of 100M Facebook profiles

3 These examples are a combination of a set of the authors’ usernames and usernames
chosen to exemplify common features of the ones in our dataset.
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has already been made available on BitTorrent) profilers could obtain lists of
accounts with their associated usernames. These usernames could be then used
to link the accounts using the techniques underlined in the previous section.

Addressing Possible Limitations. The linked username couples we used as
ground truth have been gathered from Google Profiles. We have shown how
that, in this sample, the users tend to choose related usernames. However, one
might argue that this sample might not be sufficiently representative of the
whole population. Indeed Google users might be least concerned about privacy
and show a preference of being traceable by posting their information on their
Profiles.

We were not able to test our tool in linking profiles of certain types of web
services in which users are more privacy aware, like dating and medical websites
(e.g., WebMD). This was due to the difficulty of gathering ground truth evidence
for this class of services. However, even if we assume that users choose completely
unrelated usernames for different websites, our tool might still be used. In fact,
it might be the case that a user is registered on multiple dating websites with
similar usernames. Those profiles might be linked together with our tool and
more complete information about the user might be found. For example, a date
of birth on a website might be linked with a city of residence and a first name
on another, leading to real world identification. A more thorough analysis is left
for future work.

Finding linked usernames in a population requires time that is quadratic in
the population size, as all possible couples must be tested for similarity. This
might be too costly if one has millions of usernames to match. A solution to this
problem is to divide the matching task in two phases. First, divide usernames
in clusters that are likely be linked. For example, one could choose usernames
that share at least one n-gram, thus restricting the number of combinations that
need to be tried. Second, test all possible combinations within a cluster.
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5 Discussion

This work shows that it is clearly possible to tie digital identities together and,
most likely, to real identities in many cases only using ubiquitous usernames.
We also showed that, even though users are free to change their usernames at
will, they do not do it frequently and, when they do, it is in a predictable way.
Our technique might then be used as an additional tool when investigating online
crime. It is however also subject to abuse and could result in breaches in privacy.
Advertisers could automatically build online profiles of users with high accuracy
and minimum effort, without the consent of the users involved.

Spammers could gather information across the web to send extremely targeted
spam, which we dub E-mail spam 2.0. For example, by matching a Google profile
and an eBay account one could send spam emails that mention a recent sale or,
by linking with Twitter, recent posts.

Countermeasures for Users. Following this work users might change their
username habits and use different usernames on different web services. We re-
leased our tool as a web application that users can access to estimate how
unique their username is and thus take informed decision on the need to change
their usernames when they deem appropriate (http://planete.inrialpes.fr/
projects/how-unique-are-your-usernames). After its launch and following
media coverage 4, our tool has already been used by more than 10000 users.

Countermeasures for Web Services. There are two main features that make
our technique possible and exploitable in real case scenarios. First, web services
and OSNs allow access to public accounts of their users via their usernames.
This can be used to easily check for existence of a given username and to auto-
matically gather information. Some web services like Twitter are built around
this particular feature. Second, web services usually allow the user pages to be
crawled automatically. While in some cases this might be a necessary evil to
allow search engines to access relevant content, in many instances there is no
legitimate use of this technique and indeed some OSNs explicitly forbid it in the
terms of service agreements, e.g., Facebook.

While preventing automatic abuse of public content can be difficult in general,
for example when the attacker has access to a large number of IPs, it is possible
to at least throttle access to those resources via CAPTCHAs [17] or similar tech-
niques. For example, in our study we discovered that eBay presents users with a
CAPTCHA if too many requests are directed to their servers from the same IP.

6 Conclusion

In this paper we introduced the problem of linking online profiles using only
usernames. Our technique has the advantage of being almost always applicable
since most web services do not keep usernames secret. Two family of techniques
were introduced. The first one estimates the uniqueness of a username to link
profiles that have the same username. We gather from language model theory
4 E.g., MIT Technology Review: http://www.technologyreview.com/web/32326/

http://planete.inrialpes.fr/projects/how-unique-are-your-usernames
http://planete.inrialpes.fr/projects/how-unique-are-your-usernames
http://www.technologyreview.com/web/32326/
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and Markov-Chain techniques to estimate uniqueness. Usernames gathered from
multiple services have been shown to have a high entropy and therefore might
be easily traceable.

We extend this technique to cope with profiles that are linked but have differ-
ent usernames and tie our problem to the well known problem of record linkage.
All the methods we tried have high precision in linking username couples that
belong to the same users. Ultimately we show a new class of profiling techniques
that can be exploited to link together and abuse the public information stored
on online social networks and web services in general.
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Appendix

Username Uniqueness from a Probabilistic Point of View

We now focus on computing the probability that only one users has chosen
username u in a population. We refer to this probability as Puniq(u).

Intuitively Puniq(u) should increase with the decrease in likelihood of P (u).
However, Puniq(u) also depends on the size of the population in which we are
trying to estimate uniqueness. For example, consider the case of first names.
Even an uncommon first name does not uniquely identify a person in a very
large population, e.g. the US. However, it is very likely to uniquely identify a
person in a smaller population, like a classroom.

To achieve this goal we use the P (u) to calculate the expected number of
users in the population that would likely choose username u. Let us denote by
n(u) the expected number of users that choose string u as a username in a given
population W . The value of n(u) is calculated based on P (u) as:

n(u) = P (u) ∗ W

where W is the total number of users in the population. In our case W is an
estimation of the number of users on the Internet: 1.93 billions5.

In case we are sure there exists at least one user that selected the username u
(because u is taken on some web service) then the computation of n(u) changes
slightly:

n(u) = P (u) ∗ (W − 1) + P (u|u) = P (u) ∗ (W − 1) + 1

where the addition of 1 comes from the fact that we are sure that there exists
at least one user that choses u and W − 1 is there to account for the person for
which we are sure of.

Finally we can estimate the uniqueness of a username u by simply considering
the probability that our user is unique in the reference set determined by n(u),
hence:

Puniq(u) =
1

n(u)

5 http://www.internetworldstats.com/stats.htm
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Abstract. Businesses, governments, and individuals leak confidential
information, both accidentally and maliciously, at tremendous cost in
money, privacy, national security, and reputation. Several security soft-
ware vendors now offer “data loss prevention” (DLP) solutions that use
simple algorithms, such as keyword lists and hashing, which are too
coarse to capture the features what makes sensitive documents secret. In
this paper, we present automatic text classification algorithms for clas-
sifying enterprise documents as either sensitive or non-sensitive. We also
introduce a novel training strategy, supplement and adjust, to create a
classifier that has a low false discovery rate, even when presented with
documents unrelated to the enterprise. We evaluated our algorithm on
several corpora that we assembled from confidential documents published
on WikiLeaks and other archives. Our classifier had a false negative rate
of less than 3.0% and a false discovery rate of less than 1.0% on all our
tests (i.e, in a real deployment, the classifier can identify more than 97%
of information leaks while raising at most 1 false alarm every 100th time).

1 Introduction

Modern enterprises increasingly depend on data sharing, both inside and out-
side their organizations. Increased sharing has led to an increasing number of
data breaches, i.e., malicious or inadvertent disclosures of confidential and sensi-
tive information, such as social security numbers (SSN), medical records, trade
secrets, and enterprise financial information, to unintended parties. The conse-
quences of data breach can also be severe: violation of customers’ privacy, loss
of competitive advantage, loss of customers and reputation, punitive fines, and
tangible monetary loss. The Ponemon Institute’s 2009 Cost of a Data Breach
Study found that a data breach costs an average of $6.6 million to an organiza-
tion [26]. The Privacy Rights Clearinghouse lists almost 500 million records that
have been leaked in data breaches since 2005 [11].

Security vendors have begun to offer a raft of “Data Loss Prevention” (DLP)
products designed to help businesses avoid data breaches [37,50,53,46,45]. DLP
systems identify confidential data on network storage servers, monitor network
traffic and output channels to peripheral devices such as USB ports, and either
enforce data control policies or generate reports that administrators can use to
investigate potential breaches.
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Although existing DLP solutions are quite sophisticated in detecting, captur-
ing and assembling information flows, they are currently limited in their capabil-
ity to recognize sensitive information. Many vendors offer solutions that rely on
keywords, regular expressions and fingerprinting, but these techniques alone can-
not fully capture the organization’s secrets when it is re-phrased or re-formatted.
More elaborate and comprehensive human annotations and access control will
not solve the problem because they rely on users to encode in a machine-readable
form the sensitive contents of the message. This is simply infeasible for certain
types of data, too time consuming and too error prone. Security vendors now
recognize[50] the need for DLP systems to learn and automatically classify sen-
sitive materials.

In this paper we develop practical, accurate, and efficient machine learning
algorithms to learn what is sensitive and classify both structured and unstruc-
tured enterprise documents as either public or private. Our scheme is practical
because enterprise administrators need only provide an initial set of public and
private documents. Our system trains a classifier using these documents, and
then uses the resulting classifier to distinguish public and private documents.
System administrators do not have to develop and maintain keyword lists, and
our classifier can recognize private information, even in documents that do not
have a substantial overlap with previously-observed private documents.

We summarize the results of our classifier on 5 testing corpora in Section 5
and compare the results with a baseline off-the-shelf classifier (Section 3). Our
classifier achieves an average false positive rate of 0.46% and an average false
negative rate of 1.6% on our testing corpora. The classifier also achieves a much
lower false discovery rate (FDR), i.e., the percentage of false alarms defined as:

FDR =
FP

TP + FP

raised by the classifier, than the baseline classifier. A low FDR is essential since
users will ignore a system that frequently raises false alarms. If we assume a
typical enterprise network (Section 5), then our classifier has an average FDR
rate of 0.47% compared to the baseline classifier’s average FDR rate of 16.65%.
These results demonstrate that our classifier can meet the demanding needs of
enterprise administrators.

In summary, this paper makes the following key contributions to the field of
enterprise data loss prevention.

– We demonstrate that simply training a classifier combining enterprise data,
both public and private, yields prohibitively high false positive rates on non-
enterprise data, indicating that it will not perform well in real networks.

– We present a new algorithm for classifying sensitive enterprise documents
with low false negative rates and false positive rates. This algorithm employs
a new training technique, supplement and adjust, to better distinguish be-
tween sensitive, public and non-enterprise documents. Our algorithm scales
to real time enterprise network traffic and does not rely on any metadata.

– We construct the first publicly available corpora for evaluating DLP systems.
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The rest of the paper is organized as follows. We briefly describe a typical DLP
system in Section 2 and discuss how our classifier fits into a DLP system. We
introduce our classification algorithms in Section 3 and describe our test corpora
in Section 4. We discuss our classification results in Sections 5 and 6. In Section 7,
we compare our work with related work. We conclude with a summary and
possible avenues of future work in Section 8.

2 Data Loss Prevention Systems

In this section, we describe a typical DLP system’s building blocks and dis-
cuss how our proposed approach fits into the system. A DLP system aims to
protect three types of data in an enterprise: data-at-rest, data-in-motion, and
data-in-use. Data-at-rest is static data stored on enterprise devices such as doc-
ument management systems, email servers, file servers, networked-attached stor-
age, personal computers, and storage area networks. Data-in-motion is enterprise
data contained in outbound network traffic such as emails, instant messages, and
web traffic. Data-in-use is data being “used” by the enterprise’s employees on
end point devices, e.g., a file being copied to a USB drive.

Let us consider the definition of confidential for an organization. There cer-
tainly exist certain types of data such as Personally Identifiable Information,
e.g., names, credit cards, social security numbers, that should be confidential re-
gardless of the organization. The definition becomes more difficult to articulate,
however, when we consider trade secrets and internal communications, which
may be unstructured. Broadly, we define secret as information generated within
the organization that is either not generally known, e.g., facts that can be found
in an encyclopedia or industry magazines, or contained in public materials from
the company. A DLP system will include some functionality to identify sensitive
information in one or more of the aforementioned data types.

A DLP system performs three broad steps to prevent enterprise data loss.
First, the system discovers the three types of enterprise data by scanning storage
devices, intercepting network traffic in real time, and monitoring user actions
on end point devices. Second, the system identifies confidential enterprise data
from the data discovered in the first step. Third, the system enforces enterprise
policies on confidential data. For example, the system may encrypt confidential
data-at-rest to prevent unauthorized use; the system may block confidential data-
in-motion from leaving the enterprise and may prevent confidential data from
being copied to a USB device.

A DLP system faces two operational challenges: performance and accuracy. In
an enterprise setting, the system should scan terabytes of data-at-rest, monitor
hundreds of megabytes of real time network traffic, and monitor user actions
on thousands of end point devices. The system should identify confidential data
accurately in a scalable manner without producing many false positives or false
negatives.

Current DLP products identify confidential data in three ways: regular ex-
pressions, keywords, and hashing. Regular expressions are used primarily to rec-
ognize data by type, e.g., social security numbers, telephone numbers, addresses,
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and other data that has a significant amount of structure. Keyword matching
is appropriate when a small number of known keywords can identify private
data. For example, medical or financial records may meet this criteria. For less
structured data, DLP products use hash fingerprinting. The DLP system takes
as input a set of private documents and computes a database of hashes of sub-
strings of those documents. The system considers a new document private if it
contains a substring with a matching hash in the database. Regular expressions
are good for detecting well-structured data, but keyword lists can be difficult to
maintain and fingerprint-based methods can miss confidential information if it is
reformatted or rephrased for different contexts such as email or social networks.

It is also unlikely that more sophisticated access controls and additional user
annotation will necessarily improve DLP products. First, it is likely that most
sensitive materials contain a fair amount of public knowledge. Former analysts of
the C.I.A. have noted that only 5% of intelligence was captured through covert
actions, meaning that 95% of information in these reports is derived from public
sources[24]. Therefore, assigning the privacy level to text copied and pasted
from such a document is not guaranteed be the correct action. Relying on the
users themselves to better identify and police sensitive materials poses several
complications. Users may find encoding sensitive material to not be trivial. Even
if the user has the ability to sufficiently define what is confidential in this system,
it is possible for the user to forget or make a mistake. Lastly, it may not be
feasible to expect that all users annotate their content consistently.

In this paper, we propose automatic document classification techniques to
identify confidential data in a scalable and accurate manner. In our approach,
the enterprise IT administrator provides a labeled training set of secret and non-
secret documents to the DLP system instead of keywords and regular expression.
We learn a classifier from the training set; the classifier can accurately label both
structured and unstructured content as confidential and non-confidential. The
DLP system will use the classifier to identify confidential data stored on the
enterprise devices or sent through the network.

Our approach builds on a well-studied machine learning technique, Support
Vector Machines (SVMs), that scales well to large data sets [30]. The classi-
fier can meet an enterprise’s needs ranging from a small collection of a user’s
sensitive material to a large enterprise-wide corpus of documents. We assume
that the DLP system cannot access meta-data associated with documents, e.g.,
author, location, time of creation, and type. We also assume that administra-
tors will only provide the document classifier with examples of confidential and
non-confidential materials. Employees and managers, therefore, can provide con-
fidential documents directly to the classifier, alleviating the burden of collecting
a training set on IT administrators and minimizing their exposure to confidential
information.

The major drawback of confidential data identification schemes used in DLP
systems, including ours, is the inability of these systems to classify data they do
not “understand.” Encrypted data and multimedia content are examples of such
data. Loss of confidential data via encryption is relatively rare in practice, only
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1 out of more than 200 data breaches use encryption [54]. Hence we leave the
challenges of identifying confidential data in encrypted content and multimedia
content as future work.

3 Text Classifiers for DLP

This section will discuss present our approach for building text classifiers for
Data Loss Prevention. We will begin by discussing the types of data a text
classifier will encounter with respect to prominence and privacy. We will then
describe our baseline approach for performance comparison. We will conclude
the section with our approach to building text classsifiers for DLP.

Enterprise networks and computers handle three types of data: public enter-
prise data, private enterprise data, and non-enterprise data. Public enterprise
data (public) includes public web pages, emails to customers and other external
entities, public relations blog posts, etc. Private enterprise data (secret) may
include internal policy manuals, legal agreements, financial records, private cus-
tomer data, source code or other trade secrets. Non-enterprise data (NE ) is
everything else, and so cannot be described succinctly, but is likely to include
personal emails, Facebook pages, news articles, and web pages from other organi-
zations, some of which may be topically related to the business of the enterprise.
We consider private documents to be confidential and require protection whereas
NE and public documents do not. From this high-level description, we can draw
several conclusions:

– Enterprise public and private documents are likely to be relatively similar
since they discuss different aspects of the same underlying topics.

– Many non-enterprise documents will share almost no features with enterprise
documents.

– Some non-enterprise documents may be quite similar to enterprise public
documents. For example, non-enterprise documents may include news arti-
cles about the enterprise or web pages from related organizations.

A DLP text classifier is thus faced with two contradictory requirements: it must
be finely tuned to enterprise documents so that it can make the subtle distinction
between public and private documents that discuss the same topic, but it must
not overfit the data so that it can correctly mark non-enterprise documents
as public. As explained below, our solution uses a two-step classifier to solve
this problem. The first step eliminates most non-enterprise documents that have
little in common with enterprise documents, and the second step uses a classifier
focused on documents related to the enterprise to make the finer distinction
between enterprise public and private documents.

3.1 Baseline Approach

We are not aware of any previously published results on text classification for
DLP. We also could not test our solution against existing DLP solutions because
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we could not verify if the software adhered to the constraints our classifier abides
to (e.g. no meta-data is associated with documents). We first developed a baseline
classifier to provide a basis for comparison and to garner insight into the structure
of the DLP text classification problem.

We performed a brute search evaluating multiple machine learning algorithms
and feature spaces known for their text classification performance for our base-
line classifier, including SVMs [28], Naive Bayesian classifiers [35], and Rocchio
classifiers [35] from the the WEKA toolkit [20] to determine the best classifier
across all the datasets. We found that a support vector machine with a linear
kernel performed the best on our test corpora (described in Section 4). The
best performing feature space across all corpora is unigrams, i.e. single words,
with binary weights. We eliminated stop words, common words such as “is”
and “the”, and limited the total number of features to 20,000. If a corpus con-
tained more than 20,000 unique non-stop words, we choose the 20,000 most
frequently-occurring non-stop words as our features. We use this configuration
as our baseline classifier for all experiments reported in Section 5.

An SVM trained on enterprise documents achieves reasonable performance
on enterprise documents, but has an unacceptably high false positive rate on
non-enterprise (NE) documents. The poor performance can be explained by
identifying weaknesses in the training approach. First, for two of our corpora,
the classifier was biased towards the secret class, e.g., its initial expectation was
most documents to be secret. And since many NE documents share very few fea-
tures in common with secret documents, the classifier mislabeled these instances
because it had too little information to contradict its a priori expectation. The
second issue arose from overfitting of features. The public documents could not
alone capture the behavior of these features for non-secret documents. It will,
therefore, overweight certain features; we noticed common words like “policy”
and “procedure” being instrumental in the misclassification of NE documents.

3.2 Supplement and Adjust

To remedy overfitting and overweighting common features, we supplement
the classifier by adding training data from non-enterprise collections such as
Wikipedia [16], Reuters[33], or other public corpora. As we will show in Section 5,
our supplemental corpus does not need to be comprehensive. The presence of
supplementary data does not train the classifier to recognize NE documents,
but prevents it from overfitting the enterprise data.

We use 10,000 randomly-selected Wikipedia articles and a 1,100 document set
featuring documents on finance, law and sport as our supplementary data set.
We labeled the supplementary articles as public during training. The supplement
classifier uses the same feature set as the baseline classifier and does not include
features found in the supplemental data set. This prevents the classifier from
using words from the supplemental data set to learn to distinguish enterprise
and non-enterprise documents.

Adding supplemental training data will likely introduce a new problem:
class imbalance. Supplemental instances will bias the classifier towards public
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documents because the size of this class will overwhelm the size of secret docu-
ments. This will result in a high false-negative rate on secret documents. There-
fore, we need to adjust the decision boundary towards public instances. This
will reduce the false negative rate while increasing the false positive rate. For
our classifier, we measure the distance between the decision boundary and the
closest, correctly classified public instance (either NE or public) and move the
boundary x% of the distance towards it, for some value of x. We chose x = 90%,
although we show in Appendix A that our classifier is robust and performs well
when 50% ≤ x ≤ 90%.

The supplement and adjustment technique can be applied to train classifiers
tailored to both public and secret documents, with the supplemental instances in
both cases drawing from the same source, e.g., Wikipedia. Therefore, we denote a
supplement and adjust classifier as SAclass where class is either public or secret.
When training an SAsecret classifier, we combine public and NE documents and
adjust the boundary to the closest, correctly classified public or NE. An SApublic

classifier is constructed by combining secret and NE documents and adjust the
boundary to the closest, correctly classified secret or NE document. We employ
an SAsecret classifier as the first stage of our DLP text classification system.

3.3 Meta-space Classification

The first-level classifier significantly reduces the number of false positives gener-
ated by NE documents, but not completely. These documents tend to contain
salient features of the secret class, but upon further inspection, clearly unre-
lated topically to confidential documents. Also, the number of false positives for
public documents increases. Therefore, we apply a second step to eliminate false
positives from documents labeled secret by the first step.

We address these remaining false positives in three ways. First, for a target
document, we will measure how similar it is to either the secret or public set of
documents. Second, we build classifiers specifically tailored for the public class.
Secret and public documents will likely overlap in content since they are topi-
cally related and may even discuss the same entities employing similar language.
Therefore, our system will attempt to learn what combination of features make
these documents public rather than secret. We can use the output of this clas-
sifier in conjunction with the first step to better gauge if a document should be
labeled secret or not. Lastly, we classify the target document based on the out-
put of the similarity measures and classifiers (hence why we refer to this classifier
as a “meta-space” classifier). We use three classes (public, NE, secret) instead
of two classes (secret,¬secret) for this step. Three classes assist the classification
of secret documents because NE false positives exhibit different behaviors than
public false positives for these features, making classification much more difficult
if we group NE and public together.

To address the problem of topically unrelated documents being labeled as se-
cret, we created two attributes, xtra.infosecret and xtra.infopublic, that measure
the percentage of words in a document that do not appear in any document from
the secret and public training corpora, respectively. These features are intended
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to measure the overall dissimilarity of a document, d, to documents in the public
and secret corpora. For example, if d has a large value for xtra.infopublic, then
it is very different from documents in the public training corpus. We can improve
the xtra.info features by ignoring words that occur commonly in English and
hence convey little contextual information. We compute for each word w an es-
timate, dfw of how often w occurs in “general” English documents. We can then
ignore all words that have a high dfw value. We used 400,000 randomly-selected
Wikipedia articles to estimate dfw for all words across all our training sets. If a
word in our training set never occurred in Wikipedia, we assigned it a frequency
of 1/400, 000. We then computed

xtra.infoc(d) =

∣∣ddf \
⋃

d′∈c d′
∣∣

|ddf |

where ddf = {w ∈ d|dfw ≤ df}. In our experiments, we used df = 0.5%.
The xtra.infosecret attribute aides the classifier by giving some context infor-

mation about the document being classified. If the test document is truly secret,
than we expect it to be similar to existing secret documents with respect to
non-trivial language (enforced by the df threshold). Table 4 shows that for NE
examples from the Wikipedia Test corpus, the xtra.infosecret is quite high and
enables a second classifier to easily separate these documents from true secret
documents.

To better differentiate between public and secret documents, we train a
SApublic classifier. By combining secret and NE documents, the classifier will
better recognize which features correlate with public documents. On it’s own, the
output of the classifier will not necessarily exceed the performance of the SAsecret

classifier. But when combined with the output of SAsecret, xtra.infopublic and
xtra.infosecret, the classifier better discriminates between public and secret en-
terprise documents.

The usage of this meta-space classification is improved by using three classes
instead two (i.e. secret or ¬secret). Combining public and NE is not optimal
because we expect much different behavior for each of the attributes. NE doc-
uments will most likely have higher xtra.infoprivate and xtra.infopublic scores
than public documents and be classified ¬public by SApublic. This will negatively
affect classification for these attributes because the separability of these values is
diminished by grouping them together. Our SVM uses Hastie et al [21] pairwise
coupling algorithm for multiclass classification.

In summary, our meta-space classifier is trained four features: the outputs of
SApublic and SAsecret classifiers, xtra.infopublic and xtra.infosecret. We train
the classifier on the NE, public, and secret documents that were misclassified
by SApublic. NE and public documents are not combined together as in the
SAprivate classifier, but rather, assigned to one of three classes (NE, public and
secret) based on its prominence. To classify a new document, d, we first compute
SAsecret(d). If this classifier indicates that d is not secret, we mark d as public.
Otherwise, we compute SApublic(d) and xtra.infopublic and xtra.infosecret for
d and apply the meta-space classifier to obtain a final decision.
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4 DLP Corpora

We have created five corpora for training and evaluating DLP classification al-
gorithms. To our knowledge, these are the first publicly-available corpora for
evaluating DLP systems. Constructing DLP corpora is challenging because they
should contain private information from some enterprise, but private information
is, by definition, difficult to obtain.

Three of our corpora – DynCorp, TM, and Mormon – contain private doc-
uments leaked from these organizations to WikiLeaks and public documents
taken from the organizations’ public web sites. We collected 23 documents from
DynCorp, a military contractor, from their field manual for operatives. We ob-
tained 174 web pages from their website [15]. WikiLeaks hosts 102 documents
from Transcendental Meditation, a religious organization, that include work-
shop instructions written by high-ranking members of the organization. We
obtained 120 public materials from various TM affiliated websites [38]. The
Mormon corpus includes a Mormon handbook that is not to be distributed
outside of its members. We split the handbook into 1000 character-long pieces
and added two other smaller supplemental organizational documents from the
church available through WikiLeaks. We split the document into smaller chunks
since the handbook is the main document we could obtain from this organiza-
tion, but it is also one of the most sensitive documents the organization pos-
sesses. We took an arbitrary split of 1000 characters since it should provide
enough textual information for classification. We gathered 277 webpages from
the Church of Jesus Christ of Latter Day Saints website [42]. Note that our in-
clusion of texts from religious organizations is not intended to denigrate these
faiths, but because they are documents that these organizations tried to keep
secret.

Our Enron corpus contains emails released during the Federal Energy Reg-
ulatory Commission labeled by Hearst et al. [23]. Our data set only includes
“business-related” emails. Since Enron is now defunct, we used the Internet
Archive to obtain documents from its public website [3]. We were able to obtain
581 web pages.

The Google private document dataset consists of 1119 posts by Google em-
ployees to software-development blogs. Google collaborates with many open-
source software projects, so much of its software development discussions take
place in public. If these same projects were conducted as closed source develop-
ment, then these blog posts would be private, internal documents, so we treat
them as such in our dataset. 1481 public documents were taken from PR-related
blogs.

Finally, we include several corpora that are intended to represent non-
enterprise documents. We sampled 10K randomly selected Wikipedia articles
and denote it as the Wikipedia Test corpus. We also test the robustness
of our classifier on the Brown [2] (500 samples) and Reuters [33] corpora
(10788).
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5 Evaluation

A successful DLP classifier must meet several evaluation criteria. It must have
a low false negative rate (i.e. misclassifying secret documents) and low false
positive rate for any non-secret document. It should also achieve a low false
discovery rate. Furthermore, we need to show that our classifier is robust with
respect to its training parameters, in particular: the choice of the supplemental
corpus, the size of the supplemental corpus, and the degree of adjustment used
in the supplement and adjust classifier.

We present the results of our training strategy against a baseline classifier. For
all our classifiers, we tokenize all our datasets and use unigrams for features. For
a baseline classifier, we only train the classifier on enterprise documents using the
binary weighting scheme. For the results presented in Tables 1 and 2, we supple-
ment the classifiers with 10000 Wikipedia articles and 1100 topical articles and
adjust the classifier to move the decision boundary 90% of the distance between
the decision boundary and the closest correctly labeled public instance. We use
a document frequency of 0.5% to compute xtra.infosecret and xtra.infopublic.
We compute the false negative and false positive rates by performing a 10-fold
cross validation on each of the corpora, and then determine the false positive
rate for NE documents by training the classifier on the entire enterprise dataset
and then classifying our Wikipedia false positive corpus.

The results of our classification tests show that our training strategy main-
tains low false negative and false positive rates on enterprise documents while

Table 1. The false positive (FP) and false negative (FN) rates on the enterprise corpora
for each of our classification strategies. 11,100 instances and an adjustment of 90% are
used.

DynCorp TM Enron Mormon Google

Classifier FP FN FP FN FP FN FP FN FP FN

Baseline 0.0% 0.0% 2.5% 0.98% 0.87% 0.0% 0.72% 1.4% 1.8% 1.9%

Supplement 0.0% 8.0% 0.0% 11.0% 0.0% 5.0% 0.0% 0.3% 0.0% 3.7%

Supplement and Adjust 2.0% 0.0% 28.3% 0.0% 4.1% 1.2% 4.6% 0.0% 15.9% 0.3%

Two-step 0.0% 0.0% 0.0% 0.98% 0.87% 3.0% 0.36% 1.4% 1.0% 2.1%

Table 2. The false positive rates on our Wikipedia false positive corpus for each of the
classification strategies

Non-enterprise False Positive Rate
Classifier DynCorp Enron Mormon Google TM

Baseline 4.7% 87.2% 0.16% 7.9% 25.1%

Supplement 0.0% 0.01% 0.06% 0.0% 0.0%

Supplement and Adjust 0.26% 2.5% 0.1% 2.8% 0.93%

Two-step 0.0% 0.05% 0.0% 0.06% 0.01%
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Table 3. The False Discovery Rate of the baseline approach far exceeds our classifier,
implying that the baseline approach would fare poorly in real world networks whereas
ours would not raise much fewer alarms

Dataset Baseline FDR Our classifier FDR

DynCorp 4.49% 0.00%
Enron 47.05% 0.92%
Google 8.99% 1.06%
Mormon 0.88% 0.36%
TM 22.06% 0.01%

False Positive Rate - Brown False Positive Rate - Reuters

Fig. 1. The false positive rates for each classification strategy. The two-step classifier
is able to maintain a low false positive rate across all the different corpora for each
non-enterprise corpora.

dramatically improving the false positive rate on NE documents. The baseline
approach would be unusable in practice because of its high false positive rate on
NE documents.

In our results shown in Table 3, we assume the following traffic composition
in a typical enterprise network: 25% enterprise secret documents, 25% enterprise
public documents, and 50% non-enterprise documents. We believe that our ap-
proach will not engender “alarm fatigue”, whereas the baseline approach is likely
to overwhelm operators with false alarms.

The supplement and adjust classifier achieves a low false positive rate on NE
documents for several reasons. The supplement and adjustment classifier did
not rely on finding features that were strongly indicative of the public class.
This is a crucial benefit because the NE document set’s size is so large that
it would be impossible to create a set of features that were strongly indicative
of all possible public documents. In addition to relying less on features that
were indicative of public documents, the supplement and adjustment classifier
moves the expectation further towards the public class, which is in line with
our expectation of the problem outlined in the problem description. And by
performing an adjustment to the decision boundary, the classifier reduces the
false negative rate without increasing the false positive rate, when combined
with the second level classifier.
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5.1 Effective Training Parameters

Figure 1 demonstrates that our classifier is robust with respect to the choice of
the supplemental corpus. Our supplemental corpus consisted solely of Wikipedia
documents but, as Figure 1 shows, the resulting two-step classifier has a low false
positive rate on NE documents drawn from drastically different corpora, such
as the Brown or Reuters news corpora. Thus, we can build a standard non-
enterprise corpus that is used by all enterprises to train their DLP systems. The
corpus will not need to be customized for each enterprise or for each new form
of Internet traffic.

As expected, a larger supplemental corpus decreases the false positive rate but
increases the false negative rate as the classifier becomes more biased towards
public documents (see Appendix A for details). Note that Google is a clear outlier
in this evaluation. We suspect that this may be because the Google corpus is
the only artificial corpus in our data set. Recall that all the Google documents,
including the “private” ones, are in reality public documents, unlike our other
corpora which contain genuine private enterprise documents. The second step of
our approach remedies the errors made on public enterprise documents. We also
conclude that the supplemental corpus does not need to be too large – about
10,000 documents suffice.

We also investigated the effect of the adjustment value on the classifier. Ac-
cording to the graphs in Appendix A, an adjustment value of 0.5 provides a good
trade-off between increased false positives and false negatives in the supplement
and adjust classifier. However, since we added a second-level classifier that can
filter out many false positives, we chose an adjustment value of 0.9 in order to
achieve a slightly lower false negative rate.

6 Discussion

The algorithm presented in this paper should prevent accidental leakages of in-
formation, but how will it fare against intentional leakages? According to Proof-
Point [44], most data leakages are accidental. The most common intentional leak-
age occurs when employees download sensitive information upon termination of
employment. Our method coupled with the DLP system’s ability to recognize
data flow from a trusted to an untrusted device should prevent these type of leak-
ages. If the data were encrypted or re-encoded, this would exceed the capability
of our classifier. These more sophisticated attacks, fortunately, only account for
1 in 200 data breaches [54].

It is instructive to highlight key differences between our solution and existing
semi-supervised and class imbalance solutions. Our algorithm is a supervised
learning approach: all examples are labeled. During training, the classifier will
know if the enterprise document is confidential or not. Since supplemental train-
ing instances do not come from the enterprise, these instances are labeled op-
posite from the class we wish to train on, e.g., for the SAprivate classifier, these
supplemental instances are labeled as public. For the purposes of our algorithm,
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we focus on recognizing sensitive information that either it has either seen be-
fore or is similar to an existing confidential document. In the future, we hope to
explore how the system can infer if a document is sensitive if it has zero training
data to support this decision (possibly relying on metadata).

Our study demonstrates that DLP systems face an inherent class imbalance
issue: nearly all documents that exist are outside the organization and are not
sensitive. To train a classifier on this class is simply infeasible because of its
size. Our key insight into this problem is recognizing that our classifiers needed
to be trained to effectively learn what is secret, and not rely too heavily upon
features that were correlated with non-secret documents. The problem of class
imbalance has been studied and work in this area is discussed in Section 7. Once
we recognized that class imbalance would be an issue for achieving maximal
performance, we tried many of the approaches listed in the Section 7, but found
that they were ineffectual on this specific problem.

Our approach is unique from other class imbalance techniques because we at-
tempt to better determine which features correlate with sensitive information by
adding additional samples that express a diverse usage of language. We cannot
say how well this technique will extrapolate to other machine learning prob-
lems, but it is applicable to our specific problem of generating a classifier robust
enough to perform well in the presence of many unrelated documents. To the
best of our knowledge, using supplemental data (not synthetically generated) to
generate negative examples has not been applied to the class imbalance for text
classification.

An important design decision in this algorithm was to restrict the vector space
to features included only in secret and public documents. The reasoning behind
this decision is related to the class imbalance aspect of this problem. Since the
number of non-secret documents is so large, adding additional features to the
vector space would have resulted in overfitting because those features would
factor prominently into classifying NE documents in the training step. The
classifier may not accurately reweight features that secret documents share with
non-secret documents. And since it would be impossible to provide the classifier
with training representative of everything that is NE, the classifier would be
more likely to generate false positives.

The xtra.info attribute performs exceedingly well in maximizing separability
between NE and secret documents, as shown in Table 4. Contextual informa-
tion is quite important because we have limited our vector space to only enter-
prise documents, which these terms are assumed to be related to the knowledge
domain of the enterprise. Using a unigram vector space, we lose contextual infor-
mation that may help counteract the effect of polysemy that contributes to the
misclassification of NE documents. Our xtra.info attribute is effective in the
second level of classification in providing contextual information to disambiguate
between secret and NE classes and is easily computable.

The techniques of our algorithm performed well for many different different
types of media and organizations. One limitation in creating our DLP corpora is
that it the documents for each organization do not represent the entirety of its
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Table 4. This table presents the means for the xtra.infosecret attribute for each of our
private corpora and the document classes secret and NE. The significant differences
between the means for these classes suggest that this attribute will aide the classifier
in distinguishing NE documents from secret.

Mean xtra.infosecret Dyncorp Enron Google Mormon TM

Secret documents 0.54 (0.10) 0.83 (0.09) 0.70 (0.15) 0.49 (0.15) 0.66 (0.11)

NE documents 0.96 (0.03) 0.99 (0.02) 0.98 (0.04) 0.95 (0.08) 0.99 (0.02)

operations. It was not feasible to either find or build a corpus of this nature be-
cause of the risk for corporations assembling and releasing this data. We believe,
however, that since our algorithm performed well in many different instances,
it will perform well enterprise wide. Depending on the size and structure of the
organization, multiple classifiers can be built for each of the different depart-
ments and group. Text clustering can also assist in building cogent collections of
documents to train and build classifiers. And since the classification techniques
we use are not computationally expensive, the penalty for evaluating multiple
classifiers is not prohibitively greater.

The system described in this paper will most likely be part of a larger en-
forcement framework that will defend the network from intrusions and malware.
Administrators will need to provide instances of secret and public documents
because the training of our system is supervised. This collection of samples, how-
ever, should not be difficult to obtain because it can be automated and does not
require further annotations. Employees can designate folders on storage devices
that contain either secret or public documents or manually submit examples
through a collection facility, e.g, email or web-based system. Depending on the
enterprise policy enforcement guidelines, messages that the classifier suspects to
be secret may prompt the sender to reconsider, queue the message for an admin-
istrator to review, or simply block the transaction. The toolkit we implemented
will be made available from the author’s website.

7 Related Work

Automated document classification is a well studied research area. Research in
the document classification field dates back to 1960s [36,6]. The use of machine
learning in text classification, however, became popular in the last two decades.
Sebastiani provides an excellent overview of the area: he describes various text
categorization algorithms, approaches to evaluate the algorithms, and various
application of automated text categorization [48]. The proliferation of digital
documents and the explosion of the web has given rise to many applications of
document classification, e.g., automatic document indexing for information re-
trieval systems [18], classification of news stories [22], email filtering to classify
emails into categories [12], spam filtering to identify spam from legitimate email
messages [1], automatic categorization of web pages [4,8], and product review
classification [51]. The research community has explored many different machine
learning approaches for text categorization, e.g., Bayesian classifiers [1,34,32],
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decision trees [7], k-nearest neighbors [14], neural networks [41], regression mod-
els [17], and support vector machines [29]. Researchers have also experimented
with the idea of combining multiple classifiers to increase efficacy, most notable
being Schapire et al.’s boosting approach [47].

We utilize Support Vector Machines, a powerful margin-based classification
and regression technique introduced by Cortes and Vapnik, in our classifier [13].
Joachims applied SVMs to the text classification task [28] and identified proper-
ties of text categorization that makes SVMs suitable for the task. For example,
text categorization has to deal with large numbers of features, as words present
in a document are considered the document’s features. Feature selection is a
traditional approach to select a few relevant features from many. In the case of
text, however, most features are relevant. Hence a good text classifier should be
able to handle many features. SVMs can handle large numbers of features due
to overfitting protection. Also, SVMs are good linear classifiers and many text
categorization tasks are linearly separable.

Text classification for DLP presents difficulties that standard classifiers can-
not solve because of the lack of a proper training set. It is difficult to supply
the classifier with an adequate representation of what should be public (i.e.,
not secret). Therefore, this paper addresses the precise problem of an unrepre-
sentative dataset for text classification with the techniques of supplement and
adjust, xtra.info, and utilizing a two-step classifier. Other research has focused
on related topics.

Accurate text classification in the case of limited training examples is a chal-
lenging task. Joachims used a transductive approach to handle the problem [31];
his approach focuses on improving the classification accuracy of SVMs for a
given test set. Blum and Mitchell introduced a co-training approach to cate-
gorize web pages [5]. They improved classification accuracy by adding a larger
number of unlabeled examples to a smaller set of labeled examples. Toutanova
et al. demonstrated the use of hierarchical mixture models in the presence of
many text categories [52].

Researchers have also investigated mitigating the effect of class imbalance on
classification performance [10]. Both oversampling and undersampling classes in
the training instances has been widely investigated. The sampling can be random
or directed. Synthetic generation of examples for underrepresented classes has
also been explored and combined with under and over sampling [9]. One class
learning classifiers have been proposed to improve classification for target classes
where examples are relatively scarce compared to other classes [27]. An instance
is compared with training examples in terms of similarity to determine whether
the instance is a member of the target class. Lastly, feature selection techniques
can improve classification of underrepresented classes because high dimensional
data may overfit or be biased towards the majority classes [40].

Several projects have used Wikipedia to enhance text classification, particu-
larly where context is unavailable due to the brevity of the text to be classified
[19,43,25,39]. Gabrilovich et al. [19] first proposed transforming a document into
its representation in Wikipedia topic space. Others have modified this basic idea



Text Classification for Data Loss Prevention 33

by including topic hyponomy and synonymy [25] or performing LSA on this
topic space [39]. Others have investigated using Wikipedia to determine related-
ness between texts, particularly short texts [49]. To our knowledge, no one has
investigated using Wikipedia explicitly to augment their training corpus.

8 Conclusion and Future Work

This paper presents a simple, efficient, and effective way to train classifiers and
perform classification for Data Loss Prevention. In doing so, it presents the first
corpora for the DLP task. Our results indicate a naive approach to training
a classifier, solely on documents from the enterprise, will lead to a high false
positive rate on unrelated documents, indicating poor real world performance.
The paper presents a novel technique, supplement and adjust, which reduced
the false positive rate for documents unrelated to the core business function.

We plan to further study the efficacy of our text classification approach by
deploying it on existing private, enterprise and governmental networks. We will
also look to expand our approach to include encrypted and multimedia content.
In this work, we only consider the content of a document to render a decision.
We would like to investigate what meta data associated with the content could
be used to improve classification.

Lastly, not all secret documents in the world are written in English. We will
hope to expand our private corpus in the future to include non-English sources.
Our intuition is that many language processing techniques developed to handle
language specific obstacles should be applied to the processing of these doc-
uments. We will also have to adjust our supplemental corpus accordingly to
provide realistic behavior for NE feature behavior.
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A Effects of Supplement and Adjustment

Public False Positive Rate Secret False Negative Rate NE False Positive Rate

The effect on the false negative and false positive rates for our corpora when
supplementing the training instances with Wikipedia examples. For the Mor-
mon corpus, the effect of adding any supplemental instances seems to affect the
classification of the same documents.
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Public False Positive Rate Secret False Negative Rate NE False Negative Rate

The false positive and false negative rates on enterprise documents after applying
the supplement and adjust classifier.
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Abstract. Detection of malicious traffic in the Internet would be much
easier if ISP networks shared their traffic traces. Unfortunately, state-of-
the-art anomaly detection algorithms require detailed traffic information
which is considered extremely private by operators. To address this, we
propose an algorithm that allows ISPs to cooperatively detect anomalies
without requiring them to reveal private traffic information. We leverage
secure multiparty computation to design a privacy-preserving variant of
principal component analysis (PCA) that limits information propagation
across domains. PCA is a well-proven technique for isolating anomalies
on network traffic and we target a design that retains its scalability
and accuracy. To validate our approach, we evaluate an implementation
of our design against traces from the Abilene Internet2 IP backbone
network as well as synthetic traces, show that it performs efficiently
to support an online anomaly detection system and and conclude that
privacy-preserving anomaly detection shows promise as a key element
of a wider network anomaly detection framework. In the presence of
increasingly serious threats from modern networked malware, our work
provides a first step towards enabling larger-scale cooperation across ISPs
in the presence of privacy concerns.

1 Introduction

A serious threat to Internet users is the increasingly advanced set of attacks
employed by malware to remotely compromise their resources. Compromised
machines are used to propagate spam, worms and viruses and participate in
DoS attacks. The tremendous scale and complexity of network traffic makes
detection of malicious behavior in network traffic an extremely hard problem.

The seriousness of this problem has led network operators to pursue in-
network solutions to detect and localize malicious traffic. Modern ISPs run mon-
itoring systems to localize malicious traffic, and some offer “scrubbing” services
to customers to remove malicious traffic before delivery to the customer [31].
While several approaches have been proposed for detecting malicious traffic, the
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use of principal component analysis (PCA) stands out. An array of techniques
based on PCA have been recently proposed [17,25,27] to detect statistical anoma-
lies in volume or other characteristics of traffic flowing across networks. These
schemes rely on monitoring protocols employed at routers to sample traffic (e.g.,
NetFlow [8] and SNMP counters), aggregate these observations across routers
and perform anomaly detection on the aggregate. PCA enables scaling to large
datasets by reducing the dimensionality of the traffic and has been shown in
the literature to perform well on a variety of workloads and topologies to de-
tect malicious traffic, performance problems, and other forms of outages and
hard-to-detect failures.

Performance of these techniques improves with increasing number of vantage
(monitoring) points. In addition to providing visibility into a larger number of
inter-host paths, additional vantage points increase the likelihood that a given
malicious traffic flow is “exposed” due to different statistical mixes of traffic ap-
pearing on each observed link. For example, it has been shown that if neighboring
ISPs were to cooperate by sharing traffic measurements, anomaly detection could
be done with much higher accuracy and anomalies that cannot be detected by
each of the ISPs individually could be detected [30]. However, anomaly detec-
tion today is unfortunately constrained to operate within a single ISP network
as ISPs are highly reluctant to reveal the topology and traffic information nec-
essary for these algorithms to run since they are extremely confidential business
information.

Contributions: In our work, we leverage work in secure multiparty computa-
tion (SMC) and propose Privacy-Preserving PCA (P3CA), a mechanism which
supports cooperation among ISPs, allowing them to perform anomaly detection
jointly with other ISPs without requiring them to reveal their private information.
P3CA retains the desirable properties of PCA, including its accuracy and robust-
ness. One challenge with using SMC-based approaches is scalability, as we target
designing a system that can handle collaborations across the large workloads of
several core ISP networks (millions of flows, hundreds of routers, tens of collaborat-
ing ISPs). To address this, we develop efficient algorithms that scale linearly with
the number of observations per ISP. We also support incremental anomaly detec-
tion to speed up processing by updating the previously computed principal compo-
nents when new data is obtained. Unlike previous work on preventing information
leakage in data mining algorithms [13,23], we target algorithms in the context of
anomaly detection in large-scale networks. In addition, unlike some schemes [13],
P3CAdoes not publish the dominant principal components (i.e., their plain text val-
ues) allowing privacy of the network traffic and topology to be retained. At the end
of P3CA, each of the participating ISP finds the anomalies in its own network and
these are not revealed to the others. Our evaluation results show that P3CA (and
its incremental version) perform quite efficiently at the scale of large networks. We
note that P3CA extends PCA for multiple ISPs and thus, like PCA, can be used
only to find the anomalies in a network and not the end hosts responsible for these.
Further mechanisms (e.g., [28]) are required to perform root cause analysis and are
out of the scope of this paper.
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2 System Overview

The Internet is made up of a set of Internet Service Providers (ISPs) connected
by peering links. Each ISP is a network owned and operated by a single admin-
istrative entity (e.g., a campus/enterprise network). To discover routes across
ISPs, the Border Gateway Protocol (BGP) [3] is run across peering links. BGP
routing advertisements carry information such as the reachable destination pre-
fix and do not reveal the details of the ISP’s internals such as topology, traffic
(for e.g., set of communicating IP addresses, the load on the ISP’s links) as they
are considered highly private. Revealing such information can make an ISP sub-
ject to directed attacks along with revealing confidential information. ISPs also
have economic reasons to hide this information as it may reveal shortcomings of
their own deployments to competitors. For example, in one recently publicized
case, a tier-1 ISP published information about their internal failure patterns in
a technical paper and a second ISP re-published that information in their mar-
keting literature to convince customers to use the second ISP’s own services [4].
Therefore, to enable PCA-based anomaly detection across ISPs, we must ensure
the privacy of data regarding internal traffic information.

To address this problem, we design for the target architecture shown in Figure 1.
Each ISP runs a Secure Exchange Point (SEP) that collects information about its
traffic and coordinates with SEPs located in other collaborating ISPs to diagnose
anomalies together. To simplify deployment, the SEP runs on a separate server in-
frastructure and communicates with routers using existing protocols (SNMP and
NetFlow to learn traffic information and the IGP to learn topology information).
SEPs may be configured into arbitrary topologies following the trust relationships
between ISPs (the inter-SEP connections may traverse multiple intermediate ISPs,
if the two collaborators are not directly adjacent). ISPs often already run dedicated
infrastructures to detect anomalies and our design can be incorporated into such
existing deployments to reduce need for new infrastructure.

2.1 Threat Model

Adversarial model: In our work, we assume that adversaries are semi-honest
(also referred to as honest but curious), as defined in [14]. In this model, all

Fig. 1. P3CA system architecture
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participants correctly follow the protocol but may observe and record arbitrary
information from protocol message exchanges. We believe this model is appro-
priate for inter-ISP collaborations. ISPs enter into contracts that require them
to follow the protocol as well as perform periodic audits to verify its correct op-
eration. However, any private data that is revealed directly to another ISP (for
e.g., through accidental misconfiguration) is difficult to contain. Thus, our goal
is to limit the amount of private data that can be obtained by any ISP following
the protocol.

Privacy goals: Our aim is to develop an privacy preserving scheme where
several ISPs can jointly perform PCA on their private traffic observation datasets
and detect anomalies in their networks while revealing no further information.
In particular, there are three main sources of information about ISPs and we
aim to reduce the amount of information revealed about each of them:

1. Topology: Each ISP consists of a set of routers and links organized into a
graph. We would like to avoid revealing any information about this graph,
including its size and topology.

2. Workload: Each ISP forwards data traffic between its routers. We would like
to avoid revealing information about the set of inter-communicating hosts,
packet headers and the volume of traffic.

3. Monitoring infrastructure: Each ISP runs a monitoring infrastructure to
monitor and collect information about traffic for anomaly detection. We
would like to avoid revealing information about the structure, size and visi-
bility of this infrastructure, including the number of vantage points and their
placement within the network.

2.2 Protocol Overview

We build upon several key features of previous work [20,21] and provide P3CA, a
protocol the allows ISPs to detect anomalies in their networks by computing the
principal components of their aggregated data in a privacy preserving manner.
In our model, p ISPs collaborate to jointly perform PCA over a distributed
traffic matrix Y . Y is a t × l non-symmetric dense matrix with l = m · p, the
total number of vantage points at p ISPs, each running (up to) m vantage points
internally. Y can be represented as Y =

[
Y1|Y2| . . . |Yp

]
where each Yi (i = 1 . . . p)

is an t × m matrix supplied (i.e., owned) by ISP i and ‘|’ indicates column-
wise concatenation. Each column of matrix Yi corresponds to the traffic values
collected by ISP i from a specific vantage point and each row corresponds to
the traffic values collected over one time interval from all vantage points. The
specific mechanism by which Y is measured may be selected independently by
the participants.

Given a t×l matrix Y distributed across p ISPs as described above, we wish to
privately compute the principal components of Y . The SEPs of the collaborating
ISPs execute the following protocol to find the principal components of the
combined traffic matrix Y :
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1. All ISPs jointly select two special parties, the Coordinator and the Key-
holder. The Coordinator collects encrypted data from all ISPs and all data
is encrypted with the Keyholder’s public key using the Paillier homomorphic
encryption scheme [24] (described in Appendix A.1). The Coordinator uses
the Keyholder to perform computations on the encrypted data after blinding
it. In this way, neither the Coordinator nor the Keyholder are trusted with
the plaintext content of actual traffic data. We note that the Coordinator
and the Keyholder are unique for the entire protocol and are elected before
each execution of the protocol. To minimize the threat of a compromised
Coordinator, the computation may be repeated by multiple Coordinators,
with simple voting to resolve conflicts. Likewise, the Keyholder key may be
replaced by one generated in a distributed fashion by all the ISPs; queries
to the Keyholder could then be replaced by distributed encryption [12].

2. All ISPs execute the semi-centralized procedure P3CA (Algorithm 1) to
obtain the encrypted set of n principal components {Enc(xi)}n

i=1 of the
matrix Y . n is chosen apriori and is typically between 5-8 [20,21].

3. Each ISP i now uses these encrypted principal components to verify if its
traffic matrix Yi has any anomalies. This is done by calculating the resid-
ual traffic matrix Enc(Ri) = (I − Enc(P )Enc(P )T )Yi where Enc(P ) =
[Enc(x1)|Enc(x2)| . . . |Enc(xn)]. Enc(Ri) is blinded by multiplying with a
random rotation matrix R (an orthogonal matrix) and a random number r
similar to the procedure described in Section 3.3, decrypted with the help of
the Keyholder and unblinded by multiplying it with RT (the inverse of R)
and dividing by r. ISP i then uses statistical methods like Q-statistic [18]
over Ri to detect the anomalies in its own network.

3 The P3CA Algorithm

In this section we present the Privacy Preserving PCA (P3CA) algorithm, which
enables multiple cooperating ISPs to calculate the principal components of their
combined traffic matrix without revealing their private values to others. We start
by describing the core P3CA algorithm (Section 3.1). We then describe three sub-
routines used in P3CA (Sections 3.2–3.4). We further give extensions to P3CA
to support incremental computation by leveraging previously-computed results
to speed up processing of incoming updates to the traffic matrix (Section 3.5).

3.1 P3CA Overview

P3CA computes the principal components of the traffic matrix Y distributed
across p parties (ISPs), with each party holding one or more columns of data.
This translates to the computation of the top n eigenvectors of the corresponding
covariance matrix Y Y T such that none of the participants learn any information
about the principal components of the matrix. However, calculating the entire
covariance matrix is fairly expensive, requiring O(l2t) operations. To reduce com-
putation overhead, P3CA uses a modified version of the power method (original
method described in Appendix A.2), reducing computational costs to O(lt), and



P3CA: Private Anomaly Detection Across ISP Networks 43

reducing communication costs from O(t2) to O(t). Algorithm 3 (pseudo-code
given in Appendix) provides a centralized version of our scheme for plaintext
input.

Algorithm 1 presents P3CA, a semi-centralized privacy preserving version of
Algorithm 3 in which a set of p collaborating ISPs privately compute the top
n principal components of the t × l traffic matrix Y . For this, we introduce
secure linear algebra primitives later in this section which are used as build-
ing blocks. These include efficient privacy preserving matrix-vector multiplica-
tion: MULR and MULC (Section 3.2), privacy preserving vector normalization:
VECNORM (Section 3.3) and privacy preserving number comparison: INTCMP
(Section 3.4).

Input: P is the set of ISPs contributing data including the Coordinator but
excluding the Keyholder and |P | = p. ISP i has its traffic matrix Yi

Output: Top n-eigenpairs of Y Y T namely encrypted principal component
matrix P = (Enc(x1), Enc(x2), . . . , Enc(xn)) and corresponding
eigenvalues λ1, . . . , λn are known to all ISPs

Notation:
1. A ⇒ B : M denotes a network communication of M from party A to party B;
2. A ⇐⇒ B : r = f(·) indicates that parties A and B compute f(·) in a
multi-step protocol ending with party A holding the result r.
3. In F () [[text ]], text is the corresponding plain text equivalent of F ().
4. ⊕ and ⊗ denotes addition and multiplication on ciphertext as illustrated in
Appendix A.1
foreach Eigenpair (λq, xq) for q = 1, . . . , n to be calculated do

Coordinator: v = random vector () ; S ← t × t zeros matrix; δ ← Enc(1),
λq ← 0 ;
while INTCMP(Enc(δ),Enc(τ |λq|)) is TRUE [[While δ ≥ τ |λq|]] do

Coordinator ⇐⇒ Keyholder: Enc(v̂) = VECNORM (v) [[ v̂ = v
||v||

]];

∀i ∈ P Party i: Enc(v′
i) = MULR(Y T

i∗ ,Enc(v̂i)) [[ v′ = Y T v̂]];
∀i ∈ P Party i ⇐⇒ Coordinator:
w = MULC (Enc(Y ), [Enc(v′)1|Enc(v′)2| . . . |Enc(v′)p]) [[w = Y v′]];
Coordinator: Enc(v) = w − S ⊗ Enc(v̂) [[v = w − Sv̂]];

Coordinator ⇐⇒ Keyholder: Enc(λq) = MULC (Enc(v̂T ),Enc(v))
[[λq = v̂Y v]];
Coordinator: Enc(δ) = v − Enc(v̂λq) [[δ = v − v̂λq]];

end
Coordinator: generates a random value a;
Coordinator ⇒ Keyholder: Enc(a′) = a ⊗ Enc(λ) [[a′ = a + λ]];
Keyholder ⇒ Coordinator: a′ (decryption);
Coordinator: λq = a′ − a, Enc(xq)=Enc(v) [[xq = v]] ;

S = S + λq ∗ (v̂T v̂) [[S = S + λq(v̂
T v̂)]] ;

end

Algorithm 1. P3CA: Privacy Preserving PCA
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Handling fixed point computation and negative numbers: The inputs
in our traffic matrix Y are floating point numbers. To perform real arithmetic
over a finite field, we represent floating point numbers as fixed point numbers
by multiplying them by a fixed base. By ensuring that the modulus N is large
enough, we can obtain the necessary precision our application requires. Further,
N of the field used for encryption is chosen to prevent overflow: for a core router
with 10Gbps bandwidth (235 values) and 5 minute time bins (27 values), a 42-
bit key is sufficient. We use 1024-bit keys in our implementation because this
is necessary to achieve an acceptable security level in Paillier encryption. In
our experiments (see Section 4), we use a base of 106. Negative numbers are
represented by subtracting them from the modulus; so −x is represented as
N − x.

Security: The security of the P3CA algorithm results from the security of the
individual steps, as described in the following sections. Further, we use existing
methods to ensure that malicious inputs to P3CA do not affect the accuracy of
our method. The details of this are discussed in Appendix B.

3.2 Private Matrix-Vector Multiplication

The P3CA algorithm performs computations, iteratively, on the combined traffic
matrix Y containing different columns belonging to different ISPs. All ISPs are
collectively required to first compute the product Y Y T Enc(v) where v holds the
current estimate of a principal component of Y . Since the matrix is distributed
across multiple ISPs , we require a scheme to securely multiply a matrix with
a vector, without leaking information about the contents of either the matrix
or the vector. We implement this step in a distributed fashion, with all the
ISPs participating. Private matrix-vector computation algorithms proposed in
the past [19] are designed for a two-party model and would be computationally
inefficient due to the fact that they require the entire matrix Y to be encrypted
and assembled at the Coordinator.

In P3CA, the matrix Y is column-wise distributed among the p ISPs . Cor-
respondingly, Y T is distributed row-wise. We, thus, perform the computation
Y Y T Enc(v) in two steps; first we compute v′ = Y T v and then v = Y v′ These
steps are computed using the MULR and MULC primitives (described below)
which satisfy the following privacy goals:

Privacy goals: Given the vector Enc(v) and matrix Y , the MULR and MULC
protocols should ensure the privacy of the length (||v||) and direction of the
vector v and the length and direction of the columns of Y .

Matrix-vector multiplication with row ownership (MULR): Given the
l × t matrix Y T , we would like to calculate v′ = Y T v. Each party owns one or
more rows Y T

i∗ of Y T and has access to Enc(v). This means that each party can
locally compute a part of Enc(v′) without having to exchange the values of Y T

i,∗
with others. To compute Y T v, the ISP which owns the row Y T

i∗ of the matrix Y T
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(corresponds to owning column i on matrix Y ) computes encrypted value of the
ith element of v′ i.e. v′

i, using Enc(v′
i) = ((Enc(v1)⊗Y T

i1 )⊕. . .⊕(Enc(vt)⊗Y T
it ))

(Notation ⊕ and ⊗ given in Appendix A.1).

Matrix-vector multiplication with column ownership (MULC ): Now
the second step of computing v = Y v′ uses the result of MULR. The party
which owns the ith column of matrix Y i.e. Y∗i also has access to Enc(v′

i), the
ciphertext of the ith element of v′ from MULR. The party owning column i in Y
computes Enc(Y ′

ji) = Enc(vi)⊗Yji for j = 1 . . . t, and forwards Enc(Y ′
ji) to the

Coordinator. This step requires O(t) exponentiations and O(t) communication.
The Coordinator then computes the encrypted jth element (for j = 1 . . . t) of
the new estimate of v, i.e. Enc(vj) using Enc(vj) = Enc(Y ′

j1) ⊕ . . . ⊕ Enc(Y ′
jl)

which finally gives the ciphertext of the result of Y Y T v. This step requires O(l)
multiplications and O(t) communication.

Security: Note that each party transmits values encrypted under the Key-
holder’s public key, and no party involved in this protocol has a copy of the
secret key. The Paillier encryption scheme is known to be CPA-secure [24]; thus
these protocols reveal no information about the vector or matrix in the honest-
but-curious setting.

3.3 Private Vector Normalization

In P3CA computation, we have a vector v which is an estimate of the principal
component of the traffic matrix Y . Part of the P3CA computation involves
normalizing v, which is done to speed up the convergence of the power method
in practice. Since different parts of v contain information from different ISPs,
we need some way to normalize the vector in a privacy-preserving way. We now
describe a technique to perform this efficiently.

Given an input vector v, the normalization of v is simply another vector v̂ in
the same direction as v but of unit length (or norm). The Coordinator holds the
encryption of vector v, i.e. Enc(v) (as a result of MULC described above) to be
normalized while the Keyholder holds the corresponding decryption key. At the
end of the private vector normalization protocol VECNORM, the Coordinator
holds the encryption of the normalized vector Enc(v̂) whilst neither of them
gains any information about the input vector.

Privacy goals: Given input vector v, the VECNORM protocol ensures that
both length ||v|| of the vector and its direction are not revealed.

Vector normalization (VECNORM ): In order to secure vector normal-
ization, the Coordinator rotates the encrypted input vector Enc(v) to hide its
direction and multiplies the result with an random integer to hide the length of
the vector. It then sends this modified vector to the Keyholder who decrypts it,
normalizes it and returns the result. The Coordinator then derives the normal-
ization of the input vector, Enc(v̂), using the Keyholder’s result. The protocol
can be summarized as follows:
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1. Blinding direction: In this step, the Coordinator generates a t × t transfor-
mation matrix R that maps a given vector v to a randomly chosen vector
w on a c-dimensional sphere, Sc, of radius ||v||. Here c + 1 ≤ t is a security
parameter chosen such that the security of the scheme is the same as that of
the finite field used by the cryptosystem; i.e., |Sc| ≥ N . For i = 1 . . . (c + 1),
the Coordinator generates an orthogonal rotation matrix Ri using 3 param-
eters: (θi, pi, qi), where (pi, qi) are selected from 1, . . . , t(t − 1)/2 uniformly
at random without replacement and θi is chosen uniformly at random from
−π to π. Ri can be represented as:

Ri =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

col. pi col. qi

↓ ↓
1 . . . 0 . . . 0 . . . 0
0 . . . 0 . . . 0 . . . 0

row pi → 0 . . . cos(θi) . . . − sin(θi) . . . 0

.

.

.
. . .

.

.

.
row qi → . . . sin(θi) . . . cos(θi) . . . 0

0 . . . 0 . . . 0 . . . 0
0 . . . 0 . . . 0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The Coordinator then multiplies all the Ri’s to obtain a single transfor-
mation matrix R using R = Rc+1 ∗ Rc ∗ . . . ∗ R1. and applies the rotation
transformation R on Enc(v) to get Enc(vrot) = Enc(v) ⊗ R.

2. Blinding length: the Coordinator generates a random blinding factor r and
computes Enc(v′

rot) = Enc(vrot ) ⊗ r to blind the length ||v|| of the vector
v. Note that both blinding and rotation are required so that no information
about v is leaked.

3. The Coordinator sends Enc(v′
rot ) to the Keyholder. The Keyholder then de-

crypts Enc(v′
rot) to obtain v′

rot , computes v̂′
rot = v′

rot

||v′
rot ||

and sends Enc(v̂′
rot)

to the Coordinator.
4. The Coordinator obtains the normalization of v by applying the inverse of

the earlier transformation: Enc(v̂) = Enc(v̂′
rot) ⊗ RT to obtain the normal-

ization of v. RT is the inverse of R as it is an orthogonal matrix.

Security: The two blinding steps serve to hide the value of the original vector.
Due to the fixed-point representation of the vector values, this hiding is imper-
fect, as we select a random discretized rotation matrix, rather than a random
rotation matrix in general. We have tried to estimate how much uncertainty the
Keyholder has about the original vector, given the blinded one. In other words,
we computed the conditional entropy H(O|B), where O and B are random vari-
ables that represent the original and blinded vector, respectively. To do this, we
performed an exhaustive search of the state space, enumerating all possibilities
for random choices of rotation matrices and the blinding factor. Of course, we
were only able to do this for very small parameter sizes: 2-dimensional vectors
and 3- and 4-bit fixed-point representation. Even in this situation, we found that
there was between 4 and 5.5 bits of uncertainty, depending on the fixed-point
size (out of a total 6–8 bits). Extrapolating from this (albeit limited) data set,
we expect that for larger fixed-point sizes, it is possible to introduce 10–15 bits
of uncertainty per vector.
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This estimate is an information-theoretic upper bound on the success of a pos-
sible attack; a computationally bounded adversary would not be able to perform
such a brute-force state exploration. A successful attack would have to exploit
some algebraic structure of the integers used to represent the fixed-point num-
bers; we leave the exploration of such attacks to future work and recommend
that conservative parameters (i.e., large fixed-point bases with randomized lower
bits) be used in practice.

3.4 Private Number Comparison

P3CA uses an iterative process (the while loop in Algorithm 1) to determine each
eigenvector of Y Y T . In particular, an initial estimate vi of the eigenvector xi is
chosen, it is checked to see if δi = Y vi − λivi is within a threshold, τ times the
correct eigenvalue λi and if not the loop is repeated. Since the contents of Y and
hence δi are private, we need some way to securely compare ||δi|| and τλi without
revealing their contents. Since the L2 norm is difficult to compute for encrypted
vectors, we approximate it by using the L∞ norm. To see if ||δi||∞ is less than
τλi, the Coordinator executes the INTCMP protocol to see if |(δi)j | > τλi for
any j; if so, the power method is continued for another round.

Given encrypted real numbers Enc(a) and Enc(b), INTCMP allows the holder
of these encryptions to learn if a > b using the Keyholder. The Coordinator learns
if a > b and nothing more while the Keyholder learns nothing. The protocol can
be summarized as follows:

1. The Coordinator knows Enc(a) and Enc(b). It picks a random r1 while
ensuring that ar1, br1 < 21024.

2. The Coordinator sends Enc((a − b) ∗ r1) to the Keyholder. The Keyholder
returns “>” if the decrypted value is > 0, “≤” otherwise.

Note that to compute whether |a| > b, we must first run INTCMP to see if a < 0
and then compute a > b or (−a) > b depending on the answer. To ensure privacy
from the Keyholder, the Coordinator should randomly swap a and b during the
INTCMP protocol.
Security: As in the previous protocol, blinding does not provide perfect hiding;
in particular, if the Keyholder can estimate the maximum values for a − b, and
r1, he can learn some information when the values are in fact close to the limit.
However, we can pick r1 from a very large range (e.g., [1, 2500]), thus reducing the
chance that we will pick values close to the maximum. Note that the semi-honest
model is essential for security in this step, as otherwise the Coordinator could
decrypt an arbitrary number by performing a binary search with INTCMP [26].

3.5 Incremental Private PCA Computation

So far, the P3CA algorithm we discussed requires the entire set of inputs from
all the parties to be available before finding the principal components of the
input dataset (Y ). However in the context of ISPs jointly computing PCA, an
anomaly detection system needs to function as new traffic data arrives. To fur-
ther reduce computation overhead, we describe how to modify our approach to



48 S. Nagaraja et al.

enable the result to be incrementally updated rather than performing the entire
computation from scratch when new information arrives. This allows principal
components to be incrementally derived for a long stream of incoming network
traffic, thereby speeding up their computation.

Several techniques have been proposed in the image processing literature
to address this requirement. Our scheme for incremental private PCA compu-
tation is based on the popular and rigorously analyzed CCIPCA [32] (Can-
did Covariance-free Incremental PCA) algorithm, which provides an iterative
method for updating the principal components when new data arrives. In Algo-
rithm 2, we extend CCIPCA to privately compute the principal components of
the traffic matrix of p cooperating ISPs. Consider the traffic matrix Y for time
intervals 1, . . . , t − 1 containing rows u1, . . . , ut−1 (recall each ui is distributed
across ISPs ). Now suppose a new traffic vector ut is generated for time inter-
val t. The new eigenpair for this modified traffic matrix (with ut included) is
estimated as: xt = 1

t

∑t−1
i=1 uiu

T
i xi. The idea is to update Y with a covariance

matrix estimate using the new distributed vector ut and xi−1 is set as xi which
is the eigenvector estimate obtained using the P3CA method. Note that the
entire covariance matrix is not recalculated from scratch.

Input: Eigenpairs (λ1, x1) . . . (λn, xn)) over traffic vectors u1 . . . ut−1, and ui,t;
P be the set of collaborating ISPs

Output: Top n-eigenpairs of traffic vectors u1 . . . ut namely
(λ1, x1), . . . , (λk, xn) are known to all ISPs

foreach eigenvector required i = 1, 2, . . . , n do
foreach p ∈ P do

ui
p,t = up,t;

Party p ⇒ party q ∈ P \ p: Enc(ui
p,t);

Enc(ap) = (Enc(ui
p,t) ⊗ Enc(ui

1,t), . . . , Enc(ui
p,t) ⊗ Enc(ui

|P |,t));

Enc(bp) = (t−1−l)
t

∗ (λixi) + Enc(ap) ⊗ 1+l
n

λixi
||λixi|| ;

// except ap all other inputs are plaintext and known to all ISPs
end
Party p ⇒ party q ∈ P \ p: Enc(bp);
up,t = up,t−1 − up,t−1 ⊗ VECNORM (b)p ;
//Remove any component in the direction of the new eigenvector to ensure
orthogonality of eigenvectors

end

Algorithm 2. Incremental P3CA extensions

4 Evaluation

Our design enables ISPs to collaborate to detect anomalies. However, our design
also comes at some cost. First, it incurs additional computation overhead since it
requires encryption and multi-round exchanges between nodes. Second, the use
of fixed point operations in our design can lead to a loss of precision resulting in
the calculation of principal components that are potentially different compared
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to those calculated by PCA. To quantify the affect of these, we evaluate the
computational overhead of our design (Section 4.1) and compare the detection
probability using PCA with that using our algorithm (Section 4.2).

To measure these costs, we constructed an implementation of our design.
Our design is implemented in roughly 1000 lines of C++. We use the GMP
library for large numbers (bignums), OpenMP library for parallelization and the
libpaillier library for the Paillier cryptosystem [1]. All encryptions use a 1024-bit
key. To evaluate performance over realistic workloads, we leveraged traces from
the Abilene Internet2 IP backbone [2]. In particular, we used NetFlow traces
to determine traffic volumes between source/destination IP addresses, and used
OSPF and BGP traces to map the flows onto the underlying physical topology.

4.1 Scalability

To evaluate the computational overhead of P3CA, we measured the amount of
time it takes for our implementation to finish running on its input data set. To
characterize performance, we would ideally like to run our design on varying net-
work topology sizes. However, due to the privacy of traffic information, acquiring
traces from a number of different-sized ISPs represents a substantial challenge.
Hence, to study scalability for different network sizes, we extrapolated a traffic
model from the Abilene dataset and used that to construct synthetic traces for
larger networks. Extrapolation of traffic traces is itself a challenging research
problem and beyond the scope of this paper. We use a fairly simple extrapola-
tion procedure: we generate a random network topology, randomly select flows
contained in the Abilene data set, and map their ingress/egress to random pairs
of routers contained in the generated topology. We then take this graph and
divide it up into a set of ten constituent ISPs. We do this by picking ten random
points in the graph, and performing breadth-first search to select nearby regions
to form the ISP (repeating this process until ten connected ISPs are created).

Table 1a shows run time of a single run of our algorithm as a function of
topology size, where we vary (i) the total number of monitored links in all ISPs
(l), and (ii) the total number of time bins (each lasting 10 minutes) used for
traffic history when computing principal components (t). These experiments
were performed on an 3.07GHz Intel Core i7 processor with 6GB memory. As a
comparison, we note that large networks only monitor a subset of links (e.g.,the
tier-1 ISP network used for PCA in [21] had l = 41, as monitoring a subset of
core links is sufficient to observe most traffic in the network) and t is often set
to small values to speed reaction and adapt to recent changes. Table 1b shows
the run time for incrementally refreshing current PCA results with new traffic
observations using Algorithm 2.

We find that P3CA requires only a few minutes to run, even for relatively
large numbers of monitored links. P3CA requires only around 10 minutes to
process data for 320 minutes, making it an efficient online algorithm for anomaly
detection. Further, the advantages of using incremental P3CA are clearly evident
(as seen in Table 1b): incremental updates are processed within 6 seconds even
for large networks with a total of 320 links for a data spanning 320 minutes.
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This makes incremental P3CA as efficient as PCA on raw data. To investigate
the source of computational bottlenecks, we instrumented our code with timing
functions to collect the microbenchmarks shown in Table 2a. Our design can
be trivially parallelized across a cluster of machines or CPU cores to further
reduce overhead, as shown in Table 2b. While the Coordinator requires additional
computation, this additional work may be distributed across several machines
to accelerate computation and improve resilience.

Table 1. Performance and scalability of original and incremental P3CA with increas-
ing # of links l and # of bins t for 5 eigenpairs on 4 processors

(a) P3CA

l t Party i (secs) Coordinator (secs)

20 2 0.525 2.183
40 4 1.376 6.472
80 8 3.529 14.134

160 16 52.999 194.175
320 32 194.126 637.649

(b) Incremental
P3CA

l t time (secs)

20 2 3.56
40 4 3.72
80 8 4.03

160 16 4.66
320 32 5.91

Table 2. Microbenchmarks and evaluation of parallelization of P3CA for 5 eigenvec-
tors

(a) Microbenchmarks. The first three and
the last two rows represent two different
breakdown of operations.

Percent of time Operation

39.6% multiplying cipher and plain texts
36.6% adding cipher texts
18.2% decryption

16.5% private vector normalization
82.5% private matrix-vector multiplication

and subtractions

(b) Performance of P3CA with increas-
ing numbers of processors r for l links, t
bins

l t r Party i (secs) Coordinator (secs)

320 32 8 194.1 637.6 (10m 37s)
640 64 8 6649.6 20823.4 (5h 47m)
320 32 32 48.5 151.4 (2m 31s)
640 64 32 1662.4 5205.8 (1h 27m)
320 32 64 24.2 75.7
640 64 64 881.2 2602.9 (43m 22s)

4.2 Precision

The performance of PCA algorithms in general has been widely evaluated in
previous work. Our approach performs essentially the same computation as PCA,
but might potentially lose some precision due to the use of fixed point numbers.
We note that some implementations of PCA intentionally round to filter minor
traffic fluctuations. To evaluate how the precision of our algorithm affects the
results, we must use a more realistic topology and traffic information. We use
the real Abilene dataset and topology here (but do not investigate sensitivity to
network size), and run PCA and P3CA to detect traffic volume anomalies. To
investigate sensitivity to anomaly type, we also inject synthetic anomalies with
different characteristics. To do this, we randomly choose time bins, and insert a
constant amount of extra traffic on a randomly chosen subset of 1 to 5 links.
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Fig. 2. Comparison in precision between PCA and P3CA

We ran the experiment 100 times with different random seeds, for two different
kinds of injected anomalies: small corresponds to the case in which the volume of
the injected anomalies is twice the volume of the background traffic on the link,
and large corresponds to the case in which the anomalies have a volume which is
ten times larger than the background traffic in the link. We use the Q-statistic
test [18] for detecting abnormal variations in the traffic at a 99.9% confidence
level. Figure 2 plots the CDF of the anomaly detection percentage of PCA and
P3CA. The cumulative fraction is over the multiple runs we performed. We find
that in every run, P3CA and PCA computed nearly the same result (detected
the same set of anomalies).

5 Related Work

To our knowledge, our work is the first attempt to perform scalable privacy-
preserving traffic anomaly detection. Our work builds upon two key areas of
previous results:

Anomaly detection in ISP networks: Given the increasing severity of DoS,
scanning, and other malicious traffic, traffic anomaly detection in large networks
is gaining increased attention. Lakhina et. al. [20,21] showed that PCA has much
potential in uncovering anomalies by leveraging traffic matrices constructed us-
ing summarizations of traffic feature distributions. While there are alternatives to
PCA (for e.g., [35]), PCA-based approaches remain a state-of-the-art technique
due to its robustness to noise and high efficiency on limited data. Extensions to
PCA make it robust to attacks such as variance-injection [33], and enable PCA
to be used for other goals, such as diagnosing network disruptions [17].

Further, accuracy of anomaly detection is improved with more visibility of
traffic. If ISPs cooperated to share data, accuracy of anomaly detection could be
substantially improved. Soule et. al. [30] show that by jointly analyzing the data
of peering ISPs more anomalies were detected, especially those anomalies that
transited the two ISPs they studied. However, traditional anomaly detection
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requires sharing of detailed traffic traces, which are considered highly private
by network providers. Our work extends PCA to multiple parties, preserving
the privacy of participants’ data. By extending PCA, our approach computes
the same result as this well-proven technique, retains the desirable properties
mentioned above and enables more widespread cooperation of ISPs to counter
the increasing threat of malicious traffic.

Secure multiparty computation: Secure multiparty computation (SMC)
techniques allow a collection of participants to compute a public function F
without revealing their private inputs to F . Generic SMC techniques date back
to Yao [34] and Goldreich et. al. [15] and have been well studied in cryptography
literature [6,16]. Recent years have seen some improvements in efficiency [11,7].
However from the viewpoint of the systems designer, the generic schemes are only
of theoretical interest. For the scale of computation required for mining anomalies
in Internet traffic, privacy and security must be added with manageable costs.
Developing a practical, scalable way of computing PCA in a privacy-preserving
way is the main focus of our work.

P4P [13] presents a generic scheme for private computation of statistical func-
tions that can be represented as an iterated matrix-vector product. When used
to compute PCA, the privacy goal of P4P and several other schemes is to reveal
no more information apart from the principal components themselves. However,
given the eigenvectors and eigenvalues of a matrix it is possible to reconstruct
the matrix itself. When used by ISPs, this scheme would reveal the eigenvectors
of Y T Y but not Y Y T for traffic matrix Y . In the context of the concrete prob-
lem of anomaly detection, this does not constitute privacy preservation at all
since Y T Y can be reconstituted to a close approximation from its eigenvectors
and eigenvalues (end result of the P4P scheme section 6 of [13]). Y T Y can then
be used to infer Y (the input distributed matrix) which is supposed to be pri-
vate. This can be done as follows: suppose Yij (traffic volume) is a real number
between 1 and N . Yij is the dot product of columns Y∗i and Y∗j . When the
elements of column Y∗i and Y∗j are close to N then Y T Yij will be close to maxi-
mal. Similarly, close to minimal values in Y∗i and Y∗j leads to a close to minimal
Y T Yij . Therefore Y T Yij can be used to construct Y to a close approximation. In
contrast with P4P, our scheme presents an advancement in that we only reveal
the variance of a projected traffic data point Y∗j , namely ||PRi||2 where P the
eigenvector matrix of Y Y T itself is never revealed.

6 Conclusions

The increasingly distributed nature of malicious attacks renders their identifi-
cation and localization a difficult task. The ability to identify traffic anomalies
across multiple ISPs could be a significant step forward towards this goal. P3CA
represents an important step, by allowing a set of ISPs to collectively identify
anomalous traffic while limiting information propagation across them. P3CA
scales to large and high-bandwidth networks addressing the need for refresh-
ing current results with fresh traffic observations, yet retains the accuracy and
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precision of PCA-based approaches. We envision our work as an important step
towards enabling larger-scale cooperation across ISPs to counter the increasingly
serious threats posed by modern networked malware.
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A Appendix: Background

In this section, we describe two existing techniques we build upon in our design:
homomorphic encryption and the power method.

A.1 Homomorphic Encryption

A homomorphic cryptosystem allows operations to be performed on plaintext
by performing a corresponding operation on its ciphertext. In our scheme par-
ticipants only have access to the encrypted data of others. They can perform
computations over it without knowing its unencrypted value hence protecting
the privacy of the party supplying the data. To protect privacy, we use the Pail-
lier encryption [24] to perform computation on encrypted values. We now briefly

http://eprint.iacr.org/
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describe the operation of the Paillier cryptosystem. The original cryptosystem is
defined over scalars, but we present its natural extension to encrypted vectors.
(They can be readily extended to handle matrices).

Given a public key (N, g) produced by a key-generation algorithm, a random
number r ∈ ZN and a k-dimensional vector u = (u1, . . . , uk) ∈ Zk

N , its encryp-
tion, Enc(u), is given by: Enc(u) = (gu1rN mod N2, . . . , gukrN mod N2)

Suppose we are given two vectors u = (u1, . . . , uk) and v = (v1, . . . , vk) in Zk
N .

The Paillier encryption scheme provides us the two following properties which
we use to perform various arithmetic operations on ciphertexts in P3CA:

1. We can compute the encrypted value of the sum of u and v by multiplying
their corresponding ciphertexts: Enc(u + v) = Enc(u) ⊕ Enc(v) = (Enc(u1) ∗
Enc(v1) mod N2, . . . , Enc(uk) ∗ Enc(vk) mod N2)

2. We can compute of the encrypted value of the product u and v by multiply
the ciphertext of u i.e. Enc(u) and the plain text value of v: Enc(u ∗ v) =
Enc(u) ⊗ v = (Enc(u1)v1 mod N2, . . . , Enc(uk)vk mod N2)

A.2 The Power Method

To use principal component analysis, we are required to find the n largest prin-
cipal components of the traffic matrix Y . This translates to finding the n largest
eigenpairs of its covariance matrix COV = Y Y T . The power method [29] is one
of the appropriate candidate techniques when n is much smaller than the rank
(sum total of traffic observations) of the covariance matrix. Indeed, previous
studies [20,21] indicate that five to eight principal components capture most of
the variance within ISP traffic. Based on this, we believe that the power-method
is the most appropriate technique for PCA, which we briefly describe below. To
calculate the principal components of Y , we replace Y by COV in the following.

The power method first computes the dominant eigenvector, x1, of a matrix
Y by simply choosing a random vector v1

0 ∈ Rl and iteratively multiplying v1
0 by

powers of Y until the resulting vector converges to x1. This is ensured as long
as the starting vector v0 has a non-zero component along x1. A single iteration
is given by:

v1
j =

Y v1
j−1

||Y v1
j−1||

; j = j + 1 (1)

This process is repeated until j = s, the smallest value for which ||Y v1
j −v1

j λ1|| ≤
τ |λ1|. The corresponding eigenvalue is computed using λ1 = v1

s
T

Y v1
s

v1
s

T v1
s

.
To obtain the next largest eigenvector the power method uses a well known

deflation technique [22]. Once the ith eigenpair (xi, λi) (xi is the ith eigenvector
and λi is the ith eigenvalue) is computed, a transformation is applied on the
matrix Y to move λi to the center of the eigenspectrum. To compute the i + 1th

largest eigenvector the power method applies the following transformation on
Yi, where Yi is the matrix used for computing the ith dominant eigenvector of
Y : Yi+1 = Yi − λi

xix
T
i

xT
i xi

with Y1 = Y .
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This process is repeated until n eigenpairs have been found. The parameter
n need not be decided beforehand. Instead, n is simply specified in terms of the
smallest eigenvalue of the eigenpair we are interested in. Upon uncovering eigen-
pair (λi, xi), if λi ≤ ε, the eigenpair is discarded and the algorithm terminates.
ε can be interpreted as the accuracy required for representing column vectors of
Y as a linear combination of its eigenvectors.

Input: t × l matrix Y ; τ , the convergence parameter
Output: Top n-eigenpairs of Y Y T namely (λ1, x1), . . . , (λn, xn)
foreach Eigenpair (λq≤n, xq≤n) to be calculated do

δ ← 1; v ← random vector(); S ← t × t zeros; λq ← 0;
while δ ≥ τ |λq| do

v̂ = v
||v|| ;

v′ = Y T v̂;
w = Y v′ ;
v = w − Sv̂;

λq = v̂T v;
δ = v − v̂λq;

end
xq = v;

S = S + λq(v̂
T v̂);

end

Algorithm 3. Algorithm for computing principal components of a matrix

B Handling Malicious Inputs

PCA is an excellent example of how machine learning techniques can assist in
anomaly detection. However in its basic form it is fairly vulnerable in that a small
fraction of false inputs can significantly change the final result. To address this
problem, Croux published a series of papers [10,9] showing that PCA could be
made more robust by centering input data over the median instead of the mean.
In ANTIDOTE [27], Rubenstein et al. study the malice resistance modifications
proposed by Croux in the context of anomaly detection in AS networks. They
show that the modifications are of significant help in defending against malicious
inputs that could, for instance, enable a participant to hide the presence of a
DDoS attack.

P3CA readily supports the modifications proposed by Croux and verified by
Rubenstein et al. In particular, along with the primitives we discussed above,
we need a privacy-preserving method of computing the median over the entire
dataset and centering the data over the median. This requirement is met by
the scheme of Aggarwal et al. [5] which computes the median of a distributed
dataset among N parties in the honest-but-curious threat model. Its complexity
is O(N(log M)2) where log M is the number of bits needed to describe each
(unencrypted) scalar input.
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Abstract. Mobile users expose their location to potentially untrusted
entities by using location-based services. Based on the frequency of loca-
tion exposure in these applications, we divide them into two main types:
Continuous and Sporadic. These two location exposure types lead to dif-
ferent threats. For example, in the continuous case, the adversary can
track users over time and space, whereas in the sporadic case, his focus
is more on localizing users at certain points in time. We propose a sys-
tematic way to quantify users’ location privacy by modeling both the
location-based applications and the location-privacy preserving mech-
anisms (LPPMs), and by considering a well-defined adversary model.
This framework enables us to customize the LPPMs to the employed
location-based application, in order to provide higher location privacy
for the users. In this paper, we formalize localization attacks for the
case of sporadic location exposure, using Bayesian inference for Hidden
Markov Processes. We also quantify user location privacy with respect to
the adversaries with two different forms of background knowledge: Those
who only know the geographical distribution of users over the considered
regions, and those who also know how users move between the regions
(i.e., their mobility pattern). Using the Location-Privacy Meter tool, we
examine the effectiveness of the following techniques in increasing the
expected error of the adversary in the localization attack: Location ob-
fuscation and fake location injection mechanisms for anonymous traces.

1 Introduction

Mobile devices equipped with various positioning systems have paved the way
for the emergence of numerous interesting location-based services. Unfortunately,
this phenomenon has opened the door to many new threats to users’ privacy, as
untrusted entities (including the service providers themselves) can track users’
locations and activities over time by observing their location-based queries.

Location-based applications, in effect, expose over time some of the locations
of users to curious observers (adversaries) who might collect this information
for various monetary or malicious purposes. In most of such applications, users
share/expose their location in a sporadic manner as opposed to a continuous
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manner. Widely used location-based services (LBSs), such as local search appli-
cations for finding nearby points-of-interests or nearby friends, are good examples
of this type of applications.

To protect users’ location privacy, location-privacy preserving mechanisms
(LPPMs) can be used as a filter between the location-based applications and
the potentially adversarial observers. Many interesting LPPMs have been pro-
posed for sporadic applications. Anonymization and obfuscation of users’ loca-
tion events (e.g., LBS queries) are the most popular techniques.

However, so far there is no theoretical framework to both formalize the ef-
fectiveness of various location-privacy preserving mechanisms, and to take into
account the characteristics of the underlying location-based application. To fill
this gap, we leverage on the framework that we have proposed and used in
our previous contributions [17,18,19]. More specifically, in this paper we make
three major contributions. First, we formalize the location exposure in location-
based services, particularly their location-exposure pattern, and add it to the
framework. Second, we build upon this formalization to quantitatively evalu-
ate the effectiveness of various LPPMs, notably the fake-location injection as
a mechanism to protect location privacy of users. Third, we provide an ana-
lytical model, based on Hidden Markov Processes, for localization attacks. We
extend the Location-Privacy Meter tool [1] to support these new features. We
use the incorrectness of the adversary (i.e., his expected estimation error) [19]
in localizing users over time as the location-privacy metric. We also implement
some example location-based applications in our evaluation tool and assess the
effectiveness of various LPPMs.

It is noteworthy that we do not address the problem of quality-of-service
degradation in location-based services due to the usage of a location-privacy
preserving mechanism. This issue is orthogonal to our objective in this paper,
which is to provide methods to accurately assess the loss of location privacy.

The rest of the paper is organized as follows. In Section 2, we describe our
framework. In Section 3, we detail the localization attack, based on Bayesian
analysis. In Section 4, we evaluate the approach on a concrete example. We
provide the related work in Section 5, and conclude the paper in Section 6.

2 Framework

2.1 Mobile Users

We consider U = {u1, u2, . . . , uN} a set of N mobile users who move within an
area that is partitioned into M distinct regions (locations) R = {r1, r2, . . . , rM}.
Time is considered to be discrete, and the set of time instants when the location
of users may be observed is T = {1, . . . , T}. The precision at which we want to
represent the user mobility determines the granularity of the space and time. For
example, regions can be of a city/block size, and two successive time instants can
be a day/hour apart, if the mobility is supposed to have a low/high precision.
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The spatiotemporal position of users is modeled through events and traces. An
event is defined as a triplet 〈u, r, t〉, where u ∈ U , r ∈ R, t ∈ T . A trace of user
u is a T -size vector of events au = (au(1), au(2), . . . , au(T )). The set of all traces
that may belong to user u is denoted by Au. Notice that, of all the traces in Au,
exactly one is the true trace that user u created in the time period of interest
(t = 1 . . . T ); the true trace, denoted by au, is called the actual trace of user u, and
its events are called the actual events of user u. The set of all possible traces of all
users is denoted by A = Au1 ×Au2 × . . .×AuN ; the member of A that is actually
created by the N users is denoted by a and it is equal to (au1 , au2 , . . . , auN ). The
vector of actual traces a is in fact a sample from the random variable A that is
distributed according to p(·) = Pr{A = ·}. The distribution p reflects the joint
mobility pattern of the users. We refer to each marginal distribution pu as the
mobility profile of user u, that is au ∼ pu(·) = Pr{Au = ·}.

In this paper, we assume that the users’ profiles are independent of each other,
i.e., p(·) =

∏
u pu(·). In other words, the location of a user is independent of oth-

ers, given the user’s profile (i.e., there is a conditional independence between the
users’ locations). As users tend to have different mobility patterns at different
time periods (e.g., morning vs. afternoon, or weekday vs. weekend), we assume
the users’ profiles to be time-period dependent. The set of time instants in T is
partitioned by the time periods. Notice that the independence of user profiles
means that we are ignoring social correlations among users, e.g., we ignore in-
formation about friendships among users; this is outside the scope of this paper.
However, because of the time dependence, we do take into account indirect cor-
relation among the users’ locations, for instance traffic jams in the morning and
in the evening.

Further, we assume that the mobility of a user is modeled as a Markov chain
on the set of regions. So, for user u, the distribution pu of actual traces can
be computed using the transition matrix of its Markov chain. Each state of the
Markov chain represents a region and a time period. We use pτ

u(r, s) to indicate
the probability of a transition from region r to s by user u in time period τ .
We also use πτ

u(r) to indicate the probability that user u is in region r in time
period τ , according to the stationary probability distribution of pτ

u.
Thus, we illustrate the mobility profile of users using a first-order Markov

chain model which is dependent on time (periods). It is worth noting that the
Markov chain model can be turned into a more powerful (yet more complex)
model depending on how the states of the chain are defined. If states represent
complex previous location behaviors (past n location, or locations in past day),
then the model can become arbitrarily accurate.

2.2 Location-Based Applications

We differentiate among the location-based applications according to the fre-
quency at which the users’ locations are exposed. On one end of the spectrum,
users’ locations are continuously exposed through the application, whereas on
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the other end, there are applications using which users expose their location in a
rather sporadic manner. In a nutshell, an application is considered to be sporadic
if the exposed locations from the users are sparsely distributed over time, and
it is considered continuous otherwise.

In this paper, we focus on the sporadic case (for some examples of the continu-
ous case see [9,11] ). Examples for this type of systems are (i) location-based ser-
vices where users make location-stamped queries concerning their nearby points
of interest in order to receive contextual information, and (ii) location-sharing
applications by which users can share their location with their friends, or with
people-centric sensing servers, e.g., when they report about a social event.

Let xu ∈ {0, 1}T be a vector that shows which actual events of user u are
exposed through the application. In effect, xu acts as a bit-mask, for example,
if xu(t) = 1, then au(t) is exposed.

We define a location-based application as a function that maps actual traces
a ∈ A to a random variable X that takes values in the set X = {0, 1}N×T .
The corresponding probability distribution function Pr {X = x|A = a, p} can
be computed as follows, considering that mobile users usually make use of the
location-based applications independently at each time instant:

Pr{X = x|A = a, p} =
∏
u

∏
t

Pr {Xu(t) = xu(t)|Au(t) = au(t), p} (1)

where p is the set of all users’ actual mobility profiles.

2.3 Location-Privacy Preserving Mechanisms

The service provider, or any other entity that can access to the users’ locations
through some location-based applications, is considered as the adversary (or the
observer) in this paper. Such an entity can indeed de-anonymize the users’ traces
and eventually localize users over time by relying on its background knowledge
about users (e.g., their home/work address, their mobility patterns). We denote
the background knowledge of the adversary about users by K.

In order to thwart such threats, the users distort their exposed locations be-
fore an untrusted entity can see them. Location-privacy preserving mechanisms
(LPPMs) are put in place to perform this distortion. LPPMs can be implemented
both in a centralized architecture, by means of a trusted third party, and in a
distributed architecture, i.e., an independent installation on each of the mobile
devices. We abstract away these details and provide a generic model: the LPPMs
act on the set of exposed traces and produce a set of traces that are observed
by the untrusted entities. The LPPM is assumed to modify the set of exposed
events using anonymization and obfuscation techniques. We now describe each
of these in turn.

In the anonymization process, the username part of each trace is replaced
by a user pseudonym in the set U ′ = {1, ..., N}. The anonymization mecha-
nism that we consider is the random permutation. That is, a permutation of the
users is chosen uniformly at random among all N ! permutations and each user’s
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pseudonym is her position in the permutation. More formally, the anonymiza-
tion mechanism selects, independent of everything else, a permutation σ accord-
ing to the probability distribution function Pr {Σ = σ} = 1

N ! , and each user’s
pseudonym is σ(u) ∈ U ′.

Notice that the pseudonym of a user remains the same for the whole time
period t = 1, . . . , T . The larger the value of T , the easier it is, in general, for the
adversary to de-anonymize the users. In this paper, we do not study changing
pseudonyms. However, we do study the effect of T on the privacy, and in partic-
ular the anonymity, of users (Section 4). Knowing the relation between T and
user privacy is useful for deciding when to change a pseudonym, for example,
when user privacy drops below a certain threshold.

In the obfuscation process, three event/trace transformations can happen:

– The location part of each exposed event can be replaced by a location
pseudonym in the set R′ = P(R) = {r′1, ..., r′2M }. Each location pseudonym
corresponds to a subset of regions in R. Notice that each region can be ob-
fuscated to a different location pseudonym each time it is encountered in a
trace, whereas each user is always anonymized to the same user pseudonym.1

– Fake location-pseudonyms can be injected at times that the user does not
expose anything (it is equivalent to say that the LPPM selects a fake location
and then obfuscates it).

– Some of the exposed events can be removed (become hidden).

The LPPM, as the combination of the two processes, probabilistically maps
exposed traces (a, x) ∈ A×X to obfuscated and anonymized traces. The output is
a random variable O that takes values in the set O, which is the set of all possible
obfuscated and anonymized traces of all users. Such a trace is composed of T
events of the form ou′(t) = 〈u′, r′, t〉, where u′ ∈ U ′, r′ ∈ R′, for t = {1, 2, · · · , T }.
A complete trace is denoted by ou′ .

In this paper, we study the case where each exposed event of a user is obfus-
cated independently of other events which belong to that user or other users.
The mobility profiles of all users are used by the LPPM in the process of obfus-
cating users’ locations. This knowledge of the users’ profiles enables us to design
strong LPPMs against the adversary who also relies on this type of information.
The probability of a given output o is then computed as follows:

Pr{O = o|X = x, A = a, p} =

=
∑

σ

∏
u′

∏
t

Pr {Ou′(t) = ou′(t)|Σ = σ, X = x, A = a, p}︸ ︷︷ ︸
Obfuscation mechanism

· Pr {Σ = σ|X = x, A = a, p}︸ ︷︷ ︸
Anonymization mechanism

(2)

Notice that, in general, employing an LPPM reduces the quality of the in-
formation provided to the location-based service. Consequently, the quality of
1 In this paper, we do not consider the obfuscation of the events’ time-stamps, and

leave it for future work.



62 R. Shokri et al.

service that the user receives is also reduced. Therefore, there exists a tradeoff
between the effectiveness of the LPPM and the quality of service for the user.
Addressing this tradeoff is beyond the scope of this paper. Our objective is to
evaluate the privacy that a given LPPM provides to the users.

2.4 Attacker

The adversary observes o, and by relying on his background knowledge K, tries
to infer the actual location of users. The adversary is assumed to be aware of
the type and the characteristics of the location-based application, and also the
location-privacy preserving mechanism. In order to infer the location of users,
the adversary has to reverse the two mechanisms. The adversary’s ultimate goal
is then formally defined as calculating the following probability distribution func-
tion:

ho(â) = Pr {A = â|O = o,K} (3)

2.5 Location-Privacy Metric

We quantify the location privacy of users as the error of the adversary in es-
timating the actual location of users. The metric is justified in [19], and its
superiority to other metrics, such as k-anonymity and entropy, is shown quali-
tatively and quantitatively. According to the expected-estimation-error metric,
the users’ location privacy is computed as follows:

LP =
∑
â∈A

ho(â)Δ(a, â) (4)

where Δ(a, â) is a distortion function that determines the distance between ac-
tual traces a and hypothesized traces â. In this paper, we use the following
distortion function:

Δ(a, â) =
1

N · T
∑

u

∑
t

1au(t) 
=âu(t) (5)

which makes LP the average probability of error of the adversary in estimating
the actual location of users over time. Note that, the location privacy of each
user can be computed separately in the same way.

3 Localization Attack

We define the goal of the adversary to be the localization of users over time:
That is, for a given user at a given time instant, the adversary computes the
probability distribution over regions where the user might be at that specific time
instant, considering the observed traces. More formally, the adversary computes
Pr {Au(t) = 〈u, t, r〉|o,K} for user u at time instant t for all regions r ∈ R. We
call this the localization attack.
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As an aside, more general objectives can be imagined for the attacker. The
most general one is to recover all traces of all users, i.e., to compute the proba-
bility Pr {A = ·|O = o,K} as in (3).

Monte Carlo methods can be used to compute any desired probability in our
framework. At its base, a Monte Carlo method uses repeated sampling from an
appropriate distribution to estimate the desired probability. In our case, sam-
pling from the distribution that is appropriate for the most general objective,
Pr {A = ·|O = o,K}, is computationally inefficient for large user populations
and long time intervals. Even for the localization attack, the space from which
the Monte Carlo method needs to sample includes all the N ! permutations of
user-pseudonym assignments. Therefore, we choose a different method, which
can be applied more generally.

We split the localization attack into two parts: de-anonymization, and de-
obfuscation. In the first step, we find the most likely assignments between users
and pseudonyms. Formally, we compute

σ∗ = arg maxσ Pr {Σ = σ|o,K}︸ ︷︷ ︸
de-anonymization

. (6)

Then, given this assignment, we compute the probability distribution of the
given user’s location at the given time instant.

Pr {Au(t) = 〈u, t, r〉|o,K} ≈ Pr {Au(t) = 〈u, t, r〉|Σ = σ∗, o,K}︸ ︷︷ ︸
de-obfuscation

(7)

We use Bayesian inference in order to perform both the de-anonymization and
the de-obfuscation. Both steps have polynomial-time complexity (in N and T ),
so they are computationally efficient even for large problem sizes.

Notice that this computation is an approximation of the a-posteriori prob-
ability Pr{Au(t) = 〈u, t, r〉|o,K}, which can be written as a weighted sum as
follows (we omit, but still imply the existence of, K):

Pr {Au(t) = 〈u, t, r〉|o} =
∑

σ

Pr {Au(t) = 〈u, t, r〉, σ|o}

=
∑

σ

Pr {Au(t) = 〈u, t, r〉|σ, o}Pr {σ|o} (8)

In effect, our approximation replaces the weighted sum with the probability
Pr {Au(t) = 〈u, t, r〉|σ∗, o}. We call this the zeroth-order approximation.

Our approximation can be made arbitrarily precise, at the cost of extra com-
putations, in the following way. The basic idea is to separate the permutations,
over which the summation is done, into N groups according to the pseudonym
that they assign to user u (group 1 assigns pseudonym u′

1 to user u, group 2
assigns pseudonym u′

2, etc.). Without loss of generality, we assume that u is u1.
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Pr {Au(t) = 〈u, t, r〉|o} =
∑

σ

Pr{Au(t) = 〈u, t, r〉, σ|o} =

=
∑

u′
1∈U ′

∑
σ:σ(u1)=u′

1

Pr {Au(t) = 〈u, t, r〉, σ|o}

=
∑

u′
1∈U ′

∑
σ:σ(u1)=u′

1

Pr
{
Au(t) = 〈u, t, r〉|σ(u1) = u′

1, ou′
1

}
Pr {σ|o}

=
∑

u′
1∈U ′

⎛⎝Pr
{
Au(t) = 〈u, t, r〉|σ(u1) = u′

1, ou′
1

} ∑
σ:σ(u1)=u′

1

Pr {σ|o}

⎞⎠ (9)

It is computationally infeasible to compute the second sum explicitly. So,
we can do the first-order approximation: we replace the sum with the maxi-
mum of the quantity Pr {Σ = σ|o} over all indicated permutations σ : σ(u1) =
u′

1. That is, for each u′
1 ∈ U ′ we compute the maximum Pr {Σ = σ|o}

over all permutations that assign the pseudonym u′
1 to user u1. Then,

in the first sum, we use this maximum as the weight for the probability
Pr

{
Au(t) = 〈u, t, r〉|σ(u1) = u′

1, ou′
1

}
. Finding the maximum is a Maximum As-

signment Problem, which is solvable in polynomial time; we need to find N such
maxima, one for each value of u′

1 ∈ U ′. Therefore, the whole computation is still
polynomial, although longer than our original approximation.

However, the successive approximation need not stop at the first order. Instead
of computing the maximum Pr {Σ = σ|o} over all permutations that assign the
pseudonym u′

1 to user u1, we can expand the second sum as follows:∑
σ:σ(u1)=u′

1

Pr {Σ = σ|o} =
∑

u′
2∈U ′\{u′

1}

∑
σ:σ(u1)=u′

1,

σ(u2)=u′
2

Pr {Σ = σ|o} (10)

Now, as before, we can approximate the second sum by a maximum over the
indicated permutations, and use the computed maxima (one for each value of u′

2)
as weights to compute the weighted sum. Alternatively, we can keep improving
the approximation by considering user u3, and so on. If we do this for all users,
then we will have computed the exact value of Pr {Σ = σ|o}. In this paper, we
stay at the zeroth-order approximation, as it is shown in (6) and (7).

De-anonymization: In order to obtain the σ∗ of (6), we need to maximize the
probability

Pr {Σ = σ|o,K} = Pr{o|Σ = σ,K} ·
Pr{Σ = σ|K} ≡ 1

N !

Pr {o|K}︸ ︷︷ ︸
constant

,

where Pr {o|Σ = σ,K} =
∏
u′

Pr {ou′ |Σ = σ,K} . (11)
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Thus, σ∗ = arg maxσ Pr {Σ = σ|o,K} = arg maxσ

∏
u′ Pr {ou′ |Σ = σ,K}.

Notice that, given the assignment of a user u to the pseudonym u′, the probabil-
ity Pr {ou′ |Σ = σ,K} is independent of all other user-pseudonym assignments.
So, to find the most likely assignment σ∗, we first compute Pr {ou′ |σ(u) = u′,K}
for all pairs of u ∈ U and u′ ∈ U ′. Then, we construct a complete weighted
bipartite graph whose disjoint sets of vertices are U and U ′ and the weight on
the edge between given vertices u and u′ is the likelihood Pr {ou′ |σ(u) = u′,K}.
In order to obtain σ∗, we then solve the maximum weight assignment problem
for this graph (see also [21]). In our simulation, we use the Hungarian algorithm
in order to solve this problem, which is a special case of a linear program.

De-obfuscation: Given the most likely user-pseudonym assignment σ∗, we
perform the de-obfuscation (7) as follows:

Pr {Au(t) = 〈u, t, r〉|Σ = σ∗, o,K} =
= Pr {Au(t) = 〈u, t, r〉|ou′ , σ∗(u) = u′,K}

=
Pr {Au(t) = 〈u, t, r〉, ou′ |σ∗(u) = u′,K}∑

s∈R Pr{Au(t) = 〈u, t, s〉, ou′ |σ∗(u) = u′,K} (12)

The distribution over all regions r is obtained by computing the probability
Pr {Au(t) = 〈u, t, r〉, ou′ |σ∗(u) = u′,K} for all r ∈ R.

Adversary Knowledge: The de-anonymization and the de-obfuscation pro-
cesses have been reduced, as seen in (11) and (12), to the computation of the
probabilities Pr{ou′ |σ(u) = u′,K} and Pr {Au(t) = 〈u, t, r〉, ou′ |σ∗(u) = u′,K}.

These probabilities should be computed appropriately according to the back-
ground knowledge K that we consider for the adversary. In the next subsections,
we compute these probabilities for two adversaries with different background
knowledge:

– Adversary (I) whose knowledge of users’ mobility is their geographical dis-
tribution over the regions, i.e., K ≡ π̂.

– Adversary (II) who is a stronger adversary and knows the users’ probability
of transition between the regions, i.e., K ≡ p̂.

We construct π̂ and p̂ from the users’ actual traces. The element π̂u(r) of π̂ is
calculated as the fraction of time instants when user u is in region r. The element
p̂u(ri, rj) of p̂ is calculated as the fraction of transitions of user u to rj over all
time instants when u is in region ri.

We perform analytic probability calculations, where we also use the condi-
tional independence of observed events, given the actual events. In effect, we
decompose the desired probability into basic parts that can be computed from
known functions. As these calculations are made by the adversary in performing
the attack, the basic parts need to be computable from functions known to the
adversary.
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3.1 Adversary (I)

De-anonymization

Pr {ou′ |σ(u) = u′, π̂} =

=
∏

t

⎛⎝∑
r∈R

∑
x∈{0,1}

Pr {ou′ (t)|Xu(t) = x, Au(t) = 〈u, t, r〉, σ(u) = u′, π̂}︸ ︷︷ ︸
LPPM - Obfuscation mechanism

· Pr{Xu(t) = x|Au(t) = 〈u, t, r〉, π̂}︸ ︷︷ ︸
Application

· Pr{Au(t) = 〈u, t, r〉|π̂} ≡ π̂τ
u(r), t ∈ τ︸ ︷︷ ︸

Background Knowledge of the Adversary

⎞⎟⎠ (13)

De-obfuscation

Pr {Au(t) = 〈u, t, r〉, ou′ (t)|σ∗(u) = u′, π̂} =

= Pr {ou′ (t)|Au(t) = 〈u, t, r〉, σ∗(u) = u′, π̂}
· Pr {Au(t) = 〈u, t, r〉|π̂}

=

⎛⎝ ∑
x∈{0,1}

Pr {ou′(t)|Xu(t) = x, Au(t) = 〈u, t, r〉, σ∗(u) = u′, π̂}︸ ︷︷ ︸
LPPM - Obfuscation mechanism

· Pr {Xu(t) = x|Au(t) = 〈u, t, r〉, π̂}︸ ︷︷ ︸
Application

⎞⎟⎠
· Pr {Au(t) = 〈u, t, r〉|π̂} ≡ π̂τ

u(r), t ∈ τ︸ ︷︷ ︸
Background Knowledge of the Adversary

(14)

3.2 Adversary (II)

In this case, the calculations can be simplified if we use two helper functions
α and β, as defined below. In effect, the problem that the attacker faces is
equivalent to estimating the hidden state of a Hidden Markov Process. In the
context of Hidden Markov Processes, the functions α and β are the forward-
backward variables [16].
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αu,u′
t (r) ≡ Pr {Au(t) = 〈u, t, r〉, ou′ (1), · · · , ou′(t)|σ(u) = u′, p̂} (15)

βu,u′
t (r) ≡ Pr {ou′(t + 1), · · · , ou′(T )|Au(t) = 〈u, t, r〉, σ(u) = u′, p̂} (16)

In Appendix B, we show how to calculate these two functions in our case.
Having calculated them for all t ∈ T and r ∈ R, we can use them to compute
the probabilities of interest.

De-anonymization

Pr {ou′ |σ(u) = u′, p̂} =
∑
r∈R

αu,u′
T (r) (17)

De-obfuscation

Pr {Au(t) = 〈u, t, r〉, ou′ |σ∗(u) = u′, p̂} = αu,u′
t (r) · βu,u′

t (r) (18)

where we compute α and β given σ∗.

4 Evaluation

In this section, we present the effectiveness of some location-privacy preserving
mechanisms in protecting users’ location privacy while they expose their location
through some location-based applications. We evaluate the location privacy of
users with respect to the two adversary types we introduced in the previous
sections. We have extended the Location-Privacy Meter tool [19] by adding the
location-based applications, implementing new LPPMs, and new localization
attacks for sporadic applications, as described in the paper.

4.1 Simulation Setting

The location traces that we use in our simulation belong to N = 20 randomly
chosen mobile users (vehicles) from the epfl/mobility dataset at CRAWDAD
[15]. The area within which users move (the San Francisco bay area) is divided
into M = 40 regions forming a 5 × 8 grid.

We evaluate various LPPMs that operate on top of two kinds of applications.
The first type of application is the once-in-a-while application, which also serves
as a baseline for comparison. In this type of application, events are exposed
independently at random with the same probability θ. That is,

Pr {Xu(t) = 1|Au(t) = 〈u, t, r〉} = Pr {Xu(t) = 1} = θ. (19)

The second type of application is the local search application. In this applica-
tion, users make queries, thus exposing their location, when they find themselves
in unfamiliar places (which are the places that the user does not visit often, and
hence needs more information about). We model this application as exposing
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the events of user u at location r independently at random with probability that
is a decreasing function of πu(r). In particular,

Pr {Xu(t) = 1|Au(t) = 〈u, t, r〉, π} = θ(1 − πu(r)). (20)

where θ here determines the upper-bound on the probability of location exposure.
We refer to the application simply by using its parameter θ, and its type

(o: once-in-a-while application, and s: local search). For example a local search
application with exposure rate 0.1 is denoted by APP(0.1, s).

For our considered LPPMs, we have to define two modes of behavior, accord-
ing to whether the application exposes or hides the location. When the appli-
cation exposes the user’s location, the LPPM obfuscates it by removing some
low-order bits/digits of the location-stamp of the event. We refer to the number
of removed bits as the obfuscation level ρ of the LPPM. When the application
hides the location, the LPPM chooses, with some probability φ, to create a fake
location and then obfuscates it (as it does for the actual locations). We consider
two ways in which the LPPM can create a fake location: The first way is to
create a fake location uniformly at random among all locations r ∈ R, and the
second way is to create it according to the aggregate user geographical distribu-
tion π̄ = 1

N

∑
u∈U πu (i.e., the average mobility profile). We refer to an LPPM

using its parameters φ and ρ, and its type (u: uniform selection, g: selection
according to the average mobility profile). For example LPPM(0.3, 2, u) injects
a fake location (uniformly selected at random) with probability 0.3 if there is
no location exposure, and obfuscated the (both fake and actual) locations by
dropping their 2 low-order bits.

The metric that we use to evaluate the LPPMs is the expected error, as
described in Section 2.5. We evaluate the effect of the application and LPPM
parameters that we listed above (obfuscation level, probability φ of injecting a
fake location) as well as the effect of the different application types and of the
different ways of creating fake locations.

We are also interested in the effect of the pseudonym lifetime on the privacy
of users. In our model, we consider that all users keep their pseudonyms from
time 1 to T . By attacking at time T , we can compare the privacy achieved by
users for various values of T .

4.2 Simulation Results

We run the simulator for all combinations of the following parameters:
APP(0.1, {o, s}), LPPM({0, 0.3, 0.6}, {0, 2, 4}, {u, g}), and pseudonym lifetimes
{31, 71, 141, 281}. We then perform the de-anonymization and localization at-
tacks (for both (I) weak, and (II) strong adversaries) that are described in the
previous section. The results are averaged over 20 simulation runs. Hereafter,
we present some of the results that we obtain regarding the anonymity and
location-privacy of users.

In Figure 1, we plot user anonymity as a function of pseudonym lifetime.
The anonymity is quantified as the percentage of users that are incorrectly de-
anonymized by the attacker. Notice that we do not yet plot the location privacy
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Fig. 1. User anonymity versus pseudonym lifetime in location-based application
APP(0.1, o). The anonymity is quantified as the percentage of users that are incor-
rectly de-anonymized by the attacker. In the top two sub-figures, we consider the weak
adversary (I), whereas in the bottom two, we consider the strong one (II). The left
column considers the uniform (u) LPPM type, whereas the right column considers
the LPPM type g. Each line in a sub-figure corresponds to different combinations of
obfuscation levels {0, 2} and fake-location injection rates {0, 0.3, 0.6}.

of users, just their anonymity as defined. Each of the four sub-figures corresponds
to each of the four combinations of adversary type (I-weak, II-strong) and LPPM
type (u, g). Each line in a sub-figure corresponds to different combinations of
obfuscation level and probability of injecting a fake location.

We observe that the anonymity decreases as the pseudonym lifetime (the size
of the observation period) increases. The same trend is seen in all four sub-
figures, for all combination parameters. By comparing the results that are ob-
tained from different LPPMs, we observe the following interesting phenomenon,
regarding the effect of stronger LPPM parameters, in particular when both the
obfuscation level and the fake injection probability are non-zero: By jointly in-
creasing the protection level of the two mechanisms, not only the absolute value
of anonymity gets higher, but also the robustness to longer pseudonym lifetimes
becomes better. That is, the level of anonymity drops with a slower rate as
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Fig. 2. Users’ location privacy in location-based application APP(0.1, s), using various
LPPMs, with respect to localization attack performed by two adversaries (I-weak: left
column, and II-strong: right column). The x-axis shows the fake-location injection rate
φ. The sub-figures corresponds to LPPM with obfuscation level 4 (for the top two), and
0 (for the bottom two). Each box-and-whisker diagram (boxplot) shows all location-
privacy values (hence, system-level), where the bottom and top of a box show the 25th

and 75th percentiles, and the central mark shows the median. The ends of the whiskers
represent the most extreme data points not considered as outliers, and the outliers are
plotted individually.

the pseudonym lifetime increases. This shows the relation between the effects
of obfuscation and anonymization techniques. The LPPM designer can choose
appropriately the parameters to achieve a desired level of anonymity; or alter-
natively, the pseudonym should be changed when the desired level of anonymity
is no longer achieved.

In Figure 2, we show the location privacy of users who (i) sporadically expose
their location with exposure rate 0.1 in a local search application, and (ii) use
LPPM that adds fake locations to their observed trace according to the aggregate
user geographical distribution. As it is expected, the users’ location privacy
increases when the level of location-obfuscation or fake-location injection in-
creases. However, the main finding of our result is that, in sporadic applications,
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the fake-location injection can dominate the obfuscation method, in preserving
users’ location-privacy, when the injection rate is higher. Moreover, adding fake
location has a high impact on misleading the stronger adversary, as it reduces
his success down to that of weaker adversary (compare the location-privacy
improvement obtained by injecting fake-locations with rate 0.3 in the bottom
sub-figures).

5 Related Work

The work related to our paper is threefold: (i) The papers that evaluate the
risk of exposing locations through location-based services (which are mainly
sporadic), (ii) The papers that aim at protecting users’ location privacy for
sporadic applications, and (iii) The papers that provide a framework for location
privacy and describe possible threats and protections mechanisms as well as the
location-privacy metrics.

The risk of location disclosure in mobile networks is evaluated in multiple pa-
pers. The authors use different attacks to de-anonymize the users’ exposed traces
(which are exposed in a sporadic manner). Ma et al. [14] make use of maximum
likelihood estimation to identify the users from which the adversary has obtained
some noisy past traces. Freudiger et al. [5] assume the adversary has access to the
users’ home and work addresses and performs the de-anonymization attack on
the observed traces using some clustering algorithms. Similar de-anonymization
of mobile users through identifying their home and work addresses have been
performed by various researchers. Golle and Partridge [7], Beresford and Sta-
jano [2], Hoh et al. [10], and Krumm [12] use different techniques to show that
users can be identified by inferring where they spend most of their time (notably
their home and workplace). De Mulder et al. [3] also present some statistical in-
ference attacks on users’ traces in GSM cellular networks. The authors show how
easily the adversary can identify users if he has access to their location pattern
(i.e., how they are distributed throughout the cells) in such setting. Compared
to this set of contributions, in this paper we take two more major steps: We
not only formalize the location-based application, but also the protection mech-
anisms that can be used to preserve users’ location-privacy. Moreover, besides
the de-anonymization, we evaluate the success of the adversary in finding the
location of users over time. We provide a systematic formal framework that can
be used to model the combination of a variety of LBSs and LPPMs.

Protecting location privacy of users in location-based services has received a
tremendous attention from researchers in different disciplines such as database,
and ubiquitous computing. A majority of the protection mechanisms revolve
around combination of anonymization and location obfuscation. Duckham and
Kulik [4] propose a formal model for location obfuscation techniques such as
adding inaccuracy, imprecision, and vagueness. Krumm [12] shows that the
effects of spatial cloaking algorithms and adding Gaussian noise, or discretizing
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the location (i.e., reducing granularity) can degrade the identification success of
the adversary. Gruteser and Grunwald [8] propose spatial and temporal cloak-
ing methods to increase the adversary’s uncertainty in identifying the users.
The privacy of users is quantified according to k-anonymity. Gedik et al. [6]
propose an architecture and some algorithms to protect location privacy using
personalized k-anonymity. A majority of the location-obfuscation techniques re-
volve around k-anonymity. The interested reader is referred to [20] for a more
in depth overview of k-anonymity-based obfuscation techniques, and also to [19]
for a quantitative analysis of k-anonymity metric for location privacy. As it is
shown in [19,20] these interesting approaches still lack an appropriate evaluation
mechanism and metric that we provide in this paper. In addition to the obfus-
cation techniques, we also formalize and evaluate fake-location injection (adding
dummy events) as another powerful method.

Krumm [13] provides a literature survey of computational location privacy.
Shokri et al. [17] also provide a unified framework for location privacy, which
is extended and more formalized in [19]. We have built up our system model
on top of these frameworks by extending them in such a way that location-
based services and new LPPMs can be defined and analyzed with respect to the
localization attack.

6 Conclusion

We propose, to the best of our knowledge, the first formal framework for quanti-
fying location privacy in the case where users expose their location sporadically.
We formalize sporadic location-based applications. Using this formalization, we
model various location-privacy preserving mechanisms, such as location obfus-
cation and fake-location injection. Formalizing both location-based applications
and location-privacy preserving mechanisms in the same framework enables us
to design more effective protection mechanisms that are appropriately tailored to
each location-based service. We also establish an analytical framework, based on
Bayesian inference in Hidden Markov Processes, to perform localization attacks
on anonymized traces (for adversaries with different background knowledge).
The results obtained from the simulations of the attacks on mobility traces un-
veil the potential of various mechanisms, such as the location obfuscation, the
fake-location injection, and anonymization, in preserving location-privacy of mo-
bile users.
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A Notations

Throughout the paper, we use bold capital letters to denote random variables,
lower case letters to denote realizations of random variables, and script letters
to denote sets within which the random variables take values. For example, a
random variable X takes values x in X .

Table 1. Notations

U set of mobile users
R set of regions that partition the whole area
T time period under consideration

A set of all possible actual traces
X set of all possible exposed-locations bit-masks
O set of all observable traces

U ′ set of user pseudonyms
R′ set of location pseudonyms (it is equivalent to P(R))

N number of users
M number of regions
T number of considered time instants (length of T )

au actual trace of user u
xu exposed trace-bit-mask of user u
ou′ observed trace of a user with pseudonym u′ ∈ U ′

Δ(., .) distortion (distance) function

pu actual mobility profile of user u
p̂u profile of user u estimated by the adversary

πu geographical distribution of user u’s location
π̂u estimation of πu by the adversary

K background knowledge of the adversary about users

APP (θ, type) LBS application with location exposure rate θ, and types:
o (once-in-a-while), and s (local search).

LPPM(φ, ρ, type) LPPM with fake-location injection rate φ, obfuscation level ρ,
and types: u (uniform selection of fake locations), and g
(selecting the fake location from the aggregated geographical
distribution of users).
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B Computing α and β

The computations of α (15) and β (16) are done recursively as follows.

αu,u′
1 (r) = Pr {Au(1) = 〈u, 1, r〉, ou′(1)|σ(u) = u′, p̂} =

=
∑

x∈{0,1}
Pr{ou′(1)|Au(1) = 〈u, 1, r〉, Xu(1) = x, σ(u) = u′, p̂}︸ ︷︷ ︸

LPPM - Obfuscation mechanism

· Pr {Xu(1) = x|Au(1) = 〈u, 1, r〉, p̂}︸ ︷︷ ︸
Application

· Pr {Au(1) = 〈u, 1, r〉|p̂} ≡ π̂τ
u(r), t ∈ τ︸ ︷︷ ︸

Background Knowledge of the Adversary

(21)

αu,u′
t+1 (r) = Pr {Au(t + 1) = 〈u, t + 1, r〉, ou′(1), · · · , ou′(t + 1)|σ(u) = u′, p̂} =

=
∑

x∈{0,1}
Pr{ou′(t + 1)|Xu(t + 1) = x, Au(t + 1) = 〈u, t + 1, r〉, σ(u) = u′, p̂}︸ ︷︷ ︸

LPPM - Obfuscation mechanism

· Pr {Xu(t + 1) = x|Au(t + 1) = 〈u, t + 1, r〉, p̂}︸ ︷︷ ︸
Application

·
∑
s∈R

Pr {Au(t + 1) = 〈u, t + 1, r〉|Au(t) = 〈u, t, s〉, p̂} ≡ p̂τ1,τ2
u (s, r)︸ ︷︷ ︸

Background Knowledge of the Adversary

· Pr {Au(t) = 〈u, t, s〉, ou′(1), · · · , ou′(t)|σ(u) = u′, p̂}︸ ︷︷ ︸
≡αu,u′

t (s)

(22)

βu,u′
T (r) = 1, ∀r ∈ R (23)

βu,u′
t (r) = Pr {ou′(t + 1), · · · , ou′(T )|Au(t) = 〈u, t, r〉, σ(u) = u′, p̂} =

=
∑
s∈R

Pr {ou′(t + 2), · · · , ou′(T )|Au(t + 1) = 〈u, t + 1, s〉, σ(u) = u′, p̂}︸ ︷︷ ︸
≡βu,u′

t+1 (s)

·
∑

x∈{0,1}
Pr {ou′(t + 1)|Xu(t + 1)=x, Au(t + 1) = 〈u, t + 1, s〉, σ(u) = u′, p̂}︸ ︷︷ ︸

LPPM - Obfuscation mechanism

· Pr {Xu(t + 1) = x|Au(t + 1) = 〈u, t + 1, s〉, p̂}︸ ︷︷ ︸
Application

· Pr {Au(t + 1) = 〈u, t + 1, s〉|Au(t) = 〈u, t, r〉, p̂} ≡ p̂τ1,τ2
u (r, s)︸ ︷︷ ︸

Background Knowledge of the Adversary

(24)

where t ∈ τ1 and t + 1 ∈ τ2.
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Abstract. Location-Sharing-Based Services (LSBS) complement
Location-Based Services by using locations from a group of users, and
not just individuals, to provide some contextualized service based on
the locations in the group. However, there are growing concerns about
the misuse of location data by third-parties, which fuels the need for
more privacy controls in such services. We address the relevant problem
of privacy in LSBSs by providing practical and effective solutions to
the privacy problem in one such service, namely the fair rendez-vous
point (FRVP) determination service. The privacy preserving FRVP
(PPFRVP) problem is general enough and nicely captures the computa-
tions and privacy requirements in LSBSs. In this paper, we propose two
privacy-preserving algorithms for the FRVP problem and analytically
evaluate their privacy in both passive and active adversarial scenarios.
We study the practical feasibility and performance of the proposed
approaches by implementing them on Nokia mobile devices. By means
of a targeted user-study, we attempt to gain further understanding of
the popularity, the privacy and acceptance of the proposed solutions.

1 Introduction

From Google to Facebook, online service providers are increasingly proposing
sophisticated context-aware services in order to attract new customers and im-
prove the user-experience of existing ones. Location-based services (LBS), offered
by such providers and used by millions of mobile subscribers every day [8], have
proven to be very effective in this respect.

Place check-ins and location-sharing are two popular features. By checking
into a place, users share their current location with their families or friends, and
the ones who do it frequently may also obtain special deals, provided by the
nearby businesses, as incentives for sharing their locations [9]. Facebook, for in-
stance, recently launched such a service by which users who want to check-in can

S. Fischer-Hübner and N. Hopper (Eds.): PETS 2011, LNCS 6794, pp. 77–96, 2011.
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look for on-the-spot discounts and deals [7]. Services based on location-sharing,
already used by almost 20% of mobile users [18], are undoubtedly becoming
popular. For instance, one recently announced application that exploits location
data from different users is a taxi-sharing application, offered by a global telecom
operator [19]. In order to share a taxi, users have to reveal their departure and
destination points to the server.

Determining a suitable location for a set of users is a relevant issue. Several
providers already offer variants of this service either as on-line web applications
([16,17]) or as stand-alone applications for mobile devices [17]. Not only is such
a feature desirable, but it also optimizes the trade-off between convenience and
cost for the involved parties.

However, there are growing concerns about how private information is used
and processed by these providers. We conducted a study on privacy in location-
sharing-based services (LSBS) with 35 participants (college students and
non-scientific personnel), and according to the results 88% of them believe it
is important to protect their location privacy from unauthorized uses. Similar
results have been obtained in a different study on location-based services (LBS)
[18]. Without effective protection, even sparse location information has been
shown to provide reliable information about a user’s private sphere, which could
have severe consequences on the users’ social, financial and private life [12]. For
instance, a web service [21] has shown how thieves may misuse users’ location
updates (from a popular online social network) in order to rob their residences
while they are not at home. In the taxi-sharing application, if the server is not
fully trusted by all users, revealing sensitive locations (such as users home/work
addresses) could pave the way for inference attacks by third-parties. Thus, the
disclosure of location data to potentially untrusted third-parties and peers must
be limited in any location-sharing-based service.

In this paper, we highlight the privacy issues in LSBS by studying one practical
and relevant instance of such a general scenario, which is the determination of
a fair rendez-vous point (FRVP) in a privacy-preserving way, given a set of
user-provided locations. This is a novel and potentially useful problem for LSBS
applications, which captures the essence of the computations that are generally
required in any LSBS, and mitigates their inherent and important privacy issues.
Our user-study indicates that 51% of the respondents would be very interested
in such a service based on location-sharing.

Our contributions are as follows. First, we present the results of our targeted
user-study on location-sharing and privacy in mobile services. Second, motivated
by the results of this study and the need for privacy in LSBSs, we design and
analyze two practical solutions to the FRVP problem, which do not reveal any
additional information to third parties or other peers. The proposed solutions are
independent of any underlying service or network provider, and can be included
in existing location-sharing-based services. Third, we evaluate the robustness
and resilience of our schemes to both passive and active attacks through a pri-
vacy analysis of the proposed solutions. Fourth, by implementing our proposed
algorithms on a testbed of real mobile devices, we show that their performance
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in computing the rendez-vous point is acceptable, and that users do not incur
in significant additional overhead due to the inherent privacy features.

2 Background and User Study

Background. Novel LSB services, such as deals and check-ins, are offered by
large service providers such as Google and Facebook. In order to assess users’
opinions about the potential and challenges of such services, we conducted a tar-
geted user study on 35 respondents, sampling a population of technology-savvy
college students (in the age group of 20-30 years) and non-scientific personnel.
The questionnaires are based on the privacy and usability guidelines from [5,13].
User-Study. The entire study consisted of three phases; the goal of Phase 1,
during which respondents answered a first set of 22 questions without knowing
the subject of the study, was to assess the participants’ level of adoption of
mobile LSBS and their sensitivity to privacy issues in such services. The answers
to these questions are either “Yes” or “No”, or on a 4-point Lickert scale (where
1 means Disagree, 4 is Agree). In Phase 2, the respondents were instructed to
use our prototype mobile FRVP application. Finally, in Phase 3, the participants
answered the second set of 12 questions, choosing from a 4-point Lickert scale,
after having used our application. The goal of this phase was to obtain feedback
on the usability and privacy features of our prototype. The results of Phase 1
are described next, whereas Phase 2 and 3 are discussed in Section 7.2.
Phase 1 Results. The majority of the respondents are males in the 20-25 year-
age. Around 86% of them use social networks, and 74% browse the Internet with
a mobile device. Although only 14% are aware of existing LSBS, 51% would be
very or quite interested in using a LSBS such as the FRVP. However, people
are sensitive to privacy (98%) and anonymity (74%) in their online interactions,
especially with respect to the potential misuse of their private information by
non-specified third-parties (88%). Due to space constraints, we are unable to
include here the full details of the study.

These results indicate that, although rare at the moment, LSBSs are perceived
as interesting by the majority of the sampled population, which is also the most
likely to adopt LBS technologies [18]. With respect to privacy, people agree that
it is crucial for the acceptability of such services, and thus LSBS should work
properly by requiring a minimum amount of personal information.

In the next sections, we introduce the system architecture, the FRVP problem
and our two solutions for computing the FRVP in a privacy-preserving way.

3 System Architecture

We consider a system which is composed of two main entities: (i) a set of users1

(or mobile devices) U = {u1, . . . , uN} and (ii) a third-party service provider,
1 Throughout this paper, we use the words users and devices interchangeably. The

meaning is clear from the context, unless stated otherwise.
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called Location Determination Server (LDS). The N users want to determine
the fair rendez-vous location that is computed by the LDS.

Each user’s mobile device is assumed to be able to establish communication
with the LDS either in a P2P fashion or through a fixed infrastructure-based
Internet connection. The mobile devices are able to perform public-key cryp-
tographic operations, and each user ui has means of determining the position
Li = (xi, yi) ∈ N2 of his preferred rendez-vous location (or his own location)
by using a common coordinate system. We consider a two-dimensional position
coordinates system, but the proposed schemes are general enough and can easily
be extended to other practical coordinate systems. For instance, such definition
of Li can be made fully compliant with the UTM coordinate system [27], which
is a plane coordinate system where points are represented as a 2-tuple of positive
values (distances in meters from a given reference point).

We define the set of the preferred rendez-vous locations of all users as L =
{Li}N

i=1. For the sake of simplicity, we assume a flat-Earth model and we consider
line-of-sight Euclidian distances between preferred rendez-vous locations. Even
though the actual real-world distance (road, railway, boat, etc.) between two
locations is at least as large as their Euclidian distance, the proportion between
distances in the real world is assumed to be correlated with the proportion of
the respective Euclidian distances. Location priorities, which are not discussed
in this paper, can be used for isolated or unsuitable locations.

We assume that each of the N users has his own public/private key pair
(Kui

P , Kui
s ), certified by a trusted CA, which is used to digitally sign the messages

that are sent to the LDS. Moreover, we assume that the N users share a common
secret that is utilized to generate a shared public/private key pair (KMv

P , KMv
s )

in an online fashion for each meeting setup instance v. The private key KMv
s

generated in this way is known only to all meeting participants, whereas the
public key KMv

P is known to everyone including the LDS. This could be achieved
through a secure credential establishment protocol such as in [3,4,15].

The LDS executes the FRVP algorithm on the inputs it receives by the users
in order to compute the FRV location. The LDS is also able to perform public-
key cryptographic functions. For instance, a common public-key infrastructure
using the RSA cryptosystem [22] could be employed. Let KLDS

P be the public key,
certified by a trusted CA, and KLDS

s the corresponding private key of the LDS.
KLDS

P is publicly known and users encrypt their input to the FRVP algorithm
using this key; the encrypted input can be decrypted by the LDS using its
private key KLDS

s . This ensures message confidentiality and integrity for all the
messages exchanged between users and the LDS. For simplicity of exposition, in
our protocols we do not explicitly show these cryptographic operations involving
LDS’s public/private key.

3.1 Threat Model

Location Determination Server. The LDS is assumed to execute the algo-
rithms correctly, i.e., take all the inputs and produce the output according to the
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algorithm. However, the LDS may try to learn information about users’ location
preferences from the received inputs, the intermediate results and the produced
outputs. This type of adversarial behavior is usually referred to as honest-but-
curious adversary (or semi-honest) [11]. In most practical settings, where service
providers have a commercial interest in providing a faithful service to their cus-
tomers, the assumption of a semi-honest LDS is generally sufficient. Users. The
participating users also want to learn the private location preferences of other
users from the output of the algorithm they receive from the LDS. We refer to
such attacks as passive attacks. As user inputs are encrypted with the LDS’s pub-
lic key KLDS

P , there is a confidentiality guarantee against basic eavesdropping
by participants and non participants. In addition to these attacks, participating
users may also attempt to actively attack the protocol by colluding with other
users or manipulating their own inputs to learn the output.

4 The Rendez-vous Problem

In this work, we consider the problem of finding, in a privacy-preserving way,
the rendez-vous point among a set of user-proposed locations, such that (i) the
rendez-vous point is a point that is fair (as defined in Section 5.1) with respect
to the given locations, (ii) each of the users gets to know only the final rendez-
vous location and (iii) no participating user or third-party server learns private
location information about any other user involved in the computations. We refer
to an algorithm that solves this problem as Privacy-Preserving Fair Rendez-Vous
Point (PPFRVP) algorithm. In general, any PPFRVP algorithm A should accept
the inputs and produce the outputs, as described below.

– Input : a transformation f of private locations Li: f(L1)||f(L2)|| . . . ||f(LN).
where f is a one-way public function (based on secret key) such that it is
hard (success with only a negligible probability) to determine the input Li

without knowing the secret key, by just observing f(Li).
– Output : an output f(Lfair) = g(f(L1), . . . , f(LN)), where g is a fairness

function and Lfair = (xl, yl) ∈ N2 is the fair rendez-vous location that has
been selected for this particular set of users, such that it is hard for the LDS
to determine Lfair by just observing f(Lfair). Given f(Lfair), each user is
able to compute Lfair = f−1(f(Lfair)) using his local data.

The fairness function g can be defined in several ways, depending on the prefer-
ences of users or policies. For instance, users might prefer to meet in locations
that are close to their offices, and their employers might prefer a place that is
closest to their clients. In Section 5.1 we describe one such fairness function that
minimizes the maximum displacement of any user to all other locations. Such
function is globally fair and general enough, as it captures the essential compu-
tations required for optimization It can be extended to include more complex
constraints and parameters.
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5 Proposed Solutions and Analysis

In this section, we present our solution to the PPFRVP. First, we discuss the
mathematical tools that we use in order to model the fairness function g and the
transformation functions f . In order to achieve the integration between resource-
constrained mobile devices and the client-server network paradigm, our solutions
have to be efficient in terms of computations and communication complexities.

In order to separate the optimization part of the PPFRVP algorithm A from
its implementation using cryptographic primitives, we first discuss the fairness
function g and then the transformation function f .

5.1 Fairness Function g

In this work, we consider the fairness criterion that has been widely used in
operations research to solve the k-center problem. In the k-center problem, the
goal is to find L1, . . . , Lk locations among N given possible places, in order to
optimally place k facilities, such that the maximum distance from any place to
its closest facility is minimized. For a two dimensional coordinate system, the
Euclidian distance metric is usually employed.

As the PPFRVP problem consists in determining the fair rendez-vous location
from a set of user-desired locations, we focus on the k-center formulation of
the problem with k = 1. This choice is also grounded on the fact that not
choosing Lfair from one of the location preferences L1, . . . , LN might potentially
result in a location Lfair that is not suited for the kind of meeting that the
participants require. The solution can easily be extended or integrated with
mapping applications (on the users’ devices) so that POIs around Lfair are
automatically suggested for the meeting. Figure 1 shows an example PPFRVP
scenario modeled as a k-center problem, where four users want to determine the
fair rendez-vous location Lfair.

The k-center formulation considers the Euclidian distances, but it does not
encompass other fairness parameters, such as accessibility of a place and the
means of transportation. In this work, we focus on the pure k-center formulation
as the essential building block of a more complete model, which can be extended
when such an application is to be deployed in existing services.

Let dij ≥ 0 be the Euclidian distance between two points Li, Lj ∈ N2, and
DM

i = maxj 
=i dij be the maximum distance from Li to any other point Lj .
Then, the PPFRVP problem can be formally defined as follows.

Definition 1. The PPFRVP problem is to determine a location Lfair ∈ L =
{L1, . . . , LN}, where fair = arg mini DM

i

A solution for the PPFRVP problem finds, in a privacy-preserving way, the fair
rendez-vous location among the set of proposed (and user-desired) locations, such
that the distance of the furthest desired location to the fair one is minimized.

There are two important steps involved in the computation of the fair location
Lfair. The first step is to compute the pairwise distances dij among all users i, j ∈
{1, . . . , N} participating in the PPFRVP algorithm. The second step requires the
computations of the maximum and minimum values of such distances.
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Fig. 1. PPFRVP scenario, where the fairness function is g = argmini(D
M
i ). The dashed

arrows represent the maximum distance DM
i from each user ui to any user j �= i,

whereas the solid line is the minimum of all such maximum distances. The fair rendez-
vous location is Lfair = L2 = (x2, y2).

5.2 Transformation Functions f

The fairness function g requires the computation of two functions on the private
user-desired locations Li: (i) the distance between any two locations Li �= Lj

and (ii) the minimum of the maximum of these distances. In order to achieve
the final result and to preserve the privacy of the personal information, we rely
on computationally secure cryptographic functions. In our protocol, we consider
three such schemes: the Boneh-Goh-Nissim (BGN) [2], the ElGamal [6] and the
Paillier [20] public-key encryption schemes.

What makes these schemes useful are their homomorphic encryption
properties. Given two plaintexts m1, m2 with their respective encryptions
E(m1), E(m2), the multiplicative property (possessed by the ElGamal and par-
tially by the BGN schemes) states that E(m1) � E(m2) = E(m1 · m2), where
� is an arithmetic operation in the encrypted domain that is equivalent to
the usual multiplication operation in the plaintext domain. The additive homo-
morphic property (possessed by the BGN and the Paillier schemes) states that
E(m1) ⊕ E(m2) = E(m1 + m2), where ⊕ is an arithmetic operation in the en-
crypted domain which is equivalent to the usual sum operation in the plaintext
domain. Details about the initialization, operation and security of the encryption
schemes can be found in [6,2,20].

Based on the three aforementioned encryption schemes, we now describe the
distance computation algorithms that are used in our solution.

5.3 Distance Computations

In order to determine the fair rendez-vous location, we need to find the location
Lfair, where fair ∈ {1, . . . , N}, that minimizes the maximum distance between
any user-desired location and Lfair. In our algorithms, we work with the square
of the distances, as they are much easier to compute in an oblivious fashion using
the homomorphic properties of the cryptographic schemes. The problem of find-
ing the argument that minimizes the maximum distance is equivalent to finding
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the argument that minimizes the maximum distance squared (provided that all
distances are greater than 1). Moreover, as squaring maintains the relative order,
the algorithm is still correct.

BGN-distance. Our first distance computation algorithm is based on the BGN
encryption scheme. This novel protocol requires only one round of communica-
tion between each user and the LDS, and it works as follows. In Step 1, each
user ui, ∀i ∈ {1, . . . , N}, creates the vectors

Ei(a) =< ai1| . . . |ai6 >=< E(x2
i )|E(T − 2xi)|E(1)|E(T − 2yi)|E(y2

i )|E(1) >

Ei(b) =< bi1| . . . |bi6 >=< E(1)|E(xi)|E(x2
i )|E(yi)|E(1)|E(y2

i ) >

where E(.) is the encryption of (.) using the BGN scheme and Li = (xi, yi) is the
desired rendez-vous location of user ui. Afterwards, each user sends the two vec-
tors Ei(a), Ei(b) over a secure channel to the LDS. In Step 2, the LDS computes
the scalar product of the received vectors by first applying the multiplicative
and then the additive homomorphic property of the BGN scheme.

Paillier-ElGamal-distance. An alternative scheme for the distance computa-
tion is based on both the Paillier and ElGamal encryption schemes, as shown in
Figure 2. As neither Paillier or ElGamal possess both multiplicative and additive
properties, the resulting algorithm requires one extra step in order to achieve the
same result as the BGN-based scheme, i.e., obliviously computing the pairwise
distances d2

ij . The distances are computed as follows. In Step 1, each user ui,
∀i ∈ {1, . . . , N}, creates the vector

Ei(a) =< ai1| . . . |ai4 >=< Pai(x2
i )|ElG(xi)|Pai(y2

i )|ElG(yi) >

where Pai(.) and ElG(.) refer to the encryption of (.) using the Paillier or
ElGamal encryption schemes, respectively. Afterwards, each user ui sends the
vector Ei(a) to the LDS, encrypted with LDS’s public key. In the following steps
of the protocol, the LDS computes the scalar products of the second and fourth
elements of the received vectors (Step 2.1), randomizes (in an order-preserving
fashion) the results and send a different set of values back to each user (Step
2.2). In Step 3, the users re-encrypt the values with the Paillier scheme and send
it to the LDS, which then obliviously computes the pairwise distances (Step 4.1).

5.4 The PPFRVP Protocol

We now describe our protocol for the PPFRVP problem, as shown in Figure 3.
The protocol has three main modules: (A) the distance computation module,
(B) the MAX module and (C) the ARGMIN MAX module.
Distance computations. The first module (distance computation) uses one of
the two protocols defined in the previous subsection (BGN-distance or Paillier-
ElGamal-distance). We note that modules (B) and (C) use the same encryption
scheme as the one used in module (A). In other words, E(.) of Figure 3 refers
to the encryption of (.) using either the BGN or the Paillier encryption scheme.
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1. Each user i generates Ei(a)
= <ai1|...|ai4> = < Pai(xi

2) | ElG(xi) | Pai(yi
2) | ElG(yi) >

2.1 Server computes
For i =1...N-1, For j = i+1…N:

choose random rs, rt  Zn
*, find their 

multipl. inv. rs
-1, rt

-1

rij,s = rs ; rij,sinv = rs
-1 ; rij,t = rt   ; rij,tinv = rt

-1

cij,s = ai2 · aj2 · ElG(n-2rij,s); cij,t = ai4 · aj4 · 
ElG(n-2rij,t)

end for. end for       

Ei(a)

Users LDS

User 1

User N

1 1
| ... |

N
c c

( 2 ) ( 1)
| ... |

N N N N
c c

3. Each user i decrypts the    
received elements c .. using  
the ElGamal key, obtaining
F .. = DElG(c ..)
and re-encrypts them using   
the Paillier encryption 
scheme, obtaining Pai(F ..) 

All users
Pai(F .. )

4.  Server inverts the permutation  with -1 on 
the received encrypted elements Pai(F )

2.2 Chooses random element-permut. fct.
 = ( 1,.., N(N-1)) and selects cij,. accordingly

4.1 For i =1...N-1. For j = i+1…N: 
cij

tot = ai1·Pai(Fij,s)rij,sinv· aj1·ai3·Pai(Fij,t)rij,tinv·aj3
end for. end for

Fig. 2. Distance computation protocol based on the ElGamal and Paillier encryption
schemes
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Fig. 3. Privacy-Preserving Fair Rendez-Vous Point (PPFRVP) protocol
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MAX computations. In Step B.1, the LDS needs to obliviously hide the values
within the encrypted elements (i.e., the pairwise distances computed earlier),
before sending them to the users, in order to avoid leaking any kind of private
information such as the pairwise distance or desired locations to any user.2 In
order to obliviously mask such values, for each index i the LDS generates two
random values ri, si that are used to scale and shift the ctot

ij (the encrypted
square distance between Li, Lj) for all j, obtaining d∗ij . This is done in order to
(i) ensure privacy of real pairwise distances, (ii) be resilient in case of collusion
among users and (iii) preserve the internal order (the inequalities) among the
pairwise distance from each user to all other users. Afterwards, in Step B.2 the
LDS chooses two private element-permutation functions σ (for i) and θ (for j)
and permutes d∗ij , obtaining the permuted values d∗σiθj

, where i, j ∈ {1, . . . , N}.
The LDS sends N such distinct elements to each user. In Step B.3, each user
decrypts the received values, determines their maximum and sends the index
σmax

i of the maximum value to the LDS. In Step B.4 of the MAX module (B),
the LDS inverts the permutation functions σ, θ and removes the masking from
the received indexes corresponding to the maximum distance values.

ARGMIN MAX computations. In Step C.1, the LDS masks the true maxi-
mum distances by scaling and shifting them by the same random amount, such
that their order (the inequalities among them) is preserved. Then the LDS sends
to each user all the masked maximum distances. In Step C.2 each user decrypts
the received masked (randomly scaled and shifted) maximum values, and de-
termines the minimum among all maxima. In Step C.3, each user knows which
identifier corresponds to himself, and the user with the minimum distance sends
to all other users his desired rendez-vous location in an anonymous way.

After the last step, each user receives the final fair rendez-vous location, but
no other information regarding non-fair locations or distances is leaked.

6 Analytical Evaluation

6.1 Privacy Analysis

We define the privacy of a PPFRVP protocol as follows.

Definition 2. A PPFRVP protocol A is execution privacy-preserving if a par-
ticipating user cannot determine (with a non-negligible probability) (i) the pre-
ferred rendez-vous locations Li (except Lfair), (ii) the mutual distances and (iii)
coordinate relations of any user, after an execution of A. Moreover, the LDS (or
any third-party) should not be able to infer any information about Lfair.

2 After the distance computation module (A), the LDS possesses all encrypted pairwise
distances. This encryption is made with the public key of the participants and thus
the LDS cannot decrypt the distances without the corresponding private key. The
oblivious (and order-preserving) masking performed by the LDS at Step B.1 is used
in order to hide the pairwise distances from the users themselves, as otherwise they
would be able to obtain these distances and violate the privacy of the users.
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In our analysis, we consider two types of adversaries: Passive (honest-but-
curious) and active adversaries. The passive try to learn as much information
as possible from their inputs, the execution of the PPFRVP protocol and its
output, without maliciously injecting or modifying data. The active adversaries,
on the contrary, try on purpose to manipulate the data in order to obtain private
information.

The aforementioned definition captures the privacy requirements of a single
execution of a PPFRVP algorithm. By repeated interactions among a stable set
of users, Lfair could be used to infer possible Li of other users. The issue of
learning from repeated interaction is inherent to any algorithm that, based on a
set of private inputs, chooses one of them in particular, based on some criterion.
For this reason, in this work we consider privacy for a single execution of the
PPFRVP algorithm, or for repeated executions but with different sets of users.

Passive Adversary. Under the passive adversary model, we have the following.

Proposition 1. The BGN and ElGamal-Paillier based PPFRVP protocols are
execution privacy-preserving.

In simple words, Proposition 1 states that both proposed algorithms correctly
compute the fair rendez-vous location, given the received inputs, and that they
do not reveal any users’ preferred rendez-vous locations to any other user, ex-
cept the fair rendez-vous location Lfair. Moreover, the LDS does not learn any
information about any user-preferred locations. In the Appendix we prove the
proposition by considering a standard challenger-adversary game methodology
that is usually employed for privacy proofs in cryptographic schemes.

Active Adversary. We consider three main categories of active attacks against
PPFRVP protocols, namely (i) the collusion among users and/or LDS, (ii) the
fake user generation and/or replay attacks and (iii) unfair rendez-vous location.

Collusion. Regardless of the protocol used or the encryption methods, in the
case when users collude among themselves the published fair result (together
with the additional information malicious users may get from colluders) can
be used to construct exclusion zones, based on the set of equations and known
parameters. An exclusion zone is a region that does not contain any location
preferences, and the number of such exclusion zones increases with the number
of colluders. We are currently working on quantifying this impact on our op-
timization and encryption methods. However, in the unlikely case of collusion
between the LDS and the participants, the latter will be able to obtain other
participants’ preferences. In order to mitigate such a threat, the invited par-
ticipants could agree on establishing a shared secret by using techniques from
threshold cryptography [25]. The LDS should then collude with at least a given
number of participants in order to obtain the shared secret and learn Li.

Fake Users. In case the LDS generates fake users, it would not be able to obtain
the secret that is shared among the honest users and which is used to derive the
secret key KMv

s for each session v. This attack is more dangerous if a legitimate
participant creates a fake, because the legitimate participant knows the shared
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secret. In this scenario, however, the LDS knows the list of meeting participants
(as it computes the fair rendez-vous location) and therefore it would accept only
messages digitally signed by each one of them. Here we rely on the fact that fake
users will not be able to get their public keys signed by a CA. Replay attacks
could be thwarted by adding and verifying an individually signed nonce, derived
using the shared secret, in each user’s meeting message.

Unfair RV. The last type of active attack could lead to the determination of an
unfair rendez-vous location. Maliciously modifying or untruthfully reporting the
maximum masked values (Step B.3 of Figure 3) could deceive the LDS to accept
the false received index as the maximum value, and therefore potentially lead
to the determination of a subfair rendez-vous location. However, this is rather
unlikely to happen in practice. For instance, even if in Step B.3 a user falsely
reports one of his values to be the maximum when actually it is not, this would
cause the algorithm to select a subfair rendez-vous location if and only if no
other user selected a smaller value as the maximum distance.

6.2 Complexity Analysis

Table 1 summarizes the complexity results for our two protocols, both for the
client devices and for the LDS. As it can be seen, the client complexity is in
general O(N), where N is the number of users. However, there is a notable
exception for the BGN-based scheme; the number of exponentiation required for
a single decryption is O(

√
T ) [2], where T is the order of the plaintext domain.

In Section 7 we show how this charateristic impacts the decryption performance.

Table 1. Asymptotic complexity of the proposed PPFRVP protocols, where N is the
number of participants. The Distance protocol is the one used in the module A of
Figure 3, whereas PPFRVP includes modules A,B and C.

CLIENT PROTOCOL BGN 
(mod n) 

ELGAMAL- 
PAILLIER 
(mod n2) 

LDS 
BGN 

(mod n) 
ELGAMAL- 
PAILLIER 
(mod n2) 

Mult. Distance O(1) O(N) Mult. O(N2) O(N2) PPFRVP Exp. 

Exp. 
Distance O( ) 

O(N) 
Bilinear 

O(N2) ------- PPFRVP O(N ) mapping 

Memory Distance O(1) O(N) Memory O(N2) O(N2) PPFRVP O(N) 

Comm. Distance O(1) O(N) Comm. O(N) O(N2) 
PPFRVP O(N) O(N2)  

The LDS complexity for both protocols is in general O(N2), with the notable
exception of BGN, where in addition to multiplications and exponentiations
the schemes requires additional O(N2) bilinear mappings. These operations are
required in order to support the multiplicative property of the BGN scheme.
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7 Implementation Performance and User-Experience

In this section, we discuss the results of the performance measurements using
implementations of the proposed algorithms on Nokia devices, and we present
the related results of Phase 3 of our user-study on the prototype application.

7.1 Performance Measurements

The tests were conducted on a testbed of Nokia N810 mobile devices (ARM
400 MHz CPU, Figure 4), and the LDS on a Linux machine (2 GHz CPU, 3
GB RAM). For the elliptic curve BGN-based PPFRVP protocol, we measured
the performance using both a 160-bit and a 256-bit secret key, whereas for the
ElGamal-Paillier-based one we used 1024-bit secret keys. As BGN is an ellip-
tic curve-based scheme, much shorter keys can be used compared to ElGamal
and RSA. A 160-bit key in elliptic curve cryptosystems is generally believed to
provide equivalent security as a 1024-bit key in RSA and ElGamal [23].

Lfair Li

Fig. 4. Prototype PPFRVP application running on a Nokia N810 mobile device. The
image on the left is the main window, where users add the desired meeting participants.
The image on the right is the map that shows the fair rendez-vous location (green pin)
and the user-desired rendez-vous location (red pin).

LDS performance. Figure 5(a), 5(b) and 5(c) show the computation time
required by the LDS. We can see that such time increases with the number
of users, and that the ElGamal-Paillier algorithm is the most efficient across
all computations, requiring 4 seconds to execute the PPFRVP protocol with
10 participants. The two BGN-based algorithms are less efficient, but are still
practical enough (9 seconds). The CPU-intensive bilinear mappings in BGN are
certainly one important reason for such delays.

Client performance. Figure 5(d) and 5(e) show the different computation
times on the Nokia N810 mobile device. As it can be seen, thanks to the efficient
use of the homomorphic properties of our BGN-based algorithm, this protocol
is the most efficient for the distance computations, requiring only 0.3 seconds,
independently of the number of users. On the contrary, the alternative protocol
needs 4 seconds with 10 participants. However, the subsequent phases reverse
such results, as the BGN protocol makes intensive use of bilinear mappings.
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Fig. 5. Performance measurements

Overall, we can see that the ElGamal-Paillier protocol has a better perfor-
mance than the BGN-based one, both on the client and on the LDS. Neverthe-
less, both schemes are practical enough and have acceptable time requirements
in order to be implemented on current generations of mobile devices.

7.2 User-Experience

We present the PPFRVP application-related results of our user study introduced
in Section 2. After using our application, all participants tend to agree (34%) or
agree (66%) that our application was easy to use, and that they could quickly
compute the task (97%). More than 71% appreciated that their preferred rendez-
vous point was not revealed to other participants, and only 8% do not care about
the privacy of their rendez-vous location preference. 26% of the respondents were
able to identify to whom the FRVP location belonged to, which is expected.
The users run our application in groups of 5 during the experimentation, and
therefore there was always one person out of five that knew that the FRVP
location was his preferred location.

From a software developer standpoint, this means that both ease of use and
privacy need to be taken into account from the beginning of the application
development process. In particular, the privacy mechanisms should be im-
plemented in a way that does not significantly affect the usability or performance.
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The acceptance of LSBS applications is highly influenced by the availability of
effective and intuitive privacy features.

8 Related Work

Hereafter, we present some works in the literature that address, without pro-
tecting privacy, strategies to determine the fair rendez-vous location. To the
best of our knowledge, this is the first work to address such a problem in a
privacy-preserving way.

Santos and Vaughn [1] present a survey of existing literature on meeting-
location algorithms, and propose a more comprehensive solution for such a prob-
lem. Although considering aspects such as user preferences and constraints, their
work (or the surveyed papers) does not address any security or privacy issues.
Similarly, Berger et. al [24] propose an efficient meeting-location algorithm that
considers the time in-between two consecutive meetings. However, all private
information about users is public.

In the domain of Secure Multiparty Computation (SMC), several authors have
addressed privacy issues related to the computation of the distance between two
routes [10] or points [14,26]. Frikken and Atallah [10] propose SMC protocols for
securely computing the distance between a point and a line segment, the distance
between two moving points and the distance between two line segments. Zhong
et al. [28] design and implement three distributed privacy-preserving protocols
for nearby friend discovery, and they show how to cryptographically compute the
distance between a pair of users. However, due to the fully distributed nature of
the aforementioned approaches, the computational and communication complex-
ities increase significantly with the size of the participants and inputs. Moreover,
all parties involved in the computations need to be online and synchronized.

As both our protocols are centralized, most of the cryptographic operations
are performed by the LDS and not by the mobile devices. Additionally, the
proposed solutions do not require all users to be online at the same time, and
they necessitate only minimal synchronization among the mobile devices.

9 Conclusion and Future Work

In this work, we address the problem of privacy in LSBS by providing prac-
tical and effective solutions to one such popular and relevant service. The
PPFRVP problem captures the essential computational and privacy building
blocks present in any LSBS offered on mobile devices. We designed, implemented
on real mobile devices and evaluated the performance of our privacy-preserving
protocols for the fair rendez-vous problem. Our solutions are effective in terms of
privacy, have acceptable performance, and do not create additional overhead for
the users. Moreover, our user-study showed that the proposed privacy features
are crucial for the adoption of any such application, which reinforces the need
for further exploration in privacy of LSB services. To the best of our knowledge,
this is the first such effort in this direction.
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Proof of Proposition 1

We express the privacy in terms of three probabilistic advantages that an ad-
versary ua (a user or a third-party) gains after an execution of a PPFRVP
algorithm A. First, we measure the identifiability advantage, which is the prob-
abilistic advantage of ua in correctly guessing the preferred location Li of any
user ui �= ua. We denote it as AdvIDT

a (A). Second, the distance-linkability ad-
vantage is the probabilistic advantage of ua in correctly guessing whether the
distance dij between any two users ui �= uj is greater than a given parameter s,
without necessarily knowing any users’ preferred locations Li, Lj . We denote it
as Advd−LNK

a . Finally, the coordinate-linkability advantage is the probabilistic
advantage of ua in correctly guessing whether a given coordinate xi (or yi) of a
user ui is greater than the corresponding coordinate(s) of another user uj �= ui,
i.e., xj (or yj), without necessarily knowing any users’ preferred locations Li, Lj .
We denote it as Advc−LNK

a .

Challenger-Adversary Games

We describe hereafter the challenger-adversary game for the identifiability ad-
vantage AdvIDT

a (A) of any user ua, a ∈ {1, . . . , N}, after executing the PPFRVP
algorithm A:

1. Initialization: Challenger privately collects L = {Li}N
i=1, where Li = (xi, yi)

is the preferred rendez-vous location of user ui, and f(Li), ∀i ∈ {1, . . . , N}.
2. PPFRVP algorithm: Challenger executes the PPFRVP algorithm A and

computes f(Lfair) = g(f(L1), . . . , f(LN)). It then sends f(Lfair) to each
user ui, ∀i ∈ {1, . . . , N}.

3. Challenger randomly chooses a user ua, a ∈ {1, . . . , N}, as the adversary.
4. ua chooses uj �= ua and sends j to the challenger.
5. Challenge: Challenger chooses a random k ∈ {1, . . . , N} and sends Lk to the

adversary. The challenge is to correctly guess whether Lk = Lj .

https://www.e-education.psu.edu/natureofgeoinfo/c2_p21.html
https://www.e-education.psu.edu/natureofgeoinfo/c2_p21.html
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6. The adversary sends L∗
j to the challenger. If the adversary thinks that Lk

is the preferred rendez-vous location of user uj, i.e., if Lk = Lj then the
adversary sets L∗

j = 1. If the adversary thinks that Lk is not the preferred
rendez-vous location of user uj, then he sets L∗

j = 0. If L∗
j = Lk the adversary

wins the game, otherwise he loses.

The challenger-adversary game for the distance-linkability advantage
Advd−LNK

a (A) of any user ua is defined as follows.

1. Initialization: Challenger privately collects L = {Li}N
i=1, where Li = (xi, yi)

is the preferred rendez-vous location of user ui, and f(Li), ∀i ∈ {1, . . . , N}.
2. PPFRVP algorithm: Challenger executes the PPFRVP algorithm A and

computes f(Lfair) = g(f(L1), . . . , f(LN)). It then sends f(Lfair) to each
user ui, ∀i ∈ {1, . . . , N}.

3. Challenger randomly chooses a user ua, a ∈ {1, . . . , N}, as the adversary.
4. ua chooses uj , uk �= ua and sends (j, k) to the challenger.
5. Challenge: Challenger computes a value s, such as the average Euclidian

distance d =
∑N−1

n=1

∑N
m=n+1 dnm/(2N(N −1)) between any two users un �=

um, and sends (j, k, s) to the adversary. The challenge is to correctly guess
whether djk < s.

6. The adversary sends d∗ to the challenger. If the adversary thinks that djk < s
then he sets d∗ = 1, otherwise d∗ = 0. The adversary wins the game if: (i)
d∗ = 1 ∧ djk < s or (ii) d∗ = 0 ∧ djk ≥ s. Otherwise, the adversary loses.

The challenger-adversary game for the coordinate-linkability advantage
Advc−LNK

a (A) of any user ua is defined as follows.

1. Initialization: Challenger privately collects L = {Li}N
i=1, where Li = (xi, yi)

is the preferred rendez-vous location of user ui, and f(Li), ∀i ∈ {1, . . . , N}.
2. PPFRVP algorithm: Challenger executes the PPFRVP algorithm A and

computes f(Lfair) = g(f(L1), . . . , f(LN)). It then sends f(Lfair) to each
user ui, ∀i ∈ {1, . . . , N}.

3. Challenger randomly chooses a user ua, a ∈ {1, . . . , N}, as the adversary.
4. ua chooses uj , uk �= ui and sends (j, k) to the challenger.
5. Challenge: Challenger chooses a coordinate axis c ∈ {x, y} and sends (j, k, c)

to the adversary. The challenge is to correctly guess whether cj < ck.
6. The adversary sends c∗ to the challenger. If the adversary thinks that cj < ck

then he sets c∗ = 1, otherwise c∗ = 0. The adversary wins the game if: (i)
c∗ = 1 ∧ cj < ck or (ii) c∗ = 0 ∧ cj ≥ ck. Otherwise, the adversary loses.

For the third-party (LDS) adversary, the game definitions are similar to those
of the user adversary. However, as mentioned, the third-party shall not be able
to infer (with a non-negligible probability) the Lfair, in addition to any Li.

Proofs

Correctness. Given the encrypted set of user-preferred locations
f(L1), . . . , f(LN ), the proposed PPFRVP algorithms compute the pair-
wise distance between each pair of users dij , ∀i, j ∈ {1, . . . , N}, according
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to the schemes of the respective distance computation algorithms. Following
the sequence of steps for such computation, one can easily verify that the
ElGamal-Paillier based distance computation algorithm computes

Pai(d2
ij) = Pai(x2

i ) · Pai(−2xixj) · Pai(y2
j ) · Pai(y2

i ) · Pai(−2yiyj) · Pai(y2
j )

= Pai(x2
i − 2xixj + x2

j + y2
i − 2yiyj + y2

j )

which is the same result that is achieved by the BGN-based distance algorithm.
After the pairwise distance computations, the PPFRVP algorithm computes

the masking of these pairwise distances by scaling and shifting operations. The
scaling operation is achieved by exponentiating the encrypted element to the
power of ri, where ri ∈ Z∗

w is a random integer and r−1
i is its multiplicative

inverse. The shifting operation is done by multiplying the encrypted element with
the encryption (using the public key of the users) of another random integer si

privately chosen by the LDS. These two algebraic operations mask the values d2
ij

(within the encrypted elements), such that the true d2
ij are hidden from the users.

Nevertheless, thanks to the homomorphic properties of the encryption schemes,
the LDS is still able to remove the masking (after the users have identified the
maximum value) and correctly re-mask all maxima, such that each user is able
to correctly find the minimum of all maxima.

In the end, each user is able to determine Lfair where fair = argmini maxj d2
ij

from the outputs of the PPFRVP algorithm, and therefore the PPFRVP algo-
rithms are correct.

User Identifiability Advantage. Using the previously defined challenger-
adversary games, we define the identifiability advantage of an attacker ua as

AdvIDT
a (A) =

∣∣Pr[L∗
j = Lk] − 1/N

∣∣
where Pr[L∗

j = Lk] is the probability of user ua winning the game by correctly
answering the challenge, computed over the coin tosses of the challenger, and
R(�/N is the probability of a random guess over the N possible user-preferred
locations. Now, at the end of the PPFRVP protocol, the attacker knows Lfair

and its own preferred location La = (xa, ya) ∈ N2. Assuming that all users other
than ua have executed the protocol correctly, ua does not know any preferred
location Li, for i �= a. Hence, the probability Pr[L∗

j = Lk] of him making a
correct guess j∗ about the preferred rendez-vous location Lk of user uk equals
the probability of a random guess, which in this case is 1/N − 1. Thus, the
identifiability advantage of the attacker ua is negligible.

User Distance-Linkability Advantage. The distance-linkability of an at-
tacker ua is defined as

Advd−LNK
a (A) = |Pr[(d∗ = 1] ∧ djk < s) ∨ (d∗ = 0 ∧ djk ≥ s)] − 1

2
|

where Pr[.] is the probability of the adversary ua winning the game by correctly
answering the challenge, computed over the coin tosses of the challenger, d∗ is the
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guess of the adversary, djk is the distance between Lj , Lk and s is a parameter
chosen by the challenger. In this case, the attacker has to guess whether the
distance djk between two users j, k is greater than s, and clearly if he at some
point in the protocol obtains any pairwise distance djk, his advantage is non-
negligible. However, as explained in the correctness proof, each user gets to know
only N masked (and anonymized) values of the squares of pairwise distances.
Thus, the attacker wants to solve the following system of linear equations:⎧⎪⎪⎨⎪⎪⎩

Cσa,θ1 = ra · d2
σ1,θ1

+ sa

...
Cσa,θN = ra · d2

σ1,θN
+ sa

where Cij is the received masked value of the pairwise distances and ra, sa are
random integers privately chosen by the LDS. Hence, possessing only the knowl-
edge of his own preferred location and the fair fair rendez-vous location, the
attacker cannot uniquely solve this system of equation, because it is still under-
determined. Therefore, the distance-linkability advantage of ua is negligible.

User Coordinate-Linkability Advantage. In order to have non-negligible
coordinate-linkability advantage, an attacker ua needs to have additional infor-
mation regarding at least one of the two coordinates of any other user’s preferred
rendez-vous location. As discussed in the identifiability and distance linkability
advantage proofs, after a private execution of the PPFRVP algorithm A, the at-
tacker does not gain any additional information about any other user’s locations.
Therefore, not knowing any other user’s coordinate, an attacker does not gain
any probabilistic advantage on correctly guessing the relationship between their
spatial coordinates. Hence, the coordinate-linkability advantage is negligible.

Third-party Advantages. All elements that are received and processed by
the LDS have previously been encrypted by the users with their common public
key. In order to efficiently decrypt such elements, the LDS would need to have
access to the private key that has been generated with the public key used
for the encryption. As explained in Section 3, in most practical settings, where
service providers have a commercial interest in providing a faithful service to
their customers, the LDS would not try to maliciously obtain the secret key.
Therefore, all the LDS does in the PPFRVP algorithm is to obliviously execute
algebraic operation on encrypted elements, without knowing the values within
the encrypted elements. Hence, the PPFRVP algorithms do not disclose any
information the a third-party, such as the LDS, during or after its execution.
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Abstract. In this work, we demonstrate the practicality of people tracking by
means of physical-layer fingerprints of RFID tags that they carry. We build a
portable low-cost USRP-based RFID fingerprinter and we show, over a set of
210 EPC C1G2 tags, that this fingerprinter enables reliable identification of in-
dividual tags from varying distances and across different tag placements (wallet,
shopping bag, etc.). We further investigate the use of this setup for clandestine
people tracking in an example Shopping Mall scenario and show that in this sce-
nario the mobility traces of people can be reconstructed with a high accuracy.
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1 Introduction

Radio Frequency IDentification (RFID) technology has raised a number of privacy
concerns in many different applications, especially when considering consumer pri-
vacy [17]. A person carrying several tags – attached to various objects like books, pass-
ports, medicines, medical devices, and clothes – can be subject to clandestine tracking
by any reader in the read range of those tags; it has been shown that the read range of
RFID tags can be extended up to 50 m [19]. Even if some objects are only temporarily
with a person (e.g., a shopping bag), they will enable tracking of a person’s behavior
for shorter periods (e.g., during a morning or during a visit to a shopping mall). Other
objects, such as wallets, personal bags, and medical devices will be frequently or perma-
nently carried by people, thus allowing people being tracked over wider time periods.

Solutions that prevent a (clandestine) reader to communicate with tags were pro-
posed on a logical level, and typically rely on the use of pseudonyms and access control
mechanisms [1, 4, 8, 9, 20, 31]. Although effective on the logical level, these solutions
do not prevent physical-layer identification of RFID tags. A number of features have
been identified that allow physical-layer identification of RFID tags of different man-
ufacturers, but also of individual RFID tags from the same manufacturer and model
[6, 21–23, 27, 28, 34]. So far, physical-layer identification has been demonstrated in lab-
oratory conditions, using high-sampling oscilloscopes and low-noise peripherals. This
equipment can be costly and is rather impractical for real world tracking.

In this work, we present a low-cost, USRP-based RFID fingerprinter and show that
physical-layer fingerprinting of RFID tags is feasible even with this portable setup. For

S. Fischer-Hübner and N. Hopper (Eds.): PETS 2011, LNCS 6794, pp. 97–116, 2011.
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tag identification, we use timing features that rely on the extraction of tags backscat-
ter frequencies [23, 34]. We tested our setup on a tag population composed of 210
EPC class-1 generation-2 (C1G2) RFID tags [11] of 12 different models and 3 man-
ufacturers. EPC C1G2 tags are the de facto standard passive UHF tags and the most
present in the current market. Our results show that this setup and features enable re-
liable identification of individual tags from varying distances and across different tag
placements (wallet, jacket, shopping bag, backpack). The used feature allows the ex-
traction of �25.4� RFID tag fingerprints independently of the population size (i.e., this
feature results in approx. 5.4 bits of entropy). Since people will typically carry several
tags, this will allow the creation of a large number of composite fingerprints, thus en-
abling, in a number of scenarios, highly precise people tracking (e.g., a set of 5 tags
provides approx. 22 bits of entropy).

We investigate the use of our setup for clandestine people tracking in an example
Shopping Mall scenario and show that in this scenario the mobility traces of people can
be reconstructed with a high accuracy.

Although solutions that prevent a (clandestine) reader to communicate with tags at
the physical layer exist (e.g., tag kill and sleep functions, Faraday cages, active jammers,
and “clipped” tags [18]), the provided privacy comes at the price of tag functionality
(e.g., the kill function permanently disables tags and therefore possible after-sales ser-
vices or long-term deployments) or requires additional efforts (e.g., user interaction or
extra hardware) that could make those solutions impractical and unattractive.

Therefore, the proposed setup and feature break people’s privacy by enabling the
tracking and mobility trace reconstruction of people carrying RFID tags. This privacy
breach occurs disregarding of the RFID tag content (e.g., serial number) and with no
need for interpreting the information transmitted by the RFID tags (which could be pro-
tected, e.g., encrypted, by logical-level mechanisms). People’s privacy could be further
compromised by means of side-channel information (e.g., a priori knowledge about tar-
get people) that builds the associations between tag fingerprints and objects to which
they are attached, and between composite fingerprints and people’s identities.

The rest of this paper is organized as follows. In Section 2, we define the people
tracking scenario and our problem statement. In Section 3, we introduce the consid-
ered RFID tag population and physical-layer identification technique. In Section 4, we
present our low-cost RFID fingerprinter, while in Section 5 we detail the performed ex-
periments and summarize the collected data. We present the evaluation results in terms
of tag distinguishability and fingerprint stability of our fingerprinter in Section 6, while
we discuss their implications on tag holders’ privacy in Section 7. We make an overview
of background and related work in Section 8 and conclude the paper in Section 9.

2 Scenario and Problem Statement

In our study, we consider a scenario in which an attacker aims at tracking people
carrying several passive UHF RFID tags over a limited period of time and within a
bounded area (e.g., a mall). We assume that the attacker has the ability to position sev-
eral physical-layer identification devices, i.e., fingerprinters, at strategic locations in the
considered area. A fingerprinter profiles a person by (i) collecting RF signals from the



On the Practicality of UHF RFID Fingerprinting 99

set of tags assumed to be on a person, (ii) extracting the fingerprints for each tag in the
set based on specific RF signal characteristics, or features, and finally, (iii) creating a
profile, which is the collection of all tag fingerprints for the considered set of tags. The
created profiles are then used for people tracking, which can reveal information about
people’s behavior (e.g., people are likely to visit shop A after they have visited shop B).

A number of works considered the threat of RFID-based tracking real [1, 8, 9, 17,
20]; however, some reservations still remain as to whether tracking is practical or con-
fined only to laboratory environments. In this work we investigate how feasible and
practical is RFID-based tracking in real-world scenarios. We consider that tracking will
be practical if people’s profiles (i.e., RFID fingerprints) can be reliably extracted in dy-
namic settings (i.e., when tags are on people, in wallets, bags, pockets, and when people
are moving), if the fingerprinters can be built as compact, possibly low-cost devices, and
if the profiles allow people’s traces to be reconstructed with high accuracy. In the rest
of the paper we will show that with the proposed fingerprinter setup and with the used
features these three conditions are fulfilled.

3 RFID Tags, Signal Features and Tag Fingerprints

In our work, we evaluate the feasibility of people tracking by using our low-cost fin-
gerprinter (Section 4) on a tag population composed of 210 EPC class-1 generation-2
(C1G2) RFID tags [11] of 12 different models and 3 manufacturers. EPC C1G2 tags
are the de facto standard passive UHF tags and the most present in the current market.
Those tags are mainly conceived for item- and pallet-level barcode replacement, which
(especially for item-level tagging) makes them pervasive into everyday life.

3.1 EPC C1G2 Background

The communication between RFID readers and tags is half-duplex. A reader trans-
mits commands and data to a tag by modulating an RF signal. The tag replies using a
backscattered signal modulated by modifying the reflection coefficient of its antenna.
Readers use pulse-interval encoding (PIE) and phase-reversal amplitude shift keying
(PR-ASK) modulation to transmit data and commands to tags. Tags backscatter infor-
mation by modulating an RF signal using ASK and/or PSK modulation and either FM0
baseband or Miller modulation as data encoding. The frequency range of RF signals is
defined from 860 to 960 MHz. Readers transmit data at a maximum rate between 40 and
160 kbps. The tag backscatter link frequency (BLF, i.e., the tag data rate) is selected by
the readers; the EPC C1G2 specification defines a BLF range between 40 and 640 kHz.

The communication sequence between a reader and a tag during the tag inventorying
process with no collisions is shown in Figure 1. The reader challenges the tag with a
set of commands to select a particular tag population (Select), to initiate an inventory
round (Query), and to request the transmission of the tag’s identification (EPC) number
(Ack). The tag replies first with an RN16 packet1 (after the reader’s Query) and then
with an EPC packet (after the reader’s Ack) containing the identification number.

1 RN16 packets are sent as a part of the anti-collision protocol used during tag inventorying.
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Fig. 1. EPC tag inventory sequence. P, FS, and CW stand for preamble, frame-sync, and continu-
ous wave respectively.

3.2 Signal Features and Tag Fingerprints

Physical-layer device identification relies on random hardware impairments in the ana-
log circuitry components introduced at the manufacturing process. Those impairments
then manifest in the transmitted signals making them measurable.

To facilitate the adoption of RFID tags on a large-scale, tag manufacturers tend to
optimize both the tag manufacturing process and the size of tag embedded integrated
circuits in a effort to reduce the overall tag cost. Although the RFID tag market has been
growing in the past years, high-speed processes and low-complexity integrated circuits
may increase the possibility of finding tags’ internal components affected by hardware
impairments, as well as of finding impairments which create measurable and substantial
differences between tags.

In our study, we consider random hardware impairments in the tags’ local oscilla-
tor. According to the EPC C1G2 specification, the backscatter link frequency (BLF) at
which tags communicate is defined within a range between 40 and 640 kHz with a fre-
quency tolerance between ±4% and ±22% depending on the selected BLF. As shown
by Periaswamy et al. [23] and Zanetti et al. [34], the relatively large BLF tolerances
allowed by the EPC specification can represent a distinguishing factor between dif-
ferent tags of the same model and manufacturer. Additionally, it has been shown [34]
that the BLF is not affected by the tag-reader distance and mutual position; this can
allow tag distinguishability disregarding tags’ location and position. Therefore, the sig-
nal feature we consider for tag identification is the backscatter link frequency at which
each tag transmits data. We extract this signal feature from the fixed preamble of the
RN16 packets sent by tags during tag inventorying. This is done not to introduce any
data-dependent bias in our evaluation, since the RN16 preamble is fixed for all tags.
Tag fingerprints are built from N acquired RN16 preambles, i.e., a tag fingerprint is
a one-dimensional value corresponding to the average BLF over N RN16 preambles
collected for a certain tag.

4 Low-Cost RFID Fingerprinter

In our study, we build and deploy a compact and low-cost fingerprinter that challenges
tags to initiate an EPC C1G2 inventory round, collects tags’ responses, i.e., RN16 pack-
ets, and builds tag fingerprints based on the backscatter link frequency (BLF) that it
extracts from the RN16 preambles. Our fingerprinter is composed of a Universal Soft-
ware Radio Peripheral 2 (USRP2) platform and an RFX900 daughterboard by Ettus
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Research [2], as well as of a host PC providing signal processing through the GNU Ra-
dio toolkit [3]. The block diagram of our low-cost fingerprinter is shown in Figure 6
(Appendix A).

Our fingerprinter consists of a transmitter, a receiver and a feature extraction mod-
ule. It uses a bistatic antenna configuration to minimize the leakage from the transmitter
to the receiver. The chosen antennas are circularly polarized, which allows our finger-
printer to power up (and then communicate with) a tag thus minimizing the impact of
the tag orientation. The transmitter outputs commands and data at the baseband fre-
quency according to the pulse-interval encoding (PIE) and phase-reversal amplitude
shift keying (PR-ASK) modulation (as defined in the EPC C1G2 specification [11]).
The carrier frequency that is used for upmixing the baseband signal is 866.7 MHz2 and,
after the final amplification stage, the nominal transmission power is 29.5 dBm (includ-
ing the antenna gain). The receiver is based on a direct-conversion I/Q demodulator3.
After quadrature downmixing, the tag backscatter baseband signal is first converted into
the digital domain with a nominal sampling rate of 10 MS/s (for each of the I and Q
channels) and 14-bit resolution, and then low-pass filtered. For each channel, the fea-
ture extraction module processes the baseband tag signal to extract the BLF from the
RN16 preambles. The extraction is a streaming-like process: the module continuously
monitors the incoming signal for RN16 packets. When one is detected, the length of the
preamble is measured and the BLF is computed and recorded.

5 Performed Experiments and Collected Data

We base our experiments on the interaction between a reader and a tag population that
is used for inventorying purposes as defined in the EPC C1G2 specification [11]. We
use our fingerprinter to challenge RFID tags (i.e., to initiate an inventory round), col-
lect tags’ replies (i.e., RN16 packets), and extract the specified signal feature (i.e., the
backscatter link frequency, BLF) to obtain tag fingerprints.

Our tag population is composed of 210 EPC C1G2 RFID tags of 12 different
models and 3 manufacturers: Alien Technology ALN9540, ALN9562, ALN9640 and
ALN9654, Avery Dennison AD821, AD833, AD224 and AD824, and UPM Raflatac
Dogbone (3 different integrated circuit models) and ShortDipole. The selected tag mod-
els present different characteristics in terms of antenna size and material, embedded
integrated circuit, and application. Table 5 (Appendix B) summarizes the considered
models and their main characteristics.

In order to increase the possibility of finding the largest distinguishing characteristic,
for all experiments we select the BLF which, according to the EPC C1G2 specification,
presents the largest allowed frequency tolerance. The selected nominal BLF is thus
equal to 426 kHz and presents a maximal allowed frequency tolerance equal to ±22%.

2 The chosen carrier frequency corresponds to channel 6, band 2, of the ETSI EN 302 208 regu-
lations [12], which define 10 channels of 200 KHz @ 2W ERP between 865.6 and 867.6 MHz.

3 The phase of the tag backscatter signal is not predictable or controllable, as it varies with the
distance to the tag; the I/Q demodulator allows the reception of a backscatter signal regardless
of the distance to the tag.



102 D. Zanetti, P. Sachs, and S. Capkun

-0.4

-0.2

 0

 0.2

 0.4
 0.5

 1
 1.5

 2
 2.5

 3

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

A

B

C
RX

TX

Tag positions

Fingerprinter antennas

x [m]

y [m]

z [m]

D

(a)

1

2

3

4  0.5
 1

 1.5
 2

 2.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

E

F

G

H

RX

TX

Moving tags

Fingerprinter antennas

x [m]

y [m]

z [m]

(b)

Fig. 2. Considered positions of the fingerprinter antennas and of the tags. In our experiments,
fingerprinter antennas (TX and RX) are fixed, while tag responses are acquired (a) from different
fixed locations (A-D, Table 1) and (b) when tags are moving (E-H, Table 2).

5.1 Performed Experiments

For all the tags in our population, we use our fingerprinter to initiate an inventory round
and extract the BLF while tags are at a fixed location (on a stand). Figure 2(a) shows the
considered positions of the fingerprinter transmitting (TX) and receiving (RX) antennas
and of the tags (position A). Table 1 – configuration 3 summarizes the fingerprinter and
tag settings for this experiment.

For a subset of tags in our population placed on a stand, we use our fingerprinter to
extract the BLF under 16 different configurations of tag and antenna positions, acqui-
sition sampling rate, tag temperature, transmission power, and fingerprinter hardware.
The different configurations are summarized in Table 1 (configurations 1 to 16). The
considered positions of the fingerprinter TX and RX antennas and of the tags are shown
in Figure 2(a). In terms of tag position, we explore different tag distances to the finger-
printer antennas (up to 2.75 m), as well as different tag vertical and lateral positions.
We also explore 3 different transmission powers (from 17.5 to 23 dBm), 3 different
acquisition sampling rates (from 5 to 20 MS/s), and 5 different temperatures (from 10
to 50◦C). Additionally, we consider 3 different fingerprinter hardware configurations
(changing USRP2 platform, USRP daughterboard, antennas, and host PC) and swap
the position of the TX and RX antennas. Finally, we explore time effects by acquiring
RN16 preambles and extracting BLF one month after the beginning of this experiment.

For a subset of tags in our population, we use our fingerprinter to extract the BLF
while tags are carried by a person. For this experiment, we investigate 6 different con-
figurations of tag location (backpack, wallet, jacket, shopping bag), tag holder’s activ-
ity (standing, walking), and number of carried tags (from 1 to 5). The fingerprinter is
configured as detailed in Table 1 – configurations 17-22, while the different tag config-
urations are summarized in Table 2. The considered positions of the fingerprinter TX
and RX antennas and of the tags are shown in Figure 2(b).
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Table 1. Varied parameters for the different configurations - tags placed on a stand

Tag position Antennas TX Temp.2 Sampling Fingerprinter
Config. Fig. 2(a) (x,y,z)-axis position power1 rate hardware

[m] (TX,RX) [m] [dBm] [◦C] [MS/s] set3

1 A (0, 1.5, 1.0) (1.25, 0.75) 21 22 5 1
2 � � � � � 20 �

3 � � � � � 10 �

44
� � � � � � �

5 � � (0.75, 1.25) � � � �

6 B (-0.5, 1.5, 1.0) (1.25, 0.75) � � � �

7 C (0, 1.5, 0.5) � � � � �

8 D (0, 2.75, 1.0) � 23 � � �

9 A (0, 1.5, 1.0) � 17.5 � � �

10 � � � 23 � � �

11 � � � 21 � � 2
12 � � � � � � 3
13 � � � � 10 � 1
14 � � � � 30 � �

15 � � � � 40 � �

16 � � � � 50 � �

17-22 Tag on a person, see Table 2 � 23 22 � �

1 Power before the TX antenna. For fingerprinter sets 1 and 3, the TX antenna has a gain
of 8.5 dBi, while for set 2 this is equal to 6 dBi.

2 Temperature variations of ±2◦C.
3 Set 2: same host PC as set 1, but different USRP, USRP daughterboard and antennas.

Set 3: same USRP, USRP daughterboard and antennas as set 1, but different host PC.
4 Same as configuration 3, but fingerprints obtained from RN16 preambles collected 1

month after the RN16 preambles collected for configuration 3.

Table 2. Varied parameters for the different configurations - tags on a person

Configuration Tag location Tag holder’s # of tags during
Fig. 2(b) activity acquisition

17 E Backpack walking away from TX/RX antennas 1
18 F Wallet � �

19 G Jacket walking towards TX/RX antennas �

20 H Shopping bag � �

21 � � standing in front of TX/RX antennas 5
22 � � walking towards TX/RX antennas �
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5.2 Collected Data

Using our fingerprinter, we performed the experiments described in Section 5.1. Table 3
summarizes the data that we collected, represented in a form of datasets.

Data collection was performed over one month, one tag at the time (unless otherwise
indicated, i.e., for data collection under configurations 21 and 22 – Table 2), 200 ex-
tracted BLFs in a row, in an indoor, RF noisy environment with active Wi-Fi and GSM
networks. The nominal environment temperature was approx. 22◦C. We increased the
tag temperature by means of a heat gun, while we lowered it by decreasing the overall
environment temperature. Temperatures were measured with an infrared thermometer4.
We note a ±2◦C variations for the given temperatures. We sped up the acquisition pro-
cess by adjusting the aforementioned EPC inventory sequence (Figure 1) in a way to
collect several RN16 packets in the same inventory round and by not requesting the
tag’s identification (EPC) number5. Giving the considered acquisition sequence, the
theoretical upper bound for BLF acquisition is approx. 1250 extracted BLFs per second
(we discuss the fingerprinter acquisition speed in Section 7.3).

6 Evaluation of Tag Distinguishability and Fingerprint Stability

In this section, we first review the metrics that we used to evaluate the tag distinguisha-
bility and the fingerprint stability. Then, we present the results for those evaluations
obtained by the proposed signal feature over the considered tag population.

6.1 Evaluation Metrics

To evaluate the tag distinguishability and the fingerprint stability, we compute the en-
tropy of the probability distribution of the tag fingerprints given the selected signal
feature. For each tag and configuration, fingerprints are built from N extracted BLFs.
Table 4 summarizes the computed entropies for the different analysis we performed.

We compute the entropy of the fingerprint probability distribution in order to show
how many bits of information are contained within that distribution. To compute the
entropy, we consider bins of width equal to the double of the average standard deviation
of the signal feature in the dataset and count the number of fingerprints that fall into the
different bins. We then apply the standard entropy formula [29].

Additionally, for each performed analysis, we define an entropy upper bound6 by
computing its theoretical maximum given the EPC C1G2 specification [11], i.e., the
maximum number of information bits that could be learned from the BLF feature con-
sidering the maximal allowed frequency tolerance as defined in the EPC specification
(±22% around the nominal BLF) and giving the bin width of the considered analysis.

4 Temperature was measured on the tag front surface. Tags were heated up from the back surface
and, for each considered temperature, for at least 5 minutes before data acquisition.

5 This procedure is also valid for multiple-tag acquisitions. For each tag, several RN16 pack-
ets are collected before moving to the next tag. This also provides the association between
extracted BLFs and tags.

6 The entropy upper bound is computed by assuming the fingerprint distribution as uniform [13].
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Table 3. Collected data

Dataset Model # tags
# extracted BLFs Conf. Total # extracted

per tag (Table 1) BLFs per tag

1 ALN9640 100 200 3 200

21
ALN{9540, 9562, 96402, 9654} 40 200 3 200

AD{224, 821, 824, 833} � � � �

ShortDipole, Dogbone3
� � � �

3 ALN96402 10 200 3-22 4000

4 ALN9640 100 200 1,2 400

1 For each model, 10 tags are considered.
2 Tags randomly selected among the 100 used in datasets 1 and 4.
3 For Dogbone tags, 3 different integrated circuit models are considered.

6.2 Tag Distinguishability

In this section, we analyze the tag distinguishability of the proposed feature based on
the fingerprint probability distribution of two datasets: dataset 1, which contains 20,000
extracted BLFs for 100 same-model (and same-manufacturer) tags, and dataset 2, which
contains 24,000 extracted BLFs for 120 tags of 12 different models.

Figure 3(a) and 3(b) show the computed fingerprints for the 100 same-model and
the 120 different-model tags respectively. Each fingerprint is obtained by averaging 5
extracted BLFs (N = 5), resulting in 40 fingerprints per tag. Tag distinguishability
depends only on the variations of the BLF within each tag and between different tags.
For both sets of tags, we can observe a certain degree of distinguishability. First, the
fingerprint variations within each tag are relatively small (average standard deviation
of approx. 120 and 196 Hz for the 100 same-model and the 120 different-model tags
respectively). Second, fingerprints of different tags are located in different frequency
areas. However, we note that (i) fingerprints of different tags also overlap (i.e., different
tags present a similar BLF), which reduces the possibility, or even prevent to distinguish
those tags, and (ii) that the overall frequency range is less than the maximal frequency
range allowed by the EPC C1G2 specification (between 332 and 520 kHz given the
±22% tolerance around the nominal BLF), which indicates that the actual fingerprint
entropy will not correspond to its potential upper bound. Additionally, we note that
different tag models could also be distinguished, in particular when considering tags
embedding Impinj Monza IC.

Figure 3(c) and 3(d) show the empirical fingerprint distributions for the 100 same-
model and the 120 different-model tags respectively. The entropy result based on the
empirical distribution of 120 different-model tags suggests that we could learn 6.78 bits
of information about a single UHF RFID tag. For the 100 same-model tags, this value
is equal to 6.32 bits. The difference between these two results simply lies in the larger
frequency range exploited by several models with respect to one single model. The
entropy upper bound considering the maximal allowed BLF tolerance is, for same-
model tags, equal to 9.45 bits and, for different-model tags, to 9.38 bits.
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Fig. 3. Fingerprints for (a) 100 same-model tags and (b) 120 tags of 12 different models. Finger-
print distribution for (c) 100 same-model tags and (d) 120 tags of 12 different models. For each
tag, 40 fingerprints are considered (N = 5).

We evaluate the impact of the number N of extracted BLFs over which we average
to obtain the tag fingerprints by computing the entropy based on the empirical distribu-
tion of the 100 same-model tags obtained for different values of N . The results of the
analysis for N = 1, 2, 5, 10, 20 are 5.39, 5.81, 6.32, 6.67, and 6.97 bits respectively.

6.3 Fingerprint Stability

In the previous section, we have analyzed the tag distinguishability under a fixed config-
uration of fingerprinter and tag settings. In this section, we evaluate the stability of the
proposed signal feature under different settings, i.e., we analyze the impact of different
settings on the tag distinguishability. More specifically, we evaluate:

1. The entropy of the proposed feature under 16 different configurations of tag po-
sition (with respect to the fingerprinter antennas) and location (on a stand, on a
person), antenna position, transmission power, fingerprinter hardware, and, when
tags are carried by a person, tag holder’s activity (walking, standing) and the num-
ber of carried tags (Table 1 – configurations 3-12 and 17-22, and Table 2).
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Fig. 4. Fingerprint visualization for 10 randomly selected ALN9640 tags and different settings
(N = 5). For each tag in (a), the set of fingerprints on the left is composed of 40 fingerprints of
1 fixed configuration, while the set on the right of 640 fingerprints of 16 different configurations.
For each tag in (b), the set of fingerprints on the left is composed of 200 fingerprints of 5 different
temperatures, while the set on the right of 640 fingerprints of 16 different configurations.

2. The entropy of the proposed feature given different acquisition sampling rates (Ta-
ble 1 – configurations 1-3).

3. The effect of temperature on tag fingerprints (Table 1 – configurations 3, 13-16).

Figure 4(a) shows the fingerprints of the selected 10 tags under 16 different configura-
tions of fingerprinter and tag settings (N = 5, 40 fingerprints for each tag and configu-
ration). For each tag, two sets of fingerprints are shown: 40 fingerprints (the set on the
left) obtained under one single configuration (Table 1 – configuration 3) and 640 finger-
prints (the set on the right) obtained under 16 different configurations of fingerprinter
and tag settings (Table 1 – configurations 3-12 and 17-22). We observe an increase on
the BLF variation within each tag when comparing those two sets: the average standard
deviation within each tag increases from approx. 120 to 150 Hz. Although this increase
(less than 30 Hz) seems relatively small when compared to the considered frequency
range (approx. 30 kHz for the 100 same-model tags), the entropy for the 100 same-
model tag decreases from 6.32 (Section 6.2) to 5.39 bits7. Similarly, the entropy upper
bound decreases from 9.45 to 8.41 bits.

In order to evaluate the impact of the acquisition sampling rate, we compute the
entropy based on the empirical distribution of the 100 same-model tags obtained for
RN16 preambles acquired at different rates. The results of the analysis for 5, 10, and
20 MS/s are 6.19, 6.32, and 6.49 bits respectively.

Figure 4(b) shows the fingerprints of the selected 10 tags under 20 different con-
figurations (N = 5, 40 fingerprints for each tag and configuration). For each tag, two
sets of fingerprints are shown: 200 fingerprints (the set on the left) obtained under 5
different temperatures (Table 1 – configurations 3, 13-16) and 640 fingerprints (the set

7 We compute this entropy over dataset 1 (100 tags, 1 configuration), but considering the stan-
dard deviation under the stability analysis of dataset 3 (10 tags, 16 configurations), i.e., 150 Hz.
This allows us to compare entropies and evaluate the effect of different configurations.
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Table 4. Computed entropies (with 95% confidence interval) for the performed analysis

Dataset
Sampling

N
Config. Standard Entropy Entropy

rate (Table 1) deviation (empirical dist.) (upper bound)
[MS/s] [Hz] [bits] [bits]

1 10 1 3 273.32 (270.14;275.99) 5.39 (5.38;5.42) 8.27 (8.25;8.29)

� � 2 � 192.63 (189.89;195.19) 5.81 (5.78;5.83) 8.77 (8.75;8.79)

� � 5 � 120.21 (117.05;123.31) 6.32 (6.29;6.35) 9.45 (9.42;9.49)

� � 10 � 83.45 (81.14;86.02) 6.67 (6.62;6.71) 9.97 (9.94;10.02)

� � 20 � 56.58 (54.06;58.99) 6.97 (6.91;7.02) 10.54 (10.48;10.60)

2 10 5 3 196.05 (180.38;211.80) 6.78 (6.75;6.80) 9.38 (9.35;9.41)

3 10 5 3-12,17-22 149.57 (140.42;159.72) 5.391 (5.37;5.42) 8.411 (8.41;8.41)

4 5 5 1 134.12 (129.78;138.40) 6.19 (6.14;6.24) 9.29 (9.24;9.34)

� 20 � 2 109.35 (106.44;112.65) 6.49 (6.45;6.52) 9.59 (9.55;9.63)

1 Computed for dataset 1 (100 tags) given the standard deviation of dataset 3 (10 tags).

on the right) obtained under 16 different configurations of fingerprinter and tag settings
(Table 1 – configurations 3-12 and 17-22). Differently from the previous results, tem-
perature seems to have a relatively large impact on the BLF variation within each tag,
especially when considering the limit temperatures in our analysis (10 and 50◦C). We
note that tags are not equally affected by temperature and that we could not observe
any common trend (i.e., a relation between temperature and BLF variation) that would
facilitate the mitigation of the temperature effect on tag fingerprints.

7 Implications on Tag Holders’ Privacy

In this section, we first discuss the implications on people’s privacy given the obtained
results, in particular with respect to people tracking. Then, we discuss possible coun-
termeasures against clandestine tracking and fingerprinter requirements for practical
tracking.

7.1 People Tracking: Breaking Tag Holders’ Privacy

The results of our work show that we can learn 5.39 bits of information about a single
RFID tag by only observing the data rate at which it transmits8. This information can
be extracted independently of the tag position and location, fingerprinter hardware and
antennas position, transmission power, tag holder’s activity, and number of carried tags.

The relatively low distinguishability (per tag) can be improved when considering sets
of tags. Our fingerprinter extracts b = 5.39 bits of information for each tag, i.e, when
individually considered, a maximum of n = �2b� tags can be uniquely distinguished.

8 The amount of information could be further increased by considering sets of tags composed
of different tag models and manufacturers, an higher acquisition sampling rate, and a larger
number of acquired signals over which the tag fingerprints are obtained.
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Fig. 5. (a) A possible shopping mall scenario and (b) the upper bound probability of reconstruct-
ing a tag holder’s trace as a function of the number of tags carried by that tag holder. Curve A
represents a population size of P = 3000, where pT = N (5, 1), the tag entropy b = 5.39, and
each tag holder has been profiled once, i.e., EH = 1. Curves B, C, D, and E are similar to A, but
they consider pT = N (2, 1), P = 5, 000, 000, b = 1, and EH = 10 respectively.

As a consequence, a set S composed of T tags can be uniquely distinguished among
other ST =

(
n+T−1

T

)
= (n+T−1)!

T !(n−1)! sets. For example, a set composed of 5 tags can be
uniquely distinguished among other 1.2 million sets of 5 tags. Larger sets provide more
information (for T = 5, approx. 22 bits) and lead to a larger distinguishability of people
carrying several tags, even with relatively low distinguishability per tag.

To show the impact of our technique on tag holders’ privacy, we evaluate the prob-
ability that the attacker can correctly reconstruct a customer’s path in a shopping mall.
Reconstructed paths, or traces, can be used to derive customers’ behavior and trend and,
ultimately, to optimize the location of shops and facilities in the mall.

We consider a scenario in which several fingerprinters are disseminated in a shopping
mall (Figure 5(a)). Tag holders, i.e., customers carrying tags, are subject to profiling
when passing near the fingerprinters. Each profile is composed of the profiling time and
location, and of the set of fingerprints obtained from the carried tags. A tag holder’s
trace is composed of all the profiles built by the disseminated fingerprinters that relate
to that tag holder over a period of interest. We note that the number of tags carried by
a customer may increase over time, i.e., the more he/she buys, the more tags he/she
carries. Considering this scenario, we evaluate the probability of entirely reconstructing
a tag holder’s trace given all profiles built over the period of interest. We define as P
the size of the customer population which has been profiled over the considered period.

The anonymity set kS,T represents how many tag holders within a population of size
P carry the same set S of T tags (fingerprints). kS,T depends on the population size
P , the distribution pT of the number of carried tags per customer within P , the number
of carried tag T , the distribution pS of the possible tag sets, and the tag entropy b. An
anonymity set kS,T = 2 means that each profile referring to a specific set S of T tags
could be potentially related to 2 different tag holders. It is possible to derive the minimal
population size in order to find at least 2 customers carrying the same set S of T tags.
For example, giving pT = N (5, 1), pS = U(1, ST ), and b = 5.39 bits, the minimal
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population size necessary to find at least 2 customers carrying the same set S of T tags
is 149,480, 3.2 million, and 66 billion for T = 2, 5, 8 tags respectively.

For a tag holder carrying a set S of T tags and having an anonymity set of kS,T ,
the probability pR of reconstructing that tag holder’s trace is computed as (kS,T )−E ,
where E is the total number of profiles referring to the considered set of tags S (i.e.,
all the profiles built for all the customers carrying that set S). Figure 5(b) shows the
upper bound probability9 pR of reconstructing a tag holder’s trace as a function of the
number of tags T carried by that tag holder (curve A) and for a different distribution
of the number of carried tags pT (curve B), population size P (curve C), tag entropy b
(curve D), and number of profiles built for each tag holder in the considered population
EH (curve E). Since pR is derived from the anonymity set, this is affected by the tag
entropy, the population size, the distribution of the number of carried tags within that
population, and the number of carried tags by the consider tag holder. In general, for
the same b, P , pT , and EH , increasing the number of carried tags T increases pR:
the more shopping, the less anonymity10. Differently, increasing the population size,
decreasing the tag entropy, or having a population with a smaller number of carried tags
per customer increases the anonymity set and therefore reduces pR. Additionally, pR is
also affected by the total number of profiles built for all the customers carrying the same
set of tags: the more profiles, the larger the number of possible profile combinations that
a certain tag holder’s trace could match, and therefore, the less pR. Finally, we note that
pR could be increased by considering information like spatial and temporal correlation
of profiles.

Therefore, our fingerprinter and selected signal feature allow, in fact, people profiling
and clandestine tracking. Temperature effects on tag fingerprints can be neglected when
tags maintain a similar temperature over the different profilings, for example, like in a
shopping mall where temperature control is used.

7.2 Countermeasures: How to Preserve Tag Holders’ Privacy

Countermeasures against physical-layer identification can be categorized into solutions
that prevent tag-reader communication or that prevent physical-layer identification.

Tag kill and sleep functions, Faraday cages, and active jammers [17] are solutions
that prevent any reader11 to communicate with a tag, thus eliminating any possible
physical-layer identification. Permanently killing tags will guarantee privacy, but at the
price of tag functionality. Sleep functions and active jammers will preserve long-term
tag functionality, but the required additional measures in order to guarantee privacy
(e.g., user interaction, tag access control, or extra hardware) could make those solu-
tions unattractive (especially given the deployment model of RFID tags, in particular
when considering item-level tagging). Faraday cages are the most simple and effective

9 The upper bound probability is computed by assuming pS as uniform.
10 Exceptions can occur depending on the size of the group of all customers carrying T tags and

the entropy b. As shown in Figure 5(b) - curve D, pR decreases when increasing T from 1 to 2,
since the small size of the group of all customers carrying 1 tag allows to reconstruct all traces,
while the bigger size of the group of all customers carrying 2 tags provides some anonymity.

11 Preventing only clandestine readers will not provide any benefit, since the communication
between a tag and a legitimate reader can be easily eavesdropped.
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solutions to guarantee privacy by temporarily preventing tag-reader communication,
but, although shielded wallets and shopping bags could be easily deployed, other RFID-
enabled devices (e.g., medical devices) may require additional efforts that could make
those solutions impractical.

Solutions that prevent physical-layer identification aim at removing or reducing the
effect of the random hardware impairments in the analog circuitry components intro-
duced at the manufacturing process that make physical-layer identification possible.
Although very effective, those solutions require first the (possibly hard) task to identify
the components that make devices identifiable, and then to adjust the manufacturing
process accordingly, which may introduce additional costs that could make those solu-
tions unattractive. In addition, such solutions do not guarantee that a new discriminant
feature will never be exploited in future.

Achieving effective and practical countermeasures against unauthorized physical-
layer identifications remains an open issue that needs to be addressed.

7.3 RFID Fingerprinter Requirements

Besides tag distinguishability, requirements for a practical use of an RFID fingerprinter
for people tracking include acquisition speed, system cost, read range, and size.

Giving the acquisition sequence as detailed in Section 5.2 and the selected EPC
C1G2 settings (nominal BLF equal to 426 kHz and 4-subcarrier Miller encoding [11]),
the theoretical upper bound for the BLF acquisition speed is approx. 1250 BLFs per
second. Besides the well-known factors affecting the tag read rate like tag position, ori-
entation, surrounding material, etc., the communication and computation capabilities
of our fingerprinter also influence the actual acquisition speed. If for a sampling rate
of 5 MS/s the acquisition speed is close to the theoretical upper bound (approx. 1220
BLF/s), for higher sampling rates the larger amount of data to transmit and process re-
duces the actual acquisition speed. For 10 and 20 MS/s, the acquisition speed is reduced
to approx. 390 and 75 BLF/s respectively12. We note that, since tags share the same
medium, the EPC C1G2 specification provides a medium access control mechanism
to limit tag collisions, which, in fact, reduces the overall acquisition speed. Although
for 10 MS/s and 5 tags we find a relatively low acquisition speed equal to approx. 85
BLF/s, this was enough to acquire the necessary tag signals in all our experiments.

The system cost relates to the quality of the obtained fingerprints and the acquisition
speed. With our fingerprinter, we were able to obtain reliable fingerprints for people
tracking at a relatively low-cost: the overall cost of our fingerprinter (USRP2, USRP
daughterboard, host PC, and antennas) is less than USD3200.

During our experiments, we tested tag-reader distances of up to 2.75 m. Although
we did not evaluate larger distances (for this, an external amplifier increasing the fin-
gerprinter transmission power would have been necessary), given the exploited signal
feature and the obtained results, we can extend the tag distinguishability range to the
actual tag read range (which can reach up to 50 m [19]).

12 Those values could be increased by tuning some of the EPC C1G2 settings (e.g., by increasing
the nominal BLF or using FM0 as data encoding scheme) and by optimizing the fingerprinter
blocks having the highest demand of computational power (e.g., the signal filtering processes).
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In terms of size, our fingerprinter fits in a briefcase: the USRP2 platform has sizes
21x17x5 cm, while a laptop can be used as host PC. We deployed planar antennas of
sizes 37x37x4 cm (smaller could be used), which can be easily hidden in wall panels.

8 Related Work

Physical-layer fingerprinting (identification) of UHF RFID tags has been investigated
in several works [21–23, 34]. Periaswamy et al. [22] studied physical-layer identifica-
tion of UHF RFID tags as a mechanism to detect counterfeit tags. The authors used the
tag minimum power response measured at multiple frequencies as discriminant feature.
The authors considered a set of 100 tags from 2 manufacturers and collected tag signals
with a middle/high-range acquisition setup in a clean environment (anechoic chamber).
The results showed that same-model tags can be distinguished, but fingerprint stabil-
ity was not considered. The same authors also proposed a method to enable ownership
transfer of UHF RFID tags based on the same discriminant feature [21]. Timing char-
acteristics (packet length) of the tag-to-reader communication are used by Periaswamy,
Thompson and Romero [23] to identify (classify) UHF RFID tag. The authors consid-
ered a set of 30 tags from 3 manufacturers and collected tag signals with a high-range
acquisition setup in a noisy environment (lab room). Results showed that tags can be
correctly classified, depending on the considered model, with an accuracy between ap-
prox. 32 and 98%. Fingerprint stability was not considered. Zanetti et al. [34] studied
physical-layer identification of UHF RFID tags using timing and spectral characteris-
tics of tag signals. The authors considered a set of 70 tags from 3 manufacturers and
collected tag signals with a high-range acquisition setup in a noisy environment (lab
room). The results showed the existence of stable physical-layer fingerprints for distin-
guishing UHF RFID tags. The authors also evaluated the implications of the proposed
fingerprinting techniques on users’ privacy and as cloning detection mechanism.

In comparison to the above works, our work is the first to evaluate the practicality
of UHF RFID fingerprinting for people tracking. More specifically, we deployed low-
cost fingerprinters to challenge tags, collect tags’ responses, and build fingerprints in a
tracking-like scenario, i.e., in which tags are carried by people moving into a bounded
area. In our study, we considered a larger tag population of 210 tags of 12 models and
3 manufacturers and a more complete fingerprint stability evaluation.

Besides the mentioned works on UHF RFID tags, physical-layer fingerprinting
has been explored on different platforms such as VHF [10, 30, 32], Bluetooth [15],
IEEE 802.11 [5, 14, 16, 33], IEEE 802.15.4 (ZigBee) [7, 24], and GSM [25, 26].
Physical-layer identification has also been considered for inductive coupled HF RFID
devices [6, 27, 28], especially for detecting cloned or counterfeit HF RFID smart cards
and electronic passports. The results showed that the proposed techniques enable iden-
tification of same model and manufacturer HF RFID devices, but at a very close prox-
imity.

9 Conclusion

In this work, we investigated the practicality of people tracking by means of physical-
layer fingerprints of RFID tags that they carry. We have constructed a compact
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USRP-based RFID fingerprinter and have shown that using this fingerprinter people’s
RFID profiles (i.e., RFID fingerprints) can be reliably extracted in dynamic settings (i.e.,
when tags are on people, in wallets, bags, pockets, and when people are moving). We
have further shown, in a representative mall scenario, that these profiles allow people’s
traces to be reconstructed with high accuracy. Effective and practical countermeasures
against unauthorized physical-layer fingerprinting remain an open problem.
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24. Rasmussen, K., Čapkun, S.: Implications of radio fingerprinting on the security of sensor net-
works. In: Proc. International ICST Conference on Security and Privacy in Communication
Networks (2007)

25. Reising, D.R., Temple, M.A., Mendenhall, M.J.: Improved wireless security for GMSK-
based devices using RF fingerprinting. International Journal of Electronic Security and Dig-
ital Forensics 3, 41–59 (2010)

26. Reising, D.R., Temple, M.A., Mendenhall, M.J.: Improving intra-cellular security using air
monitoring with RF fingerprints. In: Proc. IEEE Wireless Communications and Networking
Conference (2010)

27. Romero, H.P., Remley, K.A., Williams, D.F., Wang, C.M.: Electromagnetic measurements
for counterfeit detection of radio frequency identification cards. IEEE Transactions on Mi-
crowave Theory and Techniques 57(5), 1383–1387 (2009)

28. Romero, H.P., Remley, K.A., Williams, D.F., Wang, C.M., Brown, T.X.: Identifying RF iden-
tification cards from measurements of resonance and carrier harmonics. IEEE Transactions
on Microwave Theory and Techniques 58(7), 1758–1765 (2010)

29. Shannon, C.: A mathematical theory of communication. The Bell System Technical Jour-
nal 27, 379–423 (1948)

30. Shaw, D., Kinsner, W.: Multifractal modeling of radio transmitter transients for classification.
In: Proc. IEEE Conference on Communications, Power and Computing (1997)

31. Spiekermann, S., Evdokimov, S.: Privacy enhancing technologies for RFID - A critical in-
vestigation of state of the art research. In: Proc. IEEE Privacy and Security (2009)

32. Ureten, O., Serinken, N.: Detection of radio transmitter turn-on transients. Electronic Let-
ters 35, 1996–1997 (2007)

33. Ureten, O., Serinken, N.: Wireless security through RF fingerprinting. Canadian Journal of
Electrical and Computer Engineering 32(1) (Winder 2007)

34. Zanetti, D., Danev, B., Čapkun, S.: Physical-layer identification of UHF RFID tags. In: Proc.
ACM Conference on Mobile Computing and Networking (2010)



On the Practicality of UHF RFID Fingerprinting 115

Appendix A: Low-Cost Fingerprinter Block Diagram

The block diagram of our low-cost fingerprinter is shown in Figure 6.

DAC

ADC

0°
90

°

Xi
lin

x 
Sp

ar
ta

n 
3-

20
00

 F
PG

A

In
te

rp
ol

at
or

 / 
De

ci
m

at
or

US
RP

2

RF
X9

00
 D

au
gh

te
rb

oa
rd

  

Ho
st

 P
C

Fe
at

ur
e

ex
tr

ac
tio

n
m

od
ul

e

US
RP

2
si

nk
US

RP
2

so
ur

ce

flo
at to

co
m

pl
ex

Ba
se

ba
nd

si
gn

al
ge

ne
ra

to
r

Gi
ga

bi
t

Et
he

rn
et

Ty
pe

: P
la

na
r, 

ci
rc

ul
ar

Ga
in

: 8
.5

 d
Bi

c
Fr

eq
. r

an
ge

: 8
65

-8
70

 M
Hz

Ty
pe

: P
la

na
r, 

ci
rc

ul
ar

Ga
in

: 8
.5

 d
Bi

c
Fr

eq
. r

an
ge

: 8
65

-8
70

 M
Hz

Ga
in

: 0
...

23
 d

Bm

Ga
in

: 0
...

70
 d

Bm

Fr
eq

. r
an

ge
: 

5-
12

00
 M

Hz

fc
: 8

66
.7

 M
Hz

Fr
eq

. r
an

ge
: 

5-
12

00
 M

Hz

fc
o:

 1
...

2 
M

Hz

I

QIQ
IQ

du
al

 D
AC

40
0 

M
S/

s,
 

16
 b

it

du
al

 A
D

C
10

0 
M

S/
s,

 
14

 b
it

Fe
at

ur
e

ex
tr

ac
tio

n
m

od
ul

e

GN
UR

ad
io

RF
ID

 ta
g 

fin
ge

rp
rin

ts
(Q

 c
ha

nn
el

)

RF
ID

 ta
g 

fin
ge

rp
rin

ts
(I 

ch
an

ne
l)

In
ve

nt
or

y
ro

un
d 

se
tti

ng
s

Lo
w

-p
as

s 
fil

te
r

M
ix

er
DA

C
Di

gi
ta

l-t
o-

an
al

og
 c

on
v.

Am
pl

ifi
er

0° 90
°

90
° 

po
w

er
 s

pl
itt

er
Si

ne
 w

av
e 

ge
ne

ra
to

r
AD

C
An

al
og

-to
-d

ig
ita

l c
on

v.

IQ

Fig. 6. Block diagram of our low-cost fingerprinter
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Appendix B: Considered Tag Models

In our study, we consider a tag population composed of 210 EPC C1G2 RFID tags of
12 different models and 3 manufacturers. Table 5 summarizes the considered models
and their main characteristics.

Table 5. Considered tag models and their main characteristics

Model Manufacturer IC
IC Antenna Antenna Application

characteristics size [mm] material (tagging)

ALN9540
Alien

Alien Higgs-2 96-bit EPC num. 94.8 x 8.1 Cu
Cartoon,

Technology pallet

ALN9562 � � � 70 x 19 � �

ALN9640 � Alien Higgs-3
96/480-bit EPC num.

94.8 x 8.1 � �
512-bit user memory

ALN9654 � � � 93 x 19 � �

AD821
Avery

Impinj Monza1 96-bit EPC num. 72 x 30 Al
Item, carton,

Dennison pallet

AD833 � Impinj Monza3 � 38 x 93.5 � �

AD224 �
NXP U-Code 96/240-bit EPC num

95 x 7.4 � �
Gen2 XM 512-bit user memory

AD824 � � � 30 x 50 � Item

Dogbone
UPM

Impinj Monza2 96-bit EPC num. 93 x 23 Al
Item, carton,

Raflatac pallet

Dogbone � Impinj Monza4
128/480-bit EPC num.

86 x 24 � �
512-bit user memory

Dogbone �
NXP U-Code 96/240-bit EPC num

93 x 23 � �
Gen2 XM 512-bit user memory

ShortDipole � � � 92 x 11 � �
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Abstract. We give a critical analysis of the system-wide anonymity
metric of Edman et al. [3], which is based on the permanent value of a
doubly-stochastic matrix. By providing an intuitive understanding of the
permanent of such a matrix, we show that a metric that looks no further
than this composite value is at best a rough indicator of anonymity.
We identify situations where its inaccuracy is acute, and reveal a better
anonymity indicator. Also, by constructing an information-preserving
embedding of a smaller class of attacks into the wider class for which this
metric was proposed, we show that this metric fails to possess desirable
generalization properties. Finally, we present a new anonymity metric
that does not exhibit these shortcomings. Our new metric is accurate as
well as general.

Keywords: System-wide anonymity metric, Probabilistic attacks, Com-
binatorial matrix theory.

1 Introduction

Measuring the amount of anonymity that remains in an anonymity system in the
aftermath of an attack has been a concern ever since a need for web anonymity
systems was first recognized. Much of the work on anonymity metrics, such as
that of Serjantov and Danezis [1] or of Diaz, Seys, Claessens and Preneel [2], has
focused on measuring anonymity from the point of view of a single message or
user. In contrast, Edman, Sivrikaya and Yener [3] proposed a system-wide metric
for measuring an attacker’s uncertainty in linking each input message of a system
with the corresponding output message it exited the system as. They employ
the framework of a complete bipartite graph between the system’s input and
output messages. Any perfect matching between nodes of this graph is a possible
message communication pattern of the system. Anonymity in this framework
is measured as the extent to which the single perfect matching reflecting the
system’s true communication pattern is hidden, after an attack, among all perfect
matchings in the graph.

Edman et al. [3] gave metrics for measuring anonymity after two kinds of
attacks, which we name as infeasibility and probabilistic attacks. Infeasibility
attacks determine infeasibility of some edges in the system’s complete bipartite

S. Fischer-Hübner and N. Hopper (Eds.): PETS 2011, LNCS 6794, pp. 117–133, 2011.
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graph and arrive at a reduced graph by removing such edges. Probabilistic at-
tacks, on the other hand, arrive at probabilities for each edge in the complete
bipartite graph of being the actual communication pattern. Both metrics of [3]
are based upon permanent values of certain underlying matrices.

Contributions of our paper are two-fold. We first demonstrate that while the
metric given in [3] for infeasibility attacks is sound, the one for probabilistic
attacks has two major shortcomings. We then propose a new, unified anonymity
metric for both classes of attacks that overcomes these shortcomings.

By presenting an intuitive understanding of the permanent of a matrix for
probabilistic attacks, we show that the first shortcoming of the metric in [3] for
such attacks is that the permanent, which is a composite value, is at best a rough
indicator of the system’s anonymity level. We highlight situations in which the
permanent is especially inadequate, and show that a better anonymity indicator
is the breakdown of the permanent as a probability distribution on the graph’s
perfect matchings.

The second shortcoming shown of the metric in [3] for probabilistic attacks is
that it is not a generalization of their metric for infeasibility attacks. We present
an information-preserving embedding of infeasibility attacks into the wider class
of probabilistic attacks to show that the former are just special cases of the
latter, a relationship ideally reflected in the metrics of [3], but is not.

The rest of this paper is organized as follows. Section 2 contains an overview
of the two metrics proposed by Edman et al. [3], namely for infeasibility and
probabilistic attacks. Section 3 analyzes the metric of [3] for probabilistic at-
tacks and exposes two shortcomings of it. The inadequacy of permanent as an
indicator of anonymity is explained in Section 3.1, and its failure to correctly
generalize infeasibility attacks in Section 3.2. These sections also develop much
of the mathematical framework that is used to construct our new, unified metric,
which is then presented in Section 4. Finally, Section 5 concludes our work and
mentions some directions for future work.

2 Overview of a System-Wide Metric

In this section we give an overview of the anonymity metrics proposed by Ed-
man, Sivrikaya, and Yener [3]. Their metrics give a system-wide measure of the
anonymity provided to the messages sent via an anonymity system, rather than
to any single message going through it.

Let S be the set of n input messages observed by an attacker having entered
an anonymity system, and T be the set of output messages observed by the
attacker having exited from that system. It is assumed that every input message
eventually appears at the output, i.e. |S| = |T | = n. The anonymity system
attempts to hide from the attacker which input message in S exited the system
as which output message in T . It may employ a number of techniques to this
end, such as outputting messages in an order other than the one in which they
arrived to prevent sequence number association, or modifying message encoding
by encryption/decryption to prevent message bit-pattern comparison, etc. The
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s1 t1

s2

s3

s4

t2

t3

t4

Fig. 1. Complete anonymity, when all edges in the complete bipartite graph between
the system’s input and output messages are equally likely

maximum anonymity this system can strive to achieve is when for any particular
input message in S, each of the output messages in T is equally likely to be the
one that input message in S exited the system as. This situation is depicted
by the complete bipartite graph Kn,n between S and T , as shown in Fig. 1 for
n = 4. Any edge 〈si, tj〉 in this graph indicates that the incoming message si

could possibly have been the outgoing message tj . All edges in the graph are
considered equally likely.

Edman et al. in [3] consider two different classes of attacks. The first class
is of attacks that label some of the edges (i.e. input-output pairings) in the
above complete bipartite graph as infeasible. Removal by the attacker of these
infeasible edges from the graph results in decreased anonymity. The latency-
based attack of [3] and the route length attack of Serjantov and Danezis [1]
are examples of such attacks. The second class considered in [3] is of attacks
that arrive at probabilities for the edges in the graph of Fig. 1 of being the
actual communication pattern. This also reduces the anonymity provided by the
system, and an example of such a probabilistic attack is given in [3] as well.

For both of these classes of attacks, Edman et al. [3] propose anonymity
metrics to reflect the level of anonymity remaining in the system in the aftermath
of an attack. While our work in this paper is an improvement of just the second
metric of [3], namely for probabilistic attacks, here we give an overview of both
metrics of [3] as they are related.

2.1 A Metric for Infeasibility Attacks

An infeasibility attack removes from the system’s complete bipartite graph, like
the one shown in Fig. 1, edges that are determined by the attack to be infeasible
due to some attacker’s observation.

Edman et al. [3] give an example of such an attack that notes the times
at which messages enter and exit the system, and uses its knowledge of the
minimum and/or maximum latency of messages in the system. In this example,
suppose each message entering the system always comes out after a delay of
between 1 and 4 time units, and this characteristic of the system is known to the
attacker. If 4 messages enter and exit this system at times shown in Fig. 2(a),
then s1 must be either t1 or t2, because the other outgoing messages, namely t3
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(a) (b)

Entry 
times

Exit
times

s1 = 1 t1 = 4
s2 = 2 t2 = 5
s3 = 4 t3 = 7
s4 = 5 t4 = 8

s1 t1

s2

s3

s4

t2

t3

t4

t1 t2 t3 t4
s1 1 1 0 0
s2 1 1 0 0
s3 0 1 1 1
s4 0 0 1 1

(c)

Fig. 2. (a) Message entry and exit times observed by attacker. (b) Graph resulting
from the attack, which removed edges it determined to be infeasible from system’s
complete bipartite graph. (c) Biadjacency matrix of this graph.

and t4, are outside the possible latency window of s1. Similar reasoning can be
performed on all other messages to arrive at the reduced graph produced by this
attack, shown in Fig. 2(b). Note that in this graph s1 is connected to only t1 and
t2, and not to t3 or t4, since the edges 〈s1, t3〉 and 〈s1, t4〉 were determined by
the attack to be infeasible. The biadjacency matrix of this graph, a 0-1 matrix
with a row for each input message and a column for each output message, is
given in Fig. 2(c).

The number of perfect matchings between the system’s input and output
messages allowed by the bipartite graph resulting from such an attack is a good
indication of the level of anonymity left in the system after the attack. It is well
known (see, for example, Asratian et al. [4]) that this number is the same as the
permanent of the biadjacency matrix of that graph. The permanent of any n×n
matrix M = [mij ] of real numbers is defined as:

per(M) =
∑

π∈Sn

m1π(1)m2π(2) · · ·mnπ(n),

where Sn is the set of all permutations of the set {1, 2, . . . , n}. It can be seen that
the graph of Fig. 2(b) allows 4 perfect matchings, and that is also the permanent
of its biadjacency matrix in Fig. 2(c).

Given any n by n bipartite graph G resulting from an attack, it is assumed
that G contains at least one perfect matching between the input and output
messages, the one that corresponds to the true communication pattern. The
minimum value of the permanent of its biadjacency matrix A is thus 1, when
A contains exactly one 1 in each of its rows and columns. In this case, the
system is considered to provide no anonymity as the attacker has identified the
actual perfect matching, by ruling out all others. The largest number of perfect
matchings in G is n!, when G is the complete bipartite graph Kn,n. Therefore,
the maximum value of per(A) is n!, when all entries in A are 1. In this case, the
system is considered to provide maximum anonymity as the attacker has been
unable to rule out any perfect matching as being the actual one.
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Definition 1 (Infeasibility Attacks Metric). Edman et al. [3] define a sys-
tem’s degree of anonymity after an infeasibility attack that results in an n × n
biadjacency matrix A as:

d(A) =

{
0 if n = 1,

log(per(A))
log(n!) otherwise.

The above anonymity metric is reasonable as it compares the number of perfect
matchings deemed feasible by the attack with their maximum number. Note that
0 ≤ d(A) ≤ 1. Also, d(A) = 0 iff A has just one perfect matching, i.e. the system
provides no anonymity, and d(A) = 1 iff n > 1 and A has n! perfect matchings,
i.e. full anonymity.

The matrix of Fig. 2(c) contains 4 perfect matchings out of the 24 maximum
possible. By the above metric, the system’s degree of anonymity after that attack
is log(4) / log(24) ≈ 0.436.

2.2 A Metric for Probabilistic Attacks

Unlike infeasibility attacks, that simply label edges of the system’s complete
bipartite graph as being feasible or infeasible, probabilistic attacks assign to
each edge of the graph a real value between 0 and 1 as that edge’s probability
of being a part of the actual communication pattern.

As an example of this attack, consider the simple mix network shown in
Fig. 3(a), with two mix nodes, M1 and M2, and four input as well as output
messages. The message from mix M1 to M2 is internal to the network. As dis-

M1

(a) (b)

P t1 t2 t3 t4
s1
s2
s3 0
s4 0

M2

s1
s2

s3

s4

t1

t2
t3
t4 p(s3) = p(s4) = 1

3

p(s1) = p(s2) = 1
6

p(s1) = p(s2) = 1
2 1

2
1
2

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
3

1
3

1
3

Fig. 3. (a) Message flow via a mix network, observed by attacker to arrive at proba-
bilities of input-output message pairings. (b) Probability matrix of this network.

cussed in Serjantov and Danezis [1], suppose each mix node randomly shuffles
all its input messages before sending them out, i.e. a message entering any mix
node is equally likely to appear as any of that node’s output messages. If this
characteristic of mix nodes is known to the attacker, and the entire message flow
pattern of the network (including internal messages) is visible to the attacker,
the attacker can arrive at probabilities for each input-output message pairing
of the system, as shown next to the output messages in Fig. 3(a). These prob-
abilities are essentially labels produced by the attack on edges of the system’s
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complete bipartite graph, and can be arranged as a probability matrix P = [pij ],
as shown in Fig. 3(b). Any entry pij in this matrix contains the probability that
the system’s input message si appeared as its output message tj . Real values
from the closed interval [0, 1] are used for probabilities.

A probability matrix produced by an attack is doubly-stochastic, i.e. the sum
of all values in any of its rows or columns is 1. This follows from the assumption
that each input message must appear as some output message, and each output
message must have been one of the input messages. The maximum value of the
permanent of an n × n probability matrix P is 1 (see Propositions 1 and 2 in
Section 3.1), when P contains exactly one 1 in each of its rows and columns.
In this case, the system is considered to provide no anonymity as the attacker
has determined all input-output message pairings with full certainty. The min-
imum value of per(P ) is well known to be n!/nn, when all entries in P are 1/n
(see, for example, Egorychev [5]). This corresponds to the system providing full
anonymity.

Definition 2 (Probabilistic Attacks Metric). For any probabilistic attack
resulting in an n × n probability matrix P , Edman et al. [3] define the system’s
degree of anonymity after that attack as:

D(P ) =

{
0 if n = 1,

log(per(P ))
log(n!/nn) otherwise.

The permanent of the matrix of Fig. 3(b) works out to 1/9 ≈ 0.11111, while
the minimum value of the permanent of a 4 × 4 probability matrix is 4!/44 =
0.09375. By the above metric, the system’s degree of anonymity after this attack
is log(1/9) / log(4!/44) ≈ 0.9282.

A Note on Our Naming Convention and Figures. As the rest of this paper
deals with two different types of matrices, namely biadjacency matrices that have
0 and 1 entries and probability matrices with real values in the closed interval
[0, 1] as their entries, we adopt a consistent naming convention while discussing
them. The name A is always used for discussing any biadjacency matrix, and P
for any probability matrix. When the type of a matrix under consideration is
not important, we use the name M .

In figures, biadjacency matrices are displayed in the plain format, as in Fig. 2(c),
and probability matrices with shaded row and column titles, as in Fig. 3(b).

Finally, the infeasibility attacks metric d of Edman et al. [3], given in Def-
inition 1, is defined for biadjacency matrices, while their probabilistic attacks
metric D, given in Definition 2, is for probability matrices.

3 Shortcomings of Metric for Probabilistic Attacks

It is instructive to recapitulate the ranges of the permanent of matrices con-
sidered so far. These ranges are shown in Fig. 4. There are some similarities
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n!/nn

Probability
matrix P

n!10

Biadjacency
matrix A

Fig. 4. Ranges of permanent: For an n× n biadjacency matrix A, per(A) is an integer
from the set {1, 2, . . . , n!}, and for an n×n probability matrix P , per(P ) is a real value
in the range [n!/nn, 1]

between the metric expressions proposed by Edman et al. [3] for infeasibility at-
tacks given by Definition 1 and probabilistic attacks given by Definition 2. First,
in both cases, the argument of the logarithm in the denominator is the perma-
nent of the matrix that corresponds to full anonymity. Second, the farther away
from 1 the permanent of the underlying matrix (A for an infeasibility attack,
and P for a probabilistic attack), the larger the system’s degree of anonymity.

Despite these similarities, while the metric for infeasibility attacks in Defini-
tion 1 is sound, we show that the metric for probabilistic attacks in Definition 2
is not a good one. In this section, we demonstrate some shortcomings of this
metric and, in the next section, we propose a better metric for probabilistic
attacks.

3.1 Inadequacy of Matrix Permanent

The first shortcoming of the metric in Definition 2 for probabilistic attacks is
that it is a function of just the permanent of the probability matrix. While the
value of the permanent is necessary to take into account, we will show that it is
not sufficient.

An Intuitive Understanding of Permanent. We begin by gaining a better
understanding of the permanent of a matrix. Recall that S and T are the sets
of n input and output messages of the system. Given any n × n biadjacency or
probability matrix M , we define a thread of M to be any subset of its cells that
contains exactly one cell from each row of M . Each thread therefore has exactly
n cells. Additionally, a thread of M is a diagonal if no two of its cells lie in the
same column of M . Let T (M) and X (M) denote, respectively, the sets of all
threads and diagonals of M . Note that, a cell in the matrix M corresponds to
an edge of the system’s complete bipartite graph between S and T , a thread
corresponds to a subgraph of that graph obtained by removing all but one edge
connected to each s ∈ S (i.e. a function from S to T ), and a diagonal corresponds
to a perfect matching between S and T . Clearly, M has nn threads, of which n!
are diagonals.

Let the weight of any thread t of M , denoted W(t), be the product of values in
all cells of t. The following proposition follows immediately from the definitions
so far.
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Proposition 1. For any biadjacency or probability matrix M ,∑
x∈X (M)

W(x) = per(M).

In other words, per(M) is the composite sum of weights of all diagonals of M .
We first make the following important observation:

The values in M induce not just its permanent, but also a weight distri-
bution on all its threads, including diagonals.

Next, we improve our intuitive understanding of the permanent of a probability
matrix by taking a closer look at the information content in it. The following
proposition is also straightforward.

Proposition 2. For any probability matrix P ,∑
t∈T (P )

W(t) = 1.

Proof. Let P be n × n. By definitions and algebraic rearrangement we have,

∑
t∈T (P )

W(t) =
n∑

j1=1

n∑
j2=1

· · ·
n∑

jn=1

p1j1p2j2 · · · pnjn =
n∏

i=1

(pi1 + pi2 + · · · + pin) = 1.

The last equality follows from the fact that the sum of each row of P is 1. ��

Consider the set T S of all nn functions f : S → T . By assigning a probability
to each edge in the set S × T , the matrix P ends up inducing a probability on
each function in T S. The probability that P associates with any function f ∈ T S

is
∏
{pij | f(si) = tj}, i.e. the weight of the thread in P corresponding to f .

By Proposition 2, these weights add up to 1, i.e. we have a probability distri-
bution on the entire set T S . If a function f is now picked randomly from the
set T S according to the probability distribution defined by P , then by Propo-
sition 1, per(P ) is the probability that f is a bijection, i.e. a perfect matching
between S and T . The weights of the individual diagonals of P are the probabil-
ities associated by P to their corresponding perfect matchings of being the true
communication pattern of the system.1

A Better Indicator of Anonymity. Since the system’s goal is to blend
the true message communication pattern among others, the system’s degree of
anonymity should not be determined by simply answering the question:

What is the composite permanent of P?
1 As all column sums of P are also 1, P induces a similar probability distribution on

the set ST of all nn functions f : T → S. However, the bijections in ST correspond
to the bijections in T S, and get identical probabilities in both distributions. This
distribution therefore casts no further light on the meaning of per(P ).
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The quintessential question is, rather:

How evenly is the permanent of P distributed as its diagonal weights?

By Proposition 1, it is possible for two matrices, say P1 and P2, to have iden-
tical permanents, but a significantly different diagonal weight distribution. If
the weights of all diagonals of P1 are closer to each other in comparison with
those of P2, then the system underlying P1 should be considered as providing
better anonymity, because the attack has better succeeded in exposing some of
the perfect matchings of P2 as being the likely ones.

The example in Fig. 5 illustrates this phenomenon on 3 × 3 matrices. The

P1 t1 t2 t3
s1 .53 .25 .22
s2 .20 .28 .52
s3 .27 .47 .26

P2 t1 t2 t3
s1 .53 .46 .01
s2 .01 .53 .46
s3 .46 .01 .53

.1489.0386

.0024.1295

.0024.0130

.0973.0351

.0000.0207

.0024.0166

Fig. 5. Two probability matrices with nearly identical permanent, 0.2535, but sig-
nificantly different diagonal weight distributions (for each perfect matching, weights
according to P1 and P2 shown of its corresponding diagonal)

diagonal weight distributions of these two matrices, in non-decreasing order,
are:

P1: 〈0.0130, 0.0166, 0.0207, 0.0351, 0.0386, 0.1295〉,
P2: 〈0.0000, 0.0024, 0.0024, 0.0024, 0.0973, 0.1489〉.

Clearly, the weights of the diagonals of P1 are more evenly distributed than those
of P2. Yet, D(P1) ≈ D(P2), because per(P1) ≈ per(P2). Later, in Section 4, we
propose another metric that, by taking the diagonal weight distribution into
account, ends up assigning almost twice as high degree of anonymity to the
system underlying P1 than to that of P2.

Region of Acute Inadequacy of Permanent. Let the diameter of an n× n
probability matrix P be the largest difference between weights of any two of its
diagonals, i.e.

max{W(x1) −W(x2) | x1, x2 ∈ X (P )}.

Just as the permanent of P , its diameter is another rough indicator of the degree
of anonymity of the underlying system. In general, the smaller the diameter, the
higher the anonymity.

For any possible permanent value p ∈ [n!/nn, 1], let M(p) be the set of all n×n
probability matrices with permanent p. As illustrated in Fig. 6 for n = 3, for
any value of p that is close to 1 or extremely close to n!/nn, the diameters of all
matrices in M(p) are roughly the same. Using just p to determine the system’s
anonymity level for such matrices, although inaccurate, is somewhat acceptable.
However, for any other value of p, i.e. in the middle range, matrices in M(p) vary
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0 0.2 0.4 0.6 0.8 Diameter

Permanent

0.7

0.4

0.1

Fig. 6. Diameter spread of possible permanent values of 3 × 3 probability matrices

significantly in their diameters. It is in this region, where it is critical to consider
the entire diagonal weight distribution of a probability matrix to determine the
system’s anonymity level, rather than just its permanent.

We end this discussion with the observation that the permanent of matrices in
the example of Fig. 5 is approximately 0.2535. From Fig. 6 we can tell that the
diameters of these two matrices are in fact not as far apart from each other as
can be for some other two matrices with permanent, say around 0.4. Thus, even
more convincing examples can be constructed to demonstrate the inadequacy of
permanents as sole indicators of the anonymity level.

3.2 Incorrect Generalization of Infeasibility Attacks Metric

Another shortcoming of the metric in Definition 2 for probabilistic attacks is that
it is not a generalization of the metric in Definition 1 for infeasibility attacks,
despite the fact that probabilistic attacks are, in a sense, a generalization of in-
feasibility ones. We state this more precisely by giving an information-preserving
embedding of infeasibility attacks into the wider class of probabilistic ones.

Diagonal Weight Profile. Let 〈X1, X2, . . . , Xn!〉 be the sequence of diagonals
of any n×n matrix M , ordered by the lexicographic ordering on their underlying
index sets. In other words, if {(1, i1), (2, i2), . . . , (n, in)} is the set of indices of
cells in a diagonal Xi, and {(1, j1), (2, j2), . . . , (n, jn)} is the set of indices of cells
in a diagonal Xj , then i < j iff for some c, ic < jc and for all k < c, ik = jk.

We define the diagonal weight profile (or just profile) of M to be the normal-
ized sequence of weights of diagonals in the above sequence, given by:

profile(M) =
1

per(M)
〈W(X1),W(X2), . . . ,W(Xn!)〉.

As this paper only deals with matrices that have strictly positive permanents, the
above sequence is well defined. A fixed ordering of diagonal weights in profiles,
such as the lexicographic one given above, together with normalization, enable
us to compare weights of corresponding diagonals across matrices.

From Proposition 1, it is seen that profile(M) is a probability distribution
on the diagonals of M , i.e. perfect matchings of its underlying bipartite graph.
From the point of view of a system-wide anonymity metric, this is the most vital
piece of information contained in M .
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A Profile-Preserving Embedding. Let A be an n × n biadjacency matrix
resulting from an infeasibility attack. Exactly per(A) values in profile(A) are
1/per(A), and the remaining values are 0. The metric d(A) of Definition 1 is
based on the premise that each of the per(A) feasible perfect matchings corre-
sponding to the nonzero values in profile(A) are equally likely, and the remaining
are not possible. We now proceed to construct a unique probability matrix CA

with the same profile as A. We will then show that while it is desirable and
expected that D(CA) = d(A), in general it is not so.

We begin by observing that the reduced bipartite graph underlying A may
contain edges that do not appear in any perfect matching as, for example, the
edge 〈s3, t2〉 in Fig. 2(b) and (c). Such nonzero entries in A are harmless since,
by not being on any diagonal with nonzero weight, their presence affects neither
per(A) nor profile(A), thus also not d(A). Let Â = [âij ] be the matrix identical
to A, except that Â contains a 0 entry for all such edges.

Now, let P(A) be the set of all possible (doubly-stochastic) probability ma-
trices conforming to the graph underlying A, i.e.

P(A) = {n × n probability matrix P = [pij ] |
pij = 0 if âij = 0, for all i, j}.

In other words, P(A) contains all possible probability distributions on the edges
declared feasible by A. It is well known that P(A) is nonempty iff per(A) > 0
(see, for example, Theorem 2.2.3 in Bapat and Raghavan [6]). Observe that
any P ∈ P(A) has no less information than A as it contains some probability
distribution in addition to the feasibility information in A, i.e. an attack resulting
in P is at least as strong as one resulting in A. It is therefore expected and
desirable that D(P ) ≤ d(A), but that does not always hold as the example
matrix in Fig. 7 illustrates. This matrix, P , is chosen arbitrarily from P(A), for
the biadjacency matrix A in Fig. 2(c). While d(A) ≈ 0.436, as computed at the
end of Section 2.1, we have that D(P ) ≈ 0.491, a larger value. This phenomenon
does not conform to the intuition behind anonymity metrics.

Let an n×n matrix S = [sij ] be called a scaling of an n×n matrix M = [mij ]
if for some multiplier vectors R = 〈r1, r2, . . . , rn〉 and C = 〈c1, c2, . . . , cn〉 with
strictly positive values, sij = rimijcj , for all i, j. It is easily verified that the
weight of any diagonal of S is the weight of the corresponding diagonal of M ,

P t1 t2 t3 t4
s1 0 0
s2 0 0
s3 0 0
s4 0 0

1
2

1
2

1
2

1
2

1
4

3
4

3
4

1
4

Fig. 7. An example P ∈ P(A), for biadjacency matrix A of Fig. 2(c)
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multiplied by the scaling factor λ =
∏n

i=1 rici. Thus, per(S) = λ · per(M) as
well. This leads to the following proposition.

Proposition 3. If S is a scaling of M , then profile(S) = profile(M).

We let S(M) denote the set of all scalings of M .

Theorem 1. For any n×n biadjacency matrix A resulting from an infeasibility
attack, P(A) ∩ S(Â) is a singleton set.

Proof. When per(A) > 0, that the intersection is nonempty was established by
Brualdi, Parter and Schneider [7]. Uniqueness, when nonempty, follows from the
fact that distinct doubly-stochastic matrices cannot have identical profiles, given
as Corollary 2.6.6 in Bapat and Raghavan [6]. ��

The sole member of P(A)∩S(Â) is the unique canonical probability matrix for
A, denoted CA. It is the only doubly-stochastic matrix whose profile is identical
to that of A. Fig. 8 shows an example matrix A, along with its CA. The matrix CA

A t1 t2 t3
s1 0 1 1
s2 1 0 1
s3 1 1 1

CA t1 t2 t3
s1 0 2 2
s2 2 0 2
s3 2 2

15

15

53

53

53 53 25

Fig. 8. A biadjacency matrix A and its canonical probability matrix CA

can be viewed as the result of a probabilistic attack that has arrived at the same
conclusion as the infeasibility attack resulting in A, in that the sets of perfect
matchings called feasible by these attacks coincide and all those feasible perfect
matchings are deemed equally likely by both attacks. As these two attacks are
equally strong (in fact, identical), it is desirable that D(CA) = d(A).

For the matrices shown in Fig. 8, per(A) = 3 and per(CA) = 3(5
√

5 − 11)/2.
However, profile(A) = profile(CA) = 〈0, 0, 1

3 , 1
3 , 1

3 , 0〉. And while d(A) ≈ 0.6131,
we have that D(CA) ≈ 0.8693 �= d(A). Again, an undesirable behavior of the D
metric. In Section 4, we present a new metric Δ that has the property Δ(CA) =
d(A), for all biadjacency matrices A.

Construction of Canonical Probability Matrix. As for the construction
of CA from a given A, recall that CA is a scaling of Â with some row-multiplier
vector R and column-multiplier vector C. For the example of Fig. 8, A = Â, and
let R = 〈r1, r2, r3〉 and C = 〈c1, c2, c3〉. As the sums of the rows and columns of
CA should be 1, we get the following 6 equations:

r1(c2 + c3) = 1 r2(c1 + c3) = 1 r3(c1 + c2 + c3) = 1
c1(r2 + r3) = 1 c2(r1 + r3) = 1 c3(r1 + r2 + r3) = 1
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We seek solutions to the above system of equations in which all ri’s and ci’s are
positive. One solution for this particular scaling is:

R =

〈
3 −

√
5

2
,
3 −

√
5

2
,
√

5 − 2

〉
, C =

〈
1 +

√
5

2
,
1 +

√
5

2
, 1

〉
.

Although there are multiple such solutions, Sinkhorn [8] showed that all solutions
are unique up to a scalar factor, i.e. if (R1, C1) and (R2, C2) are solutions to the
above, then for some α > 0, R2 = R1α and C2 = C1/α. However, due to the
uniqueness of CA all solutions lead to the same resulting matrix.

Sinkhorn and Knopp [9] gave another interesting characterization of CA as the
limit of an infinite sequence of matrices. Let f , g and h be functions from and
to n × n real matrices, defined as follows:

f(M)ij = Mij /
∑n

k=1Mik (f normalizes each row of M)
g(M)ij = Mij /

∑n
k=1Mkj (g normalizes each column of M)

h(M) = g(f(M))

Then, CA = limk→∞ hk(A). In other words, a procedure that alternately nor-
malizes all rows followed by all columns of A, ad infinitum, would converge to
CA. The accumulated row and column multipliers along the way also converge to
the correct R and C values. However, as A contains just 0-1 values, multipliers
accumulated after any finite number of iterations are only rational. As the ex-
ample in Fig. 8 shows, the final solution can be irrational, the limit of an infinite
sequence of rational approximations. So in general, this procedure requires an in-
finite number of iterations. A number of efficient algorithms have therefore been
considered, as in Kalantari and Khachiyan [10] and Linial, Samorodnitsky and
Wigderson [11], for producing in a finite number of steps, approximate solutions
that are within acceptable error bounds.

4 A More Accurate Metric for Probabilistic Attacks

We now present a new metric for probabilistic attacks that overcomes the short-
comings mentioned in the previous section of the metric D of Edman et al. [3].
By being sensitive to the distribution of the permanent of a given probability ma-
trix over its diagonals, the new metric results in a more accurate measurement
of the underlying system’s degree of anonymity. Furthermore, this metric has
the welcome trait of correctly treating probabilistic attacks as generalizations of
infeasibility attacks. This feature is exploited to make just this one metric suffice
for both kinds of attacks.

The fundamental premise upon which our metric is constructed is that the
permanent of a matrix can be broken down into a probability distribution over
its diagonals, i.e. the perfect matchings of the system’s complete bipartite graph.
The profile of the matrix is essentially that distribution.

Ever since the works of Serjantov and Danezis [1] and Diaz et al. [2], Shannon
entropy of a probability distribution is a well accepted measure of the system’s
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degree of anonymity. We employ the same technique over the profile of the
matrix as a measure of the attacker’s uncertainty of which perfect matching is
the system’s true communication pattern.

Definition 3 (Unified Metric). Let M be a given n× n biadjacency or prob-
ability matrix resulting from an attack, with profile(M) = 〈w1, w2, . . . , wn!〉. We
define the underlying system’s degree of anonymity after this attack as:

Δ(M) =

⎧⎨⎩
0 if n = 1,

−
∑n!

i=1 wi · log(wi)
log(n!) otherwise.

In the above summation, a subexpression 0 · log(0) is interpreted as 0.
Observe that the above metric Δ is for biadjacency as well as probability

matrices, whereas the metrics of Edman et al. [3] for these two kinds of matrices
were separate. Their metric d, given in Definition 1, was for biadjacency matrices,
while their metric D, given in Definition 2, was for probability matrices. We first
establish that for biadjacency matrices, our Δ coincides with d.

Theorem 2. For any biadjacency matrix A, d(A) = Δ(A) = Δ(CA).

Proof. The second equality follows from the fact that A and CA have identical
profiles. To show the first equality, we recall from Section 3.2 that exactly per(A)
values in profile(A) are 1/per(A), and the remaining values are 0. The numerator
of the expression in Definition 3 thus becomes:

−per(A)
[

1
per(A)

· log
(

1
per(A)

)]
= log(per(A)),

which is the numerator of the expression in Definition 1 of Section 2.1. ��

To understand the properties of our new metric better, we revisit some of our
earlier examples. For the probability matrices P1 and P2 of Fig. 5 with equal
permanent value of about 0.2535, we had that D(P1) ≈ D(P2) ≈ 0.9124. How-
ever, Δ(P1) ≈ 0.8030, about twice as high as Δ(P2) ≈ 0.4544. Our new metric
Δ recognizes that the profile of P2 is significantly more uneven than that of P1,
thus assigning the system underlying P2 a far lower degree of anonymity.

For the biadjacency matrix of Fig. 2(c), we have Δ(A) = d(A) ≈ 0.436. The
probability matrix P of Fig. 7 was arbitrarily chosen from the set P(A). Of
the 24 values in profile(P ), 〈 1

20 , 9
20 , 1

20 , 9
20 〉 is the subsequence of nonzero values.

While we saw that D(P ) ≈ 0.491 > d(A), we have that Δ(P ) ≈ 0.3204 < d(A).
This behavior conforms with our intuition that P has more information than A.
The following theorem shows that this phenomenon is guaranteed by Δ.

Theorem 3. For any biadjacency matrix A and P ∈ P(A), such that P �= CA,
Δ(P ) < Δ(A).

Proof. Let per(A) = t. Then, profile(A) has t nonzero values, and each of those
values is 1/t. Let p1, p2, . . . , pt be the corresponding values in profile(P ). As these
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are the only diagonals of P that may have nonzero weights, their sum is 1. We
need to show that:

−
t∑

i=1

pi · log(pi) < −
t∑

i=1

(1/t) · log(1/t).

Although this property of Shannon entropy is well known in information theory
(see, for example, Kapur [12] for a proof based on Jensen’s inequality), here we
give a short proof.

It is easily seen that, for all β > 0, we have 2β ≤ 2β, with equality iff β = 1.
Taking logarithms to the base 2 gives 1+log(β) ≤ β. As we interpret 0·log(0) = 0,
we can substitute β = (1/t)/pi, and simplify, to get that for all i, pi−pi ·log(pi) ≤
(1/t) − pi · log(1/t), with equality iff pi = 1/t. Summation over all i gives:

−
t∑

i=1

pi · log(pi) ≤ log(t) = −
t∑

i=1

(1/t) · log(1/t).

As P �= CA and distinct doubly-stochastic matrices cannot have the same profile,
we have that for some i, pi �= (1/t), leading to a strict inequality. ��

We end this section with an example that demonstrates how different our new
metric Δ can be from the old metric D of Edman et al. [3]. Fig. 9 shows two
matrices, P1 and P2 for which, according to the D metric, P1 seems to result
in less anonymity than P2, as D(P1) ≈ 0.5658 < 0.7564 ≈ D(P2). However,

P1 t1 t2 t3
s1 .04 .04 .92
s2 .48 .49 .03
s3 .48 .47 .05

P2 t1 t2 t3
s1 .65 .01 .34
s2 .01 .34 .65
s3 .34 .65 .01

Fig. 9. Two probability matrices for which D(P1) < D(P2), but Δ(P1) > Δ(P2)

Δ(P1) ≈ 0.4132 > 0.2750 ≈ Δ(P2), i.e. according to our new metric, P1 results
in higher anonymity than P2.

5 Conclusions and Future Work

Edman, Sivrikaya and Yener [3] introduced a method for arriving at a system-
wide measure of the level of anonymity provided by a system. Their approach
is based upon a complete bipartite graph that models all possible input and
output message associations of the system. By rendering infeasible some edges
of this graph, an infeasibility attack results in a reduced graph, thereby lowering
anonymity. They proposed adopting the permanent of the biadjacency matrix
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of this reduced graph to determine the amount of anonymity remaining in the
system in the aftermath of the attack.

Edman et al. [3] then suggest adopting a similar technique for a wider class of
probabilistic attacks that, instead of removing infeasible edges from the system’s
complete bipartite graph, assign probabilities to all edges.

In this paper, we argue that while the metric given in [3] for the narrower
class of infeasibility attacks is sound, their metric for probabilistic attacks has
shortcomings. We show why using just the permanent of the underlying matrix
for probabilistic attacks is inaccurate, as it at best gives only a rough measure of
the system’s anonymity level. We also show that this technique fails to correctly
treat probabilistic attacks as generalizations of infeasibility ones.

We then present a new metric that overcomes these shortcomings. By recog-
nizing that the permanent of a matrix can be broken down into a probability
distribution on the perfect matchings of the underlying bipartite graph, our new
metric provides an accurate measure of anonymity. It also has the desirable
property of being a unified metric for both classes of attacks.

The basic metric of [3] for infeasibility attacks has since been extended for
modified scenarios. Gierlichs et al. [13] enhanced it for situations where system
users send or receive multiple messages. The equivalence relation on perfect
matchings, induced by such multiplicity, causes a reduction in anonymity. Bagai
and Tang [14] analyzed the effect of employing data caching within the mix
network. Their modified metric captures an increase in anonymity due to such
caching. We leave such extensions to the new metric proposed in this paper as
future work.
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Abstract. Tor is one of the most widely used privacy enhancing tech-
nologies for achieving online anonymity and resisting censorship. While
conventional wisdom dictates that the level of anonymity offered by Tor
increases as its user base grows, the most significant obstacle to Tor
adoption continues to be its slow performance. We seek to enhance Tor’s
performance by offering techniques to control congestion and improve
flow control, thereby reducing unnecessary delays.

To reduce congestion, we first evaluate small fixed-size circuit windows
and a dynamic circuit window that adaptively re-sizes in response to
perceived congestion. While these solutions improve web page response
times and require modification only to exit routers, they generally offer
poor flow control and slower downloads relative to Tor’s current design.
To improve flow control while reducing congestion, we implement N23,
an ATM-style per-link algorithm that allows Tor routers to explicitly
cap their queue lengths and signal congestion via back-pressure. Our
results show that N23 offers better congestion and flow control, resulting
in improved web page response times and faster page loads compared to
Tor’s current design and other window-based approaches. We also argue
that our proposals do not enable any new attacks on Tor users’ privacy.

1 Introduction

Tor [10] is a distributed circuit-switching overlay network consisting of over
two-thousand volunteer-run Tor routers operating around the world. Tor clients
achieve anonymity by source-routing their traffic through three Tor routers using
onion routing [14].
Context. Conventional wisdom dictates that the level of anonymity provided by
Tor increases as its user base grows [8]. Another important, but often overlooked,
benefit of a larger user base is that it reduces suspicion placed on users simply
because they use Tor. Today, there are an estimated 150 to 250 thousand daily
Tor users [20]. However, this estimate has not increased significantly since 2008.

� Work was done at University of Colorado and University of California, San Diego.

S. Fischer-Hübner and N. Hopper (Eds.): PETS 2011, LNCS 6794, pp. 134–154, 2011.
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One of the most significant road blocks to Tor adoption is its excessively high
and variable delays, which inhibit interactive applications such as web browsing.

Many prior studies have diagnosed a variety of causes of this high latency
(see Dingledine and Murdoch [11] for a concise summary). Most of these studies
have noted that the queuing delays often dominate the network latencies of rout-
ing packets through the three routers. These high queuing delays are, in part,
caused by bandwidth bottlenecks that exist along a client’s chosen circuit. As
high-bandwidth routers forward traffic to lower-bandwidth downstream routers,
the high-bandwidth router may be able to read data faster than it can write
it. Because Tor currently has no explicit signaling mechanism to notify senders
of this congestion, packets must be queued along the circuit, introducing po-
tentially long and unnecessary delays for clients. While recent proposals seek
to re-engineer Tor’s transport design, in part, to improve its ability to handle
congestion [18,29,36], these proposals face significant deployment challenges.

Improving Congestion and Flow Control. To reduce the delays intro-
duced by uncontrolled congestion in Tor, we design, implement, and evaluate two
classes of congestion and flow control. First, we leverage Tor’s existing end-to-end
window-based flow control framework and evaluate the performance benefits of
using small fixed-size circuit windows, reducing the amount of data in flight that
may contribute to congestion. We also design and implement a dynamic window
resizing algorithm that uses increases in end-to-end circuit round-trip time as
an implicit signal of incipient congestion. Similar solutions are being considered
for adoption in Tor to help relieve congestion [6], and we offer a critical analysis
to help inform the discussion. Window-based solutions are appealing, since they
require modifications only to exit routers.

Second, we offer a fresh approach to congestion and flow control inspired by
standard techniques from Asynchronous Transfer Mode (ATM) networks. We
implement a per-link credit-based flow control algorithm called N23 [19] that
allows Tor routers to explicitly bound their queues and signal congestion via
back-pressure, reducing unnecessary delays and memory consumption. While
N23 offers these benefits over the window-based approaches, its road to deploy-
ment may be slower, as it may require all routers along a circuit to upgrade.

Evaluation. We conduct a holistic experimental performance evaluation of the
proposed algorithms using the ModelNet network emulation platform [35] with
realistic traffic models. We show that the window-based approaches offer up to
65% faster web page response times relative to Tor’s current design. However,
they offer poor flow control, causing bandwidth under-utilization and ultimately
resulting in poor download time. In contrast, our N23 experiments show that
delay-sensitive web clients experience up to 65% faster web page responses and
a 32% decrease in web page load times compared to Tor’s current design.

2 Tor Background

The Tor network is a decentralized circuit-switching overlay consisting of volun-
teer-run Tor routers hosted around the world. Tor offers anonymity to clients by
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Fig. 1. A Tor router’s queuing architecture

employing a layered encryption scheme [14] with three Tor routers. All data is
sent in fixed-sized 512-byte units called cells. In general, the client selects routers
to use on a circuit taking into account their bandwidth capacities, in order to
balance the traffic load over the available router bandwidth. The first router
on a circuit (called an “entry guard”) is chosen carefully to reduce the threat
of profiling and the predecessor attack [38]. Upon receiving a cell, the router
removes its layer of encryption and forwards the cell to the next router on the
circuit. Once the final (exit) router in the circuit removes its layer of encryption,
the client’s traffic is forwarded to the destination. A prior study found that the
majority of Tor traffic by connection is interactive HTTP [21], and most of this
traffic volume flows from the destination to the client. More details about Tor can
be found in its design document [10] and its evolving protocol specification [9].

3 Tor’s Approach to Congestion and Flow Control

Since the Tor network consists of volunteer-run routers from across the world,
these routers have varying and often limited amounts of bandwidth available to
relay Tor traffic. Consequently, as clients choose their circuits, some routers have
large amounts of bandwidth to offer, while others may be bandwidth bottlenecks.
In order for Tor to offer the highest degree of performance possible, it is necessary
to have effective mechanisms in place to ensure steady flow control, while also
detecting and controlling congestion. In this section, we discuss the many features
that directly or indirectly impact congestion and flow control in Tor.

3.1 Congestion and Flow Control Mechanisms

Pairwise TCP. All packets sent between Tor routers are guaranteed to be
delivered reliably and in-order by using TCP transport. As a result of using TCP,
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communications between routers can be protected with TLS link encryption.
However, several circuits may be multiplexed over the same TCP connections,
which could result in an unfair application of TCP’s congestion control [29].

Tiered Output Buffers. Each Tor router’s internal queuing architecture is
illustrated in Figure 1. When a Tor router receives a cell on one of its TCP con-
nections, the cell is first copied from the connection’s receive kernel buffer into
an application-layer input buffer to be decrypted. Next, the cell is pushed onto a
FIFO circuit queue for the cell’s respective circuit. For each outgoing TCP con-
nection, a FIFO output buffer is maintained. The output buffer has a fixed size
of 32KiB, while the circuit queue has no explicit bound, but the circuit window
size restricts how many cells may be in flight (described below). Since multiple
circuits are often multiplexed over the same TCP connection, when there is space
available in the outgoing connection’s respective output buffer, the router must
choose which circuits’ cells to copy onto the output buffer. Initially, cells were
chosen by round-robin selection across circuits. Recently, circuit prioritization
has been proposed to give burstier circuits that likely correspond to interactive
traffic priority over long-lived, bulk circuits [34].

Circuit and Stream Windows. Tor uses two layers of end-to-end window-
based flow control between the exit router and the client to ensure steady flow
control. First, a circuit window restricts how many cells may be in flight per
circuit. By default, Tor uses a fixed 500KiB (1000 cell) circuit window. For
every 50KiB (100 cells) received, an acknowledgment cell called a SENDME is sent,
informing the sender that they may forward another 100 cells to the receiver1.
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Fig. 2. The exit router’s cir-
cuit queue delays for a 300 KiB
download

Within each circuit window is a stream window
of 250KiB (500 cells) to provide flow control (or
fairness) within a circuit. The receiver replies with
a stream-level SENDME for every 25KiB (50 cells)
received. On receiving a stream-level SENDME, the
sender may forward another 50 cells.

Both the stream-level and circuit-level windows
are relatively large and static. To illustrate how
this can degrade performance, consider the fol-
lowing scenario. Suppose a client downloads files
through a circuit consisting of 10MiB/s entry and
exit routers and a 128KiB/s middle router. Since
the exit router can read data from the destination
server faster than it can write it to its outgoing
connection with the middle router, and the reli-
able TCP semantics preclude routers from dropping cells to signal congestion,
the exit router must buffer up to one full circuit window (500KiB) worth of cells.
Furthermore, as shown in Figure 2, these cells often sit idly for several seconds
while the buffer is slowly emptied as SENDME cells are received. Since cells may

1 Due to a bug, clients running Tor 0.0.0–0.2.1.19 erroneously reply with circuit-
level SENDME cells after receiving 101 cells (rather than 100 cells).
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travel down a circuit in large groups of up to 500KiB followed by periods of
silence while the exit router waits for SENDME replies, Tor’s window-based flow
control does not always keep a steady flow of cells in flight.

Token Bucket Rate Limiting. In order to allow routers to set limits on the
amount of bandwidth they wish to devote to transiting Tor traffic, Tor offers
token bucket rate limiting. Briefly, a router starts with a fixed amount of tokens,
and decrements their token count as cells are sent or received. When the router’s
token count reaches zero, the router must wait to send or receive until the tokens
are refilled. To reduce Tor’s CPU utilization, tokens are refilled only once per
second. However, it has been previously observed that refilling the tokens so
infrequently contributes in part to Tor’s overall delays [5].

3.2 Alternate Proposals to Reduce Congestion

There have been several recent proposals aimed specifically at reducing Tor’s
congestion. First, Tor has incorporated adaptive circuit-building timeouts that
measure the time it takes to build a circuit, and eliminate circuits that take an
excessively long time to construct [4]. The intuition is that circuits that build
slowly are highly congested, and would in turn offer the user poor performance.
While this approach likely improves the users’ quality of service in some cases, it
does not help to relieve congestion that may occur at one or more of the routers
on a circuit after the circuit has been constructed.

In addition, user-level rate limiting has been proposed to throttle over-active
or bulk downloading users. Here, the idea is to reduce the overall bandwidth
consumption by bulk downloaders by using per-connection token bucket rate
limiting at the entry guard. Early experiments indicate faster downloads for small
file downloaders (the majority of Tor users), while harming bulk downloaders [7].

Finally, incentive schemes [17,24] have been proposed to reward users for
operating fast Tor routers by offering them prioritized service. These proposals
seek to reduce congestion and improve performance by increasing the bandwidth
available for relaying Tor users’ traffic.

4 Improving Tor’s Congestion and Flow Control

Our primary goal is to improve Tor’s performance, specifically by better un-
derstanding and improving Tor’s congestion and flow control. We consider two
broad classes of solutions. First, we wish to understand how much improve-
ment is possible simply by adjusting Tor’s existing end-to-end window-based
flow control mechanisms to reduce the amount of data in flight, and thereby
mitigate congestion. We also evaluate an end-to-end congestion control tech-
nique that enables exit Tor routers to infer incipient congestion by regarding in-
creases in end-to-end round-trip time as a congestion signal. Second, we consider
a fresh approach to congestion and flow control in Tor, eliminating Tor’s end-to-
end window-based flow control entirely, and replacing it with ATM-style, per-
link flow control that caps routers’ queue lengths and applies back-pressure to
upstream routers to signal congestion.
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4.1 Improving Tor’s Existing End-to-End Flow Control

We first consider whether adjusting Tor’s current window-based flow control can
offer significant performance improvements. Keeping Tor’s window-based mech-
anisms is appealing, as solutions based on Tor’s existing flow control framework
may be deployed immediately, requiring modifications only to the exit routers,
not clients or non-exit routers.
Small Fixed-size Circuit Windows. The smallest circuit window size pos-
sible without requiring both senders and receivers to upgrade is 50KiB (100
cells, or one circuit-level SENDME interval). We evaluate how fixed 50KiB circuit
windows impact clients’ performance2.
Dynamic Circuit Windows. It has been shown that protocols that use a
small, fixed end-to-end window may achieve suboptimal throughput [28]. To
avoid a potential loss in throughput that could result from an under-sized
window, we next consider an algorithm that initially starts with a small, fixed
circuit-window and dynamically increases the window size in response to positive
end-to-end latency feedback. Inspired by latency-informed congestion control
techniques for IP networks [3,37], we propose an algorithm that uses increases
in perceived end-to-end circuit round-trip time (RTT) as a signal of incipient
congestion.

The algorithm works as follows. Initially, each circuit’s window size starts
at 100 cells. First, the sender calculates the circuit’s end-to-end RTT using the
circuit-level SENDME cells, maintaining the minimum RTT (rttmin) and maximum
RTT (rttmax) observed for each circuit. We note that rttmin is an approximation
of the base RTT, where there is little or no congestion on the circuit. Next,
since RTT feedback is available for every 100 cells3, the circuit window size
is adjusted quickly using an additive increase, multiplicative decrease (AIMD)
window scaling mechanism based on whether the current RTT measurement
(rtt) is less than the threshold T , defined in Equation 1. This threshold defines
the circuit’s tolerance to perceived congestion.

T = (1 − α) × rttmin + α × rttmax (1)

Choosing a small α value ensures that the threshold is close to the base RTT, and
any increases beyond the threshold implies the presence of congestion along the
circuit4. For each RTT measurement (e.g., each received circuit-level SENDME),
the circuit window size (in cells) is adjusted according to Equation 2.

new window(rtt) =

{
old window + 100 if rtt ≤ T

�old window/2� otherwise
(2)

2 Due to the aforementioned bug, in practice, the window size should be 101 cells.
3 Similar to the 50KiB windows, SENDME cells may be available after 101 cells.
4 For our experiments, we use α = 0.25.
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Fig. 3. N23 credit-based flow control in Tor

Finally, we explicitly cap the minimum and maximum circuit window sizes at
100 and 1000 cells, respectively5. Note that for long-lived circuits, rttmin may
become increasingly small and rttmax may grow very large. In practice, these
values should decay over time, for example, using an exponentially weighted
moving average of each respective parameter.

4.2 ATM-Style Congestion and Flow Control for Tor

Because Tor’s flow control works at the circuit’s edges—the client and the exit
router—we seek to improve performance by implementing per-link flow con-
trol to ensure a steady flow of cells while reducing congestion at the interme-
diate routers. Implementing per-link flow control in Tor resembles the problem
of link-by-link flow control (LLFC) in ATM networks. While the goals of Tor
and ATM are certainly different, there are many similarities. Both networks are
connection-oriented, in the sense that before applications can send or receive
data, virtual circuits are constructed across multiple routers or switches, and
both have fixed-sized cells. Furthermore, it has been shown that ATM’s credit-
based flow control approaches, such as the N23 scheme, eliminate cell loss due to
buffer overflows [16], a feature that makes such approaches similar to Tor, where
no packets may be dropped to signal congestion.

N23 Flow Control for Tor. Figure 3 depicts the N23 scheme that we in-
tegrated into Tor, and it works as follows. First, when a circuit is built, each
router along the circuit is assigned an initial credit balance of N2 + N3 cells,
5 Note that a selfish Tor client could attempt to increase their circuit window by pre-

emptively acknowledging data segments before they are actually received. Prior work
in mitigating similar behavior in selfish TCP receivers may be applied here [30,32].
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where N2 and N3 are system parameters. N2 cells is the available steady state
buffering per circuit, N3 cells is the allowed excess buffering, and the circuit’s
queue length is strictly upper bounded by N2+N3 cells. In general, N2 is fixed
at the system’s configuration time, but N3 may change over a circuit’s lifetime.

When a router forwards a cell, it decrements its credit balance by one for
that cell’s circuit. Each router stops forwarding cells if its credit balance reaches
zero. Thus, routers’ circuit queues are upper bounded by N2 + N3 cells, and
congestion is indicated to upstream routers through this back-pressure. Next, for
every N2 cells forwarded, the downstream router sends a flow control cell to the
upstream router that contains credit information reflecting its available circuit
queue space. On receiving a flow control cell, the upstream router updates the
circuit’s credit balance and may forward cells only if the credit balance is greater
than zero.

Adaptive Buffer Sizes and Congestion Control. The algorithm as de-
scribed assumes a static N3. We also developed an adaptive algorithm that
reduces the N3 value when there is downstream congestion, which is detected
by monitoring the delay that cells experience in the connection’s output buffer.
When the congestion subsides, N3 can increase again. The value of N3 is up-
dated periodically and is bounded by a minimum and a maximum value (100
and 500 cells, respectively).

Advantages. The N23 algorithm has two important advantages over Tor’s
current flow control. First, the size of the circuit queue is explicitly capped, and
guaranteed to be no more than N2 + N3 cells. This also ensures steady flow
control, as routers typically have cells available to forward. Tor’s current flow
control algorithm allows the circuit queue of a circuit’s intermediate routers to
grow up to one circuit window in size, which not only wastes memory, but also
results in unnecessary delays due to congestion. In contrast, for typical parameter
values (N3 = 500 and N2 = 10), N23 ensures a strict circuit queue bound of
510 cells, while these queues currently can grow up to 1000 cells in length.

The second advantage is that adaptive N3 reacts to congestion within a single
link RTT. When congestion occurs at a router, the preceding router in the circuit
will run out of credit and must stop forwarding until it gets a flow control cell.

5 Experiments and Results

To empirically demonstrate the efficacy of our proposed improvements, we offer
a whole-network evaluation of our congestion and flow control algorithms using
the ModelNet network emulation platform [35]. Briefly, ModelNet enables the
experimenter to specify realistic network topologies annotated with bandwidth,
delay and other link properties, and run real code on the emulated network6.

Our evaluation focuses on performance metrics that are particularly impor-
tant to the end-user’s quality of service. First, we measure time-to-first-byte,
which is how long the user must wait from the time they issue a request for
6 More details about our experimental environment can be found in Bauer et al. [2].
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Fig. 4. A simple topology with a middle router bandwidth bottleneck

data until they receive the first byte (or until a web client starts to see content
load on their current web page). The time-to-first-byte is two end-to-end circuit
RTTs: one RTT to connect to the destination web server, and a second RTT
to issue a request for data (e.g., HTTP GET) and receive the first byte of data
in response7. Second, we measure overall download time (including time-to-first-
byte), which is how long the user must wait for their web page to load. For
all experiments, we use the latest development branch of the Tor source code
(version 0.2.3.0-alpha-dev)8.

5.1 Small-Scale Analysis

Setup. We emulate the topology depicted in Figure 4 on ModelNet where two
Tor clients compete for service on the same set of routers with a bandwidth
bottleneck at the middle router9. One client downloads 300KiB, which roughly
corresponds to the size of an average web page [27]. The second client, a bulk
downloader, fetches 5MiB. Both clients pause for a random amount of time
between one and three seconds, and repeat their downloads. Each experiment
concludes after the web client completes 200 downloads. Both clients use the
wget web browser and the destination runs the lighthttpd web server.

End-to-end Window-based Solutions. Figure 5(a) shows that the time-to-
first-byte for a typical web client using stock Tor is 4.5 seconds at the median,
which is unacceptably high for delay-sensitive, interactive web users who must
incur this delay for each web request. In addition, stock Tor’s circuit queues
fluctuate in length, growing up to 250 cells long, and remaining long for many
seconds, indicating queuing delays, as shown in Figure 6(a). Reducing the circuit
window size to 50KiB (e.g., one circuit SENDME interval) offers a median time-to-
first-byte of less than 1.5 seconds, and dynamic windows offer a median time-to-
first-byte of two seconds. In Figure 5(b), we see that the web client’s download
time is influenced by the high time-to-first-byte, and is roughly 40% faster with
50KiB and dynamic windows relative to stock Tor. Also, the circuit queues are
smaller with the 50KiB and dynamic windows (see Figures 6(b) and 6(c)).
7 Note that there is a proposal being considered to eliminate one of these RTTs [13].
8 In our evaluation, we refer to unmodified Tor version 0.2.3.0-alpha-dev as stock

Tor, 50KiB (100 cell) fixed windows as 50KiB window, the dynamic window scaling
algorithm as dynamic window, and the N23 algorithm as N23.

9 Note that a 128 KiB/s router corresponds to the 65th percentile of routers ranked
by observed bandwidth, as reported by the directory authorities. Thus, it is likely to
be chosen fairly often by clients. Also, prior work [26] found the median round-trip
time between live Tor routers to be about 80ms.
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(a) Web client’s time-to-first byte
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(b) Web client’s download time
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(c) Bulk client’s time-to-first-byte
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(d) Bulk client’s download time

Fig. 5. Performance comparisons for window approaches in a bottleneck topology
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(c) Dynamic window

Fig. 6. Bulk client’s circuit queues at the exit router over the course of a download

The bulk client experiences significantly less time-to-first-byte delays (in
Figure 5(c)) than the web client using stock Tor. This highlights an inherent un-
fairness during congestion: web clients’ traffic is queued behind the bulk traffic
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(b) Bulk client’s download time

Fig. 7. Download time comparisons for windows in a non-bottleneck network
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Fig. 8. Download time comparisons for Tor and N23 in a non-bottleneck network

and, consequently, delay-sensitive clients must wait longer than delay-insensitive
bulk downloaders to receive their first byte of data. Using a small or dynamic
window reduces this unfairness, since the bound on the number of unacknowl-
edged cells allowed to be in flight is lower.

However, Figure 5(d) indicates that the bulk client’s download takes signif-
icantly longer to complete with 50KiB windows relative to stock Tor. Thus,
50KiB windows enhance performance for web clients at the cost of slower down-
loads for bulk clients. The bulk clients experience slower downloads because they
keep less data in flight and, consequently, must incur additional round-trip time
delays to complete the download. Dynamic windows offer a middle-ground solu-
tion, as they ameliorate this limitation by offering an improvement in download
time for web clients while penalizing bulk clients less than small windows, but
bulk clients are still penalized relative to stock Tor’s performance.
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We next consider the same topology shown in Figure 4, except we replace the
bottleneck middle router with a 10MiB/s router. In such a topology, congestion
is minimal, as evidenced by a median time-to-first-byte of 0.75 s for both the web
and bulk clients (regardless of the window size). However, because the 50KiB
and dynamic windows generally keep less data in flight, these solutions offer
slower downloads relative to stock Tor, as shown in Figures 7(a) and 7(b). We
also found that manipulating Tor’s circuit windows in combination with circuit-
level prioritization offers even more improvement for the web client, while not
further harming the bulk client’s performance. These results are in Appendix A.

Despite the improvements in time-to-first-byte in the presence of bandwidth
bottlenecks, we find that smaller circuit windows may under-utilize the available
bandwidth10 and the dynamic window scaling algorithm is unable to adjust the
window size fast enough, as it receives congestion feedback infrequently (only
every 100 cells). Also, even in the non-bottleneck topology, the 50KiB window
web client’s time-to-first-byte is higher than the optimal delay from two circuit
RTTs, which is 0.64 s. Lastly, 50KiB windows offer worse flow control than Tor’s
current design, since only 50KiB can be in flight, and the exit router must wait
for a full circuit RTT until more data can be read and sent down the circuit.

Based on these drawbacks, we conclude that in order to achieve an improve-
ment in both time-to-first-byte and download speed, it is necessary to re-design
Tor’s fundamental congestion and flow control mechanisms. We next offer an
evaluation of per-link congestion and flow control for Tor.

Per-link Congestion and Flow Control. We first implemented N23 with
fixed values of N2 and N3 (static N23 ) and then with N3 values that react to net-
work feedback (adaptive N3 ). We disabled Tor’s window-based flow control, so
that exit routers ignored SENDMEs they received from clients. We discuss the re-
sults of adaptive N3 with our large-scale experiments. In this section, we present
the results of N23 for both the bottleneck and non-bottleneck topologies.

0 50 100 150 200 250

0
50

10
0

15
0

20
0

25
0

Time (seconds)

C
irc

ui
t Q

ue
ue

 L
en

gt
h

Fig. 9. Circuit queue length
with bottleneck: N3 = 70, N2
= 20

For the non-bottleneck topology, we see in
Figure 8(b) that N23 provides a substantial
improvement in download time for the 5MiB
downloads compared to stock Tor only for higher
values of N3 — 500 cells, comparable to stock
Tor’s stream window size. The graph shows that
there is a 25% decrease in delay for 50% of the bulk
downloads when N23 is used. Since the maximum
throughput is bounded by W/RTT , where W is
the link’s TCP window size and RTT is the link’s
round-trip time, and since N23’s per-link RTT is
significantly smaller than a stock Tor’s complete
circuit RTT, throughput is increased when N23
is used. This improvement suggests that in non-
bottleneck scenarios, bulk traffic data cells are
10 We note that bandwidth under-utilization may only be a problem if there is not

sufficient demand from Tor clients to fully consume the network’s bandwidth.
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Fig. 10. Performance comparisons for Tor and N23 in a bottleneck topology

unnecessarily slowed down by Tor’s flow control at the circuit’s edges. For web
traffic, Tor’s current flow control and N23 have similar performance for fixed and
adaptive N3, as shown in Figure 8(a). Also, the median time-to-first-byte is the
same for the web and bulk clients at 0.75 s.

For bottleneck scenarios, Figures 10(a) and 10(b) show that smaller values
of N3 improve both the download time and time-to-first-byte for the bursty
web traffic. For example, the web browsing client experiences a 20% decrease in
download time for 80% of the requests when N23 is used. Also, the web client’s
time-to-first-byte is only two seconds for 90% of the requests, whereas for the
stock Tor client, 80% of web requests take more than four seconds to receive
the first byte. Figure 9 shows that the circuit queue length is upper bounded by
N2 + N3 = 90 cells.

To understand how N23 performs with different N2 values, we repeated the
bottleneck experiments while varying that parameter. Although a higher value
for N2 has the undesirable effect of enlarging the circuit buffer, it can be seen
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in Figures 10(a) and 10(b) that when N3 is fixed at 100 cells, increasing N2
to 20 cells slightly improves both download time and time-to-first-byte. It can
be observed from Figure 10(a) that time-to-first-byte is significantly improved
by keeping a smaller N3 = 70 and a larger N2 = 20. Decreasing N3 to 70
cells makes up for the increase in the N2 zone of the buffer, which means we
gain the benefits of less flow control overhead, and the benefits of a small buffer
of N2 + N3 = 90 cells. While performance is improved for the web clients, the
bulk client’s time-to-first-byte is not affected greatly, as seen in Figure 10(c), but
its downloads generally take longer to complete, as we see in Figure 10(d). In
addition, adaptive N3 offers improved time-to-first-byte and download times for
the web client, while slowing downloads for the bulk client. By N23 restricting
the amount of data in flight, the bandwidth consumed by bulk clients is reduced,
improving time-to-first-byte and download time for delay-sensitive web clients.

We also evaluate N23 in combination with circuit-level prioritization in a
bottleneck topology. We observe that circuit-level prioritization with N23 offers
no performance benefit over N23 alone. The full results are in Appendix B.

Finally, the bandwidth cost associated with the N23 scheme is relatively low.
For instance, with N2 = 10, a flow control cell must be sent by each router on
the circuit for every 10 data cells forwarded, which requires a 10% bandwidth
overhead per router. For N2 = 20, a flow control cell is sent for every 20 data
cells, which is only a 5% overhead per router. While this cost is higher than Tor’s
window-based flow control (e.g., one stream-level SENDME for every 50 data cells
and one circuit-level SENDME for every 100 data cells, resulting in a 3% overhead
per circuit), the cost of N23 is nonetheless modest.

5.2 Larger-Scale Analysis

Setup. We next evaluate the window-based solutions and N23 with adaptive N3
in a more realistic network topology11. We deploy 20 Tor routers on a ModelNet
topology whose bandwidths are assigned by sampling from the live Tor network.
Each link’s round-trip time is set to 80ms. Next, to generate a traffic workload,
we run 200 Tor clients. Of these, ten clients are bulk downloaders who fetch files
between 1–5MiB, pausing for up to two seconds between fetches. The remaining
190 clients are web clients, who download files between 100–500KiB (typical
web page sizes), pausing for up to 30 seconds between fetches. This proportion
of bulk-to-non-bulk clients approximates the proportion observed on the live
Tor network [21]. To isolate the improvements due to our proposals, circuit-level
prioritization is disabled for this experiment.

Results. For web clients, Figure 11(a) shows that both the 50KiB fixed and dy-
namic windows still offer improved time-to-first-byte. However, both algorithms
perform worse than stock Tor in terms of overall download time, as shown in
Figure 11(b). Note that this observation holds for both web clients and bulk
downloaders. Because smaller windows provide less throughput than larger win-
dows when there is no bottleneck, non-bottlenecked circuits are under-utilized.
11 In this experiment, we only consider N23 with adaptive N3 because in practice, N23

should discover the right buffer size for the given network conditions.
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Fig. 11. Performance results for large-scale experiments

N23 with the adaptive N3 algorithm, in contrast, has the ability to react to
congestion quickly by reducing routers’ queue lengths, causing back pressure to
build up. Consequently, our results indicate that N23 offers an improvement in
both time-to-first-byte and overall download time for web clients, while bulk
clients experience roughly the same performance as stock Tor.

These experiments again highlight the potential negative impact of 50KiB
and small dynamic windows, since even in a larger network with a realistic
traffic load, smaller windows offer worse performance for typical delay-sensitive
web requests relative to Tor’s current window size. Thus, to achieve maximal
improvements, we suggest that Tor adopt N23 congestion and flow control.

6 Discussion

Having empirically evaluated our proposed congestion and flow control
approaches, we next discuss a variety of open issues.

6.1 Limitations of Experiments and Results

The results presented in Section 5 generally show an improvement in time-to-
first-byte and download time with N23 flow control relative to end-to-end win-
dows. However, these results were obtained in a testbed environment with a
single, artificial traffic load; thus, an analysis of expected performance as the
traffic load varies, on the live Tor network with real traffic loads, and with ex-
haustive N23 parameter configurations is future work.

6.2 Incremental Deployment

In order for our proposed congestion and flow control mechanisms to be practical
and easily deployable on the live Tor network, it is important that any modifica-
tions to Tor’s router infrastructure be incrementally deployable. Any solutions
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based on Tor’s existing window-based flow control require upgrades only to the
exit routers; thus they can be slowly deployed as router operators upgrade. N23
may also be deployed incrementally, however, clients may not see substantial
performance benefits until a large fraction of the routers have upgraded.

6.3 Anonymity Implications

A key question to answer is whether improving Tor’s performance and reduc-
ing congestion enables any attack that was not previously possible. It is well
known that Tor is vulnerable to congestion attacks wherein an attacker con-
structs circuits through a number of different routers, floods them with traffic,
and observes if there is an increase in latency on a target circuit, which would
indicate a shared router on both paths [22]. More recent work has suggested
a solution that would mitigate bandwidth amplification variants of this attack,
but not the shared router inference part of the attack [12]. We believe that by
reducing congestion (and specifically, by bounding queue lengths), our proposed
techniques may increase the difficulty of mounting congestion attacks.

However, if only a fraction of the routers upgrade to our proposals and if clients
only choose routers that support the new flow control, then an adversary may
be able to narrow down the set of potential routers that a client is using. Thus,
it is important to deploy any new flow control technique after a large fraction
of the network has upgraded. Such a deployment can be controlled by setting a
flag in the authoritative directory servers’ consensus document, indicating that
it is safe for clients to use the new flow control.

Another well-studied class of attack is end-to-end traffic correlation. Such
attacks endeavor to link a client with its destination when the entry and exit
points are compromised, and these attacks have been shown to be highly ac-
curate [1,23,25,31,33]. Reducing latency might improve this attack; however,
Tor is already highly vulnerable, so there is little possibility for additional
risk.

Finally, previous work has shown that network latency can be used as a side
channel to infer a possible set of client locations [15]. By decreasing the variance
in latency, we might expose more accurate RTT measurements, thus improving
the effectiveness of this attack. However, reducing congestion does not enable
a new attack, but rather may potentially increase the effectiveness of a known
attack. To put this attack in perspective, Tor’s design has already made many
performance/anonymity trade-offs, and thus, we believe that our performance
improvements outweigh any potential decrease in anonymity brought about by
reducing the variance in latency.

7 Conclusion

We seek to improve Tor’s performance by reducing unnecessary delays due to
poor flow control and excessive queuing at intermediate routers. To this end,
we have proposed two broad classes of congestion and flow control. First, we
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tune Tor’s existing circuit windows to effectively reduce the amount of data
in flight. However, our experiments indicate that while window-based solutions
do reduce queuing delays, they tend to suffer from poor flow control, under-
utilizing the available bandwidth, and consequently, smaller windows provide
slower downloads than unmodified Tor.

To solve this problem, we offer a fresh approach to congestion and flow control
in Tor by designing, implementing, and experimentally evaluating a per-link
congestion and flow control algorithm from ATM networks. Our experiments
indicate that this approach offers the promise of faster web page response times
and faster overall web page downloads.
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A End-to-End Windows with Circuit Prioritization

Circuit-level prioritization has been proposed [34] to enable routers to process
bursty circuits ahead of bulk circuits. In this appendix, we evaluate small and
dynamic circuit windows in combination with circuit-level prioritization12. For
the web client using stock Tor, the time-to-first-byte is reduced from 4.5 seconds
(see Figure 5(a)) to 3 seconds, and the time-to-first-byte for 50KiB and dynamic
windows are roughly the same. However, as shown in Figure 12(a), roughly 25%
of requests experience no significant improvement when using small or dynamic
circuit windows. For these same requests, stock Tor’s large window allows more
data in flight without acknowledgment and, as shown in Figure 12(b), induces
faster downloads (compared to Figure 5(b)). However, for the remaining 75%,
small and dynamic windows offer faster downloads. The bulk client’s time-to-
first-byte and overall download times are not significantly altered by the circuit
prioritization, as shown in Figures 12(c) and 12(d), relative to non-prioritized
circuit scheduling (see Figures 5(c) and 5(d)). These observations are consistent
with the claims made by Tang and Goldberg [34].

12 For all prioritization experiments, we set CircuitPriorityHalflifeMsec to 30
seconds, the current value used on the live Tor network.
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Fig. 12. Performance for window-based flow control with circuit prioritization

B N23 with Circuit Prioritization

The circuit-level prioritization algorithm enhances the bursty clients’ experience
because it remembers how many cells each circuit has recently sent, and gives
more priority to the circuits that have sent less. For stock Tor, this algorithm
is useful since circuit queues can grow to 1000 cells, which means bulk-traffic
circuits can grow large queues and are able to send continuously. However, with
N23, circuit queue sizes are significantly smaller and are equal for both bulk
and bursty clients. This allows both applications to have a fairer share of the
bandwidth. Therefore, for N23, circuit-level prioritization does not provide any
performance benefits. Figures 13(a)–13(d) depict the results of the performance
of N23 in combination with circuit-level prioritization. Both time-to-first-byte
and download times are unaffected by enabling prioritization.
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Abstract. I2P is one of the most widely used anonymizing Peer-to-Peer
networks on the Internet today. Like Tor, it uses onion routing to build
tunnels between peers as the basis for providing anonymous communica-
tion channels. Unlike Tor, I2P integrates a range of anonymously hosted
services directly with the platform. This paper presents a new attack on
the I2P Peer-to-Peer network, with the goal of determining the identity
of peers that are anonymously hosting HTTP services (Eepsite) in the
network.

Key design choices made by I2P developers, in particular performance-
based peer selection, enable a sophisticated adversary with modest re-
sources to break key security assumptions. Our attack first obtains an
estimate of the victim’s view of the network. Then, the adversary selec-
tively targets a small number of peers used by the victim with a denial-
of-service attack while giving the victim the opportunity to replace those
peers with other peers that are controlled by the adversary. Finally, the
adversary performs some simple measurements to determine the identity
of the peer hosting the service.

This paper provides the necessary background on I2P, gives details on
the attack — including experimental data from measurements against
the actual I2P network — and discusses possible solutions.

1 Introduction

Onion routing [13] is an established technique to provide sender- or receiver-
anonymity for low-latency network applications. Both Tor [2] and I2P [15] pro-
vide anonymity to their users via an open network of onion routers run by
volunteers. However, there are significant differences in the details of how these
networks implement the basic technique. For many of the differences, the existing
related work does not provide a clear answer as to which approach is better.

In this paper, we report on our exploitations of some of the design choices
in I2P to deanonymize I2P services, specifically I2P Eepsites.1 An Eepsite is a
website hosted anonymously within the I2P network and accessed via HTTP
tunneled through the I2P network, which also acts as an anonymizing SOCKS
1 Our basic technique could be applied to other kinds of I2P services as well.

S. Fischer-Hübner and N. Hopper (Eds.): PETS 2011, LNCS 6794, pp. 155–174, 2011.
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proxy. Our attack requires a modest amount of resources; the only special re-
quirement, to run I2P peers in several different /16 peers, can also be met by any
Internet user, for example by using cloud based services. While this requirement
may put us outside of the I2P attacker model, our other requirements — par-
ticipation in the I2P network and a modest amount of bandwidth — are easily
within common attacker models for anonymizing P2P networks, including I2P
and Tor. We have implemented and tested the attack on the extant I2P network
in early 2011, making our attacker a credible real-world adversary.

Our attack is primarily based on exploiting I2P’s performance-based selec-
tion of peers for tunnel construction, I2P’s usage of unidirectional tunnels and
the fact that Eepsites are located at a static location in the network. Using
a combination of peers that participate as monitors in the network and other
peers that selectively reduce the performance of certain other peers, our attack
deduces with high degree of certainty the identity of the peer hosting the tar-
geted Eepsite. In contrast to previous deanonymization attacks (such as [9,3]),
our attack does not rely on congestion-induced changes to latency. In fact, the
denial-of-service component of the attack focuses on peers that are not known
to participate in the Eepsite’s active tunnels at the time.

We have evaluated our technique not merely in simulation or a testbed but
against the real I2P network. This paper presents experimental results obtained
in early 2011 using I2P version 0.8.3, modified for our attack.

The main contributions of this paper are as follows:

– An independent characterization of the I2P protocol
– A novel attack on anonymity based on the heuristic performance-based peer

selection for uni-directional tunnels
– Experimental evaluation of the attack
– Recommendations for improving the I2P design to thwart the attack

The rest of the paper is structured as follows. Section 2 provides a detailed
overview of the I2P network. Section 3 describes our attack and Section 4
presents the experimental results. Finally, Section 5 discusses possible solutions
and relates our attack to previous work on deanonymization for similar systems.

2 Background: I2P

I2P is a multi-application framework
for anonymous P2P networking written
in Java. On top of the native Internet
protocol, I2P specifies the use of two
different peer-to-peer transport proto-
cols. The first is called NIO-based TCP
(NTCP), where NIO refers to the Java
New I/O library. The second is called
Secure Semireliable UDP (SSU), pro-
viding UDP-based message transfer. I2P Architecture
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The core of the I2P framework is the I2P router, which implements key com-
ponents of the I2P protocol. Tasks of the I2P router include: maintaining peer
statistics, performing encryption/decryption and building tunnels. I2P applica-
tions rely on the anonymizing tunnels provided by the I2P router for privacy
protection; consequently, the I2P router is central to the security of all I2P ap-
plications and the analysis presented in this paper.

Many Internet applications can be implemented on top of the I2P router.
An application provided by a particular I2P peer is referred to as a service. For
example, I2P includes services to host HTTP servers, to provide IRC-based com-
munication and to perform POP/SMTP-based email transfer. Most I2P services
are controlled and used via a web browser interface.

2.1 Peer and Service Discovery

Like most other P2P networks, I2P has to deal with the problem of finding
peers and subsequently the services offered by those peers. Every peer in the I2P
network is uniquely identified by a data structure called routerInfo. This data
structure holds all the key information about the peer, including public keys
of the peer, a 256 bit hash-identifier and information about how the peer can
be contacted. I2P addresses the bootstrapping problem, the problem of initially
discovering some other peer in the network, by using a non-anonymous HTTP
download of a list of routerInfos for available I2P peers from a fixed location.

I2P’s DHT: the netDB. After bootstrapping, I2P uses a super-peer DHT
to build a network database, called the netDB, with information about all the
peers and services available in the network. The super-peers that maintain this
database are called floodfill peers; each floodfill peer is responsible for the infor-
mation closest to its ID. Proximity is determined using Kademlia’s XOR distance
metric [8]. If a peer has sufficient bandwidth and its configuration allows it, a
peer can promote itself to floodfill status and will do so as soon as the number
of active floodfill peers in the network drops below a certain threshold.

Storing Data in the netDB. Information about how to contact a service
provided by an I2P peer is kept in a so-called leaseSet. LeaseSets are stored
in the same netDB that also contains routerInfos; nevertheless, leaseSets and
routerInfos are independent entities that only share the same storage facility. A
leaseSet primarily specifies a set of entry points (called leases) to the service. An
entry point is the identification of an inbound tunnel at a peer currently serving
as an inbound gateway to the service.

The lookup and storage of leaseSets and routerInfos is achieved by sending the
respective requests to a floodfill server. Figure 1 illustrates the storage process for
a leaseSet. After a floodfill peer receives a request, it replicates the information at
seven additional closest floodfill peers and sends a confirmation to the initiator.

Retrieving Data from the netDB. Retrieving routerInfos and leaseSets is
also performed via tunnels. The request is transmitted to the — with respect
to the destination address — two closest floodfill peers known to the requester.
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Fig. 1. I2P uses tunnels to store a lease in the floodfill database to hide the identity
of the (HTTP) server

If a floodfill peer does not have the requested information, a list of other close
floodfill peers is sent back. The replies are transmitted to the initiator using an
inbound tunnel. If both floodfill peers do not have the requested information,
the requesting peer queries two other floodfill peers until all known floodfill peers
have been contacted.

2.2 I2P Tunnels

I2P uses tunnels to hide the IP address of a participant in an online interac-
tion. I2P tunnels closely resemble onion routing as implemented in Tor with
circuits [2]: the initiator selects the route through the network, no artificial de-
lays are introduced when forwarding, and link- and layered-encryption are used
to protect the data against observers.

I2P Tunnels are Unidirectional. Tunnels in I2P only transfer payload data in
one direction. In order to achieve bi-directional communication, I2P uses inbound
and outbound tunnels. Inbound tunnels are used to transmit data to the peer
that constructed the tunnel and outbound tunnels are used to transfer data from
the peer that constructed the tunnel. Note that only the peer that constructed
the tunnel knows all of the peers in the tunnel.

For outbound tunnels, multiple layers of encryption are added by the creator
of a message; each one is then removed by the corresponding peer as the message
traverses the outbound tunnel.

For inbound tunnels, adding all layers of encryption at the first peer is not
possible; this would require the first inbound node to know the secret tunnel keys
for all of the participants of the tunnel. Instead, every node in an inbound tunnel
adds an additional layer of encryption. Finally, the creator of the tunnel, who
knows the tunnel keys used by each peer from the tunnel construction phase,
removes all layers of encryption to obtain the original message.
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Tunnel Diversity. Every I2P peer creates multiple tunnels; the specific number
of tunnels and the tunnel length depend on the peer configuration. The length of
the tunnel is considered to be a trade-off between speed and anonymity and I2P
gives the end-user control over this setting. The user specifies two non-negative
numbers, x and y. For each tunnel, I2P selects a random number r ∈ [−y, y] and
constructs a tunnel of length max(x + r, 0).

In addition to the distinction between inbound and outbound tunnels based
on the tunnel’s transfer direction, I2P further distinguishes between exploratory
and client tunnels. Exploratory tunnels are for routerInfo queries to the netDB
and for tunnel management. They are not used for privacy-sensitive operations.
Client tunnels are used for all typical application level network messages, for
example to provide tunnels for Eepsites and for leaseSet operations on the
netDB.

Tunnel Construction. In order to select peers for tunnel construction, I2P
first categorizes all known peers into tiers. Depending on the type of tunnel
that is being created, the peer selection algorithm then attempts to select peers
exclusively from a particular tier. In addition to selecting peers from particular
tiers, I2P also avoids the selection of multiple peers from the same /16 (IPv4)
network for the same tunnel.

After selecting peers for the tunnel, the initiator sends tunnel construction
requests (via that partially built tunnel) to the selected peers. A peer receiving
a tunnel construction request is free to either accept to participate in the tunnel
or reject the request, indicating a reason for the refusal. Naturally, tunnels can
still fail if peers that accepted a tunnel construction request are later unable
to sustain the tunnel. The behavior of a peer faced with tunnel construction
requests (including the reason given for rejection) as well as tunnel failures are
important for the performance evaluation of peers, which is used for assigning
peers to tiers.

Tier-based Peer Selection. An I2P peer chooses other peers randomly from a
particular tier depending on the type of the tunnel. A tier consists of peers that
share certain performance characteristics. I2P places certain well-performing
peers into two special tiers:

Fast tier. Peers with high throughput
High-capacity tier. Peers that will accept a tunnel request with high proba-

bility.

The fast tier is considered the most valuable tier and is used for constructing
client tunnels. In the theoretical case where the fast tier does not have a sufficient
number of peers, I2P falls back to using peers from the high-capacity tier for
peer selection in the construction of client tunnels. In practice, we were unable to
observe this behavior since the fast tier was always sufficiently populated during
our evaluation.
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The high-capacity tier is the default choice for exploratory tunnels. Peers must
also be in the high-capacity tier to be eligible for the fast tier. All other peers
are only used as fallback options if the fast and high-capacity tiers lack available
peers. In practice, this is unlikely to happen.

Peers are placed into tiers based on certain performance metrics. A peer is put
in a particular tier if its corresponding performance value exceeds a threshold
calculated by I2P for that tier.2 The size of the fast and high-capacity tiers is
bounded. For the fast tier the number of peers is between 8 and 30 and for the
high-capacity tier between 10 and 75. If the number of peers in those tiers drops
below the threshold, the best-performing peers from lower tiers are promoted.
If the number of peers in a tier exceeds the upper limit, the lowest rated peers
are demoted.

The I2P router keeps track of various performance statistics in order to sort
peers into the correct tiers. Performance metrics are gathered more often for
peers in the fast and high-capacity tiers, since performance metrics are always
gathered if a peer is used for a tunnel. Furthermore, performance scores are
cumulative; this generally results in higher performance values for peers in the
fast and high-capacity tiers and reduces fluctuation.

Metrics for Tier Assignment. I2P is careful about only including perfor-
mance metrics that are hard to manipulate, relying only on measurements en-
tirely controlled by the peer for throughput and tunnel maintenance properties.
In particular, information about tunnels created by other peers is not taken into
consideration.

The capacity value of a peer is based on the number of times the peer accepts
a tunnel request, the number of tunnel rejections and the number of tunnel
failures that happen after a peer accepted to participate in a tunnel.

The goal of the capacity calculation is to estimate how a peer is likely to
behave in the future in terms of its participation in tunnels. The calculation is
primarily based on the accept, reject and failure actions of that peer. Further-
more, if the peer rejected events in the last 5 minutes, the reason given for the
rejection is also considered. A detailed description of the capacity calculation
algorithm can be found in [4]; the main point for this paper is that peers ac-
cepting tunnel requests score high, peers rejecting tunnel requests score low and
peers participating in tunnels that then failed score very low in terms of their
capacity value.

A peer’s speed value is the mean of its three highest, one second throughput
measurements in any tunnel established by the measuring peer over the course
of the last day. Throughput is measured whenever data is sent through a peer
via a tunnel created by the measuring peer. Naturally, throughput is bounded
by the throughput capacity of the measuring peer as well as, for each individual
measurement, the slowest peer in the tunnel. While it would be nice to be able
to influence speed values of other peers, the fact that I2P uses the observed
maximum over an entire day makes this unattractive: attacking a peer to reduce
its speed for a whole day is expensive.
2 The complex threshold calculation is described in detail in [4].
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2.3 Eepsites

The I2P software comes with the Jetty web server3. Using Jetty, every I2P user
can offer HTTP web pages to the I2P network using a domain under the .i2p
TLD. Given such a domain name, I2P creates inbound and outbound client
tunnels for the service and (periodically) publishes a leaseSet in the netDB.

Accessing an Eepsite involves several steps (illustrated in Fig. 2):

1. Eepsite host (server) creates inbound and outbound tunnels for sender-
anonymity and publishes gateway information as a leaseSet in the netDB
(as described in Section 2.1). Fresh tunnels and corresponding leaseSet up-
dates are created at least every 10 minutes.

2. The peer running the HTTP client (client) uses a tunnel to access the netDB
and retrieves the leaseSet information.

3. The client uses inbound and outbound tunnels (for receiver-anonymity) to
contact the gateways from the leaseSet.

4. A handshake is performed via the tunnels for end-to-end encryption between
server and client, using the public key in the leaseSet.

5. The HTTP request is transmitted through the outbound tunnel of the client
and the inbound tunnel of the server.

6. The HTTP response is transmitted through the outbound tunnel of the
server and the inbound tunnel of the client.

Fig. 2. Accessing an I2P Eepsite

Steps 5 and 6 can then be repeated; I2P reuses the resulting channel for
subsequent HTTP requests to improve performance. This is somewhat relevant
to the attack presented in this paper since it allows an attacker to repeatedly
query the HTTP server without the need to perform the costly tunnel setup
operations each time.
3 http://jetty.codehaus.org/jetty/
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Table 1. Key technical differences between Tor and I2P

Tor I2P

3-hop tunnels user-configurable, randomized number
of hops

bi-directional tunnels uni-directional tunnels

guards, bandwidth-based peer selection performance-based peer selection

7 directory servers with complete data super-peer DHT (floodfill peers)

link- and layered-encryption, but not
(necessarily) end-to-end-encryption

end-to-end-, link- and layered-
encryption

many exit nodes, few hidden services one exit node, many integrated services

hidden services are external TCP
servers

build-in servers for many services

implemented in C implemented in Java

transport over TCP only transport over TCP or UDP

2.4 Threat Model

The I2P project does not specify a formal threat model, it instead provides a
list of possible well-known attack vectors (such as intersection / partitioning,
tagging, DoS, harvesting, sybil and analysis attacks) and the authors discuss
how the design relates to these attack vectors.4

Based on the scenarios described, I2P’s attacker model closely resembles that
of Tor: malicious peers are allowed to participate in the network, collect data
and actively perform requests. However, the attacker is assumed to be unable
to monitor the entire network traffic, should not control a vast number of peers
(80% is used as an example) and should not be able to break cryptographic
primitives.

2.5 Summary: I2P vs. Tor

The key philosophical difference between the well-known Tor network and I2P is
that I2P tries to move existing Internet services into the I2P network and provide
service implementations within the framework whereas Tor enables anonymous
access to external Internet services implemented and operated separately. While
Tor has hidden services and I2P has exit nodes, the canonical usage of Tor is
accessing external services and the canonical usage of I2P is accessing integrated
services.

I2P and Tor also differ in a number of technical details, some of which are key
to the attack presented in the following section. Table 1 summarizes the main
technical differences between the two projects.

3 Our Attack

Our attack assumes an adversary that actively participates in the network. Ma-
licious nodes are distributed over different /16 subnets. The adversary should be
4 http://www.i2p2.de/how threatmodel.html
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distributed in order to work around I2P’s restriction of one node per subnet per
tunnel and to provide reasonably well-performing malicious peers as neighbors
regardless of the location of the victim on the Internet. Each of the participating
peers is expected to have resources comparable to typical normal peers in the
I2P network. The peers participate in the I2P network according to the network
protocol. Our adversary does not have the capability to monitor the traffic of
any other node. Our attack influences the performance of I2P peers likely to be
chosen by the host of an Eepsite — the victim — for creating its client tunnels.

The goal of the attacker is to identify the peer “anonymously” hosting a
given Eepsite with high probability. Furthermore, it is assumed that the Eepsite
is available to the entire I2P network for the duration of the attack and hence
resists intersection and partitioning attacks.

For our attack, the adversary uses three types of peers (illustrated in Fig. 3).
The first type, a monitor peer, simply participates in the I2P network as “nor-
mal” peer, but reports certain statistics about tunnel operations back to the
adversary. The most expensive operation (in terms of time and/or bandwidth)
is getting the victim to select these monitor peers as its direct neighbors during
tunnel construction. While there is always a (small) chance that the victim will
select the adversary’s monitor peers, the adversary uses a second type of peer,
an attack peer (which performs a limited type of DoS attack) to influence the
victim’s tiers to the adversary’s benefit. Note that, in contrast to [11], the goal of
the attack is to change the fast tier, not to impact the availability or reachability
of the Eepsite. Finally, the adversary also uses one peer to act as a “normal”
visitor to the Eepsite, querying the I2P NetDB for leaseSets and issuing HTTP
requests to the Eepsite. The leaseSets are used to determine which peers should
be attacked (by the attack peers), and the HTTP requests are used to create a
pattern which is detected by the monitor peers.

3.1 Distributed Monitoring

The main goal for the adversary is to control the nodes closest to the victim in
the inbound and outbound tunnels of the Eepsite. I2P never picks two nodes
from the same /16 network for the same tunnel twice. This makes it highly
beneficial to use a distributed attacker that deploys monitor nodes across many
/16 networks.

The attacker needs to only control the guard node and not multiple nodes per
tunnel. Still, it is necessary to distribute the attacker across many /16 networks
because for inbound tunnels, the guard node is the last node being chosen. So
if the attacker’s monitor nodes were all from the same /16 network, none of
the attacker’s monitor nodes must have been picked previously to participate
in the tunnel before the guard node is selected in order to allow I2P to pick
an attacker’s monitor node as the guard node. If tunnels are of length n and
the adversary controls a out of s (where s = 30 for the current version of I2P)
monitor peers from the same /16 network in the victim’s fast tier, the probability
of being chosen as guard node would be only

(
a
s

)n if all monitor peers are from
the same /16 network. Even for small values of n, the attacker’s /16 network
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Fig. 3. Our attack on I2P uses several participating peers in different roles. Monitor
peers gather statistical evidence, attack peers accelerate getting the monitor peers into
the right position and the control server orchestrates activities.

would be blocked from being selected as the guard node most of the time. Since
our attacker distributes his monitor nodes over many /16 networks, the chance
of successfully becoming a guard node for the incoming tunnel is a

s , independent
of the path length n.

3.2 Taking over the Victim’s Fast Tier

The main challenge for the adversary is to force the victim to use the adversary’s
monitoring peers in its fast tier. Naturally, this requires the adversary to run
several well-behaved and fast (monitor) peers. Clearly, depending on the size
of the I2P network, just having a few monitor peers participate in the network
would make it unlikely that the victim chooses these peers. Our attack takes
advantage of the peer selection algorithm of I2P, which tries to select only well-
performing peers for the tunnels. Thus, the adversary can increase its chances of
entering the victim’s fast tier by actively hampering the performance of the peers
that are currently in the fast tier. While our goal is to enter the victim’s fast tier,
I2P’s use of the highest observed speed over the last 24h makes it impractical
to remove peers from the fast tier directly. Furthermore, the adversary may not
be able to simply perform faster than the fastest s peers in the network — not
to mention the victim may normally take a long time to even evaluate nodes
controlled by the adversary. Thus, our attack makes use of the fact that I2P
only allows high-capacity peers to remain in the fast tier; as a result, our attack
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influences the peer selection algorithm by causing peers to reject tunnels, which
in turn makes it likely that they will be removed from the high-capacity tier
(and thereby also the fast tier). This increases the chance that the victim will
then select the adversary’s monitoring peers as replacements.

Before the adversary can get peers from the victim’s fast tier to reject tunnel
requests, the current nodes in the victim’s fast tier must be identified. Our
attack uses nodes that were recently specified in the leaseSet of the Eepsite as
good targets. After all, nodes that are in the leaseSet must be in the fast tier
of the victim at that time, and are thus likely to remain in the fast tier for a
while. We found that this method worked better than trying to predict the fast
tier from performance measurements done by adversarial nodes.

Given a (small) set of peers that are likely in the fast tier, the adversary
performs a denial-of-service (DoS) attack against these peers. Possible venues
we considered were attacks against the CPU (by forcing the victims to perform
many public key operations) and bandwidth exhaustion. In the end, overloading
the peers with a large number of idle tunnels turned out to be the most cost-
effective strategy for the current I2P release. This attack either exhausts the
amount of bandwidth the peer is configured to use, or, if that limit is rather
high, creates more than the 2500 tunnels that an I2P peer can participate in at
any time. It should be noted that the specifics of the DoS attack are not terribly
relevant to the big picture of the attack, and alternative strategies would likely
work as well.

3.3 Confirmation via Traffic Analysis

The final step of the attack is to observe the victim’s participation in a pair of
tunnels carrying the adversary’s signal with monitor peers adjacent to the victim
in both directions.

There are many established traffic analysis techniques to confirm that two end-
points are participating in the same low-latency tunnel [6,7]. Existing theoretical
models typically assume that a single message moves through the tunnel largely
unmodified with only small chances of message loss. For I2P, the situation is a
bit different; HTTP requests are explicitly converted into an HTTP responses,
and, moreover, individual HTTP requests result in two distinct peaks in the
packet frequency plots (see Fig. 5 (a)). Thus, we deployed a simple, application-
specific method for detecting this particular traffic pattern instead of using more
complex, generic methods that do not incorporate this domain knowledge.

A periodic HTTP request at a fixed frequency t is issued by the adversary’s
control server to create a statistical pattern that is then used to identify the
correct tunnels at the monitor peers (Fig. 4). For our experiments we use t = 15s.
For each tunnel, each monitoring peer counts the number of packets received
in buckets representing time intervals of packet arrival times modulo t. If the
total number of packets is smaller than those transmitted by the adversary
to the Eepsite, the circuit is ignored. If the number of packets is close to or
exceeds the expected number, the monitoring peers compute how many standard
deviations the largest bucket size is from the average bucket size. If the resulting
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Fig. 4. A periodic signal is induced by the control server and detected by the monitor
nodes. They report likely Eepsite hosts to the control server which aggregates the
information.

factor is large, the packets were not equally distributed. Then, to exclude false-
positives from short, non-periodic bursts, the monitoring peers perform the same
calculation, this time for a time interval modulo q where gcd(t, q) = 1 and |t− q|
is small (we use q = 16s). If the signal had a frequency of t, the resulting factor
should be very small; however, if a burst caused a false-positive, the resulting
factor should be about as big as for the calculation modulo t. If the distribution
is normalized modulo q, the tunnel is reported to the adversary as detected.
If two monitoring peers report a peer between them at the same time, that
peer is flagged as likely to be the Eepsite host. The sensitivity used for the
standard deviation factor threshold determines how often the same peer needs
to be flagged before the adversary can be certain.

4 Experimental Results

In this section, we present results from our experiments based on extending the
extant I2P network with 70 “malicious” nodes (corresponding to less than 3.6%
of the nodes in the network) on PlanetLab [12]. Monitor and attacker peers were
configured to use at most 64 kb/s upstream and downstream bandwidth. We set
up the control peer on a machine we controlled to minimize jitter. Furthermore,
one of our peers was set up to host an Eepsite to serve as a victim for testing.
This host was configured to use the standard I2P bandwidth settings (96 kb/s
downstream and 40 kB/s upstream).
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Table 2. Accuracy of the prediction for peers in the fast and high-capacity tiers using
the n most recently observed peers from the lease set. The given percentage refers to
the fraction of the peers from the n most recent leases that are actually in the respective
tier. The fast tier typically consists of s = 30 peers, the high-capacity tier typically
has 75 peers. At the time of the measurement, the I2P network contained at least 1921
peers in total.

# leases % nodes from lease set
(most recent) in fast tier in high-capacity tier

5 60% 60%

10 40% 50%

15 40% 47%

20 45% 55%

25 36% 52%

30 30% 50%

All tests were performed by having all of our peers join the live I2P network
and participate normally (except, of course, for attack-specific behavior). For
our tests, we used 40 attack peers and 30 monitor peers. The 40 attack peers
consistently utilized their 64 kb/s bandwidth; utilization of the 30 monitor peers
differed widely depending on how they were used by normal I2P traffic. The I2P
network contained at least 1921 peers at the time of our experiments.

We should note that the main impact of our experiments on the public I2P
network was that a small fraction (about 1–2%) of the network was slowed down
for a few hours. No personally identifiable information was collected. Despite our
expectation that the impact of the experiment on the network would be small,
an I2P developer did notice “strange” behavior (a significant increase in tunnels
and traffic) when his node was (by chance) chosen as one of the targets for
the attack. Those members of the I2P community we interacted with generally
approved of us doing these kinds of (limited) experiments on I2P. Naturally, given
an open community of anonymous participants, asking for everyone’s approval
is not possible.

4.1 Tier Evolution

First, we wanted to see how well the adversary would be able to predict the
victim’s fast tier from the public leaseSets for the Eepsite. This determines how
much of the attack actually has a chance to have an effect on the victim’s peer
selection algorithm. Table 2 shows what fraction of the last n peers observed in
the leaseSet were actually in the fast tier of the victim at the time. We configured
the victim to use only one inbound and one outbound tunnel (I2P’s default is two
tunnels for each direction). This configuration captures the worst case scenario
from the point of view of the adversary; with more tunnels, more leases could
be learned and the adversary would get a better picture of the victim’s fast tier.
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Table 3. Direct impact of the tunnel acceptance rate of a peer under attack from
various number of attackers with a configured bandwith limit of 64 kb/s. Note that an
increasing number of attackers not only causes the peer under attack to reject tunnels,
but additionally causes requests for tunnels to be lost and hence not be answered at
all.

under attack, number of attackers

normal 2 3 5 7 10

Tunnels accepted 82% 63% 52% 16% 9% 1%

Tunnels rejected 18% 36% 41% 40% 36% 28%

Tunnels lost 0% 1% 7% 44% 55% 71%

Table 4. Impact of the DoS attack on the network using 40 peers with a configured
bandwidth limit of 64 kb/s. This table shows the increase in the churn for the high-
capacity and fast tiers of the victim that the attacker tries to deanonymize. Each
value represents the churn of nodes per 45 seconds tier evaluation cycle of the victim.
Note that the attack uses our (limited-precision) leaseSet-based prediction heuristic
(Section 3.2) to determine which peers to attack. If the attacker could be certain about
which peers are in the respective tiers, the increase in churn would be significantly
higher. Monitor peers provided by the attacker are not subjected to the attack.

normal under attack

High-capacity tier churn 0.89 peers/cycle 3.41 peers/cycle

Fast tier churn 0.76 peers/cycle 1.71 peers/cycle

4.2 Attack Effectiveness

Next, we determined the impact of the DoS attack, first on the attacked peers (to
confirm that the attack works as expected), and then on peer fluctuation in the
fast and high capacity tier. Table 3 shows the impact of our attack on a single
peer. It compares the tunnel request acceptance rate of an ordinary peer with the
acceptance rate when that peer is attacked by several attackers. Table 4 shows
the typical churn rate for peers in the high-capacity and fast tiers of the victim
in two states: under normal operation, and under attack. The data corresponds
to the adversary attacking the last 30 peers observed as leases (with the expected
inaccuracies as listed in Table 2). The data shows that the DoS attack is effective
at obstructing tunnel operations and that the victim reacts to these obstructions
by replacing peers in its high-capacity and fast tiers more often.

4.3 Deanonymization

Finally, we measured how effective our statistical analysis is at determining the
victim once the monitor peers are in place. First, we will provide some examples
for what the statistical patterns observed by the monitor peers (Section 3.3) look
like. Figure 5a shows a representative pattern for the case where the adversary
observes the correct circuit with the signal and performs the statistical analysis
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(a) (b) (c)

Fig. 5. Subfigure (a) shows a packet frequency plot for a circuit containing the signal
(with timestamps calculated modulo the correct modulus t). Subfigure (b) shows the
same packet frequency plot, but with timestamps calculated modulo a different mod-
ulus q. Finally, Subfigure (c) shows a packet frequency plot for a typical circuit not
created by the adversary. In all plots, average and standard deviation are calculated
over the distribution excluding the two largest values (since we expect two peaks).

using the correct modulus (here t = 15). Internals of the I2P implementation
typically create two distinct (and close) peaks if the signal is present. Since
we expect to see these two peaks, we remove them from the distribution when
calculating the average and standard deviations.

Figure 5b shows the same data using a different modulus (here q = 16),
resulting in the peaks being destroyed. This would not be the case if the signal
was not due to requests at the adversaries frequency of t. Sometimes, a circuit
may experience spikes in load at a single point in time. Such spikes would show
up as false-positive signals mod t, but also as spikes mod q. Our analysis
eliminates these false-positives by only considering signals valid that show up
mod t but are extinguished mod q.

Finally, Figure 5c shows a typical pattern for a circuit that does not contain
the signal. It should be noted that during our experiments, most circuits never
reached the required minimum number of messages (approximately the number
of messages transmitted by the adversary via the tunnel) and were hence filtered
long before this statistical analysis is even performed. As a consequence, the
adversary also does not have to worry about small sample sizes for calculating
averages and standard deviations.

Figure 6 shows the ROC curves with the ratios for true-positives and false-
positives for different standard deviation thresholds (in the range of 0 to 10
standard deviations). Tunnels with too few packets to carry the adversary’s
signal are not considered; for instance, for the 1-hop experiment, 47,503 out of
62,366 tunnels (76%) did not carry a sufficient number of packets. If such tunnels
were included, the false-positive rate of the analysis would be lower.

The data from Figure 6 was obtained over the course of four hours with
the victim manipulated to give the attacker control over the entire fast tier
(to control this variable in the experiment). In practice, during a long-term
measurement the adversary would not know at what times his monitor peers
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(a) 1-hop tunnel
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(b) 2-hop tunnel

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
r
u
e
 
P
o
s
i
t
i
v
e
 
R
a
t
e

False Positive Rate

1 Std. Dev.

2 Std. Dev.

5 Std. Dev.

10 Std. Dev.

(c) 3-hop tunnel

Fig. 6. Final result of the statistical analysis. For each tunnel length, the monitor peers
collected 4h worth of data. During this time, the victim created 40, 48 and 34 tunnels
for 1-hop (Fig. 6a), 2-hop (Fig. 6b) and 3-hop (Fig .6c) tunnels respectively. The true-
positive rates represent the fraction of those tunnels flagged by the statistical analysis
for the given threshold. The monitor peers also observed a varying number of other
tunnels (with a sufficient number of packets) unrelated to the victim (14,823 for 1-hop
(Fig. 6a), 11,861 for 2-hop (Fig. 6b) and 5,898 for 3-hop (Fig. 6c)). The false-positive
rates represent the fraction of those tunnels flagged by the statistical analysis for the
given threshold. We marked the 1, 2, 5 and 10 standard deviation thresholds in the
charts.

are in the correct position, making false-positive measurements more frequent.
If the adversary is weak, he might rarely be in the correct position and hence
would need to apply an aggressively high threshold to avoid false-positives. For
example, if the adversary is only able to observe the signal 10% of the time, the
ratio between the target and the top FP peer must be significantly larger than
10:1 to avoid identifying the wrong peer as the host.

Using a threshold of just one standard deviation would be a bit low, given
that the adversary must expect many more non-victim tunnels over the duration
of an experiment. During our experiment, the ratio was 40:14,823 for the 4h
measurement with 1-hop tunnels. In reality, the adversary should expect even
higher ratios because the adversary is likely to control a smaller fraction of the
fast tier of the victim. Figure 6 shows that the signal is strong enough to be
detected even when using a wide range of thresholds that are so high that there
are virtually no false-positives. There are also no significant differences in the
quality of the results between 1, 2 and 3-hop tunnels. Additional experimental
results are included in [4].

5 Discussion

This work confirms the well-known result [1] that attacks on availability or reli-
ability of an anonymizing service can be used to compromise anonymity. What
we have shown specifically is that anonymizing networks that have a strong bias
towards well-performing peers for tunnel construction are particularly vulner-
able to this type of attack. Once the tunnel is compromised, other researchers
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have shown that latency measurements could be used to determine the likely
identity of the victim [5].

5.1 Simplifying the Attack

The presented attack uses both monitor peers and attack peers. In theory, the
attack could work without the attack peers, after all, the attack peers only speed-
up the churn rate in the fast and high-capacity tiers of the victim. However,
without attack peers, it is quite possible that the victim may rarely, if ever,
choose the adversary’s monitor peers: they might be too slow or not even ever
measured by the victim.

In our attack, the attack peers more than doubles the churn in the fast tier,
so we can expect that they cut down the time for the attack by about a factor
of two. Using twice as many monitor peers would have been about as expensive;
thus using a small number attackers to double the effect of the monitor peers
represents a reasonable trade-off (as long as doubling the monitor peer effect
is about as expensive as doubling the number of monitors). Using even more
attackers would allow us to attack more peers; however, given that our knowledge
about the fast tier of the victim is limited, the ratio between attack bandwidth
and attack effect quickly gets worse. Using significantly fewer attacker peers also
does not work — at 64 kb/s, a handfull of attackers might not cause a significant
increase in the number of rejected tunnel requests.

5.2 Uni-directional vs. Bi-directional Tunnels

Because of the uni-directional nature of the I2P tunnels the attacker has to wait
a longer time to observe the victim in the correct position for deanonymization;
monitoring peers have to be in the correct position for both the inbound and the
outbound tunnel. Thus, with a being the number of monitor peers in the fast tier
of the victim, the probability for deanonymization in a fast tier of size s is

(
a
s

)2.
For bi-directional tunnels the attacker would only need one peer in the correct
position, resulting in a probability of a

s . This shows that the attacker has to wait
t times longer to be in a position to confirm the victim in the uni-directional
case when compared to the bi-directional case.

However, the chance of being correct about the deanonymization is different
for both cases as well. To really compare the two styles, we need to consider
the probability of deanonymizing the wrong peer (false-positive). For the uni-
directional case, it is possible to accuse the wrong peer if the same ordinary
tunnel participant happens to be adjacent to the victim for both the inbound
and the outbound tunnel. For this to happen, the peer running the Eepsite has
to first choose an ordinary, non-malicious peer for the first hop of the inbound
tunnel. This happens with probability a−s

s . The same peer then also needs to
be in the outbound tunnel, which happens with probability 1

s . Additionally, the
victim has to choose a monitor peer for the second hop of the inbound and the

outbound tunnel, which happens with probability
(

a
s−1

)2

. Combining all these
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probabilities, the probability for false-positives with uni-directional tunnels is:

s − a

s

1
s

(
a

s − 1

)2

=
s − a

s2

(
a

s − 1

)2

≈ a2 s − a

s4
(1)

With bi-directional tunnels, the probability for a false-positive is higher, be-
cause any other peer between a monitor peer and the victim can be falsely
accused. The overall probability for a bi-directional 2-hop tunnel is:

s − a

s

a

s − 1
≈ a

s − a

s2
(2)

We now relate the probabilities for getting a false-positive for uni-directional
and bi-directional tunnels. Dividing (1) and (2) we get a

s2 , which shows that the
accuracy for the uni-directional case is up to s2 times higher when compared to
the bi-directional case.

This result indicates that uni-directional tunnels help an attacker due to the
much higher certainty an attacker gets once the monitor peers are in the correct
position. Considering this, using uni-directional seems to be a bad design deci-
sion; it makes the statistical evaluation for the adversary easier for the attack
presented in this paper. However, it should be said that the false-positive rate
of bi-directional paths is not tremendously high and might still be manageable
for an attacker.

5.3 Suggestions for Improvements to I2P

While making the I2P network more robust towards DoS attacks is always a
good goal, we do not believe that this would address the main problem: the
ability of the adversary to influence peer selection. While I2P’s heuristics seem
to make it hard for an adversary to directly influence the metrics used for peer
selection, influencing performance itself is likely always possible. Hence, a better
solution would be to limit churn in the fast and high-capacity tiers. Furthermore,
when the Tor network was subjected to a similar attack [10], guard nodes were
introduced into the design of Tor; this would also help in the case of I2P.

Another problem is the fact that Eepsites allow repeated measurements, giv-
ing the attacker the opportunity to possibly collect data for many months. This
problem is not unique to I2P, but also applies in exactly the same way to Tor’s
hidden services. The I2P developers are currently working on integrating a ver-
sion of the secure distributed Tahoe filesystem [14], which may address this issue.

I2P could try to detect the specific attack, for example by watching for peri-
odic requests. However, such a defense would likely not be effective because an
adversary could use signals that are much harder to detect, for example using [6].

Most importantly, I2P should avoid leaking information about its fast tier
by selecting random peers for the leases. This would make it harder for an
adversary to determine which peers should be attacked with the DoS attack
while maintaining performance advantages for the rest of the tunnel.
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6 Conclusion

Biasing peer selection towards well-performing peers has previously been seen
as a mostly theoretical issue. This work shows that combined with a limited,
selective DoS attack on a few peers it enables an adversary to compromise
the anonymity of long-running services. This work also shows that peers re-
acting quickly to changes in observed network performance can be detrimental
to anonymity.
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Abstract. The widespread deployment of smart meters for the mod-
ernisation of the electricity distribution network, but also for gas and
water consumption, has been associated with privacy concerns due to the
potentially large number of measurements that reflect the consumers be-
haviour. In this paper, we present protocols that can be used to privately
compute aggregate meter measurements over defined sets of meters, al-
lowing for fraud and leakage detection as well as network management
and further statistical processing of meter measurements, without re-
vealing any additional information about the individual meter readings.
Thus, most of the benefits of the Smart Grid can be achieved with-
out revealing individual data. The feasibility of the protocols has been
demonstrated with an implementation on current smart meters.

1 Introduction

Smart-grid deployments are actively promoted by many governments, including
the United States as well as the European Union. Yet, current smart metering
technologies rely on centralizing personal consumption information, leading to
privacy concerns. We address the problem of security aggregating meter read-
ings without the provider learning any information besides the aggregate, or to
compare an aggregate with a known value to detect fraud or leakage (the latter
is more relevant for water and gas metering).

Aggregates of consumption across different populations are used for fraud
detection, forecasting, tuning production to demand, settling the cost of pro-
duction across electricity suppliers, and getting a clear picture on the supply
of consumer generated energy, e.g., through solar panels. Aggregation protocols
will also be used to detect leakages in other utilities, e.g., water (which is a big
issue in desert countries) and gas (where a leakage poses a safety problem).

Privacy in Smart Metering. The area of smart metering for electricity, but also
other commodities such as gas and water is currently experiencing a huge push;
for example, the European commission has formulated the goal to provide 80%
of all households with smart electricity meters by the year 2020 [1], and the
US government has dedicated a significant part of the stimulus package towards
a smart grid implementation. Simultaneously, privacy issues are mounting – in

S. Fischer-Hübner and N. Hopper (Eds.): PETS 2011, LNCS 6794, pp. 175–191, 2011.
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2009, the Dutch Senate stopped a law aimed to make the usage of smart meters
compulsory based on privacy and human rights issues [2]. On the US side, NIST
has identified privacy as one of the main concerns in a smart grid implementation,
and both NIST and the European Comission propose using the “privacy by
design” approach [3,4] to alleviate them. While it is not clear yet how much data
can be derived from actual meter readings, the high frequency suggested (i.e.,
about 15 minute reading intervals), together with the difficulty to temporarily
hide one’s behaviour (as one can do, for example, by turning off a mobile phone),
gives rise to serious privacy concerns. For water and gas leakage detection privacy
preserving protocols are even more desirable since measurements need to be
frequent to detect potentially dangerous leaks as soon as possible. Our protocols
allow for a business positive view on privacy. As the aggregator does not learn
anything about the individual contributions, the granularity of the input to the
protocol can be much finer than otherwise possible. For example, one vision
for the smart grid is to remotely tune down flexible applicances such as fridges
and air-conditioners during times of energy shortage. Due to privacy protecting
aggregation, it is possible that the meter reports the consumption of such devices
(and willingness to tune down) separately without an additional privacy risk,
which allows the energy supplier to predict better how much energy consumption
could be reduced that way.

An important aspect in privacy preserving metering protocols is to take into
account the rather limited resources on such meters, both in terms of bandwidth
and in terms of computation. We therefore push as much workload as possible to
the back-end, leaving the minimal work possible on the meter itself. In terms of
communication, the messages sent out by the meters should increase only mini-
mally. Furthermore, meters should ideally act independently, without requiring
any interaction with other meters wherever possible and minimal interaction
when not.

For statistical analysis, our protocols support the division of meters into inde-
pendent sets over which the aggregation is to be done. This allows for different
use-cases that require only statistical accuracy to be combined without any ad-
ditional effort on the meters. We have validated the practicality of our protocols
in a real setting with an implementation on a production meter in collaboration
with the meter manufacturer, and by defining the usecases together with several
energy suppliers.

Related work. Privacy preserving metering aggregation and comparison has been
introduced by Garcia and Jacobs [5]. Their protocol requires O(n2) bytes of
interaction between the individual meters as well as relatively expensive cryp-
tography on the meters. Fu. et all [6], highlight the privacy related threats of
smart metering and propose an architecture for secure measurements, that rely
on trusted components outside of the meter. Rial and Danezis [7] propose a
protocol using commitments and zero knowledge proofs to privately derive and
prove the correctness of bills, but not for aggregation across meters.
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2 Basic Protocols

The protocols we propose follow the principle of [8] by relying on masking the
meter consumptions ci,j output by meter j for a reading i, in such a way that
an adversary cannot recover individual readings. Yet, the sum of the masking
values across meters sums to a known value (for simplicity we set it to be zero
here; however, in a practical setting, a non-zero value does allow for aggregating
over several different sets of meters and easier group management). As a result
summing the masked readings uncovers their sum or a one-way function of their
sum. To prevent linking masked values, the masks are recomputed for every
measurement either by a symmetric protocol with communication between the
meters, or by an asymmetric one that does not require such. We refer to the
combination of a meter and a user as a metered home, or home in short. We
consider two types of protocols:

In the first, which we refer to as aggregation protocols, metered homes use
masking values xi,j to output blinded values xi,j + ci,j. After the masking values
have canceled each other out, the result of the protocol is

∑
ci,j .

In the second type of protocols, homes output g
xj+ci,j

i and the result of the
protocol is g

∑
ci,j

i . We call the latter protocols comparison protocols, because they
require that the aggregator already knows the (approximate) sum of the values
she is aggregating (through a feeder meter), and needs to determine whether her
sum is sufficiently close to the aggregate obtained from home meters. However,
as shown in Section 4.6, the comparrison protocol can easily be turned into a
full aggregation protocol with low overhead.

Comparison protocols offer advantages for cryptographic protocol design, as
protocol values can be exponents in cryptographic groups for which the computa-
tion of discrete logarithms are in general hard. One advantage that can be garnered
from this is that in contrast to aggregation protocols, no fresh xi,j are needed. For
random xj and gi, gi

xj are indistinguishable from g
xi,j

i , where the xi,j are chosen
freshly for each gi, under the Decisional Diffie-Hellman assumption.

The basic comparison protocol. Let G be a suitable Diffie-Hellman group, and
H : {0, 1}∗ → G a hash function mapping arbitrary strings onto elements of
G.1 Let xj be a pre-shared secret for home j such that

∑
j xj = 0. We assume

that each measurement round has a unique identifier i that is shared by all
homes and the aggregator, e.g., a serial number or the time and date of the
measurement.

For each reading ci,j , the home computes a common group element gi = H(i).
It then computes gi,j = gi

ci,j+xj . The value gi,j is then send to the aggregator.
The aggregator collects all values of gi,j, and computes ga =

∏
j gi,j .

By construction, we have
∏

i gi,j =
∏

i g
ci,j

i ·
∏

i gxi

i = g
∑

i ci,j , i.e., ga is gi

to the power of the aggregated measurements. As the aggregator has it’s own

1 For our security analysis we will make use of the random oracle model to guarantee
the randomness of the gi values [9].
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measurement ca of the total consumption of the connected meters, it now needs
to verify if ga roughly equals gca. This can be done by brute forcing values of
gca , gca−1, gca+1, ... until either a match is found or a sufficiently large interval
has been tested to raise an alarm.

In the bare protocol, the consumer can easily modify outgoing messages by
multiplying with or dividing by gi. This can easily be prevented by either usign
authenticated messages, or by deriving gi using a keyed hash-function. In the
later case, the consumer can still maniulate the outut, but no longer in a con-
troled way, which will triggen an alarm with high probability.

3 Concrete Protocols

As we have seen, the general framework of our protocols requires a number of
meters or users to have a secret value xj per meter or xi,j per meter per round,
such that they all add up to zero. Then the aggregation protocols can be used
by each party publishing xi,j + ci,j , or the comparison protocol by publishing
g

xj+ci,j

i . Concrete protocols provide different ways for a number of meters or
users to derive the necessary xi,j or g

xj

i .
We propose four such protocols each with different advantages: (1) a protocol

that offers unconditional security based on secret sharing; (2,3) two protocols
based on Diffie-Hellman key exchange that allow blinding to be verifiably done
outside the meter; (4) finally a protocol based on computations on the meter,
but with negligible communication overhead.

3.1 Interactive Protocol

Our first protocol uses simple additive secret sharing. For each round i of mea-
surements, a subset of the homes is (deterministically) chosen as leaders2; all
parties compute completely random secret shares, encrypt them, and send them
to the leaders. The leaders then computes their final shares in a way that all
shares together sum to zero. Shares at each home are added together with the
meter reading to mask it; an aggregator can sum up all shares such that they
cancel out and reveal the sum of all consumption across the homes.

More formally, we assume an aggregation set of n homes and one aggregator
(substation). We call p the privacy parameter; this is the number of leaders in a
run of the protocol. At system setup, each home has its own private encryption
key Kj , as well as the public encryption keys PK1, . . . , PKn for all other homes
in the same aggregation set.

– To generate masking values, each home j first computes p random values
sj,1, ..., sj,p. It then computes the leader identities �1, ..., �p of the p leaders,
and encrypts sj,k with PK	k

, 1 ≤ k ≤ p. The set of p encrypted shares is

2 Alternatively, leaders could be trusted third parties that do not contribute any
consumption values themselves.
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sent to the aggregator that sends each leader its corresponding encrypted
shares.

– Each leader �k collects n − 1 shares sj,k, 1 ≤ j ≤ n, j �= �k, and computes
its own share s	k,k such that all shares together sum to the value 0 (modulo
232).

– Finally, all parties add all their shares sj,1, ..., sj,p to get the main share sj .

For the basic aggregation protocol, xi,j = sj . To update the masking values, the
above steps are repeated with a different set of leaders for each reading i; the
results for each meter is added to it’s current share. To send a reading ci,j , a
meter computes bi,j = ci,j + si,j mod 232. The aggregator collects all this data,
and computes

∑
i bi,j =

∑
i ci,j .

The interactive protocol can also be used in combination with the basic com-
parison protocol by setting xj = sj, removing the need for updating shares.

3.2 Diffie-Hellman Key-Exchange Based Protocol

Our second scheme is based on the standard Diffie-Hellman key exchange proto-
col, combined with a modified variant of the Dining Cryptographer’s anonymity
protocol [10,11]. We assume that each meter j has a secret key Xj , and a corre-
sponding public key Pubj .

– For each round i, let gi = H(i) be a generator of a Diffie-Hellman group G.
The generator gi is the same as for the basic comparison protocol.

– In the first phase of the protocol, each home computes a round specific public
key Pubi,j = g

Xj

i , certifies it, and distributes it to all other members of the
aggregation set.

– Homes receive and verify public keys Pubi,1, . . . , Pubi,n.
– Each home can now compute the following value:

g
xj

i =
∏
k 
=j

Pub(−1)k<jXj

i,k ,

where k < j is an indicator variable taking value 1, if the name/index of
meter k is lexicographically smaller than the name of meter j, and zero
otherwise. As required the sum of all xj is equal to 0:∑

j

xj =
∑

j

∑
k 
=j

(−1)k<jpk · pj = 0 .

– Therefore each meter can compute gi,j as required by the comparison pro-
tocol as: gi,j = g

ci,j

i · gxj

i = g
ci,j+xj

i .

Note that xj cannot be known or recovered by any of the meters. This precludes
the use of this protocol as an aggregation protocol, but is not an impediment to
using it as a comparison protocol.
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3.3 Diffie-Hellman and Bilinear-Map Based Protocol

The DH-based scheme can be extended to only require a fixed public key per
meter. The construction is similarly to the modified Dining-Cryptographers pro-
tocols in [12]. Let G1, G2, and GT be groups in which the Decisional Bilinear Diffie-
Hellman assumption [13] holds with a bi-linear map function e(G1, G2) → GT .
Each meter only has to produce once a fixed public key Pubj = ĝ

Xj

0 where ĝ0 is
a generator of G1. Let H({0, 1}∗) → G2 be a hash function mapping arbitrary
strings onto elements of G2.

– In round i, compute ĝi = H(i) and gi = e(ĝ0, ĝi). Homes can now compute
g

xj

i as:

g
xj

i =

⎛⎝∏
k 
=j

e(Pubk, ĝi)(−1)k<j

⎞⎠Xj

,

where k < j is an indicator variable taking value 1 or 0 depending on the
result of the comparison. As required the sum of all xj is 0:∑

j

xj =
∑

j

∑
k 
=j

(−1)k<jpk · pj = 0 .

– Therefore each meter can compute gi,j as required by the comparison pro-
tocol as: gi,j = g

ci,j

i · gxj

i = g
ci,j+xj

i .

Note that as in the pure Diffie-Hellman protocol xj cannot be known or recovered
by any of the meters. This is not an impediment to using it as a comparison
protocol. As noted by [12], the map e can be instantiated with the Weil pairing
over a suitable elliptic curve.

3.4 Low-Overhead Protocol

As for the Bilinear map based scheme, we assume that all meters have a fixed
public key Pubj = gXj where g is a fixed globally known generator of a group
in which the Computational Diffie-Hellman assumption holds.

– Each meter is initialised with the public keys of all other meters, and com-
putes a set of shared keys, as: Kj,k = H(PubXj

k ) Once the set of shared
keys have been computed the original public keys of the other meters can be
discarded.

– For each round i of masking value generation each meter j outputs:

xi,j =
∑
k 
=j

(−1)k<jH(Kj,k‖i) .

For the basic aggregation protocol, only 32 bits of xi,j are needed, and bi,j =
ci,j + xi,j mod 232. The values bi,j are short 4 byte unsigned integers, and the
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aggregator can compute the sum simply by adding all the outputs together∑
j ci,j =

∑
j bi,j mod 232.

The low-overhead protocol can also be used in combination with the basic
comparison protocol by setting xj = xi′,j for a fixed i′. This removes the need
for creating additional masking values. To allow for cryptographic verification
of correct computation of gi,j = gi

ci,j+xj , the meter can output a commitment
gxjh

openxj together with a signature σxj on this commitment under the meter’s
secret key.

4 Comparison between Concrete Protocols

We proposed four concrete protocol variants to achieve private aggregation or
comparison. In this section we compare them with regards to cryptographic veri-
fiability, cost & performance, availability, forward secrecy, group management,
interoperability with other protocols and finally their applicability to further
applications.

4.1 Cryptographic Verifiability

The metering setting presented so far includes meters and an aggregator jointly
computing the sum of consumption or comparing it to a known value. In practice
meters are resource constraint devices in terms of memory, bandwidth, latency
and storage, and to a lesser extent computation. Furthermore the architecture
of smart-meters separates the certified metrological core, from other functions
such as any user interface or communications logic, further constraining resources
available for privacy protocols. For these reasons it might be beneficial to perform
the bulk of any computations necessary for the aggregation protocol outside the
meter or at least outside the certified metrological unit. Yet, despite off-loading
those computations on untrusted hardware, under the control of the customer,
we would like to ensure the correctness of the protocols – namely that the sum
extracted through the aggregation protocol is indeed the sum of all readings
from the meters.

Existing privacy-reserving billing protocols [7] have proposed a simple modi-
fication to meters that enables further privacy preserving computations: meters
output commitments to their readings (such as Petersen commitments [14] of
the form Cci,j = gci,j hopeni,j ) and a signature over them. The customer associ-
ated with meter can open those commitments but can also use them as input
to certify further computations. Let us evaluate how our proposed protocols are
amenable to such certification.

In the context of verification we consider a meter, a customer, and an ag-
gregator. The meter outputs signed commitments to its readings, as well as the
raw readings to the customer. The customer performs the necessary steps of
the aggregation or comparison protocol, but also outputs a universally verifiable
cryptographic proof that protocol messages are correct. The aggregator receives
the inputs of all customers, and can use the certified readings as well as the proof
of all messages to ensure no customer has deviated from the valid protocol.
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We use several existing results to prove statements about discrete logarithms,
such as, proofs of knowledge of a discrete logarithm [15] and proofs of knowledge
of the equality of elements in different representations [16]. These results are
often given in the form of Σ-protocols but with the help of hash functions they
can be turned into non-interactive zero-knowledge arguments in the random
oracle model [17]. When referring to the proofs above, we follow the notation
introduced by Camenisch and Stadler [18].

The interactive protocol can be verified by using a simple version of a verifiable
secret sharing scheme [14] to certify that all protocol messages are well formed.
For every round of aggregation i each customer outputs a commitment Cxi,j to
a random value xi,j , as well as commitments Csj,k

to the shares sj,k. Then it
provides a proof in zero-knowledge that the sum of the shares is equal to the
committed random value, and that the output value ci,j +xi,j is indeed the sum
of the random value and the genuine meter reading. Each leader further proves
that their random share si,k added to all the shares they received sums to the
value zero. The proofs only involve statements about revelation of commitments
and sums of commitments and are extremely efficient if a commitment scheme
with an additive homomorphism is used, such as Petersen commitments.

The DH based protocol is also amenable to cryptographic verification. The
customer can produce the value gi,j along with a certificate to prove it is correctly
formed given their public key Pubj = gXj and the commitment to the meter
reading Cci,j . First, the customer needs to create a new public key using the
generator gi associated with the reading time i, and prove that it has the same
secret key Xj. This public key Pubi,j is published for all to retrieve.

Then using the public keys Pubi,k of all other customers k, it needs to prove
that the value gi,j is well formed given its own secret key. This involves a standard
zero-knowledge proof that:

NIZK(Xj , ci,j , openi,j){Pubj = gXj ∧ Pubi,j = g
Xj

i ∧ Cci,j = gci,j hopeni,j

∧ gi,j = g
ci,j

i ·

⎛⎝∏
k 
=j

Pub(−1)i<j

i,k

⎞⎠Xj

} .

The bilinear map based protocol can also be verified cryptographically. Each
meter has to prove that the value gi,j is formed correctly. This can be done
efficiently with a proof that:

NIZK(Xj , ci,j , openi,j){Pubj = ĝ
Xj

0 ∧ Cci,j = gci,jhopeni,j

∧ gi,j = g
ci,j

i

⎛⎝∏
k 
=j

e(Pubk, ĝi)(−1)k<j

⎞⎠Xj

} .

This is similar to the proofs in [12], except that we do not have to worry about
collisions in the Dining Cryptographers protocol. In fact, our protocol presup-
poses that every home contributes some value g

ci,j

i as a contribution to the sum∑
i ci,j .
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Finally the low-overhead protocol is based on symmetric key primitives that
do not exhibit the mathematical relations necessary for efficient zero-knowledge
proofs. While it could in theory be cryptographically verified though decom-
posing it into a circuit, this would not be a practical protocol. Therefore this
protocol has to be run within the trusted meter hardware.

When using the low-overhead protocol together with the basic comparison
protocol some amount of cryptographic verifiability is possible. Cryptographic
verifiability can, however, be guaranteed only for the correct construction of gi,j

from the values committed in signed commitments Cxj and Cci,j . This can be
done efficiently with a proof that:

NIZK(xj , openxj
, ci,j , openi,j){Ccxj

= gxjh
openxj

∧ Cci,j = gci,j hopeni,j ∧ gi,j = g
xj+ci,j

i } .

This might be useful for aggregating values that are not known to the me-
ter (such a demographics, e.g. the number of people sharing a home). In such
cases the meter can provide a signed commitment that is augmented by another
certified item outside the meter.

4.2 Computation and Communication Overheads

Whether the proposed protocols are executed by meters or by customers our
protocols always impose some overhead over a privacy invasive solution.

The DH based protocol in its most secure form is the most expensive protocol,
requiring O(N2) total messages to be exchanged as all participants need to have
access to a new set of DH public keys Pubi,j for the aggregation of each meter
reading. A related version of the protocol could allow participants to only share
keys with p other participants reducing the communication cost to O(N ·p). The
protocol requires O(N) modular multiplications but only O(1) exponentiations
per participant.

The interactive protocol only requires O(N · p) messages to be sent from the
normal participants to the leaders, and a further O(p) messages from the leaders.
The setup cost requires public key distribution which could cost from O(N2)
messages to O(N ·p) if leader are fixed. Computations are very fast as they only
involve addition over large integers, but secrecy of shares forces each participant

Table 1. Performance comparison

Initialization Communication Computation

Interactive (agg) O(N2) · |PK| O(N · p) · Zq O(p) · Enc
Interactive (comp) O(N2) · |PK| O(N) · G O(1) · E

+O(N · p) · Zq

DH O(N2) · G O(N2) · G O(N) · M + O(1) · E
Pairing O(N2) · G O(N) · G O(N) · P + O(1) · E
Low-overhead (agg) O(N2) · G O(N) · Z232 O(N) · H
GC [5] O(N2) · |PK| O(N2) · Zn2 O(N) · Enc + O(1) · Dec
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to perform O(p) public key encryptions and each leader O(N) decryptions. Its
cryptographic proof can use homomorphisms involving multiplications and O(1)
exponentiations for each customer.

The pairing based scheme is the most economical in terms of communication
overhead. The key distribution setup requires O(N2) messages for all homes to
be made aware of the long term public keys of all other meters. After that for each
reading only O(N) messages are required from the meters to the aggregator. Each
participant needs to perform O(N) pairing operations and O(1) exponentiations.

The low-overhead protocol has to be run within the meter but is extremely
compact and computationally efficient. Key distribution requires a one-off ex-
change of public keys which costs overall O(N2) messages and O(N) exponenti-
ations per participant. Subsequently, only O(N) hash function applications are
required, and only O(N) small integer values are transmitted to the aggregator.
This is the same communication cost as today’s meters – giving the final protocol
its name. We provide an experimental evaluation of this protocol in Section 5.

4.3 Availability, Privacy and Forward Secrecy

Considerations of whether to run the protocols in the meter or over customer
hardware need to take into account the need for availability, or the principle
“utility robustness” as it is known in the energy industry. The principle means
that all parts necessary for the correct functioning of the energy supply system,
including fraud detection, should be under the control of the energy industry.
The key fear is that the energy supplier may not have the authority to replace
a component when it fails, or is disabled. Therefore when the aggregation and
comparision protocols are used for critical monitoring it is advisable to run them
in the meters. When they are only used for non-critical tasks (such as tuning
seasonal profiles of consumption) they can be off-loaded on customer machines
and performed when the user is on-line.

Privacy is a key property of our protocols and it is maintained as long as
all participants are honest-but-curious and do not collude. In case of passive
collusion different protocols provide different guarantees. The DH based protocol,
the bilinear maps based protocol, and the low-overhead protocol ensure that the
anonymity set within which meter readings are aggregated includes all the non
colluding meter readings. The interactive protocol has a similar property for any
number of colluding nodes that does not include all leaders. If all leaders collude
all privacy is lost.

Active attackers, that can break their meters, can disrupt the protocol so
that the reported aggregate is different than the actual sum of consumptions.
This is, however, at the heart of the fraud detection mechanism: the total may
be different and thus has to be compared with the aggregator meter. Colluding
attackers can also shift their reported consumption to appear as if some are
consuming more or less subject to the sum being equal. While this attack does
not change the total energy consumed it might still be beneficial for customers
with variable tariffs. In case cryptographically verifiable protocols are used active
adversaries should not be able to interfere with the integrity of the protocol
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messages unless they have compromised the physical meters, or have physically
bypassed the meter – which is common.

Forward secrecy [19,13,20] is desirable to minimize the impact of a potentially
leaked private key. The interactive and DH based protocols can be modified
to provide some forward secrecy. The interactive protocol participants can use
ephemeral keys to encrypt shares sent to the leaders, that are forgotten after a
certain epoch. Similarly fresh DH keys can be used for each round of aggregation
using the DH protocol, by signing them with the long term keys instead of
proving they are the same. The overhead to modify the protocols in this manner
is not high, since they already require O(N2) messages per round. On the other
hand it is difficult to modify either the Bilinear map based protocol or the
low-overhead protocol to provide forward secrecy while keeping their messages
volumes at a similar level. Re-keying these protocols will require a fresh setup
and O(N2) messages.

4.4 Key Establishment and Group Management

All proposed protocols require participants to be aware of the keys of meters, and
other participants, including signature keys and encryption keys. In all cases we
assume that meters contain a signature key to authenticate genuine messages.
A private decryption key is used by some protocols to either communicate with
leaders or build secure channels. These can be shared with the customers.

In case cryptographic certification is used to off-load computations a further
secure channel is required between customers and meters to ensure only autho-
rised customers can open the certified commitments to readings. In that case
meters do not need to be aware of the keys of other parties, keeping them cheap.

Setup phases when keys are exchanged take from O(l · N) messages for the
interactive protocol to O(N2) messages for the other protocols. For the bilinear
maps based protocol and the low-overhead protocol this is a one-off cost, after
which only O(N) messages need to be exchanged.

In some cases keys will have to be rotated, either to ensure forward secrecy (as
for example when the owner of a house changes) or to introduce or retire meters
to groups. Adding, changing, or removing the key of a meter from a group only
requires O(N) messages, to notify all participants of the new certified key.

The security of the proposed schemes depends on the compositions of the
meter groups. As we have already discussed a single honest participant within
a group that is totally controlled by the adversary cannot expect any privacy.
For this work we assume that the energy industry is in charge of specifying
meter groups, and meters or participants can audit the group composition to
detect whether they are tricked into participating in compromised groups. For
this purpose a tamper evident log of group participants can be kept by the
meters or the certified aggregates can be kept by users to prove any deviation
from the genuine groups. Pragmatically energy providers are likely to be curious
but unlikely to engage in behaviour that can be shown to deviate from their
obligations, be it contractual or regulatory.



186 K. Kursawe, G. Danezis, and M. Kohlweiss

Individual customer may wish to opt-out of smart metering all together. Sup-
porting regions with such customers is not a problem for the aggregation pro-
tocols but a challenge for our comparison protocols. Consider a single meter
within a region not participating in computing the privacy friendly aggregate
that is also metered by the aggregate meter: the difference between two sum of
participating readings and the aggregate meter will end up being the consump-
tion of the meter that has opted out. This is perverse as it results in a privacy
sensitive user being even more vulnerable by opting out than by participating
in the protocol.

4.5 Support for Settlement, Profiling and Forecasting

The primary aim of the aggregation protocol is to detect whether the sum of
meter readings corresponds, or at least is close to, the reading of an aggregate
meter. This allows electricity distributors to detect whether any fraud might be
taking place, in the case the sum of reported readings are substantially below
what is reported by the aggregate meter. In this settling meter groups must
correspond to the physical distribution network since there should be a corre-
spondence between the computed aggregate and the metered aggregate.

Other processes in the energy industry rely on aggregate of readings, which
do not have such a straight forward correspondence. We will concentrate on two
particular processes, namely settlement and profiling, and discuss how our aggre-
gation protocols could be used to solve them in a privacy friendly manner. For
the purposes of the discussion we assume it is practical to extract the aggregate
as from the protocols, and not merely to match it to a known consumption.

First we give an overview of settlement and profiling in the energy industry –
both processes that are buried deep in the infrastructure:

Settlement. The UK energy market works by separating the supply of energy
from its generation. A number of suppliers draft contracts with generators to
produce a certain amount of electricity within a sequence of half-hourly time
periods. Yet, the actual load of the network is monitored by the UK grid,
that may also issue orders to increase or reduce generation in the short term
to meet the actual demand. The settlement process determines whether the
contracts of suppliers with generators covered the actual demand of their
customers, or whether specific suppliers need to pay more for any extra
generation, or under consumption. To determine whether the production of
electricity for each supplier matched their demand an estimate of the total
amount of electricity consumed by customers of each supplier has to be
produced. We therefore discuss how our protocols could be used to supply
such estimates.

Profiling. Both suppliers and national grids need data on which to base electric-
ity models and forecasts. Short term forecasts are related to very short term
demand and whether. Longer term forecasts depend on other factors includ-
ing the effects new devices have on consumption, socio-economical profiles of
users, different patterns of consumption per region or sector of the economy.
When raw data is available an analysts can use them to train their models.
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In the absence of raw data volunteers are recruited or payed to construct
profiles. We show that our protocols can be used to extract load profiles for
different populations despite aggregation.

Trivial solutions. Both issues of settlement and profiling boil down to comput-
ing aggregates over different sets of meters. For settlement it would suffice to
compute aggregates of meters associated with each distinct supplier to estimate
the total energy consumption of their user base over time. This would be a far
superior estimate than those produced by current methods (based on aggregate
consumption and average profiles). A trivial solution for profiling would require
meters to be groups according to the profile criteria: different temperatures,
regions, socio-economic class, etc.

The trivial solution could work but might not be practical. For settlement,
there is no uncertainty about the association of meter and supplier. Yet, changing
the meter group requires expensive re-keying in all our protocols. Depending on
how dynamic the energy market is this may happen multiple times every year.
For profiling the task of grouping meters according to pre-determined categories
is even harder. For example analysts may be interested in observing the effect
temperature has on the energy consumption of a household over the winter
holidays. Yet, it is not easy to predict the exact temperatures to group meters
accordingly. Similarly, it is difficult to group meters by family size or composition
of family, as demographics are subject to frequent change. In the case of socio-
economic profiling, the data may simply not be available at an individual level
to assign meters into groups – and further privacy concerns may arise if this is
attempted.

Finally the trivial solution require meters groups to be tuned to extracting
particular aggregates, or require them to output readings associated with mul-
tiple groups. Depending on the scheme used this increases computation and
communication costs, while degrading the quality of privacy protection.
Inference on random population meter groups. Meters may be assigned to ar-
bitrary groups, within which readings are aggregated, and yet and regression
analysis can be applied to extract statistics from arbitrary meter populations.
This approach decouples the assignment of meters into groups from any con-
sideration of what statistics are to be extracted at a later time, alleviating the
shortcomings of the trivial solution.

Consider a number N of meter groups Gi which run our protocols to calculate
at each time period an aggregate of their consumption S(Gi). We denote as S
the column (N ×1) matrix with elements S(Gi). An arbitrary partition of meters
and a function P that is applied to each group Gi returns the number of meters
P(Gi) in the group within that partition. The domain of P(Gi) is as expected
[0, |Gi|].

The mean consumption of the meters within the partition P can be estimated
from the aggregate readings S(Gi). We construct M a N×2 matrix with elements
P(Gi) and |Gi| − P(Gi), and compute:

R = (MTM)−1(MT S)
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The 2 × 1 matrix R is the least squares estimator of the mean of the con-
sumption of the population in P (in position 1×1) and the population of meters
not in P (in position 2 × 1). This is a standard linear regression, and it can
be extended to estimating mean consumptions of multiple partitions of meters
simultaneously. Efficient techniques based on LU decompositions avoid the need
for a matrix inversion in case multiple population partitions are required.

4.6 Converting an Comparison Protocol Back into an Aggregation
Protocol

The scheme as we described allows an aggregator to verify if an aggregate it
already knows corresponds to the sum private measurement values it received.
In many settings, however, an aggregator cannot measure the aggregated value -
for example, a utility may be interested in the aggregate of the power output of
all houses with photovoltaic energy generation, which are not connected to the
same substation. Note that in this case the masking values do not cancel out –
however, the aggregator can simply be provided with the sum of the masking
values and thus effectively get the same effect.

While the comparison protocol supports fraud detection it requires reading
from an aggregate meter. In some settings, such as gathering statistics, one may
need to extract the sum of meter readings instead of comparing it to a known
value.

A typical smart meter reading is a four byte value. If we assume up to 250
devices in one group, that would give us a 40 bit value for the aggregated reading.
However, in most cases, the aggregator has a fairly good idea on the rough total
consumption, as energy usage is fairly predictable - this would easily reduce
the set of possible values into an area a normal computer can brute-force in a
reasonable short time (Note that the brute force will only reveal the aggregate,
while the individual contributions are still secure).

If the either the number of measurements of the measurement domain gets
too big, the meters can easily split the measurement in a high- and low part
and report both parts independently. The aggregator can then brute force both
parts individually, reducing the computational effort on the backend to a level
it can handle in a practical setting. The only setting in which this approach
does not work is if the aggregation is performed over a large number of devices,
e.g., a million meters. In this case, however, the entire protocol can be run
independently on different subgroups of the devices without any loss of privacy.

5 Prototype Implementations

We implemented the low-overhead variant of the proposed scheme (described
in Section 3.4) in the Python language. The code core with the cryptographic
operations spans 89 lines of code. It uses the standard library hash function SHA-
256, and a separate pure-python implementation of Curve25519 [21] for Diffie-
Hellman key generation and derivation yielding 32 byte public keys. Readings
and their cipher texts are represented using 4 bytes.
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We tested our protocols in the setting of 100 meters reporting their aggregate
consumption. Key generation took 0.013 s / meter and lead to 4790 bytes of
total storage required for the 100 public keys and their associated meta-data.
Key derivation, i.e. the computation of the secrets shared with other meters,
took 1.371 s / meter. The 100 EC point multiplications using Curve25519 per
meter dominate the cost of this operation. Each subsequent computations of the
blinding factors required for obscuring readings took less than 0.001 s / meter.
All reported figures are averages over 100 experiments.

The pure python implementation of Curve25529 is orders of magnitude slower
than a native or optimised implementation, and dominates the cost of deriving
shared keys. Such key derivation only happens when meter groups are formed,
and can be amortised over an arbitrary period of time when groups are stable.
The recurring cost of calculating blinding factors for readings take a negligible
time as they only require the application of comparatively fast hash functions.

To validate the practicallity of the prococol on the meter side and investigate
the practical behaviour of our code in a realistic setting, we also collaborated
with a meter manufacturer to implement the low overhead variant on a set of real
devices. To this end, Elster Group SE prototyped the protocol on their smart
meters. The computation for each measurement in the integrated version was
below one second. Thus, given a normal measurement frequency is 15 minutes,
the protocols can easily work within the real smart grid infrastructure, and have
enough reseves for overhead due to advancd usage (e.g., aggregating over several
independent inputs, or additional mechanism to increase the reliability).

Implementation of regression techniques. The stability of meter groups can be
maintained while extracting statistics about arbitrary partitions of the meters
using the proposed regression based techniques. We partitioned a population
of 1 million meters into 1000 groups of 1000 meters each reporting collectively
their aggregated consumption. We then partitioned meters into two populations
consuming electricity according to a population with different means μa and μb.
We ensured that at least 50 meters from both populations are present in each
meter group, and inferred the means μa and μb using our regression analysis.

The regression algorithm for inferring μa and μb took less than 0.001 seconds
to run, and was implemented in 30 lines of pure python with standard numerical
libraries. As expected it returns the values of the means with negligible error.
(See [22] for a detailed treatment of error analysis in regression.) This demon-
strates that computing statistics from aggregate measurements using regression
analysis is computationally feasible even at a national scale.

6 Conclusion

A naive way of implementing privacy-friendly aggregation and comparison proto-
cols would involve a trusted party collecting all raw readings to aggregate them.
This is indeed the approach currently discussed for the UK smart-metering de-
ployment and others. We argue this is not necessary and present a family of
protocols to achieve the same functionality without the need to ever disclose
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raw meter readings. Different protocols have different advantages we discuss,
in terms of their properties, their cost, their deployment model, and how they
interrelate with other smart-metering privacy technologies. Similar approaches
could be extended to aggregates for other utilities as well as a general set of
techniques to gather real time statistics without revealing private data.
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Abstract. Traditional electricity meters are replaced by Smart Meters
in customers’ households. Smart Meters collect fine-grained utility con-
sumption profiles from customers, which in turn enables the introduction
of dynamic, time-of-use tariffs. However, the fine-grained usage data that
is compiled in this process also allows to infer the inhabitant’s personal
schedules and habits. We propose a privacy-preserving protocol that en-
ables billing with time-of-use tariffs without disclosing the actual con-
sumption profile to the supplier. Our approach relies on a zero-knowledge
proof based on Pedersen Commitments performed by a plug-in privacy
component that is put into the communication link between Smart Me-
ter and supplier’s back-end system. We require no changes to the Smart
Meter hardware and only small changes to the software of Smart Meter
and back-end system. In this paper we describe the functional and pri-
vacy requirements, the specification and security proof of our solution
and give a performance evaluation of a prototypical implementation.

1 Introduction

1.1 Motivation

Smart Metering has been mandated by EU directive 2009/72/EC and promoted
by the US Energy Independence and Security Act of 2007 and Smart Meter
roll-outs have begun all over the world [1]. Smart Meters record a fine-grained
consumption profile of a certain service (electricity, heat or water) and report it
to the supplier of the service who bills the customer accordingly. Traditionally
only a single, compiled value for a whole reporting period has been reported to
the supplier (e.g., the total consumed electrical energy of the last year). In con-
trast, Smart Meters transmit a detailed set of many data points which document
consumption for short time intervals (e.g. every 15 minutes). This enables the
suppliers to introduce more dynamic pricing schemes and to collect precise data
about their customer base’s usage patterns.

Besides the technical motivation, also legal reasons come into play in respect
to the current push towards Smart Metering: For instance, in Germany start-
ing October 2010 suppliers must offer either time or load dependent tariffs (see
§40 [20]). These tariffs necessarily require Smart Meters with fine-grained con-
sumption recording.

S. Fischer-Hübner and N. Hopper (Eds.): PETS 2011, LNCS 6794, pp. 192–210, 2011.
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However, such detailed data has privacy implications: A listening third party,
the supplier or even an employee of the supplier could learn the consumption
behavior of a customer and might use this information maliciously for other
purposes than intended (e.g, to learn behavioral patterns, such as sleep/wake
cycles or vacation time, of a given customer based on his energy usage). Re-
cently, customers have become aware of the potential privacy implications of
such consumption profiles. In the Netherlands Smart Meter roll-outs have been
stopped because of the public outcry about the invasion of customer privacy [15].

Grid operators and suppliers now face a dilemma: On the one hand, they
need to implement Smart Metering for legal and technical reasons. But, on the
other hand, they face on-going problems in respect to public acceptance of the
technology due to the outlined privacy problems.

1.2 Our Solution

We provide a solution to this conflict by introducing a new consumption profile
reporting protocol for time-of-use tariffs. We introduce a plug-in privacy com-
ponent into the standardized Smart Meter / Meter Data Management (MDM)
reporting communication link. This component hides the actual consumption
profile from the MDM and therefore also from the supplier. We require only small
changes compared to current Smart Meter reporting. The plug-in privacy com-
ponent intercepts Smart Meter readings, then uses tariff information provided
externally (over the Internet or by the MDM) to calculate the billing amount
and sends only the resulting billing amount to the MDM. A Zero-Knowledge
Proof ensures the correctness of the calculation.

The advantages of our approach are the following:

1. The Smart Meter’s hardware complexity remains the same, because all calcu-
lations are conducted by the stand-alone plug-in component. Such a plug-in
component can be realized by off-the-shelf computing hardware like a router
or Wifi access point or even by software running on a standard personal
computer.

2. The supplier does not have to trust the plug-in privacy component. The
privacy component’s output suffices to check whether it calculated the final
billing amount honestly and correctly, i.e. based on the correct tariff and
on the correct readings provided by the Smart Meter. Therefore the pri-
vacy component does not require hardware-protected components and can
be quite simple and cheap. The correct operation of the privacy component
can be verified only by its output.

3. Plaintext, fine-grained consumption profiles never even leave the household,
if a privacy component is used. This prevents any abuse of this data, either by
intercepting it in transit, by leakage in the MDM systems or by the MDM’s
operator himself. It also spares the MDM expensive security measures for the
protection of the massive amount of privacy related data – the consumption
profiles of his customers.
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1.3 Paper Outline

The remainder of this paper is structured as follows: Section 2 motivates the
problem, gives a short introduction into Smart Metering and its privacy prob-
lems and defines our problem statement. In Section 3 we describe the underlying
cryptographic method of our solution before we explain the setup of our solu-
tion, the specification of the protocol and its security analysis in Section 4.
We evaluate a prototypical implementation in Section 5. Furthermore we show
how our protocol might fit into existing Smart Meter communication protocols
and how it fulfills the stakeholder requirements. Finally, we give an overview of
related work in Section 6, provide an outlook on future work in Section 7 and
conclude with a summary in Section 8.

2 Smart Metering’s Implications for Privacy

2.1 Naming Conventions

Before we explore the Smart Meter billing process and deduct its privacy impli-
cations, we briefly specify the terms used in the rest of this paper:

Customer: The term ”customer” represents the household, family or person
that receives the service from a supplier.

Supplier: The term ”supplier” stands as placeholder for all companies that
cooperate in order to provide the service to customers and also want to
subsequently invoice the customers for this service.

Consumption profile: The term ”consumption profile” stands for the con-
sumption data collected by Smart Meters for service in a certain interval
over a certain period of time. This is applicable to many utilities (electricity,
water, heat, gas, etc.).

Back-end system: Usually, the Smart Meter is directly connected to a MDM
which just collects consumption data. Tariffs, are then applied in the sup-
plier’s billing systems where the data is subsequently transported to. In this
paper, ”back-end system” (BS) stands for the collection of all IT-systems
that collect consumption profiles and use them to calculate the invoice for
the customer based on tariffs.

Tariff: The term ”tariff” stands for the price schema, i.e., the price of service
consumption at a specific interval. In the following we restrict ourselves
to a time-of-use pricing scheme, but our protocol could also handle load-
dependent billing with little modification.

2.2 Smart Metering Billing

Smart Metering refers to the collection of consumption profiles at customer’s
households with the help of so called Smart Meters (SM). Smart Meters measure
electricity consumption in households and communicate their readings at regular
intervals to the back-end system. Alternatively, the back-end system can also
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Fig. 1. Traditional setup of Smart Meter and back-end system

query the Smart Meter for its data (pull). A Trusted Platform Module (TPM)
in the Smart Meter holds key material and creates signatures over the data
to ensure authenticity and integrity until it arrives at the back-end system.
There the consumption profile and the tariff data from the respective customer’s
contract are used to calculate the price the customer has to pay for the time
period covered by the profile. Figure 1 displays the usual Smart Meter setup.

2.3 Privacy Concerns

Smart Metering has encountered massive privacy concerns from media [16], data
privacy experts [8] and consumers [15]. The fact that whole consumption pro-
files of households are transmitted to and stored by suppliers is troubling w.r.t.
customer privacy. Data confidentiality can be easily protected in transit between
SM and BS. However, their storage at the suppliers’ IT-systems still endangers
customer privacy. Depending on resolution and the availability of different ser-
vices’ profiles (e.g. water, heat, electricity) one can read the profile and ”see”
more or less clearly what happens in the household: For instance, when fam-
ily members wake up (light switched on), whether they shower in the morning
(water, heat, and electricity for water heater), whether they drink hot beverages
with their breakfast and when or if they leave for work or school. Furthermore,
the frequency of washing and drying clothes, cooking or the amount of time
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the TV is turned on can be inferred. For further research on what electricity
consumption profiles tell about the inhabitants see [4], [13], [14], [24] or [29].

These inferences make consumption profiles very privacy-sensitive data and
these profiles might even have value in the advertising market, for instance. On
one hand, disgruntled employees or external attackers might attempt to steal it
for profit or out of malice. On the other hand, the supplier could seek subsidiary
revenues by selling this data himself. Depending on the local jurisdiction, this
might even be legal.

The important point is, that currently there are no reliable, technical mea-
sures in place to prevent abuse of consumption profiles. Merely organizational
measures, policies or laws sanction the abuse of privacy related data but require
a trace or proof of abuse and do not prevent it in the first place.

2.4 Problem Statement

The problem we tackle in this paper is to enable suppliers to do billing using
Smart Metering data without actually receiving privacy related data.

Supplier’s requirements. The supplier’s requirement regarding consumption
profiles is the ability to reliably use the data in the consumption profile to
calculate the customer’s bill for received electricity. The consumption profile V
is a vector of n values vi that represent the amount of utility used in the interval
i of one day. The time-of-use tariff T is a vector of n ti where interval i is priced
with ti. ti and vi are integers. Then the formula for calculating the time-of-use
price for consumption of one day is

P (V, T ) =
n∑

i=0

ti ∗ vi

It is crucial for the supplier that the consumption profiles are accurate and
trustworthy. Clearly, a customer might be inclined to report lower consumption
than actually consumed, because it lowers his bill. Therefore the Smart Meters
are equipped with the TPM in order to ensure that the reported consumption
profiles are trustworthy and reliable.

Customers’ requirements. In addition to the requirements of traditional me-
tering (accuracy of the bill), a customer of Smart Metering is concerned about
his privacy. The less information is leaked by the customer, the better for him.
We strive for ideal privacy, i.e. the view of the consumption profile by the sup-
plier is indistinguishable from a uniformly chosen consumption profile with the
same price, i.e. supplier obtains no additional information to the price. Further-
more, complicated tariffs will necessitate a way for customers to verify their bill
in a trustworthy manner. Being able to do so, without relying on the suppliers
billing systems, is a secondary requirements that customers will have with Smart
Metering.
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Infrastructure constraints. A major constraint for the infrastructure invest-
ments in Smart Metering is cost. Suppliers have to replace conventional meters in
every household with a new Smart Meter. This is a significant amount of money
for a complete roll-out even for a utilities’ provider. Therefore every technology
built into a Smart Meter faces scrutiny w.r.t. to costs.

This also includes the security measures like TPMs and secure storage. The
development and verification of a secure TPM is very expensive and therefore
it is common practice to keep its functionality minimal. One naive approach to
privacy-preserving billing of consumption profiles would be to calculate the price
in the TPM itself. But this would require that tariff information is retrieved and
verified by the TPM. In turn, this would require adding an input communication
channel and module to the TPM and would consequently increase the costs for
building and verifying the TPM considerably.

Legal constraints. Depending on the jurisdiction, metering can be subject to
legal requirements. In Germany, for instance, metrology laws [21] govern require a
certain degree accuracy of the meter and measurements and the tamperproofness
of the meter. Privacy laws [22] require the confidentiality of readings to protect
consumers’ privacy. We translate this into the technical requirements of Smart
Meter integrity and integrity and confidentiality of consumption profiles on the
wire and in computer systems.

3 Pedersen Commitments

The core of our proposed solution (which we present in Sec. 4) relies on Ped-
ersen Commitments [26]. In this section we briefly introduce the basics of this
cryptographic method. For further information on the scheme please refer to [26].

A commitment is a cryptographic tool with two functions:

– Commit(x, r) −→ c takes as input a value x and a random number r. As
output it produces the commitment c.

– Open(c, x, r) −→ �/⊥ takes as input a commitment c, a value x and a
random number r. It outputs �, if c is indeed a commitment to x and ⊥, if
not.

Commitments have two security properties:

– Secret: Given c it is hard to compute x.
– Binding: Given c, x and r it is hard to compute an x′ �= x and r′, such that

Open(c, x′, r′) = �, i.e. c is a commitment for x′ as well.

They are used in the following way: Alice chooses a value x. She computes a
commitment c and sends it to Bob. Now, Alice and Bob may, for example,
engage in some computation that depends on Alice’s input x, but where Alice
may no longer change her mind. Alice opens her commitment and shows that
everything was indeed computed according to the value x she choose at the
beginning.
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A typical example is fair coin flip. Alice chooses a random s and sends the
commitment c of s to Bob. Bob chooses a random number t and sends it to
Alice. Alice now opens her commitment. The fair coin flip is x = s⊕ t (where ⊕
denotes “exclusive-or”). If the commitment was not secret, Bob could choose x.
If the commitment was not binding, Alice could choose x.

Pedersen commitments operate over a group G. This group G can be the same
elliptic curves as used of EC-DSA in the secure hardware of the Smart Meter,
but in our implementation we use the group Z∗

p. Let g and h be two generators
of G. Pedersen commitments are computed as follows:

– Commit(x, r):
c = gxhr

– Open(c, x, r):

c
?= gxhr =̂ c

?= Commit(x, r)

The proofs of their security properties can be found in [26].
Pedersen commitments have another very useful property we exploit in this

paper. They are homomorphic, i.e. a multiplication of two commitments results
in a commitment to the sum of their committed values.

Commit(x, r)Commit(y, s) = Commit(x + y, r + s)

A commitment can also be multiplied by a plain factor y

Commit(x, r)y = Commit(xy, ry)

Note that both operations change the commitment c, such that the binding
security property is not violated. Instead one needs to open with the new input
values of the commitment.

4 The Private Billing Protocol

In this section we describe our privacy-preserving Smart Meter billing protocol.
First we give a very abstract description in Section 4.1, then we provide the full
specification in Section 4.2 and provide a security analysis in Section 4.3.

4.1 Components and Specification

The main idea of our approach is that the plaintext consumption profiles never
leave the household, but only after they have been processed by a pseudo-random
one-way function. Therefore, ideal privacy is preserved. We propose to introduce
a privacy component (PC) into the communication link of the Smart Meter
and the supplier’s back-end system. Its objective is to intercept reports of con-
sumption profiles and to let only processed information pass-through. The PC is
invisible to the SM and only the supplier will notice it: The PC directly interacts
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Fig. 2. Setup of proposed solution with intermediate privacy component

with the supplier’s systems and consumption profiles will look different if a PC
is used. This setup is illustrated in Figure 2.

The major difference to a standard Smart Metering setup is that the price
function P (V, T ) is not calculated at the supplier’s system. It is calculated in the
PC which is supposed to be located in the household. For this, the PC intercepts
the consumption profile and signed commitments sent to it by the Smart Meter
and removes the plaintext consumption profile. Then the PC obtains the tariff
information from the supplier and calculates the bill with the original consump-
tion profile. It then presents the invoice, the signed commitments and a Zero
Knowledge Proof to the supplier who verifies the bill’s validity using the homo-
morphic property of the used commitment scheme: The supplier determines the
correctness of the bill by appropriate operations on the received signed commit-
ments and the tariff. If the commitments can be verified on the presented bill,
then the presented bill is trustworthy and correct. The homomorphic commit-
ment scheme we use on the Smart Meter side is Pedersen Commitment [26] and
is shortly outlined in Section 3.

4.2 Protocol Specification

Initiation. Initially, the SM and BS need to employ some signature scheme
which allows the SM to secure the integrity of data sent to the BS. This is
usually already the case with Smart Meters. They are either part of a PKI or
both, the SM and the BS, have access to a symmetric key for a symmetric signing
scheme. We denote such signing key with Signpriv.

Secondly, the TPM in the Smart Meter must be able to use the Pedersen
Commitment scheme (see Section 3) with public generators g and h. How keys
(or the public parameters, such as the generators) are distributed to Smart
Meters is beyond the scope of this paper, but it is already common practice in
on-going Smart Meter deployments.

Consumption profile reporting and invoice calculation. Figure 3 illus-
trates the communication that takes place between the different actors and the
following enumeration of steps describes the protocol in detail:
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Smart Meter Privacy Component Back-end systems

V ,R,COMM

T

P (V, T ), r′, COMM, SIGi0

Fig. 3. Communication sequence

1. The SM prepares a consumption profile to be reported to BS. The profile
basically consists of a vector of consumption values V = {vi0 , vi1 , ..., vin}.
vik

represents the energy consumption of the household in the interval ik.
ik stands for the interval number, incremented since a fictive first interval,
analogous to the definition of the UNIX time stamp.

2. For values in V the SM now creates commitments. The commitment of vik
is

Commik
= Commit(vik

, rik
). Where Commit(a, r) stands for the Pedersen

Commitment of a and a random value r with the generators g and h known
to the TPM and the BS.

3. Now, the SM would like to send the data to the BS. Before that can happen,
it protects the data from being manipulated on the way. It creates a signature
SIGi0 (with its signing key Signpriv) over (i0, COMM) and sends it together
with the vector V , the vector COMM = {Commi0, Commi1 , ..., Commin}
and the vector R = {ri0 , ri1 , ..., rin} towards the supplier’s back-end system.

4. The PC intercepts all the traffic between the SM and the BS.
5. The PC obtains the tariff vector T = {ti0 , ti1 , ...tin} from BS and performs

the following two calculations:
(a) P (V, T ) =

∑in

k=i0
vk ∗ tk This is the actual price the customer has to pay

for the reporting period represented by V .
(b) In addition it also calculates r′ from the vector R it intercepted in step

4: r′ =
∑in

k=i0
rk ∗ tk

6. The PC now sends P (V, T ), r′, COMM, SIGi0 to BS and has finished its
work.

Verification. These are the steps performed by the BS subsequently to the
reporting in order to verify that the P (V, T ) was correctly calculated:

7. First of all, the BS verifies that the signature SIGi0 over i0 and the com-
mitments is intact which means that the commitments it received has been
signed by the TPM and stands for the next vector V = {vi0 , vi1 , ..., vin}
starting from i0.
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8. BS now computes COMMTariff with the Commi it received in step 6 and
the tariff vector T that it made available to PC in step 5:

COMMTariff =
in∏

k=i0

Commtk

k

9. Whether the P (V, T ) sent by the PC has been calculated truthfully with the
correct vi and ti can now be verified by opening the aggregated commitment
COMMTariff. For that, the BS uses P (V, T ) and the aggregate random value
r′ that it received in step 6.

Open(COMMTariff, P (V, T ), r′)

= COMMTariff
?= Commit(P (V, T ), r′)

4.3 Analysis

Theorem 1. Our private billing protocol is complete, sound and honest-verifier
zero-knowledge.

Proof. For completeness, i.e. if the PC truthfully computes the tariff, then the
BS accepts, we observe the following equation:

Commit(P (V, T ), r′)

=Commit(
in∑

k=i0

tkvk,

in∑
k=i0

tkrk)

=
in∏

k=i0

Commit(tkvk, tkrk)

=
in∏

k=i0

Commit(vk, rk)tk

=
in∏

k=i0

Commtk

k

=COMMTariff

It follows that COMMTariff is a Pedersen commitment for P (V, T ) with the
random number r′.

For soundness we prove that if the PC does not truthfully compute the tariff,
then the BS must reject. That is given vi, the PC cannot forge a view Commi,
P (V, T ) and r′ of the protocol that is accepted by the BS.

We will prove by contradiction. First, observe that we assume that the PC can-
not forge the Commi commitments, since they are signed by the TPM. Second,
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as follows from completeness, the subsequently computed COMMTariff is a Peder-
sen commitment to P (V, T ) and r′. If, the PC could present P ′(V, T ) �= P (V, T )
and r′′, such that COMMTariff = Commit(P ′(V, T ), r′′) is opened correctly, then
this would be a contradiction to the binding property of Pedersen commitments
as established in [26].

For honest-verifier zero-knowledge, we present a simulator of the view of the
BS given only its input and output. The values Commi and r′ from the view
of the protocol are uniformly and independently distributed in Z∗

p. The tariff
P (V, T ) is public output of the protocol (and input to the verification operation).

The signature Sigi0(Comm1, . . . , Commn) of the TPM cannot be trivially
simulated, since the BS only holds the public key. Nevertheless, since it is only
a signature of randomly distributed values, we could simulate it by inverting
the signature verification operation on a random signature. This rather strange
simulation is an artifact of our unconventional setup of proving having the PC
compute on input from another party – the TPM. In a strict sense, the signature
is not part of the Zero Knowledge Proof, since it is computed by the TPM and
not the PC.

5 Implementation and Evaluation

In this section, we give details on our prototypical implementation, show how
our component can be integrated in real world Smart Meter deployments, and
discuss how our solution fulfills the functional and security requirements which
were identified in Section 2.4.

5.1 Implementation of the Core Algorithm

We implemented an exemplary system to identify load on the respective hard-
ware systems during the execution of our protocol. For this purpose, we modeled
the SM, the PC and the BS in Java as much as necessary to execute our proto-
col. In our implementation the SM creates a consumption profile from 96 fake
readings and enriches the profile with commitments over the individual read-
ings. It generates Pedersen Commitments in Z∗

p where p has bit length 1024,
with respective bit lengths of 32 for the readings and the tariff, 160 bits for r
and the generators g = 2, h = 3. We use the BigInteger class and its meth-
ods for representing and handling commitments and randoms. However, we used
our own implementation of modular exponentiation with precomputed powers
of g/h which is faster than the built-in method of the BigInteger class (see time
differences in Table 1).

For the evaluation of performance we chose a Java Benchmarking framework
explained in [7]. It provides us with a method to calculate means and standard
deviations in a statistically sound manner, dealing with different Java specialties
like dynamic optimization, resource reclamation and caching.

Table 2 displays the means and standard deviations of the respective calcula-
tions in the protocol. Execution times were measured on a Intel(R) Core(TM) i5
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Table 1. Creation of commitments in SM (96 commitments) with built-in BigInte-
ger.modPow vs own implementation

Method Mean Standard deviation

BigInteger.modPow 174.373 ms 3.400 ms

Our implementation 126.396 ms 6.175 ms

Table 2. Execution time means and standard deviations for the different computations
in the protocol

Computation Component Mean Standard deviation

Creation of commitments (step 2) SM 126.396 ms 6.175 ms

Aggregation of randoms (step 5b) PC 24.359 us 183.239 us

Aggregation of commitments
(step 8)

BS 7.443 ms 1.736 ms

Opening of aggregated commit-
ment (step 9)

BS 1.442 ms 984.345 us

CPU M540 at 2.53GHz on a OpenJDK Runtime Environment (IcedTea6 1.8.1)
on a Ubuntu 10.10 system.

From the numbers in Table 2 one can see that most time is spent in the SM and
the BS. The most expensive calculation is performed by the Smart Meter and its
hardware, respectively the TPM performing the actual calculations. It is usually
several scales inferior to our test system but we believe that the SM is able per-
form its part of the protocol in a timely manner [5]. After all, irrespective of other
constraints, it has one day before it needs to perform the next protocol run.

On the supplier’s system side one has to take into account that the supplier’s
systems will need to participate in several thousand instances of this protocol
per day, one for every associated household. If we assume that the supplier
buffers the received verification data of concurrent protocol instances it can
spread verification (where all of its time is spent) over the course of a whole day.
Then, one such system (with our hardware) should be able to handle approx.
one million protocol instances per day. This could be further increased by only
verifying a random choice of reported prices. This shows, that a supplier should
be able to implement our protocol for millions of users with negligible resources.

Our protocol necessitates higher data volumes to be transported between the
SM, the PC and the BS than in a naive reporting protocol. In the most basic
reporting protocol (with our assumptions that readings are 32bits wide) the
SM has to sent 96 values (per day) to the BS. In addition to that, our protocol
requires commitments (of 1024bits) and randoms (of 160bits) to be sent from the
SM to the PC for every reading. The PC then forwards only 96 commitments,
one aggregated random and one price. Table 3 displays the data volumes of
our protocol. In total, our protocol requires 27284bytes to be transported over
communication links, 26900bytes upstream (SM over PC to BS) and 384bytes
downstream from BS to PC per reporting period (day). Although, our protocol
poses a significant overhead with approx. factor 70 over the naive reporting
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Table 3. Data volumes of our protocol vs a naive reporting protocol without privacy

Description Source Destination Volume in bytes

Reporting of 96 readings
(naive reporting without
privacy)

SM BS 96 ∗ 4 = 384

Reporting of 96 read-
ings, commitments and
randoms

SM PC 96 ∗ (128 + 20 + 4) = 14592

Transport of tariff infor-
mation for 96 time slots
per day

BS PC 96 ∗ 4 = 384

Forwarding of 96 com-
mitments and aggregated
random

PC BS 96 ∗ 128 + 20 = 12308

Total amount of data vol-
ume in privacy-preserving
reporting

* * 14592 + 384 + 12308 = 27284

protocol those volumes can still be handled even by slow GPRS connections. In
this analysis we disregarded additional readings, meta-data and signatures that
would have to be transported in the naive protocol as well as in our protocol.

5.2 Integration in Real World Scenario

The technology used by the Smart Meter to communicate to the Back-end system
dictates how a Privacy Component could be introduced into this setup. Wireless
communication links like ZigBee or Wifi would require that the SM is explicitly
configured to report to the PC instead of the BS. Wireless communication links
like GPRS would implicate higher costs, as the SM would need to communicate
with the PC and the PC would need to establish an additional connection to
the BS. Wired communication links, on the other hand, allow our scheme to be
introduced more easily. The PC would then interrupt the physical link and act
as physical gateway between the SM and the BS.

Regarding the integration of our approach into current Smart Meter report-
ing protocols, we have identified two relevant application layer protocol spec-
ifications (from [9]) for SM to BS reporting: The universal DLMS/COSEM
standard suite (IEC 62056 / EN 13757-1) [2] and the simple Smart Metering
Language (SML) [10] specification. Landis+Gyr, recently nominated [31] leader
in Smart Metering, supports DLMS with its Landis+Gyr ZMD100 AP/AS resi-
dential meters and SML with its E750 Industrial and Commercial Smart Meters.

The Smart Meter Language (SML) describes an application and presentation
layer and Smart Meters operate either in a push (SM initiates) or pull (SM
reacts) scenario. All data is encoded in either an SML request or SML response
message. Encryption of SML messages on the application or presentation layer
is not part of the SML specification.
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DLMS/COSEM is an application layer protocol. DLMS specifies how one
can talk about energy metering objects. Energy Metering objects are described
by the COSEM specification.The standard does not dictate specific transport
protocols. The Smart Meter operates as server and communication follows the
pull-strategy from the view of the BS system. Read and write access is realized
by transmitting respective COSEM objects in APDUs (Application Protocol
Data Units). The server’s application context determines whether APDUs are
encrypted.

How the privacy component can be embedded in environments employing
SML or DLMS/COSEM depends on a multitude of factors: The actual proto-
cols used on the network/transport layers, the used push/pull strategy as well
whether encryption is used. Those factors determine whether the PC acts as
transparent or visible proxy, how it intercepts messages and whether it needs
key material to decipher messages.

For SML we see a simple straightforward solution how to implement the pri-
vacy component on the application layer: In SML actual consumption profiles
are sent as tables with one row for each recorded value. The columns can de-
scribe one entry further with entries like time of recording, error conditions and
so on. The whole table but also individual columns of the table can be signed
which allows us to fit our protocol into SML messages easily: For every query
(pull-scenario) of consumption values the SM answers with a table with the
columns: i,vi,Commi,ri. The SM signs all columns independently but the PC
intercepts the SML response, deletes the columns vi and ri from the table and
inserts P (V, T ),r′ and COMM into the message. Sigi0 is represented by the i’s
and Commi’s columns’ intact signatures. This only requires, that the part of
the Smart Meter responsible for creating signatures also create commitments.
The BS system will notice that columns vi and ri are missing and will there-
fore switch into a mode where it communicates with a privacy component and
performs the verification part of our protocol. If a privacy component was not
employed the whole table is transferred intact and the BS system performs its
normal operation and stores the plaintext values in its database.

For DMLS/COSEM the approach works analogously but with COSEM ob-
jects and properties instead of SML tables. However, in DLMS/COSEM encryp-
tion could make it impossible for the PC to understand the intercepted APDUs.
In such a case, the Smart Meter either needs to be reconfigured not to use encryp-
tion or to use the public key of the PC instead of the supplier’s public key. This
will allow the PC to read and manipulate the APDU and possibly re-encrypt it
for the supplier with the supplier’s public key.

5.3 Fulfillment of Stakeholder’s Requirements

In Section 2.4 we listed requirements of the different stakeholders for Smart Me-
tering. We will show in this Section how our approach fulfills these requirements.

– In Section 2.4 we mentioned that the supplier’s requirement is the trustwor-
thiness of reported consumption values. Our protocol fulfills this by providing
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a trustworthy price instead of individual consumption values. We have given
a soundness proof of our Zero Knowledge proof for the correct calculation of
the price.

– In Section 2.4 we also stated that the customer wants privacy-aware billing.
Our approach achieves a privacy-aware billing with ideal privacy as the con-
sumption profile never leaves the household unprocessed, but only the price.
We have proven the zero knowledge property of our Zero Knowledge Proof,
i.e. the supplier will learn nothing, but the price. And while our approach
was primarily developed for the fulfillment of the privacy-property it can
also provide means to the customer to make billing reproducible. The PC
can store intercepted consumption profiles and display them, together with
the calculated prices, to the customer. This way, the customer can have real-
time information about his energy consumption and current costs and also
verify the invoice eventually sent out by the supplier.

– The infrastructure requirement listed in Section 2.4 is a low-cost Smart Me-
tering solution. Our approach achieves this by only minimal changes to the
software of Smart Meters and supplier’s back-end system. The privacy com-
ponent itself is simple and untrustworthy. It can therefore be implemented
in inexpensive hardware or even in software.

– Finally, in Section 2.4 we mention several requirements regarding the tam-
perproofness, accuracy and confidentiality of the Smart Meter. As our ap-
proach does not interfere with the Smart Meter’s normal operation accuracy
and tamperproofness of the Smart Meter are not changed. We conform to
any regulation we are aware of.
In addition, the supplier might benefit from the use of a privacy component
as well, as less privacy-related data has to be stored in his systems for legal
retention periods. The supplier needs to store all data that he receives from
the PC for being able to reproduce invoice calculation for a certain retention
time but that data is not privacy-related. The commitment values do not
disclose useful information and the only privacy-related data item is the final
price. This reduces the supplier’s need for special security measures of his
systems against internal or external attackers.

Based on the discussion above, it is safe to conclude that our approach fulfills all
identified requirements (see Section 2.4) for a privacy-respecting billing of Smart
Metering consumption profiles. Furthermore, as shown in Sections 5.1 and 5.2,
an implementation of our algorithm is suitable to be deployed on a large scale
and fits well with existing standards and infrastructures.

6 Related Work

General references concerning security aspects of Smart Metering: Abstract pre-
dictions about security and privacy challenges potentially coming with the evo-
lution of the current grid to the Smart Grid are described in [17] while [11],[25]
and [8] give more information on the topics of security, privacy and trust in
Smart Grids/Smart Metering and Advanced Metering Infrastructures (AMI).
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In [8] Ontario’s (Canada) Information and Privacy Commissioner provides
an overview of what the Smart Grid is, how it will affect electricity consumers
and how their privacy might be at risk by the Smart Grid and Smart Metering.
Furthermore she promotes the idea of building privacy into the Smart Grid from
the start.

In [23] the authors first perform an informal threat analysis of Smart Meter-
ing and provide a sketch for an attested Smart Meter architecture. Using virtu-
alization, mandatory network access control and trusted computing techniques
this architecture enables multiple applications to use the Smart Meter hardware
and to work in a privacy-preserving and integer manner. The article names ap-
plications for billing the customer very closely to the data origin (in the house-
hold) and applications that provide the consumer with a consumer portal. They
achieve privacy-preserving Smart Metering billing by remote attestation of the
billing software in the TPM of the Smart Meter. For that, in contrast to our so-
lution, they require quite powerful hardware capable of virtualization and they
have a higher attack surface due to a more complicated Smart Meter design.

Privacy aspects of smart meter-based billing: In [12] a privacy-preserving de-
tection algorithm for leakages in electricity distribution has been proposed. By
aggregation across several Smart Meters the developed algorithm protects in-
dividual meter readings while allowing grid operators to detect illegitimate/un-
known load. Their approach does not allow individual billing, yet this is the
main application of our paper.

Furthermore, in [6] a model for measuring privacy in Smart Metering is de-
veloped and subsequently two different solutions to privacy are presented: A
Trusted Third Party-based approach, where individual consumption profiles are
aggregated at the third party and only sums are communicated to the supplier.
The other approach attempts to mask consumption profiles by adding random-
ness to the actual profile with an expectation of the random distribution of
zero. In contrast to our solution, both of their approaches cannot handle billing
of time-of-use tariffs but only provide either sums or not-accurate profiles. Fur-
thermore, our approach does not require a trusted third party and provides exact
results for every computation (as required by some legislations).

Finally, in [27] also a twofold approach is presented: The first solution em-
ploys a sophisticated Trusted Platform Module (TPM) in the Smart Meter to
obtain signed tariff data from the supplier and calculate a trustworthy bill. The
second solution makes use of the electrical grid infrastructure as a third party to
anonymize up-to-date consumption values sent out constantly by Smart Meters.
Our approach can be distinguished as it only addresses billing but only requires
a very simple TPM that creates commitments.

Concurrent work [28] also covers the aspect of billing in Smart Metering. It
focuses on realizing different tariff types where we provide practical information
on how our scheme can be combined with existing Smart Metering reporting
protocols.
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Similar applications of homomorphic commitments: The articles [3] and [18] de-
scribe how privacy-preserving electronic toll pricing can be implemented using
commitments to protect the time and location of cars. On-board-units contin-
uously collect their location, time and the price of the consumed service (the
driven route). They send commitments to the traffic authority. Eventually, us-
ing random spot checking, the traffic authority challenges on-board-units to open
their commitments for places and times where their cars have been recorded by
cameras. In contrast to our scheme, they use commitments to mostly protect
auxiliary information used for computing the price, i.e. the time and place. Our
work uses commitments to hide the private information from which the price
is directly computed on the commitments, i.e. the energy volume per time slot.
Consequently, we never need to open any input data commitment.

Pedersen commitments: Due to their homomorphic properties Pedersen commit-
ments are an effective means to verify the correctness of statistics computation.
In [30] it has been applied in the outsourced database setting. Statistics and
dot product computation can be useful for in many application areas. An exam-
ple from the database community again is privacy-preserving data mining [32].
An example from the business software community is collaborative benchmark-
ing [19].

Our work is the first in providing a very high degree of privacy for customers by
not disclosing consumption profiles in time-of-use smart meter billing scenarios.

7 Future Work

Dynamic, time-dependent billing is only one application of fine-grained con-
sumption data. In addition, a profile of a household’s energy consumption can be
utilized by the supplier to create predictions of this household’s energy demand
in the future. Our proposed solution does not cover this usage of consumption
profiles. Realizing a privacy friendly method for calculating such predictions is
subject to future research. However, one must realize that privacy and the ability
to create predictions potentially conflict with each other and this conflict should
be investigated further also in the field of Smart Metering.

8 Conclusion

In this paper we have proposed a protocol for privacy-preserving reporting of
consumption profiles in a Smart Metering scenario by the use of a plug-in compo-
nent. We have identified and analyzed the requirements of different stakeholders.
Based on this analysis, we devised a billing scheme which allows privacy-related
consumption profiles to remain within the household while preserving provable
correctness of the billable amounts. The privacy sensitive data therefore is not
susceptible to interception in transit or leakage in the supplier’s back-end system.

We have provided the specification for the utilized components, for the in-
troduction into a traditional Smart Metering setup, and for the communication
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and calculation during the three protocol stages (initialization, reporting, verifi-
cation). After proving the soundness, completeness and zero-knowledge property
of the verification, we investigated the execution times of our prototypical imple-
mentation and showed that it is a viable solution for Smart Metering hardware.
Finally, we discussed how our protocol could be executed using existing Smart
Metering reporting specifications and showed that our approach fulfills the pre-
viously identified stakeholder’s requirements.

Our protocol is one step towards the idea of building privacy into the Smart
Grid [8]. By preserving customer privacy we mitigate trust issues that privacy
experts, the media and the public have raised about the privacy implications of
Smart Metering.
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Abstract. Social network sites (SNS) allow users to share information
with friends, family, and other contacts. However, current SNS sites such
as Facebook or Twitter assume that users trust SNS providers with the
access control of their data. In this paper we propose Scramble, the im-
plementation of a SNS-independent Firefox extension that allows users
to enforce access control over their data. Scramble lets users define ac-
cess control lists (ACL) of authorised users for each piece of data, based
on their preferences. The definition of ACL is facilitated through the
possibility of dynamically defining contact groups. In turn, the confiden-
tiality and integrity of one data item is enforced using cryptographic
techniques. When accessing a SNS that contains data encrypted using
Scramble, the plugin transparently decrypts and checks integrity of the
encrypted content.

1 Introduction

Social Network Sites (SNS) such as Facebook, MySpace, LinkedIn, and Twitter-
are becoming increasingly popular. Millions of users access these sites as part of
their daily routine. These sites provide technological features that allow users to
share content and build communities around shared interests. Users can assess,
analyse, and modify privacy preferences made available by the service providers,
but they cannot control the enforcement of these preferences.

SNS users often post a large amount of privacy sensitive information on
SNS, such as their date of birth, their daily activities, or political views. As
already mentioned, users have to rely on privacy preferences enforced by the
SNS providers to protect this data. However, these policies and privacy pref-
erences are often extremely coarse and difficult to locate [19], which lead to
potential misconfigurations [7]. Nevertheless, the SNS provider still has access
to all users’ data and can share it with external parties, like targeted advertise-
ment companies. Therefore, the user does not have full control over his data.
In addition, SNS may offer application programming interfaces that may expose
and share the users’ information with other services. Finally, policies may be
changed intentionally by providers, to help them strike a balance between the
interests of advertisers, application providers, and usability.

All of this may leads to serious privacy concerns. The need for a mech-
anism that returns control over both access-control policy configuration and

S. Fischer-Hübner and N. Hopper (Eds.): PETS 2011, LNCS 6794, pp. 211–225, 2011.
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enforcement for user-generated content to the users themselves has been identi-
fied in previous works [1,2,12,14,15,18]. Clearly, this is highly desirable for SNS,
but is also relevant for other Web 2.0 services.

In this paper, we present Scramble, a client side application implemented as
a Firefox extension to help users keep their data confidential. Scramble allows
users to encrypt their posted content in the SNS. Therefore, Scramble guarantees
confidentiality of users’ data towards the SNS-provider. To support audience
segregation [11,20], scramble contains an easy-to-use user interface for defining
the set of users the user’s content should be shared with.

Our implementation of Scramble is SNS independent and is suitable for im-
mediate deployment as open source software. We make use of the OpenPGP1

standard to enforce confidentiality and integrity. Several SNS providers have a
length limitation for posted content, e.g., Twitter2, and do not allow publication
of encrypted text defined on their Terms of Service, like Facebook. For those rea-
sons, we provide an implementation of an external tiny link server. The server
stores the encrypted data and produces a short link that works as an index to the
posted encrypted content. The scramble prototype is part of research performed
within the EU-PrimeLife3 project.

The remainder of this paper is organised as follows: In Section 2 we review
related work and compare it with our proposal. We introduce our goals and
assumptions in Section 3. In Section 4 we present a detailed description of the
Scramble design, and in Section 5 we describe our implementation. Section 6
gives a security, performance and usability analysis of our implementation. Fi-
nally, in Section 7 we discuss future work and conclude by summarising our
results.

2 Related Work

We discuss existing approaches for enforcing access control rules in SNS: Social
network providers, such as Facebook and MySpace, implement access control
mechanisms for user-generated data. These mechanisms, however, offer no pro-
tection against the SNS providers themselves, since they through their control
of the servers running the service have access to all of a user’s information. To
avoid access by the SNS, Lockr [3] hides pictures posted in the SNS by replac-
ing it by a link, and storing the picture at a third party server in unencrypted
format. This approach relies on a third-party that might not be trustworthy –
instead of trusting the SNS provider one now has to trust the third party server.
In [8] the authors apply the concept of virtual private networks to social net-
works. Whilst, this solution is SNS independent and allows users to replace the
original attribute data with some pseudo information. The real information is
then sent and stored in friends machines. Thus, besides creating a bargain on
1 OpenPGP represents the IETF RFC 4880 - http://www.openpgp.org/
2 Twitter allows a maximum of 140 characters per post.
3 This project aims at providing significant improvements to protect privacy in emerg-

ing digital world. http://www.primelife.eu

http://www.openpgp.org/
http://www.primelife.eu
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friends machines instead of delegating to the server, it does not allow users to
selective enforce access control over their posted data.

There are several proposals that use encryption to protect a user’s information
that target Facebook. flyByNight [16] is a Facebook application that protects
user data by storing it in encrypted form in Facebook. This application is Face-
book dependent and relies on Facebook servers for its key management. The
decryption algorithm is implemented in JavaScript and is retrieved from the
Facebook application. Thus, while browser independent, it is not secure against
active attacks by the provider – Facebook. In contrast, Scramble is a client side
application that has no SNS dependencies.

NOYB (None Of Your Business) [13] is a system that targets Facebook and
uses encryption to protect private information. The personal details of users,
such as name and gender, are divided into multiple pieces of data, called atoms.
These atoms are separated and shuffled with atoms of other users, acting as a
random substitution cipher. The encryption method used by NOYB just replaces
the privacy details of user A with those of random users B and C. Only the
user himself and his friends can reverse the process and reconstruct the profile.
However, this can only be applied to the personal details on the user’s profile,
and does not allow encryption of free text entries as frequently found in social
networks.

FaceCloak [17] is a Firefox extension that uses a symmetric key to encrypt
user’s information in Facebook. The encrypted data is stored in the FaceCloak
server, and replaced in Facebook by random text fetched from wikipedia. The
symmetric keys are shared with the set of users authorised to read the content.
The random text acts as an index to the encrypted data on the server.

One of the problems with the FaceCloak and NOYB model is, that using
random meaningful text retrieved from Wikipedia or other users may lead to
social conflicts, if other users take them to be genuine user content.One could
argue that the goal of natural-text as either cipher-text or index by NOYP and
FaceCloak respectively is an important anti-censorship mechanism against a SNS
that sees threads to it’s advertising revenues. Should the need arise, Scramble
could make use of similar techniques. However, we believe that other solutions
to this dilemma, such as client-side privacy friendly advertising mechanisms may
be more desirable.

Moreover, FaceCloak has a complicated and inefficient key distribution sys-
tem. For each piece of content, the user accessing the content has to use an
offline channel to retrieve the key. Scramble uses a simpler and more reliable ap-
proach for key distribution. The encryption of the content is done using public
keys, and thus a user with access rights just needs to use his own secret key for
decryption. As a usability compromise we restrict the use of PGP’s web-of-trust
mechanism to power-users and adopt leap-of-faith authentication as the default
key-distribution paradigm.

The schemes defined above have proposed mechanism to protect users’ sen-
sitive information in Facebook. However, they are Facebook dependent, while
Scramble is SNS independent.
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Diaspora4 presented a new privacy friendly, open source social network. The
project offers users the possibility to share privately information using OpenPGP
mechanisms, like Scramble. It uses its own distributed network for storing the
encrypted data. However, while it offers a new service to protect the privacy of
its users, it does not support the existing and highly popular centralised social
networks services.

3 Goals and Assumptions

We represent a social network as a graph G = (V , E), whose vertices represent
users and whose edges represent the undirected connections between users. Each
u establishes a set of relationships Ru ∈ V that contains all users to which u has
a connection. Formally, (u, v) ∈ E if and only if v ∈ Ru.

We now describe our thread model and our assumptions, as well as the goals
of our system.

Threat model. Our threat model considers the SNS providers as potentially
adversarial. SNS providers have access to all of the user’s private information.
SNS providers can leak information to external parties and have the power to
tamper or replace user generated content on the SNS. Therefore, users may be
vulnerable to data leakage, impersonations and false judgements.

We consider curious users seeking sensitive information to be a weaker adver-
sary than the provider. Such users benefit from the SNS as a channel to listen
and obtain sensitive content from other SNS users and may use it for their own
profit. Providers commonly enforce default privacy settings to protect against
such threat, but these settings are often permissive [2] and subject to frequent
change. Thus, users lack control about which other SNS users can access their
content.

We rely on the integrity of users’ personal environment, such as their browser
and computer. We assume that no external party has access to or can compromise
a user’s environment. We assume that each user u has a public and secret key
pair (pku, sku), where pku is known by all Ru and sku is only known by u. We
assume that users u and v exchange their public keys when a friendship relation
is established using an authenticated offline channel.5

Goals. Users need to be able to control their own data, and specify who can
access it, preferably without relying on third party servers, such as the SNS
providers. Any user u can create new content d for the SNS, e.g., as a wall post
or some other message. Thus, the desired goals for Scramble are the following:
Privacy Preservation: A user u should be able to define the subset Sd of recipients
from Ru that are authorised to read d. Only users in Sd are able to read d.
4 Diaspora: https://joindiaspora.com/
5 For the sake of reducing the entrance barrier for ordinary users, we will, sometimes

willingly break the last assumption and allow users to start communicating using
unauthenticated keys. Users are, however, advised to check the authenticity of keys
using key fingerprints, and to get suspicious if keys change without premonition.

https://joindiaspora.com/
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Both Sd and the content of d should be kept hidden from the provider. The
confidentiality of d should be protected by cryptographic techniques. However,
once d is distributed among the users in Sd, there is no way to prevent a malicious
user in Sd from storing or re-distribute the content of d. In this case, the receiving
user is said to break the social contract associated with the establishment of the
friendship relation.
Publisher Integrity: Scramble should guarantee d’s integrity when posting d in
the SNS using cryptographic techniques. This prevents attackers from tampering
with the content of d and impersonating u.
Deployability: Scramble is meant to be deployed in the real world. Thus, it must
be stable, compatible with different environments, and SNS independent.
Usability: Scramble should present a user interface that is easy to use. In order to
overcome usability issues, such as those presented in [21], the operations should
be simple and the cryptographic techniques transparent. Operations like the
generation, import and export of keys should be effortless or hidden. If a user v
is not authorised to read d, then Scramble should hide d from v.

4 Scramble

In this section we describe and motivate the design details and functionalities of
Scramble. We first discuss design decisions specific to key management, access
control policies, and the employed cryptographic mechanisms. Then, we describe
the process flow of Scramble from a user perspective.

4.1 Key Management, Access Control Policies, and Cryptography

Key Management. In Scramble, each user u holds a OpenPGP key pair, com-
posed of public key pair pku and a secret key pair sku. The public and private
key pairs consist of the public respectively private keys of an ElGamal encryp-
tion and a DSA signature scheme. The keys can be either generated (default
behavior) or imported (power-user behavior) by the user upon Scramble initial-
isation. If the user Alice6 wants to share d with the set Sd, she must possess the
associated public keys pk of all users in Sd. All pk of Sd are stored in Alice’s
machine, and are managed by Scramble.

Key management is a hard problem due to the possibility of key tampering
and the fact that it is counterintuitive to ordinary users. A malicious user v or
the SNS provider can replace the pku of the user u to impersonating u. Thus, it is
important that users can correctly distribute their public keys, as they are used
for encryption when posting content. If users, however, are not able to exchange
any keys and resort to unencrypted alternatives, they are even worse off.

Users have to be able to exchange their pk when a friendship connection is
established. They can make their public key available using the provider or a
6 For the sake of concreteness, we sometimes use Alice and Bob for the user u that

posts a new d and the intended reader v respectively.
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Fig. 1. Access control mapping example

key server and should verify fingerprints using an offline channel to verify the
authenticity of a public key. As Scramble makes use of the OpenPGP standard
we can make use of any public PGP server. We opted to verify the authenticity
of keys manually as the current OpenPGP web of trust has proved to be too
complicated for ordinary users [21]. Users have to either take the leap-of-faith
or check the fingerprints. For future versions it should be easy to introduce a
web-of-trust mechanism, if this is desired by power-users.

Alternatively, our key management model could be extended by making pub-
lic keys available over an SNS-based mechanism such as the one proposed by
[5], where users cross certify their digital certificates using SNS relationship con-
nections. The cross certification is achieved by users signing other users’ digital
certificates, which are composed by the public key together with some Personal
Identifiable Information (PII).

For key revocation or key update users are required to distribute a new public
key. However, this only affects new content.

Access Control Policies. We consider that Ru is represented in Scramble by
the public keys of the users in Ru. Moreover, a user u can define groups Gi ⊂ Ru

in order to separate Ru into categories.
Whenever u publishes a new document d in the SNS he can define with whom

to share. For that, u selects a subset Sd from his Ru that is to be authorised
to read d. Sd can be composed of single users vi ∈ Ru, of a set of pre-defined
groups Gi or of a mix of both. The set Sd can be different for each d posted. For
any Sd update d is required to be re-posted.
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Figure 1 represents an example of our approach for defining access rights. Alice
has relationships RAlice and posts contents {di}. RAlice is represented by three
groups Work ,Friends ,Family and a single relationship Bob. This helps Alice to
define her Sd in an easier way. When Alice posts new content d she may, e.g.,
defines Sd = {Bob ∪ Work}. In this way, Alice keeps d private to a limited au-
dience defined by Sd. Moreover, the audience defined by Sd is only known to her.

Cryptographic primitives. For the confidentiality and integrity of d we had
the choice between traditional hybrid-encryption techniques, like OpenPGP [22],
or broadcast encryption such as [4,6]. In both cases, the users’ public keys in Sd

would be used to create the access list that would be attached to the final posted
content. The confidentiality of d is then achieved using an encryption algorithm,
while integrity of d is assured by signing d before encryption.

d′ ← EncryptSd
(Sign(d, sku))

We chose OpenPGP as it is a well deployed standard with support for mul-
tiple recipients encryption using hybrid encryption. Moreover, most broadcast
encryption schemes such as [6] do not provide key privacy, with the exception of
[4]. The latter, however, also uses a hybrid-encryption approach internally and
does not offer performance advantages. We discuss weaknesses of OpenPGP that
we are aware of in Section 6, but we believe that it is more reasonable to fix
OpenPGP, than to abandon it as a design choice.

Thus, d is encrypted with a one time random-generated secret key k using a
symmetric algorithm. Then, |Sd| encryptions of k are generated using the public
key of each subject in |Sd|. The integrity of d is assured by signing d before
encryption. Hence, d is published as follows.

Let Sd = {Alice, Bob, Charlie} be set by u

σd ← Sign(d, sku)

C ← SymEnck(σd||d)

d′ ← {PKEncpkAlice
(k)||PKEncpkBob

(k)||PKEncpkCharlie
(k)||C}

The public key encrypted values of k are appended to the symmetric encryption
and represent an anonymous version of Sd that specifies which other users are
allowed to see d. This will indeed increase the storage overhead on the server side,
but it will save the user from managing a large number of different keys for every
new d on his machine. In addition, this allows the user to keep his defined access
sets anonymised, and enforce different access control rights for each document
d. It is important to note, that OpenPGP uses a separate ElGamal encryption
key and DSA signing key to perform the previous operations.

In order to keep the set of recipients hidden, we use the hidden-recipient op-
tion. This option conceals the key IDs of recipients in the encrypted content. In
this way, only the users in Sd are able to retrieve the value of d. Other users, and
the SNS provider stay oblivious of the raw value of d, learning only d′. However,
the length of the output is directly affected by the size of Sd.
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4.2 User Interaction Flow

The Scramble system consists of two modules. The first and main element,
Scramble, is a Firefox extension that contains the cryptographic primitives to
enforce the access rights, and the key and group management. The second and
optional element is a TinyLink server. This server just receives content posts and
returns a link to the location of the content. We assume that users can choose
their external server or set their own server with our provided implementation.

We describe the two elements using the flow of operations needed to to pub-
lish and retrieve data on a SNS. The process flow is preceded by an initialisation
phase.

Initialisation. In this phase, Alice generates her key pair (pku, sku), uploads it
to the key server, obtains keys for her contacts Ru, and creates her groups Gi. In
order to import her relationship contacts, Alice could, in future version, extract
the contacts from the SNS provider directly using the mechanism described in [9].
For now, imports need to be done manually based on the email address of users.

Posting content. Alice is a user that wishes to post a new d in the SNS (Fig-
ure 2). Therefore Alice (1) selects Sd = {Bob, Charlie, ..., Dave} using Scramble.
Then, Scramble signs d and encrypts d with the keys of the authorised users in
Su. If the SNS limits the length of the posted d, then (2) Scramble posts d′, the
encryption of d, in the TinyLink server that returns a tiny link to the stored
location. (3) Scramble posts the encrypted value d′ or the tiny link to d′ in the
SNS. The value of d′ is transmitted from Scramble in encrypted format, keeping
a possible attacker oblivious.

Retrieving content. The decryption of encrypted content from the SNS is
transparent to the user (Figure 3). First, (1) Scramble reads the encrypted value
of d from the SNS. If the content is a tiny link, then (2) Scramble uses the tiny
link retrieves d′, the encrypted value of d from the TinyLink server. Subsequently,
(3) Scramble tries to decrypt and if successful, verifies if d′ was not tampered
with and that it was in fact Alice who signed d. Since d came from Alice and
Bob is in Sd, Bob is authorised to read d. Thus, Scramble presents the value of d
to Bob. Otherwise, the decryption fails, and the retrieved value d′ is not shown.

5 Implementation

Our implementation represents the design functionalities in software. We have
implemented Scramble as an open source application7 under the EPL licence [10].
In this section we outline our implementation by describing the details of the
application modules along with the functional aspects.

The main module of the implementation is the Firefox extension, that man-
ages and enforces the access control lists. Our implementation is composed by
the following two modules.
7 Scramble version can be found in the project website http://tinyurl.com/

ScrambleIt.

http://tinyurl.com/ScrambleIt
http://tinyurl.com/ScrambleIt
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Fig. 2. Posting new Content Process

Fig. 3. Reading Content Process

Firefox extension. Scramble is a client-side application implemented as a Fire-
fox extension, that allows cross-platform client-side encryption and key manage-
ment. Due to the fact that a Firefox extension is developed mainly in JavaScript,
we have used a Java XPCOM8 component to improve performance of the cryp-
tographic module. The Java XPCOM component contains an implementation of
the OpenPGP standard. The component executes either a BouncyCastle9 (BC)
OpenPGP implementation or the GnuPG10 binary module that implements the
OpenPGP standard. By means of having the two different implementations, the
user can choose to have an embedded OpenPGP implementation with a dedi-
cated key ring with BC, or to execute the general GnuPG module with a key
ring that can be shared with other programs.

Key management. The key management is handled by Scramble. The OpenPGP
key pair can be generated or imported by the user Alice during installation, how-
ever, it can be changed afterwards. Alice can then upload her key to the public
key server in order to allow her friends to download it. The group management
8 http://www.mozilla.org/projects/xpcom/
9 http://www.bouncycastle.org/

10 http://www.gnupg.org/

http://www.mozilla.org/projects/xpcom/
http://www.bouncycastle.org/
http://www.gnupg.org/
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Fig. 4. Access Control Definition User Interface

and their definition is defined by Alice, by operating on a simple user-interface
(Figure 4). The OpenPGP pk of all users v ∈ Ru are stored in Alice’s machine,
and act as their identification. In order to import those keys, Alice uses the key
server mechanism to import it by referring to them using her friends email ad-
dresses. The fingerprint of an imported key pkv of Bob can then used by Alice to
verify the authenticity of his key. The full or a part of the fingerprint should be
communicated using a secure offline channel. Thus, Ru in Scramble represents
a subset of the relationship graph on the SNS.

Publish data operation. To perform the operation where Alice wants to post a
new d into the SNS in encrypted format, Alice is required to write d into a field
in the SNS and select it. Scramble then allows Alice to define the Sd for d from
her circle of trust Ru. The values of the pk of each users in Sd are loaded and
used in the encryption algorithm. Scramble retrieves the selected text from the
DOM11 tree of the SNS website’s displayed HTML page and posts the value of
d in encrypted format or the tiny link to d′, the encrypted value of d. This is
only readable by users in Sd.

Retrieve data operation. For the decryption operation, Scramble parses the DOM
tree of the website and searches for Scramble tags representing encrypted blocks
of text. If the user belongs to the set and thus has access, Scramble automatically
and transparently decrypts the content presenting the unencrypted data d to the

11 http://www.w3.org/DOM/

http://www.w3.org/DOM/


Scramble! Your Social Network Data 221

user. Otherwise, the data is hidden or is indicated by a pre-defined message, like
”Non-authorised content”. This is done by only replacing the encrypted text
independently from the DOM’s tree style.

In order to perform the operations to store and retrieve data from the tiny link
server, Scramble executes XMLHttpRequest Post and Get calls in JavaScript.

Users that are not using Scramble will see the encrypted data (Figure 5). This
can be either the full encrypted block d′ or a link to the block.

Tiny Link Server. The Tiny Link Server was developed to target the limitation
of content size imposed by SNS providers. The PHP12 server stores encrypted
data and returns a tiny link (short URL) which represents the index of d′, the
encryption of d. This server can be controlled by the users directly or outsourced
into a cloud server, that may or may not require extra authentication. We provide
the users with the source code and details for their own implementation.

6 Security Analysis, Performance and Usability

In this section we proceed with a security analysis of our implementation. Then,
we present our performance and usability results.

Security analysis. We analyze the resilience of the current implementation of
scramble against a number of potential attacks.

Recipients Set Anonymity Scramble keeps the content document d confidential
using OpenPGP encryption. In order to anonymise the recipients set for out-
siders, Scramble uses the OpenPGP option hidden-recipients to conceal the key
IDs. However, this does not offer anonymity of the set of recipients towards a
malicious user in the set, as shown in [4]. We note that Scramble does not pro-
vide protection against traffic analysis, meaning that the provider could infer
who has access to the content by analysing download and upload operations.
Protection against this kind of attacks is left as a subject of future work.

Active Attacks. In an active attack, a malicious service provider attempts to tam-
per with the content item, by compromising content integrity and confidentiality.
In Scramble the user posts the item d in encrypted format on the server to ensure
the confidentiality of d. A malicious server can also have the objective of fooling or
impersonating users by changing or replacing d. In order to prevent such attacks,
the user posts d together with a signature on d in encrypted format.

Performance. To be usable, Scramble must minimise its implementation over-
head. The use of an XPCOM component allows to execute either a BC Java
OpenPGP implementation or the binary command line GnuPG module. Both
of which provide very efficient encryption, decryption and signing operations.

In order to analyse the performance of our implementation, we focus on the
cryptographic algorithms that represent the most expensive operations and the
12 http://php.net/

http://php.net/
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Fig. 5. Scramble in (Private) Twitter

response of the tiny link server, which include the network latency and server
process. Therefore, Scramble depends directly on the amount of recipients r =
|Sd| per encrypted block d. The encryption and decryption costs are represented
in Figure 6, where the size of the contact set for encryption and decryption
operations goes from 0 to 720 contacts13. The public key operations are the most
costly operations compared to the use of a symmetric encryption algorithm. The
performance complexity details are described as follow.

Publish operation. is affected by the efficiency of the encryption and signing
algorithm E and ts. The efficiency of E is directly affected by r. Thus, the
overall performance is ts + O(r).

Retrieval operation. is affected by the number of encrypted items per page n, by
the efficiency of decryption and verification algorithm D and ts. Whilst a user
in S is required to perform an average r/2 decryptions, a user that does not
have access rights is required to perform r. Thus, the overall performance for
retrieving information is n(ts + O(r)).

Usability. We have performed some user tests with local Belgian students,
where Scramble was well received in terms of user experience and functional-
ity. Scramble was also submitted to a usability expert evaluation conducted by
KAU14 in the scope of the EU-PrimeLife project. However, a more advanced
user experience test targeting a larger audiences is left for future work.

7 Future Work and Conclusions

In this section we start to enumerate some discussion points on the current im-
plementation and future directions. Then, we conclude by presenting our results.
13 Tests performed on a 2GHz AMD Athlon(tm) XP 2400+, with 1Gb RAM.
14 Karlstad University - http://www.kau.se/

http://www.kau.se/
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Fig. 6. Performance of Scramble operations per contact set

Future work. At the moment, it is the user himself who is responsible for
defining G ⊂ Ru. In the future, we intend to extend Scramble to be able to
infer the privacy policies information from social network specific tags during an
initialisation state. These tags are added to the content or can be derived from
the context, as shown in [9].

In order to attract a large set of users and extend to other systems, we are
currently developing a Scramble version as a Google Chrome application. In
addition, a mobile device extension of Scramble would be attractive.

Conclusions. We designed and implemented Scramble, a Firefox extension
that allows users to define and enforce selective access control preferences for
data published on social network sites. Scramble is SNS independent and can be
used in diverse SNS, like Twitter, Facebook, Clique15 and MySpace. Through
the integration into a Firefox extension, the encrypted content is automatically
decrypted by the browser for authorised users. The extension also allows the
definition of groups to define audience segregation, and the encryption of content
under the keys of all group members.

Using a public key encryption scheme we are able to protect the integrity
and confidentiality of user created data, especially towards the SNS provider,
by means of encryption. At the moment, the implementation just allows content
encryption as wall posts, private messages and news status. However, it is also
possible to extend to other content types, such as pictures, by following the same
directions.

Due to the fact that it has been designed to be general and SNS independent,
it can also be used with other Web 2.0 services, such as blogs, forums and
wikis. Potentially, it allows users to store data in encrypted format in any cloud
service.
15 http://clique.primelife.eu/

http://clique.primelife.eu/
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Abstract. For over fifty years, “record linkage” procedures have been
refined to integrate data in the face of typographical and semantic er-
rors. These procedures are traditionally performed over personal iden-
tifiers (e.g., names), but in modern decentralized environments, privacy
concerns have led to regulations that require the obfuscation of such at-
tributes. Various techniques have been proposed to resolve the tension,
including secure multi-party computation protocols, however, such pro-
tocols are computationally intensive and do not scale for real world link-
age scenarios. More recently, procedures based on Bloom filter encoding
(BFE) have gained traction in various applications, such as healthcare,
where they yield highly accurate record linkage results in a reasonable
amount of time. Though promising, no formal security analysis has been
designed or applied to this emerging model, which is of concern consider-
ing the sensitivity of the corresponding data. In this paper, we introduce
a novel attack, based on constraint satisfaction, to provide a rigorous
analysis for BFE and guidelines regarding how to mitigate risk against
the attack. In addition, we conduct an empirical analysis with data de-
rived from public voter records to illustrate the feasibility of the attack.
Our investigations show that the parameters of the BFE protocol can be
configured to make it relatively resilient to the proposed attack without
significant reduction in record linkage performance.

1 Introduction

There are many societal needs, as well as legal requirements, for organizations
to share data about their constituents in support of a wide range of endeavors,
ranging from homeland security to biomedical research. At the same time, in-
creasing decentralization of our world has led to the storage of an individual’s
personal information across independent organizations. To ensure accurate ana-
lytics, it is critical to apply “record linkage” techniques to integrate information
that corresponds to the same individual. Record linkage is a relatively mature
field and a sizable number of algorithms have been refined to support the task
[1]. Yet, record linkage has traditionally been applied to explicit identifiers, such

S. Fischer-Hübner and N. Hopper (Eds.): PETS 2011, LNCS 6794, pp. 226–245, 2011.
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as names and Social Security Numbers, and there are concerns that sharing such
information beyond an organization’s boundaries can endanger an individual’s
privacy. To mitigate risk, various private record linkage (PRL) protocols have
been developed to enable data integration without revealing the identity of the
corresponding individuals (e.g., [2–6]).

Most data sources contain records with typographical (e.g., “ei” vs. “ie”) or
semantic errors (e.g., maiden vs. married name) [7, 8], so it is critical that PRL
protocols enable similarity tests between records. It has been demonstrated that
such tests can be accomplished through the use of sophisticated cryptographic
methods based on secure multi-party computation (SMC) [9, 10]. Unfortunately,
protocols based on SMC are not practical for large dataset integration because
they incur substantial computational costs and require continuous interaction
between the organizations involved in the protocol [11]. More recently, a PRL
protocol based on Bloom filter encoding (BFE) was proposed to measure the
similarity of records in a more efficient manner, which is particularly notable
because it has gained traction in the medical environment [12]. Although the
accuracy and performance of the BFE approach are promising for real world
applications [4], a detailed cryptanalysis has not been performed. Given the
sensitivity of the data which BFEs are being proposed to protect (e.g., medical
information), we believe a formal analysis is necessary and timely. In this paper,
we construct a novel attack for BFEs, based on a combination of constraint
satisfaction and intelligent heuristics. We use real personal identifiers, derived
from publicly available resources, to empirically illustrate that the attack can
compromise a significant amount of private data if the parameters of the BFE
are selected as suggested in the literature. In summary, there are several notable
contributions of this paper:
Frequency-Aware Constraint Satisfaction Model: We frame the attack
against the BFE protocol as a constraint satisfaction problem (CSP). Though a
cryptanalytic method based on constraint satisfaction was previously proposed
for simple substitution ciphers [13], it does not directly apply to BFEs, which are
significantly more complex due to the ingredients involved in the encoding pro-
cess (see Section 2). The proposed cryptanalytic approach integrates frequency
analysis into the construction of the CSP to reduce the complexity.
Statistically Reliable Constraints: The CSP attack on the BFE protocol
leverages constraints that are approximately correct (i.e., accurate with a very
high probability). While the constraints in a CSP should be accurate, an over-
specified system can lead to high computational costs when solving the problem.
By utilizing statistically reliable constraints, we enable a complex CSP to be
solved efficiently by pruning the search space of the CSP solver.
Empirical Vulnerability Assessment: We show that the BFE protocol is
vulnerable to attack, provided that the adversary has a certain amount of rea-
sonable background information. At the same time, we explore the relationship
between the encoding parameters (e.g., filter length) and vulnerability through
extensive experiments. Our investigations show that BFE can be made relatively
resilient to the proposed attack by tuning the BFE parameters appropriately.
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The remainder of the paper is organized as follows. Section 2 provides back-
ground information and describes the adversarial model. Section 3 presents the
proposed attack. We then report our experimental analysis in Section 4. We
review related work in Section 5 and conclude in Section 6.

2 Background

We begin with an overview of the BFE techniques and our threat model. A
legend for the notation used throughout the paper is provided in Table 1.

Table 1. Symbol Definitions

Symbol Description Symbol Description

A, B datasets of Alice and Bob AT , BT encoded versions of A, B
G global dataset D, DT (A ∪ B), (AT ∪ BT )
g string encoding function f n-gram encoding function
bf belief function Xi variable of CSP
vi value assigned to Xi qi, QXi single n-gram, n-gram set of Xi

m filter length k number of hash functions in f

2.1 Bloom Filter Encoding

A Bloom filter [14] is a bit array of length m that is affiliated with k hash
functions. Each function maps a given element to one bit location with a uniform
probability. For the purposes of this work, we define an element as a string,
S ∈ Σ∗, over an alphabet Σ.

In the BFE model described in [12], S is represented as the set of substrings
of length n, or n-grams such that QS = {q1, . . . , qz}. Each n-gram is subject to
each hash function and the corresponding bit indices are set to 1. The encoding
of a string is then obtained by combining the n-gram encodings with the bitwise
OR (∨) operation. Formally, let f : Σn �→ {0, 1}m be the n-gram encoding
function obtained by combining k hash functions and g : Σ∗ �→ {0, 1}m be the
string encoding function that converts any string into its BFE:

g(S) =
z∨

i=1

f(qi) (1)

Example 2.1 : In Figure 1, the bigrams of “amy” are encoded with two hash
functions. Notice “ a” and “y ” are mapped to the same index by one of the
hash functions.

Fig. 1. Sample BFE: Qamy = { a, am, my, y }
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2.2 Threat Model

In this paper, the linkage of data sources A and B, owned by Alice and Bob,
respectively, is facilitated through a third party, Charlie. The utilization of the
third party is a common practice in real world privacy preserving data sharing
environments for healthcare (e.g., [15]). First, the data owners agree on the filter
length, the keyed hash functions, and the secret keys. Next, the owners convert
their strings into the BFEs. Then, the owners transfer the BFE lists (AT ∪BT )
(Henceforth, we will use D and DT to refer (A∪B) and (AT ∪BT ), respectively.)
to Charlie who compares the BFEs using a set-based similarity measure to find
matching pairs of records.

In this setting, we assume Charlie is the adversary and does not collude with
Alice or Bob. Charlie attempts to expose the original records based on their
BFEs without access to the secret keys. However, we assume that Charlie has
access to the following practical background knowledge:
Assumption 1: Charlie knows the global dataset G from which A and B are
drawn, such that D ⊆ G. This is reasonable because record linkage is typically
performed with personal identifiers (e.g., names and addresses), which in many
countries, can be found in public resources.
Assumption 2: Charlie knows the number of hash functions (k) that are part
of the Bloom encoding function. This is reasonable because Charlie can infer the
number of hash functions from the number of bits set in the Bloom filters. Due
to hash collisions, Charlie can only estimate this number, but it can be restricted
to a small range, such that the proposed attack can be applied for all values in
the range.

3 Overview of the Attack

Here, we provide an overview of the attack Charlie can execute on the BFE
system. Without loss of generality, let D be represented in relational form
D(Attr1, . . . , Attry) with string-valued attributes that correspond to personal
identifiers (e.g., surnames). For each record ti ∈ D, the Bloom encoding process
results in an encoding tTi = (g(ti.Attr1), . . . , g(ti.Attry)). An attribute encoding
tTi .Attrj is said to be compromised, if Charlie learns g−1(tTi .Attrj) = ti.Attrj .
The components of the attack are presented in subsections 3.2 to 3.4 and we
refer the reader to Appendix C for a visualization of the attack flow.

3.1 Motivating Example

Consider the scenario in Figure 2. Alice and Bob generate BFEs, which are
transferred to Charlie, who initiates the attack by calculating the frequency
distribution of the items in DT . Next, Charlie performs a statistical analysis
on G to form frequency intervals of the items in an arbitrary dataset of size
equal to DT . The possible encodings that could be associated with a particular
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string is reduced significantly via frequency analysis as illustrated in the following
example.
Example 3.1.1 (Frequency Utilization): In Figure 2, Charlie estimates the
frequency interval of “adrianna” as [0.25, 0.4] by performing a statistical anal-
ysis on G. Charlie then observes that the frequencies {0.375, 0.25} of BFEs
{0111101101, 0111001010} are the only ones in the interval of “adrianna”. As a
result, possible encodings for “adrianna” is reduced to these BFEs. �

In addition to frequency analysis, Charlie can use BFEs and the properties of
the encoding for the attack as illustrated in the following example.
Example 3.1.2 (Encoding Utilization): In Figure 2, “david” contains 6
bigrams { d, da, av, vi, id, d } with a possible encoding set {0111101101,
0111001010}. Notice, the encoding of “david” cannot contain more than six
1’s according to the construction of the BFE. The only encoding that satisfies
this condition is {0111001010}. Once “david” is mapped to {0111001010}, “adri-
anna” can only be mapped to {0111101101} since encoding function is one-to-one
with very high probability (see Section 3.3). It should be noted that each map-
ping of a name to an encoding reveals additional knowledge about the behavior
of the encoding function. For instance, once “sam” is mapped to {0100000011},
it is known that the encoding function can only set the second, ninth, and tenth
bit locations when applied on the set of bigrams { s, sa, am, m }. And, this type
of knowledge revision can be used to reveal further assignments. Notice that af-
ter the mappings of “david”, “adrianna” and “sam”, the possible encodings for
“adam” contains {0101000111, 1000110110}. But “adam” consists of the bigrams
{ a, ad, da, am, m } which have been included in previous mappings. Thus, to
be compatible with previous mappings, the first bit location of the encoding for
“adam” cannot be set to 1. The only encoding that satisfies this constraint is
{0101000111}, so “adam” is correctly assigned to it. �

Fig. 2. Records are embedded into a 10 bit Bloom filter with 1 hash function

3.2 Bloom Encoding Analysis

Some constraints can be derived from the properties of f , the n-gram encoding
function. The derived constraints should be satisfied by the mapping between
the original strings and the corresponding BFEs. Therefore, the problem of dis-
covering the mappings can be modeled as a CSP. Generally, a CSP is defined
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by a set of variables {X1, X2, . . . , Xp}, and a set of constraints {C1, C2, . . . , Cr}
[16]. Each variable Xi has a nonempty domain of possible values. Each con-
straint Ci is related to some variables and allows only some combination of
assignments between the variables and values in their domains. A state of the
problem is defined by an assignment of some, or all, variables to values, such
that {X1 = v1, ..., Xp = vp} and it is said to be consistent if all the constraints
are satisfied by the assignments of the given state.

The variables of the CSP for BFE cryptanalysis are obtained from the global
dataset. The domain of the variables are BFEs and the constraints are derived
from the properties of f . We assemble a CSP for each attribute of the dataset
independently because each attribute may be encoded with different encoding
parameters (e.g., filter length). More formally, the components of the CSP in
this context can be stated as follows:

Variable: Let record ti ∈ G. Then ti.Attrj is a candidate variable for attribute
Attrj . Consider the example in Figure 2, values for the forename attribute in
G such as “david” and “sam” are candidate variables. The domain of the CSP
variables consists of the values obtained from the encoded dataset. Since D ⊆ G,
only some of the candidates have corresponding encoding in DT . CSP variables
are selected from the candidates according to the frequency of the item sets such
that selected candidate has an encoding in DT with very high probability. The
selection procedure is described in Section 3.3.

Domain: Let record tTi ∈ DT . Then tTi .Attrj is a candidate value for at-
tribute Attrj . In Figure 2, the encoded values for the forename attribute, such
as “0100000011” and “0111101101” are candidate values for the domain of fore-
name variables. The domains of variables are determined in two steps. In the
first step, certain values are eliminated based on the number of bit locations set
to 1. With respect to BFEs, each hash function that is applied to encode n-grams
sets one bit location in the filter. Therefore, any value in the domain of variable
Xi can contain at most k · zi 1’s if Xi contains zi distinct n-grams. Values with
more than k · zi 1’s can be eliminated from the domain of Xi. In the second
step, frequency analysis is performed to refine the domains. This procedure is
described in Section 3.3.

Constraints: The deterministic behavior of f and the number of hash functions
are utilized for defining constraints. When f is applied on a particular n-gram,
only particular bit locations are set to 1. When a BFE contains 0’s in certain
bit locations, Charlie can conclude f does not set those locations for the n-
grams that are part of the corresponding string. This assertion is captured in
the Theorem 1. Since, in our threat model we assume that k is known by the
attacker, the maximum number of bit locations that can be set by f when
applied on any n-gram is known to be k. In addition, the minimum number of
bit locations that will be set by f can be determined probabilistically as asserted
by Theorem 2.



232 M. Kuzu et al.

Theorem 1. Let variable Xi contain n-grams QXi = {q1, ..., qz}, and let state
CS = {X1 = v1, ..., Xp = vp} be a consistent state. If the value of bit location l̄
is 0 in vi, then f(qx)[l̄] = 0 for any qx ∈ QXi .

Theorem 2. Let num1s : {0, 1}m �→ N be a function that returns the number
of bit locations with value 1 for the given encoding and w be an integer in range
[1,k]. For any n-gram qi, num1s(f(qi)) ≥ w with probability p such that:

p =

k∑
i=w

(
m
i

)(
k−1
k−i

)
(
m+k−1

k

) (2)

Proof. We refer the reader to Appendix A for the proof of both theorems.

Another important information resource for defining constraints is available as-
signments in a CSP state which accommodates some knowledge about f . This
knowledge is accumulated through a belief function:

Definition 3.2.1 (Belief Function): Belief function bf : Σn �→ {0, 1}m is
a function, that takes n-grams as input and yields a BFE as output, which
simulates f on each n-gram. In its initial state, for any n-gram qi, it is believed
that f(qi) may set any bit location. The belief function reflects this knowledge
by satisfying the equation bf(qi)[l̄] = 1 for 1 ≤ l̄ ≤ m.

Once a new assignment {Xi = vi} is added to the current state of the CSP,
the belief function is modified to satisfy Theorem 1. Basically, the new belief
about the encoding of any qi that is part of variable Xi is obtained by applying
the bitwise AND (∧) operation to current belief bf(qi) and vi. Let variable Xi

contain n-grams QXi = {q1, ...qz}. Then for each qi ∈ QXi :

bf(qi)updated = bf(qi)current ∧ vi (3)

Equation 3 extracts the knowledge from the assignment, such that if vi contains
0 in l̄, then f(qi)[l̄] = 0 for an updated state of the CSP.
Example 3.2.1 (Belief Update): An illustration of the belief update process
is presented in Figure 3. Initially, bf(jo) = 11111. Now, suppose {joe = 10001}
is added to the current state of the CSP. According to Theorem 1, f does not set
the second, third, or fourth bit locations when applied on the bigrams of {joe},
so we can update bf(jo) to be 10001. After the assignment {john = 10110}, we
learn that the second and fifth bit locations cannot be set to 1 if f is applied on
the bigrams of {john}. Therefore, bf(jo) = 10000.
Belief Validity Constraint (BVC): The belief validity constraint is based
on Equation 1 and belief function. Let CS = {X1 = v1, . . . , Xp = vp} be a
consistent state. Then all assignments {Xi = vi} should be compatible with
the current belief function. Compatible means Equation 1 should be satisfiable
with the current belief function and the known assignments. Let Xi contain the
n-gram set QXi = {q1, . . . , qz}. Then,
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Fig. 3. Belief Update

vi =
z∨

i=1

bf(qi) ∀{Xi = vi} ∈ CS (4)

Example 3.2.2 (BVC Check): Imagine a belief state such that bf( j) =
bf(jo) = 10001 and bf(oe) = bf(e ) = 01001 and suppose {joe = 11001} ∈ CS.
Now, consider the potential assignment {john = 00111}. If this assignment is
performed, then bf( j) = bf(jo) = 00001. Yet, to satisfy the BVC, (bf( j) ∨
bf(jo) ∨ bf(oe) ∨ bf(e ) = 11001) should hold true, which is not the case. As a
result, the assignment {john = 00111} is not permitted in this state. �

Min-Location Constraint (MLC): The minimum location constraint is
based on Theorem 2 and belief function. Let w be the threshold for the minimum
number of bit locations set by f , then we can enforce the following constraint:

num1s(bf(qi)) ≥ w (5)

If w could be set to a large value, the search space of the CSP solver could be re-
duced significantly, and the CSP could be solved in a more timely manner. How-
ever, according to Theorem 2, w should be set to 1 to satisfy num1s(bf(qi)) ≥ w
with probability p = 1. By reducing p slightly, w could be increased significantly.
At the same time, a reduction in p could lead to an unsatisfiable CSP, since
num1s(bf(qi)) ≥ w may not hold with probability 1 − p. As a result, there is
a tradeoff between solving a complex CSP in a timely manner and accepting
the risk of converting a satisfiable CSP into an unsatisfiable one. In this setting,
the risk is controlled by p (i.e., if p is large the risk is small). Once p is fixed, the
threshold w can be calculated via Equation 2.

Example 3.2.3 (MLC Check): Consider the state prior to the poten-
tial assignment {joe = 11000}, such that bf(jo) = 10111. After the assign-
ment, bf(jo) = 10000 and num1s(bf(jo)) = 1. If the threshold w is 2, then
num1s(bf(jo)) ≥ w no longer holds true after the assignment. Therefore, the as-
signment {joe = 11000} is not permitted in this state. �

3.3 Frequency Analysis

In section 3.2, the problem of discovering the mappings between original strings
and their BFEs is modeled as a CSP with candidate variables and domains.
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To select the variables and their domains from candidates, the frequency distri-
bution of the elements in sets G and DT can be used. CSPs are generally hard
problems to solve, however they can be solved in a timely manner by minimizing
the domains of the variables and using heuristics based on domain restrictions.
Such restrictions can be achieved by leveraging frequency analysis. In particular,
we introduce a fair assumption to form the basis of frequency analysis.
Assumption 3.3.1 (g is a 1-1 function): It can be assumed that there is a
one-to-one mapping between each distinct string and each distinct BFE. Let S1

and S2 be two strings, then

g(S1) = g(S2), if S1 = S2

g(S1) �= g(S2), otherwise (6)

It is guaranteed that g(S1) = g(S2) when S1 = S2 by the construction of the
encoding. It is highly unlikely that g(S1) = g(S2) if S1 �= S2. In this context,
two strings are defined to be distinct if they have at least one distinct n-gram.
Suppose qx ∈ QS1 and qx /∈ QS2 , then g(S1) = g(S2) if and only if the Bloom
filter check on g(S2) indicates membership of qx in S2. The probability of such
false positives (pf ) depends on k, m, and the size of QS2(s) such that pf =
(1 − e−ks/m)

k
(see [17]). Notice that pf becomes negligible with large k and m.

In fact, k and m should be large in a PRL protocol; otherwise record matching
quality would degrade significantly. We can derive additional information if we
know that g is a 1-to-1 function, such as frequency conservation:
Corollary 3.3.1 (Frequency Conservation): Let fri be the frequency of Xi

in set D. Then the frequency of g(Xi) in set DT is also fri. Given Equation (6),
any string with value Xi will be mapped to the same encoding g(Xi). Strings
with values other than Xi will not be mapped to the g(Xi). Therefore, the
frequencies are preserved during transformation.
Definition 3.3.1 (Relative Frequency (fr)): Let freq : Σ∗ × Z �→ N be
a function that returns the number of occurrences of x in Z. Then the relative
frequency of x is defined as:

frZ(x) =

{
freq(x,Z)

|Z| if x ∈ Z

0 otherwise

}
(7)

If we know that Z is a random sample of size |Z| from G, we can bound
the relative frequency of any item in Z using statistics learned from G. This
implies we can draw multiple samples of size |Z| from G using Monte Carlo
techniques [18] and, for each sample set U from G, we can compute frU (x) to
determine the frequency intervals in which the true value of frZ(x) belongs with
high confidence. Using these samples, for any Xi, we can compute αXi and βXi

such that αXi ≤ frZ(Xi) ≤ βXi with high confidence. In our problem setting,
D is a random sample of size |D| and DT is the encoded dataset such that
Xi ∈ D → g(Xi) ∈ DT . Now, suppose αXi ≤ frD(Xi) ≤ βXi for each Xi ∈ D
with 99% confidence, then αXi ≤ frDT (g(Xi)) ≤ βXi for each g(Xi) ∈ DT with
99% confidence by the frequency conservation principle.
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In the attack model, Charlie can calculate the relative frequency of items in
DT , but can also learn αXi and βXi for any Xi ∈ G. CSP construction could
then be finalized using this set of knowledge. Variables of the CSP and their
domains could be selected from the candidates ( see Section 3.2) as follows:

Variable Selection: Let Xi be a candidate variable. Then Xi could be selected
as a CSP variable if and only if αXi > 0. This means that Xi ∈ G is expected
to have the corresponding encoding g(Xi) ∈ DT if αXi > 0.
Domain Selection: Let vi be a candidate value for the domain of Xi, then vi

could be selected for the domain of Xi if and only if αXi ≤ frDT (vi) ≤ βXi .

Example 3.3.1 (Variable & Domain Selection): Imagine the dataset DT

consists of 20,000 records. Charlie draws a sample dataset of size 20,000 from G
multiple times. Given these samples, Charlie obtains an approximate sampling
distribution of frZ(Xi) for each Xi ∈ G for the forename attribute. Now imagine
αjohn = 0.08 and βjohn = 0.1. Since αjohn > 0, ‘john’ could be selected as a
variable. When Charlie receives DT , he calculates frDT (vi) for each vi ∈ DT for
the forename attribute. Suppose frDT (11001) = 0.09 and frDT (01000) = 0.04.
Then ‘11001’ is in the domain of the variable {john} while ‘01000’ is not because
αjohn ≤ frDT (vi) ≤ βjohn is satisfied for vi = 11001, but not for vi = 01000.

Clearly, the frequency analysis should also consider possible erroneous records
in D because they may affect the relative frequency of items in the dataset.
A simple approach to deal with errors is to update the frequency intervals of
the variables by considering the possible error rate that can affect the records.
Error rates could be determined by domain experts or could be extracted from
the historical data [7]. Once the error rates are determined, frequency intervals
could be updated accordingly. Let the amount of reduction and increment in
the relative frequency of an item be at most errr and erri respectively, then
αXiupdated

= (1− errr)×αXi and βXiupdated
= (1+ erri)×βXi . The effect of the

erroneous records on the attack is examined in Section 4.
Notice that if the frequency of all the elements in the global dataset is similar,

frequency analysis is not useful to Charlie. In such a case, domain of the variables
cannot be reduced. Even worse, the variables cannot be determined since αXi will
be 0 for most of the candidates. However in real life, the frequencies of items tend
not to be similar. The distribution of a wide variety of natural and man made
phenomena such as frequencies of family names follow power-law distribution
[19]. In our problem, such frequent elements in G will have a corresponding
encoding in the transformed dataset with high probability. In fact, the proposed
variable selection method only allows the selection of such frequent items.

3.4 CSP Solver

Initially, the adversary models the mapping of BFEs to strings as a CSP ac-
cording to the procedures described in sections 3.2 and 3.3. Once the problem is
modeled, a CSP solver is applied to associate BFEs with corresponding strings.
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Standard algorithms such as backtracking search [16] could be applied to
solve the CSP. The performance of this search can be improved via additional
heuristics. One of the most successful heuristics is dom/deg [20], which selects the
variable with the smallest domain involved in the greatest number of constraints
(i.e., maximum degree). For the BFEs, constraints are defined over the n-grams
of the variables through the belief function. If a variable contains frequently used
n-grams, then it is said to be involved in most of the constraints. In this setting,
the degree of a variable is the sum of the frequencies of its n-grams.
Definition 3.4.1 (dom/deg): Let ngramFreq : Σn �→ N be a function that
returns the number of occurrences of a particular n-gram in all variables of the
CSP. Let Xi be a variable in the CSP with domain size dsizeXi such that Xi

contains the n-grams {q1, ..., qz}. Then the dom/deg of Xi is defined as:

dom/degXi =
dsizeXi

z∑
i=1

ngramFreq(qi)

In any state of the CSP, the variable with the smallest dom/deg is selected as
the next variable to assign. The CSP solver applies backtracking search directed
by dom/deg to assign variables according to defined constraints. We provide the
summary of our CSP solver in Algorithms 1 and 2 in Appendix B.

4 Experimental Results

In this section, we present the experimental evaluation of the proposed attack.
To perform our evaluation, we selected a publicly available dataset of real per-
sonal identifiers, derived from the North Carolina voter registration list (NCVR),
which contains 6,190,504 records [21]. NCVR was used as dataset G from which
a random sample of 20,000 records was selected to form dataset D. We investi-
gated the success of the attack with the forename attribute, but note that the
attack could be repeated for each attribute. The resulting dataset contained ap-
proximately 3,500 unique forenames. To evaluate the effect of typographical and
semantic name errors, we also generated a perturbed version of D by implement-
ing a data corrupter based on the errors typically observed in practice [7]. The
corrupter introduced errors based on optical character recognition, phonemes,
and typography at rates typical of real datasets.

We use precision (i.e., ratio of correctly assigned names to all assigned names)
and recall (i.e., ratio of matched names to all available names) as metrics for the
attack’s success.

4.1 Attack on BFEs Based on Parameters in the Literature

In this part, we evaluate the success of the proposed attack and the effects of the
CSP parameters on the computational complexity with a fixed BFE setting. The
encoding of D was obtained using the parameters: k (number of hash functions):
15, m (filter length): 500 and n (encoding unit): 2 that are reported in [12]. The
effect of varying encoding parameters is then examined in subsection 4.2.
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To select CSP variables and domains, frequency intervals were constructed
via a Monte Carlo sampling of 10,000 datasets with 20,000 records each from G.
The 400 most frequent names in G were selected as the CSP variables according
to this analysis (αXi > 0 holds for only 400 names). For the experiments with
perturbed data, the frequency intervals were updated according to the data
corrupter’s error rates, such that errorr = 0.5 and errori = 0 (see Section 3.3).

Number of variables (sv): The effect of sv is depicted in Figure 4(a) and
4(b). In Figure 4(a) we observe that the recall and precision of the assign-
ments increases with sv. This is because the constraints of the CSP become
stronger with an increasing number of assignments (i.e., belief function updates).
Once the constraints are sufficiently strong, only the correct assignment satisfies
the constraints. We note that recall has an upper bound of approximately 0.11
(400/3500) due to the outcome of the frequency analysis. In fact, recall of the
proposed attack reaches this upper bound along with precision 1.

In Figure 4(b), it can be seen that the complexity of the CSP increases signif-
icantly with sv. This is because, variables with larger domains are added to the
CSP as sv grows, which makes the search space larger. For the perturbed data
analysis, the attack becomes more time consuming to execute because the fre-
quency intervals are broadened to compensate for error, which leads to variables
with larger domains. For instance, although the assignment of 400 variables is
fulfilled in 94 sec. in unperturbed case, it takes 870 sec. for the perturbed dataset.

Min-Location Threshold (w) : Figure 4(c) illustrates that the CSP’s com-
plexity depends on the threshold w associated with the Min-Location constraint
(MLC). Specifically, MLC becomes more restrictive as w increases. Therefore,
the search space of the CSP solver shrinks, which permits the problem to be
solved more quickly. However, w can only be increased up to a certain point,
after which the CSP becomes unsatisfiable. In this setting, w was initially set
to 10 with 0.99 probability (based on Equation 2), and the CSP solver correctly
assigned all the variables up to this threshold. The CSP solver could not propose
a solution for higher w because, during the pruning of the search space, some of
the true mappings were eliminated due to the wrong w constraint.

In summary, the results reported in Figure 4 indicate that proposed attack
can compromise 11% of the records with precision close to one in a reasonable
amount of time even under the corrupted data scenario.

4.2 Tuning BFE Parameters to Mitigate Attack

The previous experiments show that BFEs are vulnerable when the parameters
are set according to recommendations in the literature. However, given that the
values of the parameters can be tuned, we set out to determine if the security
of BFEs can be strengthened without sacrificing record linkage accuracy. To in-
vestigate, we performed a systematic analysis with the number of variables in
the CSP fixed to 50. This is a smaller set than the 400 used in the previous ex-
periments, but Figure 4(b) shows that the assignment time grows exponentially
with the number of variables, and certain experiments required several days to
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complete. As a result, for the following experiments, the recall of the attack is
fixed to 1.43%. Since the main use of BFEs is to tolerate errors in records during
PRL, all experiments were conducted over perturbed data .
Encoding unit: We note that BFEs gain resistance to the attack as n increases.
Specifically, the complexity of the CSP rapidly increases and the precision of the
assignments drops off as shown in Figure 5(a) and 5(b). For instance, while 50
assignments were achieved in several seconds for n = 2, it required almost 2 days
for n = 4. Additionally, this was accompanied by a 12% reduction in precision.
This is an expected finding because as n grows the constraints become less
restrictive. Both BVC and MLC constraints depend on the belief function, such
that the more accurate the belief function is, the more restrictive the constraints
are. If n becomes larger, the quality of the belief function degrades significantly.
This is because records share fewer n-grams as n increases, which leads to less
accurate reasoning about the n-gram encoding function.

To characterize the effect of increasing n on record linkage accuracy, we at-
tempted to match the records in the perturbed version of the dataset (P ) with
the ones in the unperturbed version (O). Once encoding of the datasets was
formed (PT and OT ), each item in PT was associated with exactly one item
in OT according to similarity between encodings. Similarity was measured with
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Dice-coefficient [12] which is a set based similarity measure. The experiments,
summarized in Figure 5-c, show that as n increases the record matching preci-
sion (i.e., ratio of correct associations to all associations) is only slightly affected.
These results suggest that large n (e.g., n = 4) may provide sufficient record
matching accuracy, while significantly reducing the recall rate of the attack and
increasing its computational cost.
B loom filter length(m) and Number of hash functions(k): According
to our empirical observations, the security of the encoding does not depend
on m or k independently, but rather on their ratio. As the m/k decreases, the
number of bit locations set by individual n-gram encodings decreases. Therefore,
the strength of the constraints that are dependent on the distinction between
individual n-gram encodings via belief function diminishes. The complexity of
the CSP increases with less restrictive constraints as shown in Figure 5(d). On
the other hand, record matching quality degrades if m/k becomes smaller (see
[12]). This is because less distinction between n-gram encodings leads to more
false positives in the record matching process.

In summary, BFEs become more resistant to the proposed attack with in-
creasing n and decreasing m/k.

5 Related Work

Various protocols for private record linkage (PRL) have been developed [2–5].
PRL protocols tend to use two primary mechanisms for protecting sensitive
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information: secure multi-party computation (SMC) and data transformation.
Although SMC protocols provide strong security guarantees, they are impractical
for many real data integration tasks due to their reliance on inefficient cryptog-
raphy. As an alternative to heavyweight SMC, there are approaches to selectively
reveal information through transformation [22–25]. Such approaches perturb, as
opposed to encrypt, private information to protect individual identity. Unlike
SMC, transformation can leave data vulnerable to compromise due to the pres-
ence of partial information. In fact, several attack models have emerged against
transformation techniques. Of note, the disclosure risk of pseudonymization [26]
is examined in [22], and the approach is particularly applicable for situations in
which the attacker has some background information (e.g, frequency distribu-
tion of anonymized items). Another popular approach for data transformation
relies on distance preserving data perturbation (e.g., [25]). Disclosure risk of such
approaches is examined in [27] and [28]. Their research demonstrated that an ad-
versary can discover the original values with high confidence if mutual distances
between data objects is known. While attacks and security investigations have
been reported for various transformation methods, to the best of our knowledge
ours is the first work to explicitly address BFEs.

In addition to attack scenarios against privacy preserving protocols, informa-
tion theoretic measures have been proposed to evaluate the degree of the privacy
provided by such protocols, especially in the context of anonymous routing ([29],
[30], [31]). The quality of the privacy is measured according to the amount of
information an attacker can gain after observing the message flow (see [29] and
[30]) under various attack scenarios. The quality assessment is extended in [31]
by considering the possible prior knowledge of the attackers. Available informa-
tion theoretic metrics can be used as a basis to evaluate the degree of privacy
provided by BFE with different BFE parameter settings. In fact, our work pro-
vides a particular attack scenario to enable such analysis for BFE.

6 Conclusions and Future Work

In this paper, we proposed an adversarial model against private record linkage
protocols based on Bloom filter encoding (BFE). BFEs are part of an impor-
tant emerging record linkage model for real world application domains, such as
healthcare, because they enable approximate data matching with low computa-
tional resources. We modeled the problem of learning the original data from their
encoded versions as a constraint satisfaction problem (CSP) using the proper-
ties of the encoding function and the frequency distribution of the identifiers in
encoded and global unencoded datasets from which the encodings are derived.
The unencoded records are assigned to the encoded versions iteratively, accord-
ing to the constraints. We experimentally evaluated the attack with real data
derived from a publicly available voter registration list. We illustrated that the
attack can be highly successful if encoding is applied with the settings published
in existing literature. However, we also demonstrated that the encodings can be
made more resistant to the attack by adjusting encoding parameters with only
a slight reduction in record matching quality.
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In future work, we plan to extend the attack to determine if additional en-
codings, or portions of the encodings, can be compromised. In particular, the
current CSP is designed to crack high frequency encodings, but items with lesser
frequencies may be predictable using the knowledge learned about the encoding
function.
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APPENDIX

A Proof of Theorems

Proof of Theorem 1: Let us assume vi[l̄] = 0 and f(qx) set l̄ in the Bloom
filter to 1. According to the following equation, that is derived from Equation 1

vi[l̄] =

⎛⎝ ∨
qi∈(QXi−qx )

f(qi)[l̄]

⎞⎠ ∨
f(qx)[l̄] (8)

Notice, (f(qx)[l̄] = 1) → (vi[l̄] = 1) by the definition of bitwise OR and Equation
8. Since f(qx)[l̄] = 1, it follows that vi[lx] = 1, which contradicts the initial fact
that (vi[l̄] = 0) ≡ true. Therefore, by contradiction, we conclude that f(qx)[l̄] =
0 provided that (vi[l̄] = 0) is satisfied and qx ∈ QXi .

Proof of Theorem 2: Each hash function hashi for 1 ≤ i ≤ k, sets a random
bit location in Bloom filter for each input qj . Consider the set L = {1, 2..., m},
which contains the bit locations in the Bloom filter, and the multiset MS =
{l1, ..., lk}, such that li = hashi(qj) and li ∈ L. MS is a multiset since some
hash functions may set same bit locations of filter. MS could be considered as
a k-multicombination [32] from set L and the number of all such multisets is:

n1 =
(

m + k − 1
k

)
Let MSw be a multiset of size k from L with exactly w distinct elements, MSw

i

be a set that contains w distinct elements selected from L, and MSw
r be a

multiset that contains (k−w) elements such that li ∈ MSw
r → li ∈ MSw

i . Then
MSw = MSw

i ∪MSw
r . In other words, multiset MSw is constructed by selecting

w distinct elements from set L and selecting the remaining (k−w) elements from
initially selected w elements. MSw

i is also defined to be w-combination [32] from
L and the number of all such sets is C(�, w). MSw

r is (k −w) multicombination
from MSw

i and the number of all such sets is C(k − 1, k−w). Then the number
of multisets MSw is C(m, w)C(k − 1, k − w), since MSw is the union of MSw

i

and MSw
r . As a result, the number of multisets of size k from set L with at least

w distinct elements is:

n2 =
k∑

i=w

(
m

i

)(
k − 1
k − i

)
n1 represents the number of all possible encodings of length m with k hash func-
tions. n2 represents the number of encodings of length m with k hash functions
such that at least w of them set different locations in the Bloom filter. As a
result, n2/n1 is the probability p such that at least w locations of Bloom filter
are set by k hash functions. Since at least w distinct locations are set, there are
at least w 1’s exist in the corresponding encoding with probability p.
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B CSP Solver Algorithm

As described in Section 3.3, the frequency analysis is applied to select the CSP
variables and their domains. However, we may want to assign only a portion
of these variables to reduce the complexity. In Algorithm 1, sv items with the
smallest domains are retrieved. As described in Section 3.2, the belief function is
proposed to simulate the n-gram transformation function. At the implementation
level, the belief function could be represented by a hashtable. Each n-gram qi is
a key in this hashtable, and belief about the n-gram encodings are the values1.

Fig. 6. CSP Solver

1 setBf(H,K,V) sets the value of key K as V, lookupBf(H,K) returns the value for the
key K in hashtable H.
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C Attack Flow

The attack flow that is executed on BFEs is depicted in Figure 7. In this setting,
the adversary attempts to compromise BFEs received from Alice and Bob.

Fig. 7. A schematic of BFE data sharing and the attack issued by the third party
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Abstract. An anonymous credential system allows the user to convince
a verifier of the possession of a certificate issued by the issuing authority
anonymously. One of the applications is the privacy-enhancing electronic
ID (eID). A previously proposed anonymous credential system achieves
constant complexity in the number of finite-set attributes of the user.
However, the system is based on the RSA. In this paper, we show how to
achieve the constant complexity in a pairing-based anonymous credential
system excluding the RSA. The key idea of the construction is the use of
a pairing-based accumulator. The accumulator outputs a constant-size
value from a large set of input values. Using zero-knowledge proofs of
pairing-based certificates and accumulators, we can prove AND and OR
relations with constant complexity in the number of finite-set attributes.

1 Introduction

Electronic identification has been widely applied to access authorization to build-
ings, use of facilities, Web services, etc. Currently, electronic identity (eID) such
as eID card is often used. The eID is issued by a trusted organization such as
the government, company, or university, and is used for services provided by the
organization. Trusted ID is very attractive for secondary use in commercial ser-
vices. The eID includes attributes of the user such as the name, the address, the
gender, the occupation, and the date of birth. In commercial cases, the attribute-
based authentication can be desired. For example, a service provider can refuse
the access from kids, by checking the age in the eID.

One of serious issues in the existing eID systems is user’s privacy. In the
systems, the eID may reveal the user’s identity. The service provider can collect
the use history of each user. Anonymous credential systems [13], [12], [10] are
one of the solutions.

Anonymous credential systems allow an issuer to issue a certificate to a user.
Each certificate is a proof of membership, qualification, or privilege, and contains
user’s attributes. The user can anonymously convince a verifier for the possession
of the certificate, where the selected attributes can be disclosed without revealing
any other information about the user’s privacy. The user can prove complex
� This work was done while this author was with Okayama university.

S. Fischer-Hübner and N. Hopper (Eds.): PETS 2011, LNCS 6794, pp. 246–263, 2011.
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relations of the attributes using AND and OR relations. AND relation is used
when proving the possession of all of the multiple attributes. For example, the
user can prove that he is a student, and has a valid student card, when entering
the faculty building. OR relation represents the proof for possession of one of
multiple attributes. For example, he can prove that he is either a staff or a
teacher when using a copy machine in a laboratory. An implementation of eID
on a standard java card is shown in [5].

In [13], Camenisch and Lysyanskaya firstly proposed an anonymous credential
system based on RSA. Unfortunately, it suffers from a linear complexity in the
number of user’s attributes in proving AND and OR relations. Hence, this system
is not suitable for small devices such as smart cards. In [10], Camenisch and
Groß extended the scheme to solve the drawback. They classify attribute types
into two categories: string attributes and finite-set attributes. The former can
be represented as a string, such as name and ID number. The latter can be
represented as an element from relatively small finite-set, such as gender and
profession. There are much fewer string type of attributes, and thus the costs on
finite-set attribute types impacts the total efficiency. In Camenisch-Groß system,
by encoding a large number of finite-set attributes into prime numbers, one value
for the finite-set attributes can be embedded into the certificate. Then, the AND
and OR relations are proved with the constant complexity in the number of
finite-set attributes using zero-knowledge proofs of integer relations on prime
numbers.

In this paper, for a pairing-based anonymous credential system using BBS+
signatures [7], we show how to prove AND and OR relations with constant
complexity. The key idea of the construction is the use of a pairing-based accu-
mulator [12]. The accumulator outputs a constant-size value from a large set of
input values. We consider that the input values are assigned to attributes. Then,
we utilize an extended BBS+ signatures to certify a set of attributes as the ac-
cumulator. Using zero-knowledge proofs of BBS+ signatures and accumulators,
we can prove AND and OR relations with constant complexity in the number of
finite-set attributes. The drawback is that the size of public key is depending on
the number of attribute values. It varies from 200 KBytes to 2 MBytes for the
number of attribute values 1, 000 to 10, 000. In the current mobile environments,
the data size is sufficiently practical, since the public key is not changed after it
is distributed.

Remark 1. In the RSA-based anonymous credential system with efficient com-
plexity [10], NOT relation is also equipped. Namely, the prover can prove that a
specified attribute is not in his certificate. On the other hand, our system does
not have the protocol to directly prove NOT relation. However, OR relation
substitutes NOT relation. In an attribute type, we consider the set of attribute
values except for the attribute value targeted by NOT relation. Then, proving
that an attribute value in the set is in his certificate means that the target at-
tribute value is not in the certificate. For example, for proving that the user is
not student, we can prove that she has some of other profession attribute values.
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2 Preliminaries

2.1 Bilinear Groups

Our scheme utilizes the following bilinear groups:

1. G and T are multiplicative cyclic groups of prime order p,
2. g is a randomly chosen generator of G,
3. e is an efficiently computable bilinear map: G × G → T , i.e., (1) for all

u, u′, v, v′ ∈ G, e(uu′, v) = e(u, v)e(u′, v) and e(u, vv′) = e(u, v)e(u, v′), and
thus for all u, v ∈ G and a, b ∈ Z, e(ua, vb) = e(u, v)ab, and (2) e(g, g) �= 1.

2.2 Assumptions

The security of our scheme is based on the q-SDH assumption [7,8], the q-HSDH
(Hidden SDH) assumption [9], and q-TDH (Triple DH) assumption [4] for the
underlying signatures, and n-DHE assumption [12] for the accumulator, where
q, n are non-negative integer.

Definition 1 (q-SDH assumption). For all PPT algorithm A , the probability

Pr[A(u, ua, . . . , uaq

) = (b, u1/(a+b)) ∧ b ∈ Zp]

is negligible, where u ∈R G and a ∈R Zp.

Definition 2 (q-HSDH assumption). For all PPT algorithm A , the proba-
bility

Pr[A(u, v, ua, (u1/(a+b1), ub1 , vb1), . . . , (u1/(a+bq), ubq , vbq )) = (u1/(a+b), ub, vb)
∧∀i ∈ [1, q] : ub �= ubi ]

is negligible, where u, v ∈R G, a ∈R Zp, and b, bi ∈ Zp.

Definition 3 (q-TDH assumption). For all PPT algorithm A , the probabil-
ity

Pr[A(u, ua, ub, (c1, u
1/(a+c1)), . . . , (cq, u

1/(a+cq))) = (ura, urb, urab)
∧∀i ∈ [1, q] : c �= ci ∧ r �= 0]

is negligible, where u ∈R G, a, b ∈R Zp, and ci, c ∈ Zp.

Definition 4 (n-DHE assumption). For all PPT algorithm A , the probabil-
ity

Pr[A(u, ua, . . . , uan

, uan+2
, . . . , ua2n

) = uan+1
]

is negligible, where u ∈R G and a ∈R Zp.
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2.3 Extended Accumulator with Efficient Updates

In [12], the accumulator with efficient updates is proposed. the accumulator is
generated from a set of values, and we can verify that a single value is accu-
mulated. Thus, for k values, we have to verify that each value is accumulated
multiple times. This means that the complexity depends on the number of proved
values, k. Here, we extend the accumulator to verify that k values are accumu-
lated with the constant complexity.

Here, we consider that some values in {1, . . . , n} with size n are accumulated.
Let V be a set of accumulated values that is a subset of {1, . . . , n}. Let U =
{i1, . . . , ik} be a subset of V with size k. The accumulator allows us to confirm
that all elements of U belong to V , i.e., U ⊆ V , all at once.

AccSetup: This is the algorithm to output the public parameters. Select bilin-
ear groups G, T with a prime order p and a bilinear map e. Select g ∈R G.
Select γ ∈R Zp and compute and publish p,G, T , e, g, g1 = gγ1

, . . . , gn =
gγn

, gn+2 = gγn+2
, . . . , g2n = gγ2n

and z = e(g, g)γn+1
as the public parame-

ters.
AccUpdate: This is the algorithm to compute the accumulator using the public

parameters. The accumulator accV of V is computed as accV =
∏

i∈V gn+1−i.
AccWitUpdate: This is the algorithm to compute the witness that values

are included in an accumulator, using the public parameters. Given V and
the accumulator accV , the witness of values i1, . . . , ik in U is computed as
W =

∏
ı̃∈U

∏j 
=ı̃
j∈V gn+1−j+ı̃.

AccVerify: This is the algorithm to verify that values in U are included in an
accumulator, using the witness and the public parameters. Given accV , U ,
and W , accept if

e(
∏

ı̃∈U gı̃, accV )
e(g, W )

= zk.

Theorem 1. Under the n-DHE assumption, any adversary cannot output (U, V ,
W ) where U ⊆ {1, . . . , n}, V ⊆ {1, . . . , n} on input p,G, T , e, g, g1, . . . , gn, gn+2,
..., g2n and z s.t. AccVerify accepts U, accV , W and U \ V �= ∅.

Proof. Assume an adversary which outputs (U, V, W ) s.t. AccVerify accepts
U, accV , W and U \ V �= ∅. Let U1 = U \ V and U2 = U ∩ V . U \ V �= ∅ (i.e.,
U1 �= ∅) implies |U2| �= k.

Since AccVerify accepts these,

e(
∏

ı̃∈U gı̃, accV )
e(g, W )

= zk = e(g, gn+1)k,

where gn+1 = gγn+1
. From accV =

∏
i∈V gn+1−i,

e(
∏

ı̃∈U gı̃,
∏

i∈V gn+1−i)
e(g, W )

= e(g, gn+1)k,
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e(g,
∏
ı̃∈U

∏
i∈V

gn+1−i+ı̃) = e(g, Wgn+1
k).

Thus, we have ∏
ı̃∈U

∏
i∈V

gn+1−i+ı̃ = Wgn+1
k,

∏
ı̃∈U1

∏
i∈V

gn+1−i+ı̃ ·
∏

ı̃∈U2

∏
i∈V

gn+1−i+ı̃ = Wgn+1
k,

(
∏

ı̃∈U1

∏
i∈V

gn+1−i+ı̃) · gn+1
|U2|

∏
ı̃∈U2

∏
i∈V,i
=ı̃

gn+1−i+ı̃ = Wgn+1
k,

∏
ı̃∈U1

∏
i∈V

gn+1−i+ı̃ ·
∏

ı̃∈U2

∏
i∈V,i
=ı̃

gn+1−i+ı̃ = Wgn+1
k−|U2|.

We obtain

gn+1 = (W−1 ·
∏
ı̃∈U1

∏
i∈V

gn+1−i+ı̃ ·
∏

ı̃∈U2

∏
i∈V,i
=ı̃

gn+1−i+ı̃)1/(k−|U2|),

where k − |U2| �= 0 due to |U2| �= k.
For any ı̃ ∈ U1 and any i ∈ V , gn+1−i+ı̃ �= gn+1, due to U1 ∩ V = φ. Also,

for any ı̃ ∈ U2 and any i ∈ V satisfying i �= ı̃, gn+1−i+ı̃ �= gn+1. Therefore,
we can compute gn+1 given g1, . . . , gn, gn+2, . . . , g2n, which contradicts n-DHE
assumption. ��

2.4 Modified BBS+ Signatures

We utilize an extension from BB signature scheme [6], called BBS+ signatures.
The extension is informally introduced in [7] and the concrete construction is
shown in [15,1]. This scheme allows us to sign a set of messages. Our system
requires that the accumulator is signed. In the BBS+ signature, the messages to
be signed are set in exponents (elements of Zp), whereas the accumulator is the
product of gi’s from G. Thus, we modify the BBS+ signature to be able to sign
on gi’s, as follows.

mBBS+Setup: Select bilinear groups G, T with a prime order p and a bilinear
map e. Select g, g0, h1, . . ., hL ∈R G. Select γ ∈R Zp and compute g1 =
gγ1

, . . . , gn = gγn

, gn+2 = gγn+2
, . . . , g2n = gγ2n

.
mBBS+KeyGen: Select X ∈R Zp and compute Y = hX . The secret key is X

and the public key is (p,G, T , e, g, g0, g1, . . . , gn, gn+2, . . . , g2n, h1, . . . , hL, Y ).
mBBS+Sign: Given messages m1, . . . , mn, mn+2, . . . , m2n ∈ {0, 1}, M1, . . .,

ML ∈ Zp, select w, r ∈R Zp and compute

A = (
j 
=n+1∏
1≤j≤2n

g
mj

j

∏
1≤j≤L

h
Mj

j gr
0g)1/(X+w).

The signature is (A, w, r).
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mBBS+Verify: Given messages m1, . . . , mn, mn+2, . . . , m2n, M1, . . . , ML and
the signature (A, w, r), check

e(A, Y gw) = e(
j 
=n+1∏
1≤j≤2n

g
mj

j

∏
1≤j≤L

h
Mj

j gr
0g, g).

The modified BBS+ signature is unforgeable against adaptively chosen mes-
sage attack under the q-SDH assumption. It is shown in a similar way to [2], as
follows.

BB signatures. Since the security is proved using the security of the underlying
BB signatures [6], we briefly show the scheme.

BBSetup: Select bilinear groups G, T with a prime order p and a bilinear map
e. Select g ∈R G.

BBKeyGen: Select X ∈R Zp and compute Y = gX . The secret key is X and
the public key is (p,G, T , e, g, Y ).

BBSign: Given message m ∈ Zp, compute B = g1/(X+m). The signature is B.
BBVerify: Given message m and the signature B, check e(B, Y gm) = e(g, g).

BB signatures are existentially unforgeable against weak chosen message attack
under the q-SDH assumption [6]. In this attack, the adversary must choose mes-
sages queried for the signing oracle, before the public key is given.

Theorem 2. mBBS+ signature is unforgeable against adaptively chosen mes-
sage attack under the q-SDH assumption.

Proof. This proof is derived from [2].
Assume that A breaks the unforgeability of mBBS+ signatures, and we con-

struct the following simulator B breaking BB signatures that are secure under
the q-SDH assumption.

B chooses random messages w1, . . . , wq−1 for BB signatures, and is given the
corresponding BB signatures Bi = g1/(X+wi) with the public key (p,G, T , e, g, Y ).
Then, B selects w∗, k∗, a∗ ∈R Zp, and compute g0 = ((Y gw∗

)k∗
g−1)1/a∗

=
g((X+w∗)k∗−1)/a∗

. Also, B selects γ, μ1, . . . , μL ∈R Zp, and compute g1 = gγ1

0 ,
. . . , gn = gγn

0 , gn+2 = gγn+2

0 , . . . , g2n = gγ2n

0 , and h1 = gμ1
0 , . . . , hL = gμL

0 . B sets
the public key of mBBS+ signatures (p,G, T , e, g, g0, g1, . . . , gn, gn+2, . . . , g2n,
h1, . . . , hL, Y ), and runs A. Out of q signing queries from A, B randomly se-
lects a query, which called ∗ query. For messages (m1,i, . . . , mn,i, mn+2,i, . . .,
m2n,i, M1,i, . . . , ML,i) of the i-th query, define

ti =
j 
=n+1∑
1≤j≤2n

mj,iγ
j +

∑
1≤j≤L

Mj,iμj .
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To the queries except ∗, B responds using the BB signature (Bi, wi) as follows.
B selects ri ∈R Zp, and compute ai = ri + ti and the following Ai.

Ai = B
(1− ai+(wi−w∗)aik∗

a∗ )

i g
ai
a∗ k∗

= B
(1− ai

a∗ )

i g
−(wi−w∗)aik∗+aik∗(X+wi)

(X+wi)a∗

= B
(1− ai

a∗ )

i (g
ai
a∗ k∗

)
−wi+w∗+X+wi

X+wi

= Big
−ai+aik∗(X+w∗)

a∗(X+wi)

= Big
ai

(X+wi)

0 = (ggai
0 )

1
X+wi

B returns (Ai, wi, ri).
To the ∗ query, B sets r∗ = a∗− ti, computes A∗ = gk∗

= (gga∗
0 )1/(X+w∗) and

returns (A∗, w∗, r∗).
Finally, A outputs the forged signature (A′, w′, r′) on message (m′

1, . . . , m
′
n,

m′
n+2, . . . , m′

2n, M ′
1, . . . , M

′
L). There are three cases. Define

a′ = r′ +
j 
=n+1∑
1≤j≤2n

m′
jγ

j +
∑

1≤j≤L

M ′
jμj .

– Case I [w′ /∈ {w1, . . . , wq, w
∗}]: B computes the following B′.

B′ = (A′g
−k∗
a∗ a′

)
a∗

a∗−a′−k∗a′(w′−w∗)

= ((gg
(X+w∗)k∗a′−a′

a∗ )
1

X+w′ g
−k∗
a∗ a′

)
a∗

a∗−a′−k∗a′(w′−w∗)

= (g
a∗+(X+w∗)k∗a′−a′−k∗a′(X+w′)

a∗(X+w′) )
a∗

a∗−a′−k∗a′(w′−w∗)

= (g
a∗−a′−k∗a′(w′−w∗)

a∗(X+w′) )
a∗

a∗−a′−k∗a′(w′−w∗) = g
1

X+w′

This means that a BB signature for a new message w′ is forged, which
contradicts q-SDH assumption.

– Case II [(w′ = wi and A′ = Ai for some i) or (w′ = w∗ and A′ = A∗)]:
Consider w′ = wi and A′ = Ai (The other case is similar). From A′X+w′

=
Ai

X+wi , gga′
0 = ggai

0 holds and we obtain a′ = ai. Thus, letting Δr = r′−ri,
Δmj = m′

j − mj,i, and ΔMj = M ′
j − Mj,i,

Δr +
j 
=n+1∑
1≤j≤2n

Δmjγ
j +

∑
1≤j≤L

ΔMjμj = 0.

Some Δmj is not 0 or some ΔMj is not 0. If ΔMj �= 0, the above equation
means that we can compute μj in case that μj = logg0

hj is unknown. This
contradict the DL assumption and then the q-SDH assumption. If Δmj �= 0,
we can compute γj mod p and thus γ, given g0, g

γ
0 , . . . , gγn

0 , gγn+2

0 , . . . , gγ2n

0 .
This means that, given g, gγ , . . . , gγ2n

, we can compute (c, g1/(γ+c)) for any
c ∈ Zp, which contradicts the q-SDH assumption, where q = 2n.
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– Case III [w′ ∈ {w1, . . . , wq, w
∗} and A′ /∈ {A1, . . . , Aq, A

∗}]: With the prob-
ability 1/q, w′ = w∗. Then, from

A′ = (gga′
0 )1/(X+w∗) = g(a∗+a′(X+w∗)k∗−a′)/(a∗(X+w∗)),

compute the following B′.

B′ = (A′g
−k∗a′

a∗ )
a∗

a∗−a′

= (g
a∗−a′

a∗(X+w∗) )
a∗

a∗−a′

= g
1

X+w∗

This means that a BB signature for a new message w∗ is forged, which
contradicts q-SDH assumption. ��

The security proof assumes that valid gj ’s are signed, instead of any element
from G. Thus, for proving the knowledge of this signature, we have to ensure the
correctness of gj ’s by other technique, the following F-secure BB signatures.

2.5 F -secure BB Signatures

We also adopt another variant of BB signature scheme, called F -secure signa-
ture [4].

FBBSetup: Select bilinear groups G, T with a prime order p and a bilinear
map e. Select g, g̃ ∈R G.

FBBKeyGen: Select X̃, X̂ ∈R Zp and compute Ỹ = gX̃ , Ŷ = gX̂ . The secret
key is (X̃, X̂) and the public key is (p,G, T , e, g, g̃, Ỹ , Ŷ ).

FBBSign: Given message M ∈ Zp, select μ ∈R Zp − { X̃−M
X̂

} and compute

S = g1/(X̃+M+X̂μ), T = Ŷ μ, U = g̃μ. The signature is (S, T, U).
FBBVerify: Given the signature (S, T, U) on message M , check e(S, Ỹ gMT ) =

e(g, g) and e(g̃, T ) = e(U, Ŷ ).

Define bijection F as F (M) = (gM , g̃M ) for message M . The F -security means
that no adversary cannot output (F (M), σ) where σ is the signature on mes-
sage M s.t. he has never previously obtained the signature after his adaptive
chosen message attacks. The security is proved under the q-HSDH and q-TDH
assumptions [4].

2.6 Proving Relations on Representations

We adopt zero-knowledge proofs of knowledge (PKs) on representations, which
are the generalization of the Schnorr identification protocol [11]. Concretely we
utilize a PK proving the knowledge of a representation of C ∈ G to the bases
g1, g2, . . . , gt ∈ G, i.e., x1, . . . , xt s.t. C = gx1

1 · · · gxt
t . This can be also constructed

on group T . The PK can be extended to proving multiple representations with
equal parts.

Since we use only prime-order groups, we can extract the proved secret knowl-
edge given two accepting protocol views whose commitments are the same and
whose challenges are different.
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3 Proposed System

3.1 Construction Idea

As in [10], we categorize finite-set attributes and string attributes. In the finite-
set attributes, the values are binary or from a pre-defined finite set, for example,
gender, degree, nationality, etc. On the other hand, name and identification
number are the string attributes.

Our proposal is based on the pairing-based anonymous credential system using
the BBS+ signatures, which is described in [12] for example. In the underlying
system, the certificate is a BBS+ signature [7], where each attribute type is
expressed as an exponent on a base assigned to the attribute type, such as g

Mj

j ,

and all parts of g
Mj

j have to be signed. Namely, the certificate is (A, w, r) s.t.

A = (
∏

1≤j≤L′
h

Mj

j hL′+1
xgr

0g)1/(X+w),

where x is a secret identity that only the user with the certificate knows. Then,
proving the knowledge of the signature needs the cost depending on the number
of attribute types.

To express the finite-set attributes (For the string type, we still use the ex-
ponent), we use a pairing-based accumulator in [12]. Let all attribute values in
all finite-set attribute types be numbered. The j-th attribute value is assigned
to an input value gj’s in the accumulator. The multiple inputs (i.e., attribute
values) are accumulated into a single value. When V is the set of indexes of the
attribute values for a user, they are accumulated to accV =

∏
j∈V gn+1−j . We

consider that the accumulated value is signed by an extended BBS+ signature,

A = (accV ·
∏

1≤j≤L

h
Mj

j hL+1
xgr

0g)1/(X+w),

where the original representation h
Mj

j is still used for the string type.
However, in the PK of the extended BBS+ signature, accV is committed

for secrecy. That is, the validity of the committed value (i.e., it is the form of
accV ) is unknown to the verifier. The PK for representations only proves the
form of A = (R ·

∏
1≤j≤L h

Mj

j hL+1
xgr

0g)1/(X+w), for some R ∈ G. However, the
security proof of the modified BBS+ signatures assumes that the message is the
product of gj’s, i.e.,

∏j 
=n+1
1≤j≤2n g

mj

j . For example, we can show the following forge
by manipulating the value of accV :

accV =
j 
=n+1∏
1≤j≤2n

g
mj

j · (
∏

1≤j≤L

h
−Mj

j )h−x
L+1 · g

−r
0 g−1Y gw, A = g.

It is unknown whether this forge is meaningful or not. However, we cannot prove
the security of our protocols, if the validity of accV is unknown and the modified
BBS+ signature is forgeable. Thus, we add another signature on accV by signing
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the exponent
∑

j∈V γn+1−j. This approach is also used in [12] to ensure the gj in
the membership certificate. They use a weakly secure BB signature [6], based on
interactive HSDH assumption [3] or HSDHE assumption [12]. We consider that
it is a rather strong assumption. This is why we use the F -secure BB signature [4]
derived from fully secure BB signature, based on the better assumptions (HSDH
assumption and TDH assumption).

AND relation. For AND relation (a1 ∧ · · · ∧ ak), it is needed to prove that a
specified set of attributes (a1, . . . , ak) are all embedded into the user’s certificate.
Using AccVerify in the extended accumulator, we can prove that multiple values
are accumulated to the accumulator in the certificate with constant complexity.
By the similar way to [12], we can obtain the PK of AccVerify with constant
complexity.

OR relation. For OR relation (a1 ∨ · · · ∨ ak), it is needed to prove that one (de-
noted as ã) of a specified set of attributes (a1, . . . , ak) is embedded into the user’s
certificate. Similarly to AND relation, using AccVerify, a signer can prove that
a value ã is accumulated to the accumulator in the certificate. Furthermore, the
verifier prepares another accumulator acc′ from specified attributes a1, . . . , ak.
Then, the signer proves that the same value ã is accumulated to the additional
accumulator acc′.

3.2 Proposed Construction

Setup. The inputs of this algorithm are �, n, and L, where � is the security
parameter, n is the maximum number of finite-set attribute values, and L is the
maximum number of string attribute types. The outputs are issuer’s public key
ipk and issuer’s secret key isk.

1. Select bilinear groups G, T with the same order p with length � and the
bilinear map e.

2. Select g, g0, g̃, ĝ, h1, . . . , hL+1 ∈R G. Select X, X̃, X̂, X̃ ′, X̂ ′, γ ∈R Z∗
p , com-

pute Y = gX , Ỹ = gX̃ , Ŷ = gX̂ , Ỹ ′ = gX̃′ and Ŷ ′ = gX̂′ . Compute
g1 = gγ1

, . . . , gn = gγn

, gn+2 = gγn+2
, . . . , g2n = gγ2n

, and z = (g, g)γn+1
.

Select hash function H : {0, 1}∗ → Zp.

3. For every gj = gγj

with 1 ≤ j ≤ n, select μj ∈R Zp − { X̃′−γj

X̂′ } and compute
the F -secure BB signature on gj as follows:

S̃j = g1/(X̃′+γj+μjX̂′), T̃j = Ŷ μj , Ũj = g̃μj , F̃j = g̃γj

.

4. Output the issuer public key ipk = (p,G, T , e, H, g, g̃, ĝ, g0, g1, . . . , gn, gn+2,
. . . , g2n, h1, . . . , hL+1, z, (S̃1, T̃1, Ũ1, F̃1), . . . , (S̃n, T̃n, Ũn, F̃n), Y, Ỹ , Ŷ , Ỹ ′, Ŷ ′),
and the issuer secret key isk = (X, X̃, X̂, X̃ ′, X̂ ′, γ).
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Issuing Certificate. This is an interactive protocol between the issuer Issuer
and user User. The common inputs of this protocol consist of ipk, and (SA,
FA) that are sets of string attribute values and finite-set attribute values of the
user, respectively. Each string attribute value of the j-th attribute type in SA is
represented by an element Mj from Z∗

p (If the user does not have any attribute
value in the attribute type, we assign an attribute value implying not applicable).
Each finite-set attribute value is represented by an index in {1, . . . , n}. Thus, set
SA consists of attribute values and set FA consists of indexes of attribute values
(sets TSA and TFA shown later are similar). The input of Issuer is isk. The
output of User is the certificate cert.

1. [User]. Select x, r′ ∈R Z∗
p . Compute A′ = hL+1

xgr′
0 . Send A′ to Issuer. In

addition, prove the validity of A′ using PK for representations, i.e., prove
the knowledge of x, r′ s.t. A′ = hL+1

xgr′
0 .

2. [Issuer]. Given the user’s attributes (SA, FA), compute the accumulator
of the finite-set attributes as acc =

∏
a∈FA gn+1−a. Select w, r′′ ∈R Z∗

p .
Compute the modified BBS+ signature as follows:

A = (acc(
∏

1≤j≤L

h
Mj

j )A′gr′′
0 g)1/(X+w) = (acc(

∏
1≤j≤L

h
Mj

j )hx
L+1g

r′+r′′
0 g)1/(X+w).

In addition, select μ ∈R Zp − { X̃−
∑

a∈FA γn+1−a

X̂
} and compute an F -secure

BB signature ensuring acc as follows:

S = g1/(X̃+
∑

a∈FA γn+1−a+μX̂), T = Ŷ μ, U = g̃μ, F = g̃
∑

a∈FA γn+1−a

.

Return (A, S, T, U, F, w, r′′) to User.
3. [User] Compute r = r′ + r′′, verify:

e(A, Y gw) ?= e(acc(
∏

1≤j≤L

h
Mj

j )hx
L+1g

r
0g, g)

∧ e(S, Ỹ · acc · T ) ?= e(g, g) ∧ e(g̃, T ) ?= e(U, Ŷ ) ∧ e(g̃, acc) ?= e(F, g).

Output cert = (A, S, T, U, F, x, w, r).

Attribute Proofs. This is an interactive protocol between the user and the
verifier. The common inputs are ipk, and (TSA, TFA) are subsets of string
attributes and finite-set attributes respectively, which are referenced in proofs,
and user’s secret inputs are cert and (SA, FA).

Proving AND Relation. For TFA = {a1, . . . , ak} with aj ∈ {1, . . . , n}, the prover
shows his possession of the certificate which includes all of the attributes, i.e.,
a1 ∧ a2 ∧ . . . ∧ ak.

1. The prover computes the witness that a1, . . . , ak are included in the accu-
mulator of FA as: W =

∏
1≤j≤k(

∏a
=aj

a∈FA gn+1−a+aj). Set D =
∏

1≤j≤k gaj .
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2. The prover selects ρA, ρS , ρT , ρU , ρF , ρa, ρW ∈R Z∗
p , and compute commit-

ments CA = AĝρA , CS = SĝρS , CT = T ĝρT , CU = UĝρU , CF = F ĝρF ,
Ca = acc · ĝρa , and CW = WĝρW .

3. The prover selects ρw, ρ′ ∈R Z∗
p , sets α = wρA, ζ = ρSρa and ξ = ρSρT . The

prover computes auxiliary commitments Cw = gwĝρw and CρS = gρS ĝρ′
.

Then, the prover sets ρα = ρwρA, ρζ = ρ′ρa, and ρξ = ρ′ρT .
4. The prover sends the commitments (CA, CS , CT , CU , CF , Ca, CW , Cw, CρS )

to the verifier.
5. By using the proof of knowledge (PK) for representations, the prover proves

the knowledge of x, w, r, ρA, ρS , ρT , ρU , ρF , ρa, ρW , ρw, ρ′, α, ζ, ξ, ρα, ρζ , ρξ,
and Mj for Mj /∈ TSA s.t.

Cw = gw ĝρw , 1 = CρA
w g−αĝ−ρα , (1)

e(CA, Y )e(Ca(
∏

1≤j≤L,Mj∈TSA

h
Mj

j )g, g)−1 = (
∏

1≤j≤L,Mj /∈TSA

e(hj , g)Mj )

·e(hL+1, g)xe(g0, g)re(ĝ, Y )ρAe(ĝ, g)αe(CA, g)−we(ĝ, g)−ρa , (2)

CρS = gρS ĝρ′
, 1 = Cρa

ρS
g−ζ ĝ−ρζ , 1 = CρT

ρS
g−ξĝ−ρξ , (3)

e(CS , Ỹ CaCT )e(g, g)−1 = e(ĝ, Ỹ CaCT )ρS e(CS , ĝ)ρa+ρT e(ĝ, ĝ)−ζ−ξ, (4)
e(g̃, CT )e(CU , Ŷ )−1 = e(g̃, ĝ)ρT e(ĝ, Ŷ )−ρU , (5)
e(g̃, Ca)e(CF , g)−1 = e(g̃, ĝ)ρae(ĝ, g)−ρF , (6)
e(D, Ca)e(g, CW )−1z−k = e(D, ĝ)ρae(g, ĝ)−ρW . (7)

Proving OR Relation. For TFA = {a1, . . . , ak}, the prover shows his possession
of the certificate which includes one of the attributes, i.e., a1 ∨ a2 ∨ . . . ∨ ak.
Assume that ã is the proved attribute.

Before the protocol, the prover and the verifier prepare another accumulator
acc′ =

∏
aj∈TFA gn+1−aj . This protocol is obtained by modifying that of the

AND relation, as follows.
1. Similarly, the prover computes W =

∏a
=ã
a∈FA gn+1−a+ã for acc. Furthermore,

the prover computes the new witness W ′ =
∏aj 
=ã

aj∈TFA gn+1−aj+ã for acc′.
2. In addition to step 2 in AND relation, the prover selects ρg, ρW ′ , ρS̃ , ρT̃ , ρŨ ,

ρF̃ ∈R Z∗
p, and compute the new commitment Cg = gãĝ

ρg , CW ′ = W ′ĝρW ′ ,
CS̃ = S̃ãĝρS̃ , CT̃ = T̃ãĝρT̃ , CŨ = ŨãĝρŨ , and CF̃ = F̃ãĝρF̃ .

3. In addition to step 3 in AND relation, the prover selects ρ̃, ρ̃′ ∈R Z∗
p , sets δ =

ρgρa, ζ̃ = ρS̃ρg and ξ̃ = ρS̃ρT̃ . The prover computes auxiliary commitments
Cρg = gρg ĝρ̃ and CρS̃

= gρS̃ ĝρ̃′ . Then, the prover sets ρδ = ρ̃ρa, ρζ̃ = ρ̃′ρg,
and ρξ̃ = ρ̃′ρT̃ .

4. The prover sends the commitments (CA, CS , CT , CU , CF , Cg, Ca, CW , CW ′ ,
CS̃ , CT̃ , CŨ , CF̃ , Cw, CρS , Cρg , CρS̃

) to the verifier.
5. Similarly to the AND relation, the prover conducts the PK, where the equa-

tion (7) is replaced by

Cρg = gρg ĝρ̃, 1 = Cρg

ρag−δĝ−ρδ , (8)

e(Cg, Ca)e(g, CW )−1z−1 = e(Cg, ĝ)ρae(ĝ, Ca)ρg e(ĝ, ĝ)−δe(g, ĝ)−ρW , (9)
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and the following equations are added:

CρS̃
= gρS̃ ĝρ̃′

, 1 = Cρg
ρS̃

g−ζ̃ ĝ−ρζ̃ , 1 = C
ρT̃
ρS̃

g−ξ̃ĝ−ρξ̃ , (10)

e(CS̃ , Ỹ ′CgCT̃ )e(g, g)−1 = e(ĝ, Ỹ ′CgCT̃ )ρS̃ e(CS̃ , ĝ)ρg+ρT̃ e(ĝ, ĝ)−ζ̃−ξ̃,(11)

e(g̃, CT̃ )e(CŨ , Ŷ ′)−1 = e(g̃, ĝ)ρT̃ e(ĝ, Ŷ ′)−ρŨ , (12)
e(g̃, Cg)e(CF̃ , g)−1 = e(g̃, ĝ)ρg e(ĝ, g)−ρF̃ , (13)
e(Cg, acc′)e(g, CW ′)−1z−1 = e(ĝ, acc′)ρg e(g, ĝ)−ρW ′ . (14)

4 Security

Here, we show the proposed protocols are the PKs for AND and OR relations
on the finite-set attributes. The security on the string attributes can be proved
in the similar way to the underlying protocols.

Theorem 3. The protocol of AND relation is a proof of knowledge of a modified
BBS+ signature (A, w, r) on secret x, the string type of attributes M1, . . . , ML,
and the finite-set type of attributes indicated by accumulator acc, s.t. all at-
tributes in TFA are accumulated to acc.

Proof. From the PK, we have an extractor of knowledge satisfying the equa-
tions. Using the equations (1), we obtain 1 = (gw ĝρw)ρAg−αĝ−ρα , and thus
1 = gwρA−αĝρwρA−ρα . Since the discrete log of ĝ to base g is unknown under the
DL assumption (due to q-SDH assumption), this means α = wρA. By substitut-
ing this to equation (2), we have

e(CA, Y )e(Ca(
∏

1≤j≤L,Mj∈TSA

h
Mj

j )g, g)−1 = (
∏

1≤j≤L,Mj /∈TSA

e(hj , g)Mj )e(hL+1, g)x

·e(g0, g)re(ĝ, Y )ρAe(ĝ, g)wρAe(CA, g)−we(ĝ, g)−ρa

e(CA, Y )e(ĝ−ρA , Y )e(ĝ−ρA , gw)e(CA, gw) = e(Ca(
∏

1≤j≤L

h
Mj

j )g, g)e(hL+1
x, g)

·e(gr
0, g)e(ĝ−ρa , g)

e(CAĝ−ρA , Y gw) = e(Caĝ−ρa(
∏

1≤j≤L

h
Mj

j )hL+1
xgr

0g, g)

Thus, we can extract A = CAĝ−ρA and acc = Caĝ−ρa s.t.

e(A, Y gw) = e(acc(
∏

1≤j≤L

h
Mj

j )hL+1
xgr

0g, g).

Similarly, using equations (3), we have ζ = ρSρa and ξ = ρSρT . By substitut-
ing them to equation (4), we have

e(CS , Ỹ CaCT )e(g, g)−1 = e(ĝ, Ỹ CaCT )ρS e(CS , ĝ)ρa+ρT e(ĝ, ĝ)−ρS ·ρa−ρS ·ρT

e(CS , Ỹ CaCT )e(ĝ−ρS , Ỹ CaCT )e(CS , ĝ−ρa−ρT )e(ĝ−ρS , ĝ−ρa−ρT ) = e(g, g)
e(CS ĝ−ρS , Ỹ Caĝ−ρaCT ĝ−ρT ) = e(g, g)
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Thus, for the extracted acc = Caĝ−ρa , we can extract S = CS ĝ−ρS and T =
CT ĝ−ρT s.t. e(S, Ỹ · acc · T ) = e(g, g). Similarly, using equations (5), (6), we
obtain U = CF ĝ−ρF and F = CF ĝ−ρF s.t. e(g̃, T ) = e(U, Ŷ ) and e(g̃, acc) =
e(F, g). Since F -secure BB signatures w.r.t. the public key Ỹ , Ŷ is issued on
only accumulators, it means acc =

∏
a∈FA gn+1−a for FA of a user (otherwise,

the signature is forgeable).
On the other hand, using equation (7), we can similarly extract W = CW ĝ−ρW

s.t. e(D, acc)e(g, W )−1 = zk for D =
∏

1≤j≤k gaj . From the security of the
extended accumulator, all values a1, . . . , ak are accumulated into acc. ��

Theorem 4. The protocol of OR relation is a proof of knowledge of a modified
BBS+ signature (A, w, r) on secret x, the string type of attributes M1, . . . , ML,
and the finite-set type of attributes indicated by accumulator acc, s.t. one of
attributes in TFA is accumulated to acc.

Proof. From the PK, we have an extractor of knowledge satisfying the equations.
Similarly to AND relation, we can extract a modified BBS+ signature (A, w, r)
as the certificate including acc =

∏
a∈FA gn+1−a.

Similarly to the extraction of F -secure BB signature in the AND relation,
using equations (10) – (13), we can extract the F -secure BB signature (S̃, T̃ , Ũ)
on R = Cg ĝ

−ρg and F̃ s.t. e(S̃, Ỹ ′RT̃ ) = e(g, g), e(g̃, T̃ ) = e(Ũ , Ŷ ′) and e(g̃, R) =
e(F̃ , g). Since F -secure BB signatures w.r.t. the public key Ỹ ′, Ŷ ′ is issued on
only gj ’s, it means R ∈ {g1, . . . , gn} (otherwise, the signature is forgeable), and
we can set R = gã.

Using equations (8), we can obtain δ = ρaρg. By substituting this into equa-
tion (9), we can extract W = CW ĝ−ρW s.t. e(gã, acc)e(g, W )−1 = z for the
extracted gã. This means that attribute ã is accumulated into acc. Using equa-
tion (14), we can extract W ′ = CW ′ ĝ−ρW ′ s.t. e(gã, acc′)e(g, W ′)−1 = z for gã.
This means that attribute ã is also accumulated into acc′, that is, attribute ã is
one of attributes a1, . . . , ak. ��

5 Efficiency

We compare the efficiency between our system and the conventional pairing-
based system using the BBS+ signatures. Similarly to the conventional RSA-
based systems described in [10], we can construct the conventional PKs for AND
and OR relations, which are described in Appendix A.

We introduce the following parameters.

– L: the total number of string attribute types
– L̃: the total number of finite-set attribute types (e.g., gender, profession)
– n: the total number of finite-set attribute values (e.g., male, female, student,

teacher)
– k: the number of attributes referenced in a proof.
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Table 1. Asymptotic computational complexity of proof

Relation Conventional system Our system

AND O(L + L̃) O(L)

OR O(L + L̃ + k) O(L)

Table 2. Concrete number of exponentiations in proof generation (E(T ): exponentia-
tions on T , E(G): exponentiations on G)

Relation Conventional system Our system

AND (L + L̃ + 5)E(T ) + 8E(G) (L + 15)E(T ) + 24E(G)

OR (L + L̃ + 5)E(T ) + (5k + 8)E(G) (L + 26)E(T ) + 47E(G)

In the following comparisons, we consider the computational complexity based
on the number of exponentiations and pairings. Namely, we ignore the number
of multiplications, since the cost is much smaller than the others’ costs.

Table 1 shows the comparison of asymptotic computational complexity for the
proof generation and verification. In the both cases of AND and OR relations,
we can see that the complexity in finite-set attributes becomes constant. This is
because our scheme uses the accumulator verification with constant complexity.
The demerit of our system is the length of public key. Our system needs O(n+L)
size, while the conventional system needs O(L̃+L), where n is much larger than
L̃.

Next, compare the concrete computational costs. We suppose that mobile
devices such as smartphones manage the proof generation, and thus we concen-
trate in the computation complexity of the proof generation. Table 2 shows the
comparison of the concrete costs. Using the pre-computation of pairings, we can
omit any pairing computation with adding some slight exponentiations. In this
table, we shows the number of the exponentiations needed for the proof gener-
ation after the omission. Note that the exponentiation cost on T is larger than
that on G. The results of this table mean that our system has constant but extra
costs. Using an example of eID as in [10], we demonstrate that our scheme is
effective in spite of the extra costs. Table 3 shows the example of attributes in
eID. Generally, the number of string attribute types, L, is much less than the
number of finite-set attribute types, L̃. In the conventional system, if a user may
own multiple attribute values from an attribute type, we have to prepare bases
for the possible multiple values, namely L̃ increases by the number of possible
multiple values. For example, a user can have multiple profession attributes such
as student and technician in a company, and a user may own 5 or more language
ability. As the results, L̃ becomes relatively large. Therefore, from Table2, in the
general case that L̃ amounts to about 30–40 and L ≤ 5, proving AND relation
in our system has more efficiency.
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Table 3. Example of string and finite-set attributes

String Finite-set Example Values

1) name 3) day of issuance 1–31
2) identity number 4) month of issuance 1–12

5) year of issuance 2000–2011
6) day of expiration 1–31
7) month of expiration 1–12
8) year of expiration 2000–2011
9) gender male,female
10) day of birth 1–31
11) month of birth 1–12
12) year of birth 1930–2005
13) marital status single,marriage
14-16) nationality 193 recognized states
17) hometown 200 allocated cities
18) city living 200 allocated cities
19) residence status citizen,immigrant,...
20) religion Moslem,Christian,...
21) blood type A,B,O,AB
22-27) profession student,teacher,...
28-30) academic degree B.S.,M.S,Ph.D.,...
31-35) major science,economic,...
36-45) language 100 allocated lang.
46-48) social benefit status none, unemployed, ...
49-51) eye and hair color 6 hair colors, 8 eye colors
52-54) minority status blind, deaf, ...
...

In case of OR relation, since the efficiency of the conventional system is influ-
enced by parameter k, our system is more efficient. In [10], an example of OR
relation is shown:

minority ∈ {blind, deaf, ...} ∨ social benefit ∈ {unemployed, social benefit}

profession ∈ {student, teacher, civil servant} ∨ type = kids card

This example considers that countries grant subsidies for access to cultural insti-
tutions to particular groups such children, students, handicapped persons, etc.
In this case, k = 10 in addition to L ≥ 5 and L̃ = 40, and then our system is
more efficient than the conventional one.

Finally, we discuss the concrete values of the public key size. We assume that
an element of G is represented by 256 bits to obtain 256-bit ECC security. We
set L + L̃ = 50 and n = 1, 000 to n = 10, 000. In the conventional system, the
public key size is less than 2KBytes. In our system, it becomes about 200KBytes
to 2MBytes. In the current mobile environments, the data size is sufficiently
practical, since the public key is not changed after it is distributed.
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6 Conclusion

In this paper, for a pairing-based anonymous credential system, we have showed
how to prove AND and OR relations on his attributes with constant complexity
in the number of finite-set attributes. The compensation is the increase of the
public key size, although the public key is not changed after it is distributed.

Our future works include the evaluation based on the implementation, and
the application to authentications in the mobile environments.
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A Proving AND and OR Relations in Conventional
System

For the reference, we describe proving AND and OR relations in the conventional
system.
Certificate. Let L′ be the total number of attribute types. Then, the certificate
is as follows.

A = ((
∏

1≤j≤L′
h

Mj

j )hx
L′+1g

r
0g)1/(X+w).

Proving AND relation. Let TA be the set of attributes referenced in the proof.
Similarly to the proposed system, compute CA, Cw. Then, prove the knowledge
of x, w, r, ρA, ρw, α, ρα and Mj for Mj /∈ TA s.t.

Cw = gwĝρw , 1 = CρA
w g−αĝ−ρα ,

e(CA, Y )e((
∏

1≤j≤L′,Mj∈TA

h
Mj

j )g, g)−1 = (
∏

1≤j≤L′,Mj /∈TA

e(hj , g)Mj )e(hL′+1, g)x

·e(g0, g)re(ĝ, Y )ρAe(ĝ, g)αe(CA, g)−w.

Proving OR relation. Let TA= {M ′
j1 , . . . , M

′
jk
} be the set of attributes ref-

erenced in the proof, where ji means the ji-th attribute types. Let STA be
the set of ji. Similarly to the proposed system, compute CA, Cw, and addition-
ally Cj = gMj ĝρj for ρj ∈R Z∗

p with j ∈ STA. Then, prove the knowledge of
x, w, r, ρA, ρw, α, ρα, all Mj, and ρj′ for j′ ∈ STA s.t.

Cw = gwĝρw , 1 = CρA
w g−αĝ−ρα ,

e(CA, Y )e(g, g)−1 = (
∏

1≤j≤L′,j∈STA

e(hj , g)Mj )(
∏

1≤j≤L′,j /∈STA

e(hj, g)Mj )

·e(hL′+1, g)xe(g0, g)re(ĝ, Y )ρAe(ĝ, g)αe(CA, g)−w,

Cj = gMj ĝρj (for j ∈ STA),

Additionally, prove

Cj1/gM ′
j1 = ĝρj1 ∨ · · · ∨ Cjk

/gM ′
jk = ĝρjk .

This PK for OR relation on representations is described in [14].
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Abstract. Private matching solutions allow two parties to find common
data elements over their own datasets without revealing any additional
private information. We propose a new concept involving an intermedi-
ate entity in the private matching process: we consider the problem of
broker-based private matching where end-entities do not interact with
each other but communicate through a third entity, namely the Bro-
ker, which only discovers the number of matching elements. Although
introducing this third entity enables a complete decoupling between end-
entities (which may even not know each other), this advantage comes at
the cost of higher exposure in terms of privacy and security. After defin-
ing the security requirements dedicated to this new concept, we propose
a complete solution which combines searchable encryption techniques to-
gether with counting Bloom filters to preserve the privacy of end-entities
and provide the proof of the matching correctness, respectively.

1 Introduction

Imagine that a company has an opening for a new position. The posting for
new position consists mainly of requirements in terms of education, professional
experience and skills. So the company has many selection criteria and is looking
for the best suited candidate. Since the company does not want to take care of
all the recruitment process itself, it delegates the search phase to a recruitment
agency, which is more capable in terms of publishing the posting for new position
on a large scale. Candidates are characterized first by their resume and they
apply through the recruiting agency if they think they are fit for the job. The
recruitment agency upon receiving a resume, looks at the matching ratio between
the candidate characteristics and the posting’s criteria and calls the best suited
candidates for an interview at the company. The best suited candidates are
either all candidates above a certain matching ratio threshold, or the top ten
candidates for example. In order to prevent resume fraud, candidates should be
able to prove the correctness of their resume, with diplomas from a university
or validation of experience from a governmental agency.

This interesting scenario raises many security issues. First of all, both com-
pany and candidates’ privacy should be preserved. The company does indeed
not want that competitors learn about the posting, especially if it concerns an

S. Fischer-Hübner and N. Hopper (Eds.): PETS 2011, LNCS 6794, pp. 264–284, 2011.
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important position because that would give a hint about the company’s strat-
egy. So the posting and more specifically the criteria expressed by the company
should remain secret from other companies, including the recruitment agency.
Candidates’ privacy should also be preserved, to enforce equal opportunities
among candidates. Therefore resumes should be confidential and anonymous to
prevent the recruiting agency from discriminating between candidates on a non-
professional basis. The problem is therefore to be able to compute the matching
ratio between the posting’s criteria and the candidates’ resumes while both are
encrypted. Furthermore it is important that candidates cannot forge their re-
sume to obtain a higher matching ratio. This problem is especially hard since
resumes cannot be checked directly in the case where they are encrypted: privacy
and verification present conflicting requirements.

At first glance this problem has a flavor of private matching or private set
intersection, whereby two parties want to learn only shared attributes without
learning any information about the remaining ones. There is yet an important
difference in the presented scenario which makes the problem more complex:
the parties owning the private data (the company and the candidates) do not
directly interact with each other, but they forward their secret data to a third
party. This third party has to take a decision on the matching ratio without
having any control or knowledge on the private data it received, and it should
not be able to learn anything about the private data of either party in the
process: it should just be able to securely compute the matching ratio (it should
not even be able to tell which of the encrypted data matched or not). This paper
therefore tackles with a new requirement for parties not to interact directly to
achieve the matching result thus calling for a non-interactive solution.

In this paper, we analyze the requirements for the non-interactive and private
computation of matching ratio and present a complete solution to address this
issue. The solution is based on a searchable encryption scheme introduced by
Boneh et al. in [3] used in a new mode of operation to allow the company to
issue a unique query for all potential (and unknown) candidates. The solution
further makes use of counting Bloom filters introduced by Fan et al. in [11],
but in a radically new approach: those counting Bloom filters are not used as
usual to prove the belonging of an element to a set but to compute the matching
ratio without leaking privacy and to provide evidence of the correctness of the
matching ratio computation. This solution presents the following advantages:

– it addresses the non-interactive scenario as it does not require the parties
owning the private data to interact with each other (such as setting up keys
prior to the matching process for example) or even to know each other,

– it allows a third party to compute the matching ratio and to get evidence of
its correctness,

– it preserves the privacy of data, because the third party processes encrypted
data blindly (in the sense that it handles encrypted data and does not learn
any information about it),
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– it is efficient, because the third party, which has to process a lot of data from
several users, only needs to perform few and non-costly operations for the
computation of each matching ratio.

The rest of the paper is structured as follows. Section 2 motivates the need
for a broker-based private matching protocol comparing it with the classical
two-party mechanisms, defines the security requirements and describes the un-
derlying mechanisms. In section 3, the overall protocol and its security primitives
are described in detail. The security and performance of the proposed protocol
are evaluated in section 4. Finally, section 5 discusses relevant related work.

2 Problem Statement

2.1 Private Matching: Introducing a Third Party

The classical private matching scheme is a two-party protocol that enables both
parties P1 and P2 to discover common data elements over their own datasets
without revealing any additional private information. Assuming that P1 and P2

respectively own datasets X1 and X2, at the end of the private matching protocol
P1 and P2 only learn X1 ∩ X2.

In this paper, we propose a complete decoupling between these two parties
in order to perform the same operation when the two parties do not interact
and are even not aware of each other. The new protocol involves a third party,
the Broker, which is in charge of computing the cardinality of the matching
set without discovering any of its elements. Private and correct evaluation of
the cardinality of the matching set by a third party has many applications, in
particular for ranking, or finding friends in social networks or simply in dat-
ing sites, and compelling new applications are envisioned in the broad field of
cloud computing. All these applications require a third party to take decisions
while remaining oblivious to the matched information. This new broker-based
private matching protocol consists of three entities, namely the Query Issuer,
the Subject and the Broker, where the latter’s main role is to discover the
cardinality of the matching set originating from the other two entities’ datasets.
Each entity’s role in the new protocol is formally defined as follows:

– the Query Issuer QI issues a query Qi = 〈qi,1, ..., qi,n〉 consisting of n
selection criteria which are elements of D, the global dataset. In the recruit-
ment example, the company is the Query Issuer and an example of selection
criterion could be “Degree = MSc”.

– Subjects Sl (1 ≤ l ≤ c), answers a query Qi with a matching proof mpi,l

based on its profile. Each Subject is indeed characterized by a profile P l =〈
pl
1, ..., p

l
m

〉
composed of m attributes which are elements of the same dataset

D. These attributes are evaluated with respect to the query defined by the
Query Issuer. In the aforementioned scenario, Subjects correspond to the
candidates in the recruitment process.
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– the additional party, namely the Broker B, first publishes the query of QI
to Subjects and collects their answers. The Broker then selects the best
suited Subjects: B computes a matching ratio ρi,l between a query Qi and
the Subject’s answer mpi,l defined as the cardinality of the matching set
between the selection criteria and the attributes over the cardinality of the
selection criteria. In the example, the Broker is the recruiting agency.

In summary, the major difference between classical private matching and the
broker-based private matching protocol is the fact that there is no direct inter-
action between the Query Issuer QI and Subjects Sl. All messages go through
the Broker B, which is an active entity in the protocol and not a simple relay:
the query Qi of QI is sent to B which then publishes it to {Sl}1≤l≤c; each
Subject Sl sends its answer mpi,l to B which decides which Subjects correspond
to the query the best. Therefore, QI should be able to send a query without
even knowing the Subjects {Sl}1≤l≤c: there is a complete decoupling between
these two entities, and B is in charge of gathering the necessary data and taking
the appropriate decision. Finally QI should be able to send a query with any
selection criteria and is not limited to a set that it owns.

2.2 Security Requirements

The introduction of a third party in the private matching protocol requires to
revisit all security requirements defined for the two-party protocol.

First of all, we assume that the Query Issuer is interested in getting the best
suited Subjects; therefore QI is assumed to be honest. On the contrary, Subjects
are considered to be potentially malicious, because it is in their interest to exhibit
a high matching ratio in order to be selected by the Broker. Therefore Subjects
might attempt to cheat on their attributes or more generally in the answer they
send to B in order to lure B into computing a matching ratio higher than their
real matching ratio. However we consider that nodes are selfish and that they
do not collude with each other.

Concerning the Broker B, we assume it to be honest but curious: B correctly
executes the protocol and computes the matching ratio according to the data
it receives, and finally sends to QI the truly best suited Subjects according to
the matching ratio rankings. Yet, B is curious in the sense that it is interested
in unveiling information from the private data it receives, whether being the
selection criteria of the query of QI or the attributes of Subjects.
There are thus two main attacks to be considered:

– attacks by the Broker in an attempt to break the privacy of the other two
entities: B tries to discover and reveal the content of the query of QI, or to
discover the attributes of one or many Subjects,

– attacks by Subjects aiming at illegitimately increasing their matching ratio
with a given query.

This leads to the following two security requirements:

– Preserving the privacy of the end entities QI and Sl: queries issued
by QI and answers of Subjects are confidential and therefore encrypted. The
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Broker should be able to compute the matching ratio using these two en-
crypted values without discovering any information about either the criteria
of QI or the Subject’s attributes: the protocol should be semantically secure.
Furthermore, as for classical private matching protocol, since the query is
forwarded by B to Subjects, these entities should not be able to derive in-
formation about non-matching criteria. These privacy properties can also
be formally defined by comparing the real situation in our protocol with an
ideal situation where the protocol is run by a trusted external entity, but we
do not add this formalization in this article for the sake of clarity.

– Guaranteeing the correctness of the matching ratio: the answer mpi,l

of a Subject Sl should enable the Broker to correctly compute the matching
ratio between the query Qi and the attributes of Sl. This requirement is very
different from the privacy one, but the latter hardens the task of verifying the
correctness of the matching ratio. Indeed, a simple solution to this provably
correct matching ratio computation would consist in the Subjects sending
their attributes to the Broker, but this solution blatantly exposes the pri-
vacy of the Subjects. The challenge for the Broker is to be able to compute
the matching ratio corresponding to a set of attributes while verifying their
correctness without having access to their content.

2.3 Security Primitives

Based on the security requirements of the broker-based private matching proto-
col, we define the following security primitives:

– SQE (Secure Query Encoding): in order to ensure the confidentiality of the
query Qi, this primitive, used by the Query Issuer QI, securely encodes Qi

and returns Q′
i. QI can express its queries on any selection criteria in the

global dataset D, hence SQE should be a public function in that it should not
require any secret information on input. Furthermore, this function should
be randomized to prevent dictionary attacks.

– SLU (Secure Look-up): A Subject Sl uses this primitive to look-up its at-
tributes against an encoded query, and outputs the corresponding answer
mpi,l. This function should be public but requires secret information (cre-
dentials) to be processed.

– SMRC (Secure Matching Ratio Computation): on input of a Q′
i and a corre-

sponding mpi,l, this primitive first verifies the correctness of mpi,l:
1. if mpi,l is invalid (Sl attempted to cheat), the process breaks;
2. otherwise, the primitive outputs the correct matching ratio ρi,l.

In the next section, these three primitives are formally described based on a
combination of different cryptographic mechanisms: searchable encryption and
counting Bloom filters.

3 Solution

We now present our solution by first introducing the underlying mechanisms and
further by formally describing the overall protocol divided into two phases.
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3.1 Overview

In order to allow the correct execution of the new protocol, Subjects first need to
retrieve their credentials (private information corresponding to their profile) from
a certain authority that approves their validity. Therefore, a trusted authority
is initially available during a setup phase. This authority does not play any role
during the execution of the matching protocol, namely the runtime phase.

In this second phase, the broker-based private matching protocol actually
takes place, and it features four main steps:

1. Query: The Query Issuer QI issues a query Qi. It encodes this query using
the SQE primitive and sends the result Q′

i to the Broker. Based on the query
Qi, QI also constructs a counting Bloom filter CBFi, called a matching
reference and sends it to the Broker along with the encoded query.

2. Publish: The Broker publishes the encoded query Q′i to all Subjects. The
matching reference is not forwarded.

3. Look-up: Each subject Sl looks-up its credentials in the encoded query Q′
i to

determine which conditions Sl matches. Based on these matched conditions,
Sl constructs another counting Bloom filter CBFi,l, called a matching proof.
This matching proof mpi,l is sent to the Broker.

4. Verify: The Broker compares the matching reference and the matching proof
to assess first whether the matching proof is valid or not, and then to compute
the matching ratio ρi,l. Finally, the Broker informs QI about the Subjects
best suited to its query Qi.

QI B Sl

1.QUERY
Q
i 1.Q'i

1.CBFi

2.Q'i

2.PUBLISH
3.LOOK-UP

3.CBFi,l

4.VERIFYMatching 
Reference

Credentials

Matching 
Proof

Encoded 
Query

4. i,l

Fig. 1. High level description of the protocol

The protocol is summarized in figure 1. A major advantage of our solution is
that it enables some computation on encrypted data to preserve end-entities pri-
vacy: the Broker is able to compute the matching ratio based on two encrypted
data structures, the matching reference and the matching proof. This compu-
tation on encrypted data is achieved thanks to an extension of a searchable
encryption mechanism that allows a third node to verify whether an encrypted
keyword is included in a database or not. This mechanism is also combined
with counting Bloom filters in order to prove the correctness of the computation
of the matching ratio. Before formally describing the new protocol, these two
mechanisms are briefly presented in the next section.
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3.2 Background-Tools

Searchable encryption. Searchable encryption is a general concept which
enables a third entity to store an encrypted list destined to a certain party and
to look-up encrypted keywords on behalf of this party without learning additional
information both on the keyword and the encrypted list.

One of the main searchable encryption approaches was proposed by Boneh et
al. in [3] and it uses three main operations:

– SE-Encrypt: a public encryption function used to encrypt the list that is
stored by the third party. This function requires the knowledge of the public
key of the destination.

– SE-Trapdoor: a private function which gives the capability of looking-up a
specific keyword, called a trapdoor. This function requires the private key of
the recipient and hence can only be computed by the recipient.

– SE-Test: on input of a trapdoor and an encrypted keyword, the third party
uses this operation to verify whether the private keyword is included in the
list or not. Hence, this function returns 1 if the trapdoor corresponds to the
encrypted keyword and 0 otherwise.

Due to its non-interactivity this searchable encryption proposal looks appro-
priate for the new broker-based private matching scenario, where the SE-Test
operation can be implemented by the Broker while Query Issuers may encrypt
some keywords with SE-Encrypt and the Subjects run the SE-Trapdoor. Unfor-
tunately, the use of this mechanism is not straightforward because:

– As opposed to the SE-Test operation, the Broker should only be able to
compute the global matching ratio and not individual matching attributes;

– The Query Issuer does not know the Subjects in advance, hence it does not
have knowledge of their public keys and cannot use SE-Encrypt easily.

To circumvent these two main constraints, we propose to introduce a Trusted
Third Party which alleviates the requirement of the knowledge of the (unknown)
recipient’s public key in our scheme (see section 3.3).

Bloom filters. A Bloom filter is a probabilistic data structure which was first
introduced by Burton Bloom ([5]). The classical use of Bloom filters is to test
whether an element is a member of a set in a space-efficient way. We focus on
an extension of Bloom filters called counting Bloom filters that were proposed
by Fan et al. in [11] to support the dynamic deletion of an element.
A counting Bloom filter. CBF is an array of φ positions (also called buckets)
used to represent a set X with the aid of u hash functions {h1, .., hu} mapping an
element of X to one of the φ array positions. Counting Bloom filters implement
the following three functions:
– Insert(x, CBF ): on input of an element x, the digest of this element is

computed using each of the u hash functions. The values of the filter CBF
at these positions are incremented by 1.

– Query(x, CBF ): this function verifies with a certain probability whether x
is an element of the filter or not.
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– Delete(x, CBF ): this operation consists of decrementing the value at each
of the u positions resulting from the hash functions evaluated over x, by 1.

In the sequel of this article, we denote by CBF(x1, ..., xn) the counting Bloom
filter obtained by inserting the elements xi for 1 ≤ i ≤ n.

The weight wCBF of a counting Bloom filter CBF is defined as the sum of
the values of all positions: wCBF =

∑
0≤i≤φ−1 CBF [i]. An important property

of counting Bloom filters is that the weight wCBF of a counting Bloom filter
CBF is linearly dependent on the number of elements inserted in it:

wCBF(x1,...,xn) = n · u.

Hence, counting Bloom filters are useful for our broker-based private matching
as they enable computing the cardinality of a set without revealing the elements
of the set (see section 3.3).

3.3 Construction

As mentioned in section 3.1, the solution features two phases: a setup phase
where Subjects retrieve their credentials, and a runtime phase where the private
matching protocol is executed.

Setup phase. Contrary to QI which can choose any selection criteria in Qi, Sl

should answer Q′
i correctly based on their profile. Since the correctness of pri-

vate matching operations depends on the correctness of these profiles, the latter
should be certified, and we refer to the certified attributes as credentials. These
credentials are retrieved during a setup phase which features a fourth entity,
called the Authority A. This Authority is required to define general parame-
ters of the system and to provide Subjects with their matching credentials.

The general parameters are generated according to a security parameter which
impacts the size of the groups that are used, as well as the size of keys. In
particular, the Authority generates a private and public key pair skA/pkA. In the
recruitment example, universities delivering a diploma or governmental agencies
can be considered as authorities.

In addition to the three security primitives defined in section 2.3, we define a
fourth one, SCE (Secure Credential Extraction), which is used by A to provide
Sl with the credentials corresponding to its profile (this primitive is similar to
the private key extraction primitive in Identity-Based Encryption). On input of
a Subject’s profile, SCE returns a set of credentials. These credentials are used
as matching capabilities and correspond to trapdoors in searchable encryption.

To be more precise, Subjects Sl first contact the Authority A and show their
profile P l =

〈
pl
1, ...p

l
m

〉
. A verifies the validity of P l (this verification step is

out of the scope of this paper), and then provides Sl with the corresponding
credentials T l which are computed using the SE-Trapdoor function applied over
the Subject’s attributes and the secret key of A. Hence, at the end of the setup
phase, each Sl receives the following set of credentials:

T l =
〈
tl1, ..., t

l
m

〉
= 〈SE-Trapdoor(pl

1, skA), ..., SE-Trapdoor(pl
m, skA)〉.
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Runtime phase. As described in section 3.1, the runtime phase consists of four
main steps that we describe formally in the following:

1. Query: During this step, QI expresses a query Qi by choosing a set of
selection criteria and performs a secure encoding of the query using the SQE
primitive. The output of this primitive are the encoded query Q′

i and the
matching reference mri: SQE(Qi, pkA) = (Q′

i, mri).
As previously introduced, the SQE primitive should be a randomized public
cryptographic function, such as SE-Encrypt. However, SE-Encrypt requires
the public key of the recipient and this key is unknown to QI, hence we
propose a new configuration where the public key of A is used instead.
Therefore, the encoded query is computed as follows:

Q′
i =

〈
q′i,1, ..., q

′
i,n

〉
= 〈SE-Encrypt(qi,1, pkA), ..., SE-Encrypt(qi,n, pkA)〉.

On the other hand, the matching reference should help the Broker to compute
the matching ratio correctly. To this extent, during the execution of the
SE-Encrypt algorithm, QI also retrieves some intermediate values which
can only be computed by itself or by the nodes that own the corresponding
trapdoors. Indeed, the SE-Encrypt primitive makes use of a cryptographic
hash function H at the last step of the computation1. For 1 ≤ j ≤ n, we
denote the preimage of q′i,j by xi,j :

q′i,j = SE-Encrypt(qi,j , pkA) = H(xi,j).
Thanks to the inherent security of the hash functions with pseudorandom
inputs, a malicious user cannot compute xi,j based on the knowledge of q′i,j .
Hence, QI constructs the matching reference mri as a counting Bloom filter
CBFi, in which it inserts the elements xi,j for 1 ≤ j ≤ n:

mri = CBFi = CBF(xi,1, ..., xi,n).
At the end of this first step, QI sends mri and Q′

i to the Broker.
2. Publish: The Broker forwards the encoded query Q′

i to all Subjects but
keeps the matching reference mri.

3. Look-up: On input of an encoded query Q′
i and a set of credentials T l, the

SLU primitive returns a matching proof mpi,l:
SLU(Q′

i, T
l) = mpi,l.

By using the SE-Test function, Subjects can indeed detect selection criteria
corresponding to their profile: for 1 ≤ j ≤ n, 1 ≤ k ≤ m SE-Test(q′i,j , t

l
k)

returns 1 for matching elements and 0 for the others. Moreover, the Subject
can compute the corresponding preimage xi,j for matching criteria. Hence
Sl can construct a counting Bloom filter CBFi,l in which it includes all the
preimages that it managed to compute and which is used as matching proof
mpi,l = CBFi,l and sent to the Broker.

4. Verify: On input of a matching reference mri and a matching proof mpi,l

the primitive SMRC returns a matching ratio ρi,l.
The Broker first compares the counting Bloom filters CBFi and CBFi,l to
assess the validity of the latter. To this extent, the Broker checks whether:

1 See [3] for the detailed construction of PEKS. We roughly have xi,j = ê(H1(qi,j), r ·
pkA), and q′i,j = 〈rP, H(xi,j)〉, where ê is a bilinear map, r a random scalar, and P
a point on an elliptic curve.
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– ∀0 ≤ i1 ≤ φ − 1, CBFi,l[i1] ≺ CBFi[i1] denoted as CBFi,l ≺ CBFi,
otherwise it means that CBFi,l was not constructed only with (a subset
of) xi,1, ...xi,n,

– the weight wCBFi,l
of CBFi,l is a multiple of u, because each inserted

element leads to an increase of the weight by u.
If one of the verifications fails, the protocol aborts (the Subject attempted
to cheat), otherwise the Broker accepts the answer of Sl as being valid and
computes the matching ratio as follows:

SMRC(mri, mpi,l) =
wCBFi,l

wCBFi

.

The protocol is consistent in that:

Proposition 1. If CBFi,l is generated as specified in the protocol, then the
matching ratio between the query and the attributes of a Subject corresponds
to the output of SMRC:

ρi,l = SMRC(mri, mpi,l).

This proposition is a direct consequence of the fact that the weight of a
counting Bloom filter is linearly dependent with the number of its elements.

This concludes the presentation of our solution, and we now evaluate its security
and performance.

4 Evaluation

The security of the new broker-based private matching protocol is analyzed based
on the attacker model and the security requirements defined in section 2.2. We
assume that the communication channels between QI and B and between B and
Sl are secured, hence eavesdroppers cannot access the messages exchanged in
the protocol in clear. They thus have less information than any of the entities
running the protocol, and we do not further take them into account.

4.1 Privacy

Privacy is the most important requirement in classical private matching. In this
section, we assume that entities are curious and try to discover information that
they should not access. We first show that our solution preserves the privacy
of end-entities and we further prove that the introduction of a third party (the
Broker) does not threaten the Query Issuer’s and Subjects’ privacy.

First, the privacy of the QI is preserved with respect to Sl. Indeed, in [3],
Boneh et al. proved that their construction is semantically secure against a
chosen keyword attack in the random oracle model, assuming that the Bilinear
Diffie-Hellman problem is hard. It is thus unfeasible for an entity to discover
the value of an encoded selection criteria unless it knows the corresponding
trapdoor, in other words Sl can only discover the matching selection criteria.
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Furthermore, since only the Authority A knows the private key skA, nodes
cannot forge trapdoors. Recovering the private key skA amounts to a discrete
logarithm computation which is assumed to be hard.

Second, we prove that the introduction of B does not threaten the privacy of
end-entities. On one hand, as an intermediate node, B receives the same encoded
queries that Sl receives, but B has no trapdoors and thus cannot discover the
value of the encoded queries. Furthermore, B cannot link successive queries even
if they correspond to the same selection criteria because the encoding mecha-
nism is inherently randomized. On the other hand, in addition to the queries, B
receives matching reference and matching proofs from QI and Sl respectively.
As proven in the following theorem, the knowledge of a counting Bloom filter
does not enable the Broker to recover the elements xi,j inserted in it.

Theorem 1. Let x1, ..., xn be n elements randomly chosen from a group G of
order q. Let CBF be a counting Bloom filter of size φ in which the n elements
x1, ..., xn were inserted using u hash functions h1, ..., hu. Then, there are more
than q

φu possible sets of elements of Gn leading to the same counting Bloom
filter:

|{(x′
1, ..., x

′
n) ∈ Gn|CBF(x′

1, ..., x
′
n) = CBF(x1, ..., xn)}| >

q

φu

The proof is given in section 7.1. This result is a lower bound on the set of
preimages but the actual result can be multiplied by a factor of up to u! depend-
ing on the outputs of the hash functions, and is multiplied even further if more
elements are inserted. Note that this result does not even take into account the
complexity required to find the corresponding set of preimages.

From the perspective of an attacker, being able to solve the equations would
lead to an advantage as it reduces the size of the space of possibilities from q
down to q

φu . However, careful setting of the parameters q, φ and u, makes the
size of this set large enough to prevent brute force guessing (see section 7.3).

In summary, the counting Bloom filter cannot be reversed to obtain the entries
that were inserted in it, which guarantees the privacy of the Query Issuer and
Subjects. We now focus on the security of the matching ratio computation.

4.2 Correctness of the Matching Ratio

Concerning the security of the matching ratio computation, we consider now a
malicious Sl trying to convince B that its matching ratio is higher than its actual
value, and we show that the probability of success of such an attack is negligible.

To be more precise, we assume that Sl does not know the matching reference
mri, thus the only information known by Sl on CBFi are the global parameters:
the hash functions used h1,...,hu and the size φ. Sl also knows Q′

i and therefore
the number n of elements xi,j inserted in CBFi.

The goal of the malicious Sl is to claim a matching ratio ρclaim
i,l higher than

the actual ratio ρi,l. To this extent, Sl needs to claim a corresponding counting
Bloom filter CBF claim

i,l . For Sl to be successful, CBF claim
i,l has to verify the

following conditions:
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1. it should be considered valid by B, as required by the last step of the protocol
described in section 3.3, which implies that:
– CBF claim

i,l ≺ CBFi,
– the weight wCBF claim

i,l
of CBF claim

i,l is a multiple of u,
2. it should lead to ρclaim

i,l > ρi,l, hence the weight of CBF claim
i,l needs to verify

wCBF claim
i,l

> wCBFi .

The probability of success of Sl is exponentially decreasing in the malicious ratio
increment ρclaim

i,l − ρi,l, as shown in the following theorem.

Theorem 2. Let Q′
i be an encoded query concerning n selection criteria. Let

CBFi be the corresponding matching reference.
The probability of success Padv[ρi,l → ρclaim

i,l ] of an adversary Sl in generating
an array CBF claim

i,l which is accepted by B and results in an increase of the
matching ratio from ρi,l to ρclaim

i,l is upper bounded by:

Padv[ρi,l → ρclaim
i,l ] ≤

(
1 − e−

(1−ρi,l)n·u
φ

)(ρclaim
i,l −ρi,l)n·u

The proof is given in section 7.2. The formula of Padv[ρi,l → ρclaim
i,l ] shows

that the probability of success of an adversary decreases exponentially with the
malicious ratio increase (ρclaim

i,l −ρi,l) and, decreases also depending on the value
of the legitimate matching ratio ρi,l.

It is possible to go further and bound Padv[ρi,l → ρclaim
i,l ] independently of

ρi,l and ρclaim
i,l , by observing that:

– the function x �→ αx decreases with x for 0 < α < 1,

– 0 <

(
1 − e−

(1−ρi,l)n·u
φ

)
<

(
1 − e−

n·u
φ

)
< 1,

– u < (ρclaim
i,l − ρi,l)n · u.

Hence, the probability of success of the adversary is bounded by Padv:

Padv =
(
1 − e−

n·u
φ

)u

.

The security of the scheme hence depends on the general parameters of the
counting Bloom filter and we now show how to optimize these settings.

First of all, we assume that the maximum number of selection criteria in a
query is bounded and known in advance; we designate it as nmax. For all queries,
the probability of success of the adversary is thus bounded by

Padv ≤
(
1 − e−

nmaxu
φ

)u

.

If we fix φ, then the function pmax : u �→
(
1 − e−

nmaxu
φ

)u

is C∞ on [1, +∞[,

and it reaches its minimum in u0 = φ
nmax

ln(2) and pmax(u0) = 2−u0 . Therefore,
for a fixed nmax, increasing u and φ exponentially increases the security, but
increasing φ linearly impacts on the performance of the scheme. We propose the
following strategy to optimize the trade-off between security and performance:
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1. Set nmax the maximum number of criteria per query,
2. Choose a security parameter u: Padv is then bounded by 2−u,
3. Set the size φ of the counting Bloom filter as φ =

⌈
nmaxu
ln(2)

⌉
.

This strategy prioritizes security over performance: it defines the desired security
level (Padv ≤ 2−u) and then sets the minimal size φ to achieve this security level.
Note that u does not need to be very large, because Padv is an upper bound and
is obtained with very restrictive conditions:

– n = nmax, which means that QI uses nmax selection criteria,
– Sl has a legitimate matching ratio of 0 (ρi,l = 0).

With these conditions, Sl has a probability less than 2−u of success in making B
believe that its matching ratio is 1/nmax instead of 0. In many cases, this would
not be of any use to the attacker, because the attacker needs to claim the highest
matching ratio among the Subjects in order to take advantage of its attack. The
attacker does not even know the matching ratio of the other Subjects, so the
only way for the malicious Sl to be sure to benefit from its attack is to claim a
matching ratio of 1, and the probability of Sl succeeding falls down to 2−u·nmax .

4.3 Performance Evaluation

Following the analysis of the trade-off between security and performance in the
previous section, we now evaluate the overall communication and computational
overhead resulting from the proposed protocol.

Communication overhead. We consider that the cost originating from the
setup phase is negligible given that it takes place offline. We only evaluate the
communication overhead during the runtime phase.

The size of encoded queries is linear in the number of selection criteria that
it includes. Each encoded criterion is the output of the SE-Encrypt primitive
and thus has size 2q bits, where q is the size of the group used in the searchable
encryption scheme.

Concerning the size of counting Bloom filters, they are arrays containing φ
buckets. According to [11], we choose β = 4 bits for the size of each bucket
to keep a negligible probability of overflow, thus the communication overhead
incurred by the matching reference or the matching proof is 4φ bits.

Computational overhead. The primitives of searchable encryption rely on el-
liptic curve operations which cost is of the same order of magnitude as classical
asymmetric cryptography [18]. The most costly operation is the pairing compu-
tation: our mechanism requires one pairing computation per encoding and one
per SE-Test evaluation, the cost is thus linear in the number of selection criteria
used in the queries. In comparison, the cost of generating the counting Bloom
filters which amounts to n · u hash computations is negligible.

The aforementioned computations are performed by the end-entities, but the
Broker only carries on simple operations to compute the matching ratio:
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– B verifies that the matching proof is smaller than the matching reference
which requires φ integers inequality checks,

– B computes the weight of the matching proof and reference (a sum of φ
integers) and performs a division.

The overhead on B is thus very small which shows that our scheme is scalable
and efficient to disseminate a query to multiple Subjects.

5 Related work

Several previously studied problems in the literature show similarities with
broker-based private matching. We list them in two main categories and show
how they differ from our problem.

5.1 Private Matching and Private Set Intersection

Private matching came up as a generalization of private equality tests. A first
approach introduced a Trusted Third Party (TTP) as proposed in [2] and [15]. In
theses proposals, the TTP is completely trusted, computes X1 ∩ X2 and sends
the result back to P1 and P2. This solution is not satisfying from a privacy
perspective as it is fully dependent on the honesty of the TTP which has full
access to the parties’ sets. This three-party protocol is thus very different from
our broker-based private matching solution.

In [1], Agrawal et al. propose a protocol performing private matching without
a TTP, building on a previous work by Huberman et al. [14] by using a pair of
commutative encryption schemes. Building on this work, Li et al. formalize in [17]
the security requirements of private matching and identify the issue of spoofing,
which consists in one of the entities claiming elements that it does not own. The
issue of spoofing is similar to Subjects cheating in their matching proof (however
this issue is not relevant for the Query Issuer). To solve this issue, Li et al. further
introduce a Trusted Third Party which provides Data Ownership Certificates
(similar to the Authority providing credentials) and propose a modified version
of the Agrawal protocol.

A different approach was investigated by Freedman et al. in [12]: they propose
a solution derived from secret sharing protocols based on Oblivious Polynomial
Evaluation. They also study some variants of private matching, among which
the private cardinality matching, which is very close to our matching ratio com-
putation. The solution for the latter is only proposed for semi-honest parties but
the case of malicious entities is not considered. Kissner and Song [16] proposed
multi-party protocols that apply to several set operations (including set intersec-
tion) and that are secure in the presence of honest-but-curious adversaries. They
also propose a construction secure in the presence of malicious adversaries based
on zero-knowledge proofs. For the same problem, Dachman-Sold et al. propose
a more efficient solution in [10].

In [8], Camenisch and Zaverucha introduce the notion of certified sets: a
trusted third party provides credentials to users prior to the private set in-
tersection protocol. This trusted third party plays the same role as A in our
solution.



278 A. Shikfa, M. Önen, and R. Molva

Finally, we note the recent work of De Cristofario and Tsudik, who propose
in [9] more efficient protocols to various flavors of private set intersection.

All these protocols cannot readily be applied to our scenario, because they
are interactive protocols between two entities (a client and a server) that in-
teract directly (possibly in several rounds), and there is no clear translation of
this two-party setting to our problem. The presence of an active Broker indeed
introduces different privacy threats while enabling a decoupling between Query
Issuer and Subjects. Furthermore, one of the entities in our scenario, namely the
Query Issuer, can express queries on any selection criteria and is not limited to
a predefined set contrary to P1 limited to X1 in classical private matching.

5.2 Oblivious Keyword Search

Oblivious Keyword Search is a generalization of Oblivious Transfer [21,4,7,13]
where the client receives all messages related to a given private keyword instead
of requesting a message at a particular position. It was proposed by Ogata
and Kurosawa in [20] who showed the relationships between both notions and
presented two efficient methods to achieve oblivious keyword search.

Oblivious Keyword Search is relevant to our problem because it can be used
to construct private set intersection protocols [12], and more importantly they
can be combined with Public Encryption with Keyword Search (PEKS) to offer
additional properties as presented in [6]. The latter scheme, that we refer to as
PEOKS, enhances PEKS by introducing the notion of committed blind anony-
mous identity-based encryption, which allow Subjects Sl to privately request
trapdoors for attributes without revealing the attributes to the Authority A: Sl

commit to their attributes which allows A to request proofs of statement from
users later on. Furthermore, the trapdoors are unique to each subject (even for
the same attribute), making the scheme robust and secure against colluding
attackers. Those properties make PEOKS more suitable to our scenario than
PEKS but it is also more difficult to expose briefly and could stray the focus
from our contributions and in particular the main novelty of our scheme, which
is the introduction of counting Bloom filters and their use in an original way.
We keep the advanced version of our scheme based on PEOKS for the extended
version of the article.

6 Conclusion

In this paper, we have presented a new private matching protocol which involves
an intermediate node that performs some of the matching operations on behalf of
the end-entities. Contrary to classical private matching settings, where the client
and the server interact directly in the process, in our new scenario the Query Is-
suer and the Subjects do not interact at all, and do not even need to know each
others’ identity. The new protocol is based on the combination of searchable
encryption mechanisms and counting Bloom filters used in a radically differ-
ent mindset and allows a third entity, namely the Broker, to correctly compute
the matching ratio based on encrypted information only. While introducing this
third entity allows a decoupling between the end-entities, it raises new privacy
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and security issues. We have proved that the proposed protocol preserves the
privacy of end-entities thanks to the semantic security of the underlying search-
able encryption mechanisms. The security against malicious Subjects cheating
on the matching ratio has been analyzed and proved by bounding the probability
of the success of the malicious Subject. Finally we have identified an interesting
trade-off between security and performance, and we have computed the optimal
parameters for an efficient execution of the protocol under a certain security
level.

As future work, we plan to implement this mechanism with a PEOKS scheme
to mitigate the impact of colluding attackers. We also envision to introduce
multiple authorities to reduce the importance and the capabilities of A.
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7 Appendix: Proofs and Example

7.1 Proof of Theorem 1

Theorem. Let x1, ..., xn be n elements randomly chosen from a group G of order
q. Let CBF be a counting Bloom filter of size φ in which the n elements x1, ..., xn

were inserted using u hash functions h1, ..., hu. Then, there are more than q
φu

possible sets of elements of Gn leading to the same counting Bloom filter:

|{(x′
1, ..., x

′
n) ∈ Gn|CBF(x′

1, ..., x
′
n) = CBF(x1, ..., xn)}| >

q

φu

Proof. Let us examine the simplest case of n = 1 and CBF = CBF(x1). In
that case the positions h1(x1); ...; hu(x1) are incremented in CBF . The security
argument is based on two main observations:

– The first observation is that the hash functions h1, ..., hu are not invertible,
even though they are not necessarily cryptographic hash functions. Indeed,
these functions map elements of G (a group of order q) to a small set (the
integers smaller than φ). Therefore, if the hash functions have a uniformly
distributed output then each output has q

φ preimages. If we combine the
u equations corresponding to the u hash functions, the number of inputs
simultaneously verifying u conditions on their digests is q

φu .

http://www.eecs.berkeley.edu/~tygar/papers/Private_matching.pdf
http://crypto.stanford.edu/pbc/
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– The second observation is that there is an information loss in the construction
of this structure: the order of the hash functions is lost once the element is
inserted in the counting Bloom filter, and it is impossible to know which
hash function resulted in the incrementation of a given position in the filter.
This second fact further increases the size of the potential preimages by a
factor of up to u!: it is possible to set many sets of equations for the same
counting Bloom filter.

As a result, the set of possible preimages corresponding to a counting Bloom
filter containing a single element is at least q

φu . This set is even larger when
considering several elements.

7.2 Proof of Theorem 2

Theorem. Let Q′
i be an encoded query concerning n selection criteria. Let CBFi

be the corresponding matching reference.
The probability of success Padv[ρi,l → ρclaim

i,l ] of an adversary Sl in generating
an array CBF claim

i,l which is accepted by B and results in an increase of the
matching ratio from ρi,l to ρclaim

i,l is upperly bounded by:

Padv[ρi,l → ρclaim
i,l ] ≤

(
1 − e−

(1−ρi,l)n·u
φ

)(ρclaim
i,l −ρi,l)n·u

Proof. We first observe that Sl cannot know whether the first property (that
is CBF claim

i,l ≺ CBFi) is met or not as Sl does not know CBFi. Sl can only
make guesses based on the general parameters of CBFi. We thus first establish a
probabilistic model of counting Bloom filters in order to evaluate the probability
of having the three aforementioned properties validated without the knowledge
of CBFi.

We consider a counting Bloom filter CBF of length φ containing n unknown
elements which were inserted using u hash functions. Given that the probability
distribution of the values in CBFi follows a binomial distribution at each posi-
tion, the probability P ′(i2) that the value CBF [i1] at position i1 is greater than
a given i2 can be computed as follows: ∀0 ≤ i1 ≤ φ − 1, ∀1 ≤ i2 ≤ n · u,

P ′(i2) = P [CBF [i1] ≥ i2] = 1 −
i2−1∑
i3=0

(
n · u
i3

)(
1 − 1

φ

)n·u−i3 ( 1
φ

)i3

.

Based on this result, we then prove by induction2 that the probability P ′(i2)
decreases faster than a geometric series of ratio P ′(1), or to be more precise that,
for 1 ≤ i2 ≤ n · u,

P ′(i2) ≤ (P ′(1))i2 (1)

assuming that n · u ≤ φ − 1.

2 The (long) details of this proof are not included due to page constraints.
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We then consider ARR to be an array of size φ (the matching proof). The
probability P [ARR ≺ CBF ] that ARR is smaller than CBF can be computed
as follows:

P [ARR ≺ CBF ] =
φ−1∏
i1=0

P ′(ARR[i1]).

Following the result in inequation 1, this probability can be upperly bounded
as follows:

P [ARR ≺ CBF ] ≤
φ−1∏
i1=0

P ′(1)ARR[i1 ]

Finally, based on the approximation of the Taylor series development of P ′(1)
we obtain the following upper bound:

P [ARR ≺ CBF ] ≤
(
1 − e−

n·u
φ

)wARR

(2)

The last step of the demonstration consists in applying this important re-
sult to the matching reference CBFi and the matching proof CBFi,l where the
parameters CBF and ARR are replaced by the challenging reference counting
Bloom filter CBFi and the malicious matching proof CBFi,l, respectively. How-
ever, this modification is not straightforward because while CBF was assumed
to contain n random elements, a malicious Subject Sl knows some of the ele-
ments, that are the ones corresponding to the selection criteria that Sl matches.
Thus, the following modifications have to be performed to evaluate the proba-
bility Padv[ρi,l → ρclaim

i,l ] of success of a Subject in increasing its matching ratio
from ρi,l to ρclaim

i,l :

– We first define by CBF chal
i = CBFi − CBFi,l the challenging reference

counting Bloom filter, that is the part of the counting Bloom filter unknown
to Sl. The weight of CBF chal

i is wCBF chal
i

= n(1 − ρi,l) · u
– Moreover, CBFmal

i,l = CBF claim
i,l − CBFi,l defines the part of the match-

ing proof which is malicious which weight is denoted by wCBF mal
i,l

which is

computed as follows: wCBF mal
i,l

= wCBF claim
i,l

− wCBFi,l
= (ρclaim

i,l − ρi,l)n · u

We therefore obtain the following inequality:

P [CBFmal
i,l ≺ CBF chal

i ] ≤ (1 − e
n(1−ρi,l)·u

φ )(ρ
claim
i,l −ρi,l)n·u (3)

which corresponds to Padv[ρi,l → ρclaim
i,l ] if ρclaim

i,l − ρi,l is a multiple of 1
n (if

wCBF mal
i,l

is a multiple of u) to satisfy the second of the aforementioned conditions
(otherwise the claimed counting Bloom filter would be rejected).
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7.3 Typical Figures

To illustrate the performance of the global solution more concretely, we provide
some figures of a typical scenario.

First of all, the maximum number of selection criteria that can be used in
each query should be reasonably small as it directly leads to an increase in the
communication and computation complexity. We therefore set this maximum
number to nmax = 20.

The level of security in groups over elliptic curves depends on a security
parameter called the MOV degree [19]: by carefully choosing the elliptic curve
it is possible to adjust the trade-off between key size and computation time,
while maintaining a given level of security. We choose a curve with a small MOV
degree of 2 and a group of order q of 512 bits length to have a security equivalent
to 1024 bits RSA.

The size of an encoded query is then less than 2q ·nmax ≈ 20 Kbits. To put this
size into perspective, note that in the case where there is no privacy protection
(where queries and replies are sent in clear) and where each selection criteria is
stored in a string with 16 8bits-characters, the size of queries is approximately 2.5
Kbits. The size of encoded queries is therefore 8 times larger than their queries
in clear, but this is a deliberate choice to optimize the computation performance.
If the communication overhead is considered as more important, it is possible to
use curves with a higher MOV degree of 6: in that case it is possible to consider
groups of smaller order and the overhead would be reduced to 2.5 times.

Concerning the parameters of counting Bloom filters, in addition to nmax, we
need to define φ and u.

First of all, u is used as a security parameter, since the probability of success
of an adversary can be bounded by 2−u. As explained in section 4.2, it is not
necessary to choose a very high value for u as it does not lead to revealing a
secret but only to being able to cheat on the matching ratio. By choosing u = 10
for example, the probability of success of an attacker would still be bounded by
10−3 in the most favorable case. Other probabilities of success are presented in
table 1. This table shows that the probability of success for significant attacks
is very low (for reference the typical security margin for symmetric encryption
is 2−80 ≈ 10−24). It is of course possible to choose a higher value for u to make
sure that even in the most favorable case the attacker would not succeed with
probability more than 2−80 but u impacts first on the construction of counting
Bloom filter (each element requires the computation of u hash values) and second
and more importantly on the size of counting Bloom filters. We therefore believe
that choosing a smaller value for u (as we did) is a better trade-off.

The number of positions φ of the counting Bloom filter according to the
strategy explained in section 4.2 should be φ =

⌈
nmax·u
ln(2)

⌉
which is equal to 289

when nmax = 20 and u = 10. We choose to allocate 4 bits for each position in
the counting Bloom filter, thus the total size of the filter is slightly more than
1 Kbit while the probability of a bucket overflow to happen would be less than
2.10−12. The size of the counting Bloom filters is therefore really negligible in
comparison with the size of the queries, thus the use of counting Bloom filters
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Table 1. Probability Padv[ρi,l → ρclaim
i,l ] of an adversary S l with legitimate matching

ratio ρi,l to successfully claim a matching ratio of ρclaim
i,l with an encoded query Q′

i

containing n selection criteria. The general parameters used for the counting Bloom
filter are nmax = 20, u = 10, and φ = 289.

�����n
Padv 0 → 1

n
0 → 2

n
0 → 1

2
0 → 1 1

2
→ 1

n
+ 1

2
1
2
→ 1 1 − 1

n
→ 1

6 5.10−8 3.10−15 1.10−22 2.10−44 9.10−11 7.10−31 2.10−15

10 5.10−6 2.10−11 2.10−27 4.10−54 1.10−8 1.10−40 2.10−15

20 1.10−3 9.10−7 7.10−31 5.10−61 5.10−6 4.10−54 2.10−15

really offers a decisive advantage from a performance perspective on top of the
advantage from a privacy point of view.

On this matter, we mentioned in section 4.1 that the size of the set of pos-
sible preimages that lead to a counting Bloom filter is around q

φu ≈ 2448. This
proves that a brute-force attack to break the privacy-preserving properties of
the computation assurance solution is out of reach of current computing power.
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