
Chapter 5

Estimation of Road Profile and
External Forces as Unknown Inputs

Abstract. This chapter is devoted to the application of sliding mode ob-
servers to estimate the unknown inputs of the road. Vehicle motion simu-
lation accuracy, such as in accident reconstruction or vehicle controllability
analysis on real roads, can be obtained only if valid road profile and tire-road
friction models are available. Regarding road profiles, a new method based
on Sliding Mode Observers has been developed and is compared to two iner-
tial methods. Experimental results are shown and discussed to evaluate the
robustness and the quality of the proposed approach.

5.1 Introduction

Road profile unevenness through road/vehicle dynamic interaction and ve-
hicle vibration affects safety (tyre contact forces), ride comfort, energy con-
sumption and wear. The road profile unevenness is consequently a basic in-
formation for road maintenance management systems [VP91]. In order to
obtain this road profile, several methods have been developed. Measurement
of road roughness has been a subject of numerous research for more than 70
years ([Har83], [MW86], [Mis90]). Methods developed can be classified into
two types: response type and profiling method. Nowadays profiling methods
giving a road profile along a measuring line are generally preferred. These
methods belong to two basic techniques: rolling beam or inertial profiling
method. The last method, which was first proposed in 1964 [SK64], is now
used worldwide. Inertial profiling methods consist in analyzing the signal
coming from displacement sensors and accelerometers ([Kar84], [GSH87]).
One problem with the inertial profiling method, as currently used, is that
it is impossible to build a 3D profile from elementary measurements needed
for road/vehicle interaction simulation package. It is worthwhile mentioning
that these methods do not take into consideration the dynamic behavior of
the vehicle. However, it has been shown that modifications of the dynamic
behavior may lead to biased results.
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Finding a way to get a 3D profile from the dynamic response of an in-
strumented car driven on a chosen road section is the general purpose of a
research carried out at Roads and Bridges Central Laboratory (in French:
LCPC) in cooperation with the Robotics Laboratory of Versailles (in French:
LRV) [Imi03].

The proposed method estimates the unknown inputs of the system corre-
sponding to the height of the road through the use of sliding mode observers
([BZ88], [XG88], [Dra92], [BBD96], [DBB99], [DB02]).

Design of such observers requires a dynamic model. As a first step, a
dynamic model of a vehicle is built up ([Men97], [Imi03]). This model has been
experimentally validated comparing the estimated and measured dynamics
in the response of a Peugeot 406 vehicle (as a test car). The longitudinal
forces which depend on the road adhesion coefficients are estimated using a
sliding mode observer (see [Can98], [IDM03]).

The second section of this chapter deals with the vehicle description and
modeling. Then the observer design is presented in the third section in order
to estimate the unknown inputs. Some simulation and experimental results
are given in this section. The estimation of unknown forces is presented in
the section four and a second approach to estimate the unknown inputs is
presented. The main experimental results are presented in order to show
the accuracy of the estimated road profile coming from the observer based
method. Finally, the last section concludes on the effectiveness of the pre-
sented methods.

5.2 Vehicle Modeling

In this section, we are interested in the excitations of pavement and the
vehicle/road interaction. The model is established while making the following
simplifying hypotheses:

- The vehicle is rolling with a constant speed.
- The wheels are rolling without slip and without contact loss.

The vertical motion of the vehicle model can be described by the following
equation:

M q̈ + C q̇ +Kq = AU +Ω, (5.1)

where q =
[
z1 z2 z3 z4 z θ φ ψ

]T is the coordinates vector , q̇ represent the
velocities vector and q̈ the accelerations vector.

The vector U =
[
u1 u2 u3 u4 u̇1 u̇2 u̇3 u̇4

]T is the road inputs vector.
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The vector Ω = [0 0 0 0 0 0 0 f(δf , β)]T is a function of the steering angle
δf and the side slip angle β. The function f(δf , β) is given by:

f(δf , β) = −2(r1Cyf − r2Cyr)β + 2r1Cyfδf . (5.2)

M ∈ R
8×8 represent the mass matrix:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 0 0 0 0 0 0 0
0 m2 0 0 0 0 0 0
0 0 m3 0 0 0 0 0
0 0 0 m4 0 0 0 0
0 0 0 0 m 0 0 0
0 0 0 0 0 Jxx 0 0
0 0 0 0 0 0 Jyy 0
0 0 0 0 0 0 0 Jzz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.3)

where mi is the mass of the wheel i, m is the spring mass, Jxx, Jyy and
Jzz are respectively the moments of inertia along X , Y and Z axis.
C ∈ R

8×8 is the damping matrix:

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(B1 +Br1) 0 0 0 −B1 C16 C17 0
0 (B2 +Br2) 0 0 −B2 C26 C27 0
0 0 (B3 +Bf1) 0 −B3 C36 C37 0
0 0 0 (B4 +Bf2) −B4 C46 C47 0

−B1 −B2 −B3 −B4 C55 C56 C57 0
B1pr −B2pr B3pf −B4pf C65 C66 C67 0
B1r2 B2r2 −B3r1 −B4r1 C75 C76 C77 0
C81 C82 C83 C84 C85 C86 C87 C88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.4)

The matrix K ∈ R
8×8 is function of spring coefficients:

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1 + kr1 0 0 0 −k1 k1pr k1r2 0
0 k2 + kr2 0 0 −k2 −k2pr k2r2 0
0 0 k3 + kf1 0 −k3 k3pf −k3r1 0
0 0 0 k4 + kf2 −k4 −k4pf −k4r1 0

−k1 −k2 −k3 −k4 K55 K56 K57 0
k1pr −k2pr k3pf −k4pf K65 K66 K67 0
k1r2 k2r2 −k3r1 −k4r1 K75 K76 K77 0
K81 K82 K83 K84 K85 K86 K87 K88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.5)

The matrix A ∈ R
8×8 is composed of spring and damping coefficients:
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A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kr1 0 0 0 Br1 0 0 0
0 kr2 0 0 0 Br2 0 0
0 0 kf1 0 0 0 Bf1 0
0 0 0 kf2 0 0 0 Bf2

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.6)

We then rewrite the model in the state form as (5.1) :
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 = q
ẋ1 = x2

ẋ2 = ẍ1 = q̈ = M−1(−Cx2 −Kx1 +Ax3 +Ω)
ẋ3 = x4 = U̇
y = x1

. (5.7)

where y is the output vector:

y =
[
z1 z2 z3 z4 z θ φ ψ

]T
. (5.8)

In the following section, a sliding mode observer is developed in order to
estimate the unknown inputs of the system.

5.3 Sliding Mode Observer and Estimation of
Unknown Inputs

The construction of the observer is done using 3 steps as we explain in this
section. After that, we present and we discuss some simulation results.

5.3.1 Observability Study

In order to study the observability of the system (5.1), let us define the
functions f and h as:

{
f(x, U) = M−1(−Cx2 −Kx1 +AU +Ω)
y = h(x) . (5.9)

where x = (x1,x2)T is a vector of dimension n.
The system is considered to be observable if the matrix MO defined below

is of rank n (see [Bou97]) (in our case n = 16):
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MO =

⎡
⎢⎢⎢⎢⎢⎢⎣

dh(x)
dLfh(x)

...

...
dLf 15h(x)

⎤
⎥⎥⎥⎥⎥⎥⎦
. (5.10)

where dh = ( ∂h∂x1
, ∂h∂x2

, ..., ∂h
∂x16

) and Lf(h)(x) =
16∑
i=1

fi
∂h
∂xi

.

The calculation of this matrix using Matlab shows that the rank of MO
is 16. We deduce that the system (5.1) is observable.

5.3.2 Observer Design

This section is devoted to sliding mode observer design in order to estimate
the vectors q̇ and q̈ and to then reconstruct the unknown inputs vector U
([SHM86], [ILMD02a]).

Before developing the observer, we notice that the system satisfies the
following hypothesis:

a) The state of the system is bounded (‖ x(t) ‖<∞ ∀ t ≥ 0). The vehicle
states are bounded.

b) The system is input bounded (for i = 1..4 a constant μi ∈ R

existssuchthat ‖u̇i‖ < μi);
c) The amplitude of the inputs representing the road are very low and not

greater than 10−3m. We can then assume that their accelerations are small
and neglected ẍ3 = ẋ4 = Ü = 0.

Assuming that the dynamic parameters of the vehicle are well known, we
can write the observer as:

⎧
⎪⎨
⎪⎩

.

x̂1 = x̂2 +H1sign(x̃1)
.

x̂2 = M−1(−Cx̂2 −Kx̂1 +Ax̂3 +Ω) +H2sign(x̃1)
.

x̂3 = x̂4 +H3sign(x̃1)

. (5.11)

where x̂i represents the observed state vector of xi.
Hi ∈ R

8×8, i = 1, 2, are diagonal positive gains matrices and the ”sign”
are defined as follows:

⎧
⎨
⎩
H1 = diag{H11, H12 , H13 , H14 , H15 , H16 , H17 , H18}
H2 = diag{H21, H22 , H23 , H24 , H25 , H26 , H27 , H28}
sign(x̃1) = diag{x̃11 , x̃12 , x̃13 , x̃14 , x̃15 , x̃16 , x̃17 , x̃18}T

∣∣∣∣∣∣
(5.12)

The matrix H3 ∈ R
8×8 is to be defined during the convergence study.

The estimation error of the variable xi is obtained by:
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x̃i = xi − x̂i, i = 1..3. (5.13)

The dynamic error of the observer is obtained through the difference be-
tween systems (5.7) and (5.11) as following:

⎧
⎪⎨
⎪⎩

.
x̃1 = x̃2 −H1sign(x̃1)
.
x̃2 = −M−1(C x̃2 +K x̃1) +M−1A x̃3 −H2sign(x̃1)
.
x̃3 = x̃4 −H3sign(x̃1)

. (5.14)

5.3.3 Convergence Study

As we showed previously, and in order to study the convergence of the ob-
server, we proceed step by step. We first prove the convergence of the position
(x̃1 = 0). We must prove that the sliding surface is attractive (x̃1 = 0). Then,
we will study the convergence of the speed x̃2. At this moment, we can deduce
that the estimation error of the input (x̃3) converges towards 0.

5.3.3.1 Convergence of the Position

Let us consider the following Lyapunov function:

V1 =
1
2
x̃T1 x̃1, (5.15)

Its derivative gives:
V̇1 = x̃T1

.
x̃1, (5.16)

From (5.14), we obtain:

V̇1 = x̃T1 (x̃2 −H1sign(x̃1)). (5.17)

Choosing the gain matrices H1 = diag(hi1), as hi1 > |x̃i2| for i = 1...8, we
prove that V̇1 < 0. Then, x̂1 converges towards x1 in finite time t0. In this
case,

.
x̃1 = 0 ∀ t > t0.

This implies, from relationship (5.17), that we obtain:

signeq(x̃1) = H−1
1 x̃2 , (5.18)

where signeq is the equivalent mean of the sign function in the sliding surface:
Taking into account (5.18) and since x̃4 is bounded, then equations (5.14)

become: ⎧
⎪⎨
⎪⎩

.
x̃1 = x̃2 −H1sign(x̃1) → 0
.
x̃2 = −M−1C x̃2 +M−1A x̃3 −H2H

−1
1 x̃2

.
x̃3 = −H3H

−1
1 x̃2

. (5.19)



5.3 Sliding Mode Observer and Estimation of Unknown Inputs 89

5.3.3.2 Speed Convergence

Consider now a following second Lyapunov function:

V2 =
1
2
x̃T2 Mx̃2 +

1
2
x̃T3 P1x̃3, (5.20)

where P1 ∈ R
8×8 is a diagonal positive matrix:

The calculation of V̇2 gives, using the equations (5.19),:

V̇2 = −x̃T2 Cx̃2 − x̃T2 MH2H
−1
1 x̃2 + x̃T2 Ax̃3 − x̃T3 P1H3H

−1
1 x̃2. (5.21)

Choosing the gains (P1 = diag(P1i) , i = 1..8) such as AT = P1H3H
−1
1 ,

the matrix H3 is deduced as follows:

H3 = P−1
1 ATH1. (5.22)

Replacing the matrices P1, A
T andH1 by their respective values, we obtain

the elements of the matrix H3 :

H3 ==

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H11kr1/P11 0 0 0 0 0 0 0
0 H22kr2/P22 0 0 0 0 0 0
0 0 H33kf1/P33 0 0 0 0 0
0 0 0 H44kf2/P44 0 0 0 0

H11Br1/P55 0 0 0 0 0 0 0
0 H22Br2/P66 0 0 0 0 0 0
0 0 H33Bf1/P77 0 0 0 0 0
0 0 0 H44Bf2/P88 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.23)

V̇2 becomes:
V̇2 = −x̃T2 (C +MH2H

−1
1 )x̃2. (5.24)

We defined a matrix Q as:

Q = C +MH2H
−1
1 . (5.25)

The gains of matrix H2 are chosen in order to satisfy that matrix Q be
definite positive . In this case, we have V̇2 < 0 and the observation error
is decreasing, which implies that the condition hi1 > |x̃i2| is always verified
for t > t0. The surface x̃2 = 0 is then attractive and thus means that x̂2

converges asymptotically toward x2.
Equations (5.19) allow deducing that the estimation errors of the derivative

of the road profile tend towards 0.
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5.3.4 Estimation Results

In order to validate the proposed approach, some simulation experimental
results are given.

5.3.4.1 Simulation Results

In this section we give some simulation results obtained using sliding mode
observers. These observers make it possible to reconstruct the states of the
system, and thus to consider the unknown inputs of the road. It is assumed
that the deflection of the chassis and the four wheels and also the rotation of
the chassis (roll, pitch and yaw angle) are measured by sensors. That being
said, several other signals are assumed to be known, such as the vehicle speed
and steering angle.

The main estimate is shown in Fig. 5.1.

Fig. 5.1 Estimation principle

The input signals used in this simulation are those measured by Selcom
sensors during tests done at LCPC with an instrumented Peugeot 406 rolling
at a constant speed of about 72km/h.

The estimated vertical displacement of the chassis (z) and the estimated
roll angle (θ) and their equivalent measurements are represented in Fig. 5.2.

These figures show the accurate estimation of the displacement and also
of the roll angle since the correlation of the figures is clearly shown.

The other figures of the second line represent, respectively, the vertical
speed of the chassis and the roll rate. One can notice that the estimates
follow closely the speeds given by the model.

However, a small variation exists on the estimated roll rate. The estimation
of the road profile is given in Fig. 5.3 and Fig. 5.4 which represent, respec-
tively, the right and the left road profile compared to the LPA measurements.
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Fig. 5.2 Vehicle states estimation: roll angle and displacement of the chassis

Fig. 5.3 Road profile estimation: front right
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Fig. 5.4 Road profile estimation: front left

One can remark from these figures that the estimated road profile is correct
compared to those measured by APL.

5.3.4.2 Experimental Results

In this part, the measured signals coming from sensors are compared to those
estimated by the observer.

The estimation principle is shown in Fig. 5.5.

Fig. 5.5 Estimation principle
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The following gains areused:P1=diag(100, 100, 100, 100, 100, 100, 100, 100),
H1 = diag(1, 1, 1, 1, 1, 1, 1, 1), the elements of matrix H3 are given by:

H3(1, 1) = 1000, H3(2, 2) = 1000, H3(3, 3) = 1000, H3(4, 4) = 1000,
H3(5, 1) = 5, H3(6, 2) = 5, H3(7, 3) = 5, H3(8, 4) = 5.

The vertical displacement and the yaw angle are shown in Fig. 5.6.

Fig. 5.6 States estimation: experimental case

The convergence is quick and in finite time. In the second line, the equiv-
alent speeds are represented.

A well estimation of the vertical speed can be noticed. However some
chattering exist concerning the estimated yaw rate. This is due to sensor
errors.

In Fig. 5.7 the estimated road profile is shown.
This figures shows that the unknown input is well estimated compared

to LPA measure with some chattering due to the sign function used in the
observer.



94 5 Estimation of Road Profile and External Forces as Unknown Inputs

Fig. 5.7 Road profile estimation: experimental case

5.4 Unknown Forces Estimation

The parameters used in our vehicle model are considered constant and mea-
sured. However, some parameters depend on the type and the quality of the
road and are generally not well known.

Coefficients intervening in the calculation of the adhesion are included
in this category. Our idea consists in considering the longitudinal forces of
the wheels which are a function of the road adhesion coefficient jointly as
unknown states ([HI01], [MT99], [HCB+01], [HCM01], [HCBM02], [IMD03],
[IDM03]).

In our case, four measurements of the speeds of the wheels are added to
the previously measured vector.

The vector y becomes:

y =
[
z1 z2 z3 z4 z θ φ ψ wr1 wr2 wf1 wf2

]T (5.26)

Before developing the observer, let us define the new state vector x =
[x1,x2, x3,x4]T as follows:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

x1 =
[
z1 z2 z3 z4 z θ φ ψ

]T
x2 =

[
ż1 ż2 ż3 ż4 ż θ̇ φ̇ ψ̇ wr1 wr2 wf1 wf2

]T
x3 = U =

[
u1 u2 u3 u4 u̇1 u̇2 u̇3 u̇4

]T
x4 = ẋ3

(5.27)

where {
ẋ1 = Λ1 = [ ż1 ż2 ż3 ż4 ż θ̇ φ̇ ψ̇ ]T = E1x2

Λ̇1 = M−1(−CΛ1 −Kx1 +Ax3 +Ω)
(5.28)
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E1 ∈ R
8×12 is a definite positive matrix such that its elements Eij ∈ {0, 1}.

The rotational movement of the wheels are given by:

Λ̇2 = J−1(Γ +RΨ), (5.29)

where Λ2 =
[
wr1 wr2 wf1 wf2

]T = E2x2 is the vector of wheel speeds,
E2 ∈ R

4×12 is a positive matrix where its elements Eij are defined in the
domain {0, 1}. Ψ = [Fxr1, Fxr2, Fxf1, Fxf2]T represent the longitudinal vector
forces. We assume that the derivative of these forces are neglected (Ψ̇ = 0).
J is a diagonal matrix composed of the inertia of the wheels:

J =

⎡
⎢⎢⎣
Jr 0 0 0
0 Jr 0 0
0 0 Jf 0
0 0 0 Jf

⎤
⎥⎥⎦ , (5.30)

where Γ is matrix composed of the engine torquesMf1,Mf2 :

Γ =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 Mf1 0
0 0 0 Mf2

⎤
⎥⎥⎦ , (5.31)

with R = r∗ I where r is the wheel radius and I ∈ R
4×4 is identity matrix:

The variable state ẋ2 is then given by:

ẋ2 = A1Λ̇1 +A2Λ̇2. (5.32)

The matrices A1 ∈ R
12×8 and A2 ∈ R

12×4 are defined in the Appendix.
The proposed observer is:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

.

x̂1 = Λ̂1 +H1sign(x̃1)
.

Λ̂1 = M−1(−C Λ̂1 −K x̂1 +A x̂3 +Ω) +H2sign(x̃1)
.

Λ̂2 = J−1Γ + J−1R Ψ̂
.

x̂3 = x̂4 +H3sign(x̃1)
.

Ψ̂ = μ

. (5.33)

where μ is an adaptation term to be defined. Hi ∈ R
8×8, i = 1..3 are diagonal

positive gains matrices and the ”sign”, defined as follows:

⎧⎪⎪⎨
⎪⎪⎩

H1 = diag{H11, H12 , H13 , H14 , H15 , H16 , H17 , H18}
H2 = diag{H21, H22 , H23 , H24 , H25 , H26 , H27 , H28}
H3 = diag{H31, H32 , H33 , H34 , H35 , H36 , H37 , H38}
sign(x̃1) = diag{x̃11 , x̃12 , x̃13 , x̃14 , x̃15 , x̃16 , x̃17 , x̃18}T

∣∣∣∣∣∣∣∣
(5.34)
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The variable x̃i = xi − x̂i, i = 1..4 represents the estimation error of
xi, Λ̃i = Λi − Λ̂i is the estimation error of Λi(i = 1..2). Ψ̃ = Ψ − Ψ̂ is the
estimation error of longitudinal forces.

The dynamic observation error is given by:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

.
x̃1 = Λ̃1 −H1sign(x̃1)
.

Λ̃1 = M−1(−C Λ̃1 −K x̃1 +A x̃3) −H2sign(x̃1)
.

Λ̃2 = J−1R Ψ̃
.
x̃3 = x̃4 −H3sign(x̃1)
.

Ψ̃ = −μ

. (5.35)

5.4.1 Convergence Study

The convergence study of the observer is done step by step. First the conver-
gence of the position x1 is done.

Let us define the following Lyapunov function:

V1 =
1
2
x̃T1 x̃1 (5.36)

Its derivative is given by:
V̇1 = x̃T1

.
x̃1 (5.37)

Using (5.35), we obtain:

V̇1 = x̃T1 (Λ̃1 −H1sign(x̃1)) (5.38)

The gain matrix H1 = diag(hi1) is chosen such that hi1 >
∣∣∣Λ̃i1

∣∣∣ for i =

1...8. We then have V̇1 < 0, which implies that x̂1 tends toward x1 in finite
time t0. We the obtain

.
x̃1 = 0 ∀ t > t0.

The function signeq is then defined as the sign function in the sliding
surface.

signeq(x̃1) = H−1
1 Λ̃1 (5.39)

The equation system defined in (5.35) becomes ∀ t > t0:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

.
x̃1 = 0
.

Λ̃1 = M−1(−C Λ̃1 +A x̃3) −H2H
−1
1 Λ̃1

.

Λ̃2 = J−1R Ψ̃
.
x̃3 = x̃4 −H3H

−1
1 Λ̃1

.

Ψ̃ = −μ

(5.40)
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In order to prove the convergence of x2 and then estimate the unknown input
vector Û and the unknown forces vector Ψ̂ , a second Lyapunov function is
considered:

V2=
1
2
Λ̃T1MΛ̃1+

1
2
Λ̃T2 Λ̃2+

1
2
x̃T3 P1x̃3+

1
2
Ψ̃TP2Ψ̃ (5.41)

where P1 ∈ R
8×8 and P2 ∈ R

4×4 are diagonal positive matrices:
Its derivative gives:

V̇2 = Λ̃T1

.

Λ̃1 + Λ̃T2

.

Λ̃2 + x̃T3 P1

.
x̃3 + Ψ̃TP2

.

Ψ̃ (5.42)

From equation (5.40) and since x̃4 is bounded, we obtain:

V̇2 = −Λ̃T1 CΛ̃1 − Λ̃T1MH2H
−1
1 Λ̃1 + Λ̃T1 Ax̃3 (5.43)

−x̃T3 P1H3H
−1
1 Λ̃1 + Λ̃T2 J

−1R Ψ̃ − Ψ̃TP2μ

Choosing matrix P1 such that AT = P1H3H
−1
1 , we obtain the gain matrix

H3 as:
H3 = P−1

1 ATH1 (5.44)

The function V̇2 becomes:

V̇2 = −Λ̃T1 CΛ̃1 − Λ̃T1MH2H
−1
1 Λ̃1 + Λ̃T2 J

−1R Ψ̃ − Ψ̃TP2μ (5.45)

The adaptive term μ is then deduced as follows:

μ = P−1
2 (J−1R)T Λ̃T2 (5.46)

= P−1
2 ΩT Λ̃T2

where Ω = J−1R.
We finally obtain:

V̇2 = −Λ̃T1 (C +MH2H
−1
1 )Λ̃1 (5.47)

The gain matrix H2 is chosen such that the matrix Q1 = C + MH2H
−1
1

is definite positive. Consequently, V̇2 < 0, which implies the asymptotic con-
vergence of x̃2 towards 0.

From (5.40), the convergence of the errors
.
x̃3toward 0 is then ensured. We

also show that the estimation error of the longitudinal forces is bounded.
In the following paragraph, we give some experimental results to show the

quality of the proposed observer.
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5.4.2 Experimental Results

In this section, we give some results in order to test and validate our ap-
proach. The estimated road profile is compared to the profile measured by
an longitudinal profile analyzer (LPA) developed at the LCPC Laboratory
[LDG96]. It is equipped with a laser sensor and an accelerometer to measure
the elevation of the road profile as shown in the Fig. 5.8.

Fig. 5.8 Longitudinal Profile Analyzer (APL in french)

The model parameters are measured. However, the pneumatic parameters
C1, C2 and C3 are not well known. To mitigate this disadvantage, we use
observers to estimate the longitudinal forces which are related to these pa-
rameters. The system outputs are the displacements of the wheels and the
chassis, which correspond to the signals given by the sensors. Different mea-
surements are done with the vehicle moving at several speeds.

Fig. 5.9 shows the average vehicle speed of 70km/h (20m/s) with an error
which does not exceed 1.2m/s.

This figure shows the measured and the estimated displacements. In the
first two subplot on top of figure (5.10), the vertical displacement (z) and the
yaw angle (ψ) of the chassis respectively are presented.

It is shown that the estimation of these displacements is fast and of good
quality.

The bottom of this figure represent the velocities. We can see that the
estimated vertical velocity (ż) is accurate compared to the true signal.
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Fig. 5.9 Vehicle speed

Fig. 5.10 Estimated and measured states: chassis and yaw angle

However, some error occurs concerning the estimation of ψ̇. This error is
mainly due to sensor calibration (the sensor that we used in our measurement
presented an error of calibration that we could not correct).

In Fig. 5.11 we notice that the estimated angular velocity of the wheel
converges well towards the actual ones in finite time.

Indeed, we get only 1 second for the convergence time.
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Fig. 5.11 Estimated and measured wheels velocities

Fig. 5.12 Comparison between the LPA measured profile and estimated one

The convergence of the states is very fast and the estimation is of high qual-
ity. The good reconstruction of these states allows estimating the unknown
inputs.

In Fig. 5.12 we show the behavior of the road profile estimator.



5.4 Unknown Forces Estimation 101

Fig. 5.13 Postions of the plates on the track

Fig. 5.14 Plates estimation

This figure presents both the measured road profile and the estimated one.
As a further example, two plates are located on the track as shown in

Fig.5.13.
Fig. 5.14, shows that these plates of height, respectively, of 10mm and

8mm, are well reconstructed by the observers approach compared to the
LPA measurements.

We compare now, the results of each method developed earlier.
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Fig. 5.15 Power Spectral Density (PO: low wave, MO: average wave, GO: high
wave

One can then observe that the estimated values are quite close to the true
ones. These profiles have the same pace and the differences are not important.

Fig. 5.15 shows the power spectral density of the estimated road profile
and the measured one given by LPA instrument.

One notices that the low and average waves of the road (high and aver-
age frequency) are well reconstructed. However there are limitations of our
method to estimate the high waves of the road.

5.5 Conclusion

In this chapter sliding mode observers have been developed in order to esti-
mate the longitudinal tire/road forces of the system and the unknown inputs
which correspond to the road profile.

The parameters of the system are presumedly measured and known. How-
ever, the pneumatic coefficients which intervene in the calculation of the
longitudinal forces are unknown. This is why we built another observer to di-
rectly consider these longitudinal forces. We noticed that the profile estimated
by our approach is very close to that measured by the LPA instrument. How-
ever, local variations appear. It is then important to know if these variations
do not penalize the capability of these profiles (of a band-width broader than
APL) to determine the dynamic response of the vehicle (previous studies
have shown that in the profile measured by LPA, it is not correct to con-
sider this dynamic response). We consider, in the future work, these profiles
as inputs of a dynamic model of the vehicle to estimate the instantaneous
loads of the wheels. We thus compare the dynamic responses measured on
an instrumented vehicle and those estimated by the simulator of the vehicle.
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