

Lecture Notes in Computer Science 6757
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Sören Auer Oscar Díaz
George A. Papadopoulos (Eds.)

Web Engineering

11th International Conference, ICWE 2011
Paphos, Cyprus, June 20-24, 2011
Proceedings

13

Volume Editors

Sören Auer
Universität Leipzig, Institut für Informatik
Abt. Betriebliche Informationssysteme
Postfach 100920, 04009 Leipzig, Deutschland
E-mail: auer@uni-leipzig.de

Oscar Díaz
Universidad del País Vasco
Euskal Herriko Unibertsitatea
Departamento de Lenguajes y Sistemas Informáticos
Facultad de Informatica
Po M. Lardizabal, 1, 20018 San Sebastián, Spain
E-mail: oscar.diaz@ehu.es

George A. Papadopoulos
University of Cyprus, Department of Computer Science
POB 20537, CY-1678 Nicosia, Cyprus
E-mail: george@cs.ucy.ac.cy

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-22232-0 e-ISBN 978-3-642-22233-7
DOI 10.1007/978-3-642-22233-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011930445

CR Subject Classification (1998): H.3, H.4, I.2, C.2, D.2, H.5, J.1

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Web engineering strives to accomplish the wish of an accessible, universal and
affordable virtual platform where users and applications can smoothly interact.
To this end, Web engineering systematically applies the knowledge of a large
range of topics from software engineering to social sciences.

This volume contains the proceedings of the 11th International Conference
on Web Engineering (ICWE 2011), which was held in Paphos, Cyprus, in June
2011. In Ovid’s narrative, Paphos was Pygmalion’s son. Pygmalion was a Cypriot
sculptor who carved a woman out of ivory so realistically that he fell in love with
the statue. Although perhaps not to the extent of falling in love, pioneers also
exhibit passion about what they do. This makes Paphos a perfect place for
passionate researchers and practitioners to meet.

The ICWE conferences represent first-class forums for the Web engineering
community. ICWE is endorsed by the International World Wide Web Conference
Committee (IW3C2) and the International Society for Web Engineering (ISWE).
Previous editions took place at Vienna (Austria), San Sebast́ıan (Spain), York-
town Heights, NY (USA), Como (Italy), Palo Alto, CA (USA), Sydney (Aus-
tralia), Munich (Germany), Oviedo (Spain), Santa Fe (Argentina) and Cáceres
(Spain).

This year’s call for papers attracted a total 90 submissions from 37 countries.
Papers topics cover a broad range of areas, namely, the Semantic Web, Web ser-
vices, mashups, Web 2.0, Web quality, Web development, etc. Submitted papers
were reviewed by at least three reviewers from the Program Committee compris-
ing 67 experts in Web engineering. Based on their reviews, 22 submissions were
accepted (24% acceptance rate). In addition, 13 posters, 3 demos, and 4 tuto-
rials were also part of the conference program. The conference hosted keynotes
by Stephano Ceri (Politecnico di Milano) and Tim Furche (Oxford University).
Last but not least, seven co-located workshops offered a venue for specialists to
discuss on-going research and devise future research agendas.

Such an eventful program would not have been possible without the involve-
ment of a large number of people and institutions. We would like to express
our gratitude to the University of Cyprus as the local organizer. We are also
indebted to Bebo White, Martin Gaedke, and Geert-Jan Houben who acted
as liaison to the IW3C2, ISWE, and ICWE Steering Committee, respectively.

VI Preface

We are gratetful to the Chairs of the different tracks, namely, Andreas Doms,
Nora Koch, Andreas Harth, Cesare Pautasso, Steffen Lohmann, Axel Ngonga,
Vicente Pelechano, Peter Dolog, and Bernhard Haslhofer. Finally, a special thanks
goes to all the reviewers, the contributors, and the attendees, who substantially
contributed to making ICWE 2011 a success.

May 2011 Sören Auer
Oscar Dı́az

George A. Papadopoulos

Organization

Program Committee

Silvia Abrahao Universidad Politecnica de Valencia, Spain
Sören Auer Universität Leipzig, Germany
Fernando Bellas University of A Coruna, Spain
Boualem Benatallah University of New South Wales, Australia
Mária Bieliková Slovak University of Technology in Bratislava,

Slovakia
Davide Bolchini Indiana University, USA
Athman Bouguettaya CSIRO, Australia
Marco Brambilla Politecnico di Milano, Italy
Jordi Cabot INRIA-École des Mines de Nantes, France
Coral Calero Universidad de Castilla-La Mancha, Spain
Fabio Casati University of Trento, Italy
Sven Casteleyn Universidad Politécnica de Valencia, Spain
Key-Sun Choi Semantic Web Research Center, KAIST,

South Korea
Richard Cyganiak Digital Enterprise Research Institute, NUI

Galway, Ireland
Florian Daniel University of Trento, Italy
Olga De Troyer Vrije Universiteit Brussel, Belgium
Oscar Dı́az University of the Basque Country, Spain
Damiano Distante Unitelma Sapienza University, Italy
Peter Dolog Aalborg University, Denmark
Suzanne Embury University of Manchester, UK
Flavius Frasincar Erasmus University Rotterdam,

The Netherlands
Piero Fraternali Politecnico di Milano, Italy
Martin Gaedke Chemnitz University of Technology, Germany
Dragan Gasevic Athabasca University, Canada
Athula Ginige University of Western Sydney, Australia
Jaime Gomez University of Alicante, Spain
Michael Grossniklaus Portland State University, USA
Volker Gruhn University of Leipzig, Germany
Simon Harper University of Manchester, UK
Andreas Harth AIFB, Karlsruhe Institute of Technology,

Germany
Olaf Hartig Humboldt-Universität zu Berlin, Germany
Bernhard Haslhofer University of Vienna, Austria
Martin Hepp Bundeswehr University Munich, Germany

VIII Organization

Geert-Jan Houben TU Delft, The Netherlands
Gerti Kappel Vienna University of Technology, Austria
In-Young Ko Korea Advanced Institute of Science and

Technology, South Korea
Nora Koch Ludwig Maximilians University of Munich,

Germany
Stefan Kühne University of Leipzig, Germany
Jens Lehmann University of Leipzig, Germany
Frank Leymann Institute of Architecture of Application

Systems, Germany
Xuemin Lin University of New South Wales, Australia
Steffen Lohmann Universidad Carlos III de Madrid (UC3M),

Spain
Maristella Matera Politecnico di Milano, Italy
Santiago Meliá University of Alicante, Spain
Christos Mettouris University of Cyprus, Cyprus
Hamid Motahari HP Labs
Wolfgang Nejdl L3S and University of Hannover, Germany
Axel-Cyrille Ngonga Ngomo University of Leipzig, Germany
Luis Olsina UNLP, Argentina
Satoshi Oyama Hokkaido University, Japan
George Pallis University of Cyprus, Cyprus
George Papadopoulos University of Cyprus, Cyprus
Oscar Pastor Lopez Universidad Politécnica de Valencia, Spain
Cesare Pautasso University of Lugano, Switzerland
Vicente Pelechano Universidad Politécnica de Valencia, Spain
Alfonso Pierantonio University of L’Aquila, Italy
Matthias Quasthoff Hasso-Plattner-Institut, Germany
I.V. Ramakrishnan SUNY Stony Brook, USA
Gustavo Rossi UNLP, Argentina
Fernando Sanchez-Figueroa Universidad de Extremadura, Spain
Daniel Schwabe PUC-Rio, Brazil
Juan F. Sequeda The University of Texas at Austin, USA
Michael Sheng University of Adelaide, Australia
Weisong Shi Wayne State University, USA
Takehiro Tokuda Tokyo Institute of Technology, Japan
Riccardo Torlone Roma Tre University, Italy
Jean Vanderdonckt Université catholique de Louvain, Belgium
Denny Vrandecic KIT, Germany
Erik Wilde UC Berkeley, USA
Marco Winckler LIIHS-IRIT, Paul Sabatier University, France
Bin Xu DCST, Tsinghua University, China

Organization IX

Additional Reviewers

Ahmed, Faisal
Baez, Marcos
Bala, Harish
Barla, Michal
Berger, Thorsten
Bonetta, Daniele
Book, Matthias
Borodin, Yevgen
Brosch, Petra
Brückmann, Tobias
Conejero, Jose Maria
Ermilov, Timofey
Fernandez, Adrian
Gonzalez-Huerta, Javier
Hermida, Jesus M.
Kramár, Tomáš
L, Sen
Lage, Ricardo
Langer, Philip
Lew, Philip
Liegl, Philipp
Linaje, Marino
Lins De Vasconcelos, Alexandre

Marcos
Luo, Sen

Mao, Huajian
Mayrhofer, Dieter
Mirylenka, Daniil
Nguyen, Tung
Noor, Talal
Panach Navarrete, Jose Ignacio
Peternier, Achille
Pröll, Birgit
Reiter, Michael
Rezgui, Abdelmounaam
Schleicher, Daniel
Soi, Stefano
Sonntag, Mirko
Sun, Kewu
Tramp, Sebastian
Tvarožek, Mihal
Wang, Lijuan
Wetzstein, Branimir
Wimmer, Manuel
Yao, Lina
Ye, Penjie
Yesilada, Yeliz
Zaveri, Amapali
Zhan, Liming
Zhao, Xiang

Table of Contents

Invited Papers

The Anatomy of a Multi-domain Search Infrastructure 1
Stefano Ceri, Alessandro Bozzon, and Marco Brambilla

How the Minotaur Turned into Ariadne: Ontologies in Web Data
Extraction . 13

Tim Furche, Georg Gottlob, Xiaonan Guo, Christian Schallhart,
Andrew Sellers, and Cheng Wang

Research Track Papers

Analyzing Cross-System User Modeling on the Social Web 28
Fabian Abel, Samur Araújo, Qi Gao, and Geert-Jan Houben

Parallel Data Access for Multiway Rank Joins . 44
Adnan Abid and Marco Tagliasacchi

Assessing Fault Occurrence Likelihood for Service-Oriented Systems 59
Amal Alhosban, Khayyam Hashmi, Zaki Malik, and Brahim Medjahed

A Strategy for Efficient Crawling of Rich Internet Applications 74
Kamara Benjamin, Gregor von Bochmann, Mustafa Emre Dincturk,
Guy-Vincent Jourdan, and Iosif Viorel Onut

Graph-Based Search over Web Application Model Repositories 90
Bojana Bislimovska, Alessandro Bozzon, Marco Brambilla, and
Piero Fraternali

AdapForms: A Framework for Creating and Validating Adaptive
Forms . 105

Morten Bohøj, Niels Olof Bouvin, and Henrik Gammelmark

Design and Implementation of Linked Data Applications Using SHDM
and Synth . 121

Mauricio Henrique de Souza Bomfim and Daniel Schwabe

A Quality Model for Mashups . 137
Cinzia Cappiello, Florian Daniel, Agnes Koschmider,
Maristella Matera, and Matteo Picozzi

DashMash: A Mashup Environment for End User Development 152
Cinzia Cappiello, Maristella Matera, Matteo Picozzi,
Gabriele Sprega, Donato Barbagallo, and Chiara Francalanci

XII Table of Contents

Learning Semantic Relationships between Entities in Twitter 167
Ilknur Celik, Fabian Abel, and Geert-Jan Houben

Mobile Mashup Generator System for Cooperative Applications of
Different Mobile Devices . 182

Prach Chaisatien, Korawit Prutsachainimmit, and Takehiro Tokuda

A Framework for Concern-Sensitive, Client-Side Adaptation 198
Sergio Firmenich, Marco Winckler, Gustavo Rossi, and
Silvia Gordillo

Instantiating Web Quality Models in a Purposeful Way 214
Philip Lew and Luis Olsina

Reusing Web Application User-Interface Controls . 228
Josip Maras, Maja Štula, and Jan Carlson

Tools and Architectural Support for Crowdsourced Adaptation of Web
Interfaces . 243

Michael Nebeling and Moira C. Norrie

A Layered Approach to Revisitation Prediction . 258
George Papadakis, Ricardo Kawase, Eelco Herder, and
Claudia Niederée

Improving the Exploration of Tag Spaces Using Automated Tag
Clustering . 274

Joni Radelaar, Aart-Jan Boor, Damir Vandic,
Jan-Willem van Dam, Frederik Hogenboom, and
Flavius Frasincar

A Semantic Web Annotation Tool for a Web-Based Audio Sequencer . . . 289
Luca Restagno, Vincent Akkermans, Giuseppe Rizzo, and
Antonio Servetti

CloudFuice: A Flexible Cloud-Based Data Integration System 304
Andreas Thor and Erhard Rahm

Bootstrapping Trust of Web Services through Behavior Observation 319
Hamdi Yahyaoui and Sami Zhioua

Parallel Distributed Rendering of HTML5 Canvas Elements 331
Shohei Yokoyama and Hiroshi Ishikawa

Formal Modeling of RESTful Systems Using Finite-State Machines 346
Ivan Zuzak, Ivan Budiselic, and Goran Delac

Table of Contents XIII

Poster and Demo Papers

Knowledge Spaces . 361
Marcos Baez, Fabio Casati, and Maurizio Marchese

Exploratory Multi-domain Search on Web Data Sources with Liquid
Queries . 363

Davide Francesco Barbieri, Alessandro Bozzon, Marco Brambilla,
Stefano Ceri, Chiara Pasini, Luca Tettamanti, Salvatore Vadacca,
Riccardo Volonterio, and Srd̄an Zagorac

Model-Based Dynamic and Adaptive Visualization for Multi-domain
Search Results . 367

Alessandro Bozzon, Marco Brambilla, Luca Cioria,
Piero Fraternali, and Maristella Matera

A Constraint Programming Approach to Automatic Layout Definition
for Search Results . 371

Alessandro Bozzon, Marco Brambilla, Laura Cigardi, and Sara Comai

Adaptive Mobile Web Applications: A Quantitative Evaluation
Approach . 375

Heiko Desruelle, Dieter Blomme, and Frank Gielen

A Personality Mining System for Automated Applican Tranking in
Online Recruitment Systems . 379

Evanthia Faliagka, Lefteris Kozanidis, Sofia Stamou,
Athanasios Tsakalidis, and Giannis Tzimas

Development of the Evaluation Form for Expert Inspections of Web
Portals . 383

Andrina Granić, Ivica Mitrović, and Nikola Marangunić

WebSoDa: A Tailored Data Binding Framework for Web Programmers
Leveraging the WebSocket Protocol and HTML5 Microdata 387

Matthias Heinrich and Martin Gaedke

Towards User-Centric Cross-Site Personalisation . 391
Kevin Koidl, Owen Conlan, and Vincent Wade

Tool Support for a Hybrid Development Methodology of Service-Based
Interactive Applications . 395

Christian Liebing, Marius Feldmann, Jan Mosig, Philipp Katz, and
Alexander Schill

A Comparative Evaluation of JavaScript Execution Behavior 399
Jan Kasper Martinsen, H̊akan Grahn, and Anders Isberg

XIV Table of Contents

Designing a Step-by-Step User Interface for Finding Provenance
Information over Linked Data . 403

Enayat Rajabi and Mohsen Kahani

Towards Behaviorally Enriched Semantic RESTful Interfaces Using
OWL2 . 407

Irum Rauf and Ivan Porres

Taxonomy for Rich-User-Interface Components: Towards a Systematic
Development of RIAs . 411

Rosa Romero Gómez, David Dı́ez Cebollero,
Susana Montero Moreno, Paloma Dı́az Pérez, and
Ignacio Aedo Cuevas

NAVTAG - A Network-Theoretic Framework to Assess and Improve
the Navigability of Tagging Systems . 415

Christoph Trattner

Author Index . 419

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 1–12, 2011.
© Springer-Verlag Berlin Heidelberg 2011

The Anatomy of a Multi-domain Search Infrastructure

Stefano Ceri, Alessandro Bozzon, and Marco Brambilla

Dipartimento di Elettronica e Informazione,
Politecnico di Milano, P.zza Leonardo Da Vinci 32,

20133 Milan, Italy
{name.surname}@polimi.it

Abstract. Current search engines do not support queries that require a complex
combination of information. Problems such as “Which theatre offers an at least-
three-stars action movie in London close to a good Italian restaurant” can only be
solved by asking multiple queries, possibly to different search engines, and then
manually combining results, thereby performing “data integration in the brain.”
While searching the Web is the preferred method for accessing information in
everyday’s practice, users expect that search systems will soon be capable of mas-
tering complex queries. However, combining information requires a drastic
change of perspective: a new generation of search computing systems is needed,
capable of going beyond the capabilities of current search engines. In this paper
we show how search computing should open to modular composition, as many
other kinds of software computations. We first motivate our work by describing
our vision, and then describe how the challenges of multi-domain search are ad-
dressed by a prototype framework, whose internal “anatomy” is disclosed.

Keywords: Web information retrieval, multi-domain query, search computing,
software architecture, modular decomposition.

1 Introduction

Search is the preferred method to access information in today's computing systems.
The Web, accessed through search engines, is universally recognized as the source for
answering users’ information needs. However, offering a link to a Web page does not
cover all information needs. Even simple problems, such as “Which theatre offers an
at least-three-stars action movie in London close to a good Italian restaurant”, can
only be solved by searching the Web multiple times, e.g. by extracting a list of the
recent action movies filtered by ranking, then looking for movie theatres, then looking
for Italian restaurants close to them. While search engines hint to useful information,
the user's brain is the fundamental platform for information integration.

An important trend is the availability of new, specialized data sources – the
so-called “long tail” of the hidden Web of data. Such carefully collected and curated
data sources can be much more valuable than information currently available in Web
pages; however, many sources remain hidden or insulated, in the lack of software
technologies for bringing them to surface and making them usable in the search
context. We believe that in the future a new class of search computing systems will
support the publishing and integration of data sources; the user will be able to select

2 S. Ceri, A. Bozzon, and M. Brambilla

sources based on individual or collective trust, and systems will be able to route que-
ries to such sources and to provide easy-to-use interfaces for combining them within
search strategies, at the same time rewarding the data source owners for each contri-
bution to effective search. Efforts such as Google’s Fusion Tables show that the tech-
nology for bringing hidden data sources to surface is feasible. We argue then that a
new economical model should promote data sharing, giving incentives to owners - for
data publishing - and to brokers - for building new search applications by composing
them.

The Search Computing project (SeCo) [11][12] aims at building concepts, algo-
rithms, tools and technologies to support complex Web queries, through a new para-
digm based on combining data extraction from distinct sources and data integration
by means of specialized integration engines. The project has the ambitious goal of
lowering the technological barrier required for building complex search applications,
thereby enabling the development of many new applications.

In essence, the new requirements imposed to search call for a component-oriented
view of search computations. While the current landscape in Web search is dominated
by giant companies and monolithic systems, we believe that a new generation of
search computing systems needs to be developed, with a much more composite soft-
ware organization, addressing the needs of a fragmented market. Generic search sys-
tems are already dominated by domain-specific vertical search systems, e.g. with
travels and electronic bookstores. When the threshold complexity of building such
verticals will be lowered, a variety of new market sectors will become more profit-
able. In several scenarios, search-enabled Web access will grow in interest and value
when SMEs or local businesses will see the opportunity of building search applica-
tions tailored to their sale region, which integrate “local” and “global” information.

Therefore, building a search computing systems requires coping with several is-
sues. On one side, new methods and algorithms need to be embedded into software
modules devised to solve the diverse sub-problems, including query specification,
query planning and optimization, query execution, service invocation, user interface
rendering, and so on. On the other side, these software modules must be integrated
within a software environment supporting collaborative executions. This paper de-
scribes first our vision on how search systems should evolve towards modular soft-
ware components and interfaces; then, as a guarantee of the feasibility of such vision,
we describe the “anatomy” of the Search Computing framework that we are currently
developing, discussing the main architectural challenges and solutions.

2 Vision

Supporting search over data sources requires a new class of data services, denoted as
Search Services, and of data integration systems, denoted as Search Computing
Systems.

2.1 Data Provisioning

An increasing number of data sets is becoming available on the Web as (semi) struc-
tured data instead of user-consumable pages. Linked Data plays a central role in this,
thanks to initiatives such as W3C Linked Open Data (LOD) community project,

 The Anatomy of a Multi-domain Search Infrastructure 3

which are fostering LD best practice adoption [2]. An important aspect of LD is their
use of universal references for data linking; this aspect raises the hopes of solving the
data-matching problem, which has so far limited the practical applicability of data
integration methods.

LD and other open or proprietary data are made available through Web APIs (e.g.,
see Google Places API) and/or search-specific languages (e.g., see the Yahoo Query
Language (YQL) framework [19]). Methods, models and tools are being devised for
efficiently designing and deploying applications upon such new data services and data
access APIs. However, data access and linking so far has not been concerned with
data search. The quality of these data sources can be fully exploited with the growth
of new search applications, which federate and compose data sources.

Data services must expose ranking criteria and must be optimized for ranked re-
trieval; top-k queries are well supported by relational sources, while extensions in this
direction are being pursued by the Semantic Web community, e.g. through language
extensions covering tuple orderings in time and rank (e.g. Continuous-Sparql and
RankSparql).

2.2 Service Composition

The efficient support of such data services requires mastering both data and control
dependencies, and strategy optimization must consider rank aggregation, optimal
result paging, and so on [7]. When data sources must be joined, the join operation
must take into account ranking; join can either be based on exact methods, according
to the rank-join theory, or on approximate methods, that favor the speed of result
production [15]. Data integration strategies should aim at obtaining a suitable number
of results (e.g., neither too few, nor too many). Normally, a computation should not
be set up so as to exhaust a searchable data source, as the user is rarely interested to
inspect all of them. The ultimate controller is the user, who sees service results or
their compositions and can halt their production.

 Pipe Parallel

Trulia.com
real estate

Walkscore.com
walkability

Metro.net
public transit

LocalCensus.com
demographics

GOOD, 30 results, 10 calls GOOD, 30 results, 5 seconds, 50 calls

Fig. 1. Search Service integration example, high level view

To be concrete, think about developing a real estate search system in a given re-
gion, by using both global and local resources. The high-level process orchestration
offered by such system may consist in the composition of data sources providing real
estate offers (e.g., Trulia.com or Zillow.com) with local services (e.g., Metro.com for
public transport) and indexes (e.g., WalkScore.com or LocalCensus.com), as shown
in Figure 1. In the example, the Trulia and WalkScore services are invoked in parallel
to extract housing offers and the walkability index (i.e., a value describing if the

4 S. Ceri, A. Bozzon, and M. Brambilla

neighborhood is walking-friendly, in terms of services, shops, and restaurants at walk-
ing distance) of the various districts. This parallel execution is set to extract at most
30 good results by using at most 10 service calls. Then, results are piped to the Metro
and LocalCensus services, which extract demographics and crime rate information for
each solution. Three global thresholds are set on the number of results, on the time
limit and on the number of service calls (30 results, 5 seconds, 50 calls respectively).
Thresholds correspond to execution constraints: execution halts if any threshold is
met. Notice that this is not a simple mashup of service, as it includes, e.g., complex
optimization strategies and result composition logics [6].

From a system-oriented point of view, search-oriented engines for data integration
should be deployed in “cloud computing” environments, to enable flexibility and
scalability for application developers. In this way, the complexity of engine design
and optimization would be totally outsourced and become transparent to the devel-
oper. In essence, the developer should not only resort to external data sources, but
also to external data integration systems.

2.3 User interaction

From the end user standpoint, the way in which the informative need can be described
may be crucial for determining the acceptance of a search application. Hence, differ-
ent query formulations and user interactions should be allowed. In particular, one can
think of three types of query: one-shot form-based queries, natural language queries,
and exploratory queries.

One-shot queries based on forms correspond to the behavior of several domain-
specific search engines in which the objective of the search is predefined and the user
submits a fixed set of parameters for finding the information. Typical examples are
flight search or hotel search applications. In case of multi-domain queries one can
expect a more complex form, comprising more fields and parameters. In this case the
set of focal entities are typically known a priori and the input parameters are exactly
matching the exposed fields in the form.

Natural language queries offer instead the maximum freedom to the user, who
can express his information needs in a free text form. The submitted sentence might
contain query parameters, references to the objects of interest, and possibly informa-
tion on the expected results (i.e., the expected output of the search). NL queries repre-
sent an example of incremental query methods, where incrementality is achieved with
a process by which, given his/her information need, the user is led to full specification
of the most suitable search services to satisfy it. This scenario is much harder to deal
with, as not only the text might not specify the complete set of expected input pa-
rameters for producing a response, but it also requires a separation of the original
query into a number of sub-queries based on probabilistic mappings of concepts and
properties.

Finally, exploratory queries are queries where, given the current context of inter-
action, the user is able to follow links to connected concepts, thus adding a new query
fragments or rolling back to a previous result combination. Exploratory queries are by
nature incremental. To give users some flexibility in exploring the result, we have
proposed the Liquid Query paradigm [3], which allows users to interact with the
search computing result by asking the system to produce “more result combinations”,

 The Anatomy of a Multi-domain Search Infrastructure 5

or “more results from a specific service”, or “performing an expansion of the result”
by adding a sub-query which was already planned while configuring the query.

By means of such paradigm, the user is supported in expressing fully exploratory
queries, starting from an initial status with no predefined query, and enabling a pro-
gressive, step-by-step construction of the query itself. The new paradigm consists of
exploring a network of connected resources, where each resource corresponds to a
clearly identified real-world concept (an “hotel”, a “flight”, a “hospital”, a “doctor”),
and the connections have predefined semantics (“hotels” are close to “restaurants”,
“doctors” care “diseases” and are located at “hospitals”). Such network, called the
“Semantic Resource Framework”, is built as a conceptual description of the search
services exploited by the multi-domain framework. The proposed exploration para-
digm exploits query expansion and result tracking, giving the user the possibility to
dynamically selecting and deselecting the object instances of interest, and move “for-
ward” (adding one node to the query) or “backward” (deleting one node) in the re-
source graph. Result presentation paradigms support the exploration by visualizing
instances of different objects in separate lists, at the same time displaying the combi-
nations they belong to and their global rank. This view allows users to focus at each
step on the new results, and therefore is most suitable for a progressive exploration.

2.4 Application Development

A complex search application can be generated from such a high-level design after a
preliminary data source registration. During such process, sources become known in
terms of: the concepts that they describe (conceptual view), their “access pattern”, i.e.
the input-output parameters and supported ranking (logical view), and the actual sup-
ported interaction protocol, with a variety of quality parameters (physical view). The
registration process should be as simple and encompassing as possible, and include a
mix of top-down acts (when starting from concepts) and bottom-up acts (when start-
ing from data source schemas or service calls).

We envision semi-automatic tagging of sources during registration and use, and we
suggest that tags be extracted from general ontologies (such as Yago) so as to build an
abstract view of the sources that can be helpful in routing queries to them [18]. The
search system Kosmix [17] already uses such an approach for describing data sources
that is sufficient for selecting relevant sources and driving simple queries to them, but
it currently does not support the combination of data sources through operations.
Combining data sources within queries requires going beyond the registration or dis-
covery of data sources as entities, and supporting the registration of the relationships
semantically relating such entities, at the conceptual, logical, and physical level. Rela-
tionship discovery is the most difficult step and the key to ease service registration
and application development; early work on linked data and on knowledge extraction
(e.g. from social networks) proves that relationship discovery is becoming feasible.

Application developers could act as brokers of new search applications built by as-
sembling data sources, exposed as search services. We envision a growing market of
specialized, localized, and sophisticated search applications, addressing the long tail
of search needs (e.g., the “gourmet suggestions” about slow-food offers in given
geographic regions). In this vision, large communities of service providers and bro-
kers (e.g., like ProgrammableWeb.com and Mashape.com for mashups) could be

6 S. Ceri, A. Bozzon, and M. Brambilla

empowered by support design environment and tools for executing search service
compositions and orchestrations. Thanks to the lowering of programming barriers one
could expect an ultimate user’s empowerment, whereby end users could compose data
sources at will from predefined data source registries and collections; e.g., the orches-
tration of Figure 1 could be built by starting from simple, menu-driven interfaces
where the user is just asked to select the concepts and the orchestration is then in-
ferred. We also envision that, with suitable ontological support and possibly within a
narrow domain, queries could be generated from keywords, as with conventional
search engines.

3 Reference Architecture

The Search Computing project covers many research directions, which are all required
in order to provide an overall solution to complex search. The core of the project is the
technology for search service integration, which requires both theoretical investigation
and engineering of efficient technological solutions. The core theory concerns the de-
velopment of result integration methods that not only denote ``top-k optimality'', but
also the need of dealing with proximity, approximation, and uncertainty. A number of
further research dimensions complement such core. Service integration requires solving
schema integration problems, as well as ontological description and labeling of re-
sources to facilitate queries. Efficient execution requires optimization, caching, and a
server configuration supporting scalability through distribution and parallelism. Support
of user interaction requires powerful client-side computations, with rich interfaces
for assisting users in expressing their needs and exploring the information. Design tools
for building Search Computing applications employ mashup-based solutions and spe-
cialized visualization widgets.

Therefore, Search Computing systems deal with many typical Web engineering
problems. Figure 2 shows the architecture of the Search Computing system. The
software modules in Figure 2 are vertically subdivided into processing modules, re-
positories, and design tools, and vertically organized as a two-tier, three-layer infra-
structure, with the client tier dedicated to user interaction and the server tier further
divided into a control layer and execution layer; the client-server separation occurs
between processing layers and repositories, and communications are performed using
Web-enabled channels. Tools address the various phases of interaction.

3.1 Processing Modules

We describe processing modules bottom-up, starting with the Execution Layer. The
lower module, the Service Invocation Framework, is in charge of invoking services
that query the data sources. Such services typically have few input parameters (which
are used to complete parametric queries) and produce results constituted by a “chunk”
of tuples, possibly ranked, each equipped with a tuple-id; thus, a service call maps
given input parameters to a given chunk of tuples. The framework includes built-in
wrappers for the invocation of several Web based infrastructures (e.g., YQL,
GBASE), query end-point (e.g. SPARQL) and resources (e.g., WSDL- and REST-
based Web services). It also supports the invocation of legacy and local data sources.

 The Anatomy of a Multi-domain Search Infrastructure 7

Fig. 2. The architecture of the Search Computing platform

8 S. Ceri, A. Bozzon, and M. Brambilla

The Execution Engine is a data- and control-driven query engine specifically de-
signed to handle multi-domain queries [9]. It takes in input a reference to a query plan
and executes it, by driving the invocation of the needed services trough the Service
Invocation Framework. The Execution Engine includes a Cache and a Persistency
Manager module, devoted to in-session and cross-session level caching of results.

The Control Layer, as the name suggests, is the controller of the architecture; it is
designed to handle several system interactions (such as user session management and
query planning) and it embodies the Query Analyzer and the Query Orchestrator. The
Query Analyzer is a component devoted to the parsing, planning, and optimization of
queries (possibly expressed in a declarative language) into query plans to be executed
by the Execution Engine. The Query Orchestrator is the main access point to the
platform, as it acts as a proxy toward all the internal components, offering a set of
APIs. The Query Orchestrator also handles the management of user sessions and
authentication, and communicates with the Execution Engine to perform queries; each
query is univocally identified, as well as the result set produced by its execution.

The User Interaction Layer is the front-end of the SeCo system, and it embodies
the User Interface and the High-Level Query Processor. The latter is a component
designed to allow users to express unstructured queries (e.g., a set of keywords, a
natural language sentence, or a structured English sentence) or declarative queries
expressed over an ontology (or, more in general, a schema), which are translated into
processable multi-domain queries. The User Interface, instead, is a client-side Rich
Internet Application dynamically configured according to a designed SeCo applica-
tion. It accepts in input user commands and produces queries and query expansion
commands for the Query Orchestrator.

The rationale of this architecture is a clear separation of modules by functions.
Thus, the lower components separate the service interaction logics from the service
composition logics, the separation between the orchestrator and the engine guarantees
that the former is focused on session management while the latter is focused on effi-
cient execution of one-shot queries, thereby simplifying the engine – which is the
most critical component. The design of the Query Planner from as a component ex-
ternal to the query engine allows its invocation from the Query Orchestrator, thus
offering planning services to several other components Finally, the separation of the
client-side query processor from the user interface guarantees that all the specific
processing depending on the type of input is performed in the former, while all the
device-specific aspects of presentation are considered in the latter.

3.2 Repositories

The Repository contains the set of components and data storages used by the system
to persist the artifacts required for its functioning. On the server side, the Service Mart
Repository contains the description of the search services consumed by the system,
represented at different level of abstraction; it is accessed by the Query Orchestrator
to provide users with information for navigating the service resource graph while it
provides to the Execution Engine the access to services. The Query Repository and
Results Repository are used in order to persist query definitions and query results
which are heavily used, while the User Repository and Application Repository store,
respectively, a description of users accessing an application and of the configuration

 The Anatomy of a Multi-domain Search Infrastructure 9

files (query configuration, result configuration, etc.) required by the user interface for
an application.

On the client side, three persistent repositories store have been designed, respec-
tively: the Query Descriptions, which are used by the High-level Query Processor as
reference definitions of the query models; the Service Mart Descriptions and the Ap-
plication Descriptions, managed by the user interface on the user’s browser to persis-
tently cache application’s configuration files and service descriptions, thus reducing
the time required for the application to be downloaded and started.

3.3 Caching

The efficient handling of query executions is guaranteed by the combined design of
the processing module and of a shared and distributed caching system, which maxi-
mizes artifacts reuse while minimizing redundant computation and network data
transfer: for instance, caching the results of service invocations allows for faster query
answers (as the execution time of a query is typically dominated by the response
latency of the search service); repeated executions of the same query or subquery
allows for reduced computations, thus enhancing the scalability of the system. Client-
side caching of query results minimize the need for client-server round-trip, thus
improving the user experience.

Figure 3 illustrates an extract of the sequence diagram of the interactions occurring
within the processor layer and its cache system: chunks extracted by each service calls
are cached; query plans are cached with the data which are produced by its execution;
query execution histories are cached together with user inputs and results at each step.
Caches indexes support a fast lookup, e.g. query results are accessed by query plan,
user input and chunk number; cache items remain valid throughout a user session (to
guarantee consistency in the retrieved data, while improving the reactivity of the sys-
tem) or across several sessions (to maximize reuse, when possible), unless explicitly
invalidated. Query execution occurs by systematically checking whether a resource
exists in the cache, else it is produced: when a query created by the user interface, the
Query Orchestrator, which manage user session histories, looks up in the cache for
existing plans associated with such query; if not hit is found, the Query Orchestrator
interacts with the Query Planner to create a new query plan, and looks again in the
cache for existing results associated with the plan invocation. If no results have been
cached, the control is redirected to the Execution Engine, which, in turn, progressively
invokes the services included in the query plan to retrieve (possibly cached) data and
compose results. A service invocation in a query plan can be directed to another query
plan; therefore, the execution engine is able to recursively execute plans, re-using the
results of previous executions when possible. The Query Orchestrator also handles
user session objects, to manage the navigation history of the user during exploratory
search tasks: the state of navigation is made of a set of user interactions on the system,
together with the produced results.

3.4 Tools

To support and configure the set of objects and components involved in the SeCo
architecture, a tool suite has been devised that comprises a variety of instruments. The

10 S. Ceri, A. Bozzon, and M. Brambilla

Fig. 3. Sequence diagram showing processing and cache modules

tool suite has been structured as an online development platform in which developers
can login and, according to their role, access the right set of tools for building SeCo
applications. The availability of the tools as online applications aims at increasing
SeCo application design productivity, by reducing the time to deployment and avoid-
ing the burden of downloading and installing software.

At the service management level, tools are crucial for service registration and
wrapping. The Service wrapping tool allows normalization of service interfaces by
supporting the definition of service wrappers, i.e., software components that make
heterogeneous services fit into the search computing search services conventions. The
registration tool [10] consists of a set of facilities for the mapping of concrete
services to their conceptual descriptions in terms of service marts, access patterns, and
connection patterns. We are currently extending the service registration process so
that terms used in naming concepts are extracted from Yago [17], a general-purpose
ontology. The tools consist of mapping-based interfaces that allow picking elements
from the service input/outputs (and domain descriptions) and populating the

 The Anatomy of a Multi-domain Search Infrastructure 11

conceptual service mart models. Furthermore, a service analysis tool supports moni-
toring and evaluation of the service performance. At the engine level, the execution
analysis tool is a benchmarking dashboard that allows monitoring and fine-tuning of
the engine behavior. The execution of queries can be visually monitored, recorded,
and compared with other executions (e.g., for evaluating the best execution strategies
of the same query, or for assessing the bottlenecks of an execution) [5].

The application configuration tools allow designers to define applications based on
the composition of search services: the query configuration tool supports the visual
definition of queries as subsets of the service description model with predefined con-
dition templates. The tool supports the designer in exploring the service repository,
through visual navigation, selecting the services of interest for the application and the
respective connection patterns, and defining the conditions upon them. The query
plan tuning tool is visual modeling environment that allows SeCo experts to refine the
edit query plans specified according to the Panta Rhei notation. The user configura-
tion tool allows one to define user profile properties and the vertical application gen-
erator produces application models that are stored in the application repository.

The client side issues are addressed by two tools: the UI configuration tool aims at
supporting the design of the interface of the query submission form and of the result
set, together with the default settings for the application and the allowed Liquid Query
operations [3]. The widget development environment consists of a framework in
which the developer can encode his own new visual components to be inserted into
the pages (e.g., new result visualizers or new query submission widgets).

4 Conclusions

This paper presented our vision for a novel class of search systems, advocating that a
new generation of search infrastuctures with a modular software organization is re-
quired for addressing the needs of a fragmented market of new search applications.
We also showed how this vision is partially instantiated by the prototype architecture
currently under development within the Search Computing project. Demos providing
some evidence of the feasibility of this approach are presented at WWW [4], ACM-
Sigmod [5] and ICWE [1].

Acknowledgements. This research is part of the Search Computing (SeCo) project,
funded by ERC, under the 2008 Call for "IDEAS Advanced Grants"
(http://www.search-computing.org). We wish to thank all the contributors to the
project.

References

[1] Barbieri, D., Bozzon, A., Brambilla, M., Ceri, S., Pasini, C., Tettamanti, L., Vadacca, S.,
Volonterio, R., Zagorac, S.: Exploratory Multi-domain Search on Web Data Sources with
Liquid Queries. In: ICWE 2011 Conference, Demo session, Paphos, Cyprus (June 2011)

[2] Bizer, C., Heath, T., Idehen, K., Berners-Lee, T.: Linked Data on the Web. In: Proceed-
ings WWW 2008, Beijing, China (2008)

12 S. Ceri, A. Bozzon, and M. Brambilla

[3] Bozzon, A., Brambilla, M., Ceri, S., Fraternali, P.: Liquid Query: Multi-Domain Explora-
tory Search on the Web. In: WWW 2010, Raleigh, NC, pp. 161–170. ACM, New York
(2010)

[4] Bozzon, A., Brambilla, M., Ceri, S., Fraternali, P., Vadacca, S.: Exploratory search in
multi-domain information spaces with Liquid Query. In: WWW 2011 Conference, Demo
session, (March 31, 2011)

[5] Bozzon, A., Brambilla, M., Ceri, S., Fraternali, P., Vadacca, S.: Exploratory search in
multi-domain information spaces with Liquid Query. In: Bozzon, A., Brambilla, M., Ceri,
S., Corcoglioniti, F., Fraternali, P., Vadacca, S. (eds.) Search Computing: Multi-domain
Search on Ranked Data, ACM-Sigmod 2011 Conference, Demo session (June 2011)

[6] Braga, D., Campi, A., Ceri, S., Raffio, A.: Joining the results of heterogeneous search en-
gines. Inf. Syst. 33(7-8), 658–680 (2008)

[7] Braga, D., Ceri, S., Daniel, F., Martinenghi, D.: Optimization of Multi-Domain Queries
on the Web. In: VLDB 2008, Auckland, NZ (2008)

[8] Braga, D., Ceri, S., Daniel, F., Martinenghi, D.: Mashing Up Search Services. IEEE
Internet Computing 12(5), 16–23 (2008)

[9] Braga, D., Grossniklaus, M., Corcoglioniti, F., Vadacca, S.: Efficient Computation of
Search Computing Queries. In: Ceri, S., Brambilla, M. (eds.) Search Computing II.
LNCS, vol. 6585, pp. 141–155. Springer, Heidelberg (2011)

[10] Brambilla, M., Tettamanti, L.: Tools Supporting Search Computing Application Devel-
opment. In: Ceri, S., Brambilla, M. (eds.) Search Computing II. LNCS, vol. 6585, pp.
169–181. Springer, Heidelberg (2011)

[11] Ceri, S., Brambilla, M. (eds.): Search Computing II. LNCS, vol. 6585. Springer, Heidel-
berg (March 2011)

[12] Ceri, S., Brambilla, M. (eds.): Search Computing. LNCS Book, vol. 5950. Springer,
Heidelberg (March 2010) ISBN 978-3-642-12309-2

[13] Danescu-Niculescu-Mizil, C., Broder, A.Z., Gabrilovich, E., Josifovski, V., Pang, B.:
Competing for users’ attention: on the interplay between organic and sponsored search
results. In: WWW 2010, Raleigh, NC, pp. 291–300. ACM, USA (2010)

[14] Google: Fusion Tables (2009), http://tables.googlelabs.com/
[15] Ilyas, I., Beskales, G., Soliman, M.: A survey of top-k query processing techniques in

relational database systems. ACM Comput. Surv. 40(4) (2008)
[16] Parameswaran, A., Das Sarma, A., Polyzotis, N., Widom, J., GarciaMolina, H.: Human-

Assisted Graph Search: It’s Okay to Ask Questions. In: PVLDB, vol. 4(5), pp. 267–278
(February 2011)

[17] Rajaraman, A.: Kosmix: High Performance Topic Exploration using the Deep Web. In:
VLDB 2009, Lyon, France (2009)

[18] Suchanek, F., Bozzon, A., Della Valle, E., Campi, A.: Towards an Ontological Represen-
tation of Services in Search Computing. In: Ceri, S., Brambilla, M. (eds.) Search Comput-
ing II. LNCS, vol. 6585, pp. 101–112. Springer, Heidelberg (2011)

[19] YQL (2009), http://developer.yahoo.com/yql/

How the Minotaur Turned into Ariadne:
Ontologies in Web Data Extraction�

Tim Furche, Georg Gottlob, Xiaonan Guo, Christian Schallhart,
Andrew Sellers, and Cheng Wang

Department of Computer Science, University of Oxford, UK
{firstname.lastname}@cs.ox.ac.uk

Abstract. Humans require automated support to profit from the wealth
of data nowadays available on the web. To that end, the linked open
data initiative and others have been asking data providers to publish
structured, semantically annotated data. Small data providers, such as
most UK real-estate agencies, however, are overburdened with this task—
often just starting to move from simple, table- or list-like directories to
web applications with rich interfaces.

We argue that fully automated extraction of structured data can help
resolve this dilemma. Ironically, automated data extraction has seen a
recent revival thanks to ontologies and linked open data to guide data
extraction. First results from the DIADEM project illustrate that high
quality, fully automated data extraction at a web scale is possible, if
we combine domain ontologies with a phenomenology describing the
representation of domain concepts. We briefly summarise the DIADEM
project and discuss a few preliminary results.

1 Introduction

The web has changed how we do business, search for information, or entertain
ourselves to such a degree that saying so has become a platitude. The price for
that success is that every business must maintain a website to stay operational.
For example, even the smallest real estate agency1 needs a searchable website
and must spend considerable effort to be both found on Google and integrated
into the major real estate aggregators. Businesses have reluctantly accepted this
cost for doing business as a price for higher visibility—reluctantly, as aggregators
present long list of normalised results from all agencies. Thus, agencies have be-
come dependent on dominant aggregators where it is hard to distinguish oneself
by reputation, service, or novel features rather than price. Google, on the other
hand, is able to pick up on reputation of agencies to some extent, but does very

� The research leading to these results has received funding from the European Re-
search Council under the European Community’s Seventh Framework Programme
(FP7/2007–2013) / ERC grant agreement no. 246858 (DIADEM).

1 Of which there are over ten thousand in the UK alone, some offering just a handful
of properties, e.g., focused on a single burrow of Oxford.

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 13–27, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

14 T. Furche et al.

poorly on property searches. This observation holds nowadays for many product
domains, with price comparison systems becoming dominant.

One of the goals of the semantic web, linked open data and similar initiatives
is to address this dependency on few, dominant aggregators: Let real estate
agencies publish their data in a structured format such as RDF with an appro-
priate ontology describing the schema of that data. Then, search engines can
be adapted for object search, i.e., finding the property best fitting specific crite-
ria (such as price range and location). In contrast to aggregators, object search
engines should be able to pick up any properly structured data published on
the web, just as search engines pick up any properly published HTML page.
To publish structured data, an agency has to find a suitable business vocabu-
lary (possibly extending it for novel features of its properties) and mark up its
properties according to that schema.

For most agencies, the burden of maintaining and promoting a traditional,
HTML web page already incurres considerable cost, requiring expensive train-
ing and specialised personnel. Publishing high quality structured data using the
most relevant ontologies is a task well beyond the expertise of most agencies:
First, there are still few good standardised domain ontologies. In the real es-
tate domain, previous attempts at standardising the vocabulary (e.g., as XML
schemata for interchange and use in aggregators) have largely failed, partially as
properties are not quite commodities yet. Second, small agencies often manage
their properties in an ad-hoc fashion and have little or no knowledge (or need)
for proper information management. These concerns are reflected in the fact that
the growth of linked open data is certainly driven by adoption in governments,
large nonprofits, and major companies.

The availability of structured data from all these agencies promises a fairer,
more competitive property market—but with considerable sacrifice. We are stuck
in a labyrinth of vocabularies, semantic technologies and standards. Every busi-
ness will be forced to spend considerable resources on publishing proper struc-
tured data, even more than they already do for maintaining their web sites.
What begins as a call for everyone to participate, may further harm the com-
petitiveness of small businesses.

We argue that the very same reason that makes the labyrinth scary—the
ontologies for annotating structured data—can also direct us out of the labyrinth.
What is needed is a “red thread” program that automatically finds a path
for each given website to relevant domain objects. With such a program, we can
analyse the pages that people and businesses are publishing, rather than everyone
annotating their objects (and solving the related problems again and again).
We consider how to turn such pages into structured data along the following
questions:

1. How are these objects represented in web sites (object phenomenology)?
2. How do humans find these objects (search phenomenology)?
3. How to turn that information into a “red thread” program.
4. How to extract all the data from relevant pages at scale.

How the Minotaur Turned into Ariadne: Ontologies in Web Data Extraction 15

In the DIADEM project we are working on answering these questions based
on a fundamental observation: If we combine domain with phenomenological
(object and search) knowledge in an ontology of a domain’s web objects, we
can automatically derive an extraction program for nearly any web page in the
domain. The resulting program produces high precision data, as we use domain
knowledge to improve recognition and alignment and to verify the extraction
program based on ontological constraints.

DIADEM’s “red thread” program is a large set of analysis rules combined with
low-level annotators providing a logical representation of a webpage’s DOM,
including the visual rendering and of textual annotations (based on GATE).
Section 2 gives a brief overview of the DIADEM system and its components,
including the ontologies and phenomenologies used for web form (Section 3) and
object analysis (Section 4).

We generate an extraction program describing the paths through a web site
(and individual pages) to get to the actual data. These programs are formu-
lated in OXPath (Section 5), a careful extension of XPath for simulating user
interactions with a web site.

More details on DIADEM are available at diadem-project.info.

2 Overview DIADEM Prototype

Figure 1 gives a simplified overview on DIADEM prototype architecture. Every
web page is processed in a single sequential pipeline. First we extract the page
model from a live rendering of the web page. This model represents logically
the DOM, information on the visual rendering, and textual annotations. The
textual annotations are generated partially by domain-specific gazetteers and
rules, but otherwise this part is domain-independent. In the next step, we do
an initial classification of web blocks, such as navigation links, advertisements
etc. to separate general structures from domain-specific structures and to provide
additional clues to object and form analysis. In the third step we use the AMBER
prototype, discussed in Section 4 to identify and classify any objects of the
domain that may occur on the page. This is done before the form analysis in stage
four (using the OPAL prototype from Section 3), as we use the information from
the object analysis together with the block classification to decide if navigation
links on the page may lead to further data. If the form analysis can identify
a form belonging to the target domain, we proceed to fill that form (possibly
multiple times). Finally, we extract and crawl links for further exploration of the
web site.

Once a site is fully explored, all collected models are passed to the OXPath
generator that uses simple heuristics to create a generalised OXPath expression
that to be executed with the OXPath prototype for large scale extraction (see
Section 5).

This analysis only needs to be repeated if the analyzed site has changed sig-
nificantly, otherwise the resulting OXPath expression can be used for repeated
extraction from the web site.

diadem-project.info

16 T. Furche et al.

Fig. 1. Overview of the DIADEM 0.1 System

3 Ontologies for Form Analysis

Form understanding, as the gate-way process in automated web data extraction,
has been addressed in the context of deep web search [1,2,3,4], web querying [5,6],
and web extraction [7]. These approaches focus on observing commonalities of
general web forms and exploiting the arising patterns in specifically tailored al-
gorithms and heuristics. However, trying to define a general approach capable
of producing high precision results in all domains is not an easy task. Further-
more, by generalizing the assumptions made about web forms, these approaches
cannot exploit domain-specific patterns.

To overcome these limitations, we designed an ontology-assisted approach,
OPAL (Ontology-based web Pattern Analysis with Logic), for domain-aware
form understanding. OPAL analyzes and manipulates on form elements us-
ing both general assumptions and domain ontological knowledge. The former
adopts several heuristics to provide segmentation and labeling for a form. Form
elements and segments are then annotated, classified, and verified using the do-
main ontology. The link between general form understanding and logical form
representation is referred to as the phenomenology, which describes how onto-
logical concepts appear on the web. We have implemented a prototype system
for UK real-estate domain, and conducted extensive evaluation of the system on
a sampled domain dataset.

OPAL represents information at three successive levels connected by two map-
pings. Firstly, the page model represents a rendered DOM of a web page through
an embedded browser, enriched with visual properties, e.g., bounding boxes of

How the Minotaur Turned into Ariadne: Ontologies in Web Data Extraction 17

Fig. 2. Form on Heritage with its Page Model

HTML elements. The page model is also expanded with linguistic annotations
and machine learning based classifications, relying on domain-specific knowl-
edge. Secondly, the segmentation model describes conceptual relationships be-
tween form elements and associates them with texts that are potential labels.
This is obtained from the page model through the segmentation mapping, which
employs a number of heuristics to build a conceptual segmentation by choosing
proper structural and visual relationships among fields and texts. Thirdly, the
domain model describes the form as a tree of domain-specific elements, such
as price elements. We construct it by joining the domain annotations from the
page model with the segmentation results from the segmentation model. The
joining process, called phenomenological mapping, is guided by the domain on-
tology. To adapt OPAL for another domain, one only needs to configure the
relevant annotations, define domain specific elements, and instantiate rules for
the phenomenological mappings from a set of common templates.

In the following paragraphs, we discuss the OPAL system using http://www.

heritage4homes.co.uk as our running example (see Figure 2).

3.1 Page Model

The page model represents the structural, textual, and visual properties of the
web page as rendered by a browser engine. We represent the DOM tree (including
element, text, comment, and attribute) in structural relations and encode the
tree structure using the start/end encoding, see Figure 2.

Relying on domain-specific knowledge, the page model is expanded with lin-
guistic annotations and machine learning based classifications on texts appearing
on web pages.

3.2 Segmentation Model

Taking the page model, the segmentation mapping labels and groups form ele-
ments, such as fields and texts. This mapping exploits heuristics on structural
and visual properties and yields the segmentation model. Groups are derived

http://www.heritage4homes.co.uk
http://www.heritage4homes.co.uk

18 T. Furche et al.

from similarities in the HTML design and in the visual appearance of form fields.
A consecutive list of segments makes a group (parent segment) if they satisfy
the similarity conditions and their least common ancestor contains no other seg-
ments. We translate this and other similar conditions into rules as shown below
(where Es refers to a list of segments).

group(Es)⇐ similarFieldSequence(Es)∧leastCommonAnc(A,Es)∧
2 not hasAdditionalField(A,Es).

leastCommonAnc(A,Es)⇐ commonAnc(A,Es)∧not(child(C,A)∧commonAnc(C,Es)).

4 partOf(E,A)⇐ group(Es)∧member(E,Es)∧leastCommonAnc(A,Es).

Labeling, e.g. label assignment to form segments, is achieved through three
heuristics, such that hasLabel(E,L,T) is true if segment E is assigned with label
node L which contains text T . The three heuristics are as follows: (1) HTML
label, which extracts HTML labels from web forms. (2) Greatest unique ancestor,
which finds the greatest unique ancestor of a segment and associates all its
text descendants with the segment. (3) Segment alignment, which does label
assignment based on the position of segment and text members. In the last
heuristics, we identify the list of all text groups in the parent segment, partitioned
by each occurring child segment. If an interleaving situation is encountered, we
perform one-to-one assignments between text groups to child segments. We show
a fragment of the results produced by the three heuristics below.

hasLabel(e_320_input,t_322,"Nailsea / Backwell").

2 hasLabel(e_326_input,t_328,"Portishead / Pill").

hasLabel(e_515_select,t_400,"Min Price").

4 hasLabel(e_705_select,t_594,"Max Price").

hasLabel(e_319_td,t_316,"Area").

3.3 Domain Model

This model describes conceptual entities on forms as defined in the domain
ontology. The ontology provides a reference description of how such forms occur
in practice on the considered websites. Figure 3 presents three relevant fragments
of our ontology for the UK real estate domain. (A) the top concepts defining
how a real-estate web form is constructed, (B) the price segments, modeling the
structure of a price input/selection facility, and (C) the area/branch segment
describing a search facility based on location information, i.e. a geographic area
(e.g. London). In the ontology, classes (or concepts) are represented as unary
first-order predicates, denoting the type of an object in the form. The “part of”
relation encodes the hierarchical structure of the form segments. Attributes are
represented as binary relations between concepts and DOM nodes. For example,
it may represent the fact that a price field is a minimum/maximum price field
or that an order-by input field is ordering in ascending or descending order.
Furthermore, additional constraints are modeled for attributes (defining domains
for attribute values) and relations (cardinality and compatibility constraints). To
discuss the ontology, we explain (B) as an example. A price segment is composed
by an optional currency element and one or more price elements. The price-Type

How the Minotaur Turned into Ariadne: Ontologies in Web Data Extraction 19

Real-Estate Web Form

Price
Segment

Property-Contract
Segment

Geographic
Segment

Property-Feature
Segment

Search-Option
Segment

1..1

1..1

0..1
Form-Buttons

Segment

1..1

OR

1..*

0..1

purpose

purpose

purpose

Combined Form purpose.{combined}

AND

Price Segment

XOR

Currency
Element

0..1

0..1 1..1
Currency

Label
Currency

Input-Field

OR

purpose

purpose purpose
Price Element

1..1

priceType.{range}

purpose
Price Element

1..1

priceType.{apx}

purpose
Price Element

AND
purpose

Price
Label

Price
Input-Field

purposepurpose

priceType

0..1 1..1

priceType

priceType

priceType={min,max,approximate,range}

purpose
Price Element

1..1

priceType.{min}

purpose
Price Element

1..1

priceType.{max}

priceType

purpose={buy,rent,combined}

Area-Branch
Element

Area-Branch
Input-Field

Area-Branch
Label

Area-Branch
Input-Field

1..* 1..1
XOR

granularitygranularity

1..1 1..1

granularity

AND

granularity

granularity={area,branch}

Area-Branch
Segment

OR

Area-Branch
Segment

granularity.{branch}

1..1 1..1
Area-Branch

Segment

granularity.{area}

Area-Branch
Segment granularity

granularity

purpose

(A) (B)

(C) Area-Branch
Segment Label

0..1Geographic
Segment

Fig. 3. The Real-Estate Web-Form Ontology (fragment)

attribute is used to denote different price-input facilities occurring in real-estate
web forms, e.g. price range selection, a pair composed by a minimum and a
maximum price, etc. In case of such a range, the price elements must agree on
the value of the purpose attribute (the compatibility constraint). Each price
element consists of a label and a price input field.

From the ontology, we derive a phenomenological mapping to classify the form
elements and derive the domain form model. This mapping is called phenomeno-
logical as it connects the abstract concepts of the ontology (e.g. price element)
with observable phenomena on the web pages, e.g., a select box with a text
label. For example, we annotated “Nailsea” as a location in the extended page
model and obtain the result that “Nailsea / Backwell” is associated with the first
radio button in the “Area” segment. Hence we conclude that this radio button
should be classified as an area/branch element. In this fashion, we associate an
area/branch element to the five radio buttons. The second and third dropdown
lists are identified as price elements with minimum and maximum for price-type
value. It is interesting to note that in some cases, the annotations for form ele-
ments can be associated with existing DOM nodes, while in other cases—when a
corresponding HTML element does not exist—the phenomenological rules gen-
erate an artificial bounding box for such elements which is then annotated using
the ontology.

Experiments. We conducted experiments for OPAL up to the segmentation
model on a publicly available dataset (ICQ dataset) to test its domain inde-
pendence and the complete OPAL on a sampled UK real-estate dataset to show
the enhancement of ontology. In the former case, we covered 100 query inter-
faces from 5 domains and achieved 94% F1-score for field labeling and 93% for
correct segmentation. For the latter case, where there are 50 randomly selected
UK real-estate web sites, we achieved over 97% in field labeling and 95% for the
segmentation.

20 T. Furche et al.

4 Ontologies for Object Recognition and Analysis

We introduce AMBER (“Adaptable Model-based Extraction of Result Pages”) to
identify result page records and extract them as objects. AMBER is param-
eterized with a domain ontology which models knowledge on (i) records and
attributes of the domain, (ii) low-level (textual) representations of these con-
cepts, and (iii) constraints linking representations to records and attributes.
Parametrized with these constraints, domain-independent heuristics exploit the
repeated structure of a result page to derive attributes and records. AMBER is
implemented to allow an explicit formulation of the heuristics and easy adapta-
tion to different domains.

4.1 Background

There have been a number of approaches for extracting records from result pages,
but they were mostly either semi-automated or domain-independent, as sur-
veyed e.g. in [8,9]. In contrast, and as in case of web form analysis, we follow
a domain-aware approach: Based on domain-specific annotations in the result
page, e.g. marking all occurring rent prices, we identify the occurring data ar-
eas, segment the records, and align the attributes of the found records.

Our approach works in four steps: During the (i) retrieval and (ii) annotation
stage, the page and annotation model are obtained to represent the DOM of a
live browser and relevant domain-specific markup. (iii) The phenomenologi-
cal mapping constructs an attribute model which summarizes the annotations
into potential record attributes occurring on the analyzed web page. (iv) The
segmentation mapping uses the structural and visual information from the
browser model and the attributes identified in the attribute model to locate data
areas and segment these areas into individual data records. As a result, we obtain
the result page model for the given page.

4.2 Algorithm Description

Due to different representations for the same content on different web sites, au-
tomatic data extraction usually results in a complex and time-consuming task.
Existing approaches mostly try to detect those repeated structural patterns in
the DOM tree that represent data records. This approach has the advantage of
being domain independent because it relies only on the structural similarities be-
tween different records (within the same or among different pages). However, we
can safely say that all past domain-independent attempts describing all possibly
occurring page structures have failed.

In our approach, we combine the detection of repeated structures with back-
ground knowledge of the domain. We provide the analysis process with a seman-
tic description of the data that we expect to find on the web page, plus a set of
“constraints” that are known to hold in the domain. Our experiments show that
this combination results in a much more precise analysis and enables a simple
consistency check over the extracted data.

How the Minotaur Turned into Ariadne: Ontologies in Web Data Extraction 21

<html>

D1

L1,1 L1,2

M1,1

M1,2

D2

L2,1 L2,r…

r

D3

L3,1 L3,s…

s

M2,1 M2,r M3,sM3,1

Fig. 4. Results on Zoopla

Data Area Identification. A data area in a result page is identified by leveraging
mandatory elements. A mandatory element is a domain concept that appears in
all records of a given data area, e.g., the location in a real-estate website. Since
in this phase the records are yet to be discovered, the mandatory elements are
identified by matching the content of the text nodes with a domain ontology.

Since the matching process is intrinsically imperfect, we allow false-positives
during the identification of mandatory nodes. To reduce the false-positives among
the matched mandatory nodes (MD-nodes) , we group MD-nodes with same (or
similar) depth in the DOM and similar relative position among their siblings. We
then consider only MD-nodes belonging to the largest group and discard other
nodes. The least common ancestor in the DOM tree of all identified MD-nodes
is considered the data area root.

Because it is possible that a result page contains several data areas, we repeat
the data area identification process and choose the largest group as a data area
until the largest group contains only one record (probably noise) or we eliminate
all groups. In Figure 4, D1 and D2 are data areas.

Record Segmentation. The records within a data area are identified as sub-trees
rooted at children of the data area root. The segmentation process uses record
separators, i.e., sub-trees interleaved with records, typically containing neither
text nor a URL. As a first step, each subtree in the DOM containing a single
MD-node and rooted at a direct child of the data area root is considered a
candidate record. A subsequent step tries to “expand” the candidate record to
adjacent subtrees in the DOM. We therefore consider the siblings of the candidate
record. If they are record separators, we consider each candidate record as a
proper record; otherwise we apply the following steps: (1) Compute the distance
l between two candidate records as the number of siblings between their root

22 T. Furche et al.

nodes. (2) Consider all possible 2×(l−1) offsets for record boundaries, compute
the similarity between the identified records, and choose the one with highest
similarity. (3) Whenever several expansions have the same similarity, we choose
the one with the highest structural similarity among records. To break ties, we
pick the one delimited by the largest number of record separators.

Data Alignment. After the segmentation phase, it is possible to have inconsistent
mappings between the intended record structure and the DOM tree. For example,
we might have multiple assignments for functional attributes (e.g., two prices for
the same apartment) or we might miss the assignment for a mandatory attribute
(e.g., apartments with no rooms). This is due to the unavoidable uncertainty
introduced by the textual annotations and by the heuristic analysis rules. In
these cases some form of data-reconciliation process must be applied. Since data
cleaning and reconciliation is out of the scope of this work, we rely on state-
of-the-art techniques for these tasks [10]. In particular, since we already exploit
domain knowledge during the analysis, we will leverage on the constraints of
the result-page model and of the domain ontology to disambiguate multiple
assignments and identify missing attributes.

When it is not possible to use background knowledge to disambiguate a mul-
tiple assignment, we adopt a scoring mechanism that takes into account the
position within the record of the node associated to the attribute’s value and
the length (in characters) of the value. In particular we privilege nodes at the
beginning of the records (considering the DOM document order) and nodes with
synthetic content (i.e., the text-node length). The reason is that meaningful con-
tent usually appears in the top left corner of the records (i.e., the corresponding
nodes will appear early in document order) and they appear in the form of
synthetic text.

4.3 Evaluation

We report on our preliminary statistical analysis of the current state of result
pages in this section. We illustrate the result of an experimental evaluation of
the AMBER approach. AMBER has been evaluated on 50 randomly selected
UK real-estate web sites from 2,810 UK real-estate web sites from yellow page.
In order to evaluate both precision and recall of our technique, after randomly
chosen 50 web sites, we chose one or two result pages from each site (some
sites have only one result page), and annotated them manually. For each result
page, we annotated both the position and content of data area, the position and
content of each record and the position and content of each data attributes.

AMBER reaches 100% on both precision and recall of 126 data areas, and
100% precision and 99.8% recall for 2101 records, 99.4% precision and 99.0%
recall for 6733 data attributes. While this result itself shows the effectiveness
of AMBER, it is worth noting that our program could not perfectly identify all
records on only 2 web sites. Although the extraction of data attributes is based
on a raw, incomplete ontology, we still achieve a very high rate of 99.4% precision
and 99.0% recall for 6733 data attributes.

How the Minotaur Turned into Ariadne: Ontologies in Web Data Extraction 23

5 Web Scale Extraction with OXPath

OXPath is the DIADEM formalism for automating web extraction tasks, capable
of scaling to the size of the web. A properly specified OXPath expression out-
puts structured web objects adhering to knowledge encoded in domain-specific
ontologies consistent with a known phenomenology.

Extracting and aggregating web information is not a new challenge. Previous
approaches, in the overwhelming majority, either (1) require service providers
to deliver their data in a structured fashion (e.g. the Semantic Web); or, (2)
“wrap” unstructured information sources to extract and aggregate relevant data.
The first case levies requirements that service providers have little incentive to
adopt, which leaves us with wrapping. Wrapping a website, however, is often
tedious, since many AJAX-enabled web applications reveal the relevant data
only through user interactions. Previous work does not adequately address web
page scripting. Even when scripting is considered, the simulation of user actions
is neither declarative nor succinct, but rather relies on imperative scripts.

5.1 Language

OXPath extends XPath 1.0 with four conceptual extensions: Actions to navigate
the user interface of web applications, exposure to rendered visual information,
extraction markers to specify data to extract, and the Kleene star to facilitate
iteration over a set of pages with an unknown extent.

Actions. For simulating user actions such as clicks or mouse-overs, OXPath in-
troduces contextual, as in {click}, and absolute action steps with a trailing slash,
as in {click /}. Since actions may modify or replace the DOM, we assume that
they always return a new DOM. Absolute actions return DOM roots, contex-
tual actions return the nodes in the new DOM matched by the action-free prefix
of the performed action, which is obtained from the segment starting at the
previous absolute action by dropping all intermediate contextual actions and
extraction markers.

Style Axis and Visible Field Access. We introduce two extensions for lightweight
visual navigation: a new axis for accessing CSS DOM node properties and a new
node test for selecting only visible form fields. The style axis navigates the actual
CSS properties as returned by the DOM style object. For example, it is possible
to select nodes based on their (rendered) color or font size.

To ease field navigation, OXPath introduces the node-test field(), which relies
on the style axis to access the computed CSS style to exclude fields that are not
visible, e.g., /descendant::field()[1] selects the first visible field in document order.

Extraction Marker. In OXPath, we introduce a new kind of qualifier, the extrac-
tion marker, to identify nodes as representatives for records as well as to form
attributes for these records. For example,

24 T. Furche et al.

doc("news.google.com")//div[contains(@class,"story")]:<story>

2 [.//h2:<title=string(.)>]

[.//span[style::color="#767676"]:<source=string(.)>]

extracts a story element for each current story on Google News, along with its
title and sources (as strings), producing:

<story><title >Tax cuts ...</title>

2 <source>Washington Post</source>

<source>Wall Street Journal</source> ... </story>

The nesting in the result mirrors the structure of the OXPath expression:
extraction markers in a predicate (title, source) represent attributes to the last
marker outside the predicate (story).

Kleene Star Finally, we add the Kleene star, as in [11]. For example, the following
expression queries Google for “Oxford”, traverses all accessible result pages and
extracts all links.

doc("google.com")/descendant::field()[1]/{"Oxford"}

2 /following::field()[1]/{click /}

/(/descendant::a:<Link=(@href)>[.#="Next"]/{click /})*

To limit the range of the Kleene star, one can specify upper and lower bounds
on the multiplicity, e.g., (...)*{3,8}.

5.2 Example Expression

The majority of OXPath notation is familiar to XPath users. In the previous
section, we carefully extend XPath to achieve desired automation and extraction
features. Consider now a full expression, shown in Figure 5. In this example, we
define an OXPath expression that extracts prices of properties from rightmove.

co.uk. We begin in line 1 by retrieving the first HTML page via the doc(url)

function, which OXPath borrows from XQuery. We continue through line 3 by
simulating user action for many different form input fields, spread over multiple
HTML pages. Note here that OXPath allows the use of the CSS selectors # and
., which allows selection of nodes based on their id and class attributes, respec-
tively. Line 4 uses the Kleene star to specify extraction from all possible result
pages, which are traversed by clicking on hyperlinks containing the word “next”.
Finally, line 5 identifies all relevant properties and extracts their corresponding
prices. This example could be extended to incapsulate all attributes relevant to
each found web object, which in this example are all rentable properties from
this site that satisfy our criteria.

5.3 System

OXPath uses a three layer architecture as shown in Figure 6:
(1) The Web Access Layer enables programmatic access to a page’s DOM

as rendered by a modern web browser. This is required to evaluate OXPath
expressions which interact with web applications or access computed CSS style

rightmove.co.uk
rightmove.co.uk

How the Minotaur Turned into Ariadne: Ontologies in Web Data Extraction 25

Find property in

see more properties for sale or to rent in the UK

e.g. 'York', 'NW3', 'NW3 5TY' or 'Waterloo station'

Did you know? You can draw your own search area using Draw-a-Search

For Sale To Rent New Homes Find Agents House Prices Overseas

oxford

uur
More than one place matched 'oxford' in the UK

Choose your location
or change your location

Search radius: This area only

Property type: Any

Number of bedrooms: No min to No max

Price range (£): No min to No max

Oxford, Oxfordshire
Oxfordshire
Oxford Circus Station, London
Oxford, Stoke-On-Trent, Staffordshire
Oxford Airport, Kidlington, Oxfordshire

Added to site: Anytime

Retirement properties: No preference

Include Let Agreed properties

switch t

{click /}

Property type: AAAnnyy

Marketed by Penny & Sinclair, Oxford - Lettings. Telephone: 0843 313 1892 BT 4p/min

6 bedroom detached house to rent
Norham Road Central North Oxford

£12,500 pcm

A stunning detached house built in 1880 to a design by FJConnell The property is set in
mature south facing gardens with swimming pool The accommodation is well proportioned
and presented in excellent order with charm and character

More details, 8 photos and floorplan Save property Contact agent

Marketed by Penny & Sinclair, Oxford - Lettings. Telephone: 0843 313 1892 BT 4p/min

5 bedroom town house to rent
Banbury Road Oxford

£2,500 pw

SHORT LET ACCOMMODATION A beautifully presented family house presented in
excellent order throughout, light and spacious with contemporary finishing's

More details and 7 photos Save property Contact agent

Marketed by Penny & Sinclair, Oxford - Lettings. Telephone: 0843 313 1892 BT 4p/minp

6 bedroom detached house to rent
Norham Road Central North Oxford

A stunning detached house built in 1880 to a design by FJConnell The property is set in
mature south facing gardens with swimming pool The accommodation is well proportioned
and presented in excellent order with charm and character

More details, 8 photos and floorplan, p p Save propertyp p y Contact agentg

property
£12,500 pcm

{click
 /}

price:

doc("rightmove.co.uk")/descendant::field()[1]/{"Oxford"}

2 /following::input#rent/{click/}//select#minBedrooms/{"2"/}

//select#maxPrice/{"1,750 PCM"/}//input#submit/{click/}

4 /(//a[contains(.,"next")]/{click/})*
//ol#summaries/li:<property>[//p.price:<price=string(.)>];

Fig. 5. OXPath for Rental Properties in Oxford

Fig. 6. OXPath System Architecture

26 T. Furche et al.

information. The web layer is implemented as a facade which promotes inter-
changeability of the underlying browser engine (Firefox and HTMLUnit).

(2) The Engine Layer evaluates OXPath expressions.Basic OXPath steps,
i.e., subexpressions without actions, extraction markers and Kleene stars, are
directly handled by the browser’s XPath engine.

(3) The Embedding Layer facilitates the integration of OXPath within
other systems and provides a host environment to instantiate OXPath expres-
sions. The host environment provides variable bindings from databases, files, or
even other OXPath expressions for use within OXPath. To facilitate OXPath
integration, we slightly extend the JAXP API to provide an output stream for
extracted data.

Though OXPath can be used in any number of host languages such as Java,
XSLT, or Ruby, we designed a lightweight host language for large-scale data
extraction. It is a Pig Latin[12]-like query language with OXPath subqueries,
grouping, and aggregation. We separate these tasks, as well as the provision of
variable bindings, from the core language to preserve the declarative nature of
OXPath and to guarantee efficient evaluation of the core features.

OXPath is complemented by a visual user interface, a Firefox add-on that
records mouse clicks, keystrokes, and other actions in sequence to construct an
equivalent OXPath expression. It also allows the selection and annotation of
nodes used to construct a generalised extraction expression. We are actively
improving the visual interface and developing a visual debugger for OXPath.

5.4 Further Reading

We have limited the scope of the discussion here to fundamental aspects of the OX-
Path formalism. For further details, please see [13]. In particular, this work intro-
duces the PAAT (page-at-a-time) algorithm that evaluates OXPath expressions
with intelligent page caching without sacrificing the efficiency of regular XPath.
In this way, PAAT guarantees polynomial evaluation time and memory use inde-
pendent of the number of visited pages. Further, this work highlights experimental
results of the current prototype. These experimental results validate our strong
theoretical time and memory guarantees. OXPath performs faster than compa-
rable systems by at least an order of magnitude in experiments where a constant
memory footprint for OXPath can be empirically observed. No observed competi-
tor managed memory as intelligently as PAAT: either all target pages were cached
(requiring linear memory w.r.t. pages visited) or a fixed number of pages were
cached (requiring pages to be revisited in the general case). For example applica-
tions of OXPath over real-world web data, please see [14,15].

References

1. Nguyen, H., Nguyen, T., Freire, J.: Learning to Extract From Labels. In: Proc. of
the VLDB Endowment (PVLDB), pp. 684–694 (2008)

2. Su, W., Wang, J., Lochovsky, F.H.: ODE: Ontology-Assisted Data Extraction.
ACM Transactions on Database Systems 34(2) (2009)

How the Minotaur Turned into Ariadne: Ontologies in Web Data Extraction 27

3. Kushmerick, N.: Learning to invoke web forms. In: Chung, S., Schmidt, D.C. (eds.)
CoopIS 2003, DOA 2003, and ODBASE 2003. LNCS, vol. 2888, pp. 997–1013.
Springer, Heidelberg (2003)

4. Shadbolt, N., Hall, W., Berners-Lee, T.: The Semantic Web Revisited. IEEE In-
telligent Systems 21(3), 96–101 (2006)

5. Wu, W., Doan, A., Yu, C., Meng, W.: Modeling and Extracting Deep-Web Query
Interfaces. In: Advances in Information & Intelligent Systems, pp. 65–90 (2009)

6. Dragut, E.C., Kabisch, T., Yu, C., Leser, U.: A Hierarchical Approach to Model
Web Query Interfaces for Web Source Integration. In: Proc. Int’l. Conf. on Very
Large Data Bases (VLDB), pp. 325–336 (2009)

7. Raghavan, S., Garcia-Molina, H.: Crawling the Hidden Web. In: Proc. Int’l. Conf.
on Very Large Data Bases (VLDB), pp. 129–138 (2001)

8. Chang, C.-H., Kayed, M., Girgis, M.R., Shaalan, K.F.: A survey of web information
extraction systems. IEEE Trans. Knowl. Data Eng. 18(10), 1411–1428 (2006)

9. Laender, A.H.F., Ribeiro-Neto, B.A., da Silva, A.S., Teixeira, J.S.: A brief survey
of web data extraction tools. SIGMOD Record 31(2), 84–93 (2002)

10. Batini, C., Scannapieco, M.: Data Quality: Concepts, Methodologies and Tech-
niques. Springer, Heidelberg (2006)

11. Marx, M.: Conditional xpath. ACM Trans. Database Syst. 30(4), 929–959 (2005)
12. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-

foreign language for data processing. In: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, SIGMOD 2008, pp. 1099–1110.
ACM, New York (2008)

13. Furche, T., Gottlob, G., Grasso, G., Schallhart, C., Sellers, A.J.: Oxpath: A lan-
guage for scalable, memory-efficient data extraction from web applications. In:
Proc. of the VLDB Endowment PVLDB (2011) (to appear)

14. Sellers, A., Furche, T., Gottlob, G., Grasso, G., Schallhart, C.: Taking the oxpath
down the deep web. In: Proceedings of the 14th International Conference on Ex-
tending Database Technology, EDBT/ICDT 2011, pp. 542–545. ACM, New York
(2011)

15. Sellers, A.J., Furche, T., Gottlob, G., Grasso, G., Schallhart, C.: Oxpath: little
language, little memory, great value. In: Proceedings of the 20th International
Conference Companion on World Wide Web, WWW 2011, pp. 261–264. ACM,
New York (2011)

Analyzing Cross-System User Modeling on the

Social Web

Fabian Abel, Samur Araújo, Qi Gao, and Geert-Jan Houben

Web Information Systems, Delft University of Technology
{f.abel,s.f.cardosodearaujo,q.gao,g.j.p.m.houben}@tudelft.nl

Abstract. In this article, we analyze tag-based user profiles, which re-
sult from social tagging activities in Social Web systems and particu-
larly in Flickr, Twitter and Delicious. We investigate the characteristics
of tag-based user profiles within these systems, examine to what extent
tag-based profiles of individual users overlap between the systems and
identify significant benefits of cross-system user modeling by means of
aggregating the different profiles of a same user.

We present a set of cross-system user modeling strategies and eval-
uate their performance in generating valuable profiles in the context of
tag and resource recommendations in Flickr, Twitter and Delicious. Our
evaluation shows that the cross-system user modeling strategies outper-
form other strategies significantly and have tremendous impact on the
recommendation quality in cold-start settings where systems have sparse
information about their users.

1 Introduction

Social tagging comes in different flavors. Social bookmarking systems like Deli-
cious allow people to tag their bookmarks, in photo sharing platforms such as
Flickr users annotate images, and in micro-blogging systems like Twitter people
can assign so-called hash tags to their posts. In the last decade we saw a va-
riety of research efforts in the field of social tagging systems ranging from the
analysis of social tagging structures [9,7], via information retrieval in folkson-
omy systems [4,11], to personalization [16,17]. However, most studies have been
conducted in the context of particular systems, for example, analyzing the tag-
ging behavior within Delicious [7] or computing tag recommendations in Flickr
based on the tagging characteristics within the Flickr system [17]. Our research
complements these studies and investigates tagging behavior and user modeling
across system boundaries to support engineering of Social Web systems that aim
for personalization.

We therefore identified users, who have an account at Flickr, Twitter and
Delicious, and crawled more than 2 million tagging activities which were per-
formed by these users in the three systems. Based on this dataset, we study the
tagging behavior of the same user in different systems. We furthermore present
and analyze various cross-system user modeling strategies. For example, we show
that it is possible to generate tag-based profiles based on Twitter activities for
improving tag and bookmark recommendations in Delicious.

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 28–43, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Analyzing Cross-System User Modeling on the Social Web 29

1.1 Personomies and Tag-Based Profiles

The emerging structure that evolves from social tagging is called folksonomy.
A folksonomy is basically a set of tag assignments, user-tag-resource bindings
attached with some timestamp that indicates when a tag assignment was per-
formed. We base our research on the folksonomy model F = (U, T, R, Y) pro-
posed by Hotho et. al [11], where U , T , R and Y refer to the sets of users,
tags, resources and tag assignments respectively. We also model Twitter posts
by means of tag assignments, i.e. we consider each post (tweet) as a resource
and hash tags such as “#icwe2011”, which appear in the post, are—without the
“#” symbol—treated as tags. Given the folksonomy model F, the user-specific
part of a folksonomy, the personomy, can be defined as follows (cf. [11]).

Definition 1 (Personomy). The personomy Pu = (Tu, Ru, Yu) of a given user
u ∈ U is the restriction of F to u, where Tu and Ru are finite sets of tags and
resources respectively that are referenced from tag assignments Yu performed by
the user u.

While the personomy specifies the tag assignments that were actually performed
by a specific user, the tag-based profile P (u) is an abstraction of the user that
represents the user as a set of of weighted tags (cf. [8,15]).

Definition 2 (Tag-based profile). The tag-based profile of a user u is a set
of weighted tags where the weight of a tag t is computed by a certain strategy w
with respect to the given user u.

P (u) = {(t, w(u, t))|t ∈ Tsource, u ∈ U} (1)

w(u, t) is the weight that is associated with tag t for a given user u. Tsource is the
source set of tags from which tags are extracted for the tag-based profile P (u).

The weights associated with the tags in a tag-based profile P (u) do not necessar-
ily correspond to the tag assignments in the user’s personomy Pu. For example,
P (u) may also specify the weight for a tag ti that does neither occur in the per-
sonomy Pu nor in the folksonomy F, i.e. where ti �∈ Tu ∧ ti �∈ T . With P (u)@k
we describe the subset of a tag-based profile P (u) that contains the k tag-weight
pairs that have the highest weights. P̄ (u) denotes the tag-based profile for which
the weights are normalized so that the sum of all weights in P (u) is equal to 1,
and with |P (u)| we refer to the number of distinct tags contained in the tag-based
profile.

1.2 Problem Definition

Today, individual users may be active in various social tagging systems so that
tag-based profiles about the same user are distributed across different systems.
How do tag-based profiles of the same user differ from system to system? To
what extent do these profiles overlap? Can cross-system user modeling support
the construction of tag-based profiles and how does it impact the performance of
recommender systems in cold-start situations where user profiles are sparse? In
this paper we answer these questions and tackle the following research challenge.

30 F. Abel et al.

Definition 3 (User modeling challenge). Given a user u, the user modeling
strategies have to construct a tag-based profile P (u) so that the performance of
tag and resource recommendations in cold-start situations is maximized.

Following related work (e.g. [17]) we define the recommendation tasks as ranking
problems:

Definition 4 (Cold-start Recommendation challenge). Given a tag-based
user profile P (u), the personomy of the user Pu,target = (Tu, Ru, Yu) and a set of
tags Ttarget and a set of resources Rtarget, which are not explicitly connected to
u (Tu ∩ Ttarget = ∅ and Ru ∩Rtarget = ∅), the challenge of the recommendation
strategies is to rank those tags t ∈ Ttarget and resources r ∈ Rtarget so that
tags/resources that are most relevant to the user u appear at the very top of the
ranking.

For both tag and resource recommendations, we do not aim to optimize the
recommender algorithm itself, but we identify those user modeling strategies
that support the recommender algorithms best.

1.3 Related Work

Today, several research efforts aim to support re-use of user profile data on the
Social Web. With standardization of exchange languages (e.g. FOAF1) and APIs
(e.g. OpenSocial2), standardized authentication protocols such as OpenID3, so-
lutions for identifying users across systems [6] and research on generic user mod-
eling [13,10,3], cross-system user modeling becomes tangible. In previous work
we analyzed the nature of social networking profiles on the Social Web and intro-
duced a service for aggregating tag-based profiles [2]. Szomszor et al. presented
an approach to merge user’s tag clouds from two different social networking
websites to generate richer user interest profiles [18], but did not investigate the
impact of the generated profiles on personalization.

Different from personalization in social tagging systems that targets single sys-
tems [16,17], cross-system personalization makes the investments in personalizing
a system transferable to other systems. Mehta et al. showed that cross-system
personalization makes recommender systems more robust against spam and cold
start problems [14]. However, Mehta et al. could not test their approaches on
Social Web data where individual user interactions are performed across differ-
ent systems and domains, but experiments have been conducted on user data,
which originated from one system and was split to simulate different systems. In
contrast to that, in this paper we evaluate cross-system user modeling and its
impact on cold-start recommendations on real world datasets from three typical
Social Web systems: Flickr, Twitter and Delicious.

1 http://xmlns.com/foaf/spec/
2 http://code.google.com/apis/opensocial/
3 http://openid.net/

http://xmlns.com/foaf/spec/
http://code.google.com/apis/opensocial/
http://openid.net/

Analyzing Cross-System User Modeling on the Social Web 31

2 User Modeling Strategies

The cross-system user modeling strategies that we discuss in this paper consist
of the following building blocks: (1) source of user data, (2) semantic enrichment,
(3) weighting scheme.

2.1 Source of User Data

In order to construct a user profile and adapt functionality to the individual
users, systems require information about their users [12]. The data that is ex-
ploited to create user profiles (cf. Tsource in Definition 2) might come from dif-
ferent sources. In our evaluation (see Section 4) we will therefore compare the
following sources of information.

Target Personomy Tags TPtarget . The traditional approach to user modeling
is to exploit the user-specific activities observed in the target system that
aims for personalization. In a folksonomy system one would thus exploit
the personomy of the user Pu (see Definition 1) that is inferred from the
folksonomy Ftarget of the target system.

Target Folksonomy Tags TFtarget . If the personomy of the user Pu is rather
sparse or even empty, one has to find other sources of information that are
applicable to generate a user profile. Therefore, we define another baseline
strategy that considers all activities performed in the target system as if
they would have been performed by the given user. Hence, by considering
the complete folksonomy Ftarget one obtains some sort of average profile
which promotes these tags that are popular for the complete folksonomy.

Foreign Personomy Tags TPforeign
. If the user’s personomy in the target sys-

tem is sparse or empty then another strategy is to utilize the personomy from
another system. For example, if a user u has not annotated any resource in
Delicious yet, this strategy harnesses the hash tags the user assigned to her
Twitter posts, i.e. u’s personomy from Twitter.

2.2 Semantic Enrichment

Semantics of tag-based profiles are not well defined. For example, tag-based rec-
ommender systems may encounter situations where relevant resources are dis-
carded because tags assigned to these resources are syntactically different from
the user profile tags: P (u) may contain the tag “bloggingstuff” while relevant
resources are tagged with “blog”, “weblog” or “blogging”. To counter such prob-
lems we analyze different strategies that further enrich tag-based user profiles
and the set of tags Tsource particularly.

Tag Similarity χsim. This strategy enriches the initial set of tags Tsource with
tags that have high string similarity to one of the tags in Tsource. In our
analysis we apply Jaro-Winkler distance [19] for computing the similarity
between two tags. It considers the number of matching characters, number
of transformations that would be required to unify the two strings, as well

32 F. Abel et al.

as the length of both tags and ranges between 0 (no similarity) and 1 (exact
match). For example, the Jaro-Winkler distance between “blogging” and
“blogging-stuff” is 0.95.

Cross-system Rules χrules. Cross-system user modeling has to deal with het-
erogeneous vocabularies (cf. Section 3): the overlap of tags between different
folksonomies may be low and tags that are popular in one system might be
unpopular in another system [2,5]. Cross-system rules enrich tag-based pro-
files based on association rules deduced from characteristics observed across
two systems. These association rules can be phrased as follows.

If tag ta occurs in the personomy Pu,A of user u in folksonomy system
A then tag tb occurs in u’s personomy Pu,B in system B.

In our cross-system user modeling analysis we exploit association rules that
are applicable to the tags Tsource of a given profile, i.e. ta ∈ Tsource. We add
tags tb to Tsource that are generated by those association rules that have the
highest confidence while satisfying a minimum support of 0.1.

We use χsim@k and χrules@k to refer to these strategies that add the top k most
appropriate (based on similarity and confidence respectively) tags to Tsource.

2.3 Weighting Scheme

We compare different approaches to determine the weight w(u, t) associated with
a tag t ∈ Tsource in the tag-based profile of a specific user u (see Definition 2).

Term frequency TF . For the given set of tags Tsource and a given set of tag
assignments Ysource, the term frequency corresponds to the relative number
of tag assignments in Ysource that refer to the tag t ∈ Tsource.

wTF (u, t) =
|{r ∈ R|(u, t, r) ∈ Ysource}|

|Ysource| (2)

TF and Inverse Document Frequency TF × IDF . The inverse document
frequency (IDF) can be applied to value the term specificity. From the per-
spective of the user modeling strategies, IDF refers to the inverse fraction of
the number of distinct users that applied a given tag t ∈ Tsource.

wTF×IDF (u, t) =

wTF (u, t) · log(|U|
|{ui∈U|(ui,t,r)∈Ysource}|) (3)

The weighting schemes thus require a set of tag assignments Ysource as input.
In accordance to the source of user data, we obtain Ysource either from the
target personomy Ptarget, from the target folksonomy Ftarget or from the foreign
personomy Pforeign. For example, TFFtarget considers all tag assignments from
the target folksonomy Ftarget.

2.4 Assembling User Modeling Strategies

The actual user modeling strategy for constructing the tag-based profile is built
by combining (i) a data source with (ii) some semantic enrichment method, and

Analyzing Cross-System User Modeling on the Social Web 33

Table 1. Example user modeling strategies based on TF weighting scheme, semantic
enrichment and different data sources (target folksonomy Ftarget or foreign personomy
Pforeign)

Strategy Source Enrich Weighting Cross? Description

FT@Ft,TF@Ft TFtarget – TFFtarget –
Tags and term frequency weights are taken from the

(baseline) target folksonomy. The tag-based profile thus contains
the most popular tags.

PT@Ft,TF@Pf
TFtarget – TFPforeign +

While the actual tags in the profile are obtained from
the target folksonomy, the weights are computed based
on the user-specific personomy from a foreign system.

PT@Pf,TF@Ft,χs
TPforeign χsim

TFFtarget +
Tag-based profile contains user-specific tags from
foreign personomy enriched with tag similarity. Weights
are taken from the global term frequency in Ftarget .

PT@Pf,TF@Pf,χr
TPforeign χrules

TFPforeign +
Tag-based profile is constructed based on user-specific
personomy as available in the foreign system enriched
with cross-system rule.

(iii) a weighting scheme. The semantic enrichment is an optional feature. For
example, PT@Pt,TF@Pt corresponds to the tag-based profile proposed in [8,15],
which exploits the user-specific personomy in the target system. PT@Pt,TF@Pt
would not be applicable in cold-start situations where new users register to
a system as the target personomy Ptarget would be empty in such situations.
Table 1 lists some strategies that can be applied in cold-start situations. For ex-
ample, PT@Pf,TF@Ft,χs denotes the strategy that utilizes the personomy Pforeign

from a foreign system as data source, enriches the profile using tag similarity,
and computes weights according to the global term frequency in the target folk-
sonomy.

Based on the different combinations of data sources and weighting schemes
and the additional option of semantic enrichment we obtain a powerful frame-
work for generating cross-system user modeling strategies.

3 Analysis of Tag-Based Profiles on the Social Web

Before evaluating the user modeling strategies presented in the previous section,
it is important to study the nature of personomies and of the corresponding tag-
based profiles (PT@Pt,TF@Pt) distributed across the different Social Web systems.
In particular, we approach the following research questions.

1. What are the characteristics of the individual tag-based profiles in Twitter,
Flickr and Delicious?

2. How do the tag-based profiles of individual users overlap between the differ-
ent systems?

3.1 Data Collection

To investigate the questions above, we crawled public profiles of 421188 distinct
users via the Social Graph API4, which makes information about connections
between user accounts available via its Web service. By exploiting Google profiles

4 http://code.google.com/apis/socialgraph/

http://code.google.com/apis/socialgraph/

34 F. Abel et al.

Table 2. Tagging statistics of the (a) Twitter-Delicious dataset (1500 users) and (b)
Flickr-Delicious dataset (1467 users)

(a) Twitter-Delicious (1500 users)

Twitter Delicious Aggregated

distinct 25668 72901 91515
tags

TAS 80464 619856 700320

distinct 26.1 180.06 191.88
tags/user

TAS/user 53.64 413.24 1466.88

tagged 57236 124520 181756
resources

resources 38.99 91.13 130.12
per user

(b) Flickr-Delicious (1467 users)

Flickr Delicious Aggregated

distinct 72671 59275 119056
tags

TAS 892378 683665 1576043

distinct 109.44 189.92 292.63
tags/user

TAS/user 608.30 466.03 1074.33

tagged 166423 109242 272701
resources

resources 113.45 85.07 198.50
per user

of users, who interlinked their different online accounts, the API provides the
list of accounts associated with a particular user.

For our experiments we were interested in users having accounts at Twitter,
Delicious and Flickr. Given the 421188 users, 2007 users linked their Twitter
and Delicious accounts and 1500 of these users applied tags in both systems.
Table 2(a) lists the corresponding tagging statistics of these users. Accordingly,
Table 2(b) shows the number of tags, resources, and tag assignments (TAS) of
the 1467 users, who linked their Flickr and Delicious profiles. We make both
datasets available online [1].

3.2 Tag-Based Profiles within Systems

By nature, Twitter is not a typical social tagging system. However, it enables
users to annotate posts by means of hash tags, which start with the “#” symbol.
Table 2(a) indicates that people make use of this tagging feature. On average,
each user performed 53.64 (hash) tag assignments on 38.99 Twitter posts using
26.1 distinct (hash) tags. In Delicious, the same users are tagging more frequently
with an average of 413.24 tag assignments and an average number of 180.06 dis-
tinct tags per user profile. Further, users assign, on average, 4.53 tags to each of
their Delicious bookmark while they only attach 1.38 hash tags to their Twitter
posts.

The second dataset obtained form those users, who linked their Flickr and De-
licious profiles, shows similar statistics for the Delicious profiles (see Table 2(b)).
Further, it is interesting to see that users perform, on average, 142.27 tag as-
signments more in Flickr than they do in Delicious. However, at the same time
their Flickr profile contains less distinct tags (109.44) than their Delicious pro-
files (189.92). The variety of tags in the Delicious profiles is thus higher than the
ones in Flickr profiles, which might make them more valuable for personalization
(see Section 4).

Figure 1 describes the above observation in detail: less than 20% of the tag-
based Flickr profiles contain more than 200 tags and less than 5% of the Twitter
profiles contain more than 100 distinct (hash) tags. By contrast, more than 40%
of the Delicious profiles have more than 200 tags.

Analyzing Cross-System User Modeling on the Social Web 35

0 20 40 60 80 100

users (percentiles)

1

10

100

1000

nu
m

be
r

of
 d

is
tin

ct
 (

ha
sh

)
ta

gs

Delicious profiles
Twitter profiles
Flickr profiles

Fig. 1. Distinct tags per tag-based Twitter, Flickr and Delicious profile

1 10 100 1000

number of users who share a tag

1

10

100

1000

10000

100000

nu
m

be
r

of
 ta

gs
 s

ha
re

d
by

 x
 u

se
rs

(a) Delicious

1 10 100 1000

number of users who share a tag

1

10

100

1000

10000

100000

nu
m

be
r

of
 ta

gs
 s

ha
re

d
by

 x
 u

se
rs

(b) Twitter

1 10 100 1000

number of users who share a tag

1

10

100

1000

10000

100000

nu
m

be
r

of
 ta

gs
 s

ha
re

d
by

 x
 u

se
rs

(c) Flickr

Fig. 2. Homogeneity of tag-based profiles: number of tags that occur in a certain
number of (a) Delicious, (b) Twitter, and (c) Flickr profiles

0 20 40 60 80 100

users (percentiles)

0%

10%

20%

30%

40%

50%

60%

70%

ov
er

la
p

of
 ta

g-
ba

se
d

pr
ofi

le

Flickr and Delicious
Twitter and Delicious

(a) Overlap of tag-based profiles.

0 20 40 60 80 100

users (percentiles)

0

2

4

6

8

10

en
tr

op
y

of
 ta

g-
ba

se
d

pr
ofi

le
s

Delicious profiles
Twitter profiles
Flickr profiles
Aggregated Twitter and Delicious profiles
Aggregated Flickr and Delicious profiles

(b) Entropy (in bits) of tag-based profiles.

Fig. 3. Characteristics of tag-based profiles: (a) overlap of tag-based Twitter and De-
licious profiles as well as Flickr and Delicious profiles and (b) entropy (in bits) of tag-
based profiles: cross-system user modeling by means of profile aggregation increases
entropy of tag-based profiles

Figure 2 describes the tag usage and therefore the homogeneity of the profiles
in the three different systems. In all three systems, most tags (e.g., more than
50000 tags in Delicious) only occur in exactly one profile and only a few single
tags occur in more than 100 profiles. For example, there exists only one tag,
namely “design”, that occurs in more than 80% of the Delicious profiles.

36 F. Abel et al.

3.3 Tag-Based Profiles across Systems

In the context of cross-system user modeling the overlap of tag-based profiles is
of particular interest. If the tagging behavior of an individual user differs from
system to system then the overlap of the user’s tag-based profiles will be small
and the corresponding tag-based profiles will probably reveal complementary
facets for characterizing the user. Figure 3(a) shows to which degree the tag-
based profiles of the individual users overlap between the different systems. We
see that the overlap between tag-based Twitter and Delicious profiles of indi-
vidual users as well as the overlap between the Flickr and Delicious profiles is
very small. In fact, for less than 10% of the users, the Twitter or Flickr profiles
have an overlap of more than 10% with the tag-based Delicious profiles. This
observation indicates that the re-use of tag-based profiles for solving the user
modeling challenge posed at the beginning of this paper is not trivial at all and
has to be done in an intelligent way. For example, simply re-using a tag-based
Twitter profile in Delicious would reflect only a very small part of the user’s
characteristics in Delicious.

The small overlap of the tag-based profiles implicates that the profiles of an
individual user at different Social Web platforms reveal different characteristics
of the user. Cross-system user modeling by means of profile aggregation thus
allows for more valuable profiles with regards to the information about the user.
In Figure 3(b) we compare the entropy of tag-based profiles. Entropy quantifies
the information embodied in a tag-based profile P (u), which specifies a weight
for each tag t ∈ Tsource (see Definition 2), and is computed as follows.

entropy(P (u)) =
∑

t∈Tsource

p(t) · (−log2(p(t))) (4)

In Equation 4, p(t) denotes the probability that the tag t was utilized by
the corresponding user and can be modeled via the weight w(u, t) from the
normalized tag-based profile P̄ (u), for which the sum of all weights is equal to 1.

Figure 3(b) shows that tag-based profiles in Delicious have higher entropy
than the ones in Twitter and Flickr – even though Flickr features the highest
number of tag assignments per user (cf. Table 2(b)). Thus, the variety of tags
in Delicious profiles is higher than in Flickr profiles. We further aggregated the
profiles of the individual users by accumulating their tag-based profiles from
Twitter and Delicious as well as Flickr and Delicious. For both types of profiles
entropy increases significantly with respect to the service-specific profiles. Hence,
cross-system user modeling based on profile aggregation has significant impact
on the entropy of tag-based profiles.

3.4 Synopsis

From our analysis of tag-based profiles (PT@Pt,TF@Pt) we conclude that users
reveal different profile facets in the different systems on the Social Web. Tag-
based profiles of same users in different systems overlap only little. For more
than 90% of the users, the tag-based profiles obtained from Delicious, Twitter
and Flickr overlap to less than 10%. Cross-system user modeling allows for more

Analyzing Cross-System User Modeling on the Social Web 37

valuable profiles. By aggregating tag-based profiles, information gain and entropy
improve significantly.

4 Analysis of Cross-System User Modeling Strategies

The above results reveal already benefits of cross-system user modeling for tag-
based profiles. We now evaluate the performance of the cross-system user mod-
eling strategies for supporting tag and bookmark recommendations in cold-start
situations (see Definition 3) and investigate the following research questions.

1. Which user modeling strategies generate the most valuable tag-based profiles
for recommending tags and resources to users in which context?

2. How do the different building blocks of the user modeling strategies (e.g.
source of user data) influence the quality of the tag-based profiles?

4.1 Experimental Setup

The actual recommendation algorithm incorporates a user profile P (u), as de-
livered by the given user modeling strategy, to compute a ranking of items (tags
and resources) so that items relevant to the user u appear at the top of the
ranking. Therefore, we specify a generic algorithm that can be customized with
specific ranking and user modeling strategies.

Generic Recommendation Algorithm The generic recommendation algorithm rec-
ommend(u, s, um) computes a ranked list of entities appropriate to a user u by
exploiting a given ranking strategy s and a given user modeling strategy um.

1. Input: ranking strategy s, user modeling strategy um, user u
2. P (u) = um.modelUser(u) (compute user profile)
3. τ = s.rank(P (u)) (rank entities w.r.t. P (u))
4. Output: τ (ranked list of entities)

As we do not aim to optimize the ranking strategy, but want to investigate the
impact of the different cross-system user modeling strategies on the recommen-
dation performance, we deliberately apply lightweight algorithms for ranking the
tags and resources respectively.

Tag Recommendation. Regarding the tag recommendation task, our goal is
to point the user to tags she has not applied yet, but might be of interest for her
and are worthwhile to explore. Hence, we filter the tag-based profile and remove
those tags that already occur in the personomy of the user u in the target system
(Pu,target). The remaining tags are then ranked according to the weight that is
associated with the tags in the tag-based profile P (u). If two tags have the same
weight then the order of these tags is chosen randomly.

Resource Recommendation. We apply cosine similarity to generate resource
recommendations. Given a tag-based user profile P (u), the corresponding

38 F. Abel et al.

personomy of the user Pu,target = (Tu, Ru, Yu), the folksonomy of the target
system Ftarget = (T, R, Y), and a set of resources Rtarget ⊆ R, which are
not explicitly connected to u (Ru ∩ Rtarget = ∅), we first generate tag-based
profiles for each resource r ∈ Rtarget. The tag-based resource profile resembles
the tag-based user profile specified in Definition 2: P (r) = {{t, w(r, t)}|t ∈ T, r ∈
Rtarget}. In accordance to the TF weighting scheme applied by the user modeling
strategies, we compute the weights associated with the resources as follows.

wTF (r, t) =
|{u ∈ U |(u, t, r) ∈ Y }|

|{u ∈ U, tx ∈ T |(u, tx, r) ∈ Y }| (5)

Given the target folksonomy Ftarget, the weight w(r, t) is thus given by the
number of users who assigned tag t to resource r divided by the overall number
of tag assignments attached to r. To compute cosine similarity, the tag-based
profiles of the user (P (u)) and resource (P (r)) are represented in a vector space
model via u and r respectively where each dimension of these vectors corresponds
to a certain tag t that occurs in both profiles. Finally, each resource r ∈ Rtarget

is ranked according its cosine similarity with the user profile representation u so
that those resources that have high similarity occur at the top of the ranking.

Evaluation Methodology. We evaluate the quality of the recommender al-
gorithms and therewith the user modeling strategies respectively by means of a
leave-many-out evaluation. For simulating a cold-start where a new or yet un-
known user u is interested in recommendations in system A, we first remove
all tag assignments Yu performed by u in system A from the folksonomy. Each
recommender strategy then has to compute a ranked list of recommendations.
The quality of the recommendations is measured via MRR (Mean Reciprocal
Rank), which indicates at which rank the first relevant item occurs on average,
S@k (success at rank k), which stands for the mean probability that a rele-
vant item occurs within the top k of the ranking, and P@k (precision at rank
k), which represents the average proportion of relevant items within the top k
(cf. [17]). We consider only these items as relevant to which the user u actually
referred to in the tag assignments Yu that were removed before computing the
recommendations. For a given user modeling strategy, we ran the experiment
for each individual user of our datasets (cf. Section 3). We tested the statistical
significance of our results with a two-tailed t-Test where the significance level
was set to α = 0.01.

4.2 Results: Cold-Start Tag Recommendations

Table 3 gives a detailed overview on the performance of the different user model-
ing strategies for recommending tags in Twitter and Delicious. The best strate-
gies (emphasized) benefit from cross-system user modeling and outperform the
other strategies significantly. For example, the precision of the top ten tag rec-
ommendations in Delicious based on tags obtained from the user’s personomy in
Twitter (TPforeign

), which are weighted according to the global tag frequencies
obtained from the Delicious folksonomy (TFFtarget), is 94.4% (PT@Pf,TF@Ft strat-
egy) and therewith improves by more than 90% over the PT@Ft,TF@Ft baseline

Analyzing Cross-System User Modeling on the Social Web 39

Table 3. User modeling performances measured via tag recommendation quality in a
cold-start setting in Twitter and Delicious: tags that occur in the tag-based profile are
either selected from the folksonomy of the target system (TFtarget) or from the user-
specific personomy in the foreign system (TPforeign

) whereas the weighting scheme is
term frequency (TF) or TF multiplied by inverse document frequency (TF × IDF),
which is either computed based on the target folksonomy (TFFtarget) or foreign person-
omy (TFPforeign

). “Cross?” denotes whether the corresponding strategy benefits from
cross-system user modeling (+) or not (–). Semantic enrichment (Enrich) is either based
on tag similarity (χsim), cross-system association rules (χrules) or not applied (–).

Strategy Source Enrich Weighting Cross? MRR S@1 S@10 P@5 P@10 P@20

Twitter (foreign) → Delicious (target):

PT@Pf,TF@Ft
TPforeign

– TFFtarget
+ 0.979 96.6 99.6 95.1 94.4 91.4

PT@Pf,TF@Pf
TPforeign

– TFPforeign
+ 0.631 43.7 97.7 52.4 62.1 72.5

FT@Ft,TF@Ft
TFtarget

– TFFtarget
– 0.764 69.1 94.5 50.8 49.5 48.4

PT@Ft,TF@Pf
TFtarget

– TFPforeign
+ 0.623 51.5 85.3 34.1 28.5 26.4

PT@Pf,TFxIDF@Ft
TPforeign

– TF × IDFFtarget
+ 0.974 95.6 99.6 95.3 94.4 91.5

PT@Pf,TFxIDF@Pf
TPforeign

– TF × IDFPforeign
+ 0.650 4.5 97.8 52.8 62.1 72.4

FT@Ft,TFxIDF@Ft
TFtarget

– TF × IDFFtarget
– 0.244 4.5 88.0 12.5 28.9 33.9

PT@Ft,TFxIDF@Pf
TFtarget

– TF × IDFPforeign
+ 0.608 49.2 85.1 33.4 28.3 26.4

PT@Pf,TF@Ft,χs TPforeign
χsim TFFtarget

+ 0.978 96.4 99.6 94.1 93.8 91.0

PT@Pf,TF@Pf,χs TPforeign
χsim TFPforeign

+ 0.631 43.7 97.7 52.4 62.1 72.6

PT@Pf,TF@Ft,χr TPforeign
χrules TFFtarget

+ 0.778 69.1 93.3 71.0 68.5 63.1

PT@Pf,TF@Pf,χr TPforeign
χrules TFPforeign

+ 0.624 43.7 96.9 53.2 61.4 71.5

Delicious (foreign) → Twitter (target):

PT@Pf,TF@Ft
TPforeign

– TFFtarget
+ 0.194 9.7 39.9 10.1 10.7 11.2

PT@Pf,TF@Pf
TPforeign

– TFPforeign
+ 0.970 96.9 96.9 82.1 64.0 42.2

FT@Ft,TF@Ft
TFtarget

– TFFtarget
– 0.102 5.9 20.4 3.4 3.2 2.9

PT@Ft,TF@Pf
TFtarget

– TFPforeign
+ 0.749 74.8 74.8 45.5 29.5 17.0

PT@Pf,TFxIDF@Ft
TPforeign

– TF × IDFFtarget
+ 0.683 60.5 84.4 33.7 27.2 21.6

PT@Pf,TFxIDF@Pf
TPforeign

– TF × IDFPforeign
+ 0.386 27.5 60.9 19.9 16.8 14.5

FT@Ft,TFxIDF@Ft
TFtarget

– TF × IDFFtarget
– 0.171 8.5 33.7 4.8 5.4 5.8

PT@Ft,TFxIDF@Pf
TFtarget

– TF × IDFPforeign
+ 0.209 11.8 38.0 8.5 6.7 5.0

PT@Pf,TF@Ft,χs TPforeign
χsim TFFtarget

+ 0.194 9.7 39.7 10.1 10.7 11.2

PT@Pf,TF@Pf,χs TPforeign
χsim TFPforeign

+ 0.970 96.9 96.9 82.1 64.0 42.1

PT@Pf,TF@Ft,χr TPforeign
χrules TFFtarget

+ 0.096 5.9 18.8 3.9 5.2 4.2

PT@Pf,TF@Pf,χr TPforeign
χrules TFPforeign

+ 0.969 96.9 96.9 83.8 68.3 47.2

strategy, which does not make use of cross-system user modeling and achieves a
precision of 49.5.

This improvement is even significantly higher for recommending tags in Twit-
ter where the best cross-system user modeling strategy (PT@Pf,TF@Pf,χr) achieves
68.3 for P@10 in comparison to 5.4, achieved by the best non-cross-system strat-
egy. Overall, tag recommendations in Twitter seem to be more difficult: while
the best strategies allow for high success values (e.g., S@1 > 95), it requires ad-
vanced user modeling methods like the application of cross-system association
rules (χrules) to obtain high precisions for P@10 and P@20. Possible explana-
tions for this can be derived from Section 3: Twitter user profiles are more sparse
than the corresponding Delicious profiles and exhibit a lower entropy. This might
also explain why TFPforeign

, i.e. weighting based on tag-based profile in Delicious,
is more successful in Twitter than TFFtarget , the Twitter-based weighting scheme.
Hence, when applying the user modeling strategies in a cross-system setting, it
is important to consider the general characteristics of the tagging data available
in the different systems (as we did in Section 3). For example, the consideration

40 F. Abel et al.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Delicous

(baseline)

Flickr ->

Delicious

(Cross UM)

Twitter ->

Delicious

(Cross UM)

Flickr

(baseline)

Delicious ->

Flickr (Cross

UM)

Twitter

(baseline)

Delicious ->

Twitter

(Cross UM)

M
R

R
,

S
u

c
c
e
s
s
@

1
,

P
r
e
c
is

io
n

@
1

0

MRR

S@1

P@10

(a) Tag recommendations.

0

0,05

0,1

0,15

0,2

0,25

0,3

Delicous (baseline) Flickr -> Delicious

(Cross UM)

Twitter -> Delicious

(Cross UM)

M
R

R
,

S
u

c
c
e
s
s
@

1
,

P
r
e
c
is

io
n

@
1

0

MRR

S@1

P@10

(b) Resource recommendations.

Fig. 4. Comparison of different cross-system user modeling settings in the context of
(a) tag recommendations and (b) resource recommendations. The baseline strategies
follow the PT@Ft,TF@Ft approach, PT@Pf,TF@Pf is applied for settings when the target is
Delicious and PT@Pf,TF@Pf,χr is used for recommendations in Flickr and Twitter.

of Delicious profile data leads to higher improvements than the consideration of
Twitter profile data. However, independent from the setting we see that cross-
system user modeling has significant impact on the recommendation quality.

Our evaluations on the Flickr-Delicious dataset confirmed the results listed in
Table 3 with two remarkable differences that are summarized in Figure 4(a): (1)
Flickr-based cross-system user modeling (Flickr → Delicious (Cross UM)) for
tag recommendations in Delicious improves the quality only slightly (no signifi-
cant difference) and (2) in the context of tag recommendations in Flickr, cross-
system user modeling leads again to tremendous improvements, however, the
quality gain is not as high as for the Delicious → Twitter setting. The absolute
tag recommendation performances are however high for all cross-system settings
and work best for the interplay of Delicious and Twitter (e.g. MRR > 0.95)
as depicted in Figure 4(a). Overall, we conclude that the significant improve-
ments of the tag recommendation performance further support the utility of
cross-system user modeling.

4.3 Results: Cold-Start Resource Recommendations

Table 4 overviews the performance of the different user modeling strategies for
cold-start bookmark recommendations in Delicious. This task is more difficult
than the tag recommendation task as the items, which are recommended to the
user, are not directly connected to the user, but indirectly via the tags [16]. Fur-
ther, the fraction of relevant items is much smaller: given an average number of
91.3 relevant bookmarks per user, the probability to randomly select a resource,
which will be bookmarked by the user, from the set of 124520 available resources
is 0.0007 (P@1). With this in mind, it is interesting to see that the cross-system
user modeling strategies, which fully exploit the Twitter personomies (source se-
lection and weighting is based on Pforeign), succeed for recommending Delicious
bookmarks in a cold-start setting and perform significantly better than all other
strategies (see Table 4).

Analyzing Cross-System User Modeling on the Social Web 41

Table 4. User modeling performances measured via Delicious bookmark recommenda-
tion quality in a cold-start setting with Twitter: tags that occur in the tag-based profile
are either selected from the folksonomy of Delicious (TFtarget) or from the user-specific
personomy in Twitter (TPforeign

) whereas the weighting scheme is the term frequency
(TF) or TF multiplied by inverse document frequency (TF × IDF), which is either
computed based on the target Delicious folksonomy (TFFtarget) or foreign personomy
available in Twitter (TFPforeign

). “Cross?” denotes whether the corresponding strategy
benefits from cross-system user modeling (+) or not (–). Semantic enrichment (Enrich)
is either based on tag similarity (χsim), cross-system association rules (χrules) or not
applied (–).

Strategy Source Enrich Weighting Cross? MRR S@1 S@10 P@5 P@10 P@20

PT@Pf,TF@Ft
TPforeign

– TFFtarget
+ 0.026 0.3 5.6 0.7 0.6 0.5

PT@Pf,TF@Pf
TPforeign

– TFPforeign
+ 0.191 14.4 26.0 11.7 9.3 7.7

FT@Ft,TF@Ft
TFtarget

– TFFtarget
– 0.026 0.3 7.8 1.0 0.9 0.6

PT@Ft,TF@Pf
TFtarget

– TFPforeign
+ 0.055 2.3 11.1 2.1 1.9 2.1

PT@Pf,TFxIDF@Ft
TPforeign

– TF × IDFFtarget
+ 2.7 0.5 3.9 0.6 0.4 0.6

PT@Pf,TFxIDF@Pf
TPforeign

– TF × IDFPforeign
+ 0.244 18.9 32.2 14.5 11.6 9.4

FT@Ft,TFxIDF@Ft
TFtarget

– TF × IDFFtarget
– 0.006 0.1 1.5 0.1 0.1 0.1

PT@Ft,TFxIDF@Pf
TFtarget

– TF × IDFPforeign
+ 0.053 2.3 10.9 2.0 2.3 2.2

PT@Pf,TFxIDF@Ft,χs TPforeign
χsim TF × IDFFtarget

+ 0.026 0.5 3.9 0.5 0.4 0.6

PT@Pf,TFxIDF@Pf,χs TPforeign
χsim TF × IDFPforeign

+ 0.244 18.7 32.4 14.5 11.7 9.4

PT@Pf,TFxIDF@Ft,χr TPforeign
χrules TF × IDFFtarget

+ 0.01 0.1 1.3 0.1 0.2 0.2

PT@Pf,TFxIDF@Pf,χr TPforeign
χrules TF × IDFPforeign

+ 0.252 20.1 33.2 14.9 12.1 10.0

While the TF weighting scheme is best applicable in the tag recommendation
context, computing weights based on TF × IDF and TF × IDFPforeign

in par-
ticular perform best for the Delicious bookmark recommendations. We further
discover that the semantic enrichment by means of cross-system association rules,
that indicate which tags are likely to occur in the tag-based Delicious profile if a
user applied certain tags in Twitter, has significant impact on the quality of the
generated profiles. The difference in performance of PT@Pf,TFxIDF@Pf,χr , which
is again the best strategy, with respect to the other strategies is statistically
significant.

These findings can also be confirmed on the setting of Flickr and Delicious.
Figure 4(b) compares the performance of the cross-system user modeling strat-
egy PT@Pf,TFxIDF@Pf,χr with the best baseline strategy that does not consider
external profile information. Exploiting Twitter for resource recommendations
in Delicious is more appropriate than the consideration of Flickr profiles. For
example, given the Twitter-based profile, the probability to recommend a rele-
vant resource (S@1) is 0.2 in comparison with 0.14 for the Flickr-based profiles.
Further, with Twitter-based cross-system user modeling we achieve a precision
(P@10) of 0.12, which is more than 10 times higher than the baseline strategy.

4.4 Synopsis

For both tag and resource recommendations, we conclude that cross-system user
modeling strategies generate significantly more valuable tag-based profiles than
those strategies which do not consider external profile information. We see that
the interplay between Twitter and Delicious is more successful than the one of

42 F. Abel et al.

Flickr and Delicious. The selection of the building blocks for composing an appro-
priate cross-system user modeling strategy impacts the quality significantly. For
example, in the resource recommendation context those user modeling strategies
perform best that fully exploit personomies from other systems (source selection
and weighting is based on Pforeign).

5 Conclusions

In this paper we analyzed strategies for modeling users across Social Web sys-
tem boundaries to infer insights for engineers of Web applications that aim for
personalization in cold-start situations. We investigated the characteristics of
tag-based profiles that result from tagging activities in Flickr, Twitter and De-
licious, and discovered that the tag-based profiles which a same user has at
different platforms only overlap little. Cross-system user modeling by means
of aggregating the user-specific profiles from the different platforms results in
significantly more valuable profiles with respect to entropy. Within the scope of
tag and resource recommendations in cold-start settings we further revealed that
cross-system user modeling strategies have significant impact on the performance
of the recommendation quality. For example, user modeling based on external
personomies results in a more than 10 times higher precision for recommending
Delicious bookmarks.

Acknowledgements. This work is partially sponsored by the EU FP7 project
ImREAL (http://imreal-project.eu).

References

1. Abel, F., Araújo, S., Gao, Q., Houben, G.J., Tao, K.: Supporting website: datasets
and further details (2011), http://wis.ewi.tudelft.nl/icwe2011/um/

2. Abel, F., Henze, N., Herder, E., Krause, D.: Interweaving public user profiles on
the web. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075,
pp. 16–27. Springer, Heidelberg (2010)

3. Aroyo, L., Dolog, P., Houben, G.J., Kravcik, M., Naeve, A., Nilsson, M., Wild,
F.: Interoperability in pesonalized adaptive learning. J. Educational Technology &
Society 9 (2), 4–18 (2006)

4. Bao, S., Xue, G., Wu, X., Yu, Y., Fei, B., Su, Z.: Optimizing Web Search using
Social Annotations. In: Proc. of 16th Int. World Wide Web Conference (WWW
2007), pp. 501–510. ACM Press, New York (2007)

5. Bischoff, K., Firan, C., Paiu, R., Nejdl, W.: Can All Tags Be Used for Search? In:
Proc. of Conf. on Information and Knowledge Management (CIKM 2008). ACM,
New York (2008)

6. Carmagnola, F., Cena, F.: User identification for cross-system personalisation. In-
formation Sciences: an International Journal 179(1-2), 16–32 (2009)

7. Dellschaft, K., Staab, S.: An epistemic dynamic model for tagging systems. In:
Brusilovsky, P., Davis, H.C. (eds.) Proceedings of the 19th ACM Conference on
Hypertext and Hypermedia (HT 2008), pp. 71–80. ACM, Pittsburgh (2008)

8. Firan, C.S., Nejdl, W., Paiu, R.: The Benefit of Using Tag-based Profiles. In:
Proc. of 2007 Latin American Web Conference (LA-WEB 2007), pp. 32–41. IEEE
Computer Society, Washington, DC, USA (2007)

http://wis.ewi.tudelft.nl/icwe2011/um/

Analyzing Cross-System User Modeling on the Social Web 43

9. Golder, S.A., Huberman, B.A.: Usage patterns of collaborative tagging systems.
Journal of Information Science 32(2), 198–208 (2006)

10. Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., von Wilamowitz-
Moellendorff, M.: Gumo – The General User Model Ontology. In: Ardissono, L.,
Brna, P., Mitrović, A. (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 428–432.
Springer, Heidelberg (2005)

11. Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information retrieval in folk-
sonomies: Search and ranking. In: Proc. of the 3rd European Semantic Web Confer-
ence (ESWC 2010), Budva, Montenegro, pp. 411–426. Springer, Heidelberg (2006)

12. Jameson, A.: Adaptive interfaces and agents. In: The HCI Handbook: Fundamen-
tals, Evolving Technologies and Emerging Applications, pp. 305–330 (2003)

13. Kobsa, A.: Generic user modeling systems. User Modeling and User-Adapted In-
teraction 11(1-2), 49–63 (2001)

14. Mehta, B.: Cross System Personalization: Enabling personalization across multiple
systems. VDM Verlag, Saarbrücken (2009)

15. Michlmayr, E., Cayzer, S.: Learning User Profiles from Tagging Data and Lever-
aging them for Personal(ized) Information Access. In: Proc. of the WWW 2007
Workshop on Tagging and Metadata for Social Information Organization (2007)

16. Sen, S., Vig, J., Riedl, J.: Tagommenders: connecting users to items through tags.
In: Quemada, J., León, G., Maarek, Y.S., Nejdl, W. (eds.) Proceedings of the 18th
International Conference on World Wide Web (WWW 2009), pp. 671–680. ACM,
New York (2009)

17. Sigurbjörnsson, B., van Zwol, R.: Flickr tag recommendation based on collective
knowledge. In: Proc. of 17th Int. World Wide Web Conference (WWW 2008), pp.
327–336. ACM Press, New York (2008)

18. Szomszor, M., Alani, H., Cantador, I., O’Hara, K., Shadbolt, N.: Semantic mod-
elling of user interests based on cross-folksonomy analysis. In: Sheth, A.P., Staab,
S., Dean, M., Paolucci, M., Maynard, D., Finin, T.W., Thirunarayan, K. (eds.)
ISWC 2008. LNCS, vol. 5318, pp. 632–648. Springer, Heidelberg (2008)

19. Winkler, W.E.: The State of Record Linkage and Current Research Problems.
Technical report, Statistical Research Division, U.S. Census Bureau (1999)

Parallel Data Access for Multiway Rank Joins

Adnan Abid and Marco Tagliasacchi

Dipartimento di Elettronica e Informazione – Politecnico di Milano,
Piazza Leonardo da Vinci, 32 – 20133 Milano, Italy

{abid,tagliasa}@elet.polimi.it

Abstract. Rank join operators perform a relational join among two or
more relations, assign numeric scores to the join results based on the
given scoring function and return K join results with the highest scores.
The top-K join results are obtained by accessing a subset of data from
the input relations. This paper addresses the problem of getting top-
K join results from two or more search services which can be accessed
in parallel, and are characterized by non negligible response times. The
objectives are: i) minimize the time to get top-K join results. ii) avoid
the access to the data that does not contribute to the top-K join results.

This paper proposes a multi-way rank join operator that achieves the
above mentioned objectives by using a score guided data pulling strategy.
This strategy minimizes the time to get top-K join results by extracting
data in parallel from all Web services, while it also avoids accessing
the data that is not useful to compute top-K join results, by pausing
and resuming the data access from different Web services adaptively,
based on the observed score values of the retrieved tuples. An extensive
experimental study evaluates the performance of the proposed approach
and shows that it minimizes the time to get top-K join results, while
incurring few extra data accesses, as compared to the state of the art
rank join operators.

Keywords: rank joins, rank queries, score guided data pulling, top-K
queries.

1 Introduction

Rank join operators have a widespread applicability in many application do-
mains. Hence, a set of specialized rank join operators have been recently pro-
posed in the literature [1][4][6][8][9]. These operators are capable of producing
top-K join results by accessing a subset of data from each source, provided the
score aggregation function is monotone, and the data retrieved from each source
is sorted in descending order of score.

As an illustrative example, consider a person who wants to plan his visit to
Paris by searching for a good quality hotel and a restaurant, which are situated
close to each other and are highly recommended by their customers. This can be
accomplished by extracting information from suitable data sources available on
the Web and merging the information to get the top rated resultant combina-
tions, as contemplated in Search Computing [3]. The Web services, e.g. Yahoo!

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 44–58, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Parallel Data Access for Multiway Rank Joins 45

Local or yelp.com, can be used to find the places of interest in a city. The
data can be processed to produce the top-K scoring join results of hotels and
restaurants. A sample rank query based on the above example is the following:

SELECT h.name, r.name, 0.6*h.rating+0.4*r.rating as score
FROM Hotels h, Restaurants r
WHERE h.zip = r.zip AND h.city= ‘Paris’ AND r.city = ‘Paris’
RANK BY 0.6*h.rating+0.4*r.rating

Motivation: The recent solutions to rank join problem [5][7][12] focus on pro-
viding instance optimal algorithms regarding the I/O cost. The I/O cost is a
quantity proportional to the overall number of fetched tuples. So these algo-
rithms minimize the total number of tuples to be accessed in order to find the
top-K join results. Hash Rank Join (HRJN*) [7] is an instance optimal algo-
rithm in terms of I/O cost and it introduces a physical rank join operator. This
algorithm has been further improved in [5] and [12]. Indeed, this optimization
of the I/O cost helps reducing the total time to compute the top-K join results
as well, yet total time can be further reduced for the following reason: these
I/O optimal algorithms access data from the data sources in a serial manner,
i.e. they access data from one source, process it and then fetch the data from
the next most suitable source. The latter is selected based on a pulling strategy,
which determines the source to be accessed to, in order to minimize the I/O cost.
However, in the context of using Web services as data sources, data processing
time is found to be negligible as compared to data fetching time. So, most of
the time is spent in waiting for retrieving the data. Therefore, an alternative
approach that extracts data from all data sources in parallel should be used in
order to reduce the data extraction time from all sources by overlapping the
waiting times. This calls for a parallel data access strategy.

A simple parallel strategy keeps on extracting data from each Web service in
parallel until top-K join results can be reported. We call this strategy Parallel
Rank Join (PRJ). As an illustrative example, assume that we can extract top
10 join results from 2 different Web services after fetching 3 data pages from
each Web service. Figure 1 shows the behaviour of both HRJN* and PRJ. It can
be observed that both HRJN* and PRJ approaches have shortcomings: HRJN*
takes a large amount of time to complete, whereas, PRJ costs more in terms
of I/O as it may retrieve unnecessary data (e.g. C4 and C5). This requires the
design of a rank join operator that is specifically conceived to meet the objectives
of getting top-K join results quickly and restricting access to unwanted data,
when using Web services or similar data sources.

As a contribution we propose a Controlled Parallel Rank Join (cPRJ) algo-
rithm that computes the top-K join results from multiple Web services with a
controlled parallel data access which minimizes both total time, and the I/O
cost, to report top-K join results. In Section 2 we provide the preliminaries. The
algorithm is explained in Section 3. A variant of the algorithm is presented in
Section 4. The experiments and results are discussed in Section 5, and related
work and conclusion are presented in Sections 6 and 7, respectively.

46 A. Abid and M. Tagliasacchi

Fig. 1. Serial Data Access of HRJN* vs Parallel Data Access

2 Preliminaries

Consider a query Q whose answer requires accessing a set of Web services
S1, ..., Sm, that can be wrapped to map their data in the form of tuples as
in relational databases. Each tuple ti ∈ Si is composed of an identifier, a join
attribute, a score attribute and other named attributes. The tuples in every Web
service are sorted in descending order of score, where the score reflects the re-
levance with respect to the query. Let t

(d)
i denote a tuple at position d of Si.

Then σ(t(d)
i) ≥ σ(t(d+1)

i), where σ(ti) is the score of the tuple ti. Without loss
of generality, we assume that the scores are normalized in the [0,1] interval.

Each invocation to a Web service Si retrieves a fixed number of tuples, referred
to as chunk. Let (CSi) denote the chunk size, i.e. the number of tuples in a
chunk. The chunks belonging to a Web service are accessed in sequential order,
i.e. the c− th chunk of a Web service will be accessed before (c + 1)− th chunk.
Each chunk, in turn, contains tuples of Si sorted in descending order of score.
Furthermore, Si provides one chunk of tuples in a specified time, which is referred
to as its average response time (RTi). Let t = t1 � t2 � ... tm denote a join
result formed by combining the tuples retrieved from the Web services, where
ti is a tuple that belongs to the Web service Si. This join result is assigned
an aggregated score based on a monotone score aggregation function, σ(t) =
f(σ(t1), σ(t2), .., σ(tm)). The join results obtained by joining the data from these
Web services are stored in a buffer Sresult in descending order of their aggregate
score.

2.1 Bounding Schemes

Let τi denotes the local threshold of a Web service Si which represents an upper
bound on the possible score of a join result that can be computed by joining any
of the unseen tuples of Si to either seen or unseen data of the rest of the Web
services. The global threshold τ of all the Web services is the maximum among
the local thresholds i.e. τ = max{τ1, τ2, ..., τm}.

The local threshold is updated with each data access to the corresponding
Web service. Whereas, the global threshold is updated after every data access,
independent of the accessed Web service. The bounding scheme is responsible

Parallel Data Access for Multiway Rank Joins 47

for computing τ , which represents an upper bound on the scores of possible join
results, which can be formed by the unseen data. Thus, it helps in reporting
the identified join results to the user. Let K denote the number of join results
for which σ(t) ≥ τ , then these can be guaranteed to be the top-K. Figure 2(a)
illustrates an example in which the global threshold is computed based on two
possible bounding schemes based on the snapshot of execution, when all sources
have fetched three tuples. The join predicate is the equality between the zip
code attribute. These two bounding schemes corner bound and tight bound are
further discussed below.

Corner Bound: The local threshold for a Web service Si is calculated by consi-
dering the score of last seen tuple of Si and maximum possible scores for the
rest of the Web services. As an example, in Figure 2(a), the local threshold for
S1 is τ1 = f(σ(t(3)1), σ(t(1)2), σ(t(1)3)) = f(0.8, 1.0, 1.0) = 2.8, assuming a simple
linear score aggregation function. There is a drawback in using the threshold as
computed by means of the corner bound. Indeed, it implicitly assumes that the
first tuples of all the Web services formulate a valid join result, which may or
may not be the case. Therefore, when more than two Web services are involved
in a join, if the first tuples of all the Web services do not satisfy the join predi-
cate, then the computed value of the corner bound threshold is not tight, in the
sense that it might not be possible to from join results with unseen data that
achieves that score. Note that HRJN* adopts a corner bound [7].

Tight Bound: It is possible to compute τ as a tight bound on the aggre-
gate score of unseen join results [12]. The local threshold for a Web service
Si can be calculated by considering the score of the last seen tuple from Si

and the score of the partial join result, PJi, with maximum possible score
which is formed by the rest of the Web services. Let Ni = {i1, ..., in}
denote a subset of {1, ..., m} which does not contain the index i of Web ser-
vice Si, and n = |N |, 0 ≤ n < m. There can be 2m−1 such distinct sub-
sets. We find the join result with maximum possible score for each distinct
subset N j

i , where 0 < j ≤ 2m−1, and store it in PJ(N j
i). The join results

for a particular subset N j
i are computed by joining the seen tuples from the

Web services whose indices are in N j
i and completing the join result with a

tuple from the rest of the Web services i.e. N − N j
i , whose score is equal to

the score of last seen tuple in the respective Web service. In this way, the
join result in PJ(N j

i) has one tuple from every Web service. The local thre-
shold τi for Si is computed as max σ(PJ(N j

i)), 0 < j ≤ 2m−1. The maxi-
mum of all local thresholds is considered as global threshold. Further opti-
mizations in the computation of the tight bound are discussed in [5]. When
there are only two Web services [11], or the top scoring tuples in each service
contribute to PJ(N j

i), the tight bound and corner bound are equivalent. Fi-
gure 2(b) shows the average gain in terms of I/O cost and fetch time while
using tight bound over corner bound using HRJN*, averaged over 10 different
data sets.

48 A. Abid and M. Tagliasacchi

(a) (b)

Fig. 2. (a) An example scenario, tight and corner bounding schemes. (b) Gain in I/O
and time by using tight bound over corner bound with 4 Web services and K=20.

2.2 Data Pulling Strategy

The data pulling strategy provides a mechanism to choose the most suitable
data source to be invoked at a given time during the execution [7]. The pulling
strategy can be as simple as a round-robin strategy. HRJN* which focuses only
on the optimization of the I/O cost, adopts a pulling strategy whereby the next
service to be invoked is the one whose local threshold is equal to τ , the ties
are broken by choosing the service which has extracted lesser number of tuples.
The intuition of this pulling strategy is to keep all local thresholds as close as
possible, which, due to monotonicity, is only possible by extracting the data
from the data source with the highest local threshold. But the problem with this
pulling strategy is that it takes longer time as shown in Figure 1. The objective of
our work is to propose a pulling strategy that exploits the possibility of parallel
access to the services. Such a strategy aims not only at minimizing the I/O cost,
but also minimizing the time to fetch the data and hence, the time to report
top-K join results. Our data pulling strategy is explained below in Section 3.1.1.

3 Methodology

3.1 Proposed Data Pulling Strategy

We stress on such a data pulling strategy which extracts data from all Web
services in parallel. A näıve parallel pulling strategy, PRJ, keeps on extracting
data from every data source till its respective local threshold becomes lesser
or equal to the score of the then seen K-th join result. Figure 1 shows the
comparison of different data pulling strategies. It shows that the I/O optimized
HRJN* strategy has least I/O cost, but it takes more time to get top-K join
results. Whereas, PRJ is only concerned with reducing the time to get top-K
join results and it may result the extraction of unwanted data. This extraction
of unwanted data is possible if a Web service stops well before the others, that is,
its local threshold has reached below the score of the then top-K-th join result

Parallel Data Access for Multiway Rank Joins 49

in the output buffer Sresult. In this case, there is a possibility that the other Web
services having higher local thresholds produce join results with better aggregate
score values, and terminate with an even higher local threshold. Resultantly, the
Web service which stops earlier incurs extra data fetches. Therefore, in case of m
Web services maximum m−1 Web services may terminate earlier than the m-th
Web service. Our proposed data pulling strategy extracts data from all the data
sources in controlled parallel manner, the parallel data access helps minimizing
the time to get top-K join results. Whereas, the I/O cost is minimized by pausing
and resuming data extraction from the Web services. The pausing and resuming
of data extraction from a Web service with lower local threshold, are performed
on the basis of estimating the time to bring the local threshold of other Web
services with higher local thresholds below or equal to its local threshold. This
is explained in the Section 3.1.2. We use tight bounding scheme to compute the
threshold values.

3.1.1 State Machine
In order to refrain from accessing the data that do not contribute to the top-K
join results every Web service is controlled by using a state machine shown in
Figure 3. The Web services are assigned a particular state after the completion
of the processing of data fetched from any Web service. The Ready state means
that the data extraction call should be made for this Web service. It is also the
starting state for each Web service. A Web service Si is put into Wait if we
can fetch more data from any other Web service Sj and still its local threshold
τj , will remain greater than or equal to τi. The Stop state means that further
data extraction from this Web service will not contribute to determining the
top-K join results. Lastly, the Finish state means that all the data from this
Web service has been retrieved. The Stop and Finish states are the end states
of the state machine. The difference between PRJ and the proposed cPRJ is
that PRJ does not have Wait state, whereas, cPRJ controls the access to the
unwanted data by putting the Web services into Wait state. On retrieving a
chunk of tuples from Web service Si the following operations are performed in
order:

1. Its local threshold τi is updated and it is also checked if the global threshold
τ also needs to be updated.

2. New join results are computed by joining the recently retrieved tuples from
Si with the tuples already retrieved from all other Web services.

3. All join results are stored in the buffer Sresult in descending order of score.
The size of the buffer Sresult is bound by the value of K. All join results
having aggregated score above τ are reported to the user.

4. The state for Si is set using setState function shown in Figure 4(a). If Si

has extracted all its data then it is put to Finish state and τi is set to 0.

Apart from this the following operations are also performed:

1. Every Web service Si, which is not in Stop or Finish state, is checked and
is put into Stop state, if σ(t(K)

result) ≥ τi.

50 A. Abid and M. Tagliasacchi

Fig. 3. The state machine according to which each Web service is manipulated

2. A Web service Si that is in Wait state is put to Ready state, if there is no
other Web service Sj which is in Ready state and τj is greater than τi, and
Sj needs more than one chunk to bring τj lower than τi, and the minimum
time needed to bring τj less than τi is greater than RTi.

The state transitions are exemplified below in Section 3.1.3.

3.1.2 Time to Reach (ttr)
Data pulling strategy issues the data extraction calls by analyzing the local
thresholds of the Web services. Particularly, the decisions to put a service from
Ready to Wait, and Wait to Ready state are based on the computation of time
to reach (ttr). Therefore, in order to clearly understand these state transitions
we need to understand the computation of ttr. On completion of a data fetch
from Web service Si we identify all the Web services which are in Ready state
and have higher local threshold value than τi, and put them in a set J . For each
Web service Sj , in set J , we compute time to reach, (ttrj), which is the time
that Sj will take to bring τj below τi. The highest value of ttrj is considered as
ttr for Web service Si. If ttr is greater than RTi then Si is put into Wait state,
otherwise, it remains in Ready state.

The estimation of ttr involves the calculation of decay in score for the Web
service Sj . We use Autoregressive Moving Average forecasting method [2] for
the calculation of score decay. After estimating the unseen score values we can
compute the total number of tuples needed to bring the τj lower than the value
of τi. This number is then divided by the chunk size of Sj i.e. CSj , to get the
number of chunks to bring the threshold down. If number of chunks are less
than one, i.e. the after getting the data from the currently extracted chunk τj will
fall below τi, then ttrj is set to 0. Otherwise, number of chunks are multiplied
by RTj, and the elapsed time ETj, the time since the last data extraction call
is issued for Sj is subtracted i.e. ttrj = (chunks× RTj) − ETj .

3.1.3 State Transitions in the State Machine
The state transitions shown in Figure 3 are exemplified below with the help of
Figure 4(a). There are 3 Web services S1, S2 and S3 with RT1 = 400ms, RT2 =
700ms and RT3 = 900ms, for simplicity, score decay for all Web services is kept
linear.

Ready to Finish: If a Web service has been completely exhausted, i.e. all the
data from it has been retrieved then its state is changed from Ready to Finish. A

Parallel Data Access for Multiway Rank Joins 51

Web service can be put to Finish state only when it is in Ready state and makes
a data extraction. Figure 4(a) shows that after 2800ms, S2 is put from Ready to
Finish state. Ready to Stop and Wait to Stop: If a Web service is in Ready

or Wait states then it should be put into Stop state if the following condition
holds: if Sresult already holds K join results, then the algorithm compares the
local threshold τi with σ(t(K)

result), the score of K − th join result in Sresult. If τi

is less than or equal to it then it assigns Stop state to Si. This essentially means
that further extraction of data from this Web service will not produce any join
result whose score is greater than the join results already in Sresult. Figure 4(a)
shows that after 2100ms the Web service S3 is put from Wait to Stop state as
its τ3 is lower than σ(t(K)

result). Whereas, S1 is put from Ready to Stop state at
2500ms.

Ready to Ready, Ready to Wait, Wait to Ready and Wait to Wait:
A Web service in Ready state is put to Wait state, or a Web service in Wait
state is put to Ready state by analyzing the local thresholds of all other Web
services which are in Ready state. Figure 4(b) presents the algorithm for setState
function. Below is the explanation of the algorithm for a Web service Si:

– Consider a set J containing all the Web services having local thresholds
greater than that of τi and are in Ready state. The algorithm estimates the
time to reach (ttrj), for all Web services Sj ∈ J to bring τj lower than τi as
explained in Section 3.1.2.

– Thus, ttrj is computed for all Web services in J and the maximum of these
values is retained as ttr.

– If Si is in Ready or Wait state and ttr is greater than or equal to RTi then
Si is assigned Wait state, otherwise, it is put to Ready state.

Figure 4(a) shows that, after 800ms, S1 is put from Ready to Wait state because
of bootstrapping phase, as no more than 2 data extraction calls are allowed
during this phase from any Web service. This is explained below in this section.
However, even after finishing the bootstrapping, at 900ms, it remains in Wait
state as ttr2 is 1900ms which is greater than RT1. S1 continues to be in Wait
state at 1400ms and at 1800ms, as ttr is greater than RT1. Similarly, at 1800ms,
S3 is put to Wait state from Ready state, as ttr2 is 1700ms.

After 2100ms S1 is put from Wait to Ready state as at this time ttr2 is 0.
Therefore, we need to resume data extraction from S1 as well. Lastly, S2 remains
in Ready state during all the state transitions, till it moves from Ready to Finish
state at 2800ms because it remains the Web service with highest local threshold
i.e τ2 = τ .

Bootstrapping: At the beginning data is extracted from all Web services
in parallel. The phase before extraction of at least one chunk from all Web
services is considered as bootstrapping phase. The Web services with smaller
response time may fetch too much data in this phase. So, during bootstrapping,
we limit maximum two data fetches from a particular Web service. The rationale
is that these Web services have much shorter response time so they can catch

52 A. Abid and M. Tagliasacchi

(a) (b)

Fig. 4. (a) Execution of cPRJ with 3 Web services, over timeline against local thre-
sholds. (b) The setState algorithm

up the other Web services with higher response times. It can be observed in
Figure 4(a) that S1 is put to Wait state after making two fetches, at 800ms.
Similarly, at 400ms S1, and at 700ms S2, are allowed to perform second fetch.
The bootstrapping phase ends after 900ms.

Adaptivity to the Change in RT : Sometimes it is possible that a Web service
Si does not demonstrate the same response time as anticipated. To determine
this, the proposed algorithm always computes the response time for every chunk
and computes average of the last 3 observed response times. If the deviation
is within 10% of the existing response time value, then the latter is retained.
Otherwise, RTi is assigned the average of its last 3 observed RT values.

4 Concurrent Pre-fetching with cPRJ

It is possible to profile a Web service Si and identify if more than one concur-
rent calls can be issued to it. In such cases, instead of fetching one chunk at a
time from Si, the algorithm might issue Si(conc) concurrent calls. This helps in
speeding up data fetching even further, as it acquires data from Si(conc) chunks
in RTi, the same time in which the baseline cPRJ gets one chunk.

This also requires modifications in the setState function while calculating the
ttr, by incorporating the number of concurrent chunks extracted by Si. Also,
while issuing the data extraction calls, the algorithm has to check the number
of chunks a Web service needs to bring its local threshold down to σ(t(K)

result). If
they are greater than or equal to Si(conc) then all concurrent data extraction calls
can be issued. Otherwise, the number of calls is that suggested by the calculation.

Parallel Data Access for Multiway Rank Joins 53

This variant certainly reduces the time to find the top-K join as compared to
the baseline version of cPRJ. However, it may incur some additional I/O cost
because of concurrent data extraction.

Concurrent accesses to a Web service might also be considered an ethical issue
as it prevents the other users from accessing the same service at the same time,
especially in peak hours. However, in our case the total number of calls to a
Web service will still remain almost the same even if we issue them concurrently.
Secondly, the number of concurrent calls, in general is not high, and it should
be issued only for the Web services with larger response times, or which exhibit
a very low decay in their scores. As an example, in case of extracting data from
the Web services venere.com and eatinparis.com, shown in Table 1, it will
be useful to extract the concurrent chunks from them according to the ratio
between their response times, provided their score decay per chunk is observed
to be in the same ratio.

5 Experimental Study and Discussion

5.1 Methodology

Data Sets: We have conducted the experiments on both synthetic data, and
real Web services. The experiments are based on the query in Example 1 by
generating many different synthetic data sources with various parameter settings.
The relevant parameters are presented in Table 2. The real Web services used
for the experiments are presented in Table 1. These real services were queried for
finding the best combination of hotels and restaurants in a city, for many different
cities. For each city, we find the best combination of hotels and restaurants
located in the same zip code. In order to consider more than two Web services,
we have also extracted information about museums and parks from the real Web
services. The experiments with synthetic data are performed with diverse and
homogeneous settings of values for the parameters in Table 2. Homogeneous
settings help us understanding the behaviour of individual parameter whereas,
diverse settings help us simulating the real environment Web services, as we
have observed that most of them have diverse parameter settings. For fairness,
we compute these metrics over 10 different data sets and report the average. The
experiments with the real Web services are conducted by fetching the data from
real Web services for 5 different cities and the averaged results are reported.

Table 1. Real Web services used for experiments

Web Services Type of Information Response Time Chunk Size

1 www.venere.com Hotels 900 ms 15

2 www.eatinparis.com Restaurant (only for Paris) 350 ms 6

3 Yahoo! Local Hotels, Restaurants, Museums, Parks 800-1200 ms 10

4 www.yelp.com Hotels, Restaurants, Museums, Parks 900-1100 ms 10

54 A. Abid and M. Tagliasacchi

Table 2. Operating Parameters (defaults in bold)

Full Name Parameter Tested Values

Number of results K 1,20,50,100
Join Selectivity JS 0.005, 0.01, 0.015, 0.02
Score Distribution SD Uniform Distrib., Zipfian Distrib., Linear Distrib., Mixed

Response Time RT 500/500, 500/1000, 500/1500
Chunk Size CS 5/5, 5/10, 5/15
Number of relations m 2,3,4

Approaches: We compare three algorithms, HRJN*, PRJ and the proposed
cPRJ while using tight bounding scheme. An important consideration is that
HRJN* augmented with tight bounding cannot be beaten in terms of I/O cost,
whereas PRJ cannot be out-performed in terms of time taken, provided the time
taken for joining the data is negligible. Therefore, the proposed algorithm, cPRJ
carves out a solution that deals in the trade off between I/O cost and time taken.
Indeed, the parallel approaches should be efficient in terms of time taken than
the serial data accessing HRJN* approach yet, the purpose of including HRJN*
in the comparison is to elaborate the gain in terms of I/O cost when using cPRJ
instead of PRJ.

Evaluation Metrics: The major objective of the proposed approach is to reduce
the time taken to get the top-K results by minimizing the data acquisition time
with the help of parallelism. So, we consider time taken as the primary metric
for comparing different algorithms. This is the wall clock time, that is, starting
from the first fetch till the K−th join result is reported. The reduction in time is
obtained by compromising on possibly some extra data extraction as compared to
HRJN*. Therefore, we consider sum depths [5], total number of tuples retrieved
from all Web services, as other metric for comparing the different algorithms.

5.2 Results

Experiments with Synthetic Data: In Figure 5 we show the results of the
experiments for CS, RT and SD parameters while joining two Web services. In
case of the homogeneous setting of the parameters, i.e. keeping all the parameters
to the default values and setting different values for one of the three above
mentioned parameters. This results into termination of data extraction from
(m − 1), in this case, one data source earlier than the other data source, as
explained in section 3.1. The proposed cPRJ algorithm is also based on these
three parameters. Figure 5(b) shows that cPRJ incurs 1% more and PRJ incurs
8% more I/O cost than HRJN* in case of different CS values. For different values
of RT and SD both HRJN* and cPRJ take the same I/O cost, and PRJ takes
8% more and 10% more I/O cost than HRJN* for different values of RT and
SD, respectively. If we augment all these in one scenario then cPRJ incurs 3%
more I/O cost than HRJN* and PRJ costs 29% more I/O cost than HRJN*.

Parallel Data Access for Multiway Rank Joins 55

(a) (b)

Fig. 5. Performance comparison of the algorithms on synthetic data sources for the
parameters shown in Table 2

Whereas, Figure 5(a) shows that for all cases the time taken by both parallel
approaches is almost same and is much lower than HRJN*. However, if CS, RT
and SD are identical for all data sources, then all three approaches have almost
same I/O cost and both parallel approaches take same time.

The overall performance of cPRJ is much better than PRJ in case of diverse
parameter settings, as it has almost same I/O cost as of HRJN* whereas, it takes
almost same time as of PRJ, whereas, PRJ has higher I/O cost than HRJN*.
Thus, in the diverse settings it brings the best of both worlds.

Real Web Services: The experiments with the real Web services, which in
general, have diverse parameter settings, confirm the same observations made on
synthetic data, i.e. overall cPRJ performs much better than PRJ. We performed
experiments for the query in Example 1 while interacting with the real Web
services to get top-K join results. We have used different Web services, presented
in Table 1. Figure 6(a) shows that both parallel approaches take same amount
of time which is 20-25% less than HRJN*. The difference in time increase by
increasing K. Figure 6(b) shows that the I/O cost incurred by proposed cPRJ
is 5% more than ideal HRJN*, whereas, PRJ takes 8-10% extra data fetches.
We have also performed experiments by varying the number of Web services
involved in the search query. We add data for museums as third and data for
parks as fourth Web service in our search. We use Yahoo! Local and yelp.com
to fetch data for museums and parks. The results shown in Figure 6(c) show
that both parallel approaches take almost same time and this time is 14-35% less
than HRJN*. The difference in time taken by parallel approaches and HRJN*
increases by adding more data sources, i.e., by increasing the value of m. The
results presented in 6(d) demonstrate that cPRJ takes 4-11% more I/O cost than
HRJN*, whereas, PRJ takes 13-38% more I/O cost than HRJN*.

The experimental results also show that other three parameters JS, m and K
do not have any impact alone. They cannot be responsible for the early termi-
nation of a single data source. However, if SD, RT and CS have heterogeneous
values, and if the overall impact of these values is that they enforce one or more
data sources to terminate earlier than the others while using the parallel ap-
proaches, then JS, m and K also come into play. The results shown in Figures
6(a) and 6(b) show the role of K and Figures 6(c) and 6(d) show the behaviour
of number of data sources m, involved in a query.

56 A. Abid and M. Tagliasacchi

(a) (b)

(c) (d)

Fig. 6. Performance of the algorithms with real services. Figures (a) and (b) are for
the experiments with venere.com and eatinparis.com. Figures (c) and (d) are expe-
riments with different number of sources using Yahoo! Local and yelp.com

The method used to compute ttr is supposed to provide accurate estimates
when the score decay is smooth. When this is not the case (e.g. when ranking
of hotels is induced by the number of stars), it tends to underestimate the score
decay. If it underestimates the score decay then the state machine may pause a
Web service unnecessarily, which may increase the overall time. Conversely, in
case of overestimation of the score decay, the state machine may not pause a
Web service at right time, hence, it may incur extra I/O cost.

Concurrent Pre-fetching: The results in Figure 7 are based on an expe-
riment which issues different number of concurrent calls to the real Web ser-
vices, venere.com having response time 900ms and eatinparis.com having
response time 350ms. We issue concurrent calls in two ways, firstly, based on
the ratio between the response times of the two sources, and secondly, we issue
three concurrent calls for both data sources without any consideration. The re-
sults show that in both cases the time decreases by almost 62% of the baseline
cPRJ approach. This implies that venere.com takes most of the time to fetch
the data to produce required number of join results, whereas, eatinparis.com

(a) (b)

Fig. 7. Figures (a) and (b) show the comparison of time and I/O for K=20, where
cPRJ and PRJ perform different number of concurrent fetches on real Web services

Parallel Data Access for Multiway Rank Joins 57

takes one third or lesser time to fetch its data from the same purpose. Therefore,
when we fetch three concurrent chunks from venere.com and one chunk from
eatinparis.com, we get the best result. While observing the difference in the
I/O cost, we find that first method of concurrent calls has proven to be almost
as effective as baseline cPRJ whereas the second one has incurred 10% extra I/O
cost than the baseline cPRJ. More than one concurrent data fetches from a Web
service certainly minimize the time, however, using it in a smarter fashion can
also help avoiding possible extra I/O cost.

6 Related Work

We are considering rank join operators with only sorted access to the data
sources, therefore, we only discuss the existing solutions while respecting this
constraint. The NRA algorithm [4] finds the top-K answers by exploiting only
sorted accesses to the data. This algorithm may not report the exact object
scores, as it finds the top-K results using bounds; score lower bound and score
upper bound; computed over their exact scores.

Another example of no random access top-K algorithms is the J* algorithm
[1]. It uses a priority queue containing partial and complete join results, sorted
on the upper bounds of their aggregate scores. At each step, the algorithm tries
to complete the join combination at the top of the queue selecting the next
input stream to join with the partial join result and reports it as soon as it is
completed. This algorithm is expensive in terms of memory and I/O costs as
compared to HRJN* in most of the cases.

HRJN [7] is based on symmetrical hash join. The operator maintains a hash
table for each relation involved in the join process, and a priority queue to buffer
the join results in the order of their scores. The hash tables hold input tuples seen
so far and are used to compute the valid join results. It also maintains a threshold
τ and uses a data pulling strategy to compute join results. Some recent improve-
ments in HRJN algorithm are presented in [5] and [12]. These algorithms use tight
bound to compute top-K join results and show their comparative analysis.

Another interesting and objectively similar work has been done in [10], but
the proposed algorithm Upper incorporates both serial and random accesses to
the data sources, whereas, in our case we only use sorted access to the data
sources. The commonality between the two approaches is that both cPRJ and
Upper minimize the data extraction time by issuing concurrent data extraction
calls and also exploit the pre-fetching of data while respecting the number of
maximum concurrent fetches to the data sources.

7 Conclusion

We have proposed a new rank join algorithm cPRJ, for multi-way rank join
while using parallel data access. This algorithm is specifically designed for dis-
tributed data sources which have a non-negligible response time e.g. the Web
services available on the Internet. It uses a score guided data pulling strategy

58 A. Abid and M. Tagliasacchi

which helps computing the top-K join results. The results based on the expe-
riments conducted on synthetic and real Web services show that the I/O cost
of the proposed approach is nearly as low as optimal I/O cost of HRJN*, and
it computes the join results as quick as PRJ approach which cannot be beaten
in terms of time taken. cPRJ exhibits its strengths when the Web services have
such diverse parameter settings which enforce one or more data sources to ter-
minate earlier than any other data source while accessing them in parallel. We
have also exploited the concurrent data fetching property of the Web services in
order to get the data in even quick time. This reduces the time to compute the
joins even further, but at higher I/O cost than baseline cPRJ. As a next step, we
anticipate that this parallel rank join operator can be enhanced for pipe joins.

Acknowledgments

This research is part of the “Search Computing” project, funded by the European
Research Council, under the 2008 Call for “IDEAS Advanced Grants”.

References

1. Nastev, A., Chang, Y., Smith, J.R., Li, C., Vittor, J.S.: Supporting incremental
join queries on ranked inputs. In: VLDB Conference

2. Brockwell, P.J.: Encyclopedia of Quantitative Finance (2010)
3. Ceri, S., Brambilla, M. (eds.): Search Computing II. LNCS, vol. 6585. Springer,

Heidelberg (2011)
4. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.

Journal of Computer and System Sciences 66(4), 614–656 (2003)
5. Finger, J., Polyzotis, N.: Robust and efficient algorithms for rank join evaluation.

In: SIGMOD Conference, pp. 415–428 (2009)
6. Guntzer, U., Balke, W., Kiessling, W.: Towards efficient multi-feature queries in

heterogeneous environments. In: International Conference on Information Techno-
logy: Coding and Computing, Proceedings, pp. 622–628 (2001)

7. Ilyas, I., Aref, W., Elmagarmid, A.: Supporting top-k join queries in relational
databases. The VLDB Journal 13(3), 207–221 (2004)

8. Ilyas, I., Beskales, G., Soliman, M.: A survey of top-k query processing techniques
in relational database systems. ACM Computing Surveys 40(4), 1 (2008)

9. Mamoulis, N., Theodoridis, Y., Papadias, D.: Spatial joins: Algorithms, cost models
and optimization techniques. In: Spatial Databases, pp. 155–184 (2005)

10. Marian, A., Bruno, N., Gravano, L.: Evaluating top- queries over web-accessible
databases. ACM Trans. Database Syst. 29(2), 319–362 (2004)

11. Martinenghi, D., Tagliasacchi, M.: Proximity rank join. In: PVLDB, vol. 3(1), pp.
352–363 (2010)

12. Schnaitter, K., Polyzotis, N.: Optimal algorithms for evaluating rank joins in da-
tabase systems. ACM Trans. Database Syst. 35(1) (2010)

Assessing Fault Occurrence Likelihood for

Service-Oriented Systems

Amal Alhosban1, Khayyam Hashmi1, Zaki Malik1, and Brahim Medjahed2

1 Department of Computer Science
Wayne State University, MI 48202

{ahusban,khayyam,zaki}@wayne.edu
2 Department of Computer & Information Science
The University of Michigan - Dearborn, MI 48128

brahim@umd.umich.edu

Abstract. Automated identification and recovery of faults are impor-
tant and challenging issues for service-oriented systems. The process re-
quires monitoring the system’s behavior, determining when and why
faults occur, and then applying fault prevention/recovery mechanisms
to minimize the impact and/or recover from these faults. In this paper,
we introduce an approach (defined FOLT) to automate the fault iden-
tification process in services-based systems. FOLT calculates the likeli-
hood of fault occurrence at component services’ invocation points, using
the component’s past history, reputation, the time it was invoked, and
its relative weight. Experiment results indicate the applicability of our
approach.

Keywords: Service-oriented architecture, Fault tolerance, Reliability.

1 Introduction

Over the past decade, we have witnessed a significant growth of software func-
tionality that is packaged using standardized protocols either over Intranets or
through the Internet. System architectures adhering to this development ap-
proach are commonly referred to as service-oriented architectures (SOA). In
essence, SOAs are distributed systems consisting of diverse and discrete software
services that work together to perform the required tasks. Reliability of an SOA
is thus directly related to the component services’ behavior, and sub-optimal per-
formance of any of the components degrades the SOA’s overall quality. Services
involved in an SOA often do not operate under a single processing environment
and need to communicate using different protocols over a network. Under such
conditions, designing a fault management system that is both efficient and exten-
sible is a challenging task. The problem is exacerbated due to security, privacy,
trust, etc. concerns, since the component services may not share information
about their execution. This lack of information translates into traditional fault
management tools and techniques not being fully equipped to monitor, analyze,
and resolve faults in SOAs.

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 59–73, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

60 A. Alhosban et al.

In this paper, we present a fault management approach (Fault Occurrence
Likelihood esTimation: FOLT) for SOAs. We assume that component services
do not share their execution details with the invoking service (defined as an
orchestrator). The orchestrator only has information regarding the services’ in-
vocation times and some other observable quality of service (QoS) characteristics.
We propose to create fault expectation points in a SOA’s invocation sequence of
component services to assess the likelihood of fault occurrence. Fault recovery
plans are then created for these expectation points and are stored in a data
repository to be retrieved and executed when the system encounters a fault at
runtime. Due to space restrictions we only focus on the former in this paper, i.e.,
assessing the likelihood of a fault’s occurrence. The latter, i.e., “fault recovery”
requires independent discussion.

The paper is organized as follows. Section 2 presents an overview of the service-
oriented architecture. We then discuss service invocation models used there in,
and overview the relationship between services in each model, and the expected
faults for each invocation model. The fault assessment techniques are discussed
in Section 3. We present some experiments and analysis of FOLT in Section 4,
while Section 5 provides an overview of related work. Section 6 concludes the
paper.

2 Service-Oriented Architecture

In this section, we present a brief overview of service-oriented architectures and
the different invocation models used by the composition orchestrators. SOA is
defined as “a paradigm for organizing and utilizing distributed capabilities that
may be under the control of different ownership domains” [11]. Boundaries of
SOAs are thus explicit, i.e., the services need to communicate across boundaries
of different geographical zones, ownerships, trust domains, and operating envi-
ronments. Thus, explicit message passing is applied in SOAs instead of implicit
method invocations. The services in SOAs are autonomous, i.e., they are indepen-
dently deployed, the topology is dynamic, i.e., new services may be introduced
without prior acknowledgment, and the services involved can leave the system
or fail without notification. Services in SOAs share schemas and contracts. The
message passing structures are specified by the schema, while message-exchange
behaviors are specified by the contracts. Service compatibility is thus determined
based on explicit policy definitions that define service capabilities and require-
ments [12].

Two major entities are involved in any SOA transaction: Service consumers,
and Service providers. As the name implies, service providers provide a service
on the network with the corresponding service description [8]. A service con-
sumer needs to discover a matching service to perform a desired task among all
the services published by different providers. The consumer binds to the newly
discovered service(s) for execution, where input parameters are sent to the ser-
vice provider and output is returned to the consumer. In situations where a
single service does not suffice, multiple services could be composed to deliver the
required functionality [11].

Assessing Fault Occurrence Likelihood for Service-Oriented Systems 61

S

A

B

(b) Parallel (S : A, B)

S

A

B

(c) Probabilistic (S : A|p, B|1 - p)

S

(d) Circular (S|n)

n

(e) Synchronous (A and B : S)

S

A

B

(f) Asynchronous (A or B : S)

S A

(a) Sequential (S : A)

S

A

B

Fig. 1. Major SOA Invocation Models

Each service in an SOA may be invoked using a different invocation model.
Here, an invocation refers to triggering a service (by calling the desired func-
tion and providing inputs) and receiving the response (return values if any) from
the triggered service. An SOA may thus be categorized as a ‘composite service’,
which is a conglomeration of services with invocation relations between them.
There are six major invocation relations (see Figure 1). (a) Sequential Invoca-
tion: the services are invoked in a sequence, (b) Parallel Invocation: multiple
services are invoked at the same time, (c) Probabilistic Invocation: one service
is invoked from the multiple options, (d) Circular Invocation: a service invokes
“itself” x times, (e) Synchronous Activation: all services that were invoked need
to complete before the composition can proceed, and (f) Asynchronous Activa-
tion: completion of one of the invoked services is enough for the composition to
proceed [4]. Due to space restrictions, the detailed discussion about these models
is omitted here. The interested reader is referred to [9].

3 Fault Occurrence Likelihood

In this section, we present our approach Fault Occurrence Likelihood esTima-
tion (FOLT) which estimates the likelihood of fault for component services. For
the sake of discussion, each service is treated as an independent and autonomous
component. This component either performs its desired behavior (i.e., success) or
fails to deliver the promised functionality (i.e., fault). FOLT depends on three
major factors: the service’s past fault history, the time it takes to complete
the required task in relation to the composition’s total execution time, and the
service’s weight (i.e., importance) in the composition (in relation to other ser-
vices invoked). Since, a composed service using one or more of the invocation
models described above, may encounter a fault during its execution, the likeli-
hood of encountering a fault is directly proportional to the system’s complexity,
i.e., the more the invocation models involved, the greater the likelihood of a
fault’s occurrence. FOLT output values are thus influenced by the invocation
model(s) used in the composition. In other words, fault occurrence likelihood is
different from one invocation model to the other. In the following, we provide

62 A. Alhosban et al.

details of the FOLT approach. We first provide an illustrative scenario where
FOLT is applied, and then detail the proposed approach’s architecture, and
technique.

3.1 Sample Scenario

A student (Sam) intends to attend a conference in London, UK. He needs to
purchase an airline ticket and reserve a hotel for this travel. Moreover, he
needs some transportation to go from the airport to the hotel and from the
hotel to other venues (since this is the first time he’s visited the UK, he intends
to do some “Site-seeing” also). Sam has a restricted budget, so he is looking for
a “deal”.

Assume that Sam would be using a SOA-based online service (let’s call it
SURETY) that is a one-stop shop providing all the five options (airline ticket,
hotel, attractions, transportation and discounts) through outsourcing. SURETY
provides many services such as: attraction service which outsources to three
services (representing individual services): Art, Museums, and Area tours. This
service provides arrangement to visit different areas through sub-contractor com-
panies. For clarity, Figure 2 shows the options at one level. Sam may select Art,
Museum, Area tours, or any combination of these services. In terms of trans-
port options, Sam can either use a taxi service, or move around in a rental car,
bus, or bike. The different transport companies provide services based on the
distance between the places (attractions, etc.) Sam plans to visit. SURETY also
provides a package optimization service that finds “deals” for the options chosen
by Sam.

In Figure 2, the potential services are shown for clarity from “Get request”
(when SURETY receives Sam’s request) to “Send result” states (when SURETY
sends result(s) to Sam). This is done to show a combination of different invoca-
tion models. In reality, service invocations may not follow such a flat structure.
Since Sam is looking for a travel arrangement that include: booking a ticket,
booking a hotel, transportation (rental car, bike or bus) or taxi, and visiting
some places, some of these services can be invoked in parallel (here we assume
that SURETY provides such an option). Booking a ticket and finding attrac-
tions is an example of parallel invocation. Among the three choices that Sam
can select from (Area tours, Museums, and Art), for area attractions, he has to
make a choice among these service instances; this is an example of probabilistic
invocation. Similarly, taxi or rental car, bike and bus services can be classified as
probabilistic invocations since SURETY has to invoke one service from among
multiple services. SURETY then provides the results of transport selection to
the Package Optimization service, which hunts for available discounts (e.g., if
the customer uses the system for more than one year he will get a 20%, etc.).
This invocation is an example of asynchronous invocation, as one of the trans-
port selections will suffice. SURETY then sends the final selection itinerary to
Sam. In the following, we show how to use these invocation points to assess the
likelihood of a fault’s occurrence (similar to [2]).

Assessing Fault Occurrence Likelihood for Service-Oriented Systems 63

Attraction

Flight

Get

Request

Service Candidates

S11, S12, S13, �,S1n

Hotel

Transportation

Rental

Car

Bus

Package

Optimization

Send

Result

Service Candidates

S91, S92, S93, �,S9n

S3

S1

Get

Request

S2

S4 S5

S7

S9
Send

Result

S1 Flight Service

S2 Hotel Service

S3 Attraction Service

S3a Tour Service

S3b Museums Service

S3c Art Service

S4 Transportation Service

S5 Rental Car Service

S6 Bike Service

S7 Bus Service

S8 Taxi Service

S9 Optimization Service

Parallel

Invocation

Sequential

Invocation

Probabilistic

Invocation

Synchronous

Invocation

Asynchronous

Invocation

Bike

Area

Tours
Museums Art

S3a S3b S3c

S6

Taxi

S8

Fig. 2. Scenario with Invocation Models

3.2 Proposed Architecture

In this section, we discuss the architecture of FOLT. FOLT is divided into three
phases. In Phase 1, we assess the fault likelihood of the service using different
techniques (HMM, Reputation, Clustering). In Phase 2, we build a recovery plan
to execute in case of fault(s). Finally, in Phase 3, we calculate the overall system
reliability based on the fault occurrence likelihoods assessed for all the services
that are part of the current composition. In this paper, we present only the work
related to Phase 1. Phase 2 and 3 require independent discussion, which are not
presented here due to space restrictions. Details of Phase 1 follow.

3.3 Phase 1: Fault Occurrence Likelihood Assessment

In this Phase, we calculate the fault occurrence likelihood for the service to
assess its reliability. The notations used hereafter are listed in Table 1. Most of
the terms in the table are self-explanatory. Brief descriptions of other symbols
follow: λi is the ratio of the time taken by servicei (to complete its execution),
to the total composition execution time. On the other hand, λ′

i is the ratio of
the time taken by servicei to the total time “remaining” in the composition,
from the point when servicei was invoked. Δi is the first-hand experience of
an invoking service regarding a component servicei’s propensity to fault. For
cases where the invoker has no historical knowledge of servicei (i.e., the two
services had no prior interaction), Δi = 0. Similarly, Δ′

i is the second-hand
experience regarding a servicei’s faulty behavior. This information is retrieved

64 A. Alhosban et al.

Table 1. Definition of Symbols

Symbol Definition

T The total execution time.

t0 Start time.

tn End time.

ti Time at which a new service is invoked.

k Number of services.

P (x)t Fault occurrence likelihood for servicex when invoked at time t.

λi Weight of servicei in relation to T.

λ′
i Weight of servicei in relation to (T − ti).

Δi First-hand fault history ratio of servicei.

Δ′
i Second-hand fault history ratio of servicei.

f(si) The priority of servicei in the composition.

from other services that have invoked servicei in the past. We assume that trust
mechanisms (such as [8]) are in place to retrieve and filter service feedbacks.
f(si) is the assigned weight of a servicei in the whole composition. It provides a
measure for the importance of servicei in relation to other component services
invoked, where

∑n
i=1 f(si) = 1.

FOLT architecture (Figure 3) is composed of several modules. These are, His-
tory Module: This module keeps track of an individual service’s propensity to
fault. The information is stored in a History Repository that includes the service
name, invocation time, reported faults (if any), and a numerical score. The Esti-
mation Module calculates the fault occurrence likelihood for a service in a given
context (execution history). An optional Priority Module is used sometimes (de-
tails to follow) to indicate the service priority assignment by the invoker in a
given execution scenario. Lastly, the Planning Module creates plans to recover
from encountered faults, and prevent any future ones. As mentioned earlier,
details of the module are not the focus of this work.

In summary, the designers store some of the plan details in a plan repository
while others are generated at run time. Each plan contains specific fields such as:
Plan ID, Plan Name, Plan Duration time, Plan Steps and Plan Counter. When
FOLT decides to generate a plan, the system starts the dynamic generation
process. The generated plan depends on the chosen invocation model. When the
orchestrator invokes a service at any given time (invocation point), it calculates
the fault history ratio for the invoked service. Here, we use the maximum value
among the external ratio (service’s second-hand experience as observed by the
community) and internal ratio (first-hand experience of the orchestrator). The
system then calculates the fault occurrence likelihood of the invoked service. If
the likelihood is greater than a pre-defined threshold (θ1) the system builds a
fault prevention plan. Otherwise, the system re-calculates the likelihood taking
into consideration the priority of the current service and compares the value
again with θ1. The purpose of this step is that non-critical services have no
plans built for them, and the system can complete the execution even if a fault
occurs in any of these services. The newly created plan is tested using a series

Assessing Fault Occurrence Likelihood for Service-Oriented Systems 65

of verifications. If the plan fails any of the tests, the system returns back to
the planning module, and a new plan is created/checked. The process repeats
for x number of times until a valid plan is found. If no plan is still found,
the invoker/user is informed. Once a valid plan is created, it is stored in the
repository. Then, If the likelihood is greater than another pre-defined threshold
(θ2) the system can execute this fault prevention plan.

Phase 1 is divided into multiple steps: calculating the service’s weight (λ),
calculating the time weight (λ′), calculating the internal history value (Δi) using
a Hidden Markov Model, and calculating the external history value (Δ′

i) using
clustering and reputation. The likelihood of a fault occurring at time t is defined
by studying the relationship between the service’s importance, time it takes to
execute, and its past performance in the composition. Thus, each invocation
model will have a different fault likelihood value. As mentioned earlier, λ is the
ratio of the time that is needed to complete the service execution, divided by
the total time of completing the execution of the whole system. Similar to the
approach used in [10], we use this value of λ as one of the basic constructs

Service Invoker

Estimation

Module

Fault

Likelihood

> Ɵ1

Plan

Repository

No

Fault

Occurrence R
et

ri
ev

e
a

P
la

n

Planning Module

U
pdate the

H
istory R

atio

History

Ratio > Ɵ2 YesNo

Plan

Success
YesNo

Yes

History Module

B
ro

ad
ca

st
 t

h
e

H
is

to
ry

 R
at

io

Priority Module

Fault

Likelihood

> Ɵ1No Yes

History

Repository

Service Composition
R

et
ri

ev
e

a
P

la
n

Update the

History Ratio

Service

Invocation

Finding a Plan

External Services

Fig. 3. FOLT Architecture

66 A. Alhosban et al.

in FOLT to measure the (relative) weight of the invoked service to the rest of
system time. The basic premise is that the likelihood of a fault occurrence for a
long running service will be more than a service with very short execution time.
Determining the service execution time could be accomplished in two ways. If
the system does not know the execution time for a service, then the service’s
advertised execution time is used. On the other hand, after attaining experience
with the service (prior invocations), the service execution time could be recorded
and stored in the repository. Then:

λi =
T (si)

T
(1)

λ′
i =

T (si)
T − ti

(2)

where λi is as described above, T (si) is the total execution time of servicei,
while ti is the invocation time of servicei (i.e., when the service was invoked).

A service’s past behavior is assessed according to first-hand experience of the
invoking service and second-hand experiences of other services obtained in the
form of ratings via the community. These experiences are evaluated as a ratio
of the number of times the service failed, divided by the total number of times
the service was invoked. To assess the First-hand Experience, we use a Hidden
Markov Model (HMM). The HMM provides the probability that the service will
fail in the next invocation, based on the previous behavior of the service within
the system. HMMs have proven useful in numerous research areas for modeling
dynamic systems [7]. An HMM is a process with a set of states, set of hidden
behavior and a transition matrix. In our architecture, all services stay in one of
the two states: Healthy or Faulty (Figure 4).

Each time the composition orchestrator invokes service, it records the state of
that service (Faulty or Healthy) along with the time of invocation. Let the vector
V = the service behavior profile, then to asses the probability that Servicei will
be in the Faulty state in the next time instance:

P (Faulty|V) = P (Faulty|Healthy) + P (Faulty|Faulty) (3)

FOLT also uses other services’ experiences with Servicei to assess its relia-
bility. Services are divided into clusters based on their similarity (such as in [1]).
These group of services are consulted for the reputation of Servicei. We assume

Healthy Faulty

P State

P Probability of being in healthy state.

q Probability of being in faulty state.

1-p Probability of going from healthy to

faulty.

1-q Probability of going from faulty to

healthy.

1 - q

1 - p
q

Fig. 4. Finite state machine for a HMM of the service

Assessing Fault Occurrence Likelihood for Service-Oriented Systems 67

that other services are willing to share their reputation ratings, which are assim-
ilated using our previous work in [8]. A combination of service time weights and
service history ratios (using HMM, and reputation) is used to assess the fault
occurrence likelihood:

P (si)t = 1 − (λ′
i)

λi
1−max(Δi,Δ′

i
) (4)

Note that the fault history is assessed according to max(ΔA, Δ′
A). Then, the

likelihood of a service executing without any fault is 1− max(ΔA, Δ′
A). We use

this value in relation to the total execution times (remaining given by λ′, and
overall given by λ) to assess the likelihood of a service executing without a fault.
To get the likelihood of the service’s fault occurrence we subtract this value
from 1 in Equation 4. In cases where we need to incorporate a service’s priority
weight, Equation 4 becomes:

P (si)t = 1 − (λ′
i)

λif(si)
1−max(Δi,Δ′

i
) (5)

We observe that with increased service priority, fault likelihood also increases.
Based on the fault likelihood, FOLT decides when to build a recovery plan.
Services with a high priority are usually critical, and a fault in any of those
services may harm the overall QoS. Thus, fault likelihood and service priority
are directly proportional in FOLT.

Using Equation 4 as the basis, we define fault likelihood estimation for each in-
vocation model. For instance, the likelihood of fault(s) in a sequential invocation
(Pseq) is dependent on the successor service(s) [3]. Since FOLT uses invocation
points, only a single service can be invoked per time instance/invocation point.
Hence the equation stays the same. Let A be the successor service, then

Pseq = P (sA)t = 1 − (λ′
A)

λAf(sA)
1−max(ΔA,Δ′

A
) (6)

In a parallel invocation, fault estimation at the invocation point translates to
the fault occurring in either of the invoked services. Since all services are inde-
pendent, we need to add their fault likelihoods. Moreover, due to the likelihood
of simultaneous faults occurring in the respective services, we have

Ppar =
h⋃

i=1

Pi = Σh
i=1Pi − Πh

i=1Pi (7)

Ppar = Σh
i=1(1 − (λ′

i)
λif(si)

1−max(Δi,Δ′
i
)) − Πh

i=1(1 − (λ′
i)

λif(si)
1−max(Δi,Δ′

i
)) (8)

where h is the number of services invoked in parallel.
In probabilistic invocation (Ppro), fault likelihood depends on the probability

of selecting the service (Q). Then, if we have k services:

Ppro =
k⋂

i=1

Pi = Πk
i=1Qi × Pi (9)

68 A. Alhosban et al.

First invocation

point

Parallel

invocation

t1 t2

Second invocation

point

Probabilistic

invocation

t3

Third invocation

point

Sequential

invocation

t4

Fourth invocation

point

Service1

Service3

Service3a

Service3b

Service2

Probabilistic

invocation

Service5

Service6

t5 t6

Fifth invocation

point

Sixth invocation

point

Service3c

Synchronous

invocation

Service4

Service7

Synchronous

invocation

Service8

Fig. 5. Simulation Environment of Eleven Services and Six Invocation Points

Similarly, the fault likelihood of a circular invocation is:

Pcir = Πn
i=1PS (10)

4 Assessment

We developed a simulator and conducted experiments to analyze the perfor-
mance of our proposed framework. Our development environment consists of a
Windows server 2008 (SP2) based Quad core machine with 8.0 GB of ram. We
developed our scenarios using Asp.Net running on Microsoft .Net version 3.5 and
SQL as the back-end database. We simulated a services-based system complete
with fault prediction, recovery strategies and performance measurement. The
input to the system is an XML schema of the system that is used to exhibit the
characteristics of a running system.

The experimental results based on the scenario of Figure 2 are discussed below.
We are focusing in our experiment in reducing the total execution time, since
the service will not be executed if there is a high likelihood that it fails at run
time, as this increases the total execution time. In Figure 5, we show a system
with 11 services and 6 invocation points. The invocation points are at t1 = 30
ms, t2 = 50 ms, t3 = 450 ms, t4 = 560 ms, t5 = 670 ms, t6 = 890 ms with
the total execution time (T) as 1000 ms . At t1 the system invokes two services
(service1, service3) in parallel, at t2 the system uses probabilistic invocation
for three services (service3a, service3b, service3c). At t3 the system invokes one
service (service2) which is sequential invocation, and at t4 the invocation is
synchronous for one service service4. At t5 the invocation is again probabilistic
for three services (service5, service6, service7) and at t6 the system invokes one
service (service8). Table 2 shows a sample (i.e. these are not constant) of the
different parameter values for all 6 invocation points.

We assume the different theta values for this experiment i.e., θ1 = 0.50, θ2

= 0.60. The table lists the priority of each service involved, the services’ time

Assessing Fault Occurrence Likelihood for Service-Oriented Systems 69

Table 2. Service Parameters at Invocation Points

Invocation
Point

Service Time Priority λi λ′
i Δi Δ′

i P (si)

1 Service1 180 60% 0.18 0.1856 0.30 0.15 0.2289

1 Service3 250 40% 0.25 0.2577 0.40 0.60 0.2875

2 Service3a 80 70% 0.08 0.8421 0.90 0.70 0.7498

2 Service3b 90 50% 0.09 0.0947 0 0.20 0.1241

2 Service3c 80 30% 0.08 0.0842 0.50 0.40 0.1120

3 Service2 150 80% 0.15 0.2727 0.70 0.80 0.5414

4 Service4 1000 80% 0.1 0.2273 0.60 0.80 0.4471

5 Service5 80 90% 0.08 0.2424 0.70 0.65 0.2883

5 Service6 70 80% 0.07 0.2121 0.50 0.80 0.3522

5 Service7 80 90% 0.08 0.2424 0.75 0.90 0.6395

6 Service8 100 80% 0.1 0.9091 0.70 0.80 0.0374

weights and their history ratios (from internal and external experiences). Using
Equation 8, FOLT calculated the fault likelihood at the first invocation point
(Parallel invocation) to be Ppar =0.4505. Since service1 and service3 had a
very low fault likelihood, this in turn implied that the invocation point fault
likelihood was lower. In this case Ppar < θ1, FOLT did not build any plan and
continued with the system execution. For the second invocation point (Prob-
abilistic invocation), as per the given parameters FOLT calculated the fault
likelihood using Equation 9 to be Ppro=0.0104. Hence, the system did not build
a recovery plan and continued its execution. Similarly at third invocation point
(Sequential invocation): the fault likelihood was calculated using Equation 6 to
be Pseq=0.5414. In this case Pseq > θ1, the system did build a recovery plan and
continued its execution. However, the execution of the created plan had to wait
until the occurrence of fault because Pseq < θ2. Fourth invocation point (Syn-
chronous invocation): The fault likelihood was same as of service4 = 0.4471.
Fifth invocation point (Probabilistic invocation): The fault likelihood calculated
by FOLT was Ppro=0.0649. Since service7 had a high fault likelihood and the
other two services had low fault likelihood , this in turn implied that the in-
vocation point fault likelihood was lower. In the case that the selected service
was service7, the system would have build a recovery plan and executed it(fault
likelihood of service7 > θ2). Sixth invocation point (Asynchronous invocation):
The fault likelihood of this invocation point was same as that of service8 =
0.0374. For this invocation point the system did not create any plan.

In Figure 6-(a) We can see the eleven services in this system and their fault
likelihoods. We notice that servie3a has the highest fault likelihood and service8

has the lowest fault likelihoods. These results are based on the different service’s
weight, history, behavior, invocation time and priority. Figure 6-(b) shows the
fault likelihood for each invocation point where the highest fault likelihood was
at t3 and the lowest fault likelihood was at t2. Figure 6-(c) shows the relationship
between the priority and the fault likelihood. For example, service3a has a pri-
ority of 70% and the fault likelihood is 0.7498, however, the priority for service7

70 A. Alhosban et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

F
a
u

lt
 L

ik
el

ih
o

o
d

Service's Proirity

(a) (b)

(c) (d)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

F
au

lt
L

ik
el

ih
o

o
d

Service's Weight

λ

λ'

0

0.1

0.2

0.3

0.4

0.5

0.6

t1 t2 t3 t4 t5 t6

F
a
u

lt
L

ik
el

ih
o

o
d

Invocation Points

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
a
u

lt
 L

ik
el

ih
o

o
d

Service Name

Fig. 6. (a) Services Fault Likelihood (b) Invocations Fault Likelihood (c) Service Pri-
ority (d) Service Time Weight

is 90% and the fault likelihood is 0.6395, because it has lower weight. Figure
6-(d) presents the relationship between service weight and the fault occurrence
likelihood.

We also performed experiments to assess the FOLT approach’s efficiency. Fig-
ure 7-(a) shows the comparison between FOLT, no fault and systems that use
replace, retry and restart as recovery techniques. Here total execution time is
plotted on the y-axis and the number of faults on the x-axis. With increasing
number of faults, the execution time also increases. However, FOLT takes less
time than compared techniques. This is due to the fact that FOLT preempts a
fault and builds a recovery plan for it. Figure 7-(b) shows the total execution
time comparisons for the five systems. Here we fix the number of faults to four.

5 Related Work

In this section, we provide a brief overview of related literature on fault manage-
ment and fault tolerance techniques in service-oriented environments, and the
Web in general. Santos et al. [14] proposed a fault tolerance approach (FTWeb)
that relies on active replicas. FTWeb uses a sequencer approach to group the
different replicas in order. It aims at finding fault free replica(s) for delegating
the receiving, execution and request replies to them. FTWeb is based on the

Assessing Fault Occurrence Likelihood for Service-Oriented Systems 71

0

1

2

3

4

5

6

7

0 2 4 6 8 10

E
x

ec
u

ti
o

n
T

im
e

Number of Faults

Retry

Replace

Restart

FOLT

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

No Fault Retry Replace Restart FOLT

E
x

ec
u

ti
o

n
 T

im
e

(a) (b)

Fig. 7. (a) Total Execution Time Comparisons in Relation to Number of Faults (b)
Execution Time Comparisons

WSDispatcher engine, which contains components responsible for: creating fault
free service groups, detecting faults, recovering from faults, establish a voting
mechanism for replica selection, and invoking the service replicas. Raz et al. [13]
present a semantic anomaly detection technique for SOAs. When a fault occurs,
it is corrected by comparing the application state to three copies of the service
code and data that is injected at a host upon its arrival. Similarly, Hwang et
al. [5] analyze the different QoS attributes of web services through a probability
based model. The challenge in this approach is composing an alternate work
flow in a large search space (withe the least error). Online monitoring (for QoS
attributes) also needs some investigation in this approach.

Wang et al’s. [16] approach integrates handling of business constraint vio-
lations with runtime environment faults for dynamic service composition. The
approach is divided into three phases. The first phase is defining the fault tax-
onomy by dividing the faults into four groups (functional context fault, QoS
context fault, domain context fault and platform context fault) and analyzing
the fault to determine a remedial strategy. The second phase is defining remedial
strategies (remedies are selected and applied dynamically). The remedial strate-
gies are categorized into goal-preserving strategies to recover from faults (ignore,
retry, replace and recompose) and non-goal preserving strategies to support the
system with actions to assist possible future faults (log, alert and suspend). The
third phase is matching each fault category with remedial strategies based on the
data levels. The main challenge in this approach is the extra overhead, especially
when the selected strategy is a “recomposition” of the whole system.

Simmonds et al. [15] present a framework that guarantees safety and aliveness
through the conversation between patterns, and checking their behaviors. The
framework is divided in two parts: (1) Websphere runtime monitoring with prop-
erty manager and monitoring manager. The property manger consists of graphical
tools to transfer the sequential diagramto NFAs and check the XML file. The mon-
itoring manager builds the automata and processes the events. (2) Websphere run-
time engine. It uses the built-in service component that already exists in BPEL,

72 A. Alhosban et al.

to provide service information at runtime. Delivering reliable service compositions
over unreliable services is a challenging problem. Liu et al. [6] proposed a hybrid
fault-tolerant mechanism (FACTS) that combines exception handling and trans-
action techniques to improve the reliability of composite services.

6 Conclusion

We presented a new framework for fault management in service-oriented ar-
chitectures. Our proposed approach Fault Occurrence Likelihood esTimation
(FOLT) depends on the past behavior of services, the invocation method of the
services, the execution times of services, and the priority of a specific service in
the current system. We identified new metrics to measure the fault occurrence
likelihood. We evaluated FOLT using simulations and the results indicate the
approach’s efficiency and ability to recover from faults. FOLT reduces the over-
all system execution time by replacing the traditional system recovery methods
(i.e., restarting the system at check points) by reacting to the faults by expecting
the faults ahead of time and pro-actively building the prevention/recovery plans.
In the future, we plan to compare FOLT with other similar existing approaches.
In this paper, we presented Phase 1 of our approach, and are currently working
on Phase 2 (i.e. generating a fault recovery plan) and Phase 3 (i.e. assessing
overall system reliability to see when to execute a plan).

References

1. Abramowicz, W., Haniewicz, K., Kaczmarek, M., Zyskowski, D.: Architecture for
web services filtering and clustering. In: International Conference on Internet and
Web Applications and Services, p.18 (2007)

2. Bai, C.G., Hu, Q.P., Xie, M., Ng, S.H.: Software failure prediction based on a
markov bayesian network model. J. Syst. Softw. 74(3), 275–282 (2005)

3. Cardoso, J., Miller, J., Sheth, A., Arnold, J.: Modeling quality of service for work-
flows and web service processes. Journal of Web Semantics 1, 281–308 (2002)

4. D’Mello, D.A., Ananthanarayana, V.S.: A tree structure for web service composi-
tions. In: COMPUTE 2009: Proceedings of the 2nd Bangalore Annual Computer
Conference, pp. 1–4. ACM, New York (2009)

5. Hwang, S.-Y., Wang, H., Tang, J., Srivastava, J.: A probabilistic approach to mod-
eling and estimating the qos of web-services-based workflows. Inf. Sci. 177(23),
5484–5503 (2007)

6. Liu, A., Li, Q., Huang, L., Xiao, M.: Facts: A framework for fault-tolerant com-
position of transactional web services. IEEE Transactions on Services Comput-
ing 99(PrePrints), 46–59 (2009)

7. Malik, Z., Akbar, I., Bouguettaya, A.: Web services reputation assessment us-
ing a hidden markov model. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-
ServiceWave 2009. LNCS, vol. 5900, pp. 576–591. Springer, Heidelberg (2009)

8. Malik, Z., Bouguettaya, A.: Rateweb: Reputation assessment for trust establish-
ment among web services. The VLDB Journal 18(4), 885–911 (2009)

9. Menasce, D.A.: Composing web services: A qos view. IEEE Internet Computing 8,
88–90 (2004)

Assessing Fault Occurrence Likelihood for Service-Oriented Systems 73

10. Meulenhoff, P.J., Ostendorf, D.R., Živković, M., Meeuwissen, H.B., Gijsen,
B.M.M.: Intelligent overload control for composite web services. In: Baresi, L.,
Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 34–
49. Springer, Heidelberg (2009)

11. Papazoglou, M.: Web Services: Principles and Technology. Pearson-Prentice Hall,
London (2008) ISBN: 978-0-321-15555-9

12. Chen, H.p., Zhang, C.: A fault detection mechanism for service-oriented architec-
ture based on queueing theory. International Conference on Computer and Infor-
mation Technology, 1071–1076 (2007)

13. Raz, O., Koopman, P., Shaw, M.: Semantic anomaly detection in online data
sources. In: ICSE 2002: Proceedings of the 24th International Conference on Soft-
ware Engineering, pp. 302–312. ACM, New York (2002)

14. Santos, G.T., Lung, L.C., Montez, C.: Ftweb: A fault tolerant infrastructure for
web services. In: Proceedings of the IEEE International Enterprise Computing
Conference, pp. 95–105. IEEE Computer Society, Los Alamitos (2005)

15. Simmonds, J., Gan, Y., Chechik, M., Nejati, S., O’Farrell, B., Litani, E., Water-
house, J.: Runtime monitoring of web service conversations. IEEE Transactions on
Services Computing 99(PrePrints), 223–244 (2009)

16. Wang, M., Bandara, K.Y., Pahl, C.: Integrated constraint violation handling for
dynamic service composition. In: SCC 2009: Proceedings of the 2009 IEEE Inter-
national Conference on Services Computing, pp. 168–175. IEEE Computer Society,
Washington, DC, USA (2009)

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 74–89, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Strategy for Efficient Crawling of Rich Internet
Applications

Kamara Benjamin1, Gregor von Bochmann1, Mustafa Emre Dincturk1,
Guy-Vincent Jourdan1, and Iosif Viorel Onut2

1 SITE, University of Ottawa. 800 King Edward Avenue,
K1N 6N5, Ottawa, ON, Canada

2 Research and Development, IBM® Rational® AppScan® Enterprise, IBM, 1 Hines Rd, Ottawa,
ON, Canada

{bochmann,gvj}@site.uottawa.ca,
{kbenj067,mdinc075}@uottawa.ca,

vioonut@ca.ibm.com

Abstract. New web application development technologies such as Ajax, Flex
or Silverlight result in so-called Rich Internet Applications (RIAs) that provide
enhanced responsiveness, but introduce new challenges for crawling that cannot
be addressed by the traditional crawlers. This paper describes a novel crawling
technique for RIAs. The technique first generates an optimal crawling strategy
for an anticipated model of the crawled RIA by aiming at discovering new
states as quickly as possible. As the strategy is executed, if the discovered
portion of the actual model of the application deviates from the anticipated
model, the anticipated model and the strategy are updated to conform to the
actual model. We compare the performance of our technique to a number of
existing ones as well as depth-first and breadth-first crawling on some Ajax test
applications. The results show that our technique has a better performance often
with a faster rate of state discovery.

Keywords: Rich Internet Applications, Crawling, Web Application Modeling.

1 Introduction

Web Applications have been used for nearly as long as the Web itself. In the
formative years, a Web Application was an application running entirely on the server
side, and which used a dynamically created web page rendered inside a classical web
browser as a client. Following the model of static Web sites, these web applications
used the usual GET and POST HTTP requests to communicate between the client and
the server, and each response sent by the server was meant as a complete replacement
of the currently displayed client side. These applications were not very user-friendly
due to the lack of flexibility at the client side, but they were pretty similar to static
web sites in terms of crawling (except for possible user inputs): it was sufficient to
scan the current page to find out what the possible next states could be, and the
current state was entirely defined by the last server response. Crawling these web

 A Strategy for Efficient Crawling of Rich Internet Applications 75

applications was easy, and many commercial tools can do it, e.g. for the purpose of
automated testing, usability assessment, security evaluation or simply content
indexing.

This situation was first modified with the widespread support in Web browsers for
scripting languages such as JavaScript, and the ability given to these scripts by
browsers to modify directly the current page (the current DOM). After this, it was no
longer true that the state of the client could be inferred simply from the last server
response, since script embedded in this response could have modified the state,
perhaps based on user input. This new situation seriously impaired the ability of
existing tools to truly crawl these applications. But it was the introduction of another
possibility for these scripts that was a real challenge for crawlers: the ability for
scripts to asynchronously exchange messages with the server (still using GET and
POST commands) without having to reload the page entirely. This technique, most
commonly used with Ajax, means that these Web Applications can really be seen as
two programs running concurrently in the server and the browser, communicating by
asynchronous message exchanges. We call these types of Web Applications “Rich
Internet Applications” (RIAs). To the best of our knowledge, there are no tools today
to efficiently and systematically crawl RIAs. Some academic tools have been
developed [11,17] but the results are not entirely satisfactory yet. Some large
commercial software do require crawling abilities, such as vulnerabilities scanners
(e.g. see [3] for a recent survey of security scanners), but again their ability to really
crawl RIAs is very limited in practice.

It is important to note that the difficulties introduced by RIAs for crawling have a
much deeper impact than preventing security testing tools to perform well. First,
crawling is the basis for indexing, which is necessary for searching. Our inability to
crawl RIAs means that these RIAs are not properly indexed by search engines,
arguably one of the most important features of the Web.1 Second, because RIAs are
often more user-friendly than simple sites and provide an enhanced experience for
end-users, a growing number of web authoring tools automatically add RIA-type code
(usually Ajax) into the produced site. So the problem extends much beyond advanced
Web Applications. Even the most classical Web site, built without any programming
ability by some content editor, might end up being non-crawlable and thus non-
searchable. This is clearly an important problem that must be addressed. This paper is
a first step in this direction. For simplicity, we only consider Ajax based RIAs in the
following, but the same concepts can be applied to other technologies.

The paper is organized as follows: in Section 2, we provide a general overview of
our crawling strategy. In Section 3, we give a high-level description of the set of
algorithms we have developed for this purpose. In Section 4, we show how all of
these algorithms are tied together to lead to our crawling strategy. In Section 5, we
provide experimental results obtained with our prototype, compared with existing
tools and other, simpler crawling strategies. Related works is reviewed in Section 6,
and we conclude in Section 7 with some future research directions.

1 To observe the current RIA crawling capabilities of the search engines, we created various

experimental RIAs, each with 64 states reachable via AJAX calls. To date, Google and Ya-
hoo visited our applications: neither was able to explore beyond the initial state!

76 K. Benjamin et al.

2 Overview of Strategy

The purpose of crawling a RIA is to infer automatically an accurate model of the
application. We conceptualize the model of the application as a Finite State Machine.
The states of the state machine are the distinct DOMs that can be reached on the client
side and a transition is an event execution (e.g. any JavaScript event such as onClick,
onMouseOver, onSubmit etc.) on the current DOM. To produce an accurate and
useful model, the crawling strategy must satisfy certain requirements. First, the
produced model must be complete. That is, the model must represent all reachable
states and all transitions. In addition to the event being executed, the next state of a
transition may depend on other data, such as user inputs and variable values.
Therefore, building a complete model requires capturing all the states and all such
events along with the relevant data. Second, the model must be built in a deterministic
way. That is, crawling the application twice under the same conditions (including
server-side data) should always produce the same model. Third, the model should be
produced efficiently. By this, we mean that the model construction strategy should
produce as much of the model as possible within the shortest amount of time.
Crawling an application may take a very long time, and even can be infinite
theoretically; thus it may not be practical or even feasible to wait until the crawling
ends. In such a case, if the crawl is stopped before it is complete, the partial model
produced should contain as much information as possible.

Satisfying the completeness requirement is not too difficult on its own. There are
several simple strategies that will achieve this. One must simply be careful not to
overlook any of the intermediate states [4], even though most state-of-the-art crawling
strategies fail to meet this requirement, usually on purpose since it is considered to
take too much time. The determinism requirement is also not very difficult to achieve,
although many RIAs may not easily provide the necessary uniform responses to the
same requests. The efficiency requirement is obviously the most challenging one.
Even the most simple-minded strategies, such as enumerating and executing one by
one all possible orderings of events enabled at the state being explored, may satisfy
the first two requirements, but not the efficiency requirement. Considering a single
state with n enabled events, there are n! possible different orders for executing these
events, so blindly executing events in every possible order is not efficient. However,
note that this simple strategy makes no hypothesis about the application beforehand,
so there is actually not much room for generating a more efficient strategy as such.

To generate an efficient strategy, we use the following methodology which we call
“model-based crawling”:

• First, general hypotheses regarding the behavior of the application are elaborated.
The idea is to assume that, in general, the application will usually behave in a
certain way, described by the hypotheses. With these hypotheses, one can
anticipate what the final model (or part of it) will be, if they are indeed valid. The
crawling activity is thus morphed from a discovery activity (“what is the model?”)
into a confirmation activity (“is the anticipated model correct?”). Note that the
hypotheses do not need to be actually valid.

• Once reasonable hypotheses have been specified, an efficient crawling strategy can
be created based on these hypotheses. Without any assumptions about the behavior
of the application, it is impossible to have a strategy that is expected to be efficient.

 A Strategy for Efficient Crawling of Rich Internet Applications 77

But if one anticipates the behavior, then it becomes possible to draw an efficient
strategy to confirm the hypothesis. In our case, we provide a crawling strategy that
is in fact optimal for our hypotheses.

• Finally, a strategy must also be established to reconcile the predicted model with
the reality of the application that is crawled. Whenever the application’s behavior
doesn’t conform to the hypotheses, some corrective actions must be taken to adapt
the model and to update the crawling strategy. In our case, we always assume that
the part of the application that has not yet been crawled will obey the initial set of
hypotheses, and the crawling strategy is adapted accordingly.

The event-based crawling strategy exposed in this paper follows this methodology. To
form an anticipated model, we make following two hypotheses only:

• H1: The events that are enabled at a state are pair-wise independent. That is at a
state with a set {e1,e2,…, en} of n enabled events, executing a given subset of these
events leads to the same state regardless of the order of execution.

• H2: When an event ei is executed at state s, the set of events that are enabled at the
reached state is the same as the events enabled at s except for ei.

We believe that these hypotheses are usually reasonable for most of the web
applications in the sense that executing different subsets of events is more likely to
lead to new states, whereas executing a given subset of events in different orders is
more likely to lead to the same state. More precisely, it is obviously not always the
case that concurrently enabled events are independent of each other, and that
executing an event will not enable new ones or disable existing ones. Still, it is
reasonable to assume that, in general, the events that are concurrently enabled are
“roughly” independents, as a whole. In fact, if a client state tends to have a large
number of events, then it seems reasonable to expect that many of these events are
independent of each other, and so even if the hypotheses are often violated for chosen
pairs of events, they are usually verified overall. And of course, when this is not the
case, the expected model and the corresponding strategy is updated without throwing
away the whole strategy.

Fig. 1. Hypercube of dimension 4

78 K. Benjamin et al.

With these hypotheses, the expected model for a state with n enabled events is a
hypercube of dimension n. There are 2n possible subsets of n events and a hypercube
is a partial order of all possible subsets ordered by inclusion. Figure 1 shows an
example hypercube of dimension n = 4. In a hypercube of dimension n, each of the 2n
states is characterized by a subset of n events executed to reach it. Each edge
corresponds to a transition that is triggered by execution of one of the events. There
are n! different paths from the bottom state to the top state. Each one of them
represents an order of execution containing n events.

Based on the hypercube hypothesis, a strategy should be generated. To satisfy our
efficiency requirement, the strategy must aim at visiting each state in the expected
model as soon as possible. Once each state has been visited, then the strategy com-
pletes the crawl by aiming at efficiently traversing every transition that has not yet
been traversed. In the following section, we introduce an algorithm that generates an
optimal strategy which completes crawling in (n choose (n/2))*⌈n/2⌉ paths instead of
going over n! paths. What is more only (n choose (n/2)) of these paths are enough to
visit all the states in the hypercube. Both numbers are optimal.

Another important factor for the efficiency of the crawling algorithm is the choice
of the state equivalence relation. Equivalence relation is used to determine whether a
state should be regarded as being the same as another, already known. This avoids
exploring the same state multiple times. Our crawling algorithm assumes that some
appropriate equivalence relation is provided. Different equivalence relations can be
employed depending on the purpose of model. For example, for security scanning, an
equivalence relation that ignores text content of pages may be appropriate whereas for
indexing the text must be taken into account. An in-depth discussion of this topic is
beyond the scope of this paper, but it is important to note that the equivalence
function we are working with is assumed to be a real equivalence relation (from the
mathematical viewpoint) and that this function should at least be coherent with state
transitions, that is, two equivalent states must at least have the same set of embedded
URLs (an exception can be made if some specific parts of the page are ignored during
the crawl, e.g. a part containing ads for example. URLs and events embedded into the
ignored parts can also be ignored) and the same set of events. One obvious such
equivalence relation is simple equality. Throughout this paper ≈ is used to denote the
equivalence relation that is provided to the crawling algorithm.

3 Minimal Transition Coverage (MTC) of a Hypercube

In this section, we present an algorithm to find a minimal set of paths that traverse
each transition in a given hypercube. We call such a set a Minimal Transition
Coverage (MTC) of the hypercube. Since we also want to be able to visit each state of
the hypercube as early as possible, we need more than just any MTC; we need one
that will also reach all the states as fast as possible. For this reason, our MTC
algorithm can be constrained by a set of disjoint chains of transitions given as input.
Each chain of the constraint set will be included in one of the produced MTC chains�
When the produced MTC is constrained with a minimal set of chains that visit each
state in the hypercube, the resulting MTC is exactly what we are aiming for: a
minimum number of paths containing every possible transition of the hypercube and

 A Strategy for Efficient Crawling of Rich Internet Applications 79

including as a subset a minimum number of paths visiting every state. We then simply
have to give priority to the paths visiting the states to obtain our strategy.

In [5], it was stated that a Minimal Chain Decomposition (MCD) of a hypercube,
which is the minimal set of paths visiting every state of the hypercube, could be used
as part of a crawling strategy. Here, we use an MCD as a constraint for MTC to
generate our strategy. First, we give a short review of the MCD for completeness.

3.1 Minimal Chain Decomposition

Since a hypercube represents a partially ordered set, a path in the hypercube consists
of pair-wise comparable elements. A path is also called as a chain of the order.
Finding a set of chains covering every element of the order is known as chain
decomposition of the order. A minimal chain decomposition of the order is a chain
decomposition containing the minimum number of chains (see [1] for an overview of
the concepts). In 1950, Dilworth proved that the cardinality of any minimal chain
decomposition is equal to the maximum number of pairwise incomparable elements
of the order, also known as the width of the order [9]. For a hypercube of size n, the
width is (n choose n/2). An algorithm that can be used for decomposing a hypercube
is given in [8]. Below we present the algorithm as it is exposed in [12] (adapted to our
hypercube definition).

Definition (adapted from [12]): The Canonical Symmetric Chain Decomposition
(CSCD) of a hypercube of dimension n is given by the following recursive definition:
1. The CSCD of a hypercube of size 0 contains the single chain (Ø).
2. For n ≥ 1, the CSCD of a hypercube of dimension n contains precisely the

following chains:

• For every chain A0 < … < Ak in the CSCD of a hypercube of dimension n – 1
with k > 0, the CSCD of a hypercube of dimension n contains the chains:

A0 < … < Ak < Ak ∪ {n} and
 A0 ∪ {n} < … < Ak-1∪ {n}.

• For every chain A0 of length 1 in the CSCD of a hypercube of dimension n - 1,
the CSCD of a hypercube of dimension n contains the chain:

 A0 < A0 ∪ {n}

3.2 MTC Algorithm

In the rest of this paper, we represents a chain C as alternation of states and events in
the form C = s1 - e1 - s2 - e2 - s3 - … - em - sm+1. Each chain starts and ends with a state.
The first state in C is noted by first(C) and the last state in C is noted by last(C). Each
event ei in C corresponds to a transition (si – ei – si+1) from si to si+1. The length of the
chain C is defined to be the number of states in C and denoted as |C|. prefC(si) denotes
the chain that is the prefix of C such that last(prefC(si)) is si. suffC(si) denotes the chain
that is the suffix of C such that first(suffC(si)) is si. Two chains C1 and C2 can be
concatenated if last(C1) = first(C2). The resulting chain is represented as C1+ C2.

For a given hypercube of dimension n, we present an algorithm to generate an
MTC in three stages. The algorithm allows MTC to be optionally constrained by a set

80 K. Benjamin et al.

(CC) of disjoint chains of the transitions. We call level 0 the bottom of hypercube,
level n the top of the hypercube and level ⌊n/2⌋ middle of the hypercube.

Upper Chains Stage: In this stage, a set of chains (CU) covering all the transitions
above the middle of the hypercube is calculated. For each transition leaving a state at
the middle level, a chain is constructed by extending the transition toward the top of
the hypercube. Let U be the chain that is currently being constructed and s be last(U).
Initially, U is a chain containing only the middle level state. Then we pick an
unvisited transition (t = s - e - s') leaving s and attempt to extend U with t. If t is not
part of any constraint chain then we can extend U with t. Otherwise t is included in a
constraint chain C∈CC. There can be two cases,

• If |U| = 1 or s is first(C) extend U with suffC(s).
• Otherwise we cannot use t to extend U. So, we mark t as not usable and we attempt

to extend U by picking another unvisited transition.

The extension of U continues until no transition can be found to extend it further.

Lower Chains Stage: In this stage, a set of chains (CD) covering all the transitions
below the middle level of the hypercube is calculated. This stage is simply the
symmetric of the upper chains stage.

Chain Combination Stage: In the final stage, the chains in CU and CD are combined
into larger chains. Note that, when the hypercube has an odd dimension, the number
of transitions entering a middle-level state is one less than the number of transitions
leaving it. In that case, for some upper chains, we cannot find a lower chain to
combine with. For this reason, in this stage we iterate over the lower chains and try to
combine each with an upper chain. After all lower chains combined, any uncombined
upper chains are simply added to the resulting set. Again the only consideration while
combining a lower chain with an upper chain is to keep every constraint chain as it is.
That is, if is a constrain chain C∈CC has a prefix in the lower half and a suffix in the
upper half, then the lower chain D containing the prefix of C can only be combined
with the upper chain U containing the suffix of C and vice versa.

Note that, the number of chains in an MTC of a hypercube of size n equals (n
choose (n/2))*⌈n/2⌉ which is the number of states in the middle level (or the width of
the hypercube) multiplied by the number of transitions leaving each middle level
state.

4 Overall Strategy for Crawling RIAs

There are two methods for reaching new client states while crawling a RIA. One is
through making synchronous HTTP requests to the server via URLs embedded in the
DOM. The other is executing events in the DOM. An overall strategy for crawling
RIAs should be a mix of these two and possibly running them alternatingly. For lack
of space, we do not ellaborate here on the traditional, URL crawling part of the
strategy, nor on the way we alternate between URL crawling and event crawling (see
[4] for some details), and focus on event-based crawling only.

 A Strategy for Efficient Crawling of Rich Internet Applications 81

During URL-based crawling, whenever a page with a non-empty set of events is
discovered, it is forwarded to the event based crawler for exploration. If such a state
(called a base state) has n events, then the expected model we use to generate the
crawling strategy is a hypercube of dimension n based on that state. To explore the
states reachable from a base state s, a strategy Chains(s) that consists of a set of chains
is generated. Let MTC(s) denote a set of MTC chains constrained by an MCD of the
hypercube based on s. To generate the “initial” strategy, we use MTC(s) as a basis.
Note that the chains in MTC(s) may not be executed in their original form because a
chain in MTC(s) does not necessarily start at the base state s. To be able to begin
executing events in a chain C∈MTC(s), we have to reach the state first(C). For this
reason each C must be prepended with a (possibly empty) transfer chain, denoted
T(first(C)), from the base state s to first(C). Any chain can be used as a transfer chain
for C as long as it starts from the base state s and reaches first(C). Thus the initial
event execution strategy for the hypercube based on state s will simply be the set
Chains(s) = {C' = T(first(C))+C | C∈MTC(s)}. After, we begin exploration of the
base state s, by executing the chains in Chains(s). Since we aim to reach every state
first, we execute the chains that contain MCD chains first.

Executing a chain simply means executing the events of the chain one after the
other. After an event is executed, if the state reached is a new state then this state is
scanned and the newly found URLs are added to the traditional crawler. Then, we
need to check if the state reached has the expected characteristics. If it is not, the
current strategy and expected model must be revised.

The expected characteristics of a reached state are determined by the model
hypotheses (in our case H1 and H2). H1 has two possible violations (non-mutually
exclusive)

• Unexpected Split: In this case, we are expecting to reach a state that has already
been visited but the actual state reached is a new state.

• Unexpected Merge: In this case, we unexpectedly reach a known state.

H2 can also be violated in two ways (non- mutually exclusive)

• Appearing Events: There are some enabled events that were not expected to be
enabled at the reached state.

• Disappearing Events: Some events that were expected to be enabled at the reached
state are not enabled.

When a violation occurs, the revision method creates a brand new strategy (still based
on the original hypotheses) for the state causing violations and updates any chain in
the existing strategy that is affected by the violations. As a result, the strategy will
again be valid for the actual model of the application discovered so far. In the
following, we give an outline (see Figure 2) and a high-level overview of the revision
method, details can be found in [4].

Consider a hypercube based on state s1 and the strategy Chains(s1) currently used
for s1. Let the current chain be C = s1 - e1 - s2 - … - si - ei - si+1 - … - sn in Chains(s1)
and let si be the current state. According to C we execute the event ei at si. Let s' be the
actual state reached after this execution.

82 K. Benjamin et al.

First we have to make sure that s' is a state that is in accordance with the expected
model. What we expect s' to be depends on whether si+1 is a known state or not. si+1 is
a known state if we executed a chain C'≠C in Chains(s1) such that prefC'(si+1) executes
exactly the events {e1,e2,…,ei} in any order without any violations. If this is the case
then we expect s' to be equivalent to si+1. Otherwise we expect s' to be a new state
without any appearing/disappearing events. If the expectations are met, from now on
we regard si+1 in the strategy as s'.

If s' is as we expected, the current strategy is still valid but it can be revised by
removing some redundant chains. This is possible when C is our first attempt to visit
si+1 and it turns out that we had already been in s'. This is either because s' was
reached through a base state different than s1 or s' was reached through s1 but the first
time s' was reached there was an appearing/disappearing event violation. In either
case, since s' has already been discovered, there must be an existing strategy to
explore it. Hence all the chains having the prefix prefC(si+1) are redundant and can be
removed from Chains(s1).

Fig. 2. Revising the Crawling Strategy after executing an event

In case s' is not as expected, revision procedure checks for an alternative way to
complete the remaining portion of C as much as possible. In order to do that, we first
look for an alternative path among the remaining chains in Chains(s1) to reach the
minimum indexed state sk (i < k < n) in suffC(s1) without traversing the problematic
transition (si - ei - si+1). If a chain C'' has such a prefix then we can use that prefix to
reach sk and execute suffC(sk) after that. That is, we add a new chain
prefC''(sk)+suffC(sk) to the strategy. Note that if sk is the last state in C'' then to
eliminate redundancy we can remove C'' from the strategy as it is covered completely

Procedure reviseStrategy
Let C = s1 - e1 - s2- … - si – ei – si+1 - … - sn be the current chain
 ei be the event that has just been executed in C
 s' be the state reached by executing event ei at si

If s' meets the expected model characteristics then
- If the current model contains s such that s' ≈ s then
- - remove from Chains(s1) all chains containing prefC(si+1);
- stop procedure reviseStrategy

Else // s' does not meet the expected model characteristics
- For each C' in Chains(s1) such that prefC'(si+1) = prefC(si+1)
- - Let sk be the first state of C' after si that belongs to another
 chain C'' of Chains(s1) that does not include si-ei-si+1, if
 any
- - - add the chain prefC''(sk)+suffC'(sk) to Chains(s1);
- - - remove C'' from Chains(s1) if sk is its last state
- - remove C' from Chains(s1)
- If this is the first time s' is visited, generate the crawling
 strategy for s' based on the hypercube hypothesis, with
 T(s') = prefC(si)+(si-ei-s')

 A Strategy for Efficient Crawling of Rich Internet Applications 83

in the newly added chain. Also we should remove C from the strategy as it is now
handled by newly added chain. This revision should be applied not only to C but to
any chain C' having the prefix prefC(si+1), since C' will face the same violation.

After all affected chains are updated, we check if we need to generate a strategy for
s'. If s' is a state that has been discovered before, then we do not have to do anything
as we must have already generated a strategy for s' at the time it was first discovered.
Otherwise, a strategy (Chains(s')) should be generated for a new hypercube based on
s'. Note that, currently the only known way to reach s' is using chain prefC(si)+(si - ei -
s'). For this reason, newly generated hypercube is actually an extension to the existing
one and belongs to the same projection based on the state s1. Hence each chain in
Chains(s') is added into Chains(s1) using prefC(si)+(si - ei - s') as a transfer chain to
reach s'.

5 Experimental Results

To assess the efficiency of our crawling algorithm, we have implemented a prototype
tool (see [4] for detatils).We present results showing the performance of our prototype
compared with a prototype of major commercial software for testing web
applications, an open source crawling tool for Ajax applications (Crawljax) [17] as
well as pure breadth-first and depth-first crawling.

To evalute a method, we first check if it achieves a complete crawl. For the ones
that can crawl all the test applications completely, we record the total number of event
executions and the total number of reloads required before discovering all the states
and all the transitions separately. The collected data gives us the total number of event
executions and reloads required to complete the crawl and an idea about how quickly
a method is able to discover new states and transitions.

Fig. 3. Models of some test applications

84 K. Benjamin et al.

The results were obtained using six Ajax test applications. (See Figure 1 and 3 for
the models). Five of them were developed by us and one is a publicly available test
application. We designed the applications to reflect different characteristics of the
web applications as well as some extreme cases like a perfect hypercube or a
complete graph. The first application, called H4D, has the model of a 4 dimensional
hypercube (16 states, 32 transitions). Since hypercube is the expected model, H4D is
a best case for our strategy. The second application NH1(8 states, 12 transitions)
slightly deviates from the hypercube structure. The third and the fourth applications,
NH2 (13 states, 15 transitions) and NH3 (24 states, 32 transitions), also deviate from
the hypercube structure. The fifth application, PrevNext (9 states, 16 transitions)
represents a model that is encountered in many Ajax applications. States of PrevNext
are linked by previous and next events. The last application AjaxNews2 (8 states, 80
transitions) is a publicly available test site [11]. It is in the form of a news reader with
8 different articles. It allows users to browse articles by previous and next buttons as
well as to go directly to an article via clicking titles listed on a menu.

In an effort to minimize any influence that may be caused by considering events in
a specific order, the events at each state are randomly ordered for each crawl. Also,
each application is crawled 10 times with each method and the average of these 10
crawls are used for comparison.

Only depth-first, breadth-first and our algorithm successfully discovered all the
states and all the transitions for all the applications. The commercial product protoype
could not achieve a complete crawl for any of the applications. That is because it did
not apply a specific strategy for crawling RIAs but blindly executed the events on a
page once (in the sequence that they appear) without handling DOM changes which
may add or remove events to the DOM. This is an example of a very naïve approach.
Crawljax could crawl some completely but not most of them. (This is because
Crawljax decides which events to execute at the current state using the difference
between the current state and the previous state. That is, if a state transition leaves an
HTML element with an attached event unchanged, then that event is not executed at
the current state although it is still likely that this event could have led to a different
state when executed in the current state). Table 1 shows the number of states
discovered by each tool.

Table 1. Number of states discovered by Crawljax, Commercial software and our tool

States Discovered by
Application Total States

Commercial Crawljax Our Tool
H4D 16 5 11 16
NH1 8 4 8 8
NH2 13 3 6 13
NH3 24 3 14 24
PrevNext 9 3 3 9

For each test application and for each method, we present the number of transitions
and reloads required to visit all the states (and traverse all the transitions) of the
application. Figures 5a and 5b shows the total transitions and total reloads required

2 http://www.giannifrey.com/ajax/news.html

 A Strategy for Efficient Crawling of Rich Internet Applications 85

for discovering states, respectively. Figure 6a and 6b shows the total transitions and
total reloads required for traversing all transitions. For compactness we use boxplots
that should be interpreted as follows. The top of vertical lines show the maximum
number required to discover all the states (or all transitions).The lower edge of the
box, the line in the box and the higher edge of the box indicate the number required to
discover a quarter, half and 3 quarters of all the states (or transitions) in the
application, respectively. We will use the position of this box and the middle line to
assess whether a method is able to discover new states (or transitions) faster than
others.

As Figure 5a shows for H4D, NH1, NH2 and NH3 our method discovered all the
states using the least number of transitions. For PrevNext, depth-first required slightly
fewer transitions than ours and for AjaxNews breadth-first required significantly
fewer transitions. Since the underlying model of AjaxNews is a complete graph, it is
an optimal case for breadth-first. Hence it was not surprising to see breadth-first
discovering all states using minimal amount of transitions. Looking at the figure to
assess the rate of state discovery measured by the number of transitions, we conclude
that our method discovers states at a faster rate, except for AjaxNews. Even for
AjaxNews, our algorithm discovered more than half of all the states at a rate
comparable to breadth-first.

Fig. 5. a. Transitions for state discovery b. Reloads for state discovery

Figure 5b contains the boxplots of the number of reloads required before
discovering all states. It is clear that, our method uses, if not fewer, a comparable
number of reloads to depth-first. For H4D and AjaxNews, our method uses
significantly less reloads than the others. Looking at the figure to assess the rate of
state discovery measured by the number of reloads, conclusion is that our method is
able to discover states at higher rates than other mehtods except AjaxNews for which
the rate is slightly lower than depth-first.

86 K. Benjamin et al.

Figure 6a contains the boxplots showing for each application and for each method
the number transitions executed before having traversed all transitions. Comparing the
number of transitions used to be able to traverse all the transitions (note that this is the
number of transitions executed to complete the crawl), we see that for H4D and NH1
our method is the best, for PrevNext depth-first and our method are even and for NH2
and NH3 depth-first uses less transitions. For AjaxNews breadth-first uses the fewest
transitions as expected. Comparing the rate of executing unexecuted transitions, for
all the applications except PrevNext, our method uses fewer transitions to execute the
majority of transitions. For PrevNext, depth-first has a slightly better rate but the rate
is better for ours for more than half of the transitions before depth-first slightly takes
over. Note also that, for AjaxNews our method has a significanty higher rate.

Lastly, Figure 6b shows the number of reloads required before executing all
transitions. Looking at the total number of reloads required to complete the crawl, for
H4D, NH1 and AjaxNews our method was the best, for PrevNext depth-first and our
method are even and for NH2 and NH3 depth-first used slightly fewer reloads.
Comparing the rates, in order to execute the majority of the transitions, our method
required fewer reloads for all the applications except PrevNext, for which depth-first
and our algorithm have similar results.

Fig. 6. a. Transitions for new transitions b. Reloads for new transitions

As an overall evaluation based on these results, we make following remarks. Our
approach can extract a correct model of an application regardless of its model. In
terms of the total number of transitions and reloads, our approach was the most
consistent. That is, for all the cases it was either the best or very close to the best. It
was never the worst. This is because, our approach tries to balance the good
characteristics of the depth-first and breadth-first approaches. It tries, like depth-first,
to maximize the chain length and thus reduce the number of reloads. Also it tries, like
breadth-first, to cover the breadth of the application quickly. As we aimed, our
strategy has a better rate of discovering new states and transitions.

 A Strategy for Efficient Crawling of Rich Internet Applications 87

6 Related Work

We survey here only research focusing on crawling RIAs, for general crawling see
[2,7,13]. Although limited, several papers have been published in the area of crawling
RIAs, mostly focusing on Ajax applications. For example [10,11,15] focus on crawl-
ing for the purpose of indexing and search. In [16], the aim is to make RIAs accessi-
ble to search engines that are not Ajax-friendly. In [18] focus is on regression testing
of AJAX applications whereas [6] is concerned with security testing.

The works that contain the modeling aspect seem to agree on representing models
using finite state machines [14,15,17]. Usually states are defined using the DOM
structure and the transitions are based on the events that lead to changes in the DOM
[15,17]. In [14], however the states, as well as the events to consider, are abstracted
by observing DOM changes in the given execution traces of the application.

As a crawling strategy, [15] uses breadth-first crawl. In order to reduce the number
of Ajax requests, whenever a specific Ajax request is made for the first time, the re-
sponse from the server is cached. Later, if there is a need to call the same function
with the same parameters for execution of some event, the cashed response is used
instead of making an actual request. This assumes calling the same function with the
same parameters always produces the same response regardless of the current state.
Therefore it provides no guarantee to produce a correct model. In [17], a depth-first-
based method is described and implemented in Crawljax. As we have explained in
Section 5, this method, too, is incapable of producing a complete model.

7 Conclusion and Future Work

In this paper, we have presented a general model-based strategy for crawling RIAs.
Our solution aims at finding all the client states as soon as possible during the crawl
but still eventually finds all the states. Experimental results show that our solution is
correct and provides good results on a set of experimental sites: although our solution
is not always the best one, it is the only one that works always and seems to always
provide one of the best results in terms of efficiency. We believe that these are very
encouraging results, but more must be done. We are currently working on the
following enhancements:

First, we must extend our experimental results to include large number of real
RIAs. We believe that the results will in fact be even more favorable when crawling
sites such as Facebook or Google Calendar, because these sites are not going to have
the extreme patterns of our test sites, that sometimes favor one crawling technique
over the other.

Second, a possible criticism of our solution may be the computation of the strategy
based on the hypercube hypothesis ahead of time. Because of the explosion of the size
of a hypercube model, this approach may not be practical. Although we have already
addressed this issue by generating chains one at a time, as required during the crawl,
for simplicity we prefered to explain our solution by using pre-computed chains. We
plan to explain the details of the on-the-fly chain generation technique in a separate
contribution.

88 K. Benjamin et al.

A third enhancement would be to look at other models, beyond the hypercube. Our
model-based crawling methodology can be used with any models, and we are
currently investigating which other models could be efficiently used.

Finally, a fourth direction would be to enhance the model with the notion of
“important” states and events, that is, some states would have priority over others and
some events would be more important to execute than others. Again, we believe that
our model-based crawling strategy can be adjusted to deal with this situation.

Acknowledgments. This work is supported in part by IBM and the Natural Science
and Engineering Research Council of Canada.

Disclaimer. The views expressed in this article are the sole responsibility of the au-
thors and do not necessarily reflect those of IBM.

Trademarks. IBM, Rational and AppScan are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies. A
current list of IBM trademarks is available on the Web at “Copyright and trademark
information” at www.ibm.com/legal/copytrade.shtml.

References

1. Anderson, I.: Combinatorics of Finite Sets. Oxford Univ. Press, London (1987)
2. Arasu, A., Cho, J., Garcia-Molina, A., Paepcke, A., Raghavan, S.: Searching the web.

ACM Transactions on Internet Technology 1(1), 2–43 (2001)
3. Bau, J., Bursztein, E., Gupta, D., Mitchell, J.C.: State of the Art: Automated Black-Box

Web Application Vulnerability Testing. In: Proc. IEEE Symposium on Security and Pri-
vacy (2010)

4. Benjamin, K.: A Strategy for Efficient Crawling of Rich Internet Applications. Master’s
Thesis. SITE-University of Ottawa (2010),
http://ssrg.site.uottawa.ca/docs/Benjamin-Thesis.pdf

5. Benjamin, K., Bochmann, G.v., Jourdan, G.V., Onut, I.V.: Some Modeling Challenges
when Testing Rich Internet Applications for Security. In: First International Workshop on
Modeling and Detection of Vulnerabilities, Paris, France (2010)

6. Bezemer, B., Mesbah, A., Deursen, A.v: Automated Security Testing of Web Widget In-
teractions. In: Foundations of Software Engineering Symposium (FSE), pp. 81–90. ACM,
New York (2009)

7. Brin, S., Page, L.: The Anatomy of a Large-Scale Hypertextual Web Search Engine. Com-
puter Networks and ISDN Systems 30(1-7), 107–117 (1998)

8. Bruijn, N.d.G., Tengbergen, C., Kruyswijk, D.: On the set of divisors of a number. Nieuw
Arch. Wisk. 23, 191–194 (1951)

9. Dilworth, R.P.: A Decomposition Theorem for Partially Ordered Sets. Annals of Mathe-
matics 51, 161–166 (1950)

10. Duda, C., Frey, G., Kossmann, D., Zhou, C.: AJAXSearch: Crawling, Indexing and
Searching Web 2.0 Applications.VLDB (2008)

11. Frey, G.: Indexing Ajax Web Applications, Master’s Thesis, ETH Zurich (2007)
12. Hsu, T., Logan, M., Shahriari, S., Towse, C.: Partitioning the Boolean Lattice into Chains

of Large Minimum Size. Journal of Combinatorial Theory 97(1), 62–84 (2002)

 A Strategy for Efficient Crawling of Rich Internet Applications 89

13. Manku, G.S., Jain, A., Das Sarma, A.: Detecting near-duplicates for web crawling. In:
Proceedings of the 16th International Conference on World Wide Web. WWW 2007, pp.
141–150. ACM, New York (2007)

14. Marchetto, A., Tonella, P., Ricca, F.: State-based testing of Ajax web applications. In:
Proc. 1st IEEE Intl. Conf. on Software Testing Verification and Validation (ICST 2008).
IEEE Computer Society, Los Alamitos (2008)

15. Matter, R.: Ajax Crawl: making Ajax applications searchable. Master’s Thesis. ETH, Zu-
rich (2008)

16. Mesbah, A., Deursen, A.v.: Exposing the Hidden Web Induced by AJAX.TUD-SERG
Technical Report Series. TUD-SERG-2008-001 (2008)

17. Mesbah, A., Bozdag, E., Deursen, A.v: Crawling Ajax by Inferring User Interface State
Changes. In: Proceedings of the 8th International Conference on Web Engineering, pp.
122–134. IEEE Computer Society, Los Alamitos (2008)

18. Roest, D., Mesbah, A., Deursen, A.v: Regression Testing Ajax Applications: Coping with
Dynamism. In: Third International Conference on Software Testing, Verification and Vali-
dation, pp. 127–136 (2010)

Graph-Based Search over Web Application

Model Repositories

Bojana Bislimovska, Alessandro Bozzon, Marco Brambilla, and Piero Fraternali

Politecnico di Milano, Dipartimento di Elettronica e Informazione
P.za L. Da Vinci, 32. I-20133 Milano - Italy

{name.surname}@polimi.it

Abstract. Model Driven Development may attain substantial produc-
tivity gains by exploiting a high level of reuse, across the projects of a
same organization or public model repositories. For reuse to take place,
developers must be able to perform effective searches across vast collec-
tions of models, locate model fragments of potential interest, evaluate
the usefulness of the retrieved artifacts and eventually incorporate them
in their projects. Given the variety of Web modeling languages, from
general purpose to domain specific, from computation independent to
platform independent, it is important to implement a search framework
capable of harnessing the power of models and of flexibly adapting to
the syntax and semantics of the modeling language. In this paper, we
explore the use of graph-based similarity search as a tool for expressing
queries over model repositories, uniformly represented as collections of
labeled graphs. We discuss how the search approach can be parametrized
and the impact of the parameters on the perceived quality of the search
results.

1 Introduction

Software project repositories are a main asset for modern organizations, as they
store the history of competences, solutions, and best practices that have been
developed in time. Such invaluable source of knowledge must be easily accessible
to analysts and developers through easy and efficient querying mechanisms. This
is especially true in the context of Model Driven Development, where models can
be reused and shared to improve and simplify the design process, while providing
better management and development of software.

Search engine can be a winning solution in this scenario. Source code search
engines are already widely adopted and exploit the grammar of the programming
languages as an indexing structure of artefacts. Innovative model-based search
engines should index their content based on the metamodels of the stored mod-
els: Domain Specific Languages (DSL) models, UML models, Business Process
Models and others.

Even if traditional keyword querying [8] is the user interaction paradigm for
search engines, query by example (content-based) approaches for search have
often proven effective in finding results which more closely reflect the user needs

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 90–104, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Graph-Based Search over Web Application Model Repositories 91

[2]. In the context of model-based search, the query by example interaction can be
enacted by providing as queries model or model fragment, so to consider as part
of the user information need also the relationships between elements. Such an
approach calls for matching and ranking algorithms that rely on techniques such
as schema matching [16] or graph matching [7] for finding similarities between
models.

The goal of this paper is to propose a general-purpose approach using graph
query processing, as a form of querying by example, for searching repository of
models represented as graphs. This is realized by performing similarity search
using graph matching based on the calculation of graph edit distance. The con-
tribution of this paper includes: 1) a graph based approach for content-based
search in model repositories; 2) a flexible indexing strategy adaptive to the re-
lationships among model elements found in the DSL metamodel; 3) a similarity
measure that exploits semantic relationships between model element types; and
4) implementation and evaluation of the proposed framework by using projects
and queries encoded in a Web Domain Specific Language called WebML (Web
Modeling Language)1. Although the evaluation is performed on a repository of
WebML projects, the approach is general and can be applied to any DSL de-
scribed through a metamodel.

The paper is organized as follows: Section 2 presents the state of the art for
repository search engines; Section 3 outlines the fundamentals of model-based
search; Section 4 illustrates our graph-based solution for model search; Section
5 discusses the experiments performed on a Domain Specific Language, showing
the experiment design and the results obtained; Section 6 draws the conclusions
and the future work directions.

2 Related Work

The problem of searching relevant software artifacts in software repositories has
been extensively studied in many academic works and widely adopted by the
community of developers.

Model search requires some knowledge about the model structure for indexing
and querying models. Moogle is a model search engine that uses UML or Do-
main Specific Language (DSL) metamodels to create indexes for evaluation of
complex queries [8]. Our previous work [1] performs model search using textual
information retrieval methods and tools, including model segmentation, analysis
and indexing; the query language adopted is purely keyword-based. Nowick et al.
[13] introduce a model search engine that applies a user-centric and dynamic clas-
sification scheme to cluster user search terms. Existing approaches performing
content-based search rely on graph matching or schema matching techniques.
Graphs allow a general representation of model information. Graph matching
determines the similarity of a query graph and the repository graphs by match-
ing approximately the query and the model. An indexing approach for business

1 http://www.webml.org

92 B. Bislimovska et al.

process models based on metric trees (M-Trees), and a similarity metric based
on the graph edit distance is illustrated in [7]. TALE [19] provides approximate
subgraph matching of large graph queries through an indexing method that con-
siders the neighbors of each graph mode. Three similarity metrics for querying
business process models are presented by Dijkman et al. in [4], based on the
label matching similarity, structural similarity which also includes the topology
of models, and behavioral similarity which besides the element labels considers
causal relations in models.The same authors propose the structural similarity
approach in [15] which computes similarity of business process models, encoded
as graphs, by using four different graph matching algorithms: a greedy algo-
rithm, an exhaustive algorithm with pruning, a process heuristic algorithm, and
the A-star algorithm. [2] uses extended subgraph isomorphism for matching ap-
proximate queries over databases of graphs.

Schema matching is the correlated problem of finding semantic correspon-
dences between elements of two database schemas [9] [14]. An integrated en-
vironment for exploring schema similarity across multiple resolutions using a
schema repository is given in [16]. HAMSTER [12] uses clickstream information
from a search engine’s query log for unsupervised matching of schema informa-
tion from a large number of data sources into the schema of a data warehouse.

Other content-based approaches utilize specific algorithms for search. The
work in [18] uses domain-independent and domain-specific ontologies for retriev-
ing Web Service from a repository by enriching Web service descriptions with
semantic associations. [10] presents a framework for model querying in the busi-
ness process modeling phase, enabling reuse, support of the decision making,
and querying of the model guidelines.

The focus of this paper is on content-based search on web application models,
by adopting a graph matching method. For the graph matching we chose the
A-star algorithm described in [15]. The original work applied A-star only to
business process models, while our final aim is to propose an approach that is
metamodel-aware, and therefore general enough to be applied to different models
and languages. We also provide an extensive analysis of the search framework,
to show how different parameter settings influence the quality of results.

3 Fundamentals of Model-Based Search

Search of model repositories can be performed in several ways. In text-based
model search, a project in the repository is represented as an unstructured doc-
ument composed of (possibly weighted) bag of words; projects are retrieved by
matching keyword-based queries to the textual information extracted from a
model, i.e., its metamodel grammar and the annotations produced by develop-
ers. Facets can be used to allow the user to further filter the information using
model properties; advanced result visualization may facilitate the identification
of query results within the examined repository [1].

In content-based model search, the role of the metamodel is more prominent, as
it allows for a finer-grained information retrieval that takes into account the rela-

Graph-Based Search over Web Application Model Repositories 93

<<conformsTo>>

<<defines>>

<<influences>>

<<uses>>

<<uses>>

Model Fragment

Transformed

Query Model

Transformed

Repository Models

?

?

Query Model

Transformation

Model

Transformation

Models

Repository Query

Match

Search Engine

Index

DSL Metamodel

Ranked Results

1 2 3

Fig. 1. The content analysis (white arrows) and query (grey arrows) flows of a content-
based model search system

tionships between elements, sometimes also considering their semantic similarity.
In addition, the metamodel deeply influences the way models are represented in
the search engine, as the indexes must contain information about the properties,
hierarchies and associations among the model concepts.

Queries over the model repository are expressed using models fragments; a
query conforms to the same metamodel as the projects in the repository, and
results are ranked by their similarity w.r.t. the query. The DSL metamodel can
also influence the search engine matching and ranking operation by providing
domain-specific information that can help fine tuning its behavior.

The prominent role of the metamodel demand for a revisitation of the classical
IR systems architecture: Figure 1 shows the organization of the two main infor-
mation flows in a content-based model search system: the content processing and
the query flows. In a general-purpose content-based search system, the indexing
and querying processes are designed to be model-independent, in the sense that
they can be configured based on the meta-model of interest. The designer of the
system only has to decide which is the information that needs to be extracted,
and the meta-model based rules for extraction.

Content processing is applied to the projects in the repository in order to
transform them and extract the relevant information for the index creation.
Projects are transformed into a suitable representation that captures the model
structure and also contains general information about the project and infor-
mation for each model element, like element name, type, attributes, comments,
relationships with other elements, or any other information that can be expressed
in a model. Such a transformation is driven by the models’ metamodel, and pro-
duces as output a metamodel-agnostic representation (e.g., a graph) that is used
to build the structured index subsequently used for queries.

The Query processing phase of content-based search applies the same trans-
formations to the query as to the projects in the repository, because the query

94 B. Bislimovska et al.

<SiteView id="sv1" name="Administrator">
<Page id="page1" name="Change Store Info">

<ContentUnits>
<DataUnit id="dau1"name="Store Details”>

<Link id="ln1" name="Modify Store" to="enu1"/>
</DataUnit>
<EntryUnit id="enu1" name="Modify Store Info"/>

</ContentUnits>
</Page>
</SiteView>

(b)(a)

Fig. 2. Example of WebML model (a) and its XML representation (b)

itself is a model or model fragment. Then, the query is matched against the in-
dex using different algorithms. As a result, a ranked list of projects is obtained,
according to the similarity with the query. Several model comparison techniques
can be employed, e.g., based on alternative graph matching approaches.

4 A Graph-Based Approach to Model-Based Search

In this section we elaborate on a general-purpose content-based model search
approach using query on graph (by example) for searching repository of Web
application models represented as graphs. Graphs provide a convenient way for
representing data in many different application domains such as computer vision,
data mining and information retrieval. To fully exploit the information encoded
in graphs, effective and efficient tools are needed for their querying. We imple-
ment content-based search by using a graph matching (subgraph isomorphism)
technique, to retrieve the most relevant projects from a repository with respect
to a query expressed as a model (fragment). We assume that both the models
in the repository and the query model conform to the same metamodel.

4.1 Scenario: Repository of WebML Models

To ease the discussion, we exemplify our approach using WebML (Web Modeling
Language) [3] models. WebML allows high-level description of a Web site con-
sidering different dimensions. The main WebML constructs are pages, units and
links, organized into areas and site views. A site view is a coherent hypertext,
fulfilling a well-defined set of requirements for a user role. Pages are composed by
units. Content units are atomic elements that determine the web page content
while operation units support arbitrary business logic triggered by navigation.
Units are connected through links forming a hypertext structure.

WebML models can be represented with a graphic notation or with an XML
syntax. Figure 2 shows a very simple excerpt of WebML model: the ChangeStor-
eInfo page of the Administrator site view contains a StoreDetails data unit that

Graph-Based Search over Web Application Model Repositories 95

shows the details about a store, and a link to the ModifyStoreInfo entry unit
that allows the user to submit new data through a form; a link from the data
to the entry unit denotes that the fields of the latter are preloaded with values
extracted from the former.

4.2 Graph Representation of Models

Our work exploits graph matching by finding a mapping between two graphs:
the query graph and the project graph. Graphs allow abstract representation of
models, encoding the specific model features into nodes and edges. Therefore, the
models from the repository and the queries are represented as directed annotated
graphs, preserving model topologies, and encapsulating the model information
as annotations.

In the example scenario, WebML model elements (e.g., siteviews, pages, units)
are represented as nodes in a graph, while the containment relationships (e.g.,
a page containing a unit) and links (between pages or units) are represented as
edges. To simplify the discussion, we assume that each node is annotated only
with the name and the type of the concept it represents. In a real setting, model
elements and relations can be annotated with all the properties specified in the
language metamodel.

The graph representation is obtained exploiting the metamodel to create a
model transformation that is applied to every project in the repository. Such a
transformation can be expressed in any model transformation language (such as
QVT or ATL). Considering our case study, the model depicted in Figure 2(a)
can be transformed in a graph (encoded as a GraphML model2.) as in Figure 3,
where both a graphical (a) and XML (b) representations are shown. The whole
project repository is transformed into a set of graphs offline, so to build the
structured index required to perform queries. The query is processed exactly in
the same way as the projects in the repository, thus obtaining graphs with equal
representation, suitable for comparison.

4.3 Node Matching

The basic building block for any graph matching algorithm is node matching, i.e.,
the way in which one single node from a graph is matched to each node in the
other graph. In our approach, we adopt a structured node matching approach,
based on node distance. Node distance measures how similar are two nodes,
considering one or more properties of the node itself. In our approach, the node
matching operation is expressed as a function of the considered metamodel:
given that a model element is described by its properties, node matching can be
expressed as a multi-dimensional distance function that induces a topology (in
a metric space) on the given nodes set. In our discussion, model elements are
described by nodes annotated with a name and a type labels, and we express
the distance function between two generic nodes n1 and n2 as follows:

2 http://graphml.graphdrawing.org/

96 B. Bislimovska et al.

page1

dau1 enu1

Change Store Info
Page

Modify Store Info
EntryUnit

Store Details
DataUnit

sv1Administrator
SiteView

(a)

<graphml>
 <graphedge default="directed">
 <node id="sv1">
 <name>Administrator</name>
 <type>SiteView</type>
 <occurence>1</occurence>
 </node>
 <node id="page1">
 <name>Change Store Info</name>
 <type>Page</type>
 <occurence>3</occurence>
 </node>
 ...
 <edge id="edge page1">
 <source>sv1</source>
 <target>page1</target>
 </edge>
 </graph>
</graphml>

(b)

Fig. 3. Pictorial (a) and XML (b) representations of the graph used for indexing and
search purposes for the WebML example of Figure 2

WebML Unit

Name:String

Content Unit

Entity:String

Single
Instance Unit

Multi Instance
Unit

Data Unit Index Unit

Entry Unit

Store List
Index Unit

Update Store Details
Entry Unit

(a) (b)

Fig. 4. (a) An extract of the WebML metamodel for element type comparison; (b)
Graph representation of two WeML units

Dist(n1, n2) = λ · levDist(namen1, namen2) + (1 − λ) · typeDist(n1, n2) (1)

where: levDist is the normalized Levenshtein distance (string-edit similarity
normalized with the length of the longer string) applied to the node names;
typeDist is defined based on semantic relationships between the compared types
by exploiting the information contained in the project metamodel. In particular,
it can be defined as the normalized node distance between the two classes in the
metamodel graph.

The range of Dist, levDist, and typeDist is always [0,1]. Given the above defi-
nition, Dist(n1, n2) computes a standard Levenshtein distance when λ = 1, (thus

Graph-Based Search over Web Application Model Repositories 97

only considering the name of the involved nodes), and only the distance between
model elements when λ = 0. For intermediate values of λ in the interval [0, 1], a
linear combination of both criteria is calculated. Figure 4(b) shows an example of
two WebML elements for which the node distance calculation can be performed.
From the example WebML metamodel of Figure 4(a) it can be calculated that
the type distance between an Index Unit and an Entry Unit of Figure 4(b) is
0.75 (because the distance between the two classes is 3 and the maximum node
distance in the graph is 4), while levDist(“StoreList”, “UpdateStoreDetails”)
is 0.65. Therefore, with λ = 0.5 the distance between the two nodes is 0.7.

4.4 Graph Matching

Graph matching is the procedure of finding a mapping between two graphs for
the purpose of calculating their similarity. Finding a complete node-to-node cor-
respondence without violating both structure and label constraints of a graph is
the problem of graph isomorphism. In most cases, graphs involved in the com-
parison have different dimensions. In our approach, the problem is related to
subgraph isomorphism, which can be seen as a way to evaluate subgraph equal-
ity. A subgraph isomorphism is a weaker form of matching, as it requires only
that an isomorphism holds between a query graph and a subgraph of the model
graph [11].

Graph Edit Distance. In order to compare two graphs, a metric based on
graph edit distance is used. The graph edit distance between two graphs is the
minimal total cost of edit operations needed to transform one graph into the
other [15]. The edit operations considered are:

– Node substitution: A node from one graph is substituted with a node from
the other graph if they are similar;

– Node insertion/deletion: A node is inserted into a graph to match an existing
one in the other or viceversa;

– Edge insertion/deletion: An edge is inserted into a graph to match an exist-
ing one in the other or viceversa.

Each of the above mentioned operations has a cost heuristically associated to it.
The costs for insertion/deletion of nodes and edges are fixed to a value in the
interval [0,1], while the cost for node substitution is defined as 1 minus the node
similarity. We also define a cutoff threshold on the similarity between nodes, so
as nodes with similarity above threshold are considered similar and therefore
substituted, while nodes below the threshold need to be inserted/deleted. In
order to quantify how much two graphs are similar we normalize the graph edit
distance to the range of [0,1]. Then, the graph edit similarity between two graphs
G1 and G2 is defined as [15]:

GSim(G1, G2) = 1 − wnI · fnI(G1, G2) + weI · feI(G1, G2) + wnS · fnS(G1, G2)
wnI + weI + wnS

(2)

98 B. Bislimovska et al.

where fnI , feI are the fractions of inserted nodes and of inserted edges respec-
tively (i.e., the ratio between the inserted items and the total number of items),
while fnS is the average distance of the substituted nodes. The constant values
wnI , wnS , and weI represent the weights for node insertion, node substitution,
and edge insertion respectively, and can be varied to give more or less importance
to each matching operation.

A-star Algorithm. The labeled graph representation of objects introduces
noise and distortions. Moreover, often the query graph and the project graph do
not have the same dimensions. Hence, it is necessary to include an error model
and incorporate the concept of errors into graph matching. The graphs are then
compared to each other by means of error-correcting subgraph isomorphism [11].
The most common approach to this problem is based on a search performed with
the A-star algorithm on a tree representing the incrementally calculated query
to project distances. A-star algorithm originally described by [5], is the best-
first algorithm that finds the minimum cost path from one node to another
in the distances tree. This algorithm is optimal since it examines the smallest
number of nodes necessary to guarantee a minimum cost solution. The search
space of the A-star algorithm can be greatly reduced by applying heuristic error
estimation functions. By always expanding the node with the least cost, the
algorithm is guaranteed to find the optimal mapping. Therefore, we adopt the
A-star algorithm for error-correcting subgraph isomorphism detection that has
been first applied in [11] and then adapted in [15]. The computational complexity
of the algorithm depends on the size of the graphs, the number of labels and the
number of errors [11].

The algorithm starts from a node n1 in the query graph, and creates all the
possible partial mappings from this node to every node in the project graph. Ad-
ditionally, an extra mapping with a dummy node ε is created,(n1, ε), equivalent
to the case where n1 is deleted. The partial mapping with the maximal graph
edit similarity is selected, and expanded into a number of larger mappings. The
algorithm proceeds with the next node from the query graph, and creates partial
mappings with every node from the project graph, excluding the ones already
in the mapping. The algorithm always selects the mapping with maximal graph
edit similarity, and expands it, by adding a mapping for the next node. The al-
gorithm finishes when all the nodes from the query graph are mapped. To reduce
the memory requirements, only mappings between similar nodes are allowed. In
other words, only nodes whose distance defined by equation 1 is greater than a
threshold parameter can form a partial mapping.

The algorithm that calculates the similarity between a query graph G1 and a
project graph G2 is represented by the pseudocode shown in Algorithm 1, where
N1, N2 are the sets of nodes (and n1, n2 are the nodes) of graphs G1, G2 respec-
tively; open is the set of all allowed mappings, and map is the partial mapping
having the maximal graph edit similarity s(map). The algorithm finishes when
all the nodes from the query graph are examined. The returned value is the
maximal graph edit similarity for the two graphs.

Graph-Based Search over Web Application Model Repositories 99

Algorithm 1. A-star algorithm
Require: open ← (n1, n2) | n2 ∈ N2 ∪ {ε}, sim(n1, n2) > threshold ∨ n2 = ε , for

some n1 ∈ N1

while open �= 0 do
select map ∈ open, such that s(map) is max
open ← open − map
if dom(map) = N1 then

return s (map)
else

select n1 ∈ N1, such that n1 /∈ dom(map)
for all n2 ∈ N2 ∪ {ε}, such that (n2 /∈ cod(map) and sim(n1, n2) > threshold)
xor (n2 = ε) do

map′ ← map ∪ {(n1, n2)}
open ← open ∪ map′

end for
end if

end while

Complexity analysis. Let us assume a query with n nodes and a project with
m nodes. The complexity of the comparison algorithm [11] in the best case is
O(n2m) (when all the nodes are uniquely labeled and the query graph contains
an isomorphic copy of the model graph), while in the worst case is O(nmn)
(when the error in the query graph is very large).

5 Experimental Evaluation

This section discusses how the graph-based model similarity search described
in the previous section can be parameterized, and highlights the impact of the
parameter tuning on the perceived quality of the search results. Our experi-
ments were conducted on a project repository composed of 30 real-world WebML
projects [1] from different application domains (e.g., trouble ticketing, human re-
source management, multimedia search engines, Web portals, etc.), all encoded
as XML files conforming to the WebML DTD. Projects’ size varied from 100
to 1700 nodes. We manually built a query set of 15 queries with different sizes
for the evaluation of the approach: 5 small queries (1-25 nodes), 5 medium-size
queries (26-450 nodes), and 5 large queries (451-680 nodes). The queries were
chosen based on their size, and different structure coverage.

We performed a manual assessment of the query-to-project relevance, so to
establish a ground truth for performance evaluation.The assessment was carried
out by one WebML expert analyst with modeling and application proficiency.
Each query was manually compared against the project repository using the
WebML models XML representation, considering element names, element types,
and hierarchical positioning of the elements in the query and the project. Then,
a relevance for each query against every project has been assigned, ranging from
0 − 10 (with steps of 0.5), where 0 implies no relevance (i.e. the query has
no match in the project), and 10 indicates maximal relevance. This evaluation

100 B. Bislimovska et al.

Table 1. Experimental parameters and Spearman’s coefficient (mean and std on 15
queries) for experiments with node type similarity

λ Exp.1 Exp.2 Exp.3

wedgeIns 0.1 0.1 1.0
wnodeIns 0.1 1.0 0.1
wnodeSub 1.0 0.1 0.1

0.25
mean(ρ) 0.66 0.40 0.52
std(ρ) 0.11 0.16 0.18

0.5
mean(ρ) 0.65 0.50 0.54
std(ρ) 0.11 0.18 0.17

0.75
mean(ρ) 0.67 0.64 0.63
std(ρ) 0.12 0.15 0.16

induced a ranking of projects with respect to each query. Such ranking has been
used as a reference ground truth for the evaluation of the algorithm.

To assess the robustness of the approach with respect to parameter changes,
and to identify the optimal set of parameter values for the considered DSL, we
tested our approach with different configurations of node distance, node inser-
tion, node substitution, and edge insertion weights. Our analysis focused on two
aspects: the quality of the results and the performance of the algorithm. The
result quality is evaluated with respect to different parameterizations of the al-
gorithm, while the performance is independent on the parameters, and thus is
reported for one scenario only.

5.1 Analysis of the Quality of the Results

Our aim is to evaluate the impact of the parameters of the algorithm on the
results quality. According to the definition of the algorithm, we can tune two
types of parameters: the weights wnI , wnS and weI assigned to the frequencies
of the graph edit distance (Eq. 2), and the value of the parameter λ in the node
distance function (Eq. 1). In our experiment we defined 3 different configurations
of these weights, and three different values of λ. The weight configurations have
been selected in order to highlight the contribution of each component in the
graph distance calculation. The values of λ have been set to respectively 0.25,
0.5 and 0.75. Overall, we obtained 9 different experimental scenarios. The node
type similarity cutoff threshold has been set to 0.6.

For the evaluation we performed the 15 queries in all the 9 scenarios and we
calculated the average values for the quality measures. Each scenario has been
evaluated considering the quality of the produced rankings (w.r.t. the manual
assessment) according to the Spearman’s Rank Correlation Coefficient and the
Discounted Cumulative Gain (DCG).

The Spearman’s Rank Correlation Coefficient [17] is a non-parametric
correlation coefficient typically used in information retrieval to measure the cor-
relation between ranks (i.e., synthetic linear relationships imposed over non-
linearly associated variables), as:

Graph-Based Search over Web Application Model Repositories 101

Table 2. Spearman’s coefficient (mean and std on 3 experiments) for the 15 queries

λ Size Small queries Medium queries Large queries

Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11Q12Q13Q14Q15

0.25
mean(ρ) 0.58 0.71 0.51 0.76 0.49 0.48 0.56 0.34 0.47 0.44 0.60 0.63 0.58 0.33 0.45
std(ρ) 0.10 0.12 0.06 0.01 0.10 0.14 0.04 0.05 0.22 0.28 0.09 0.14 0.18 0.31 0.29

0.5
mean(ρ) 0.60 0.78 0.57 0.77 0.53 0.51 0.57 0.38 0.51 0.43 0.62 0.69 0.62 0.38 0.46
std(ρ) 0.08 0.00 0.04 0.00 0.09 0.11 0.07 0.19 0.15 0.25 0.05 0.04 0.07 0.22 0.24

0.75
mean(ρ) 0.64 0.78 0.58 0.81 0.59 0.57 0.66 0.39 0.65 0.72 0.64 0.72 0.69 0.47 0.81
std(ρ) 0.01 0.00 0.04 0.00 0.02 0.00 0.01 0.21 0.06 0.14 0.05 0.05 0.10 0.24 0.05

ρ = 1 − 6 ·
∑n

i=1 d2
i

n · (n2 − 1)
(3)

where di is the difference (in terms of number of positions) of two items in the
two compared ranks. It has values in the range of [-1,1], where: -1 corresponds
to perfect negative correlation, 1 to perfect positive correlation, and 0 represents
no correlation between the variables. In our case, we calculate the correlation
between the results produced by our algorithm and the ground truth built man-
ually. The more these are correlated, the best is the quality of the algorithm.
Hence, values closer to 1 demonstrate better performances.

The Discounted Cumulative Gain (DCG) [6] is a well-known metrics
for assessing the relevance of search result sets, which measures the usefulness
(gain) of a document based on its relevance w.r.t. the query and its position in
the result list. DCG computes the cumulated gain by introducing a logarithmic
discount factor based on the rank position i of the retrieved item as follows:

DCGp =
p∑

i=1

2reli − 1
log2(1 + i)

(4)

where reli is the relevance for the i-th rank position.
Table 1 shows the different parameter combinations and the Spearman’s coef-

ficient results. The table shows that the mean Spearman’s correlation coefficient
between the ground truth and the calculated results is good for all the experi-
ment configurations (with low standard deviation), thus showing good retrieval
performance. For all three experiment configurations, the best performance is ob-
tained when the maximal weight is given for node substitution. As λ increases,
the difference in the results among the experiments decreases.

Table 2 delves into the detailed behaviour of the 15 different queries (aver-
aged on the 3 experiments). As λ increases, the performance of the algorithm
improves, since the mean value for the Spearman’s correlation coefficient in-
creases, and the standard deviation decreases, independently from the query
size.

These results are compatible with the DCG analysis, that has been performed
to evaluate the perceivable quality of the result sets. Figure 5 shows the be-
haviour of DCG in the ideal manual assessment and the ones obtained by our

102 B. Bislimovska et al.

5 10 15 20 25 30
0

2

4

6

8

10

12

14

Rank

D
C

G
ideal DCG
w

edgeIns
=0.1 w

nodeIns
=0.1 w

nodeSub
=1.0

w
edgeIns

=0.1 w
nodeIns

=1.0 w
nodeSub

=0.1

w
edgeIns

=1.0 w
nodeIns

=0.1 w
nodeSub

=0.1

(a) lambda=0.5

5 10 15 20 25 30
0

2

4

6

8

10

12

14

Rank

D
C

G

ideal DCG
w

edgeIns
=0.1 w

nodeIns
=0.1 w

nodeSub
=1.0

w
edgeIns

=0.1 w
nodeIns

=1.0 w
nodeSub

=0.1

w
edgeIns

=1.0 w
nodeIns

=0.1 w
nodeSub

=0.1

(b) lambda=0.25

5 10 15 20 25 30
0

2

4

6

8

10

12

14

Rank

D
C

G

ideal DCG
w

edgeIns
=0.1 w

nodeIns
=0.1 w

nodeSub
=1.0

w
edgeIns

=0.1 w
nodeIns

=1.0 w
nodeSub

=0.1

w
edgeIns

=1.0 w
nodeIns

=0.1 w
nodeSub

=0.1

(c) lambda=0.75

Fig. 5. DCG for λ = 0.5 (a) λ = 0.25 (b) and λ = 0.75 (c)

algorithm depending on the different weight values. The algorithm generally
performs well, since the values for all the experiment settings are close to the
ideal DCG curve corresponding to the manual assessment. This means that the
algorithm is able to retrieve relevant projects at highly ranked positions.

The best result is obtained with wnodeSub = 1, i.e., when the substituted
nodes are accounted as more important in the overall similarity comparison;
this is aligned with the intuition that similar (i.e., substituted) nodes are more
significant than inserted nodes and edges in the calculation of the graph similar-
ity. Inserted edges (wedgeIns = 1) are deemed as slightly less significant, while
inserted nodes (wnodeIns = 1) behave even worse.

The DCG analysis on λ assessed that higher values of λ imply that the DCG
curves tend to get closer, as shown in Figure 5. This means that the role of the
three weights becomes less and less important when λ increases. Once more, this
is intuitive since higher λ values represent the fact that text distance between
nodes is assumed as more relevant while type distance (and the three weights
together with it) are considered less important. In any case, the experiment with
with wnodeSub = 1 is consistently the best one independently on the value of λ.

Graph-Based Search over Web Application Model Repositories 103

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

x 10
5

Number of query nodes

Q
ue

ry
 e

xe
cu

tio
n

tim
e

(m
s)

(a)

5 10 15 20 251

1500

2000

2500

3000

3500

4000

Number of query nodes

E
xe

cu
ti

o
n

 t
im

e
(m

s)

(b)

Fig. 6. Query execution time w.r.t. query size(a) and detail for small queries(b)

5.2 Performance Analysis

Figure 6 (a) shows the query execution time for all the 15 queries considered in the
experiments with respect to the query size, i.e. number of nodes in the query. The
image highlights the exponential behavior of the algorithm, as expected given the
complexity analysis in Section 4. However, while this is interesting from a theo-
retical viewpoint, the exponential complexity is not so crucial when dealing with
queries of reasonable size (that can be defined in terms up to 50 nodes or so). In-
deed, the behavior in this scenario can be assimilated to linear, as Figure 6 (b)
shows, granting results query execution time in the order of 1 to 5 seconds. Notice
that no query execution optimization (including optimized indexing of the repos-
itory) has been adopted during experiments and therefore we foresee a wide range
of possibility for improving the performance of the system.

6 Conclusions

In this paper we presented a graph-based approach for content-based search of
models using the A* algorithm. We evaluated our approach upon a realistic
setting, obtaining good quality of results with respect to a manually assessed
ground truth, together with a clear profiling of the parameters behavior.

Future work includes: increasing the size of the project repository and of the
ground truth; comparing our graph search solution with keyword based ones
[1]; studying techniques for automatically tuning the parameters of the A* al-
gorithm, such as e.g. neural networks or genetic algorithms ; and experimenting
the approach with other metamodels, such as e.g. BPMN.

References

1. Bozzon, A., Brambilla, M., Fraternali, P.: Searching Repositories of Web Applica-
tion Models. In: International Conference on Web Engineering, pp. 1–15 (2010)

2. Brügger, A., Bunke, H., Dickinson, P., Riesen, K.: Generalized Graph Matching
for Data Mining and Information Retrieval. Advances in Data Mining. Medical
Applications, E-Commerce, Marketing, and Theoretical Aspects, 298–312

104 B. Bislimovska et al.

3. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Mor-
gan Kaufmann series in data management systems: Designing data-intensive Web
applications. Morgan Kaufmann Pub., San Francisco (2003)

4. Dijkman, R.M., Dumas, M., van Dongen, B.F., Käärik, R., Mendling, J.: Similarity
of business process models: Metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)

5. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2), 100–107 (1968)

6. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques.
ACM Transactions on Information Systems (TOIS) 20(4), 422–446 (2002)

7. Kunze, M., Weske, M.: Metric trees for efficient similarity search in large process
model repositories. In: Proceedings of the 1st International Workshop Process in
the Large (IW-PL 2010), Hoboken, NJ (September 2010)

8. Lucrédio, D., Fortes, R.d.M., Whittle, J.: MOOGLE: A model search engine. Model
Driven Engineering Languages and Systems, 296–310 (2010)

9. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid. In:
Proceedings of the International Conference on Very Large Data Bases, Citeseer,
pp. 49–58 (2001)

10. Markovic, I., Pereira, A.C., Stojanovic, N.: A framework for querying in business
process modelling. In: Proceedings of the Multikonferenz Wirtschaftsinformatik
(MKWI), Munchen, Germany (2008)

11. Messmer, B.: Efficient Graph Matching Algorithms for Preprocessed Model
Graphs. PhD thesis, University of Bern, Switzerland (1996)

12. Nandi, A., Bernstein, P.A.: HAMSTER: using search clicklogs for schema and
taxonomy matching. In: Proceedings of the VLDB Endowment, vol. 2(1), pp. 181–
192 (2009)

13. Nowick, E.A., Eskridge, K.M., Travnicek, D.A., Chen, X., Li, J.: A model search
engine based on cluster analysis of user search terms. Library Philosophy and
Practice 7(2) (2005)

14. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
The VLDB Journal 10(4), 334–350 (2001)

15. Remco Dijkman, M.D., Garcıa-Banuelos, L.: Graph matching algorithms for busi-
ness process model similarity search. In: Dayal, U., Eder, J., Koehler, J., Reijers,
H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg (2009)

16. Smith, K., Bonaceto, C., Wolf, C., Yost, B., Morse, M., Mork, P., Burdick, D.:
Exploring schema similarity at multiple resolutions. In: Proceedings of the 2010
International Conference on Management of Data, pp. 1179–1182. ACM, New York
(2010)

17. Spearman, C.: The proof and measurement of association between two things. The
American Journal of Psychology 100(3-4), 441 (1904)

18. Syeda-Mahmood, T., Shah, G., Akkiraju, R., Ivan, A.A., Goodwin, R.: Searching
service repositories by combining semantic and ontological matching

19. Tian, Y., Patel, J.M.: Tale: A tool for approximate large graph matching. In:
International Conference on Data Engineering, pp. 963–972 (2008)

AdapForms: A Framework for Creating and

Validating Adaptive Forms

Morten Bohøj1, Niels Olof Bouvin2, and Henrik Gammelmark3

1 Alexandra Institute, Åbogade 34, DK-8200 Aarhus N
2 Dept. of Computer Science, Aarhus University, Åbogade 34, DK-8200 Aarhus N

3 Dat1, Åbogade 15, DK-8200 Aarhus N

Abstract. AdapForms is a framework for adaptive forms, consisting
of a form definition language designating structure and constraints upon
acceptable input, and a software architecture that continuously validates
and adapts the form presented to the user. The validation is performed
server-side, which enables the use of complex business logic without du-
plicate code. Thus, the state of the form is kept persistently at the server,
and the system ensures that all submitted forms are valid and type safe.

1 Introduction

The World Wide Web has gained its remarkable success not only because it is a
(relatively) simple and scalable publishing system, but also because it offers easy
access for users to add new content or interact in other ways by filling on-line
forms. This is done many times daily in search fields, e-shops, application forms,
and so on. While many of these text fields and forms are straightforward, some
are more challenging for the user to correctly interpret and fill. Likewise, an
essential part of form handling at the developer’s end is the checking and valida-
tion of the input, before it can be added to a database or used as basis for other
calculations. These validation steps range from trivial tests that can be evaluated
using e.g., string length over more complex rules checked with regular expres-
sions, and finally input that can only be checked against the “business logic”
of the particular application. In practical terms, this can range from checking
whether a family name has been entered, whether an amount entered consists
only of digits, or whether a desired vacation period is actually available. As
many administrative processes move on-line, the associated forms follow. Forms
may be simple or complex with opaque and non-trivial interrelationships that
can be difficult to communicate effectively to the user. When is a form filled out
correctly or sufficiently; and how do the choices in one field affect the rest of the
form? Which parts of the form are relevant, and what can be safely ignored?

We describe in this paper AdapForms, a general solution to handling forms
in a fashion that enables developers to clearly designate accepted types of input,
reuse existing templates (e.g., sub-forms for postal addresses), use complex vali-
dation rules, allow users to resume filling out complex forms at a later point, and
communicate the state of the form to the user unobtrusively. An open source

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 105–120, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

106 M. Bohøj, N.O. Bouvin, and H. Gammelmark

demonstrator of the framework is available online1 and an exhaustive description
can be found in [6].

The paper is structured as follows: Our system is described from a functional
point of view in Section 2 and an architectural one in Section 3, the system has
been evaluated as described in Section 4, we describe related work in Section 5,
and the paper is concluded in Section 6.

2 The AdapForms Framework

Validation of user submitted data on the Web is usually a two-step process—
input is validated in the browser (usually through custom JavaScript code),
and validated again when submitted to the server. Client-side validation has
certain advantages, especially responsiveness as no network latency is involved.
However, client-side validation cannot replace server-side validation, as the input
sent back to the server may be subverted or corrupted accidentally or maliciously.
Thus, server-side validation is still necessary—at the very least to thwart SQL
injections and similar attacks. AdapForms is a server-centric framework, which

(a) Yellow and red signify miss-
ing resp. invalid data. The Parent
form is due to the age of the user

(b) The applicant is of legal age,
and thus Civil status is relevant

Fig. 1. AdapForms screenshots

allows direct code access to the form and data structures, described further in
Section 3. This also means that all validation is done on the server instead of
the client, which provides a higher degree of safety regarding validity of the
input. An advantage of having the state constantly up-to-date server-side, is
that it allows direct transparent integration with the host application instead
of relying on additional server calls for adaptation and validation, as described
below. Furthermore, business logic is not exposed in JavaScript accessible in the
browser, but is kept on the server.
1 http://adapforms.gammelmark.eu/

http://adapforms.gammelmark.eu/

AdapForms: A Framework for Creating and Validating Adaptive Forms 107

While the AdapForms framework is focused on the underlying handling of
form structure and data and not on the user interface to the form, an example
XHTML/Ajax based prototype implementation of the UI has been created for
testing and demonstration purposes. This example UI could also have been cre-
ated using HTML5 and taking advantage of the new form elements. HTML 5
thus provides a richer user experience without replacing the AdapForms frame-
work. The web UI is used as example throughout this paper and two screen shots
are shown in Figure 1(a) and 1(b). The screen shots (discussed in more detail in
Section 2.2) illustrate how forms are validated and adapted to the user’s input.
The UI is not part of the framework and UIs for multiple platforms could be
created, without changing the document XML definition or server side valida-
tion. Implementing different UIs also allows for changing the rendering of how
feedback is given to the users.

Listing 1.1. Sample XML form

1 <adapforms>
2 <i n c lude f i l e=” templates . xml”/>
3 <form t i t l e=”Example Form”>
4 <d e f a u l t s readonly=” f a l s e ” write−r o l e s=” app l i cant ”/>
5 <template name=”anAddress ”>
6 <group>
7 <t ext id=” s t r e e t ” l a b e l=” S t r e e t ”>
8 <va l i d a t o r c r i t e r i a=” lower−case (.) = . ” message=”Must be a l l lower−case ”/>
9 </ text>

10 <t ext id=” c i t y ” l a b e l=”City ” pattern=” [a−z]∗ ”/>
11 < i n t e g e r id=” z ip ” l a b e l=”ZIP/ po s t a l code”/>
12 </group>
13 </ template>
14 <group id=” i n f o ” l a b e l=”Personal in fo rmat ion ”>
15 <use template=”anAddress” id=” address ” l a b e l=”Current address ”/>
16 < i n t e g e r id=”age” l a b e l=”Age” minValue=”0”/>
17 <t ogg l e id=” parenta l ” l a b e l=”Parenta l accept ” r e l e van t=” . . / age &l t ;= 18”
18 write−r o l e s=” parents ”/>
19 <t ext id=”parentName” l a b e l=”Name o f parent ” r e l e van t=” . . / parenta l /@relevant ”/>
20 </group>
21 <bean id=”payment” l a b e l=”Payment d e t a i l s ” type=”myapp . model . PaymentInfo”/>
22 <repeat id=” k ids ” l a b e l=”Chi ldren ” entryLabel=”Child ” minRepeats=”0”>
23 <t ext id=”name” l a b e l=”Chi lds name”/>
24 </ repeat>
25 </ form>
26 </adapforms>

2.1 Defining Forms

The form structure in AdapForms is defined in a XML document, which is parsed
by the host application and forms the basis for the internal representation of the
form. An example is seen in Listing 1.1. This sample is meant to demonstrate fea-
tures rather than show a typical form. The XML form can contain the following
elements representing different types of data:

Label Read-only text label.
Text Regular text element, single- or multi-line.
Secret Text field for masked input.
Integer & Decimal Ranged or unranged integer or decimal respectively
Toggle True or false.
Choice Single selection among fixed, mutually exclusive, choices.

108 M. Bohøj, N.O. Bouvin, and H. Gammelmark

Multi-choice Multiple selections among fixed choices.
Date Single date selection.
HelpText Text to help the user fill out the form.
Group Logical grouping of elements in the form. Group can contain the elements

described above and group them together. This grouping allows for an easier
overview of the form and allows for making an entire section e.g., relevant or
required. An example of the group element is shown in line 14 of Listing 1.1.

Repeat Repeats are a collection of form elements that can be repeated in a list-
like manner. This can e.g., be relevant for allowing users to add a variable
number of children, without knowing how many elements to create before-
hand. The number of repeats allow can be limited or unlimited and both
as a required minimum or limited maximum. A small example of a repeat
element is shown in line 22 of Listing 1.1.

Bean A bean is a group generated from a JavaBean—see below.

Each of these form elements has a number of possible attributes. Some of these
attributes are specific to a particular form element, while others are shared
among all elements. Most are optional and only id and label are required. The
common attribute set is as follows:

id A locally unique ID. The ID must be unique among siblings in the XML tree.
The ID is required for all form elements.

label A textual label explaining the element’s purpose. The label attribute is
optional for the group and bean elements and required for the rest.

relevant Boolean value indicating the relevance for the user. Relevance can
e.g., be used to hide irrelevant elements from the user.

required Indicates whether or not the element is required.
read-roles & write-roles List of user roles allowed to read or write, respec-

tively, the specific element. The user roles are handled by the host application
when loading the form. The use of roles is not required. User roles may be
used to allow more rights to some users, such as administrators.

readonly Indicates that no user is allowed to change the element value.
uiflags Text string which may hold UI specific information.

If an optional attribute is not present in an element, the value is inherited from
the parent node. If no parent node is present, the value is taken from the nearest
defaults element (see line 4 in Listing 1.1). The sole purpose of the defaults
element is to provide default values, and if no default value is found, the frame-
work defaults apply. When designing forms, one might experience defining the
same element structure more than once. This could e.g., be elements of an ad-
dress section. To allow for reuse of such reoccurring structures, the framework
has a template option. Templates can be defined within the same XML docu-
ment as the rest of the form, as in line 5–13 of Listing 1.1, with the template
used in line 15, or they can be placed in a separate XML document and included
in the form using the include element, as in line 2 in Listing 1.1. This supports
the reuse of common structures, such as addresses, across forms. Similar to the

AdapForms: A Framework for Creating and Validating Adaptive Forms 109

use of templates, the framework allows for the use of JavaBeans. A bean is in-
cluded in the form using the bean element as shown in line 21 of Listing 1.1.
The use of JavaBeans results in a group node in the form structure, which con-
tains the public available properties. The framework supports properties with
the following Java types: String (Represented as Text element), int or long
(Integer element), float or double (Decimal element), boolean (Toggle ele-
ment), java.util.Date (Date element) and enum types (Choice element). The
framework does not currently support beans within beans. The individual prop-
erties can be annotated in the Java class using @AdapFormsProperty to support
e.g., renaming the label or designating required attributes. Annotating the bean
class itself defines defaults for all properties.

2.2 Adaptation

One of the core features of AdapForms is the ability to adapt the form accord-
ing to user input. These adaptations could be changing/setting element values
based on input in other fields, or hiding/showing parts of the form that may
be irrelevant/relevant based on user input. An example of the latter could be
to hide the workplace address field, if the user indicates she is currently unem-
ployed. Figure 1(a) and Figure 1(b) shows an example of this adaptation, where
in Figure 1(a) the date of birth is set to 2009, thus giving an age under 18 and
therefore requiring a parental section. In Figure 1(b), the age is above 18 and the
parental section is replaced by the question of marital status. By hiding fields
not relevant to the user, we eliminate some potential confusion for the user, so
she can concentrate on the fields that are relevant to her. Likewise, by filling
out some fields based on either entered information or previous knowledge, we
minimise the typing needed by the user, as she can merely verify the information.

XPath. One way to perform form adaptation is to do it directly in the XML
document using AdapForms’ integration of XPath 2.0[1] expressions. An example
of the use of XPath expressions is shown in line 17 of Listing 1.1. Here the
relevance of the toggle element parental is dependent on the value of the sibling
element age being less than or equal to 18. XPath is very expressive and has
the advantage of placing the validation rules close to the adaptation targets. As
XPath is often used in connection with XML, the developer is also more likely
to be familiar with it than having to learn a completely new language. While
XPath is powerful, it has some limitations in this setting, e.g., it can only affect
a single state parameter as it only has one output value. It can also only look at
the information typed in the form and not access previously known information.

Form Hooks. The adaptations mentioned above are pre-coded adaptations
meaning that they are based on pre-coded rules and anything learnt from other
users filling out the same form can not be taken into account. This is where
the AdapForms goes beyond using XForms and XPath. AdapForms supports
more complex adaptations through the use of form hooks. A hook is defined

110 M. Bohøj, N.O. Bouvin, and H. Gammelmark

by the Java interface FormHook which defines three methods onValueChange,
onRepeatEntryAdd and onRepeatEntryRemove. Each hook is registered with a
specific form path, described in Section 3.2, before the form instance is initialised.
The same hook may be registered with more than one form path or no path, if,
for some reason, the developer wants a single hook to receive all change events
generated. The hook is notified through the aforementioned methods, when a
change occurs at the registered path. onValueChange is called on value changes,
whereas onRepeatEntryAdd and onRepeatEntryRemove is called for changes on
repeat entries. Changes on form-level, such as submission of the form, is handled
through the InstanceCallback interface, and here only a single callback can be
registered to a form instance. Because hooks are created using Java, it allows
for more options with regards to adaptation, as a hook can manipulate several
values or look up previously entered information in a database. Hooks also make
it possible to base the adaptations on arbitrary business logic, or more complex
computations using machine learning, if these solutions are Java based. Machine
learning would e.g., allow for the form to change a default choice in a multiple
choice to reflect the choice of the majority of users.

2.3 Validation

When receiving data through web forms, it is essential to validate the input
prior to processing. This validation can be anything from checking whether a
field is a valid date to checking that a supplied user name is known. Often
frameworks, such as PowerForms[4], perform this validation client-side in order
to provide quick user feedback, but this means that the same validation must be
done at the server as well to make sure no invalid data slips through. AdapForms
performs the validation server-side, while continuously providing feedback to the
client. This adds some time for validation, but ensures that the form instance on
the server holds the correct information. The validation is done asynchronously,
so the latency is usually not noticed.

The framework operates with three different kinds of problem definitions:
Error, Warning or Required. Error indicates that the input is invalid. This
could be entering a string where a number is expected. Warning indicates that
while the input is not invalid it may be problematic. This could e.g., be if the user
have put the year 1010, where it is more likely that he meant 2010. Required
indicates that an element that is required is missing some input. These problem
classifications lead to a form instance being able to be in the following states:

Uninitialised The form instance has been created, but is not yet initialised
and can thus not handle input

Initialising The initialising process is ongoing
Invalid The form contains one or more problems. In Figure 1(a) this is high-

lighted by displaying an error message next to the submission button.
Incomplete The form is valid except for errors of the Required kind. Figure 1(b)

shows how this could be shown to the user by a warning message next to
the submission button.

AdapForms: A Framework for Creating and Validating Adaptive Forms 111

IncompleteWithWarnings The form may hold Required or Warning errors
ValidWithWarnings The form only holds errors of the Warning type.
Valid The form holds no errors

On submission of the form, the host application may choose to accept or reject
the form based on the form status. The host application can use the form status
to perform different actions based on the status, e.g., saving incomplete forms
for later completion instead of submitting it.

The validation in AdapForms takes place on three different levels: basic frame-
work validation, validation rules, and host application. The final form status is
based on the union of the errors on these three levels.

The basic framework validation includes:

Required field validation Checking that required fields contain a value. This
could be shown as in both Figure 1(a) and Figure 1(b) with yellow warnings.

Type check Checks that e.g., integer elements only holds integers or date ele-
ments contains only dates.

Range check Integer elements may be upper- or lower-bounded, as shown in
line 16 of Listing 1.1, as can the length of text elements

Format check Text elements may define regular expressions the input must
uphold as in line 10 of Listing 1.1

This built-in validation will trigger when the form is loaded and when values
are changed. The host application may not override these mechanisms to avoid
inconsistencies. The XML form itself may also contain more complex validation
rules by using XPath expressions. These can be placed in validator elements,
which is then placed as children of the element it validates. Each validator
element has a criteria, which contains an XPath expression, and a message to
give the user in case of an error. An example of a validator is shown in line 8 of
Listing 1.1, where it checks that the street is written only in lower-case letters.
Validators are mostly used to validate values, but are not limited to this. Valida-
tors are evaluated on every change of values in the form, and not just on change
of the element the validator is attached to. As a third option of validation, the
host application may set or remove validation rules for individual form elements.
This is most easily done using FormHooks, attached to the element that needs
checking. Hooks would typically be used to perform more elaborate validation
that is not possible with the built-in validation, such as comparing input to val-
ues in a database. The host application may decide to perform validation any
time and is not limited to the use of hooks.

3 Architecture

The framework is built using the Model-View-Controller pattern, where the core
framework essentially comprises the Model and Controller by providing the data
structures as well as the logic making the model dynamic. The View part is
UI-specific and thus highly coupled to the display- and interaction-capabilities

112 M. Bohøj, N.O. Bouvin, and H. Gammelmark

(a) Parsing and instantiation of a form (b) Interaction of the major components

Fig. 2. AdaptForm in action

of the technology chosen. How to specifically display data to, and interact with
the user, is not the primary concern of the framework. Instead the focus is
on determining what to display and what to do with the input gathered. An
important goal of the architecture is to have the host application manipulate the
form and interact with the user exclusively via local proxy interfaces, regardless
of how the UI exposes the form and where it is physically being executed.

3.1 Form Life Cycle

The software architecture of AdapForms can best be understood by considering
the life cycle of an adaptive form, so that the various phases can be related to
concrete software elements. The Instantiation and Initialisation phases can be
thought of as a single phase in the abstract sense.

Definition. The form syntax and semantics are defined in a XML file external
to the framework.

Parsing and loading. The form is parsed and its dependent definitions and
objects are parsed, ending up in a single Form entity representing the static
form, with all its form elements (explicitly specified, or inferred from tem-
plates, beans etc.). The form structure may be viewed as an abstract struc-
tured tree, where each node is a form element. See Figure 2(a) for a visual
illustration of the process.

Instantiation. A concrete instance of the form is created. Using the static form
as a basis, the instance will hold current values, validation status etc. of all
nodes in the static form structure. The FormInstance is essentially holding
the collective state of the instantiated form. Multiple users can share the
same Form, but they will each have a unique FormInstance.

AdapForms: A Framework for Creating and Validating Adaptive Forms 113

Initialisation. The form instance is initialised with default values and, if avail-
able, stored form data from a previous session. The role of the current user
(if any) is also selected at this point. All relevant semantic rules (i.e., XPath
and hooks) are triggered, causing the form to be pre-adapted as much as
possible before the user encounters the form.

User interaction. Input from the user (or the host application) is passed to
the instantiated form, and the instance may respond with a list of validation
errors and form adaptations, triggered by the loaded semantics. Each user
interaction triggers a new adaptation cycle.
Adaptations may be scripted with XPath expressions and queries. To facili-
tate complex domain-specific validation and reasoning, the host application
may register hooks with the instance, which are triggered whenever a given
form element changes its value or state.

Submission. At submission, the instance is checked for any consistency prob-
lems and validation errors, and the event is then passed (along with the
instance) to a callback handler, specified by the host application.

3.2 Form Paths

A recurring scheme is the use of form paths. A path uniquely identifies a form
element, and is used throughout the framework for multiple purposes. Exam-
ples include look-up of form elements (form structure tree), addressing nodes
in the internal state tree, defining semantic rules etc. A path resembles the hi-
erarchical file names, and is heavily inspired by XPath and by h-maps [8]. An
example form path looks like this: /applicant/spouse/name/first. Paths may
be fully qualified (indicated by a leading slash) or relative to the context they
are used in. For the most part it is possible to create a 1-to-1 mapping between
a form element in the static form with the representation of that field in the
instantiated form, simplifying things. However, this is not possible in the case
of repeated sub-forms, where the user may specify any number of occurrences
of a given data type. In these cases, an extra annotation level to the instance
paths is introduced, so the paths become /applicant/jobs[1]/company and
/applicant/jobs[2]/company for the first and second repeat, respectively. This
syntax is also similar to XPath. When making references to the static form def-
inition, the numbering scheme is omitted. When defining semantic rules, both
versions may be used, depending on whether it is a general rule, or a rule specific
to a single repeated entry.

3.3 Element State Tree

The form instance holds state for each form element present in the instance. The
actual state is held in a hierarchical data structure with form paths as keys.

This is also inspired by how FormGen [5] stores state, but with the major
difference that the host application need not be implemented against specifically
generated tree classes. Thus, any host application can load any adaptive form
and process it at run-time, although it may of course not always be able to do

114 M. Bohøj, N.O. Bouvin, and H. Gammelmark

anything sensible with the entered data besides saving or forwarding it. The
trade-off of this approach is that the API exposed to the host application must
be more general and therefore may be less natural to use, than if the actual tree
was generated specifically for the domain.

At any given time, the following state parameters are available for all elements:
The unique form path and a Relevant state parameter, specifying whether the
element is currently visible to the user. In addition, any form element capable
of holding a value, also holds the following state: Current value, ReadOnly state
parameter, Required state parameter (for validation), list of associated hooks,
and the validation state. In Figure 2(a), the state tree is represented by the Form
data, Adaptation state, and Validation state collectively.

All of the mentioned state entries can be read and manipulated by the host
application, with the exceptions stated above. Changing the state will in most
cases trigger an adaptation of the form instance. Access to reading and manip-
ulating the state of a given element is exposed by the ElementState interface,
allowing direct API manipulation.

As mentioned above, the tree is partially inspired by hierarchical maps [8]; a
data structure intended for multi-purpose storage of data and state of varying
complexity using an ad-hoc tree-like structure, that changes over time. Each
piece of information is stored in its own leaf node, and is identified by a unique
path, where each part of the path represents a level in the tree, starting from
the root. In addition to holding values, a leaf may have registered one or more
message handlers, which are invoked in order, when a message is destined for
the corresponding tree path. Due to the tree structure, serialisation to and from
XML is straightforward.

In contrast to the original h-map, the set of possible nodes is restricted to
match the paths dictated by the static form structure, with the exception of
Repeats, as indicated above. Thus, every update to the structure is checked
against the form structure. This serves several purposes:

– Type safety is guaranteed, as only data of the type dictated by the cor-
responding form element can be written. When retrieving data from the
structure, there is thus no need for type checking, and any type errors are
caught early. Automatic data type conversion is applied, where applicable.

– Upon querying or updating a value in the structure, the action is checked
against the role permissions of the element. This guarantees that no data is
accidentally overwritten by a user not having the correct role.

– It is guaranteed that no “phantom” values are inserted, that are not logically
linked to the form due to path typos, logic errors, or similar.

Although most of this should already be implicitly guaranteed by the UI layer
implementation, it serves as a final centralised sanity check and guards against
both programming errors and attempts to craft malicious input. Furthermore,
the host application may manipulate parts of the data structure directly, and
once again this therefore guarantees a sound state of the structure at all times.

While each state tree node has its own set of parameters, these may be over-
ruled at run-time due to the semantic inheritance. Consider the case of two

AdapForms: A Framework for Creating and Validating Adaptive Forms 115

nested form elements; the logical group /foo and its contained text element
/foo/bar. If the relevant flag of the former element is changed to false this
value will propagate to the latter as well.

Mechanisms are provided for the form semantics logic to query and mod-
ify both the stored (possibly overruled) and the active value, but regardless of
how the parameters are manipulated, the inheritance overrule remains in effect.
Inheritance rules are out of scope for this article, but are described in [6].

Adaptation Cycles. All adaptations within a form instance are initiated by
a user action. This means that the form cannot suddenly change in front of
the user, unless he or she has triggered the adaptation by changing one or more
values in the form, submitting it, or have otherwise actively performed an action.

The term adaptation cycle denotes a complete cycle from the reception of user
input (value change, or submission request), and until the user experiences the
adaptations. Although the adaptation cycle is always triggered by a single user
action, the triggering of form hooks or semantic rules may cause a cascade of
adaptations to take place before the cycle ends. The host application can perform
changes to the form instance at any given time. However, these adaptations will
be accumulated in a buffer, and will only be presented to the user at the next
adaptation cycle to avoid confusion.

An adaptation is conceptually anything from a value change, validation status
change, relevance change, read-only status change to more volatile events such
as displaying a message to the user and more UI-specific adaptations, such as
redirecting a browser user to another website, closing a window, or playing audio.

Figure 2(b) illustrates the interaction sequences and the role of the iterative
adaptation cycles within a control flow context. Each iteration of the outer loop
represents a complete adaptation cycle. A single user-initiated adaptation may
trigger further adaptations and form hooks.

UI-specific View Component. The UI layer responsible for interfacing be-
tween the user and the core framework is only defined abstractly in the general
architecture, as a component with the following primary responsibilities:

– Presenting a pre-adapted form instance to the user.
– Populate the form elements with data and sending it to the core component.
– Adapting the presented form, as indicated by the core component.
– Highlighting validation errors within the presented form, based on feedback

from the core component.
– Submitting the form, when the user deems it to be completed.

Note, that we are not restricted to graphical interfaces. Any interface, e.g., audi-
ble or tactile, could theoretically be implemented, although the mapping is not
necessarily straightforward. A proof-of-concept implementation for a XHTML/
Ajax web platform has been implemented, as mentioned previously.

116 M. Bohøj, N.O. Bouvin, and H. Gammelmark

4 Evaluation

A framework such as AdapForms must be viewed from at least three perspectives,
when considering its fitness as a tool, namely the perspectives of the developer
(creating the forms), the form filler (the user filling in information), and the
form handler (responsible for handling the input). We have conducted some
initial user feedback studies on each of the three perspectives.

Form Filler Feedback. As mentioned above, a prototype user interface for
AdapForms has been implemented The form filler feedback was conducted on
a version prior to the demonstrator web UI included in the current framework
version. Changes were only made to the demonstrator UI and not to the handling
framework. The screen shots in Figure 1(a) and 1(b) are from the new version.
In the version used for the test, the framework indicated correctly filled fields
with green icons, and indicated errors and warnings with red and yellow icons
respectively. Error and warning messages were only available when hovering over
the icons next to the field.

In order to get feedback from form fillers, the web UI prototype was used
for experimentation. Three users were presented with a form produced with the
AdapForms framework, using the example UI, and a similar form implemented
in standard static HTML. In order to do a reasonable comparison, the static
form performed the same validation on submission as the adaptive form did
during completion and gave the same messages at the top of the document.

One of the major issues discovered with the adaptive form was with the vali-
dation feedback given to the user. The coloured icons indicating validation status
next to the fields were largely ignored by the users, and the users were puzzled
as to why they could not submit the form. When the users noticed the icons, it
was unclear to them what the different icons signified. The fact that the error
messages were available by hovering over the icons was not immediately clear
to the users and one user tried to click the icon. On the other hand, the users
had no problems with the validation error messages shown at the top of the
traditional web form after submission. This is probably because this seems to
be the norm for displaying error messages, but it would also indicate that error
messages should be displayed clearly in order for the user to notice and react
to them. This feedback has resulted in changes in the web implementation to
display the error messages directly beneath the field the error concerns, as can
be seen in Figure 1(a). The green icons indicating correct fields have also been
removed to avoid too much visual overload.

Another issue identified during the user testing was how to indicate the ex-
pected format. The tested version did not indicate the expected format, which
especially caused problems with date fields, as dates can be formulated in a num-
ber of different ways. This observation resulted in showing the expected format
next to the date field in the current version.

An important observation during the user testing was how the form was filled
out top to bottom, under the assumption that the fields already filled out would
not change. This is as expected, but is important to remember when defining

AdapForms: A Framework for Creating and Validating Adaptive Forms 117

forms and avoid creating rules that will change fields already filled out “on the
way down”. The lessons from this evaluation are mainly about the construction
of the UI, which is not directly the focus of the framework. The evaluation
does however show the usefulness of the idea behind the framework and the
use of adaptive forms. A majority of users in the evaluation liked the adaptive
forms after having adjusted themselves to the different mindset of getting instant
feedback and not having to wait for submission validation.

Developer Feedback. As a way of getting some feedback from developers who
were to use the framework in their development work, the framework was given
to a developer to evaluate. The developer was given the framework including the
UI web implementation and was asked to develop a web form. The developer
found the learning curve of using the web implementation quite steep due to the
many Ajax HTTP calls exchanged between the client and the server. It needed a
different way of thinking about control in the servlet environment and a change to
letting the hooks do much of the work. This would indicate that the control flow
should be made more clear in the future along with some more detailed tutorials.
The work with defining the forms using XML worked well and the structure was
quickly grasped. The main complaint was the lack of a more convenient way of
verifying the correctness of the form, prior to instantiation. This could be solved
by including a tool in the framework that would control the form against the
XML Schema available and at the same time ensuring that referenced JavaBeans
actually exist. As for the use of the validation rules, the simple rules were easily
understood and after looking into XPath, which was unknown to the developer
beforehand, this was also easily understood. One complaint was however how
this would fit into already defined business logic without having to write the
same thing twice. One way of avoiding defining business rules more than once
could be to rely mainly on JavaBeans and then reuse these beans throughout.
The general response to the use of the framework, was that after passing the
initial hurdle of learning the work flow of the framework, it can save a developer
a lot of time, compared to having to writing the validation of client and server
side by hand. One of the authors (not the original developer of AdapForms)
have utilised the AdapForms framework in the context of the eGov+ project,
as reported in [2,3]. Our experience with the framework closely resembles those
reported above.

Form Handler Feedback. The framework has also been used in connection
with the parental leave case of the eGov+ project and included in the prototype
developed in connection with this case and described in [2,3].

In connection with the development of this prototype, the concept of adap-
tive documents was introduced to the caseworkers set to handle the incoming
forms. They were generally positive about adaptive documents and some effort
was made trying to annotate existing physical documents, in order to establish
relationships between fields.

118 M. Bohøj, N.O. Bouvin, and H. Gammelmark

The caseworkers found it challenging to analyse the existing documents and
identify fields which were e.g., dependent on former input or pairs of fields de-
pended on each other. This shows that the change from creating one static form
to handle all potential users and their input and then designing a form which
is capable of adapting based on input such as gender or user role is non-trivial.
This challenge is something that has to be worked out between the developers
in charge of developing the form and the people with the domain knowledge
specific to the form in question.

5 Related Work

Form validation is a intrinsic part of form processing, and has been researched
both on the desktop and in web-based settings. FormGen [5] is a Java GUI tool,
which can generate a dynamic form based on data structured as a context-free
grammar (CFG). FormGen uses this CFG to generate Java classes for both data
model and GUI components. As in AdapForms, the data model in FormGen is
a tree, and as the user adds data to the form, new nodes are added to the tree.

Dynamic Forms [7] is an example of a validating form generator using the
Form Descriptive Language (FDL). FDL can be edited with an interactive editor
written in FDL. When users are interacting with the finished form, Dynamic
Forms provides feedback of completion and validity to the user by colour coding.
The idea of colour coding is also known from other frameworks and is also used
in the example implementation of the web user interface for AdapForms.

XForms [9] is a W3C alternative to the common HTML form. XForms is, as
AdapForms, XML based, and differs from regular HTML forms by separating
data and markup. Thus, one form can be specified and used several different
places with different markup. XForms extends the standard HTML form with
validation and adaptation. The validation can be performed using XML Schema.
Types are defined using XML Schema, and input can later be validated against
these types. XForms can also mark input as read-only, required, or relevant.
Adaptation of the document can be accomplished by changing the value of a
field’s relevance at run-time. The GUI may hide all irrelevant fields as not to
confuse the user. AdapForms have the same capabilities for in-document valida-
tion and adaptation, but extends these capabilities by allowing more complex
validation and adaptation within the framework, such as using database look-ups
and other server-side techniques, as described in Section 2.2 and 2.3.

JavaScript is widely used to make regular static HTML forms more responsive
and adaptive. Such JavaScript can however be tedious and error prone to de-
velop, which is addressed by PowerForms [4] by supporting client side validation
for user input in HTML forms. It generates an interactive form based on a HTML
static form and an PowerForms specification. The validation is continuous, show-
ing the validity as the form is filled. The status is again indicated by red, yellow
or green. The rules are constructed using a simple if-then-else structure, or
using regular expressions. Regular expressions are used to validate the format
of the text being entered. The rules are transformed into a finite-state machine

AdapForms: A Framework for Creating and Validating Adaptive Forms 119

expressed in JavaScript, which validates the form input. The if-then-else
constructs can be chained to make the validity of fields depend on other
fields.

6 Conclusion

Forms are an integral part of modern living, yet the basic form has changed
little over the decades—it may these days reside on a web page, but the general
form remains the same. Validation of forms is usually either a lengthy process
(fill-out, submit, review error messages, revise, resubmit). or relatively simple-
minded using specialised JavaScript code. We have in this paper presented a
general framework to define forms, designate acceptable field values, the inter-
relationships between fields, as well as an architecture to transparently validate,
report state of, and adapt a form as the user is filling it out. Depending on the
needs of the developer, the validation can be simple (type and range checks),
XPath based, or advanced such as integrating server-side business logic through
JavaBeans. Depending on the user’s input, the form can adapt itself, freeing the
user from having to deal with an over-general form covering all possible permu-
tations. Our initial evaluation leaves us hopeful that this is a valid approach,
though there certainly still are many aspects of effectively communicating ex-
pected values and form state to the user that need to be explored. Likewise,
the prototype implementation, while suited for our experiments has room for
improvement, notably in terms of scalability.

Acknowledgments

The eGov+ project is financed by a grant from NABIIT, the Danish strategic
research programme for nano-, bio-, and IT-sciences.

References

1. Berglund, A., Boag, S., Chamberlin, D., Fernández, M.F., Kay, M., Robie, J.,
Siméon, J.: XML path language (XPath) 2.0, W3C recommendation. Tech. rep.,
The World Wide Web Consortium, W3C (2007)

2. Bohøj, M., Borchorst, N.G., Bouvin, N.O., Bødker, S., Zander, P.O.: Time collabo-
ration. In: Proceedings of the 28th International Conference on Human Factors in
Computing Systems. ACM, Atlanta (2010)

3. Bohøj, M., Bouvin, N.O.: Collaborative time-based case work. In: Proceedings of
the Hypertext Conference 2009, pp. 141–146. ACM, New York (2009)

4. Brabrand, C., Møller, A., Ricky, M., Schwartzbach, M.: Powerforms: Declarative
client-side form field validation. World Wide Web 3(4), 205–214 (2000)

5. Brandl, A., Klein, G.: FormGen: A Generator for Adaptive Forms Based on
EasyGUI. In: Proceedings of HCI International Human-Computer Interaction: Er-
gonomics and User Interfaces, vol. 99, pp. 22–26 (1999)

120 M. Bohøj, N.O. Bouvin, and H. Gammelmark

6. Gammelmark, H.: Adaptive Forms. Master’s thesis, Department of Computer Sci-
ence, Århus, Denmark (April 2009),
http://adapforms.gammelmark.eu/files/adapforms-thesis.pdf

7. Girgensohn, A., Zimmermann, B., Lee, A., Burns, B., Atwood, M.: Dynamic forms:
An enhanced interaction abstraction based on forms. In: Proceedings of Interact
1995, pp. 362–367. Chapman & Hall, Boca Raton (1995)

8. Ørbæk, P.: Programming with hierarchical maps. Tech. rep., Aarhus University,
PB-575 (2005), http://www.daimi.au.dk/publications/PB/575/PB-575.pdf

9. W3C: XForms 1.1 (2007), http://www.w3.org/TR/xforms11/

http://adapforms.gammelmark.eu/files/adapforms-thesis.pdf
http://www.daimi.au.dk/publications/PB/575/PB-575.pdf
http://www.w3.org/TR/xforms11/

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 121–136, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Design and Implementation of Linked Data Applications
Using SHDM and Synth

Mauricio Henrique de Souza Bomfim and Daniel Schwabe

Informatics Department, PUC-Rio Rua Marques de Sao Vicente, 225.
Rio de Janeiro, RJ 22453-900, Brazil

mauriciobomfim@gmail.com, dschwabe@inf.puc-rio.br

Abstract. In this paper, show how Linked Data Applications (LDAs) can be
designed and implemented using an evolution of the Semantic Hypermedia De-
sign Method, SHDM, and a new development environment supporting it, Synth.
Using them, it is possible to take any RDF data available on the Linked Data
cloud, extend it with one’s own data, and provide a Web application that ex-
poses and manipulates this data to perform a given set of tasks, including not
only navigation, but also general business logic. In most cases, the only code
that needs to be written is for the Business Logic; the remainder code is auto-
matically generated by Synth based on the SHDM models.

Keywords: Linked Data, Semantic Web, Linked Data Applications, RDF, De-
sign Method, Model Driven Development.

1 Introduction

Up until recently, Web applications followed, to a great extent, the traditional data
intensive development approaches. The prevailing paradigm is one where organiza-
tions or individuals are responsible for either creating or collecting, through the appli-
cation itself, all its data, which remains under its management. With the advent of the
Semantic Web, and especially the more recent growth of the Linked Data initiative
[2], we are witnessing the emergence of the Linked Open Data (LOD)1 cloud, a col-
lection of interlinked data sources spanning a wide range of subjects. It is now quite
feasible to design Web applications (hosted in websites) whose contents are at least
partially drawn from the LOD cloud. For example, several sites at the BBC (e.g. 2010
World Cup website2) routinely make use of data pulled from the LOD cloud.

This new scenario has given rise to a new challenge – how to effectively build ap-
plications that consume linked data, often combining with locally generated and man-
aged data – that we will call “Linked Data Applications”, LDAs in short. At first
sight, this may sound similar to the problem of building traditional Web applications
– after all, the Semantic Web is part of the traditional, so-called “Web of documents”.
For such Web applications a number of design methods have been proposed, e.g.,
OOHDM [9], SHDM [4], WebML [2], UWE [3], Hera [13], among others.

But LDAs present additional challenges. First, one of its basic tenets is the reuse of
existing information – both vocabularies and instance data, whenever possible.

1 http://linkeddata.org
2 http://www.bbc.co.uk/blogs/bbcinternet/2010/07/bbc_world_ cup_2010_dynamic_sem.html

122 M.H. de Souza Bomfim and D. Schwabe

Second is the principle that the data should carry as much machine-processable
semantics as possible. Following this principle, it should be expected that, within
feasible limits, the application semantics also be captured in machine processable
way.

From the model-driven design (MDD) [11] point of view, this is not a new idea.
Software development, according to MDD, is a process whereby a high-level concep-
tual model is successively translated into increasingly more detailed models, in such a
way that eventually one of the models can be directly executed by some platform. To
be consistent with the LDA philosophy then, they should be specified using models
expressed in the same formalisms used to describe the data itself.

There are some proposals of development environments or frameworks for sup-
porting the development of LDAs, such as CubicWeb3, the LOD2 Stack4, and the
Open Semantic Framework5. In addition, semantic wiki-based environment such as
Ontowiki6, Kiwi7, and Semantic Media Wiki8 have also been used as platforms for
application development over Linked Data.

While useful, they do not present a set of integrated models that allow the specifi-
cation of an LDA, and the synthesis of its running code from these models. Therefore,
much of the application semantics, in its various aspects, remains represented only in
the running implementation code.

On the other hand, existing development methodologies, such as OOHDM,
WebML, UWE, and Hera, do not have the primitives to directly implement LDAs,
although some are able to import and manipulate RDF data.

In this paper we present an updated version of SHDM [7], the Semantic Hyperme-
dia Design Method, and Synth9, a development environment that allows the specifica-
tion of LDAs according to SHDM models, and the generation of running code from
this specification. Using Synth, it is possible to generate LDAs with little or no pro-
gramming, simply by declaring models as proposed by SHDM.

The remainder of this paper is organized as follows. Section 1 presents a motivat-
ing example that will be used throughout the paper to illustrate the various issues
being discussed; this application is built over data published in the Semantic Web,
enriching it with one’s own private data. Section 2 presents a brief summary of
SHDM, focusing on its proposed models and discussing their relevance for LDAs.
Section 3 presents Synth, the development environment supporting SHDM, and
shows how the example application has been implemented. Finally, Section 4 dis-
cusses related and future work.

2 A Working Example

In order to facilitate the presentation and discussion of our approach, we first
present an example LDA that illustrates a typical scenario. We will use it as a

3 http://www.cubicweb.org
4 http://lod2.eu/WikiArticle/TechnologyStack.html
5 http://openstructs.org/open-semantic-framework
6 http://ontowiki.net/Projects/OntoWiki
7 http://www.kiwi-project.eu
8 http://www.semantic-mediawiki.org/wiki/Semantic_MediaWiki
9 http://www.tecweb.inf.puc-rio.br/synth

 Design and Implementation of Linked Data Applications Using SHDM and Synth 123

Fig. 1. Domain model for a Personalized Conference Schedule application

reference to exemplify certain aspects of the proposed approach in the remainder of
the paper.

Many conferences make the metadata about its events (keynote talks, technical and sci-
entific paper presentations, tutorials, etc.) publicly available as RDF data, such as the
Semantic Web Conference series (see data.semanticweb.org). As is often the case, a con-
ference attendee must choose which events she is interested in, and assemble a personal
schedule of events to attend. We show a simple application that allows the attendee to use
the available conference metadata published in the LOD to build a personal schedule.

 Fig. 2. A list of events at a conference, with the option to select for inclusion in personal
schedule

Figure 1 shows the Domain model of the example application, using an UML-like
notation. Classes in white occur in the input data taken from data.semanticweb.org
(only a small fragment of the entire vocabulary was needed, depicted in this schema).
The classes in gray were added to model the semantics of the example application.

124 M.H. de Souza Bomfim and D. Schwabe

The sioc:User class models the user of the application, and the my:UserProgram
class models the personalized program, which will be a set of swc:AcademicEvents.

Fig. 3. A personal schedule of events

The starting point in the application is an interface that lists all events in chrono-
logical order, as illustrated in Figure 2. For each event, the user has the option of
checking a checkbox to indicate her interest.

Once the user has selected the events of interest, a personal program is shown in
Figure 3

Fig. 4. Details of an event

 Design and Implementation of Linked Data Applications Using SHDM and Synth 125

In this interface, the user can click on an event name to see details, as illustrated in
Figure 4. In this interface, clicking on a person’s name will lead to an interface show-
ing more data about that person. Clicking on an organization’s name will show all
events associated to that organization.
Notice that there is no direct relation in the Domain Model between Organization and
AcademicEvent; rather, it must be computed as the Organization to which the Authors
of the Document presented in the AcademicEvent belong.
We next discuss new or updated features of SHDM that deal with modeling LDAs.

3 The Evolution of SHDM

SHDM is a model-driven approach to design Semantic Web applications. Since it was
first formulated, the Semantic Web itself has evolved, e.g., with the advent of the
LOD cloud. Consequently, we have updated several aspects of SHDM, discussed in
this section.

SHDM includes six different phases: Requirements Gathering, Domain modeling
(formerly Conceptual Modeling), Hypertextual Navigational modeling (formerly
Navigation Modeling), Abstract Interface modeling; Business Logic modeling (which
did not exist previously), and Implementation. Each phase focuses on a particular
aspect and produces artifacts detailing the application to be run on the web.

Before looking at SHDM details, we first discuss what MDD means in the context
of Linked Data.

3.1 Linked Data, Applications and MDD

Linked Data, by itself, focuses only on providing information encoded as RDF, possi-
bly following an RDFS or OWL schema, in such a way that it is possible for a pro-
gram to process each information item, and to obtain additional related information
when available. Thus, it provides but a small portion of the necessary specifications
needed build a full-fledged application.

The only semantics of an RDF graph, is given by the RDF (and RDFS) meta-
model semantics as specified in the standard10. This captures a very limited fraction of
the “broad meaning” of the statements in the graph. The semantics restrict the possi-
ble interpretations of the set of triples as referring to some “real world” entity or
objects, and their relations. The programs that manipulate these statements add addi-
tional specific semantics, as their behavior is determined in some way by particular
sets of triples they receive as inputs.

In MDD, a set of models determines the ultimate application behavior. Each model
captures some aspect of the application – e.g., data (domain), interface, hypertextual
navigation, etc. If these models are specified as RDF statements using some vocabu-
laries, specific interpreters that implement the desired behavior must provide the in-
tended semantics. In fact, for RDFS and OWL, inference engines play this role with
respect to the data semantics, but there is no counterpart for application behavior (i.e.,
the business logic).

10 http://www.w3.org/TR/2004/REC-rdf-mt-20040210/

126 M.H. de Souza Bomfim and D. Schwabe

In SHDM, each of the proposed models establishes a specific vocabulary, and the
semantics are currently given through the code generated using the Synth environ-
ment, presented later in this paper.

We will next describe the more relevant models in SHDM, as they apply to LDAs,
pointing out evolutions with respect to the originally proposed method.

3.2 Domain Modeling

The Domain model characterizes the universe of discourse of a particular application.
In most proposed methodologies, the (equivalent to the) Domain model is specified
through a Class Schema (in OO methods) or ER schema (in database oriented meth-
ods). In contrast, in SHDM a Domain model is simply a set of RDF triples, which
form a graph, which may include RDFS or OWL definitions. In the extreme case,
there may not exist any Class definitions in Domain Model, just instances of re-
sources representing information items.

This is an evolution over earlier versions, where the domain model was specified in
SHDM’s own vocabulary. Therefore, SHDM can use any Conceptual Modeling tech-
nique that is capable of producing RDF graphs, or none at all, if the starting point is
an already existing RDF graph.

However, since we are focusing on LDAs, it is necessary to add an additional ab-
straction to SHDM’s metamodel, to capture the concept of “datasets”. Datasets are
described using the VoID vocabulary11, which was designed precisely for this pur-
pose. Using datasets, it is possible to use RDF graphs stored in the LOD cloud as part
of an application’s Domain Model. We will later show how this is achieved.

3.3 Business Logic Modeling

LDAs – indeed, all applications - are built to perform computations over data in-
stances of the Domain Model, causing effects that change the data and present some
results to the user. This computation is usually defined to support a set of tasks and
users, the intended audience of the application, which sometimes can be quite broad.
The Business Logic of the application specifies these computations.

Fig. 5. The Operation metamodel in SHDM

11 http://vocab.deri.ie/void/guide

 Design and Implementation of Linked Data Applications Using SHDM and Synth 127

In SHDM, he Business Logic model is given by specifying a set of Operations that
will be made available by the application, much in the same way as services in ser-
vice-oriented applications. SHDM’s metamodel for Operations is shown in Figure 5.
It is similar to Web Services specifications in other vocabularies (e.g., OWL-S12,
WSML13). with a few additions, described next.

Operations have properties specifying Parameters, and Pre- and Post-conditions.
The shdm:operation_name property provides a label for the operation. The
shdm:operation_type can be either “Internal” or “External”. The latter are operations
that can be invoked from outside the application, i.e., they are visible on the Web and
may be invoked as a REST service. The former are operations that can only be ac-
cessed from within the application and are not visible outside..

The actual behavior specification of the operation is given in the
shdm:operation_code property. The SHDM metamodel is agnostic as to how this
code is given, so the value of this property is currently specified as a string. In princi-
ple, this string can be code in any language for which there is an interpreter. This can
be a general programming language, or a Domain Specific Language [12], such as
BPEL14 or BPMN15. Strictly speaking, the value of this property could also be another
RDF graph representing a particular DSL (e.g. BPMN), but we have not explored this.
It should also be noted that Operations may be called from within other Operations.

The effective implementation behavior of the application is achieved by integrating
the code DSL interpreter with the runtime engine – i.e., it must be able to access and
change the values of the data.

3.4 Hypertextual Navigation Modeling

The term “Navigation Design” or “Hypertext Design” has been used to designate the
activity of designing the “navigation topology” of Web applications [9], which also
applies to LDAs. The main idea is that applications aim at supporting a given set of
tasks and, while performing a task, some of its steps are often best supported by pro-
viding a hypertextual navigation structure over the information items being processed.

For some domains, such as online newspapers and magazines, browsing and navi-
gating is the main task to be performed, and hypertextual navigation is well suited to
support it. For other domains, e.g. online stores, hypertextual navigation is useful to
support only a few of the tasks, e.g., browsing the catalog section, but is of little help
to support other tasks, e.g., the transactional (e.g., payment) processing.

Hypertextual navigation modeling prescribes preferred navigation paths through the
information items to support a given set of tasks. When specifying the navigation op-
tions, it is useful to be able to refer to sets of items that share similar navigation alterna-
tives, instead of individual ones. For example, it is better to state that “when accessing
any Person, one may navigate to one of the Papers s/he has created, and from any Pa-
per, continue navigating to other Papers created by that same Person”, instead of speci-
fying this linking structure repeatedly for every instance of Person and Paper. Notice
that several hypertextual links are induced by the task, and are not present in the Do-
main Model – e.g., “next” and “previous” Paper created by a Person.

12 http://www.w3.org/Submission/OWL-S/
13 http://www.wsmo.org
14 http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
15 http://www.bpmn.org

128 M.H. de Souza Bomfim and D. Schwabe

Following OOHDM, the major primitive for specifying the hypertextual navigation
topology of LDAs is the Context. A Context is a set of resources that share similar
hypertextual alternatives, e.g. “Papers by a Person”, “Products in a Department”, and
“Stories in a Section”. In a way, a Context plays the analogous role with respect to
hypertextual navigation as Classes (in OO languages) play for structure and behavior.
The same way the Class definition determines the structure and behavior of its in-
stances, the Context definition determines the navigation alternatives of its elements.

Fig. 6. SHDM Hypertextual Navigation metamodel

RDF data constitutes a graph, which can be considered as a “node-and-link” hyper-
text. For LDAs, this “node-and-link” model is often too low level, not supporting the
set-based specification of contexts. In other words, it is necessary to extend the pure
RDF graph of the Domain Model with additional properties that will drive the higher-
level Hypertext navigation.

Fig. 7. A fragment of the hypertextual navigation graph (left side) for the example

 Design and Implementation of Linked Data Applications Using SHDM and Synth 129

Accordingly, SHDM’s navigation model is defined as a set of additional properties
assigned to RDF resources in the Domain model. The hypertextual navigation behav-
ior defined by this model is implemented as part of the runtime environment of Synth.
Figure 6 shows the Hypertextual Navigation metamodel for SHDM.

A full description of SHDM’s Hypertextual Navigation metamodel is outside the
scope of this paper; more details can be found in [4]. Nevertheless, we illustrate how
the Domain model is extended with navigation properties at runtime, to allow the
interpreter to implement the hypertextual navigation behavior specified in the corre-
sponding model.

Figure 7 shows a fragment of the data graph of our example application on the
right hand side, and the hypertextual navigation runtime structure on the left hand
side. This fragment shows the navigation structure of the instance of the “Events-
ByUserProgram” context (a “context_instance” node) for “user1”, which is the value
of the “user” parameter of the context. In this case, “pres-12”, “pres-252” and “pres-
407” are part of this context. Notice that the “context_instance” node is used to group
the context elements and to provide ordering among them.

A more careful analysis of what actually is hypertextual navigation reveals that it is
ultimately just one (more) kind of application behavior, among all behaviors defined
by the Business Logic. However, differently from any arbitrary behavior one might
have in an application, which usually is domain-dependent, the hypertextual naviga-
tion behavior has a well-known semantics, which should also be modeled as an opera-
tion in the Business Logic model. In other words, what navigation means is known
independently of any particular domain, in advance.

From this observation, we define the hypertextual navigation in the development
support environment simply as a pre-defined set of operations. In other words, navi-
gation operations are operations whose code is predefined, and automatically inte-
grated into the generated runtime environment.

There are other advantages in to modeling navigation as operations. For example,
since operations have pre-conditions, it is possible to define conditional navigation
behavior. For instance, in our example, if the user has not yet selected her preferred
events, if she tries to navigate to the “My Program” index, the application will present
a message and request the user to first select the preferred events.

3.5 Interface Modeling

The Interface Model in SHDM [15] is based on the idea that it is possible to separate
the “essence” of the interface from its look-and-feel. This is achieved by decomposing
the interface specification into an Abstract Interface Model, and a Concrete Interface
Model.

In brief, the Abstract Interface focuses on the roles played by each interface widget
in the information exchange between the application and the outside world, including
the user. It is abstract in the sense that it does not capture the look and feel, or any
information dependent on the runtime environment. The Concrete Interface model is
responsible for the latter.

Summarizing the Abstract Interface meta-model, an (abstract) interface is a com-
position of abstract interface elements (widgets). These in turn can be an ElementEx-
hibitor, which is able to show values; and IndefiniteVariable, which is able to capture

130 M.H. de Souza Bomfim and D. Schwabe

an arbitrary input string; a DefinedVariable, which is able to capture input values (one
or several) from a known set of alternatives; and a SimpleActivator, which is able to
react to an external event and signal it to the application.

From an Abstract Interface, a mapping specification made by the designer deter-
mines how each abstract widget will be mapped onto one or more Concrete Interface
elements, and onto which Operations. Notice that the mapping to Operations unifies
access to the Domain Model - if it is a CRUD operation of an element of the Domain;
to the Navigation Model, if it is a Navigation operation; and to the general Business
Logic, otherwise.

This model allows a cleaner separation between the Hypertext Navigation and
Business models; there is no need to include both types of primitives in a single
graph, as proposed in WebML or UWE. When an event (i.e., user click) is captured at
the interface (via a SimpleActivator widget), the mapping to the operations (there can
be more than one operation mapped to the same interface element) will determine
which operations will be executed, regardless of their being navigation or not.

 We have subsequently extended this model to allow specifying interface-only be-
havior, thus modeling modern Rich Application Interfaces [5], but we will not detail
here for reasons of space.

We next present Synth, a development environment that supports the creation of
LDAs using the SHDM method.

4 The Synth Development Environment

Synth is a development environment for building applications that are modeled ac-
cording to SHDM. It provides a set of modules that receives, as input, models gener-
ated in each step of SHDM and produces, as output, the hypermedia application de-
scribed by these models. Synth also provides an authoring environment that facilitates
the adding and editing of these models through a GUI that can run on any web
browser.

4.1 Software Architecture

The software architecture of Synth was designed to be independent of its implementa-
tion technology. It consists of a set of modules, each responsible for maintaining and
interpreting one of the models generated in each phase of SHDM. Each module is
composed by a model described in a corresponding ontology in RDFS or OWL, and
an interpreter that gives semantics to the models, in addition to the basic semantics of
RDFS and OWL, in which they are represented. These modules work together, inter-
preting their models and communicating with each other, in order to generate the
application runtime in accordance with the definitions of each model.

Figure 8 shows a conceptual view of the modular software architecture for applica-
tions modeled using SHDM. The gray boxes represent the modules and the white
boxes represent the components of each module.

The persistence module handles the access and manipulation of application data.
This module is composed of two layers: a storage, inferences and query layer and a
RDF(S)/OWL mapping layer.

 Design and Implementation of Linked Data Applications Using SHDM and Synth 131

The storage, inferences and query layer provides a single interface for accessing
multiple environments and platforms for RDF data. This layer converts the access
interfaces of various RDF data environments (e.g., Jena16, Sesame17, Virtuoso18 or
OWLIM19) into a single interface known by the RDF(S)/OWL mapping layer, by
applying the Adapter design pattern. This layer is also responsible for distributing
queries among various data repositories, local or remote, combining their results, as
enabled under the Linking Open Data initiative.

Persistence module

Key

Behavior module

Domain module

Interfaces module Naviga on module

Naviga on
Ontology

Naviga on
Model

Interpreter

Naviga on
Model

Behavior
Ontology

Behavior Model
Interpreter

Behavior Model

Interfaces
Ontology

Interfaces
Model

Interpreter

Interfaces
Model

Domain
Model

Domain
Ontology

extends

vocabulary

query
query or
store

uses uses

RDF(S)/OWL mapping layer

Storage, inferences and query layer

Framework RDF 1 … Framework RDF 2 FrameworkRDF N

Fig. 8. Conceptual view of the Synth software architecture

The RDF(S)/OWL mapping layer provides a view of the data and meta data, origi-
nally persisted as RDF triples, as primitives of the programming language in which
the application is implemented.

The other modules are the domain, navigation, business logic, and interfaces mod-
ules. Each of these maintains and interprets its corresponding models, and is similarly
structured. The only exception is the domain module, which has no interpreter be-
cause the semantic of the domain model is that of RDFS and OWL, and the persis-
tence module provides an interpreter for them in the RDF(S)/OWL mapping layer.

4.2 Module Collaboration

To illustrate how the modules collaborate, Figure 9 presents the sequence diagram
showing the events in a typical execution of a “navigate” hypertextual navigation
operation. The user interaction always happens through the external operations of the
business logic model, available as Web Services. External agents invoke external
operations by sending HTTP requests to the application. In this sense, external

16 http://jena.sourceforge.net
17 http://www.openrdf.org
18 http://virtuoso.openlinksw.com/
19 http://www.ontotext.com/owlim/index.html

132 M.H. de Souza Bomfim and D. Schwabe

operations fulfill the same role as the “controller” in the MVC-based (model-view-
controller) architectures, coordinating user interactions, obtaining data from the do-
main Model, instructing the View to generate the interface and, finally, delivering the
result to the user or external agent.

In this sequence diagram, the user sends a message to the business logic module
invoking the method “execute” e informing the name of an operation, in this case
“context”, and some parameters for this operation. This operation performs the “con-
textual navigation” operation of the SHDM hypertextual navigation model.

After that, the external operation invokes the method “get_context” from the naviga-
tion module with the context identifier “AllPerson” as a parameter. The navigation
model retrieves the “AllPerson” context definition, obtaining the query expression. This
expression is then used to invoke the method “dsl” from the domain module, which
simply passes it to the persistence module. This module converts this expression to an
equivalent Federated SPARQL query expression, executes it getting the results as RDF
triples, and maps these results into the programming language primitives.

Fig. 9. Collaboration between modules in Synth

This mapped data is returned to the domain module and passed to the navigation
module, which generates the context instance with its nodes based on the received
data, and returns this context instance to the business logic module. Then, the busi-
ness logic module invokes the method “generate_interface” in the interfaces modules
passing the context instance as parameter, which returns the actual concrete interface.
Finally, the business logic module returns this result to the user.

 Design and Implementation of Linked Data Applications Using SHDM and Synth 133

4.3 Implementation Architecture

Synth is implemented with Ruby on Rails, an MVC framework for web applications
development. Within the MVC architecture, it maintains a modular organization
where each module presented in the conceptual view shown in Figure 8 is imple-
mented as a composition of one or more components of the MVC general implemen-
tation architecture.

All data in Synth is maintained as an RDF graph. It includes not only the instances
of domain data, but also the metadata about the models and meta-models of SHDM,
expressed as RDF(S) and OWL. This data is manipulated programmatically using the
Jena framework as an API. It plays the role of the storage, inference and query layer
in the persistence module in conceptual architecture. ActiveRDF [7], is a library for
accessing RDF from Ruby programs, mapping the RDF data into Ruby primitives,
playing the role of the RDF(S)/OWL mapping layer. ActiveRDF provides an API that
facilitates CRUD operations within Ruby programs, and has an adapter for Jena.

Our previous experience (see [6]), and Oren et al [7], explain the reasons we have
chosen Ruby and Rails as the implementation environment.

4.4 Authoring Environment GUI

Synth provides an authoring environment GUI using HTML forms that can be ac-
cessed from a web browser and allows the creation and editing of primitives of
SHDM models. It is possible run the application while it is being built using this in-
terface, validating it in each step of the development process.
Synth also provides the RDF Scaffold, a generic RDF browser and editor that allows
the execution of CRUD operations over the local application RDF database, in the
same way that it can be done in some well known RDF browsers and wikis like Tabu-
lator, Disco20 or OntoWiki.

4.5 DSLs within Synth

Synth provides several ways to specify the selection rules that determine the set of re-
sources that compose a context; these rules are expressed as context query expressions.
These query expressions can be specified in three alternative query languages: directly
in SPARQL; in a DSL hosted in Ruby which is defined by the ActiveRDF framework;
or in SynthQL, a customized simplified query language created specifically for Synth,
which can represent the most common context queries in typical LDAs.

The accepted SPARQL syntax is the same accepted by the ARQ query machine,
part of Jena framework, which supports the Federated SPARQL query that is impor-
tant for specifying datasets in the context queries. The ActiveRDF DSL is similar to
the one described in [6]

The goal of SynthQL context query language is to abstract the syntax of SPARQL
for the most commons query expressions typically found in LDAs. This approach
tries to minimize the need for knowledge about SPARQL, while still covering a large
set of common expressions with a simple syntax. The particular DSL is similar to the
one presented the previous version of Synth, HyperDE [6].

20 http:// www4.wiwiss.fu-berlin.de/bizer/ng4j/disco/

134 M.H. de Souza Bomfim and D. Schwabe

The code below is a context query expression in SynthQL. This query means “All
resources whose rdf:type is foaf:Document, dc:title contains a substring “owl”,
foaf:maker has the same value as the parameter ‘person’ passed during the user navi-
gation, ordered by dc:title, limited to 100 results, and the query should be evaluated
on the datasets identified by “local” and “iswc2010”.

selects {
 type FOAF::Document
 dc::title like "owl"
 foaf::maker person
 order DC::title
 limit 100
 datasets :local, :iswc2010}

4.6 Example Application

This section shows how the example LDA described in Section 1 is implemented in
Synth. For reasons of space, we will not detail the Interface Model for this applica-
tion; suffices to say that the example interfaces shown there use the default interface
generated by Synth for any application.

The raw RDF data from http://data.semanticweb.org/conference/iswc/
2010/complete was imported to the Synth local database. This data is the core Do-
main Model of the application, which is enriched with the customized schedule.

After the data importing, the navigation specification was entered into Synth
through its GUI (see Figure 10). The code below shows the specification of the
context swc:AcademicEvent “byUserProgram”.

:byUserProgram a shdm:Context ;
 shdm:context_name "byUserProgram ";

 shdm:context_title "Events by User Program";
 shdm:context_query "user.my::user_program.my::events";
 shdm:context_parameters [a SHDM::ContextParameter;

 shdm:context_parameter_name 'user'];

This specification uses the DSL hosted in Ruby defined by the ActiveRDF API.
The Figure 10 shows the Synth interface to edit this specification. The resulting con-
text navigation screen is shown Figure 4.

The list below is part of the specification of the “EventsByUserProgram” index. In
this example some navigational attributes are omitted to save space, but they are very
similar to the navigational attributes shown above.

:EventsByUserProgram a shdm:ContextIndex ;

 shdm:index_name "EventsByUserProgram";
 shdm:index_title "My Program";
 shdm:context_index_context :byUserProgram;

 shdm:context_anchor_attributes [
 a shdm:ContextAnchorNavigationAttribute;
 shdm:navigation_attribute_name "label";

 shdm:navigation_attribute_index_position 1;
 shdm:context_anchor_label_expression "self.rdfs::label";
 shdm:context_anchor_target_context :byUserProgram;
 shdm:context_anchor_target_node_expression "self"];

 Design and Implementation of Linked Data Applications Using SHDM and Synth 135

Fig. 10. Synth interface for “byUserProgram” context specification

This index is based on the context “byUserProgram” and has the navigational at-
tribute that is a context anchor. This context anchor shows the rdfs:label of the
swc:AcademicEvent and the target is the resource in which the current index entry is
based on the context “byUserProgram”.

5 Conclusion and Future Work

We have presented the evolution of SHDM, and Synth, a new development environ-
ment that supports the design and implementation of LDA, mixing external and locally
created RDF data. The major changes in SHDM are: Domain Model defined by any
RDF graph, including graphs distributed over several repositories; a Business Logic
Model that unifies Hypertextual Navigation and other application functionalities; and a
Hypertextual Navigation Model as an extension of any RDF graph.

Future work will add new models to SHDM, and their corresponding integration in
Synth, such a authorization, transactions, and adaptation.

Acknowledgement. The authors were partially supported by grants from CNPq and
Petrobras.

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data – The Story so Far. International Jour-
nal on Semantic Web and Information Systems 5(3), 1–22 (2009)

2. Ceri, S., et al.: Designing Data-Intensive Web Applications. Morgan Kaufmann, San Fran-
cisco (2003)

136 M.H. de Souza Bomfim and D. Schwabe

3. Koch, N., Kraus, A.: The Expressive Power of UML-based Web Engineering. In: 2nd Int.
Workshop on Web-Oriented Software Technology (IWWOST 2002), CYTED, Málaga,
Spain, pp. 105–119 (2002)

4. Lima, F., Schwabe, D.: Application Modeling for the Semantic Web. In: Proceedings of
LA-Web 2003, Santiago, Chile, pp. 93–102. IEEE Press, Los Alamitos (2003)

5. Luna, A., Schwabe, D.: Ontology Driven Dynamic Web Interface Generation. In: Proceed-
ings of the 8th Int. Workshop on Web-Oriented Software Technologies (IWWOST 2009)
in Conjunction with ICWE 2009, San Sebastian, Spain (June 2009)

6. Nunes, D.A., Schwabe, D.: Rapid prototyping of web applications combining domain spe-
cific languages and model driven design. In: Proc. 6th International Conference on Web
Engineering (ICWE 2006), pp. pp. 153-160. ACM, New York (2006) ISBN 1-59593-352-2

7. Oren, Heitmann, B., Decker, S.: ActiveRDF: embedding Semantic Web data into object-
oriented languages. Journal of Web Semantics 6(3), 191–202 (2008)

8. Rossi, G., Schwabe, D., Lyardet, F.: Web Application Models Are More than Conceptual
Models. In: Procs. of the ER 1999, Paris, France, pp. 239–252. Springer, Heidelberg
(1999)

9. Schwabe, D., Rossi, G.: An object-oriented approach to web-based application design. In:
Theory and Practice of Object Systems (TAPOS), Special Issue on the Internet, vol. 4#4,
pp. 207–225 (October 1998)

10. Silva de Moura, S., Schwabe, D.: Interface development for hypermedia applications in the
semantic web. In: Proc. WebMedia and LA-Web, 2004, Ribeirão Preto, Brazil, pp. 106–
113. IEEE Press, Los Alamitos (2004)

11. Thomas, D., Barry, B.M.: Model Driven Development: The Case for Domain Oriented
Programming. In: Companion of the 18th OOPSLA, pp. 2–7. ACM Press, New York
(2003)

12. Van Deursen, A., Klint, P., Visser, J.: Domain Specific Languages: An Annotated Bibliog-
raphy, http://homepages.cwi.nl/~arie/papers/dslbib/

13. Vdovjak, R., Frasincar, F., Houben, G.J., Barna, P.: Engineering Semantic Web Informa-
tion Systems in Hera. Journal of Web Engineering 2(1&2), 3–26 (2003)

A Quality Model for Mashups

Cinzia Cappiello1, Florian Daniel2, Agnes Koschmider3, Maristella Matera1,
and Matteo Picozzi1

1 Politecnico di Milano, Dipartimento di Elettronica e Informazione
Via Ponzio 34/5, 20133 Milano, Italy

{cappiell,matera,picozzi}@elet.polimi.it
2 University of Trento, Dept. of Information Engineering and Computer Science

Via Sommarive 5, 38123 Povo (TN), Italy
daniel@disi.unitn.it

3 University of Pretoria, Department of Computer Science
0002 Pretoria, South Africa
akoschmider@cs.up.ac.za

Abstract. Despite several years of mashup practice and research, it is
still hard to find high-quality, useful mashups on the Web. While this
can be partly ascribed to the low quality of the components used in the
mashups or simply to the lack of suitable components, in this paper we
argue that this is partly also due to the lack of suitable quality models
for mashups themselves, helping developers to focus on the key aspects
that affect mashup quality. Although apparently easy, we show that –
if taken seriously – mashup development can be non-trivial and that it
deserves an investigation that specializes current web quality assessment
techniques, which are not able to cater for the specifics of mashups. In
fact, we believe a mashup-specific quality model is needed.

1 Introduction

Mashups are Web applications that integrate heterogeneous resources at differ-
ent levels of the application stack, i.e., at the data, application logic, and user
interface (UI) level. The resources can be readily available on the Web, or they
may have been purposely created in order to reach the goal of the mashup de-
veloper. For example, it could be necessary to implement a dedicated service to
access company-internal data, in order to plot them on a Google map. Indepen-
dently of where resources come from, the goal of mashups is to provide novel
features by integrating resources in a value-adding manner, similar to service
composition, which however only focuses on the application logic layer.

The interest in mashups has grown constantly over the last years, especially
due to two main reasons. First, mashups and their lightweight composition ap-
proaches represent a new opportunity for companies to leverage on past invest-
ments in service-oriented software architectures and web services, as well as on
the huge amount of public APIs available on the Web. In fact, the possibility to
integrate web services with UIs finally caters for the development of complete ap-
plications, a task that service composition addressed only partially. Second, the

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 137–151, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

138 C. Cappiello et al.

emergence of mashup tools, which aim to support mashup development without
the need for programming skills, has moved the focus from developers to end
users, and from product-oriented software development to consumer-oriented
composition [1]. That is, mashup tools have refueled research on and invest-
ments in end user development.

While these reasons undoubtedly justify the extraordinary interest in mash-
ups, we however observe that so far none of the envisioned benefits have been
achieved. In fact, most of the mashups that can be found online are simple and
relatively useless applications and, as such, far from applicable in the enterprise
context. Moreover, mashup development is still a prerogative of skilled develop-
ers. If we look at the mashups themselves, we observe that their quality is simply
low, a result that is worsened by the fact that apparently not only end users but
even developers have difficulties in implementing high-quality mashups.

Given these premises, the aim of this paper is to understand how to sys-
tematically assess the quality of mashups and which are the aspects mashup
developers should keep an eye on, in order to obtain mashups of better quality.
In our previous research we investigated the quality of mashup components [2].
Specifically, we identified a set of quality dimensions and metrics that charac-
terize the quality of mashup components, where each component was seen as a
black box, a perspective that characterizes the reuse-centric nature of mashups.
Starting from a study conducted on a set of existing mashups, in this paper we
define a quality model for mashups.

The mashup assessment starts from the assumption that mashups, after all,
are Web applications and, as such, can be evaluated by means of traditional qual-
ity models. We therefore analyzed about 70 mashups available on
ProgrammableWeb.com, applying criteria and metrics for Web applications that
traditionally focus on the perceived quality of Web applications, e.g., accessibil-
ity and usability. This study revealed that understanding the quality of mashups
requires a quality model that takes into account the specifics of mashups. This
led us to the definition of a quality model.

This paper is orgnanized as follows. Next, we review existing techniques and
quality models for software and Web application assessment. In Section 3, we
apply some of the reviewed tools in order to perform our empirical assessment of
mashup quality. In Section 4, we precisely define our idea of mashups and analyze
their characteristics from a composition point of view. In Section 5, we derive a
quality model that takes into account these characteristics, and we discuss a set
of representative positive and negative examples. In Section 6 we conclude the
paper.

2 Related Work

A quality model is a structured set of quality characteristics that, for instance,
allows an assessor to evaluate Web resources from different perspectives. In the
Web, first quality models focused on Web sites [3,4], then they focused on more
complex Web applications [5,6]. Recently, quality models for Web 2.0 applica-
tions have emerged [7,8]. Yet, the Web 2.0 also introduced a novel role into the

A Quality Model for Mashups 139

quality assessment process, i.e., the end user feedback. In fact, it is nowadays
common practice for Web 2.0 applications to be assessed via simple human judg-
ments [9], without following any structured quality model. While user feedback
is generally a rich source for quality assessment, the phenomenon of self-ratings
by users cannot replace third-party assessments [10,11].

In particular, in the mashup context, traditional quality dimensions suggested
for software engineering [12,13] and Web engineering [14,15] may be partly ap-
propriate to measure the internal quality of a mashup (e.g., code readability),
as well as its external quality in-use (e.g., usability). In Section 4.3, we will see
that, a deeper and more reliable analysis can be achieved by taking into account
the component-based nature of mashups. Instead, the W3C guidelines for acces-
sibility [16] can be applied to Web sites and mashups alike, as accessibility is a
rather technical concern.

Rio and Brito e Abreu [4] found out that most of the quality dimensions
are domain-dependent, i.e., that there is a strong impact by the application
domain on the usefulness of quality dimensions. In line with this finding, in [2]
we started looking at the specifics of mashup components, leaving however open
the problem of defining a comprehensive quality model for mashups.

Despite the lack of quality models for mashups, some existing approaches,
for instance those focusing on the quality of Web 2.0 information [17,18], may
contribute to the assessment of mashups. However, these approaches evaluate the
input (resource streams) separately and not their final composition, which is a
crucial factor for mashups on which we instead focus. In [19] we tried to partially
fill this gap by studying how information quality propagates from components
to mashups. Yet, non data-related aspects of internal quality and user interface
have not been considered so far in the specific case of mashups.

3 Mashup Development: Quality Issues and Challenges

While in the previous sections we generically stated that “mashups are Web
applications that integrate heterogeneous resources at different levels of the ap-
plication stack, i.e., at the data, application logic, and user interface (UI) level,”
for the purpose of our analysis we further refine this definition as follows:

Mashups are Web applications that integrate inside one web page two or
more heterogeneous resources at different levels of the application stack,
i.e., at the data, application logic, and UI level, possibly putting them
into communication among each other.

The first reason for this refinement is that we specifically want to focus on
mashups that have an own UI (to distinguish them, for example, from so-called
data mashups as the ones created with Yahoo! Pipes) and that aim to pro-
vide added value by integrating a set of existing services or components, rather
than coding something from scratch. That is, we want to emphasize the typical
component-based nature of mashups and the resulting development paradigm of
composition. In fact, mashup development is similar to other component-based

140 C. Cappiello et al.

development paradigms, most prominently to web service composition, which
focuses on the integration and reuse of existing web services. Mashups, however,
extend this composition paradigm also toward data services and UI components,
enabling the development of web applications that span all the three layers of
the application stack.

If we neglect the static content possibly added by the mashup developer during
integration (e.g., in the layout template of the mashup), we can identify two core
independent aspects for which quality becomes an issue:

– The components : Since a mashup reuses data, application functionality, and/
or UIs, the quality of these building blocks certainly influences the quality
of the final mashup. The lower the quality of the chosen components, the
lower the quality of the result of the composition. Even if a developer is
aware of the low quality of a component, is it not always possible to choose
a better component, e.g., because no other components implementing the
same functionality are available.

– The composition: While it is usually not possible to improve the quality of
third-party components, it is at the other hand relatively easy to further
degrade the potential quality of a mashup, i.e., the maximum quality the
mashup could have by integrating the same components, if the composition
logic of the mashup is not well crafted. In fact, the composition logic is the
only part of the mashup that is not reused and that needs to be implemented
by the mashup developer, typically each time from scratch. Given the com-
plexity of mashups and the usually high number of different technologies
involved, this task is generally error-prone and hard to debug.

Additionally, composition is a complex task, which can be split into three inde-
pendent sub-tasks, each with its very own quality concerns:

– Data integration: Integrating different components may require integrating
their data, e.g., if one component is configured to provide input to another
component. Doing so may require the re-formatting of data, the cleansing of
data, joining or splitting data, and similar.

– Service orchestration and UI synchronization: Passing data from one
component to another component also means setting up the necessary or-
chestration logic among services or UI synchronization logic among UI com-
ponents, since services interactions are typically invocation-based and UIs
event-based. Mixing the two integration paradigms is non-trivial in general.

– Layout : Finally, one of the most crucial aspects for the success of any appli-
cation is its graphical appearance. The common practice in mashup devel-
opment is to use HTML templates with place holders for the UI components
to be integrated. Although apparently easy, developing good templates that
are able to seamlessly host third-party UIs (possibly with customized CSS
settings) is again far from easy.

Given these peculiarities, the challenge is to characterize the quality of mashups
in a way that (i) captures the perceived quality of the mashup (so as to address

A Quality Model for Mashups 141

the user’s perspective), but that also (ii) allows the mashup developer to act
upon the composition logic, in order to settle possible quality issues.

4 Assessing Mashups Like Common Web Applications

In the following we describe a study that we conducted, in order to understand
how well current mashups perform in terms of existing quality criteria and how
much useful information a mashup developer can obtain from the application of
existing standards and quality evaluation tools for Web applications in general.
The hypothesis of the experiment was that, after all, mashups are nothing but
regular Web applications.

We performed a sistematic review of readily available quality assessment in-
struments, we chose four criteria for which there were automated assessment
tools available (in order to eliminate as much as possible subjective evaluations):

– Usability: measures the ease of use of the mashup by the mashup users.
– Readability: measures how easy or difficult it is to read and understand the

text rendered in the mashup.
– Accessibility: measures how well the mashup complies with the W3C web

accessibility guidelines [16].
– Performance: measures the loading time of the mashup till all elements of

the application are rendered in the page.

4.1 Setup of the study

In order to automatically assess mashups according to the selected criteria, we
looked for tools that (i) are able to autonomously access and assess mashups
starting from a common URL and (ii) are free. We then identified and selected
the following instruments:

– Site Analyzer (http://www.goingup.com/analyzer/) for the assessment of
W3C accessibility and usability guidelines, usability guidelines by J. Nielsen
[20] and ISO standards. Altogether, SiteAnalyzerTM implements 70 auto-
matically running tests. The evaluation results are shown on a 100-percentage
scale, where results equal or higher than 75% indicate a very good confor-
mance, result between 75% and 65% a moderate conformance and all below
65% represents an insufficient conformance.

– Juicy Studio (http://juicystudio.com/services/readability.php) for
the assessment of readability using the Flesch Reading Ease algorithm, which
inspects the average number of words used per sentence and average number
of syllables per word in order to compute a number that rates the text on a
100-point scale. The higher the score, the easier the resource to understand.
The recommended score for an object is approximately 60 to 70.

– Pingdom (http://www.pingdom.com/) for measuring mashup loading times.
The tool loads all objects (e.g., images, CSS, JavaScripts, RSS, Flash and
frames/iframes) and shows the total load time in seconds and visually with
time bars.

http://www.goingup.com/analyzer/
http://juicystudio.com/services/readability.php
http://www.pingdom.com/

142 C. Cappiello et al.

In order to select the set of candidate mashups for our study, we went to the
largest registry of mashups available online, i.e., the ProgrammableWeb.com
Web site, which allows mashup developers from all over the world to link their
own mashups and to provide some useful meta-data about them. Developer-
provided meta-data are, for instance, the publication date of the mashup or the
set of APIs used by the mashups, while the site also features user-provided
ratings for mashups and the number of users that accessed it. Mashups are not
hosted on ProgrammableWeb.com, but linked.

Out of the population of 5347 mashups (at the time of the experiment) we
randomly selected 224 candidate mashups. We used a simple random sample
(SRS) technique, a special case of a random sample [21] in which each unit of the
population has an equal chance of being selected for the sample. We did not, for
instance, focus on the “top 100” mashups, in order to have an as representative
as possible sample without bias toward high quality.

Unfortunately, the links of 87 mashups were broken, and 22 mashups could not
be processed by the analysis tools. Also, 43 pointed pages could not be considered
proper mashups, being them simple Web pages not including any external API.
So, the final sample for the evaluation was composed of 68 mashups.

The website of the Site Analyzer tool publishes information about the us-
ability and accessibility of top rated web pages. We selected 74 web sites out of
100 (the remaining 26 web sites are variants of each other or duplicates with no
difference in rating) and analyzed them according to the selected four quality
criteria (usability, readability, accessibility and performance).

Subsequently, we compared the measures achieved for those web sites with
the measures of the mashups in order to assess the validity of the values for
mashups.

4.2 Results

Before the actual quality assessment, we tried to understand whether the meta-
data available in ProgrammableWeb.com are somehow correlated to the mashup
quality and as such can be considered quality indicators. The performed sta-
tistical tests were not able to identify any dependency among the number of
users and the average rating of mashups, nor among the publication date and
the number of users. This means that the meta-data cannot be used to obtain
indications on the quality of mashups.

Table 1, instead, shows the results of the evaluation of the four quality criteria
for the five “best” and the five “worst” mashups in terms of usability.

In general, the tool analysis indicates that about 25% of the mashups are of
very good usability and accessibility. The average readability degree is close to
60, which indicates an “easy” reading, and the average loading time is close to
5 seconds, which we can consider at the limit of acceptability.

An in-depth analysis of the mashups with very good usability and accessi-
bility (17 mashups) revealed a Spearman’s correlation coefficient indicating a
high correlation between usability and accessibility (0.855 and p-value < 0.005).
This means that usability and accessibility are coherent. The average readability

A Quality Model for Mashups 143

Table 1. Evaluation results for the five “best” and five “worst” mashups

Rating Mashup Usability Readability Accessibility Performance

1 A Paris Hilton video site 83.9% 65.2 85.5% 3.1 sec.
2 Sad Statements 81.4% 35.2 80.5% 5.1 sec.
3 ShareMyRoutes.com 79.8% 62.9 78.4% 2.8 sec.
4 DiveCenters.net 79.5% 75.0 73.3% 1.4 sec.
5 Cursebird 79.1% 78.1 79.3% 2.1 sec.
...
64 CityTagz 65.0% 53.3 64.2% 3.2 sec.
65 Blue Home Finder 64.9% 77.7 63.9% 7.3 sec.
66 Gaiagi Driver - 3D Driving

Simulator
64.8% 53.9 64.6% 6.3 sec.

67 2008 Beijing Olympics Torch
Relay Path

62.2% 10.5 58.7% 2.0 sec.

68 Tidespy: Tide Charts with Best
Fishing Times

61.2% 58.2 64.3% 5.7 sec.

degree of these 17 mashups was 60.05 and their loading time was 5.33 seconds.
In contrast to that, the mashups with very low usability and accessibility had a
load time of 3.70 seconds and an average readability degree of 42.66.

Next, in order to understand how mashups with low quality could be im-
proved, i.e., to provide mashup developers with suitable guidelines and to help
them improve the mashup, we analyzed the error and warning messages pro-
duced by Site Analyzer, which specifically focuses on usability and accessibility.
In Table 2 we report the five most recurrent warnings and suggestions we col-
lected during our analysis, along with their description.

4.3 Analysis of Results

In order to understand whether the results of the automatic analysis were re-
liable, we conducted five independent evaluations by manually inspecting the
same mashups and assigning them with a score expressing the mashup qual-
ity and a comment justifying the score. We then compared the results of the
two evaluation sessions and discovered that in several cases the two assessments
diverged.

We immediately identified some inconsistencies. There are indeed some ex-
amples that show that the tools were not able to capture some peculiar features
of mashups and therefore under- or over-estimated their quality. Let us give an
example: Figure 1 shows the Gaiagi 3D Driver mashup, which provides a 3D
driving simulation achieved through different map APIs. The user can search for
a route, and the application simulates the journey thanks to the Google Earth
API and the Google Street View API. A Google Map and a Bing map show a
traditional map representation. A text description then shows the route indica-
tions. This mashup is very rich from the functionality point of view. Although the
included APIs have similar purposes (they all provide map-based services), their
orchestration offers a valuable, multi-faceted, still integrated view over route in-
dications. The quality of this mashup, as assessed through the automatic tools,
is low: i) the accessibility test obviously failed - a map cannot be interpreted by
any accessibility tool (e.g., screen readers); ii) although the usability scores were

144 C. Cappiello et al.

Table 2. Most recurrent warnings and suggestions for analyzed mashups

Warning % Description Comment

Visited Links 68.69 Marking previously visited
hyperlinks helps users to identify
which pages of the website have
been previously read. In other
words, according to Nielsen the
navigation interface should answer
three essential questions: ”Where
am I?”, ”Where have I been?” and
”Where can I go?

Mashups typically consist of single
pages only. So, the links inside the
mashups mostly serve to interact
with the single page and its
application features, e.g., to show
the location of a housing offer on a
map, and less to navigate through a
complex hypertext structure. Users
do not get lost in one-page mashups.

Privacy Policy 64.34 The owner of the website uses the
Privacy Policy to inform users how
personal data will be treated and
how data protection regulations will
be observed.

Given that mashups integrate data
from a variety of sources, it may be
important to explicitly state where
data come from and how they are
used.

Valid XHTML 54.78 Implementing valid (X)HTML
markup may improve the quality of
the rendering inside the client
browser.

Due to their component-based
nature, it is hard in mashups to
fine-tune the markup code of
third-party components.

Labelling links
on mouse-over

53.04 To allow users a good navigation of
your website, it is necessary that
links can be identified and that they
can be highlighted in color with a
mouse-over.

Again, this is a features that needs
to be implemented by the
developers of the components.
Adding mouse-over or similar effects
are hard to overlay afterwards.

Resizable Fonts 53.04 Not all visually impaired people
make use of technical support to
navigate on the internet. The
feature to increase fonts is an
important element to ensure that all
information of the website can be
read by all users. Even people who
are not visually impaired need to
increase the font sometimes.

Increasing or decreasing the fonts
inside a mashup may reveal very
different behavior from the
integrated components. While some
of them may implement resizable
fonts, others may completely neglect
the issue, revealing it only when
readability instead needs to be
increased.

Suggestion % Description Comment

Sitemap 90.43 Sitemaps allow users to have a quick
and complete overview of the
website.

As already pointed out, mashups
typically consist of one page only.
So, a sitemap is actually not needed.

Printer
Friendliness

84.34 Web users often want to print the
content of a page. Neat printing of
the content (e.g., without having the
borders cut off) can be achieved by
implementing a print function and
also by including stylesheets which
have been optimized for printing.

While this is a capability that is
definitely desirable also for mashups,
so far mashups have been focusing
more on outputs that are either data
(e.g., Yahoo! Pipes) or interactive
UIs, which are not easy to print.

Table Summary 61.73 The TABLE element takes an
optional SUMMARY attribute to
describe the purpose and/or
structure of the table. The overview
provided by the SUMMARY
attribute is particularly helpful to
users of non-visual browsers.

If tables are used for the layout of
the mashup, a summary could
indeed help impaired users to
understand the structure of the
mashup. Tables inside the
components are outside the control
of the mashup developer.

Image with
Missing Width
or Height

59.13 Missing height and width size of
images impacts the performance of
the website. A precise definition of
height and width allows a quicker
download of the website, as the
browser recognizes the space needed
for the image and can leave it
empty.

This suggestion applies equally to
mashups. Given the typically dense
integration of contents
(components) inside a mashup page,
correct formatting may be crucial
for successful rendering.

Table Header 46.08 Table headers should be
recognizable as such, since they
perform a descriptive task.

The same holds for mashups. Again,
tables of the layout template are
under the control of the mashup
developer, tables inside components
not.

A Quality Model for Mashups 145

Fig. 1. A mashup integrating different map-based components (http://www.gaiagi.
com/3d-driving-simulator/)

moderate (Readability = 53.9; Usability = 64.6%) the mashup was ranked at
position 66 out of the 68 mashups.

Conversely, according to the five manual inspections, this mashup was the top
ranked: it is easy to use, effective from the point of view of the offered data and
functionality, highly interactive and very well orchestrated. This therefore shows
that the automatic tools do not capture at all this good quality. One reason is
that some criteria that are cornerstone for traditional Web applications, e.g.,
the richness of links and intra-page navigation, and the readability of text, do
not necessarily apply to mashups. For example, map-based components, as the
ones used in the example of Figure 1, do not necessarily show text, rather they
visually render some points on the map space. Their effectiveness is however still
high and proved in several contexts.

Another reason for the observed discrepancy is that, as better discussed in Sec-
tion 5, important ingredients in mashups are the richness and suitability of com-
ponents, as well as the way they synchronize. Mashups should indeed be able to
offer an integrated view over the different domains deriving from the integrated
services. This characterization is not obvious; in other words there is no general
consensus on what a mashup is and what not. This is also confirmed by the
fact that 29% of the mashups randomly selected from ProgrammableWeb.com
included one single API (in most cases a map), without offering any real inte-
gration among multiple components. However, we strongly believe that a dis-
criminant factor, which allows one to identify the actual value of a mashup, is
the presence of multiple components and a reasonable number of coupling mech-
anisms giving place to a real integration. These aspects cannot be captured by
automatic tools that therefore provide too generic feedback not reflecting at all
the salient characteristics of mashups.

http://www.gaiagi.com/3d-driving-simulator/
http://www.gaiagi.com/3d-driving-simulator/

146 C. Cappiello et al.

The shortcomings of state-of-the-art tools are however not limited to the com-
putation of quality metrics only. In fact, as the comments in Table 2 show, also
the feedback provided to developers in terms of warning messages and sugges-
tions is only hardly applicable in the context of mashups. It is generally hard
to change any of the hypertext characteristics of the components used inside a
mashup, while it is definitely possible to fine-tune the composition logic of the
mashup. Yet, this latter aspect is not supported in terms of suitable warnings
or suggestions.

5 The Mashup Quality Model

As the previous analysis shows, existing quality dimensions are not totally suit-
able for evaluating the quality of mashups. In this section, we therefore aim
at identifying a set of properties that are able to capture the capability of a
mashup to enable users to access specific content and functions with easiness,
effectiveness, safety, and satisfaction. As we have seen in Section 2, traditional
Web pages are usually evaluated by focusing on the value of the provided in-
formation and the suitability of the presentation layer [22]. On the basis of the
definition provided in Section 3, mashup quality also depends on the quality of
the components involved in the mashup and on the quality of the composition in
terms of data, functionalities, and interface integration. Therefore, for mashups,
traditional dimensions should be revised and enriched with dimensions address-
ing the added-value that these applications provide through the integration of
different components.

We propose a model that classifies quality dimensions into three categories,
i.e., Data Quality, Presentation Quality, and Composition Quality, where the
latter category is very peculiar for mashups since it focuses on the way compo-
nents interact among each other and measures the utility of the composition. In
order to better define these three categories (in the rest of this section), we first
characterize the mashup composition task as follows:

– Mashups are developed in order to offer a set of application features FS, and
consequently retrieve and give access to a set of data that we call the Data
Set DS. An application feature is a functional capability, i.e., an operation
that can be executed by the users or automatically performed on behalf of
the users (e.g., due to synchronization between components).

– A mashups can be associated with the set of components C = {c1, ..., ck}
used to create it. Each component ci, 1 < i < k, has its own set of application
features FSi and data set DSi. To fulfill the mashup requirements, smaller
portions SFSi and related SDSi are sufficient. They are called situational
features and data sets.

Figure 2 sketches the quality aspects and dimensions addressed by our mashup
quality model, which we discuss next in more detail.

A Quality Model for Mashups 147

Consistency

Mashup quality

Data quality
Presentation

quality
Composition

quality

Usability

Accessibility

Accuracy

Timeliness

Completeness

Availability

Availability

Added value

Component
suitability

Component
usage

Consistency

Fig. 2. The dimensions of the quality model for mashups

5.1 Data Quality

As defined in [19], the mashup quality strongly depends on the information that
the integration of different components is able to provide. Assessing the quality
of a mashup therefore requires understanding both the quality of components
and the effect that the composition has on the overall quality of the final mashup.
In [19], we have defined an information quality model for mashups from which
we reuse the following set of dimensions relevant for mashup applications:

– Accuracy: refers to the probability that mashup data are correct. This is
calculated by considering the probability that an error occurs in the data sets
SDS1,...,SDSk of the components used in the mashup. This probability can
be estimated by looking at the usage history of a component and considering
all the types of occurred errors (e.g., typos, wrong representation).

– Situational Completeness: defines the degree with which DS is able to pro-
vide the desired amount of information. The evaluation of such dimension
starts from considering the amount of data contained in SDS1,...,SDSk

and comparing them to the amount of data that ideally should be accessed
through the mashup.

– Timeliness: provides information about the freshness of the available data
sets. The timeliness of the mashup results from the aggregation of the time-
liness of the different components where the aggregation function can be
minimum, average, or maximum.

– Consistency: addresses situations in which the mashed up components have
data sets that conflict with each other, leading to inconsistency in the data
shown in the final mashup.

– Availability: is the likelihood for the mashup to be able to provide any data,
that is, in order for a mashup to be available at least one of its components
must be available.

It is worth to point out that the way in which components interact among
them influences the information quality assessment, especially for accuracy and

148 C. Cappiello et al.

situational completeness dimensions. Timeliness and availability are instead com-
puted as simple aggregation of the respective characteristics of the individual
component data sets.

5.2 Presentation Quality

Presentation Quality is traditionally decomposed into usability and accessibility:

– Usability: also in the mashup context, usability addresses some traditional
dimensions, such as orientation, users control, predictability, layout consis-
tency. For example, the features provided by a mashup should be invoked
through commands that are easy to identify and understand. The users
should also easily understand the effect of a feature when it is invoked. In
particular, in a mashup that synchronizes multiple components, the effects
of the propagation of a command over the different components should be
visible to the user.
An important usability attribute is learnability, which relates to“the fea-
tures of an interactive system that allow novice users to use it initially, and
then to attain a maximum level of performance” [23]. Learnability should be
privileged in mashups, even though this application are very often simple:
the mashup features should be visible enough and the corresponding com-
mands should be self-expressive so that even naive users can easily master
the mashup execution.
Finally, a major role is played by layout consistency, which provides the
“glue” through which even heterogenous components result to be a whole.
However, some other usability attributes usually adopted for traditional Web
applications are not applicable in the evaluation of mashup quality. First of
all, even though future development practices would lead to the creation of
multi-page mashups [24], current mashups are still very simple applications
from the point of view of their hypertext structure – very often they are
made of a single page. Therefore, criteria such as navigability and richness
of links, or any other criteria addressing the hypertext structure, which are
generally considered relevant for the quality of Web applications [25], have
a lower impact over the mashup quality.
Moreover, mashup applications rarely contain long texts and the assessment
of all the quality dimensions that are commonly used for the evaluation
of Web content, such as readability, cohesion or coherence, might provide
irrelevant results.

– Accessibility: it addresses properties of graphic page design, such as those
defined by the W3C Web Accessibility Initiative (WAI) [26]. Accessibility
criteria do not need to be specialized for mashups. Rules for enabling access
by any user and any device should indeed be taken into account when defin-
ing the layout of the mashup, also smoothing some layout setting of single
components in case they violate any accessibility rule.

A Quality Model for Mashups 149

5.3 Composition Quality

As stated above, composition quality aims at evaluating the component orches-
tration and the suitability of the mashup for the provision of the desired features.
The composition quality is decomposed into added value, component suitability,
component usage, consistency and mashup availability.

– Added value: the added value of the composition can be related to the amount
of provided features and/or offered data. The composition provides an added
value if, for each component ci, SFSi ⊂ FS ∨ SDSi ⊂ DS, i.e., the amount
of features/data offered by the mashup is greater than the amount of fea-
tures/data offered by the single components. While the previous one defines
the minimum condition ensuring that some added value is provided by the
composition, the goal to be reached is that

⋃
i SFSi ⊂ FS ∨ ⋃

i SDSi ⊂ DS.
This also reflects the principle that information becomes more valuable when
it can be compared and combined with other information [27].
We can quantify the added value along a scale that ranges from the case in
which a mashup gives simply the opportunity to render data coming from
different sources (without any attempt to integrate them) to the case in
which additional features and data are provided by an adequate integration.
For example, a mashup as dailymashup.com provides a low added value since
its single page offers a very poorly integrated view on some selected news
(taken from Yahoo!news) and, in a totally unaligned fashion, also on the top-
ranked last 24 hours photos from Flickr. More added value would be offered
if the mashup components were synchronized. To provide an added value,
mashups must offer to the users additional features or data, as for example
the mashup published on www.bluehomefinder.com, where an advanced ser-
vice for finding houses offers the localization of houses on a map plus other
features that allow the users to perform operations of filtering and selection.

– Component suitability: it refers to the appropriateness of the component fea-
tures and data with respect to the goal that the mashup is supposed to sup-
port. For example, a mashup that aims at providing addresses of the nearby
restaurants with respect to the current user location should be effectively
built based on map-based components. In fact, a simple list of textual ad-
dresses could not appropriately support those users that are not acquainted
with the geographical area.

– Component usage: it may happen that, even though a component is very rich
from the point of view of data and functionality, it is improperly used within
a composition. For example, the Google Maps API offers several operations,
such as geocoding, directions, street view, and elevation. Let us consider that
a mashup developer decides to just use the street view feature. This choice
is not reasonable if the user goal is to get oriented within a geographical
area: the street view just offers a local and realistic view of a selected point
of interest, while it does not provide a larger view of the area in which the
point is located.

– Consistency: poor quality compositions can also be caused by inconsisten-
cies at the orchestration level. In fact, the composition of two components

150 C. Cappiello et al.

is feasible if the two linked operations are compatible from only a syntac-
tic perspective even if they are incompatible from a semantic perspective.
In this way, the composition can produce inaccurate results. For example,
the composition between an operation that provides an address and a map
service is feasible since the input-output parameters are strings. However, if
the address is incomplete and contains only information about the city in
which the point of interest is located, this will work properly but it will not
show the desired information.

– Availability: the degree in which the mashup can be properly accessed during
a given time interval. It depends on the availability of the components and
on their role in the composition.

6 Conclusion and Future Work

To the best of our knowledge, this paper represents the first attempt to de-
fine a quality model for mashups. Although many so-called “quality-aware” or
“quality-based” composition approaches (mostly for web service composition)
have been proposed so far, a holistic approach to quality assessment of the final
output of the composition task – especially for mashups – was still missing.

Driven by the results of our study, where we evaluated a huge sample of
mashups, we took a better look at the peculiarities of mashups and understood
that, after all, mashup developers do not have full control over what they inte-
grate (the components) but only over how they integrate (the composition logic).
Accordingly, we defined a quality model that emphasizes this component-based
nature of mashups and especially focuses on composition quality.

We recognize that many of the quality dimensions introduced in this paper
are not easy to turn into operative metrics and to automatically assess, yet we
also recognize that quality assessment to a large degree will always be a qualita-
tive process. In [19] we started proposing more concrete metrics for data quality;
usability and accessibility are already supported to a large extent with (semi-)
automated evaluation metrics; the next challenge is supporting composition qual-
ity with suitable metrics. This is part of our future research.

Acknowledgments. This work was partially supported by funds from the Eu-
ropean Commission (project OMELETTE, contract no. 257635).

References

1. Nestler, T.: Towards a mashup-driven end-user programming of soa-based appli-
cations. In: iiWAS, pp. 551–554. ACM, New York (2008)

2. Cappiello, C., Daniel, F., Matera, M.: A quality model for mashup components.
In: Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.) ICWE 2009. LNCS, vol. 5648,
pp. 236–250. Springer, Heidelberg (2009)

3. Ivory, M.Y., Megraw, R.: Evolution of web site design patterns. ACM Transactions
on Information Systems 23, 463–497 (2005)

4. Rio, A., e Abreu, F.B.: Websites quality: Does it depend on the application domain?
In: Proc. of QUATIC, pp. 493–498. IEEE Computer Society, Los Alamitos (2010)

A Quality Model for Mashups 151

5. Olsina, L., Rossi, G.: Measuring web application quality with webqem. IEEE Mul-
timedia 9, 20–29 (2002)

6. Mavromoustakos, S., Andreou, A.S.: WAQE: a web application quality evaluation
model. Int. J. Web Eng. Technol. 3, 96–120 (2007)

7. Olsina, L., Sassano, R., Mich, L.: Specifying quality requirements for the web 2.0
applications. In: Proc. of IWWOST 2008, pp. 50–56 (2008)

8. Knap, T.T., Mlýnková, I.: Quality assessment social networks: A novel approach
for assessing the quality of information on the web. In: Proc. of QDB, pp. 1–10.
ACM Press, New York (2010)

9. Varlamis, I.: Quality of content in web 2.0 applications. In: Setchi, R., Jordanov, I.,
Howlett, R.J., Jain, L.C. (eds.) KES 2010. LNCS, vol. 6278, pp. 33–42. Springer,
Heidelberg (2010)

10. Brooks, C.H., Montanez, N.: Improved Annotation of the Blogosphere via Auto-
tagging. In: Proc. of WWW, pp. 625–632. ACM Press, Edinburgh (2006)

11. Heymann, P., Koutrika, G., Garcia-Molina, H.: Can Social Bookmarking Improve
Web Search? In: Proc. of the WSDM, pp. 195–206. ACM Press, New York (2008)

12. Kan, S.H.: Metrics and Models in Software Quality Engineering. Addison-Wesley
Longman Publishing Co., Inc., Boston (2002)

13. ISO/IEC: ISO/IEC 9126-1 Software Engineering. Product Quality - Part 1: Quality
model (2001)

14. Calero, C., Ruiz, J., Piattini, M.: Classifying web metrics using the web quality
model. Online Information Review 29, 227–248 (2005)

15. Olsina, L., Covella, G., Rossi, G.: Web quality. In: Mendes, E., Mosley, N. (eds.)
Web Engineering: Theory and Practice of Metrics and Measurement for Web De-
velopment, pp. 109–142. Springer, Heidelberg (2005)

16. W3C: Web Content Accessibility Guidelines (WCAG) 2.0 (2008)
17. Abramowicz, W., Hofman, R., Suryn, W., Zyskowski, D.: Square based web services

quality model. Information Systems Journal I, 1–9 (2008)
18. Zhang, H., Zhao, Z., Sivasothy, S., Huang, C., Crespi, N.: Quality-assured and

sociality-enriched multimedia mobile mashup. EURASIP J. Wirel. Commun.
Netw., 11:1–11:13 (2010)

19. Cappiello, C., Daniel, F., Matera, M., Pautasso, C.: Information quality in
mashups. IEEE Internet Computing 14, 14–22 (2010)

20. Nielsen, J.: The usability engineering life cycle. Computer 25, 12–22 (1992)
21. Berger, V.W., Zhang, J.: Simple Random Sampling. Encyclopedia of Statistics in

Behavioral Science (2005)
22. Aladwani, A.M., Palvia, P.C.: Developing and validating an instrument for mea-

suring user-perceived web quality. Inf. Manage. 39, 467–476 (2002)
23. Dix, A., Finlay, J., Abowd, G.D., Beale, R.: Human Computer Interaction, 3rd

edn. Pearson, Harlow (2003)
24. Daniel, F., Soi, S., Tranquillini, S., Casati, F., Heng, C., Yan, L.: From people to

services to ui: Distributed orchestration of user interfaces. In: Hull, R., Mendling,
J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 310–326. Springer, Heidelberg
(2010)

25. Ceri, S., Matera, M., Rizzo, F., Demaldé, V.: Designing data-intensive web appli-
cations for content accessibility using web marts. Commun. ACM 50, 55–61 (2007)

26. Consortium, W.: Wai guidelines and techniques. Technical report (2007), http://
www.w3.org/WAI/guid-tech.html

27. Measuring The Value Of Information: An Asset Valuation Approach. In: Proc. of
ECIS 1999 (1999)

http://www.w3.org/WAI/guid-tech.html
http://www.w3.org/WAI/guid-tech.html

DashMash: A Mashup Environment for

End User Development

Cinzia Cappiello, Maristella Matera, Matteo Picozzi, Gabriele Sprega,
Donato Barbagallo, and Chiara Francalanci

Politecnico di Milano - DEI
P.zza Leonardo da Vinci, 32 - 20133 - Milano - Italy

{name.surname}@polimi.it

Abstract. Web mashups are a new generation of applications based on
the “composition” of ready-to-use services. In different contexts, ranging
from the consumer Web to Enterprise systems, the potential of this new
technology is to make users evolve from passive receivers of applications
to actors actively involved in the “creation of innovation”. Enabling end
users to self-define applications that satisfy their situational needs is
emerging as an important new requirement. In this paper, we address
the current lack of lightweight development processes and environments
and discuss models, methods, and technologies that can make mashups
a technology for end user development.

Keywords: mashups, service-based dashboards, end user development.

1 Introduction

Web mashups are a new generation of tools that support the “composition” of
applications starting from services and contents oftentimes provided by third
parties and made available on the Web. Mashups were initially conceived in the
context of the consumer Web, as a means for users to create their own appli-
cations starting from public programmable APIs or contents taken from Web
pages. However, the vision is towards the development of more critical appli-
cations, for example the so-called enterprise mashups [10], a porting of current
mashup approaches to company intranets. The potential flexibility of mashup
environments can help people help themselves [20], by enabling the on-demand
composition of the functionalities that they need. Mashups are therefore emerg-
ing as a technology for the creation of innovative solutions, able to respond to
the different problems that arise daily in the enterprise context, as well as in any
other context where flexibility and task variability are dominant requirements.

Given the previous premises, the need arises to provide mashup environments
where the end users (i.e., the main actors of this new development process) can
easily and quickly self-construct their applications without necessarily mastering
the technical features related to service invocation and integration. This is true
in every context - not only in the Enterprise: a “culture of participation” [8], in
which users evolve from passive consumers of applications to active co-creators of
new ideas, knowledge, and products, is indeed more and more gaining momentum

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 152–166, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

DashMash: A Mashup Environment for End User Development 153

1.1 Contributions and Paper Outline

What makes mashups different from plain Web service compositions is their po-
tential as tools through which end users are empowered to develop their own
applications. However, this potential is rarely exploited. So far the research on
mashups has focused on enabling technologies and standards, with little atten-
tion on easing the mashup development process - in many cases mashup creation
still involves the manual programming of the service integration. Some recent
user-centric studies [14] also found that, although the most prominent mashup
platforms (e.g., Yahoo!Pipes, Dapper or Intel Mash Maker) simplify the mashup
development, they are still difficult to use by non technical users. In this paper,
we try to respond to the need of easying the mashup development, and propose
a Web platform, DashMash, that allows end users to develop their own mashups
making use of an intelligible paradigm that abstracts from technical variables.
In particular:

1. Through a case study, we provide a scenario in which general mashup compo-
sition principles can be applied to the construction of applications targeting
the experts (e.g., analysts and decision makers) of a given domain (Section
2). Based on this scenario, we outline relevant factors supporting end user
development. First of all, the importance of a lightweight development pro-
cess, in which mashup composition paradigms are embedded in usable visual
environments hiding the complexity of the composition languages actually
managing the execution of the mashup.

2. We present a runtime architecture supporting the lightweight development
processes, which increases the user’s control over the mashup composition
process (Section 3). This is possible thanks to (i) an instant execution sup-
port, based on the “on the fly” interpretation of the user composition actions
and the immediate execution of the mashup composition in a WYSIWYG
(What You See Is What You Get) manner (Section 3.2), and (ii) the automa-
tic generation of descriptive models for the results of the users composition
actions (Section 3.3), which then drive the execution of the mashup.

3. We promote the adoption of recommendation mechanisms that take into ac-
count quality variables to help end users select data sources and mashup
components and composition patterns (Section 3.3). This is enabled by
the enrichment of descriptive models with annotations specifying also non-
functional user requirements.

4. Based on the results of a usability experiment, we discuss the effectiveness
of our approach from an end user perspective (Section 4).

2 Case Study: Mashups for Sentiment Analysis

In the context of a project funded by the Comune di Milano (Milan Municipal-
ity), we have worked on the construction of a Web platform through which end
users can construct their dashboards for sentiment analysis1. Sentiment analysis
1 A demo is available at

http://home.dei.polimi.it/cappiell/demo/DemoDashMash.mov

154 C. Cappiello et al.

Fig. 1. Example of mashup composition for a sentiment analysis dashboard

focuses on understanding market trends starting from the unsolicited feedback
provided by users comments published on the Web. Our project focuses on the
design of an engine in charge of the automatic extraction of sentiment indicators
summarizing the opinions contained in user generated contents [1], and on the
provision of a Web environment where analysts can self-construct their analyses.

After preliminary attempts with a traditional static dashboard, we realized
that end users could benefit from the ability to compose their analysis flexibly,
playing in variable ways with sentiment indicators, and also complementing such
indicators with “generic” external Web resources. This latter feature would in-
deed help them to improve their analyses, by interpreting sentiment indicators
with a view on the events that cause trends and behaviors.

Figure 1 shows an example of use of the Web front-end of our platform,
DashMash. A left hand menu presents the list of components, which for the
sentiment analysis domain are data sources that materialize contents extracted
from community sites, several types of filters, a multiplicity of viewers to visualize
data, which are both open APIs, e.g, the Google APIs for maps and charts, and
ad-hoc developed services2, and utility open API/services, such as RSS feeds
and calendars. Components can be mashed up by moving their corresponding
icons into the so-called workspaces. Each workspace is associated with a data set

2 Several charts offering advanced data visualizations have been developed using the
Highcharts JS library (http://www.highcharts.com/).

DashMash: A Mashup Environment for End User Development 155

resulting from the integration of data sources and filters, and renders this data
set according to the visualizations offered by the selected viewers.

In the mashup shown in Figure 1a) the user has selected two data sources stor-
ing users comments extracted from two well-known social applications, Twitter
and TripAdvisor. A filter is applied to select the only comments from users that
are considered opinion leaders, so-called influencers. Influencers data are visu-
alized through a list viewer, which is integrated with Google Maps to show the
influencers locations. A further synchronization with another map and another
list viewer allows one to see the original posts of each influencer, as well as the
geo-localization of their posts, if available.

Users can iteratively modify the composition, by adding or dropping compo-
nents. Changes are enacted at real time and the effect are immediately shown.
They can also access a visual description of the status of the current composition
(see Figure 1b), and easily modify sources, filters, viewers or even configuration
properties of each single component.

Although the system automatically includes some default bindings to ensure
basic inter-component synchronization, through simple dialog boxes the users
can create new service combinations resulting into synchronized behaviors. For
example, starting from the mashup shown in Figure 1a, the dialog box presented
in Figure 1c allows the user to add a pie-chart viewer to show the distribution
of influencers comments along different topics, and set a coupling so that a click
on a pie slice contextualizes the analysis offered by the map viewer to that
selected portion of data. Also, based on compatibility rules and quality criteria,
the system provides suggestions about other candidate components to extend
the mashup or replace existing components.

As shown by the previous example, the DashMash environment is character-
ized by factors that try to alleviate as much as possible the end users during the
mashup composition task [14,8]:

– Abstraction from technical details : the representation of services as visual ob-
jects that abstract from technical details (e.g., their programmatic interface),
the immediate feedback on composition action, and the immediate execution
of the resulting mashup to reveal the service look&feel, help users realize the
service functionality and the effect that the service has on the overall com-
position. In the end, users are asked to manipulate (e.g., add, remove or
modify) visual objects focusing on the service visualization properties rather
than technical details of service and composition logics. As also confirmed by
a user-based experimentation (see Section 4), this increases user satisfaction
and the user-perceived control over the composition process.

– Composition support : the composition task is guided in multiple ways. On
the one hand, starting from components’ descriptive models, the composition
engine is able to infer and automatically create default bindings between
the services that the users add to the composition. Compatibility rules and
quality criteria are then adopted to “rank” available components and provide
users with suggestions about additional components and custom bindings.

156 C. Cappiello et al.

Fig. 2. Organization of the DashMash architecture

– Continuous monitoring: users are provided with mechanisms that allow them
to understand the current state of the composition and to explore options
about how to complete or extend the current composition.

The following sections are devoted to clarifying the modelling abstractions and
the architectural features that allowed us to implement the previous requirements
in DashMash.

3 The DashMash Platform

As represented in Figure 2, the organization of DashMash is centered around
a lightweight paradigm in which the orchestration of registered services, the
so called Components, is handled by an intermediary framework, in charge of
managing both the definition of the mashup composition and the execution of
the composition itself. Different from the majority of mashup platforms, where
mashup design is separate from mashup execution, in DashMash the two phases
strictly interweave. The result is that composition actions are automatically
translated into models describing the composition; these models are immediately
executed. Users are therefore able to interactively and iteratively define and try
their composition, without being forced to manage complicated languages or
even ad-hoc visual notations.

The current implementation of the DashMash runtime engine consists of
a client-side (JavaScript) application that supports an event-driven execution
paradigm. As represented in Figure 2, an Event Broker intercepts events, which
can refer to users and system actions occurring during mashup execution (e.g.,
the click on a pie-chart slice which cause a change in a map), and to the dy-
namic definition of the composition (e.g., the drag&dop of a component icon
into a workspace). The Event Broker then dispatches the events to the modules

DashMash: A Mashup Environment for End User Development 157

Fig. 3. Event-driven paradigm for service coupling definition and mashup execution

in charge of their handling, based on models and mechanisms that we explain in
the rest of this section.

3.1 Event-Driven Execution

Events occurring during mashup execution are managed by an Execution Han-
dler based on a publish-subscribe model addressing component integration at pre-
sentation level [21]: events generated from the user interaction with one mashup
component (e.g., the selection of a slice in a pie chart) can be mapped to op-
erations of one or more components that subscribe to such events (e.g., the
visualization of details of the selected data in a scatter plot).

As represented in Figure 3, service couplings are expressed through the def-
inition of the so-called listeners in a composition model expressed according to
an XML-based language, XPIL [21]. During mashup execution, each component
keeps running according to its own application logic, within the scope defined
by an HTML <div>. As illustrated in Figure 3, as soon as events occur, the
involved components publish them. Based on the defined listeners, the Execu-
tion Handler then notifies the subscribed components, if any, and triggers the
execution of their corresponding operations.

This composition and execution logics requires each component to be char-
acterized by a high-level model expressing the events that the component can
generate, the operations that enable other components to modify its internal
state, and the binding with the actual service/API, so that operations can be
invoked. Therefore, as illustrated in Figure 2, for each registered component the
component registry stores a descriptor, expressed according to the UISDL lan-
guage [21], and a wrapper, in charge of rasing events and invoking operations.
This component model provides a uniform paradigm to coordinate the mashup
composition and execution, which obviates the heterogeneity of service standards
and formats, also hiding the intrinsic complexity of services and composition.

158 C. Cappiello et al.

3.2 Managing Composition

The Composition Handler manages composition events. In particular, as better
explained in Section 3.3, it automatically translates the addition of a component
into new default listeners and creates or updates (if already existing) the current
composition model accordingly. The Composition Handler in turns dispatches
composition events to the Status Manager, a module in charge of maintain-
ing a mashup state representation. Combined with the composition model, the
mashup state is useful to recover a previously defined mashup for a later exe-
cution, but especially to let users monitor their composition and modify it on
the fly. State variables relate to default or specific parameter values (e.g., the
value of a parameter for querying a data source), to layout properties (e.g., the
colors used to show values on a chart) or to any other property that the user
can set to control the component data and appearance. Composition events are
also dispatched to the Recommendation Manager, a module in charge of provid-
ing suggestions about further components to select for extending/completing a
composition (see Section 3.3). After terminating the handling of such events, the
mashup composition is reloaded and immediately rendered into the workspace.
The mashup is then executed according to the event-driven, publish-subscribe
logic that characterizes the Execution Handler.

It is worth noting that the Composition Handler itself is a mashup component:
any user composition action generates a Composition Handler’s event, which is
notified to and managed by the Execution Handler. An interesting side effect
of this architectural choice is that the logic behind the automatic component
coupling is “programmable” and, therefore, flexible: it depends on a set of pre-
defined listener templates configured inside the Composition Handler which,
being the Composition Handler a mashup component, can in turn be easily
unplugged and/or replaced.

3.3 Definition of Listeners

DashMash supports the definition of default and custom listeners. The former are
automatically defined by the Composition Handler when a composition action
is intercepted. This ensures a minimum level of inter-component synchroniza-
tion that does not require users to define service coupling. Custom bindings are
instead user-defined. Nevertheless, the Composition Handler offers also support
by generating compatibility– and quality– based recommendations. To this aim,
it dispatches the composition events to the Recommendation Manager that is
in charge of evaluating the quality of the current composition and provides sug-
gestions about the selection of possible components to add or substitute to the
existing ones in order to achieve or improve the mashup quality.

Default Listeners. To enable the automatic definition of default listeners, we
start from a classification of components. For example, in order to facilitate
the construction of dashboards, it is possible to identify the following classes of
components (Figure 4):

DashMash: A Mashup Environment for End User Development 159

Fig. 4. Classification of components and their mutual interactions

– Data services are in charge of retrieving data from data sources. They are
especially meant to provide access to internal (relational) data sources/
warehouses. For example, in the sentiment analysis domain internal data
sources store data extracted from different social applications where users
post their comments. A server-side module is in charge of accessing the data
sources3. A client-side module provides the actual component that synchro-
nizes with the other mashup components to intercept changes of the com-
position state and send pertinent information to the server-side module so
that queries for data extraction can be constructed.

– Filters add selection conditions over the context defined by a workspace
(e.g., an interesting keyword or a time interval specified through a calendar
component), thus filtering the mashup result set.

– Viewers support the visualization of result sets, which can be extracted by
data services from internal sources or from generic external resources. Since
data visualization usually involves some form of aggregation, most viewers
embed a transformation logic. Therefore viewers can be simple tables, any
kind of graph (as for example, those provided by Google Charts), and any
visualization/aggregation service that is useful for the specific domain (e.g.,
a tag cloud or a map).

– Generic components can be also integrated to make the analysis process
more effective. They can provide a variety of functionalities, such as video
or image retrieval through the most common APIs, or further data sources
(e.g., RSS Feeds), which can complement the information extracted from the
corporate data sources.

3 When the integration of multiple sources is required, this module could embed the
needed integration logics or alternatively make use of a dedicated integration layer.

160 C. Cappiello et al.

The previous component classification can be adopted in several mashup con-
texts. For example JackBe Presto also exploits a similar classification of mash-
ables [7]. What is new in our approach is that this classification of services allows
us to codify default data flows that the platform exploits to automatically in-
clude ad-hoc listeners in the composition model. For example, viewers always
“consume” data, as they elaborate and visualize data extracted by other com-
ponents, for example data services. The addition of a viewer into the composition
therefore requires at least the inclusion of a listener to subscribe the viewer to a
dataReady event exposed by the component that produces data.

Figure 4 highlights the synchronization managed through the main default
listeners. Any time a viewer is added into the workspace, the Composition Han-
dler publishes an event that triggers a Data Service Client operation that sends
a pertinent portion of the updated state to the Data Service Server. Based on
the exchanged state information, the Data Service Server queries the workspace
data set and sends the result set back to the Data Service Client. Based on an-
other default listener, the Data Service Client raises an event so that subscribed
viewers know about the new result set and, thus, refresh their state.

The “knowledge” about possible default mappings is coded inside the Compo-
sition Handler and can be easily configured, with the advantage that DashMash
can be easily adapted to domains with possibly different services and service
classifications. DashMash can also work without classification, allowing users to
couple components by means of custom listeners definition.

Custom Listeners and Quality-based Recommendations. One peculiar-
ity of DashMash with respect to other mashup platforms is the emphasis on
quality aspects to support the users in the mashup construction. In particular,
we have identified two phases where quality issues must be taken into account:
(i) the registration into the platform of new services and (ii) the generation of
recommendations during the mashup composition.

Registration of new services. As highlighted in Figure 2, the set of compo-
nents C available in the DashMash platform is composed of services that can be
created ad-hoc or can be public. Independently on the component nature, when
a large amount of functionally equivalent data sources and services are available,
quality can be one relevant driver for the selection of the most dependable com-
ponents. We therefore adopt a quality evaluation approach for estimating the
quality of components, which focuses on both the quality properties of mashup
components and the reliability (i.e., reputation) of the Web information sources
accessed to retrieve the mashup data:

– The component quality refers to the quality model proposed in [4], which
specializes traditional quality dimensions (such as functional efficiency, reli-
ability and usability of the APIs, and data and presentation quality criteria)
to the peculiar context of mashup composition.

DashMash: A Mashup Environment for End User Development 161

– The reputation of data sources refers to the model presented in [2], which
specifically addresses the trustworthiness of Web 2.0 contents, and in par-
ticular those deriving from blogs and community sites.

When a new component is added to the DashMash component registry, the qual-
ity data needed to determine the quality indices prescribed by the two adopted
quality models are documented as annotations to the component descriptors.
Each component ci ∈ C is therefore associated with a component descriptor and
a quality data vector. The component descriptor lists all the operations and the
events, plus the technical details needed to compute quality indices. The quality
data vector, QDi = [qdi1, qdi2, · · · , qdin], contains the list of measures for the
component quality CQi and source quality SQi as aggregated quality indexes
for the i-th component and its associated data source, respectively.

Component selection during mashup composition. When a component is
added into a mashup under construction, recommendations about further com-
ponents to be added to the composition are generated. In particular, the Compo-
sition Handler dispatches composition events to the Recommendation Manager
that, starting from the quality indexes stored in the component registry, suggests
actions to achieve or improve the quality of the mashup. To do so, we adopt the
approach described in [16], in which components are ranked on the basis of their
mashability [16]. Mashability is defined as the capability of a component (i) to be
combined with previously selected components and (ii) to maximize the quality
of the overall mashup. Thus, it can be seen as a combination of two dimensions:
component compatibility and aggregated quality.

Component compatibility estimates whether a component can be coupled with
those already included in a composition and distinguishes between syntactic com-
patibility, checking the compatibility between input/output parameters exposed
by the components, and semantic compatibility, checking whether input/output
parameters and operations belong to the same or similar semantic categories, as-
suming that syntactic compatibility is satisfied. The compatibility index compi

provides a preliminary measure of the compatibility of a service ci to be added
to a given mashup: a value equal to zero indicates the incompatibility from a
syntactic point of view while a positive value provides a measure of semantic com-
patibility. This index is stored in form of a matrix, where events and operations
of the available components are related to each other and their compatibility is
scored. The matrix is updated every time a new component is registered to the
component registry. During mashup composition, the Recommendation Manager
accesses this matrix to determine the list of components that can be suggested
to the user as they can be correctly coupled with the components already in
the composition. For example, in Figure 1c, only the compatible components are
shown in the drop-down list where the user can select a new component to add.

While compatibility ensures the construction of “correct” mashups, aggre-
gated quality drives the user in the choice of components that can lead to quality
mashups. It estimates the quality of the mashup under construction as a compo-
sition of the quality of individual components. The mashup quality QMk cannot

162 C. Cappiello et al.

be however quantified as a simple sum of the quality of individual components,
CQi, but it is necessary to weigh quality indices by taking into account the role
and the importance of each component [5]. Therefore, starting from the com-
position model, we take into account the in- and out-degree of each component
in the composition graph, and use them to determine the component impact on
the overall composition, so weighing the aggregated quality. As shown in Fig-
ure 1c, aggregated quality values are visualized for each compatible components
suggested in the drop-down list.

4 User-Based Validation

In order to validate the composition paradigm of DashMash with respect to
end user development requirements, we conducted a user based study. We ob-
served domain experts and naive users completing a set of tasks through our
platform. Our goal was to assess how easily the users would be able to develop
a composite application. The experiment specifically focused on the efficiency
and intuitiveness of the composition paradigm, trying to measure such factors
in terms of user performance, ease of use and user satisfaction. In particular, we
expected all users to be able to complete the experimental tasks. However, we
expected a greater efficiency (e.g., reduced completion task times) and a more
positive attitude (in terms of perceived usefulness, acceptability and confidence
with the tool) by expert users. Their domain knowledge and background could
indeed facilitate the comprehension of the experimental tasks, and improve the
perception of the control over the composition method, and thus, their general
satisfaction.

The study involved 35 participants. Six of them were real end users, i.e.,
analysts and decision makers that are supposed to actually use DashMash for
their analyses in the sentiment analysis domain. In order to prove to which
extent the tool was intuitive even for naive users, we also involved undergrad
students of the Computer Engineering Programme at Politecnico di Milano, with
a moderate knowledge about Web technologies, but never exposed neither to our
tool nor to the sentiment analysis domain.

For novice users, the completion of the experimental tasks was preceded by
a 5-minute explanation about the domain and about the basic composition ac-
tions supported by the tool. Expert users were instead introduced to the set of
available components and the basic composition mechanisms. All users were first
asked to fill in a pre-test questionnaire, to gather data on their knowledge about
services and mashups. All users were then asked to perform two composition
tasks. The two tasks were comparable in terms of number of components to be
integrated and composition steps. Task 2, however, required a less trivial defini-
tion of filters, to sift the involved data sources, and a more articulated definition
of bindings. Also, while the formulation of task 1 was more procedural, i.e., it
explicitly illustrated the required steps, task 2 just described the final results to
be achieved, without revealing any details about the procedure required.

After the completion of the two experimental tasks, users were then asked to
fill in a satisfaction questionnaire.

DashMash: A Mashup Environment for End User Development 163

4.1 Results

All the participants were able to complete both tasks without particular dif-
ficulties. No differences in task completion time were found between experts
and novices. In particular, domain expertise was not discriminant for task 1
(p = .085) and for task 2 (p = .165). Similarly, technology expertise was not dis-
criminant for task 1 (p = .161) and for task 2 (p = .156). The lack of significant
differences between the two groups does not necessarily mean that expert users
performed bad. However, it indicates that the tool enables even inexperienced
users to complete a task in a limited time. The average time to complete task 1
was about 2.5 minutes, while for task 2 it was less then 2 minutes.

The difference in completion times for the two tasks can be also used as a
measure of learning [9]. This difference is about half a minute (t = 28.2, p = .017),
i.e., a reduction of about 15%. This result highlights the learnability of the tool:
although the second task was more critical compared to the first one, subjects
were able to accomplish it in a shorter time.

The ease of use was also confirmed by the data collected through four ques-
tions in the post-questionnaire, asking users to judge whether they found it easy
to identify and include services in the composition, to define service bindings
between services, and to monitor and modify the status of the mashups. We also
asked users to score the general ease of use of the tool. Users could modulate
their evaluation on a 7-point scale. The reliability of the ease of use questions
is satisfying (α = .75). The correlation between the four detailed questions and
the global score is also satisfying (ρ = .58, p < .001). This highlights the high
external reliability of the measures. On average, users gave the ease of use a mark
of 1.77 (the scale was from 1 very positive to 7 very negative). The distribution
ranged from 1 to 4 (mean = 1.77, meanS.E. = .12). We did not found differ-
ences between novice and expert users. This was especially true for perceived
usefulness (p = .51).

The user satisfaction with the composition paradigm was assessed using two
complementary techniques. A semantic-differential scale required users to judge
the method on 12 items. Users could modulate their evaluation on a 7-point
scale (1 very positive - 7 very negative). Moreover, a question asked users to
globally score the method on a 10-point scale (1 very positive - 10 very nega-
tive). The reliability of the satisfaction scale is satisfying (α = 0.76). Therefore,
a user-satisfaction index was computed as the mean value of the score across all
the 12 items. The average satisfaction value is very good (min = 1.3, max =
3.5, mean = 2.2, meanS.E. = .09). The correlation between the average satis-
faction value and the global satisfaction score is satisfying (ρ = .41, p < .015).
On average, users gave the composition method a mark of 2.9, with a distri-
bution ranging from 2 to 4. We did not find differences between experts and
novices. Despite our initial assumption, we found that the ease of use of the tool
is perceived in the same way by novice and expert users, although the latter
have greater domain knowledge. The moderate correlation between the satisfac-
tion index and the ease of use index (ρ = .55, p = .011) also reveals that who

164 C. Cappiello et al.

perceived the method as easy also tended to evaluate it as more satisfying. This
confirms that ease of use is perceived.

The last two questions asked users to judge their performance as mashup de-
velopers and to indicate the percentage of requirements they believed to have
satisfied with their composition. This metric can be considered as a proxy of
confidence [9]. On average, users indicated to be able to cover the 91% of
requirements specified by the two experimental tasks (min = 60%, max =
100%, meanS.E. = 1.7%). They also felt very satisfied about their performance
as composers (mean = 1.8, meanS.E. = .13; 1 - very positive, 4 - very negative).

5 Related Works

Service composition has been traditionally covered by powerful standards and
technologies (such as BPEL, WSCDL, etc.), which however can be mastered by
IT experts only [17]. According to the End User Development vision, enabling a
larger class of users to create their own applications requires the availability of
intuitive abstractions and easy development tools, and a high level of assistance
[3,12]. Some projects (e.g., Dynvoker [19], SOA4All [11]) have focused on easying
the creation of effective presentations on top of services, to provide a direct
channel between the user and the service. However, very often such approaches
do not allow the composition of multiple services into an integrated application.

Mashups are emerging as an alternative solution to service composition that
can help realize the dream of a programmable Web [13], approachable even by
non-programmer users. There is a considerable body of research on mashup
tools, the so-called mashup makers, which provide graphical user interfaces for
combining mashup services, without requiring users to write code. Among the
most prominent platforms, Yahoo!Pipes (http://pipes.yahoo.com) focuses on
data integration via RSS or Atom feeds, and offers a data-flow composition
language. JackBe Presto (http://jackbe.com) also adopts a pipes-like approach
for data mashups, and allows a portal-like aggregation of UI widgets (mashlets).
IBM DAMIA [18] offers support to quickly assemble data feeds from the Internet
and a variety of enterprise data sources. Mashart [6] focuses on the integration
of heterogeneous components, offering a mashup design paradigm through which
users create graph-based models representing the mashup composition. Marmite
[20] is specifically tailored for accessing information sources: it offers a more
intuitive paradigm to easily program and chain a set of operators for filtering
sources. Operators provide an intelligible mechanism for extracting contents from
data sources (especially from Web pages); however, the operator composition is
still constrained to a parameter coupling logic based on manual type-matching.

With respect to manual programming, the previous platforms certainly alle-
viate the mashup composition tasks. However, to some extent they still require
an understanding of the integration logic (e.g., parameter coupling). In some
cases, building a complete Web application equipped with a user interface re-
quires the adoption of additional tools or technologies. Even when they offer
an easy composition paradigm, as it happens for example for Intel Mash Maker

http://pipes.yahoo.com
http://jackbe.com

DashMash: A Mashup Environment for End User Development 165

(http://mashmaker.intel.com), they do not guide at all the composition pro-
cess, as we do in DashMash through quality-based recommendations. A study
about users’ expectations and usability problems of a composition environment
for the the ServFace tool [14] shows that there is evidence of a fundamental is-
sue concerning conceptual understanding of service composition (i.e., end users
do not think about connecting services). Also, in given contexts, the openness
towards any kind of services and the full set of functions these tools are able
to provide are not actually required. Sandbox environments, like the one pre-
sented in this paper, where ready-to-use services are composed according to
a “constrained” integration logic, can help achieve a lightweight, easy to use
composition [15], which is especially effective to serve well-defined situational
purpose [10].

6 Conclusions

This paper has presented a mashup platform that leverages a composition
paradigm aiding end-user development. Our platform is particularly effective
for enterprise mashups, where the application domain and the component char-
acterization are easier to identify and represent in form of rules for the automatic
definition of service coupling. However, the approach remains valid for the com-
position of generic mashups. Of course, the lower the availability of domain
descriptions, the greater the need for users to explicitly define service couplings.
Nevertheless, as confirmed by the user-based study, the coupling definition mech-
anism is still intuitive and further facilitated by quality-based recommendations.

As future work, we aim at exploring different composition solutions, to ad-
dress, for example, the cooperative definition of mashups (a feature that can
greatly enhance team-based cooperation), also enabling mashup creation and
fruition on mobile device, as well as an extension of the recommendations mech-
anisms based on the emergence of composition patterns from the community’s
mashups [16]. We also aim at easing the creation by users of DashMash compo-
nents. First preliminary results concerning described services (i.e., WSDL and
Linked Data) are encouraging. Our future will be also devoted to improving this
feature.

References

1. Barbagallo, D., Cappiello, C., Francalanci, C., Matera, M.: A reputation-based dss:
the interest approach. In: Proceedings of ENTER 2010 (2010)

2. Barbagallo, D., Cappiello, C., Francalanci, C., Matera, M.: Reputation-based se-
lection of information sources. In: Proceedings of ICEIS 2010 (2010)

3. Burnett, M.M., Cook, C.R., Rothermel, G.: End-user software engineering. Com-
mun. ACM 47(9), 53–58 (2004)

4. Cappiello, C., Daniel, F., Matera, M.: A quality model for mashup components.
In: Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.) ICWE 2009. LNCS, vol. 5648,
pp. 236–250. Springer, Heidelberg (2009)

http://mashmaker.intel.com

166 C. Cappiello et al.

5. Cappiello, C., Daniel, F., Matera, M., Pautasso, C.: Information quality in
mashups. IEEE Internet Computing 14(4), 14–22 (2010)

6. Daniel, F., Casati, F., Benatallah, B., Shan, M.-C.: Hosted Universal Composition:
Models, Languages and Infrastructure in mashArt. In: Laender, A.H.F., Castano,
S., Dayal, U., Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp.
428–443. Springer, Heidelberg (2009)

7. Derechin, L., Perry, R.: Presto Enterprise Mashup Platform. Technical report,
JackBe (2010)

8. Fischer, G.: End-User Development and Meta-design: Foundations for Cultures of
Participation. In: Pipek, V., Rosson, M.B., de Ruyter, B., Wulf, V. (eds.) IS-EUD
2009. LNCS, vol. 5435, pp. 3–14. Springer, Heidelberg (2009)

9. Hornbk, K.: Current practice in measuring usability: Challenges to usability studies
and research. Int. Journal of Human-Computer Studies 64(2), 79–102 (2006)

10. Jhingran, A.: Enterprise information mashups: Integrating information, simply. In:
VLDB, pp. 3–4 (2006)

11. Krummenacher, R., Norton, B., Simperl, E.P.B., Pedrinaci, C.: Soa4all: Enabling
web-scale service economies. In: Proceedings of ICSC 2009, pp. 535–542. IEEE
Computer Society, Los Alamitos (2009)

12. Liu, X., Huang, G., Mei, H.: Towards end user service composition. In: COMPSAC,
vol. (1), pp. 676–678. IEEE Computer Society, Los Alamitos (2007)

13. Maximilien, E.M., Wilkinson, H., Desai, N., Tai, S.: A domain-specific language
for web aPIs and services mashups. In: Krämer, B.J., Lin, K.-J., Narasimhan, P.
(eds.) ICSOC 2007. LNCS, vol. 4749, pp. 13–26. Springer, Heidelberg (2007)

14. Namoun, A., Nestler, T., De Angeli, A.: Conceptual and usability issues in the
composable web of software services. In: Daniel, F., Facca, F.M. (eds.) ICWE
2010. LNCS, vol. 6385, pp. 396–407. Springer, Heidelberg (2010)

15. Ogrinz, M.: Mashup Patterns: Designs and Examples for the Modern Enteprise.
AddisonWesley, Reading (2009)

16. Picozzi, M., Rodolfi, M., Cappiello, C., Matera, M.: Quality-based recommenda-
tions for mashup composition. In: Daniel, F., Facca, F.M. (eds.) ICWE 2010. LNCS,
vol. 6385, pp. 360–371. Springer, Heidelberg (2010)

17. Ro, A., Xia, L.S.-Y., Paik, H.-Y., Chon, C.H.: Bill organiser portal: A case study
on end-user composition. In: Hartmann, S., Zhou, X., Kirchberg, M. (eds.) WISE
2008. LNCS, vol. 5176, pp. 152–161. Springer, Heidelberg (2008)

18. Simmen, D.E., Altinel, M., Markl, V., Padmanabhan, S., Singh, A.: Damia: data
mashups for intranet applications. In: Wang, J.T.-L. (ed.) Proceedings of SIGMOD
2008, pp. 1171–1182. ACM, New York (2008)

19. Spillner, J., Feldmann, M., Braun, I., Springer, T., Schill, A.: Ad-hoc usage of web
services with dynvoker. In: Mähönen, P., Pohl, K., Priol, T. (eds.) ServiceWave
2008. LNCS, vol. 5377, pp. 208–219. Springer, Heidelberg (2008)

20. Wong, J., Hong, J.I.: Making mashups with marmite: towards end-user program-
ming for the web. In: Proceedings of CHI 2007, pp. 1435–1444 (2007)

21. Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., Matera, M.: A frame-
work for rapid integration of presentation components. In: Proceedings of WWW
2007, pp. 923–932 (2007)

Learning Semantic Relationships between

Entities in Twitter

Ilknur Celik, Fabian Abel, and Geert-Jan Houben

Web Information Systems, Delft University of Technology
Mekelweg 4, 2628 Delft, The Netherlands

{i.celik,f.abel,g.j.p.m.houben}@tudelft.nl

Abstract. In this paper, we investigate whether semantic relationships
between entities can be learnt from analyzing microblog posts published
on Twitter. We identify semantic links between persons, products, events
and other entities. We develop a relation discovery framework that allows
for the detection of typed relations that moreover may have temporal dy-
namics. Based on a large Twitter dataset, we evaluate different strategies
and show that co-occurrence based strategies allow for high precision and
perform particularly well for relations between persons and events achiev-
ing precisions of more than 80%. We further analyze the performance in
learning relationships that are valid only for a certain time period and
reveal that for those types of relationships Twitter is a suitable source as
it allows for discovering trending topics with higher accuracy and with
lower delay in time than traditional news media.

Keywords: semantic enrichment, relation learning, twitter, social web.

1 Introduction

Twitter has become an increasingly popular social network tool, not only for so-
cializing with friends [6], but also for gathering information about what is going
on in the world in whatever subject one might be interested in [8,17,7]. Peo-
ple typically post short status messages, interesting information they read from
daily news, updates on current hot topics, their views and opinions on a certain
subject matter, developments in their profession, materials about their interests,
et cetera [16,12,23]. It is a growing real-time information network with several
hundreds of millions of users and millions of tweets per day1. It is estimated that
highly active users regularly receive around one thousand tweets every day [4].
This information overload may cause users to get lost in the information network
and become de-motivated. Finding your way around Twitter is indeed not very
straightforward due to the lack of a user-friendly browsing option that would
allow for a more faceted browsing experience than the existing chronologically-
ordered clutter option [4,19]. Accessing required or interested fresh content easily
is vital in today’s information age. Hence, there is a need for guidance from users’

1 http://techcrunch.com/2010/06/08/twitter-190-million-users/

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 167–181, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://techcrunch.com/2010/06/08/twitter-190-million-users/

168 I. Celik, F. Abel, and G.-J. Houben

point of view that would assist them in finding the related information about a
subject they have just read, or where they can browse the information sources
by related people, countries, cities, events, selected categories and so on.

Today, browsing and exploring micro-blogging content along certain topics is
not easily supported by Twitter and other micro-blogging services. On the other
hand, news websites such as Google News2 provide faceted search interfaces
to facilitate exploration of news. Lately, services such as the European Media
Monitor3 start to exploit entities (e.g. persons, locations) for faceted search as
well as relations between entities to provide recommendations. For example, if
users click on a person they retrieve news related to this person and can see a list
of related people. Twitter does not provide such advanced browsing functionality
and the feasibility of identifying entities and relationships between entities in
Twitter has not been studied yet.

Our research closes this gap and focuses on finding relationships in and be-
tween tweets based on entities in order to provide a medium where users can
easily navigate through the information network by facets or easily see and ac-
cess relevant content for what they are interested. For this reason, we need to
understand the semantics of tweets in order to infer recommendations and sup-
port user navigation. However, Twitter posts are limited to 140 characters only.
Identifying entities, and moreover relating entities, via Twitter messages is thus
a non-trivial problem. In order to facilitate the identification of entities within
tweets, we enrich Twitter messages by mapping them to related news articles [2].
We then apply different strategies to learn relationships between entities within
tweets as well as news. Our main focus is directed at determining whether re-
lations can be discovered from Twitter messages or whether some enrichment
is needed, rather than finding the optimal strategy for relation learning. Fur-
thermore, we analyze the validity of the discovered relations over time in order
to distinguish which entities are related at a given time, and thus provide the
most interesting and relevant content at the appropriate time. Our work, hence,
involves engineering of a relation discovery framework which can be utilized for
building useful applications such as browsing or recommendation support. The
main contributions of our work can be summarized as follows:

– We implement a framework for discovering relationships between entities
based on Twitter. Our framework extracts typed entities from enriched
tweets/news and provides strategies for detecting semantic (trending) re-
lationships between entities. Learnt relations provide a basis for improving
browsing and content exploration as well as content recommendations in
Twitter.

– Given a large dataset of more than 10 million tweets and 70,000 news arti-
cles4, we analyze and evaluate the framework and the different strategies for
detecting relationships. In particular, we:

2 http://news.google.com/
3 http://emm.newsexplorer.eu/
4 We make our datasets publicly available via our supporting website [1]

http://news.google.com/
http://emm.newsexplorer.eu/

Learning Semantic Relationships between Entities in Twitter 169

• investigate the precision and recall of the relation detection strategies,
• analyze how the strategies perform for each type of relationships and
• evaluate the quality and speed for discovering trending relationships that

possibly have a limited temporal validity.

The paper is structured as follows. In the next section we will discuss related
research. In Section 3 we will explain the design dimensions of our Twitter-based
relation discovery framework and discuss different applications of the framework
(e.g. browsing support). A detailed analysis and evaluation of the framework
is presented in Section 4, before we discuss our main findings in Section 5 and
conclude in Section 6.

2 Related Work

Twitter is a new social network phenomenon that is attracting interest from dif-
ferent types of people all around the world for different purposes, e.g. politicians,
celebrities, journalists, scholars and the like. Over the last few years, Twitter has
shown an exponential growth and became the most popular micro-blogging site.
In line with this, there has been a growing interest in analyzing Twitter and it
effects from a variety of research communities.

A considerable amount of research on micro-blogging and especially on Twit-
ter focused on examining the user behavior and motivation for using Twit-
ter [13,6], as well as user intentions [9]. Some questioned the usability of Twitter
especially for novice users [19], studied capturing comprehensive locality infor-
mation to be used for viewing tweets in the current local position of the mobile
device [14], researched discovering and ranking fresh web sites using tweets [8],
investigated the social aspects of group polarization over time in Twitter [22],
while others exploited Twitter adoption and use in mass convergence and emer-
gency events [12]. Research on temporal dynamics and information propagation
on Twitter mostly focused on hashtags or observations of other sets of words in
the tweets [16,17,11,20,3]. We scrutinize validity of relations between entities for
given time periods and perform a temporal analysis of these relations.

Chen et al. [7] studied content recommendation in Twitter and found out
that both topic and social voting (or relevance) are important considerations.
They also observed that URLs extracted from the user’s close social group is
more successful than the most popular ones. Bernstein et al. developed Eddi,
a prototype of an interactive topic-based browsing interface for Twitter, after
observing how the users manage the incoming flood of updates in Twitter [4].
Their prototype interface groups the tweets of a user into topics mentioned
explicitly or implicitly, so that users can browse for tweets of interest by topic,
filtering out undesired topics. In summary, they simply categorize the tweets in
the feed of the user without using any semantics or natural language processing.
This approach, however, does not find the relations between the topics or perform
any recommendation of related topics. While this provides a means for browsing
through a user’s own feed by topics, our ambition is to infer relations between

170 I. Celik, F. Abel, and G.-J. Houben

Twitter media

News media

Entity extraction and
semantic enrichment

news articles

microblog
posts

Julian Assange
(Person)

London
(Location)

Sweden
(Location)

Detention
(Event)

gean Assan
(Person)

JJJJJJJJuuuuuuuuliJJJJJJJJJJJulJJJJJJJJJJJ
((Person)

De
(E

DD

WikiLeaks
(Organization) (OO

)

temporal
constraints

relation
type

weighting
scheme

source
selection

Relation discovery

Julian Assange London

WikiLeaks

Person-Location
isLocatedIn

Julian Assange

Person-Organization
involvedIn

typed relations

Applications
-  Browsing support
-  Query suggestions
-  Schema enrichment

Relation Discovery Framework

Fig. 1. Conceptual architecture of the Twitter-based relation discovery framework

entities in all tweets in order to present a list that contains the related entities
of the tweet of interest even outside of the user’s feed.

Tweets are limited to 140 characters and are therewith too short to extract
meaningful semantics from them on their own. Furthermore, due to this limited
space, users tend to use abbreviations and short-form for words in order to save
space. This can only make things harder for inferring semantics from tweets.
Rowe et al. [21] mapped tweets to conference talks and exploited metadata of
the corresponding research papers to enrich the semantics of tweets to better
understand the semantics of the tweets published in conferences. Our approach
is somewhat similar to this, except we try to enrich the tweets not in a restricted
domain like scientific conference, but in general. For this reason we try to map
the Twitter posts we crawled with news articles on the Web over the same time
period, and learn relations between them. Marinho et al. [18] proposed a method
for collabulary learning which takes a folksonomy and domain-expert ontology
as input and performs semantic mapping to generate an enriched folksonomy.
An algorithm based on frequent itemsets is then applied to learn an ontology
over this enriched folksonomy. A similar approach is presented by Hotho et
al. [10] who exploit frequent itemsets to learn association rules from tagging
activities. We primarily exploit co-occurrence frequencies of entity pairs and
investigate whether Twitter messages in combination with news articles can be
exploited to learn relations between these entities. Learning such relationships
and structures in Twitter is important to countervail information overload in
Twitter and support browsing through Twitter information streams.

3 Framework for Learning Relations between Entities in
Twitter

Figure 1 visualizes our approach to discovering relationships between entities.
Given posts available in Twitter or the news media, our framework processes
these posts and performs two main steps: (1) entity extraction and semantic
enrichment and (2) relation discovery.

Learning Semantic Relationships between Entities in Twitter 171

The first step is described in [2] and allows for the detection of entities and
further semantics such as the entity type or the topic a post refers to. This
process results in a graph, which connects the semantically enriched resources
(tweets and news articles) with entities that are mentioned in the corresponding
resources. This graph can be represented via a triple G := (R, E, Y), where R
and E are the set of resources and entities respectively and Y ⊆ E × R is a
relation between entities and resources, i.e. (e, r) ∈ Y if entity e is referenced
from resource r.

In the second step, the relation discovery strategies exploit this graph to
detect pairs of entities that have a certain type of relationship (relation type)
in a specific period of time (temporal constraints). Such relationships can be
defined as tuples:

Definition 1 (Relationship). Given two entities e1 and e2, a relationship be-
tween these entities is described via a tuple rel(e1, e2, type, tstart, tend, w), where
type labels the relationship, tstart and tend specify the temporal validity of the
relationship and w ∈ [0..1] is a weighting score that allows for specifying the
strength of the relationship.

The higher the weighting score w the stronger the relationship between e1 and e2.
If two entities are not related then the weight is 0. Given the type of relationships
that should be learnt and (possibly) temporal constraints (tstart and tend) that
prescribe for what time period the strategy should seek for such relationships,
there exist two main design dimensions that influence the relation discovery (see
Fig. 1).

Source selection. The source selection strategy decides which parts of the
available data sources will be exploited when deducing relationships between
entities, i.e. it specifies the sub-graph spanned by G, which connects entities
and posts (see Fig. 1), that will be exploited to discover relationships. In this
paper, we differentiate between three different sources: (i) Twitter messages
(GT), (ii) news articles (GN) or (iii) a combination of both media (GC).

Weighting scheme. A core challenge of the relation discovery is to compute
the weight w, which expresses the strength of a relationship (see Defini-
tion 1). Those pairs of entities that are—according to the given type of
the relationship—strongly related should be weighted high while for rather
unrelated entities the weight should be low. In this paper, we utilize the
co-occurrence frequency of two entities as weighting scheme. Hence, given
a certain data source, we count the number of resources (tweets and/or
news articles), in which both entities e1 and e2 are mentioned: wco(e1, e2) =
|r ∈ R|(e1, r) ∈ Y ∧ (e2, r) ∈ Y |.

As depicted in Fig. 1, our Twitter-based relation discovery framework outputs
semantic relationships between entities that support various applications. For
example, relationships between entities can, in combination with the enriched
data G, be applied to enable browsing support by linking to related tweets. Fur-
thermore, when people search in Twitter, our framework can identify entities

172 I. Celik, F. Abel, and G.-J. Houben

mentioned in a keyword query and exploit relationships to other entities to pro-
vide query suggestions to the user. In addition to these applications, our relation
discovery framework can assist in building ontologies on the fly. As our frame-
work provides functionality to map entities to concepts of existing ontologies
such as DBpedia [5], learnt relationships can also be applied to complement and
enrich existing knowledge bases and schemata.

We implemented the relation discovery framework as a Java library using the
Twitter streaming API5 to monitor tweets, boilerpipe6 [15] for extracting the
main content of news articles from websites such as BBC or CNN and Open-
Calais7 for extracting entities from tweets and news articles respectively.

4 Evaluation of Strategies for Learning Relationships

Given the relation discovery framework introduced in the previous section, we
evaluate the performance of the different strategies and investigate the following
research questions.

1. Which media source (Twitter, News or a combination of both) allows for the
highest precision and recall in detecting relationships between entities?

2. Does the accuracy depend on the type of entities which are involved in a
relation that should be discovered, and, if so, for what type of relations is
the accuracy high/low?

3. How do the strategies perform for discovering relationships which have tem-
poral constraints, and how fast can the strategies detect (trending) relation-
ships?

4.1 Data Collection and Dataset Characteristics

To answer the above research questions, we applied the relation discovery frame-
work and monitored Twitter as well as news media over a period of two months
starting from 15 November 2010. Overall, we crawled more than 10 million tweets
and more than 70,000 news articles, which were published by prominent news
Web sites such as BBC, CNN and New York Times. Figure 2(a) shows the num-
ber of Twitter posts and news articles published during the observation period.
For news, the number of news articles published per day ranges between 100
and 1000 articles and follows rather characteristic patterns: on weekends the
number of articles decreases clearly. Regarding Twitter posts, we see that the
amount of tweets published each day is much higher and varies much stronger
(between 50,000 and 400,000). However, we could not detect correlations be-
tween weekdays/weekends and the number of Twitter messages posted on those
days. Two of the minima were caused by temporary unavailability of the Twitter
monitoring service.
5 http://dev.twitter.com/pages/streaming_api
6 http://code.google.com/p/boilerpipe/
7 http://www.opencalais.com/

http://dev.twitter.com/pages/streaming_api
http://code.google.com/p/boilerpipe/
http://www.opencalais.com/

Learning Semantic Relationships between Entities in Twitter 173

Mon, Nov 15 Thu, Nov 25 Sun, Dec 5 Wed, Dec 15 Sat, Dec 25

date

1000

10000

100000

1x106
nu

m
be

r
of

 n
ew

s
ar

tic
le

s
/ T

w
itt

er
 p

os
ts

 p
er

 d
ay

Twitter posts
News articles

Twitter streaming API
temporary down

(a) tweets/news published per day

Mon, Nov 15 Thu, Nov 25 Sun, Dec 5 Wed, Dec 15 Sat, Dec 25

date

1000

10000

100000

nu
m

be
r

of
 e

nt
ity

 r
ef

er
en

ce
s

pe
r

da
y

Twitter media
News media

Twitter streaming API
temporary down

(b) entities referenced per day

Fig. 2. Dataset characteristics: (a) the number of Twitter posts and news articles
published per day and (b) the number of entity references identified per day

We processed all Twitter messages and news articles via our framework to
extract entities that are mentioned in the tweets and news respectively. The
number of entity references per day that we obtained by this extraction process
is depicted in Figure 2(b). It is interesting to see that the amount of entity ref-
erences observed in Twitter (approximately 10,000-100,000 references per day)
is higher than for the News (approximately 5,000-20,000 references per day),
but does not differ as strongly as for the number tweets/articles published each
day. In fact, it is much harder to detect entities in short Twitter messages than
news articles. For more than 40% of the processed tweets, we could not detect
any entity while for 99.3% of the news articles we succeeded in detecting at
least one entity. Hence, news articles seem to be a more valuable source for
detecting entities than tweets. This observation gives our approach of exploit-
ing news for detecting relations among entities mentioned in Twitter the first
justification.

However, do the entities mentioned in Twitter overlap with those mentioned
in news articles? To answer this question, we measured the overlap of entities
that occur in both the Twitter media and the news media. For the given pe-
riod, we observe that 72.6% of the top 1000 mentioned entities in Twitter are
mentioned in the news media as well. This observation further validates the feasi-
bility of considering news articles to detect relations between entities mentioned
in Twitter and vice versa.

Figure 3 lists the number of distinct entities we observed in Twitter for the
39 different entity types. Persons, locations and organizations were mentioned
most often, followed by movies, music albums, sport events and political events.
In our analysis, we investigate the discovery of relationships between these en-
tities. Moreover, we analyze specific types of relations such as relationships be-
tween persons and locations or organizations and events in detail. The complete
list of those relation types that we analyzed in detail can be obtained via the
supporting website [1].

174 I. Celik, F. Abel, and G.-J. Houben

entity type

10

100

1000

10000

100000

1x106

nu
m

be
r

of
 d

is
tin

ct
 e

nt
iti

es
 p

er
 ty

pe

URL

Person

Country
Organization

Movie

MusicGroup

SportsEvent

PoliticalEvent

Product

MusicAlbum

City

Fig. 3. Number of distinct entities per entity type mentioned in Twitter (39 different
types)

4.2 Methodology, Metrics and Ground Truth

The relation detection task can be interpreted as a ranking problem. Given the
dataset described above, the relation detection strategies have to rank entity
pairs (of given types) so that those pairs, which are truly related (at a specific
point in time) appear at the top of the ranking. We obtained the corresponding
ground truth of true relationships (i) via DBpedia [5] and (ii) via a user study.

To utilize DBpedia—the structured representation of Wikipedia—as ground
truth, we mapped entities to their corresponding DBpedia resources by exploit-
ing the DBpedia lookup service8. We considered a given entity pair (e1, e2) as
related if e1 referenced or mentioned e2 in one of its properties (e.g. in the full
text description) or vice versa. However, for more than 35% of the entities we
could not retrieve appropriate DBpedia URIs, for example, because these entites
were not mentioned in DBpedia (yet). Therefore, we also conducted a user study
to complement the DBpedia-based ground truth.

In our user study, we asked PhD students from our group to judge whether two
entities, for which a relationship was detected by one of the tested strategies, are
really related on a four-point scale: “not related or unknown”, “rather not related”,
“rather related” and “related”. Overall, we obtained 1294 judgments. 62.6% of
the relationships were rated as “related” and were therefore considered as ground
truth. We further asked the participants to judge whether a relationship is valid at
a specific period in time. For example, whether they think that “Jullian Assange
(person) and London (city)” or “Bill Clinton (person) and presidential election
(political event)” are related during a certain time-frame (one week). Given such
temporal constraints, 57.3% of the relations were classified as related.

Given the ground truth, we measured the quality of the relation discovery
strategies by means of the following information retrieval metrics.
8 http://dbpedia.org/lookup

http://dbpedia.org/lookup

Learning Semantic Relationships between Entities in Twitter 175

(a) user study (b) prediction of DBpedia relationships

Fig. 4. Accuracy of different relation discovery strategies based on (a) ground truth
obtained from the user study and (b) ground truth obtained from DBpedia (more than
5,000 relations).

MRR. The MRR (Mean Reciprocal Rank) indicates at which rank the first
true relationship occurs on average.

P@k. Precision at rank k (P@k) represents the average proportion of true re-
lationships within the top k.

R@k. Recall at rank k (R@k) is the number of true relationships, which are
listed within the top k, divided by the number of known true relationships.

F@k. F-measure at rank k (F@k) is the harmonic mean of R@k and P@k.

4.3 Results

To answer the first research question, we summarize the accuracies of the differ-
ent strategies in Figure 4. For both test settings – user study and prediction of
relationships in DBpedia – we see that by combining the Tweet-based and News-
based strategies (Tweet+News-based), we achieve higher precision. In particular,
the Tweet+News-based strategy performs better with respect to the mean recip-
rocal rank (MRR), P@5 and P@10. The results from the user study (Figure 4(a))
reveal that the Tweet-based strategy performs slightly better than the news-based
strategy regarding MRR. However, the precision of the Tweet-based strategy de-
creases stronger than the precision of the News-based strategy when k is increased.
In fact, this observation is influenced by the number of candidate relationships:
all strategies are based on the co-occurrence of entities and, as tweets are limited
to 140 characters in length, we observe that the probability of co-occurring en-
tities is smaller in Twitter. For example, for relationships between persons and
political events the probability that such entities co-occur in a tweet of our Twit-
ter dataset is 0.00025, which results in 146 co-occurring persons-event candidate
pairs. In contrast, the news corpus features a probability of 0.32 and 7893 person-
event co-occurrences in total. Hence, the consideration of news promises to detect
further relationships and therewith can potentially increase recall.

Figure 5 confirms this hypothesis. With respect to recall (R@10) and F-
measure, the News-based strategy performs (32%) significantly better than the
Tweet-based strategy (see Figure 5(a)). By exploiting both tweets and news, we

176 I. Celik, F. Abel, and G.-J. Houben

(a) Precision, Recall and F-measure (b) F-measure within top k

Fig. 5. Precision and recall: (a) precision, recall and F-measure within the top 10 and
(b) F-measure for different ranks

(a) Person/Group relations to events, loca-
tions and products.

(b) Relations between entities that have the
same type.

Fig. 6. Accuracy of different types of relations: (a) relations of persons or groups with
events, locations and products and (b) relations between entities that are of the same
type

achieve even higher performances regarding recall (with 36%) and F-measure
(with 45%). Figure 5(b) further illustrates how the F-measure performs at dif-
ferent ranking levels. While the F-measure of the Tweet-based strategy saturates
quickly, the F-measure of the Tweet+News-based strategy increases and contin-
uously achieves higher F-measure than the other strategies. We conclude that
by combining both tweets and news articles, we achieve the best performance
(regarding recall, precision and F-measure) in discovering typed relationships
among entities – which answers the first research question raised at the begin-
ning of this section.

Figure 6 depicts the accuracy of the Tweet+News-based strategy for specific
types of relations and allows us to answer the second research question. To bet-
ter visualize the results, we grouped the different types of relations into more
abstract classes. For example, Person/Group-Event relationships cover relations
between persons and political events, persons and sport events, organizations
and sport events, et cetera. Figure 6(a) shows the precisions for inferring re-
lationships between persons or groups and (i) events, (ii) locations (including
cities or countries) and (iii) products (including movies or music albums). It is

Learning Semantic Relationships between Entities in Twitter 177

(a) Relations with(out) temporal con-
straints.

(b) Time difference in detecting relations.

Fig. 7. Temporal aspects: (a) difference in accuracy between news-based and tweet-
based strategies for relations with/without temporal constraints and (b) time difference
between news-based and tweet-based strategies in detecting certain relations

interesting to see that the Tweet+News-based strategy discovers relationships
between persons/groups and events with higher precision—0.92 and 0.87 re-
garding P@10 and P@20—than people’s relations to products (0.23 and 0.26)
or locations (0.73 and 0.6). The good performance in the context of events can
be explained by the nature of tweets and news articles, which are exploited to
detect the relationships. Both media are centered around news events [16] which
makes them a good source for inferring relationships between events and other
entities.

Figure 6(b) shows that relationships between two events can also be discovered
with high precision, followed by relations between locations (e.g. countries and
cities, natural features and countries). For relationships among products (e.g.
mobile devices and operating systems), the Tweet+News-based detection strat-
egy performs better than for relationships between people, for which we observe
the lowest performance (0.1 for P@10). However, in the context of relations be-
tween people, Twitter seems to be a much more reliable source. The Tweet-based
strategy achieves, for example, a precision of 0.4 (P@10) for inferring relation-
ships between persons and music groups while the News-based strategy allows
for only 0.1 (P@10). One reason for this performance difference is the number
of distinct entities that co-occur in a news article or Twitter message. On aver-
age, each news article contains 19.3 entities while a Twitter message allows for
the identification of, on average, less than 1.8 entities. Intuitively, one can thus
interpret these observations as follows: if two entities co-occur in a tweet then
there is a high chance that there exists also a relationship between these entities
(e.g. in DBpedia).

Some relationships have temporal constraints. Relations between persons and
organizations or persons and locations might be valid or trending only for a cer-
tain period in time. For example, in December 2010, London and Julian Assange,
the founder of WikiLeaks, were highly related, because Assange was under arrest
in London at that time. The identification of such trending relationships could
improve topic-based Twitter and news exploration interfaces. Figure 7(a) illus-
trates that Twitter is more appropriate for inferring relationships, which have

178 I. Celik, F. Abel, and G.-J. Houben

temporal constraints, than the news media. The Tweet-based strategy improves
precision (P@5) by 22.7% in comparison with the News-based strategy, which
in turn performs slightly better—with respect to P@5 and P@10—for detecting
relationships without temporal constraints.

For the identification of trending relationships, it is further interesting to know
which source of information allows for fast discovery of relationships. Figure 7(b)
shows that particularly relationships between persons and movies or music al-
bums emerge much faster (14.7 and 5.1 days respectively) in Twitter than in the
traditional news media.

5 Discussion

Our results prove the feasibility of learning relationships between entities based
on Twitter messages. However, we observed that the Tweet-based strategy
achieves poorer results, with respect to the precision within the top k, when
we increase the k value, while more stable behavior was noticed by the News-
based strategy under the same conditions. On the other hand, the high MRR
value for the Tweet-based strategy suggests that if two entities do co-occur in
such a limited-size space, then there is a higher probability of strong correlation
between them. This statement, however, does not apply to news articles where
there are more identified entities on average than for tweets. Therefore, a strat-
egy that combines the news and tweets to increase the probability of identifying
entities, and then looking at their co-occurrence frequency to detect more rela-
tions, namely the Twitter+News-based strategy, takes the best out of the two
in order to produce the highest performance (recall/precision) for discovering
relations.

We described already one application of this relationship discovery in our
motivations: content exploration in Twitter. When a user is reading a tweet,
we can provide a list of entities that are related to the entities in the current
tweet with the aid of our learnt relations. This allows users to follow a link in a
chosen category (entity type) that they want to explore more, facilitating faceted
browsing. For example, given a single Twitter message that mentions a person,
learnt relationships link events, organizations or products related to this person
and can thus be used to explore related content.

Having identified the best strategy and the media source for detecting relations
between entities, we further investigated whether the accuracy varied depending
on the entity and relation types. We observed that our Twitter+News-based
strategy performs well in detecting relations between events and other types
of entities, but not so well for relationships among persons. We see one possi-
ble explanation in the disambiguities in some of the typed entities, especially
with synonymous entity values. For example, we observed cases where the same
person was identified in different ways in the Person entity, such as “Barack
Obama”, “Obama”, “Mr. Obama” and “President Obama”. The co-occurrence-
based strategies treat each of these representations as individual entities without
merging them.

Learning Semantic Relationships between Entities in Twitter 179

On the other hand, we can see from the results that relations among events
and among locations can be discovered with high success. Such relations can be
used to suggest further sources of information to a user who is reading up on an
event in order to point them in the direction of related events. For example, a user
viewing a tweet about the “Grammy Awards” to be held in Los Angeles on the
13th February might be interested to read about the “Academy Awards”, which
will happen later that month in the same city. Providing trending relations as a
separate “list of suggestions” to the user would also enhance browsing means and
the ability to access (interesting/desired) information when the information is
still relevant. For this reason, we examined the quality and speed for discovering
relationships with temporal dynamics in order to evaluate our strategies with
media sources to eventually find trending relations. Tweet-based strategy was
observed to perform highly in detecting relations with temporal validity both in
terms of precision and speed when compared with the News-based strategy.

Our analysis of how fast we can discover relations further showed that the
source of information first comes out in tweets, before it appears in the news
especially for certain types of relations, e.g. Person-Movie, Person-MusicAlbum,
Product-OperatingSystem and Person-PoliticalEvent. A possible explanation for
Twitter’s considerable speed and accuracy in finding “trending topics” over news
media could be explained by comparing the number and frequency of tweets to
that of the news articles posted, as was shown in Figure 2(a). Another expla-
nation for this could be the fact that Twitter is used as a tool for fast commu-
nication, where news media is mostly for information broadcasting/reporting.
Looking at the graph in Figure 2(a), one can see that there is more of a regular
pattern for the news articles, while the number of tweets are more irregular, sug-
gesting that they vary according to the current trend(s) more so than the day of
the week. Therefore, there is no surprise that Tweet-based strategy has better
performance in detecting relations with temporal validity. This also describes
why relations types such as Company-Product, Person-City and Company-City
are detected faster with news media than Twitter. These relations are long-term
relations in general with less temporal constraints in the relation.

6 Conclusions

In this paper, we proposed a framework for discovering relationships between
entities mentioned in microblog posts published on Twitter. Our framework ex-
tracts entities from Twitter messages, allows for further enrichment by exploiting
traditional news media and provides different strategies for detecting typed re-
lationships that moreover may have temporal constraints. Our analysis revealed
that the consideration of news articles improves recall and precision of the rela-
tion discovery clearly. Furthermore, the accuracy depends strongly on the type of
relationships that should be learnt: while relations among persons are fairly dif-
ficult to detect, relationships between persons and events can be discovered with
high precision of more than 80%. For detecting relationships that have a limited
temporal validity, Twitter-based strategies outperform News-based strategies by

180 I. Celik, F. Abel, and G.-J. Houben

more than 20% regarding precision (P@5). Further, by exploiting Twitter it
is possible to discover certain types of trending relationships faster than by
considering traditional news media.

Relations learnt by our relation discovery framework allow for supporting
topic-based content exploration in Twitter and can be applied to suggest key-
words when querying for Twitter content. Moreover, relationships can be ex-
ploited to enrich and complement existing ontologies, for example, by exploiting
the linkage to DBpedia entities as provided by our framework. The relation
discovery framework can also be used for engineering content recommendation
applications. Studying the performance of these applications is part of our future
work.

Acknowledgments. The research leading to these results has received fund-
ing from the European Union Seventh Framework Programme (FP7/2007-2013)
under grant agreement no ICT 257831 (ImREAL project9).

References

1. Abel, F., Celik, I.: Supporting website: datasets, further details and additional
findings (2011), http://wis.ewi.tudelft.nl/icwe2011/relation-learning/

2. Abel, F., Gao, Q., Houben, G.J., Tao, K.: Semantic Enrichment of Twitter Posts for
User Profile Construction on the Social Web. In: Antoniou, et al. (eds.) Extended
Semantic Web Conference (ESWC), Heraklion, Greece, Springer, Heidelberg (2011)

3. Akcora, C.G., Bayir, M.A., Demirbas, M., Ferhatosmanoglu, H.: Identifying Break-
points in Public Opinion. In: Melvile, P., Leskovec, J., Provost, F. (eds.) Proceed-
ings of Workshop on Social Media Analytics (SOMA) at KDD 2010, Washington,
DC, USA (2010)

4. Bernstein, M., Kairam, S., Suh, B., Hong, L., Chi, E.H.: A torrent of tweets:
managing information overload in online social streams. In: Proceedings of the
CHI Workshop on Microblogging: What and How Can We Learn From It? (2010)

5. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hell-
mann, S.: DBpedia - A crystallization point for the Web of Data. In: Web Seman-
tics: Science, Services and Agents on the World Wide Web (2009)

6. Cha, M., Haddadi, H., Benevenuto, F., Gummadi, P.K.: Measuring User Influ-
ence in Twitter: The Million Follower Fallacy. In: Cohen, W.W., Gosling, S. (eds.)
Proceedings of the Fourth International Conference on Weblogs and Social Media
(ICWSM). The AAAI Press, Washington, DC, USA (2010)

7. Chen, J., Nairn, R., Nelson, L., Bernstein, M., Chi, E.: Short and tweet: experi-
ments on recommending content from information streams. In: Proceedings of the
28th International Conference on Human Factors in Computing Systems (CHI),
pp. 1185–1194. ACM, New York (2010)

8. Dong, A., Zhang, R., Kolari, P., Bai, J., Diaz, F., Chang, Y., Zheng, Z., Zha,
H.: Time is of the essence: improving recency ranking using twitter data. In: Pro-
ceedings of the 19th International Conference on World Wide Web (WWW), pp.
331–340. ACM, New York (2010)

9 http://imreal-project.eu

http://wis.ewi.tudelft.nl/icwe2011/relation-learning/
http://imreal-project.eu

Learning Semantic Relationships between Entities in Twitter 181

9. Honeycutt, C., Herring, S.C.: Beyond microblogging: Conversation and collabora-
tion via twitter. In: Proceedings of the 42nd Hawaii International Conference on
Systems Science (HICSS), pp. 1–10. IEEE, Big Island (2009)

10. Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Emergent Semantics in Bib-
Sonomy. In: Hochberger, C., Liskowsky, R. (eds.) Informatik 2006: Informatik für
Menschen. LNI, vol. 94(2). GI, Bonn (2006)

11. Huang, J., Thornton, K.M., Efthimiadis, E.N.: Conversational Tagging in Twitter.
In: Chignell, M.H., Toms, E. (eds.) Proceedings of the 21st ACM Conference on
Hypertext and Hypermedia (HT), pp. 173–178. ACM, New York (2010)

12. Hughes, A.L., Palen, L.: Twitter Adoption and Use in Mass Convergence and
Emergency Events. In: Landgren, J., Jul, S. (eds.) Proceedings of the International
Conference on Information Systems for Crisis Response and Management ISCRAM
2009 (May 2009)

13. Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: understanding mi-
croblogging usage and communities. In: Proceedings of the 9th WebKDD and
1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis.
WebKDD/SNA-KDD 2007, pp. 56–65. ACM, New York (2007)

14. Kaufman, S.J., Chen, J.: Where we Twitter. In: Proceedings of the CHI Workshop
on Microblogging: What and How Can We Learn From It? (2010)

15. Kohlschütter, C., Fankhauser, P., Nejdl, W.: Boilerplate detection using shallow
text features. In: Proceedings of the Third ACM International Conference on Web
Search and Data Mining (WSDM), pp. 441–450. ACM, New York (2010)

16. Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news
media? In: Proceedings of the 19th International Conference on World Wide Web
(WWW 2010), pp. 591–600. ACM, New York (2010)

17. Lerman, K., Ghosh, R.: Information contagion: an empirical study of spread of
news on digg and twitter social networks. In: Proceedings of 4th International
Conference on Weblogs and Social Media, ICWSM (2010)

18. Marinho, L.B., Buza, K., Schmidt-Thieme, L.: Folksonomy-based collabulary learn-
ing. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T.W,
Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 261–276. Springer, Hei-
delberg (2008)

19. Owens, J.W., Lenz, K., Speagle, S.: Trick or Tweet: How Usable is Twitter for
First-Time Users? Usability News 11 (2009)

20. Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of informa-
tion diffusion across topics: Idioms, political hashtags, and complex contagion on
twitter. In: Proceedings of the 20th International Conference on World Wide Web
(WWW). ACM, New York (2011)

21. Rowe, M., Stankovic, M., Laublet, P.: Mapping Tweets to Conference Talks: A
Goldmine for Semantics. In: Passant, A., Breslin, J., Fernandez, S., Bojars, U.
(eds.) Workshop on Social Data on the Web (SDoW), Colocated with ISWC 2010,
CEUR-WS.org, Shanghai, China, vol. 664 (2010)

22. Yardi, S., boyd, d.: Dynamic Debates: An Analysis of Group Polarization over
Time on Twitter. Bulletin of Science, Technology and Society 30 (2010)

23. Zhao, D., Rosson, M.B.: How and why people Twitter: the role that micro-blogging
plays in informal communication at work. In: Proceedings of the ACM International
Conference on Supporting Group Work (GROUP), pp. 243–252. ACM, New York
(2009)

Mobile Mashup Generator System for

Cooperative Applications of
Different Mobile Devices

Prach Chaisatien, Korawit Prutsachainimmit, and Takehiro Tokuda

Department of Computer Science, Tokyo Institute of Technology
Meguro, Tokyo 152-8552, Japan

{prach,korawit,tokuda}@tt.cs.titech.ac.jp

Abstract. This paper presents a development and an evaluation of a
mobile mashup generator system to compose mobile mashup applica-
tions and Tethered Web services on a mobile device (TeWS). With less
programming efforts, our system and description language framework en-
ables a rapid development, a reusability of working components and a de-
livery of new cooperative mobile mashup applications. Working compo-
nents in the mashup execution are derived from a combination of existent
mobile applications, JavaScript automated Web page data extractions,
and RESTful Web service consumptions. The state of art generator sys-
tem is evaluated with novice and expert composer groups, to validate the
usability of the system and the expressibility of our Mobile Application
Interface Description Language (MAIDL). Complex mashup examples
are provided to demonstrate new cooperative applications of generated
Web services, which enable platform-independent functionality exchange
across devices via tethered HTTP communications.

Keywords: Mobile mashup application, description language, tethered
Web service, mobile Web server.

1 Introduction

A software development for mobile devices is becoming an essential task in the
field of information technology. The devices’ unique capabilities such as on-the-
go Internet access, GPS and camera-based applications are becoming the key
functional components in developing modern mobile applications. The major
drawback when creating a multi-platform mobile Web application is that it tends
to make less use of the device’s useful features. Mobile mashup development using
the device’s native programming language requires more explicit knowledge and
does not allow the mashups to be developed as fast as the Web-based ones are.

As an alternative, the second iteration of approaches is related to the code-to-
code (C2C) [1], [2] and model-to-code (M2C) [3] approaches. The C2C approach,
however, is not designed for developers (or mashup composers) without program-
ming skills. This approach emphasizes on a conversion of Web language to the
device’s native programming language and allows sensors be accessed with less

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 182–197, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Mobile Mashup Generator System for Cooperative Applications 183

code having to be written. On the other hand, the M2C approach tends to pro-
mote Web mashup without the integration of mobile devices’ unique features.

Our study addresses problems found in these platform centric and model-code
centric approaches by providing a fast-paced development using an XML-based
description language called Mobile Application Interface Description Language
(MAIDL) and its mashup composition tool. With less programming efforts, com-
posers can freely integrate parts of Web information (annotated Web naviga-
tions, and queries from Web services) and mobile devices’ unique features (ex-
istent mobile applications accessing device’s sensors). We proposed automatic
code generation algorithms for mobile mashup application, which are Mashup
Output Context Transformation and Mashup Process Scheduling algorithm. The
output application can be designated for a single device, as a normal mobile
application, and for multiple devices, as a Tethered Web service on the mobile
device (TeWS). Thus, platform-independent communication between devices for
functionality exchange and cooperative application can be simply created.

2 Related Work

Our previous study [4] proposed a composition model for mashup of Web applica-
tions, Web services and mobile applications. This approach shows the reusability
of Web information and mobile devices’ capabilities to outline a mashup appli-
cation. As a continuation, this research aims at the composition tool to deliver
the End Users Mashup Development on Mobile Devices. We also extend our ap-
proach’s expressibility to compose cooperative mashups for multiple devices via
a TeWS. The contrary point of our approach to the conventional mobile Web
mashup [5] is that other approaches extensively create or reuse Web informa-
tion as a part of user interface without integrating devices’ sensors and existent
application. Mashups also cannot be created as a TeWS.

In academic research, mashup approaches are often referred to as a M2C
approach in which a composer’s created composition model is later translated to
programming code. These approaches allow the integration of Web application
from many Web application components. In applying these models to mobile
mashups, the runtime of mashups on actual devices is not as powerful as the
one used in PCs or Web servers. In order to reuse the same composition pattern
on a mobile device, the generation and execution procedures of the mashup
application have to be adjusted for a limited computation environment [6].

In contrary to the M2C approach, the recent C2C mobile development ap-
proaches are designed so that developers use Web languages to build multi-
platform mobile applications. Despite the C2C advantage in its Web language
compatibility, its frameworks are not designed for non-programmers. This re-
search is based on the M2C approach, which consists of 2 parts, M2M (model
abstraction) and M2C (automatic software generation).

Code, which is generated from MAIDL, is in a procedural paradigm since the
control part mainly consists of procedures that are passing results and synchro-
nizing processes in the mashup runtime environment. For this reason, we pro-
posed automatic code generation algorithms, which assist composers in creating

184 P. Chaisatien, K. Prutsachainimmit, and T. Tokuda

mobile mashup applications. Moreover, the final output is not limited to mobile
application as traditional methods are [7] [8]. A TeWS can be generated and
later consumed by other clients. Later in complex mashup examples, we show
how the composed TeWS is applied to platform-independent communications
between devices. In addition to the main composition tool, the Web extraction
assistant tool (WXTractor) in this research is created based on methods of Web
APIs and Web automation [9] and partial information extraction [10]. The tool
automatically generates mashup execution parameters for MAIDL from an anno-
tated tag of an HTML document. To expose these features to novice composers,
our tool also visually provides result samples in the model abstraction process.

3 An Overview of Our Research Approach

3.1 Objective and Motivation

1. Explore a mobile mashup model. The conventional disciplines discussed in
section 2 show that a mashup model for the mobile mashups is not concretely
defined. We aim to find an optimal mashup model which leads to a better
solution in creating mashups for mobile devices.

2. Deliver reusability. Our mashup components include existent mobile appli-
cations and Web information. Therefore, developing mashups with low-level
API, such as creating an image recognition component with a new algorithm,
is beyond our research scope.

3. Enable fast prototyping. Mashups can be created from a Web-based software
generation tool. Composers are allowed to generate source code, compile,
and test it immediately after the composition model is correctly prepared.
Methods called Mashup Output Context Transformation and Mashup Process
Scheduling Algorithm would assist composers by automatically managing
foreground and background runtime behaviors of the mashup components.

4. Target novice and expert composers. Most of the abstraction models are
designed for programmers. Through our composition tool, we aimed to let
novice composers be able to create mashups for mobile devices. More ad-
vanced and customizable features are added for expert composers.

5. Demonstrate a TeWS. A mashup in our approach can be created as a mobile
application to run on a device or as a TeWS. Functionality exchanges and
interactive collaborations between devices can be derived from our approach,
and these are unique contributions which do not appear in other approaches.

In order to run most flexible configuration on mobile devices (such as third
party mobile applications and embedded server modules), we use the Android
open source platform [11] as our mashup runtime environment.

3.2 MAIDL and its Abstract Model Composition

The general concept of MAIDL (shown in Fig. 1) is to provide data flows between
mashup components for its execution and output. The components consist of:

Mobile Mashup Generator System for Cooperative Applications 185

Fig. 1. Overview of MAIDL and its abstract model composition

1. Web Application Component (WA). A part of a Web page or a query through
HTML forms can be reused through a WA component. Composers are pro-
vided with a tool called WXTractor to annotate HTML tags and specify
execution commands. JavaScript code will be generated according to the
specification and executed in the runtime environment on the mobile device.

2. Web Service Component (WS). Connections to REST Web services are appli-
cable to our composition. Composers specify a URL and a query expression
(such as XPath or JSON dot notation) to access a part of the whole data.

3. Mobile Application Component (MA). A part of mashup execution can be
derived from a mobile application. Our method allows an application which
implemented Intent and Service messaging protocol [12] to be integrated.

4. Arithmetic Component (AR). A mathematical operation between results
from one or more components can be performed through AR. The operation
includes addition, subtraction, division, multiplication, summation, compar-
ison, and GPS distance calculation from 2 pairs of GPS coordinates.

The composition process begins where composers select the output context (mo-
bile application or TeWS). Components can be added in any order but not
starting with the AR component. Composers then configure each component’s
parameter according to their data flows and logical specifications. Results from
the publisher components attached in the upper hierarchical order are listed and
are selectable in the nested subscriber components. Finally, composers configure
the output component and export the abstracted model to a MAIDL script file.

3.3 Mashup Mechanism, Output Context and Process Scheduling

The mechanism in each output context is different Therefore, it is crucial
that composers specify the context first. The mashup composition tool is

186 P. Chaisatien, K. Prutsachainimmit, and T. Tokuda

Table 1. Mashup mechanism in a mobile application and a TeWS output context

Output Runtime Inter-Component Messaging Protocol Working process in detail
Context Process

MA Fore- WA:Intent(FG) or Service(BG) WA: Custom browser and
ground JavaScript navigation
(FG) WS: Service(BG) WS: HTTP connection and

message retrieval/query
MA: Intent(FG) or Service(BG) MA: Intent or Service call

TeWS Back- WA:Intent(FG/SMA) or Service(BG)
ground WS:Service(BG) Same as MA output context
(FG) MA: Intent(FG/SMA) or Service(BG)

context-sensitive and will allow integrations of only compatible components. Ta-
ble 1 shows the mashup mechanism in each output context.

Mashup Mechanism in a MA Context. Components in this context work sepa-
rately as mobile applications. WA components employ a custom Web browser
and JavaScript navigation sequences generated from MAIDL. In the case where
form submissions (e.g. fill a form with keywords and click on a submit button) or
user interactions (e.g. select a link from search results) are required, the runtime
will work in a foreground process. When a part of a static Web page is extracted
without user interaction, the WA components work in a background process. WS
components always run in a background process. The process includes HTTP
connections, message retrievals and queries of the data. The runtime of MA com-
ponents depends on its messaging protocol. If the Intent protocol is used, they
work in a foreground process. When the Service protocol is used, they work in a
background process. After all components finished their tasks, all parameters will
be passed to the final output mobile application according to the configuration.

Mashup Mechanism in a TeWS Context. A mashup runtime in a TeWS output
context does not allow MA components to be called directly, for the reason that
the process in WS component itself runs as a background process. Therefore we
use a Switcher Mobile Application (SMA) to indirectly call each MA component
in the same way the mechanism works in the MA output context. Fig. 2 shows
the messaging processes in a normal direct call and an indirect call via SMA.
The final TeWS, is generated from results passed from each component. The
TeWS can be accessed using the device’s IP address and the path specified in
the project’s MAIDL script. For performance reasons, we applied the REST
architecture to the TeWS output, to deliver JSON messages.

Mashup Process Scheduling. Processes in a linear FIFO order are scheduled
according to the hierarchical order of a publisher-subscriber pattern and their
runtime behavior. If no parallel execution occurred, a process will sequentially
wait for prior processes to finish its task. In a parallel execution, processes under a

Mobile Mashup Generator System for Cooperative Applications 187

Fig. 2. Messaging processes using a direct call (a) and an indirect call (b)

Fig. 3. Mashup Process Scheduling Algorithm. This figure shows data flows (solid lines),
task sequences (dashed lines), merged sequences (black bars) and swaps (dotted lines)

one-to-many publisher are executed from a top-to-bottom order as defined in the
MAIDL script file. Many-to-one subscribers or the terminal output component
wait for all prior components to finish before its own execution begins.

The process synchronization in our runtime environment employs a Java
Thread to wait for messages sent from components when its task is finished.
As demonstrated in Fig. 3, the algorithm merges execution sequences of back-
ground processes to the latest foreground process in the same hierarchical order.
The process order is swapped to execute background processes with the first
foreground process in the same hierarchical order. The equations below shows
how the total execution time t is reduced to t′ after the algorithm is applied. i
and j are process indexes after the algorithm is applied, where n + m ≥ i + j

t =
n=0∑
N

t(Fn) +
m=0∑
M

t(Bm) . (1)

t′ =

⎧⎨
⎩

∑n=0
N t(Fn) if all t(Fn) ≥ t(Bm) .∑i=0

I t(Fi) +
∑j=0

J t(Bj) if some t(Fm) < t(Bm) .∑m=0
M t(Bm) if all t(Fm) ≤ t(Bm) .

(2)

188 P. Chaisatien, K. Prutsachainimmit, and T. Tokuda

Fig. 4. Screenshots and a workflow in each mashup composition tool

3.4 Mashup Composition Tool

1. MAIDL Designer is a Web-based XML document builder, which provides a
grammar check and context-sensitive settings. Composers select the output
context and then add mashup components. The output of this tool is an
XML file (a MAIDL script file), which works with the Code Generator.

2. Web Extractor (WXtractor) is a Web browser extension, which generates
XML tags used in WA components in MAIDL script files. It will be avail-
able for use when composer adds a WA component into his/her mashup.
WXtractor provides a visual preview of the annotating part of a Web page
(e.g. text content, HTML source code, link URL and image representation
if applicable). Composers are also able to specify navigation sequences (e.g.
text input, highlight, click) and data filtrations (e.g. delete commas or dollar
signs from the text content) using this assistant tool.

3. Code Generator (CodeGen) receives a MAIDL script file generated from the
MAIDL Designer or manually created by composers. It generates Java source
code according to the output context. MA output context’s code is generated
as files compatible with Android’s SDK. The TeWS output context’s code
is generated as i-jetty [13] files.

4. Application Generator (AppGen) is a Web-based compiler, which applies a
compilation command to source code generated from CodeGen. It returns a
URL link of an mobile application package file (Android package - APK file)
or a Web service package file (i-jetty compatible Web archive - WAR file).

Mobile Mashup Generator System for Cooperative Applications 189

4 Evaluation

The evaluation is divided into 3 sections. First, MAIDL and Mashup Tool section
shows the expressibility test result of MAIDL in composing mashups. Use cases
of cooperative applications are given in Complex Mashup section. Finally we
discuss the mashups’ overall Security Performance in the third section.

4.1 MAIDL and Mashup Tool

In the evaluation of our tool and description language, we tested the MAIDL
Designer with 2 subject groups, 5 novice and 6 expert composers. A pre-
questionnaire was given to observe the composers’ background. After the tool
session finished, we also asked composers to fill in a post-questionnaire about the
tool’s features, their creations, MAIDL’s expressibility and their expectations.

The tool session was divided into a tutorial and a freestyle task. The first
task was given to let composers use all mashup components (WA, WS, MA and
AR) and basic features. The mashup is the one shown in Fig. 1, composers inte-
grated a barcode reader a MA component to read a product barcode, search for
the product title and price from Amazon.com WA component [14], translate the
price currency from dollars to yen using ExchangeRate WS component [15], add
shipping cost using the AR component ,and finally display the product title and
total price via a TeWS. Later, composers were given the freestyle composition
task where they could freely plan and create a mashup using our MAIDL De-
signer. We compared the composer’s expectations and MAIDL’s expressibility
by using 5-point Likert scale questions. The data was analyzed using T-test and
ANOVA, divided by novice/expert and pre/post task. Finally, the composers
asked for comments concerning the mashup runtime and usability.

Composer Groups. Novice composers were able to use the Internet and mobile
applications. Our expectation was that they would be able to use our tool to
compose mashups with basic functions. We also expected that a similar basic
usage pattern amongst novice composers would be found. Expert composers were
involved in the use of Web information and are able to program in one or more
languages. We expected that they are able to use most of the features provided,
suggest corrections and propose more functionality to our system.

Pre-questionnaire Result. The majority of novice composers understand HTML
and its simple tags (forms and links). They are familiar with mobile applications
but none of them understand the concept of Web services. Novice composers
do not know what a mashups are. When asked to give an example of a mobile
mashup, they were able to propose ones using GPS and camera functionality
as a terminal input. About their expectations for MAIDL (question set C1),
high rating scores were found in: connecting the mashup to a Web service (x̄ =
4.00, σ = 1.67), data filtration (x̄ = 4.00, σ = 1.10), automatic code generation
(x̄ = 4.00, σ = 1.34) and creating software package files (x̄ = 4.00, σ = 1.73).

Most of the expert composers understand HTML at the level of tags’ at-
tributes. They are familiar with mobile applications and all of them understand

190 P. Chaisatien, K. Prutsachainimmit, and T. Tokuda

the concepts of Web services and mashups. Mashup examples given by these
composers consisted of a wider variety of existent mashup components. Their
expectations rated in question set C1 were low on average since they are highly
skilled in programming. High ratings score were found in: connecting to the
mashup to mobile applications (x̄ = 3.17, σ = 1.60) and automatic process
synchronization (x̄ = 3.67, σ = 0.52). We found low ratings for: the use of math-
ematical functions (x̄ = 2.00, σ = 0.89) and data filtration (x̄ = 2.00, σ = 1.55).

Tutorial Composition Task. Novice composers finished the task in an average
of 34 minutes (σ = 2). About the expressibility of MAIDL (question set R1),
we found high ratings in these items: planning a workflow using MAIDL (x̄ =
4.00, σ = 0.71) and data filtration (x̄ = 4.00, σ = 0.55). Novice composers are
likely to follow the tutorial steps with less details studied.

Expert composers took longer to finish the task with the average of 55 minutes
(σ = 27). In question set R1, we found high ratings in: planning a workflow using
MAIDL (x̄ = 4.00, σ = 0.71), WA components (x̄ = 3.67, σ = 0.52), WXTractor
(x̄ = 3.83, σ = 1.60) and data filtration (x̄ = 4.17, σ = 0.75). From further
observations, we found that they took more attention to the reusability of Web
applications after WXTractor and the data filter functions were used. Expert
composers also tend to spend more time study all features in detail.

Freestyle Composition Task. Novice composers were able to plan the dataflow,
choose the right components, and lay out their abstract model using MAIDL.
However, advanced features (such as background processing, loop execution)
were not used. Therefore, their mashups consisted of only components listed in
the manual and time taken in this session was 51 minutes on average (σ = 17).

The majority of mashups created by expert composers contained 1 to 2 MA
components. The complexity of the abstraction models between 2 composer
groups was approximately 3 components per a mashup. Differ from the novice
composers, expert composers tended to use external Web services not available
in the manual as a middle component linking 2 MA components. The average
time the group used was 60 minutes (σ = 34). The reason they took longer might
be that they acquired external libraries with custom settings. It takes time to
understand how the libraries can be properly configured in MAIDL.

Post-questionnaire Result. A post-questionnaire was taken after the freestyle
task finished. Question sets were divided into 3 parts, set C2 and R2 which are
similar to C1 and R1, and a question set P concerning the composers preference
towards MAIDL. In set C2, novice composers gave high rating to the reusability
of Web applications (x̄ = 4.40, σ = 0.55), simple Web service connections (x̄ =
5.00, σ = 0.00), source code generation, compilation and the creation of software
package file (x̄ = 4.80, σ = 0.45). Expert composers gave high ratings to the
ability to configure the mashup as a TeWS (x̄ = 4.00, σ = 1.55) and simple reuses
of mobile applications as a component (x̄ = 3.83, σ = 1.60). Novice composers’
ratings in set R2 was not significantly high. In contrast, we found high ratings in
expert composers’ answers emphasizing: planning a workflow using MAIDL, the
use of AR components, WA components, and WXTractor (x̄ = 4.50, σ = 0.55).

Mobile Mashup Generator System for Cooperative Applications 191

In set P , we found high novice composers’ preference ratings towards: the
ability of MAIDL in mashup compositions (x̄ = 4.40, σ = 0.55), the model layout
(x̄ = 4.00, σ = 0.71), WXTractor (x̄ = 4.00, σ = 1.00), data filtration (x̄ =
4.60, σ = 0.55) and the publisher’s parameter list (x̄ = 4.20, σ = 0.84). Novice
composers tended to ignore the use of features involving data type and loop
execution (x̄ = 3.20, σ = 0.84). They also did not quite agree that the component
library covered all components they needed (x̄ = 3.40, σ = 0.55). They agreed
that component’s settings should be prepared as templates (x̄ = 4.00, σ = 0.71).
The answers from expert composers show high rating in 2 items: the ability of
MAIDL in mashup compositions, and the model layout (x̄ = 4.50, σ = 0.55).

Comparison of pre- and post-questionnaire. In novice composer group, a sig-
nificant difference was not found in the majority of questions in set C and R.
However, novice composers might found that the data filtrations are hard to
configure as its ratings decreased after all tasks had been finished (p = 0.03).
Expert composers might be able to reduce their efforts to write the components’
code manually as a significant increase in rating are found in these items: the
use of WA components (p = 0.02), and the use of AR components (p = 0.01).

Runtime and Usability. The runtime performance of the applications created
by novice composers was normal when running MA components and WS com-
ponents without complex queries. One application, which connected 2 Web ap-
plications, was slow and sometimes became unresponsive due to high network
traffics. Most of the applications created in the expert composers freestyle task
contained one WS component as a middle component and had a faster runtime.
However, when an expected query result of Twitter API [16] was not found, the
mashup process halted and the application needed to be restarted. In MAIDL,
there is still no conditional statement for deciding processes or skip errors. Expert
composers suggested that status and dialog configurations should be included.

Interpretation and Conclusion. Using MAIDL, novice composers agree that they
are facilitated with simple configurations to reuse Web information. After the
tutorial task, they were able to abstract the model of their mashup. WXTractor
is able to assist their data extraction from Web applications. However, advanced
features such as data type and loop executions were not preferred. The code
generator and compilation tools could assist their lack of coding knowledge. They
tended not to use external libraries, therefore, component libraries and templates
should be added. The majority of novice composers also believe that MAIDL
enables easy mashup compositions and opens opportunities for non-programmers
and new comers to this area. More visualizations should be used and they also
suggested that the look and feel of the mashup should be customizable.

Expert composers’ expectation towards MAIDL’s expressibility was low in the
first place and increased after they finished the tasks. Composers in this group
tended to use more time in the tasks because they were trying to adapt their
skills (e.g. applying Web applications and Web services). The expressibility and
customizability of MAIDL met their needs when applying it to external libraries.
However, they suggested that some automatic functions (e.g. data adaptations,

192 P. Chaisatien, K. Prutsachainimmit, and T. Tokuda

component templates) should be implemented or manually addable. In addi-
tion, expert composers found that the use of WXTractor to annotate tags and
apply filters to them was easy. They suggested that it would be helpful for non-
programmers if the same method was applied to XML or JSON messages. Just
as novice composers did, expert composers suggested that the MAIDL Designer
have more visual context-aware GUIs and more component templates. A high
customizability in MAIDL was good for them to apply external libraries but
might not be appropriate for non-programmers. If possible, data adaptations
should be done automatically when the data are sent to the component.

Comparison between Novice and Expert Composers. T-test and ANOVA was
applied to C1, C2 and R1, R2 data pairs of novice and expert composers which
can be interpreted as follows:

1. Expectations of the expert and novice groups were met after the evaluation.
2. The novice group has higher expectations towards MAIDL than the experts.
3. The expert group rated expressibility of MAIDL in assisting mashup com-

positions higher than the novice group.
4. After the evaluation was finished, the expert group agreed that MAIDL gave

higher rating towards expressibility in assisting mashup compositions.

The result can be interpret that MAIDL might not perform well when mashups
are composed by novice composers because of its complexity. Expert composers
are able to use MAIDL without confusion and may apply it to external libraries.
However, both groups’ expectations are met. Composers in both groups rated
that the approach delivered 75% subjective rating for creating mashups.

4.2 Complex Mashup

To study cooperative mashup applications, we created 2 complex mashups using
our approach. The mashups require interaction between 2 or more mobile devices.
In this way, the mashup created in a TeWS output context is deployed on an
Android device. On the other hand, iOS devices [17] are manually programmed to
consume the deployed TeWS. We evaluate their runtime, connection performance
and interaction usability on each device in the actual running settings.

Meeting Point: Cooperative Geolocation Mashup. In this mashup, ge-
olocation of 2 devices are used as a data to find a list of restaurants located
near the middle point between each device’s GPS coordinates (via the Gour-
Navi Web service [18]). Fig. 5 shows 2 mashup models and mashup applications,
Meeting Point Registration and Meeting Point Confirmation, which communi-
cate between devices via a TeWS in separated contexts.

Internal Runtime and Connection Performance. Application on the iOS side
was presumably lightweight. Since this is a cooperative mashup for 2 devices
with handshaking-like protocol, multiple connections are not considered as a
performance factor. The overall performance of this mashup depends on the
performance of GourNavi Web service.

Mobile Mashup Generator System for Cooperative Applications 193

Fig. 5. Mashup models and screenshots of Meeting Point

Usability and Interactions. If we assumed that 2 devices are connected using
global IP addresses and are placed outdoors, the interactions between 2 devices
might be interrupted by signal loss. Both sides must have timeout configuration
and reconnection arrangement in the case of failure execution.

4.3 Book Shopping: Camera and Data Server Cooperative Mashup

This complex mashup application is designed for a shopping scenario in a book
store for 2 or more users. One user holds an Android phone functioned as a
server, the other users are holding iOS devices and are moving around the store
searching for books. Mashup applications in a TeWS output context consist of
Book Shopping Add and Book Summary. iOS device clients were installed with
a manually written program to read a book’s barcode and send the translated
data to the Book Shopping Add TeWS deployed on the Android phone. The
TeWS on the phone will search for the product title and price from Amazon.com
WA component, translate the currency of the price from dollars to yen using
ExchangeRate WS component, and finally add the title and price in Japanese
yen into the phone database. Users with an iOS device may request for the added
book title, book price and price summary using the Book Summary TeWS.

Internal Runtime and Connection Performance. In this setting, 2 mashups are
installed on the server and handle multiple connections. In Book Shopping Add,

194 P. Chaisatien, K. Prutsachainimmit, and T. Tokuda

Fig. 6. Mashup models and screenshots of Book Shopping

the overall performance depends on the Amazon.com WA component and the
BookDatabase MA component. We implemented 2 versions of BookDatabase,
foreground and background ones. In Book Shopping Summary, when the MA
component is accessed as a foreground process, server connections are queued
by MAIDL process synchronization feature. The mashup runs more smoothly
when the composited MA components are accessed as a background process.
However, the WA component in Book Shopping Add runs in foreground process,
yields lower speed and the server queues all incoming connections. Therefore,
this type of mashup should not include foreground WA and MA components.

Usability and Interactions. We have tested the actual mashup using wireless
network connection and found that the range between the server and client
devices are important. This mashup might also be applied to other shopping
scenarios which are best suited for Ad-hoc connections.

4.4 Security Performance

Since the application of WA components in MAIDL to invoke cross-domain con-
nections and navigations of secured Web sites are possible. We believe that users
should be warned before the mashup is installed on the device. For MA com-
ponents, faulty MA components, which enter infinite loops, are automatically
terminated by Android’s system. However, the endless loop of sending data in
a circle can be implemented. The use of MA component in mashup applications
also altered some security issues. Android’s OS allows softwares to be removed

Mobile Mashup Generator System for Cooperative Applications 195

through the Intent messaging protocol. To solve these problems involving inse-
cure WA and MA components, a MAIDL script might also work as a manifest
file to look for information of the integrated component for security reasons.

The other important issue is when a mashup called a MA component which
accessed personal information. In general, a manifest file of a mobile application
is used to indicate what function to be used and what information to be ac-
cessed. Therefore, security measurement of each component in a mashup should
be conducted and informed to the users before the mashup is installed and
used.

5 Discussion

The results of the evaluation indicate that our method provides a good solution
to mobile mashup compositions. The composers emphasized that the use of visual
previews of data extractions and filtrations are preferred. However, the system
do not allow mashups be simulated as a whole. Some MA components required
an actual runtime environment. Moreover, we believe that mobile application
providers or online application stores should contain the application’s description
concerning the messaging protocol for mashups.

In general, a mobile mashup is created for one task. Compared to mashups
of Web applications, we found that mobile mashups have less complexity. They
tend to be created as an integration between the phone’s sensors and Web infor-
mation. We found fewer mobile mashups that perform comparisons of multiple
lookups to a variety of Web sites. More factors have to be considered in creat-
ing mashup in TeWS output context. To deliver smooth interactions between
devices, the behavior of running process, network latency and usage scenario
has to be observed. Since MAIDL script files contain information about each
component and its runtime behavior, an alternative application of MAIDL for
performance measurement can be considered.

MAIDL script files also contain a concrete description of the output messages
sent via a TeWS. Applications on the client side might be generated or adapt
themselves according to the description. A good example for the combination of a
TeWS and a desktop Web application is to exchange multiple data from a mobile
phone to automatically fill in personal information in an HTML form. The Web
application first observes the applicable TeWS on the device and connects to it.

For the power consumption of the mashup, energy footprint of each component
have to be observed, including the amount of data sent via a TeWS.

6 Conclusion and Future Work

In this research, we proposed a fast-paced mashup development using MAIDL.
The mashup created by our approach can be designated for a single device, as a
normal mobile application, or for multiple devices, as a TeWS. We proposed the
method of Mashup Output Context Transformation and Mashup Process Schedul-
ing Algorithm. The composition enables integration of annotated parts of Web
pages, connections to Web services and the use of existent mobile applications.

196 P. Chaisatien, K. Prutsachainimmit, and T. Tokuda

In the evaluation with novice and expert composer groups, we found that the
approach’s simplicity in reuse of Web applications, Web services and mobile ap-
plications as mashup components serve the composers well. For the approach’s
expressibility, novice composers tend to use normal features and pre-defined
templates, while expert composers require customizability when applying exter-
nal libraries. Both composers groups gave higher preference rating after they
used our tool. This implies that our method is optimal for low skilled com-
posers.

In the complex mashup section, we demonstrated how a mashup works in
a TeWS output context to deliver functionality exchange and cooperative ap-
plication between devices. We were able to characterize the components that
are appropriate to be integrated in a complex mashup in TeWS context. Our
future work is to enable mobile mashup in the context of a Web application
on a mobile device. To support higher interactivity to run on desktop comput-
ers, the process control and composition method might be different from the
two contexts we have observed. The combination of multiple TeWS might be
considered.

References

1. Appcelerator Titanium Mobile, http://www.appcelerator.com/products/

titanium-mobile-application-development/

2. PhoneGap, http://www.phonegap.com/
3. Pietchmann, S., Tietz, V., Reimann, J., Liebing, C., Pohle, M.: Meißner, K.: A

Metamodel for Context-Aware Component-Based Mashup Applications. In: Pro-
ceeding of the 12th International Conference on Information Integration and Web-
Based Applications & Services. ACM, New York (2010)

4. Chaisatien, P., Tokuda, T.: A Description-based Approach to Mashup of Web Ap-
plications, Web Services and Mobile Phone Applications. In: Information Modelling
and Knowledge Bases XXII, Frontiers in Artificial Intelligence and Applications,
vol. 225, pp. 174–193. IOS Press, Amsterdam (2011)

5. Paternò, F., Santoro, C., Spano, L.D.: Maria: A universal, declarative, multiple
abstraction level language for service-oriented applications in ubiquitous environ-
ments. In: Computer-Human Interaction, vol. 16 (2009)

6. Aijaz, F., Ali, S.Z., Chaudhary, M.A., Walke, B.: The Resource-Oriented Mobile
Web Server for Long-Lived Services. In: 6th IEEE International Conference on
Wireless and Mobile Computing, Networking and Communications (2010)

7. Google App Inventor for Android, http://appinventor.googlelabs.com/
8. Kaltofen, S., Milrad, M., Kurti, A.: A Cross-Platform Software System to Create

and Deploy Mobile Mashups. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G.
(eds.) ICWE 2010. LNCS, vol. 6189, pp. 518–521. Springer, Heidelberg (2010)

9. Maleshkova, M., Pedrinaci, C., Domingue, J.: Semantic Annotation of Web APIs
with SWEET. In: Proceedings of the 6th Workshop on Scripting and Development
for the Semantic Web (2010)

10. Guo, J., Chaisatien, P., Han, H., Noro, T., Tokuda, T.: Partial Information Extrac-
tion Approach to Lightweight Integration on the Web. In: Daniel, F., Facca, F.M.
(eds.) ICWE 2010. LNCS, vol. 6385, pp. 372–383. Springer, Heidelberg (2010)

11. Android Developers, http://developer.android.com/index.html

http://www.appcelerator.com/products/titanium-mobile-application-development/
http://www.appcelerator.com/products/titanium-mobile-application-development/
http://www.phonegap.com/
http://appinventor.googlelabs.com/
http://developer.android.com/index.html

Mobile Mashup Generator System for Cooperative Applications 197

12. Android Intents, http://developer.android.com/guide/topics/intents/
13. i-jetty, http://code.google.com/p/i-jetty/
14. Amazon.com, http://www.amazon.com/
15. Exchange Rate API, http://www.exchangerate-api.com/
16. Twitter Search API, http://dev.twitter.com/doc/get/search
17. iOS Technology Overview, http://developer.apple.com/technologies/ios/
18. Gourmet Navigator API, http://api.gnavi.co.jp/api/manual.htm

http://developer.android.com/guide/topics/intents/
http://code.google.com/p/i-jetty/
http://www.amazon.com/
http://www.exchangerate-api.com/
http://dev.twitter.com/doc/get/search
http://developer.apple.com/technologies/ios/
http://api.gnavi.co.jp/api/manual.htm

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 198–213, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Framework for Concern-Sensitive, Client-Side
Adaptation

Sergio Firmenich1,2, Marco Winckler3, Gustavo Rossi1,2, and Silvia Gordillo1,4

1 LIFIA, Facultad de Informática,
2 Universidad Nacional de La Plata and Conicet Argentina

{sergio.firmenich,gordillo,gustavo}@lifia.info.unlp.edu.ar
3 IRIT, Université Paul Sabatier, France

winckler@irit.fr
4 CiCPBA

Abstract. Currently the Web is a platform for performing complex tasks which
involve dealing with different Web applications. However, users still have to
face these tasks in a handcrafted way. While building “opportunistic” service-
based software, such as mashups, can be a solution for combining data and
information from different providers, many times this approach might have
limitations. In this paper we present a novel approach which combines concern-
sensitive application adaptation with user-collected data to improve the user ex-
perience while performing a task. We have developed some simple though
powerful tools for applying this approach to some typical tasks such as trip
planning. We illustrate the paper with simple though realistic examples and
compare our work with others in the same field.

1 Introduction

As wisely pointed out in [6], one of the most interesting facets of Web evolution is the
kind of end-users interaction with Web contents. At first, users could only browse
through contents provided by Web sites. Later, users could actively contribute with
content by using tools (e.g. CMS, wikis) embedded into these sites. More recently
different technologies provide users with tools allowing them to change the way Web
content was presented. For example, using visual Mashups [5, 14], users can compose
content hosted by diverse Web sites and they can run Greasemonkey scripts [9] to
change third part Web applications by adding content and/or controls (e.g. highlight
search results in Amazon.com which refer to Kindle).

These tools built under the concept of Web augmentation [2] extend what user can
do with Web contents, but they provided limited support to tasks that require naviga-
tion on multiple Web sites. For example, a user who is using the Web for planning a
holiday trip to Paris might ultimately visit several sites such as expedia.com for
flights, booking.com for hotels, wikipedia.org for general information about the city
and parisinfo.fr for points of interest, current events or expositions in Paris. From the
users’ point of view, the navigation of all these sites is part of the same task. The
existing augmentation techniques are of little help in this case. For example, Grease-
Monkey scripts can adapt the content on a specific Web site but it will require much

 A Framework for Concern-Sensitive, Client-Side Adaptation 199

effort to make it generic enough to integrate information provided by different appli-
cations. Mashups, meanwhile, can be used to integrate content from several Web
sites; however, a Mashup for expedia.com will not necessarily integrate information
from other users’ preferred Web sites (e.g. airfrance.fr, venere.com...). If these sites
provide public APIs, Mashups can be extended, but it does not prevent users to learn
how to do it beforehand. Quite often, users’ tasks are associated with opportunistic
navigation on different Web sites, which is difficult to predict [12]. In this context,
effective Web augmentation should overcome two main barriers: i) to take into ac-
count different applications which are visited by users (either through explicit naviga-
tion or just opening a new browser’s window with the corresponding URL); and ii) to
adapt the unknown target Web sites, considering that the user might need different
kind of adaptations at different sites.

This paper proposes a framework for creating flexible, light-weight and effective
adaptations to support users’ tasks during the navigation of diverse Web applications.
Our goal is to support users’ tasks by keeping his actual concern (and related data)
persistent through applications. For example, allowing that dates used on expedia.com
for booking a flight could be reused as input for booking.com while booking hotels in
the same period. Another example of adaptation that illustrate our approach is the
inclusion of new links allowing users to easily navigate from parisinfo.fr to related
articles at wikipedia.com whenever he needs further explanation about a topic.

In a previous work [8], we showed how to profit from the knowledge of the current
user’s concern to improve navigation in Web applications, by enriching the target
page with information or links which are useful in that specific concern. In this paper,
we push further this approach to allow adaptations that go beyond a single applica-
tion’s boundary. Moreover, we present a framework and a set of tools which allow
simplifying the process of concern-sensitive Web augmentation, reducing the pro-
gramming burden, and therefore allowing end-users to configure their own adapta-
tions even when they are complex as in the example above.

This paper is organized as follows: in section 2 we provide an overview of related
work. The framework is fully described in section 3. Section 4 presents tools built
upon the framework. Section 5 presents how we have validated our approach with
end-users. Finally, section 6 present conclusions and future work.

2 Related Work

The field of Web applications adaptation is broad; therefore, for the sake of concise-
ness we will concentrate on those research works which are close to our intent. The
interested reader can find more material on the general subject in [4]. As stated in the
introduction we can identify two coarse-grained approaches for end-user development
in Web applications: i) mashing up contents or services in a new application and ii)
adapting the augmented application, generally by running adaptation scripts in the
client side.

Mashups are an interesting alternative for final users to combine existing resources
and services in a new specialized application. Visual and intuitive tools such as [5,
14] simplify the development of these applications. Since most Web applications do
not provide Web services to access their functionality or information, [10] proposes a

200 S. Firmenich et al.

novel approach to integrate contents of third party applications by describing and
extracting these contents at the client side and to use these contents later by generat-
ing virtual Web services that allow accessing them.

The second alternative to build support for users tasks is Web augmentation [2],
where the target application is modified (adapted) instead of “integrated” in a new
one. This approach is very popular since it is an excellent vehicle for crowdsourcing.
Many popular Web applications such as Gmail have incorporated some of these user-
programmed adaptations into their applications, like the mail delete button (See
http://userscripts.org/scripts/show/1345). The most popular tool to support Web aug-
mentation is GreaseMonkey [9], whose scripts are written in JavaScript. The problem
with these scripts is their dependence on the DOM; if the DOM changes the script can
stop working. In [6] the authors propose a way to make GreaseMonkey scripts more
robust, by using a conceptual layer (provided by the Web application developer) over
the DOM. In [7] the authors extend the idea to allow scripts developers to write their
own conceptual abstractions to cut the dependency with unknown developers; in this
way, when the DOM changes, the maintenance is easier because only the matching
between the concepts and the DOM need to be redefined.

While we share the philosophy behind these works, we believe that it is necessary
to go a step further in the kind of supported adaptations. In [8] we showed how to use
the actual user concern (expressed in his navigational history) as an additional pa-
rameter to adapt the target application. By using the scripting interface we managed to
make the process more modular, and by defining adaptations for application families
(e.g. social networks) we improved the reuse of adaptation scripts. In the following
sections we show how to broaden the approach allowing end users to select which
information can be used to perform the adaptation, therefore improving the support
for his task and providing support for building more complex adaptations.

3 A Framework for Concern-Sensitive Augmentation

For the sake of comprehension we first introduce some basic concepts and back-
ground work; next we make an overview of the approach and of our tool support.

3.1 Background for the Framework

Our framework is based on the concept of concern-sensitive navigation (CSN). We
say that a Web application (or specifically a Web page) is concern-sensitive (CS)
when its contents, operations and outgoing navigation links can change (or adapt) to
follow the actual situation (concern) in which it is accessed [8]. Concern-sensitive
navigation is different from context-aware navigation, where other contextual pa-
rameters (location, time, preferences) are considered. Figure 1 illustrates the differ-
ences between flat and concern-sensitive navigation. Note that there are two kinds of
navigations: Flat navigations (represented with solid arrows) where the target Web
pages show always the same information, without taking into account the source of
navigation; in concern-sensitive navigations (represented with dashed arrows) mean-
while, the target pages adapt or enrich their contents by taking into account what was
the user concern in the previous page.

 A Framework for Concern-Sensitive, Client-Side Adaptation 201

In [8] we have argued that concern-sensitive navigation simplifies the user’s tasks
by providing him sensitive information or options according to his current needs. We
have also introduced an approach to build smart client-side adaptations, implemented
as browsers’ plugins, which allow making specific Web applications aware of the
concern in which they were accessed, changing contents and links in consequence.

Fig. 1. Flat Navigation vs. Concern-Sensitive Navigation

Figure 2 shows an example of concern-sensitive navigation across two applica-
tions: Google Maps (as the source of navigation) and Wikipedia (as the target). The
left-side displays Wikipedia links in the map of Paris; once selected, these links trig-
ger the page at the right-side of Figure 2, augmented with the corresponding map and
a set of links to those Wikipedia articles in the surroundings of the current one.

Fig. 2. Inter-application CSN between Google Maps and Wikipedia

In general, the task of CS adaptation of a page P requires that we: (a) know the ac-
tual user’s navigation concern (i.e. pages previous navigated, e.g. Google maps), (b)
record the set of relevant information from previously visited pages that are needed
for adaptation (e.g. the current map), and (c) have the capacity for enriching P with
contents or links related with (a) and (b) by intervening in P’s DOM.

3.2 The Approach in a Nutshell

The CSN approach works well for application families (e.g. plugins that work
for similar applications which share some features). However, it “only” provides

202 S. Firmenich et al.

end-users with a fixed set of adaptations. We have developed a software framework
which extends the concept of CSN by providing different kinds of users (end-users,
developers, etc) a set of tools to augment Web applications by considering the actual
user concern. Developers can use the framework to implement new adaptation func-
tions, named augmenters. Augmenters are built as generic adaptations featuring behav-
iours such as automatic filling in forms, highlighting text, etc. End-users can benefit of
these augmenters during navigating by “collecting” concern information to be used
when adapting the user interface (See section 3.3.1). By combining augmenters, the
framework also supports scenario engineering for developing customized adaptations
for specific domains such as trip planning (See section 3.3.2). For example a scenario
can be based in the use of the form filling augmenter when the user is navigating among
several Web sites for booking flights and hotels. The same form filling augmenter can
be used to fill forms related to a product search in different e-commerce Web sites, for
example by taking the department (e.g. electronics) and the keyword (e.g. iphone4) used
in amazon.com to complete the form automatically in fnac.fr.

The framework is described at Figure 3 using the pyramid approach [11]. The top
levels are more abstract while lower ones are more detailed. At the top layer, final
users can collect relevant information for their current task or concern by using the
DataCollector tool. Then, when they navigate to other sites they are able to execute
augmenters using this information; in this way they can satisfy volatile requirements
of adaptation (not foreseen by developers). At the middle layer, end users with pro-
gramming skills can extend the framework by developing augmenters and scenarios
as classes inheriting of AbstractAdapter and AbstractScenario, two outstanding
framework hot-spots. The bottom layer shows a more detailed view of the framework
design; a third hot-spot, AbstractComponent abstracts concrete components used in
scenarios; for example we developed a component which offers geo-location informa-
tion; another tool could empower the scenarios by giving them auto fill forms capa-
bilities (e.g. a component that implements carbon [1]).

Fig. 3. Framework structure

 A Framework for Concern-Sensitive, Client-Side Adaptation 203

Framework components act like libraries to be used for developing adaptations.
We briefly outline the main framework components:

• Adaptation Support Layer
o ClientSideAdaptationManager: is the Framework’s core, whose functions are to

coordinate others elements and to serve as communicator with the browser.
o NavigationHistory: is the navigation history object provided by the browser. We

have developed a wrapper on top of it to ease scenarios development.
o ConceptPersistenceManager: is responsible for saving and restoring user data

into the local files system.
o AbstractAdapter and AbstractScenario: are abstract classes from which concrete

augmenters and scenarios, correspondingly, developed by users must inherit.
o AbstractCommponent: is an abstract class used for extending the framework by

developing components to support new capabilities (e.g. geolocation).

• Adaptation Definition Layer
o DOMOperationLibrary: a library that operates with DOM elements; it raises the

level of typical JavaScript sentences easing the development of augmenters.
o EventManager: is the responsible of adding and removing listeners (Adaptation

Definition Layer) of events from the lower layer.
o NavigationHistoryManager: is a wrapper with which scenarios can make queries

about navigation history.
o ConcreteAdapter and ConcreteScenarios: are scripts developed by users with

programming skills. These classes are shown in Figure 3 in order to highlight
their place in the hierarchy. Some concrete augmenters as HighlightAdapter,
WikiLinkConverter, CopyIntoInputAdapter are included in our framework.

• Adaptation Execution Layer
o DataCollector: is the tool to allow users collecting information while navigating.

So far, two concrete DataCollectors have been implemented: one for selecting
plaintext information, and another to handle DOM elements.

o PocketManager: is our tool to allow users to move information among sites.
o AdaptationDispatcher: is the responsible of executing an adaptation under user

demand. It is useful to accomplish volatile requirements of adaptation.

3.3 Extending the Framework

The framework can be extended in two ways: by creating new augmenters (generic
basic adaptations), and by building scenarios (for supporting specific user’s tasks).
Although we do not restrict the kind of adaptations, we fully support the development
of adaptations which take into account the actual user concern. Since many times it is
not enough to be aware of the user's navigation history to fully know his concern,
further information about his current activity is often needed. The example given at
Figure 2, shows how some information is moved from GoogleMaps to Wikipedia. Our
framework offers two kinds of tools to move information among Web sites. The first
one is the DataCollector with which users can select elements from the current Web
page. The elements selected are added into the second tool named Pocket which can

204 S. Firmenich et al.

store either simple plain text or data with some semantic meaning as a concept name.
Once the information is stored into the Pocket, it will remain available for any Web
pages visited later on. Section 4.1 details how users collect information during navi-
gation.

3.3.1 Creating Augmenters with the Framework
The simplest way to extend our Framework is to develop a new augmenter. An aug-
menter is an adaptation component developed by users with programming skills.
Augmenters have two main contributions in our adaptation approach: they provide
tools for satisfying end-users’ volatile requirements for adaptations and they support
the development of sophisticated scenarios built by combining simpler augmenters.

An augmenter can be standalone or be executed with data collected as argument; in
this case this data is assigned by the actor who triggers the augmenter execution (ei-
ther a scenario or the user). For example, an augmenter aimed to highlight elements in
the page, must be able to do it for an element (for example the City instance “Paris”)
or for a collection of elements (for example, all City instances). Therefore augmenters
should be flexible with regard to the user’s needs. Figure 4 shows an augmenter
(WikiLinkConvertion) applied to parisinfo.com with the user coming from wikipe-
dia.com with his PointOfInterest instances (these are strings collected from the Web
pages visited and conceptualized or typed as PointOfInterest) in the Pocket (the float-
ing box showed at right in the Figure). As Figure 4 shows, the augmenter WikiLink-
Convertion is applied to any PointOfInterest occurrence in the page. Note that when
the user right clicks over PointOfInterest, a menu with the available augmenters is
opened and then he chooses “Convert to Wiki Link”, so WikiLinkConvertion is exe-
cuted with all instances of PointOfInterest as parameters.

Fig. 4. Plain text converted into links to add personal navigation

Since augmenters can be applied to different Web pages they must be developed
without a dependence of a particular DOM, as described in [6]. Moreover, when using
the framework, developers must:

• Construct an augmenter as a JavaScript object inheriting from AbstractAdapter,
the hot-spot shown in Figure 3.

• Implement the methods defined as abstract in AbstractAdapter. This is necessary
because the execute() method of AbstractAdapter (a template method) sends mes-
sages to concrete augmenters. Since the method execute() is the starting point of
an augmenter, if a message can not be dispatched, the execution will fail.
The method execute() receives data as parameter which is used to perform the
adaptation.

 A Framework for Concern-Sensitive, Client-Side Adaptation 205

Manipulating the DOM to adapt the page is a responsibility of augmenters. Since
DOM manipulation can be hard for users, the framework provides them with the
DOMOperationLibrary, a component inspired in the most popular JavaScript libraries
like Prototype (see http://www.prototypejs.org/) and jQuery (see http://jquery.com/)
to make DOM manipulation simpler. In this way, target DOM elements (those that are
abstracted by elements from the Pocket) are easily manipulated by operations like
style changes, hiding, removing, or adding content.

Augmenters are executed when a user explicit triggers them or when a scenario is
instantiated (see section 3.3.2). In Figure 5.a, we show a sequence diagram to demon-
strate how the framework chains the execution of augmenters. The object User repre-
sents the real user. First, the user chooses an element from the Pocket and when he
right clicks over it; a menu is opened with all augmenters available. When he selects
one of them, the Pocket sends the dispatch() message to the AdaptationDispatcher
that finally executes the augmenter with the execute() message. Note that when an
augmenter receives the execute message, it sends to itself both the isApplicableTo-
Concept and applyToInstance messages. All augmenters developed by users must
have these methods defined as in the augmenters showed in Figure 5.b

Fig. 5. a. sequence diagram describing user
triggering an augmenter.

Fig. 5. b. class diagram presenting the frame-
work extensions with augmenters and scenarios.

3.3.2 Creating Scenarios with the Framework
Augmenters are useful to perform simple tasks on a site; however, for complex tasks
users perform sets of activities, many times following pre-defined patterns. For exam-
ple, booking flights, and then booking a hotel is a common scenario. In different mo-
ments (and moreover for different users) the Web pages used to do these tasks may
change. However, the information used during the task is similar and the kind of ad-
aptation needed too. For example depart date, arrival date, and a destination are all the
pieces of information needed to perform (in a simplified view) this task in any Web
site of this kind.

A scenario is an event-driven script; it registers listeners for those events in which
it is interested in. These events usually refer to the user activity as when he opens sites
or collects new data. When an event occurs the scenario is loaded and it first checks
that the information it needs is available; if so, the scenario is instantiated. Scenarios
execute adaptations when some conditions (e.g. about the navigational history or

206 S. Firmenich et al.

collected data) are satisfied; to perform adaptations, they trigger augmenters that
change the DOM. A scenario could execute the same augmenter, but with different
arguments as Figure 6 shows. In Figure 6.a a Wikipedia article is adapted in the con-
text of a scenario. The scenario uses the LinkAdditionAdapter (an augmenter similar
to the one described in the previous section) to add a link close to each occurrence of
the target element. In Figure 6.a, the target elements are all instances of the Poin-
tOfInterst concept, and the adaptation is executed automatically when Flickr.com
appears in the navigational history. Figure 6.b shows a similar case, but now since
GoogleMaps is the previously visited Web page, a link to GoogleMaps is added.

Fig. 6. a. Navigation with Flickr concern. Fig. 6. b. Navigation with GoogleMaps
concern.

A scenario is realized in a quite similar way than augmenters (in the sense of being
a JavaScript file) but with some distinct features to register its interest in different
events. The scenario engineer has to respect these constraints:

• Construct the scenario as a JavaScript object inheriting from AbstractScenario, the
hot-spot shown in Figure 3.

• Implement the methods defined as abstract in AbstractScenario. There are methods
that will be executed during initialization when the browser is opened. Note, for ex-
ample, that scenarios can be interested in different events; therefore they must regis-
ter listeners which will be executed in order to instantiate the scenario when the
events happen. The same kind of inversion of control occurs when the framework
sends the loadScenario() message in order to wakeup the scenario.

• Specify which augmenters are necessary to carry out the scenario.
• Specify the set of concepts needed to instantiate the scenario and define them in the

DataCollector tool; thus, when users collect data, the available concepts or types are
those in which the scenarios are interested in (e.g. destination, dates, etc).
A scenario needs to manage more information than an augmenter. In this sense a

Scenario Engineer can use some tools provided by our framework that give him:
• The capability to add listeners to different events which will take place in the user

navigation context. For example a scenario could express interest in a Web page
load (contentLoadedEvent), or even in the instantiation of some particular concept
(cityInstantiatedEvent); this event occurs when the user has added a particular value
typed as City into the Pocket.

• Knowledge about the navigation history.
• Knowledge about concepts and concepts instances stored into the Pocket.

 A Framework for Concern-Sensitive, Client-Side Adaptation 207

Scenarios are not magically executed. A scenario is latent, waiting for the signal
needed to be executed. For example, the destinationInstantiated event could trigger
the scenario if it had registered a listener to be executed when instances of the Desti-
nation concept are created (see an example in section 4.3). To illustrate this, in Figure
7 we show how a scenario is executed when the user opens a Wikipedia article. At the
left of this Figure, we show a sequence diagram for the scenario CSPOILinkAddition,
a concrete scenario for the example of Figure 6. First, the scenario adds itself as the
listener of the contentLoadedEvent. Then, once the content is loaded, the EventMan-
ager object loads all scenarios that are waiting for this event (in the example there is
only one scenario). In the example of Figure 7, CSPOILinkAddition consults the
NavigationHistoryManager to know if the previous node of the history is Google-
Maps and, as it is true, CSPOILinkAddition sends the applyGMLinkConvert message.
The method applyGMLinkConvert gets all instances of the concept PointOfInterest by
sending the message getAllInstances to the Pocket object. After that, it sends the mes-
sage execute to the augmenter (LinkAdditionAdapter) with the current document (it is
the DOM target), all the PointOfInterest instances and a dictionary with parameters
that the augmenter needs.

Fig. 7. Sequence diagram for a scenario execution and code of the augmenter applied

The right side of Figure 7 shows an excerpt of the augmenter code used in this sce-
nario. The method execute() of the AbstractAdapter is first shown. This is a template
method that sends both isApplicableToConcept and applyToInstance messages, which
are defined in LinkAdditionAdapter. This augmenter has others method like getFunc-
tion that are not shown by the sake of conciseness.

4 Tool Support

The framework was implemented as a Firefox extension that provides all components
shown in the pyramid of Figure 3, plus other components such as some defaults aug-
menters. Hereafter, we illustrate the use of augmenters and scenarios by end-users.

4.1 Data Collector

In our approach, end-users execute the adaptations. Although this can be made both
explicitly (when users execute some augmenter) or implicitly (when a scenario is

208 S. Firmenich et al.

instantiated), some information is always needed since we aim to improve the user
experience by adapting the Web pages he navigates according to the needs of his
current concern. In this way users are empowered with tools to (when necessary)
collect meaningful information while they visit Web sites. This information can be
collected “automatically” when the user is instantiating a previously developed sce-
nario, and the underlying tool is aware of the semantics of the pages’ data, or might
be collected “by hand” using tools provided by the framework (concrete DataCollec-
tors). A DataCollector allows users to define untyped data (in order to quickly add
information into the Pocket for volatile adaptations), and typed data (usually to add
information for scenarios). The information collected is later available into the Pocket
and it can be used to perform adaptations. In Figure 8.a the user stores different in-
formation elements, collected with the PlaintextCollector component, into the Pocket.
PlaintextCollector has two options, “Put into the Pocket” and “Put into the Pocket as
volatile data” as it is shown. In this figure he collects several points of interest that he
would like to visit (from the Wikipedia article) and keeps them in the pocket. Since he
wants to type them as “PointOfInterest” he uses the “Put into Pocket” option which
opens the dialog.

4.2 Description of Default Augmenters in the Framework

Currently, some augmenters are provided by default with the framework. Some re-
markable ones follow:

• Highlight: it highlights the occurrences of the data received by parameter.
• CopyIntoInput: it pastes the value received as parameter into an input form field.

Once the augmenter is executed, it adds a listener to the click event which is re-
moved after the first time in which the target is an input.

• WikiLinkConvertion: it creates links to wikipedia.com pages using as input any
occurrences values received as a parameter. For example if the parameter is
“Paris” then the link would be to the Wikipedia article about Paris.

The augmenters Highlight and WikiLinkConvertion can perform adaptations for a
single value (e.g. “Paris”) or for a collection of values, instances of a concept (e.g.
City). The augmenter CopyIntoInput can only be executed with a single value.

Fig. 8. a. Information extraction from Wikipedia Fig. 8. b. Resulting adaptation

As an example we show how the CopyIntoInput augmenter is used in Figure 8.b.
Here the data collected before as instances of “PointOfInterest” is available into the

 A Framework for Concern-Sensitive, Client-Side Adaptation 209

Pocket (the floating box at the left in Figure 8.b) when the user opens Google Maps.
In order to use one of these instances the user right clicks over the target point of
interest to open the contextual menu with the augmenters available for the current
site. Once he has chosen the CopyIntoInput augmenter, the AdaptationDispatcher
triggers it. Since the augmenters provided as defaults are generic, they will always
appear in the contextual menu. However which augmenters are available depend on
the current site because augmenters can be generic enough to be applied to any page
(e.g. highlight) or specific for a single site (e.g. search the target value as a location in
GoogleMaps).

4.3 Scenario Instantiation by End-Users

A scenario waits for an event to be loaded; when the event occurs and all conditions
are satisfied, it is instantiated. Figure 9 shows the initial steps that a user would possi-
bly perform to satisfy the needs previously described at section 1. In Figure 9.a, while
he books (or just explore) the flights to Paris, he collects some data which will be
useful in the following steps. When users collect data they can give them a conceptual
meaning, by assigning a type to the selected value. In the example, the types used are
departDate, arriveDate and destination. When some data is collected the correspond-
ing event is triggered (e.g. destinationInstantiated). In Figure 9.a we show how the
scenario shows a popup message to offer users to use the information collected for
booking hotels; this message is showed after the dates and destination were collected.
Figure 9.b shows how the form field destination is filled in with the information pre-
viously collected. This scenario is executed once the user reaches the page book-
ing.com (either by following a link or entering a new URL). Notice that the scenario
can be instantiated, because the information needed is available into the Pocket. For
form filling cases, the adaptation could be automatic when the adaptation is developed
particularly for an application (in this case for Booking.com) or even by using other
tools like carbon [1] in order to automatically fill forms in any Web site. This use of
concern information improves the user experience by allowing him to “transport”
critical data among Web applications and use these data to adapt them.

Fig 9. a. Information extraction from expe-
dia.com

Fig 9. b. Form filling in booking.com with
information collected in previous Web sites

210 S. Firmenich et al.

Fig. 10. a. Information in pocket
used into a GoogleMaps scenario

Fig. 10. b. Information in pocket used into a Flickr
scenario

For example in Figure 10.a we show how, when the user arrives to Google Maps,
the information in the pocket can be used automatically to create Google Maps links
in the left bar. On the other hand, the same information can be used in another sce-
nario if the user opens Flickr.com as shown in Figure 10.b where the points of interest
are offered as Flickr’s tags. In this adaptation, the scenario engineer has used a
framework tool (the floating box is a PopUpMessage) for a message suggesting a
simple adaptation.

5 Evaluation of the Approach

To validate our approach and actual usage of the tools, we have conducted a usability
study with end-users. The goal of this evaluation was to investigate if client-side ad-
aptation is usable for solving common tasks whilst navigating the web. The adapta-
tions investigated in this study explored the following framework components: High-
light for changing color of important information, WikiLinkConvertion for creating
new links to Wikipedia, DataCollector for recording information for later usage, and
CopyIntoInput for automating filling in forms with dates previously collected by the
user.

The study was run with 11 participants (6 males and 5 females, aged from 23 to 46
years old). All participants were experienced Web users (i.e. > 5 years using the
Web) that spend a significant time browsing the Web as part of their daily activities
(in average 4,1 hours of navigation on the Web per day, SD=2,4 h). We have focused
on experienced users because we assume that they are more likely to formulate spe-
cial needs for adapting Web pages than novices with the Web. Participants were
asked to fill out a pre-questionnaire; following they were introduced to the system and
asked to conduct five tasks at their workplace, followed by a final interview and a
System Usability Scale questionnaire (i.e. SUS, [3]). The SUS has been used as a
complement to user observation, as it is widely used in comparative usability assess-
ments in industry. The five tasks were related to investigate the working hypothesis,
on how usable our approach is for solving common tasks whilst navigating Web sites.
All tasks were related to the following problem: the goal is to plan a trip to Paris to
visit an exposition, which includes collecting information such as dates and location

 A Framework for Concern-Sensitive, Client-Side Adaptation 211

of the exposition and booking a hotel; for that purpose users should visit different
Web sites and use our tools to perform client-side adaption on the page visited. In
average, users spent 37 minutes to complete the test. Usability was measure in terms
of time to accomplish tasks, number of tasks performed successfully, and user satis-
faction (via a questionnaire).

The results show that, generally, participants appreciate the concept of client-side
adaptation and the tool support. In the pre-questionnaire, when asked if they would
like to modify the Web pages they visit, 2 of 11 participants said no because “it could
be very time consuming”. Notwithstanding, all participants said that our tools for
client-side adaptation are useful and that they are willing to use them in the future.
Adaption across different Web site was described as “natural” by 7 participants and a
“real need” by 5 of them. The component DataCollector was the most successfully
applied by all participants; it was considered very useful and a “good substitute for
post-its”. However, success rate varied according to the augmenter employed: Copy-
IntoInput was considered very easy to use by participants and employed successfully
by 10 of them (90,9%). The augmenter highlight (72% of success rate, 8 participants)
was considered easy to use but 5 users blamed it because they could only apply it to
the exact word previously selected, and users cannot choose the color and/or the po-
lice used to highlight different pieces of information. Participants were very im-
pressed by the augmenter allowing links to Wikipedia from concepts (the WikiLink-
Convertion); despite the fact that it was considered extremely useful, the success rate
with this augmenter was the lower in the study, 18%, due to two main issues: the fact
that links can only be created from typed information and lack of visual feedback (i.e.
an icon) indicating where that action was possible. Nine participants (81,8%) said that
using the augmenters improved their performance with tasks, one user said it could be
faster without the augmenters and the other one didn’t see any difference. This user
perception has been confirmed by the time recorded during task execution using aug-
menters WikiLinkConvertion and CopyIntoInput.

This study also revealed some usability problems that motivate further develop-
ment in the tool. For example, users requested to have a visual indicator allowing
them to distinguish where augmenters have been applied (ex. links on the Web site x
links created with the augmenter WikiLinkConvertion). Users intuitively tried to acti-
vate some of the augmenters using Drag & Drop which is an indicator for further
research of more natural interaction with augmenters. The most frequent suggestions
for new augmenters include “automatic filling forms”, “create links to other Web sites
than Wikipedia”, and “automatic highlight at the Web page of information previously
collected”. This positive analysis is confirmed by a SUS score of 84,9 points (SD =
5,5), which is a good indicator of general usability of the system.

6 Conclusions and Future Work

In this work we have presented a novel approach for client-side adaptation which
takes into account the tasks that users perform while navigating the Web. We aim to
support complex concern sensitive adaptations in the client-side in order to improve
the users’ experience. We have developed a support framework which can be
extended with two kinds of adaptations: atomic augmenters (realizing simple adapta-
tion actions) and scenarios which comprise the use of different augmenters on some-
what predefined Web pages. These adaptations can be executed either manually, e.g.

212 S. Firmenich et al.

when the user triggers an adaptation action explicitly, or automatically when some
scenario is instantiated. Being built on solid engineering principles, the framework
can be extended and/or used both by end-users or developers (e.g. by developing
JavaScript code). In comparison with the usual client-side adaptations, we provide a
flexible mechanism to integrate information while users navigate the web, instead of
“just” providing tools to statically adapt Web sites. Our approach is based in two main
types of developers interventions: the first one (augmenters) supports generic scripts
with specific adaptation goals to be applied over any Web page, and the second one
(scenarios) can be used when the goal is to support users tasks among several Web
sites. We have performed a small but meaningful evaluation with end-users with ex-
cellent results.

We are working in several directions to improve the approach. The first one is to
improve the development process and tools for developers using the framework. Al-
though we have defined guidelines for both augmenters and scenarios development,
these must still be written in a quite similar way to bare JavaScript programming. Our
goal is to raise the abstraction level for developers by creating a domain specific lan-
guage that will simplify the specification of both augmenters and scenarios; this will
let users without JavaScript knowledge to develop adaptations easily.

Besides that, and as indicated in Section 5 we have detected usability problems in
some of our tools when users are trying to adapt the Web sites or even while they are
collecting data. In this sense we are developing not only new tools but also tuning the
existing ones and performing new evaluations with them.

References

1. Araujo, S., Gao, Q., Leonardi, E., Houben, G.-J.: Carbon: Domain-Independent Automatic
Web Form Filling. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE 2010.
LNCS, vol. 6189, pp. 292–306. Springer, Heidelberg (2010)

2. Bouvin, N.O.: Unifying Strategies for Web Augmentation. In: Proc. of the 10th ACM
Conference on Hypertext and Hypermedia (1999)

3. Brooke, J.: SUS: a ‘quick and dirty’ usability scale. In: Usability Evaluation in Industry.
Taylor and Francis, London (1996)

4. Brusilovsky, P.: Adaptive Navigation Support. In: Brusilovsky, P., Kobsa, A., Nejdl, W.
(eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 263–290. Springer, Heidelberg (2007)

5. Daniel, F., Casati, F., Soi, S., Fox, J., Zancarli, D., Shan, M.: Hosted Universal Integration
on the Web: The mashArt Platform. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-
ServiceWave 2009. LNCS, vol. 5900, pp. 647–648. Springer, Heidelberg (2009)

6. Diaz, O., Arellano, C., Iturrioz, J.: Layman tuning of websites: facing change resilience.
In: Proc. of WWW2008 Conference, Beijing, pp. 1127–1128 (2008)

7. Díaz, O., Arellano, C., Iturrioz, J.: Interfaces for Scripting: Making Greasemonkey Scripts
Resilient to Website Upgrades. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.)
ICWE 2010. LNCS, vol. 6189, pp. 233–247. Springer, Heidelberg (2010)

8. Firmenich, S., Rossi, G., Urbieta, M., Gordillo, S., Challiol, C., Nanard, J., Nanard, M.,
Araujo, J.: Engineering Concern-Sensitive Navigation Structures. Concepts, tools and ex-
amples. In: JWE 2010, pp. 157–185 (2010)

9. Greasemonkey,
http://www.greasespot.net/ (last visit on February 11, 2011)

 A Framework for Concern-Sensitive, Client-Side Adaptation 213

10. Han, H., Tokuda, T.: A Method for Integration of Web Applications Based on Information
Extraction. In: Proceeding of ICWE, New York, pp. 189–195. Springer, Heidelberg (2008)

11. Meusel, M., Czarnecki, K., Köpf, W.: A Model for Structuring User Documentation of
Object-Oriented Frameworks Using Patterns and Hypertext. In: Proceedings of ECOOP
1997, pp. 496–510 (1997)

12. Miller, C.S., Remington, R.W.: Modeling an Opportunistic Strategy for Information Navi-
gation. In: Proc. Of 23rd Conference of the Cognitive Science Society, 2001, pp. 639–644
(2001)

13. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding Mashup Development. IEEE
Internet Computing 12, 44–52 (2008)

14. Wong, J., Hong, J.I.: Making Mashups wit Marmite: Towards End-User Programming for
the Web. ACM, City (2007)

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 214–227, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Instantiating Web Quality Models in a Purposeful Way

Philip Lew1 and Luis Olsina2

1 School of Software, Beihang University, China
2 GIDIS_Web, Engineering School, Universidad Nacional de La Pampa, Argentina

philiplew@gmail.com, olsinal@ing.unlpam.edu.ar

Abstract. Web applications and their quality evaluation has been the subject of
abundant research. However, models have been used mostly for the purpose of
understanding, rather than improving. In this work, we propose utilizing a qual-
ity modeling framework to instantiate quality models with the specific purpose
to not only to understand the current situation of an entity, but also to improve
it. Our approach instantiates models for both external quality and quality in use,
resulting in a requirements tree for both followed by evaluation and then com-
bined with a mechanism to develop relationships between them. Hence, im-
proving is driven by understanding these relationships, namely, ‘depends on’,
and ‘influences’ in alignment with the ISO 25010 quality life cycle model. This
is illustrated with a case study showing the underlying strategy from model in-
stantiation to application improvement.

Keywords: Quality improvement, quality in use, actual usability, external qual-
ity, SIQinU strategy.

1 Introduction

Today’s web-based applications (WebApps) containing complex business logic and
sometimes critical to operating the business, are now requiring increased focus on
understanding and improving their quality. One of the first steps to evaluate quality is
to define nonfunctional requirements usually through quality models. The ISO 25010
standard [11] describes one such model for general usage in specifying and evaluating
software quality requirements. However, ISO 25010 is intended as a general guideline
to be adapted based on a specific information need and context, i.e. for evaluating
WebApps. In addition, some of ISO model concepts, while founded strongly in
theory, are difficult to realize in a real situation particularly when it comes to
measuring and evaluating quality in use (QinU).

But the main goal in evaluating software quality is to ultimately improve.
However, independent from models, conducting evaluations in real situations
particularly for QinU is difficult to realize. Therefore, a key issue is to relate QinU
evaluation results to properties intrinsic to the WebApp itself in order to make
improvements. In modeling terms, QinU characteristics and attributes need to be
related to external quality (EQ) characteristics and attributes. That is to say, does the
software’s new (and improved) version have a positive impact on its QinU?

To answer this question for WebApps, we began by first proposing to augment the
ISO 25010 standard through using the 2Q2U (Quality, Quality in use, actual Usability

 Instantiating Web Quality Models in a Purposeful Way 215

and User experience) modeling framework [12] to include information quality as a
characteristic of internal/EQ because this is a critical characteristic of WebApps. We
further proposed to include learnability in use as a characteristic of usability in use to
account for the learning process and the importance of context of use during learning.
2Q2U relies on the ISO 25010 premise that the relationships ‘depends on’ and
‘influences’ exist between EQ and QinU. Using this premise, we further utilize 2Q2U
to instantiate models for both EQ and QinU specifically for the purpose of improving
the QinU of a WebApp. However, the ISO 25010 premise that QinU depends on EQ
and in turn EQ influences QinU is very general, not specifically explored, and there is
no description on implementing or using these relationships for purposeful
evaluations.

For this reason, we devised SIQinU (Strategy for Improving Quality in Use), a
strategy for improving quality that also uncovers these relationships in a systematic
way. Starting with QinU, we design specific tasks and context of use, and through
identifying problems in QinU, we determine EQ attributes that could be related to
these QinU weakly performing indicators. Then, after deriving EQ attributes related
to the QinU problems, we evaluate EQ and derive a benchmark to be used as a basis
to make improvements. Once improvement recommendations are made based on
poorly performing EQ measurements (related to the poorly performing QinU
indicators), a new version of the WebApp is completed and evaluated again for its EQ
to establish a delta from the initial benchmark. Then we re-evaluate QinU to
determine the improvements resulting in QinU from the improvements made at the
EQ level, thus leading to a cyclic strategy for improvement and development of
relationships. These relationships between EQ and QinU are not just for
understanding but developed with the primary objective of improving the application
with respect to poorly performing QinU attributes. Thus, information regarding
‘depends on’ and ‘influences’, as depicted in the ISO 25010 quality lifecycle model,
are extracted in the process of improving the WebApp. Armed with these
relationships, designers can then design/improve software at the EQ level knowing
the impact on QinU. Through employing SIQinU, this work, in particular, focuses on
improving the actual usability of WebApps from an end user viewpoint when
executing real tasks in a real context.

Aligning with the ISO 25010 models on the quality life cycle, SIQinU combined
with 2Q2U utilizes the ISO premise that if quality can be improved at the EQ point of
view, this influences and most likely also improves quality from the QinU viewpoint.
The proposed SIQinU strategy utilizes the 2Q2U framework for modeling
requirements, non-intrusively collects user behavior data, and provides an integrated
means to use quality models in a real context to evaluate EQ and QinU for WebApps
with a primary objective of improvement through an evaluation process [2] and
methods that are consistent and repeatable.

Consistent and repeatable is a paramount characteristic of SIQinU in order to
iteratively improve a WebApp. This is gained primarily through a non-functional
requirements ontological component of the C-INCAMI (Contextual-Information
Need, Concept model, Attribute, Metric and Indicator) framework [15], which
enables us to instantiate a project (our project consisted of improving a concrete
actual WebApp) that includes defining the information need, user viewpoint, entity,
and so forth. Ultimately, the contributions of this research are:

216 P. Lew and L. Olsina

• A procedure to concretely instantiate quality models based on 2Q2U and C-
INCAMI for both QinU and EQ for the purpose of not only understanding
but also improving a WebApp.

• A concrete strategy, SIQinU, combined with a well-defined and established
process to guide the improvement with an illustration of the improvement
results through a case study.

• An exploration of the relationships outlined in the 25010 quality lifecycle
model, namely influences and depends, gained through the process of
improvement in both EQ and QinU instantiated views.

Following this introduction, Section 2 reviews recent related work and delineates
opportunities for improvements which are the motivation for this research. Section 3
demonstrates our procedure for using 2Q2U to purposefully instantiate models for
improving a WebApp, which can then be utilized by SIQinU to improve a concrete
WebApp. In Section 4, we use the instantiated models with the strategy in a case
study in the context of evaluating EQ and QinU for a WebApp with the goal of
improvement while deriving possible relationships between EQ and QinU. Section 5
draws our main conclusions and outlines future work.

2 Related Work and Motivation

In this paper, we instantiate quality models for the purpose of improvement and then
combine these instantiations with a strategy to carry out evaluations to ultimately
accomplish improvement. As such, based on our examination of existing research,
there has been progress in the individual elements such as modeling and evaluation,
but limited focus on using a strategy and tailored models for the purpose of
improvement considering the QinU/EQ/QinU cycle. Regarding improvement
strategies by evaluation for WebApps, in [16] authors present an approach for
incremental EQ improvement. Their work uses the results from EQ evaluation to
make changes and improvements in a WebApp through WMR (Web Model
Refactoring) but the EQ requirements were not mapped from real QinU problems and
also lacks a strategy for continual improvement. In [7] authors propose a systematic
approach to specify, measure and evaluate QinU, but the outcomes were only used to
understand the current QinU satisfaction level for an e-learning WebApp, without
proposing any improvement strategy. Conversely, the GQM+Strategies approach [1]
is an integrated strategy for defining and satisfying measurement goals, but does not
give explicit steps to guide the evaluation and improvement. Lastly, in [8] authors
present a generic usability evaluation process which can be instantiated into any
model-driven web development process, but no improvement strategy is discussed.

Regarding the derivation of EQ characteristics and attributes from QinU
requirements and problems, there is a related initiative [13], which focuses on
employing a Bayesian method in order to find out influences of EQ characteristics on
QinU characteristics. However, this work has limited practical benefit because the
derivation is theoretical rather than using a real context of use. Moreover, there is no
integrated improvement strategy, but rather just a derivation technique.

 Instantiating Web Quality Models in a Purposeful Way 217

There are many works aimed at increasing WebApp quality by establishing
automated procedures for product improvement during development stages.
Meanwhile others use user evaluation at early lifecycle stages. As an example of the
former, [5], design patterns that influence quality are included at the conceptual
modeling phase and achieved into the WebApp code by means of model
transformations. The latter is illustrated by the TRUMP methodology [4], which
defines a set of methods to apply to each of the phases and processes described in
[10]. This methodology allows evaluating (testing) by a set of users, with an early
version of the application, identifying usability problems and then establishing
usability requirements for improving the product. Thus in the end, the product is re-
evaluated by users to observe whether usability goals were achieved, but there is no
strategy for continual improvement through connecting EQ and QinU.

Summarizing the existing research, there lacks attention for models and their
instantiation for the goal of improvement. Given that, this work aims to use the 2Q2U
framework [12] to instantiate quality models for both EQ and QinU, followed by a
strategy that uses these models and purposely performs evaluations with the end goal
in mind: improving the WebApp. And through the improvement cycle, potential
relationships are drawn between EQ and QinU which are useful not only for the
improvement of the WebApp under study, but also possibly applicable to other
WebApps leading to further research areas.

3 Instantiating Quality Models in a Purposeful Way

Our view for this research is that understanding is the means and improvement is the
ultimate goal. With modeling and evaluation as steps toward improvement, models
must be instantiated with this in mind. So, starting with modeling, we use the 2Q2U
modeling framework to instantiate a concept model for both QinU and EQ. With
2Q2U, we include learnability in use as a sub-characteristic of QinU and information
quality as characteristic of EQ. We also define two new concepts actual user
experience and actual usability where the latter encompasses the ‘do goals’ of the
user, as defined by ISO 25010 usability, with the exception of the satisfaction sub-
characteristic related to ‘be goals’ and modeled as a characteristic of actual user
experience [3, 9]. Details on these definitions and relationships can be found in [12].

To use the instantiated models for measurement and evaluation (M&E) in a
consistent and repeatable way, we utilize the C-INCAMI [15] framework. The C-
INCAMI framework defines all of the concepts and relationships needed to design
and implement M&E processes. C-INCAMI’s approach is designed to satisfy a
specific information need in a given context defining concepts and relationships that
are used along all the M&E activities lending to consistent analysis and results. The
framework has six components: i) M&E project definition, ii) Nonfunctional
requirements specification, iii) Context specification, iv) Measurement design and
implementation, v) Evaluation design and implementation, and vi) Analysis and
recommendation specification. Of particular use for this research in instantiating
quality models for the purposes of improvement is C-INCAMI’s Nonfunctional
Requirements Specification (NFRS), and Context Specification component, shown in
Figure 1.

218 P. Lew and L. Olsina

Fig. 1. C-INCAMI Nonfunctional requirements and context specification components

The NFRS specifies the Information Need of any M&E project; that is, the purpose
(e.g. “understand”, “predict”, “improve”, etc.) and the user viewpoint (e.g.
“developer”, “final user”, etc). In turn, it focuses on a Calculable Concept and
specifies the Entity Category to evaluate –e.g. a resource, process, product, etc.-, by
means of a concrete Entity –e.g., the amazon.com shopping basket. A calculable
concept can be defined as an abstract relationship between attributes of an entity and a
given information need. In our case, the purpose is to improve, a WebApp, regarding
its EQ and QinU, and its actual usability as the calculable concept. This can be
represented by a Concept Model where the leaves of an instantiated model (e.g. a
requirements tree) are Attributes associated with an Entity.

Context Specification delineates the state of the situation of the entity to be
assessed with regard to the information need. Context, a special kind of Entity in
which related relevant entities are involved, can be quantified through its related
entities that may be resources –as a network infrastructure, a working team, life-cycle
process-, the organization or the project itself, among others. In our case, the context
is particularly important regarding QinU requirements as instantiation of requirements
must be done consistently in the same context.

For this paper, regarding SIQinU, we utilize 2Q2U to create the models combined
with the NFRS and Context Specification components of C-INCAMI to conduct the
evaluations as an integral part of the strategy. Using the C-INCAMI terminology and
framework as shown in Figure 1, the information need is to understand and improve,
while the entity is a particular WebApp who’s category is Web Application. In
particular, later in the case study illustration, we exhibit an actual WebApp as well.
The concept model used is the instantiated 2Q2U framework shown in Figure 3 while
the calculable concepts are usability in use, information quality, and operability. In
particular, our objective is to understand both the current and future evaluations of the
entity in order to determine improvement after changes were made to the current
version. Employing the 2Q2U framework, we purposely instantiate it with operability
and information quality as EQ characteristics to be related to the QinU characteristic,
actual usability combined with sub-characteristics: efficiency in use, effectiveness in
use, and learnability in use as shown in Figure 3.

 Instantiating Web Quality Models in a Purposeful Way 219

Table 1. SIQinU Phases, activities and work products

Phase (Ph.) Description/Activities Work Products
Ph. I
Specify
Requirements
and
Evaluation
Criteria for
QinU

Taking into account the recorded data of the WebApp’s
usage, we re-engineer QinU requirements. This
embraces designing tasks, defining user type,
specifying usage context and characteristics,
particularly, for actual usability as defined in [12].
Activities include: i) Establish Information Need; ii)
Specify Project Context; iii) Design Tasks; iv) Select
QinU Concept Model; v) Design QinU Measurement
and Evaluation; vi) Design Preliminary Analysis

- Information Need
and Context
specification
-QinU NFRS tree
-QinU Metrics and
Indicators
specification
-Task/sub-tasks
specification

Ph. II
Perform
QinU
Evaluation
and Conduct
Preliminary
Analysis

As per Ph. I, data is collected purposely targeting QinU
attributes for improvement. Depending on the
WebApp’s ability to collect the data, we also collect
the date/time the data is gathered, errors, task and sub-
task completion and accuracy, etc. It includes: i)
Collect and parse data pertaining to tasks with their
sub-tasks; ii) Quantify QinU Attributes; iii) Calculate
QinU Indicators; iv) Conduct preliminary analysis.

-Measure and
indicator values for
QinU
-QinU preliminary
analysis report

Ph. III
Derive/
Specify
Requirements
and
Evaluation
Criteria for
EQ

Based on Ph. I and II, we derive EQ requirements, i.e.
characteristics and attributes, with their metrics and
indicators in order to understand the current WebApp’s
quality. In our case study, a focus on operability and
information quality was used to determine possible
effects and specifically improve actual usability.
Activities include: i) Determine EQ Concept Model; ii)
Design EQ Measurement; iii) Design EQ Evaluation

-EQ NFRS tree
-EQ Metrics and
Indicators
specification

Ph. IV
Perform EQ
Evaluation
and Analysis

Activities include: i) Quantify EQ Attributes; ii)
Calculate EQ Indicators; iii) Conduct an EQ analysis
and identify parts of the WebApp that need
improvement.

-Measure and
indicator values for
EQ
-EQ Analysis report

Ph. V
Recommend,
Perform
Improvement
Actions, and
Re-evaluate
EQ

Using the EQ attributes that require improvement, we
make improvement recommendations for modifying
the WebApp, i.e. version 1 to 1.1. Activities include: i)
Recommend improvement actions; ii) Design
Improvement Actions; iii) Perform Improvement
Actions; iv) Evaluate Improvement Gain to note
improvement from benchmark in Ph. IV

-EQ
Recommendations
report
- Improvement plan
-New app version
-EQ Analysis report

Ph. VI
Re-evaluate
QinU and
Analyze
Improvement
Actions

Once the new version has been used by real users, we
evaluate QinU again to determine the influence of what
was improved for the WebApp’s EQ on QinU. This
provides insight to further develop the depends and
influences relationships. Activities include: i) Evaluate
QinU again to determine level of improvement from
Ph.II; ii) Conduct Improvement Action analysis; iii)
Develop depends and influences relationships between
EQ improvements and QinU.

-Measure and
indicator values for
QinU
-QinU Improvement
analysis report
-EQ/QinU attribute
relationship table

Note that we could have selected other characteristics for both EQ and QinU, but we
purposely instantiated these characteristics as per our information need via the C-
INCAMI NFRS component. Later in Section 4, we fully derive the requirements tree for
each of the sub-characteristics at a more detailed level in illustrating the case study.

220 P. Lew and L. Olsina

The proposed SIQinU strategy utilizes the 2Q2U framework for quality models and
the C-INCAMI framework for instantiating M&E projects in a purposeful way. SIQinU,
non-intrusively collects user behavior data from a real context of use, and provides an
integrated means to evaluate QinU and EQ for WebApps with a primary objective of
improvement through an evaluation process [2] and methods that are consistent and
repeatable.

SIQinU collects user behavior data from log files [6] that were derived through for
example adding snippets of code in a real WebApp-in-use that allow recording that data,
with an aim to derive nonfunctional requirements measures and indicators for QinU,
thus leading us to understand the current QinU satisfaction levels met. Then, by
performing a preliminary analysis we derive EQ requirements that can affect QinU, and
propose recommendations for improvements. After performing the changes on the
WebApp, and after conducting studies with the same user group in the same daily
environment (context) with the new version, an assessment of the improvement gain can
be gauged. With this knowledge of improvement, we can then extract relationships in a
cyclic manner by isolating changes in EQ attributes that affected QinU attributes in a
positive way. Thereby, each iteration between QinU and EQ can result in continued
improvement.

SIQinU’s phases are illustrated in Figure 2, combined with Table 1 which
provides a brief description with Phase (Ph.) reference numbers, activities and work
products.

Fig. 2. Process overview for understanding and improving quality in use (SIQinU)

Ultimately, in the process of using SIQinU, we are able to gain insight regarding the
depends on and influences relationships for the particular 2Q2U instantiated models,
and their characteristics and attributes driven by our purpose to improve. In addition,
we can continue to iterate the SIQinU improvement cycle to gain further insight and
granularity adding a temporal component for later study.

 Instantiating Web Quality Models in a Purposeful Way 221

4 A Quality Improvement Lifecycle Using SIQinU: A Case Study

This section illustrates the quality improvement lifecycle via SIQinU using excerpts
of a case study conducted in mid-2010. It examined JIRA (www.atlassian.com), a
defect reporting WebApp in commercial use in over 14,500 organizations in 122
countries. JIRA’s most common task, Entering a new defect, was evaluated in order
to provide the most benefit, since entering a new defect represents a large percentage
of the total usage of the application. We studied approximately 50 beginner users in a
real work environment in their daily routine of reporting defects in a software testing
department –in a real company specializing in software quality and testing. Although
there are other user categories such as test managers, QA managers, and
administrators, testers is the predominant user type, so we chose beginner testers as
our user viewpoint. Next, we discuss some aspects of the above phases; mainly those
aimed at showing models instantiation, EQ and QinU improvement gains and
potential uncovered relationships.

In Ph.I, we start by using 2Q2U to purposefully instantiate a QinU model from the
actual usability standpoint. We first want to understand the current situation of the
entity (JIRA v.1) from the beginner user viewpoint performing the above mentioned
task. To do this, we design the QinU requirements as shown in the right part of Figure
3, resulting in the requirements tree shown in the column 1 of Table 2.

Fig. 3. 2Q2U model instantiation with some EQ and QinU characteristics shown

Using requirements from Ph. I of our instantiated model, we conduct the QinU
evaluation as Ph. II of SIQinU. This evaluation is done for each attribute specified in
Ph. I, and results in a global evaluation of 53.3% as shown in Table 2. Note that in
designing the QinU evaluation (Ph. I activity shown in Table 1) for each attribute of
the requirements tree we specified an elementary indicator with three acceptability
ranges in the percentage scale, namely: a value within 70-90 (a marginal –gray-
range) indicates a need for improvement actions; a value within 0-70 (an
unsatisfactory –dark gray- range) means changes must take place with high priority; a
score within 90-100 indicates a satisfactory level –light gray- for the analyzed
attribute.

222 P. Lew and L. Olsina

Table 2. QinU requirements tree and evaluation results of JIRA v.1 (before) and JIRA v.1.1
(after modifications). EI stands for Elementary Indicator; P/GI for Partial/Global Indicator.

Based on the evaluation, using the defined indicators, we are able to determine
which attributes had low performance or problems, e.g., sub-task completeness
learnability which had an unsatisfactory rating of 26.4%. We can rank them in terms
of priority by lowest performing at the top, or depending on our requirements, which
may weight other attributes more heavily, do a more complex priority ranking
accordingly.

SIQinU in this case study using JIRA was implemented in a non-intrusive way
through interpretation of log files and automated application and calculation of
indicators thereby resulting in list of problem areas (those attributes that rated
unsatisfactory). Note that other complementary techniques could be used as
traditional observational techniques [14] to understand user problems while
interacting with the selected tasks and to help deriving EQ attributes. However a
trade-off between costs and benefits should be carefully considered.

Results from Ph. II (from the conduct preliminary analysis activity) are then used to
derive EQ requirements for Ph. III. Examining the relevant QinU problems associated
with the task/sub-tasks and screens in the WebApp, and using 2Q2U we (as experts)
derived the EQ model which included operability, and information quality
characteristics. This results in deriving a requirements tree of EQ attributes for those
particular QinU attributes that had problems (see the left hand column of Table 3).

Note that in the first 3 phases, in going from QinU requirements to QinU problems
and then eventually to EQ requirements as just discussed, the quality lifecycle model
is thereby deployed and the “depends on” relationship (see Fig. 3) is expanded to
include attributes of our instantiated models. Then, in Ph. IV, we evaluate JIRA v.1
by inspection using the EQ instantiated requirements tree whereby each attribute and
metric is calculated and evaluated based on the defined indicators. Table 3 shows the
results of the EQ evaluation in columns 2-3.

Examining the evaluation and the indicators which show that some attributes
perform lowly, we then make recommendations for improvement. These

 Instantiating Web Quality Models in a Purposeful Way 223

Table 3. EQ derived requirements tree and evaluation results of JIRA v.1 (before) and JIRA
v.1.1 after implementing improvements on the concrete WebApp

recommendations are given to the M&E project sponsor whereupon evaluators/
developers may choose a variety of methods to make the changes depending on the
resources they have available. This could range from a complete restructuring of code to
simple menu configuration changes.

In Ph.V, after the evaluation-driven improvements are made on the WebApp (now
named JIRA v.1.1), we re-evaluate EQ using the same EQ requirements and note the
improvement gain. More than likely, some but not all of the improvements will have
been made due to resource availability and difficulty to make the recommended
changes. This second evaluation leads to a linkage between specific improvements
made to the WebApp and the affected EQ attribute which was hopefully improved.

With the improved application, we re-evaluated QinU using the same requirements
and note the changes. Hopefully, since there were improvements from the EQ
standpoint, there will be improvements in the QinU of the WebApp, thus enabling us
to begin to understand the relationships between the EQ and QinU attributes
instantiated in our model development. Table 2 shows the QinU evaluation for the
improved WebApp version of JIRA v.1.1 showing noticeable improvement in many
attributes and an improvement from 53.3% to 67% for the global indicator for actual
usability. Comparing each attribute in more detail, Table 4, shows all attributes noted
improvement with the exception of Task Successfulness Learnability and Sub-task
Correctness Learnability. However, their negative change was small compared to the
positive changes in the other attributes resulting in an overall average change of
attributes evaluation of 13.7%. While the indicators show that most of the attributes in
JIRA v.1.1 still need some or significant improvement, there has been notable
improvement from JIRA v.1.

224 P. Lew and L. Olsina

Table 4. Actual usability evaluated attributes for JIRA v.1 and v.1.1 with improvements gain

The next activity of this final phase (recall Table 1) for this cycle of SIQinU
involves examining possible relationships between EQ and QinU attributes based on
our two versions of JIRA. Table 7 shows an excerpt of the relationships derived.
Relationships derived can then be used as input to the next iteration of SIQinU
whereby those identified ‘depends on’ and ‘influences’ can then be purposefully
instantiated in Ph. I of subsequent SIQinU cycles.

Note that Phases IV to VI, in going from EQ requirements to QinU improvement,
the quality lifecycle model is thereby deployed and the ‘influences’ relationship is
again exemplified to include specific attributes of our instantiated models with
possible degrees of relationship, although not statistically done at this point. Further
statistical studies could be done for instance, by isolating one particular attribute in
EQ and QinU and going through the SIQinU cycle of improvement. In illustrating the
SIQinU improvement cycle, namely QinU/EQ/QinU and instantiating with the
purpose of understanding and improving, we therefore can explore relationships
between EQ and QinU not only for the WebApp under study, but for WebApps in
general and use the strategy to continue improvement in a consistent way.

Based on this, with our defined task of Entering a new defect, Table 5 lists out the
actual usability attributes ranked in terms of improvement gain. The higher levels of
improvement possibly indicate that changes made at the EQ level had a greater
influence.

Table 5. Analysis of actual usability attributes ranked by improvement

 Instantiating Web Quality Models in a Purposeful Way 225

Table 6. Changes made from JIRA v.1 to v.1.1 (excerpt) based on recommendations

Table 7. Relationships developed during the JIRA case study for EQ and QinU attributes

The indicator mapping sets the stage for the interpreting the possible relationships
between the EQ attributes and QinU attributes specified in our 2Q2U model
instantiation. For example, in our mapping, we set greater than 20% improvement to
highly related (dark gray), 5-20% to somewhat related (medium gray), and below 5%
to little or no relationship (light gray). We chose this calibration as an initial
benchmark to be re-calibrated and improved when more historic data is available.

As depicted, the last 2 rated attributes, Sub-task Correctness Learnability and Task
Successfulness Learnability, did not improve. A possible explanation for this is that
due to metric design (not shown in this paper for space reasons), with data collected
over a 12 week period that the learning process did not improve as much as expected.
It is possible that these beginner users possibly did not ramp up their learning during
this time period and that if the case study had been longer, we may have seen different
behavior and hence measurements.

By taking those attributes with a high level of improvement in QinU and mapping
those high levels of improvement to the changes made in the WebApp from an EQ
viewpoint gives us insight into what particular changes in EQ attributes have an effect
on QinU. For instance, Table 6 shows that an EQ improvement in Help completeness
(1.1.2.2) of 70% possibly resulted in tangible real in-use improvements for Sub-task
completeness learnability of 50.9%. On the other hand, some EQ changes resulting in
EQ improvement showed little or no QinU improvement influence. Thus, we cannot
say with 100% certainty that changes made in the properties of the application

226 P. Lew and L. Olsina

(EQ attributes) made a definite impact on a particular QinU attribute, but we can say
that it had a positive influence.

Regarding the EQ and QinU attributes’ relationships, we cannot quantify the exact
contribution from each because we made more than one change at a time. However, if
we had made only one change, and then measured QinU for JIRA v.1.1, we may have
uncovered one to one relationships, although this is unlikely as it is more plausible
that several EQ attributes will influence any particular QinU attribute. Table 7
summarizes these relationships developed in this case study. Each of these
relationships can be further examined in future case studies.

5 Concluding Remarks

We can continue to use SIQinU with a higher level of granularity by only making one
small improvement change at a time in Ph.V, and then measuring the consequence
(influences) on QinU in Ph.VI. Our ultimate objective is to improve the QinU of
WebApps-in-use. With this goal in mind, we first used 2Q2U to purposely instantiate
models for both EQ and QinU as per one of our main contributions. For EQ, our
model included information quality, a characteristic proposed in an earlier work [12]
to supplement ISO 25010 to account for the particular characteristics of WebApps
whose quality is dependent on information quality as well. For QinU, our model
included learnability in use, also proposed in that work to supplement ISO 25010 to
account for the time dimension of learning and for the specific task being carried out.

Using the purposefully instantiated quality models as a starting point, our second
contribution is the proposed SIQinU, a consistent and repeatable strategy to improve
the QinU. SIQinU uses the models generated by 2Q2U through its six phases toward
evaluating a WebApp from both EQ and QinU points of view with the ultimate goal
of making improvement. It also employs the C-INCAMI framework in order to
guarantee consistency for usage in an iterative manner for continued improvement.
Note that SIQinU relies also on a well-established process [2]. To illustrate its usage,
we employed SIQinU in a case study using JIRA, a well-known defect tracking
system using a task specifically designed to collect information at the sub-task level
so that specific screens and their properties (EQ attributes) could be identified for
potential problems leading to poor performance in QinU.

Lastly, as our final contribution, in carrying out SIQinU, we were able to map EQ
characteristics and attributes to QinU attributes with the goal of ultimately achieving
real improvement not only for JIRA but for WebApps and software design in general.
Based on this premise, we used these relationships and the improvements made to
develop a list of recommendations for improving WebApps. These relationships
(currently at exploratory stage) and list of improvements can be further validated
through additional case studies.

Acknowledgments. Thanks to the support by National Basic Research Program of
China (No. SKLSDE-2010ZX-16), and PAE-PICT 2188 project at UNLPam, from
the Science and Technology Agency, Argentina.

 Instantiating Web Quality Models in a Purposeful Way 227

References

1. Basili, V., Lindvall, M., Regardie, M., Seaman, C., Heidrich, J., Munch, J., Rombach, D.,
Trendowicz, A.: Linking software development and business strategy through measure-
ment. IEEE Computer 43(4), 57–65 (2010)

2. Becker, P., Lew, P., Olsina, L.: Strategy to Improve Quality for Software Applications: A
Process View. In: To appear in ACM Proceedings of ICSE, Int’l Conference of Software
and System Process (ICSSP), Honolulu, Hawaii, USA, May 21-22 (2011)

3. Bevan, N.: Extending quality in use to provide a framework for usability measurement. In:
Kurosu, M. (ed.) HCD 2009. LNCS, vol. 5619, pp. 13–22. Springer, Heidelberg (2009)

4. Bevan, N., Bohomolni, I.: Incorporating user quality requirements in the software devel-
opment process. In: Proceedings of 4th International Software Quality Week Europe,
Brussels, pp. 1192–1204 (2000)

5. Brambilla, M., Comai, S., Fraternali, P., Matera, M.: Designing Web Applications with
WebML and WebRatio Web Engineering. In: Modelling and Implementing Web Applica-
tions, Ch. 9, pp. 221–261. Springer HCIS, Heidelberg (2008)

6. Burton, M., Walther, J.: The value of Web log data in use-based design and testing. Jour-
nal of Computer-Mediated Communication 6(3) (2001)

7. Covella, G., Olsina, L.: Assessing Quality in Use in a Consistent Way. In: ACM Proceed-
ings, Int’l Congress on Web Engineering (ICWE 2006), SF, USA, pp. 1–8 (2006)

8. Fernandez, A., Insfran, E., Abrahão, S.: Integrating a Usability Model into Model-Driven
Web Development Processes. In: Vossen, G., Long, D.D.E., Yu, J.X. (eds.) WISE 2009.
LNCS, vol. 5802, pp. 497–510. Springer, Heidelberg (2009)

9. Hassenzahl, M.: User experience: towards an experiential perspective on product quality.
In: Proc. 20th Int’l Conference of the Assoc. Francophone d’Interaction Homme-Machine,
IHM, vol. 339, pp. 11–15 (2008)

10. ISO 13407: User centered design process for interactive systems (1998)
11. ISO/IEC 25010: Systems and software engineering. Systems and software Quality Re-

quirements and Evaluation (SQuaRE). System and Software Quality Models (2011)
12. Lew, P., Olsina, L., Zhang, L.: Quality, Quality in Use, Actual Usability and User Experi-

ence as Key Drivers for Web Application Evaluation. In: Benatallah, B., Casati, F., Kap-
pel, G., Rossi, G. (eds.) ICWE 2010. LNCS, vol. 6189, pp. 218–232. Springer, Heidelberg
(2010)

13. Moraga, M.A., Bertoa, M.F., Morcillo, M.C., Calero, C., Vallecillo, A.: Evaluating Qual-
ity-in-Use Using Bayesian Networks. In: Proc. of QAOOSE 2008, Paphos, Cyprus (2008)

14. Nielsen, J.: Involving Stakeholders in User Testing, Jakob Nielsen’s Alertbox (May 24,
2010),
http://www.useit.com/alertbox/utest-observers.html
(accessed in January 2011)

15. Olsina, L., Papa, F., Molina, H.: How to Measure and Evaluate Web Applications in a
Consistent Way. In: Modelling and Implementing Web Applications, Ch. 13, pp. 385–420.
Springer HCIS, Heidelberg (2008)

16. Olsina, L., Rossi, G., Garrido, A., Distante, D., Canfora, G.: Web Applications Refactoring
and Evaluation: A Quality-Oriented Improvement Approach. Journal of Web Engineer-
ing 4(7), 258–280 (2008)

Reusing Web Application User-Interface

Controls

Josip Maras1, Maja Štula1, and Jan Carlson2

1 University of Split, Croatia
2 Mälardalen Real-Time Research Center, Mälardalen University, Väster̊as, Sweden

{josip.maras,maja.stula}@fesb.hr, jan.carlson@mdh.se

Abstract. Highly interactive web applications that offer user experi-
ence and responsiveness of desktop applications are becoming increas-
ingly popular. They are often composed out of visually distinctive user-
interface (UI) elements that encapsulate a certain behavior – the so called
UI controls. Similar controls are often used in a large number of web
pages, and facilitating their reuse could offer considerable benefits. Un-
fortunately, because of a very short time-to-market, and a fast pace of
technology development, preparing controls for reuse is usually not a pri-
mary concern. In this paper we present a semi-automatic method, and
the accompanying tool, for extracting and reusing web controls. The
developer selects the control and performs a series of interactions that
represent the behavior he/she wishes to reuse. In the background, the
execution is analyzed and all code and resources necessary for the stand-
alone functioning of the control are extracted. Optionally, the user can
immediately reuse the extracted control by automatically embedding it
in an already existing page.

1 Introduction

In the last two decades web applications have made a tremendous leap forward:
from simple static web pages developed only in HTML to complex dynamic web
applications developed using server-side technologies that extensively use web
services, databases and client-side technologies. Initially the term “dynamic web
application” was mostly used to describe that web page content was dynamically
generated on the server side. More recently (2005 and onwards) with the wide
spread adoption of AJAX and faster web browsers, web applications are also
increasingly dynamic on the client side (e.g. applications such as Gmail, Face-
book, etc.). Web developers now routinely use sophisticated scripting languages
and other active client-side technologies to provide users with rich experiences
that approximate the performance of desktop applications [23].

Web application user-interface (UI) is often composed of distinctive UI ele-
ments, the so called UI controls. Similar controls are often used in different web
applications and facilitating their reuse could lead to faster development. Unfor-
tunately, the web application development domain is exposed to a very fast pace
of technology development and short time-to-market. This means that prepar-
ing code for reuse is often not a primary concern. So, when developers encounter

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 228–242, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Reusing Web Application User-Interface Controls 229

problems that have already been solved in the past, rather then re-inventing the
wheel, or spending time componentizing the already available solution (which is
sometimes not preferable [8]) they perform reuse tasks [2]. Reusing source code
that was not designed in a reusable fashion is known by different synonyms: copy-
and-paste reuse [10], code scavenging [9] and, more recently, pragmatic-reuse [5].
Pragmatic reuse treats the system in a white-box fashion and involves extracting
functionality from an existing system and reusing it within another system. The
client-side web development domain is particularly pervious to white-box reuse,
since code is transfered and executed in the browser. White-box reuse tasks are
complex and error-prone, partly because the goal is to extract the minimum
amount of code necessary for the desired functionality [5].

Reuse of client-side web UI controls is particularly difficult since there is no
trivial mapping between source code and the page displayed in the browser; code
is usually scattered between several files and code responsible for the desired
functionality is often intermixed with code irrelevant for the reuse task. In order
to reuse the chosen control, the developer has to locate the code and the resources
defining the UI control. Next, the developer has to download the selected files,
remove the unnecessary code and resources, and adjust for the now changed
location. This is a time-consuming process.

The structure of a web page is defined by HTML code, the presentation by
CSS (Cascading Style Sheets) code, and the behavior by JavaScript code. In
addition, a web page usually contains various resources such as images or fonts.
The interplay of these four basic elements produces the end result displayed in
the user’s web browser. Visually and behaviorally a web page can be viewed
as a collection of UI controls, where each control is defined by a combination
of HTML, CSS, JavaScript and resources (images, videos, fonts, etc.) that are
intermixed with code and resources defining other parts of the web page.

In this paper we present a novel approach to semi-automatic extraction of
reusable client-side controls. The developer selects the desired UI control on the
web page and interacts with it, demonstrating the behavior that he/she wishes to
reuse. In the background, the tool that we have developed – Firecrow [12] tracks
all executed code, applied CSS styles and used resources, in order to locate the
code and resources that are vital for the stand-alone functioning of the chosen UI
control. In the end, all essential code and resources are extracted, all necessary
adjustments are made and the control is packed as a reuse-friendly web page.
Optionally, the developer can choose to embed the extracted UI control directly
into a specific place of an already existing web page.

2 Extracting and Reusing UI Controls

In order to reuse a web UI control, we have to extract all that is necessary for the
control to be visually and functionally autonomous. This means extracting all
HTML, CSS, JavaScript and resources that are used in the visual presentation
and the desired behavior of the control.

The process can be separated into three phases: 1) Interaction recording,
2) Resource extraction, and 3) UI control reuse (Figure 1).

230 J. Maras, M. Štula, and J. Carlson

Fig. 1. Extracting and reusing UI controls in Web applications

The first step of the Interaction recording phase is to select the HTML node that
defines the chosen UI control. Next, the user performs a series of interactions that
represent the behavior of the control. The purpose of this phase is to gather a log of
all resources required for replicating visual and behavioral aspects of the control.

The life-time of the web application client-side can be divided into two steps:
i) page initialization – where the browser parses the web page code and builds
the DOM (Document Object Model) [19] of the page, and ii) event-handling. All
user interactions are handled in the event-handling phase by modifying the DOM
built in the initialization phase. This means that in the beginning of the recording
phase, before the user has started interacting with the UI control, a “snapshot”
of the initial state of the control has to be made. This is done by logging all
executed initialization code, all CSS styles and all resources used to initially
define the control. Later, all code executed during the recorded interaction is
also logged, together with all dynamically applied CSS styles and images.

When the user chooses to end the recording, the process enters the Re-
source extraction phase, where code models for all code files (HTML, CSS,
and JavaScript) are build. Based on those models and logs gathered during the
recording phase, the code necessary for replicating the visuals and the demon-
strated behavior is extracted.

After the extraction phase is finished, the user can choose to enter the Reuse
phase and automatically embed the extracted control in an existing web page,
either by replacing, or by embedding it inside an already existing node. In this
way a full cycle is completed: from seeing the potential for reuse, through ex-
tracting the desired control, all the way to actually reusing it and gaining new
functionalities in the target web page. Each step of the process is described in
more detail in the following sections.

Reusing Web Application User-Interface Controls 231

The approach will be illustrated with an example of extracting and reusing a
UI control from a web page. Figure 2 shows a web page developed in a previous
project, and the control (marked with a dashed frame) that was selected for
reuse. The control displays different images (marked with 1 in Figure 2) and
captions (mark 2). Currently displayed items can be changed by clicking on
bullets (mark 3), and the control replaces items with a fade-out, fade-in effect.

3 Interaction Recording

The purpose of the interaction recording phase is to locate all code and resources
necessary for stand-alone functioning of the target UI control. In order to do that,
the user has to first select the chosen control. However, the control does not exist
as a separate entity in the web page. So, in our approach the control is selected
through the corresponding HTML node defining the UI control. This is done
with Firebug’s DOM (Document Object Model) explorer in which the user can
go through the DOM of the page.

When the user initiates the recording phase, the page is reloaded, subscriptions
to the DOM mutation events [20] are registered, and the initial state of the UI
control is logged. The initial state is composed of code executed while initializing
the control, and styles and resources that initially define the control. Generally,
all executed code is logged by communicating with the JavaScript debugger ser-
vice, which provides hooks (or events) that activate on each execution and give
information about the currently executed source code lines. In order to obtain the
styles and resources that initially define the UI control, the DOM of the control
is traversed and all CSS styles and resources applied and used in the control are
logged. With this, a log of resources that initially define the control is obtained.

Fig. 2. The web page of the UI control chosen for extraction

232 J. Maras, M. Štula, and J. Carlson

After the UI control is fully loaded, the modifications of the control are caused
by user interactions and/or timing events. The executed code is again logged
by communicating with the JavaScript debugger service, while any dynamic
changes in styles and resources are logged by handling DOM mutation events.
Using this approach we are able to locate all code and resources that define
the control: i) HTML code, because the user directly selects the HTML node
defining the control; ii) JavaScript code, because by communicating with the
JavaScript debugger service we are able to log all executed lines; iii) CSS code;
and iv) resources, because styles and resources applied to the control during the
the whole course of the execution are logged.

4 Extraction

Once the recording of interactions is complete, the process goes into the extrac-
tion phase. As input, the extraction process receives all data gathered during the
recording phase: the HTML code of the whole page; the xPath [21] expression
uniquely defining the node designated for extraction; a collection of used CSS
styles and resources; and for each JavaScript code file a list of executed lines.
Based on this data, JavaScript files, CSS files, and resources are separately an-
alyzed and cleansed of unnecessary elements. Since HTML documents can have
JavaScript and CSS code embedded directly in them, these parts of the file are
handled in the same way as the rest of the JavaScript and CSS code.

4.1 Extracting JavaScript Code

The goal of JavaScript code extraction is to produce a minimal code that is
syntactically correct, and semantically consistent with the recorded execution.
A naive implementation, where one would simply split the file into lines, and
then filter out the non-executed ones can only function in rare cases of specially
formated code, but since real-world code can be arbitrarily formated this is not
an option. Consider the example given in Listing 1.1.

/*1*/var a = getNum();

/*2*/if(a%2==0) {doEven();} else

/*3*/{

/*4*/ doOdd();

/*5*/}

/*6*/ doOtherStuff ();

Listing 1.1. Why naive line removal does not work

In this example, if the getNum function returns an even number, lines 1, 2
and 6 will be executed. If we do simple line removal, we would end up with
code presented in Listing 1.2 which is not semantically equivalent to the original
program. The doOtherStuff function would only be called if a is odd. And in
the original code (Listing 1.1) it is called regardless if a is even or odd.

Reusing Web Application User-Interface Controls 233

/*1*/var a = getNum();

/*2*/if(a%2==0) {doEven();} else

/*3*/ doOtherStuff ();

Listing 1.2. Naive line removal result

In order to tackle this problem, we build a model of the JavaScript source
code. This model is produced by a JavaScript parser that we have developed.
The parser is developed with ANTLR [7] according to the specification given
in [6]. Listing 1.3 gives a code example and Listing 1.4 gives the model generated
from the code example.

/*1*/ function double(x)

/*2*/{

/*3*/ return 2*x;

/*4*/}

Listing 1.3. JavaScript code example

As can be seen in Listing 1.4, the model represents a simplified abstract syntax
tree of the given source code. Although it is a lot more verbose then the source
code from which it is derived from, the model provides all information about the
position and type of used constructs.

{"srcElems ":[{

"type ":"funcDecl", "strtLn":1, "strtCh":0,

"name ":"double", "params": ["x"],

"body ": { "type":"funcBody ",

"strtLn":2, "strtCh":0, "srcElems ":[{

"type":"rtrnStatemnt ", "strtLn":3,"strtCh":1,

"expr": {"type":"mulExpr", "strtLn":3,

"strtCh":8, "exprs":[

{"type":"numLit", "strtLn":3,

"strtCh":8,"value":2,

"endLn":3,"endCh":8},

{"type":"mulExprItem ", "strtLn":3,

"strtCh":9, "operator ":"*", "item":{

"type":"ident", "strtLn":3,"strtCh":10,

"id":"x","endLn":3,"endCh":10},

"endLn":3,"endCh":10

}], "endLn":3, "endCh":10

}, "endLn":3,"endChar":11

}], "endLn":"4","endCh":"0"

}, "endLn":4,"endCh":0

}]}

Listing 1.4. JavaScript model example

234 J. Maras, M. Štula, and J. Carlson

By traversing a source code model (e.g. Listing 1.4) we can remove all code
constructs contained in the not-executed lines, while keeping the semantical
correctness.

4.2 Extracting CSS Code

Part of the data gathered during the recording phase are styles that get applied
to the chosen HTML node. Similarly to the process of building the JavaScript
code model, we have also developed a CSS parser that builds a model of the
code. Listing 1.5 gives a code example, while Listing 1.6 presents the model of
the code given in the example.

@import url(’/css/style.css’);

body { font -family: tahome; background : white; }

Listing 1.5. CSS code example

Based on the used CSS styles that were gathered during the recording phase,
the code model of the whole web application CSS code is traversed and only
code comprised of used styles is generated.

{ "imports": [{ "url": "/css/style.css" }],

"body": { "items": [{

"type ": "ruleSet",

"selectors ": ["#mainContainer "],

"declarations ": [

{"prop": "font -family", "val": "tahoma"},

{"prop": "background ","val": "white"}

]}]}}

Listing 1.6. CSS model example

The CSS code model is especially useful in the reuse phase, where the CSS
code of the control is merged with the CSS code of the host web page. There we
use both the CSS model of the control and the CSS model of the host page to
detect naming conflicts, and in the case of conflicting styles offer the possibility
of merging.

4.3 Extracting HTML Code

In order to extract the HTML code of the chosen UI control, we have to be able
to locate the code responsible for defining the control. In this case we build a
standard model of the given web page – DOM [19] – with an open source HTML
parser [14].

The visual layout of a certain HTML node is not only influenced by the
HTML code of that node, but also by the type and presentation of its ancestors.
For this reason, when traversing the DOM tree, the ancestors of the UI control

Reusing Web Application User-Interface Controls 235

Fig. 3. Extracted UI control from the web page shown in Figure 2

are kept, but all siblings (both from the chosen HTML node, and from each of
its ancestors) are removed. The resulting HTML DOM tree can contain image
nodes and references to styles and scripts. Since the location of the HTML node
will change (the code will be transfered from a web server to the user chosen
location), the in-code references to those files also have to be changed. This is a
time-consuming task, so it is handled automatically.

4.4 Extracting Resources

During the recording phase, all resources that were at some point used by the
UI control are tracked. In the final step of the extraction phase all resources are
automatically downloaded to the target location.

The result of the extraction process is an HTML document that contains the
HTML code defining the selected node, and includes all necessary style sheets,
scripts, and resources that were identified as necessary in the extraction phase.
Figure 3 shows the results of extracting the UI control from the web page shown
in Figure 2.

5 Reuse

Once the UI control has been extracted it can be embedded into an existing
“host” web page. The user selects the host web page, a referent node in the host
page, and the insertion type. The control can be inserted so that it replaces the
referent node; or it can be inserted into, before, or after the referent node. In
order to enable reuse, resources defining the extracted UI control and resources
defining the host web page have to be merged. Naturally, this can lead to conflicts
such as CSS style overriding, duplicate JavaScript libraries, name clashes, etc.,
that have to be tackled.

5.1 Detecting Conflicts

Currently, the best reuse results are achieved if the extracted UI control is reused
at an early stage of the new web page development – in a state where the host

236 J. Maras, M. Štula, and J. Carlson

web page is not complex and does not include large CSS or JavaScript code
bases. Even in that case, conflicts when merging HTML, CSS, JavaScript can
occur.

Detecting HTML conflicts – When merging the HTML code of the control
with the HTML code of the host web page the following conflicts can occur:
inclusion of duplicate JavaScript libraries, occurrence of HTML nodes with the
same id, and clashing HTML node classes. Before the merging is done, the control
DOM and the host page DOM are analyzed, and if any conflicts are detected
the user is notified.

Detecting CSS conflicts – In CSS, conflicts can arise from clashes based on
HTML node IDs, node classes and node types. The first two cases (IDs and
classes) are handled by detecting HTML conflicts, but the third case has to be
handled separately. If there are CSS rules clashing because of node types, then
we notify the user and offer the possibility to either accept one of the rules, or
to merge them into one CSS rule.

Detecting JavaScript conflicts – Web applications often use JavaScript li-
braries (e.g. jQuery, Prototype, Mootools, etc.), and a situation might happen
in which the host page uses a full library, and the control uses a subset of the
code from the same library, or vice versa. In that case we handle the conflict
by including the full library. Since JavaScript is a dynamic language, more ad-
vanced analysis (that is beyond the scope of this paper) is needed in order to
detect conflicts on variable or function level.

5.2 Example

We will demonstrate the process by reusing the UI control, described in Sec-
tion II, in a test web page shown in Figure 4. When extracting the control we
provide the path to the test host web page, and the xPath expression of the
placeholder node which we want to replace. Then, when the control is extracted
all control resources are merged with the already existing resources of the host
page.

The result is shown in Figure 5. A video showing the whole process of reuse,
can be found at the Firecrow web page1.

In order to complete the reuse and adapt the extracted UI control to the new
context, the developer has to manually replace some of the extracted resources.
For example, in this case we have replaced background images, changed text
captions, and added another option (the result is shown in Figure 6).

6 Tool

The whole process is currently supported by the Firecrow tool [12], which is an
extension for the Firebug2 web debugger. Currently, the tool can be used from
the Firefox web browser, but it can be ported to any other web browser that
1 http://www.fesb.hr/̃ jomaras/Firecrow
2 http://getfirebug.com

Reusing Web Application User-Interface Controls 237

Fig. 4. The host web page with a placeholder for the extracted control

Fig. 5. The result of reusing UI control in the host web page

provides communication with a JavaScript debugger, and a DOM explorer (e.g.
IE, Chrome, Opera). Only the interaction recording phase is browser dependent;
building source models, extracting code, downloading resources, merging code
and resources are functionalities that are all encapsulated in a Java library that
can be called from any browser on any operating system. The whole source of the
program can be downloaded from http://www.fesb.hr/̃ jomaras/?id=Firecrow.

The Firecrow UI is shown in Figure 7. Mark 1 shows the web page chosen for
extraction, mark 2 Firebug’s HTML panel used for selecting controls, and mark
3 Firecrow’s extraction and reuse wizard.

238 J. Maras, M. Štula, and J. Carlson

Fig. 6. The result of adapting the extracted UI control

Fig. 7. Firecrow user interface

7 Evaluation and Lessons Learned

We have evaluated our approach by extracting UI controls from thirty-five web
pages: twenty have been selected from the top 200 most visited web pages in
the world [1] (including Google, Facebook, Twitter, and Apple), ten have been
selected because they have visually interesting controls, and five from projects in

Reusing Web Application User-Interface Controls 239

which we have been involved earlier. The full list of tested web pages is available
on the Firecrow web page and is updated regularly as more web pages are tested.
Since the notion of what would be considered a user control can vary, each web
page is accompanied with a screen-shot marking the extracted user controls.

In this evaluation we have learned more about the advantages and shortcom-
ings of the approach and the accompanying tool Firecrow. From thirty-five web
pages we were able to successfully extract 133 user controls. However, the ex-
traction of eleven user controls failed. Mostly, the problems were with HTML
parsing, heavily modified DOM, and JavaScript trying to access elements that
were deleted in the extraction process. Problems with parsing HTML arise from
the fact that browsers fix invalid HTML code, and since there is no standard way
of handling HTML errors, each browser handles this problem in a specific way.
We use an open source HTML parser, and the DOM produced by this parser
does not always match the DOM built by a browser. Since we are identifying
nodes by xPath expressions which define the nodes’ position in the DOM, in
some rare cases, there can be a mismatch between the position of the node in
the browser DOM and in the DOM built by the parser. Because of this, the
extraction process can not locate the node, and the extraction fails. Also, a node
can not be located if the chosen node was dynamically created and does not
exist in the original HTML defining the web page.

In the current approach, we extract all code executed while loading the page
and while executing control-specific behavior. This means that we will usually
end up with more code than is actually needed for the user-control behavior
(e.g. initialization code for other controls can be executed). Some of that code
can try to access web page elements that are deleted in the extraction process,
which in turn can cause JavaScript errors in the extracted web page. Detecting
these errors with the Firebug web debugger, is however fairly straightforward.

8 Related Work

There exist a number of approaches, environments and tools designed to support
reuse. In the web application domain these include HunterGatherer [15], Internet
Scrapbook [16], HTMLviewPad [17], and ReWeb [18]; while in the more general
domain of reusing Java code there is G&P (Gilligan and Procrustes) [4].

HunterGatherer [15] and Internet Scrapbook [16] allow users to collect com-
ponents from within Web pages, and to collect components from different Web
pages into a newly created page. But since these approaches were developed in
1990’s and early 2000, when web page development was not so dynamic on the
client side, with the term “component” they refer to information components
– most usually text paragraphs. These approaches are mostly used to create
scrapbooks of data gathered from different web pages, and not to reuse certain
functionality and visual elements of web pages.

Tanaka et al. [17] describe an interesting approach to clipping and reusing
fragments of Web pages in order to compose new applications. They only tar-
get HTML elements, specifically HTML forms (no attention to CSS or JavaScript

240 J. Maras, M. Štula, and J. Carlson

is given in their examples), and how to reroute data entered in the form to
orginal servers that process the request. The applications created in this way
are not deployable as standard web pages, but are executed within their tool –
HTMLviewPad. This fact, along with not explicitly targeting the whole technol-
ogy chain (HTML, CSS, and JavaScript) is the biggest difference between our
approaches.

Our work is also related to program slicing [22], where by starting from a sub-
set of a program’s behavior, the program is reduced to a minimal form which still
produces that behavior. In a sense our approach can be viewed as web page slic-
ing with the goal of reducing the whole page (along with its code and resources)
to a form in which only the visuals and the behavior of the selected user control
are maintained. In the web engineering domain Tonella and Ricca [18] define
web application slicing as a process which results in a portion of the web appli-
cation which exhibits the same behavior as the initial web application in terms
of information of interest displayed to the user. In the same work they present a
technique for web application slicing in the presence of dynamic code generation
where they show how to build a system dependency graph for web applications.
This work is mostly dealing with reusing HTML and server-side code.

In the more general domain of Java applications, G&P [4] is a reuse environ-
ment composed of two tools: Gilligan and Procrustes, that facilitates pragmatic
reuse tasks. Gilligan allows the developer to investigate dependencies from a de-
sired functionality and to construct a plan about their reuse, while Procrustes
automatically extracts the relevant code from the originating system, transforms
it to minimize the compilation errors and inserts it into the developer’s system.
This work was further expanded [3] with the possibility to automatically recom-
mend elements to be reused based on their structural relevance and cost-of-reuse.

There are also two tools that facilitate the understanding of dynamic web
page behavior: Script InSight [11] and FireCrystal [13]. Script InSight helps to
relate the elements in the browser with the lower-level JavaScript syntax. It
uses the information gathered during the script’s execution to build a dynamic,
context-sensitive, control-flow model that provides feedback to the developers as
a summary of tracing information. FireCrystal [13] is a standalone Firefox plug-in
that facilitates the understanding of interactive behaviors in dynamic web pages.
FireCrystal performs this functionality by recording interactions and logging
information about DOM changes, user input events, and JavaScript executions.
After the recording phase is over, the user can use an execution time-line to
see the code that is of interest for the particular behavior. Compared to our
approach they make no attempts to extract the analyzed code.

9 Conclusion and Future Work

In this paper we have presented a novel approach and the accompanying tool for
extracting and reusing client-side user interface controls in web applications. The
process starts with the developer selecting the user control and demonstrating
the behavior that he/she wishes to reuse. In the background, the executed code

Reusing Web Application User-Interface Controls 241

and used resources are analyzed. We have shown how, based on that analysis, a
subset of the whole application code and resources necessary for the independent
functioning of the control can be determined. We have evaluated the approach
on thirty-five web applications and found that in a majority of cases the process
is able to extract stand-alone UI controls.

During the evaluation we have noticed that some pages make extensive mod-
ifications of the original web page DOM, up to the point that the node defining
the UI control does not exist in the original HTML code. Also, even though
some statements get executed while interacting with the control, they are not
necessarily required for the functioning of the web control. So, for future work,
we plan to develop a method for tracking DOM changes, which should enable
us to locate nodes in the original HTML code required for the creation of the
node defining the UI control. We also plan to extend the analysis of executed
code, so that only code statements that influence the behavior of the control are
extracted.

The web page displayed in the browser is usually the result of server-side
program execution, so we plan to extend the approach with server-side code
analysis in order to facilitate code reuse on the server-side.

Acknowledgment

This work was partially supported by the Swedish Foundation for Strategic Re-
search via the strategic research center PROGRESS, and the Unity Through
Knowledge Fund supported by the Croatian Government and the World Bank
via the DICES project.

References

1. Alexa: Alexa top sites (October 2010), http://www.alexa.com/topsites/

2. Brandt, J., Guo, P.J., Lewenstein, J., Klemmer, S.R.: Opportunistic programming:
How rapid ideation and prototyping occur in practice. In: WEUSE 2008: Workshop
on End-User Software Engineering, pp. 1–5. ACM, New York (2008)

3. Holmes, R., Ratchford, T., Robillard, M.P., Walker, R.J.: Automatically Recom-
mending Triage Decisions for Pragmatic Reuse Tasks. In: ASE 2009: Proceedings
of the 2009 24th IEEE/ACM International Conference on Automated Software
Engineering. IEEE Computer Society, Los Alamitos (2009)

4. Holmes, R., Walker, R.J.: Semi-Automating Pragmatic Reuse Tasks. In: ASE 2008:
Proceedings of the 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering, pp. 481–482. IEEE Computer Society, Los Alamitos (2008)

5. Holmes, R.: Pragmatic Software Reuse. PhD thesis, University of Calgary, Canada
(2008)

6. ECMA: international. ECMAScript language specification,
http://www.ecma-international.org/publications/files/ECMA-ST/

ECMA-262.pdf

7. Bovet, J.: Antlr web site (February 2011), http://www.antlr.org/

http://www.alexa.com/topsites/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.antlr.org/

242 J. Maras, M. Štula, and J. Carlson

8. Kapser, C., Godfrey, M.W.: ”Cloning Considered Harmful” Considered Harmful.
In: WCRE 2006: Proceedings of the 13th Working Conference on Reverse Engi-
neering, pp. 19–28. IEEE Computer Society, Los Alamitos (2006)

9. Krueger, C.W.: Software reuse. ACM Comput. Surv. 24(2), 131–183 (1992)
10. Lange, B.M., Moher, T.G.: Some strategies of reuse in an object-oriented program-

ming environment. In: SIGCHI Bull., vol. 20(SI), pp. 69–73
11. Li, P., Wohlstadter, E.: Script InSight: Using Models to Explore JavaScript Code

from the Browser View. In: Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.) ICWE
2009. LNCS, vol. 5648, pp. 260–274. Springer, Heidelberg (2009)

12. Maras, J., Štula, M., Carlson, J.: Extracting Client-Side Web User Interface Con-
trols. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE 2010.
LNCS, vol. 6189, pp. 502–505. Springer, Heidelberg (2010)

13. Oney, S., Myers, B.: FireCrystal: Understanding interactive behaviors in dynamic
web pages. In: VLHCC 2009: Proceedings of the 2009 IEEE Symposium on Vi-
sual Languages and Human-Centric Computing (VL/HCC), pp. 105–108. IEEE
Computer Society, Los Alamitos (2009)

14. Open source Tagsoup. Tagsoup, (September 2010) http://home.ccil.org/ cow-
an/XML/tagsoup/

15. Schraefel, M.C., Zhu, Y., Modjeska, D., Wigdor, D., Zhao, S.: Hunter Gatherer:
Interaction Support for the Creation and Management of Within-Web-Page Collec-
tions. In: 11th International Conference on World Wide Web, pp. 172–181 (2002)

16. Sugiura, A., Koseki, Y.: Internet scrapbook: creating personalized world wide web
pages. In: CHI 1997: Extended Abstracts on Human Factors in Computing Sys-
tems, pp. 343–344. ACM, New York (1997)

17. Tanaka, Y., Ito, K., Fujima, J.: Meme Media for Clipping and Combining Web
Resources. World Wide Web 9, 117–142 (2006)

18. Tonella, P., Ricca, F.: Web Application Slicing in Presence of Dynamic Code Gen-
eration. Automated Software Engg. 12(2), 259–288 (2005)

19. World Wide Web Consortium (W3C). Document Object Model (DOM) (Septem-
ber 2010), http://www.w3.org/DOM/

20. World Wide Web Consortium (W3C). Document Object Model Events (September
2010), http://www.w3.org/TR/DOM-Level-2-Events/events.html

21. World Wide Web Consortium (W3C). Xml path language (xpath) (September
2010), http://www.w3.org/TR/xpath/

22. Weiser, M.: Program slicing. In: ICSE 1981: 5th International Conference on Soft-
ware Engineering, pp. 439–449. IEEE Press, Los Alamitos (1981)

23. Wright, A.: Ready for a Web OS? Commun. ACM 52(12), 16–17 (2009)

http://www.w3.org/DOM/
http://www.w3.org/TR/DOM-Level-2-Events/events.html
http://www.w3.org/TR/xpath/

Tools and Architectural Support for

Crowdsourced Adaptation of Web Interfaces

Michael Nebeling and Moira C. Norrie

Institute of Information Systems, ETH Zurich
CH-8092 Zurich, Switzerland

{nebeling,norrie}@inf.ethz.ch

Abstract. There is a vast body of research dealing with the develop-
ment of context-aware web applications that can adapt to different screen
and user contexts. However, the range and growing diversity of devices
used for web access makes it increasingly difficult for developers to pro-
vide a design and layout that adapts well to every client. To address
this, we propose a crowdsourcing approach that allows developers to de-
fine a default web interface suitable for many devices and enables the
crowd, i.e. other developers or even non-technical end-users, to adapt it
to particular use contexts. We present an architecture for creating and
sharing adaptations as well as suggesting and applying these in matching
contexts. In addition, we discuss the underlying crowdsourcing principles
and present a set of visual tools that facilitate the adaptation process.

1 Introduction

We are currently in a period where there is a proliferation of new devices with
very different characteristics in terms of, not only screen size and resolution, but
also input and output modalities. It is becoming increasingly difficult for appli-
cation developers to cater for these in a responsive manner. For example, the
emergence of new tablet computers such as Apple’s iPad and tabletop systems
such as Microsoft’s Surface requires applications to adapt to much larger forms
of touch screens than offered by mobile phones, but many applications on the
iPad still use an interface developed for the iPhone and therefore do not take
advantage of the greater screen space. When it comes to large interactive sur-
faces, most application developers, including web site providers, have not even
considered these despite the fact that they are now becoming commonplace in
offices, meeting rooms, public spaces and homes. In addition, with the means
for direct touch input and support for gesture-based modalities on this new
generation of multi-touch devices, the trend is also towards user interfaces that
promote more natural interactions and are therefore required to scale according
to a user’s motor skills and potential impairments. We believe that the only way
that application developers can cater for such a diverse and rapidly evolving
range of use contexts is to adopt a crowdsourcing model where they provide a
kernel application and other developers, or even non-technical end-users, create

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 243–257, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

244 M. Nebeling and M.C. Norrie

and share adaptations using visual tools in order to support particular devices
and preferences.

In this paper, we present an architecture that enables user-driven web site
evolution in terms of both the context-awareness and adaptive behaviour of the
system through user participation. The approach is based on a context-aware
toolkit that integrates with existing web pages so that users can create adapta-
tions directly in the browser. These adaptations are then deployed on a server
and automatically downloaded and applied the next time that the web site is
accessed from a matching client. The main technical contributions are (1) an
extension of the common web application architecture that facilitates crowd-
sourced web site adaptations, (2) a visual toolset for performing the adaptations
that works with existing web sites and does not impose certain conventions on
the hypertext specification and (3) a lightweight implementation that builds on
only CSS and CSS media queries to support the adaptation process directly in
the browser.

We begin in Sect. 2 with a discussion of the background and then provide
an overview of the approach in Sect. 3. The proposed adaptation operations are
presented in Sect. 4, followed by the crowdsourcing architecture in Sect. 5 and
implementation details in Sect. 6. Finally, we discuss the crowdsourcing approach
in Sect. 7 and give concluding remarks in Sect. 8.

2 Background

Crowdsourcing has become a popular technique for activating user communities
and allowing them to contribute their experience and knowledge [1]. This is
generally done by providing a simple interface to access and extend content
or functionality and often by turning users into developers [2]. Two of the best
known examples of crowdsourced web platforms are Facebook1 and WordPress2.
Many parts of these platforms have been developed by volunteers and shared
with users in the form of small applications, plugins or themes that can simply be
installed and hooked into the running system to extend its functionality. Our aim
is to develop mechanisms whereby crowdsourcing can be integrated into existing
web applications in order to collectively solve problems of design deficiencies
with respect to different screen and user contexts through user participation.

There are two main approaches to supporting adaptivity in applications—
adaptive interfaces and adaptable interfaces. An adaptive interface dynamically
adapts the application to support the current viewing context. In contrast, an
adaptable interface provides means for customisation, primarily relying on the
user to employ the mechanisms to adapt the interface. The fundamental dif-
ference is who is in control of the adaptation process: adaptive interfaces are
system-controlled relying on context information provided to the application,
whereas adaptable interfaces are user-controlled and therefore require user in-
tervention [3]. To cater for the proliferation of different devices used for web
1 http://www.facebook.com
2 http://www.wordpress.org

Tools and Architectural Support for Crowdsourced Web Adaptation 245

browsing, we propose a novel crowdsourcing approach that makes use of both
techniques in that system developers can provide an adaptive interface that ini-
tially caters for the most common use contexts, but adaptive features can then
evolve at runtime with the help of users who can refine the adaptations to better
match their particular use context.

The adaptation of web interfaces to devices is often dealt with in web en-
gineering as one particular aspect of context-awareness and efforts have been
made to uniformly address the requirements of personalisation, international-
isation and multi-channel access. For example, for web design methodologies
such as WebML and Hera, extensions have been proposed for modelling the
behaviour of context-aware sites, e.g. [4,5]. In general, when a context-aware
page is requested, the adaptation operations are executed in order to adapt the
content, navigation and presentation according to the client context. For the
specification of adaptation operations, both rule-based approaches [6] following
the Event-Condition-Action paradigm and aspect-oriented techniques [7] that
promote the use of aspects to achieve a systematic separation of general system
functionality and context-aware adaptation are popular.

A second stream of research on model-based user interfaces has spawned a
number of frameworks and tools which separate out several levels of user interface
abstraction to be able to adapt to different user, platform and environment
contexts, e.g. CAMELEON [8]. The suggested development processes typically
unfold along a four-step, top-down approach, starting with domain concepts
and task modelling, followed by subsequent transformation steps from abstract
to concrete and the final user interfaces. The authoring of adaptive and multi-
modal user interfaces has also been the subject of extensive research, e.g. [9];
however, in reality, many steps in the promoted top-down engineering process
are often skipped by web developers who tend to directly produce the final
interfaces through a series of rapid prototypes using rich WYSIWYG tools such
as Photoshop or Flash.

As an alternative, we have proposed an approach based on a domain-specific
language and a runtime platform using versioning principles and a multi-variant
component model [10] to support the development of context-aware web sites.
The essence of this language-based approach is to support multiple application-
specific aspects of context-awareness by specifying adaptations along a combina-
tion of clearly defined context dimensions and states, and to then use a context
algebra that allows for powerful matching expressions to support variations of
the final interface at the different levels of content, structure and layout depend-
ing on the context.

While we acknowledge that all these approaches to context-aware adaptation
are very systematic and therefore good at supporting developers in the defini-
tion and deployment of adaptations, they primarily target developer-specified
adaptation and come at the price of increased complexity and therefore costs.
For the proposed crowdsourcing approach, we aim to abstract from underlying
models and languages by providing visual tools for the adaptation of the final
interface directly in the browser, which may not only increase the productivity

246 M. Nebeling and M.C. Norrie

of developers, but is potentially also more attractive to a much larger group of
non-technical users.

3 Approach

The main goal of our work is to augment developer-specified web interfaces with
user-contributed adaptations to cater for a much wider range of use contexts to
which applications can adapt. This crowdsourcing model involves a double role
of users—one that sees the user as the usual consumer that merely benefits from
shared adaptations and the other that turns them into active contributors and
allows them to define and deploy adaptations that better match particular client
contexts. If users choose to contribute, they can adapt the web interface using our
tools that providers can integrate and bundle with a web site or offer separately
in the form of a browser plugin. In the first case, created adaptations are managed
by the web site and directly shared with consumers, while in the second case they
are deployed as part of a separate service where users can take the initiative and
create new adaptations and share them even across sites. For the latter scenario,
we would like to follow the popular examples of programmableweb.com and
userscripts.org, where already large communities of active users maintain shared
collections of web mashups and augmentations.

From a technical point of view, our approach builds on the general web ar-
chitecture where the browser renders the web interface from HTML holding the
content and CSS defining the format and style as returned by the server in re-
sponse to client requests. The principal idea is that all adaptations are essentially
represented as modifications of the CSS that can additionally be downloaded for
the original web site. This makes for a lightweight adaptation technique as no
additional versions of the HTML document must be maintained and also web
site generation is not required contrary to many other approaches. Another ben-
efit of using only features of CSS to represent the adaptations is that the actual
adaptation process can run completely on the client-side simply by linking the
adapted CSS to the web document and hence does not depend on more expen-
sive server-side computation. Also important is the fact that CSS definitions can
be cascaded with the consequence that the layout of elements can be adjusted
in multiple steps by building on from previous definitions. For users this means
that adaptations do not always have to be defined from scratch, but can easily be
based on other users’ contributions that mostly need to be refined, and therefore
tends to require less effort of the end-user.

Web sites that could benefit the most from our crowdsourcing idea are those
that typically attract large numbers of users and support them in carrying out a
real task. Failure to adapt to the particular screen and user contexts is then per-
ceived as especially disturbing and counter-productive to achieving the task in
an efficient way. To give an example, news web sites represent one particular type
of application that is typically accessed from a range of different devices. The
main task is to provide up-to-date news content and support users in accessing
this often text-heavy information: special attention must therefore be paid to all

Tools and Architectural Support for Crowdsourced Web Adaptation 247

(a) Original at 1440x900 (b) Mobile version

(c) Original at 2560x1600 (d) Adapted version for large displays

Fig. 1. Examples showing the Guardian’s news web site in (a) its original design and
(b) the mobile version; (c) demonstrates the relatively poor viewing situation on a large
screen and (d) shows adaptations created using our tools to make more effective use of
the screen with multi-column layout

factors concerning on-screen readability. Although there is an increasing trend
to provide special, mobile versions in order to manage with limited resources
and computing power, there is often still a mismatch due to the great diversity
in terms of screen resolutions and input/output modalities of hand-held devices.
Moreover, looking at the other end of the spectrum, the user experience on large,
wide-format screens often does not improve despite the fact that a much larger
screen space is available. The main reason for this is a static, fixed-width design
of many web sites which let content flow primarily in the vertical direction and
therefore tend to leave large parts of the screen unused and, as a result of this,
impose unnecessary scrolling. In a recent study [11], we have investigated news
site content layout in large-screen contexts and shown that the majority of sites
do not adapt well at resolutions above 1024x768 pixels despite the obvious trend
towards resolutions much higher than that.

Figure 1 shows the Guardian’s online newspaper as one example of a very
common news site design viewed in different settings. The site comprises the
typical web page elements, such as the header containing the main navigation
bar at the top, followed by the main content in three columns and the footer at

248 M. Nebeling and M.C. Norrie

the very bottom of the page. The leftmost column is the largest and contains
the news article content which typically consists of a heading, a picture and the
article text itself. The other columns contain a combination of advertisements,
related pages and various other services. The site is best viewed at resolutions
around 1024x768 as illustrated in Fig. 1a. The mobile version offered by the web
site is shown in Fig. 1b at a resolution of 640x960, as an example of how it would
view on an iPhone and similar devices. Already this setting could benefit from
smaller adaptations in order to use the entire width. To demonstrate that the
fixed design is even more problematic in a widescreen setting, Fig. 1c shows the
web site in its original design viewed on a 30” screen at a resolution of 2560x1600.
To make more effective use of the much larger screen real estate similar to
Fig. 1d, our tools would allow a user to define new adaptations suited to the
widescreen format by resizing the main content container to fill most of the space
available and realigning the inside elements. Additionally, multi-column layout
could be used for both the main content area and the sidebar to automatically
divide the now relatively large content areas into smaller portions. As a result,
paragraphs are of appropriate width rather than producing excessively long lines,
also showing more content and related navigation options on the first screen and
therefore reducing the amount of scrolling necessary.

4 Adaptation Operations

To support users in carrying out the adaptation process, we build on a simple
set of tools that are loaded into the browser and work directly on the visual
representation of the web document. We have defined the set of adaptation
operations summarised in Table 1 by looking at which adaptations are required to
make more effective use of particularly small and large screens for many web sites.
The examples that we considered were not constrained to news sites only, but
ranged from blogs, wikis, forums to other forms of applications that are typically
used by active user communities for both the consumption of content and content
contribution. The defined operations, especially when used in combination, cater
for a wide range of adaptations, but also reflect what is technically feasible
without imposing a particular model of web site design.

The adaptations carried out by users on different components of a web page,
such as the header, navigation, content or footer, need to be reflected at the
hypertext level where these are typically represented as a hierarchy of HTML
elements or nodes associated with format and style defined in CSS. The two
core operations supported by the toolkit allow web page elements to be reposi-
tioned and resized using drag-n-drop interaction as showcased in Fig. 2. This is
technically supported by adjusting the CSS attributes related to the offset and
width/height of elements while being dragged. When dropped, target elements
can be positioned either relative to other elements or freely in the web page,
which can be helpful when a nested design needs to be broken temporarily in
the case that a number of grouped elements need to be realigned. Additionally,
the margin between elements can be adjusted by adding new spacer elements to

Tools and Architectural Support for Crowdsourced Web Adaptation 249

Table 1. List of the adaptation operations supported by our toolkit with a focus on
spatial factors of web site layout

Operation Description

Move Changes the position of target elements using drag-n-drop interac-
tion. Moved elements can be docked at the left/top/right/bottom
of the drop target, as well as float or be fixed at an absolute po-
sition in the web page.

Resize Resizes target elements at their current position in the web page.
When hovered, elements show a size grip in the lower right cor-
ner that can be dragged to change the width and/or height. Al-
ternatively, the right side can be dragged to adjust only in the
horizontal direction, or the bottom for vertical changes.

Spacer Adds a new spacer element that will be docked to target elements
and can be subject to other operations such as resize to increase
the horizontal and/or vertical spacing between elements.

Hide Hides target elements, or restores elements that were previously
hidden using this operation.

Collapse Substitutes target elements with a placeholder link that can be
clicked to expand the original content.

Grow/Shrink Font Increases or decreases the font size of target elements. Also line
spacing can be controlled relative to the change of the font size,
or using absolute values.

Single/Multi-
column Layout

Controls the number of columns used for an element’s layout so
that content can be distributed horizontally and flow from one
column to another in a flexible way.

(a) Resize operation for making appropriate use of the available width

(b) Move operation for realigning elements to fit the new dimensions

Fig. 2. Screenshots showing the adaptation toolkit and two example operations,
namely (a) resize and (b) move, being performed directly in the browser.

250 M. Nebeling and M.C. Norrie

improve on the layout where required. Users can also hide elements, or restore
hidden ones. Alternatively, elements can be collapsed and replaced by a place-
holder link that users can activate to unfold the substituted content. This feature
is an example inspired by the mobile version of Wikipedia that automatically
does this for sections of an article to first show only their headings. We believe
that this kind of adaptation should be made available to a wider range of ap-
plications where it cannot be automated so easily because the content may not
follow the wikitext conventions, but this could still be achieved manually with
the help of users. Finally, the font size of text elements can be adjusted together
with the line spacing and additional columns can be used for content layout,
the number and size of which can be controlled using the single or multi-column
layout operation.

The first set of operations in Table 1 primarily concern spatial factors of
the design such as the size and positioning of content in the browser window.
Users are provided with additional methods to adjust and balance the spacing
between elements, which can be important to save some of the very limited
space on mobile devices, or to make effective use of greater amounts of screen
real estate on large displays. The means to collapse or even hide certain elements
allows for simplifying complex layouts during the adaptation process at design-
time, but also provides technical tools to optimise navigation and presentation
of content at run-time according to the screen context. It is important to note
that all operations can be combined with each other, except when elements are
hidden, and generally apply to all web page elements. The last two have a specific
focus on controlling text style and flow. This can be important to alleviate the
problem of text appearing too small on large displays, or if the original font is
too large on a small-screen device. Moreover, multiple columns can lead to a
more effective use of the screen space in the horizontal direction, which can be
essential for controlling the line length of paragraph elements that may otherwise
get excessively long, especially in widescreen environments.

In two related projects, we have proposed a set of layout metrics [11] that can
guide users in performing the adaptation as well as experimented with different
adaptation techniques specifically in large-screen contexts [12]. The latter also
expands more on the idea of using multi-column layout in wide-format viewing
situations and explores ways of combining the resulting horizontal alignment of
content with the dominant vertical scroll model used by the majority of web
sites today.

5 Architecture

So far we have sketched the general idea of user-driven web site adaptations
and presented a set of visual tools that facilitate the adaptation process. In
this section, we present and discuss an architecture that can be integrated with
existing web sites and applications with only minimal effort.

Figure 3 shows an extended version of the general client/server architecture
behind a typical web application as well as processes (1) and (2) initiated by

Tools and Architectural Support for Crowdsourced Web Adaptation 251

Embedded/Server

(1a)

Adaptation Service

Review
and

Rating
System

Adaptation
Store

Context Engine

Context
Builder

Context
Matcher

(1c)

(2a)
Client 2

Adaptation Toolkit

(2b)

Client 1

(1b)

Adaptation Toolkit

640 x 960

Web Application

Adaptation Toolkit
Configuration

Fig. 3. Conceptual model of crowdsourcing architecture also showing the definition
and deployment processes carried out by one client to the benefit of others

to separate clients. As for the extensions, both clients have the adaptation toolkit
from the previous section installed and running in the browser. The web appli-
cation can optionally define a configuration for the client toolkit in order for
developers to control which and how web site elements can be adapted by users.
Also located on the server-side is the adaptation service that comprises the
following three components: (i) the adaptation store which is essentially an in-
terface to an underlying database designed for the storage and retrieval of web
site adaptations, (ii) the context engine which functions as a recommender sys-
tem to rank and select the best-matching adaptations using the context builder
and matcher, and (iii) the review and rating system for users to take influence
on the recommendations made by the system. The dashed line labelled ‘Em-
bedded/Server’ indicates that the architecture can vary at this point so that
the adaptation service is either managed and provided as part of the particular
web site, or administered by an independent service provider. Good examples of
the latter scenario are the programmableweb.com or userscripts.org platforms
mentioned earlier.

To give a concrete example of how the proposed architecture enables crowd-
sourced web adaptation, we show two clients using a mobile phone for accessing
an example site that has initially been created with a standard resolution of
1024x768 in mind. When the first client accesses the application (1a), it will
receive the content in its default layout (1b). This is however too large for the

252 M. Nebeling and M.C. Norrie

small screen of the client device and therefore difficult to operate. As a coun-
termeasure, client 1 uses our toolkit for adapting the web site to better fit the
device resolution of 640x960. The example adaptations include shrinking of the
header, repositioning and resizing of the navigation that was originally shown in
the sidebar, maximising the main content area and adjusting the footer—all of
which are supported by the proposed toolset. The client toolkit automatically
synchronises with the adaptation store where it maintains a record with the
defined adaptations for the current client context (1c), here simply represented
by the screen resolution. Now when client 2 accesses the web site also using our
toolkit (2a), it will download recommended adaptations and apply them (2b)
so that the end-user automatically sees the mobile version that was created and
shared by client 1.

6 Implementation

This section provides more detail on the enabling technologies for the adaptation
toolkit and explains supported configuration options. Special attention will be
given to the definition and deployment of web site adaptations as well as the
quality control system. More documentation and the complete source code are
available from our web site.3

Adaptation Toolkit. For the implementation of our toolkit, we use client-side
JavaScript based on the popular jQuery framework4 to augment the target web
site with a toolbar for invoking the different adaptation actions. If the script
is not coupled with and distributed by the web application itself, as in the
embedded mode of the architecture, we have also developed an extended version
that additionally builds on Greasemonkey5—a browser extension for managing
user scripts that can make on-the-fly changes to selected web pages as they are
loaded. In this separate server setting, we do not constrain the domain and use
the @include http://* statement to enable the adaptation toolkit for all web sites,
but this default setting can be easily changed by users to work only with specific
sites using the corresponding Greasemonkey features.

The adaptation operations offered by the toolkit are implemented as follows.
The move and resize functions translate the corresponding left and top coor-
dinates and adjust the width and height CSS properties. The spacer operation
changes the CSS padding and margin properties of target elements to leave the
indicated space blank. The hide function toggles the visibility of target elements
by setting display to none. The collapse operation is realised using a combina-
tion of display: none for the original content and a CSS :before pseudo element
in combination with the CSS content property to insert the placeholder link.
The grow/shrink font operation directly translates to the corresponding CSS
font-size and line-height parameters. Finally, multi-column layout is based on the
3 http://dev.globis.ethz.ch/crowdadapt
4 http://jquery.com
5 http://www.greasespot.net/

Tools and Architectural Support for Crowdsourced Web Adaptation 253

Example Web Site

HTML CSS

Adaptations for Example Web Site

#header {
height: 200px;

}

#navigation {
width: 300px;

}

#content {
width: 900px;

}

#footer {
height: 200px;

}

<div id=”#header”> ... </div>

<div id=”#navigation”>
News
...

</div>

<div id=”#content”>
<h1>Crackdown in Bahrain...</h1>
Bahrain: 20 injured as...
...

</div>

<div id=”#footer”> ... </div>

@media screen and (width: 640px) and (height: 960px) {
#header {
width: 80px;
height: 120px;
display: inline;

}
#navigation {
width: 560px;
height: 120px;

}
#content {
width: 640px;
height: 760px;

}
#footer {
height: 80px;

}
}

@media screen and (width: 2560px) and (height: 1600px) {
...

Definition Adaptation
Store

Deployment

Fig. 4. Illustration of the adaptation process where adaptations are represented in CSS
using media queries and stored for the example web site

new CSS3 multi-column module6 and therefore requires a modern browser that
interprets modifications of the column-count and column-width properties.

The toolkit can further be configured to automatically disable links, text selec-
tion and embedded objects such as Flash animations or videos when performing
the adaptation, not to interfere with the associated click handlers and other
events that could get triggered accidentally. Also, target web sites can tell the
toolkit to exclude certain web page elements from the adaptation. We support
this by providing special CSS marker classes that can be added to HTML el-
ements to prevent them from being moved, resized or hidden, for example. By
default, adaptations can be performed on all non-restricted elements that have
an id, name or class, as these can be easily accessed using jQuery and because
it is the only feasible way to track the adaptations if not by the node index
in the HTML document hierarchy. This also makes sense considering the fact
that only important web page components are typically labelled for easy pro-
grammatic access or formatting using style blocks or separate CSS resources.
Moreover, in case an element is adapted that also specifies a class, users are
given the choice to apply the changes to all element instances of the selected
class so as to learn from the adaptation of one page element as an example to
also let it affect similar elements on the web page.

Adaptation Service. The adaptation store manages alterations of the layout in
the form of CSS and CSS media queries as a result of the definition and deploy-
ment processes. To illustrate this, Fig. 4 shows a visualisation of the HTML and
CSS of an example news article on the left and the adapted CSS on the right.
In the original version of the web page, the header component specifies a fixed
height and fills the full width of the viewport by default. Part of the adapta-
tions performed by the first client from the previous scenario is the alteration
of the header to require less space in both directions so that the navigation can
6 http://www.w3.org/TR/css3-multicol/

254 M. Nebeling and M.C. Norrie

be aligned next to it. The results of the respective move and resize operations
applied to the header and navigation components are decoded in separate CSS
media queries. The styles defined here only apply if the device matches the in-
dicated screen resolution. We therefore denote the resolution of the client device
on which the adaptations were created originally. For the deployment, we sup-
port two modes so that adaptations can either be stored as a new, alternative
version for the current client context, or as a revision to overwrite and replace a
previous version. The underlying database model is fairly simple and just stores
the adapted CSS together with the collected context parameters. In the case
that the plugin was used, the URL of the original site is additionally tracked
and stored in the database.

The context engine plays a bigger role for the retrieval of web site adapta-
tions, but is also used for storage when the context builder creates a model
from the context of the client that is performing the adaptations to associate
the collected context information with user-defined adaptations. Our implemen-
tation evaluates the navigator and screen objects in JavaScript to collect the
context information related to the browser and device, such as the user agent
string, screen size, orientation and resolution. It also allows users to review and
complement this information with aspects that cannot always be queried pro-
grammatically, such as the device type, model or name and supported input
methods, e.g. mouse and keyboard, pen and/or touch. Clients can also specify
user-related attributes for the context builder, e.g. their current location, the
language preference and whether they are right or left-handed, although these
values are not interpreted by default, but this is a way for users to hint at other
context facets that might also be relevant for a particular use case and help to
evolve both the context model and the adaptive behaviour of the system. The
collected context information is then associated with the corresponding adapta-
tions and stored in the database. At retrieval, the context matcher is responsible
for scoring user-contributed adaptations and determining the best match when
the site is accessed via the toolkit. The method used to evaluate similarity be-
tween the client contexts associated with adaptations in the database and the
current client context is a combination of SQL and CSS media queries. SQL is
used to filter stored adaptations by target web site and mostly by user-related
context aspects not supported by media queries. The device-related matching
process is however delegated to the client-side where it is performed directly in
the browser using the returned CSS media queries.

Finally, the review and rating system complements the recommender system
with user-driven means to control the scoring applied as part of the context
matching process. We allow clients to preview and choose from a set of user
contributions that achieved a reasonably high score computed by the context
engine. We then build on the simple idea of ranking adaptations higher the
more clients actually use them, for which we keep a server-side record of the
number of client accesses together with the contexts of selected adaptations.
The ratio of active to matching sets of adaptations then builds an additional
factor for the matching process: it controls the order in which media queries are

Tools and Architectural Support for Crowdsourced Web Adaptation 255

cascaded by the toolkit so that only the adaptations with the highest scores are
the ones that determine the final user interface.

7 Discussion

One of the key issues for any crowdsourcing model is the “cold-start problem”
and so there has been a lot of research on motivational aspects. Results suggest
that for users the willingness to contribute can be improved, for example, by us-
ing principles of social psychology [13] or by exploiting social connectedness [14],
or indirectly, and for the user implicitly, through games [15]. Our approach at-
tempts to primarily draw on the effect that users can see the interface improve
directly through their actions. Similar to [16], user motivation can further be
raised by letting them know how many other users with the same or similar
devices can also benefit. This we can estimate by comparing the context against
the history of client contexts used as part of our implementation.

Two aspects that often tend to be ignored in crowdsourcing approaches are
security and privacy. As far as security is concerned, it is important to see that
our approach focuses on crowdsourced adaptation rather than augmentation of
web sites. Hence, it deals with adjusting the presentation rather than adding
new content or functionality, which could be of potential concern, and there-
fore requires significantly less control compared to web augmentation [17]. Also
privacy is not an issue since our focus is on the contributions of users rather
than the users themselves. As a consequence, users can contribute anonymously
while the sharing and targeting of user-defined adaptations is primarily based
on stereotypical rather than personal aspects.

Another important aspect that we have not discussed so extensively in the
paper is scalability when a crowd of users would really contribute with web site
adaptations. This can have an impact on both the quality of adaptations and
performance of the system. The suggested review and rating system could help
maintain a high level of quality which could further be improved by giving more
control to selected web site users, so-called trusted users, so that their approval
or rejection has significant impact on the particular score and thus the overall
ranking of user-defined adaptations. Another way to control quality is to limit
which and how adaptations can be defined. The proposed adaptation operations
therefore concern primarily those aspects of the design that are directly related
to the viewing context, such as the size and position of elements, rather than
style and colour. As for the performance, we argue that this is more a question of
the implementation rather than the approach. Our experiments with the current
implementation based on CSS and CSS media queries have shown a fairly high
performance even when several hundred adaptations created for different client
contexts were applied to an example web site. Even on mobile devices, mod-
ern browsers are very fast at parsing and executing the hypertext definitions
and we can directly leverage this performance in our approach. In particular
in a multi-user, multi-device scenario, we are convinced that the delegation of
the adaptation process to the client-side will pay off as less of the more expensive

256 M. Nebeling and M.C. Norrie

server-side computation is involved. The lightweight implementation also has
some drawbacks. For example, we know it is better to remove hidden elements
from the HTML before they are transferred to the client and to let the move
operation also affect the hypertext specification, not to break the structure and
flow of the document by relying on relative or absolute positioning via CSS inde-
pendent of the document hierarchy. This means that docking a dragged element
to a target should result in moving the corresponding element before or after the
drop target’s position in the HTML document. These are examples of adapta-
tions that could be additionally implemented on the server-side to complement
the pure CSS-based adaptation techniques with HTML pre-processing before
the content is delivered to the client.

Finally, it must be mentioned that the adaptation toolkit itself also needs to be
adaptive to support the adaptation process under any given device constraints.
For example, while there is sufficient extra space to perform adaptations when
working on a large device, the toolkit operations will also have to be feasible
on small form-factor devices. We have started to support this by making the
adaptation toolkit the subject of its own principles in that the crowd can also
adapt the design and functionality of the toolkit. For the visual representation,
we provide a special edit mode so that adaptation operations can also concern
the toolkit components, while the source code is available for more experienced
users to add new operations or refine existing behaviour programmatically.

8 Conclusions

We have presented a crowdsourcing approach to web site adaptation based on
a lightweight extension of the common web application architecture and visual
tools that facilitate the adaptation process. The main idea is to support devel-
opers in specifying web interfaces that can adapt to the range and increased
diversity of web-enabled devices available today by also allowing users to create
and share adaptations so that other owners of the same device and with similar
preferences can directly benefit. The paper discussed the technical and design
challenges for adopting this crowdsourcing model, in particular when it comes to
quality control, and described a concrete implementation of the proposed con-
cepts and mechanisms using adaptation techniques based on only CSS and CSS
media queries. Although our experiments using the toolkit and architecture for
adapting existing, real-world web sites are promising, more detailed evaluations
of the visual toolkit from a user perspective and testing the implementation on
a larger scale with many different user contributions are planned for the future.
This will include carrying out user studies and collecting feedback when using
the toolkit for access and adaptation on a range of different devices as well as ex-
perimenting with different sharing and ranking modes to improve user support.
It will also be interesting to mine the data created through user participation as
it is likely that user-driven adaptations generate valuable data for developers.
The collected data can then inform the general design of a web site with respect
to different use contexts so that patterns can be recognised and hopefully design
deficiencies prevented before they get replicated.

Tools and Architectural Support for Crowdsourced Web Adaptation 257

Acknowledgements

We would like to thank Michael Grossniklaus and Stefania Leone for their valu-
able feedback on earlier drafts of this paper. This work was supported by the
SNF under research grant 200021 121847.

References

1. Howe, J.: The Rise of Crowdsourcing. Wired 14(6) (2006)
2. Kazman, R., Chen, H.M.: The Metropolis Model: A New Logic for Development

of Crowdsourced Systems. CACM, vol. 52(7) (2009)
3. Brusilovsky, P.: Methods and Techniques of Adaptive Hypermedia. UMUAI 6(2-3)

(1996)
4. Ceri, S., Daniel, F., Matera, M., Facca, F.M.: Model-driven Development of

Context-Aware Web Applications. TOIT 7(1) (2007)
5. Frăsincar, F., Houben, G.-J., Barna, P.: Hypermedia presentation generation in

Hera. IS 35(1) (2010)
6. Daniel, F., Matera, M., Pozzi, G.: Managing Runtime Adaptivity through Active

Rules: the Bellerofonte Framework. JWE 7(3) (2008)
7. Niederhausen, M., van der Sluijs, K., Hidders, J., Leonardi, E., Houben, G.J.,

Meißner, K.: Harnessing the Power of Semantics-Based, Aspect-Oriented Adapta-
tion for amacont. In: Proc. ICWE (2009)

8. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt,
J.: A Unifying Reference Framework for Multi- Target User Interfaces. In: IWC,
vol. 15 (2003)

9. Paternò, F., Santoro, C., Mäntyjärvi, J., Mori, G., Sansone, S.: Authoring pervasive
multimodal user interfaces. IJWET 4(2) (2008)

10. Nebeling, M., Grossniklaus, M., Leone, S., Norrie, M.C.: Domain-specific language
for context-aware web applications. In: Chen, L., Triantafillou, P., Suel, T. (eds.)
WISE 2010. LNCS, vol. 6488, pp. 471–479. Springer, Heidelberg (2010)

11. Nebeling, M., Matulic, F., Norrie, M.C.: Metrics for the Evaluation of News Site
Content Layout in Large-Screen Contexts. In: Proc. CHI (2011)

12. Streit, L.: Investigating Web Site Adaptation to Large Screens. Master’s thesis,
ETH Zurich, doi: 10.3929/ethz-a-006250434 (2010)

13. Harper, F.M., Li, S.X., Chen, Y., Konstan, J.A.: Social Comparisons to Motivate
Contributions to an Online Community. In: de Kort, Y.A.W., IJsselsteijn, W.A.,
Midden, C., Eggen, B., Fogg, B.J. (eds.) PERSUASIVE 2007. LNCS, vol. 4744,
pp. 148–159. Springer, Heidelberg (2007)

14. Bernstein, M.S., Tan, D.S., Smith, G., Czerwinski, M., Horvitz, E.: Personalization
via Friendsourcing. TOCHI 17(2) (2010)

15. von Ahn, L., Dabbish, L.: Labeling Images with a Computer Game. In: Proc. CHI
(2004)

16. Rashid, A.M., Ling, K.S., Tassone, R.D., Resnick, P., Kraut, R.E., Riedl, J.: Moti-
vating Participation by Displaying the Value of Contribution. In: Proc. CHI (2006)

17. Arellano, C., Dı́az, O., Iturrioz, J.: Crowdsourced Web Augmentation: A Security
Model. In: Chen, L., Triantafillou, P., Suel, T. (eds.) WISE 2010. LNCS, vol. 6488,
pp. 294–307. Springer, Heidelberg (2010)

A Layered Approach to Revisitation Prediction

George Papadakis1,2, Ricardo Kawase2, Eelco Herder2, and Claudia Niederée2

1 ICCS, National Technical Unversity of Athens, Greece
gpapadis@mail.ntua.gr

2 L3S Research Center, Leibniz University of Hanover, Germany
{surname}@l3s.de

Abstract. Web browser users return to Web pages for various reasons.
Apart from pages visited due to backtracking, they typically have a num-
ber of favorite/important pages that they monitor or tasks that reoccur
on an infrequent basis. In this paper, we introduce the architecture of
a system that facilitates revisitations through the effective prediction of
the next page request. It consists of three layers, each dealing with a
specific aspect of revisitation patterns: the first one estimates the value
of each page by balancing the recency and the frequency of its requests;
the second one captures the contextual regularities in users’ navigational
activity in order to promote related pages, and the third one dynami-
cally adapts the page associations of the second layer to the constant
drift in the interests of users. For each layer, we introduce several meth-
ods, and evaluate them over a large, real-world dataset. The outcomes
of our experimental evaluation suggest a significant improvement over
other methods typically used in this context.

1 Introduction

Revisitation is the act of accessing again a previously visited Web page. As such,
it constitutes a major part of the entire Web activity: Web users usually have
to handle repetitive but infrequent tasks, revisiting pages after a considerable
amount of time [4]. This was verified by most past works that explored users’
surfing behaviors; Herder [10], for instance, quantifies it to 50% of the overall
Web traffic, while Cockburn and McKenzie [4] approximate it to 80%. As a
result, individuals have been found to waste 15% of their overall browsing time
in their effort to find information they have accessed in the past [18]. They can
benefit, therefore, to a large extent from browser-based methods that predict
and facilitate their next revisitation request.

The most popular tools for client-side revisitation are bookmarks [4,10] and
search engines [18,19]. The former, though, had their popularity significantly de-
clined in favor of the latter, as they involve serious managing and organizational
problems: the size of bookmark collections constantly increases with time, thus
reducing their usability [4]. Search engines, on the other hand, are becoming the
dominant tool for supporting revisitation, with about 40% of all queries per-
taining to re-finding; that is, the process of using the same or a similar query
to re-locate a previously visited Web page. However, the use of search engines

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 258–273, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Layered Approach to Revisitation Prediction 259

is impractical, as it requires the memorization of a usually hard-to-remember
combination of keywords [11]. There is, therefore, a great need for new methods
that predict and facilitate users’ revisitation activity.

In this paper, we introduce a system architecture that encompasses a set of
methods aligned in three tiers. Each layer captures specific patterns in the nav-
igational activity of a user, in order to effectively predict her next revisitation:
the first one, the ranking layer, comprises functions that rank visited resources
according to their likelihood of being (re-)accessed in the immediate future. The
second one, called propagation layer, enhances the ranking methods with tech-
niques that encapsulate contextual patterns in the behavior of a user; that is,
it identifies groups of pages visited together during the same session - in the
same or different order - and boosts their ranking values accordingly. Finally,
the third tier, the drift layer, conveys methods that adapt the patterns captured
by the propagation layer to the changing nature of the interests of the user. On
the whole, our framework constitutes a comprehensive method for revisitation
prediction, that covers all its aspects (i.e.., frequency and recency of page re-
quests, contextual patterns and concept drift), while being easy to implement
and integrate into a user interface.

Special care has been taken to make our framework extensible, so that adding
new methods or improving existing ones, in any of its three tiers, is a straight-
forward procedure. This is indeed ensured by the transparency of the strictly
defined interfaces described in Section 3. We have also made public both the
implementation and the data used in this paper under the SUPRA1 project of
SourceForge2. Thus, we provide a common benchmark for new algorithms in this
area, and encourage other researchers to experiment with our library and extend
it with improved or novel techniques.

To summarize, the main contributions of this paper are the following:

– We introduce a layered architecture for a system that effectively addresses
the next revisitation prediction problem. It consists of three tiers, each tack-
ling a specific aspect of the problem.

– We coin several methods for each layer, based on the navigational and the
time patterns of individual user’s activity.

– We evaluate the methods of our library through a thorough experimental
study that involves a voluminous, real-world dataset. The results verify its
superiority over well-established methods for this problem.

The rest of this paper is organized as follows: in Section 2 we discuss related work,
while in Section 3 we formally define the problem we are tackling and elaborate
on the architecture of our system. Section 4 analyses our thorough evaluation
study, and Section 5 wraps up our work with final remarks and future plans.

1 SUPRA stands for “SUrfing Prediction fRAmework”.
2 See http://sourceforge.net/projects/supraproject.

260 G. Papadakis et al.

2 Related Work

A problem more general than the next revisitation prediction has has been exten-
sively studied in the literature: the next page prediction problem. The method
that has prevailed in this field, at least in terms of popularity, is Association
Rules Mining. In more detail, association rules (AR) effectively identify related
resources without taking into account their order of appearance (e.g., pages that
are typically visited together, in the same session, but not necessarily in the
same order) [1,2]. This feature turns them ideal for recommending resources re-
lated to a particular site. Numerous works have investigated the functionality of
different variations of AR [7,12,16]. For example, a recent work by Kazienko [12]
explores indirect AR for Web recommendations, involving resources that are not
“hardly” connected as in typical AR.

However, AR suffer from a variety of drawbacks: first, they rely on the most
frequent patterns identified in the training set, thus misclassifying new patterns
that are not included in it (e.g., patterns stemming from concept drift). Second,
they fail to recommend rarely visited, and, thus, non-obvious and serendipitous
items, since such resources never reach the minimum support limit3. Third, they
disregard the order of itemsets, and cannot distinguish between different patterns
that involve the same resources (i.e., an itemset I1 = {1, 2, 3} is treated equally
with all its 6 permutations).

To overcome this last problem, sequential patterns have also been employed
in the context of prediction methods. Among them, state-based methods, like
Markov models, are particularly popular [20,6,3]. Sequence mining techniques
constitute a variation of this approach, in the sense that they do not consider
the strict order between items [2,15]. A comparison of these techniques with AR
was conducted by Géry and Haddad [8], with the outcomes of their evaluation
suggesting that Frequent Sequence Mining has the best performance. Neverthe-
less, all these methods still suffer from the inability to predict/recommend unseen
items (i.e., not included in the training set, typically due to concept drift).

With the aim of introducing a prediction method that is equally effective
with unseen data, Awad et al. [3] combined the Markov model with Support
Vector Machines (SVM) under Dempster’s rule. Their experimental evaluation
verified the superiority of their hybrid model over AR, especially when domain
knowledge is incorporated into it. However, their method is quite impractical:
it requires a different SVM classifier for each one of the available resources and,
thus, entails an excessively high training time.

In the following sections, we propose a layered system architecture for re-
visitation prediction that overcomes the shortcomings of existing works, while
taking their advantages into account. To this end, the first layer incorporates
techniques that estimate the value of visited pages from the frequency and the
recency of their requests. The second layer, on the other hand, captures the

3 The problem of identifying rare but important associations has been tackled through
the multiple minimum support method. This technique, however, has not yet been
applied in the context of the next page prediction problem.

A Layered Approach to Revisitation Prediction 261

Fig. 1. The layered architecture of our revisitation prediction system

connections between pages visited during the same session, either by consider-
ing or by ignoring their order of access. Its novelty lies in its ability to identify
new associations on-the-fly and to incorporate them dynamically into its data
structure. To discard the connections that are outdated due to the drift in the
interests of a user, we introduce another layer encompassing a window-based
drift method; it re-adjusts the associations between pages after a certain period
of time, so that they reflect the latest patterns in the user’s activity.

3 Approach

The problem we are tackling in this paper consists of the task of identifying
which Web page, among those visited by a specific user in the past, will be
revisited in her next page request. More formally, we define it as follows:

Problem Statement. Given the collection of Web pages, Pu = {p1, p2, ...},
that have been visited by a user, u, during her past n page requests, Ru =
{r1, r2, . . . , rn}, order them accordingly, so that the ranking of the page pi that
she will revisit in her next request, rn+1, is the highest possible.

The above definition stresses that the goal is to facilitate the access to pages
that have already been visited in the past, rather than trying to recommend not-
visited but relevant ones. To serve this goal, we present a collection of methods
that produce a ranking of all visited Web pages; the more likely a Web page is to
be accessed in the next request, the higher its ranking. The ranked list of pages
is updated after each page visit, and the higher the ranking of the subsequently
accessed page, the better the prediction. This is in line with the intuition behind
the ranking of search engines’ results to keyword queries: users typically consult
only the top 10 results, and the higher the ranking of the desired resource, the
better the performance of the search engine [9].

Figure 1 depicts the architecture of our system, that encompasses three tiers
of methods. The first one entails ranking methods, which estimate for each Web
page the likelihood that it will be accessed in the next request. Their estimation

262 G. Papadakis et al.

is derived from patterns in the surfing history of the underlying user, namely
the recency and the frequency of accesses to each page. The second layer cov-
ers propagation methods ; these are techniques that capture repetitiveness in the
navigational activity of the underlying user and identify contextual associations
between pages that are typically visited together (i.e., in the same session, but
not necessarily in the same order). Depending on the degree of connectivity be-
tween the associated Web pages, their values (assigned by the ranking methods)
are then propagated to each other. The third layer contains window-based drift
methods, which adapt the associations encapsulated by the propagation methods
to the volatile interests of the user. They employ a sliding time frame (e.g., of a
day or a week) that periodically discards the connections that took place out of
its borders. On the whole, these three layers provide a comprehensive framework
that tackles all aspects of the revisitation activity.

In the following, we present and analyze several techniques for each layer.
Their implementation is already freely available through the SUPRA project of
SourceForge. In this way, we encourage other researchers to experiment with
them and to extend our library with new methods for every layer. Special care
has been taken to make this a straightforward procedure, by providing clear
guidelines through the formalization of the methods that are presented in the fol-
lowing sections. Any implementation complying with the minimal requirements
for a ranking, a propagation and a drift method, as described in Definitions 1
to 8, can be easily integrated in our library. It is also worth noting that the
real-world data employed in our experiments have also been publicly released
through the Web History Repository project4, so that they can be used as a
general benchmark for prediction algorithms, independently of our framework.

3.1 Ranking Methods

As mentioned above, the aim of a ranking method is to provide for each Web
page a numerical estimation of the likelihood that it will be accessed in the next
request. All pages are then sorted in descending order of their value, with the
aim of placing the next revisited page to the highest possible ranking. After each
page visit, the value of all pages changes, and the ranked list is updated. The
reason is that the numerical estimation of each page is derived by contrasting
the latest page visit with all (or part) of the past requests to that particular
page; depending on the way the page’s access history is handled, we distinguish
two kinds of ranking functions: the event- and the time-based ones.

Time-based Ranking Methods. This family of ranking functions relies on
the time the requests to a page occurred, in order to estimate its value. That
is, the contribution of each request to the total value of the corresponding page
depends on the actual time the respective page visits took place and the time that
has elapsed ever since. Thus, the input of these methods principally comprises
the request timestamps of each page:

4 See http://webhistoryproject.blogspot.com

A Layered Approach to Revisitation Prediction 263

Definition 1. Given the page requests Ru of a user u, the request timestamps
of a page pi, Tpi , is the set of timestamps of those requests in Ru that pertain
to pi.

A time-based ranking method can be now defined as follows:

Definition 2. A time-based ranking method is a function that takes as input
the request timestamps Tpi = {t1, t2, . . . , tk} of a page pi together with the time
of the latest request, tn, of the given user u, and produces as output a value for
pi, vpi ∈ [0, 1], that is proportional to the likelihood that it will be accessed at the
next page request, rn+1 (i.e., the closer vpi is to 1, the higher this likelihood).

In our system, we selected Frecency (FR) as representative of this kind of ranking
methods. The reason is that it is integrated in one of the most popular Web
browsers, namely Mozilla Firefox5. In essence, it places more emphasis on the
frequency of the use of a Web page, and discounts only to some extent the
influence of the very old visits. In more detail, the total ranking value of each
page is equal to the sum of the values assigned to each of its requests; the
value of a single page visit is called bonus and its size is proportional to its
recency: requests occurring within the last four days take the highest bonus,
whereas requests that are older than 90 days take the lowest one. In addition,
FR considers the type of access, i.e., whether the URL of the page was typed,
clicked upon or selected from the bookmarks collection. This is, however, out of
the scope of our definition6. Note that to restrict the ranking values of Frecency
in the interval [0, 1], our implementation normalizes the value of each page with
the globally largest page value.

Event-based Ranking Methods. In contrast with the previous category,
event-based ranking methods interpret page visits as a sequence of events, and
exclusively take into account their relative position. That is, they disregard the
actual time of each request, and consider only the number of events that have
elapsed since it occurred, in order to estimate its contribution to the total value
of the corresponding page. Thus, this family of methods represents the access
history of a page by the indices of the related requests:

Definition 3. Given the page requests Ru of a user u, the request indices
of a page pi, Ipi , is the set of the serial numbers of those requests in Ru that
pertain to pi. The serial number of the chronologically first request is 1 and is
incremented by 1 for each subsequent page visit.

Given this definition, an event-based ranking method is defined as follows:

Definition 4. An event-based ranking method is a function that takes as
input the request indices Ipi = {i1, i2, . . . , ik} of a page pi together with the

5 See http://www.mozilla.com/en-US/firefox
6 See https://developer.mozilla.org/en/The Places frecency algorithm for

more details.

264 G. Papadakis et al.

index of the latest request, in, of a user u, and produces as output the value of
pi, vpi ∈ [0, 1], that is proportional to the likelihood that pi will be accessed at the
next page request, rn+1 (i.e., the closer vpi is to 1, the higher this likelihood).

As an illustration of the this kind of methods, we consider the decay ranking
model that was introduced by Papadakis et al. in [14]. According to this model,
the value of a Web page pi after in visits is derived from the following formula:

DEC(pi, Ipi , in) =
|Ipi

|∑
j=1

d(ij , in),

where d(ij , in) is a decay function that takes as an input the index ij of a request
to pi together with the index of the current page vist, in, and gives as output
the contribution of this request to the total value of pi.

According to Cormode et al. [5], every valid decay function should satisfy the
following properties:

1. d(ij , in) = 1 when ij = in
2. 0 ≤ d(ij , in) ≤ 1 ∀ij ∈ [0, in]
3. d is monotone non-increasing as n increases:

i′n ≥ in → d(ij , i′n) ≤ d(ij , in) ∀ij ∈ [0, in].

Among the valid decay function families, the Polynomial Decay (PD) func-
tions were found by Papadakis et al. [14] to outperform both the exponential and
the logarithmic ones. The reason is that their smooth decay balances harmon-
ically the recency and the frequency of page revisits; in contrast, exponential
functions convey a steep decay that puts more emphasis on recency, whereas the
logarithmic functions promote excessively frequency, due to their overly slow de-
cay. The actual value of a polynomial decay function with exponent α for a page
pi at the ij − th request out of in, in total, accesses is given from the following
formula:

d(ij , in) =
1

1 + (in − ij)α
. (1)

The main difference between Polynomial Decay and Frecency, apart from the
evidence they take into account, is the balance they achieve between frequency
and recency. Frecency favors the former over the latter, thus constituting a mere
improved version of the Most Frequently Used caching algorithm. On the other
hand, Polynomial Decay achieves a better balance between these two metrics,
while being more flexible, as well. In fact, it can be adapted to the behavioral
patterns of the underlying user, employing the value of α in Formula 1 as a
fine-tuning parameter; the larger its value (1 << α), the higher the effect of
recency on the overall value of a page (due to the steeper the decay of the
contribution of a page request), and vice versa. Thus, Polynomial Decay can
adjust its performance to different kinds of users.

A Layered Approach to Revisitation Prediction 265

3.2 Propagation Methods

Unlike ranking methods that produce an ordering of Web pages, propagation
methods aim at capturing contextual information through the detection of pat-
terns in the surfing activity of users. They identify those pages that are commonly
visited within the same session and associate them with each other. The “links”
created by these methods are then combined with a ranking method, so that the
value of a Web page is propagated to its relevant ones. In this way, the higher
the value of a Web page, the more the pages associated with it are boosted and
the more their ranking is upgraded.

At the core of the associations between resources lies the notion of the session,
which can be formally defined as follows:

Definition 5. A session S is the bag of all pages pi visited by a user u in
the same browser tab for a time period of up to 25.5 minutes ([8,17]), placed in
chronological order, from the earliest to the latest one: S = {p1, p2, . . . , pk}.
Based on Definition 5, propagation methods can be defined as follows:

Definition 6. A propagation method is a function that takes as input the
last requested page, pi, within a session, S, and defines appropriately the degree
of connection between pi and all the other pages visited during S. Hence, given
two pages, X and Y , it returns a value, vXY ∈ [0, 1], that is proportional to the
likelihood of Y being accessed immediately after X (i.e., the closer vXY is to 1,
the more likely this transition is).

In this work, we distinguish two families of propagation methods: the order-
preserving ones, which take into account the order of the page requests within a
session, and the order-neutral ones that disregard this order. For the former case,
we consider transition matrices, whereas for the latter we examine association
matrices.

Order-Preserving Propagation Methods. This category of propagation
methods relies on the idea that Web pages are typically accessed in the same
or similar order. Hence, given a session that contains a series of page requests
ordered by time, they build the associations between pages according to this
ordering: each page is connected only with the pages that precede it. To capture
these transitions that form chronological patterns in the navigational activity of
users, we introduce the transition matrix (TM).

In more detail, a TM is a two dimensional structure with its rows and columns
representing the Web pages P visited so far by the given user u (Problem State-
ment); each cell TM(x, y) expresses the number of times that a user visited
page y after x. Given that a transition matrix respects the order of accesses
within a session, it is not a symmetrical one: the value of TM(x, y) is not nec-
essarily equal to that of TM(y, x). Moreover, its diagonal cells are all equal to
0: ∀x TM(x, x) = 0. This is because there is no point in associating a page
with itself; in case a requested Web page is revisited in the subsequent request,

266 G. Papadakis et al.

Fig. 2. The values of several types of the Transition and the Association Matrices after
the last page request of the session: S1 : A → B → C → D → A. a) corresponds to
SM, b) to CM, c) to DM, d) to IM, and e) to AM.

its ranking will be high enough due to the value assigned to it by the ranking
method and does not need to be boosted by the propagation method.

In the following, we introduce 4 different techniques for correlating Web pages
according to the past navigational activity in the context of a transition matrix.
They are intuitively illustrated through a simple walkthrough example. Given
a set of 4 Web pages - A, B, C, D - and the following set of requests during a
given session, S1 : A → B → C → D → A, we can associate these pages in four
different ways (taking into account the order of the accesses):

1. Simple Connectivity Transition Matrix (SM). For each transition x →
y in the given session, only the value of the cell TM(x, y) is incremented
by one. The frequencies defined by this rule work exactly as a first-order
Markov model. The rationale behind this approach is, thus, the expectation
that requests tend to occur in the same strict order. Figure 2(a) depicts the
values of the transition matrix according to this rule after the last transition
of the given session, D → A.

2. Continuous Connectivity Transition Matrix (CM). Each Web page
visited within the current session is associated with all the previously ac-
cessed pages. In this way, it can effectively support requests that take place
in a similar order, i.e., in the same direction, but not necessarily in the same
sequence (e.g., X → Z → Y and X → Y). In our example, A is associ-
ated with all other Web pages after transition D → A, incrementing the
corresponding cells by one (Figure 2(b)).

3. Decreasing Continuous Connectivity Transition Matrix (DM). This
strategy operates in a similar way as the previous one with the difference that
it increments the cells of TM by a decay parameter representing the distance
(i.e., number of transitions) that intervenes between the corresponding Web
pages. Therefore, this form of transition matrix lies in the middle of SM and
DM, supporting evenly requests that occur either in the same or in similar
order. In our example, TM(C, A) is incremented by 1/2 after D → A, since
page C is two steps away from the page A. Figure 2(c) depicts the whole
DM after the transition D → A.

4. Increasing Continuous Connectivity Transition Matrix (IM). This is
the inverted version of the previous strategy. Instead of decreasing the value
added to TM(x, y) according to the distance of pages x and y, it increases it

A Layered Approach to Revisitation Prediction 267

proportionally. Hence, it results in stronger connections between pages that
are more distant, in an effort to identify the final destination of the given
session. By boosting its value early enough, it can significantly restrict the
number of irrelevant pages that the user visits before reaching its actual page
of interest. The matrix produced by this rule after the last transition of our
example is presented in Figure 2(d).

It is worth noting that SM is also used in Awad et al. [3], but its frequencies
are merely used as features to a classification algorithm. In addition, CM is also
employed in Parameswaran et al. [15] as the means of providing the frequencies
of the probabilistic analysis that precedence mining involves.

Order-Neutral Propagation Methods. In contrast to the order preserving
methods, the order-neutral ones are based on the idea that the temporal order of
page visits within a session is not important; pages that are visited in the course
of the same session should be equally connected with each other, regardless of
their order and the number of transitions that intervene between them. The
rationale behind this idea is that users may visit a group of pages X, Y, Z on a
regular basis, but not necessarily in that order.

To model this idea, we introduce the association matrix (AM); similar to TM,
AM is a matrix whose rows and columns are the Web pages P visited so far by
the given user. The difference is that AM is built simply by associating all pages
visited in a single session with each other; i.e., each Web page is connected
not only with the pages preceding it, but also with those following it. Thus,
an AM is always a symmetrical matrix with all its diagonal cells equal to 0
(∀x AM(x, x) = 0). Given the session S1 of the above example, the resulting
AM has all non-diagonal cells equal to one, as all resources were accessed during
this session (Figure 2(e)).

Combining Ranking with Propagation Methods. To combine a ranking
method with one of the propagation techniques, we employ a simple, linear
scheme: following the in-th page request, the value of all pages is (re)computed,
according to the selected ranking method. Then, for each non-zero cell of the
matrix at hand (TM(x, y) or AM(x, y)), we increment the value assigned to
page y by the ranking method, vy, as follows:

vy+ = p(x → y) · vx, where

– p(x → y) is the transition probability from page x to page y, estimated by
p(x → y) = TM(x,y)∑ in

i TM(x,i)
(or p(x → y) = AM(x,y)∑ in

i AM(x,i)
), and

– vx is the value of x estimated by the ranking method.

3.3 Drift Methods

Unlike the ranking methods, the propagation ones encompass no inherent sup-
port for drift in the focus of user’s interests: the connections stored in their data

268 G. Papadakis et al.

structure (i.e., matrix) remain static, and, thus, cannot adapt to the constantly
changing habits and interests of users. In the literature, two main approaches
that support concept drift have been proposed: first, the decay functions, like
the polynomial one, and, second, the window-based methods [13]. The latter
take their name from the sliding window they employ in order to keep the most
recent evidence and ignore the rest.

To enable the dynamic nature of the propagation methods, we introduce in
our system a third layer that consists of a window-based drift method, operating
on the data structure of the second layer. Depending on the way the size of
the window is specified, we distinguish between event-based and time-based drift
methods; the former define the window with respect to the size of a batch of
requests, whereas the latter with respect to a period of time. More formally, the
time-based drift methods are defined as follows:

Definition 7. Given the page requests Ru of a user u, the matrix m of a prop-
agation method and a time period t, a time-based drift method updates the
connections stored in m so that they reflect the page requests of Ru that occurred
in the latest t temporal units (e.g., days or weeks).

Similarly, the event-based drift methods are defined as follows:

Definition 8. Given the page requests Ru of a user u, the matrix m of a prop-
agation method and a number of requests n, an event-based drift method
updates the connections stored in m so that they reflect the page requests of Ru

that occurred in the latest n page requests.

Due to the temporal, periodic patterns we identified in the large, real-world
data set we have at our disposal, we considered only time-based drift methods.
Thus, in our experimental study we examine the Day-, the Week- and the
Month-model. As their name suggests, they update the matrix of the under-
lying propagation method so that it maintains the associations of the last day,
the last week and the last month, respectively.

4 Evaluation

Data Set. To thoroughly evaluate our approach, we employed a real-world,
voluminous data set that was gathered through the Web History Repository
project. It comprises the navigational activity of 200 users, logged in the time
period between 30/09/2010 and 11/01/2011. In total, more than 580,000 page
requests were recorded. They are not, though, evenly distributed over the partic-
ipants; characteristically, there are 100 users with less than 1,000 requests (with
a minimum of 200), and 18 users with more than 10,000 requests (with a max-
imum of 16,570). The distribution of the logging period per user varies greatly,
as well, ranging from 1 to 278 days. On average, though, each user issued almost
3,000 page requests, in a time period of 38 days. One third of them constituted a
revisit, thus producing a revisitation rate that is a bit lower than the estimation

A Layered Approach to Revisitation Prediction 269

Table 1. Technical characteristics of the WHR data set we employed

Users 200 Av. Requests per User 2,914
Page Requests 582,853 Av. Web Pages per User 1,905
Web Pages 381,066 Av. Revisits per User 1,009
Sessions 91,300 Av. Sessions per User 457
Revisits 201,787 Av. Requests per Session 126.40
Revisitation Rate 34.62% Av. Days per User 37.72

of Herder et al. [10] in 2005. Regarding the demographics (e.g., age and sex)
of the participants, we do not have any relevant data at our disposal, since the
volunteers contributed their navigational history anonymously. Note also that
the sessions in the data set are set transparently by the browser, not necessarily
according to the time criterion of Definition 5. The technical characteristics of
our data set are summarized in Table 1.

Setup. In the course of our experimental evaluation, we simulated the naviga-
tional activity of each user independently of that of the others: her page requests
were sorted in ascending order of time, and the simulation proceeded by one re-
quest at a time, starting from the earliest and moving to the latest one. A ranked
list of the so-far-visited pages was maintained per user, and, after each page re-
quest, the ranking of all pages was updated, according to our prediction methods;
if the next page request was not a revisitation, the new page was added to the
list. Otherwise, the position of the corresponding Web resource was recorded.
Based on the ranking positions we collected, we evaluate the performance of the
prediction algorithms in terms of the following metrics:

(i) Success Rate at 1 (S@1) denotes the portion of revisitations that per-
tained to the top ranked Web page. The higher this percentage, the better the
performance of the prediction method.

(ii) Success Rate at 10 (S@10) stands for the percentage of revisitation
requests pertaining to a page that is ranked in some of the top 10 positions.
Similar to S@1, the higher its value, the better the performance of the method.
This metric expresses the actual usability of a prediction algorithm, as users
typically have a look only at the first 10 pages presented to them, just like they
do with Web search engine results [9].

(iii) Average Ranking Position (ARP) represents the place a revisited
page is found on average in the ranking list of the method at hand. Thus, it
provides an estimation of the overall performance of a prediction algorithm,
considering the ranking position of all revisitations, and not just the top ranked
ones. The lower its value, the better the performance of the prediction method.

On the whole, the combination of these three metrics provides a comprehen-
sive estimation of the effectiveness of a prediction algorithm: it considers both
its practical recommendations (S@1, S@10) and its performance over all revisi-
tations (ARP).

270 G. Papadakis et al.

30

40

50

60

70
S@10 S@1

0

10

20

30

40

50

60

70

PD FR FR+AM FR+SM FR+SM+Day
Model

PD+AM PD+SM PD+SM+Day
Model

S@10 S@1

Fig. 3. Performance in percentage (%) with respect to S@1 and S@10 for the selected
prediction methods. The methods are placed in ascending order of S@10 from left to
right, with the right-most one achieving the optimal performance.

Results Analysis. As baseline approaches for the evaluation of our system, we
consider the individual ranking methods of Section 3, i.e., FR and PD; they have
already been proposed in the literature, and the former actually constitutes the
state-of-the-art method, as it is integrated in a popular browser (Mozilla Firefox),
and is widely used. The goal is, thus, to verify that combining existing ranking
methods with the propagation and the drift ones enhances their performance to
a significant extent and results in more accurate predictions.

In total, our framework accommodates (2 ranking methods × 5 propagation
methods × 3 drift methods =)30 combinations of prediction methods. Due to
lack of space and for the sake of readability, we will consider only 6 of them, in
addition to the baseline ones: the best of combination of each ranking method
with an order-neutral and an order-preserving propagation method, as well as
the best combination of ranking and propagation methods with the day-model
drift method. The criterion for choosing the best combination of ranking and
propagation methods was their performance for S@10, the most indicative metric
for the usability of a revisitation prediction method. In this aspect, both ranking
functions maximized their performance when combined with SM. On the other
hand, the selection of the drift method was determined by the characteristics
of our data set, which does not cover the long-term navigational activity of
the participants (apart from a couple of users); rather, it contains their short-
or their mid-term activity (i.e., few days and weeks, respectively). Nevertheless,
our evaluation enables us to examine the contribution of each layer to the overall
performance, independently of that of the others7.

The results of the evaluation for the first two metrics are presented in Figure 3,
while Figure 4 depicts the performance of the selected methods for ARP. In

7 Note that there is not point of examining the performance of ranking methods in
combination with the drift ones alone, since the latter apply only to the data struc-
ture of the propagation methods.

A Layered Approach to Revisitation Prediction 271

Fig. 4. Performance with respect to ARP for the selected prediction methods. The
methods are placed in ascending order of performance from left to right, with the
right-most one achieving the optimal performance.

both cases, the methods are ordered from left to right in ascending order of
performance, so that the right-most method exhibits the best performance.

In the case of S@1 and S@10, we can easily notice that the performance
of ranking methods is substantially improved by both the other levels of the
system. Actually, the best performances are achieved when all three layers are
employed in conjunction. This is particularly true for PD and its combinations
with AM, SM and the Day Model, with the complete method (PD+SM+Day
Model) improving PD by 52.84% and 29.41% with respect to the S@1 and S@10,
respectively. FR, on the other hand, is improved to a lower extent by the three-
layered model by 6.8% and 17.41%, respectively. All improvements of the second
layer over the first and the third over the two other layers, were found to be
statistically significant (p < 0.05), with the exception of FR+AM over FR.

Regarding ARP, we notice the same patterns: the more layers are employed,
the better the overall performance of our system. It is worth noting that the
degree of improvement for FR is much higher in this case: it ranges from 18.66%
for FR+SM to 27.87% for FR+SM+Day Model. For PD, the improvements fluc-
tuate between 29.38% for PD+SM and 35.88% PD+SM+Day Model. Again, all
improvements of one layer over the underlying ones were found to be statistically
significant (p < 0.05).

It is worth noting that the order-preserving propagation methods outperform
the order-neutral ones for S@1 and S@10, while having a lower performance with
respect to ARP. The reason is that, unlike SM, AM does not identify the most
relevant page(s) to the currently accessed one; rather, it uniformly associates
each page with all other pages visited during the same sessions. Thus, AM evenly
distributes the value of the most recently visited page among all relevant pages,
leading to higher ARP, whereas SM merely boosts the value and the ranking of
the most likely next pages. The success rate gets, therefore, substantially higher,
but ARP is not improved at a lower rate.

272 G. Papadakis et al.

5 Conclusions

In this paper, we presented a layered architecture for a system that facilitates the
revisitation activity of users, through accurate predictions. It consists of three
tiers, each addressing a particular aspect of this phenomenon: the recency and
frequency of patterns of revisitations, their contextual patterns as well as the
ever-changing interests of a user. Our thorough experimental evaluation verified
that each layer conveys significant improvements over the prevalent method for
this task (i.e., Mozilla Firefox’s Frecency). On the whole, our system predicts
the next revisited page in 37% of the cases, while its top-10 recommendations
contain the desired page in 68% of the cases. Given that different users receive
the optimal recommendations for different methods, in the future we plan to
investigate ways of inferring a priori the optimal combination of methods for
each user. In addition, we intend to examine whether our system is applicable
in the context of server-side recommendations, as well (e.g., in the case of the
intranet of a large company).

Acknowledgments

This research has been co-funded by the European Commission within the eCon-
tentplus targeted project OpenScout, grant ECP 2008 EDU 428016.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of
items in large databases. In: SIGMOD Conference, pp. 207–216 (1993)

2. Agrawal, R., Srikant, R.: Mining sequential patterns. In: ICDE, pp. 3–14 (1995)
3. Awad, M., Khan, L., Thuraisingham, B.M.: Predicting www surfing using multiple

evidence combination. VLDB J. 17(3), 401–417 (2008)
4. Cockburn, A., McKenzie, B.J.: What do web users do? an empirical analysis of

web use. Int. J. Hum.-Comput. Stud. 54(6), 903–922 (2001)
5. Cormode, G., Shkapenyuk, V., Srivastava, D., Xu, B.: Forward decay: A practical

time decay model for streaming systems. In: ICDE, pp. 138–149 (2009)
6. Deshpande, M., Karypis, G.: Selective markov models for predicting web page

accesses. ACM Trans. Internet Techn. 4(2), 163–184 (2004)
7. Fu, X., Budzik, J., Hammond, K.J.: Mining navigation history for recommendation.

In: IUI, pp. 106–112 (2000)
8. Géry, M., Haddad, M.H.: Evaluation of web usage mining approaches for user’s

next request prediction. In: WIDM, pp. 74–81 (2003)
9. Hawking, D., Craswell, N., Bailey, P., Griffiths, K.: Measuring search engine quality.

Inf. Retr. 4(1), 33–59 (2001)
10. Herder, E.: Characterizations of user web revisit behavior. In: LWA, pp. 32–37

(2005)
11. Kawase, R., Papadakis, G., Herder, E., Nejdl, W.: The impact of bookmarks and

annotations on refinding information. In: HT, pp. 29–34 (2010)
12. Kazienko, P.: Mining indirect association rules for web recommendation. Applied

Mathematics and Computer Science 19(1), 165–186 (2009)

A Layered Approach to Revisitation Prediction 273

13. Koychev, I., Schwab, I.: Adaptation to drifting user’s interests. In: ECML Work-
shop: Machine Learning in New Information Age, Citeseer, pp. 39–46 (2000)

14. Papadakis, G., Niederee, C., Nejdl, W.: Decay-based ranking for social application
content. In: WEBIST, pp. 276–282 (2010)

15. Parameswaran, A.G., Koutrika, G., Bercovitz, B., Garcia-Molina, H.: Recsplorer:
recommendation algorithms based on precedence mining. In: SIGMOD, pp. 87–98
(2010)

16. Sandvig, J.J., Mobasher, B., Burke, R.: Robustness of collaborative recommenda-
tion based on association rule mining. In: RecSys, pp. 105–112 (2007)

17. Tauscher, L., Greenberg, S.: How people revisit web pages: empirical findings and
implications for the design of history systems. Int. J. Hum.-Comput. Stud. 47(1),
97–137 (1997)

18. Teevan, J., Adar, E., Jones, R., Potts, M.A.S.: Information re-retrieval: repeat
queries in yahoo’s logs. In: SIGIR, pp. 151–158 (2007)

19. Tyler, S.K., Teevan, J.: Large scale query log analysis of re-finding. In: WSDM,
pp. 191–200 (2010)

20. Yao, Y., Shi, L., Wang, Z.: A markov prediction model based on page hierarchical
clustering. Int. J. Distrib. Sen. Netw. 5(1), 89–89 (2009)

Improving the Exploration of Tag Spaces Using

Automated Tag Clustering

Joni Radelaar, Aart-Jan Boor, Damir Vandic,
Jan-Willem van Dam, Frederik Hogenboom, and Flavius Frasincar

Erasmus University Rotterdam
PO Box 1738, NL-3000

Rotterdam, The Netherlands
joni@radelaar.nl, {aartjan.boor,jwvdam}@gmail.com,

{vandic,fhogenboom,frasincar}@ese.eur.nl

Abstract. Due to the increasing popularity of tagging, it is important
to overcome challenges resulting from the free nature of tagging, such as
the use of synonyms, homonyms, syntactic variations, etc. The Semantic
Tag Clustering Search (STCS) framework deals with these challenges by
detecting syntactic variations of tags and by clustering semantically re-
lated tags. We evaluate our framework using Flickr data from 2009 and
compare the STCS framework to two previously introduced tag cluster-
ing techniques. We conclude that our framework performs significantly
better in terms of cluster precision compared to one method and has a
better average precision compared to the other method.

Keywords: Tagging, syntactic clustering, semantic clustering, tag dis-
ambiguation.

1 Introduction

On today’s World Wide Web, it is becoming increasingly popular to use tags for
the purpose of describing resources. Tagging allows users to annotate a resource,
such as a video, photo, or Web page, with a keyword or tag of their own choice.
Because there are no restrictions on the tags that can be used, tags provide
a flexible way of describing resources. However, because of the unstructured
nature of tagging, there are some problems associated with retrieving resources
using tag-based search engines. These problems are often caused by different
tags having the same or closely related meaning. This can be the result of the
use synonyms, but it could also be caused by syntactic variations. Examples of
syntactic variations are misspellings or the use of the plural or singular form of
a specific word. Users may also use different levels of specificity while describing
a resource, which is identified as the basic level variation problem by Golder and
Huberman [9]. For example, one user might tag a picture of a cat as “animal”
(not very specific), while another user would use “persian” (very specific). The
usage of homonyms, i.e., words with multiple unrelated meanings, is another
problem associated with tagging.

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 274–288, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Improving the Exploration of Tag Spaces Using Automated Tag Clustering 275

The problems described above can lead to undesirable results when searching
for resources using tags. For example if a user is looking for a picture using “cat”
as a keyword, he or she would most likely also be interested in pictures which are
tagged with “cats” (syntactic variation), “persian” (more specific, semantically
related term), “kitty” (synonym), and “kittie” (misspelling of kitty).

One way to deal with these problems is to create clusters of syntactically and
semantically related tags. Creating syntactic clusters involves the grouping of
tags that are syntactic variations of each other into separate groups or clusters.
Search algorithms can then use these clusters to improve the quality of a search
query. For example, when a user enters a tag as a search query, the search
algorithm could also add tags to the query that are in the same cluster as the
tag that was entered. Creating semantically related clusters involves grouping
tags that are semantically related, e.g., “sanfrancisco” and “goldengate”. Tags
occurring in multiple semantic clusters can be used to identify tags with multiple
meanings. If a tag occurs in multiple clusters it most likely also has multiple
meanings, e.g., “turkey” can refer to both the country and the animal.

As a solution to the previous problem, we define the Semantic Tag Cluster-
ing Search (STCS) framework, which consists of two parts. The first part deals
with syntactic variations, whereas the second part is concerned with deriving
semantic clusters. We implement and evaluate the use of the Levenshtein sim-
ilarity measure [13] and a combination of the Levenshtein similarity and the
cosine similarity measure, as similarity measures for syntactically related tags.
For identifying semantic clusters we implement and evaluate the semantic clus-
tering algorithm proposed by Specia and Motta [21] and a clustering algorithm
proposed by Lancichinetti et al. [11]. Additionally, we propose a modification to
the Specia and Motta approach to improve the results. We perform a thorough
evaluation of the used clustering methods that goes beyond previous evaluations
in extent.

The contribution of this paper stems from several aspects. First, although sev-
eral clustering techniques for clustering tags have already been proposed [3,21,24],
the evaluation of these techniques is done using relatively small data sets with a
small number of resources. In this paper, we evaluate different syntactic and se-
mantic clustering techniques using a larger data set than previously reported in
literature. In this way we aim to analyze the performance of our algorithms more
accurately on high volume data, gathered from Flickr [20]. Second, the proposed
algorithm for syntactic clustering addresses the issue of identifying syntactic
variations among short tags. Third, for the semantic clustering we identify the
issues with currently available tag clustering algorithms and propose solutions
for them. We have published previous work on STCS in [23]. Compared to this
early work, in this paper we provide more details on the used algorithms, use a
significantly larger data set for the experiments, and perform a more thorough
evaluation.

The rest of this paper is organized as follows. Section 2 discusses related
work. Subsequently, in Section 3 and 4 we give an overview of the design and

276 J. Radelaar et al.

implementation of our STCS framework. Section 5 elaborates on the evaluation
of our experimental results and Section 6 concludes the paper.

2 Related Work

This section discusses related work on several key aspects of our methodology.
Firstly, Subsection 2.1 presents tag clustering methods. Then, Subsection 2.2
elaborates on similarity measures, and finally, Subsection 2.3 introduces some
related work on cluster evaluation.

2.1 Tag Clustering

Echarte et al. [7] discuss the problem of syntactic variations in folksonomies.
They propose the utilization of pattern matching techniques to identify syntac-
tic variations of tags. They evaluate the performance of the Levenshtein and
Hamming distances using the 10,000 most popular tags and 1,577,198 annota-
tions from CiteULike. Results show that the Levenshtein measure provides the
best overall performance. However, both techniques do not perform well with
tags shorter than 4 characters.

Specia and Motta [21] propose a method for building semantically related
clusters of tags using a non-hierarchical clustering technique based on the co-
occurrence of tags. They also explore the relationships between pairs of within-
cluster tags. The authors perform a statistical analysis of the tag space in order
to identify clusters of possibly related tags. Clustering is based on the cosine
similarity among tags given by their co-occurrence vectors. Before creating the
clusters, Specia and Motta merge morphologically similar tags using the normal-
ized Levenshtein distance measure. The authors manually evaluated the results
based on 49,087 distinct resources and 17,956 distinct tags from Flickr and found
that the clustering approach results in meaningful groups of tags corresponding
to concepts in ontologies.

Begelman et al. [3] propose to build a directed graph of tags with an edge
between two vertices (tags) when there is a (strong) relation. The weight of the
edge is based on the co-occurrence of the connected tags. In order to partition
the set of tags into groups of semantically-related tags, their recursive algorithm
uses spectral bisection to split the graph into two clusters. It then evaluates
the split using the modularity function, which was introduced by Newman and
Girvan [17]. The modularity function provides a measure of the quality of a par-
ticular division of a network. Begelman et al. applied their clustering algorithm
to a data set containing 200,000 resources and 30,000 tags.

Yueng et al. [24] also use a graph-based clustering algorithm, where the mod-
ularity function is used to evaluate the quality of a division. However, unlike
Begelman et al., the authors consider different network representations of tags
and documents, e.g., networks based on users, co-occurrence of tags, and con-
text of tags using cosine similarity, and discuss the effects of these various
representations on the resulting clusters of semantically related tags. For their

Improving the Exploration of Tag Spaces Using Automated Tag Clustering 277

clustering experiments, a small data set is gathered from Delicious, containing
20 manually selected tags representing two or more concepts, complemented by
randomly selecting 30 tags from the 100 most popular tags, with each tag having
about 500 images. The authors find that networks based on tag context similarity
capture the most concepts. With these networks the cosine similarity is used to
perform a comparison of the context in which two tags are used, as reflected by
the tag co-occurrence vectors of the tags.

Lancichinetti et al. [11] present a method that uncovers the hierarchical and
overlapping community structure of complex networks. Their algorithm uses
a newly defined fitness function that determines the quality of a cover. This
function is used to discover the natural community of each node in a graph
by optimizing the fitness function using local iterative searching. The authors
evaluate their algorithm on artificial networks [2] that are known to have a built-
in community structure. Their results show that their algorithm is successful in
identifying these communities.

2.2 Similarity Measures

There are many similarity measures available for use in clustering algorithms.
Cattuto et al. [4] analyze a variety of these using a Delicious data set containing
the 10,000 most popular tags, by comparing the relations established through
the use of different similarity measures to WordNet [8] synsets. Cosine similar-
ity turns out to be the best similarity measure for detecting synonyms, while
FolkRank and co-occurrence appear to be more useful for detecting various other
semantic relations.

Markines et al. [15] evaluate the matching similarity, overlap similarity, Jac-
card similarity, Dice coefficient, cosine similarity, and mutual information mea-
sures using a more systematic approach. They investigate the performance of
these measures by generating several two-dimensional views on the tripartite
folksonomy of BibSonomy [10] using aggregated data from 128,500 resources,
1,921 users, and 58,753 tags. Unlike BibSonomy, Flickr only allows one user to
annotate a resource. Therefore, for a Flickr data set, only projection aggregation
is useful. The result of projection aggregation can be considered as a matrix with
binary elements wrt ∈ {0, 1}, where rows correspond to resources and columns
corresponds to tags. Given a resource and a tag, a 0 in this matrix element means
that no user associated that resource with that tag, whereas a 1 means that at
least one user has performed the indicated association. All similarity measures
can then be derived directly from this information. The usefulness of the various
measures as tag-tag similarity measures is evaluated using Kendall’s τ correla-
tions between the similarity vectors generated by the various measures and the
reference similarity vector provided by a WordNet grounding measure. Mutual
information proved to be the best similarity measure when using projection ag-
gregation. When compared to each other the remaining similarity measures have
the same performance. Unfortunately, mutual information is a computationally
intensive measure, which makes its use unfeasible for large data sets.

278 J. Radelaar et al.

2.3 Cluster Evaluation

Several measures exist to analyze clusters. Larsen and Aone [12] describe the
precision measure. Average precision is defined as

AvgPrec(Ω, C) =
1
|Ω|

∑
wk∈Ω

max
cj∈C

|ωk ∩ cj |
|wk| , (1)

where Ω = {ω1, ω2,, ωk} is the set of tag clusters and C = {c1, c2,, cj}
is the set of tag classes. We interpret ωk and cj as a set of tags, where ωk is
denoting a tag cluster and cj a tag class.

Manning et al. [14] describe the purity measure to evaluate clusters. They
define purity as

Purity(Ω, C) =
1
N

∑
wk∈Ω

max
cj∈C

|ωk ∩ cj | , (2)

where Ω and C are the same as in the previous equation and N is the total
number of tags.

Delling et al. [6] propose the density measure, which is a trade-off between
intra-cluster density and inter-cluster sparsity to evaluate a specific clustering.
Let us assume that G is an undirected and unweighted graph with n nodes and m
edges. A partitioning of the nodes into several clusters c is called a clustering C
of a graph. The edges between nodes of the same cluster are called intra-cluster
edges and the edges between nodes of different clusters are called inter-cluster
edges. The density of clustering C is then defined as:

Density(C) =
1
2

Intra-cluster-density(C) +
1
2

Inter-cluster-sparsity(C) , (3)

where

Intra-cluster-density(C) =
1
|C|

∑
c∈C

intra-cluster edges c(|c|
2

) , (4)

and
Inter-cluster-sparsity(C) = 1 − # inter-cluster edges(

n
2

) − ∑
c∈C

(|c|
2

) . (5)

3 Framework Design

This section introduces the Semantic Tag Clustering Search framework (STCS)
framework, which addresses the syntactic and semantic issues in tagging systems.
The framework consists of two layers. In the first layer, syntactic variations (e.g.,
misspellings, morphological variations, etc.) of tags are eliminated by clustering
the tags that are syntactic variations of each other and merging them into a single
tag. In the second layer, the framework deals with the problem of identifying
semantically related tags. This section continues with a problem definition in
Subsection 3.1, a discussion of the similarity measures used in Subsection 3.2,
and a more detailed elaboration of the framework in Subsection 3.3.

Improving the Exploration of Tag Spaces Using Automated Tag Clustering 279

3.1 Problem Definition

We now give a formal problem definition, for which we follow the formulation
given in [16]. The data set which is used as input for the framework is defined
as a tuple D = {U, T, P, r}, where U , T , and P are the finite sets of users, tags,
and pictures, respectively. The ternary relationship r ⊆ U × T × P defines the
initial annotations of the users.

Removing Syntactic Variations. In order to effectively find semantically re-
lated tags, we first remove syntactic variations of tags from the data set. Syntac-
tic variations usually are misspellings of words but may also include translations
of tags in other languages, or morphological variations. To remove these syntac-
tic variations we create a set T ′ ⊂ P(T) in which each element of the set T ′

is a cluster containing all tags that are syntactic variations of each other. Each
tag can only appear in one cluster. To determine the tag to be used as cluster
label, we define m′, which is the bijective function that indicates a label for each
x ∈ T ′, m′ : T ′ → L. For each l ∈ L and some x ∈ T ′, l ∈ x holds, such that
m′(x) = l, thus, l is one of the tags that labels the cluster x.

Finding Semantically Related Tags. In our framework, we aim to find se-
mantically related tags by creating a set T ′′ containing semantic clusters of
elements l ∈ L. This denotes that we disregard the syntactic variations in the
semantic clusterings by only clustering tags that are labels of syntactic clusters.
An example of a semantic cluster is {“nyc”, “newyork”, “manhattan”}. A tag
should be able to be part of multiple clusters, each with a different meaning.

3.2 Similarity Measures

Based on the results of the discussed related work, we apply two similarity mea-
sures within the STCS framework. In order to determine tag similarity, we em-
ploy the Levenshtein distance measure and the cosine similarity. Related work
showed that the Levenshtein measure performed better in detecting syntactic
variations than the Hamming distance measure [7]. However for short tags the
Levenshtein measure does not perform well. In order to cope with this problem
we have combined the Levenshtein distance with the cosine similarity. The Lev-
enshtein distance is a measure for the amount of typographic difference between
two strings, also called edit distance. It is defined as the minimum number of
operations needed to transform one string into the other. An operation can be
an insertion, deletion, or substitution of a single character. We call this distance
the absolute Levenshtein distance. We denote it by alvij , which is the absolute
Levenshtein distance between tag i and j. Our framework needs to deal with dif-
ferent tag lengths so we used the normalized Levenshtein similarity, which is a
measure that is relative to the tag length. The normalized Levenshtein similarity
between tag i and j, denoted by lvij , is defined as follows:

lvij = 1 − alvij

max(length(ti), length(tj))
. (6)

280 J. Radelaar et al.

Collect data and

clean data set

Cleaned data

set U × T × P

Create list of tag pairs

with lvij > α

Add tags on the list as

nodes to the graph

Map syntactic variations

to tag labels

Filtered data

set U × L × P

Semantic clustering

of tag labels

Semantically

clustered data

Remove syntactic variations Find semantically related tags

Add edges with wij > β to

graph

Compute connected

components

Fig. 1. Overview of the STCS framework

In order to measure the semantic relatedness between tags and the syntactic
similarity of short tags, we use the cosine similarity based on co-occurrence
vectors. In essence, this measure describes the similarity of the context in which
the tags appear. The context here is how often tags are used together with other
tags (i.e., the co-occurrence).

3.3 STCS Framework

This section describes the two layers of the STCS framework in detail. An
overview of the framework is presented in Fig. 1.

Removing Syntactic Variations In order to remove syntactic variations, we
employ an adapted Levenshtein distance measure. The algorithm requires an
initial list of tag pairs with a normalized Levenshtein distance above a certain
threshold α as input. The α threshold represents the minimum normalized Lev-
enshtein distance for which we consider two tags to be syntactic variations. The
initial list is then used to create sets T and E as input for constructing an undi-
rected graph. The set T contains each unique tag on the list. The set E is a set
of weighted edges between the nodes in T , where the weight represent the sim-
ilarities between tags. The weight wij of an edge in the tag graph is calculated
as

wij = zij × lvij + (1 − zij) × cos (vector (i) , vector (j)) , (7)

where lvij is the normalized Levenshtein similarity between tag i and j and

zij = max(length(ti),length(tj))
max(length(tk)) ∈ (0, 1] , with ti, tj, tk ∈ T . (8)

Improving the Exploration of Tag Spaces Using Automated Tag Clustering 281

1 4

310
8

14

7

18

Fig. 2. An example of graph containing three clusters

Using the normalized Levenshtein distances for short tags may result in false
positives, i.e., two tags being incorrectly identified as syntactic variations of each
other. Therefore, the weight of the cosine similarity between two tags increases
as the tags become shorter.

In order to build the tag graph, all the elements from set T are added as nodes
to the graph. Subsequently, all the edges in set E for which the weight is above a
certain threshold β are added to the graph, connecting the nodes from set T . The
β threshold indicates the level of the combined weight measure (wij) for which
we consider two tags to be syntactic variations of each other. Subsequently, the
syntactic clusters can be determined by retrieving the connected components in
the graph as sets of vertices. A connected component is defined as a maximal
subgraph in which all pairs of vertices in the subgraph are reachable from one
another. Each subgraph then contains all the nodes (tags) that form a cluster
of syntactically related tags. An example of the resulting subgraphs is presented
in Fig. 2 with each node containing the id of a unique tag. The resulting graph
contains clusters of tags that are syntactic variations of each other. An example
of a syntactic cluster is {venetie, venezia, venzia, veneza, venesia, venizia}, which
is assigned the label ‘venice’. We process this data by creating a new data set
in which the tags in the clusters are aggregated and presented as a single tag,
which we call the label for the cluster. The label of a cluster is the tag which is
used most frequently in the data set. The resulting data set is used as input for
the semantic clustering layer.

Clustering Semantically Related Tags. After removing the syntactic vari-
ations and misspellings from the data set, the new data set can be used to
create semantic clusters. For this we use a partitional clustering algorithm, i.e.,
a clustering-by-committee-based algorithm [19] used by Specia and Motta [21],
both with and without some modifications. The choice for this algorithm is
motivated by the fact that it uses all tags instead of the cluster centroid to
calculate the similarity between two clusters. This allows us to better capture
the semantics associated with the tag space. Also, unlike many other clustering
algorithms, it allows for multiple classification of tags, which enables us to deal
with tag polysemy.

The algorithm starts with creating the initial clusters, where each tag is a
separate cluster. Then, all the tags for which the average cosine similarity with
respect to all the tags in the clusters is above a certain threshold (χ) are added
to the cluster. This could result in many identical or nearly identical clusters.
To avoid a high number of these very similar clusters, Specia and Motta use

282 J. Radelaar et al.

two smoothing heuristics. For every two clusters, the authors check whether one
cluster contains the other, i.e., whether all the elements in the smaller cluster
are also present in the larger cluster. If this is the case, the smaller cluster is
removed. For each pair of clusters they also evaluate whether the clusters differ
within a small margin by checking whether the number of different tags in the
smaller cluster with respect to the larger cluster represents less than a percentage
of the number of tags in the smaller cluster. If this is the case, the distinct tags
in the smaller cluster are added to the larger cluster and the smaller cluster is
removed.

A problem with the second heuristic is that the percentage used for merging
two similar clusters is constant. This implies that the maximum allowed number
of different elements increases with the size of the smaller cluster. Choosing a
suitable threshold value is problematic, as we do not want the larger clusters to
merge too easily and the smaller clusters too difficultly. The maximum number
of different elements for two clusters to be merged, is given by f(|c|) = �ε · |c|�,
where ε is the threshold and |c| is the number of elements in the smaller cluster.
So for ε = 0.20 and |c| = 30, the maximum number of different elements is given
by f(30) = 6. This means that cluster c will be merged into a larger cluster C,
if |D| ≤ 6, where D = c − C. Furthermore, as f(4) = 0, a cluster with a size
below 4 is never merged.

Because of these limitations, we define two new heuristics that replace the
original second heuristic. The first new heuristic considers the semantic relat-
edness of the difference between two clusters. We merge two clusters C and c,
where |C| ≥ |c|, when the average cosine of all elements in D with elements in
the larger cluster is above a certain threshold δ. This average cosine is defined
as

AvgCos =
∑
d∈D

Avgd

|D| , with Avgd =
∑
x∈C

cos(x, d)
|C| . (9)

The second new heuristic considers the size of the difference between two clusters
in combination with a dynamic threshold. We merge two clusters in case the
normalized difference between the clusters is smaller than a dynamic threshold
ε. The normalized difference η is defined as

η =
|D|
|c| . (10)

Threshold ε is defined as
ε =

φ√|c| , (11)

and thus
f(|c|) = �ε · |c|� = �φ ·

√
|c|� . (12)

The distribution of the maximum allowed difference for which two clusters are
merged can then be adjusted by changing φ. An example of a semantic clus-
ter is {london, tatemodernart, towerbridge, milleniumwheel, buckinghampalace,
thames}.

Improving the Exploration of Tag Spaces Using Automated Tag Clustering 283

As a comparison we also use the algorithm proposed by Lancichinetti et
al. [11]. We choose this algorithm because as Specia and Motta’s method [21] it
allows a tag to be part of multiple clusters. The algorithm uses a graph as an
input and attempts to determine the natural community for each node in the
graph. In this graph, tags are represented by nodes and weighted edges connect
the nodes. The weight of an edge is the cosine similarity of the co-occurrence
vectors of the two tags the edge connects. A community is a subgraph G iden-
tified by the maximization of the fitness of its nodes. If we consider each tag as
a node in the graph, the community of a node forms a cluster of semantically
related tags. The fitness of a subgraph G is defined as:

fG =
kG

in

(kG
in + kG

out)θ
(13)

where kG
in is the strength of the internal links, which in our case is given by two

times the sum of the weights of all edges in G and kG
out is the strength of the

external links, which in our case is the sum of the weights of all edges linking
nodes in G with nodes not belonging G. The parameter θ is used to adjust the
size of the resulting communities. Large values of θ yield very small clusters,
while small values result in large clusters. The fitness of node A with respect to
graph G is defined as fA

G = fG+{A}− fG−{A}, where G+ {A} / G−{A} are the
graphs obtained from G by adding/deleting node A.

The natural community of a node A is detected as follows. We start with a
covered subgraph G including only node A. Each iteration then consists of the
following steps:

1. Visit all neighboring nodes of G not included in G;
2. Add the neighbor with the largest fitness to G, yielding G′;
3. Recalculate the fitness of each node in G′;
4. Delete a node that has a negative fitness, yielding G′′;
5. If a node is deleted in 4, repeat from 3, else repeat from 1 with G being G′′.

This procedure stops when all neighboring nodes considered in step 1 have a
negative fitness. However, it is too computationally intensive to perform this
procedure for every node. Therefore, the authors describe the following heuristic.
First pick a node A at random and detect the community of node A. Next pick
a node B not yet assigned to any group and detect the community of this node.
This process is repeated until each node is assigned to at least one group.

4 Framework Implementation

This section discusses the implementation of the STCS framework. The im-
plementation of the framework is done in Java in combination with a MySQL
database. For data collection and processing we used PHP scripts. This section
continues with discussing data collection and processing in Subsection 4.1, and
the implementation details for the cosine computation and clustering in Subsec-
tion 4.2.

284 J. Radelaar et al.

4.1 Data Processing

For our experiments, we gather data from Flickr related to all the pictures up-
loaded in 2009, together with their associated tags and users. To speed up the
data collection process, we distribute this task over four separate machines. The
initial data set contains 38,788,518 pictures, 196,344 users, and 1,017,168 tags.
After data cleaning, there are 147,064,188 associations, 31,951,884 co-occurrence
pairs, and 97,569 tags left.

The data cleaning process consists of several steps that aim to cope with noise
encountered in the data due to the lack of restrictions imposed on users assigning
tags to pictures. First of all, we remove tags with a tag length larger than 32
characters, to avoid tags that are entire sentences. The number 32 is based on
an extensive manual tag analysis. Furthermore, we remove non-Latin characters
(e.g., Arabic, Cyrillic, etc.) as well as numeric characters. Subsequently, we re-
move images from the same user that share identical tag strings. This filter is
motivated by the fact that in our data set, we sometimes encounter hundreds of
pictures uploaded by the same user with identical tags. These are sets of holiday
pictures tagged with identical tags, often unrelated to the picture. To prevent
these sets from influencing the co-occurrence measure, we only keep one image
of each of these sets and remove the others. Finally, we remove tags which occur
in less than 133 different pictures, as they are statistical outliers in our analysis,
i.e., AverageTagOccurence− 1.5 × IQR ≈ 133.

4.2 Implementation Details

In order to be able to calculate the cosine similarity, one needs the co-occurrence
vector for each tag. To obtain this, we construct a matrix with both a row and a
column for each tag, with the cells containing the co-occurrence for that partic-
ular combination of tags. We aimed to employ the Colt library [5] to store this
matrix in memory because of its small memory footprint. However, the size of
our matrix is too large to be handled by Colt, and thus we implement our own
high performance matrix library which uses a Colt vector to store each column
of the co-occurrence matrix. Using the resulting matrix, we calculate the cosine
similarity for each unique combination of two tags. Because the co-occurrence
matrix is very large and the number of cosine computations increases very fast
with the matrix size, we use a distributed system. For this purpose, we utilize
Amazon EC2 [1], a service which provides cloud computing resources. We im-
plement the algorithms in a distributed fashion and run them in parallel on
multiple high memory instances, each having 17,1 GB of RAM to fit the entire
matrix in memory. In our experiments, the total amount of instances running in
parallel fluctuate between 3 and 52 instances. In total, these experiments took
up 8 computing hours on 2,914,700 cosine similarity calculations for the syn-
tactic clustering, which completed in 2.5 hours of actual time. For the semantic
clustering, we use 64 computing hours to perform 50,000,000 cosine similarity
calculations within 11 hours of actual time. Each instance loads the full matrix
in memory and connects to a central job server which coordinates each instance
to perform a distinct portion of the calculations.

Improving the Exploration of Tag Spaces Using Automated Tag Clustering 285

In our framework, we implement the syntactic clustering algorithm by means
of the Java Universal Network/Graph Framework (JUNG) [18] graph library.
This library provides a good method for retrieving the set of connected compo-
nents in a graph, which are clusters of tags in our case. The semantic clustering
algorithms is also written in Java. In order to reduce the time required for the
semantic clustering, we only consider the 10,000 most popular tags.

5 Evaluation

This section presents results of experiments conducted on our cleaned Flickr
data set. Subsection 5.1 discusses the results related to the first layer of our
STCS framework, i.e., removing syntactic variations. Subsection 5.2 elaborates
on experimental results related to finding semantically related tags.

5.1 Removing Syntactic Variations

We chose α = 0.5 as a threshold for the normalized Levenshtein similarity to
identify potential syntactic variations. We chose this constant using a sample
of 100 tag pairs that were known to be syntactic variations. We found that the
normalized Levenshtein similarity between these tag pairs was never smaller than
0.5. The goal of this threshold was to reduce the number of potential syntactic
variations for which the calculation of the cosine similarity was required. A value
of 0.5 effectively reduced this number without losing syntactic variations.

For the β threshold we chose a value of 0.7. We have chosen this value be-
cause it resulted in the best performance on random samples of 100 clusters.
For this threshold we tried all values between 0 and 1 with a step of 0.05. For
the evaluation of each value we drew a separate random sample of 100 clusters
(our training set). After filtering the cleaned data set discussed in Section 4.1 on
syntactic variations, there are 147,064,188 associations, 28,603,077 co-occurrence
pairs, and 91,916 tags left.

We evaluate the performance of the clustering technique using the combined
measure and the Levenshtein distance using precision and purity. We do not use
the density, because in our case it proved to be too computationally intensive.
For each clustering technique, we draw a random sample of 100 syntactic clusters
and evaluate these manually. For this evaluation we used majority voting with
a group of three people. Each person in the group chooses the correct tags in
each cluster and majority voting is then used to determine the final number of
correct tags that is used in the precision and purity calculations. The average
precision of the algorithm used in our framework on the random sample set
is 0.89. The average precision of the clustering algorithm using the normalized
Levenshtein distance is 0.70. By performing a one-tailed unpaired two sample
t-test with a significance level of 0.01, we conclude that the combined measure
does perform significantly better than the Levenshtein distance alone in terms
of precision per cluster. The purity of the STCS framework is 0.88, while the
purity of the technique using only the Levenshtein distance to identify syntactic
variations is 0.67. Because we only use one data set and each data set has a

286 J. Radelaar et al.

single average precision and purity, it was not possible to perform t-tests for the
average precision and purity.

5.2 Finding Semantically Related Tags

We choose χ = 0.8, δ = 0.7, and φ = 0.9 as thresholds for our framework. For the
clustering algorithm that uses a constant percentage to identify similar clusters,
we set ε = 0.3. For the θ threshold used in the method proposed by Lancichinetti
et al. [11], we choose θ = 1.5. We used these values because they proved to give
the best performance on random samples of 50 clusters (our training set). It is a
non-trivial task to evaluate the results of the semantic clustering quantitatively
due to the lack of external grounding. Semantic lexicons such as WordNet [8]
only contain a small portion of the tags in our data set. We considered all
values ranging from 0.1 to 0.9 with an increment of 0.1 for the χ, δ, φ and
ε thresholds and values ranging from 0.5 to 3 with an increment of 0.25 for
the θ threshold. We chose this range for θ because smaller values resulted in
extremely large clusters and larger values resulted in extremely small clusters.
For each threshold we evaluated a separate random sample of 50 clusters for
each value. All semantic clustering algorithms utilize the syntactic clustering
algorithm using the combined measure to filter out syntactic variations.

For the chosen thresholds we used majority voting and a different random
sample of 100 clusters (our test set) for each method to compute the average
precision and purity. We perform these computations for the clustering method
using the original heuristic for merging two similar clusters, the method using
the two new heuristics, and the method introduced by Lancichinetti et al. [11].
For the evaluation we again use majority voting with a group of three people.
The average precision when using the two new heuristics is 0.86. The average
precision when using the constant percentage as a threshold for merging two
clusters is 0.80, and the average precision when using the method introduced
by Lancichinetti et al. is 0.81. By performing a one-tailed unpaired two sample
t-test with a significance level of 0.05, we conclude that the two new heuristics
significantly improve the precision per cluster when compared to the heuristic
that uses only the constant percentage. However, with a significance level of
0.05, the method using the new heuristic does not perform significantly better
than Lancichinetti’s method (w.r.t. precision). The purity of the technique us-
ing the two new heuristics is 0.89, while the purity of the technique using the
original heuristic for merging two similar clusters is 0.87. The purity of Lanci-
chinetti’s method is 0.77. We observe that the purity of the technique with the
two new heuristics is the highest, but we cannot test for significance as in our
measurements we have purity as a single number (based on only one data set).

6 Conclusion

In this paper, we proposed the STCS framework, which performs syntactic and
semantic tag clustering. For the syntactic clustering, we make use of a combined

Improving the Exploration of Tag Spaces Using Automated Tag Clustering 287

measure of the Levenshtein distance and the cosine similarity. We compared the
results of clustering on the combined measure to clustering on the Levenshtein
distance. Our conclusion is that the combined measure performed significantly
better in terms on precision. The clustering method as proposed in our frame-
work was able to effectively filter out syntactic variations from the data set.

For semantic clustering, the framework uses an adaptation of the approach
proposed by Specia and Motta [21]. We are capable of identifying numerous
and useful clusters. Optimizing the parameters is difficult, as it is a non-trivial
task to evaluate the results of the semantic clustering quantitatively due to the
lack of external grounding, since existing semantic lexicons only contain a small
portion of the tags in our data set. Nevertheless, our experiments show that
the proposed method significantly outperforms the original method by Specia
and Motta and outperforms on average the method of Lancichinetti in terms
of precision. Finally, we have shown that our results are valid on a significantly
larger data set than was used before in the existing body of literature.

As future work, it could be interesting to investigate how the cluster informa-
tion can be used to enhance search results and especially how users experience
and value this improvement. This would provide crucial insight into which clus-
tering method in the end provides the best results in terms of user experience.
We would also like to experiment with the use of the Wikipedia redirects as a
tool to help identify syntactic variations of tags. Additionally, the services pro-
vided by the TAGora repository [22] might prove useful for identifying syntactic
variations.

References

1. Amazon Web Services LLC: Amazon Elastic Compute Cloud, Amazon EC2 (2010),
http://aws.amazon.com/ec2

2. Arenas, A., Diaz-Guilera, A., Perez-Vicente, C.J.: Synchronization Reveals Topo-
logical Scales in Complex Networks. Phys. Rev. Lett. 96(11), 1–4 (2006)

3. Begelman, G., Keller, P., Smadja, F.: Automated Tag Clustering: Improving Search
and Exploration in the Tag Space. In: Carr, L.A., Roure, D.C.D., Iyengar, A.,
Goble, C.A., Dahlin, M. (eds.) 15th World Wide Web Conference (WWW 2006),
pp. 22–26. ACM Press, New York (2006)

4. Cattuto, C., Benz, D., Hotho, A., Stumme, G.: Semantic Grounding of Tag Re-
latedness in Social Bookmarking Systems. In: Sheth, A.P., Staab, S., Dean, M.,
Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS,
vol. 5318, pp. 615–631. Springer, Heidelberg (2008)

5. CERN - European Organization for Nuclear Research: Colt Libraries for
High Performance Scientific and Technical Computing in Java (2010),
http://acs.lbl.gov/~hoschek/colt/

6. Delling, D., Gaertler, M., Görke, R., Nikoloski, Z., Wagner, D.: How to Evaluate
Clustering Techniques. Tech. rep., Faculty of Informatics, Universitat Karlsruhe
(2006), http://digbib.ubka.uni-karlsruhe.de/volltexte/1000007104

7. Echarte, F., Astrain, J.J., Córdoba, A., Villadangos, J.: Pattern Matching Tech-
niques to Identify Syntactic Variations of Tags in Folksonomies. In: Lytras, M.D.,
Carroll, J.M., Damiani, E., Tennyson, R.D. (eds.) WSKS 2008. LNCS (LNAI),
vol. 5288, pp. 557–564. Springer, Heidelberg (2008)

http://aws.amazon.com/ec2
http://acs.lbl.gov/~hoschek/colt/
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000007104

288 J. Radelaar et al.

8. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge
(1998)

9. Golder, S., Huberman, B.: The Structure of Collaborative Tagging Systems. Tech.
rep., Information Dynamics Lab, HP Labs (2005),
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0508082

10. Jäschke, R., Hotho, A., Schmitz, C., Stumme, G.: Analysis of the Publication
Sharing Behaviour in BibSonomy. In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS
2007. LNCS (LNAI), vol. 4604, pp. 283–295. Springer, Heidelberg (2007)

11. Lancichinetti, A., Fortunato, S., Kertesz, J.: Detecting the Overlapping and Hierar-
chical Community Structure in Complex Networks. New Journal of Physics 11(3),
1–19 (2009)

12. Larsen, B., Aone, C.: Fast and Effective Text Mining using Linear-Time Docu-
ment Clustering. In: 5th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD 1999), pp. 16–22. ACM, New York (1999)

13. Levenshtein, V.I.: Binary Codes Capable of Correction Deletions, Insertions, and
Reversals. Soviet Physics Doklady 10(8), 707–710 (1966)

14. Manning, C., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2008)

15. Markines, B., Cattuto, C., Menczer, F., Benz, D., Hotho, A., Stumme, G.: Evaluat-
ing Similarity Measures for Emergent Semantics of Social Tagging. In: 18th World
Wide Web Conference (WWW 2009), pp. 641–650. ACM, New York (2009)

16. Mika, P.: Ontologies Are Us: A unified model of social networks and semantics.
In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS,
vol. 3729, pp. 522–536. Springer, Heidelberg (2005)

17. Newman, M.E.J., Girvan, M.: Finding and Evaluating Community Structure in
Networks. Physical Review E 69(2), 1–15 (2004)

18. O’Madadhain, J., Fisher, D., Nelson, T., White, S., Boey, Y.B.: Java Universal
Network Graph (JUNG) Framework (2010), http://jung.sourceforge.net

19. Pantel, P.: Clustering by Committee. Ph.D. thesis, University of Alberta (2003)
20. Schachter, J.: Delicious - Social Bookmarking (2010), http://www.delicious.com/
21. Specia, L., Motta, E.: Integrating Folksonomies with the Semantic Web. In: Fran-

coni, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 624–639.
Springer, Heidelberg (2007)

22. TAGora: TAGora Sense Repository (2010),
http://tagora.ecs.soton.ac.uk/tsr/index.html

23. van Dam, J.W., Vandic, D., Hogenboom, F., Frasincar, F.: Searching and Browsing
Tag Spaces Using the Semantic Tag Clustering Search Framework. In: Fourth IEEE
International Conference on Semantic Computing (ICSC 2010), pp. 436–439. IEEE
Computer Society, Los Alamitos (2010)

24. Yeung, C., Gibbins, N., Shadbolt, N.: Contextualising Tags in Collaborative Tag-
ging Systems. In: 20th ACM Conference on Hypertext and Hypermedia (HT 2009),
pp. 251–260. ACM, New York (2009)

http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0508082
http://jung.sourceforge.net
http://www.delicious.com/
http://tagora.ecs.soton.ac.uk/tsr/index.html

A Semantic Web Annotation Tool for a

Web-Based Audio Sequencer

Luca Restagno1, Vincent Akkermans2, Giuseppe Rizzo1, and Antonio Servetti1

1 Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italy,
luca.restagno@studenti.polito.it,

{giuseppe.rizzo,antonio.servetti}@polito.it,
2 Music Technology Group, Universitat Pompeu Fabra, Barcelona, Spain,

vincent.akkermans@upf.edu

Abstract. Music and sound have a rich semantic structure which is so
clear to the composer and the listener, but that remains mostly hidden to
computing machinery. Nevertheless, in recent years, the introduction of
software tools for music production have enabled new opportunities for
migrating this knowledge from humans to machines. A new generation of
these tools may exploit sound samples and semantic information coupling
for the creation not only of a musical, but also of a “semantic” compo-
sition. In this paper we describe an ontology driven content annotation
framework for a web-based audio editing tool. In a supervised approach,
during the editing process, the graphical web interface allows the user to
annotate any part of the composition with concepts from publicly avail-
able ontologies. As a test case, we developed a collaborative web-based
audio sequencer that provides users with the functionality to remix the
audio samples from the Freesound website and subsequently annotate
them. The annotation tool can load any ontology and thus gives users
the opportunity to augment the work with annotations on the structure
of the composition, the musical materials, and the creator’s reasoning
and intentions. We believe this approach will provide several novel ways
to make not only the final audio product, but also the creative process,
first class citizens of the Semantic Web.

Keywords: Ontology driven annotation tool, Semantic audio annota-
tion, web-based audio sequencer, Semantic Web sequencer, Semantic
Web.

1 Introduction

One of the key focus of the Semantic Web [1] is the process of combining data
from different sources in order to easily elaborate that information program-
matically. The aggregation of data extends the available information about a
resource. In this context, the process of tagging or annotation, performed by
human beings, plays an important role in achieving a more precise definition of
the content. Even though the practice of tagging content has become widespread

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 289–303, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

290 L. Restagno et al.

among many Internet user communities, it is affected by several problems in-
cluding the inconsistency of terms used to annotate contents. Then, one of the
challenges in this research field is to ensure consistency across annotations in the
choice of terms and their meaning. A solution is to restrict the user’s annotations
to a certain set of concepts defined in an ontology. Generally, an ontology defines
a domain description that can be used as a controlled vocabulary and that may
help in the process of context enrichment and crowdsourced content classifica-
tion. On the other side, an obvious disadvantage of this approach is its possible
incompleteness due to missing concepts, a problem that does not exist in the
free tagging approach. However, by combining several well designed ontologies
users may be guided to create high quality annotations.

The ontology driven annotation framework detailed in this paper is developed
to allow users to annotate sonic material in a controlled way, using concepts
extracted from different ontologies. The main feature of the framework is the
capability to load from the Web any ontology specified in the Web Ontology
Language (OWL) [11] and to guide users through the process of content in-
formation enrichment. When an ontology is loaded, the annotation framework
allows the creation of annotations that link selected parts of the content to the
concepts of that ontology. In addition, it creates a RDF graph for each annota-
tion which is published so that annotation is available to everyone. Furthermore,
the annotation framework has been completely developed using Web standard
languages, in such a way that it can be easily used inside other web applications.
Moreover, it provides a user-friendly web front-end to make the semantic anno-
tation an easy task. In order to accomplish this goal, the framework loads all
classes and their attributes from the ontology; then classes are easily browsable
through the widgets of the Web user interface. For each attribute of a class, the
tool loads the right user interface widget to let the user specify a value. Fur-
thermore, the annotation framework has been integrated in a web-based audio
sequencer in order to allow annotation of audio contents, realizing a complete
environment for composing and annotating sounds. Through the Web interface,
users may play sequentially or may remix sounds available on the Web. The
sound files are loaded into the sequencer simply by specifying their URLs. For
example our audio material has been retrieved from Freesound1, a collaborative
database of Creative Commons licensed sounds. Then, loading a specific ontol-
ogy, users are guided in the process of annotating the gathered sounds, enriching
the description of the composition created and, finally, the meaning.

Music and sound have a rich semantic structure. They communicate a mes-
sage, designed by the composer or sound maker, which ranges from nonsensical
or abstract to symbolic (e.g. a piece of film music supporting a clear narrative).
A majority of media production nowadays is done with software tools, which
give rise to various new opportunities to monitor the production process. In this
work we focused on the combination of the annotation framework and the web
audio sequencer, to investigate the implications of this idea. Take for example
video games, which generally have a non linear narrative that is often supported

1 http://www.freesound.org

A Semantic Web Annotation Tool for a Web-Based Audio Sequencer 291

by affective music. As the game world can give rise to a variety of situations the
music should be able to adapt. If the composer is able to formally describe pieces
of his non linear composition by using our annotation framework and the right
ontology, the game would be able to generate new music by matching the for-
malized intentions in both domains. Another example is music education, where
providing insight and understanding into the music is the primary concern. A
piece of music, whose structure and different aspects have been formally anno-
tated, could be represented in different ways and thus give students views on the
work of art that match their capabilities or interests. Possibly with future work
the artist can, while working, develop his own ontology. This ontology would
describe the themes of the work as seen by the creator and allow himself and
others to reflect and learn from this.

The remainder of this paper is organized as follows: a review of the current
state of the art is presented in section 2, key ideas of our approach are introduced
in section 3 and the description of the annotation tool is showed in section 4. A
contextualization of the tool, by means of a use case, is described in section 5,
followed by conclusions and future work in section 6.

2 Related Work

The process of media content enrichment by means of user generated data is a
challenging task that has been addressed by the Semantic Web community in
several works. An often used approach is to give users the ability to annotate
a content in order to more easily retrieve the information later. In particular,
annotation is often required to refine and improve data descriptions when auto-
matic feature extraction tools are employed. In this context, many efforts have
been done to generate annotations in order to point to and, then, retrieve con-
tents. Our work takes a different approach and combines the annotation tool
with a web sequencer in order to provide the ability to remix sound files and to
enrich the newly created composition with a controlled vocabulary. In the rest
of this section we give an overview of the state of the art in the media content
annotation tools.

In the LabelMe Project [14], Russell et al. produced a web-based image an-
notation tool to identify and define specific objects inside images. Their goal
was to provide a dynamic dataset for object recognition and computer graphics.
Although this research worked with tags, they did not focus on the annotation
itself. Additionally, they used free textual tags, so annotations were affected by
the typical folksonomy [4] problems, like polysemy and synonymy. In our ap-
proach we avoid these problems by using a controlled vocabulary, an ontology
chosen by the user during the startup process, which includes a concept hierarchy
from a specific knowledge domain.

The use of controlled vocabulary to improve semantic annotation of images
has been explored in the M-OntoMat-Annotizer [12]. Petridis et al. implemented
different ontologies based on the MPEG-7 standard to let users associate visual
descriptors with content. This work permits selection of a part of an image or

292 L. Restagno et al.

frame and association of a concept retrieved from the provided ontology. Based
on this work, we take advantage of multiple formalized ontology domains to
extend the descriptive possibilities of an annotator.

In [16], Wang et al. addressed the annotation problem by means of a set of
ontologies which are linked using a bridge ontology. This work overcame the
problem of ontology reuse and prevented unnecessary ontology extension and
integration. Although this idea is promising, it presents only a general idea of
how to link ontologies without proposing a clear method. However, G. Kobilarov
et al. [8], following [16], used a bridge ontology to categorize and link to DBpedia
[2] multimedia documents located within the BBC archives. By means of this
approach, they exploited object persistence in the BBC categorization system
(CIS) and mapped resources according to DBpedia references: resource disam-
biguation is achieved and semantic information is augmented. Similarly to this
approach, we provide the possibility to take advantage of multiple ontologies,
but we do not try to link concepts between them. Our tool permits the use of
concepts from a single online available ontology at a time. The ontology can,
however, be switched whenever the annotator feels the need.

In order to facilitate annotation and sharing of annotations among many users,
we implemented a web-based solution. An attempt to distribute annotations
over the Web is represented by the Annotea Project [6], which aims to provide
a system to share annotations on a general-purpose open RDF infrastructure. It
suggests a possible set of technologies to implement a semantic web infrastructure
for creating, editing, viewing and sharing annotations. In [15], Ronald Schroeter
et al., proposed how to use the Annotea Schema to extend annotation links
among multiple video resources. They used annotation to highlight parts of video
and mapped them in the MPEG-7 standard. Pointing to different highlighted
parts of video may make a new composition, which could be built automatically
and could be reproduced by users: this is the idea behind the work of Rene
Kaieser et al [7]. Although this problem is relevant for the research community,
our work differs from it because here the user supervises the enrichment process.
A similar use case was addressed by Maria Meleshkova et al. [9] where Web
APIs are annotated by users with an annotation editor. Finally, we use some of
the framework technologies, like the Annotea Annotation RDF Schema, and we
developed a web-based framework for the ontology-driven annotation of audio
contents.

3 Rationale

Our semantic web annotation tool is a web tool for annotating any kind of re-
source. It can load any online available OWL ontology and guide users through
the annotation process with a simple user interface. When starting the annota-
tion process the user is allowed to select the ontology that deals with the aspect
of the resource he wants to make statements about. Additionally we assess our
tool with annotations of sonic material. In this context we present an open web
framework that can improve the user experience during the creative process, by
means of ontology driven annotation.

A Semantic Web Annotation Tool for a Web-Based Audio Sequencer 293

Communities, that use the free text annotation method, are affected by a set
of problems, like polysemy, synonymy, data scarcity, spelling errors and plurals.
Polysemous tags can return undesirable results. For example, in a music collec-
tion when a user searches for the tag love, results could contain both love songs
and songs that were tagged as such because user liked them very much. Tag syn-
onymy is also an interesting problem. Even though it enriches the vocabulary,
it also presents inconsistencies among terms used in the annotation process. Ac-
cording to [10], bass drum sounds can be annotated with the kick drum tag, but
these sounds will not be returned when searching for bass drum. To avoid this
problem, sometimes users tend to add redundant tags to facilitate the retrieval
(e.g. using synth, synthesis and synthetic for a given sound).

Fig. 1. The annotation tool retrieves a set of concepts from knowledge repositories
(ontologies/taxonomies). Then it exposes the set of concepts to the annotator through
the graphical interface. Using this front-end, the user can link semantic concepts to an
audio resource whose contents were previously unknown. The result is an annotation,
a document that stores the links the human annotator creates.

Figure 1 shows how our tool works. It retrieves information from knowledge
repositories available on the Web. They can be formalized as ontologies, like the
large and popular Music Ontology [13], an attempt to link all the information
about musicians, albums and tracks together. It can exploit ontologies specif-
ically developed for an application. Moreover, it can use Web databases that
provides a query service based on the semantic web technologies, like the DBpe-
dia project that allows access to the large database of Wikipedia via semantic
web resources. Pursuing this approach we wanted to conform to the Linked Data
principle [5] of distributable and connected pieces of information. The user can

294 L. Restagno et al.

associate with the resource any concept of the ontology, in order to extend the
semantic description of the digital content.

The tool provides an intuitive Web user interface that lets users choose one of
the classes in the ontology. When the user is done annotating, the annotations are
converted to the RDF syntax. As example, in Figure 3 is shown their serialization
by means of RDF/XML syntax. These are then sent to the server and saved in
a triple store, ready to be retrieved and queried.

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:an="http://www.w3.org/2000/10/annotation-ns#"

xmlns:ext-owl="http://mtg.upf.edu/2010/02/SoundProducingEvents.owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#">

<an:Annotation>

<an:annotates>

<rdf:Description>

<an:source rdf:resource="http://example.org/audio.mp3"/>

</rdf:Description>

</an:annotates>

<an:body>

<ext-owl:Vibrating_objects></ext-owl:Vibrating_objects>

</an:body>

<an:created>2010-02-22T00:04:26Z</an:created>

</an:Annotation>

<an:Annotation>

<an:annotates>

<rdf:Description>

<an:source rdf:resource="http://example.org/audio2.mp3"/>

</rdf:Description>

</an:annotates>

<an:body>

<ext-owl:Impact>

<ext-owl:configuration rdf:parseType="Literal"> -1 </ext-owl:configuration>

<ext-owl:material rdf:parseType="Literal"> 2 </ext-owl:material>

<ext-owl:size rdf:parseType="Literal"> 3 </ext-owl:size>

<ext-owl:mallet_hardness rdf:parseType="Literal"> 4 </ext-owl:mallet_hardness>

<ext-owl:force rdf:parseType="Literal"> 1.01034 </ext-owl:force>

</ext-owl:Impact>

</an:body>

<an:created>2010-02-22T00:04:26Z</an:created>

</an:Annotation>

</rdf:RDF>

Example 3 - RDF/XML annotations generated by our annotation tool.

4 Annotation Tool

The annotation tool consists of a client side and a server side component.

4.1 Client-Side Component

The client-side component is a graphical user interface consisting of boxes, menus
and input fields to let the user navigate the classes provided by the ontology.

A Semantic Web Annotation Tool for a Web-Based Audio Sequencer 295

It also allows to choose one or more classes, and specifying the value for the
attributes of a class, if present. According to the SoC (separation of concerns)
guidelines, we developed our tool using HTML for page markup, CSS for graph-
ical style and JavaScript to handle the program logic and user interactions. The
jQuery framework2 was used to manipulate the Document Object Model (DOM)
and the jQuery UI3 utilized for the GUI components like autocomplete, datepick-
ers and complex behaviour handlers like draggable and droppable. The tool has
been developed with attention to modular programming. In order to allow other
developers to reuse the code, our annotation tool was divided into three reusable
modules: owl.js, owl-ui.js and owl-ui.audio.js.

· owl.js: requests an interpretation of a specified ontology from the server side
component and converts this to an internal data model.

· owl-ui.js: is responsible for the creation of the annotation tool panel, com-
posed of menus and dynamic textboxes. It requires the owl.js library to
populate the user interface widgets with the information retrieved from the
ontology.

· owl-ui.audio.js: creates an interface to annotate audio files. It allows the user
to listen to files and, using the audio waveform image, to select a sub part
of a sound in order to annotate it. Then, it allows opening of the annotation
tool panel generated by the owl-ui.js library in order to annotate a sound
with ontology classes.

These libraries can be embedded into any web page, making it particularly easy
for a developer to add the annotation feature to his own web application. Fur-
thermore, it would be relatively easy to develop special user interface components
for annotating other types of documents, like video or text.

4.2 Server-Side Component

The second part of our tool is the server-side component. It is a SPARQL Pro-
tocol and RDF Query Language (SPARQL) endpoint which makes queries over
the ontology and retrieves all classes, properties and attributes. The response is
generated in JavaScript Object Notation (JSON) format (but it is possible to
request different output formats, like raw text and XML) and it is returned to
the client side. Example 4.2 provides a sample response. JSON notation is used
because it is a lightweight data-interchange format, it is readable by humans and
can be easily converted from text to JavaScript object. The SPARQL endpoint
runs on a Linux machine with the Apache 2 web server running and the PHP
language available. Furthermore, the endpoint uses the Redland RDF libraries
to interpret the data from the ontologies and they are a key component of our
framework.

2 http://jquery.com/
3 http://jqueryui.com/

296 L. Restagno et al.

Fig. 2. An example of audio annotation using the annotation tool. On the left the
waveform of a sound retrieved from Freesound, reproducing a dripping faucet. On the
right the annotation tool front-end where the user is linking the Dripping category of
Liquid sounds, to a temporal interval of the sound. The categories are provided by the
Sound Producing Events Ontology that is loaded from the Web.

{

"head": {

"vars": ["parentClass", "subClass"]

},

"results": {

"ordered" : false,

"distinct" : false,

"bindings" : [

{

"parentClass" : { "type": "uri", "value": "http://www.example.org/ChordTaxonomy.owl#Triad" },

"subClass" : { "type": "uri", "value": "http://www.example.org/ChordTaxonomy.owl#Minor" }

},

...

]

}

}

Example 4.2 - JSON serialization of a SPARQL query result. This query returns each class

of the ontology and a sub class of it.

4.3 Annotation Process Details

Figure 1 shows the annotation tool flow chart. When our annotation tool is
initialized, it makes a synchronous call to the SPARQL Endpoint hosted by a
server machine and it sends three main parameters: the URL of the ontology to
query, the SPARQL query to execute and the format of the response.

The annotation tool receives a response, by default a JSON object, containing
each class and subclass of the ontology. Processing this data our tool creates a

A Semantic Web Annotation Tool for a Web-Based Audio Sequencer 297

JavaScript structure of objects containing the complete ontology hierarchy of
classes. At this point the annotation tool creates the user interface populated
with data retrieved from the ontology. The resulting GUI widget includes a
textbox, in which dynamic suggestions are provided by means of the autocom-
plete feature. The user can traverse the class hierarchy through a tree menu to
choose a concept related to the resource he is annotating. When the user selects
a class from the menu or from the textbox he is presented with a new widget
where the user can assign a value to each attribute of the class. The tool chooses
the right widget for each possible attribute type.

The annotations are collected into a stack and when the annotation process is
completed, the user confirms the annotation. The tool generates an RDF repre-
sentation of the annotations and subsequently sends it to a server where it could
be stored in a triple store and retrieved later. Thanks to namespaces and URIs
that identify uniquely a resource, the generated RDF/XML annotation holds
the complete semantic description and the information the user has associated
with the resource.

4.4 An Example of Audio Annotation

In this section we illustrate the widgets developed to allow users to annotate
audio resources. In this specific case, we retrieve a dripping faucet sound and its
waveform image from the Freesound repository.

As shown in Figure 2, a user may playback the entire sound and select a
part of it by clicking on the audio’s waveform. This way the annotator can link
multiple different concepts to the same sound, or even to particular events that
occur within the sound recording. In this case we loaded the Sound Producing
Events Ontology, based on the work of W. W. Gaver [3]. In his book “What in
the world do we hear? an ecological approach to auditory event perception” he
proposed a framework for describing sound in terms of audible source attributes.
We formalized a possible ontology based on the work of Gaver, using the Web
Ontology Language (OWL) and published it on the Web in the form of an RDF
graph. The ontology used can be easily substituted by the developer, specifying
the URL of another ontology, so that classes coming from the new repository
can be available to the widgets, ready to be linked to a digital resource.

Fig. 3. The annotation tool offers intuitive widgets to find the right ontology concepts.
The image illustrates a text field with an autocompletion feature.

298 L. Restagno et al.

Fig. 4. The annotation tool allows navigation through the class hierarchy with a
dynamic interactive menu

The annotation tool front-end is composed of a text field with autocomple-
tion (as shown in Figure 3), so that by typing a user receives suggestions on
the available concepts. Alternatively, a user can traverse the complete concept
hierarchy through a tree menu (as shown in Figure 4) which illustrates the con-
cept relationships and that appears by clicking on the root concepts (in this case
Vibrating objects, Liquid sounds and Gasses).

On the lower part of the user interface there is a stack of concepts the user
already linked to the resource. It allows editing of attributes of the concept,
showing annotated sound parts and in addition permits to delete an annotation
previously created. Clicking on the Confirm button, the annotation tool gen-
erates an RDF/XML GRAPH which stores all the links and the information
between the OWL classes and resources. This graph can be easily stored and
retrieved later.

5 Use Case: A Web-Based Audio Sequencer

In order to test the capabilities of our annotation tool in terms of usability and
reliability, we developed a web-based audio sequencer for the Web, where users
can work with sounds, mixing and annotating them in a production environment.
The tool is available at the test project web page4. This site implements the
annotation tool technology described above and it works as a hub, because it
refers to sound files hosted by the Freesound website.

We chose to realize a web-based audio sequencer completely developed with
standard web languages. We used the standard mark-up language designed for
the Web, HTML, graphical customization allowed by CSS stylesheets and we
handled the business logic and user interactions with JavaScript. We also tried
to exploit the multimedia capabilities of the new version of the HTML standard,
but our project required advanced audio synchronization features that HTML5
Audio does not yet provide. We had to fall back to Adobe Flash technology that
is responsible for handling audio playback. Figure 6 shows three different layers
of our application:

4 http://pittore.polito.it:8080/wcs/

A Semantic Web Annotation Tool for a Web-Based Audio Sequencer 299

Fig. 5. The web sequencer user interface is similar to a professional audio editing pro-
gram. It permits synchronization of tracks by dragging them on the grid, controlling the
audio playback of the composition and zooming the view. It also implements searching
of the Freesound large database of sounds. Thanks to the integration of the annotation
tool, it is possible to describe each sound event of the composition with accuracy.

Fig. 6. The architecture of the web sequencer is composed of three layers: the Audio
Engine, the Communication Layer and the Graphical Interface

· The Audio Engine Layer is responsible for the playback of the audio. It
retrieves audio files from the Web, then it synchronizes tracks and handles
the virtual timeline. In addition, it has features to mute and solo a track
and change its volume. It also permits looping a section of the composition

300 L. Restagno et al.

and includes a metronome. It communicates with the Communication Layer
described below.

· The Communication layer controls bidirectionally the Audio Engine Layer
and the Graphical Interface of the application. When a user performs an
action, it is handled by the Communication Layer that transmits the in-
structions to the Audio Engine Layer. It also receives events from the Audio
Engine Layer and updates the User Interface.

· The Graphical User Interface handles all interactions with the user through
drag functionalities, buttons, sliders and editable text fields. When a user
interacts with the GUI, the Communication Layer propagates the action to
the Audio Engine.

Through this application users can mix sounds available over the web simply
using the URL of the audio resources. It implements the basic functionalities of
every sequencer, like audio playback, visual tracks synchronization and looping,
so that users can create their own audio composition. We also integrated search-
ing of the Creative Commons licensed sound repository Freesound, so that users
can retrieve sounds from a large repository.

Fig. 7. Integration between the Web audio sequencer and the annotation tool. In this
case the user loaded the Chord Taxonomy, in order to describe the harmony of the
musical samples included in the composition.

As shown in Figure 7 the annotation tool has been integrated into this se-
quencer. A user can use it to give the semantic description of an audio file
content. By clicking on the Annotation button the user has the opportunity to
choose an argument: every argument corresponds to an existing ontology. The
current implementation proposes the Sound Producing Events ontology recom-
mended for natural sounds and the taxonomy on Chords, useful to describe the
harmony of a music track. Adding new ontologies is really simple for a developer,
due to the fact that every ontology is an OWL file located over the Web. After
this choice, the GUI is enriched by some new buttons and text. At this point the
user can select a portion of an audio sample from the sequencer composition and

A Semantic Web Annotation Tool for a Web-Based Audio Sequencer 301

Fig. 8. In our use case, we propose two ontologies. The first is useful in annotating
natural sounds, while the second is useful in describing the harmony aspect of a music
track.

choose to annotate it. Then, from the annotation tool panel that appears on the
screen, he or she can listen to portions of the samples and select concepts that
better describe the content (Figure 8). In this way we improve the granularity
of the annotation, enriching the semantic description of an audio resource.

The technologies used permit easy integration of the annotation tool on ev-
ery website. What is needed is to include the Javascript libraries into the site
code. Furthermore, the possibility to plug in any ontology available on the web
makes the tool a possibly useful instrument for web sites that want to include
annotation functionality.

6 Conclusions and Future Work

In recent years, the introduction of software tools for music production have
enabled new opportunities for migrating this knowledge from humans to ma-
chines. A new generation of these tools may exploit sound samples and semantic
information aggregation for the creation not only of a musical, but also of a
“semantic” composition. In this paper we have presented a semantic annotation
tool integrated with a web-based audio sequencer. A novel approach is used to
manipulate multiple audio contents in a dynamic way through a web front-end
by simply pointing to their semantic references. The value of the annotation tool
lies in the fact that it can load any OWL ontology and guide the end user in
the annotation process. Using an easy-to-use graphical interface, it permits the
annotator to make links among formalized concepts and resources not described
yet, in order to increase the global knowledge of the contents on the web. Fur-
thermore, we realized a collaborative web-based audio sequencer to test our tool.
With it, users can remix sounds from the Freesound website and annotate them.
The project has followed web standards and principles with the goal of making
music compositions part of the Semantic Web.

Future plans consist in extending the tool by developing new user interfaces
to annotate other types of resources. We focused on the annotation of sound and
music, but it is possible to easily implement visual interfaces for the annotation of
video, images and text documents. The tool has been developed to be modular, so
that it is not necessary to modify the core libraries. Furthermore we would like to

302 L. Restagno et al.

improve the implementation of the web front-end in order to make it completely
cross-browser and cross-platform. An evaluation of this tool in a user community
may help to draw user trends, performing a classification of interactions. In
addition, some work will be devoted to integrate an automatic tagging process,
by means of a text mining algorithm with the annotation supervised by a human.

Acknowledgment

This project was conducted at the Music Technology Group of the Universi-
tat Pompeu Fabra in Barcelona, and in collaboration with the Dipartimento di
Automatica e Informatica of the Politecnico di Torino.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American,
34–43 (May 2001)

2. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hell-
mann, S.: Dbpedia - a crystallization point for the web of data. Web Semant. 7,
154–165 (2009)

3. Gaver, W.W.: What in the world do we hear? an ecological approach to auditory
event perception. Ecological Psychology 5, 1–29 (1993)

4. Halpin, H., Robu, V., Shepherd, H.: The complex dynamics of collaborative tag-
ging. In: Proceedings of the 16th International Conference on World Wide Web,
WWW 2007, pp. 211–220. ACM, New York (2007)

5. Hausenblas, M.: Exploiting linked data to build web applications. IEEE Internet
Computing 13, 68–73 (2009)

6. Kahan, J., Koivunen, M.R.: Annotea: an open rdf infrastructure for shared web
annotations. In: Proceedings of the 10th International Conference on World Wide
Web, WWW 2001, pp. 623–632. ACM, New York (2001)

7. Kaiser, R., Hausenblas, M., Umgeher, M.: Metadata-driven interactive web video
assembly. Multimedia Tools and Applications 41, 437–467 (2009)

8. Kobilarov, G., Scott, T., Raimond, Y., Oliver, S., Sizemore, C., Smethurst, M.,
Bizer, C., Lee, R.: Media meets semantic web – how the BBC uses dBpedia and
linked data to make connections. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimi-
ano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E.
(eds.) ESWC 2009. LNCS, vol. 5554, pp. 723–737. Springer, Heidelberg (2009)

9. Maleshkova, M., Pedrinaci, C., Domingue, J.: Semantic annotation of web apis
with sweet. In: 6th Workshop on Scripting and Development for the Semantic
Web, Colocated with ESWC 2010 (2010)

10. Martnez, E., Celma, O., Sordo, M., De Jong, B., Serra, X.: Extending the folk-
sonomies of freesound.org using content-based audio analysis. In: Sound and Music
Computing Conference, Porto, Portugal (July 23, 2009)

11. Motik, B., Patel-Schneider, P.F., Parsia, B.: Owl 2 web ontology
language: Structural specification and functional-style syntax (2009),
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/

12. Petridis, K., Anastasopoulos, D., Saathoff, C., Timmermann, N., Kompatsiaris, Y.,
Staab, S.: M-ontoMat-annotizer: Image annotation linking ontologies and multi-
media low-level features. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006.
LNCS (LNAI), vol. 4253, pp. 633–640. Springer, Heidelberg (2006)

http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/

A Semantic Web Annotation Tool for a Web-Based Audio Sequencer 303

13. Raimond, Y., Sutton, C., Sandler, M.: Interlinking music-related data on the web.
IEEE Multimedia 16, 52–63 (2009)

14. Russell, B., Torralba, A., Murphy, K., Freeman, W.: Labelme: A database and
web-based tool for image annotation. International Journal of Computer Vision 77,
157–173 (2008)

15. Schroeter, R., Hunter, J., Newman, A.: Annotating relationships between multiple
mixed-media digital objects by extending annotea. In: Franconi, E., Kifer, M., May,
W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 533–548. Springer, Heidelberg (2007)

16. Wang, P., Xu, B.W., Lu, J.J., Kang, D.Z., Li, Y.H.: A novel approach to semantic
annotation based on multi-ontologies. In: Proceedings of 2004 International Con-
ference on Machine Learning and Cybernetics, 2004, vol. 3, pp. 1452–1457 (August
2004)

CloudFuice: A Flexible Cloud-Based Data

Integration System

Andreas Thor1 and Erhard Rahm2

1 University of Maryland Institute for Advanced Computer Studies, USA
2 University of Leipzig, Department of Computer Science, Germany

thor@umiacs.umd.edu, rahm@informatik.uni-leipzig.de

Abstract. The advent of cloud computing technologies shows great
promise for web engineering and facilitates the development of flexible,
distributed, and scalable web applications. Data integration can notably
benefit from cloud computing because integrating web data is usually
an expensive task. This paper introduces CloudFuice, a data integration
system that follows a mashup-like specification of advanced dataflows
for data integration. CloudFuice’s task-based execution approach allows
for an efficient, asynchronous, and parallel execution of dataflows in the
cloud and utilizes recent cloud-based web engineering instruments. We
demonstrate and evaluate CloudFuice’s applicability for mashup-based
data integration in the cloud with the help of a first prototype imple-
mentation.

Keywords: Cloud Data Management, Data Integration, Mashups.

1 Introduction

Cloud computing technologies shows great promise for web engineering. Dis-
tributed data stores (e.g., Google’s Bigtable), web-based queue services (e.g.,
Amazon SQS), and the ability to employ computing capacity on demand (e.g.,
Amazon EC2) facilitate the development of flexible, distributed, and scalable
web applications. Furthermore, recent efforts in entity search engines [5] and the
cloud of linked data [2] have lowered the barriers to easily access huge amounts
of data.

Data integration [16] can notably benefit from cloud computing because ac-
cessing multiple data sources and integration of instance data are usually ex-
pensive tasks. For example, entity matching [14], i.e., identification of entities
referring to the same real-world object, is key for linking multiple data sources.
Since web data is usually dirty, sophisticated matching techniques must employ
multiple similarity measures to make effective match decisions. The pair-wise
similarity computation usually has quadratic complexity and is thus very ex-
pensive for large-scale data integration. On the other hand, data of interest is
usually obtained by sending queries to external data sources. However, the use of
existing search engines may require several queries for more complex integration
tasks to obtain a sufficient number of relevant result entities [9]. Execution of

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 304–318, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

CloudFuice: A Flexible Cloud-Based Data Integration System 305

many queries needs to be reliable, i.e., it requires handling of failed queries (e.g.,
due to network congestion) as well as dealing with source restrictions, such as
access quota.

Mashup-based data integration [17] demonstrates a programmatic and data-
flow-like integration approach which is complementary to common query- and
search-based data integration approaches, e.g., data warehouses or query media-
tors. In fact, mashups are built on the idea of combining existing services so that
they can also use existing search engines and query services. However, current
mashup dataflows are mostly comparatively simple and do not yet exploit the
full potential of programmatic data integration, e.g., as needed for enterprise
applications or to analyze larger sets of web data. Although cloud services make
it easy to host a mashup application on multiple servers in the cloud, the devel-
opment of mashup dataflows that can transparently run on multiple nodes still
requires substantial development effort.

In this paper we present CloudFuice, a data integration system that allows for
the specification and execution of advanced dataflows for data integration that
can be employed within mashups. It utilizes a simple access model for external
sources to easily incorporate common web sources such as entity search engines,
HTML pages, or RDF data sources. A script language provides operators for
common data integration tasks such as query generation and entity matching.
Beside fast script development the CloudFuice approach also strives for an effi-
cient execution of dataflows in the cloud. Many integration scenarios may easily
involve thousands of entities that need to be processed and thus demand scala-
bility. CloudFuice supports an asynchronous and parallel execution of scripts on
multiple machines in a cloud as well as elastic computing, i.e., available cloud
capacities can immediately be used when they become available.

In this paper, we make the following contributions:

– We introduce a powerful data integration script language that is tailored for
web data integration dataflows. (Section 2)

– We detail how a dataflow can be transformed into independent tasks that in
turn can be executed asynchronously and in parallel in the cloud. (Section 3)

– We present the CloudFuice architecture facilitating dataflow execution in the
cloud. We describe our prototype that also serves as a mashup development
tool. (Section 4)

– We evaluate CloudFuice’s parallel and asynchronous execution approach and
demonstrate that it can significantly reduce the execution time of dataflows.
(Section 5)

We discuss related work in Section 6 before we conclude.

2 Dataflow Definition

In this section we describe how a developer can specify data integration dataflows.
To this end we present the structure of data sources and entities, data structures
and operators, and their combined use within script programs.

306 A. Thor and E. Rahm

Fig. 1. Examples for two entities sets (left) of kind dblp author and dblp pub, respec-
tively, and a mapping (right)

2.1 Entities and Data Sources

CloudFuice employs the simple and flexible entity-attribute-value model. An
entity is of a certain kind and has a kind-specific id, i.e., the pair (kind, id)
identifies an entity unambiguously. Each entity has a (possibly empty) list of
attributes that can be single-valued (numbers, strings) or multi-valued (i.e., set
of single values). This key-value format can be well supported by cloud-based
key value stores.

CloudFuice accesses external data sources to obtain entities via three defined
methods: search, get, and link. These methods reflect the characteristics of typical
web data sources such as (static) web pages, (entity) search engines, and RDF
data sources. We therefore assume that it is comparatively easy to implement
the following methods (as web services) for a particular data source. Note that
not all methods need to be available for all sources.

The search method returns entities of a given kind using a specified query.
CloudFuice doesn’t impose any restrictions on the type of query. The query
could be a simple keyword if the source supports keyword search, e.g., a product
search engine. If the source supports structured query languages such as SQL
or SPARQL, the query could be more complex, e.g., a SQL WHERE condi-
tion. The get method retrieves all available information for a given entity. This
is especially important for frequently changing information, e.g., the number of
citations of a publication or the current offered price for a certain product. A pos-
sible realization of the get method is a request to an entity specific HTML page
(e.g., a product detail page) with subsequent screen scraping. The link method
retrieves all entities that are connected to a specified entity. This method re-
flects the nature of web data where the entities are inter-connected by HTML
hyperlinks or RDF links in the cloud of linked data. Examples are the list of
citing publications for a given publication or the list of products for a specified
manufacturer.

2.2 Data Structures and Operators

CloudFuice follows a script programming approach for defining information in-
tegration dataflows. It builds up on our iFuice idea [20] and is tailored to web
data integration by providing simple and powerful operators. CloudFuice does

CloudFuice: A Flexible Cloud-Based Data Integration System 307

not require prior generation of metadata models (global schemas) but lets de-
velopers take responsibility to define semantically meaningful integration within
their scripts. For example, CloudFuice introduces queries as building blocks and
thus enables developers to carefully construct queries in a programmatic way for
specific data sources.

A CloudFuice script contains several operator calls like in programs of imper-
ative programming languages. Figure 2 illustrates an example script that will be
used throughout the paper and will be discussed in more detail in Section 2.3.
The output of any operator can be bound to a variable for later use, e.g., as input
to other operators. Script programmers should not be limited to the execution of
one source access method at a time but are provided with powerful set-oriented
operators. To this end, CloudFuice supports three set-based data structures.

Entities of the same kind A can be subsumed in a set EA. Figure 1 (left) illus-
trates two sets of entities. One is a set of DBLP authors, the other a set of DBLP
publications. Mappings represent directed binary relationships between enti-
ties. A mapping MA×B is a set of correspondences, i.e., pairs of entities of kind
A and B, respectively. Figure 1 (right) depicts an example mapping between the
DBLP authors and DBLP publications. The author named “A Smith” is linked
to the XML and the Cloud paper whereas “B Smith” relates to the Cloud and
the Matching paper. Correspondences can be annotated with similarity values
or other meta data, e.g., to reflect a confidence level for entity matching [22]. In
this paper we restrict the mapping definition to entity pairs without annotations
but we present an extension in [23].

Queries are the third type of data structures because they are key to effi-
cient data retrieval from web sources. Providing an explicit data structure for
queries Q enables the generation and processing of queries and therefore allows
for sophisticated query generation mechanisms [9] that are especially important
for entity search engines.

All data structures can be both input and output for operators. CloudFuice
provides operators for fetching data from sources and for matching entities.
In addition, auxiliary operators are provided for basic data processing. In the
following we give a brief overview of selected operators. A complete operator list
(incl. signature and definition) can be found in [23].

Source operators fetch data from (web) data sources by employing set-
based source access methods. For example, the operatores searchInstances and
getInstances take a set of queries or entities, respectively, and call the corre-
sponding source method, search or get, for every single query/entity. The opera-
tor result is then the union of the source methods result. The operators traverse
and map employ the link method in a similar way. The difference between these
two operators is that traverse returns the union of all link results whereas map
incorporates the input entities by returning correspondences between input enti-
ties and the resulting link entities. Matching operators provide techniques for
entity matching. The input of a matching operator are two sets of entities and
the output is a mapping containing the corresponding, i.e., matching entities.
To further restrict the matching, the input can already be a mapping instead of

308 A. Thor and E. Rahm

Fig. 2. Left: Script notation of an example dataflow for the integration of publica-
tions from DBLP and Google Scholar (GS). Right: Graph representation of the exam-
ple dataflow. The graph also contains example output for each operator, e.g., entities
{A1, A2} for the first searchInstances operator.

two input sets. The matching operator then only compares entity pairs of the
input mapping. CloudFuice provides a generic attribute matcher attrMatch for
the common use case of entity matching using attribute similarity and a thresh-
old. In addition, external match algorithms can be plugged in via the match
operator. Auxiliary operators act as the “glue” between operators. Since all
data structures are set-based, common set operations union, intersect, and diff
can be applied. The compose operator allows for composition of mappings, e.g.,
for input correspondences (a, b) and (b, c) compose derives the output correspon-
dence (a, c). The filter operator reduces a set of entities or correspondences using
a filter criterion. Finally, queryGen allows for a flexible query generation based
on entities’ attribute values [9].

2.3 Scripts and Dataflows

Figure 2 (left) shows an example CloudFuice script that integrates publication
data from DBLP and Google Scholar. The first script line searches for authors in
the DBLP data source and binds the resulting entities to the variable $Author.
The retrieved authors are input to a traverse operator (line #2) that retrieves
the corresponding DBLP publications D1, D2, and D3. The author entities are
also provided to the queryGen operator (line #3) that generates queries using
the authors’s names. In the example, the two authors A1 and A2 generate one
query each and, thus, two queries (“A Smith” for A1 and “B Smith” for A2) are
bound to the $GSQueries variable and sent to the subsequent searchInstances op-
erator (line #4). The searchInstances operator executes both queries and returns
a merged set of Google Scholar publications G1 to G5. Finally, the attrMatch
operator (line #5) takes both the DBLP and the GS publications as input and
determines matching publications. In the example script of Figure 2, two pub-
lications are considered to match if they have a title similarity greater than or
equal to 0.8. The result is then stored in the variable named $DBLPGS.

CloudFuice: A Flexible Cloud-Based Data Integration System 309

CloudFuice scripts define a dataflow, i.e., an acyclic directed graph with op-
erators as nodes and edges that connect the output of an operator to an input
parameter of another operator. Figure 2 (right) shows the dataflow graph for
the example script. Each incoming edge is annotated with a parameter index
to map the operator output to the specified input parameter. For example, the
parameter indexes of two incoming edges for attrMatch in Figure 2 are 1 and 2,
respectively, to indicate that the traverse output is the first parameter whereas
the searchInstances output is the second parameter of attrMatch. Operator pa-
rameters that are not output of other operators, e.g., the similarity threshold
of attrMatch, are considered to be available anytime and we therefore do not
include them in the dataflow graph. The dataflow graph is the foundation for
CloudFuice’s execution approach that we will explain in the next section.

3 Dataflow Execution

We introduce CloudFuice’s approach to dataflow execution and the application of
inter- and intra-operator parallelism. Furthermore, we present the full execution
plan for our running example.

3.1 Dataflow Execution Approach

Operators of CloudFuice dataflows are executed within one or multiple operator-
specific tasks that can be run in parallel on distributed cloud servers. Tasks may
concurrently store their results in a distributed datastore. Furthermore, tasks can
be executed as soon as computing resources are available in the cloud to obtain
a minimal overall execution time. Finally, our execution model is based on a
dynamic invocation of tasks such that each finished task invokes the generation
of all operators following in the dataflow as we will detail below.

To support efficient, parallel execution of dataflows, we support both intra-
and inter-operator parallelism similar as in parallel database systems [7]. In
addition to pipeline parallelism between adjacent operators, data partitioning
is utilized to run independent operators on different data in parallel and to
parallelize operators on disjoint data partitions.

However, intra-operator parallelism is subject to partitionable input data
(i.e., operator parameters) only. A parameter pk of an n-ary operator op is called
partitionable if and only if the following two properties hold: (1) The parameter
pk is a set of entities E, or a mapping M (i.e., set of correspondences), or a set
of queries Q. (2) For any complete and disjoint partitioning pk = pk1 ∪ pk2 of pk

holds: op(p1, . . . , pk, . . . , pn) = op(p1, . . . , pk1 , . . . , pn) ∪ op(p1, . . . , pk2 , . . . , pn).
We call an operator blocking if none of its parameters is partitionable. A

blocking operator is therefore unable to produce any (partial) result until all
input data is available. On the other hand, all parameters (of type E, M , or Q)
of non-blocking operators are partitionable. For example, all source operators
(e.g., searchInstances) are non-blocking. Operators that are neither blocking nor
non-blocking are called partially blocking. For example, the diff operator com-
putes the difference of two entity sets E1 and E2 of the same kind. The first

310 A. Thor and E. Rahm

Fig. 3. Pseudocode for executing dataflows, operators, and tasks

parameter E1 is partitionable whereas the second parameter E2 is not. The op-
erator needs to know all entities E2 that must not appear in the operator result
before returning any (partial) results. The Appendix of [23] specifies the type
for each operator.

The advantages of partitionable input data for an operator are twofold. First,
an operator can partition each partitionable parameter and thereby split the
operator execution into multiple tasks that can be executed in parallel (intra-
operator parallelism). The complete operator result can later be reconstructed
from all task results. On the other hand, data partitioning can also be used
for asynchronous (pipelined) operator execution. Individual task results, i.e.,
partial operator results, can already be handed off (or “pushed”) to its suc-
ceeding operator (which in turn may already produce a partial result) if the
corresponding input parameter of the succeeding operator is partitionable, too.
This method therefore allows for an overlapping execution of neighboring oper-
ators in the dataflow graph. Finally, independent operators, i.e., operators that
neither directly nor indirectly rely on each others’ outputs, are run in parallel
(inter-operator parallelism).

Dataflow execution thus entails the correct transformation of a dataflow into a
series of independently executable tasks. Figure 3 shows the pseudo code for task
generation (methods for dataflow and operator execution) and task execution.
Initially the tasks for all start operators, i.e., operators that do not rely on input
of other operators, are generated and executed (see method executeDataflow). All
other operators will be dynamically invoked by the tasks creating their input
parameters (see method executeTask). The input-generating task then hands
over its complete result (taskRes) as well as the associated parameter index
(taskIndex) as parameters to the executeOp call. For the invocation of a start
operator that does not depend on input data, we use a taskIndex value of 0 (see
executeDataflow).

CloudFuice: A Flexible Cloud-Based Data Integration System 311

Fig. 4. Example execution of the dataflow depicted in Figure 2. In addition to Figure 2
the dataflow graph also shows the generated tasks (green quadrats below the operator
box). The right part shows a timeline of the executed tasks.

The executeOp method partitions the input data based on an operator-specific
partitioning function partitioning and creates a corresponding task for each parti-
tion. CloudFuice thereby allows tailored partitioning strategies for operators (see
Section 5 for a discussion and evaluation). The task execution first employs the
operator-specific computation (compute) to achieve the task result which is then
stored in a distributed data store. Afterwards all following operators are called
(with the task result and the parameter index) which in turn may eventually
create new tasks.

The methods for operator and task execution make use of a few auxiliary func-
tions. The function isBlocked returns true if there is at least one non-partitionable
input parameter pi with incomplete data, i.e., the corresponding input operator
has not finished yet, and thus the operator cannot be executed yet. It makes
use of isPartitionable(i) which is true if the parameter pi is partitionable. getCur-
rentValue(i) reads the current value of parameter pi from the datastore. The
function getStartOps returns all start operators of the dataflow and getNextOps
returns the following operators for a task. With the help of getIndex(nextOp) the
parameter index for which the current task provides input to operator nextOp
is determined. Finally, the function createTask generates a new task that will
eventually be executed by the runtime infrastructure (see Figure 5).

The approach for asynchronous executions of operators/tasks also allows for
notifications when an operator is finished and, thus, when the value of the
bounded script variable is available. An operator is finished if all of its input
operators are finished and there are no unfinished operator tasks. To this end
each operator keeps track of the number of generated tasks as well as the number
of finished tasks. Finally, a script is finished if all operators are finished. This
additional functionality is not shown in Figure 3 in favor of readability.

3.2 Execution Example

Finally, we demonstrate how the example script of Figure 2 will be executed. Fig-
ure 4 illustrates the dataflow along with the generated tasks and their

312 A. Thor and E. Rahm

execution time frame. The only start operator, searchInstances, is invoked for
one query at the beginning and as a result it generates one search task. Once
finished, it triggers the two subsequent operators traverse and queryGen. They
can run in parallel because they are independent from each other (inter-operator
parallelism). The traverse operator makes use of intra-operator parallelism and
generates two tasks because it is given two input entities (DBLP authors A1

and A2). The example assumes that there is no access restriction to the data
source so that both tasks can be executed immediately. The queryGen operator
is also invoked for A1 and A2 but generates only one task that emits two queries.
This task – once finished – invokes the second searchInstances operator. The two
input queries lead to two search tasks. In this example we assume that there is a
source access quota so that the first task can be executed immediately whereas
the second task is scheduled with consideration of a reasonable waiting time
(handled by a task scheduler, see Section 4).

The last operator, attrMatch, takes as input the output of the two operators
traverse and searchInstances. The operator input data comes in four data chunks
because both input operators employ two tasks each for their execution. The
order of the incoming data chunks is arbitrary and in the example of Figure 4
we assume the following order: traverse:A1 (= {D1, D2}), search:A (= {G1, G2}),
traverse:A2 (= {D2, D3}), and search:B (= {G3, G4, G5}). Once finished, each
task invokes the attrMatch operator.

In our example we consider a non-blocking implementation of attrMatch, i.e.,
attrMatch process all pairs of the Cartesian product independently, e.g., with
the help of common string similarity measures such as Edit Distance. It is there-
fore amenable to asynchronous execution, i.e., it can produce partial results
on partial input data. However, the first operator call does not yet create any
tasks because at this point there are only DBLP publications available but no
GS publications. The second operator call generates the first task AM:1 that
matches all available DBLP entities with the new available GS entities (see the
box in the middle of Figure 4). The third operator call completes the DBLP
input entities and creates task AM:2. This task process the new DBLP enti-
ties (only D3 is new because D1 and D2 have been already retrieved by the
previous traverse task) along with all available GS entities. Finally, the second
query of searchInstances is finished and the corresponding task calls attrMatch
for the fourth time. To this end, attrMatch creates task AM:3 that takes as in-
put all available DBLP entities and the newly added GS entities {G3, G4, G5}.
The box in the center of Figure 4 summarizes the three employed attrMatch
tasks along with their input data. It thereby illustrates that the attrMatch op-
erator indeed processes the entire cross product of all DBLP and GS entities.
In the example of Figure 4 the partitioning is solely driven by the outcome
and the execution order of the input operator tasks. However, large entity sets
may require an additional partitioning to reduce the workload per task (see
Section 5).

CloudFuice: A Flexible Cloud-Based Data Integration System 313

Fig. 5. Architecture of the CloudFuice approach. It employs a distributed data store,
a task queue service, and a cloud of servers for task execution.

4 Web-Based Architecture and Prototype

Figure 5 depicts the overall CloudFuice architecture. It comprises a script and
operator executor, a task scheduler, and an elastic cloud of servers. The script
and operator executor realize CloudFuice’s execution approach. A given script
is first converted into a dataflow and then decomposed into a set of operator
calls which are in turn transformed into multiple tasks. Tasks are subject to
a scheduling mechanism that takes into account access restrictions of external
sources. Tasks are executed on a cloud of servers that are capable of (parallel)
executing tasks as web services. All tasks store their results in a distributed data
store and invoke other operators if necessary. If the last task of an operator has
finished, it may notify external applications about the availability of an operator
result (not shown in Figure 5).

The script executor analyzes a given CloudFuice script and decomposes it
into a data flow. The script executor then invokes all start operators, i.e., all
operators that do not rely on input of other operators. The operator executor
retrieves the relevant parameter values from the datastore. If the operator can
be executed, the executor applies an operator-specific partitioning strategy on
the input data and generates one or multiple tasks. Each task is assigned the
relevant partition of the operator’s input data as well as the list of following
operators. Tasks are sent to the task scheduler.

The task scheduler provides a task queue for each source and a task is ap-
pended to a task queue if it is supposed to send a request to the corresponding
source. Each task queue employs a simple bucket algorithm for scheduling task
execution because source access is typically limited by quotas and exceeded quo-
tas may cause requests failures. The bucket size determines how many tasks can
be executed in parallel, i.e., how many requests can be sent to the source simul-
taneously. The execution rate controls the average number of task executions for
a time window, e.g., 1 task (request) per second. The scheduler also provides an
additional unlimited task queue (“miscellaneous”) for all other tasks. Since tasks
mail fail due to several reasons (e.g., network congestion or server unavailability)
each task queue also provides a retry mechanism for failed tasks.

314 A. Thor and E. Rahm

TheCloudFuice architecture realizes task executionbyweb service requests.Re-
quests can be handled by different servers (nodes) that all have access to a dis-
tributed data store for storing task results. The actual task implementations are
encapsulated as web services and can, thus, be realized in virtually any program-
ming language. Each task may request data from the Web using one of the source
access methods (search, get, or link). Note that the task implementation does not
need to deal with any source constraints because this is alreadyhandled by the task
scheduler.Moreover, no global coordinator is needed for the task executionbecause
each task knows what operator is supposed to be invoked after its completion.

The current prototype implementation employs Google App Engine, a plat-
form for running web applications on multiple nodes. New server instances be-
come automatically (un)available based on the number of tasks. All operators
and tasks are implemented as REST-based web services and use JSON as data
exchange format. The prototype employs Google App Engine’s datastore that
implements the Bigtable data model [4]. Task results can be concurrently stored
using a unique task id which is assigned during task generation. Each task result
contains a reference to the corresponding operator and, thus, operator results can
be retrieved by merging all corresponding task results. The prototype employs
Google Spreadsheet as script development environment (see [23] for screenshots).
The spreadsheet contains both CloudFuice scripts and data and, thus, will serve
as an integrated development environment. Google Spreadsheet executes Cloud-
Fuice scripts and retrieves data by HTTP requests. On the other hand, Google
Spreadsheet’s API enables the CloudFuice server to directly update results in a
spreadsheet (data pushing) even if the spreadsheet is closed. Google Apps Script
is used to implement simple user interfaces and execute parametrized CloudFuice
scripts. This mechanism acts as a simple way for mashup development.

5 Evaluation

We evaluate the practicability of our approach with the help of our prototype and
thereby demonstrate that the use of cloud technologies can improve the runtime
performance of CloudFuice scripts. In particular we will examine partitioning
strategies for entity matching and the effect of asynchronous script execution.

The first experiment deals with effective and efficient data partitioning which
is key to a correct and efficient execution of dataflows. Recall that the execution
approach ensures that only partitionable data is subject to intra-operator par-
allelism and that different partitioning strategies can be applied. Fine-grained
partitioning strategies generate small tasks that can be executed in parallel but
suffer from the additional overhead of task creation, scheduling, and execution.
Furthermore, danger of skew effects also grows with more tasks since the slowest
task determines the overall execution time. On the other hand coarse-grained
strategies result in few large tasks that may not fully exploit the power of the
available computing resources. For intra-operator parallelism, we evaluate size-
based partitioning functions for entity matching similar to [13]. A maximal block
size b ensures that each match task only process a limited part of the Cartesian

CloudFuice: A Flexible Cloud-Based Data Integration System 315

Fig. 6. Evaluation of partitioning strategies for entity matching (left) and the influence
of asynchronous dataflow execution (right)

product, i.e., at most b× b entities per task. For our experiment we employ attr-
Match with two entity sets of size |R| = 471 and |S| = 16, 269, respectively. Each
set is evenly divided into blocks of maximal size b and one task is generated for
each pair of blocks. For example, a block size b = 100 leads to 5 blocks for R
and 163 blocks for S and thus 5 · 163 = 815 match tasks are created.

Figure 6 (left) shows the measured average script execution time (average over
three runs, minimal and maximal values are shown as error bars) for different
block sizes. The x-axis denotes the resulting number of tasks. The execution
time can be significantly reduced from 55 seconds (computation is realized by
one task only) to 14 seconds if approx. 250 tasks are employed. However, if the
number of tasks is increased even further the execution time is overwhelmed
by the additional task management overhead. Note that the prototype runs on
Google App Engine that does not allow configuration of computing capacities,
i.e., creation and utilization of node instances cannot be controlled. Instances
become instead available and unavailable, respectively, by an internal heuristics
based on the current number of tasks.

In a second experiment we demonstrate the influence of asynchronous script
execution (inter-operator parallelism). The evaluation scripts contains two steps.
First, 1,180 entities are requested by 49 queries (searchInstances). We assume a
reasonable source quota of 1 query per second, i.e., query execution process takes
about 50 seconds. In a second step the obtained entities are matched against a
given set of 16,269 entities like in our previous experiment. As shown in our run-
ning example (see Figure 4) both input sets of attrMatch are partitionable, i.e.,
entity matching can already process partial input data. For a synchronous exe-
cution we assume that none of the attrMatch parameters are partitionable and
thus the operator cannot start until all input data becomes fully available. Syn-
chronous execution behavior of attrMatch is achieved by modifying the isBlocked
function accordingly (see pseudo code in Figure 3).

Figure 6 (right) compares the overall times for synchronous vs. asynchronous
execution using different partitioning strategies for attrMatch. The synchronous
execution is composed of the search time and matching time. The search time
remains the same for all partitioning strategies because it is dominated by the
source quota. On the other hand, an increasing number of tasks decreases the

316 A. Thor and E. Rahm

time for entity matching similar to what we have observed in Figure 6 (left).
Figure 6 (right) proves that CloudFuice’s asynchronous dataflow execution can
significantly reduce the execution time by an early hand-off of partial results. The
source access is, of course, a lower bound but the asynchronous model already
performs entity matching while still querying the data source. It thereby reduces
the remaining workload after the last query result becomes available. However,
the asynchronous model is characterized by an increasing execution time for an
increasing task number. This is due to the fact that each search result retrieves
a comparatively small number of entities (≈ 24) which then have to be matched
against the large set of 16,269 entities. Obviously a fine-grained partitioning
is not beneficial for such imbalanced match tasks. For example, if we assume
that each search result retrieves at most 100 entities a block size of b = 100
would result in 163 tasks per search result. The overall number of match tasks
is therefore 49 (search queries) × 163 = 7,987 that deteriorates execution time.

In general, CloudFuice’s execution model has to combine a partitioning strat-
egy with an incremental availability of input data due to asynchronous execution.
This is especially important against the background of an additional overhead
for task generation, scheduling, and transferring. We will therefore investigate
in adaptive partitioning strategies in future work. For example, a partitioning
strategy may not create any tasks until a minimal number of entities is avail-
able when dealing with partial results. Furthermore, operators that do not have
following operators might apply a different partitioning strategy because there
is no benefit in forwarding partial results.

6 Related Work

Mashup-based data integration has become very popular in recent years and
many tools and frameworks have been developed [17]. Applications need com-
ponents for data, process, and presentation level [18] and CloudFuice mainly
focuses on the data level. A popular approach are pipes, e.g., as used in Yahoo!
Pipes, Damia [21], or [15], that process entity sets via relatively simple user-
specified dataflows. These tools have demonstrated to be applicable in different
settings since they offer a powerful and easy-to-use interface for inexperienced
users. However, they are not designed for more advanced data integration prob-
lems that have to deal with dirty data and, thus, require advanced operators. For
example, entity matching and query generation are key to achieve accurate and
complete integrated results. This, on the other hand, requires more advanced
skills in mashup development. CloudFuice therefore strives for a good balance
between powerful data integration operators and a simple scripting language.

A few recent mashup platforms also deal with mashup efficiency. CoMaP [10]
targets a distributed mashup execution that minimizes the overall mashup execu-
tion time of multiple hosted mashups. It is based on a general mashup dataflow
model with operators that can be executed on different nodes. A dynamic schedul-
ing takes into account several parameters such as network and users. The AM-
MORE [11] system even modifies original mashup dataflows to avoid duplicate
computations and unnecessary data retrievals. To this end, AMMORE identifies

CloudFuice: A Flexible Cloud-Based Data Integration System 317

common operator sequences in different mashups and executes them together.
CoMap, AMMORE, and CloudFuice share the same goal of efficient dataflow exe-
cution but have slightly different focuses. CloudFuice does not deal with multiple
mashups and users but task scheduling is driven by data source constraints and
available computing capacity instead of usage or network traffic.

The recent shift in web infrastructures from high-end server systems to clusters
of commodity hardware (also known as cloud) has triggered research in parallel
data processing in a wide variety of applications. Driving forces are simple and
powerful parallel programming models such as MapReduce [6] and Dryad [12].
Although the MapReduce program model is limited to two dataflow primitives
(map and reduce), it has proven to be very powerful for a wide range of ap-
plications. On the other hand Dryad supports general dataflow graphs. Freely
available frameworks such as Hadoop further stimulate the popularity of dis-
tributed data processing. Higher-level languages can be layered on top of these
infrastructures. Examples include the high-level dataflow language Pig Latin [19],
Nephele/PACTs [1] (based on MapReduce), DryadLINQ [24] as well as SCOPE
[3] that offers a SQL-like scripting language on top of Microsoft’s distributed
computing platform Cosmos. Similar to Cloudfuice, a high-level program is de-
composed into small buildings blocks (tasks) that are transparently executed in
a distributed environment. On the other hand, CloudFuice targets the fast devel-
opment of dataflows for web applications and therefore relies on a common web
engineering tools. Furthermore CloudFuice deals with asynchronous dataflow
execution, e.g., due to continuous data input from query results, in contrast
to synchronized offline data analysing/processing. For example, MapReduce en-
forces synchronization between the map and reduce phase (a disadvantage that
has been recently addressed in [8]).

7 Conclusions and Future Work

We presented CloudFuice, a flexible system for specification and execution of
dataflows for data integration. The task-based execution approach allows for an
efficient, asynchronous, and parallel execution within the cloud and is tailored to
recent cloud-based web engineering instruments. We have demonstrated Cloud-
Fuice’s applicability for mashup-based data integration in the cloud with the
help of a first prototype implementation.

Future work includes the development of adaptive partitioning strategies as
well as the further development toward a comprehensive mashup platform. We
will also investigate how dataflows can be automatically generated from
declarative queries.

References

1. Battré, Ewen, Hueske, Kao, Markl, Warneke: Nephele/PACTs: a programming
model and execution framework for web-scale analytical processing. In: SoCC
(2010)

2. Bizer, Heath, Berners-Lee: Linked data - the story so far. IJSWIS 5(3) (2009)

318 A. Thor and E. Rahm

3. Chaiken, Jenkins, Larson, Ramsey, Shakib, Weaver, Zhou: SCOPE: Easy and effi-
cient parallel processing of massive data sets. In: PVLDB, vol. 1(2) (2008)

4. Chang, Dean, Ghemawat, Hsieh, Wallach, Burrows, Chandra, Fikes, Gruber:
Bigtable: A distributed storage system for structured data. ACM Trans. Comput.
Syst. 26 (2008)

5. Cheng, Yan, Chang: Entityrank: Searching entities directly and holistically. In:
VLDB (2007)

6. Dean, Ghemawat: MapReduce: Simplified data processing on large clusters. Com-
munications of the ACM 51(1) (2008)

7. DeWitt, Gray: Parallel database systems: The future of high performance database
systems. Communications of the ACM 35(6) (1992)

8. Elteir, Lin, Feng: Enhancing mapreduce via asynchronous data processing. In: IC-
PADS (2010)

9. Endrullis, Thor, Rahm: Evaluation of Query Generators for Entity Search Engines.
In: USETIM (2009)

10. Hassan, Ramaswamy, Miller: Comap: A cooperative overlay-based mashup plat-
form. In: CoopIS (2010)

11. Hassan, Ramaswamy, Miller: Enhancing Scalability and Performance of Mashups
Through Merging and Operator Reordering. In: ICWS (2010)

12. Isard, Budiu, Yu, Birrell, Fetterly: Dryad: Distributed Data-parallel Programs from
Sequential Building Blocks. In: EuroSys Conference (2007)

13. Kirsten, Kolb, Hartung, Gross, Köpcke, Rahm: Data Partitioning for Parallel En-
tity Matching. In: QDB (2010)

14. Köpcke, Rahm: Frameworks for entity matching: A comparison. Data Knowl.
Eng. 69(2) (2010)

15. Le-Phuoc, Polleres, Hauswirth, Tummarello, Morbidoni: Rapid Prototyping of se-
mantic Mash-ups through semantic Web Pipes. In: WWW (2009)

16. Lenzerini: Data integration: A theoretical perspective. In: PODS (2002)
17. Lorenzo, Hacid, Paik, Benatallah: Data Integration in Mashups. SIGMOD Rec. 38

(2009)
18. Maximilien, E.M., Wilkinson, H., Desai, N., Tai, S.: A Domain-Specific Language

for Web APIs and Services Mashups. In: Krämer, B.J., Lin, K.-J., Narasimhan, P.
(eds.) ICSOC 2007. LNCS, vol. 4749, pp. 13–26. Springer, Heidelberg (2007)

19. Olston, Reed, Srivastava, Kumar, Tomkins: Pig Latin: A Not-So-Foreign Language
for Data Processing. In: SIGMOD (2008)

20. Rahm, Thor, Aumueller, Do, Golovin, Kirsten: iFuice - Information Fusion utilizing
Instance Correspondences and Peer Mappings. In: WebDB (2005)

21. Simmen, Altinel, Markl, Padmanabhan, Singh: Damia: Data Mashups for Intranet
Applications. In: SIGMOD (2008)

22. Thor, Rahm: MOMA - A Mapping-based Object Matching System. In: CIDR
(2007)

23. Thor, Rahm: CloudFuice: A flexible Cloud-based Data Integra-
tion Approach. Technical report, University of Leipzig (2011),
http://dbs.uni-leipzig.de/publication/year/2011

24. Yu, Isard, Fetterly, Budiu, Erlingsson, Gunda, Currey: Dryadlinq: a system for
general-purpose distributed data-parallel computing using a high-level language.
In: OSDI (2008)

http://dbs.uni-leipzig.de/publication/year/2011

Bootstrapping Trust of Web Services through Behavior
Observation

Hamdi Yahyaoui1 and Sami Zhioua2

1 Computer Science Department, Kuwait University
P.O. Box 5969, Safat 13060, State of Kuwait

hamdi@sci.kuniv.edu.kw
2 Information and Computer Sciences Department, KFUPM

P.O. Box 958, Dhahran 31261, KSA
zhioua@kfupm.edu.sa

Abstract. We present in this paper a new Web services trust bootstrapping
technique, which consists in observing several interactions of a user with
a Web service. The obtained observations sequence is modeled as a Hid-
den Markov Model (HMM) and matched against pre-defined trust patterns
in order to assess the behavior of the Web service under observation. The
pre-defined trust patterns are specifications of possible behaviors of Web
services. Based on the matching result, an initial trust value is assigned to
the observed Web service. Our experimental results show that our technique
has good precision and recall rates together with a fair distribution of trust values.

Keywords: Trust, Web services, Bootstrapping, Hidden Markov Model.

1 Introduction

Web services are becoming nowadays a powerful technology which allows users to in-
voke, in a transparent way, distant services through standard Web protocols. With a va-
riety of functionalities, plenty of Web services are deployed in the internet. Consumers
judge the performance of these services based on their non-functional quality attributes
such as response time, availability, throughput, etc. Such judgement reflects how much
a Web service is trusted for performing a certain task in the expected way. The non-
functional quality attributes can be leveraged to derive a trust value for a Web service
as suggested in [14]. Trust can be used as an indicator for the possible future behavior
of a Web service. One of the important issues in establishing the trust for Web services
is the assignment of a trust value to unknown Web services. This is known as the boot-
strapping issue. Bootstrapping is even more challenging when there is an absence of
user recommendations. Unfortunately, this issue did not receive much attention in the
related work as will be shown later, while in reality it has an important impact on the
robustness of the elaborated trust model. The aim of our work is to devise a new boot-
strapping technique based on trust patterns and Hidden Markov Model (HMM) in the
absence of recommendations. The proposed technique focus on the recognition of the
behavior of a Web service rather than deriving a trust value from a simple interaction.

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 319–330, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

320 H. Yahyaoui and S. Zhioua

The rest of the paper is as follows. In section 2, we recall some definitions about
HMM. Section 3 is devoted to the review of published bootstrapping techniques. Sec-
tion 4 is dedicated to the presentation of our bootstrapping technique. In section 5, we
provide experimental results and analysis. Finally, some conclusions and future works
are drawn in Section 6.

2 Background

This section is devoted to the presentation of some definitions that are useful to have a
clear understanding of our technique.

2.1 HMM Definition

A Hidden Markov model (HMM) [11] is a Markov chain where states are not com-
pletely observable. That is, the underlying mechanics corresponds to a Markov chain
but the state of the system at a given moment is not exactly known. Instead, at each time
step, a stochastic observation is generated based on the current state.

Definition 1. Hidden Markov Model
A HMM is a tuple (S, T,O, Q, π) where

– S is a set of N states {s1, s2, . . . , sN}. Besides, st refers to the state at time step t.
Note the difference between the subscript and superscript versions s1 and st.

– T : S → Π(S) is a state transition function which maps each state S to a prob-
ability distribution over S. Tsi→sj denotes the probability of making a transition
from si to sj .

– O is a set of M observations {o1, o2, . . . , oM}. Similarly to states, let ot be the
observation at time step t.

– Q : S → Π(O) is an observation function. Qo
s denotes the probability of observing

o while in state s.
– π is the initial state distribution, with π(s) denotes the probability of s being the

initial state.

For simplicity, we use the compact notation H = (T, Q, π).

2.2 Probability of Accepting an Observation Sequence

One of the basic problems with HMMs is how to compute the probability of an obser-
vation sequence given a HMM model. Let O = o1o2 . . . on be an observation sequence
of length n and let H = (T, Q, π) be an HMM model. The goal is to compute the
conditional probability P (O|H).

The sequence O can be generated from H using different state sequences of length
n. Hence, one way of computing P (O|H) is to sum over all possible state sequences
of length n. Let S = s1s2 . . . sn be such a sequence. The probability that O is generated

Bootstrapping Trust of Web Services through Behavior Observation 321

using S is the probability of getting observation o1 from state s1, o2 from s2 and so on
until on from sn, that is,

P (O|S,H) = Qo1

s1Qo2

s2 . . .Qon

sn (1)

However, to sum over all possible state sequences, one needs instead the joint prob-
ability of O and S, namely, P (O, S|H). By the Bayes theorem we have:

P (O, S|H) = P (O|S,H)P (S|H) (2)

Where P (S|H) is the probability of going through the state sequence S:

P (S|H) = π(s1)Ts1→s2Ts2→s3 . . . Tsn−1→sn (3)

We have now all the ingredients to illustrate the detailed computation of P (O|H):

P (O|H) =
∑

S=s1s2...sn

P (O|S,H)P (S|H)

=
∑

S=s1s2...sn

π(s1)Qo1

s1Ts1→s2Qo2

s2

. . . Tsn−1→snQon

sn (4)

Equation (4) is clearly not easy to compute. For one reason, it sums over all possible
state sequences whose number is in the range of Nn. Adding the fact that for each
such sequence 2n operations are performed, the total number of computations required
to compute P (O|H) is in the order of 2nNn. Hence, Equation (4) is not an efficient
way of computing P (O|H). A better approach is what is known as Forward-Backward
procedure [1].

The Forward-Backward approach to compute P (O|H) is based on defining the for-
ward probability

ft(i) = P (O, si|H) (5)

ft(i) is the partial probability of observing the sequence O = o1o2 . . . ot and end-up
in state st = si. The key point is that ft(i) can be defined inductively as follows:

ft(i) =

⎧⎪⎨
⎪⎩

π(si)Qot

si
if t = 1

∑N
j=1

(
ft−1(j)Tsj→si

)
Qot

si
if 1 < t ≤ n

P (O|H) can be expressed in terms of the forward probability simply as:

P (O|H) =
N∑

i=1

fn(i) (6)

The Forward-Backward approach to compute P (O|H) requires on the order of N2n
computations, which is clearly better than the 2nNn of Equation (4). The key point
is that since there are only N states, all the possible state sequences will remerge into
these N states, no matter how long the observation sequence.

322 H. Yahyaoui and S. Zhioua

3 Related Work

Bootstrapping a new element in a system means assigning an initial trust/reputation
value for it. Such value has an impact on the security of the whole system since there
is no prior knowledge about the possible behavior of the new element. Henceforth,
bootstrapping is paramount for the security of software and systems. The bootstrapping
issue was studied in few research initiatives. In what follows, we present these initiatives
and pinpoint their pros and cons. It is worth to mention that the terms reputation and
trust have different meanings. Reputation denotes a group opinion about a peer while
the trust denotes an individual opinion.

3.1 Default Value Technique

The default value technique was designed for peers collaborating in a Mobile Ad hoc
Network (MANET). In this technique, the new peers that join the network get a default
reputation value [7]. The value is generally considered as a threshold under which a
peer is considered as malicious. One disadvantage of this technique is that, depending
on the default initial value, it can either favor existing peers or new peers that join the
network. If the initial reputation is high, existing peers are disadvantaged, since the new
peer is assigned a value that can be higher than existing peers that collaborated a lot
and strived to have a good reputation. This encourages malicious peers to leave and join
again the network with new identities to avoid their bad reputation (this is known as
white-washing). A low reputation value will discourage new peers from being involved
in collaborations.

3.2 Punishing Technique

The punishing technique [2] is proposed as a solution to overcome the white-washing
issue. By giving a low reputation value to the new peer, it ensures that a malicious peer
that is trying to leave and join again the network will not gain that much. However, a
very low value will make the new peers disadvantaged and perhaps no existing peer will
collaborate with them, which makes them isolated in the network.

3.3 Adaptive Technique

The adaptive technique is part of a trust model for Web services, which is proposed in
[5]. In this technique, a new Web service which is willing to collaborate is assigned a
reputation value that depends on the rate of maliciousness, which is defined as the ratio
of the number of collaborations (considered as transactions in that work) where the
Web services defect, to the total number of collaborations. This requires tracking each
collaboration quality. A Web service rater marks collaboration as acceptable if the Web
service did collaborate as expected and defective in the opposite case. An unknown Web
service is assigned a high initial reputation value when the rate of maliciousness is low
and a low initial reputation value when that rate is high. The issue with this technique
is that a leaving malicious Web service can try to rejoin the network with a new URL
and get a better reputation value than his old value if he leaves the network with a low
reputation value while the maliciousness rate is very low at that moment.

Bootstrapping Trust of Web Services through Behavior Observation 323

3.4 Prediction Technique

In [4], the author proposed a HMM-based prediction model to assess a provider rep-
utation when adequate number of rater recommendations is not available. A service
consumers HMM is trained using the recommendations provided by some evaluators.
Once a reliable model is developed, the high and low reputations of the services are
predicted. In the next step, the service consumer compares all the predicted provider
reputations. The provider which has the highest predicted reputation for the next time
instance is chosen for interaction. After each interaction, the observed behavior values
and present recommendations are input to the HMM for the sake of refining the model.
This model is used for predicting a single reputation value for a Web service and can’t
be used to classify a Web service behavior. Such classification is needed since at one
time instance a service reputation value can’t reveal accurately its long term behavior.
Besides, it is very often to have a lack of recommendations about a Web service which
is unknown to raters. Hence, assuming always the existence of recommendations is not
always a realistic assumption.

4 A New Pattern-Based Bootstrapping Technique

The techniques mentioned in the previous section focus on a local evaluation of the
reputation level of an unknown peer or Web service. This cannot provide an accurate
assessment of the trustworthiness of a Web service. We follow a global strategy where
a Web service is evaluated during a certain time frame in which a sequence of trust
observations is built. Based on this sequence, we are able to judge, whenever possi-
ble, the kind of behavior a Web service has, i.e., the category to which a Web service
belongs (trusted, malicious, redemptive, etc.). More precisely, our technique consists
in first evaluating a Web service during a certain period of time. During that period,
a sequence of trust observations is built. Each trust observation (T for Trusted and U
for Untrusted) denotes the degree of compliance of the non-functional quality attributes
of a Web service (e.g. response time, availability, reliability, etc.) with the announced
quality attributes (as part of Service Level Agreement). The obtained sequence of trust
observations is then matched against pre-defined trust patterns. The objective of the
matching step is to have a global judgement about the behavior of a Web service and
derive a trust value based on the recognized behavior. In what follows, we provide the
ingredients of our technique.

4.1 Trust Patterns

In this section, we define trust patterns which refer to particular Web service behaviors.
A trust pattern is a sequence of trust observations from which a clear conclusion about
the behavior of a Web service can be drawn. We provide a formal characterization of
trust pattern categories:

– Trustworthy: T +

– Oscillating: (T +.U+.T +.U+)∗ Or (U+.T +.U+.T +)∗

– Malicious: U+

324 H. Yahyaoui and S. Zhioua

– Betraying: (T +.U+)∗
– Redemptive: (U+.T +)∗

Where T and U denote respectively a Trusted/Untrusted observation, while the oper-
ators + and ∗ denote respectively a non-empty sequence and the repetition of a se-
quence. A trust observation is generated after one interaction with a Web service while
a sequence of trust observations is constructed during a certain time frame. We restrict
the description of patterns to the aforementioned categories but the extension of these
categories is possible.

The sequence notation for a trust pattern is used for readability aims. However, we
use another notation for specifying such patterns. Indeed, a trust pattern can be rep-
resented using a HMM. The advantage of this representation is that a HMM is more
expressive than a static sequence of trust observations. Indeed, a HMM is more com-
pact and it allows to represent a range of trust observation sequences falling in the same
category. For example, consider the two following trust observation sequences which
clearly fall in the category of an oscillating pattern:

1. T.U.T.U.T.U.T.U.T.U.T.U
2. T.T.U.U.T.T.U.U.T.T.U.U

The two trust observation sequences can be represented by a single HMM of the form:

�������	0
1−p ��

p
4

��

p
4

��

p
4

��

p
4

��

�������	1

1−p

��

p
4

��

p
4

��

p
4

��

p
4

���������	2

1−q

��

q

��

�������	3

1−q

��

q
		

�������	4

1−q

��

q

�������	5

����

1−q

��

q

��

Where states 0, 2 and 3 generate always the trust observation T and the states 1, 4
and 5 generate always the trust observation U . Another advantage of using HMMs in
specifying trust patterns is that a HMM can capture patterns resulting from alternating
between the two patterns above.

The five HMMs are trained given a single or multiple trust observation sequences.
The training process is inspired by the seminal work of Rabiner[11]. Given a trust ob-
servations sequence O = o1o2 . . . on, the training aim is to find how to adjust the
model parameters H = (T, Q, π) to maximize P (O|H). There is no optimal way for
estimating the model parameters so that to maximize the probability of acceptance of
a trust observations sequence. The best one can do is to choose the model parameters
H = (T, Q, π) such that P (O|H) is locally maximized using an iterative procedure
such as the Baum-Welch method [1].

4.2 Trust Observation Generation

A trust observation (T or U) is generated during an evaluation period through the as-
sessment of quality attributes of a Web service. Each quality attribute (such as response

Bootstrapping Trust of Web Services through Behavior Observation 325

3
4

5
6

10

2
4

6
8

10
40

60

80

100

Length of
observation sequences

Trusted category

Number of
states in HMM

p
re

ci
si

o
n

3
4

5
6

10

2
4

6
8

10
20

40

60

80

100

Malicious category

p
re

ci
si

o
n

3
4

5
6

10

2
4

6
8

10
0

50

100

Betraying category

p
re

ci
si

o
n

3
4

5
6

10

2
4

6
8

10
0

50

100

Oscillating category

p
re

ci
si

o
n

3
4

5
6

10

2
4

6
8

10
0

50

100

Redemptive category

p
re

ci
si

o
n

Fig. 1. The precision of classifying a bank of observation sequences as we increase the number
of states of the HMM (y-axis) and the length of the observation sequences (x-axis)

time, availability, etc.) has a certain expected and actual value. The expected values are
announced by Web service providers through a Service Level Agreement (SLA) with
consumers. The actual values are computed during the evaluation period and matched
against the expected ones. To assess the trustworthiness of a Web service during one
interaction, we compute the Root Mean Square Error (RMSE):

RMSE =

√∑n
i=1(vi − v′i)2

n
(7)

Where vi denotes the actual value of a quality attribute qi, v′i the expected value of
a quality attribute qi and n the total number of assessed quality attributes. We assume
that all values vi and v′i are normalized before computing RMSE. This means that RMSE
has a value between 0 and 1. During an interaction i, a trust observation oi is generated
based on the following equation:

oi =

⎧⎨
⎩

T if RMSE < ξ

U Otherwise
(8)

Where ξ denotes a tunable threshold between 0 and 1. It reflects the maximal
marginal error that a Web service is allowed to have and over which it is judged as
not trusted during the evaluation of an interaction.

326 H. Yahyaoui and S. Zhioua

4.3 Bootstrapping Trust of Web Services Based on Trust Patterns

We present hereafter an algorithm for bootstrapping the trust of Web services based on
matching a trust observations sequence with pre-defined trust patterns (Algorithm 1).
The algorithm takes a sequence of trust observations (obtained during the evaluation
period) and the HMMs corresponding to the pre-defined trust patterns as inputs and re-
turns the category of the matching pattern. The algorithm associates the Web service to
the category, which better matches the sequence, i.e., which maximizes the probability
of generating the sequence.

Algorithm 1. PATTERN MATCHING ALGORITHM

inputs O: Trust observations sequence

1: for each HMMi corresponding to a trust pattern pi do
2: Pri = GetProbAccept(O,HMMi)
3: end for
4: Compute Prk = max Pri and determine the pattern pk
5: return Gk: The category of pattern pk

Based on the matching step, we propose a bootstrapping technique that takes into
consideration two parameters: the category to which a Web service WSi belongs and
its behavior during the evaluation step. First, from the trust observations sequence Oi,
an individual maliciousness rate is computed. Let Oi be an observation sequence and let
�UOi and �TOi be the number of untrusted (U), respectively trusted (T), observations
in Oi. The rate of maliciousness of observation Oi is defined as:

Ri =
�UOi

�UOi + �TOi

(9)

Intuitively, this rate indicates how many times a Web service was untrusted during
the evaluation period. However, such rate is not sufficient to distinguish different Web
service behaviors. For instance, it can’t discriminate between a redemptive Web service
who has the following behavior (e.g. U .U .T .T) and a betraying one (e.g. T .T .U .U).
Distinction between those web services is possible given the category Gi each sequence
is matched with.

As defined in Section 4.1, trust pattern categories exhibit different levels of trust. For
instance, the level of trust in the Trustworthy category is clearly higher than the level
in the Oscillating category. Similarly, the redemptive category reveals more trust than
betraying category (kind of punishment). To account for these differences, a subjective
category weight Wc (a value between 0 and 1) is given to each category c.

Based on the two aforementioned concepts, namely, the individual maliciousness
rate and the category weight, we define the initial trust value of a Web service WSi as
follows:

Bootstrapping Trust of Web Services through Behavior Observation 327

Definition 2. Initial Trust Value of a Web Service
Let WSi be a Web service and Oi a trust observations sequence representing its be-

havior during the evaluation period. Let Gi be the category associated to Oi according
to Algorithm 1, Ri the maliciousness rate of Oi and WGi the category weight of Gi.
The initial trust value of WSi is defined as follows:

Ti = WGi × (1 − Ri) (10)

5 Experimental Analysis

The training process has been implemented using MATLAB. In addition, HMM Tool-
box [10] has been installed and used to validate the results of our own implementation.
As expected, both implementations (our and HMM Toolbox) returned exactly the same
results. However, HMM Toolbox has been always faster due to some code optimiza-
tions. Therefore, we used HMM Toolbox in most of our experiments.

The goal of the experimental analysis is to assess the accuracy and completeness
of Algorithm 1. Recall that Algorithm 1 is a classification algorithm to decide which
trust category a given Web service belongs to. It is well known that each classification
process is characterized by a level of accuracy, which we measure through the metrics
precision and recall.

5.1 Precision and Recall

The main idea of our technique is to represent each trust pattern category using a
HMM. Hence each of the 5 different trust pattern categories, namely, Trusted, Mali-
cious, Betraying, Oscillating, and Redemptive, is associated with a different HMM.
Every HMM is trained using some typical observations of the associated category.
For instance, the Oscillating category HMM is trained using sequences of the form:
T.U.T.U.T.U.T.U.T.U and T.T.U.U.T.T.U.U.T.U .

After the HMMs are constructed, the experiment consists in generating a bank of
trust observation sequences and see how accurate Algorithm 1 can classify them. In
a nutshell, the idea is to confront the outcome of Algorithm 1 with the true category
of each sequence. For the sake of conducting this experiment, the actual category of a
given sequence is determined based on an expert judgement.

For each category, we define three variables:

– True Positives (tp): tracks the number of correctly classified sequences;
– False Positives (fp): tracks the number of incorrectly classified sequences;
– False Negatives (fn): tracks the number of sequences which are of the current cate-

gory but classified into a different category.

These variables are updated as follows. Given an observation sequence O, Algorithm 1
is used to classify it into some category. Assume that this category is X . If the classifi-
cation is correct, that is, X coincides with the actual category, the variable true positives
tp for the category X is incremented. If O does not actually belong to the category X ,
i.e., should be classified into a different category Y , the variable false positives fp for
X is incremented and the variable false negatives fn for Y is incremented.

328 H. Yahyaoui and S. Zhioua

3
4

5
6

10

2
4

6
8

10
40

60

80

100

Trusted category

Number of
states in HMM

R
ec

al
l

3
4

5
6

10

2
4

6
8

10
20

40

60

80

100

Malicious category

R
ec

al
l

3
4

5
6

10

2
4

6
8

10
0

50

100

Betraying category

R
ec

al
l

3
4

5
6

10

2
4

6
8

10
0

50

100

Oscillating category

R
ec

al
l

3
4

5
6

10

2
4

6
8

10
40

60

80

100

Redemptive category

R
ec

al
l

Length of
observation sequences

Fig. 2. The recall resulting from classifying a bank of observation sequences as we increase the
number of states of the HMM (y-axis) and the length of the observation sequences (x-axis)

The accuracy of the classification for a given category can be expressed as:

precision =
tp

tp + fp
(11)

On the other hand, the completeness of the algorithm for a given category is esti-
mated by the recall metrics which is defined as:

recall =
tp

tp + fn
(12)

The recall metrics estimates the percentage of sequences belonging to a certain cat-
egory which has been correctly classified by the algorithm.

In order to reduce the noise factor, we repeated the experiments 10 times and we
plotted the average of the 10 experiments. The results are shown in Figures 1 and 2.

Figure 1 shows, for each category, how the precision of the algorithm behaves as
we increase the number of states of the HMM and the length of the observation se-
quences. For almost all categories, the precision increases as the length of observa-
tion sequence increases. This is normal because long sequences provide more data and
consequently allow to have more accurate HMM models. As of the number of states
of the HMM, Figure 1 shows that every category has an optimal number of states.
For instance, Trusted and Malicious categories clearly need HMMs with small num-
ber of states (one or two). Therefore, HMMs with larger number of states will need

Bootstrapping Trust of Web Services through Behavior Observation 329

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Web Service Observation Sequences

In
it

ia
l T

ru
st

 V
al

u
e

Fig. 3. Distribution of Trust Values

lengthier observation sequences to reach a precision of 100% as shown in Figure 1. For
the Betraying and Redemptive categories, the optimal number of states is not very obvi-
ous. The plots suggest that the precision reaches its maximum with HMMs having four
or eight states. For the Oscillating category, the plot shows clearly that the number of
states of the corresponding HMM should be strictly larger than one. Overall, Figure 1
shows that for all categories except Redemptive, Algorithm 1 reaches a significantly
high level of precision. For Redemptive category, this can be explained by the fact that
it has a significant intersection with the Oscillating category. This is confirmed by the
recall values of Oscillating category in Figure 2.

Figure 2 illustrates the recall rates for each category as we increase the number of
states of the HMM and the length of observation sequences. Similarly to precision,
recall increases as the observation sequences get longer. The only exception is the Os-
cillating category which is due to the tight intersection it has with the Redemptive cat-
egory. Overall, it is easy to see that, for a particular combination of number of states in
the HMM and observation sequence length, all categories reach an almost perfect recall
rate of 100%.

5.2 Distribution of Trust Values

As shown earlier, the weight given to each classified trust observations sequence allows
to discriminate between Web services either having the same pattern or in different
patterns. In our experiments, we use the following weights: 1 for the trusted pattern, 0.6
for the malicious pattern, 0.7 for the betraying pattern, 0.8 for the oscillating pattern,
and 0.9 for the redemptive pattern.

Figure 3 depicts the distribution of trust values for the classified Web services. It is
worth to mention that those Web services having the same pattern are close (but still
different thanks to the maliciousness rate) to each others and together they form a kind
of a cluster.

330 H. Yahyaoui and S. Zhioua

6 Conclusion

We proposed in this work a new bootstrapping technique for Web services based on
trust patterns and hidden markov models. The main benefits of our technique compared
to the related work consist in a fair assignment of trust values to unknown Web services
and a global view of possible behaviors of these services. The experimental analysis
carried out showed that our HMM based classification technique is very promising and
features a high rate of precision and completeness provided that the number of states
of HMMs are well chosen and the observation sequences used for learning are long
enough. The only concern, however, remains the difficulty of the algorithm to cope
with the intersection between categories, in particular, the redemptive and oscillating
categories. Another interesting research initiative is to apply our technique on real world
Web services. These research directions are part of our future work.

References

1. Baum, L.E., Egon, J.A.: An Inequality with Applications to Statistical Estimation for Prob-
abilitsic Functions of a Markov Process and to a Model of Ecology. Bull. Amer. Meteorol.
Soc. 73, 360–363 (1967)

2. Moukas, A., Zacharia, G., Maes, P.: Collaborative Reputation Mechanisms in Electronic
Marketplaces. Decision Support Systems 29(4), 371–388 (2000)

3. Grandison, T., Sloman, M.: A survey of trust in internet applications. IEEE Communication
Surveys & Tutorials 4(4), 2–16 (2000)

4. Malik, Z.: Reputation-based Trust Framework for Service Oriented Environments. PhD the-
sis, Virginia Polytechnic Institute and State University (October 2008)

5. Malik, Z., Bouguettaya, A.: RATEWeb: Reputation Assessment for Trust Establishment
among Web services. Very Large Data Bases (VLDB) 18(4), 885–911 (2009)

6. Malik, Z., Bouguettaya, A.: Reputation Bootstrapping for Trust Establishment among Web
Services. IEEE Internet Computing 13(1), 40–47 (2009)

7. Marti, S., Garcia-Molina, H.: Taxonomy of Trust: Categorizing P2P Reputation Systems.
Computer Networks 50(4), 472–484 (2006)

8. Maximilien, E., Singh, M.: Reputation and Endorsement for Web Services. SIGecom Ex-
changes 3(1), 24–31 (2002)

9. Maximilien, E., Singh, M.: Toward Autonomic Web Services Trust and Selection. In: Pro-
ceedings of the 2nd International Conference on Service Oriented Computing (ICSOC 2004),
New York, NY, USA, pp. 212–221 (2004)

10. Murphy, K.: Hidden Markov Model (HMM) Toolbox for Matlab (2005), http://www.
cs.ubc.ca/murphyk/Software/HMM/hmm.html

11. Rabiner, L.: A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition. Proceedings of the IEEE 77(2), 257–286 (2000)

12. Doshi, P., Paradesi, S., Swaika, S.: Integrating Behavioral Trust in Web Service Compo-
sitions. In: Proceedings of the Seventh International Conference on Web Services (ICWS
2009), Los Angeles, CA, USA, pp. 453–460 (2009)

13. OASIS Web Service Secure Exchange TC. Ws-trust 1.3 (2007), http://docs.
oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html

14. Yahyaoui, H.: Trust Assessment for Web Services. In: IEEE International Conference on
Web Services (ICWS 2010), Miami, FL, USA, pp. 315–320 (2010)

http://www.cs.ubc.ca/murphyk/Software/HMM/hmm.html
http://www.cs.ubc.ca/murphyk/Software/HMM/hmm.html
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html

Parallel Distributed Rendering

of HTML5 Canvas Elements

Shohei Yokoyama and Hiroshi Ishikawa

Shizuoka University,
3-5-1 Johoku Naka-ku Hamamatsu 432-8011, Japan

{yokoyama,ishikawa}@inf.shizuoka.ac.jp

Abstract. In this paper, we explain the rendering of ultra-high-
resolution web content using HTML5 <canvas> elements. Many high-
resolution massive datasets have recently been presented on the web.
For example, Google Maps provides satellite images of Earth’s surface and
atmosphere at various resolutions. However, the scope of information that
a user can view depends on the number of pixels of the user’s computer
monitor, irrespective of the data resolution. Therefore, we propose a par-
allel distributed rendering method for web content using multiple LCD
monitors. We demonstrate that our system can draw an 8240 pixel × 4920
pixel HTML5 <canvas> element over a 16-monitor tiled display wall.

Keywords: HTML5, Canvas Element, Parallel Rendering,
Tiled Display Wall.

1 Introduction

Recently, massive datasets have become available on the web as information
technology has developed. IDC reported that 998 EB of data were generated in
2010 in comparison with 161 EB in 2006 [9]. Such massive datasets are shared
and exchanged over the Internet. Data use generally occurs in three stages: data
generation, data processing and data visualization. Systems that handle massive
datasets on the Internet must achieve high scalability at each of these three
stages.

This paper describes a novel technique for realizing real-time, parallel
distributed rendering of web content with user interaction. We focus on the
<canvas> element, which is one of the newest web technologies. It is part of
HTML5 and allows for dynamic scriptable rendering of 2D shapes and bitmap
images. Our main contributions are summarized as follows.

– We propose a novel parallel distributed rendering technique using the HTML5
<canvas> element on tiled display walls.

– We demonstrate that the proposed technique achieves high scalability in
rendering an ultra-high-resolution (8240 pixel × 4920 pixel) web application.

– We also illustrate a low-cost hardware and middleware for the proposed
technique of web-based parallel distributed rendering. To our knowledge,
this technique has not been described previously.

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 331–345, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

332 S. Yokoyama and H. Ishikawa

A tiled display wall is a technique to build a virtual ultra-high-resolution dis-
play comprising multiple display monitors and is used to visualize ultra-high-
resolution data. Many studies have investigated high-resolution displays, but
most proposals targeted are for scientific and medical visualization. Although
the developed techniques perform well, they have a very high cost. Furthermore,
developers who work with such displays must have deep knowledge of program-
ming and networking.

In this paper, we propose a novel technique for realizing parallel distributed
rendering of the HTML5 <canvas> element on tiled display walls.

The population of web developers is growing at a tremendous pace. Many
skilled web developers and programmers are working currently to create display
applications. In addition, web browsers are used in various operating systems
and apply many standards. Many web services such as Google Maps API are
available on the Internet. We propose a method for using a high-resolution web
application that is executed on a tiled display wall based on web standards that
include web technologies such HTML5, JavaScript and PHP.

The remainder of this paper is organized as follows. Section 2 describes related
works. Section 3 explains our tiled display wall environment, which is the basis
of this research. Our proposed method of realizing parallel distributed rendering
of the HTML5 <canvas> element is described in Section 4. In Section 5, we
discuss our experiments and evaluate the results. Finally, Section 6 concludes
the paper.

2 Related Works

Parallel distributed rendering of high-resolution images has a long history [5].
The purpose of such research is to develop techniques for efficient rendering
of three-dimensional computer graphics. OpenGL made real-time animation of
computer graphics possible [2]. Subsequently, Chromium [10] unified these two
technologies, the parallel rendering and the OpenGL, and realized real-time ren-
dering of high-resolution images using a parallel distributed method.

The resolution of LCD monitor is insufficient to display high-resolution im-
ages. The best commercially available LCD monitor has WQXGA resolution
(2560 pixel × 1600 pixel). Therefore, Chromium and other technologies are de-
signed for parallel rendering on a tiled display wall [18].

A tiled display wall is a virtual ultra-high-resolution display consisting of
multiple display monitors. Figure 1 illustrates both a tiled display wall and an
LCD monitor displaying the same image from Google Maps. The tiled display
wall not only produces a large display but also has many pixels. Therefore, it
can show high-resolution content.

Many proposed approaches are used for building tiled display wall systems.
NASA’s Hyperwall [15] has a 64-megapixel tiled display wall consisting of 49
monitors (7 horizontal × 7 vertical). LambdaVision uses 55 monitors (11 hor-
izontal × 5 vertical) and builds a 100-megapixel high-resolution tiled display
wall system. Renambot et al. who are members of LambdaVision project also

Parallel Distributed Rendering of HTML5 Canvas Elements 333

Fig. 1. Resolution of an LCD monitor and a tiled display wall

proposed middleware for tiled display walls called SAGE [14]. HIPerSpace [7],
which has a 225-megapixel display, is an extremely large tiled display wall used
at the University of California, San Diego. Existing tiled display wall systems
were surveyed in detail by Ni et al. [13].

The performance and resolution of these systems are suited for developing ap-
plications for scientific visualization of life science data and ultra-high-resolution
satellite images. Research issues for improving high-performance scientific com-
puting related to tiled display walls have received more importance than develop-
ing consumer applications. Consequently, such applications require the use of ex-
pensive high-end machines, complex settings and extensive programming. How-
ever, web technologies are growing at a fast rate, ultra-high-resolution satellite
images, e.g. Google Maps, are becoming increasingly available via web browsers
and are valued by many users.

In other words, high-resolution visualization is no longer for scientists only:
ordinary people can access it. Therefore, we built a low-cost tiled display wall
consisting of low-end machines and based solely on web technologies. In addition,
our tiled display wall system uses only web programming languages. The main
purpose of this research is the rendering of <canvas> element of HTML5, which
is one of the newest web technologies.

Our proposed system uses HTML5 <canvas> element and JavaScript instead
of OpenGL and other graphic APIs for writing applications that produce 2D and
3D computer graphics. That is, multiple <canvas> elements that are displayed
on web browsers executed on multiple computers build a virtual high-resolution
and large <canvas> element. Research on distributed web interfaces has han-
dled cooperative processing using multiple web browsers [11,19]. However, these
studies do not consider whether the monitors are adjacent and do not attempt
parallel rendering in the environment of the tiled display wall. Our system
realizes cooperative parallel distributed rendering on a tiled display wall.

334 S. Yokoyama and H. Ishikawa

Applications of the system are implemented using common web technologies
including HTML5, JavaScript and server-side scripting. Our tiled display wall
middleware provides a single, extensive <canvas> area to developers although
it consists of multiple <canvas> elements displayed on distributed machines.
This is because the distributed environment is hidden and is realized by the
middleware.

3 Web Based Tiled Display Wall

3.1 Hardware and Software Architecture

The software and hardware architecture of our web-based tiled display wall are
shown in Figure 2. As shown in the figure, the system consists of multiple com-
puters (Receivers), which is part of a tiled display, a computer (Commander)
as the user interface for web applications on the tiled display wall, and a web
server (Messenger in the figure) for synchronizing the monitors.

To develop a high-resolution web application on the tiled display wall, devel-
opers must implement two PHP programs, commander.php and receiver.php. The
commander.php program is accessed from the Commander, and it includes a graph-
ical user interface designed and implemented using HTML and JavaScript. The
receiver.php program is accessed from the Receiver; it includes high-resolution

End user

Commander
(Web Browser)

Messenger
(Web server)

n-Receivers
(Web Browsers)

Tiled Display

#1

#2

#n

receiver.php commander.php

Maps

Web Services

Graphical User Interface
Event Trigger

High-Resolu�on Content
Event Handler

User defined User defined

Our Middleware Our Middleware

Distributed Rendering Engine Monitors Syncroniza�on Engine

Tile Configura�on
Messaging Method Event SenderEvent Receiver

Fig. 2. Hardware and software architecture

Parallel Distributed Rendering of HTML5 Canvas Elements 335

Fig. 3. Tiled display wall

content designed using HTML and JavaScript. In addition, both PHP programs
import our runtime library, which is written in JavaScript and provides a mes-
saging method, and a configuration for the tiled display wall.

Both commander.php and receiver.php are stored on the web server (Messenger).
Therefore, the first step in executing an application is to download commander.php
and receiver.php on the Commander and the Receivers, respectively, from the
Messenger via their web browsers.

Figure 3 shows our 16-monitor tiled display wall testbed, which uses this ar-
chitecture. The tiled display wall consists of 16 full-HD (1920 pixel × 1080 pixel)
LCD monitors and 16 “nettop” PCs that have Atom (Intel Corp.) processors and
act as Commanders. Our display differs from existing tiled display walls in that
the rendering engine is built on a web browser. All the Receivers display a
web browser in a kiosk mode, a full-screen mode with no toolbars. For example,
Internet Explorer can be launched in kiosk mode by using -k as a command line
argument. The Receivers are essentially computers with simple factory settings
because a web browser is pre-installed on a new computer; no extra program is
necessary to build the proposed system.

The Commander is also a web browser. For this testbed, we select Wii (Nin-
tendo), which has an Opera web browser (Opera Software ASA) as the
Commander. Wii is a home video game console; an intuitive control, Wii remote,
is available with it. The Messenger is a web server; we use Apache2 HTTP
daemon on the Fedora Linux distribution (Red Hat Inc.).

3.2 Messaging

A user uses the Commander to control a tiled display wall application. In our
testbed, the user holds a Wii remote. As the rendering is done on the Receivers,
the user’s interactions must be sent from the Commander to all the Receivers.
Our middleware’s messaging method is used for this purpose. Event triggers can
be defined in commander.php and the event handler can be defined in receiver.php.

336 S. Yokoyama and H. Ishikawa

01:<html><body>
02: <canvas width=300 height=300 id="c0">
03: </canvas>
04: <script type="text/javascript">
05: var canvas
06: = document.getElementById('c0');
07: /* Width and height of canvas */
08: var width = 300; var height = 300;
09: var ctx = canvas.getContext('2d');
10: ctx.lineWidth = 3; ctx.strokeStyle="#f00";
11: ctx.beginPath();
12: width/=2; height/=2;
13: for(j=0;j<=2*Math.PI;j+=Math.PI/500){
14: x=Math.sin(5*j) + 1;
15: y=Math.sin(6*j) + 1;
16: ctx.lineTo(x * width, y * height);
17: }
18: ctx.closePath();
19: ctx.stroke();
20: </script>
21:</body></html>

Fig. 4. JavaScript code for rendering a Lissajous curve

The event consists of destinations, an identifier and options (arguments). Our
middleware sends the message from the Commander to the Receivers specified
as the destination. Our tiled display wall system is described in detail in our
previous work [3,20].

4 Distributed Parallel Rendering

4.1 HTML5 <canvas>

The <canvas> element is part of HTML5 and allows for dynamic, scriptable ren-
dering of 2D shapes and bitmap images. It is the first graphic API for pure HTML
content, and it is expected to increase the expressiveness of web content. Figure
4 shows the JavaScript code for drawing a Lissajous curve and a screenshot of
a web browser showing the Lissajous curve rendered on the <canvas> element.
In the figure, the drawing line is defined between the beginPath method and the
stroke method. The filled shape is rendered using a fill method instead of the stroke
method. Other drawing methods include the bezierCurveTo method for drawing
a bezier curve, the arcTo method for drawing an arc and the drawImage method
for displaying image files such as .jpeg, .png and .gif. The colour and width of the
line are varied by changing the properties of the context object (line 10).

We apply the <canvas> element and graphic API to parallel distributed ren-
dering on tiled display walls. A <canvas> element generally cannot be placed
over an entire tiled display wall because the wall is a distributed system con-
sisting of more than one computer. However, our proposed method virtualizes
multiple <canvas> elements as a single huge high-resolution <canvas> element
over an entire tiled display wall. This method is described in the next section.

Parallel Distributed Rendering of HTML5 Canvas Elements 337

01:<html><head>
02:<?php echo $WallDispray_LIBLARY; ?>
03: <script type="text/javascript">
04: Ext.onReady(function(){
05: var commander
06: = new Wdm.Commander(tileConfigure);
07: commander.start();
08: /* Width and height of canvas */
09: var width = 4000; var height = 4000;
10: var canvas = commander.createCanvas(
11: {"top" :300, "left" :900,
12: "height":height,"width":width},"px");
13: var ctx = canvas.getContext('2d');
14: ctx.lineWidth = 30; ctx.strokeStyle="#00f";
15: ctx.beginPath();
16: width/=2; height/=2; var x,y;
17: for(j=0;j<=2*Math.PI;j+=Math.PI/500){
18: x=Math.sin(5*j) + 1;
19: y=Math.sin(6*j) + 1;
20: ctx.lineTo(x*width,y*height);
21: }
22: ctx.closePath();
23: ctx.stroke();
24: });</script>
25:</head></html>

commander.php
01:<html><head>
02:<?php echo $WallDispray_LIBLARY; ?>
03: <script type="text/javascript">
04: Ext.onReady(function(){
05: receiver
06: = new Wdm.Receiver(tileConfigure);
07: receiver.start();
08: });</script>
09:</head></html>

receiver.php

Fig. 5. JavaScript code for distributed rendering of a Lissajous curve

#2

#4

#1

#3
receiver.php commander.php

To:#1,#2,#3,#4
Event: createCanvas
Option: position
To:#1,#2,#3,#4
Event: propertyChange
Option: {fillStyle:red}
To:#1,#2
Event: strokeRect
Option: position
To:#2,#4
Event: fillRect
Option: position

msg1

msg4

msg3

msg2

Fig. 6. Messages for drawing two rectangles on a tiled display wall

4.2 Rendering from commander.php

The code for distributed rendering of a <canvas> element is written in either
commander.php or receiver.php. First, we describe the method of rendering from
commander.php.

Figure 5 is an example of code that draws a 4000 pixel × 4000 pixel Lissajous
curve on a tiled display wall. As shown here, the code that renders shapes and
images on the tiled display wall is the same as that shown in Figure 4. However,
the Canvas object (line 10) and the Context object (line 13) are our wrappers
for a native object of the <canvas> element. If a method, e.g. lineTo (line 20), of
the Context wrapper is called, our middleware sends the event to the Receivers
via the messaging mechanism.

Although we use a complex system consisting of many computers, a developer
can write code for a 4000 pixel × 4000 pixel <canvas> element without any
knowledge of networking or a distributed environment. Our middleware delivers
code appropriately to the corresponding Receivers on the tiled monitors.

338 S. Yokoyama and H. Ishikawa

01:<html>
02:<?php echo $JAVASCRIPT_LIBLARY; ?>
03: <script type="text/javascript">
04: Ext.onReady(function(){
05: receiver = new Wdm.Receiver(configure);
06: var LissajousDrawer = Ext.extend(Wdm.Drawer,{
07: constructor:function() {
08: LissajousDrawer.superclass.constructor.apply(this, arguments);
09: this.c=5;
10: },
11: draw:function(ctx){
12: var width = this.width;
13: var height = this.height;
14: ctx.lineWidth = 30;
15: ctx.strokeStyle="#00f";
16: ctx.beginPath();
17: width/=2; height/=2; var x,y;
18: for(j=0;j<=2*Math.PI;j+=Math.PI/500){
19: x=Math.sin(((this.c++)%15)*j) + 1;
20: y=Math.sin(((this.c++)%15)*j) + 1;
21: ctx.lineTo(x*width,y*height);
22: }
23: ctx.closePath();
24: ctx.stroke();
25: },
26: runner_mode:"sleep",
27: runner_timing:1000
28: }); /*draw() is called every 1000 msec*/
29: receiver.setDrawer("CURVE",LissajousDrawer);
30: receiver.start();
31: });
32: </script>
33:</head></html>

receiver.php

commander.php
01:<html><head>
02:<?=$JAVASCRIPT_LIBLARY?>
03: <script type="text/javascript">
04: Ext.onReady(function(){
05: var commander
06: = new Wdm.Commander(configure);
07: commander.start();
08: var canvas = commander.createCanvas(
09: {"top" :300, "left" :900,
10: "height":4000,"width":4000},"px",
11: "CURVE");
12: });
13: </script>
14:</head></html>

time

Fig. 7. JavaScript code for parallel distributed rendering of a Lissajous curve

Figure 6 shows examples of messages that are sent and received between the
Commander and the Receivers. These messages create a <canvas> element and
draw two rectangles, one black and one red. The black rectangle is drawn on
monitors #1 and #2; therefore, the message is sent to the #1 and #2 receiver.php
files. The red rectangle is drawn on monitors #2 and #4; therefore, the message
is sent to the #2 and #4 receiver.php files. Thus, only monitors that must display
part of a shape receive the message containing the draw event. This mechanism
reduces network traffic between the Commander and the Receivers.

Because commander.php also shows a graphical user interface and handles
event listeners that respond to user actions, a dynamic drawing based on user
actions is suitable for this method. This method is a distributed rendering but
not a parallel rendering because the drawing commands are centralized in com-
mander.php. In addition, the latency between the Commander and the Receivers
cannot be bypassed, particularly for animations. For this purpose, the rendering
command is written in receiver.php. The screen shown in Figure 6 is drawn using
these methods.

4.3 Rendering from receiver.php

The drawing commands written in receiver.php are delivered to all Receivers
and executed in parallel. Figure 7 shows an example code for drawing different

Parallel Distributed Rendering of HTML5 Canvas Elements 339

Lissajous curves every second. The receiver.php file is downloaded by all the
Receivers, but drawing commands that do not include the area of the relevant
monitor are ignored.

The LissajousDrawer class, which extends Wdm.Drawer, is defined in re-
ceiver.php in Figure 7. LissajousDrawer has a constructor, a draw method and
some properties. The draw method is called constantly, and the runner timing
property (line 26 in receiver.php) is the sleep time between the method calls. The
size and position of the <canvas> element are defined in commander.php (lines
09,10). The createCanvas method’s third argument, CURVE, is an identifier of
a Drawer instance. The identifier also appears in the argument of the setDrawer
method (line 29 in commander.php). The Canvas object in commander.php and
the Drawer object in receiver.php are bound together by the identifier.

5 Performance Evaluation

5.1 Photomosaic

To test our method, we implemented a complex rendering application consisting
of a high-resolution photomosaic renderer and measured the parallel distributed
rendering performance.

The photomosaic technique transforms an input image into a rectangular grid
of small images. One of the earliest concepts of the photomosaic was presented
by Salvador Dali [6]. His painting “Gala Contemplating the Mediterranean Sea
which at Twenty Meters becomes a Portrait of Abraham Lincoln (Homage to
Rothko)” looks like a portrait of Lincoln, but a nude of his wife Gala and a
small portrait of Lincoln actually appear in the painting. This is the best-known
image made from many other images. Robert Silvers, a student at MIT Media
Lab, proposed a computer-aided photomosaic [16]. One of his masterpieces is
a portrait of Mickey Mouse composed from many scenes from Walt Disney’s
movies [17].

The algorithm for generating a computer-aided photomosaic is as follows:

1. Divide an input image into small rectangular areas.
2. Search for images similar to each area from an image database.
3. Replace the areas with the similar images.

That is, the principal part of the algorithm consists of repeated searches for
similar images. Blasi et al. proposed an efficient photomosaic generation method
based on approximate nearest neighbour searching Blasi et al. [4,8] They showed
that a 1024 pixel × 768 pixel photomosaic is created in about 32 s using a
database of 1417 images of 10 pixel ×10 pixel on a personal computer that has
an Athlon XP-M 1800+ CPU and 192 MB of RAM. This speed is sufficient to
be used for a personal computer monitor, but the resolution of computer moni-
tors is insufficient to render photomosaics. A high-quality photomosaic requires
a high-resolution canvas; consequently, the photomosaic technique is often used
for printed matter. However, by using the proposed method, a high-quality pho-
tomosaic having resolution sufficient for printing can be rendered dynamically

340 S. Yokoyama and H. Ishikawa

Input image Photomosaic

Fig. 8. Photomosaic generation

on a high-resolution tiled display wall. This is why we selected photomosaic
generation as a benchmark of the proposed system.

The other important problem of photomosaic generation is the database size
of the small images. The quality of a photomosaic is influenced not only by the
number of pixels but also by the size of the database. This problem is solved
by using the web because many photo-sharing websites share billions of images.
In this section, we measure the performance of the entire system and assess the
effectiveness of the proposed method using photomosaic generation based on
photos on Flickr [1].

5.2 Setting

The benchmark application creates photomosaic images using large image sets
from Flickr, a public image-hosting service. We crawled pictures from Flickr,
divided each of them into nine sections and extracted the average colour of each
section. We used one million colour vectors for this experiment and stored them
in a database. A colour vector consists of red, green and blue levels, saturation
and brightness of the nine subsections; therefore, one small image has a 45-
dimensional vector. The specifications of the machines are listed in Table 1.

Figure 8 illustrates the photomosaic generation algorithm. The input photo-
graph is subdivided, and each subsection is compared with the colour vectors of
the image database. This process yields a Flickr URL for the closest match. That
is, a list of URLs is generated for a given image, the images are downloaded from
Flickr, and the photomosaic is drawn on a tiled display wall. Every Receiver
searches and draws in parallel (see Figure 11 in the Appendix).

Table 1. Machine specifications

Messenger Receiver

M/B Asus P6T7 WS SuperComputer Model Acer Aspire Revo
CPU Intel Core i7 975EE (Quad Core) CPU Intel Atom Processor

Memory 12GB Memory 2GB
OS Linux (Fedora12) OS Windows Vista

Parallel Distributed Rendering of HTML5 Canvas Elements 341

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

of

 re
nd

er
in

g
�l

e
im

ag
es

 p
er

 se
co

nd

Elapsed �me from start (sec.)

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

of

 re
nd

er
in

g
�l

e
im

ag
es

 p
er

 se
co

nd

Elapsed �me from start (sec.)

(a) 16-Parallel

(b) 4-Parallel (c) Non-Parallel

Chrome
Firefox
IE
Opera

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

of

 re
nd

er
in

g
�l

e
im

ag
es

 p
er

 se
co

nd

Elapsed �me from start (sec.)

Continue until 1161 sec.

Fig. 9. Throughput of parallel distributed <canvas> rendering

Our testbed has a 8240 pixel × 4920 pixel display consisting of 16 monitors.
We used one million Flickr thumbnail images of 75 pixel × 75 pixel resolution
and measured the execution time to create and draw an 8240 pixel × 4920
pixel photomosaic using 16 monitors, four monitors and one monitor. When
four monitors and one monitor were used, the photomosaic was drawn into a
scrollable area because it was larger than the screen. We also used the ANN
library [12] to search for similar images. The web browser on the Receivers is
Chrome 9.0, Firefox 3.6.13, Opera 11.01 or Internet Explore 9 Beta. The results
are the mean values of five executions.

5.3 Result

Photomosaic rendering requires approximately 650 nearest neighbour searches
in a short period. A few time-outs occasionally occur when 6500 thumbnail
images are downloaded from Flickr. In this case, the application can send a re-
send request to Flickr, but we ignore the time-outs in this experiment because
the purpose is to estimate the performance of the proposed system, not error
recovery. Table 2 shows the mean number of error images and thumbnail images
downloaded from Flickr.

The number of thumbnails of each condition take different values. This is be-
cause when nearest neighbour searches occasionally return the same thumbnails,
the web browser loads the image from cache memory.

342 S. Yokoyama and H. Ishikawa

Table 2. Average number of drawing tile images and HTTP errors

Chrome Firefox IE Opera
errors images errors images errors images errors images

1 monitor 0.0 6350.0 2.7 6324.0 1.7 6346.0 1.3 7303.7
4 monitors 0.7 6457.0 3.3 6329.0 1.7 6352.7 1.0 6657.7
16 monitors 2.3 6620.3 25.0 6401.3 3.7 6515.7 1.0 6498.7

(a) Until 100% rendering (b) Until 98% rendering

1 monitor 4 monitors 16 monitors
Chrome 115.333 125 85
Firefox 104 43.667 54
IE 108.667 30.667 27.333
Opera 1161.333 109 33.333

0
20
40
60
80

100
120
140
160
180
200

1 monitor 4 monitors 16 monitors
Chrome 112 120.667 79.667
Firefox 100 29.333 25.667
IE 106.667 29.333 19.333
Opera 1138.333 104.333 21.667

0
20
40
60
80

100
120
140
160
180
200

Re
nd

er
in
g
tim

e
(s
)

Re
nd

er
in
g
tim

e
(s
)

Fig. 10. Rendering time

The results of this experiment are presented in Figure 9. Figure 9(a) uses all 16
monitors of the tiled display wall. All web browsers except Google Chrome drew
more than 400 thumbnail images per second at their peak performance. In the
case of four monitors, the peak performance of Firefox and Internet Explorer was
approximately 250 images per second. In the case of one monitor (non-parallel
conditions), the peak performance of Firefox and Internet Explorer was about
80 images per second. These results suggest that the throughput of parallel
distributed <canvas> rendering is proportional to the degree of parallelism.

The rendering time is presented in Figure 10(a). The result includes an un-
expected delay in HTTP response from Flickr. Therefore, we also measured the
time to draw 98% of all the thumbnails [Figure 10(b)]. The fastest case was 27
s to create a photomosaic in Internet Explorer. In Firefox, the photomosaic was
created in 54 s, but the time required to draw 98% of the thumbnails shown in
Figure 10(b) is 25 s, which is similar to the other times. Opera shows the same
trend, but the result of nonparallel operation is worse than the others. Only
Chrome shows a different trend; it is slowest in the case of four parallel moni-
tors. We think the reason is that Chrome has a high speed of operation. This is
because a web browser on a Receiver sends many HTTP requests for the near-
est neighbour search on the Messenger, exceeding its capacity and occupying
all the reserved ports. Consequently, the other Receivers wait for completion
of the drawing by the Receiver.

Finally, we present the memory consumption of Internet Explorer and Firefox
in Table 3. The values represent the difference between the memory used before
and after photomosaic rendering.

Parallel Distributed Rendering of HTML5 Canvas Elements 343

Table 3. Memory consumption

Firefox IE

1 monitor 67.8 232.7
4 monitors 35.9 41.8

16 monitors 17.9 8.4

(MB)

Memory consumption might be proportional to the size of the <canvas>
element. This is because the memory consumption of 16 parallel monitors is
less than that of the others. The result shows this trend. These experiments
clarify that a web-based tiled display wall achieves effective parallel distributed
rendering of <canvas> elements.

6 Conclusion

As described in this paper, we propose a method of parallel distributed rendering
of the HTML5 <canvas> element. We also describe the design of a web-based
tiled display wall system. The experimental results show that the proposed sys-
tem is highly efficient and scalable. High-resolution web content realized by this
research will bring about qualitative changes in Internet applications.

This work has inspired several ideas:

– We implements WebSocket messaging between the Commander and the
Receivers.

– We will attempt to improve the latency of distributed frame synchronisation
and the timing of the draw method call of the Drawer object in receiver.php.

References

1. Flickr from yahoo, http://flickr.com/
2. OpenGL, http://www.opengl.org/
3. Wall display in mosaic, http://shohei.yokoyama.ac/Wall_Display_in_Mosaic/en
4. Blasi, G.D., Petralia, M.: Fast Photomosaic. In: Poster Proceedings of

ACM/WSCG 2005, Citeseer (2005)
5. Crockett, T.: An Introduction to Parallel Rendering. Parallel Computing 23(7),

819–843 (1997)
6. Dali, S.: Gala contemplating the Mediterranean Sea, which at twenty meters be-

comes the portrait of Abraham Lincoln (1976)
7. DeFanti, T.A., Leigh, J., Renambot, L., Jeong, B., Verlo, A., Long, L., Brown,

M., Sandin, D.J., Vishwanath, V., Liu, Q., Katz, M.J., Papadopoulos, P., Keefe,
J.P., Hidley, G.R., Dawe, G.L., Kaufman, I., Glogowski, B., Doerr, K.-U., Singh,
R., Girado, J., Schulze, J.P., Kuester, F., Smarr, L.: The optiportal, a scalable
visualization, storage, and computing interface device for the optiputer. Future
Generation Computer Systems, The International Journal of Grid Computing and
eScience 25(2), 114–123 (2009)

http://flickr.com/
http://www.opengl.org/
http://shohei.yokoyama.ac/Wall_Display_in_Mosaic/en

344 S. Yokoyama and H. Ishikawa

8. di Blasi, G., Gallo, G., Petrali, M.P.: Smart ideas for photomosaic rendering. In:
Eurographics Italian Chapter Conference 2006, pp. 267–272 (2006)

9. Fantz, J.F., Reinsel, D., Chute, C., Schlichting, W., McArthur, J., Minton, S.,
Xheneti, I., Tonoheva, A., Manfrediz, A.: The expanding digital universe. In: An
IDC White Paper - Sponsored by EMC (2007)

10. Humphreys, G., Houston, M., Ng, R., Frank, R., Ahern, S., Kirchner, P.D.,
Klosowski, J.T.: Chromium: A stream-processing framework for interactive ren-
dering on clusters. In: ACM SIGGRAPH 2002, pp. 693–702 (2002)

11. Melchior, J., Grolaux, D., Vanderdonckt, J., Roy, P.V.: A toolkit for peer-to-peer
distributed user interfaces: Concepts, implementation, and applications. In: Pro-
ceedings of The ACM SIGCHI Symposium on Engineering Interactive Computing
Systems (EICS 2009), pp. 69–78 (2009)

12. Mount, D.M., Arya, S.: Ann: A library for approximate nearest neighbor searching,
http://www.cs.umd.edu/~mount/ANN/

13. Ni, T., Schmidt, G.S., Staadt, O.G., Livingston, M.A., Ball, R., May, R.: A sur-
vey on large high-resolution display technologies, techniques, and applications. In:
Virtual Reality Conference, 2006, pp. 223–236 (2006)

14. Renambot, L., Rao, A., Singh, R., Byungil, J., Krishnaprasad, N., Vishwanath,
V., Vaidya, C., Nicholas, S., Spale, A., Charles, Z., Gideon, G., Leigh, J., Johnson,
A.: Sage: the scalable adaptive graphics environment. In: Workshop on Advanced
Collaborative Environments, WACE 2004 (2004)

15. Sandstrom, T.A., Henze, C., Levit, C.: The hyperwall. In: Proceedings of Interna-
tional Conference on Coordinated and Multiple Views in Exploratory Visualization,
pp. 124–133 (2003)

16. Silvers, R.: Photomosaics: Putting Pictures in Their Place. PhD thesis, Mas-
sachusetts Institute of Technology (1996)

17. Silvers, R., Tieman, R.: Disney’s Photomosaics. Hyperion (1998)
18. Staadt, O., Walker, J., Nuber, C., Hamann, B.: A Survey and Performance Analysis

of Software Platforms for Interactive Cluster-based Multi-screen Rendering. In:
ACM SIGGRAPH ASIA 2008 Courses, pp. 1–10. ACM, New York (2008)

19. Vandervelpen, C., Vanderhulst, G., Luyten, K., Coninx, K.: Light-weight dis-
tributed web interfaces: Preparing the web for heterogeneous environments. In:
Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 197–202. Springer,
Heidelberg (2005)

20. Yokoyama, S., Ishikawa, H.: Creating Decomposable Web Applications On High-
Resolution Tiled Display Walls. In: Proceedings of the IADIS International Con-
ference on WWW/Internet, pp. 151–158 (2010)

http://www.cs.umd.edu/~mount/ANN/

Parallel Distributed Rendering of HTML5 Canvas Elements 345

Appendix: Parallel Distributed Photomosaic Rendering

5 sec.1 sec.

15 sec.10 sec.

Original Image20 sec.

Fig. 11. Parallel distributed photomosaic rendering in 20 s. A movie version is available
to the public at http://www.youtube.com/watch?v=ECZ03giPlXE.

http://www.youtube.com/watch?v=ECZ03giPlXE

Formal Modeling of RESTful Systems Using

Finite-State Machines

Ivan Zuzak, Ivan Budiselic, and Goran Delac

School of Electrical Engineering and Computing, University of Zagreb,
Unska 3, 10000 Zagreb, Croatia

{izuzak,ibudiselic,gdelach}@gmail.com

Abstract. Representational State Transfer (REST), as an architectural
style for distributed hypermedia systems, enables scalable operation of
the World Wide Web (WWW) and is the foundation for its future evolu-
tion. However, although described over 10 years ago, no comprehensive
formal model for representing RESTful systems exists. The lack of a for-
mal model has hindered understanding of the REST architectural style
and the WWW architecture, consequently limiting Web engineering ad-
vancement. In this paper we present a model of RESTful systems based
on a finite-state machine formalism. We show that the model enables in-
tuitive formalization of many REST’s constraints, including uniform in-
terface, stateless client-server operation, and code-on-demand execution.
We describe the model’s mapping to a system-level view of operation
and apply the model to an example Web application. Finally, we outline
benefits of the model, ranging from better understanding of REST to
designing frameworks for RESTful system development.

Keywords: representational state transfer, World Wide Web, software
architectural styles, formal model, finite-state machines, hypermedia.

1 Introduction

One of the main reasons for the wide adoption of the World Wide Web (WWW)
as a global information system has been its ability to scale and remain reliable
with the rapid growth in the number of its users and applications. Enabling this
growth is an architecture [1] designed just for the purpose of developing large-
scale distributed hypermedia systems such as the WWW. The foundation of this
architecture is a set of software design principles named the Representational
State Transfer architectural style (REST) [2]. In a way, REST describes how a
Web application should behave in order to maximize beneficial properties, such
as simplicity, evolvability, and performance.

From its introduction in year 2000., REST has not only guided many incre-
mental changes in WWW’s continuous evolution, such as the recently standard-
ized HTTP PATCH method [3], but has also been guiding the development of
its new dimensions in order to preserve its desirable properties. These efforts
include the expansion of the WWW with higher-level applications, interlinked

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 346–360, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Formal Modeling of RESTful Systems Using Finite-State Machines 347

data, physical devices and real-time access, through mashups [7], the Seman-
tic Web [5], Web of Things [4] and the Real-Time Web [6]. However, as the
WWW grows in functionality, it also grows in complexity and is consequently
becoming harder to understand and explain at the architectural level. Therefore,
understanding REST is essential for engineering the WWW and its future.

However, although defined over 10 years ago, REST’s architectural principles
have only been semi-formally described using diagrams, tabular techniques and
natural language descriptions. Furthermore, although formal models of hyperme-
dia systems in general do exist [9], no such model covers fundamental principles
of REST and most techniques are used to model the WWW which includes
many unRESTful properties. In result, no formalism for modeling RESTful sys-
tems exists today. This lack of formal explanation has increasingly been causing
negative effects, such as misunderstanding of REST concepts, misuse of termi-
nology [10] and ignorance of benefits of the REST style. For example, common
misunderstandings include the overload in meaning of the word state, such as
state, application state, resource state and session state [13], and identifying
functionality of REST user agents with Web browsers [14].

In result, WWW researchers and engineers experience difficulty in concisely
explaining both small-scale and large-scale WWW patterns or requirements,
such as defining Web application interaction [11] and defining future WWW
architectural goals [12]. Furthermore, development of systems which adhere to
the REST style is difficult due to a lack of software frameworks which guide
their implementation [15]. This is especially true for developing machine-driven
RESTful clients and their application in machine-to-machine RESTful interac-
tion and service composition [8]. We believe this to be a direct consequence of
the absence of formal models which are used as the practical encoding of general
architectural principles and serve as the foundation for the software development
process in such frameworks.

In this paper we present a finite-state machine (FSM) [16] formalism for mod-
eling RESTful systems, with the primary motivation of contributing to the un-
derstanding of the REST style. Our choice of using a FSM formalism was inspired
by The Rule of Least Power [17] which originally suggests that the least power-
ful language suitable for expressing constraints or solving a problem should be
chosen. Consequently, one of our goals was to explore the possible limits of the
FSM formalism for this specific purpose in order to suggest the use of more a
powerful model. Furthermore, one of the core principles of the REST style, that
resource representation transfers are used for transitioning agents from one state
to another, suggest the usage of a state transition system formalism.

Our model is based on the nondeterministic finite-state machine formalism
with epsilon transitions (ε-NFA). We first explain the mapping of the model’s
abstract elements to those of a RESTful system. In order to illustrate model
usage, we introduce an example Web application and present its ε-NFA model.
Next, we explain how each of REST’s style constraints map to the model, includ-
ing uniform interface, stateless client-server operation, and code-on-demand exe-
cution. We show that the transition function of the ε-NFA enables formalization

348 I. Zuzak, I. Budiselic, and G. Delac

of the transformation of the system’s application state, following the hypermedia
as the engine of application state principle. Furthermore, we show that nonde-
termistic transitions of the model enable formalization of the temporally-varying
mapping of resources to representations and that ε-transitions enable formaliza-
tion of code-on-demand execution. The presented model naturally translates to
the client-centric view of RESTful system operation with the client storing ap-
plication state, issuing resource manipulation requests and integrating responses
into application state, while the server performs request processing.

The remainder of the paper is organized as follows. In Section 2, we give an
overview of related work, focusing on approaches for formalization of RESTful
systems, hypermedia systems and Web applications. Section 3 defines our finite-
state machine formalism for modeling RESTful systems and presents the model
of an example Web application. In Section 4 we conclude the paper, discuss the
limitations of the presented model and give directions for future work.

2 Related Work

This Section gives an overview of existing approaches for modeling RESTful
systems with the goal of examining the degree of completeness in which REST
principles are covered by each model. We first give an overview of related work
focused on REST and similar styles and then of related work focused on mod-
eling Web applications and hypermedia systems in general. In summary, our
analysis shows several issues with existing formal and semi-formal models that
motivate our research. First, most models are not focused on REST, rather on
hypermedia applications in general or Web applications, and thus do not in-
clude many of REST’s principles. Second, most models do not offer an explicit
mapping from REST’s principles to the chosen formalism, and in general do not
use the terminology originally proposed for REST. Third, most models address
only REST’s static properties or do not offer a mapping of REST principles to
a system-level view of operation dynamics. Fourth, some principles of REST are
rarely included in models, such as the temporally-varying mapping of resources
to representations, code-on-demand execution and steady application states.

In [18], the authors present Alfa, a framework for characterization of archi-
tectural styles, based on composing a small set of architectural primitives. The
authors use Alfa to describe many architectural styles, including a subset of
REST, the layered-client-code-on-demand-cache-stateless-server (LCCOD$SS)
style. However, this style does not include the uniform interface constraint, one
of the most important and distinct principles of REST, while its model does not
explain key REST concepts, such as resources, representations and media types.

In [19] the authors present a definition of RESTful semantic Web Services
using a process calculus formalism. In this model, a RESTful system is described
as a set of processes, representing origin servers and user agents, which exchange
request and response messages over uniquely identified channels. This approach
is very promising as it allows that channel names exchanged between processes
be used to model the exchange of messages containing resource identifiers. This

Formal Modeling of RESTful Systems Using Finite-State Machines 349

property of the model enables formalization of the REST constraint of using
hypermedia links as the engine of application state. We encourage further work
on using process algebras for modeling RESTful systems which would include a
mapping of resources, representations, media types, steady and transition states
to such a model together with a generalization of the model which would not be
bound to standard HTTP methods as it currently is.

In [20] the authors present a promising formal model for specifying RESTful
execution of processes specified by Service nets, a specific class of Petri nets
that include value passing. The main advantage of the model is its integration of
hypermedia-driven application flow while its main use is in modeling composition
of RESTful processes. However, the model is not explicit on where application
state is stored and does not explain its transformation in response to initial
fetches of resource representations which occur at the beginning of an application
flow. Furthermore, the model introduces a notion of static and dynamic ports,
metaphors for static and temporary resources, which is not RESTful since clients
never know and do not need to know if a resource is static or temporary.

In [21] the authors present the Resource Linking Language, an XML-based
language for describing interlinked REST resources and consequently the ser-
vice that can be accessed by interacting with those resources. The language is
based on a RESTful service description metamodel, formalized as a UML class
diagram, and which incorporates many REST’s concepts, such as resources, rep-
resentations, media types and links. However, the static metamodel does not
explicitly express the important dynamic properties of REST, such as the appli-
cation state contained on the client side and the effects of the code-on-demand
constraint, and does not map REST’s concepts to a client-server architecture.

In [22], an agent-based model of RESTful applications is presented. In the
model, an agent represents the client side of the application while the environ-
ment represents the server side. The agent has several pools of predefined logic,
including application, action and protocol logic, formalized as a hierarchical state
machine which drives the agent’s action selection. Although explaining high-level
dynamics of a RESTful system, the model is more descriptive than formal, not
providing an explicit mapping of many REST’s principles to the model, includ-
ing code-on-demand execution, resource representations and temporally-varying
mapping of resources to representations.

In [23], the authors present a broad overview of modeling methods for Web
application verification and testing, using a categorization of criteria for clas-
sifying models of Web application. Although some criteria may be regarded
as reflections of REST’s principles, such as the dynamic navigation criterion
which asserts the possibility of modeling servers that may nondeterministically
return responses for the same requests, this work is focused on Web applications
only and most principles of REST were not considered. For example, in [25],
the authors introduce a finite-state machine behavioral modeling approach for
hypermedia Web applications. The model is based on presenting Web pages as
states and links as transitions in a FSM. Furthermore, the authors define multiple
types of pages and transitions in order to model activity-initiated transitions and

350 I. Zuzak, I. Budiselic, and G. Delac

automatic transitions. However, the model is based on a deterministic FSM and
does not explain the temporally-varying mapping of resources to representations
in RESTful systems. Furthermore, the model is based on using only “clickable
links” for transitions, i.e. only navigation is used for changing application state,
which is an incomplete definition of transitions in RESTful systems.

In [9], the authors give a broad systematization of formal and semi-formal
reference models for hypermedia systems and a comparison of hypermedia en-
gineering methodologies. Hypermedia reference models capture important ab-
stractions found in hypermedia applications and describe the basic concepts
of these systems, such as the node/link structure. Semi-formal models include
the Amsterdam Hypermedia model while formal models include the Trellis and
Dexter reference models. However, although these models describe the mecha-
nisms by which the links and nodes in the hypermedia network are related, these
do not include many principles, concepts and terminology of RESTful systems.
For example, the Dexter reference model uses components and instances, while
REST uses resources, representations and application state. Furthermore, these
models do not offer a dynamic operational system-level view which maps system
components to clients, servers and intermediaries.

In [24] the authors present an automata-based model of hyperdocuments with
the goal of verifying trace-based properties by model checking. The model is
focused on simple hyperlink-based connectedness of hypertext documents for
the Trellis hypermedia system, which does not include important properties
of RESTful systems, such as the uniform interface constraint. However, two
interesting ideas are presented. First, the underlying model upon which a link
automaton is constructed is based on place/transition nets in order to allow
modeling of parallel execution of hyperdocuments. Second, the authors present
a temporal logic for model checking link automatons.

3 A Finite-State Machine Model of RESTful Systems

Finite-state machines (FSMs) are a mathematical formalism for describing pro-
cesses with a finite number of possible states and sequential state transitions.
Although components of a RESTful system may be viewed as separate agents,
each driven by a self-contained FSM, we model the operation of the complete
system, often called an application, as a single FSM. For formalizing RESTful
systems, we use a nondeterministic finite-state machine with ε-transitions (ε-
NFA), an extension of the basic deterministic FSM model. Our model is focused
more on explaining the operation of RESTful systems and less on explaining
their static properties. The central part of this view is the application state of a
RESTful system, its definition, transformation and relation to other concepts.

In the following subsections we first give an overview of the model, formal-
izing elements of the ε-NFA in context of RESTful systems. Second, in order
to illustrate the usage of the model, we introduce an example Web application
and present its ε-NFA formalization. Next, we describe the model in more de-
tail by mapping style constraints of REST to the presented model, including

Formal Modeling of RESTful Systems Using Finite-State Machines 351

client-server, stateless, code on demand and uniform interface styles. The pre-
sented model does not explicitly formalize the layered and cacheable constraints
of REST since these are not essential for understanding the operation of a system
from a functional perspective.

3.1 Model Overview

A nondeterministic finite-state machine with epsilon transitions (ε-NFA) is a
tuple (S, Σ, s0, δ, F) where S is a finite, non-empty set of states, Σ is a finite, non-
empty set of symbols representing the input alphabet, s0 ∈ S is the initial state of
the ε-NFA, δ is the state transition function δ : S×(Σ∪{ε}) → P(S), where P(S)
is the power set of S, and F ⊆ S is the set of accepting states. A system-level
perspective of ε-NFA operation is shown in Fig. 1. The Input Symbol Generator
module generates an input symbol based on internal rules or environment state
(1). Since the generator is not part of the ε-NFA’s formal model but is required
to properly model its operation, we define that the generator has access to the
system’s state stored in the Current State module. The Transition Function
accepts the generated input symbol and the current state (2), determines the
next state and stores it in the Current State module (3). The described cycle
is then repeated. Since the ε-NFA is nondeterministic, formally the Transition
Function module returns a set of states, for which the practical meaning is that
the system may be in any single state from that set. If at some point at least
one state stored in the Current State module is marked as accepting, it is said
that the ε-NFA accepts the sequence of input symbols read up to that point.
Furthermore, since the ε-NFA includes ε-transitions, the Transition Function
does not need to read an input symbol in order to perform some transitions.

Fig. 1. System-level view of ε-NFA operation

We map a RESTful system [2] to the ε-NFA formal model as follows. Let
ResIDs be a finite set of identifiers of system resources, let Metas be a finite
set of metadata key-value pairs, let LTypes be a finite set of link types and
let LRels be a finite set of link relations. Furthermore, let Links be the finite
set of hypermedia links, each defined by a resource identifier, link type and link
relation Links ⊆ ResIDs× LTypes× LRels and let MTypes be a finite set of
media types which determine the set of hypermedia links present in a representa-
tion MTypes = {MType : Reprs → P(Links)}. Finally, let Reprs be the finite

352 I. Zuzak, I. Budiselic, and G. Delac

set of resource representations, each consisting of resource metadata and data
Reprs ⊆ data × P(Metas) where one metadata element defines the media type
of the representation. The set of states S of the ε-NFA represents the applica-
tion states of the system, S = AppStates, where an application state is defined
as a non-empty, ordered set of representations, AppStates ⊆ P(Reprs) − {}.
Furthermore, the initial state s0 of the ε-NFA represents the initial appli-
cation state at system startup. Finally, let Steadys be the subset of application
states, Steadys ⊆ AppStates, for which it holds true that representations of all
embeddable resources linked to from the first representation in the application
state are also present in the application state. The set of accepting states F
of the ε-NFA represents the steady application states, F = Steadys.

Next, let Ops be a finite set of resource manipulation methods, and let Reqs
be the finite set of valid resource manipulation requests Reqs ⊆ Ops×ResIDs×
Reprs. The set of input symbols Σ of the ε-NFA represents requests Reqs
and their corresponding link types LTypes for manipulating resources, Σ ⊆
Reqs × LTypes. Furthermore, let Resrcs be a finite set of resources, mappings
from a resource identifier to a representation Resrcs : {Resrc : ResIDs →
Reprs}, and Resps be a finite set of resource manipulation responses Resps ⊆
ResIds × Reprs. The transition function δ of the ε-NFA represents the
translation of input symbols into requests, processing of requests into responses
and integration of response representations into the next application state, δ :
AppStates× (Reqs× LTypes) → P(AppStates). Furthermore, since the ε-NFA
includes ε-transitions, for some application states the transition function may
change the application state without reading an input symbol, i.e. without the
system generating a resource manipulation request.

3.2 Example Web Application

In order to illustrate concepts presented in this paper, we introduce a weather fore-
cast Web application. The resources comprising the Web application are shown in
Fig. 2. The base URI of the application is http://weather.example.com
and we identify its resources using relative addressing. The main Web page, lo-
cated at /main, contains an <a> link to the details Web page and a <script>
element pointing to a JavaScript script located at /script. The script periodically
highlights the <a> link to the details page by changing the color from
blue to red. The details Web page, located at /details, contains an tag
pointing either to /cloudy or to /sunny depending on the current weather. Fur-
thermore, the details page contains a <script> element with inline JavaScript
code which uses XmlHttpRequest for periodically fetching the current tempera-
ture from /temp and displaying it in the Web page. Finally, the details page con-
tains an <a> link pointing to the main page. The media types of the resources
are text/html for /main and /details, image/png for the /sunny and /cloudy,
and text/javascript and text/plain for /script and /temp, respectively. We
assume that the user of the application is using a modern Web browser.

The ε-NFA model of the example Web application is shown in Fig. 3, with
numbers denoting states and letters denoting input symbols. The initial state

http://weather.example.com
/main
/script
/details
/cloudy
/sunny
/temp
/main
/details
/sunny
/cloudy
/script
/temp

Formal Modeling of RESTful Systems Using Finite-State Machines 353

Fig. 2. Example Web application

Fig. 3. ε-NFA model of example Web application

0 contains a representation with an <a> link to the /main page. After a GET
request is issued (a), the server returns a response containing the representation
of the /main page which becomes the current state. State 1 is not steady since
the representation contains a <script> link to /script which must be fetched.
A GET request is issued to fetch the script (b) and the application then en-
ters the steady state 2. Because the script periodically changes the color of the
link pointing to the /details page, the application’s steady state may change
between states 2 and 3 without issuing a request (ε).

When the user follows the link to the /details page (c), the application
makes a nondeterministic transition to transient states 4 and 5 because the
representation contains an link pointing either to /sunny or /cloudy.
After fetching the linked image using a GET request (d or e), the application
enters a steady state 6 or 7. Furthermore, the representation of the details page
contains an inline script which periodically makes a GET request for the current
temperature (f). Since the returned temperature may have two possible values
(25C or 30C), the application nondeterministically enters states 8 and 9 if the
weather was cloudy, or states 10 or 11 if the weather was sunny. The script

/main
/main
/script
/details
/details
/sunny
/cloudy

354 I. Zuzak, I. Budiselic, and G. Delac

then inserts the temperature into the page without issuing requests (ε), moving
the application into states 12 and 13, or 14 and 15, depending on the weather.
Because the details page contains a link to the main page, the user may at any
time follow the link (a) and bring the application back to state 1.

3.3 Client-Server Style and Stateless Style Constraints

Figure 4 shows the system-level view of a RESTful system as a set of modules,
their mapping to the elements of the ε-NFA and distribution between client and
server components. Because client-server interaction in RESTful systems must be
stateless, the Application State module which stores the current application state
is located on the client. This is also true for modules that generate input symbols:
the Media Type Processor, Application-level Logic and Hypermedia-level Logic.
However, the transition function is divided between the client and server in order
to satisfy the client-centric description of RESTful system operation in which
the server is responsible only for mapping from requests to responses. Therefore,
the Request Preprocessor, State Integrator and Code-on-demand Engine reside
on the client, and only the Request Processor on the server.

Fig. 4. Mapping of client-server and stateless REST constraints to the ε-NFA model

The interaction of the system’s modules is defined as follows. The resource
representations comprising the current application state are read by the Me-
dia Type Processor (1) in order to determine the set of available hypermedia
links. For example, the /main page of the example Web application has the

/main

Formal Modeling of RESTful Systems Using Finite-State Machines 355

text/html media type which enables that the <a> link to the /details page
and <script> link to the /script script be recognized. The set of links and ap-
plication state are passed to the Application-level Logic and Hypermedia-level
Logic (2) so that one of the links may be chosen as the basis for the next in-
put symbol. Hypermedia-level Logic is responsible for generating input symbols
which guide the system to a steady state. Because steady states are determined
exclusively from the media types of the representations in the current applica-
tion state, Hypermedia-level Logic functions independently of Application-level
Logic. On the other hand, Application-level Logic is responsible for generating
input symbols based on application-specific goals, which are derived either from
user input or from application-specific rules encoded in the module. For exam-
ple, after the /main page has been fetched, two links may be followed, <script>
for embedding the /script script and <a> for navigating to the /details page.
The former link would be selected by Hypermedia-level Logic for downloading
the script, while the latter link would be selected by Application-level Logic, but
only in response to the user clicking on the link.

The input symbol generated by either of these modules consists of a resource
manipulation request and the link type of the chosen link (3). The Request
Preprocessor stores and removes the link type of the input symbol and adds a
request identifier to the request before forwarding it to the Request Processor
on the server (4). The server’s response therefore contains the request identifier
and a representation of the identified resource. Although request identifiers are
a conceptual requirement for coupling responses with requests, they are not
currently used on the Web since requests and responses are related through the
TCP connection by which they are sent and received. The State Integrator uses
the link type connected with the request, the corresponding server response and
the current application state (5) to synthesize the next state (6). For example, if
the /main page was fetched and the /script script was fetched afterwards via
the <script> link, the script representation would be added to the application
state. On the other hand, if the /details page was fetched afterwards via the
<a> link, the received representation would replace the existing application state.

Finally, if the resource representation is an executable script, the integrator
passes the script to the Code-on-demand engine for execution (7). The script
may then examine and change the current application state (8) (9) without
issuing requests to the server. For example, after the /script script is fetched
and executed using a JavaScript engine, it periodically modifies the application
state by changing the color of a link in the representation of the /main page.

3.4 Uniform Interface Style Constraint

REST is defined by four uniform interface constraints: identification of resources,
manipulation of resources through representations, self-descriptive messages, and
hypermedia as the engine of application state. In this section we formalize these
constraints in the context of our model. Resource identification is supported in
the model through resource identifiers which are used explicitly in input symbols

/details
/script
/main
/script
/details
/main
/script
/details
/script
/main

356 I. Zuzak, I. Budiselic, and G. Delac

and application states, where an input symbol consists of a resource manipu-
lation request and link type, where the request contains a resource identifier, a
method and a representation. For example, an input symbol IStoDetails for nav-
igating to /details in the Web application example could be represented as:

IStoDetails = (Request : (Method : “GET ”, ResourceId : “/details”,

Representation : “”), LinkType = “ < a > ”) ,

and the application state ASmain of a completely loaded /main page as:

ASmain = [(metadata : “...”, data : “/maincontents”),
(metadata : “...”, data : “/scriptcontents”)] .

Due to lack of space, we do not include full listings of representation data and
metadata. On the Web, metadata in general consists of HTTP headers, while
the data is the body of HTTP message.

Manipulation of resources through representations is supported in the model
through explicit usage of representations in input symbols and application state.
One of REST’s foundations is the temporally-varying mapping of resources to
representations, which is supported through the nondeterminism of the transi-
tion function. For example, because the /details page contains an link
to either /cloudy or /sunny, the navigation from /main to /details in the
example Web application could be represented with the following transition:

δ(ASmain, IStoDetails) = {ASdetailsCloudy, ASdetailsSunny} , where

ASdetailsCloudy = [(metadata : [mediaType : “text/html”],
data : “/details content with link to /cloudy”)] ,

ASdetailsSunny = [(metadata : [mediaType : “text/html”],
data : “/details content with link to /sunny”)] .

The self-descriptive messages style constraint is supported in the model
through stateless interaction, the limitation of using finite sets for system meth-
ods, media types, link types and link relations, and explicitly using these elements
in the input symbols and application state. For example, the IStoDetails input
symbol shown above has a link type of <a> while the representations in states
ASdetailsCloudy and ASdetailsSunny are of the text/html media type.

Hypermedia as the engine of application state is supported in the model
through the transition function which advances the system from one state to
another. Specifically, the output of the transition function should be defined
only for pairs of states and input symbols for which the input symbol may be
derived from the current state. In other words, the current state must contain a
hypermedia link used to generate the next input symbol’s link type and resource
manipulation request. For example, the transition function in the model of the

/details
/main
/details
/cloudy
/sunny
/main
/details

Formal Modeling of RESTful Systems Using Finite-State Machines 357

example Web application is undefined for state ASdetailsCloudy and IStoDetails

because the /details page does not contain an <a> link to itself:

δ(ASdetailsCloudy, IStoDetails) = {} .

Furthermore, we define that the initial application state is a single representa-
tion containing links to the resources which are the stable entry points for the
system. For example, since the example Web application’s entry point is the
/main resource, the initial state of the model ASinit could be represented as:

ASinit = [(metadata : [mediaType : “text/html”],
data : “HTML page with an < a > link to /main”)] .

Finally, steady and transient application states are supported in the model
through accepting and unaccepting states. The acceptance of a state is deter-
mined from the media type of the first representation in the application state. For
example, in the example Web application the first representation in an applica-
tion state is always of the text/html media type meaning that all embedded re-
sources, such as resources linked to using and <script>, should be fetched
in order for the system to be in a steady state. Therefore, the state ASmain is
accepting (steady), while the state ASdetailsCloudy is unaccepting (transient).

3.5 Code-on-Demand Style Constraint

The code-on-demand style constraint is defined [2] as client-side execution of
downloaded scripts together with the possibility that these scripts extend the
functionality of the client. We formalize the code-on-demand constraint in the
model through ε-transitions i.e. if a script executing on the client may change
the application state from A to B without issuing a request, then this change is
modeled with an ε-transition as δ(A, ε) = {B}. In the example Web application,
the /script script changes the color of the <a> link of the /main page which
can be modeled as δ([mainlink blue], ε) = [mainlink red] and δ([mainlink red], ε) =
[mainlink blue], where mainlink red and mainlink blue are the representations of
the /main page in which the link is colored red and blue, respectively.

4 Conclusion and Future Work

The study of architectural styles is an essential part for understanding and im-
proving information systems. As the World Wide Web is the most important
global information system, the study of its foundational architectural style, Rep-
resentational State Transfer (REST), is of equal importance from both a the-
oretical and a practical perspective. Our analysis of previous research in this
field has shown that formal models of RESTful systems are unresearched, con-
sider only few core principles of RESTful systems while ignoring others and are
focused on modeling hypermedia systems in general and not RESTful systems.

In this paper we propose a formalism for modeling RESTful systems based
on nondeterministic finite-state machines with epsilon transitions (ε-NFA). We

/details
/main
/script
/main
/main

358 I. Zuzak, I. Budiselic, and G. Delac

show that ε-NFAs are a natural fit for modeling REST’s principles which are
primarily concerned with exchange of representations using states and transi-
tions. Specifically, the states of the ε-NFA represent the application states which
the system may be in at some point of execution, where each application state
is a set of resource representations. The input symbols of the ε-NFA represent
the set of resource manipulation requests while the transition function models
the hypermedia links between resources i.e. the request which may be issued at
some state. In order to support the time-varying nature of resource representa-
tions, transitions may be nondeterministic, while ε-transitions are used to model
client-side execution of code-on-demand scripts. The client-server style of REST
is therefore naturally modeled by storing the current ε-NFA state and generat-
ing input symbols on the client while the transition function is divided between
the client and server. The client is responsible for transforming input symbols
into requests and integrating resource representations into the application state,
while the server is responsible for processing requests into responses. Represen-
tation media types determine which states of the ε-NFA are accepting or not,
representing respectively steady and transient states of the system. Therefore,
with respect to the presented model, a system may be called RESTful if it can
be represented with an ε-NFA and if sequences of generated input symbols do
not lead the ε-NFA into an empty error state.

Our research gives the following insights and areas for future work. First, al-
though we have shown an example of using the presented formalism in modeling
a simple Web application, the formalism should be applied to more systems,
including complex Web applications, widget-based Web applications, Web APIs
and mashups. A special focus of this effort would include the modeling of com-
posite RESTful applications. However, the goal would not be to extend the model
so that it supports modeling of all properties of all systems, but rather to use it
for reasoning about which properties of such systems are RESTful.

Second, it would be useful to explore the possibility of extending the presented
formalism so that it explicitly accounts for currently unaddressed principles of
RESTful systems. For example, this could include the layered and cacheable style
constraints, and resources that map to a set of representations with different
media types, with the goal of modeling content negotiation.

Third, one specific issue which may be raised is that of the finite set limitations
of the presented model. Because RESTful systems are not restricted to a finite
number of states or input symbols, finite-state machines are not a completely
suitable model. The ε-NFA model may be relaxed so that the set of states may
be infinite or even not countable or, alternately, other kinds of models for de-
scribing infinite-state machines may be used. One possible candidate are labeled
state transition systems [26], a formalism similar to finite-state machines which
permits that the number of states and transitions be infinite.

Fourth, we will explore practical applications of the model. One possible di-
rection is to use the ε-NFA model as the basis for designing a framework for
development of RESTful systems, and specifically RESTful Web applications.

Formal Modeling of RESTful Systems Using Finite-State Machines 359

Existing Web application development frameworks do not support the implemen-
tation of many RESTful constraints, such as the uniform interface constraint,
shifting that burden to the developer. We believe this to be a direct consequence
of nonexisting models with system-level mappings and that the model in this
paper is simple, yet powerful, and understandable by developers. This premise
is supported by the recently developed Restfulie framework [27] which imposes
state transitions as the underlying application development model.

Finally, in order to avoid the state explosion problem for models of complex
systems, we will consider aggregating similar states of models into a single state.
However, this requires that a suitable method for aggregation be chosen. Cur-
rently, we are researching an approach based on abstracting representations into
two parts: the constant application-level data and the variable set of hypermedia
links. This would enable that states which correspond to the same set of repre-
sentations with the same set of links and which differ only by the data would be
aggregated into a single state, significantly reducing the number of states.

Acknowledgments. The authors acknowledge the support of the Ministry of
Science, Education, and Sports of the Republic of Croatia through the Com-
puting Environments for Ubiquitous Distributed Systems (036-0362980-1921) re-
search project. Furthermore, the authors thank Sinisa Srbljic, Dejan Skvorc,
Miroslav Popovic, Klemo Vladimir, Marin Silic, Jakov Krolo and Zvonimir Pavlic
from the School of Electrical Engineering and Computing, University of Zagreb.

References

1. Jacobs, I., Walsh, N.: Architecture of the World Wide Web, Volume One. W3C
Recommendation, WWW Consortium (2004), http://www.w3.org/TR/webarch/

2. Fielding, R.T., Taylor, R.N.: Principled design of the modern Web architecture.
ACM Transactions on Internet Technology 2(2), 115–150 (2002)

3. Dusseault, L., Snell, J.: PATCH Method for HTTP. In: Proposed Standard, Inter-
net Engineering Task Force, IETF (2010), http://tools.ietf.org/html/rfc5789

4. Trifa, V., Trifa, V., Guinard, D., Bolliger, P., Wieland, S.: Design of a Web-based
Distributed Location-Aware Infrastructure for Mobile Devices. In: 1st IEEE In-
ternational Workshop on the Web of Things, Mannheim, Germany, pp. 714–719
(2010)

5. Alarcon, R., Wilde, E.: Linking Data from RESTful Services. In: 3rd International
Workshop on Linked Data on the Web, Raleigh, North Carolina, USA (2010)

6. Fitzpatrick, B., Slatkin, B., Atkins, M.: PubSubHubbub protocol,
http://pubsubhubbub.googlecode.com/svn/trunk/pubsubhubbub-core-0.3.html

7. Rosenberg, F., Curbera, F., Duftler, M.J., Khalaf, R.: Composing RESTful Services
and Collaborative Workflows: A Lightweight Approach. IEEE Internet Comput-
ing 12(5), 24–31 (2008)

8. Pautasso, C.: RESTful Web service composition with BPEL for REST. Data &
Knowledge Engineering 68(9), 851–866 (2009)

9. Koch, N.: Software Engineering for Adaptive Hypermedia Systems: Reference
Model, Modeling Techniques and Development Process. Ph.D. dissertation,
Ludwig-Maximilians-University of Munich, Germany (2000)

http://www.w3.org/TR/webarch/
http://tools.ietf.org/html/rfc5789
http://pubsubhubbub.googlecode.com/svn/trunk/pubsubhubbub-core-0.3.html

360 I. Zuzak, I. Budiselic, and G. Delac

10. Fernandez, F., Navon, J.: Towards a Practical Model to Facilitate Reasoning about
REST Extensions and Reuse. In: 1st International Workshop on RESTful Design,
Raleigh, North Carolina, pp. 31–38 (2010)

11. Rees, J.: ACTION-434: Some notes on organizing discussion on WebApps archi-
tecture. In: W3C TAG Mailing List (2010),
http://lists.w3.org/Archives/Public/www-tag/2010Oct/0061.html

12. ISSUE-60: Web Application State Management. W3C TAG Issues List,
http://www.w3.org/2001/tag/group/track/issues/60

13. Fielding, R.T.: ACTION-434: Some notes on organizing discussion on WebApps
architecture. In: W3C TAG Mailing List (2010),
http://lists.w3.org/Archives/Public/www-tag/2010Oct/0100.html

14. Kemp, J.: AWWW and the Web interaction model. In: W3C TAG Mailing List
(2010), http://lists.w3.org/Archives/Public/www-tag/2010Jun/0034

15. Vinoski, S.: RESTful Web Services Development Checklist. IEEE Internet Com-
puting 12(6), 95–96 (2008)

16. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Publishing, Reading (1979)

17. Berners-Lee, T., Mendelsohn, N.: The Rule of Least Power W3C TAG Finding
(2006), http://www.w3.org/2001/tag/doc/leastPower.html

18. Mehta, N.R.: Composing style-based software architectures from architectural
primitives. Ph.D. dissertation, University of Southern California, California, USA
(2004)

19. Hernandez, A.G., Moreno Garcia, M.N.: A Formal Definition of RESTful Semantic
Web Services. In: 1st International Workshop on RESTful Design, Raleigh, North
Carolina, pp. 39–45 (2010)

20. Decker, G., Luders, A., Overdick, H., Schlichting, K., Weske, M.: RESTful Petri
Net Execution. In: Bruni, R., Wolf, K. (eds.) WS-FM 2008. LNCS, vol. 5387, pp.
73–87. Springer, Heidelberg (2009)

21. Alarcon, R., Wilde, E., Bellido, J.: Hypermedia-driven RESTful Service Compo-
sition. In: 6th Workshop on Engineering Service-Oriented Applications, San Fran-
cisco, California (2010)

22. Charlton, S.: Building a RESTful Hypermedia Agent, Part 1 (2010),
http://www.stucharlton.com/blog/archives/

2010/03/building-a-restful-hypermedia

23. Alalfi, M.H., Cordy, J.R., Dean, T.R.: Modeling methods for web application veri-
fication and testing: state of the art. In: Software Testing, Verification & Reliability
Archive, vol. 19(4), pp. 265–296. John Wiley and Sons Ltd., Chichester (2009)

24. Stotts, P.D., Furuta, R., Cabarrus, C.R.: Hyperdocuments as Automata: Verifica-
tion of Trace-Based Properties by Model Checking. ACM Transactions on Infor-
mation Systems 16(1), 1–30 (1998)

25. Dargham, J., Al-Nasrawi, S.: FSM Behavioral Modeling Approach for Hypermedia
Web Applications: FBM-HWA Approach. In: Advanced International Conference
on Telecommunications and International Conference on Internet and Web Appli-
cations and Services, Guadeloupe, French Caribbean, pp. 199–199 (2006)

26. Trybulec, M.: Labelled State Transition Systems. Formalized Mathematics 17(2),
163–171 (2009)

27. Parastatidis, S., Parastatidis, S., Webber, J., Silveira, G., Robinson, I.S.: The role
of hypermedia in distributed system development. In: 1st International Workshop
on RESTful Design, Raleigh, North Carolina, pp. 16–22 (2010)

http://lists.w3.org/Archives/Public/www-tag/2010Oct/0061.html
http://www.w3.org/2001/tag/group/track/issues/60
http://lists.w3.org/Archives/Public/www-tag/2010Oct/0100.html
http://lists.w3.org/Archives/Public/www-tag/2010Jun/0034
http://www.w3.org/2001/tag/doc/leastPower.html
http://www.stucharlton.com/blog/archives/2010/03/building-a-restful-hypermedia
http://www.stucharlton.com/blog/archives/2010/03/building-a-restful-hypermedia

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 361–362, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Knowledge Spaces

Marcos Baez, Fabio Casati, and Maurizio Marchese

Dipartimento di Ingegneria e Scienza dell’Informazione, University of Trento, Italy
{baez,casati,marchese}@disi.unitn.it

Abstract. This paper presents a set of models and an extensible social web
platform (namely, Knowledge spaces) that supports novel and agile social
scientific dissemination processes. Knowledge spaces is based on a model for
scientific resources that allows the representation of scientific knowledge and
meta-knowledge, of effective “viral” algorithms for helping scientists find the
knowledge they need, and of interaction metaphors that facilitate its usage. The
concept and a preliminary implementation of Knowledge spaces, in their
various forms and designs, are being exploited in several different pilots.

Keywords: knowledge dissemination, social web, scientific publications.

Knowledge spaces (kspaces for short) are a metaphor, a set of models and processes,
and a social web platform that help you capture, share and find scientific knowledge,
in all of its forms.

The principle behind kspaces is to allow knowledge dissemination in the scientific
community to occur in a way similar to the way we share knowledge with our
colleagues in informal settings. The rationale behind this is that when we interact
informally with a small team of colleagues dissemination is very effective. We are
free to choose the best format for communicating our thoughts and results, we share
both established results as well as latest ideas, we interact and carry on a conversation
(synchronously or via email), we comment on other people's contributions and papers
and observe relations among various contributions. Even when we remain in the
domain of papers, we often find that we come to know interesting papers not by doing
a web search or scan the proceedings, but because we "stumble upon" them, that is,
we have colleagues pointing them to us via email or mentioning them in a
conversation (along with their comments), and knowledge spreads virally.

Kspaces aim at providing the models, processes, metrics and tools to support this
informal and social way of disseminating knowledge among the scientific community
at large and via the Web, complementing the well-established method of papers
published in conferences and journals after peer review. The goal is to use a web-
based system to enable the capturing of these evolutionary bits of knowledge and
data, however they may be expressed, as well as the capturing of ideas and opinions
about knowledge, and leverage this information and meta-information to spread
knowledge virally. Capturing opinions on knowledge is particularly important. The
fact for example that somebody (and especially somebody we “trust”) shares a paper
tells us a lot on the value of this paper, much more than a citation can do. As readers,
we relate them, in our mind, with prior knowledge. When listening to a talk we think
that other work is relevant to the one being presented and often we jot it down in our

362 M. Baez, F. Casati, and M. Marchese

own personal notes. In a world where information comes out from the web like from a
hose, this knowledge about knowledge becomes essential to dissemination. Tagging,
annotating and connecting the dots (linking resources in a way much more useful to
science than citations) become almost as important as the dots themselves.

Kspaces support this not only by using web technologies as the basis for its
implementation but by using web 1.0 and 2.0 concepts in the way scientific resources
and their relationships are modeled and in the way knowledge sharing is supported. In
essence, kspaces is characterized by a conceptual model and a repository for scientific
resources (or for pointers to them if stored elsewhere). Resources are linked in
arbitrary ways and relationships are typed and can be annotated. This is analogous to
the Web, although it is oriented to linking scientific resources and to supporting (and
then leveraging) relationship types and annotations. Indeed building this evolving web
of annotated resources and leveraging it to find knowledge is a key goal of kspaces.
The intuition is that having such web of connected knowledge can be as instrumental
or even more instrumental (because it contains more metadata) to finding knowledge
than the Web is to finding web pages. Today this web of resources is simply not there
and this is part of what makes finding interesting scientific knowledge hard.

On top of this space of resources, kspaces define specific processes, permissions,
and interaction modes people use to share knowledge. Kspaces manifest themselves
in various forms, called designs, tailored at capturing different forms of scientific
knowledge shared in different ways, from maintaining a library of related work, talks,
datasets, etc, in an area – including our own, evolving work - to forming knowledge
communities, writing and publishing (liquid) books, supporting the collection of the
knowledge that emerges in the mind of attendees during a talk, and many others. It is
through spaces with specific design that knowledge and meta-knowledge is collected
and disseminated. The dissemination and search of knowledge over kspaces is then
based on the “social interest”, on the goals of a search (e.g., related work vs
introductory material), and on the meta-knowledge (e.g., tags and annotations).
Kspaces, although being richer and more flexible than many existing systems, is not
the first and only platform that exploits some form of social meta-knowledge to
support search. Mandeley, citeUlike, and Connotea, just to name a few, all have some
elements of this. We believe that the key to a successful platform here lies in how
such meta-knowledge can be collected and how it is used, and here lies a key
contribution of kspaces.

Accessing kspaces. Kspaces have been developed in the context of the LiquidPub
project (liquidpub.org). They are the results of several attempts and failures at
arriving at a model for capturing knowledge, which we initially tackled by trying to
impose a specific knowledge collection mechanism (that is, a single, specific KS app).
More details, demos, and applications are available at open.kspaces.net

Acknolwedgements. We ack the great contributions to the ideas and the code from
all the liquidpub team, with particular thanks to Alex Birukou and to all our kspaces
developers including Delsi Ayala, Simone Dalcastagne, Nicola Dorigatti, Lyubov
Kolosovska, Muhammad Imran, Michele Lunelli, Aliaksey Minyukovich, Daniil
Mirilenko, Alejandro Mussi, Cristhian Parra, Laura Pop. This work has been
supported by the LiquidPub project (FP7 FET-Open 213360.).

Exploratory Multi-domain Search on Web Data
Sources with Liquid Queries

Davide Francesco Barbier, Alessandro Bozzon, Marco Brambilla, Stefano Ceri,
Chiara Pasini, Luca Tettamanti, Salvatore Vadacca,

Riccardo Volonterio, and Srđan Zagorac

Politecnico di Milano
Department of Electronics and Information (DEI)

Piazza L. Da Vinci 32,
I-20133 Milan, Italy

{name.surname}@elet.polimi.it

Abstract. We demonstrate Liquid Queries, a novel user interaction
paradigm for exploratory multi-domain search upon structured informa-
tion collected from heterogeneous data sources. Liquid Queries support
an exploratory search approach by providing a set of interaction primi-
tives for multi-domain query formulation, result visualization and query
refinement, with commands for perusing the result set, changing the visu-
alization of data based on their type (e.g., geographical) and interacting
with the remote search services.

1 Introduction

Liquid Queries are developed in the context of Search Computing (SeCo)[4], a
framework for search applications that bridge the gap between general-purpose
and vertical search engines. SeCo queries extract ranked information about sev-
eral interconnected domains, such as “real estate”, “job” or “school”, by interacting
with Web data sources which are wrapped as search services. Search Computing
systems support their users in asking multi-domain queries; for instance, “where
can I find a new job nearby a nice furnished flat having a good school for my
children at walking distance”.

In this paper we demonstrate Liquid Queries [2], a novel interaction paradigm
able to support continuous evolution, manipulation, and extension of multi-
domain queries and results, so as to grant exploratory information seeking [5],
according to the “search as a process” paradigm [1]. Among existing search sys-
tems, Search Computing integrates and extends concepts proposed by Kosmix1,
which performs topic-based clustering and queries on different data sources with
a federated search model, Google Squared2, which presents results in the shape
of tables, Google Fusion Tables3, which allows users to submit structured data
and provides spreadsheet-like views of individual or joined tables.
1 http://www.kosmix.com/
2 http://www.google.com/squared/
3 http://tables.googlelabs.com/

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 363–366, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

364 D.F. Barbieri et al.

Fig. 1. The Search Computing architecture

2 The Liquid Query Interaction Paradigm

The Liquid Query life-cycle consists of four steps, namely the 1) application
configuration phase, in which the expert user defines a liquid query template for
a specific application; 2) a query submission phase, where the end user submit
the initial liquid query; 3) the query execution phase, where a liquid result set is
produced and delivered to the user interface; and 4) the result browsing phase,
where results can be manipulated through appropriate interaction primitives.

2.1 Architecture

The Liquid Query demo sits on top of an architecture that covers all the phases
necessary for formulating and processing multi-domain search queries (Figure
1). SeCo queries are addressed to Web data sources, including search engine
APIs, community curated data sources (e.g., YQL Open Data Tables, DBpedia),
domain-specific databases (e.g., Amazon, Eventful, Zillow), etc.

Data sources are registered in the system using the Service Mart Repository,
which contains a conceptual and operational description of the search services
[3]. Sources are registered as service marts characterized by the service name
and a collection of attributes; this description is refined into one or more access
patterns, i.e., logical signatures that specify whether each attribute is either an
input or an output in the service call; output attributes are tagged as ranked
if the service produces results ordered on the value of that attribute. Access
patterns are then refined into service interfaces, which include the name and the
endpoint of a concrete search service.

Queries enter the system at the Liquid Query graphical user interface. A
Query Analyzer translates the query in a Query Execution Plan (QEP), a graph
of low-level components that specifies the activities to be executed (e.g., the
service calls), their order of precedence, and the strategy to execute joins. The
actual service invocation is managed by the Execution Engine, which supervises
the interaction with the service interfaces to access Web APIs and databases.
The results of service calls are accumulated by the engine, which builds progres-
sively the combinations constituting the query response. These combinations are

Exploratory Multi-domain Search on Web Data Sources with Liquid Queries 365

submitted back to the Liquid Query interface for visualization and user inter-
action. Through the GUI, users can then manipulate the result set. Each user
manipulation (e.g., filtering, re-rank, exploration of a new domain) produces a
new query, which is analyzed and executed.

2.2 Liquid Query Interaction

Liquid Query provides a set of interaction primitives and controls over the query
engine for dynamically changing the results presented to the user. Such controls
include: service exploration, to inspect the Service Mart repository and find the
most suitable services; search expansions which enables a controlled form of ex-
ploration where the user can select one or more combinations of interest and ask
for novel information on some of the included objects (e.g., chosen a Concert,
ask for information about the recent News associated with it); request of more
results from all services or from a selected subset (these commands need inter-
action with the search back-end system); sorting of results, clustering, grouping,
hiding or showing of result properties, reordering of attributes and services in the
result table, and query history management. Liquid Queries support query ex-
pansion and result tracking, giving the user the possibility to move “forward” and
“backward” along the exploration history. The Liquid Query paradigm supports
interaction trough several result set visualization paradigms.

3 Demonstration Scenario and Highlights

The demonstration provides a detailed walk through of all the steps needed
to prepare, execute, and refine a multi-domain query over Web data sources
with Liquid Queries. The demo shows the registration of service marts, access
patterns and physical service interfaces for several types of data sources. Based
on the registered services, the demonstration continues by showing how users can
explore the available information space by inspecting the Service Mart repository,
select a data source and query it, iteratively select the best answers and then
inspect additional properties which are reachable from such answers. An example
demonstration scenario assumes that an end user wants to move in the Silicon
Valley, where she wants to find a new job as a Java developer, also considering
the availability of fully-furnished, close-by flats and good schools. Users can
additionally look for doctors close to the candidate location, for pieces of news
associated to a given employer and for good restaurants nearby.

Finally, we show how users can perform information exploration by switching
among several result visualization paradigms. The simplest one is the Tabular
View, where combinations are presented as rows, sorted with respect to the global
ranking functions. Service mart attributes are presented as columns. The the so-
called Atom View (Figure 2(a)) is devised to highlight the local population and
ranking individual service marts, which are less visible in the Tabular View, by
showing the object’s name (or any suitable identifier), while more properties can
be asked for separately. Within an Atom view, users can select combinations (in
which case all objects forming the currently selected combination are highlighted)

366 D.F. Barbieri et al.

(a) (b)

Fig. 2. (a) Atom view, which highlights both individual objects and combinations, with
their local and global rankings; (b) Visualization of objects and combinations based on
geographical location, with explicit ranking information

or objects (in which case all the combinations it belongs to and associated objects
are highlighted). Types of result data can be used to enable type-dependent visu-
alizations of objects and their relationships: for instance, the geographic coordi-
nates of the involved objects can be exploited to represent them in a map (Figure
2(b)): each object is represented by a given marker, and the local ranking (e.g.,
the price of the House or the rating of the School) is represented by the size of such
marker. A combination is then represented by a set of different markers, which are
highlighted when the combination is selected. The demo will also feature the well
known XYPlot visualization paradigm, where users can inspect results according
to two attributes values, respectively rendered on the X and Y axis of the graph;
each object is represented with a marker in the Cartesian space, and users can
dynamically modify the attributes assigned to each axis.

References

1. Baeza-Yates, R., Raghavan, P.: Chapter 2: Next generation web search. In: Ceri,
S., Brambilla, M. (eds.) Search Computing. LNCS, vol. 5950, pp. 11–23. Springer,
Heidelberg (2010)

2. Bozzon, A., Brambilla, M., Ceri, S., Fraternali, P.: Liquid Query: Multi-domain
Exploratory Search on the Web. In: WWW 2010: 19th International Conference on
World Wide Web, pp. 161–170. ACM, New York (2010)

3. Campi, A., Ceri, S., Maesani, A., Ronchi, S.: Designing service marts for engineering
search computing applications. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G.
(eds.) ICWE 2010. LNCS, vol. 6189, pp. 50–65. Springer, Heidelberg (2010)

4. Ceri, S., Brambilla, M. (eds.): Search Computing - Challenges and Directions. LNCS,
vol. 5950, pp. 3–10. Springer, Heidelberg (2010)

5. Kuhlthau, C.C.: Inside the search process: Information seeking from the user’s per-
spective. Journal of the American Society for Information Science 42(5)(5), 361–371
(1991)

Model-Based Dynamic and Adaptive

Visualization for Multi-domain Search Results

Alessandro Bozzon, Marco Brambilla, Luca Cioria, Piero Fraternali,
and Maristella Matera

Politecnico di Milano, Dipartimento di Elettronica e Informazione
P.za L. Da Vinci, 32. I-20133 Milano - Italy

{name.surname}@polimi.it

Abstract. Search systems are becoming increasingly sophisticated in
their capacity of building result sets that are not mere lists of docu-
ments but articulated combinations of concepts retrieved from different
domains. This paper investigates the models for the result sets and the
visualization spaces, and model-to-model transformations to dynamically
suggest optimized visualizations for multi-domain search results.

1 Introduction

Past years have seen an evolution in the way search engines, and more generally
information seeking applications, deliver responses to user’s information needs.
There has been a shift from supporting simple keyword-based search tasks over
flat collections of documents, where the effectiveness of a retrieval system is
concentrated in the capacity of showing most relevant results first, to addressing
more complex information needs and constructing more articulated responses.

This is already visible in mainstream search engines, which are now capable
of recognizing quite a large amount of concepts in the input keywords (people,
cities, events) and provide a customized representation of results, e.g., by includ-
ing maps, photographs and videos, and concept-dependent data, like tourism
information for a retrieved city. More sophisticated approaches to result visu-
alization are also provided by vertical search applications, which exploit do-
main knowledge to optimize the display of retrieved results (see for example
http://www.wanderfly.com).

Our work addresses the problem of automating the construction of result visu-
alizations for multi-domain search tasks, where results are ranked combinations
of objects with typed attributes and relationships. The core idea is to model
both the data set and the visualization space, and to construct a model-to-model
mapping that dynamically determines which visualization to use, based on static
and dynamic result properties (e.g., data types and attribute value distribution).

2 Visualizations for Multi-domain Search

In our approach, the problem of multi-domain search is defined as the computa-
tion and presentation of results to queries over multiple Web data sources that

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 367–370, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

368 A. Bozzon et al.

return ranked lists of objects. A typical multi-domain query can be: “Find com-
binations of hospitals and doctors specialized in the treatment of a given disease,
ranked based on the hospital rating and on the scientific impact of the doctor”.

Answering multi-domain queries requires a processing architecture as the one
being implemented in the Search Computing (SECO) project [2]. In the SECO
architecture, a client tier, the Liquid Query Graphical User Interface (LQ GUI)
[1], allows the user to formulate queries instantiating pre-registered search ap-
plication skeletons, declaring the available data sources with the signature of
the access methods, and connection paths that “join” a source to another one.
The currently implemented LQ GUI has a fixed set of data visualizations (table,
atom view, and parallel coordinates) and offers commands for perusing the re-
sult set (hiding and showing attributes, expanding the query by joining in more
data sources, asking for more results from one or all data sources, and changing
the rank criterion). The server tier of the architecture then comprises a Service
Repository, where external data sources can be wrapped and registered using
a variety of technologies (Rest, WSDL, YQL, SPARQL, and GBASE), and a
Query Processor, which decomposes the user query into service calls, and then
sends an execution plan to an Runtime Engine in charge of invoking services
and assembling results efficiently.

The work described in this paper aims at equipping the LQ GUI module with
the capability of automatically suggesting visualizations to the user, based on
the features of the current result set and on the available visualization templates;
both aspects are encoded as models. The result set data is thus analyzed on the
fly and the visualization is adapted to the characteristics of the retrieved objects
(e.g., since hospitals are geo-referenced, results are displayed on a map).

3 Overview of the Visualization Process

The adaptive visualization process, with its inputs and outputs, is shown in
Figure 1. The goal is to determine the best mapping from data providers of the
result set model (attribute values, object instances and combinations of objects)
to data renderers of the visualization model (axes and visual clues that make
up templates) so that the result set is visualized in a way that is adapted to the
distribution of objects and combinations in the result set, the types of the object
attributes, and the preferences about which information to show first.

The output view is decided in consecutive steps. Dynamic Analysis collects
statistics on result set data that may impact visualization (e.g., range and density
of attribute values, homogeneity of attribute value distribution, selectivity of join
conditions among combination objects). In parallel, Static Analysis extracts from
the result set model visualization priorities of attributes according to the charac-
teristics of the type, the suitability of an attribute to identify an object, and rela-
tive importance of the attribute information content (e.g., the address of a hospital
could be relatively more important than its name). As a second step, Data Map-
ping is performed: based on the specification of visualization templates providedby
the abstract presentation model, heuristic rules inspired by classic works on data

Model-Based Dynamic and Adaptive Visualization 369

Fig. 1. Overview of the process of adaptive and dynamic result visualization

Fig. 2. A rendered view (top) and its abstract model (bottom)

370 A. Bozzon et al.

visualizations (e.g., [3]) are employed to calculate a matching between the sorted
list of attributes and the elements in the available templates: each template receives
a suitability score and the top-ranking template is chosen for visualization. Finally,
View Construction converts the chosen abstract template into a concrete view, by
replacing abstract data renderers with concrete widgets from the concrete visual-
ization model (e.g., a map template is concretely implemented as a Google map
view with overlaid HTML 5 elements). The process can be recursive: if attributes
with priority above a threshold could not be assigned to a template, a sub-view
can be created by invoking the same process. Typically, this is done on an object-
by-object basis, to create sub-views that can be displayed on demand (e.g., pop-up
windows with the details of a doctor not displayed on the map). When all impor-
tant attributes are mapped, the (possibly nested) view is instantiated and added
to the LQ GUI, to be directly rendered or suggested to the user.

Figure 2 shows an example of rendered view (top) and of the corresponding
abstract model (bottom). The example deals with hospitals, ranked by score,
and doctors working at them, also sorted by score. The view consists of a map
template and of a nested subview. The map templates has two axis, for geo-
graphical coordinates, and a visual clue dimension, for a numerical attribute.
The subview consists of a list templates, with one vertical axis and a visual clue
for a numerical attribute (the hospital rank). The bottom part of Figure 2 shows
the visualization model resulting from the mapping process, which highlights the
mapping of data providers to element of the visual template. The latitude and
longitude of hospital objects are associated with the axis of the map template,
and the hospital rank to the visual clue. The axis of the list template in the
subview is mapped to the object instances of the doctor object type, and the
visual clue to the doctor’s specialty and rank.

4 Conclusions

Based on the visualization process illustrated in this paper, we have implemented
a first prototype that adds dynamic and adaptive result visualizations to the
SECO LQ GUI component, by configuring and instantiating at run-time a num-
ber of concrete presentation widgets implemented as HTML and Javascript view
components. Our future work will concentrate on improving the current imple-
mentation, on the provision of more visualization templates and concrete wid-
gets, and on the fine tuning of heuristic mapping rules, also with the help of
usability studies and user assessment experiments.

References

1. Bozzon, A., Brambilla, M., Ceri, S., Fraternali, P.: Liquid query: multi-domain ex-
ploratory search on the web. In: Proc. of WWW 2010, pp. 161–170 (2010)

2. Ceri, S., Abid, A., et al.: Search computing: Managing complex search queries. IEEE
Internet Computing 14(6), 14–22 (2010)

3. Chi, E.H.-h.: A taxonomy of visualization techniques using the data state reference
model. In: INFOVIS, pp. 69–76 (2000)

A Constraint Programming Approach to

Automatic Layout Definition for Search Results

Alessandro Bozzon, Marco Brambilla, Laura Cigardi, and Sara Comai

Politecnico di Milano
Department of Electronics and Information (DEI)

Piazza L. Da Vinci 32,
I-20133 Milan, Italy

{alessandro.bozzon,marco.brambilla,sara.comai}@polimi.it

Abstract. In this paper we describe a general framework based on con-
straint programming techniques to address the automatic layout defi-
nition problem for Web search result pages, considering heterogeneous
result items types (e.g., web links, images, videos, maps, etc.). Starting
from the entity type(s) specified in the search query and the result types
deemed more relevant for the given entity type, we define an optimiza-
tion problem and a set of constraints that grant the optimal positioning
of results in the page, modeled as a grid with assigned weights depending
on the visibility.

1 Introduction

Search engines represent one of the most important classes of applications that
support the user information seeking process [5]. As the amount and the different
kinds of information grow, also user requirements change, and search engines
need to adapt accordingly. For instance, recently Web searchers started looking
directly for objects of interest instead of Web pages that describe such objects.
Search engines adapted to this new demand by improving the management of
named entities specified within the queries and by providing well organized result
pages that comprise different result types (e.g., maps, news, images, etc.) based
on the type of entity involved in the query. The different result types may be
produced by different search engines (image search engines, blog search engines,
and so on), but then the results need to be aggregated in an optimal unified
layout. For instance, a query involving an actor will produce a very different
set of result types with respect to a query involving a city: the former case will
feature videos, pictures, and blogs, while the latter will include maps, touristic
reviews, and local news (see Figure 1 for an example of result page returned for
the query “Washington”). Several problems arise in this scenario: how to map
named entities to the most significant result types, how to select the best mix of
items to show, and how to define the best layout of the result page. In this paper
we propose a general framework that exploits constraint programming techniques
to automatically compose a search engine result page (SERP): result items are
positioned in a fixed page grid, based on a score function to be maximized and on

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 371–374, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

372 A. Bozzon et al.

Fig. 1. Excerpt of the result presentation page for the query “Washington”

a set of structural constraints imposed by the typical search engine behaviour. We
provide an overview of the behaviour of our system (Sect. 2) and the description
of the automatic page layout composition approach (Sect. 3).

2 Search Engine Model

The behaviour of our system basically consists of the following phases [2]: 1)
the Query submission phase, in which the user submits the query typically
through a search form, by specifying some keywords, also including named enti-
ties; 2) the Entity recognition phase, in which the system first identifies the
types of entity provided by the user in the query; 3) the Result type selec-
tion phase, in which the system defines which result types should be considered
in the results; 4) the Search Services Invocation, in which the appropriate
search services are invoked for each of the identified result types; and finally 5)
the SERP composition, in which the results are positioned in the page. In
this paper we focus on the latter phase.

3 SERP Model

We defined a conceptual model of the objects relevant for the problem, including:
1) the page model, defined as a grid of cells with an assigned level of importance
as shown in Figure 2.a (in particular, we assigned the importance according to
the ”Golden Triangle” [4] pattern, that defines the most valuable area of the
page as the top-left one − the importance levels are represented by shades of
gray); 2) the result type , defined as the media type that is retrieved by a
search engine and referenced in the page (e.g., image, web link, map, ...); 3) a
(typed) result block (Figure 2.b) defined as a set of homogeneous results of
a given result type, boxed within a shape of given size in terms of number of
cells that it covers (e.g., a map occupies an area of 3x2 cells, while each web

A Constraint Programming Approach to Automatic Layout Definition 373

Fig. 2. Example of (a) page grid with importance levels, (b) some weighted result
blocks, and (c) a possible block allocation

link occupies an area of 7x1 and blocks aggregating two items are considered).
Result types are assigned with a score that depends on the entity type (e.g.,
for cities, maps have a higher score than pictures, while for actors maps have a
very low score and pictures are extremely relevant). Result blocks are assigned
a score that depends both on the result type they represent and on the result
instances that are actually retrieved by the search engine for the specific query.
This is exemplified in Figure 2.b, where blocks have been colored according to
the corresponding result types and instances (for example, in Figure 2.b we have
two image blocks, with different scores).

4 SERP Layout Composition

Given the SERP model described above, the SERP layout composition consists
in an optimization problem with constraints induced by some structural rules in
the positioning of blocks, specified to restrict the space that a block can occupy
(e.g., the image block can be place on the top, in the middle, or at the end of the
page; sponsored links must occupy a fixed position, related searches too, and so
on). Examples of constraints include:

Constraint C1 = and(eq(SLx, 8), eq(SLy, 0)); //Sponsor link block pos. fixed at (x=8, y=0)
Constraint C2 = and(geq(L1x, 0), leq(L1y, 4)); //L1 block starts in one of the first 5 rows
Constraint C3 = distanceEQ(Ay, By, 1); //Blocks A, B must be positioned one after the other

The constraint satisfaction problem (CSP) describing the structural constraints
for page positioning is modeled and then solved through a standard CSP solver
[1]. The best layout is selected by maximizing the sum of the products between
the block scores and the weight of the occupied cells:

max
∑

i(scoreResultBlock(i) ∗
∑

j weight
OccupiedCells(j))

This function is actually modeled by means of some heuristic constraints that
position blocks with high scores in cells having high weights, so as to avoid gen-
erating layouts that are for sure suboptimal. This reduces the computation cost
of determining the optimal layout among the possible ones, without increasing
significantly the computation cost of the constraint solver. Once the optimal

374 A. Bozzon et al.

layout is produced by the constraint solver (i.e., all the coordinates of the result
blocks are fixed), a concrete html page can be produced, where positioning is
defined by means of appropriate CSS rules (see the example in Figure 2.c).

5 Evaluation

A preliminary analysis has been performed to evaluate to two aspects: com-
parison with existing solutions and added value perceived by the users. The
comparison consists in comparing the page layouts of our approach with the
ones of the major search engines (Google, Yahoo! and Bing). We assessed that
our approach can deal with all the layouts produced by the various search en-
gines without any conceptual change; the only change is in the set of constraint
rules: on average, we needed to add or change 3 rules to align to Google, 6 rules
for Yahoo!, and 5 rules for Bing. The perceived value analysis consisted in a user
test aiming at comparing different constraint rule configurations. The evaluation
involved 16 users, who were asked to provide their preferences among 4 versions
of the result pages, for all the entity types. The analysis concluded that there is
an high perceived value associated with the optimization algorithm, while dif-
ferent version of the constraint rules were perceived basically the same: the 3
optimized versions got around 30% of the score each, while the other got 10%.

6 Conclusions and Future Work

We discussed a framework for the automatic layout of search results, which is a
more and more critical issue in industrial search engines despite being overlooked
in the research community. We proposed a constraint based solution to the op-
timization problem of positioning the search items in the page at the purpose of
maximizing the result page quality perceived by the user. As future work we plan
to tackle queries involving several entity types at the same time [3] and to add
additional variables to the problem, such as information coming from runtime
statistics on contents, personalization and contextualization of the search task.

References

1. Choco library, http://choco.emn.fr/
2. Bozzon, A., Brambilla, M., Comai, S.: A Characterization of the Layout Definition

Problem for Web Search Results. In: Meersman, R., Dillon, T., Herrero, P. (eds.)
OTM 2010. LNCS, vol. 6428, pp. 150–159. Springer, Heidelberg (2010)

3. Ceri, S., Brambilla, M. (eds.): Search Computing - Challenges and Directions. LNCS,
vol. 5950, pp. 3–10. Springer, Heidelberg (2010)

4. Hearst, M.A.: Search User Interfaces, 1st edn. Cambridge University Press, Cam-
bridge (2009)

5. Kuhlthau, C.C.: Inside the search process: Information seeking from the user’s per-
spective. Journal of the American Society for Information Science 42(5)(5), 361–371
(1991)

http://choco.emn.fr/

Adaptive Mobile Web Applications:

A Quantitative Evaluation Approach

Heiko Desruelle, Dieter Blomme, and Frank Gielen

Ghent University – IBBT,
Dept. of Information Technology – IBCN, Ghent, Belgium

{Heiko.Desruelle,Dieter.Blomme,Frank.Gielen}@intec.ugent.be

Abstract. The rapidly growing market of mobile devices has set a need
for applications being available at anytime, anywhere, and on any device.
Although this evolution provides users an unprecedented freedom, devel-
opers are facing the challenges caused by mobile device fragmentation.
Current application development solutions are insufficiently optimized
for the high diversity of mobile platforms and hardware characteristics.
In this paper, we propose a novel approach for the development of mo-
bile applications. An adaptive application composition algorithm is intro-
duced, capable of autonomously bypassing fragmentation related issues.
This goal is achieved by introducing a quantitative evaluation strategy
derived from the Logic Scoring of Preference (LSP) method.

1 Introduction

Mobile is a powerful mass medium, with a greater reach and faster growth than
any other known media type [1]. The mobile evolution has resulted in a general
need for applications and services being available at all times. However, only few
technologies are currently capable of supporting the development and delivery
of a single application to many types of devices. This barrier is a result of the
heavily fragmented mobile landscape. In order to cover a sustainable share of the
mobile market, applications need to be made adaptable to various combinations
of hardware, operating systems, APIs, etc.

In response to this challenge, the use of the web as an application platform is
gaining momentum. Device independent web technologies such as HTML, CSS
and JavaScript offer application developers an unprecedented market reach. Nev-
ertheless, even with the use of standardized web technology, efficiently managing
mobile fragmentation remains an important research topic. As browser imple-
mentations still contain many variability points, true mobile convergence is not
to be expected any time soon [5].

Within this context, the goal of our research is to create automated adaptabil-
ity processes for the development and delivery of mobile web applications. We
present an application composition algorithm as a means of supporting mobile
applications to autonomously resolve fragmentation related issues. The proposed
algorithm aims at offering a robust and future proof approach for the flexible
composition of web applications based on the individual capabilities of the mo-
bile device.

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 375–378, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

376 H. Desruelle, D. Blomme, and F. Gielen

2 Capability-Driven Progressive Enhancement

Since the early days of web engineering, developers have tried to cope with the
differences between browsers. Graceful degradation is a widespread design strat-
egy that focuses on providing optimal support for the most advanced browsers.
Less capable browsers are only considered during the last development phase.
This approach often results in a poor stripped-down version. The graceful degra-
dation methodology expects users to just upgrade their browser when the de-
graded version does not fit their needs. However, for most mobile devices
upgrading the default browser is not an option.

Progressive enhancement (PE) reverses the graceful degradation approach
and aims at maximizing accessibility over browsers with different capabilities
[8]. PE tries to achieve this goal by forcing developers to take the less capable
devices into account from the very start of the development process. First, a basic
markup document is created, providing an optimal experience for devices with
the lowest common denominator (LCD) of available capabilities. Incrementally,
one or more layers of structural, presentational, and behavioral enhancements
are added in function of the browser’s specific capabilities.

The PE methodology can be used in a mobile context to tackle fragmenta-
tion related issues. However, when turning the theoretical approach into actual
practice, a number of important challenges come into play. Today, the use of
externally linked resources (e.g. CSS, or JavaScript files) is the most common
practice for selecting appropriate enhancement layers. This limits the number
of detectable variability points, as browsers will only check for coarse-grained
styling and scripting support. Compared to desktop browsers, the mobile ecosys-
tem contains far more combinations of browsers with graded CSS and JavaScript
support. To provide optimized usability, PE should also reckon with the differ-
ent interaction methods and hardware characteristics offered by mobile devices.
As we will discuss in the following section, the creation of a viable mobile PE
solution requires an application development approach that supports the use of
more fine-grained enhancement layers.

3 Adaptive Application Composition Algorithm

As a means to address the wide variety of mobile characteristics, we introduce a
quantitative evaluation algorithm derived from the Logic Scoring of Preference
(LSP) method [3]. The algorithm is designed to support fine-grained progressive
enhancement and is capable of suggesting a stack of layers that optimally fits the
user’s mobile device. LSP is a quantitative decision method, assisting decision
makers in the evaluation, comparison, and selection of complex hardware and
software systems. The method has shown its use in various domains, especially
concerning situations with large and complex solution spaces.

To evaluate a set of candidate solutions, LSP starts by assessing n individual
performance variables. These variables define the n properties that an ideal solu-
tion is expected to have. As the algorithm deals with complex decision problems,

Adaptive Mobile Web Applications: A Quantitative Evaluation Approach 377

most candidate solutions will not perfectly match the preset criteria. Nevertheless,
such candidates should not be rejected, as their overall evaluation might still lead
to an acceptable solution. LSP addresses this issue by taking into account how
well a candidate matches the different performance variables. For each variable i,
a degree of suitability Ei ∈ [0, 1] is calculated. In order to attain these scores, LSP
requires a predefined mapping function for each performance variable [4].

After obtaining the elementary degrees of satisfaction, all individual matching
scores are to be combined into one objective overall suitability score. This ag-
gregated score is used to determine the best-matching candidate. LSP supports
the definition of an aggregation network, expressing the specific conjunction
or disjunction relationships between individual scores. The standard aggregator
mechanism is based on the superposition of fundamental Generalized Conjunc-
tion Disjunction (GCD) [2]. GCDs enable the specification of aggregations in
terms of 17 graded combinations of conjunction and disjunction and are fre-
quently implemented by use of Weighted Power Means (WPM). This approach
allows an evaluator to precisely couple the mutual importance of individual
suitability degrees. The calculated aggregation network results in an objective
overall suitability score E, which is a combination of one or more WPMs using
the individual suitability degrees as input parameters. After calculating E for
each of the candidates, conclusions regarding the best-matching solution can be
drawn by selecting the candidate with the highest overall suitability score.

LSP has the ability to flexibly, yet objectively, evaluate systems under various
circumstances. This quality can be used as a basis for the adaptive composition of
mobile applications. We propose a modification of the LSP method that supports
the adaptive composition of mobile web applications. In this case, all possible
sets of progressive enhancement layers are considered candidate solutions. Each
candidate is individually evaluated by matching it to the mobile device’s capa-
bilities (e.g. available interaction methods, web technology support, etc.). The
stack of enhancement layers with the highest score is then selected and applied
to the mobile web application.

Table 1. Boolean mobile mapping func-
tion. Only perfect matches are scored.

Interaction capability Match
Touch 0%
Stylus 100%
Joystick 0%
Click wheel 0%

Table 2. Fuzzy mobile mapping function.
Also grading less-than-perfect matches.

Interaction capability Match
Touch 75%
Stylus 100%
Joystick 30%
Click wheel 10%

Incorporating the LSP method in a mobile context requires the definition of
mobile-relevant mapping functions. The functions specify the similarity between
performance variables and the actual device capabilities. To illustrate the con-
cept, both Table 1 and 2 contain the implementation of a mapping function
that compares the performance variable “stylus interaction” with a device’s
interaction method. The function in Table 1 uses Boolean logic, which implies

378 H. Desruelle, D. Blomme, and F. Gielen

that only a perfect match is scored. The one in Table 2, on the other hand,
uses fuzzy logic [6]. The latter approach makes much better use of the avail-
able scoring interval by also grading the less-than-perfect matches. This exam-
ple highlights the importance of developing carefully thought through mapping
functions. Efforts in the usability area from groups such as the W3C Mobile Web
Best Practices Working Group can be used to generate sets of mobile mapping
functions [7].

4 Conclusion and Future Work

In this paper, we introduced an algorithm in support of developing and delivering
adaptive mobile web applications. The proposed method can serve as a basis for
developers to create and maintain a single version of their mobile application,
without being limited by fragmentation related issues. Our adaptive application
composition algorithm is based on a quantitative evaluation algorithm derived
from the Logic Scoring of Preference method. The proposed approach enables
the automated and fine-grained progressive enhancement of web applications.
The process is entirely driven by the characteristics of the user’s device, in order
to provide an optimal user experience.

While the extensive evaluation of our approach has yet to be carried out,
initial testing of prototype implementations showed promising results. Future
work includes the validation of our proposed approach as well as the extension
of our algorithm towards supporting real time application request handling.

Acknowledgments. The research leading to these results has received funding
from the European Union’s Seventh Framework Programme (FP7-ICT-2009-5)
under grant agreement number 257103.

References

1. Ahonen, T.: Mobile As 7th of the mass media. Cellphone, Cameraphone, iPhone,
Smartphone. Futuretext, London (2008)

2. Batyrshin, I., Kaynak, O., Rudas, I.: Generalized conjunction and disjunction opera-
tions for fuzzy control. In: Proc. of 6th European Congress on Intelligent Techniques
and Soft Computing EUFIT 1998, pp. 52–57. Verlag Mainz, Aachen (1998)

3. Dujmovic, J.J.: A method for evaluation and selection of complex hardware and
software systems. In: Proc. of 22nd Int. Conference for the Resource Management
and Performance Evaluation of Enterprise Computing Systems, pp. 368–378 (1996)

4. Dujmovic, J.J., De Tre, G., Van de Weghe, N.: LSP suitability maps. J. Soft. Com-
puting 14, 421–434 (2010)

5. Frederick, G.R., Lal, R.: The future of the mobile web. In: Beginning Smartphone
Web Development, pp. 303–313. Springer, Heidelberg (2009)

6. Ross, T.J.: Fuzzy logic with engineering applications. Wiley, Chichester (2004)
7. World Wide Web Consortium: Mobile Web Best Practices Working Group,

http://www.w3.org/2005/MWI/BPWG
8. Wells, J., Draganova, C.: Progressive enhancement in the real World. In: Proc. of

18th Conference on Hypertext and Hypermedia HT 2007, pp. 55–56. ACM, New
York (2007)

http://www.w3.org/2005/MWI/BPWG

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 379–382, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Personality Mining System for Automated Applicant
Ranking in Online Recruitment Systems

Evanthia Faliagka1, Lefteris Kozanidis1, Sofia Stamou1,3, Athanasios Tsakalidis1,
and Giannis Tzimas2

1 Computer Engineering and Informatics Department, University of Patras, Patras, Greece
2 Department of Applied Informatics in Management & Economy, Faculty of Management and

Economics, Technological Educational Institute of Messolonghi, Messolonghi, Greece
3 Department of Archives and Library Science, Ionian University, Greece

{faliagka,kozanid,stamou}@ceid.upatras.gr,
tsak@cti.gr, tzimas@cti.gr

Abstract. In the last decades the explosion of ICT has opened up new avenues
regarding peoples’ accessibility to new job opportunities. Current technological
advances in conjunction with people’s online presence provide a great opportu-
nity to automate the recruitment process and make it more effective. In this pa-
per, we propose a novel approach for improving the efficiency of e-recruitment
systems. Our approach relies on the linguistic analysis of data available for
job applicants, in order to infer the applicants’ personality traits and rank them
accordingly. To showcase the functionality of our method, we employed it in a
web based e-recruitment system that we implemented.

Keywords: e-recruitment, sentiment analysis, recommendation systems, AHP.

1 Introduction

E-recruitment systems have seen an explosive expansion in the past few years [1]
allowing HR agencies to target a very wide audience. The price paid is the uncon-
trolled increase of unqualified applicants. This situation might be overwhelming
to HR agencies that need to allocate human resources for manually assessing the can-
didate resumes and evaluating the applicants’ suitability for the positions at hand. To
alleviate this problem, several e-recruitment methods have been proposed, the majori-
ty of which rely on standard IR and web mining approaches for matching candidates
to open positions [2]. Existing methods, although useful, suffer from the discrepancies
associated with inconsistent CV formats, structure and contextual information.

In this paper, we propose a novel approach in job applicants ranking based on
the Analytic Hierarchy Process, AHP [3] and the automatic extraction of applicant
personality measures. The latter is based on the linguistic analysis of textual data
pertaining to applicants’ profiles available on Web 2.0 sites. Our approach is imple-
mented in a web based employer-oriented e-recruitment system and tested in
real-world data, in a pilot scenario designed in collaboration with Novartis Hellas HR
department.

380 E. Faliagka et al.

2 Method

Applicants’ selection in the proposed e-recruitment system is based on a predefined
set of criteria that are assessed on a numerical scale. We focus the present study on
the exploitation of 4 complementary criteria, namely: Education (in years of formal
academic training), Work Experience (in years), Loyalty (average number of years
spent per job) and Personality. Each criterion has a distinct contribution in the selec-
tion process, as dictated by Novartis Hellas HR. At the ranking process we use the
AHP, which allows diverse elements to be compared to one another in a rational and
consistent way. Objective selection criteria (i.e. all but candidate personality) are
directly extracted from the applicants’ LinkedIn profiles. On the other hand, for as-
sessing the candidate’s personality, we exploit textual data available for the candidate.
To implement our method, we essentially considered job applicants with a LinkedIn
account and an active blog. Our method was field-tested in a pilot scenario, which
involved the recruitment of a set of applicants. Our system was employed to extract
candidate rankings based on the aforementioned set of criteria, and identify the top
candidates to pass to the next phase of the recruitment process.

Fig. 1. Social and emotion words’ frequency distribution

2.1 Personality Mining

Applicant personality traits are considered critical in most job positions, but are over-
looked in existing e-recruitment systems. In our study extroversion is a crucial perso-
nality characteristic for candidate selection. Previous work indicates that blogs con-
tain textual features reflecting the author’s personality [4]. Specifically, it has been
established that extrovert people use many social words and positive emotion words,
and few negative emotion words. Thus, to quantify the candidate extroversion we use
LIWC text analysis program, to measure the fraction of words in a candidate’s blog
that fall in these categories (denoted as social, posemo, negemo). It has been shown in
[5] that there are significant correlations between word categories used in LIWC and
the corresponding personality traits. In order to train our system, we used a corpus of
100 Greek blogs, and extracted the LIWC scores per word category for each blog.

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

-2 0 2 4 6 8 10

emotion words

social words

fr
eq

ue
nc

y

LIWC score

 A Personality Mining System for Automated Applicant Ranking 381

Then, we estimated the social word frequency distribution, as well as the emotion
word frequency distribution. The emotion category is obtained as the difference
between posemo and negemo category, essentially penalizing the use of negative
emotion words. The distributions are shown in Fig. 1, with LIWC scores clustered in
intervals with a length of 0.5 and represented by their mid value. These distributions
serve as a basis to calculate the standard score of applicants’ personality dimensions
(social and emotion), based on the distance of their LIWC scores from the corres-
ponding mean value.

2.2 Applicant Ranking

The overall applicant score is obtained from individual scores in the selection criteria,
using the Analytical Hierarchy Process (AHP). Each criterion has a different weight
in the candidate selection, according to the requirements of the job position. Thus, the
first step in the AHP process is to make pairwise comparisons of the selection criteria,
forming the matrix . Parameter expresses the relative importance of
criteria i and j and it is provided by an expert recruiter. Then the normalized eigenvec-
tor of the matrix is computed, which serves as the weight vector.

The next step is performing pairwise comparisons of candidates with respect to
each criterion. Five 15 x 15 matrices are computed, one per criterion, with the ratio of
the criteria scores per candidate pair. Finally, the normalized eigenvector of the ma-
trices are calculated, obtaining five local priority vectors. The overall score of each
candidate (also termed global priority, or rank) is computed as a linear combination
between weight and local priority vectors.

3 Experimental Results

The proposed e-recruitment method was implemented as a web application and tested
in a real recruitment scenario. It uses LinkedIn API to extract the applicant’s objective
criteria and LIWC system with a Greek dictionary to assess the applicant’s extrover-
sion from his blog posts. Each applicant simply logs to the system with his LinkedIn
account credentials and enters his blog URL. The system then estimates the appli-
cants’ overall rank using AHP and outputs the top candidates. The system was tested
in a pilot scenario with 15 candidates applying for a sales position.

Table 1. Local and Global priorities

Weight vector

Social
(0.33)

Emotion
(0.33)

Education
(0.11)

Work
(0.17)

Loyalty
(0.07)

Global
priorities

Candidate 1 0.15 0.08 0.07 0.04 0.09 0.097
Candidate 2 0.03 0.04 0.11 0.07 0.08 0.052
…
Candidate 15 0.06 0.08 0.09 0.08 0.06 0.074

The weight vector used is seen in the first row of Table 1. It is obvious that the first

two (personality related) criteria are the most important, as indicated by the recruiter.
The rest of Table 1 shows the local and global priorities for 3 of 15 candidates due to

382 E. Faliagka et al.

space limitations, calculated with AHP. Finally, in Fig. 2 we represent the candidates
with circles positioned in a 2D plane based on their personality scores, while the cir-
cle radius is proportional to the candidate overall score. Average values of X and Y
axis are clearly marked in Fig. 2. It is evident that most highly ranked candidates are
clustered in the top right quadrant (i.e. with high emotion and social scores), which
attests that our tool assigned high ranks to candidates with the desired personality.

Fig. 2. The candidates’ personality and overall scores

4 Conclusions

In this paper we have presented a novel approach for recruiting and ranking job appli-
cants in online recruitment systems. The application of our approach reveals that it is
effective in identifying personality profiles for job applicants and thus rank them
accordingly. We are currently improving our method with additional personality fea-
tures as well as further sources of candidate textual data and in the future we plan to
deploy it in a large-scale e-recruitment application.

References

1. De Meo, P., Quattrone, G., Terracina, G., Ursino, D.: An XML-Based Multiagent System
for Supporting Online Recruitment Services. IEEE Transactions on Systems, Man and Cy-
bernetics, Part A: Systems and Humans 37, 464–480 (2007)

2. Kessler, R., Béchet, N., Torres-Moreno, J., Roche, M., El-Bèze, M.: Job Offer Manage-
ment: How Improve the Ranking of Candidates. In: Rauch, J., Raś, Z.W., Berka, P., Elo-
maa, T. (eds.) ISMIS 2009. LNCS, vol. 5722, pp. 431–441. Springer, Heidelberg (2009)

3. Saaty, T.L.: How to make a decision: The analytic hierarchy process. European Journal of
Operational Research 48, 9–26 (1990)

4. Gill, J.A., Nowson, S., Oberlander, J.: What are they blogging about? Personality, topic,
and motivation in blogs. In: Proc. of AAAI ICWSM (2009)

5. Pennebaker, J.W., King, L.: Linguistic Styles: Language Use as an Individual Difference.
Journal of Personality and Social Psychology 77, 1296–1312 (1999)

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 383–386, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Development of the Evaluation Form for Expert
Inspections of Web Portals

Andrina Granić1, Ivica Mitrović2, and Nikola Marangunić1

1 Faculty of Science, University of Split, Nikole Tesle 12, 21000 Split, Croatia
{andrina.granic,nikola.marangunic}@pmfst.hr

2 Arts Academy, University of Split, Glagoljaška bb, 21000 Split, Croatia
ivica.mitrovic@umas.hr

Abstract. Web portals are a special breed of web sites, providing a large and
diverse user population with a blend of information, services and facilities. Due
to the lack of heuristics for the design and evaluation of general portals, we
have conducted an experimental work to create research instrument for expert
inspections. A set of 36 equally-levelled guidelines was developed to measure
the hypothetical usability categories which reflect the four most distinctive
elements of the contemporary web design process. The Portal Guidelines for
expert inspections prove valuable to both novice inspectors and HCI experts,
but further research will be required to validate the findings of this study.

Keywords: usability, expert inspection, Portal Guidelines, web portal.

1 Introduction

The idea of web portal is to collect information from different sources and create a
single point of access to information, functions and services that are relevant to
person's work or personal interests [1]. Due to specifics of portals as web sites, here
primarily addressing their complex and hybrid structure and media specificities along
with diversity of user population, their tasks and workflows, usability issues are
crucial for their design. Yet many current web portals suffer from problems related to
low usability since in many portal projects usability is an afterthought or is
completely ignored in others. Usability assessment is often seen as too expensive,
difficulty to accomplish, too specialized or something to address after testing all the
"functionality" [2]. Consequently the efficient evaluation of web portals, and websites
in general [3], has become a point of concern for both practitioners and researches.

Horizontal information (broad-reach and news) portals, also called general, are
nowadays the most visited Croatian web sites [4]. Whether such portals do indeed
reach their aim of facilitating users' access to diverse resources at the same time
targeting the entire Internet community and, if so, to which extent, needs further
investigation. To evaluate how easy to use horizontal information portals are, we have
conducted a series of experiments that employed a range of usability assessment
methods [5]. Unlike most studies related to web portal evaluations which usually rely
on user-based surveys (cf. [3] as well), our approach employed both empirical and

384 A. Granić, I. Mitrović, and N. Marangunić

analytical assessment. Such methodology is in line with general assumption that we
should not rely on isolated evaluations, but instead make use of complementing
usability techniques and of people with different expertise whom should be involved
[6]. Our experience indicated that the chosen research instruments, measures and
methods for web portal usability testing were adequate. Conversely, although
showing considerable potential, analytical assessment raised some concerns. With the
intention to employ expert inspections to complement rather than replace usability
testing, the analytical evaluation was additionally checked up.

Due to the lack of guidelines/heuristics for the design and evaluation of general
web portals, we have conducted an experimental work to develop a heuristic
evaluation form for horizontal information portals. The work presented in this paper is
based on our previous study when Nielsen's usability heuristics, as a set of ten key
principles [7], was explained and adjusted to the general portal usage. As additional
clarifications to each principle, a series of auxiliary guidelines concerning portal
design were also provided, cf. e.g. [8]. Comprehensive quantitative and qualitative
analysis of the acquired data revealed that some of the Nielsen's principles showed
poor applicability in the web portal context. As a result, a set of seven general
principles was prepared, each supplement with reduced and more helpful series of
guidelines. Once again, obtained data was quantitative and qualitative analysed,
taking into consideration relevant information acquired not only for the principles, but
for all additional auxiliary guidelines. At this point our goal was to identify the most
relevant heuristics/guidelines for web portal evaluation in order to create a heuristic
evaluation form for the expert inspection of general portals.

2 Heuristics for Expert Reviews

Portal Guidelines, as a helpful research instrument for expert inspections was
developed to measure the hypothetical usability categories which reflect the four most
distinctive elements of the contemporary web design process. The categories also
reflect actual design practice in general portals’ development specifically their
information architecture (INFO; 15 guidelines), navigation (NAV; 11 guidelines),
layout/visual identity (VIS; 9 guidelines) and interactivity i.e. web specific practices
(INT; 9 guidelines). Detailed quantitative and qualitative analysis of the guidelines
was performed in our previous published experimental work. We have started with
more than 100 guidelines and after comprehensive empirical evaluations the number
of guidelines was reduced. As a result, a list of 44 guidelines was defined. Table 1
depicts examples of guideline statements organized in four categories. To explore
reliability and validity of the evaluation form, the list was given to a group of 31
"instant/novice" [9] inspectors, chosen among computer science graduate and
postgraduate students, and experienced practitioners from the field of web design.

General portal tportal (www.tportal.hr) was evaluated against the set of guidelines.
A 5-point Likert-type scale asked the inspectors to rate the degree to which they agree
with the guideline statements. Inspectors were asked to fill out an on-line version of
the heuristic evaluation form. After two weeks of data collection, all 31 responses
were gathered and analyzed.

 Development of the Evaluation Form for Expert Inspections of Web Portals 385

Table 1. Examples of guideline statements and their placement in four categories

Guideline category Guideline statement

INFO Thematic categories are clearly and simply organized
NAV The navigation (horizontal or vertical) is positioned in consistent way
VIS Commercials are avoided from the central part of the portal/screen
INT Long and complicated registration is avoided

To estimate the internal consistency reliability of the scores, the Cronbach alpha

coefficient was calculated for the initial set of 44 guidelines based on the sample of 31
novice inspectors. Classical item analysis was conducted on the items of the form to
determine whether some items were negatively affecting the reliability of the scales.
Elimination of eight “weakest” items resulted in reliability increase from 0.60 to 0.83.
Because the Cronbach’s alpha values were above the conventional level of 0.7 [10],
the set of guidelines is considered to exhibit adequate reliability.

The first step in the exploratory factor analysis was to estimate the number of
factors in the heuristic evaluation form. The Kaiser-Gutman criterion (eigenvalue > 1)
indicated that are more than four factors in the evaluation form. A principal factor
analysis with varimax rotation (with Kaiser Normalization procedure) was conducted
to ensure that guidelines for the same construct measure the particular category, while
the guidelines for the other construct measure another one. Four factors that have
explained 52.7% of variance in all items were extracted. The rotated factor matrix
showed all the guidelines loaded on the particular latent constructs. Overall, the
factors’ structure in the factor analysis was not in agreement with the hypothetical
structure of the developed Portal Guidelines.

3 Discussion and Conclusion

This paper briefly reports on the development of the Portal Guidelines as a valuable
research instrument for the expert inspections of web portals. The designed heuristic
evaluation form was created to measure the hypothetical usability categories which
reflect actual work practice and characteristic components of the current web design
process. At the beginning of this study of horizontal information web portals we
assumed that the initial set of 44 guidelines could be grouped into four categories
that reflect today's web design practice. After analyzing the internal guidelines’
consistency reliability, we have obtained 36 guidelines that have shown reliability in
the context of the research.

We have analyzed the potentially applicable situation with four categories of
guidelines. Principal component analysis and comparison with the hypothetical
categories has revealed that the guidelines are unevenly distributed in the four
component categories. In fact, significant distinctiveness between categories could not
be confirmed; specifically categories do not appear to be homogeneous − guidelines
from these component categories could not be coupled in a reasonable/logical way.
Therefore, we could assume that the factor analysis has not confirmed our hypothesis
that the proposed set of guidelines could be categorized according to such criteria. On
the contrary, the set of Portal Guidelines should be taken into account altogether. For

386 A. Granić, I. Mitrović, and N. Marangunić

that reason, the developed evaluation form is composed of 36 equally-levelled
guidelines that should provide an insight into the overall usability of the portal. The
additional analysis of individual guidelines which provided especially good or bad
results could further interpret the specific elements of general web portal usability.

Finally we could conclude that the evaluation form for the expert inspection of
general web portals has been successfully developed; the created Portal Guidelines
are usable for both novice inspectors and HCI experts. A lot of efforts have gone into
the direction of specializing general usability heuristics and validating the new
proposed heuristic set. However, it would be also valuable to understand whether the
defined evaluation form leads the inspectors to identify severe problems and if some
categories of problems are privileged while others are neglected. The severity of the
identified problems in particular is an important indicator about how good the
heuristics are guiding the inspectors in the analysis of the applications, thus in
problem discovering. Additionally, it would be interesting to compare the results of
the inspection (the set of identified problems) with the results of an evaluation
performed through a different set of heuristics or even a different assessment method.

Acknowledgments. This work has been carried out within project 177-0361994-1998
Usability and Adaptivity of Interfaces for Intelligent Authoring Shells funded by the
Ministry of Science and Technology of the Republic of Croatia.

References

1. Beringer, J., Lessmann, C., Waloszek, G.: SAP AG – Generic Portal Pages – What Do
Most Portals Need(May 21,2001),
http://www.sapdesignguild.org/editions/edition3/generic_page
s.asp

2. Jensen, J.J., Skov, M.B., Stage, J.: The WPU Project: Web Portal Usability. ERCIM
News 78 (2009)

3. Chiou, W.-C., Lin, C.-C., Perng, C.: A strategic framework for website evaluation based
on a review of the literature from 1995–2006. Information & Management 47, 282–290
(2010)

4. Digitalna Mreža (2011), http://www.digitalnamreza.com/
5. Granić, A., Mitrović, I., Marangunić, N.: Exploring the Usability of Web Portals: A

Croatian Case Study. International Journal of Information Management (2010),
doi:10.1016/j.ijinfomgt.2010.11.001

6. Sears, A., Jacko, J.: The Human-Computer Interaction Handbook: Fundamentals, Evolving
Technologies and Emerging Applications. In: Human Factors and Ergonomics, 2nd edn.
(2008)

7. Nielsen, J.: Heuristic Evaluation. In: Nielsen, J., Mack, R. (eds.) Usability Inspection
Methods, pp. 25–64. John Wiley and Sons Inc., New York (1994)

8. Sharp, H., Rogers, Y., Preece, J.: Heuristics for Websites (2007), http://www.id-
book.com/catherb/Website_heurs.php

9. Bolchini, D., Garzotto, F.: Quality and Potential for Adoption of Web Usability Evaluation
Methods: An Empirical Study on MILE+. Journal of Web Engineering 7(4), 299–317
(2008)

10. Nunnally, J.C.: Psychometric theory. McGraw-Hill, New York (1978)

WebSoDa: A Tailored Data Binding Framework

for Web Programmers Leveraging the
WebSocket Protocol and HTML5 Microdata

Matthias Heinrich1 and Martin Gaedke2

1 SAP AG, SAP Research Dresden, Germany
matthias.heinrich@sap.com

2 Department of Computer Science, Chemnitz University of Technology, Germany
martin.gaedke@informatik.tu-chemnitz.de

Abstract. The data binding pattern is an established technique to cou-
ple user interface (UI) elements and data objects. Various markup lan-
guages (e.g. Microsoft XAML, Adobe MXML) integrate advanced data
binding concepts in order to ease application development. However, the
HTML standard does not embrace means for data binding although being
the Web markup language supported by millions of Web programmers.
Therefore, we propose a standard-compliant WebSocket-based Data
Binding (WebSoDa) framework. The WebSoDa framework synchronizes
data objects and UI elements by orchestrating a Microdata-based data
binding language as well as a client-side and a server-side messaging com-
ponent. Thus, developers may speed up the tedious task of implementing
binding associations in Web applications.

1 Introduction

In the last decade, the trend to move desktop applications to the Web continued
due to the lean upgrade process, the ease of consumption and the broad device
support [4]. However, bringing the desktop experience to Web applications is a
demanding task. Especially challenging is the application development requiring
server-side updates (e.g. stock ticker or twitter feed). The integration of server-
side updates encompasses various tasks such as implementing messaging hubs,
specifying a messaging format and realizing an update UI mechanism. Realizing
these tasks in a distributed environment translates to a repetitive and time-
consuming development activity. Therefore, we propose the WebSoDa framework
which empowers developers to specify bindings in a minimal markup language.
Thus, the complexity exposed by several low-level programming tasks is wrapped
in a concise and declarative vocabulary. Consequently, programmers may rapidly
realize two-way data binding associations.

In this paper, we proceed with a brief discussion of the state of the art in
section 2. Sections 3 and 4 describe the distinct framework components and
outline their interaction. In section 5, we summarize the benefits of WebSoDa.

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 387–390, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

388 M. Heinrich and M. Gaedke

2 State of the Art Data Binding Frameworks

Currently, various data binding frameworks exist offering distinct capabilities.
Their main objective is to keep the UI and the model in synch while featuring a
lightweight binding language. The following overview discusses these frameworks
in the light of the Web development domain, which requires standard-compliance
and support for distributed systems including a lean bi-directional communica-
tion protocol.

Desktop Binding Frameworks: They are widely adopted, because they have
proven to speed up the reoccurring development task of coupling UI elements and
data objects. Two prominent examples are the Microsoft Windows Presentation
Foundation [6] and the Java JFace toolkit [5]. However, these frameworks are
not applicable to distributed systems, such as the Web.

Rich Internet Application (RIA) Binding Frameworks: After succeeding
in the desktop market, the binding concept was adopted in the Web domain.
RIA frameworks such as Microsoft Silverlight or Adobe Flex introduced binding
features [1]. Both frameworks offer markup languages (XAML, MXML) to de-
fine bindings. Nevertheless, choosing a RIA technology significantly narrows the
addressable market since applications require a dedicated browser plug-in.

JavaScript-based Binding Frameworks: Another approach to setup data
bindings is facilitated through various popular JavaScript frameworks (e.g. Pro-
totype, YUI) [7]. They address the HTTP limitation of allowing solely client-side
communication requests by leveraging expensive polling techniques (AJAX). Ad-
ditionally, their binding syntax is based on pure JavaScript code rather than on
declarative markup. Thus, the approach implies a steep learning curve since Web
programmers have to get familiar with HTML, JavaScript and a server-side pro-
gramming language.

3 The WebSoDa Architecture

In order to simplify the cumbersome task of implementing data bindings, we have
developed the WebSoDa framework. The standard-compliant framework consists
of three essential building blocks: a language to define bindings in HTML5 as
well as two messaging components executing synchronization calls.

Fig. 1. A rendered HTML5 form and the associated client-side binding markup

WebSoDa: A Tailored Data Binding Framework 389

The data binding language builds upon the Microdata specification [3] which
is the default HTML5 extension mechanism. It offers three crucial attributes
(itemscope, itemtype, itemprop) to describe annotation elements called items.
While the itemscope attribute defines the reach of an item, the itemtype distin-
guishes the item by attaching a type URL. The item itself may contain several
properties which represent key-value pairs. To create a new item property the
itemprop keyword is used.

Figure 1 depicts the application of Microdata annotations. A form-container
exposes two input elements which accept textual user input. An itemscope at-
tribute creates a new typed item valid within the opening and the closing form-
tag. Furthermore, two properties are defined with keys encapsulating the binding
expressions. The corresponding values are the inputs provided by the end-user.

The data binding language is a minimal set of attributes. First an identi-
fier named id has to be defined. Secondly, an attribute bindingmode expresses
whether UI changes are only propagated to the model (oneway) or if model
changes are also reflected on the UI (twoway). The third attribute eventtype
specifies a set of JavaScript events which trigger the client to propagate changes
to the server. All attributes are specified within the itemprop value field. In Fig.
1 two client-side data binding associations are defined using different binding
modes and distinct update events.

Fig. 2. The WebSoDa architecture and an example of a server-side binding expression

Besides defining a binding language, the WebSoDa framework features a
client-side and a server-side messaging component depicted in Fig. 2a. These
components communicate over the bi-directional WebSocket protocol [2] which
is currently standardized by the IETF. The WebSocket protocol was chosen be-
cause of its native two-way communication support, its standard-compliance,
the broad browser support and the minimal protocol overhead.

The client-side messaging component is packaged in an external JavaScript file
named WebSoDa.js. According to Fig. 2a it is comprised of a WebSocket handler,
a data binding context and the HTML5 description containing the annotated
UI elements. Once the browser loads the HTML5 as well as the JavaScript defi-
nition, the data binding context registers all annotated UI elements and creates

390 M. Heinrich and M. Gaedke

a binding object for each. As soon as the user changes the input of a registered
form field, the WebSocket handler assembles an update message which is sent
to the server-side messaging component. This component retrieves the attached
server-side binding which is identified by the provided id attribute. After select-
ing a binding, the UI change can eventually be propagated to the referenced
model object. Updates can also be triggered by the server. In case of a model
change, a message will be sent to the client and the associated field will be up-
dated. Currently, the server-side component is implemented as a Java Servlet.
The Java source code to setup a server-side data binding is illustrated in Fig. 2b.

4 Online Demo

A screencast showing the process of setting up the data binding associations,
the client-side JavaScript and the server-side Java source code are available at
http://vsr.informatik.tu-chemnitz.de/demo/WebSoDa/.

5 Conclusion

In this paper, we described a WebSocket-based data binding framework which
fosters the development efficiency by integrating declarative binding expressions
in HTML5. A client-side messaging component parses the binding expressions
and automatically establishes bi-directional connections to the server-side model.
Thus, Web developers may profit from the data binding concept without intro-
ducing a new technology. In contrast to the traditional form-processing approach,
the proposed framework supports a two-way binding reflecting model changes in-
stantly on the UI. Furthermore, bindings are highly configurable with respect to
triggering events and binding modes. Besides offering flexibility, the lightweight
framework embraces Web standards. Consequently, it only requires a state of the
art Web browser supporting WebSockets and Microdata. Hence, a broad range
of applications might benefit from the WebSoDa framework.

References

1. Deitel, P.: Internet & World Wide Web: How to Program. Prentice-Hall, Englewood
Cliffs (2007)

2. Hickson, I.: The WebSocket protocol draft-76 (2010),
http://tools.ietf.org/html/draft-hixie-thewebsocketprotocol-76/

3. Hickson, I.: HTML Microdata - W3C Working Draft (2011),
http://www.w3.org/TR/microdata/

4. Jazayeri, M.: Some trends in web application development. In: 2007 Future of Soft-
ware Engineering, FOSE 2007, pp. 199–213. IEEE Computer Society, Washington,
DC,USA (2007)

5. McAffer, J., Lemieux, J.-M., Aniszczyk, C.: Eclipse Rich Client Platform. Addison-
Wesley Professional, London (2010)

6. Nathan, A.: Windows Presentation Foundation Unleashed. Sams (2006)
7. Orchard, L.M., Pehlivanian, A., Koon, S., Jones, H.: Professional JavaScript Frame-

works: Prototype,YUI, ExtJS, Dojo and MooTools. Wrox (2009)

http://vsr.informatik.tu-chemnitz.de/demo/WebSoDa/
http://tools.ietf.org/html/draft-hixie-thewebsocketprotocol-76/
http://www.w3.org/TR/microdata/

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 391–394, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Towards User-Centric Cross-Site Personalisation

Kevin Koidl, Owen Conlan, and Vincent Wade

Knowledge and Data Engineering Group (KDEG), Trinity College Dublin,
School of Computer Science, Dublin, Ireland

{Kevin.Koidl,Owen.Conlan,Vincent.Wade}@cs.tcd.ie

Abstract. Personalisation on the web is mostly confined to Websites of online
content providers. The main drawback of this approach is the missing consid-
eration of the users previous cross-site browsing experience resulting in an
often fragmented browsing experience. This paper introduces a service driven
architecture for user-centric personalisation in online cross-site tasks. We intro-
duce the proposed architecture and results of an initial experiment evaluating
cross-site personalisation across separately hosted open-source Web-based
Content Management Systems (WCMS).

Keywords: Cross-Site Personalisation, Adaptive Hypermedia Systems, Web-
based Recommender Systems, Open-Source Web-based Content Management
Systems (WCMS).

1 Introduction

Personalisation on the web is mostly confined to specific Websites of content provid-
ers and not cross-site. It can be argued that the main reason for this shortcoming is the
need for Website owners to encourage users to remain within their Website as long as
possible. The expected outcome of a prolonged user visit is an increase in revenue
either during the visit or in future visits [1]. The user on the other hand benefits from
Website specific personalisation by receiving personalised recommendations, such as
purchase related items, that may be of interest to the user. However this approach
cannot assist the user in online tasks which require cross-site browsing, such as ex-
ploring product related information across enterprise and user generated Websites.
The result of this fragmented browsing experience can increase user frustration
through repetitive query usage within the different Websites [2]. To unify the frag-
mented browsing experience both the need of the user (freely browsing across
the web) and the need of the content provider (encouraging the user to stay on the
Website as long as possible) needs to be addressed.

2 The UNITE Architecture

The UNITE (UNIfied Task-based browsing Experience) architecture is designed to
assist users in complex online tasks which are short-term and cross-site, such as in
Online Customer Care scenarios. This is achieved through a third-party Adaptive

392 K. Koidl, O. Conlan, and V. Wade

Feature Service (AFS) interfacing with the different Websites the user browses
across. The main approach of UNITE is to unify terms related to Web pages the user
has browsed across. This unified term model can then be used to send personalised
recommendations to interfacing Websites reflecting the overall browsing experience
of the user. Typical examples of personalised recommendation usage are link and
content recommendation [4]. The advantage for the user is a more unified browsing
experience across the web and for Website owner the possibility to tailor a more per-
sonal and customer specific Website experience. This approach reflects research
related to Open Corpus Adaptive Hypermedia [3] and consists of following elements:

Term Identification Service: The main purpose of the Term Identification Service is
to identify terms related to the current Webpage the user is viewing. Terms can either
be retrieved directly from the interfacing Website (e.g. though an existing taxonomy
or folksonomy) or through term extraction tools such as Yahoo JQL table1. In a sec-
ond stage the extracted terms can be used to receive related terms through external
knowledge services such as WordNet2 or openCalais3. Once an initial term-based
taxonomy is created the service can train text analytics tools such as Weka4 to create
related taxonomy terms for Websites which either have no related terms or for which
the terms are not in the scope of the previously collected terms.

User Model Repository: The User Model consists of terms related to the current task
of the user and which were identified by the Term Identification Service. The User
Model can be enriched with addition properties such as preferred content type or
language preferences.

Strategy Repository: Depending on the User Model properties the Strategy Model
Repository can identify suitable strategies to create cross-site personalised recom-
mendations.

Scrutiny Interface: To ensure user trust in the recommendations provided the user
can view all models and adaptive decisions.

RESTful Service Layer: The UNITE architecture implements a RESTful service
layer for client communication.

WCMS Module Extensions: Based on the mostly flexible and simple extensibility
mechanisms of Web-based Content Management Systems different modules can be
deployment at run-time to enable cross-site personalised recommendations.

3 Experimental Results

To provide a realistic real world scenario the initial experiment was based on Online
Customer Care tasks in which users explore information related to the Symantec

1 http://developer.yahoo.com/search/content/V1/termExtraction.html
2 http://wordnet.princeton.edu/
3 http://www.opencalais.com/
4 http://www.cs.waikato.ac.nz/ml/weka/

 Towards User-Centric Cross-Site Personalisation 393

Norton 360 product range. The goal of the experiment was to study the perceived
usefulness of the approach. For this two system pairs were deployed; one non-
adaptive WCMS system pair and one adaptive WCMS systems pair. Each WCMS
system pair consisted of two Drupal5 based WCMS with one hosting structured
manual content and the other hosting user generated forum content. Furthermore the
Drupal based WCMSs were extended with modules allowing both the interfacing with
the third-party service and the usage of term based personalised recommendation for
link annotation. The experiment was conducted online with 36 volunteering partici-
pants from Trinity College Dublin and the University of South Australia. Each par-
ticipant was asked to provide information about their knowledge in adaptive systems
and the Symantec product range. After this the participants were asked to conduct two
out of four real world customer care tasks. The tasks were assigned based on the Latin
Square design. Each participant conducted one task in the adaptive system pair and
one task in the non-adaptive system pair. After each task the participants were asked
to fill out a System Usability Score (SUS) questionnaire. Finally, two concluding
questionnaires were presented to the participants.

The pre-questionnaire indicated that most participants had limited knowledge in
the usage of both Norton 360 products and adaptive systems. Furthermore most par-
ticipants stated that they are consulting online manual and forum information on a
regular base and using search engine technology frequently in searching for task re-
lated information. The SUS score resulted in 68.67 for the adaptive system pair and
62.58 for the non-adaptive systems pair. It can be argued that both scores are an indi-
cation for a general acceptance of the experimental system. However, the difference
in scores is too small to make a clear conclusion on usability differences. In relation
to discussing the quantitative data execution time, content views and query count was
recorded. The average execution time was 24 minutes and 37 seconds (SD 05:35) in
the adaptive system pair and 22 minutes and 24 seconds (SD 05:08) in the non-
adaptive system pair. In relation to content views the adaptive system pair recorded an
average of 116 content views (SD 32) and the non adaptive system pair an average of
96 content views (SD 20). Finally in relation to query count the adaptive system pair
recorded 429 queries (260 in the manual hosting Website and 169 in the forum host-
ing Website) and the non-adaptive system pair 339 queries (203 in the manual hosting
Website and 136 in the forum hosting Website). In order to investigate if the in-
creased number of content views and queries resulted in a higher quality in tasks
answers further analysis of the results needs to be conducted.

The qualitative data provided by the final two questionnaires is based on a 4-point6
LIKERT scale (1=strongly disagree, 2=disagree, 3=agree, 4=strongly agree). In rela-
tion to the usefulness of the link annotations when browsing across both Websites
(manual and forum) 7 strongly agreed, 13 agreed, 11 disagreed and 1 strongly dis-
agreed. Asked if the adaptive recommendations were relevant in relation to the
content 2 strongly agreed, 19 agreed, 2 disagreed and 1 strongly disagreed. Asked if
the participants were satisfied with the performance, assistance and guidance of
the adaptive web system 6 strongly agreed, 18 agreed, 7 disagreed and 1 strongly

5 http://drupal.org/
6 To ensure the user provides a positive or negative tendency a 4-point scale instead of a 5-point

scale was used.

394 K. Koidl, O. Conlan, and V. Wade

disagreed. It can be argued that the participants mostly agreed that the systems ap-
proach was useful and relevant.

4 Conclusion and Future Work

This poster abstract introduced UNITE, a cross-site web personalisation architecture
towards cross-site personalisation on the open web. Selected findings of an initial
experiment were presented. Future evaluation will be addressing different aspects of
the overall architecture in order to gain a more in dept understanding of cross-site
personalisation and which techniques are most useful.

Acknowledgments

This research is supported by the Science Foundation Ireland (Grant 07/CE/I1142) as
part of the Centre for Next Generation Localization (www.cngl.ie) at Trinity College
Dublin.

References

[1] Rose, S., Hair, N., Clark, M.: Online Customer Experience: A Review of the Business-to-
Consumer Online Purchase Context. International Journal of Management Reviews 13,
24–39 (2011)

[2] Feild, H.A., Allan, J., Jones, R.: Predicting searcher frustration. In: Proceeding of the 33rd
International ACM SIGIR Conference on Research and Development in Information Re-
trieval, pp. 34–41. ACM, Geneva (2010)

[3] Brusilovsky, P., Henze, N.: Open Corpus Adaptive Educational Hypermedia. In: Brusi-
lovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 671–
696. Springer, Heidelberg (2007)

[4] Koidl, K., Conlan, O.: Engineering Information Systems towards facilitating Scrutable and
Configurable Adaptation, pp. 405–409. Springer, Hannover (2008)

Tool Support for a Hybrid Development

Methodology of Service-Based Interactive
Applications

Christian Liebing, Marius Feldmann, Jan Mosig, Philipp Katz,
and Alexander Schill

Technische Universität Dresden, Department of Computer Science,
Institute for Systems Architecture, Computer Networks Group

01062 Dresden, Germany
{christian.liebing,marius.feldmann,jan.mosig,philipp.katz,

alexander.schill}@tu-dresden.de

Abstract. In recent years promising approaches that provide the graph-
ical development of service-based interactive applications were presented,
but they still lack of simple platform-independent modeling and variabil-
ity. We address this issue by exploiting the concept of service annotations
to establish a hybrid development methodology that relies on a novel con-
cept named temporal annotations to specify the applications navigation
flow. To facilitate the development methodology, we present a graphical
authoring tool.

1 Motivation

Developing service-based interactive applications manually is a time-consuming,
cost-intensive and potentially error-prone task. To facilitate their development,
two model driven approaches have emerged in recent years, which differ heavily
in the underlying methodology and complexity of the development process.

On one hand, the Servface approach [1] follows the paradigm of service com-
position at the presentation layer and enables the end-user development of
service-based interactive applications for a variety of platfoms by composing Web
services (WS) based on their dynamically generated frontends enhanced by UI-
related annotations, which can be attached to an annotable WS element.

However, the approach has several shortcomings when it is applied to more
complex development scenarios. Firstly, by focusing on end-user development,
the approach enables modeling of rudimentary form-based applications only. Sec-
ondly, the development methodology demands the user to select a target plat-
form at the beginning of the development process, whereby the resulting model
cannot be transformed to applications running on various target platforms.

On the other hand, there is the expressive, task-driven development approach
[2] of Paterno. This approach uses the notation of ConcurTaskTrees (CTT) [3] as
a technology-independent task model to specify the temporal relations between
user and system tasks. A platform-independent description of the abstract User

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 395–398, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

396 C. Liebing et al.

Interface (UI) forms the starting point of the approach. This representation is
transformed into various platform-dependent concrete UIs and finally mapped
to an implementation specific representation. However, the practical usability of
this approach is reduced due to the variety of models and the need for a manual
binding of abstract system tasks and concrete WS operations.

A common shortcoming of both mentioned approaches is their lacking support
for variability and the associated re-development of distincive applications.

Due to the sketched drawbacks, we present a hybrid light-weight but powerful
approach that supports platform-independent, annotation-based and graphical
modeling. It relies on one model, facilitates the WS binding and delivers com-
parable results, but does not cover all application scenarios. Subsequently, our
demonstration solely shows an authoring tool, which supports the hybrid de-
velopment methodology of service-based interactive applications, and does not
discuss any underlying concepts in detail.

2 Temporal Annotations Plugin for Eclipse (TAPE)

Service-based interactive applications are characterized by two aspects: firstly,
their functionality is entirely encapsulated behind well-defined service interfaces
and secondly, graphical user interfaces enable human interactions with one or
more services. Due to the application modeling on basis of WS and annotations,
a suitable methodology must provide a rapid and simple applications develop-
ment, customization and modification and furthermore different versions with
little effort. Moreover, the expressiveness in regards of the resulting applications
should fulfill state-of-the-art requirements for interactive applications.

To meet the requirements of developing service-based interactive applications
and to eliminate the shortcomings of the existing approaches, we developed a
hybrid approach that does not use annotations solely for describing UI-related
information but also for specifying the navigation and data flow of an application.
To achieve the consistent use of annotations, we extended the existing Servface
annotation model [4] through the use of application-specific annotations. Ini-
tially, we analyzed the temporal relations of Paternos CTTs, whether they are
potential candidates to specify the applications navigation flow and then added
the specified temporal annotations to the Servface model. Due to our extensions,
there is no need for a self-contained model, which stores all information.

To facilitate the development process, we developed a graphical authoring
tool1 by using the Eclipse platform and the frameworks GEF2 and EMF3. We
decided to develop a plugin, which has its own perspective due to the well-known
look and feel that minimizes the learning curve for application developers. How-
ever, the plugin can be easily transformed into a RCP- or RAP-based application.

The internal model that is invisible from users perspective provides the dis-
tinction between UI-related and application-specific annotations to simplify the
1 http://www1.inf.tu-dresden.de/ s6334199/tape/
2 Graphical Editing Framework - http://www.eclipse.org/gef/
3 Eclipse Modeling Framework - http://www.eclipse.org/emf/

Tool Support for a Hybrid Development Methodology 397

independent specification. As a result, the authoring tool produces a descrip-
tion that may contain UI-related and applications specific rather temporal an-
notations and provides their transformation together with the appropriate WS
descriptions into executable interactive applications for various target platforms.

The UI of the authoring tool is structured into three important areas (depicted
in Fig. 1): 1. The Service overview shows the available services including the as-
sociated operations, 2. The Editor view represents the working view and consists
of an annotation tool bar to specify graphically temporal relations between WS
operations, and 3. The Project explorer provides a project overview.

Fig. 1. Temporal Annotations Plugin for Eclipse (TAPE)

Our demonstration presents the graphical development process including the
following steps to be accomplished by the user:

1. Create a new TAPE project: Initially, a WS has to be selected. During
the modeling of the application’s navigation and data flow further WS may
be imported from the repository, which manages the URIs of available service
descriptions. Subsequently, the initial WS operation has to be selected to
specify the starting point of the application.

2. Define the temporal relationships: The application development starts
by moving the initial operation into the Editor. It requires at least two
operations to specify a binary annotation by using the annotation tool bar
and clicking first on the left and then on the right operation. A feature for
constraint checking can be activated to avoid incorrect model instances due
to the fact that not all temporal annotations can be combined.

3. Publish an application: After modeling the whole application, the anno-
tations can be published in the repository, which provides accessibility and

398 C. Liebing et al.

availability, and facilitates the exchange of created model instances. All an-
notation instances correspond to the extended Servface annotation model
and may contain UI-related as well as application-specific annotations.

4. Adapt an existing application: To adapt an application to changing
requirements, the published annotation file needs to be imported. Due to the
fact that the tool does not store the layout information during the modeling
process, we developed an algorithm that realizes the automatic and clearly
arranged presentation of the WS operations and their temporal relationships.

5. Generate an executable application: By using transformation compo-
nents, the application models can be transformed into executable applica-
tions for a variety of different platforms and devices.

Finally, we evaluated the scalability and usability of the authoring tool. The con-
ducted user study with 10 participants has shown the development methodology
is easily understood by developers and facilitates the development due to a clear
layout and solely possesses small shortcomings with respect to the import and
export of annotations.

3 Conclusion

In summary, the authoring tool demonstrates the feasibility of a hybrid light-
weight development approach to create service-based interactive applications.
The applied model relies solely on annotations to specify UI-related informa-
tion and the navigation flow. We have shown that the hybrid approach provides
the development of distinctive applications, which may differ in details with one
single application model for a variety of platforms. As a next step, we plan to
publish our extended Servface annotation model as well as the hybrid devel-
opment methodology supporting platform-independency and variability. Future
work includes the extension of the tool to cover all relevant aspects during de-
velopment of service-based interactive applications and the development of code
generators for mapping the modeled applications to different plattforms. Based
on this we intend to focus further on the results of the generation process.

References

1. Feldmann, M., Nestler, T., Muthmann, K., Jugel, U., Hubsch, G., Schill, A.:
Overview of an End-user enabled Model-driven Development Approach for Interac-
tive Applications based on Annotated Services. In: Proceedings of the 4th Workshop
on Emerging Web Services Technology, pp. 19–28. ACM, New York (2009)

2. Paterno, F., Santoro, C., Spano, L.D.: Support for Authoring Service Front-Ends.
In: Proceedings of the 1st ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, pp. 85–90. ACM, New York (2009)

3. Paterno, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A Diagrammatic Notation
for Specifying Task Models. In: Proceedings of the 6th International Conference on
Human-Computer Interaction, pp. 362–369. Chapman and Hall, Australia (1997)

4. Servface Consortium: Models for Service Annotations, User Interfaces and Service-
based Interactive Applications, Deliverable 2.9 (2010)

A Comparative Evaluation of JavaScript

Execution Behavior

Jan Kasper Martinsen1, H̊akan Grahn1, and Anders Isberg2

1 Blekinge Institute of Technology, Karlskrona, Sweden
{jan.kasper.martinsen,hakan.grahn}@bth.se

2 Sony Ericsson Mobile Communications AB, Lund, Sweden
Anders.Isberg@sonyericsson.com

Abstract. JavaScript is a dynamically typed, object-based scripting
language with runtime evaluation. It has emerged as an important lan-
guage for client-side computation of web applications. Previous stud-
ies indicate some differences in execution behavior between established
benchmarks and real-world web applications.

Our study extends previous studies by showing some consequences of
these differences. We compare the execution behavior of four application
classes, i.e., four JavaScript benchmark suites, the first pages of the Alexa
top-100 web sites, 22 use cases for three social networks, and demo ap-
plications for the emerging HTML5 standard. Our results indicate that
just-in-time compilation often increases the execution time for web ap-
plications, and that there are large differences in the execution behavior
between benchmarks and web applications at the bytecode level.

1 Introduction

The World Wide Web is an important platform for many applications and ap-
plication domains, e.g., social networking and electronic commerce. These type
of applications are often referred to as web applications. Social networking web
applications, such as Facebook, Twitter, and Blogger, have turned out to be
popular, being in the top-25 web sites on the Alexa list [1]. All these three appli-
cations use JavaScript extensively. Further, we have found that 98 of the top-100
web sites use JavaScript to some extent.

JavaScript is a dynamically typed, object-based scripting language with run-
time evaluation. The execution of a JavaScript program is done in a JavaScript
engine [6], and several benchmarks have been proposed to evaluate its perfor-
mance. However, previous studies show that the execution behavior differs be-
tween benchmarks and real-world web applications in several aspects [4,5].

We compare the execution behavior of four different application classes, i.e.,
(i) four established JavaScript benchmark suites, (ii) the start pages for 100 most
visited web applications, (iii) 22 different use cases for popular social networks,
and (iv) 109 demo applications for the emerging HTML5 standard. We extend
previous studies with three main contributions : An extension of the execution
behavior analysis with reproducible use cases of social network applications and

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 399–402, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

400 J.K. Martinsen, H. Grahn, and A. Isberg

HTML5 applications, we show that just-in-time compilation often increases the
execution time for web applications, and we provide a detailed instruction mix
measurement and analysis. A more comprehensive set of results is found in [3].

2 Experimental Methodology

The experimental methodology is thoroughly described in [2]. We have selected
a set of 4 application classes consisting of the first page of the 100 most popular
web sites, 109 HTML5 demos from the JS1K competition, 22 use cases from
three popular social networks (Facebook, Twitter, and Blogger), and a set of 4
benchmarks for measurements. We have measured and evaluated two aspects:
the execution time with and without just-in-time compilation, and the bytecode
instruction mix for different application classes. The measurements are made on
modified versions of the GTK branch of WebKit (r69918) and Mozilla Firefox
with the FireBug profiler.

Web applications are highly dynamic and the JavaScript code might change
from time to time. We improve the reproducibility by modifying the test environ-
ment to download and re-execute the associated JavaScript locally (if possible).
For each test an initial phase is performed 10 times to reduce the chances of
execution of external JavaScript code.

Another challenge is the comparison between the social networking web appli-
cations and the benchmarks, since the web applications have no clear start and
end state. To address this, we defined a set of use cases based on the behavior of
friends and colleagues, and from this we created instrumented executions with
the Autoit tool.

We modified our test environment in order to enable or disable just-in-time
compilation. During the measurements, we executed each test case and appli-
cation with just-in-time compilation disabled and enabled 10 times each, and
selected the best one for comparison. We used the following relative execution
time metric to compare the difference between just-in-time-compilation (JIT)
and no-just-in-time-compilation (NOJIT):

Texe(JIT)/Texe(NOJIT) ≥ 1

3 Experimental Results

3.1 Comparison of the Effect of Just-in-Time Compilation

In Figure 1 we present the relative execution time for the Alexa top-100 web sites,
the first 109 JS1K demos, 24 SunSpider benchmarks, 6 Dromaeo benchmarks,
and 10 JSBenchmarks. The results show that for 58 out of the top-100 web sites
and for 50 out of 109 JS1K demos, JIT increases the execution time. When
JIT fails, it increases the execution time by a factor of up to 75. In contrast,
just-in-time compilation decreases the execution time for almost all benchmarks.
In general, the penalty of a unsuccessful JIT compilation is larger in real-world
web applications. However, the gain is also much larger for the largest decrease
in execution time with a JIT compilation.

A Comparative Evaluation of JavaScript Execution Behavior 401

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 20 40 60 80 100 120

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

JI
T

/N
O

JI
T

Website/Demo

JIT successfull 42/100 (Top 100 Alexa websites)
JIT successfull 59/109 (JS1K demos)

SunSpider benchmarks 24/24
Dromaeo benchmarks 3/6

JSBenchmarks benchmarks 7/10

Fig. 1. Relative execution time Texe(JIT) / Texe(NOJIT) for the top-100 Alexa web
sites, the first 109 JS1K demos, 24 Sunspider benchmarks, 6 Dromaeo benchmarks,
and 10 JSBenchmarks. A value larger than 1 means that JIT compilation increases
the execution time.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

negate

add
m

ul
div m

od
sub

lshift
rshift

urshift

bitand

bitxor

bitor
bitnot

not
jm

p
loop_if_true

loop_if_false

jtrue
jfalse

jeq_null

jneq_null

jneq_ptr

loop_if_less

loop_if_lesseq

jnless

jless
jnlesseq

jlesseq

switch_im
m

switch_char

switch_string

R
el

at
iv

e
nu

m
be

r
of

 e
xe

cu
tio

n
ca

lls

Alexa top 100
Sunspider

Fig. 2. Branch, jump, and arithmetic/logical related bytecode instructions for the
Alexa top-100 web sites and the SunSpider benchmarks

402 J.K. Martinsen, H. Grahn, and A. Isberg

3.2 Comparison of Bytecode Instruction Usage

We have measured the bytecode instruction mix for the selected benchmarks
and for the Alexa top-100 sites. Figure 2 shows the results for the top-100 sites
and the SunSpider benchmarks since they differ the most.

Our results show that the arithmetic/logical instructions and bit operations
are used significantly more in the SunSpider benchmarks than in the web appli-
cations. We also find that general branch/jump instructions are more common in
web applications, while loop instructions are more common in the benchmarks.
The large number of jmp instructions indicates the importance of function calls
in web applications.

4 Conclusions

Our most important results are that just-in-time compilation often increases
the execution time of web applications and that the execution behavior of the
benchmarks differs significantly from the web applications. The instruction mix
gives an indication why loop-based optimization techniques often fails for web
applications. These results call for alternative optimization techniques for web
applications as well as benchmarks that better represents their workload.

Acknowledgments

This work was partly funded by the Industrial Excellence Center EASE - Em-
bedded Applications Software Engineering, (http://ease.cs.lth.se).

References

1. Alexa: Top 500 sites on the web (2010), http://www.alexa.com/topsites
2. Martinsen, J.K., Grahn, H.: A methodology for evaluating JavaScript execution

behavior in interactive web applications. In: Proc. of the 9th ACS/IEEE Int’l Conf.
on Computer Systems And Applications, pp. XX–YY (December 2011)

3. Martinsen, J.K., Grahn, H., Isberg, A.: Evaluating four aspects of JavaScript execu-
tion behavior in benchmarks and web applications. Technical Report No. 2011:01,
Blekinge Institute of Technology, Sweden (2011)

4. Ratanaworabhan, P., Livshits, B., Zorn, B.G.: JSMeter: Comparing the behavior of
JavaScript benchmarks with real web applications. In: WebApps 2010: Proc. of the
2010 USENIX Conf. on Web Application Development, pp. 3–3 (2010)

5. Richards, G., Lebresne, S., Burg, B., Vitek, J.: An analysis of the dynamic behavior
of JavaScript programs. In: PLDI 2010: Proc. of the 2010 ACM SIGPLAN Conf. on
Programming Language Design and Implementation, pp. 1–12 (2010)

6. WebKit. The WebKit open source project (2010), http://www.webkit.org/

http://ease.cs.lth.se
http://www.alexa.com/topsites
http://www.webkit.org/

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 403–406, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Designing a Step-by-Step User Interface for Finding
Provenance Information over Linked Data

Enayat Rajabi1 and Mohsen Kahani2

1 Department of Engineering, Saveh Branch, Islamic Azad University, Saveh, Iran
erajabi@iau-saveh.ac.ir

2 Computer Engineering Department, Ferdowsi University Of Mashhad, Mashhad, Iran
kahani@um.ac.ir

Abstract. The proliferation of the use of Linked Data, and growth of Linked
Open Data (LOD) cloud provide a good environment for interrelating
previously isolated datasets. To encourage non-professional users to publish
and find their required data easily, a good user interface is needed. Also, as
users want to reach trustworthy or more up-to-date information in Linked Data,
they would like to have access to the provenance data, as well. In this paper, a
new method is presented that not only offers an easy interface for searching
data in LOD cloud, but also provides provenance information of data.

Keywords: Linked Data, User-interface, Provenance, Metadata, LOD.

1 Introduction

With regarding to the growing availability of Linked Data on the Web [1], users are
looking for approaches that do not limit them dealing with specific tasks.. They
shouldn’t be also limited to use specific data. Thus, the purpose of this paper is to
help users to find their desired data and their provenance in an effective and easy way.
Current Linked Data user interfaces such as search engines and browsers are
discussed and analyzed in this research. In fact, currently, exploring the Linked Data
cloud is difficult for users who are unfamiliar with semantic web concepts such as
SPARQL and RDF [2]. Using easy graphical user interfaces for Linked Data, users
can search effectively and find their exact data among Linked Datasets. Next,
provenance information over Linked Data is considered and a metadata store is
proposed for designing a step-by-step user interface and searching valid Linked Data.
Finally, this approach is tested using a simple case study and simple metadata store.

2 Linked Data User-Interfaces

Linked Data user interfaces are various and can be classified into different kinds of
user interfaces such as search engine, Linked Data browser, mash-ups, and triple
query builder, etc. For example, Tabulator [3] browses RDF data on the Linked Data
and uses an algorithm that traverses RDF data links and gives a dereferenceable URI.
Fenfire [4] browser explores Linked Data with a graph view and highlights the use

404 E. Rajabi and M. Kahani

cases of exploring and demonstrating Semantic Web data. DBpedia Faceted search 1
allows users to ask questions and then filters the results.

In most user interfaces for Linked Data, searching or exploring the data is
performed similar to that of traditional search engines. Although it is possible to show
users more accurate results, they should be able to search and filter the results again to
reach the desired data. Users should be allowed to search easily and find the desired
data without knowing the Linked Data principles. In some above mentioned user
interfaces, users should be familiar with RDF triples. We found some types of
interfaces such as Facets and query builders, as more effective ways for exploring
data. Facets present filtered options in which end users can filter the results based on
some related and limited fields. Because of using Facets and filtering the results in
this kind of user interface, our approach is somehow similar to the Facets, but we use
a Top-Down filtering method to reach the results, not filtering after showing the
results (bottom-up filtering). It means that like advanced options in a search engine,
users are guided to reach the results step-by-step by filtering datasets.

3 Finding Data Provenance

Veracity and quality of Linked Datasets are the most important things that should be
determined in linked open data cloud regarding to openness of web data. Users can
discern acceptance of the data by knowing about detailed history of them. Provenance
information can be stored with other metadata or simply by itself [5]. In maintaining
provenance, we should consider if it is immutable, or if it can be updated to reflect the
current state of its ancestors. If provenance depends on users manually adding
annotations instead of automatically collecting it, the burden on the user may prevent
complete provenance from being recorded and available in a machine accessible form
that has semantic value [6]. Users can also search for datasets based on their
provenance metadata, such as locating all datasets that generated by executing a
certain workflow. In order to use provenance, a system should allow rich and diverse
means to access it.

4 The Proposed Approach

In the proposed approach, users can reach the desired data step-by-step from the
metadata store to specific dataset(s) via search form as Figure 1 depicts. The metadata
of datasets consist of dataset name, number of sub datasets, dataset ID, dataset usages,
its domain and etc. Also details of dataset's relationships with other datasets, such as
relation type can be stored in the data store. This helps us to know how each dataset is
related with others and also helps users to find their desired data in an easy way.

An RDF data store is defined to store information about datasets and all datasets
are be encouraged to be registered in this metadata store. A registration process for
checking the validity of data is required, as valid information about datasets should be
presented to the users when they want to reach to the provenance information of data.
After a while, a small cloud of LOD is created.

1 http://dbpedia.neofonie.de/browse

 Designing a Step-by-step User Interface for Finding Provenance Information 405

Fig. 1. Storing RDF Metadata in the Data Store

On the other hand, searching for content in a search engine basically comprises
some steps like running a search, viewing the list of search results, selecting and
viewing a document from the search results list and navigating the selected document.
Each search engine usually has a search form that has a simple user interface. In a web
search engine, one can restrict her searches by advanced options that are useful when
she knows exactly what she wants. In the proposed approach, a search form in which
users can select their keywords in a datasets list has been designed. The basic search is
started by finding the keyword among the first level datasets in the metadata store in
LOD. After finding the data, based on related datasets, users are guided with more
information about it. Based on the selected keyword, the related datasets are retrieved
from the data store. Each field in search form may depend on a selected field in the
previous step in search page and the results of search will be filtered step by step.

Finding data provenance and confirming the validity of data in LOD cloud after
finding the desired data is another advantage of having such a metadata store. Since the
first level datasets and their relationships in RDF triple are stored, this method enables
users to identify trustworthy of the provenance information via these relationships.
Regarding different definitions which exist in RDFS and ontology (such as owl:same
as and so on) they may have different routes and ways from the data provenance and
the found data. Since we can keep relations of datasets in the metadata store, we can
also use best path algorithms to find effective way to reach desired data. To maintain
relationship between datasets, many other methods including parent-child relationship
can be used.

5 A Case Study

In a case study, we created a simple metadata store (an RDF file) about sample
datasets such as Geography, Databases, Search engines, etc. Then, we used SPARQL
for fetching data from the file and Java and Jena2 framework as programming
language in IntelliJ IDEA3 environment. When a user select a dataset group, we list
all types of datasets that are related to it, and then, in the next step, the user can select
the desired dataset among the list shown (Figure 2).

2 http://jena.sourceforge.net/
3 http://www.jetbrains.com/idea/

406 E. Rajabi and M. Kahani

Fig. 2. A simple case study

6 Conclusion

In this paper, we considered a user interface of current Linked Data cloud and
proposed a step-by-step user interface for easy and effective finding of data on LOD
by designing a RDF metadata store for all datasets in LOD cloud. Having LOD
metadata, users can be guided to find their data easily. On the other hand, when
datasets metadata is created, valid data is delivered to users so that they can reach
provenance information of datasets via the metadata. This is because it is possible to
walk through datasets based on relationships defined in metadata store.

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. International Journal
on Semantic Web and Information Systems, Special Issue on Linked Data (2009) (in press)

2. Zembowicz, F., Opolon, D., Miles, S.: OpenChart: Charting Quantitative Properties in
LOD. In: LDOW 2010 (2010)

3. Berners-Lee, et al.: Tabulator: Exploring and Analyzing Linked Data on the Semantic Web.
In: Procedings of the The 3rd International Semantic Web User Interaction Workshop
(SWUI 2006) Workshop, Athens, Georgia (November 6, 2006)

4. Hastrup, T., Cyganiak, R., Bojars, U.: Browsing Linked Data with Fenfire. In: Hastrup, T.,
Cyganiak, R., Bojars, U. (eds.) Linked Data on the Web (LDOW 2008) Workshop, in
Conjunction with WWW 2008 Conference (2008)

5. Margaritopoulos, T., Margaritopoulos, M., Mavridis, I., Manitsaris, A.: A Conceptual
Framework for Metadata Quality Assessment. In: 2008 Proc. Int’l Conf. on Dublin Core
and Metadata Applications, Berlin (2008)

6. Bose, R., Frew, J.: Composing Lineage Metadata with XML for Custom Satellite-Derived
Data Products. In: SSDBM (2004)

Towards Behaviorally Enriched Semantic

RESTful Interfaces Using OWL2

Irum Rauf and Ivan Porres

Åbo Akademi University, Dept. of Information Technologies,Turku, Finland
{irauf,iporres}@abo.fi

Abstract. In this paper, we discuss how to represent behavioral se-
mantic RESTful interfaces using OWL2. The conceptual and behavioral
model of the service interface are designed using UML and then given
semantic representation in OWL2. These semantic RESTful interfaces
carry information that can be used to validate web service and can also
be published for automated discovery and composition processes. Differ-
ent ontology reasoners can be used to validate the consistency of these
semantic RESTful interfaces.

1 Introduction

Representational State Transfer (REST)[2] has become a popular approach for
developing web services. Usually, RESTful services offer a simple interface to
create, retrieve, update and delete (CRUD) resources. However, it is possible to
create RESTful web services(WS) with complex operations beyond basic CRUD.

Designing and publishing such RESTful WS is not a trivial task. Previously,
we highlighted this need and presented a design approach to create and publish
behavioral RESTful WS interface [4]. The use of semantic technology with web
services facilitates automation, discovery and composition of web services. We
are interested in using semantic technology for representing behavioral RESTful
WS interfaces that can be used with different ontology tools and offer automated
solutions for RESTful interfaces.

In this work we use OWL2 to design behavioral semantic RESTful web service
interface that contain application states. The service is represented as conceptual
model(CM) and behavioral model(BM) using UML[6] and then semantically rep-
resented with OWL2 [1]. The semantic representation of RESTful WS interface
can be validated for its consistency and satisfiability using ontology reasoners.

2 Behavioral RESTful Interfaces

We use a simple example of a RESTful hotel booking WS to demonstrate our
work. The service takes payment from the customer and books a room in the
hotel.

In our Hotel Booking (HB) RESTful example, we take booking as a central
element since the service books a room. All other resources are linked to it and

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 407–410, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

408 I. Rauf and I. Porres

Fig. 1. (Left) CM for HB Web Service. (Right) BM of HB Web Service

are navigated through this central resource. The resources identified initially for
HB service are shown in Figure 1(left). Figure 1(right) shows lifecycle of the
booking resource with states representing different application states. A booking
resource is created as an activeBooking and can have many other substates when
it is active. A booking can be made inactive only if it is not waiting for the
payment confirmation. Also, only an inactiveBooking can be deleted. For the
detail implementation of the example, readers are referred to [5].

3 Behavioral RESTFful Interfaces in OWL2

Each resource in CM is shown as a class in ontology. The ontology classes are
connected via object properties that represent the association between resources,
i.e. connectivity. Every class is declared disjoint with the other defining the
fact that each class represents different objects. The listing below shows the
excerpt of OWL 2 representation of CM in Figure 1(left). We do not semantically
represent collection resources, class attribute and cardinalities as they would
clutter interface ontology with details that are not involved in validating the
interface. These details, however, can be added to make the semantic interface
descriptive if required.

Dec l a ra t i on (Class (booking))
Dec l a ra t i on (Class (room))
Dec l a ra t i on (Class (payment))
. . .
De c l a ra t i on (ObjectProperty (containsBooking))
Dec l a ra t i on (ObjectProperty (hasRoom))
Dec l a ra t i on (ObjectProperty (ha sCanc e l l a t i on))
. . .
ObjectPropertyDomain(hasRoom booking)
ObjectPropertyRange (hasRoom room)
. . .
D i s j o i n tC l a s s e s (booking room payment ca n c e l l a t i o n

waitPayment confirmPayment)

The BM of HB RESTful web service in Figure 1(right) results in emergence of
many new concepts in our ontology. Each state represents a piece of information
and can be exposed as a resource (ontology class).

Towards Behaviorally Enriched Semantic RESTful Interfaces Using OWL2 409

Fig. 2. Behavioral Model for HB RESTful WS with state invariants

Dec l a ra t i on (Class (ac t iveBooking))
Dec l a ra t i on (Class (Notconfirmed))
Dec l a ra t i on (Class (unpaidBooking))
.

Next, the state hierarchy, i.e., class hierarchy of resources is defined that
specify which resource is inherited from which resource. That is if state s1 is
a substate of s2, OWL2 class c1 represents UML state s1 and OWL2 class c2

represents UML state s2 then c1 is a subclass of c2.

SubClassOf (unpaidBooking Notconfirmed)
SubClassOf (wa i t i ng f o rP roc e s s i ng Notconfirmed)
. . . .

The states at the same level of class hierarchy are mutually exclusive. The
DisjointClasses axiom allows us to state this property of the state machine.

Di s j o i n tC l a s s e s (ac t iveBook ing inact iveBook ing)
D i s j o i n tC l a s s e s (Notconfirmed conf irm)
. . . .

4 Behavioral Interfaces and Ontology Reasoners

The main design decision for BM is concerning the allowed methods. We allow
four HTTP methods, i.e., GET, PUT, POST and DELETE, on the set of re-
sources in state machine. GET is idempotent and is invoked to get the current
state of the resource. PUT, POST and DELETE have side-effects and can trigger
a transition from one application state to another. Figure 2 shows the behav-
ioral model of our example annotated with service requests and state invariants.
These state invariants link CM and BM of the interface. Each application state
is defined by a state invariant, i.e., a boolean expression that links resources
together to define an application state and is represented in OWL2 as:

410 I. Rauf and I. Porres

SubClassOf (ac t iveBook ing
Ob j e c t In t e r s e c t i onOf (Objec tExactCard ina l i ty (0

hasCanc e l l a t i on canc e l) Objec tExactCard ina l i ty (1 hasRoom
room)))

SubClassOf (Notconfirmed
Ob j e c t In t e r s e c t i onOf (Objec tExactCard ina l i ty (0 i sWait ing

waitPayment) Objec tExactCard ina l i ty (0 hasConf irmation
confirmPayment)))

. . .

For detailed description on how state invariants are inferred for different types
of states in UML protocol state machine, readers are referred to [3].

This OWL2 representation of state invariants provide semantic representation
of applications states of a RESTful web service. Different OWL2 reasoners can be
used to validate the consistency and satisfiability of these semantic behavioral
interfaces. We must ensure that ontology describing CM should be consistent
and all its resources should be satisfiable. Otherwise there cannot actually ex-
ist resources that conform to the interface described by our service. Each state
invariant must be satisfiable and given two states that are at the same hierar-
chy level, their invariants should be mutually exclusive. For the classes to be
satisfiable in the reasoner means that there exist resources that satisfy these
application states.

5 Conclusion

In this paper, we discuss an approach to semantically represent behaviorally en-
riched RESTful WS interface using OWL2. These semantic behavioral RESTful
interfaces can be published for automated discovery and composition and can
also be used with ontology reasoners to discover inconsistencies at the design
time.

References

1. Bock, C., Fokoue, A., Haase, P., Hoekstra, R., Horrocks, I., Ruttenberg, A., Sat-
tler, U., Smith, M.: OWL 2 Web Ontology Language Structural Specification and
Functional-Style Syntax. W3 Recommendation,
(http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/)

2. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Ar-
chitectures. PhD thesis, University of California, Irvine (2000)

3. Porres, I., Rauf, I.: From uml protocol statemachines to class contracts. In: Procceed-
ings of the International Conference on Software Test, Verification and Validation
(ICST 2010) (2010)

4. Porres, I., Rauf, I.: Modeling behavioral restful web service interfaces in uml. In: In
the Proceedings of 26th Annual ACM Symposium on Applied Computing Track on
Service Oriented Architectures and Programming (SAC 2011) (2011)

5. Rauf, I., Porres, I.: Beyond CRUD-REST: From Research to Practice, 1st edn.
Springer, Heidelberg (2011)

6. OMG UML. 2.2 Superstructure Specification. OMG ed (2009),
http://www.omg.org/spec/UML/2.2/

http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/
http://www.omg.org/spec/UML/2.2/

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 411–414, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Taxonomy for Rich-User-Interface Components:
Towards a Systematic Development of RIAs

Rosa Romero Gómez, David Díez Cebollero, Susana Montero Moreno,
 Paloma Díaz Pérez, and Ignacio Aedo Cuevas

1 DEI Lab - Computer Science Department
Universidad Carlos III de Madrid, Spain

david.diez@uc3m.es,{rmromero,smontero,pdp}@inf.uc3m.es,
aedo@ia.uc3m.es

Abstract. The development of Rich Internet Applications (RIAs) is based on
the selection, assembly, and tailoring of Rich-User-Interface (RUI) components.
While the user interface design is usually guided by principles, guidelines, and
heuristics, there are not mechanisms for systematically selecting RUI
components. Moreover, there is a lack of homogeneous classification criteria
that hinders the selection of components and increases the relevance of
experience designing web applications. To ease the search and the choosing of
components by web-developers, this paper presents a taxonomy for classifying
RUI components. The development of such a taxonomy has been based on both
the study of relevant resources from the UI domain and the opinions of experts.

Keywords: Rich Internet Application, component libraries, taxonomy.

1 Introduction

Rich Internet Applications (RIAs) are ‘web applications that offer the responsiveness,
rich features, and functionality approaching of that desktop application’ [2]. These
capabilities are achieved by using Rich-User-Interface (RUI) components organized
into libraries. These libraries – defined as ‘reusable components collection for
applications development’ [1]- offer tens of components grouped by diverse criteria
and related to different functionalities. Consequently, the search and choosing of the
suitable component for a specific problem is not a trivial matter. The component
selection process aims at determining which component, among those available, is the
most suitable to fulfill a set of requirements of the UI design. The existence of
classification schemes is therefore required to be more efficient when using
component libraries [1] [3] [6], both during creation and selection of components.
However, the experience in the use of RUI component libraries highlights the lack not
only of homogeneous criteria for classifying RUI components but also of meaningful
terminology. With the purpose of overcoming these limitations, we propose a
taxonomy as such a classification artifact that allows categorizing components in a
hierarchical way as a manner of easing the selection of RUI components.

This paper presents the taxonomy development process and the taxonomy itself
based on both the study of relevant resources from UI domain and the opinions of

412 R. Romero et al.

Subject-Matter Experts (SMEs hereafter). The rest of the paper is organized as
follows. The taxonomy development process is described in section two; this process
is divided into two levels – empirical and operational. As the result of such
development process, the taxonomy is presented in section three. Finally, conclusions
and intentions for further work are drawn in the last section.

2 The Taxonomy Development Process

The taxonomy development process refers to its definition by means of the execution
of a well-known sequence of activities. In keeping with that, our process, based on the
Nickerson’s proposal [5], has been divided into two levels – empirical and
operational– in order to provide an iterative process that guarantees the appropriate
definition of the taxonomy. The empirical phase aims at identifying general
characteristics of UI components in order to define a preliminary version of the
taxonomy. To achieve this goal, the most direct factors contributing to the quality of
the taxonomy [8] - such as corpus, the coverage of the source materials, and its
structural model- has been considered. Standards and guidelines, interaction design
pattern libraries, and development technologies have been selected because of their
relevance and wide use for both UI development and UI design. Due to the disparity
of characteristics possessed by complex RUI components – components that may be
composed by other RUI components and provide more advanced functionalities, such
as direct manipulation-, their categorization was the main challenge during the
definition of this initial version of the taxonomy. Finally, this level ends with the
definition of a draft taxonomy composed by four main categories – Controls, Widgets,
Containers, and Templates- and a total of 81 subcategories.

The purpose of the operational phase is twofold. On the one hand, it is conceived
to identify missing concepts, misunderstandings, or ambiguous terminology in order
to refine our preliminary taxonomy. On the other hand, it allows us to validate the
taxonomy and finalize the development process according to the agreement of experts
over the relevance of the source materials, the definition of non-ambiguous and
meaningful terms, and the consistency of hierarchical relationships throughout the
taxonomy. Both activities are based on the feedback provided by SMEs in UI design
and web development. Regarding the evaluation technique, we used a mix-
questionnaire, i.e. the questionnaire combines both closed-ended questions and open-
ended questions. Since summated rating scales do not provide concrete values but
categories, we used the median to identify the agreement of experts: the taxonomy
will be considered as valid if the median of experts’ opinion is equal or higher than
four (agreement level). The operational phase compiles two iterations or evaluations
carried out by eleven experts. The initial evaluation suggested that some categories of
the taxonomy were ambiguous or misleading. Otherwise, the agreement of experts
over the relevance of the corpus of the taxonomy, and the consistency of relationships
throughout the taxonomy was validated. Finally, after the second round, the taxonomy
has been considered as valid, due to the median of all indicators has achieved the
agreement level.

 Taxonomy for Rich-User-Interface Components: Towards a Systematic Development 413

3 Taxonomy for Rich-User-Interface Components

The final taxonomy consists of four main categories and a total of 89 subcategories.
Its purpose is to classify RUI components in a hierarchical way in order to ease their
search and choosing by web-developers. In keeping with this purpose, the definition
of the taxonomy was based on intrinsic properties of the components and the common
process of choosing components. On the one hand, we identified meta-characteristics
that usually serve as basis for the search process: the structure – the provision of
organization of both interface elements and contents and their relationships to each
other- and the behavior – the interaction events available- of UI components. On the
other hand, the systematic design of the UI [7] is supported by the order of the
categories defined in this hierarchical-classification mechanism. The components
compiled under Containers and Controls categories allow respectively establishing
the main structure and the basic tasks carried out on the interface. The definition of
the input/output information for the users is supported by the components classified
under Widgets and Interaction Design Patterns category:

− Containers: it includes the RUI components used to organize the information.
These components add support for modality – this property enables the developer
to scope, or limit, a dialog box’s modality blocking-, drag and drop – including
moving, copying, or linking selected objects by dragging them from one location
and dropping them over another- and default look and feel characteristics. Every
component must be part of a containment hierarchy that has a top-level container
as its root [4]. In keeping with that, containers have been divided into two
subcategories: top-level containers that can hold other UI components; and
intermediate-level containers that can hold and be held by other UI components.

− Controls: it includes the RUI components that allow users to carry out its tasks on
the interface. Such category is divided into four subcategories: imperative controls
used to initiate a function; selection controls used to select options or data; entry
controls used to enter data; and display controls used to display the visual
representation of information.

− Widgets: it includes the RUI components that provide a specific solution to a
common design problem. These components use static, predefined set of look and
feel characteristics in order to ease its configuration. Such category is divided into
four subcategories: entry widgets; selection widgets; display widgets; and
navigation widgets.

− Interaction Design Patterns: it includes the RUI components that provide a
global solution to a common design problem. These components are usually
constructed from aggregates of other RUI components and support setting the input
elements according to each context of use. The subcategories defined are: entry
patterns; selection patterns; display patterns; and navigation patterns.

4 Conclusions and Future Works

The existence of classification schemes is essential to be efficient when using
component libraries. Nevertheless, existing RUI component libraries do not provide

414 R. Romero et al.

homogeneous classification criteria, resulting in the need of high previous experience
as RIA developer to search and choosing suitable components. With the purpose of
overcoming these limitations, we have defined a taxonomy that allows us to
categorize in a hierarchical way the structural and control elements of the UIs. This
taxonomy has been considered as valid after the second round of evaluation according
to the judgment of experts.

Further work will be guided to refine our taxonomy and prove its utility. On the
one hand, we will carry out the empirical evaluation of both the quality of the
taxonomy and its usefulness to select RUI components by means of the provision of a
software tool. On the other hand, based on specific web-based interactive design
scenarios, users testing will be carried out in order to assess the usefulness of the
taxonomy to select RUI components.

Acknowledgements

This work has been partly supported by both the RIA – User Interface with Patterns
and Components Reuse project funded by the Regional Government of Madrid
(CAM) and the Universidad Carlos III de Madrid (UC3M) and the urTHEY project
(TIN2009-09687) funded by the Ministry of Science and Innovation (MICINN) of the
Government of Spain.

References

1. Curtis, N.: Modular Web Design: Creating Reusable Components for User Experience
Design and Documentation. New Riders, Indianapolis (2009)

2. Deitel, P.J., Deitel, Deitel, H.M.: Ajax, Rich Internet Applications and Web Development
for Programmers. Deitel Developers Series (2008)

3. Frakes, W.B., Pole, T.P.: An empirical study of representation methods for reusable
software components. IEEE Transactions on Software Engineering 20(8) (1994)

4. Java Look and Feel Design Guidelines. Sun Microsystems Inc. Version 2.0 (2001),
http://java.sun.com/products/jlf/ed2/book/index.htm (retrieved
November 15, 2011)

5. Nickerson, R.C., Varshney, U., Muntermann, J., Isaac, H.: Taxonomy Development in
Information Systems: Developing a Taxonomy of Mobile Applications. In: 17th European
Conference on Information Systems (2009)

6. Pressman, R.S.: Software Engineering: A Practitioner´s Approach. McGraw-Hill, New
York (2005)

7. Stone, D., Jarrett, C., Woodroffe, M., Minocha, S.: User Interface Design and Evaluation
(Interactive Technologies). Morgan Kauffman Series (2005)

8. Vogel, C., Powers, J.: Quality Metrics: How to Ensure Quality Taxonomies. Information
Today (2000)

NAVTAG - A Network-Theoretic Framework to

Assess and Improve the Navigability of Tagging
Systems

Christoph Trattner

Graz Technical University of Technology
Knowledge Management Institute and

Institute for Information Systems and Computer Media
Inffeldgasse 21a/16c

A-8010 Graz
ctrattner@iicm.edu

Abstract. This paper presents NAVTAG – a network theoretical frame-
work to assess and improve the navigability of tagging systems. The
framework provides the developer of a tagging system with a simple to
use and scalable tool to assess the navigability of a given tag network
or a tag network that is generated by the NAVTAG framework using
different tag cloud and resource list generation algorithms. To the best
of our knowledge this framework is the first approach of a tool that is
able to assess and improve the navigability of a given tagging system
from a network-theoretic perspective.

Keywords: tagging systems, navigability, tag networks, network theory.

1 Introduction

Recently tagging systems [2] gained tremendously in popularity. While tagging
systems were in the past typically associated with online bookmarking systems
such as Delicious or CiteULike, the term is nowadays also connected with mod-
ern Web 2.0 web applications such as Amazon or LastFM. Basically, a tagging
systems is a tool that allows the user to apply light-weight key words - the so-
called tags - to the resources of system. On LastFM for instance people apply
tags to resources such as videos, photos or music. On Amazon as an other ex-
ample of a modern tagging system people apply tags to product items such as
books etc. Typically, developers provide the user with tagging functionality to
allow the user to organize or describe the resources of a system. By visualizing
the tags into the so-called tag clouds the users are then able to navigate to the
resource of the system via tags.

While recent research has studied navigation in tagging systems from user in-
terface [7], [8], [6] and information-theory [1] perspectives, the unique focus of our
work is the network-theoretic analysis of tagging systems. In previous research it
was observed that different tag cloud or resource list calculation algorithms [4],

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 415–418, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

416 C. Trattner

[10], different tag taxonomy induction algorithms [3] or different types of tags [9]
influence the navigability of a tagging system significantly. Basically, a navigable
tagging system is defined as a system where the underlying tag network has a low
diameter bounded by log(N), where N is the number of nodes in the network,
and where the tag network has an existing giant component, i.e. a strongly con-
nected component containing almost all resource of the tagging system [5]. An
efficiently navigable tagging system is defined as a navigable network (see pre-
vious definition) and a network for which a decentralized searcher exists that is
able to search the network in log(N) [5]. To measure these network properties a
network-theoretic framework was developed. The framework is called NAV TAG
– a network-theoretic framework to assess and improve the navigability of tag-
ging systems. The novelty of the tool is on the one hand its uniqueness regarding
the possibility to measure the navigability of tagging systems and on the other
hand its uniqueness to do so on a network-theoretic level.

2 Approach and Implementation

Basically, the NAVTAG framework consist of three different modules: A tag
network generation module, a tag-resource taxonomy generation module and a
tag network analysis module. In the following sections the functionality and the
implementation of the modules are described.

2.1 Tag Network Generation Module

The tag network generation module takes as input a given tagging dataset,
a given tag cloud calculation algorithm and a given resource list generation
algorithm and generates as output a tag network based on the given input tag
dataset and algorithms. The module is implemented in Java and consists of the
following three sub-modules:

Input-Reader: The input-reader basically stores the provided tagging data into
a database module implemented with the Apache Lucene Search Engine.

Network Generator: This module generates the tag network. As input pa-
rameter the module takes a given tag cloud algorithm and/or a given resource
list algorithm. The tag cloud algorithm implements the following interfaces rou-
tines getTagCloud(r, n) where r is the currently processed resource and n the
maximum tag cloud size and getResourcList(r, t, k), where r is the currently
processed resource, t the currently processed tag and k the maximum resource
list size. Due to reasons of flexibility, generic interface routines are also provided.

Output-Writer: The output-writer module provides different output formats.
Preferable, the module stores the generated tag network as bipartite or as tri-
partite tag network into a file. Additionally, the module outputs the resource-
resource network and a tag-tag network of the tag network as well.

NAVTAG - A Network-Theoretic Framework to Assess 417

2.2 Tag-Resource Taxonomy Generation Module

Additionally to the network generation module NAVTAG provides a tag-resource
taxonomy generation module. The module allows to generate different tag or re-
source taxonomies based on the tagging dataset provided by tag network gener-
ation module. Since tag-resource taxonomies are a popular approach to improve
the navigability of tagging systems [4], the module implements popular tag tax-
onomy induction algorithms such as Heymann, Deg/Cos and Deg/Cooc [4]. As
well as the tag network generation module, this module is implemented in Java.

2.3 Tag Network Analysis Module

The tag network analysis module is an extension of the Stanford SNAP 1 net-
work library. Due to reasons of performance and scalability, this module is im-
plemented in C + +. By default the module provides the functionally to mea-
sure network properties such as in- and out-degree of a given network as well
as navigability properties such as the size of largest strongly connected com-
ponent or the efficient diameter of given network. To measure the efficiency
of a tag network, a hierarchical decentralized searcher was implemented [3].
The searcher is able to measure whether a tag network is navigable in log(N)
or not, i.e. the searcher measures if the given tag network is also efficiently
navigable.

As output the module generates a “navigability”-statistic file containing de-
tailed information about the size of the largest strongly connected component,
the efficient diameter of the tag network and the average number of hops of the
searcher to reach a given number of nodes pairs in the tag network. The results
are printed to a file in plain text format. Additional figure representations of the
results in PS format are produced.

3 Results

All in all, the NAVTAG framework was successfully deployed in parts in a num-
ber of projects [4] [10], [3], [9] related to the field of tagging systems. For instance
in [3], [4] the framework was successfully used to assess the navigability of dif-
ferent tagging networks (billion order) such BibSonomy, CiteULike, Delicious,
LastFM or Flickr. The memory consumed by NAVTAG in the case of Delicious,
the largest tag network on the web today was less than one GB. In [9] the
framework was used to investigate and develop novel tag cloud and resource list
generation algorithms. In [9] the framework was used to investigate the navi-
gational utility of the so-called Google query tags compared to tags generated
by users. In our latest research regarding the navigability of tagging systems
the framework was deployed to assess the navigational utility of different tag
taxonomy induction algorithms [3].

1 http://snap.stanford.edu/

http://snap.stanford.edu/

418 C. Trattner

4 Conclusions and Future Work

In this work, NAVTAG - A network theoretical framework to assess and improve
the navigability of tagging systems was presented. The framework provides the
developer of a tagging system with a simple to use and scalable tool to assess
the navigability of a given tag network or a tag network that is generated by the
NAVTAG framework using different tag cloud and resource list generation algo-
rithms. The framework was successfully deployed for a couple of major projects
related to the field of tag navigation. To the best of our knowledge this framework
is the first approach of tool that is able to assess and improve the navigability
of a given tagging system. Future work will include further improvements to-
wards the functionality of the framework and the release through the Google
code project service.

Acknowledgments. This work is funded by - BMVIT - the Federal Ministry
for Transport, Innovation and Technology, program line Forschung, Innovation
und Technologie für Informationstechnologie, project NAVTAG – Improving the
navigability of tagging systems.

References

1. Chi, E.H., Mytkowicz, T.: Understanding the efficiency of social tagging systems
using information theory. In: HT 2008: Proc. of the Nineteenth ACM Conference
on Hypertext and Hypermedia, pp. 81–88. ACM, New York (2008)

2. Hammond, T., Hannay, T., Lund, B., Scott, J.: Social bookmarking tools (i): A
general review. D-Lib Magazine 11(4) (2005)

3. Helic, D., Strohmaier, M., Trattner, C., Muhr, M., Lerman, K.: Pragmatic eval-
uation of folksonomies. In: Proceedings of the 20th International Conference on
World Wide Web, WWW 2011, pp. 417–426. ACM, New York (2011)

4. Helic, D., Trattner, C., Strohmaier, M., Andrews, K.: Are tag clouds useful for nav-
igation? a network-theoretic analysis. International Journal of Social Computing
and Cyber-Physical Systems (2011)

5. Kleinberg, J.M.: Small-world phenomena and the dynamics of information. In:
Advances in Neural Information Processing Systems (NIPS), vol. 14. MIT Press,
Cambridge (2001)

6. Mesnage, C.S., Carman, M.J.: Tag navigation. In: SoSEA 2009: Proc. of the 2nd
International Workshop on Social Software Engineering and Applications, pp. 29–
32. ACM, New York (2009)

7. Rivadeneira, A.W., Gruen, D.M., Muller, M.J., Millen, D.R.: Getting our head
in the clouds: toward evaluation studies of tagclouds. In: Proc. of the SIGCHI
Conference on Human Factors in Computing Systems, CHI 2007, pp. 995–998.
ACM, New York (2007)

8. Sinclair, J., Cardew-Hall, M.: The folksonomy tag cloud: when is it useful? Journal
of Information Science 34, 15 (2008)

9. Trattner, C., Helic, D.: Linking related documents: Combining tag clouds and
search queries. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE
2010. LNCS, vol. 6189, pp. 486–489. Springer, Heidelberg (2010)

10. Trattner, C., Helic, D., Strohmaier, M.: On the construction of efficiently navigable
tag clouds using knowledge from structured web content. J-jucs 17(4), 565–582
(2011)

Author Index

Abel, Fabian 28, 167
Abid, Adnan 44
Akkermans, Vincent 289
Alhosban, Amal 59
Araújo, Samur 28

Baez, Marcos 361
Barbagallo, Donato 152
Barbieri, Davide Francesco 363
Benjamin, Kamara 74
Bislimovska, Bojana 90
Blomme, Dieter 375
Bochmann, Gregor von 74
Bohøj, Morten 105
Bomfim, Mauricio Henrique de Souza

121
Boor, Aart-Jan 274
Bouvin, Niels Olof 105
Bozzon, Alessandro 1, 90, 363, 367, 371
Brambilla, Marco 1, 90, 363, 367, 371
Budiselic, Ivan 346

Cappiello, Cinzia 137, 152
Carlson, Jan 228
Casati, Fabio 361
Celik, Ilknur 167
Ceri, Stefano 1, 363
Chaisatien, Prach 182
Cigardi, Laura 371
Cioria, Luca 367
Comai, Sara 371
Conlan, Owen 391
Cuevas, Ignacio Aedo 411

Daniel, Florian 137
Delac, Goran 346
Desruelle, Heiko 375
Dı́ez Cebollero, David 411
Dı́az Pérez, Paloma 411
Dincturk, Mustafa Emre 74

Faliagka, Evanthia 379
Feldmann, Marius 395
Firmenich, Sergio 198
Francalanci, Chiara 152

Frasincar, Flavius 274
Fraternali, Piero 90, 367
Furche, Tim 13

Gaedke, Martin 387
Gammelmark, Henrik 105
Gao, Qi 28
Gielen, Frank 375
Gordillo, Silvia 198
Gottlob, Georg 13
Grahn, H̊akan 399
Granić, Andrina 383
Guo, Xiaonan 13

Hashmi, Khayyam 59
Heinrich, Matthias 387
Herder, Eelco 258
Hogenboom, Frederik 274
Houben, Geert-Jan 28, 167

Isberg, Anders 399
Ishikawa, Hiroshi 331

Jourdan, Guy-Vincent 74

Kahani, Mohsen 403
Katz, Philipp 395
Kawase, Ricardo 258
Koidl, Kevin 391
Koschmider, Agnes 137
Kozanidis, Lefteris 379

Lew, Philip 214
Liebing, Christian 395

Malik, Zaki 59
Marangunić, Nikola 383
Maras, Josip 228
Marchese, Maurizio 361
Martinsen, Jan Kasper 399
Matera, Maristella 137, 152, 367
Medjahed, Brahim 59
Mitrović, Ivica 383
Montero Moreno, Susana 411
Mosig, Jan 395

420 Author Index

Nebeling, Michael 243
Niederée, Claudia 258
Norrie, Moira C. 243

Olsina, Luis 214
Onut, Iosif Viorel 74

Papadakis, George 258
Pasini, Chiara 363
Picozzi, Matteo 137, 152
Porres, Ivan 407
Prutsachainimmit, Korawit 182

Radelaar, Joni 274
Rahm, Erhard 304
Rajabi, Enayat 403
Rauf, Irum 407
Restagno, Luca 289
Rizzo, Giuseppe 289
Romero Gómez, Rosa 411
Rossi, Gustavo 198

Schallhart, Christian 13
Schill, Alexander 395
Schwabe, Daniel 121
Sellers, Andrew 13
Servetti, Antonio 289

Sprega, Gabriele 152
Stamou, Sofia 379
Štula, Maja 228

Tagliasacchi, Marco 44
Tettamanti, Luca 363
Thor, Andreas 304
Tokuda, Takehiro 182
Trattner, Christoph 415
Tsakalidis, Athanasios 379
Tzimas, Giannis 379

Vadacca, Salvatore 363
van Dam, Jan-Willem 274
Vandic, Damir 274
Volonterio, Riccardo 363

Wade, Vincent 391
Wang, Cheng 13
Winckler, Marco 198

Yahyaoui, Hamdi 319
Yokoyama, Shohei 331

Zagorac, Srd̄an 363
Zhioua, Sami 319
Zuzak, Ivan 346

	Title
	Preface
	Organization
	Table of Contents
	Invited Papers
	The Anatomy of a Multi-domain Search Infrastructure
	Introduction
	Vision
	Data Provisioning
	Service Composition
	User interaction
	Application Development

	Reference Architecture
	Processing Modules
	Repositories
	Caching
	Tools

	Conclusions
	References

	How the Minotaur Turned into Ariadne: Ontologies in Web Data Extraction
	Introduction
	Overview DIADEM Prototype
	Ontologies for Form Analysis
	Page Model
	Segmentation Model
	Domain Model

	Ontologies for Object Recognition and Analysis
	Background
	Algorithm Description
	Evaluation

	Web Scale Extraction with OXPath
	Language
	Example Expression
	System
	Further Reading

	References

	Research Track Papers
	Analyzing Cross-System User Modeling on the Social Web
	Introduction
	Personomies and Tag-Based Profiles
	Problem Definition
	Related Work

	User Modeling Strategies
	Source of User Data
	Semantic Enrichment
	Weighting Scheme
	Assembling User Modeling Strategies

	Analysis of Tag-Based Profiles on the Social Web
	Data Collection
	Tag-Based Profiles within Systems
	Tag-Based Profiles across Systems
	Synopsis

	Analysis of Cross-System User Modeling Strategies
	Experimental Setup
	Results: Cold-Start Tag Recommendations
	Results: Cold-Start Resource Recommendations
	Synopsis

	Conclusions
	References

	Parallel Data Access for Multiway Rank Joins
	Introduction
	Preliminaries
	Bounding Schemes
	Data Pulling Strategy

	Methodology
	Proposed Data Pulling Strategy

	Concurrent Pre-fetching with cPRJ
	Experimental Study and Discussion
	Methodology
	Results

	Related Work
	Conclusion
	References

	Assessing Fault Occurrence Likelihood for Service-Oriented Systems
	Introduction
	Service-Oriented Architecture
	Fault Occurrence Likelihood
	Sample Scenario
	Proposed Architecture
	Phase 1: Fault Occurrence Likelihood Assessment

	Assessment
	Related Work
	Conclusion
	References

	A Strategy for Efficient Crawling of Rich Internet Applications
	Introduction
	Overview of Strategy
	Minimal Transition Coverage (MTC) of a Hypercube
	Minimal Chain Decomposition
	MTC Algorithm

	Overall Strategy for Crawling RIAs
	Experimental Results
	Related Work
	Conclusion and Future Work
	References

	Graph-Based Search over Web Application Model Repositories
	Introduction
	Related Work
	Fundamentals of Model-Based Search
	A Graph-Based Approach to Model-Based Search
	Scenario: Repository of WebML Models
	Graph Representation of Models
	Node Matching
	Graph Matching

	Experimental Evaluation
	Analysis of the Quality of the Results
	Performance Analysis

	Conclusions
	References

	AdapForms: A Framework for Creating and Validating Adaptive Forms
	Introduction
	The AdapForms Framework
	Defining Forms
	Adaptation
	Validation

	Architecture
	Form Life Cycle
	Form Paths
	Element State Tree

	Evaluation
	Related Work
	Conclusion
	References

	Design and Implementation of Linked Data Applications Using SHDM and Synth
	Introduction
	A Working Example
	The Evolution of SHDM
	Linked Data, Applications and MDD
	Domain Modeling
	Business Logic Modeling
	Hypertextual Navigation Modeling
	Interface Modeling

	The Synth Development Environment
	Software Architecture
	Module Collaboration
	Implementation Architecture
	Authoring Environment GUI
	DSLs within Synth
	Example Application

	Conclusion and Future Work
	References

	A Quality Model for Mashups
	Introduction
	Related Work
	Mashup Development: Quality Issues and Challenges
	Assessing Mashups Like Common Web Applications
	Setup of the study
	Results
	Analysis of Results

	The Mashup Quality Model
	Data Quality
	Presentation Quality
	Composition Quality

	Conclusion and Future Work
	References

	DashMash: A Mashup Environment for End User Development
	Introduction
	Contributions and Paper Outline

	Case Study: Mashups for Sentiment Analysis
	The DashMash Platform
	Event-Driven Execution
	Managing Composition
	Definition of Listeners

	User-Based Validation
	Results

	Related Works
	Conclusions
	References

	Learning Semantic Relationships between Entities in Twitter
	Introduction
	Related Work
	Framework for Learning Relations between Entities in Twitter
	Evaluation of Strategies for Learning Relationships
	Data Collection and Dataset Characteristics
	Methodology, Metrics and Ground Truth
	Results

	Discussion
	Conclusions
	References

	Mobile Mashup Generator System for Cooperative Applications of Different Mobile Devices
	Introduction
	Related Work
	An Overview of Our Research Approach
	Objective and Motivation
	MAIDL and its Abstract Model Composition
	Mashup Mechanism, Output Context and Process Scheduling
	Mashup Composition Tool

	Evaluation
	MAIDL and Mashup Tool
	Complex Mashup
	Book Shopping: Camera and Data Server Cooperative Mashup
	Security Performance

	Discussion
	Conclusion and Future Work
	References

	A Framework for Concern-Sensitive, Client-Side Adaptation
	Introduction
	Related Work
	A Framework for Concern-Sensitive Augmentation
	Background for the Framework
	The Approach in a Nutshell
	Extending the Framework

	Tool Support
	Data Collector
	Description of Default Augmenters in the Framework
	Scenario Instantiation by End-Users

	Evaluation of the Approach
	Conclusions and Future Work
	References

	Instantiating Web Quality Models in a Purposeful Way
	Introduction
	Related Work and Motivation
	Instantiating Quality Models in a Purposeful Way
	A Quality Improvement Lifecycle Using SIQinU: A Case Study
	Concluding Remarks
	References

	Reusing Web Application User-Interface Controls
	Introduction
	Extracting and Reusing UI Controls
	Interaction Recording
	Extraction
	Extracting JavaScript Code
	Extracting CSS Code
	Extracting HTML Code
	Extracting Resources

	Reuse
	Detecting Conflicts
	Example

	Tool
	Evaluation and Lessons Learned
	Related Work
	Conclusion and Future Work
	References

	Tools and Architectural Support for Crowdsourced Adaptation of Web Interfaces
	Introduction
	Background
	Approach
	Adaptation Operations
	Architecture
	Implementation
	Discussion
	Conclusions
	References

	A Layered Approach to Revisitation Prediction
	Introduction
	Related Work
	Approach
	Ranking Methods
	Propagation Methods
	Drift Methods

	Evaluation
	Conclusions
	References

	Improving the Exploration of Tag Spaces Using Automated Tag Clustering
	Introduction
	Related Work
	Tag Clustering
	Similarity Measures
	Cluster Evaluation

	Framework Design
	Problem Definition
	Similarity Measures
	STCS Framework

	Framework Implementation
	Data Processing
	Implementation Details

	Evaluation
	Removing Syntactic Variations
	Finding Semantically Related Tags

	Conclusion
	References

	A Semantic Web Annotation Tool for a Web-Based Audio Sequencer
	Introduction
	Related Work
	Rationale
	Annotation Tool
	Client-Side Component
	Server-Side Component
	Annotation Process Details
	An Example of Audio Annotation

	Use Case: A Web-Based Audio Sequencer
	Conclusions and Future Work
	References

	CloudFuice: A Flexible Cloud-Based Data Integration System
	Introduction
	Dataflow Definition
	Entities and Data Sources
	Data Structures and Operators
	Scripts and Dataflows

	Dataflow Execution
	Dataflow Execution Approach
	Execution Example

	Web-Based Architecture and Prototype
	Evaluation
	Related Work
	Conclusions and Future Work
	References

	Bootstrapping Trust ofWeb Services through Behavior Observation
	Introduction
	Background
	HMM Definition
	Probability of Accepting an Observation Sequence

	Related Work
	Default Value Technique
	Punishing Technique
	Adaptive Technique
	Prediction Technique

	A New Pattern-Based Bootstrapping Technique
	Trust Patterns
	Trust Observation Generation
	Bootstrapping Trust of Web Services Based on Trust Patterns

	Experimental Analysis
	Precision and Recall
	Distribution of Trust Values

	Conclusion
	References

	Parallel Distributed Rendering of HTML5 Canvas Elements
	Introduction
	Related Works
	Web Based Tiled Display Wall
	Hardware and Software Architecture
	Messaging

	Distributed Parallel Rendering
	HTML5 <canvas>
	Rendering from commander.php
	Rendering from receiver.php

	Performance Evaluation
	Photomosaic
	Setting
	Result

	Conclusion
	References

	Formal Modeling of RESTful Systems Using Finite-State Machines
	Introduction
	Related Work
	A Finite-State Machine Model of RESTful Systems
	Model Overview
	Example Web Application
	Client-Server Style and Stateless Style Constraints
	Uniform Interface Style Constraint
	Code-on-Demand Style Constraint

	Conclusion and Future Work
	References

	Poster and Demo Papers
	Knowledge Spaces
	The Liquid Query Interaction Paradigm
	Exploratory Multi-domain Search on Web Data Sources with Liquid Queries
	Introduction
	The Liquid Query Interaction Paradigm
	Architecture
	Liquid Query Interaction

	Demonstration Scenario and Highlights
	References

	Model-Based Dynamic and Adaptive Visualization for Multi-domain Search Results
	Introduction
	Visualizations for Multi-domain Search
	Overview of the Visualization Process
	Conclusions
	References

	A Constraint Programming Approach to Automatic Layout Definition for Search Results
	Introduction
	Search Engine Model
	SERP Model
	SERP Layout Composition
	Evaluation
	Conclusions and Future Work
	References

	Adaptive Mobile Web Applications: A Quantitative Evaluation Approach
	Introduction
	Capability-Driven Progressive Enhancement
	Adaptive Application Composition Algorithm
	Conclusion and Future Work
	References

	A Personality Mining System for Automated Applicant Ranking in Online Recruitment Systems
	Introduction
	Method
	Personality Mining
	Applicant Ranking

	Experimental Results
	Conclusions
	References

	Development of the Evaluation Form for Expert Inspections of Web Portals
	Introduction
	Heuristics for Expert Reviews
	Discussion and Conclusion
	References

	WebSoDa: A Tailored Data Binding Framework for Web Programmers Leveraging the WebSocket Protocol and HTML5 Microdata
	Introduction
	State of the Art Data Binding Frameworks
	The WebSoDa Architecture
	Online Demo
	Conclusion
	References

	Towards User-Centric Cross-Site Personalisation
	Introduction
	The UNITE Architecture
	Experimental Results
	Conclusion and Future Work
	References

	Tool Support for a Hybrid Development Methodology of Service-Based Interactive Applications
	Motivation
	Temporal Annotations Plugin for Eclipse (TAPE)
	Conclusion
	References

	A Comparative Evaluation of JavaScript Execution Behavior
	Introduction
	Experimental Methodology
	Experimental Results
	Comparison of the Effect of Just-in-Time Compilation
	Comparison of Bytecode Instruction Usage

	Conclusions
	References

	Designing a Step-by-Step User Interface for Finding Provenance Information over Linked Data
	Introduction
	Linked Data User-Interfaces
	Finding Data Provenance
	The Proposed Approach
	A Case Study
	Conclusion
	References

	Towards Behaviorally Enriched Semantic RESTful Interfaces Using OWL2
	Introduction
	Behavioral RESTful Interfaces
	Behavioral RESTFful Interfaces in OWL2
	Behavioral Interfaces and Ontology Reasoners
	Conclusion
	Conclusion
	References

	Taxonomy for Rich-User-Interface Components: Towards a Systematic Development of RIAs
	Introduction
	The Taxonomy Development Process
	Taxonomy for Rich-User-Interface Components
	Conclusions and Future Works
	References

	NAVTAG - A Network-Theoretic Framework to Assess and Improve the Navigability of Tagging Systems
	Introduction
	Approach and Implementation
	Tag Network Generation Module
	Tag-Resource Taxonomy Generation Module
	Tag Network Analysis Module

	Results
	Conclusions and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

