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Chapter 1

Introduction

Vehicles are complex mechanical systems with strong nonlinear characteris-
tics and which can present some uncertainties due to their dynamic param-
eters such as masses, inertias, suspension springs, tires side slip coefficients,
etc.

A vehicle is composed of many parts, namely the unsprung mass, the
sprung mass, the suspension which makes the link between these two masses
and therefore ensures passenger comfort, and also the pneumatic which ab-
sorbs the energy coming from the road and ensures contact between the
vehicle and the road. In addition to its complexity and the presence of many
nonlinearities and uncertainties, the presence of some external perturbations,
such as the wind and the road inputs with its own characteristics (radius of
curvature, longitudinal and lateral slop, road profile and skid resistance) can
cause risks not only to the vehicle but also to passengers and other road users.

Many methods have been developed in order to understand the behavior
of a vehicle ( light and heavy vehicle), control it and assist the driver in order
to avoid possible lane departures, rollover or jackknifing risks, to ensure a
better passenger comfort by means of a suspension control and/or to estimate
a safety speed and trajectory ([KN05], [SOA05a], [ID07], [ISM08], [AFTV10],
[KID10c]).

The main specific features of vehicles as control systems are:

• The absence of exact models of the vehicle as the system and all its sub-
systems.

• The state variables of the models are sometimes difficult to measure.
• These parameters of the known models are often not well known (for,

example, because they are not provided by the companies working with
vehicle manufacturers) and have to be identified.

• The parameters of the vehicles are time varying.
That is why in the last years, many techniques of robust control have been
used in order to ensure the safety and comfort of passengers and road users.
Such techniques are able to control and observe the vehicle dynamics,

H. Imine et al.: Sliding Mode Based Analysis, LNCIS 414, pp. 1–4.
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2 1 Introduction

especially when we need to identify uncertainties and parameters online
with the best possible accuracy.

The algorithms for control, observation and identification based on sliding
modes are a special technique ensuring theoretically exact convergence of the
error even in the presence of uncertainties and disturbances([Eme67], [Utk77],
[Utk92], [SLD+06], [EFT07]).

The first order sliding mode based controllers and observers have already
been successfully employed and experimentally illustrated for control, obser-
vation and identification of vehicle dynamics ([KR95], [CH99], [ILMD02b]).

Other applications of classical sliding mode techniques related to vehicle
dynamics such as estimation of the tire road contact friction and control wheel
slip, can be found in the literature ([CH99], [HCB+01], [HCM01], [AFTV10]).
Omar and al have developed methods using sliding mode observer for heavy
duty vehicle tyre forces estimation ([KID10a], [KID10b], [KID10c]).

Moreover, Imine and al ([ILMD01], [ILMD02a], [IF08]) have developed
sliding mode observers with unknown inputs in order to estimate the road
profile identifying it as an unknown input of the vehicle model. Marouf and al
([MDSP10], [NMS+10]) have developed sliding mode observers with unknown
inputs in order to estimate road reaction force of an electric power assisted
steering.

Other authors have developed warning systems based on sliding modes in
order to control the trajectory of the vehicle ([SH97], [UK99], [MNMSm00],
[Mam02], [SOF07]).

Sliding mode techniques can also be used in order to estimate the unknown
parameters of the vehicle such us tire cornering stiffness, spring stiffness, etc.
([Sie97], [HCBM01], [SAF+06], ).

Fault detection and diagnosis is also another application of sliding modes
in the field of vehicle dynamics ([YS95], [GMR01], [MYWL02], [FBPD04],
[SOA05b], [SFAO07]).

In this book we will also deal with recently developed higher order sliding
mode (HOSM) algorithms ([Lev85], [EKL93], [Lev98], [FLD08]). Such algo-
rithms allow ensuring the maximal possible asymptotic precision in terms
of the sampling step and measurement noises in the sense of Kolmogorov
[Kol62] and overcome the need of the sliding mode surface design.

Furthermore, HOSM differentiators ([Lev98], [Lev03]) and HOSM based
observers ([DFL05a], [FB06], [FLD07]) ensure theoretically exact convergence
to the exact system states and unknown inputs for systems which satisfy
the sufficient and necessary conditions of strong observability. Moreover, the
state estimation and unknown inputs identification may be reached without
filtration. The use of HOSM differentiators in these observers ensure the
maximal possible asymptotic precision in terms of the sampling step and
measurement noises in the sense of Kolmogoroff [Kol62].

The continuous nature of vehicles as mechanical systems require continu-
ous methods for uncertainties and parameter identification. That is why the
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continuous version of the Least Square Method for time invariant and time
varying parameters was proposed in ([PSF+06], [BFP07]).

The present book is an attempt to show how the above mentioned HOSM
based observation, uncertainties identification and parameter estimation may
be applied in the control of vehicle dynamics as well as for parameter and
perturbations estimation.

The aim of the presented work is to propose an interesting tool for
researchers and students working in the field of vehicle dynamics and
estimation.

Firstly, the HOSM observation methodology for mechanical systems is
revisited. Then, a dynamic model of a vehicle is presented and validated
through experimental tests.

The quality of HOSM observation and identification techniques is tested
in the estimation of road profiles and external forces as the unknown inputs.

This book is composed of four chapters described as follows:

• Chapter 1: Observation and Identification via HOSM-Observers

The methods for state observation and identification based on higher-order
sliding mode algorithms will be presented in the first chapter. The super-
twisting based second-order sliding mode (SOSM) observers for mechanical
systems are presented. The precision of the convergence of the proposed ob-
servers is discussed.

Two different methodologies of unknown inputs estimation are presented.
First, an SOSM based observer which requires filtration but allows identi-
fying bounded measurable perturbations is discussed. Then a third order
sliding mode based observer is developed which allows estimating Lipschitz
perturbations without filtration.

Finally, the continuous version of the Least Square Method for time in-
variant parameters identification is proposed.

• Chapter 2: Vehicle Modeling

The second chapter devoted to vehicle modeling. The car model is divided
into different parts. Each part of the model, such as pneumatic, suspension
and wheels, is developed in detail.

Simulation results done with Matlab-Simulink software and experimental
results done with an instrumented vehicle rolling on a track are presented
and compared in order to show the validity of the proposed model.

• Chapter 3: Observation and Estimation of States and Parameters

In the third chapter, sliding mode observers are proposed for the estimation
of tire forces, side slip angle and the states of a complete vehicle. The esti-
mations of the longitudinal forces are based on the assumption that they are



4 1 Introduction

considered as unknown inputs. These unknown inputs are estimated using
a second order sliding mode observer based on the super-twisting algorithm
and then filtered through a low-pass filter. In the second part, the estimated
longitudinal forces are injected in the reduced state space equations repre-
senting the vehicle, which contain the side slip angle and the yaw rate of the
center of gravity. Estimation in this part is based on the principles of the clas-
sical sliding mode observer. Velocities of the center of gravity are deduced
directly after the side slip angle, and then lateral forces can be easily ob-
tained. The vertical force of each wheel can be estimated using accelerometer
measurements and the vertical position of the center of gravity.

• Chapter 4: Estimation of Road Profile and External Forces as
Unknown Inputs

In the fourth chapter, an application of sliding mode observers is developed
in order to estimate the unknown inputs of the road profile. Vehicle motion
simulation accuracy, such as in accident reconstruction or vehicle controlla-
bility analysis on real roads, can be obtained only if valid road profile and
tire-road friction models are available. Regarding road profiles, a new method
based on Sliding Mode Observers has been developed and is compared to two
inertial methods. Experimental results are shown and discussed to evaluate
the robustness and the quality of the proposed approach.

The external forces, namely the longitudinal forcer of the wheels which are
a function of the road adhesion coefficient, are considered as unknown states
to be estimated. This it the second objective ensured in this chapter.

• Conclusion

Some analysis and remarks concerning the application of sliding mode tech-
nique to vehicle dynamics, as well as the different presented results, are given
in this chapter. Some perspectives and new solutions are also given in order
to improve the quality of the proposed work.

How to read this book?

Readers which already know about HOSM observation techniques can go
directly to Chapter 2.

Those readers interested in car models can read Chapter 2 only.

Finally, readers which are familiar with car modeling and HOSM observa-
tion techniques can read Chapters 3 and 4 only.

Hocine Imine
Leonid Fridman
Hassam Shraim
Mohamed Djemai

April, 2011



Chapter 2

Observation and Identification via
HOSM-Observers

2.1 Motivation

The idea of using a dynamical system to generate estimates of the system
states was proposed in 1963 by Luenberger for linear systems [Lue64]. In
spite of the extensive development of robust control techniques, sliding mode
control (SMC) remains a key choice for handling Boundedness uncertain-
ties/disturbances and unmodeled dynamics in both control and estimation
problems. During the last decade, SMC techniques have been widely used to
design observers (sliding mode observers) suitable for robust state estimation
even in the presence of unknown inputs.

In absence of external disturbances, Luenberger observers can be applied
directly for asymptotical reconstruction of the system states. However, in
the presence of disturbances, the standard technique is not accurate; the
Luenberger observer can only ensure the convergence to a bounded region
near the real value of the state.

Sliding Mode Based Observers are presented as an alternative to the prob-
lem of observation of perturbed systems. In particular, High Order Sliding
Mode (HOSM) Based Observers can be considered as a successful technique
for the state observation of perturbed systems due their high precision and
robust behavior with respect to parametric uncertainties.

The existence of a direct relation between differentiation and the observ-
ability problem makes Sliding Mode Based Differentiators a technique that
can be applied directly for state reconstruction. Even when the differentiators
appears as a natural solution to the observation problem, the use of the sys-
tem knowledge for the design of an observation strategy results in a reduction
of the gains for the sliding mode compensation terms. This reduction is evi-
denced in the improvement of the accuracy. Moreover, the complete or partial
knowledge of the system model can give place to the application of techniques
for parametric reconstruction or disturbance reconstruction. In this chapter
we will show how the higher order sliding mode concept can be applied for

H. Imine et al.: Sliding Mode Based Analysis, LNCIS 414, pp. 5–24.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011



6 2 Observation and Identification via HOSM-Observers

observation of uncertainties or parameter identification of mechanical system
following ([DFL05a], [DFP06]).

2.2 Mechanical Systems

Consider the mathematical model of a mechanical system in the form:

M(q)q̈ + C(q, q̇)q̇ + P (q̇) +G(q) +Δ(t,q, q̇) = τ, (2.1)

where q ∈ Rn is a vector of generalized coordinates, M(q) is the inertia
matrix, C(q, q̇) is the matrix of Coriolis and centrifugal forces, P (q̇) is the
Coulomb friction, which possibly contains relay terms depending on q̇, G(q)
is the term of gravitational forces, Δ(t,q, q̇) is an uncertainty term and τ is
the generalized torque/force produced by the actuators. The control input τ
is assumed to be given by some known feedback function. Note that M(q)
is invertible, since M(q) = MT (q) is strictly positive definite. Furthermore
other terms are assumed to be uncertain, but the corresponding nominal
functions Mn(q), Cn(q, q̇), Pn(q̇), Gn(q) are assumed known.

Introducing the variables x1 = q, x2 = q̇, u = τ , the model (2.1) can be
rewritten in the state-space form as

ẋ1 = x2,
ẋ2 = f(t, x1, x2, u) + ξ(t, x1, x2, u), u = U(t, x1, x2),
y = x1,

(2.2)

where the nominal part of the system dynamics is represented by the function

f(t, x1, x2, u) = −M−1
n (x1)[Cn(x1, x2)x2 + P (x2) +Gn(x1) − u]

containing the known nominal functions Mn, Cn, Gn, P, while the uncer-
tainties are concentrated in the term ξ(t, x1, x2, u). The solutions to system
(2.2) are understood in Filippov’s sense [Fil88]. It is assumed that the func-
tion f(t, x1, x2, U(t, x1, x2)) and the uncertainty ξ(t, x1, x2, U(t, x1, x2)) are
Lebesgue-measurable and uniformly bounded in any compact region of the
state space x1, x2 .

In order to apply a state feedback controller or to simply perform system
monitoring, the complete knowledge of the coordinate x2 is required. More-
over, in the general case, for the design of a controller it is necessary to know
the parameters of the system. The tasks are to design a finite-time convergent
observer of the velocity q̇ for the original system (2.1) when only the posi-
tion q and the nominal model are available, and an identification algorithm
to obtain the system parameters, with only the knowledge of the state x1

and the input u(t). Only the scalar case x1, x2 ∈ R is considered for the sake
of simplicity. In the vector case the observers are constructed in parallel for
each position variable x1j in exactly the same way.
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2.2.1 Super-Twisting Based Observer

The proposed super-twisting observer has the form

˙̂x1 = x̂2 + z1
˙̂x2 = f(t, x1, x̂2, u) + z2

(2.3)

where x̂1 and x̂2 are the state estimations, and the correction variables z1
and z2 are output injections of the form:

z1 = λ|x1 − x̂1|1/2 sign(x1 − x̂1)
z2 = α sign(x1 − x̂1).

(2.4)

It is assumed that at the initial moment x̂1 = x1 and x̂2 = 0. Taking
x̃1 = x1 − x̂1 and x̃2 = x2 − x̂2 we obtain the error equations

˙̃x1 = x̃2 − λ|x̃1|1/2 sign(x̃1)
˙̃x2 = F (t, x1, x2, x̂2) − α sign(x̃1)

(2.5)

where F (t, x1, x2, x̂2) = f(t, x1, x2, U(t, x1, x2)) − f(t, x1, x̂2, U(t, x1, x2)) +
ξ(t, x1, x2, U(t, x1, x2)). Suppose that the system states can be assumed
bounded, then the existence of a constant f+ is ensured such that the in-
equality

|F (t, x1, x2, x̂2)| < f+ (2.6)

holds for any possible t, x1, x2 and |x̂2| ≤ 2 sup |x2|.
Remark 1. When the accelerations in the mechanical system are bounded,
the constant f+ can be found as the double maximal possible acceleration of
the system. Moreover. the estimation constant f+ does not depend on the
nominal elasticity or control terms. Such assumption of the state boundedness
is true as well, if, for example, system (2.2) is BIBS stable, and the control
input u = U(t, x1, x2) is bounded.

Let α and λ satisfy the inequalities

α > f+,

λ >
√

2
α−f+

(α+f+)(1+p)
(1−p) ,

(2.7)

where p is some chosen constant, 0 < p < 1.

Theorem 2.1. [DFL05a] Suppose that the parameters of the observer (2.3),
(2.4) are selected according to (2.7), and condition (2.6) holds for system
(2.2). Then the variables of the observer (2.3),(2.4) converge in finite time
to the states of system (2.2), i.e. (x̂1, x̂2) → (x1, x2).
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Remark 2. Finite-time convergence of the observer allows designing the ob-
server and the control law separately, i.e. the separation principle is satisfied.
The only requirement for its implementation is the boundedness of the func-
tion F (t, x1, x2, x̂2, u) in the operational domain. If the applied controller is
known to stabilize the process, one of the admissible ways is to choose the
observer dynamics fast enough to provide for the exact evaluation of the
velocity before leaving some preliminarily chosen area, where the stabiliza-
tion is assured. This is easily performed through simulation (see the example
below).
Remark 3. The standard 2-sliding-mode-based differentiator [Lev98] can also
be implemented here to estimate the velocity. At the same time, the proposed
observer requires smaller gains and is more accurate, i.e. the elasticity term
M−1(q)G(q) does not influence the gain choice.
Remark 4. Another way to choose α and λ is to take α = a1f

+, λ = a2 (f+)1/2

with some predetermined proper a1, a2. In particular, a1 = 1.1, a2 = 1.5 is a
valid choice [Lev98].

2.2.1.1 Example

Consider a pendulum system with Coulomb friction and external perturba-
tion given by the equation

θ̈ =
1
J
τ − MgL

J
sin θ − Vs

J
θ̇ − Ps

J
sign(θ̇) + v, (2.8)

where the values M = 1.1, g = 9.815, L = 0.9, J = ML2 = 0.891, VS = 0.18,
Ps = 0.45 were taken and v is an uncertain external perturbation, |v| ≤ 1.
v = 0.5 sin 2t+ 0.5 cos 5t was chosen in simulation. Let the system be driven
by the twisting controller

τ = −30 sign(θ − θd) − 15 sign(θ̇ − θ̇d), (2.9)

where θd = sin t and θ̇d = cos t are the reference signals. The system can be
rewritten as

ẋ1 = x2,

ẋ2 = 1
J τ − MgL

J sinx1 − Vs

J x2 − Ps

J sign(x2) + v.

Thus, the proposed velocity observer (see Remark 3) has the form

˙̂x1 = x̂2 + 1.5(f+)1/2|x̃1|1/2 sign(x1 − x̂1),
˙̂x2 = 1

Jn
τ − MngLn

Jn
sinx1 − Vsn

Jn
x̂2 + 1.1f+ sign(x1 − x̂1),
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where Mn = 1, Ln = 1, Jn = MnL
2
n = 1, Vsn = 0.2, Psn = 0.5 are the

“known” nominal values of the parameters, and f+ is to be assigned. Assume
also that it is known that the real parameters differ from the known values by
no more than 10%. The initial values θ = x1 = x̂1 = 0 and θ̇ = x2 = 1 , x̂2 = 0
were taken at t = 0. Identifying 0 and 2π obtain that θ belongs to a compact
set (a ring). Thus, obviously, the dynamic system (2.8) is BIBS stable. Easy
calculation shows that the given controller provides for |τ | ≤ 45, and the
inequality |θ̇| ≤ 70 is ensured when the nominal values of parameters and
their maximal possible deviations are taken into account. Taking |x2| ≤ 70,
|x̂2| ≤ 140 obtain that |F | = | 1J τ − g

L sinx1 − Vs

J x2 − Ps

J sign(x2)+ v− 1
Jn
τ +

g
Ln

sinx1 + Vsn

Jn
x̂2| < 60 = f+. Therefore, the observer parameters α = 66

and λ = 11.7 were chosen . Simulation adjustment (see Remark 1) shows that
f+ = 6 and the respective values α = 6.6 and λ = 4 are sufficient. Note that
the terms MgL

J sinx1 and 1
J τ would be fully taken into account for the choice

of the differentiator parameters [Lev98] causing much larger coefficients to
be used. The performance of the observer is shown in Fig. 2.1.
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Fig. 2.1 Estimation error for x2.

The finite-time convergence of the estimated velocity to the real one is
demonstrated in Fig. 2.2, and Fig. 2.3 shows the convergence in the plane x̃1

vs x̃2.
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Fig. 2.2 Real and estimated velocity.
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Fig. 2.3 Graph of x̃1 vs x̃2.
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2.2.2 Differentiation vs. Observation

In the last example the state x2 is the derivative of the state x1. Why don’t
use differentiators instead of observers?

Consider again system (2.8). Let us apply the first order differentiator to
recover the state x2. The state estimation obtained by differentiation is shown
in Fig. 2.4.

0 5 10 15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

t [s]

Differentiator based State Estimation

Fig. 2.4 System states (doted line) and their estimation using differentiators (con-
tinuous line).

It is clear that exact reconstruction is achieved. However, lets compare this
result with the observer based approach.

Consider that the observer takes on the form:

˙̂x1 = x̂2 + 1.5(3)1/2|x̃1|1/2 sign(x1 − x̂1),
˙̂x2 = 1

J τ − MgL
J sinx1 − Vsn

Jn
x̂2 + 3.3 sign(x1 − x̂1),

Notice that the Coulomb friction term is not taken into account for the design
of the observer.

The state observation is presented in Fig. 2.5.
The state reconstruction is exact and apparently it preserves the same

convergence features that the reconstruction made by differentiation.
In Fig. 2.6 both estimation errors, the one obtained by differentiation and

the one obtained by observation, are presented.
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Fig. 2.5 System states (dotted line) and their estimation using observers (contin-
uous line).
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Fig. 2.6 Estimation error comparative of differentiation and state observation.
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Even when the gains are the same in both approaches, the convergence
time is smaller for the observer. Additionally, one of the main features of
the sliding mode approach, the equivalent output injection, can be exploited
when the observer is applied (see subsection 2.2.3).

2.2.3 Equivalent Output Injection Analysis

2.2.3.1 Equivalent Output Injection

Standard Procedure

The finite time convergence to the second order sliding mode set ensures
that there exists a time constant t0 > 0 such that for all t ≥ t0 the following
identity holds

0 ≡ ˙̃x2 ≡ F (t, x1, x2, x̂2, u) + ξ(t, x1, x2, u) − α1sign(x̃1),

Notice that F (t, x1, x2, x̂2, u) = f(t, x1, x2, u) − f(t, x1, x̂2, u) = 0 because
x̂2 = x2. Then the equivalent output injection zeq is given by

zeq(t) ≡ α1sign(x̃1) ≡ ξ(t, x1, x2, u). (2.10)

We said before that the term ξ(t, x1, x2, u) is composed of uncertainties and
perturbations. This term may be written as

ξ(t, x1, x2, u) = ζ(t) +ΔF (t, x1, x2, u) (2.11)

where ζ(t) is an external perturbation term and ΔF (t, x1, x2, u) concentrates
the parameter uncertainties.

Theoretically, the equivalent output injection is the result of an infinite
switching frequency of the discontinuous term α1sign(x̃1). Nevertheless, the
realization of the observer produces a high (finite) switching frequency mak-
ing the application of a filter necessary. To eliminate the high frequency
component we will use the filter of the form

τ ˙̄zeq(t) = −z̄eq(t) + zeq(t)

where τ ∈ R and h << τ << 1, being h a sampling step.
It is possible to rewrite zeq as result of the filtering process in the following

form
zeq(t) = z̄eq(t) + ε(t) (2.12)

where ε(t) ∈ R
n is the difference caused by the filtration and z̄eq(t) is the

filtered version of zeq(t).
Nevertheless, as it is shown in ([Utk92], [Fri99]) that
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lim
τ → 0
h/τ → 0

z̄eq(τ, h) = zeq(t),

Thus, it is possible to assume that the equivalent output injection is equal to
the output of the filter.

Extended Order Approach

Suppose that the perturbation/uncertainty therm ξ(t, x1(t), x2(t), u(t)) is a
smooth function of t. Lets differentiate the second equation of (2.2) and
introduce the new state variable x3 = ẋ2. System (2.2) can be written in an
equivalent form as

ẋ1 = x2,

ẋ2 = x3, (2.13)

ẋ3 = ḟ(t, x1, x2, u) +
d

dt
ξ(t, x1(t), x2(t), u(t))

The extension of the system dynamics implies a new requirement for
ḟ(t, x1, x2, u) + ξ̇(t, x1, x2, u) to be bounded.

If this new requirement is satisfied, it is possible to apply the third order
differentiator [Lev03]:

ż1 = w1 = −α3M
1/3|z1 − x1|2/3 sign(z1 − x1) + z2

ż2 = w2 = −α2M
1/2|z2 − w1|1/2 sign(z2 − w1) + z3 (2.14)

ż3 = −α1M sign(z3 − w2)

Now, the differentiator variables z1, z2, z3 are the estimates of the states
x1, x2, x3 of the extended system (2.13) respectively.

Since (2.13) is only another representation of (2.2), then after convergence
of the differentiator the equality ż2 = ẋ2 holds, and given the equivalence
between (2.2) and (2.13), the following equality is satisfied:

f(t, x1, x2, u) + ξ(t, x1, x2, u) + α2M
1/2|z2 − w1|1/2 sign(z2 − w1) − z3 = 0,

The third term of the above mentioned equality is equal to zero as a result
of the differentiator convergence, so it is possible to obtain the equivalent
output injection as:

zeq = z3 = f(t, x1, x2, u) + ξ(t, x1, x2, u)

In this case z3 is a continuous term, and no filtration is required to obtain
the equivalent output injection. This is an important fact, because given the
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finite time convergence of the differentiator, we are able now to reconstruct
in finite time the equivalent output injection. Moreover, the variable z3 is
not affected by any filtration process, hence z3 is an exact estimation of
f(t, x1, x2, u) + ξ(t, x1, x2, u).

Below we will refer to this as the exact method to obtain the smooth
equivalent output injection, while the method described in the past subsection
will be referred to as the standard method.

2.2.3.2 Perturbation Identification

Consider the case where the nominal model is totally known, i.e. for all t > t0
the uncertain part ΔF (t, x1, x2, u) = 0. The equivalent output injection takes
the form

z̄eq(t) = z2 = ζ(t). (2.15)

For the standard method to obtain zeq, the result of the filtering process
will yield

lim
τ → 0
h/τ → 0

z̄eq(τ) = ζ(t),

Then, any bounded perturbation can be identified directly using the filter
output, however the maximal frequency allowed will be restricted by the
filter cutoff frequency.

For the exact method, the perturbation can be identified using both the
term zeq and the knowledge of the system as

ζ̂ = zeq − f(t, x̂1, x̂2, u)

The maximal frequency allowed for the perturbation will be restricted by the
constant of the differentiator (2.14)

M > ζ̇(t)

Notice that, in this case, even when perturbation is not required to be
bounded its frequency should be bounded to allow the design of the observer.

2.2.4 Parameter Identification

2.2.4.1 Regressor Form

Let us consider the unperturbed case when ζ(t) = 0 and ξ(t, x1, x2, u) =
ΔF (t, x1, x2, u). The system acceleration (i.e. ẋ2) can be represented as a
sum of a well-known part and an uncertain part,
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ẋ2 = f(t, x1, x2, u) +ΔF (t, x1, x2, u),

where f(t, x1, x2, u) ∈ R
n is a completely known part of the system and

ΔF (t, x1, x2, u) is an uncertain part. Using the regressor notation [SS89] we
can write the uncertain part as

ΔF (t, x1, x2, u) = θ(t)ϕ(t, x1, x2, u)

where θ(t) ∈ R
n×l is a matrix composed by the value of the uncertain pa-

rameters of the functions M , C, G, P and ϕ(t, x1, x2, u) ∈ R
l is a known

nonlinear functions vector. System (2.2) takes the form

ẋ1 = x2,
ẋ2 = f(t, x1, x2, u) + θ(t)ϕ(t, x1, x2, u), u = U(t, x1, x2),
y = x1,

(2.16)

and the observer can be rewritten as

˙̂x1 = x̂2 + α2λ(x̃1)sign(x̃1)
˙̂x2 = f(t, x1, x̂2, u) + θ̄(t)ϕ(t, x1, x̂2, u) + α1sign(x̃1),

(2.17)

where θ̄ ∈ R
n×l is a matrix of nominal values of the parameter matrix θ(t).

The error dynamics for all t ≥ t0, becomes

˙̃x1 = x̃2 − α2λ(x̃1)sign(x̃1)
˙̃x2 = (θ(t) − θ̄(t))ϕ(t, x1, x2, u) − α1sign(x̃1)

(2.18)

Note that parameter uncertainties are concentrated in the first part of the
model (θ(t) − θ̄(t))ϕ(t, x1, x2, u).

The task is to design an algorithm which provides parameter identification
for the original system (2.1), when only the position x1 is measurable and
the nominal model θ̄(t)ϕ(t, x1, x2, u) is known.

2.2.4.2 Time-Invariant Parameters Identification

Consider the case when the system parameters are time invariant, i.e. θ(t) =
θ. Now, the equivalent output injection can be represented in the form

z̄eq(t) = α1sign(x̃1) = (θ − θ̄)ϕ(t, x1, x2, u) (2.19)

Notice that α1sign(x̃1) is a known term and the finite time convergence of the
observer guarantees the knowledge of all the state vector i.e. ϕ(t, x1, x̂2, u) =
ϕ(t, x1, x2, u) for all t ≥ t0. Equation (2.19) represents a linear regression
model where the vector parameters to be estimated are (θ − θ̄). To obtain
the real system parameters θ a linear regression algorithm may be proposed
from equation (2.19).
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The recursive LSM algorithm (see for example [SS89]) applied for parame-
ter identification of dynamical systems is usually designed using discretization
of the regressor and derivatives of the states in order to obtain the regressor
form. Then the algorithm is applied in a discrete form. Notice that the linear
regressor form in [SS89] can be directly obtained from (2.19).

In mechanical system observation and identification, we deal with data sets
of a continuous-time nature. That is why an implementation of any standard
discretization scheme is related to unavoidable losses of existing informa-
tion. This produces a systematical error basically caused by the estimation
of derivatives of the considered process. As it is shown above, the proposed
second-order sliding mode technique provides an estimation of derivatives
converging in a finite time that permits avoiding an additional error aris-
ing during any standard discretization scheme implementation. Below we
present the continuous-time version of the LS-algorithm based on the pro-
posed second-order sliding mode observation scheme. Notice that the pro-
posed algorithm can be implemented in analog devices directly.

Define Δθ := θ − θ̄ and post-multiply (2.19) by ϕT (t, x1, x2, u) (for short
notation function ϕ(t, x1, x2, u) will be called ϕ(t)). Now, using the auxiliary
variable σ for integration in time, the average values of equation (2.19) take
the form

1
t

∫ t

0

z̄eq(σ)ϕT (σ)dσ = Δθ
1
t

∫ t

0

ϕ(σ)ϕ(σ)T dσ (2.20)

Therefore, the system parameters can be estimated from (2.20) by

Δ̂θ =
[∫ t

0

z̄eq(σ)ϕT (σ)dσ
] [∫ t

0

ϕ(σ)ϕT (σ)dσ
]−1

(2.21)

where Δ̂θ is the estimation of Δθ. For any square matrix the next equalities
hold

Γ−1(t)Γ (t) = I,

Γ−1(t)Γ̇ (t) + Γ̇−1(t)Γ (t) = 0
(2.22)

Let us define Γ (t) =
[∫ t

0
ϕ(σ)ϕT (σ)dσ

]−1

. Using (2.22) we can rewrite (2.21)
in the form:

˙̂
Δθ =

[∫ t

0

z̄eq(σ)ϕT (σ)dσ
]
Γ̇ (t) + zeq(t)ϕT (t)Γ (t)

Now, using equation (2.20) we can write

˙̂
Δθ = Δ̂θΓ−1(t)Γ̇ (t) + z̄eq(t)ϕT (t)Γ (t)

The equalities (2.22) allow us to write a dynamic expression to compute Δθ
as

˙̂
Δθ =

[
−Δ̂θϕ(t) + z̄eq(t)

]
ϕT (t)Γ (t). (2.23)
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In the same way, a dynamic form to find Γ (t) is given by

Γ̇ (t) = −Γ (t)ϕ(t)ϕT (t)Γ (t) (2.24)

The average values of the real zeq(t), without filtering, satisfy the equality

∫ t

0

zeq(σ)ϕT (σ)dσ = Δθ

∫ t

0

ϕ(σ)ϕT (σ)dσ

then

Δθ =
[∫ t

0

zeq(σ)ϕT (σ)dσ
]
Γ (t).

Substituting equation (2.12), the real values of parameters vector Δθ holds

Δθ =
[∫ t

0

z̄eq(σ)ϕT (σ)dσ +
∫ t

0

ε(σ)ϕT (σ)dσ
]
Γ (t). (2.25)

Let us assume z̄eq(t) = Δ̂θϕ(t). In this case equation (2.25) becomes

Δθ =
[
Δ̂θ

∫ t

0

ϕ(σ)ϕT (σ)dσ +
∫ t

0

ε(σ)ϕT (σ)dσ
]
Γ (t),

which can be written as

Δθ = Δ̂θ +
[∫ t

0

ε(σ)ϕT (σ)dσ
]
Γ (t). (2.26)

From equations (2.21) and (2.26) it is possible to define the convergence
conditions

sup ||tΓ (t)|| <∞, (2.27)

||1
t

∫ t

0

ε(σ)ϕT (σ)dσ|| → 0 as t→ ∞. (2.28)

Condition (2.27), known as the persistent excitation condition (see for exam-
ple, [SS89]), requires the non-singularity of the matrix Γ−1(t) =

∫ t
0
ϕ(σ)ϕT

(σ)dσ. To avoid this restriction let us introduce the term ρI where 0 < ρ << 1
and I is the unitary matrix and redefine Γ−1(t) as

Γ−1(t) =
∫ t

0

(
ϕ(σ)ϕT (σ)dσ

)
+ ρI

In this case the value of Γ−1(t) is always non-singular.
Notice that the introduction of the term ρI is equivalent to setting the

initial conditions of (2.24) as
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Γ (0) = ρ−1I, 0 < ρ-small enough

The introduction of the term ρ ensures the condition sup ||tΓ (t)|| < ∞ but
does not guarantee the convergence of the estimated parameters to the real
values. The convergence of the estimated values to the real ones is ensured
by the persistent excitation condition

lim inf
t→∞

1
t

∫ t

0

(
ϕ(σ)ϕ(σ)T dσ

)
> 0

The condition (2.28) refers to the filtering process, and it gives the conver-
gence quality of the identification. As fast as term 1

t

∫ t
0
ε(σ)ϕ(σ)T dσ converges

to zero, the estimated parameters will tend to the real parameters values. The
above can be summarized in Theorem 2.2.

Theorem 2.2. The algorithm (2.23), (2.24) ensures the convergence of Δ̂θ →
Δθ under the conditions (2.27), (2.28).

Remark 1. The effect of noise sensitivity of the suggested procedure can be
easily seen from (23):

1
t

∫ t

0

ε (σ)ϕT (σ) dσ → 0 when t→ ∞

There ε (t) is given by (9) and includes all error effects caused by observation
noises (if there are any), error in the realization of the equivalent output
injection and etc. One can see that if ε (t) and ϕ (t) are uncorrelated and ”on
average” equal to zero, i.e.,

1
t

∫ t

0

ε (σ) dσ → 0,
1
t

∫ t

0

ϕ (σ) dσ → 0

then the noise effect vanishes.

2.2.5 Example

2.2.5.1 Perturbation Identification

Consider the mathematical model of a pendulum given by

θ̈ =
1
J
u− MgL

2J
sin θ − Vs

J
θ̇ + v(t)

where M = 1.1[Kg] is the pendulum mass, g = 9.815[m/s2] is the gravita-
tional force, L = 0.9[m] is the pendulum length, J = ML2 = 0.891[Kg ∗m2]
is the arm inertia, VS = 0.18[Kg ∗ m2/s] is the pendulum viscous friction
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coefficient, and v(t) is a bounded disturbance term. Assume that the angle θ
is available for measurement. Introducing the variables x1 = θ, x2 = θ̇ and
the measured output y = θ the pendulum equation can be written in the
state space form as

ẋ1 = x2,

ẋ2 =
1
J
u− MgL

2J
sinx1 − Vs

J
x2 + v(t),

y = x1

Suppose that all the system parameters (M = 1.1, g = 9.815, L = 0.9,
J = ML2 = 0.891, VS = 0.18) are well-known. The super-twisting observer
for this system has the form

˙̂x1 = x̂2 + α2|x̃1|1/2 sign(x̃1),

˙̂x2 =
1
J
u− MgL

2J
sinx1 − Vs

J
x̂2 + α1 sign(x̃1),

x̃1 = y − x̂1

The equivalent output injection in this case is given by

zeq = α1sign(x̃1) = v(t)

Using the standard method with a low-pass filter with τ = 0.02[s] for a
sinusoidal external perturbation the identification is shown in Fig. 2.7.

Fig. 2.7 Sinusoidal external perturbation identification using the filtering method

Using the standard method with a filter with time constant τ = 0.002[s]
the perturbation identification for a discontinuous signal is shown in Fig. 2.8.
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Fig. 2.8 Discontinuous perturbation identification using the filtering method

The sinusoidal signal reconstruction obtained by the exact method is shown
in Fig. 2.9.
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Exact reconstruction, sinusoidal signal

Fig. 2.9 Exact identification of a sinusoidal external perturbation using the exact
method.

In Fig. 2.10 the reconstruction of a discontinuous signal using the exact
method is shown.
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Fig. 2.10 Discontinuous perturbation identification using the exact method.

In this figure it is clear that even when the signal presents abrupt changes,
the exact method provides a good reconstruction of the perturbation. After
each abrupt change of the signal, the differentiator should converge and as a
result the reconstruction exhibits a small transient.

2.2.5.2 Time Invariant Parameter Identification

Consider the model of a pendulum with Coulomb friction given by the equa-
tion

θ̈ =
1
J
u− MgL

2J
sin θ − Vs

J
θ̇ − Ps

J
sign(θ̇)

where M = 1.1[Kg] is the pendulum mass, g = 9.815[m/s2] is the gravi-
tational force, L = 0.9[m] is the arm length, J = ML2 = 0.891[Kg ∗ m2]
is the arm inertia, VS = 0.18[Kg ∗ m2/s] is the viscous friction coefficient,
Ps = 0.45[Kg ∗m2/s2] is the Coulomb friction coefficient. Suppose that the
angle θ is available for measurement. Introducing the variables x1 = θ, x2 = θ̇,
the state space form representation for the system becomes

ẋ1 = x2,

ẋ2 =
1
J
u− MgL

2J
sinx1 − Vs

J
x2 − Ps

J
sign(x2),

y = x1
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where a1 = MgL
2J = 5.4528, a2 = Vs

J = 0.2020, a3 = Ps

J = 0.5051 are the
unknown parameters. Let us design the super-twisting based observer as

˙̂x1 = x̂2 + α2|x̃1|1/2 sign(x̃1),

˙̂x2 =
1
J
u− ā1 sinx1 − ā2x̂2 − ā3 sign(x2) + α1 sign(x̃1),

x̃1 = y − x̂1

where ā1 = 2,ā2 = ā3 = 0.1 are the nominal values of the unknown parame-
ters. Let the control signal be generated by the twisting controller

u = −30 sign(θ − θd) − 15 sign(θ̇ − θ̇d), (2.29)

where the reference signal is θd = 0.3 sin(3t+ π/4) + 0.3 sin(1/2t+ π).
For a sampling time of δ = 0.0001 the state estimation error is shown in

Fig. 2.11.

Fig. 2.11 x1, x2 estimation error for the LTI case.
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In this case, the identification variables are given by:

zeq = α1signx̃1

Δθ = [−a1 + ā1 − a2 + ā2 − a3 + ā3]
Δθ = [−3.4528 − 0.1020 − 0.4051]

ϕ =

⎡
⎣

sinx1

x2

sign(x2)

⎤
⎦

Let us apply algorithm (2.23). The Fig. 2.12 shows the convergence of the
estimated parameters to the real parameters values.

Fig. 2.12 Parameter identification for the LTI case

2.3 Conclusion

In this section we have shown the utility of high order sliding mode for es-
timation of uncertainties or parameter identification of mechanical system
following. Some simulation example have been given in order to show the
quality of this concept. In the next chapters, the same idea is applied in
order to estimate the dynamics of vehicle and to identify its unknown inputs.



Chapter 3

Vehicle Modeling

Abstract. This chapter is devoted to vehicle modeling. The car is modelized
using matlab simulink. Differents parts of the model such as pneumatic, sus-
pension and wheels are developed. Simulation and experimental results are
presented to show the validity and the quality of the proposed model.

3.1 Introduction

The increasing worldwide use of automobiles has motivated the need to de-
velop vehicles that optimize the use of highway and fuel resources, provide
safe and comfortable transportation and at the same time have minimal im-
pact on the environment. It is a great challenge to develop vehicles that can
satisfy these diverse and often conflicting requirements. To meet this chal-
lenge, automobiles are increasingly relying on electromechanical sub-systems
that employ sensors, actuators and feedback control. Advances in solid state
electronics, sensors, computer technology and control systems during the last
two decades have also played an enabling role in promoting this trend. In
order to develop new strategies for the estimation, diagnosis and control for
the vehicle, it is necessary to develop a modeling stage. This step is a funda-
mental aspect for all applied sciences. Its aim is to establish the relationships
between characteristic variables of the vehicle system. These relations should
represent as accurately as possible the actual behavior of the vehicle.

To theoretically analyze the vehicle dynamics and to design algorithms
for observation and control, the equations of motion must be known and
physical interactions between the various sub-systems must be written in the
form of mathematical equations. For this purpose, two main approaches may
be used: the alternative approach and the physical approach. If the purpose
is to obtain a precise model, methods of theoretical physics are used, if not,
the alternative approach will be implemented.

H. Imine et al.: Sliding Mode Based Analysis, LNCIS 414, pp. 25–59.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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Table 3.1 Nomenclature.

Symbol Physical Meaning

Ωi angular velocity of the wheel
M total mass of the vehicle
ri radius of the wheel i
COG centre of gravity of the vehicle
r1i dynamical radius of the wheel i
Fzi vertical force at wheel i
Fxi longitudinal force applied at the wheel i
Fyi lateral force applied at the wheel i
CF i braking torque applied at wheel i
CMi motor torque applied at wheel i
T orquei CMi −CF i

IZ moment of inertia around the Z axis
ψ yaw angle

ψ̇ yaw velocity
δf front steering angle
δr rear steering angle
δi deflection in the tire i
V x longitudinal velocity of the center of gravity
V y lateral velocity of the center of gravity
Iri moment of inertia of the wheel i
vCOG total velocity of the center of gravity
L1 distance between COG and the front axis
L2 distance between COG and the rear axis
L L1 + L2

hCOG height of COG
tf front half gauge
tr rear half gauge
l tf + tr
Fxwind air resistance in the longitudinal direction
Fywind air resistance in the lateral direction
AL front vehicle area
ρ air density
Caer coefficient of aerodynamic drag
αi slip angle at the wheel i
β side slip angle at the COG
μi friction coefficient at the wheel i
Xt length of the contact patch for the wheel i
Xadherencei length of the adhesion patch for the wheel i
Xslidingi length of the sliding patch for the wheel i
V xi Longitudinal velocity of the wheel i
pi inflation pressure of the tire i
K1i constant depending on the deformation of the tire
K2i constant depending on the deformation of the tire
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Despite the use of the alternative approach in many publications, it is based
on a simplified vehicle model using the smallest possible calculation time. The
approach used in this chapter follows the physical method to obtain a precise
model taking into account the variation of some physical parameters that
influence the stability of the vehicle.

During its motion, the vehicle is subject to moments of different origins
that affect many parts of its structure.

The vehicle motion is mainly determined by the interaction forces between
the tires and the road. These interactions can be decomposed in the contact
surface plane in the form of lateral, longitudinal forces, braking or accelera-
tion, and also a couple of self alignment. Before discussing the origin of these
forces, we can say that their amplitudes depend mainly on the vertical forces
and the adherence of the road. These vertical forces vary with time under
the influence of longitudinal and lateral accelerations.

Several studies found in the literature deal with the problem of ve-
hicle modeling and dynamics ([Gil92], [Dix96], [KN05], [Imi03], [SNA05],
[RMFD06]). In these references we find models with different degrees of free-
dom and different complexity levels (quarter of a vehicle, half a vehicle, and a
complete vehicle). Different developed strategies for control and observation
are done based on these models. The influence of the tire-road interaction
on the vehicle dynamic behavior has been widely studied ([DS70], [BSW77]
and [CBW90]). Analytical models based on the physical description of the
tire contact area deformation phenomenon have been presented in several
references ([GN90], [ZWR90], [ZEP95], [CB98], [CH99], [dwTV+03]).

On the other hand, due to the complexity of the contact area phenomenon,
empirical models have been described by means of experiments ([BNP87],
[Pac89]).

The proposed dynamic vehicle model is nonlinear. Moreover, the kinematic
elements can greatly influence the vehicle dynamic behavior. This is due to
the existing interconnection between different parts of the vehicle. However,
for the sake of simplicity, the complexity of the model may be reduced de-
pending on the type of application and the purpose of modeling. Due to the
complexity of a complete vehicle model, we limit our work to five intercon-
nected subsystems: the chassis, suspension, wheels and their interaction with
the ground, the driver controls and aerodynamic forces. Six degrees of free-
dom are considered for the chassis, including three for translation along the
longitudinal axis, lateral and vertical and three for rotations (roll, pitch and
yaw) and four for the vertical translation of the suspension system and four
for wheel rotation.

Model validation
The model has been validated by two different manners:

• By the simulator (ve)-dynamics developed by the (TESIS) Group [SNA05]
which is a software specially designed for simulating vehicle dynamics in
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real-time applications and offline studies. The validation of this model in-
cludes validation of all the forces acting on each wheel (horizontal, vertical
and lateral), accelerations, velocities and positions of the center of gravity
(translation and rotation), drift angle, the position and rotation velocity
of each wheel.

• By real measurements (which will be presented in the chapter).

In both cases, the model has given reasonable and acceptable results.

Chapter Structure
This chapter is structured as follows: first some conventions (references, axes)
have been introduced and the overall vehicle model is developed. Indeed, the
various motions (translations and rotations) of the center of gravity have
been described. To model these motions, the wheel-road interaction, the sus-
pension system, the input of the driver and the influence of aerodynamics on
the vehicle behavior should be modeled. These models require studies of the
contact surface, the longitudinal forces, lateral and vertical. In the modeling
of these forces, we consider the inflation pressure, sliding, the friction coef-
ficient, drift angle and velocity (linear and angular) of each wheel and the
rolling resistance. After modeling these components, we present a model for
the vehicle side slip angle. Then, some experimental results using an instru-
mented vehicle in order to validate the model have been given and finally
and finally the conclusions of this chapter are presented.

3.2 Coordinate Systems

In any mechanical study, the choice of the coordinate systems is essential
in order to apply the theorems of classical mechanics. Work in vehicle dy-
namics uses both world-fixed and vehicle-fixed coordinate systems. It is often
necessary to use matrix transformation methods to convert back and forth
between the two systems. The following two subsections detail the two coor-
dinate systems used for vehicle modeling.

3.2.1 Fixed Coordinate System R0

In the reference system R0, traditionally X0 is used for the longitudinal axis,
Y0 for the lateral axis, and Z0 for the vertical axis. The axes X0, Y0 and Z0

form a direct trihedral
(see Fig. 3.1).

R0(O,X0, Y0, Z0)
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Fig. 3.1 Fixed coordinate system

3.2.2 Center of Gravity Coordinate System Rc

The center of gravity coordinate system which has its origin at the vehicle
center of gravity is of the utmost importance.

All the vehicle motions are given with reference to this coordinate system.
The equations of motion in vehicle dynamics are usually expressed in the
center of gravity coordinate system, attached to the vehicle center of gravity.
The Xc axis is a longitudinal axis passing through G and directed forward.
The Yc axis goes laterally to the left from the driver’s viewpoint. The Zc axis
makes the coordinate system a righthand triad. To show the vehicle orienta-
tion, we use three angles: a roll angle θ about the Xc axis, a pitch angle φ
about the Yc axis, and a yaw angle ψ about the Zc axis.

Rc = (G,Xc, Yc, Zc)

In order to make the transformation from the fixed coordinate system R0

to the center of gravity coordinate system Rc, a transformation matrix must
be constructed. This transformation matrix is represented by Tr:

Tr = Rψ ×Rφ ×Rθ (3.1)

where Rψ, Rφ and Rθ are respectively the transformation matrices around
ψ, θ and φ which are calculated as follows.

The transition matrix Rψ around the axis Z0 is defined as (Fig. 3.2) :
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Fig. 3.2 Rotation around Z0

Rψ =

⎛
⎝

cos(ψ) sin(ψ) 0
−sin(ψ) cos(ψ) 0

0 0 1

⎞
⎠ (3.2)

The transformation matrix Rφ around the axis Y1 is illustrated in the
Fig. 3.3.

Fig. 3.3 Rotation of R1 around Y1

One obtains:

Rφ =

⎛
⎝
cos(φ) 0 −sin(φ)

0 1 0
sin(φ) 0 cos(φ)

⎞
⎠ (3.3)

The transformation matrix Rθ around the axis X1 is illustrated in the
Fig. 3.4.

Rθ =

⎛
⎝

1 0 0
0 cos(θ) sin(θ)
0 −sin(θ) cos(θ)

⎞
⎠ (3.4)
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Fig. 3.4 Rotation of R2 around X1

Finally we get:

Tr=

⎛
⎜⎜⎜⎜⎝

cos(ψ)cos(φ) (−sin(ψ)cos(φ)
−cos(ψ)sin(θ)sin(φ))

(sin(ψ)sin(φ)
+cos(ψ)sin(θ)cos(φ))

sin(ψ)cos(θ)
(cos(ψ)cos(φ)

+sin(ψ)sin(θ)sin(φ))
(−cos(ψ)sin(φ)

−sin(ψ)sin(θ)cos(φ))
sin(θ) cos(φ)sin(θ) cos(θ)sin(φ)

⎞
⎟⎟⎟⎟⎠

(3.5)

To integrate the inclination angle of the road θroad and the slope angle
of the road φroad, we replace φ by (φ − φroad) and θ by (θ − θroad) in the
transformation matrix.

Fig. 3.5 Vehicle representation
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In order to simulate the vehicle motion, this chapter is focused on the
modeling of the complete vehicle (see Fig. 3.5).

For this reason, the several components that strongly influence the vehicle
dynamics and their characteristic quantities are all presented. Firstly the
chassis, then the wheel-road interaction (the tire and suspension system),
then the controls of the driver applied to the vehicle, i.e. the braking torque,
the acceleration torque and steering angle.

3.3 Chassis Modeling

High rigidity of the vehicle chassis can limit the chassis flexibility study and its
influence on the suspension system and the wheels system. In most cases, and
also in this work, the chassis is considered as rigid. The rigidity of the chassis
helps in supporting axes with articulations of the elastic type. Therefore it
can be considered as a suspended mass. The inertial parameters of the body
are generally represented by:

• Its mass M ,
• Position of the center of gravity G,
• Matrix of inertia I.

The equations of motion of the chassis are obtained by applying the funda-
mental principles of classical physics. This leads to three ordinary differential
equations for the translational motion of the center of gravity and three or-
dinary differential equations for the rotation.

3.3.1 Translation Motion

The sum of external forces applied to a solid body in motion is equal to its
mass M multiplied by its acceleration:

Mv̇COG =
∑

FExternalforces (3.6)

The equilibrium of these forces along the three axes leads to the following
relation:

M

⎛
⎝
V̇x
V̇y
V̇z

⎞
⎠ = Tr ×

⎛
⎝
∑4

i=1 FXi + FaeroX + FGX∑4
i=1 FYi + FaeroY + FGY∑4
i=1 Fzic + FaeroZ + FGZ

⎞
⎠ (3.7)
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with ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

FX1 = Fx1cos(δf ) − Fy1sin(δf)
FY1 = Fx1cos(δf ) + Fy1sin(δf )
FX2 = Fx2cos(δf ) − Fy2sin(δf)
FY2 = Fx2cos(δf ) + Fy2sin(δf )

FX3 = Fx3

FY3 = Fy3
FX4 = Fx4

FY4 = Fy4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.8)

and
⎛
⎝
FGX

FGY

FGZ

⎞
⎠=

⎛
⎝

cos(φroad) sin(φroad)sin(θroad) sin(φroad)cos(θroad)
0 cos(θroad) −sin(θroad)

−sin(φroad) cos(φroad)sin(θroad) cos(φroad)cos(θroad)

⎞
⎠
⎛
⎝

0
0
mg

⎞
⎠

(3.9)
In order to apply these equations we need to know the rotation angles

(ψ, θ, θroad, φ, φroad), the contact forces (Fxi, Fyi and Fzic) and also the
aerodynamic forces(FaeroX , FaeroY and FaeroZ).

3.3.2 Rotational Motion

The equilibrium of the moments around the three axes (Xc, Yc, Zc) gives:

I ×
⎛
⎝
θ̈

φ̈

ψ̈

⎞
⎠ =

⎛
⎜⎜⎝

(Fz1 − Fz2)tf + (Fz3 − Fz4)tr −Mayh
−(Fz1 + Fz2)L1 + (Fz3 + Fz4)L2 +Maxh

(Fy1 + Fy2)L1 − (Fy3 + Fy4)L2+
(Fx2 − Fx1)tf + (Fx4 − Fx3)tf

⎞
⎟⎟⎠ (3.10)

where [θ̈, φ̈, ψ̈] represents respectively the accelerations of the roll angle, the
pitch angle, and the yaw angle. The vehicle matrix of inertia in the frame Rc
is given by:

I =

⎛
⎝
Iθ 0 0
0 Iφ 0
0 0 Iψ

⎞
⎠ (3.11)

The cross moments of inertia are neglected.

3.3.3 Side Slip Angle

When the vehicle is in motion, a deviation between its longitudinal axis and
its motion direction may be produced. This deviation is characterized by the
side slip angle β. This angle is very important to determine the stability of
the vehicle.
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In the electronic control systems, such as Electronic Stability Program
(ESP), or the Dynamic Stability Control (DSC), this angle is used as the
control input reference.

When the vehicle is in a turn, a centripetal force is produced. This force
is expressed as follows:

FCP = −MvCOG(β̇ + ψ̇) (3.12)

Based on the vehicle dynamic modeling in the (X,Y ) plane (see Fig. 3.6),
we obtain :

⎧
⎪⎪⎨
⎪⎪⎩

MV̇ x=Mψ̇V Y −FCP sin(β) + cos(δf )(Fx1+Fx2)

+cos(δr)(Fx3+Fx4)
MV̇ y=−Mψ̇V x−FCP cos(β) + sin(δf )(Fx1+Fx2)

+sin(δr)(Fx3+Fx4)

(3.13)

The longitudinal and the lateral velocities are written as a function of the
side slip angle: {

V x = vCOGcos(β)
V y = vCOGsin(β) (3.14)

×

×

ψ

αδ + αδ +

Fig. 3.6 2D vehicle representation
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Then, we obtain:

β̇ =
1

MvCOG

(
cos(β)

∑
FS − sin(β)

∑
FL

)
− ψ̇ (3.15)

with
∑

FL = cos(δf )(Fx1 + Fx2) + cos(δr)(Fx3 + Fx4) − (3.16)

sin(δf )(Fy1 + Fy2) − sin(δr)(Fy3 + Fy4)

and
∑

FS = sin(δf )(Fx1 + Fx2) + sin(δr)(Fx3 + Fx4) + (3.17)

cos(δf )(Fy1 + Fy2) + cos(δr)(Fy3 + Fy4)

3.4 Suspension Model

The suspension system is part of the vehicle that ensures passenger comfort.
Generally, a good suspension should provide a comfortable ride and good
handling in a reasonable margin of travel. For this, it must keep the wheels
in contact with the road, filter out the irregularities in the road and limit the
amplitudes of deflections [GFP02].

The control system absorbs the road irregularities and ensures the control
due to the flexibility of the suspension. The springs are most often deformed
metallic elements, but there are also rubber, synthetic elastomeric springs. . .
and air springs, whose elasticity is ensured by air or nitrogen. The hydraulic
shock absorbers are equipped with a piston moving inside a cylinder filled
with oil, whose motion is hampered by narrow orifices and elastic valves.
They help reduce the oscillations of the suspension.

On modern cars, the wheels are suspended from the body independently,
because this type of structure eliminates some vibration noise that may occur
during the motion of the vehicle. The suspension model is represented in
Fig. 3.7.

The stiffness and damping coefficients of the wheels are represented re-
spectively by the variables Ki and Bi, i = 1..4.

The anti-roll bar generally serves to limit the motion of body roll in curves
and contributes in the improvement of the vehicle stability and good corner-
ing behavior. If the front wheels go up or down simultaneously, the anti-roll
bar turns freely on its hinge and makes no effort. However, if one of the front
wheels goes up while the other one goes down, the anti-roll bar front will be
twisted and thus exerts a force which tends to oppose the deflection difference
(same scenario for the rear anti-roll bar).
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Fig. 3.7 Vehicle with suspension model

The system includes four road inputs Zr1, Zr2, Zr3 and Zr4. The vertical
displacements of the corners Zc1, Zc2, Zc3 and Zc4 which depend on the
angles φ and θ and the vertical displacement z of the sprung mass as shown
in the following equations:

⎧
⎪⎪⎨
⎪⎪⎩

Zc1 = z − tfsin(θ) + L1sin(φ)
Zc2 = z + tfsin(θ) + L1sin(φ)
Zc3 = z − trsin(θ) − L2sin(φ)
Zc4 = z + trsin(θ) − L2sin(φ)

∣∣∣∣∣∣∣∣
(3.18)

The vertical displacement zi of each side of the sprung mass can be rep-
resented as:

• Front left :

m1z̈1 = K1z +B1ż − (B1 +B1road)ż1 − (K1 +K1road)z1 (3.19)
+K1roadZr1 +B1roadŻr1 −B1tf θ̇cos(θ)

+B1L1φ̇cos(φ) +K1L1sin(φ) −K1tfsin(θ)
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• Front right:

m2z̈2 = K2z +B2ż − (B2 +B2road)ż2 − (K2 +K2road)z2 (3.20)
+K2roadzr2 +B2roadŻr2 +B2tf θ̇cos(θ)

+B2L1φ̇cos(φ) +K2L1sin(φ) +K2tfsin(θ)

• Rear left:

m3z̈3 = K3z +B3ż − (B3 +B3road)ż3 − (K3 +K3road)z3 (3.21)
+K3roadZr3 +B3roadŻr3 −B3tr θ̇cos(θ)
−B3L2φ̇cos(φ) −K3L2sin(φ) −K3trsin(θ)

• Rear right:

m4z̈4 = K4z +B4ż − (B4 +B4road)ż4 − (K4 +K4road)z4 (3.22)
+K4roadZr4 +B4roueŻr4 +B4tr θ̇cos(θ)
−B4L2φ̇cos(φ) −K4L2sin(φ) +K4trsin(θ)

The rear and the front anti-roll bars are represented by their stiffness karr
and karf respectively. They are used to restrict the vehicle rolling motion to
stabilize the vehicle when cornering. The applied torque due to these anti-roll
bars is given by:

Γ = (karr + karf )θ (3.23)

3.5 Wheel/Road Interaction

All the external efforts that are applied on the vehicle, except for the aerody-
namical forces, are generated at the wheel/road interaction. For that reason
the surface of contact with the ground is an important factor.

3.5.1 Contact Surface

The contact surface between the wheel and the ground may be divided into
two parts (brush model):

• The static region, or the adherence Xadherence,
• The dynamic part, or the sliding Xsliding .

The dimensions of this contact surface, where the contact forces are gen-
erated, are important factors needed to calculate these forces and to study
the vehicle stability.
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3.5.2 Vertical Forces

The vertical load supported by the wheels is not constant (see Fig. 3.8).

Fig. 3.8 Suspension model

In fact, many factors may cause the variation of this load such as vehicle
acceleration (deceleration), when the vehicle is in a turn, non symmetrical
distribution of the mass, aerodynamic forces, etc...

• The geometrical load transfer:
The vertical loads are not identically distributed over the four wheels as
described below:
Front left wheel:

Fz1 =
M

2L
×
(
−L2ŸCOG

H

l
− ẌCOGH + gL2

)
(3.24)

Front right wheel:

Fz2 =
M

2L
×
(
L2ŸCOG

H

l
− ẌCOGH + gL2

)
(3.25)
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Rear left wheel:

Fz3 =
M

2L
×
(
−L1ŸCOG

H

l
+ ẌCOGH + gL1

)
(3.26)

Rear right wheel:

Fz4 =
M

2L
×
(
L1ŸCOG

H

l
+ ẌCOGH + gL1

)
(3.27)

with L = L1 + L2 and H = h+ z,
• The elastic load transfer:

The vertical force of the chassis is also expressed in terms of the suspension
system of each wheel. For the wheel i :

Fzic = Ki(Zi − zci) +Bi(Żi − żci) (3.28)

However, to find the vertical force, the suspension model is needed.

3.5.3 Longitudinal Forces

Since the forces applied on the tire then its deformation on a rigid surface is
different from that on a deformed surface (ground). In this work, the road is
assumed to be rigid and consequently no penetration in the road is considered.

The global longitudinal force applied on each wheel is equal to the sum
of all the longitudinal forces acting on its contact surface with the ground.
These forces are generated in the adhesion and the sliding areas.

A unit volume deformation is limited by the friction between the tire and
the road. The maximal friction force acting on the contact surface is given
by:

Fimax = μiFzi (3.29)

So the element of the brush model begins to slide when the deformation
reaches the value presented by the above equation. Therefore the force acting
on the element is equal to μFzi.

Then the simplified longitudinal force is given :

Fxi = μxiFzi (3.30)

The longitudinal force is thus a function of:

• The inflation pressure pi,
• the wheel radius ri,
• the vertical force Fzi,
• the slipping λi,
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• the coefficient of adherence μi,
• the side slip angle of each wheel αi,
• the linear velocity of each wheel(V xi and V yi),
• the friction force Frri,
• the angular velocity of each wheel Ωi.

3.5.3.1 Slipping

The relative velocity of the tire on the ground defines a dimensionless longi-
tudinal slip at the tire-road interaction.
In the case of braking or constant velocity, the longitudinal sliding is ex-
pressed by:

λxi =
V xi − r1iΩi

V xi
(3.31)

The longitudinal slip λxi = 0 characterizes the motion of a free wheel without
longitudinal force. If the wheel is locked (Ωi = 0), then the slipping value is
λxi = 1. However, any tire has a limit beyond which it cannot withstand ad-
ditional transverse force [Pet03]. When the tire reaches the saturation limits,
it slides transversely.

In case of braking or constant speed, the lateral slip is expressed by a
function of the side slip angle:

λyi = tan(αi) (3.32)

In the case of acceleration:

• The longitudinal slip

λxi =
r1iΩi − V xi

r1iΩi
(3.33)

• The lateral slip
λyi = (1 − λxi) tan(αi) (3.34)

In both cases, the global slipping is given by:

λi =
√
λ2
xi + λ2

yi (3.35)

3.5.3.2 Road Adhesion

The road adhesion coefficient μi depends on the sliding of the wheel, its
velocity and its slip angle [KN05]:

μi(λi, vCOG) = (C1i (1 − exp (−C2iλi)) − C3iλi) exp (−C4iλivCOG) (3.36)

Several experiments have been realized. They allow showing how the fric-
tion coefficient varies in function of the vertical load.
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This coefficient can be calculated as follows:

μxi(λi, vCOG) = (C1i (1 − exp (−C2iλi)) − C3iλi)Δ (3.37)

where Δ = exp (−C4iλivCOG) (1 − C5iFz
2
i ).

This function depends essentially on the tire characteristics (quality, usage,
inflation pressure, temperature, etc.), but also on the type of the road cover
which is characterized by the coefficients C1i, C2i and C3i. These coefficients
are assumed known for different types of road cover and are defined as:

• C1i is the maximal value of the friction curve,
• C2i corresponds to the form of the friction curve,
• C3i is the difference between the maximal value of the friction and its value

when it is equal to 1,
• C4i is known and it depends on the maximal velocity of the wheel i,
• C5i determines the influence of the vertical load on the wheel i,
• The adherence coefficient has the following properties:

- μi(0, vCOG, αi) = 0
- μi(0, vCOG, αi) > 0 if λi > 0
Moreover, the variation of the tire friction coefficient μi according to the

longitudinal slip of the wheel has two zones of distinct operations which
we shall call the stable area (0 < λxi < lambdao) and the unstable zone
(λo < lambdaxi < 1) curve of Fig. 3.9.

���

���

Fig. 3.9 Adherence coefficient
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The existence of this unstable area justifies the need for braking control
such as Antilock Braking System (ABS) or Anti Slip Regulation (ASR).

Fig. 3.9 shows how the friction coefficient increases with slipping until it
reaches μH , or it reaches its maximum value. For higher values of slip, the
friction coefficient will decrease to a minimum when the wheel is locked and
only the sliding friction is acting on the wheel.

Fig. 3.10 shows the variation of the road adhesion coefficient versus the
slip by varying the slip angle of the wheel.

�

Fig. 3.10 Adherence coefficient by varing the side slip angle

where:
The solid line red corresponds to longitudinal friction with a side slip angle

of 1 ◦.
The solid line blue corresponds to lateral friction with a side slip angle of

1 ◦.
The dashed line red corresponds to longitudinal friction with a side slip

angle of 2 ◦.
The dashed line blue corresponds to lateral friction with a side slip angle

of 2 ◦.
The dotted line red corresponds to longitudinal friction with a side slip

angle of 3 ◦.
The dotted line blue corresponds to lateral friction with a side slip angle

of 3 ◦.
The velocity of the center of gravity is 20 m/s
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The type the road pavement is asphalt dry.
Fig. 3.11 shows the variation of the adhesion coefficient versus slip by

varying the type of the road surface.

Fig. 3.11 Adherence coefficient by varing the road surface

where:
The solid line red corresponds to longitudinal friction (Dry asphalt).
The solid line blue corresponds to lateral friction (Dry asphalt).
The dashed line red corresponds to longitudinal friction (Dry Cobble-

stones).
The dashed line blue corresponds to lateral friction (Dry Cobblestones).
The dotted line red corresponds to longitudinal friction (Ice).
The dotted line blue corresponds to lateral friction (Ice)
The velocity of the center of gravity is 20 m/s
The type the road pavement is asphalt dry.
Fig. 3.12 shows the friction coefficient as function of the lateral adhesion
The angles found in the figure 3.12 correspond to the side slip angle of the

wheel.
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Fig. 3.12 Lateral adherence coefficient versus the longitudinal adherence coeffi-
cient

3.5.3.3 Wheel Slip Angle

When a rotating wheel is subject to lateral stress, it appears that the surface
of the tire slides on the ground in a direction opposite to that effort.

The deformation of the contact surface creates an angle between the lon-
gitudinal axis of the wheel and the direction of motion as given in the
figure 3.13.

This angle is called the slip angle of the tire. We then say that the
tire is slipping when its trajectory makes an angle relative to its plane of
symmetry.
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α

Fig. 3.13 Slip angle and the contact forces

The slip angle of each wheel is given by:

• front left wheel:

α1 = tan−1

(
V y + L1ψ̇

V x− tf ψ̇

)
− δf (3.38)

• front right wheel:

α2 = tan−1

(
V y + L1ψ̇

V x+ tf ψ̇

)
− δf (3.39)

• rear left wheel :

α3 = tan−1

(
V y − L2ψ̇

V x− trψ̇

)
− δr (3.40)

• rear right wheel:

α4 = tan−1

(
V y − L2ψ̇

V x+ trψ̇

)
− δr (3.41)
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3.5.3.4 Velocities of the Wheels

The longitudinal and lateral velocities of each wheel are calculated by the
following equations:

• front left wheel:

V x1 =
(
V x− tf ψ̇

)
cos(δf ) +

(
V y + L1ψ̇

)
sin(δf) (3.42)

V y1 = −
(
V x− tf ψ̇

)
sin(δf) +

(
V y + L1ψ̇

)
cos(δf ) (3.43)

• front right wheel:

V x2 =
(
V x+ tf ψ̇

)
cos(δf ) +

(
V y + L1ψ̇

)
sin(δf) (3.44)

V y2 = −
(
V x+ tf ψ̇

)
sin(δf) +

(
V y + L1ψ̇

)
cos(δf ) (3.45)

• rear left wheel:

V x3 =
(
V x− trψ̇

)
cos(δr) +

(
V y − L2ψ̇

)
sin(δr) (3.46)

V y3 = −
(
V x− trψ̇

)
sin(δr) +

(
V y − L2ψ̇

)
cos(δr) (3.47)

• rear right wheel:

V x4 =
(
V x+ trψ̇

)
cos(δr) +

(
V y − L2ψ̇

)
sin(δr) (3.48)

V y4 = −
(
V x+ trψ̇

)
sin(δr) +

(
V y − L2ψ̇

)
cos(δr) (3.49)

3.5.4 Lateral Forces

Based on the same idea shown in the description of the longitudinal forces,
the lateral forces are represented by their simplified model. Thus the lateral
force is given:

Fyi = μyiFzi (3.50)
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3.5.5 Aerodynamic Forces

As with any body moving through the air, six components of aerodynamic
forces act on the vehicle: three efforts and three moments [GFP02]. These
components depend on the width, length, surface contact with the air, the
speed of the vehicle and some coefficients depending on the structure and
external shape of the vehicle.

The equations representing the forces [KN05] are given by:

FaeroX = −cventXAL ρ2 (Vx − VventXcos(ψ) − VventY sin(ψ))2

FaeroX = −cventXAS ρ2
(
VY − V ∗

vent)
2sign(−V ∗

vent

)
FaeroZ = 0

(3.51)

where V ∗
wind = −VwindXsin(ψ) + VwindY cos(ψ).

The three moments are given by :
⎧
⎨
⎩
Mxaero = 1

2ρV
2
r SLCaermx

Myaero = 1
2ρV

2
r SLCaermy

Mzaero = 1
2ρV

2
r SLCaermz

∣∣∣∣∣∣
(3.52)

with Vr = Vx + Va if the wind is coming from the front and Vr = Vx − Va
otherwise.

3.5.6 Angular Motions of the Wheels

The wheel model is shown in Fig. 3.14.
The equilibrium of moments for each wheel are given by the following

equations (see [KN05]):
⎧
⎪⎪⎨
⎪⎪⎩

Ir1 × Ω̇1 = −r11 × Fx1 + Torque1
Ir2 × Ω̇2 = −r21 × Fx2 + Torque2
Ir3 × Ω̇3 = −r31 × Fx3 + Torque3
Ir4 × Ω̇4 = −r41 × Fx4 + Torque4

∣∣∣∣∣∣∣∣
(3.53)

where Torquei = CMi − CFi , i = 1..4.
If the vehicle has two rear drive wheels CM1 = CM2 = 0, and if the two

drive wheels are the front wheels then CM3 = CM4 = 0. Iri , i = 1..4, are
the inertia of the wheels.

The motor and the braking torques are assumed to be the inputs of the
model.
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Fig. 3.14 Wheel representation

3.6 Model Validation

Once the model is completed, it should be validated. The most common
method to validate a model is to simulate its behavior and analyze its re-
sponse with respect to different inputs, and then to compare these results
with those of the real system (prototype, validated simulator2026) having
the same inputs. To realize this step, the following questions arise:

• Do the model outputs match the measured data?
• Is the model appropriate to the purpose for which it is built?

Before results analysis and validation, one must clearly understand the
desired aim of the model. In other words, what output should have great
precision, and where may some errors be tolerated?

Several test scenarios should be defined in order to validate the model and
the chosen tests should represent the vehicle behavior in different significant
situations. For example, if the model is needed in order to design the lon-
gitudinal control, a scenario of a straight line motion (acceleration, braking,
constant velocity) should be prepared. For the lateral dynamics, a scenario
of a two lane passage may be used.

The validation step includes:

• velocities (lateral, longitudinal)
• angles (roll, pitch and yaw) and the yaw rate,
• contact forces of each wheel (longitudinal, lateral and vertical)
• slip angle and the vehicle position in the (X,Y, Z) plane of the center of

gravity of the vehicle,
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3.6.1 Simulator Description

The vehicle model which has been developed using Matlab-Simulink is com-
posed of many parts:

- The inputs of the driver: the steering angle, engine torque, acceleration
load and brake pressures;

- aerodynamic resistance: this block is composed of aerodynamic forces;
- Suspensions forces;
- Pneumatic forces.

The validation consists in comparing the simulation results to the
measurements done on the instrumented vehicle 406 in Nantes, France.

The system inputs are coming form driver (steering angle) and from the
road (road profile).

3.6.2 Vehicle Instrumentation

The instrumented vehicle is a Peugeot 406 rolling on the track as shown in
Fig. 3.15.

Fig. 3.15 Instrumented vehicle

The vehicle is equipped with different sensors such as Laser, accelerometer
and inertial central in order to measure the dynamics of the vehicle (see Fig.
3.16).
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Fig. 3.16 Sensors emplacement

These sensors are described in the following subsections.

3.6.2.1 Translation Sensors

In order to record the translation motion, some sensors are installed in the
vehicle. Two laser sensors (Fig. 3.17) are installed in the front of the vehicle.

They are used to measure the distance between the suspension and the
road.

Fig. 3.17 Laser sensor
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The accelerometers allow obtaining the vertical displacement of the sus-
pension after double integration

3.6.2.2 Rotational Sensors

In order to measure the angular motion of the vehicle (roll, pitch and yaw
motion), two gyrometers are placed in the front of the vehicle and two others
in the rear of the vehicle. They measure the roll, pitch and yaw rate. We then
need to integrate these speeds in order to obtain the angles. These positions
are compared with those obtained by the software POS-MV provided by
SIREHNA (3.18).

Fig. 3.18 Central Inertia

3.6.2.3 Displacements Sensors

A differential GPS is also installed in the vehicle, as we can see in Fig. 3.19.
We can then obtain the exact position of the vehicle according to a fixed

reference and follow its trajectory. The vehicle speed is about 72km/h. It is
measured by ”correvit”.
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Fig. 3.19 Differential gps

To obtain the signals, the software POS-MV is used. It allows drawing the
trajectory of the vehicle (positions, speeds...).

Fig. 3.20 and Fig. 3.21 show the installation of the acquisition materials
in the vehicle.

Fig. 3.20 Acquisition material: front of vehicle
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Fig. 3.21 Acquisition material: rear of vehicle

In order to have an indication on the road and to identify the position
of the vehicle, cones are placed each 500m on the track as we can see in
Fig. 3.22.

Fig. 3.22 Cone placement

The detection of the vehicle passing in front of the cone is done using an
optic sensor (Fig. 3.23).
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Fig. 3.23 Optic sensor

The detection cell is represented in Fig. 3.24. After each passage in front
of a cone, one needs to reset this cell.

Fig. 3.24 Detection cell

Fig. 3.25 shows the passage time of the vehicle in front of the cones.
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Fig. 3.25 cone detection

3.6.3 Validation Results

Many tests have been done with different speeds. In this section, the vehicle
rolls at an average speed of 72km/h (20m/s).

In Fig. 3.26 the longitudinal slip is shown.

Fig. 3.26 Longitudinal slip
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One remarks that this slip is very small. That is why a linearization can
be done the road adhesion coefficient μ can be considered as proportional to
the slip λ ( μ = Cλ).

The measured vertical displacements of the four wheels are compared to
those given by the mode in the Fig. 3.27.

Fig. 3.27 Vertical displacements of the wheels

Fig. 3.28 shows the measured and estimated vertical displacement of the
body.

One can note that the estimation of the vertical displacement of the chassis
and the wheels are accurate compared with the measured ones.

The roll angle, pitch angle and its derivatives coming from the model are
compared to those measured by the sensors. The result of this comparison is
shown in the Fig 3.29.

One notices that the variables coming from the model convergence well
toward the measures.

The estimation of the vertical accelerations of the wheels and the body are
shown, respectively, in Fig. 3.30 and Fig. 3.31.

One remarks that the estimated acceleration coming from the model ac-
curately follows the measured one after only 50m (	 2.5s).
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Fig. 3.28 Vertical displacement of the chassis

Fig. 3.29 Roll and pitch angle estimation
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Fig. 3.30 Vertical acceleration of the wheels

Fig. 3.31 Vertical acceleration of the chassis
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The speeds of the wheels are illustrated in Fig. 3.32.

Fig. 3.32 Wheels velocities

One notices that the velocities coming from the model are quite close to
the measured ones.

3.7 Conclusion

In this chapter a dynamic model of vehicle is presented. This model is im-
portant and necessary in order to design the estimation strategies that will
be presented in the following chapters. The presented dynamic model is com-
posed of several interconnected sub-models. Nevertheless, it is noted that
some elements of the vehicle have not been studied. For example, a model
for the power train has not been considered. . . The model is validated by
the simulator ve-dyna, and also by real time measurements using an instru-
mented vehicle. Several validation scenarios have been carried out (straight
line motion, two lane passage). Obtained results are reasonable and one can
conclude then that the model can be used for the development and design of
model based strategies (estimation, control, diagnosis, etc.). That is the aim
of next chapters 3 and 4.



Chapter 4

States and Parameters Estimation

Abstract. In this chapter, a first order SM observer and an observer based on
the adaptation of a quality function have been developed in order to estimate
the vehicle dynamics such as side slip angle, the unknown forces and identi-
fication of parameters of the vehicle. The advantage and the inconvenient of
each method is then noticed

4.1 Introduction

Effective intelligent control systems are implemented on a vehicle to obtain
a certain desired trajectory and to provide safety. For that purpose, a math-
ematical model representing, with a good precision, the states describing the
real system should be obtained, and also corresponding sensors should be
implemented on the vehicle in order to give a correct image of the states.
In fact it is not simple to measure all the states and all the forces due to
the high costs of some sensors, or the non existence of some others. That
is why observers for state estimation and parameter identification should be
designed to be an intermediate stage before the control.

Braking and traction control systems must be able to stabilize the car
during cornering or in critical situations. For this reason important researches
have been performed on the study of traction and braking control, sliding
control using SM techniques or using Lageurre approach ([UK99], [SOA05a]).
Nevertheless, for complicated analytical models the control design for the
global vehicle is complicated due to the presence of contact forces which
have complex forms. To avoid these complications, and the high costs of
the sensors measuring these forces, estimation and identification strategies
are proposed. Another important term which is used for the control is the
side slip angle, which is a key variable in vehicle dynamics. In the Electronic
Stability Program (ESP) or the Dynamic Stability Control (DSC) the vehicle
side slip angle is used as a control reference.

H. Imine et al.: Sliding Mode Based Analysis, LNCIS 414, pp. 61–81.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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Table 4.1 Nomenclature.

Symbol Physical Meaning

Ωi angular velocity of the wheel
M total mass of the vehicle
ri radius of the wheel i
COG center of gravity of the vehicle
r1i dynamical radius of the wheel i
Fzi vertical force at wheel i
Fzi0 vertical nominal Force of the wheel i
Fxi longitudinal force applied at the wheel i
Fyi lateral force applied at the wheel i
Cfi braking torque applied at wheel i
Cmi motor torque applied at wheel i
torquei Cmi + Cfi

IZ moment of inertia around Z axis
ψ yaw angle

ψ̇ yaw velocity
δf front steering angle
δr rear steering angle
V x longitudinal velocity of the center of gravity
V y lateral velocity of the center of gravity
ax longitudinal acceleration of the center of gravity
ay lateral acceleration of the center of gravity
Iri moment of inertia of the wheel i
vCOG total velocity of the center of gravity
L1 distance between COG and the front axis
L2 distance between COG and the rear axis
L L1 + L2

Cij tire side slip constants (i:front (F), rear (R),j:right (R), left (L))
XCOG longitudinal position of COG in a fixed reference
YCOG lateral position of COG in a fixed reference
αij slip angle of the wheel i
β slip angle of the COG
H height of COG
tf front half gauge
tr rear half gauge
Fxwind air resistance in the longitudinal direction
Fywind air resistance in the lateral direction
AL front vehicle area
ρ air density
Caer coefficient of aerodynamic drag
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However, the vehicle side slip angle cannot be measured with standard
sensors. Several approaches can be found in the literature for the estimation
of the vehicle side slip angle ([HCB+01], [SCD05]) in which a bicycle model is
used for the vehicle. For small lateral acceleration their observers show good
results, but for larger lateral acceleration, however, the bicycle model is no
longer capable of describing the vehicle side slip angle properly. Consequently
the observers do not provide a good estimation any more.

In [VHK05], an observer with adaptation of a quality function is used for
the estimation of the vehicle side slip angle using a model linearized around
the states.

The main contributions of this work reside in the estimation of wheel con-
tact forces with the ground, vehicle side slip angle and velocities using a
complete model and taking as inputs only some measurements. These esti-
mations are made using two classes of SM observers.

• In the first part, the estimation of the angular velocity and the identifica-
tion of the longitudinal force of each wheel are realised using a second-order
SM observer based on the modification of the super-twisting algorithm
with finite time convergence. Only partial knowledge of the system model
is required.
Due to the finite time convergence of the observer and the properties of
equivalent control, the proposed observer allows solving simultaneously
the presented identification problems.

• In the second part, the identified longitudinal forces are used as inputs.
The vehicle side slip angle is estimated using a classical SM observer and
then compared to the one estimated by an observer with adaptation of a
quality function used in [VHK05]. Lateral forces at the contact areas are
also deduced by applying the simplified relations relating them to side slip
of each wheel [KN05]. Vertical forces are estimated using measurements
of the accelerations (lateral and longitudinal). Finally, the position of the
contact point (the center) of each wheel on the surface of contact with the
ground can be found in order to be injected in the equation representing
the yaw rate.

SM observer designs have been proposed by various authors; they have re-
ceived much attention recently and have been shown to be effective when
applied to nonlinear systems (see for example recent tutorials ([ESH02],
[BDB03], [Poz03]). These types of observers are widely used due to their finite
time convergence, robustness with respect to uncertainties and the possibility
of uncertainty estimation.

On the other hand the use of first order sliding mode observers for me-
chanical systems with unknown inputs based on standard first order sliding
mode approach have the following disadvantages:

1. for the observation of velocity, filtration is needed,
2. for the uncertainties and parameter identification a second filtration is

necessary, leading to a bigger corruption of results.



64 4 States and Parameters Estimation

In [Lev98], a robust exact differentiator was designed as an application of
the second order sliding mode super twisting algorithm [Lev93] ensuring the
best possible approximation of the derivative for a given sampling step and
level for deterministic noise. These differentiators are, for example, success-
fully used in ([Ram02], [BPPU03]).

In [DFL05b] it is shown that the second order sliding mode observers
provide the best possible approximation of the velocity for the given sampling
step or measurement step.

Simulations results are compared with those obtained using the simulator
ve-dyna.

The chapter is organized as follows: in section 2, the problem statement is
discussed. Section 3 shows the modeling of the vehicle in the (X, Y) plane.
In section 4, the second order SM observer is proposed. At the end of this
section, simulations and comments are made. In section 5, a reduced model is
used for the global vehicle, and it is validated by the simulator ve-dyna. In
this section, a classical first order SM observer and an observer based on the
adaptation of a quality function are presented in order to estimate the side
slip angle of the center of gravity. Then, velocities of the center of gravity
and lateral contact forces are directly found and validated by the simulator.
At the end of this section, simulations and comments are made. Finally in
section 6 a conclusion is shown.

4.2 Problem Statement

The task is to design a virtual sensor (observer) for the vehicle in order to esti-
mate someunknownparameters, states and forceswhen it is not easy tomeasure
all of them, be it for cost purposes or for the complexity of their implantation.
Some example are contact forces with the ground, side slip angle, lateral and
longitudinal velocities, all of which are needed especially in fields of diagnosis
and control. For that reason, several steps are proposed (see Fig. 4.1):

1. estimate the angular velocity of each wheel, and identify the longitudinal
forces which are assumed as unknown inputs. In this part a second-order
SM observer based on the modification of the super twisting algorithm is
used,

2. to use the results of the first estimation as inputs to the second step, a
classical SM observer and an observer based on the adaptation of a quality
function are used for the estimation of the side slip angle of the center of
gravity of the vehicle using the complete vehicle model. Observers results
are compared.

3. find the lateral and the longitudinal velocities of the center of gravity using
validated relations relating them through the side slip angle,

4. find the side slip angle of each wheel based on the above estimated values,
5. find the lateral forces using the relations relating them to the side slip

angle of each wheel,
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Fig. 4.1 Graphical description of the proposed work
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4.3 A Second Order Sliding Mode Observer Design

In this part, the angular velocities equations are used to estimate the longi-
tudinal force and the angular velocity of each wheel. Furthermore, a second
order SM observer based on the modification of super-twisting algorithm
[DFL05b] is proposed. It takes as measured values the angular position of
each wheel and the applied torques and assumes that the longitudinal forces
are unknown inputs to be identified.

We have seen in the chapter 2 that the equations for the angular velocity
of the wheels are given by:

⎧⎪⎪⎨
⎪⎪⎩

Ir1 × Ω̇1 = −r11 × Fx1 + torque1
Ir2 × Ω̇2 = −r12 × Fx2 + torque2
Ir3 × Ω̇3 = −r13 × Fx3 + torque3
Ir4 × Ω̇4 = −r14 × Fx4 + torque4

(4.1)

where Ωi and Ω̇i are the angular position and the angular velocity of the
wheel i, .i = 1..4, torquei is the applied torque and Fxi is the longitudinal
force.

The dynamic equations of the wheels 4.1 can be rewritten in the following
state form: {

ẋ1 = x2

ẋ2 = f(t, x1, x2, u) (4.2)

where x1 = [Ω1, Ω2, Ω3, Ω4] and x2 = [Ω̇1, Ω̇2, Ω̇3, Ω̇4].
The proposed observer has the following form (see the chapter 1):

{ ˙̂x1 = x̂2 + z1
˙̂x2 = f1(t, x1, x̂2, u) + z2

(4.3)

where x̂1 and x̂2 are the state estimations of the angular positions and the
angular velocities of the four wheels respectively, f1 is a nonlinear function
containing only the known terms, z1 and z2 are the correction factors based
on the super twisting algorithm defined in the previous chapter 1.

This observer ensures the finite time convergence of the estimated states
to the real states i.e. (x̂1, x̂2) → (x1, x2) [DFL05b].

4.3.1 Unknown Parameter Identification

The convergence of x2 in a finite time ensures that the equality

˙̃x2 = F (t, x1, x2, x̂2, u) − z2 = 0
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holds after some finite time, i.e. when f1(t, x1, x̂2, u) converges to the known
part of f(t, x1, x2, u), z2 will be equal to the unknown part, which is assumed
from equations 4.1 to be equal to (−ri/Ii)×Fxi, so the longitudinal force of
the wheel can be found after filtering through a low-pass filter.

4.3.2 Simulation Results

Simulations are made and results are compared by those provided by sim-
ulator ve-dyna. The same observer is applied on the four wheels but, for
sake of similarity, we present only one observer corresponding to the front
left wheel.

The simulator uses a car with two rear wheel drives.
The Fig. 4.2 shows the input torque for the two rear wheels and Fig. 4.3

the torque for the two front wheels.

Fig. 4.2 Motor and braking torque (N.m) applied at the two rear wheels

In Fig. 4.4 and Fig. 4.5 the angular position θ1 and angular velocity w1

given by the simulator ve-dynaand those computed by the proposed observer
are compared.

In these figures, one remarks the quick convergence of the observer in spite
of the initial values: θ10 = 0 radians, θ̂10 = 50 radians, w10 = 0 rad/sec and
ŵ10 = 100 rad/sec.

The values used for the observer are α = 420 and λ = 1.5
√

420.
In Fig. 4.6, the unknown function is filtered through a low pass filter.
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Fig. 4.3 Motor and braking torque (N.m) applied at the two front wheels

Fig. 4.4 Angular position (rad) by the simulator ve-dyna (dashed line), and that
estimated by the observer (solid line)
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Fig. 4.5 Angular velocity (rad/sec) by the simulator ve-dyna (dashed line), and
that estimated by the observer (solid line)

Fig. 4.6 The unknown input after filtration (N) (solid line), and the longitudinal
force from the simulator (dashed line)
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One notices that the filtered function approximately coincides with the
longitudinal force given by the simulator.

4.4 Side Slip Angle

In order to estimate vehicle side slip angle, the wheel side forces are approx-
imated to be proportional to the tire side slip angles αij :

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Fy1 = CFL × αFL = CFL ×
(
δf − β − L1×ψ̇

vCOG

)

Fy2 = CFR × αFR = CFR ×
(
δf − β − L1×ψ̇

vCOG

)

Fy3 = CRL × αRL = CRL ×
(
−β + L2×ψ̇

vCOG

)

Fy4 = CRR × αRR = CRR ×
(
−β + L2×ψ̇

vCOG

)
(4.4)

Then, the model of the vehicle will be rewritten as:

v̇COG = 1
M {(Fx1 + Fx2)cos(δf − β) − (CFL + CFR)

(δf − β − L1ψ̇
vCOG

)sin(δf − β)+
(Fx3 + Fx4 − CaerALv

2
COG

ρ
2 )cos(β)+

(CRL + CRR)
(
−β + L2ψ̇

vCOG

)
sin(β)

} (4.5)

β̇ = 1
MvCOG

{(Fx1 + Fx2) sin(δf − β) + (CFL + CFR)

(δf − β − L1ψ̇
vCOG

)cos(δf − β)−
(Fx3 + Fx4 − CaerALv

2
COG

ρ
2 )sin(β)+

(CRL + CRR)
(
−β + L2ψ̇

vCOG

)
cos(β)

}
− ψ̇

(4.6)

ψ̈ = 1
IZ

{(L1 − nlfcos(δf ))(Fx1 + Fx2)sin(δf )+

(δf − β − L1ψ̇
vCOG

)cos(δf )(CFL + CFR)
(L1 − nlf )cos(δf )) + tf (Fx2 − Fx1)cos(δf )
−tf(CFR − CFL)

(
δf − β − L1ψ̇

vCOG

)
sin(δf)

−(L2 + nlr)(CRL + CRR)
(
−β + L2ψ̇

vCOG

)

+tr(Fx4 − Fx3)}

(4.7)

where the positions of the centers of the contact patches nlf and nlr that are
used in 4.7 have been calculated as follows.

{
nli = 1

2

(
l0 + l1

Fzi

Fz0

)

nsi = 3nlitan(αij) + Fzi

cpress

(4.8)

The positions of the centres of the contact are shown in the Fig. 4.7.
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Fig. 4.7 Position of the center of contact with the road

Due to the existence of the sensors measuring the accelerations (accelerom-
eters) and that of the height of the center of gravity, the vertical forces of
each wheel can be calculated by applying these relations:
For the front left wheel:

FZFL =
1
2
M

(
L2

L
− H

L
ax

)
−M

(
L2

L
− H

L
ax

)
H.ay
tf .g

(4.9)

For the front right wheel:

FZFR =
1
2
M

(
L2

L
− H

L
ax

)
+M

(
L2

L
− H

L
ax

)
H.ay
tf .g

(4.10)

For the rear left wheel:

FZRL =
1
2
M

(
L2

L
+
H

L
ax

)
−M

(
L2

L
+
H

L
ax

)
H.ay
tf .g

(4.11)

For the rear right wheel:

FZRL =
1
2
M

(
L2

L
+
H

L
ax

)
+M

(
L2

L
+
H

L
ax

)
H.ay
tf .g

(4.12)

Using the three differential equations 4.5, 4.6 and 4.7, one can define the
nonlinear state space model as:

ẋ = f(x, u) (4.13)

where
x =

[
vCOG β ψ̇

]
(4.14)

The control input vector is:

u = [Fx1 Fx2 Fx3 Fx4 δf ] (4.15)
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and the output vector is defined by:

y =
[
vCOG ψ̇

]
(4.16)

The proposed model for the side slip angle and the yaw rate is validated
by the simulator ve-dyna. It is seen that the reduced model is valid in all
the tested cases using simulator. A two lane trajectory is used to validate the
model. The input for the steering angle is shown in the figure 4.8 and the
input rear wheels torque is represented in the figure 4.9.

Fig. 4.8 The input steering angle (radians)

Fig. 4.9 The input torque applied at the two rear wheels (N.m)



4.4 Side Slip Angle 73

The output of the model gives the side slip angle 4.10 and the yaw rate
4.11.
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Fig. 4.10 Validation side slip angle (rad/sec) of the proposed model and that of
the simulator ve-dyna
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Fig. 4.11 Validation yaw rate (rad/sec) of the proposed model and that of the
simulator ve-dyna

4.4.1 Two Track Model and Observability Study

In this part, the sliding mode observer is compared to the observer with
adaptation of a quality function which is restricted to models with specific
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structure, so the model may be written as a reduced nonlinear two track
model ([KN05], [VHK05]):

ẋ = A(x, u)x+B(x, u)u
y = C(x, u)x (4.17)

As described clearly in [KN05] and in order to restructure the nonlinear
double track model the differential equations 4.5, 4.6 and 4.7, or the three
state variables, are linearized with respect to the unknown vehicle side slip
angle β.

The equation 4.7 for the yaw rate is a linear function with respect to β.
The effect of the linearization of the other two equations was analyzed by the
of simulations for several test drives. For the side slip angle, the linearized
state and the original nonlinear one are almost identical. For the velocity,
however, there are significant deviations. Consequently, the velocity is no
longer regarded as a state space variable but as an input variable, and thus
the corresponding differential equation is no longer required and the system
order reduces from 3 to 2. The new state space variables are:

x =
[
β ψ̇

]
(4.18)

and the six input variables are

u = [Fx1 Fx2 Fx3 Fx4 δf vCOG] (4.19)

Then, equation 4.17 will be rewritten as

ẋ = A(y, u∗)x+B(u∗)
y = C(x, u∗) = Cx = [0 1]x (4.20)

with

A =
[
a11 a12

a21 a22

]

a11 = 1
MvCOG

{(CFL + CFR)[−cos(δf ) + sin(δf )(δf
− L1ψ̇
vCOG

] − (CRL + CRR) − (Fx3 + Fx4−
CaerAL

ρ
2v

2
COG) − (Fx1 + Fx2)cos(δf )

}

a12 = 1
Mv2COG

{L2(CRL + CRR)−
L1cos(δf )(CFL + CFR)} − 1

a21 = 1
IZ

{
− 2tf

2 sin(δf )(CFL − CFR)−
(CFL − CFR)(L1 − nlfcos(δf ))cos(δf )+
(CRL + CRR)(L2 + nlr)}
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a22 = 1
IZvCOG

{
− 2tfL1

2 sin(δf)(CFL − CFR)−
L1(CFL + CFR)(L1 − nlfcos(δf ))cos(δf )−
L2(CRL + CRR)(L2 + nlr)}

and

B =
[
b1
b2

]

b1 = 1
MvCOG

{δfcos(δf )(CFL + CFR)+
sin(δf )(Fx1 + Fx2)}

b2 = 1
IZ

{
− 2tf

2 cos(δf )(Fx2 − Fx1) + δfcos(δf )
(CFL + CFR)(L1 − nL1cos(δf )) + (Fx2 + Fx1)
sin(δf )(L1 − nL1cos(δf )) + (CFL − CFR)
δf tfsin(δf ) + (Fx4 − Fx3)tr}

Before designing the sliding mode observer, the observability of the model
must be investigated and tested. The criteria for the observability of nonlinear
systems can be found in [Zei87].

The observability definition is local and uses the Lie derivative. It is a
function of state trajectory and inputs applied to the model. For the system
described by equation 4.20 the observability function is:

observability(x, u∗) =

⎡
⎣

C(x)
LfC(x, u∗)
L2
fc(x, u)

⎤
⎦

where

LfC(x, u∗) = dcj(x)
dx f(x, u∗)

The system is observable if its Jacobian matrix Jobservability has a full rank
(which is 2 in our case).

Jobservability = d
dxobservability(x, u)

By applying these notions to the system described by equation 4.17, we
see that its rank is 2 and it is therefore observable.

4.4.1.1 Sliding Mode Observer Design

The proposed sliding mode observer is:
{ ˙̂x = A(y, u∗)x̂+B(u∗) +Δsign(y − ŷ)
ŷ = Cx̂

(4.21)
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where Δ is the gain of the sliding mode observer. The convergence of this
observer is explained briefly in [ILMD01] in which the same type of observer
is used for a bicycle model.

4.4.1.2 Observer by Adaptation of a Quality Function

The basic idea of the observer of adaptation of a quality function is the
adaptation of a quality function of the nonlinear estimation error dynamics
to the one of a linear reference system.

{ ˙̂x = A(y, u∗)x̂+B(u∗) + L(y, u∗)(y − ŷ)
ŷ = Cx̂

(4.22)

The differential equation for the estimation error becomes [VHK05]:

˙̃x = [A(y, u∗) − L(y, u∗)C] x̃ (4.23)

For the determination of an appropriate observer gain L(y, u∗), the non-
linear estimation error is adapted to a linear reference model. This reference
model is derived by linearizing the nonlinear state space model 4.20 around
an equilibrium point(xR, u∗R).

4.4.2 Comparison between the Observers

The main differences between the proposed observer and the nonlinear ob-
server with adaptation of a quality function are:

1. the nonlinear observer with adaptation of a quality function needs to lin-
earize the equation 4.20 around an equilibrium point which is to be found.

2. the simplicity of the sliding observer in its construction and the proof of
its convergence.

3. the fast convergence velocity of the sliding mode observer: at each iteration
the nonlinear observer with adaptation of a quality function calculates its
gain while the sliding mode observer takes the same value for its gain for
a certain process.

4.4.3 Simulation Results and Discussions

In this part, the estimated vehicle side slip angle using the sliding modes
observer and using the observer with adaptation of a quality function are
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compared to that of the simulator ve-dyna. It is seen that the errors are
practically very small and may be neglected. Several simulations are made
covering most of drive cases; two simulations are shown where the side slip
angle varies strongly. The gains of the observers are chosen as follows:

For the sliding mode observer Δ=20. For the observer of the adaptation
of a quality function:

L(y, u∗) =
[

1.41 0.33 1 0
−0.10 1.03 0 1

]
⎡
⎢⎢⎣
a11

a12

a21

a22

⎤
⎥⎥⎦ +

[
109.9
117.4

]

Good and reasonable results are shown.
A simulation of 20 seconds is made, taking as inputs those defined in the

figures 4.8 and 4.9.
The simulation results are shown in the figures 4.12, 4.13, 4.15 and 4.14.

Fig. 4.12 Reconstructed yaw using sliding modes obserever and that of the simu-
lator ve-dyna

By estimating the slip angle of the center of gravity, and taking its global
velocity as an input value (this value can be calculated directly from the
velocities of the wheels), the velocities of the center of gravity in (X,Y ) can
be directly found by:

The lateral velocity:
V y = vCOGsin(β) (4.24)

The result of this estimation is shown in the figure 4.16.
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Fig. 4.13 Estimated side slip angle using sliding modes and that of the simulator
ve-dyna

Fig. 4.14 Estimated yaw rate using observer with adaptation quality function and
that of the simulator ve-dyna
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Fig. 4.15 Estimated side slip angle using observer with adaptation of a quality
function and that of the simulator ve-dyna

Fig. 4.16 Estimated vy (m/sec) and that of the simulator ve-dyna
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Fig. 4.17 Estimated vx (m/sec) and that of the simulator ve-dyna

Fig. 4.18 Estimated lateral force (N) for the front left wheel and that of the
simulator ve-dyna
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The longitudinal velocity which coincides with that of the simulator is
calculated using:

V x = vCOGcos(β) (4.25)

The estimation of V x is shown in the figure 4.17.
The lateral forces can be calculated using the equations defined in 4.4.
The result of estimating of the lateral force of the front left wheel is shown

in the figure 4.18.

4.5 Conclusion

The estimation of vehicle parameters, states and forces, which need expensive
measuring devices (expensive sensors), are presented in this chapter. In this
work, two classes of sliding mode observers are used:

1. A second order sliding mode with a super-twisting algorithm observer is
used in order to design the angular velocity observer for each wheel of the
vehicle, and then to identify longitudinal forces between the wheels and
the road.

2. A classical sliding mode observer is used in order to estimate the side slip
angle of the center of gravity of the vehicle, and then to find its velocities
in the (X,Y ) plane and the lateral force of each wheel.

The use of the second order sliding mode observer allows to solve the prob-
lems of disturbance and parameters identification which appear in the first
part. In the second part, a classical sliding mode observer is used to estimate
the side slip angle of the center of gravity, then, comparison between the pro-
posed observer and an observer with adaptation of a quality function is made.
Velocities of the center of gravity and the lateral forces are deducted directly
after the side slip angle. Vertical forces can be found by using measurements
of the accelerations given by the accelerometers. Simulations to demonstrate
the performance of the proposed sliding mode observers are made and their
efficiency are shown by the comparison with the output of the simulator
ve-dyna.



Chapter 5

Estimation of Road Profile and
External Forces as Unknown Inputs

Abstract. This chapter is devoted to the application of sliding mode ob-
servers to estimate the unknown inputs of the road. Vehicle motion simu-
lation accuracy, such as in accident reconstruction or vehicle controllability
analysis on real roads, can be obtained only if valid road profile and tire-road
friction models are available. Regarding road profiles, a new method based
on Sliding Mode Observers has been developed and is compared to two iner-
tial methods. Experimental results are shown and discussed to evaluate the
robustness and the quality of the proposed approach.

5.1 Introduction

Road profile unevenness through road/vehicle dynamic interaction and ve-
hicle vibration affects safety (tyre contact forces), ride comfort, energy con-
sumption and wear. The road profile unevenness is consequently a basic in-
formation for road maintenance management systems [VP91]. In order to
obtain this road profile, several methods have been developed. Measurement
of road roughness has been a subject of numerous research for more than 70
years ([Har83], [MW86], [Mis90]). Methods developed can be classified into
two types: response type and profiling method. Nowadays profiling methods
giving a road profile along a measuring line are generally preferred. These
methods belong to two basic techniques: rolling beam or inertial profiling
method. The last method, which was first proposed in 1964 [SK64], is now
used worldwide. Inertial profiling methods consist in analyzing the signal
coming from displacement sensors and accelerometers ([Kar84], [GSH87]).
One problem with the inertial profiling method, as currently used, is that
it is impossible to build a 3D profile from elementary measurements needed
for road/vehicle interaction simulation package. It is worthwhile mentioning
that these methods do not take into consideration the dynamic behavior of
the vehicle. However, it has been shown that modifications of the dynamic
behavior may lead to biased results.

H. Imine et al.: Sliding Mode Based Analysis, LNCIS 414, pp. 83–102.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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Finding a way to get a 3D profile from the dynamic response of an in-
strumented car driven on a chosen road section is the general purpose of a
research carried out at Roads and Bridges Central Laboratory (in French:
LCPC) in cooperation with the Robotics Laboratory of Versailles (in French:
LRV) [Imi03].

The proposed method estimates the unknown inputs of the system corre-
sponding to the height of the road through the use of sliding mode observers
([BZ88], [XG88], [Dra92], [BBD96], [DBB99], [DB02]).

Design of such observers requires a dynamic model. As a first step, a
dynamic model of a vehicle is built up ([Men97], [Imi03]). This model has been
experimentally validated comparing the estimated and measured dynamics
in the response of a Peugeot 406 vehicle (as a test car). The longitudinal
forces which depend on the road adhesion coefficients are estimated using a
sliding mode observer (see [Can98], [IDM03]).

The second section of this chapter deals with the vehicle description and
modeling. Then the observer design is presented in the third section in order
to estimate the unknown inputs. Some simulation and experimental results
are given in this section. The estimation of unknown forces is presented in
the section four and a second approach to estimate the unknown inputs is
presented. The main experimental results are presented in order to show
the accuracy of the estimated road profile coming from the observer based
method. Finally, the last section concludes on the effectiveness of the pre-
sented methods.

5.2 Vehicle Modeling

In this section, we are interested in the excitations of pavement and the
vehicle/road interaction. The model is established while making the following
simplifying hypotheses:

- The vehicle is rolling with a constant speed.
- The wheels are rolling without slip and without contact loss.

The vertical motion of the vehicle model can be described by the following
equation:

M q̈ + C q̇ +Kq = AU +Ω, (5.1)

where q =
[
z1 z2 z3 z4 z θ φ ψ

]T is the coordinates vector , q̇ represent the
velocities vector and q̈ the accelerations vector.

The vector U =
[
u1 u2 u3 u4 u̇1 u̇2 u̇3 u̇4

]T is the road inputs vector.
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The vector Ω = [0 0 0 0 0 0 0 f(δf , β)]T is a function of the steering angle
δf and the side slip angle β. The function f(δf , β) is given by:

f(δf , β) = −2(r1Cyf − r2Cyr)β + 2r1Cyfδf . (5.2)

M ∈ R
8×8 represent the mass matrix:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 0 0 0 0 0 0 0
0 m2 0 0 0 0 0 0
0 0 m3 0 0 0 0 0
0 0 0 m4 0 0 0 0
0 0 0 0 m 0 0 0
0 0 0 0 0 Jxx 0 0
0 0 0 0 0 0 Jyy 0
0 0 0 0 0 0 0 Jzz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.3)

where mi is the mass of the wheel i, m is the spring mass, Jxx, Jyy and
Jzz are respectively the moments of inertia along X , Y and Z axis.
C ∈ R

8×8 is the damping matrix:

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(B1 +Br1) 0 0 0 −B1 C16 C17 0
0 (B2 +Br2) 0 0 −B2 C26 C27 0
0 0 (B3 +Bf1) 0 −B3 C36 C37 0
0 0 0 (B4 +Bf2) −B4 C46 C47 0

−B1 −B2 −B3 −B4 C55 C56 C57 0
B1pr −B2pr B3pf −B4pf C65 C66 C67 0
B1r2 B2r2 −B3r1 −B4r1 C75 C76 C77 0
C81 C82 C83 C84 C85 C86 C87 C88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.4)

The matrix K ∈ R
8×8 is function of spring coefficients:

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1 + kr1 0 0 0 −k1 k1pr k1r2 0
0 k2 + kr2 0 0 −k2 −k2pr k2r2 0
0 0 k3 + kf1 0 −k3 k3pf −k3r1 0
0 0 0 k4 + kf2 −k4 −k4pf −k4r1 0

−k1 −k2 −k3 −k4 K55 K56 K57 0
k1pr −k2pr k3pf −k4pf K65 K66 K67 0
k1r2 k2r2 −k3r1 −k4r1 K75 K76 K77 0
K81 K82 K83 K84 K85 K86 K87 K88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.5)

The matrix A ∈ R
8×8 is composed of spring and damping coefficients:
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A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kr1 0 0 0 Br1 0 0 0
0 kr2 0 0 0 Br2 0 0
0 0 kf1 0 0 0 Bf1 0
0 0 0 kf2 0 0 0 Bf2

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.6)

We then rewrite the model in the state form as (5.1) :
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 = q
ẋ1 = x2

ẋ2 = ẍ1 = q̈ = M−1(−Cx2 −Kx1 +Ax3 +Ω)
ẋ3 = x4 = U̇
y = x1

. (5.7)

where y is the output vector:

y =
[
z1 z2 z3 z4 z θ φ ψ

]T
. (5.8)

In the following section, a sliding mode observer is developed in order to
estimate the unknown inputs of the system.

5.3 Sliding Mode Observer and Estimation of
Unknown Inputs

The construction of the observer is done using 3 steps as we explain in this
section. After that, we present and we discuss some simulation results.

5.3.1 Observability Study

In order to study the observability of the system (5.1), let us define the
functions f and h as:

{
f(x, U) = M−1(−Cx2 −Kx1 +AU +Ω)
y = h(x) . (5.9)

where x = (x1,x2)T is a vector of dimension n.
The system is considered to be observable if the matrix MO defined below

is of rank n (see [Bou97]) (in our case n = 16):
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MO =

⎡
⎢⎢⎢⎢⎢⎢⎣

dh(x)
dLfh(x)

...

...
dLf 15h(x)

⎤
⎥⎥⎥⎥⎥⎥⎦
. (5.10)

where dh = ( ∂h∂x1
, ∂h∂x2

, ..., ∂h
∂x16

) and Lf(h)(x) =
16∑
i=1

fi
∂h
∂xi

.

The calculation of this matrix using Matlab shows that the rank of MO
is 16. We deduce that the system (5.1) is observable.

5.3.2 Observer Design

This section is devoted to sliding mode observer design in order to estimate
the vectors q̇ and q̈ and to then reconstruct the unknown inputs vector U
([SHM86], [ILMD02a]).

Before developing the observer, we notice that the system satisfies the
following hypothesis:

a) The state of the system is bounded (‖ x(t) ‖<∞ ∀ t ≥ 0). The vehicle
states are bounded.

b) The system is input bounded (for i = 1..4 a constant μi ∈ R

existssuchthat ‖u̇i‖ < μi);
c) The amplitude of the inputs representing the road are very low and not

greater than 10−3m. We can then assume that their accelerations are small
and neglected ẍ3 = ẋ4 = Ü = 0.

Assuming that the dynamic parameters of the vehicle are well known, we
can write the observer as:

⎧
⎪⎨
⎪⎩

.

x̂1 = x̂2 +H1sign(x̃1)
.

x̂2 = M−1(−Cx̂2 −Kx̂1 +Ax̂3 +Ω) +H2sign(x̃1)
.

x̂3 = x̂4 +H3sign(x̃1)

. (5.11)

where x̂i represents the observed state vector of xi.
Hi ∈ R

8×8, i = 1, 2, are diagonal positive gains matrices and the ”sign”
are defined as follows:

⎧
⎨
⎩
H1 = diag{H11, H12 , H13 , H14 , H15 , H16 , H17 , H18}
H2 = diag{H21, H22 , H23 , H24 , H25 , H26 , H27 , H28}
sign(x̃1) = diag{x̃11 , x̃12 , x̃13 , x̃14 , x̃15 , x̃16 , x̃17 , x̃18}T

∣∣∣∣∣∣
(5.12)

The matrix H3 ∈ R
8×8 is to be defined during the convergence study.

The estimation error of the variable xi is obtained by:
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x̃i = xi − x̂i, i = 1..3. (5.13)

The dynamic error of the observer is obtained through the difference be-
tween systems (5.7) and (5.11) as following:

⎧
⎪⎨
⎪⎩

.
x̃1 = x̃2 −H1sign(x̃1)
.
x̃2 = −M−1(C x̃2 +K x̃1) +M−1A x̃3 −H2sign(x̃1)
.
x̃3 = x̃4 −H3sign(x̃1)

. (5.14)

5.3.3 Convergence Study

As we showed previously, and in order to study the convergence of the ob-
server, we proceed step by step. We first prove the convergence of the position
(x̃1 = 0). We must prove that the sliding surface is attractive (x̃1 = 0). Then,
we will study the convergence of the speed x̃2. At this moment, we can deduce
that the estimation error of the input (x̃3) converges towards 0.

5.3.3.1 Convergence of the Position

Let us consider the following Lyapunov function:

V1 =
1
2
x̃T1 x̃1, (5.15)

Its derivative gives:
V̇1 = x̃T1

.
x̃1, (5.16)

From (5.14), we obtain:

V̇1 = x̃T1 (x̃2 −H1sign(x̃1)). (5.17)

Choosing the gain matrices H1 = diag(hi1), as hi1 > |x̃i2| for i = 1...8, we
prove that V̇1 < 0. Then, x̂1 converges towards x1 in finite time t0. In this
case,

.
x̃1 = 0 ∀ t > t0.

This implies, from relationship (5.17), that we obtain:

signeq(x̃1) = H−1
1 x̃2 , (5.18)

where signeq is the equivalent mean of the sign function in the sliding surface:
Taking into account (5.18) and since x̃4 is bounded, then equations (5.14)

become: ⎧
⎪⎨
⎪⎩

.
x̃1 = x̃2 −H1sign(x̃1) → 0
.
x̃2 = −M−1C x̃2 +M−1A x̃3 −H2H

−1
1 x̃2

.
x̃3 = −H3H

−1
1 x̃2

. (5.19)
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5.3.3.2 Speed Convergence

Consider now a following second Lyapunov function:

V2 =
1
2
x̃T2 Mx̃2 +

1
2
x̃T3 P1x̃3, (5.20)

where P1 ∈ R
8×8 is a diagonal positive matrix:

The calculation of V̇2 gives, using the equations (5.19),:

V̇2 = −x̃T2 Cx̃2 − x̃T2 MH2H
−1
1 x̃2 + x̃T2 Ax̃3 − x̃T3 P1H3H

−1
1 x̃2. (5.21)

Choosing the gains (P1 = diag(P1i) , i = 1..8) such as AT = P1H3H
−1
1 ,

the matrix H3 is deduced as follows:

H3 = P−1
1 ATH1. (5.22)

Replacing the matrices P1, A
T andH1 by their respective values, we obtain

the elements of the matrix H3 :

H3 ==

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H11kr1/P11 0 0 0 0 0 0 0
0 H22kr2/P22 0 0 0 0 0 0
0 0 H33kf1/P33 0 0 0 0 0
0 0 0 H44kf2/P44 0 0 0 0

H11Br1/P55 0 0 0 0 0 0 0
0 H22Br2/P66 0 0 0 0 0 0
0 0 H33Bf1/P77 0 0 0 0 0
0 0 0 H44Bf2/P88 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.23)

V̇2 becomes:
V̇2 = −x̃T2 (C +MH2H

−1
1 )x̃2. (5.24)

We defined a matrix Q as:

Q = C +MH2H
−1
1 . (5.25)

The gains of matrix H2 are chosen in order to satisfy that matrix Q be
definite positive . In this case, we have V̇2 < 0 and the observation error
is decreasing, which implies that the condition hi1 > |x̃i2| is always verified
for t > t0. The surface x̃2 = 0 is then attractive and thus means that x̂2

converges asymptotically toward x2.
Equations (5.19) allow deducing that the estimation errors of the derivative

of the road profile tend towards 0.
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5.3.4 Estimation Results

In order to validate the proposed approach, some simulation experimental
results are given.

5.3.4.1 Simulation Results

In this section we give some simulation results obtained using sliding mode
observers. These observers make it possible to reconstruct the states of the
system, and thus to consider the unknown inputs of the road. It is assumed
that the deflection of the chassis and the four wheels and also the rotation of
the chassis (roll, pitch and yaw angle) are measured by sensors. That being
said, several other signals are assumed to be known, such as the vehicle speed
and steering angle.

The main estimate is shown in Fig. 5.1.

Fig. 5.1 Estimation principle

The input signals used in this simulation are those measured by Selcom
sensors during tests done at LCPC with an instrumented Peugeot 406 rolling
at a constant speed of about 72km/h.

The estimated vertical displacement of the chassis (z) and the estimated
roll angle (θ) and their equivalent measurements are represented in Fig. 5.2.

These figures show the accurate estimation of the displacement and also
of the roll angle since the correlation of the figures is clearly shown.

The other figures of the second line represent, respectively, the vertical
speed of the chassis and the roll rate. One can notice that the estimates
follow closely the speeds given by the model.

However, a small variation exists on the estimated roll rate. The estimation
of the road profile is given in Fig. 5.3 and Fig. 5.4 which represent, respec-
tively, the right and the left road profile compared to the LPA measurements.
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Fig. 5.2 Vehicle states estimation: roll angle and displacement of the chassis

Fig. 5.3 Road profile estimation: front right
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Fig. 5.4 Road profile estimation: front left

One can remark from these figures that the estimated road profile is correct
compared to those measured by APL.

5.3.4.2 Experimental Results

In this part, the measured signals coming from sensors are compared to those
estimated by the observer.

The estimation principle is shown in Fig. 5.5.

Fig. 5.5 Estimation principle
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The following gains areused:P1=diag(100, 100, 100, 100, 100, 100, 100, 100),
H1 = diag(1, 1, 1, 1, 1, 1, 1, 1), the elements of matrix H3 are given by:

H3(1, 1) = 1000, H3(2, 2) = 1000, H3(3, 3) = 1000, H3(4, 4) = 1000,
H3(5, 1) = 5, H3(6, 2) = 5, H3(7, 3) = 5, H3(8, 4) = 5.

The vertical displacement and the yaw angle are shown in Fig. 5.6.

Fig. 5.6 States estimation: experimental case

The convergence is quick and in finite time. In the second line, the equiv-
alent speeds are represented.

A well estimation of the vertical speed can be noticed. However some
chattering exist concerning the estimated yaw rate. This is due to sensor
errors.

In Fig. 5.7 the estimated road profile is shown.
This figures shows that the unknown input is well estimated compared

to LPA measure with some chattering due to the sign function used in the
observer.
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Fig. 5.7 Road profile estimation: experimental case

5.4 Unknown Forces Estimation

The parameters used in our vehicle model are considered constant and mea-
sured. However, some parameters depend on the type and the quality of the
road and are generally not well known.

Coefficients intervening in the calculation of the adhesion are included
in this category. Our idea consists in considering the longitudinal forces of
the wheels which are a function of the road adhesion coefficient jointly as
unknown states ([HI01], [MT99], [HCB+01], [HCM01], [HCBM02], [IMD03],
[IDM03]).

In our case, four measurements of the speeds of the wheels are added to
the previously measured vector.

The vector y becomes:

y =
[
z1 z2 z3 z4 z θ φ ψ wr1 wr2 wf1 wf2

]T (5.26)

Before developing the observer, let us define the new state vector x =
[x1,x2, x3,x4]T as follows:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

x1 =
[
z1 z2 z3 z4 z θ φ ψ

]T
x2 =

[
ż1 ż2 ż3 ż4 ż θ̇ φ̇ ψ̇ wr1 wr2 wf1 wf2

]T
x3 = U =

[
u1 u2 u3 u4 u̇1 u̇2 u̇3 u̇4

]T
x4 = ẋ3

(5.27)

where {
ẋ1 = Λ1 = [ ż1 ż2 ż3 ż4 ż θ̇ φ̇ ψ̇ ]T = E1x2

Λ̇1 = M−1(−CΛ1 −Kx1 +Ax3 +Ω)
(5.28)
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E1 ∈ R
8×12 is a definite positive matrix such that its elements Eij ∈ {0, 1}.

The rotational movement of the wheels are given by:

Λ̇2 = J−1(Γ +RΨ), (5.29)

where Λ2 =
[
wr1 wr2 wf1 wf2

]T = E2x2 is the vector of wheel speeds,
E2 ∈ R

4×12 is a positive matrix where its elements Eij are defined in the
domain {0, 1}. Ψ = [Fxr1, Fxr2, Fxf1, Fxf2]T represent the longitudinal vector
forces. We assume that the derivative of these forces are neglected (Ψ̇ = 0).
J is a diagonal matrix composed of the inertia of the wheels:

J =

⎡
⎢⎢⎣
Jr 0 0 0
0 Jr 0 0
0 0 Jf 0
0 0 0 Jf

⎤
⎥⎥⎦ , (5.30)

where Γ is matrix composed of the engine torquesMf1,Mf2 :

Γ =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 Mf1 0
0 0 0 Mf2

⎤
⎥⎥⎦ , (5.31)

with R = r∗ I where r is the wheel radius and I ∈ R
4×4 is identity matrix:

The variable state ẋ2 is then given by:

ẋ2 = A1Λ̇1 +A2Λ̇2. (5.32)

The matrices A1 ∈ R
12×8 and A2 ∈ R

12×4 are defined in the Appendix.
The proposed observer is:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

.

x̂1 = Λ̂1 +H1sign(x̃1)
.

Λ̂1 = M−1(−C Λ̂1 −K x̂1 +A x̂3 +Ω) +H2sign(x̃1)
.

Λ̂2 = J−1Γ + J−1R Ψ̂
.

x̂3 = x̂4 +H3sign(x̃1)
.

Ψ̂ = μ

. (5.33)

where μ is an adaptation term to be defined. Hi ∈ R
8×8, i = 1..3 are diagonal

positive gains matrices and the ”sign”, defined as follows:

⎧⎪⎪⎨
⎪⎪⎩

H1 = diag{H11, H12 , H13 , H14 , H15 , H16 , H17 , H18}
H2 = diag{H21, H22 , H23 , H24 , H25 , H26 , H27 , H28}
H3 = diag{H31, H32 , H33 , H34 , H35 , H36 , H37 , H38}
sign(x̃1) = diag{x̃11 , x̃12 , x̃13 , x̃14 , x̃15 , x̃16 , x̃17 , x̃18}T

∣∣∣∣∣∣∣∣
(5.34)
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The variable x̃i = xi − x̂i, i = 1..4 represents the estimation error of
xi, Λ̃i = Λi − Λ̂i is the estimation error of Λi(i = 1..2). Ψ̃ = Ψ − Ψ̂ is the
estimation error of longitudinal forces.

The dynamic observation error is given by:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

.
x̃1 = Λ̃1 −H1sign(x̃1)
.

Λ̃1 = M−1(−C Λ̃1 −K x̃1 +A x̃3) −H2sign(x̃1)
.

Λ̃2 = J−1R Ψ̃
.
x̃3 = x̃4 −H3sign(x̃1)
.

Ψ̃ = −μ

. (5.35)

5.4.1 Convergence Study

The convergence study of the observer is done step by step. First the conver-
gence of the position x1 is done.

Let us define the following Lyapunov function:

V1 =
1
2
x̃T1 x̃1 (5.36)

Its derivative is given by:
V̇1 = x̃T1

.
x̃1 (5.37)

Using (5.35), we obtain:

V̇1 = x̃T1 (Λ̃1 −H1sign(x̃1)) (5.38)

The gain matrix H1 = diag(hi1) is chosen such that hi1 >
∣∣∣Λ̃i1

∣∣∣ for i =

1...8. We then have V̇1 < 0, which implies that x̂1 tends toward x1 in finite
time t0. We the obtain

.
x̃1 = 0 ∀ t > t0.

The function signeq is then defined as the sign function in the sliding
surface.

signeq(x̃1) = H−1
1 Λ̃1 (5.39)

The equation system defined in (5.35) becomes ∀ t > t0:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

.
x̃1 = 0
.

Λ̃1 = M−1(−C Λ̃1 +A x̃3) −H2H
−1
1 Λ̃1

.

Λ̃2 = J−1R Ψ̃
.
x̃3 = x̃4 −H3H

−1
1 Λ̃1

.

Ψ̃ = −μ

(5.40)
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In order to prove the convergence of x2 and then estimate the unknown input
vector Û and the unknown forces vector Ψ̂ , a second Lyapunov function is
considered:

V2=
1
2
Λ̃T1MΛ̃1+

1
2
Λ̃T2 Λ̃2+

1
2
x̃T3 P1x̃3+

1
2
Ψ̃TP2Ψ̃ (5.41)

where P1 ∈ R
8×8 and P2 ∈ R

4×4 are diagonal positive matrices:
Its derivative gives:

V̇2 = Λ̃T1

.

Λ̃1 + Λ̃T2

.

Λ̃2 + x̃T3 P1

.
x̃3 + Ψ̃TP2

.

Ψ̃ (5.42)

From equation (5.40) and since x̃4 is bounded, we obtain:

V̇2 = −Λ̃T1 CΛ̃1 − Λ̃T1MH2H
−1
1 Λ̃1 + Λ̃T1 Ax̃3 (5.43)

−x̃T3 P1H3H
−1
1 Λ̃1 + Λ̃T2 J

−1R Ψ̃ − Ψ̃TP2μ

Choosing matrix P1 such that AT = P1H3H
−1
1 , we obtain the gain matrix

H3 as:
H3 = P−1

1 ATH1 (5.44)

The function V̇2 becomes:

V̇2 = −Λ̃T1 CΛ̃1 − Λ̃T1MH2H
−1
1 Λ̃1 + Λ̃T2 J

−1R Ψ̃ − Ψ̃TP2μ (5.45)

The adaptive term μ is then deduced as follows:

μ = P−1
2 (J−1R)T Λ̃T2 (5.46)

= P−1
2 ΩT Λ̃T2

where Ω = J−1R.
We finally obtain:

V̇2 = −Λ̃T1 (C +MH2H
−1
1 )Λ̃1 (5.47)

The gain matrix H2 is chosen such that the matrix Q1 = C + MH2H
−1
1

is definite positive. Consequently, V̇2 < 0, which implies the asymptotic con-
vergence of x̃2 towards 0.

From (5.40), the convergence of the errors
.
x̃3toward 0 is then ensured. We

also show that the estimation error of the longitudinal forces is bounded.
In the following paragraph, we give some experimental results to show the

quality of the proposed observer.
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5.4.2 Experimental Results

In this section, we give some results in order to test and validate our ap-
proach. The estimated road profile is compared to the profile measured by
an longitudinal profile analyzer (LPA) developed at the LCPC Laboratory
[LDG96]. It is equipped with a laser sensor and an accelerometer to measure
the elevation of the road profile as shown in the Fig. 5.8.

Fig. 5.8 Longitudinal Profile Analyzer (APL in french)

The model parameters are measured. However, the pneumatic parameters
C1, C2 and C3 are not well known. To mitigate this disadvantage, we use
observers to estimate the longitudinal forces which are related to these pa-
rameters. The system outputs are the displacements of the wheels and the
chassis, which correspond to the signals given by the sensors. Different mea-
surements are done with the vehicle moving at several speeds.

Fig. 5.9 shows the average vehicle speed of 70km/h (20m/s) with an error
which does not exceed 1.2m/s.

This figure shows the measured and the estimated displacements. In the
first two subplot on top of figure (5.10), the vertical displacement (z) and the
yaw angle (ψ) of the chassis respectively are presented.

It is shown that the estimation of these displacements is fast and of good
quality.

The bottom of this figure represent the velocities. We can see that the
estimated vertical velocity (ż) is accurate compared to the true signal.
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Fig. 5.9 Vehicle speed

Fig. 5.10 Estimated and measured states: chassis and yaw angle

However, some error occurs concerning the estimation of ψ̇. This error is
mainly due to sensor calibration (the sensor that we used in our measurement
presented an error of calibration that we could not correct).

In Fig. 5.11 we notice that the estimated angular velocity of the wheel
converges well towards the actual ones in finite time.

Indeed, we get only 1 second for the convergence time.
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Fig. 5.11 Estimated and measured wheels velocities

Fig. 5.12 Comparison between the LPA measured profile and estimated one

The convergence of the states is very fast and the estimation is of high qual-
ity. The good reconstruction of these states allows estimating the unknown
inputs.

In Fig. 5.12 we show the behavior of the road profile estimator.
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Fig. 5.13 Postions of the plates on the track

Fig. 5.14 Plates estimation

This figure presents both the measured road profile and the estimated one.
As a further example, two plates are located on the track as shown in

Fig.5.13.
Fig. 5.14, shows that these plates of height, respectively, of 10mm and

8mm, are well reconstructed by the observers approach compared to the
LPA measurements.

We compare now, the results of each method developed earlier.
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Fig. 5.15 Power Spectral Density (PO: low wave, MO: average wave, GO: high
wave

One can then observe that the estimated values are quite close to the true
ones. These profiles have the same pace and the differences are not important.

Fig. 5.15 shows the power spectral density of the estimated road profile
and the measured one given by LPA instrument.

One notices that the low and average waves of the road (high and aver-
age frequency) are well reconstructed. However there are limitations of our
method to estimate the high waves of the road.

5.5 Conclusion

In this chapter sliding mode observers have been developed in order to esti-
mate the longitudinal tire/road forces of the system and the unknown inputs
which correspond to the road profile.

The parameters of the system are presumedly measured and known. How-
ever, the pneumatic coefficients which intervene in the calculation of the
longitudinal forces are unknown. This is why we built another observer to di-
rectly consider these longitudinal forces. We noticed that the profile estimated
by our approach is very close to that measured by the LPA instrument. How-
ever, local variations appear. It is then important to know if these variations
do not penalize the capability of these profiles (of a band-width broader than
APL) to determine the dynamic response of the vehicle (previous studies
have shown that in the profile measured by LPA, it is not correct to con-
sider this dynamic response). We consider, in the future work, these profiles
as inputs of a dynamic model of the vehicle to estimate the instantaneous
loads of the wheels. We thus compare the dynamic responses measured on
an instrumented vehicle and those estimated by the simulator of the vehicle.
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Conclusions

In this first work concerning variable structure systems in automotive ap-
plication, one tried to show the utility of use of such tools in the field of
vehicle dynamics. Some applications have been developed. Simulation and
experimental results have been shown.

Before to develop some application using sliding mode techniques, a com-
plete definition of vehicle with its different components has been given. A dy-
namic model with 16 degrees of freedom is developed and validated through
simulations and experimental results obtained on an instrumented vehicle.

Then sliding mode observers have been developed in order to:
- observe the dynamics of the vehicle such as the yaw rate, the height of

the centre of gravity and the vertical acceleration
- estimate some dynamic parameters of the vehicle such as the side slip

angle.
- estimate the unknown inputs
- estimate the impact forces
We have seen that, using sliding mode observers, first or high order, we

are able to reconstruct all the state vector of the vehicle and also estimation
of its centre height of gravity. This estimation

allows to estimate the unknown inputs. In this work, the estimation of the
road profile is shown. This last is compared to the measures coming from
Longitudinal Profile Analyzer instrument. This comparison shows that the
estimation is of quality with some errors due to the noises coming from the
road.

Another application of sliding mode observer is the estimation of contact
forces which are, as seen in the previous chapters, very important in the
description of the behavior of the vehicle. We have also seen that these forces
are very hard and expansive to measure. The developed observer seems then
to be an interesting method to estimate theses forces. Indeed, the presented
results show an interesting correlation between the estimated forces and those
coming from the reference which is, in our case, the vehicle simulator. This

H. Imine et al.: Sliding Mode Based Analysis, LNCIS 414, pp. 103–104.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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confirms that the observers are able to estimate the longitudinal and lateral
forces in finite time and with small errors.

This book is the first of long series of books in the field of variable struc-
ture system in automotive application. Some other results and tools will be
proposed and explained in the next work.

Some of these future works will be the application of sliding mode control
in order to control the behavior of the vehicle in longitudinal and lateral axis.
Our challenge is also to show the quality of such tools in the field of heavy
vehicles.
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Appendix A

Recalls on Sliding Modes Techniques

In this appendix we will recall some sliding modes principle, precisely the
finite time convergence and the notion of equivalent vector.

Let us consider the following system input:

ẋ = F (x, t, u) (A.1)

where x ∈ n is the state, and u ∈  is the control vector.
For this system, we define the discontinuous control given by:

ui(x, t) =
{
u+(x, t) si s(x) > 0
u−(x, t) si s(x) < 0

where s(x) ∈  is a function.
the closed loop system is then noted

ẋ = f(x, t) (A.2)

If there exists a positive constant k such that the Lyapunov function defined
by

v =
s2

2
verifies

v̇ ≤ −k|s| = −k
√

(v)

then the sliding mode occurs (i.e s(x) = 0) after a finite time inteval. We will
establish this using a comparison method.
In fact , the existence of such a constant k implies that there exists another
constant μ such that

v(t) ≤ ρ(t), ρ̇ = μ
√

(ρ), ρ(0) = v(0)
0 < v(t) = ρ(t) = (v(0) − μt/2)2,
v(t) = 0(s(t) = 0) for t > t1 = 2v(0)/μ( becausev ≥ 0)
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Another demonstration in [Kha92] (chapter 7) establishes that t1leq|s(t =
0)|/k by integrating

1
2
d

dt
s2 ≤ −k|s|

Now, we interest to the dynamics of the system on the sliding surface. The
system’s motion on the sliding surface can give an interesting geometric prob-
lem interpretation as an average of the system’s dynamics on both sides of
the surface. Thus, by solving formally the equation ṡ = 0 for the control
input, we obtain an expression for u called the equivalent control denoted
by ueq, which can be interpreted as the continuous control law that would
maintain ṡ = 0.

This result is a consequent of the Fillipov theorem [Fil60]. The trajectories
of the system (A.2) on the sliding surfaces are not defined as the control vector
is also not defined on s = 0. Filippov [Fil60] defined a solution of (A.2) in
terms of differential inclusions:

Definition A.1. (Solution of (A.2) in the sens of Filippov) The stae vector
x(t) défined on [t1, t2] is a solution of (A.2) in the Filippov’s sens, if x(t) is
absolutely continuous, and if for almost all t ∈ [t1, t2],

ẋ(t) ∈
⋂
δ>0

⋂
μN=0

conv f(B(x, δ) −N, t) (A.3)

where conv designes the close convex envelope, B(x, δ) is the ball centered in
x and of ray δ, μ is the Lebegue’s measure. The notation,

⋂
μN=0

indicates the intersection of all the null measure sets.

So in the Filippov sense, the differential equation (A.2) is substituted by the
differential inclusion (A.3).

• The dynamics of the system on the sliding surface
For sake of simplicity, we take the following notation:

S = {x ∈ n : s(x) = 0}

The surface S separates the state space into two parts S+ (s(x) > 0) and S−

(s(x) < 0). We suppose that the functions f+(x, t) and f−(x, t) defined by

lim
s→0+

f(x, t) = f+(x, t)

lim
s→0−

f(x, t) = f−(x, t)

exist for all given t.
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Let f+
0 (x, t) =< ∇s, f+(x, t) > (resp. f−

0 (x, t) =< ∇s, f−(x, t) >) the
projection of f+ (resp. f−) in the normal direction of the sliding surface S
oriented to S− (resp. S+).
with these notations, we announce the Fillipov theorem

Theorem A.2. Let x(t) absolutely continuous such that x(t) ∈ S, verify
f−
0 (x, t) ≥ 0, f+

0 (x, t) ≤ 0 and f−
0 (x, t)− f+

0 (x, t) > 0, then x(t) is a solution
solution of (A.2) (in the sens of the definition A.1), if and only if

ẋ(t) = α(t)f+(x, t) + (1 − α(t))f−(x, t) whith (A.4)

α(t) =
f−
0 (x, t)

f−
0 (x, t) − f+

0 (x, t)
(A.5)

The right hand of the equation (A.4) is orthogonal to ∇s. In fact, we verify
that < ∇s, αf+ + (α− 1)f− >= 0.

Consequently the solution x(t) remains on the surface S. The values of
f(x, t) in the neighborhood of S generate solutions which are constraint to
slide on the surface S (see figures A.1 and A.2).

Fig. A.1 Filipppov definition of the sliding mode equations
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Fig. A.2 Equivalent control method definition of the sliding mode equations



Appendix B

Equivalent Control Concept

B.1 Motivation

When using SM control, one of the most interesting practical problems ap-
pearing is that of finding the trajectory of the state variables, so called, the
sliding equations [Utk92].

A formal approach is that of solution of differential inclusions in the Fil-
ippov sense [Fil60]. However, a simpler way to study the effect of a discon-
tinuous control acting on the system is the equivalent control method (ECM)
which, in fact, for affine systems, it turns out to give the same results as
studying differential inclusion in the Filippov sense. In this chapter a short
description of the ECM is introduced.

B.2 Equivalent Control Method

Let us consider the system described by the following differential equation:

ẋ (t) = f (x, t) +B (x, t) u (t) , t ≥ t0 (B.1)

where x ∈ R
n and u ∈ R

m, and they represent the state vector and the control
vector, respectively. Moreover, f (x, t) and B (x, t) are continuous vector and
matrix functions, respectively, with respect to all the arguments. Here, u is
to be designed as a discontinuous control to compel the trajectories of (B.1)
to enter into the sliding manifold S = {x : s (x) = 0} and to be maintained
there for all the time forward. The function s (x) ∈ R

m is to be designed
according to some specific requirements, we will called it sliding variable.
Once the trajectories of (B.1) are into the manifold S, i.e. s (x) = 0, we say
that (B.1) is on a sliding mode (SM). An u achieving the SM will be called
sliding mode control.
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Let us assume that s (x) ≡ 0, then its derivative would be also identical to
zero. Thus, we have that

ṡ (x) =
∂s

∂x
[f (x, t) +B (x, t)u] = 0 (B.2)

Assuming that G (x) := ∂s
∂x fulfills with the condition detG (x)B (x) �= 0.

The function u taken from (B.2) is the so-called equivalent control, thus we
have that,

ueq = − [G (x)B (x, t)]−1 [G (x) f (x, t)] (B.3)

What the EC method asserts is that the dynamics of (B.1) can be calcu-
lated by the substitution of ueq in the place of u, i.e., on the sliding mode
the system is governed by the following equations,

ẋ (t) = f (x, t) −B (x, t) [G (x)B (x, t)]−1 [G (x) f (x, t)] (B.4)

Let us consider the following simple scalar example:

ẋ (t) = ax+ bu+ γ (t) (B.5)

where a and b �= 0 are real scalars and γ (t) is a disturbance. Let say that we
wish to constrain x (t) to the origin in a finite time and in spite of the lack of
knowledge of γ (t). This can be achieved by selecting u = −b−1M (t) signx
and M (t) > |ax| + |γ (t)| + ε, for some arbitrarily small ε. By deriving V =
1
2 |x|2 we get that

V̇ = |x| (ax+ bu+ γ (t)) ≤ − |x| (M (t) − |ax| − |γ (t)|)
≤ − |x| ε = −

√
2ε
√
V

By using the comparison principle, we obtain that

V (t) ≤
(
V (t0) − ε√

2
(t− t0)

)2

for all t ≥ t0 (B.6)

Since V (t) is by definition a positive function, from (B.6) we can calculate
an upper-estimation of the time ts when V (t) vanishes and consequently also
x (t) do it. Thence, we obtain that

ts ≤
√

2
ε
V (t0) + t0

Thus in this example the EC is obtain from (B.5) when ẋ and x are identi-
cal to zero, i.e. ueq = −b−1γ (t). We immediately, notice that the disturbance
γ (t) might be estimated by means of the equivalent control, a way to do it
will be given below.
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Notice that with the control u being a signum function the right-hand side
of (B.5) is not Lipschitz, therefore, we can not use the theory of differential
equations. To overcome such a complexity, we can use the theory of differen-
tial inclusions treated extensively in [Fil60]. Thus, we can obtain a solution
of (B.5) in the Filippov sense.

Nevertheless, the effects of real devices, let say small delays, uncertainties,
hysteresis, digital computations, etc., always avoid to achieve the identity
s (x) ≡ 0. And the trajectories are constraint to some region around the
origin, i.e., ‖s (x)‖ ≤ Δ. That is why, that we can ask for the limit solution
of (B.1) when Δ tends to zero. That solution is in fact the solution of (B.1)
on the sliding mode and it will be found using the equivalent control method,
which will be justified by means of Theorem B.1.

Let ũ be a control for which we obtain the boundary layer ‖s (x)‖ ≤ Δ,
we could say that ũ is the real control with which we obtain a real sliding
mode. Thus, the dynamic equations are,

ẋ (t) = f (x, t) +B (x, t) ũ (t) (B.7)

Let us notate by x∗ the state vector obtained using the EC method, i.e.
the trajectories whose dynamics is governed by (B.4). Let us assume that the
distance of any point in the set Sr = {x : ‖s (x)‖ ≤ Δ} to the manifold S is
estimated by the inequality

d (x, S) ≤ PΔ, for P > 0.

Such a number P always exists if all gradients of functions si (x) are lin-
early independent and are lower bounded in the norm by some positive num-
ber. In fact the first condition follows from the assumption that det (GB) �= 0.

Theorem B.1. Let us assume that the following 4 conditions are satisfied:

1. there is a solution x (t) of system (B.7) which, on the interval [0, T ], fulfills
the inequality ‖s (x)‖ ≤ Δ;

2. for the right-hand part of (B.4), rewritten using x∗ as

ẋ∗ (t) = f (x∗, t) −B (x∗, t) [G (x∗)B (x∗, t)]−1 [G (x∗) f (x∗, t)] , (B.8)

a Lipschitz constant exists;
3. partial derivatives of the function B (x, t) [G (x)B (x, t)]−1 with respect to

all arguments exist and are bounded in every bounded domain, and
4. for the right-hand part (B.7) there exist positive numbers M and N such

that
‖f (x, t) +B (x, t) ũ‖ ≤M +N ‖x‖ . (B.9)

Then for any pair of solutions to eqs. (B.8) and (B.7) with their initial
conditions satisfying

‖x (0) − x∗ (0)‖ ≤ PΔ
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there exists a positive number H such that

‖x (t) − x∗ (t)‖ ≤ HΔ for all t ∈ [0, T ] .

Proof. For (B.7) we will obtain the following derivative on time of s (x),

ṡ (x) = G (x) f (x, t) +G (x)B (x, t) ũ (t) (B.10)

since we have assumed that det (GB) �= 0, from (B.10) we obtain that

ũ (t) = [G (x)B (x, t)]−1
ṡ (x) − [G (x)B (x, t)]−1

G (x) f (x, t) (B.11)

The substitution of ũ (t) into (B.7) yields

ẋ = f −B [GB]−1
Gf +B [GB]−1

ṡ (B.12)

Thus, we have that (B.8) and (B.12) differ from a term depending on ṡ. By
integrating, x∗ and x can be written by the following integral equations,

x∗ (t) = x∗ (0) +

t∫

0

{
f (x∗, τ ) −B (x∗, τ ) [G (x∗)B (x∗, τ )]−1

[G (x∗) f (x∗, τ )]
}
dτ ,

(B.13)

x (t) = x (0)+

t∫

0

{
f (x, τ) −B (x, τ) [G (x)B (x, τ)]−1 [G (x) f (x, τ)]

}
dτ+

+
∫ t

0

B (x, τ) [G (x)B (x, τ)]−1
ṡ (x) dτ (B.14)

By integrating the last term of (B.14) by parts, and taking into account
the hypothesis of the theorem, we can obtain the following estimation of the
difference of the two solutions,

‖x (t) − x∗ (t)‖ ≤ PΔ+

t∫

0

L ‖x (τ) − x∗ (τ)‖ dτ

+
∥∥∥B (x, τ) [G (x)B (x, τ)]−1

s (x)
∥∥∥
t

|
0

+

t∫

0

∥∥∥∥
d

dτ
B (x, τ) [G (x)B (x, τ)]−1

∥∥∥∥ ‖s (x)‖ dτ (B.15)
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By the assumption (B.9), we have that the norm of x (t) is bounded in a
interval [0, T ], indeed, since

‖x (t)‖ ≤ ‖x (0)‖ +MT +

t∫

0

N ‖x (τ)‖ dτ .

According to the Bellman-Gronwall lemma (see, e.g. [Poz08]) the following
inequality is satisfied,

‖x (t)‖ ≤ (‖x (0)‖ +MT ) eNT , for all t ∈ [0, T ] . (B.16)

Thus by the continuity of f and B, and taking into account hypothesis 3 of
the theorem, the inequality (B.15) may be represented as follows,

‖x (t) − x∗ (t)‖ ≤ QΔ+
∫ t

0

L ‖x (τ) − x∗ (τ)‖ dτ

where Q is a positive number. Using again the Bellman-Gronwall lemma, we
obtain the inequality

‖x (t) − x∗ (t)‖ ≤ QΔeLT

Taking H = QeLT , the theorem is proven.

Thus, from the theorem we have that limΔ→0 x (t) → x∗ (t) in a finite
interval. This justifies the equivalent control method.

We have say the equivalent control method might be used for the estima-
tion of the matched disturbances, as in the example where ueq = −γ. Next,
we will see how to estimate the function ueq by means of a first-order low-pass
filter. We will make use of the following lemma.

Lemma B.2. Let the differential equation be as follows

τ ż (t) + z (t) = h (t) +H (t) ṡ (B.17)

where τ is a scalar constant and z, h and s are m-dimensional function
vectors. If the following assumptions are satisfied,

i) the functions h (t) and H (t), and their first order derivatives are bounded
in magnitude by a certain number M and

ii) ‖s (t)‖ ≤ Δ, Δ being a constant positive value,

then, for any pair of positive numbers Δt and ε, there exists a number
δ = δ (ε,Δt, z (0)) such that the following inequality is fulfilled

‖z (t) − h (t)‖ ≤ ε

provided that 0 < τ ≤ δ, Δ/τ ≤ δ and t ≥ Δt.
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Proof. Let us write the solution of (B.17).

z (t) = e−t/τz (0) +
1
τ

t∫

0

e−(t−σ)/τ [h (σ) +H (σ) ṡ (σ)] dσ

By integrating by parts we obtain,

z (t) = e−t/τz (0) + h (t) − h (0) e−t/τ

−
t∫

0h

e−(t−σ)/τ ḣ (σ) dσ +H (t)
s

τ
−H (0) e−t/τ

s (0)
τ

−1
τ

t∫

0

e−(t−σ)/τ

[
Ḣ (σ) +

1
τ
H (τ)

]
s (σ) dσ

Then, by the assumptions (i) and (ii), we deduce the following inequality,

‖z (t) − h (t)‖ ≤ ‖z (0) − h (0)‖ e−t/τ +Mτ +
2MΔ

τ
+MΔ+

MΔ

τ

putting similar terms together yields

‖z (t) − h (t)‖ ≤ ‖z (0) − h (0)‖ e−t/τ +M (τ +Δ) + 3M
Δ

τ
(B.18)

Therefore, it is easy to conclude from (B.18) that for any positive number
Δt, the following identity is achieved,

lim
τ→0

Δ/τ→0

z (t) = h (t) for all t ≥ Δt (B.19)

Thus, the lemma is proven.

From (B.19), we see that Δ should be much smaller that τ in order to achieve
a good estimation of h (t) by means of z (t). Furthermore, (B.18) gives us a
more qualitative expression to measure the effect of τ on the estimation. That
is, there we can see that if τ is too small then the term depending on the
difference on the initial conditions could be considered negligible, i.e. z (t)
reaches rapidly a neighborhood around h (t) of order O (τ +Δ) + O

(
Δ
τ

)
. In

this case, if Δ is not much smaller than τ , then the neighborhood around
h (t) would be big. On the other hand if Δ << τ , but τ is not so small, then
z (t) would last some time before reaching a small neighborhood around h (t).
That is why, we can say that an ‘ideal’ case case is when Δ << τ << 1.

Thus, the filter designed as

τuav (t) + uav (t) = ũ (t) (B.20)
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can be used to estimate ueq. Indeed, from (B.3) and (B.11), (B.20) takes the
form

τuav (t) + uav (t) = ueq + [G (x)B (x, t)]−1
ṡ (x) (B.21)

Hence, by comparing (B.17) with (B.21), lemma implies that

lim
τ→0

Δ/τ→0

uav = ueq for t ∈ (0, T ] (B.22)

provided that ueq and (GB)−1 are bounded and have bounded derivatives,
which is fulfilled if conditions of Theorem B.1 are fulfilled.

Now, let us assume that Δ is known (which in general might be not true).
In that case we could select τ = Δ1/r (r > 1), implying that Δ/τ = Δ

r−1
r .

Thus, as Δ tends to zero, Δ/τ tends to zero also. Therefore, in that case,
B.22 is still satisfied. For the same qualitative arguments given above, a good
estimation of ueq using uav is obtained when it is satisfied thatΔ << τ << 1.
When r is close to 1 then τ is close to Δ; therefore, r near 1 is not a good
selection. On the other hand, for r >> 1, τ is close to 1, then in that case
r is not a good choice either. By selecting r = 2, we obtain, for Δ enough
small, that Δ << τ << 1. Hence, by selecting τ = Δ1/2 and provided that
Δ is much smaller than 1, we obtain a good estimation of ueq.



Appendix C

Vehicle Parameters Description

C.1 Vehicle Data

Parameter Value

M 1296 Kg
r1i 0.28 m
Iri 0.9 Kg.m2

lo -0.03 m
Cij 50000 N/rad

Parameter Value

M 1296 Kg
r1i 0.28 m
Iri 0.9 Kg.m2

lo -0.03 m
Cij 50000 N/rad

C.2 Friction Parameters Characteristics

Type of cover c1 c2 c3

Asphalt, dry 1.2801 23.99 0.52
Asphalt, wet 0.857 33.822 0.347
Concrete, dry 1.1973 25.168 0.5373
Cobblestones, dry 1.3713 6.4565 0.6691
Cobblestones, wet 0.4004 33.7080 0.1204
Snow 0.1946 94.129 0.0646
Ice 0.05 306.39 0



Appendix D

Matrices Definitions

The matrices E1, E2, A1 and A2 have been used in the chapter IV in the
section ”Unknown Forces Estimation”.

The matrices E1and E2 are defined as follows:

E1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E2 =

⎡
⎢⎢⎣

0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎦

The matrices A1 and A2 are defined as follows:

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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