

Lecture Notes in Artificial Intelligence 6736
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

FoLLI Publications on Logic, Language and Information

Editors-in-Chief

Luigia Carlucci Aiello, University of Rome "La Sapienza", Italy

Michael Moortgat, University of Utrecht, The Netherlands

Maarten de Rijke, University of Amsterdam, The Netherlands

Editorial Board

Carlos Areces, INRIA Lorraine, France

Nicholas Asher, University of Texas at Austin, TX, USA

Johan van Benthem, University of Amsterdam, The Netherlands

Raffaella Bernardi, Free University of Bozen-Bolzano, Italy

Antal van den Bosch, Tilburg University, The Netherlands

Paul Buitelaar, DFKI, Saarbrücken, Germany

Diego Calvanese, Free University of Bozen-Bolzano, Italy

Ann Copestake, University of Cambridge, United Kingdom

Robert Dale, Macquarie University, Sydney, Australia

Luis Fariñas, IRIT, Toulouse, France

Claire Gardent, INRIA Lorraine, France

Rajeev Goré, Australian National University, Canberra, Australia

Reiner Hähnle, Chalmers University of Technology, Göteborg, Sweden

Wilfrid Hodges, Queen Mary, University of London, United Kingdom

Carsten Lutz, Dresden University of Technology, Germany

Christopher Manning, Stanford University, CA, USA

Valeria de Paiva, Palo Alto Research Center, CA, USA

Martha Palmer, University of Pennsylvania, PA, USA

Alberto Policriti, University of Udine, Italy

James Rogers, Earlham College, Richmond, IN, USA

Francesca Rossi, University of Padua, Italy

Yde Venema, University of Amsterdam, The Netherlands

Bonnie Webber, University of Edinburgh, Scotland, United Kingdom

Ian H. Witten, University of Waikato, New Zealand

Sylvain Pogodalla Jean-Philippe Prost (Eds.)

Logical Aspects
of Computational
Linguistics

6th International Conference, LACL 2011
Montpellier, France, June 29 – July 1, 2011
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Sylvain Pogodalla
INRIA Nancy – Grand Est
615, rue du Jardin Botanique
54602 Villers-lès-Nancy Cedex, France
E-mail: sylvain.pogodalla@inria.fr

Jean-Philippe Prost
Université Montpellier 2, LIRMM
UMR 5506 - CC 477
161, rue Ada, 34095 Montpellier Cedex 5, France
E-mail: jean-philippe.prost@lirmm.fr

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-642-22220-7 e-ISBN 978-3-642-22221-4

DOI 10.1007/978-3-642-22221-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: Applied for

CR Subject Classification (1998): I.2, F.4.1

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the 6th International Conference on
Logical Aspects of Computational Linguistics 2011 (LACL 2011), held June 29-
July 1, 2011 in Montpellier, France. The LACL conferences aim at providing a
forum for the presentation and discussion of current research in all the formal
and logical aspects of computational linguistics.

The Program Committee selected 18 papers out of 31 submissions for presen-
tation at LACL 2011. The topics they cover include type-theoretical grammars,
dependency grammars, formal language theory, grammatical inference, minimal-
ism, generation, lexical and formal semantics, by authors from Argentina, France,
Germany, Japan, The Netherlands, Spain, Sweden, UK, and USA.

In addition to the contributed talks, two invited talks were delivered by
T. Fernando (Trinity College) and C. Gardent (LORIA/CNRS). The latter
was a joint event with Traitement Automatique des Langues Naturelles 2011
(TALN 2011), the international French-speaking conference on natural language
processing.

We are grateful to all the people who made this meeting possible and are
responsible for its success: the members of the Program Committee and the
external reviewers, the invited speakers, the contributors, and the people who
were involved in organizing the conference.

We would also like to express our gratitude to the following organizations
for supporting LACL 2011: the Laboratoire d’Informatique, de Robotique et
de Microélectronique de Montpellier (LIRMM), the Université de Montpellier 2
(UM2), the Centre National de la Recherche Scientifique (CNRS), the Associ-
ation pour le Traitement Automatique des Langues (ATALA), the Institut Na-
tional de Recherche en Informatique et en Automatique (INRIA), the Université
de Provence, Orange, Syllabs, and the Laboratoire Parole et Langage (LPL).

The reviewing for the conference and the preparation of the proceedings were
greatly aided by the free EasyChair conference management system, and we wish
to thank its developers.

April 2011 Sylvain Pogodalla
Jean-Philippe Prost

Organization

Program Committee

Pascal Amsili Université Paris Diderot (Paris 7)/LLF,
UMR CNRS 7110, France

Nicholas Asher CNRS Laboratoire IRIT, France
Raffaella Bernardi University of Trento, Italy
Philippe Blache CNRS LPL Aix-en-Provence, France
Johan Bos University of Groningen, The Netherlands
Joan Busquets Université Bordeaux 3, ERSS-CNRS and

INRIA-Bordeaux, France
Benôıt Crabbé Paris 7 and INRIA, France
Philippe de Groote LORIA/INRIA Nancy, France
Denys Duchier Université d’Orléans, France
Markus Egg Humboldt-Universität Berlin, Germany
Nissim Francez Technion - IIT, Israel
Makoto Kanazawa National Institute of Informatics, Japan
Greg Kobele University of Chicago, USA
Marcus Kracht Universität Bielefeld, Germany
Alain Lecomte Université Paris 8 - CNRS, France
Michael Moortgat Utrecht Institute of Linguistics - OTS,

The Netherlands
Richard Moot LaBRI(CNRS), INRIA Bordeaux SW and

Bordeaux University, France
Glyn Morrill Universitat Politècnica de Catalunya, Spain
Reinhard Muskens Tilburg Center for Logic and Philosophy of

Science, The Netherlands
Uwe Mönnich University of Tübingen, Germany
Gerald Penn University of Toronto, Canada
Sylvain Pogodalla LORIA/INRIA Lorraine, France
Carl Pollard Ohio State University, USA
Anne Preller LIRMM/CNRS, France
Jean-Philippe Prost LIRMM/Université de Montpellier 2, France
Laurent Prévot LPL, Université de Provence, France
Aarne Ranta Chalmers University of Technology and

Göteborg University, Sweedan
Christian Retoré LaBRI, INRIA and Université de Bordeaux 1,

France
James Rogers Earlham College, USA
Chung-chieh Shan Rutgers University, USA
Mark Steedman University of Edinburgh, UK
Isabelle Tellier Lifo, Université d’Orléans, France

VIII Organization

Additional Reviewers

Timothy Fowler
Michael Kaminski

Organizing Committee

Philippe Blache CNRS LPL Aix-en-Provence, France
Alexandre Labadié LIRMM Université de Montpellier 2, France
Mathieu Lafourcade LIRMM Université de Montpellier 2, France
Cédric Lopez LIRMM Université de Montpellier 2, France
Anne Preller LIRMM/CNRS, France
Violaine Prince LIRMM Université de Montpellier 2, France
Sylvain Pogodalla LORIA/INRIA Lorraine, France
Jean-Philippe Prost LIRMM Université de Montpellier 2, France
Christian Retoré LaBRI, INRIA and Université de Bordeaux 1,

France
Johan Segura LIRMM Université de Montpellier 2, France

Table of Contents

Encoding Phases Using Commutativity and Non-commutativity in a
Logical Framework . 1

Maxime Amblard

Using Logic in the Generation of Referring Expressions 17
Carlos Areces, Santiago Figueira, and Daniel Goŕın

Polarized Classical Non-associative Lambek Calculus and Formal
Semantics . 33

Arno Bastenhof

The Product-Free Lambek-Grishin Calculus is NP-Complete 49
Jeroen Bransen

Copredication, Quantification and Frames . 64
Robin Cooper

On Dispersed and Choice Iteration in Incrementally Learnable
Dependency Types . 80

Denis Béchet, Alexandre Dikovsky, and Annie Foret

Closure Properties of Minimalist Derivation Tree Languages 96
Thomas Graf

Well-Nestedness Properly Subsumes Strict Derivational Minimalism 112
Makoto Kanazawa, Jens Michaelis, Sylvain Salvati, and
Ryo Yoshinaka

Minimalist Tree Languages Are Closed under Intersection with
Recognizable Tree Languages . 129

Gregory M. Kobele

Do Dialogues Have Content? . 145
Staffan Larsson

Contextual Analysis of Word Meanings in Type-Theoretical
Semantics . 159

Zhaohui Luo

Logic Programming of the Displacement Calculus . 175
Glyn Morrill

Conditional Logic Cb and Its Tableau System . 190
Yuri Ozaki and Daisuke Bekki

X Table of Contents

Are (Linguists’) Propositions (Topos) Propositions? 205
Carl Pollard

Event in Compositional Dynamic Semantics . 219
Sai Qian and Maxime Amblard

Using Tree Transducers for Grammatical Inference 235
Noémie-Fleur Sandillon-Rezer and Richard Moot

Distributional Learning of Abstract Categorial Grammars 251
Ryo Yoshinaka and Makoto Kanazawa

Some Generalised Comparative Determiners . 267
Richard Zuber

Author Index . 283

Encoding Phases Using Commutativity and
Non-commutativity in a Logical Framework

Maxime Amblard

LORIA - INRIA Nancy Grand Est - BP 239 - 54506 Vandoeuvre-lès-Nancy Cedex
Université Nancy 2,13 rue Maréchal Ney - 54037 Nancy cedex
INPL, 2 av. de la Forêt de Haye - BP 3 - F-54501 Vandoeuvre

amblard@loria.fr

Abstract. This article presents an extension of Minimalist Categorial Gram-
mars (MCG) to encode Chomsky’s phases. These grammars are based on Par-
tially Commutative Logic (PCL) and encode properties of Minimalist Grammars
(MG) of Stabler [22]. The first implementation of MCG were using both non-
commutative properties (to respect the linear word order in an utterance) and
commutative ones (to model features of different constituents). Here, we propose
to augment Chomsky’s phases with the non-commutative tensor product of the
logic. Then we can give account of the PIC [7] just with logical properties of the
framework instead of defining a specific rule.

Keywords: Type theory, syntax, linguistic modeling, generative theory, phase,
Partially Commutative Logic.

Generative theory has undergone many changes since Chomsky’s Syntactic Structures
[5] leading up to what is the Minimalist Program (MP) [6]. The most frequent criticism
made is certainly the non-computational and non-formal nature of such an approach. It
is nevertheless rich of a vast literature for the linguistic approach. Fundamentals to the
MP are the description of a main calculus which takes into account the syntax, and the
production of two forms: one supposed to reflect the sequence of words, and another
one for the semantic structure of the utterance. Following the MP, Chomsky claims the
identification of phases in the syntactic derivation [7]. The verb, the main driving force
of the analysis, is being transformed, opening the possibility of specific modifications,
especially the definition of the Phase Impenetrability Condition (PIC).

The first proposal of formalization for MP was made by Stabler in [22]. However, this
formulation is far from the usual Montagovian approach of semantics. Therefore, trans-
lations of this formulation into logic systems have been proposed, in particular [15],
[13]. Much has been done, exploiting Curry’s distinction between the tectogrammati-
cal and the phenogrammatical levels, and this has led to interesting proposals [17], [9],
[18], [19]. The latest proposals of extension defined the MCG based on a fragment of
Partially Commutative Logic (PCL) [1], [2]. The authors highlighted the simultaneous
need of commutative and non-commutative properties to produce a useful framework .

In this paper, we propose a reconsideration of the properties of commutativity and
non-commutativity in MCG to account the concept of phase introduced by Chomsky.

S. Pogodalla and J.-P. Prost (Eds.): LACL 2011, LNAI 6736, pp. 1–16, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 M. Amblard

Due to space consideration, we will limit ourselves to the problems of parsing, leav-
ing aside the semantic aspects. However, it should be noted that the syntax-semantics
interface of MCG contains all the necessary material for its integration.

We first discuss the need for the two different relations in MCG. Then, we define
Minimalist Categorial Grammars (MCG). Based on these definitions, the third section
presents and encodes phases in MCG, and shows the implementation of the PIC using
only logical properties.

1 Commutativity vs. Non-commutativity in Standard MCG and
Phases

To link logic and Generative Theory, MCG’s derivations are proofs of a restriction of
Partially Commutative Logic (PCL), [20], seen as syntactic representations in genera-
tive theory. This logic is an extension of Lambek calculus containing simultaneously
commutative and non-commutative connectives (ie introduction and elimination of im-
plication and tensor). To handle the different relations between hypotheses in the same
framework, an entropy rule (restriction of order) is added. Moreover,[3] shows a weak
normalization of this calculus, to produce regular analysis in MCG.

All definitions of these grammars are given in [1]1, with a composition of rules (note
that according to these definitions, normalisation is strong). Moreover, this restriction
does not use introduction of hypothesis. They appear in the derivation only from specific
lexical entries: in the hypotheses of a given category and that category as a formula. The
lexicon will contain the entry φ � φ with φ as a given category.

The concrete part of the proof is achieved by a merge whose heart is the elimination
of / or \ (rules that are found in different versions from categorial grammars, [12], [24]
[16]) plus the entropy rule. This is one point where commutativity and non commuta-
tivity play a crucial role. In particular, for the word order, it is clear that the relation is
non-commutativite: being on the right or the left of a given word could not just be the
same. Non-commutativity is also needed here, because of the second rule in MCG.

The hypotheses are seen as special position markers in the sequence of hypotheses
of the proof. They are considered as resources of prominent features related to a phrase.
They are unloaded by using the move operation of the generative theory. A direct im-
plication is that the sequence of hypotheses in the proof contains exactly the sequence
of available resources for further derivation. In this case, this sequence is a collection
of resources and could not be a strict list. Unless a canonical order on the sequence of
applied rules is presupposed, the only way to express this is with non-commutativity.
The Merge rule must contain a release of the order. Definitions of basic rules of MCG
involve commutativity and non-commutativity. We will show how we could use these
properties in another perspective to encode a linguistic concept, more precisely by not-
ing that the changing category of the verb controls the process flow.

Chomsky’s theory introduces the notion of phase, which corresponds to the evolution
of the verb. Thus, we assume that the lexical item associated with the verb carries only

1 These definitions contain also a syntax / semantic interface. However, we leave this part out of
this article due to space.

Phases in Logical Framework 3

part of its achievement in the sentence. This is an important use in the syntax-semantic
interface for reporting UTAH2. The needed hypothesis to introduce a DP is provided
by verb lexical items. And this is the correspondence of verb’s resources with the DP
category which allows the DP to be in the proof.

In the phase’s definition, Chomsky assumes that some instance of move (unification
of features in our formalism) must be completed before the end of the phase. Once it
is reached, the specific resources of the process are no longer accessible to the rest of
the analysis. It defines an island in the analysis, called Phase Impenetrability Condi-
tion (PIC). Translating this definition into our formalism implies that a phase (or its
representation) block access to part of the sequence of hypotheses of the proof. We
assume that the interpretation in MCG is a non-commutative point in the sequence of
hypotheses.

The direct implication is that the analysis of a sentence simultaneously uses relations
to link noun and verb phrases, and non-commutative relations to construct the analysis
(changing the category of the verb). The use of non-commutativity involves a strict or-
der to control the verb’s role in the analysis. Formal properties used by items of different
categories are disjointed and it allows to fully exploit their relations.

2 Minimalist Categorial Grammars

Minimalist Categorial grammars are based on a fragment of PCL to encode the MP of
Chomsky. Then it uses an abstract calculus to produce both a string (sequence of words)
and a semantic representation (formula). Word order and semantics are synchronized
over the main calculus which uses a structured lexicon and specific rules. First, we
briefly present rules of PCL, then we introduce labels which encode word order, then
we define lexical items and finally introduce rules of MCG.

2.1 Partially Commutative Logic (PCL)

The logic introduced in [8] and extended in [21] is a superimposition of the Lambek cal-
culus (Intuitionistic Non-Commutative Multiplicative Linear Logic) and Intuitionistic
Commutative Multiplicative Linear Logic. Connectives are:

– the Lambek calculus connectives:�, \ and / (non-commutatives)
– commutative multiplicative linear connectives:⊗ and � (commutatives)

The use of these connectives is presented in figure 1.
In this logic, commutative and non-commutative relations could be used simultane-

ously. Then contexts are partially ordered multisets of formulae and in order to relax
this order, we need an entropy rule noted � which is defined as the replacement of ; by
,. The restriction of elimination rules and the entropy rule is called Minimalist Logic
(the logic used to define MCG). In the following, we note F the set of categories (F
stands for features).

2 Uniform Theta Assignment Hypothesis or assignment of thematic roles.

4 M. Amblard

Γ � A Δ � A\C
[\e]

< Γ ; Δ >� C

Δ � A/C Γ � A
[/e]

< Δ; Γ >� C

Γ � A Δ � A � C
[�e]

(Γ, Δ) � C

< A; Γ >� C
[\i]

Γ � A\C

< Γ ; A >� C
[/i]

Γ � C/A

(A, Γ) � C
[�i]

Γ � A � C

Δ � A � B Γ, < A;B >,Γ ′ � C
[�e]

Γ, Δ, Γ ′ � C

Δ � A ⊗ B Γ, (A, B), Γ ′ � C
[⊗e]

Γ, Δ, Γ ′ � C

Δ � A Γ � B
[�i]

< Δ; Γ >� A � B

Δ � A Γ � B
[⊗i]

(Δ, Γ) � A ⊗ B

[axiom]
A � A

Γ � C
[entropy — whenever Γ ′ � Γ]

Γ ′ � C

Fig. 1. Partially Commutative Logic rules

2.2 Labels Encoding Word Order

Derivations of MCG are labelled proofs of the PCL. Before defining labelling, we define
labels and operations on them. To do this, we use the set of phonological form Ph and
a set V of variables such that: Ph ∩ V = ∅. We note T the union of Ph and V . We
define the set Σ, called labels set as the set of triplets of elements of T ∗. Every position
in a triplet has a linguistic interpretation: they correspond to specifier/head/complement
relations of minimalist trees. A label r will be considered as r = (rs, rh, rc).

We introduce variables in the string triplets and a substitution operation. They are
used to modify a position inside a triplet by a specific material. Intuitively, this is the
counterpart in the phonological calculus of the product elimination.

A substitution is a partial function from V to T ∗. For σ a substitution, s a string of
T ∗ and r a label, we note respectively s.σ and r.σ the string and the label obtained by
the simultaneous substitution in s and r of the variables with the values associated by σ
(variables for which σ is not defined remain the same).

If the domain of definition of a substitution σ is finite and equal to x1, . . . , xn

and σ(xi) = ti, then σ is denoted by [t1/x1, . . . , tn/xn]. Moreover, for a se-
quence s and a label r, s.σ and r.σ are respectively denoted s[t1/x1, . . . , tn/xn] and
r[t1/x1, . . . , tn/xn]. Every injective substitution which takes values in V is called re-
naming. Two labels r1 and r2 (respectively two strings s1 and s2) are equal modulo a
renaming of variables if there exists a renaming σ such that r1.σ = r2 (resp. s1.σ = s2).

Finally, we need another operation on string triplets which allows to combine them
together: the string concatenation of T ∗ is noted •. Let Concat be the operation of
concatenation on labels which concatenates the three components in the linear order:
for r ∈ Σ, Concat(r) = rs • rh • rc.

We then have defined a word order structure which encodes specifier/comple-
ment/head relations and two operations (substitution and concatenation). These two
operations will be counterparts in the phonological calculus of merge and move.

Phases in Logical Framework 5

Labelled Proofs. Before exhibiting the rules of MCG, we need to define the concept
of labelling on a subset of rules of the Minimalist Logic (\e, /e, ⊗e and �).

For a given MCG G, let a G-background be x : A with x ∈ V and A ∈ F , or
〈G1; G2〉 or else (G1, G2) with G1 and G2 some G-backgrounds which are defined
on two disjoint sets of variables. G-backgrounds are series-parallel orders on subsets
of V × F . They are naturally extended to the entropy rule, noted �. A G-sequent is a
sequent of the form: Γ �G (rs, rt, rc) : B where Γ is a G-background, B ∈ F and
(rs, rt, rc) ∈ Σ.

A G-labelling is a derivation of a G-sequent obtained with the following rules:

〈s, A〉 ∈ Lex
[Lex]

�G (ε, s, ε) : A

x ∈ V
[axiom]

x : A �G (ε, x, ε) : A

Γ �G r1 : A / B Δ �G r2 : B V ar(r1) ∩ V ar(r2) = ∅
[/e]

〈Γ ; Δ〉 �G (r1s, r1t, r1c • Concat(r2)) : A

Δ �G r2 : B Γ �G r1 : B \A V ar(r1) ∩ V ar(r2) = ∅
[\e]〈Γ ; Δ〉 �G (Concat(r2) • r1s, r1t, r1c) : A

Γ �G r1 : A⊗B Δ[x : A, y : B] �G r2 : C V ar(r1) ∩ V ar(r2) = ∅ A ∈ P2
[⊗e]

Δ[Γ] �G r2[Concat(r1)/x, ε/y] : C

Γ �G r : A Γ ′ � Γ
[�]

Γ ′ �G r : A

Note that a G-labelling is a proof tree of the Minimalist Logic on which sequent
hypotheses are decorated with variables and sequent conclusions are decorated with
labels. Product elimination is applied with a substitution on labels and implication con-
nectors with concatenation (a triplet is introduced in another one by concatenating its
three components).

2.3 Lexicon

MCG encodes informations in the lexicon with types. They are defined over two sets,
one of linguistic categories and the other of move features. Lexical items associate a
label and a formula of PCL with respect to the following grammar:

L ::= (B) / P1 | C

B ::= P1 \ (B) | P2 \ (B) | C | D

C ::= P2 ⊗ (C) | C1

D ::= P2 � (D) | C1

C1 ::= P1

6 M. Amblard

where L is the starting non-terminal and P1 and P2 are atomic formulae belonging to set
of features of the MCG (features which trigger merge or move rules).

Formulae of lexical items get started with a / as the first connective, and continue
with a sequence of \. This corresponds to the sequence of selectors and licensors in MG
lexical items. These are trigger rule features of MCGs. They give the concrete part of
the derivation. A formula is ended with an atomic type, the category of the phrase, or a
sequence of� (which contains at least a specific type, which is also the main category).

For example, the following formula could be the one of an MCG entry: (d \ h \ j \
k \ (a⊗ b⊗ c)) / m, whereas this is not : (d \ h \ j \ k \ (a⊗ b⊗ c)) / m / p, because
it has two /. These formulae have the following structure :

(cm\ . . . \c1\(b1 ⊗ . . .⊗ bn ⊗ a))/d

with a ∈ P1, bi ∈ P2, cj ∈ P and d ∈ P1.
The morphism from MG lexicon to MCG ones is defined in [1].

2.4 Rules of MCG

In the same way as for MG, [22], rules of MCG are defined over two principles:

– combining two pieces of derivation: merge
– redefining internal relations in a derivation: move

As we have mentioned before, MCG is defined over a restriction of PCL: elimination
of / and \, and ⊗. In the following, in order to distinguish relations in the sequence of
hypotheses, a commutative relation will be marked with ’,’ and a non-one with ’;’.

– Merge is the function which combines two pieces of proofs together and it needs
an non-commutative relation to correctly encode relations among words. But in
the same application, merge will also combine hypothesis of different proofs. And
from a linguistic point of view, relations between these hypothesis should be com-
mutative because there is no reason to block access to them. Then, merge combines
an elimination of \ or / with the application of an entropy rule. For the same lin-
guistic reasons as in MG, MCG use two different kinds of merge depending on the
lexical/non-lexical status of the trigger.

For the word order, merge is simply the concatenation of the string of one phrase
in the label of the other one (depending of right/left relation):
Lexical trigger:

� (rs, rh, rc) : A / B Δ � s : B
[/e]

Δ � (rs, rh, rc • Concat(s)) : A
[entropy]

Δ � (rs, rh, rc • Concat(s)) : A

=⇒

� (rs, rh, rc) : A / B Δ � s : B
[mg]

Δ � (rs, rh, rc • Concat(s)) : A

Phases in Logical Framework 7

A merge with a lexical item do not explicitly show the order between hypotheses.
But here, the entropy rule is the replacement of a ; by a ,

Non-lexical trigger:
Δ � s : B Γ � (rs, rh, rc) : B \A

[\e]
Δ; Γ � (Concat(s) • rs, rh, rc) : A

[entropy]
Δ, Γ � (Concat(s) • rs, rh, rc) : A

=⇒
Δ � s : B Γ � (rs, rh, rc) : B \A

[mg]
Δ, Γ � (Concat(s) • rs, rh, rc) : A

– The encoding of Move in MCG is structurally different from the one in MG. Here,
it assumes that a phrase is included in the proof if and only if all its hypotheses are.
Then, we do not really reinterpret the local tree as in MG, but we directly produce
the final derivation tree. In this way, a move is the discharge of hypotheses by a ⊗.
For word order, the concatenation of the moved phrase is substituted in the position
of the newest hypothesis:

Γ � r1 : A⊗B Δ[u : A, v : B] � r2 : C
[mv]

Δ[Γ] � r2[Concat(r1)/u, ε/v] : C

Finally, to give account of [23], the framework is enriched with rules which modifies
the position of the string in the label. There are two kinds of rules:

– head movement where the head of the merged element is concatenated in the final
head. This implies four rules: two to distinguish left and right concatenation and
two over the lexical status of the trigger of merge.

– Affix hopping where the head of the trigger is concatenated with the head of the
merged element. In the same way, there are four rules to distinguish left from right
concatenations and lexical status of the trigger.

We use a simple way to encode the different possibilities of merging with < and >.
Pointing to the connective indicates head-movement and outside defines affix hopping.
The lexical status does not need to be represented. In the following of this paper, only
head movement will be used, thus we give this four rules:

Head-Movement:
Γ � (rspec, rtete, rcomp) : A /< B Δ � s : B

[mg]
Γ, Δ � (rspec, rtete • stete, rcomp • Concat(s−tete)) : A

Γ � (rspec, rtete, rcomp) : A> / B Δ � s : B
[mg]

Γ, Δ � (rspec, stete • rtete, rcomp • Concat(s−tete)) : A

Δ � s : B Γ � (rspec, rtete, rcomp) : B> \A
[mg]

Δ, Γ � (Concat(s−tete) • rspec, stete • rtete, rcomp) : A

Δ � s : B Γ � (rspec, rtete, rcomp) : B \< A
[mg]

Δ, Γ � (Concat(s−tete) • rspec, rtete • stete, rcomp) : A

8 M. Amblard

3 Phases

3.1 Encoding Phases in MCG

Following [7], Chomsky assumes that the analysis of a sentence is driven by the verb
which goes by two specific states: the phases VP and cP. Note that neither tP nor the
decomposition over simple verb form as it is used in usual MCG are phases (this is
illustrated in figure 2). Moreover, Chomsky claims that syntactic islands are defined by
phases. That is, the content of a phase must be moved to its left-hand side in order to
let it accessible. This step of the phase is called a transfer.

cPphase

��� ���
c tP

��� ���
t VPphase

��� ���

V vP

��� ���
v XP

Fig. 2. Phases in verb structure

According to this structure, items on the right side of the phase can not be moved
again. This syntactic island is called the Phase Impenetrability Condition (PIC). The
definition of phases and the PIC are still under debate. Nevertheless, an interesting point
for MCG is the simultaneous use of commutative and non-commutative properties of
the framework to recognize them.

According to Chomsky, a phase is a node of the syntactic tree which triggers allowed
moves. Because it is a node, this implies for MCG to combine two subproofs. It is not
possible to simulate this with a single lexical item (which implies a terminal node). Also
transfering is the realization of possible moves and the direct linking of hypotheses in a
cyclic move.

Another argument in support of phases is in the semantic counterpart. This article
does not present this second synchronized part of the calculus in MCG. Many different
works claim that at particular step of the verb derivation some specific thematic roles
could be assigned as in [10], [11] and [4]. [1] and [14] describe both arguments for
this and the semantic tiers according to these assumptions. But, they do not include the
idea of phases. Only remarks that simplification of derivation requires specific points in
which continuation reductions must occur. We leave the presentation of consequences
of phases on semantics to future works.

The analysis of a simple sentence derivation in standard MSG uses 4 items. In the
following, the verb read will be used to illustrate this presentation for a simple active
affirmative sentence.

Phases in Logical Framework 9

1. The deep syntactic build of the verb: the verb and all its arguments (except the
subject). � v /< d

2. Mode: introduces the subject category and, at least, the accusative case.
� k \ d \ V /< v

3. Inflection: brings the inflection to the verb. � k \ t /< V
4. Comp: fully completes the analysis (a question mark, insert in relative clause, etc.)
� c / t

In order to keep control on the string associate to the verb, the derivation system-
atically uses head movement except comp which ends the derivation. We claim that
phases can be encoded in MCG with a non-commutative order. The lexical realization
of a phase item explicitly contains hypotheses in a non-commutative order.

Δ1, H1; H2Δ2 � A (1)

This order makes a strong boundary in the derivation of the phase. It blocks move of
elements in complement position to specifier. These are the only items that are lexically
built with hypothesis different from the original definition of MCG [15], [1] and [2].
Using the �e rule of the PCL, the phase rule is defined as:

Δs, Δh, Δc � (ss, sh, sc) : X � Y Γs, X ; Y, Γc � (rs, rh, rc) : Z
[phase]

Γs, Δs, Δh � (rs • ss, rh, sh • sc • rc) : Z

The phase rule is the combination of a discharge of hypothesis in non-commuta-
tive order and a transfer step. This transfer is the realization of all possible moves and
parts of cyclic ones. This new rule assembles several individual rules of PCL proof.
It may be difficult to follow the derivation step by step. In the following, phases are
given with more details. Thus, we note [phase1] the substitution part of the phase (the
use of �e which combines two proofs) and [phasetrans] moves which can be achieved
after [phase1]. The main condition to validate a phase is Δc and Γc are empty after
[phasetrans]. This correspond to a phrase in complement position of a phase does not
stand accessible. We note MCGphase, MCG wit phases.

There is a direct consequence of this encoding of phase on the structure of the lexical
item Hypotheses on its left-hand side of take the place of the complement of the head.
Thus, all elements with which it should be combined must be in a specifier position. A
more complex formula as in (1) will be built only with \ :

Δ1, H1; H2Δ2 � (ss, sh, sc)Bn \ . . . \B0 \A (2)

To take into account of the definition of the phases theory and the proposed encoding
in MCG, a simple sentence will be divided into two phases: one with the mode and
another with comp. Their lexical items are modified in this way into:

– mode: � k \ d \ V / v ⇒ V ; v � k \ d \ V
– comp: � c / t ⇒ c; t � c

Hypotheses on the left-hand side of formulae receive a straightforward interpretation.
They correspond to the conversion of a proof of a v to a proof of a V (or from a t to a c
in the second one). Thus, we need to update the two other formulae in order to combine
them with the two previous ones:

10 M. Amblard

– verb: � v / d ⇒� (V � v) / d
– inflection: � k \ t / V ⇒� k \ (c� t) / V

Note that the use of � in a formula do not imply that this item is one of a phase.
It means that they take an active part in the construction of the verb. Here, we have
extended the main category of the item to the previous one, combined with the category
of the following phase category with a �.

In fact, each head item drives a specific part of all elements are included under their
relation to the head. But, the unloading of hypotheses (the realization of the phase)
occurs later. Here, the logical account of the framework updates the derivation in a way
that there is no direct intuition with the syntactic tree. We present a simple example
of interpretation of a phase in a proof into a tree: on one hand the starting part of the
derivation and on the other the proof which results in the phase:

� (A�B) / C C � C
[mg]

C � (A�B)

A; B � D \ E D � D
[mg]

D, A; B � E

Which correspond to the two following syntactic trees:

<

����
����

� (A�B) / C C � C

>

�����

�����

D � D <

����
����

A; B � D \ E ε

The syntactic tree of the phase is not a simple leaf but a tree with an empty position
in which the other derivation is substitued:

>

�����

�����

D � D <

����
����

A; B � D \ E <

����
����

� (A�B) / C C � C

And it is clear that all information derived in the second tree before the phase com-
bination must be updated after. Finally, for the same reasons as for merge, Head Move-
ment and Affix Hopping are needed through the phase. The same connectives are used
with the same effects. One instance is:

Δs, Δh, Δc � (ss, sh, sc) : X �< Y Γs, X ; Y, Γc � (rs, rh, rc) : Z
[phase]

ΓsΔs, Δh � (rs • ss, sh • rh, sc • rc) : Z

where the head of the triplet is the concatenation of the two heads. The following section
presents an application of this rules in a full analysis of a simple sentence.

Phases in Logical Framework 11

3.2 Derivation of a Simple Sentence

To illustrate derivation with phases, this section presents the complete derivation of a
simple sentence. However, extending the analysis to more complex syntactic structures
has resulted in defining the lexical entries corresponding with the same principles. We
present the analysis of the following example:

(1) The children read a book.

This simple sentence uses the affirmative form, the verb will take the four previous
steps. In order to build noun phrase with MCG with generative theory, we combine
a determiner � (k ⊗ d) / n with a noun � n. It produces a constituent of category
d (for determinal phrase) which lacks the assignment of syntactic case (k). Then, the
following lexicon is used:

articles � (ε, the, ε) : k ⊗ d / n
� (ε, a, ε) : k ⊗ d / n

noun � (ε, chlidren, ε) : n
� (ε, book, ε) : n

verb � (ε, read, ε) : (V � v)< / d
(mode) V ; v � (ε, ε, ε) : k \ d \ V
(inflection) � (ε,−, ε) : k \ (c� t) /< V
(comp) c; t � (ε, ε, ε) : c

The derivation is a proof, so each main element (the head of each phrases) drives
its subproof. The consequence is that the proof is built in several parts adjusted against
each other by the discharge of hypotheses. This property makes the presentation more
complex, but the search for proofs (i.e. the parsing) could be done in parallel. In the
following, each verb step is presented. Note that the normalization of PCL from [3]
ensures that we could combine each step one by one as presented here.

Step 1: In the first verb step of the derivation, the first position of the verb is saturated
by a hypothesis of category d. It corresponds to the position of the main component
that occupies the object position in the sentence. The object is not directly inserted in
the derivation because all its features are not yet marked by hypotheses: the position of
k (mark of the syntactic case assignment3) is missed. This is a departure from MG, in
which all phrases are directly inserted in the derivation. Here, we only mark positions
for insertion.

� (ε, read, ε) : (V � v)< / d d � (ε, u, ε) : d
[mg]

d � (ε, read, u) : (V � v)

This is the end of the first verb step. The result must be inserted in another proof
which contains hypothesis V and v. On one hand, the interpretation of the non-commu-
tative relation between V and v in the type could be the saturation of all arguments of
an element of type v to produce a V .

3 In the semantic part of the calculus, this position is also used for the thematic role assignement.

12 M. Amblard

Step 2: These hypotheses are in the proof driven by the second entry of the verb: mode
which ends the first phase. First, we need to saturate all positions of mode with lexical
hypothesis, and then we could:

1. combine the result with the first verb step,
2. introduce the object of the sentence with a move in the transfer part of the phase.

The lexical item of mode is merged with a hypothesis k and next a d:

d � (ε, w, ε) : d

k � (ε, v, ε) : k V ; v � (ε, ε, ε) : k \ d \ V
[mg]

k, V ; v � (v, ε, ε) : d \ V
[mg]

d, k, V ; v � (w v, ε, ε) : V

At this point of the derivation, this result is combined with the first verb step with
a [phase] with head movement. Note that the string of the head of the discharged is
concatenated to the string of the head position in order to keep all structural informa-
tion over the verb accessible to the full derivation. The substitution part of the phase
produces:

d � (ε, read, u) : (V � v)< d, k, V ; v � (w v, ε, ε) : V
[phase1]

d, k, d � (w v, read, u) : V

Before ending the phase, we perform a move with all positions of the utterance’s
object (they are now in the proof). Then it could be introduced in the derivation with a
transfer. In parallel, the determiner phrase is built with the two lexical entries "a" and
"book" by a merge:

� (ε, a, ε) : (k ⊗ d) / n � (ε, book, ε) : n
[mg]

� (ε, a, book) : k ⊗ d

Thereby, it is discharged in the main proof. The choice of the d with which to carry
out the unloading is not left by chance. The derivation must be continued with the one
which empties the previous verb step with a move. This is exactly the interpretation of
transfer part in [7].

� (ε, a, book) : k ⊗ d d, k, d � (w v, read, u) : V
[phasetrans]

d � (w a book, read, ε) : V

This move substitute in the newest variable as define in [1]. It is the full realization
of the constituent. In this phase, non-commutativity and commutativity are both used.
Non-commutativity in order to keep the structure of the verb and commutativity to
unload hypotheses of the nominal phrase. This underlies the assumption that the order
of the features of the noun could not be presupposed. This is reinforced by the analysis
of questions where that object constituent undergoes one more move and then must be
explicitly transfered from right to left part of the phase. Now, it is the end of the second
verb step. The derivation continues by preparing the third one.

Phases in Logical Framework 13

Step 3: This part of the derivation must be combined with the next lexical entry of the
verb, the inflection. In this part of the verb step, it was merged with the previous result
and next with a k hypothesis - the position of the subject case:

k � (ε, z, ε) : k

� (ε,−, ε) : k \ (c� t) /< V d � (w a book, read, ε) : V
[mg]

d � (ε, read, w a book) : k \ (c� t)
[mg]

k, d � (z, read, w a book) : (c� t)

This allows to discharge hypothesis about the subject constituent which it also build:

� (ε, the, ε) : (k ⊗ d) / n � (ε, children, ε) : n
[mg]

� (ε, the, children) : k ⊗ d

And unloaded:

� (ε, the, children) : k ⊗ d k, d � (z, read, w a book) : (c� t)
[mv]

� (the children, read, a book) : (c� t)

Step 4: This example stands for a very simple sentence, then the last verb step corre-
sponds only to the combination of the current bypass with the lexical entry comp by a
phase with nothing in the transfer part:

� (the children, read, a book) : (c� t) c; t � (ε, ε, ε) : c
[phase]

� (ε, ε, the children read a book) : c

This ends the last phase and thus the derivation. The proof matches the string The
children read a book. An important distinction with the previous versions of these gram-
mars is in the use of lexical item without phonological part. Here, only the lexical items
used in the phase process are necessary, but the structure of items for phases imposes a
strict order in their pooling.

3.3 Question

In the previous example, the transfer part of the two phases is not really efficient. The
first one introduced the object of the utterance and the second only ended the derivation.
For questions, the comp item is more complex because it introduces the last feature
of the object. This time, its lexical item is : c; t � (ε, ε, ε) : wh \ c. And it is only
afterward that a hypothesis wh is introduced that the object could be introduced in
the derivation. But it means that in the previous phase, the constituent mark must be
transferred from the left to the right part of the first phase. This is done with a cyclic
move: the introduction of a new hypothesis k⊗ d � k⊗ d, which explicitly connect the
two hypotheses.

In the lexicon, only comp is modified and an item for which is added :

which � (ε, ε, ε) : (wh⊗ (k ⊗ d))

The derivation before the phase is still the same.

14 M. Amblard

1. First step procedure:

� (ε, read, ε) : (V � v)< / d d � (ε, u, ε) : d
[mg]

d � (ε, read, u) : (V � v)

2. Saturation of positions of mode:

d � (ε, w, ε) : d

k � (ε, v, ε) : k V ; v � (ε, ε, ε) : k \ d \ V
[mg]

k, V ; v � (v, ε, ε) : d \ V
[mg]

d, k, V ; v � (w v, ε, ε) : V

3. Construction of the object constituent:

� (ε, which, ε) : (wh⊗ (k ⊗ d)) / n � (ε, book, ε) : n
[mg]

� (ε, which, book) : (wh⊗ (k ⊗ d))

We get all the necessary material to process the phase. Its first part combines:

d � (ε, read, u) : (V � v) d, k, V ; v � (w v, ε, ε) : V
[phase1]

d, k, d � (w v, read, u) : V

In the treatment of this utterance, the transfer part is not able to directly discharge
the two hypotheses of the determiner phrase. A cyclic move is used in order to store the
access to this element. At the same time, the phase move it on its left part:

k ⊗ d � (ε, W, ε) : k ⊗ d d, k, d � (w v, read, u) : V
[phasetrans]

d, k ⊗ d � (w W, read, ε) : V

The derivation continues with the same third step and produces:

k ⊗ d � (the children, read, W) : (c� t)

Finally, before the last phase, the derivation introduces a wh hypothesis which will
allow the move of object after the first part of the phase realization. The move of the
transfer part is:

� (ε, which, book) : (wh ⊗ (k ⊗ d)) wh, k ⊗ d � (y the children, read,W) : c
[phasetrans]

� (which book, ε, the children read) : c

In this example, only the transfer in the first phase, which accounts for the cyclic
move of the constituent allows to complete the derivation.

3.4 Blocked Derivation with PIC

A very important point in the definition of the phase rule is the fact that the complemen-
tizer part of hypothesis must be removed. This property encodes the Phase Impenetra-
bility Condition. The previous one does not contain such problem because the transfer
part of the first phase achieves all moves which empty complementizer hypotheses.

A simple example extracted from the previous one is the case where the k hypothesis
in the second step of the verb is not included. Thus the derivation must failed because
one hypothesis is away. The lexical entry corresponding to mode is:

Phases in Logical Framework 15

V ; v � (ε, ε, ε) : d \ V

which produces a conclusion of a proof of type V with only d in the left hand side:

d, V ; v � (wε, ε) : V

The result of the first part of the phase is:

d � (ε, read, u) : (V � v) d, V ; v � (w v, ε, ε) : V
[phase1]

d, d � (w v, read, u) : V

And the transfer part does not contribute to this step. The part of the Γc of the phase
rule is not removed. The structure of the proof which blocks the derivation is the case
where the constituent is in complementizer position of the head.

We would remark that derivations with phases immediately block the process unlike
traditional MCG or MG which perform the full derivation before concluding that a
specific feature stand at the end (and reject the derivation).

Even if this example is quite simple, it shows that the encoding of PIC directly uses
properties of the MCG. Unlike the other constraints, we do not need to propose new
rules. That insure to keep the same generative power for MCGphase. The derivation
strictly controls the structure and check internal relations.

4 Conclusion

The main aim of this paper is to introduce the concept of phase from minimalism into
type logical grammars, simulating the generative theory of Chomsky which has been
an open question since [7]. It involves the introduction of a new rule into the system,
and highlights commutative and non-commutative relationships between elements of
the parsing process. Moreover, this addition is not ad hoc as it allows full use of the
properties of PCL underlying the formalism. This new rule is the composition of a
substitution of hypotheses in commutative relations, followed by a transfer that is either
the realization of a move became possible, or a cyclic move. This proposal also involves
a new linguistic interpretation of cyclic move.

A full description of the system would require additional details [1]. However, we
emphasize the role played by phases at the syntactic level to define islands where the
encoding of PIC is simply the use of logical properties of the framework. Furthermore,
we claim that the use of phases at semantic level corresponds to the introduction of
thematic role predicates (variables related to the reification of formulas and substitution
of variables). They also mark points in the semantic tiers where the context must be
reduced. It plays a crucial role at the semantic level by marking reduction point for
continuations.

The introduction of these phases confirms the use of a logical system simultaneously
handling relations commutative and non-commutative at plays in linguistic analysis.
Distributing the properties on each component used in this analysis can produce fine
performances A remaining issue for this description is the formalization of the phase as
reduction point at the semantic level that would reduce ambiguities of scope of quan-
tifiers. In addition, the study of equivalence between the MCG with phases and MG
remains an open question.

16 M. Amblard

Acknowledgments. The author would like to express his gratitude to reviewers for their
precise remarks, Corinna Anderson, Sai Qian and Sandrine Ribeau for their readings.

References

1. Amblard, M.: Calcul de représentations sémantiques et syntaxe générative: les grammaires
minimalistes catégorielles. Ph.D. thesis, université de Bordeaux 1 (2007)

2. Amblard, M., Lecomte, A., Retore, C.: Categorial minimalist grammars: from generative
syntax to logical forms. Linguistic Analysis 6(1-4), 273–308 (2010)

3. Amblard, M., Retore, C.: Natural deduction and normalisation for partially commutative
linear logic and lambek calculus with product. In: Computation and Logic in the Real World,
CiE 2007 (2007)

4. Baker, M.: Thematic Roles and Syntactic Structure. In: Haegeman, L. (ed.) Elements of
Grammar, Handbook of Generative Syntax, pp. 73–137. Kluwer, Dordrecht (1997)

5. Chomsky, N.: Syntactic Structures. Mouton, The Hague (1957)
6. Chomsky, N.: The Minimalist Program. MIT Press, Cambridge (1995)
7. Chomsky, N.: Derivation by phase. ms. MIT, Cambridge (1999)
8. de Groote, P.: Partially commutative linear logic: sequent calculus and phase semantics. In:

Abrusci, V.M., Casadio, C. (eds.) Third Roma Workshop: Proofs and Linguistics Categories
– Applications of Logic to the analysis and implementation of Natural Language, pp. 199–
208. CLUEB, Bologna (1996)

9. de Groote, P.: Towards abstract categorial grammars. In: ACL 2001 (2001)
10. Hale, K.: On argument structure and the lexical expression of syntactic relations. The View

from Building, vol. 20. MIT Press, Ithaca (1993)
11. Kratzer, A.: External arguments. In: Benedicto, E., Runner, J. (eds.) Functional Projections.

University of Massachussets, Amherst (1994)
12. Lambek, J.: The mathematics of sentence structures. American mathematical monthly (1958)
13. Lecomte, A.: Categorial grammar for minimalism. Language and Grammar: Studies in Math-

ematical Linguistics and Natural Language CSLI Lecture Notes, vol. 168, pp. 163–188
(2005)

14. Lecomte, A.: Semantics in minimalist-categorial grammars. Formal Grammar (2008)
15. Lecomte, A., Retoré, C.: Extending Lambek grammars: a logical account of minimalist gram-

mars. In: Proceedings of the 39th Annual Meeting of the Association for Computational
Linguistics, ACL 2001, pp. 354–361. ACL, Toulouse (2001)

16. Moortgat, M.: Categorial type logics. In: van Benthem, J., ter Meulen, A. (eds.) Handbook
of Logic and Language, ch. 2, pp. 93–178. Elsevier, Amsterdam (1997)

17. Morrill, G.: Type logical grammar. Categorial Logic of Signs (1994)
18. Muskens, R.: Languages, lambdas and logic. Resource Sensitivity in Binding and Anaphora

(2003)
19. Pollard, C.: Convergent grammars. Tech. rep., The Ohio State University (2007)
20. Retoré, C.: Pomset logic: a non-commutative extension of classical linear logic. In: de

Groote, P., Hindley, J.R. (eds.) TLCA 1997. LNCS, vol. 1210, pp. 300–318. Springer, Hei-
delberg (1997)

21. Retoré, C.: A description of the non-sequential execution of petri nets in partially commuta-
tive linear logic. Logic Colloquium 99 Lecture Notes in Logic, pp. 152–181 (2004)

22. Stabler, E.: Derivational minimalism. LACL 1328 (1997)
23. Stabler, E.: Recognizing head movement. In: de Groote, P., Morrill, G., Retoré, C. (eds.)

LACL 2001. LNCS (LNAI), vol. 2099, p. 245. Springer, Heidelberg (2001)
24. Steedman, M.: Combinatory grammars and parasitic gaps. In: Natural Language and Lin-

guistic Theory, vol. 5 (1987)

Using Logic in the Generation of Referring

Expressions

Carlos Areces1, Santiago Figueira2,�, and Daniel Goŕın3

1 INRIA Nancy, Grand Est, France
areces@loria.fr

2 Departamento de Computación, FCEyN, UBA and CONICET, Argentina
3 Departamento de Computación, FCEyN, UBA, Argentina

{santiago,dgorin}@dc.uba.fr

Abstract. The problem of generating referring expressions (GRE) is
an important task in natural language generation. In this paper, we
advocate for the use of logical languages in the output of the content
determination phase (i.e., when the relevant features of the object to
be referred are selected). Many different logics can be used for this and
we argue that, for a particular application, the actual choice shall con-
stitute a compromise between expressive power (how many objects can
be distinguished), computational complexity (how difficult it is to deter-
mine the content) and realizability (how often will the selected content
be realized to an idiomatic expression). We show that well-known results
from the area of computational logic can then be transferred to GRE.
Moreover, our approach is orthogonal to previous proposals and we illus-
trate this by generalizing well-known content-determination algorithms
to make them parametric on the logic employed.

1 Generating Referring Expressions

The generation of referring expressions (GRE) –given a context and an element
in that context generate a grammatically correct expression in a given natural
language that uniquely represents the element– is a basic task in natural language
generation, and one of active research (see [4,5,6,20,8] among others). Most of the
work in this area is focused on the content determination problem (i.e., finding
a collection of properties that singles out the target object from the remaining
objects in the context) and leaves the actual realization (i.e., expressing a given
content as a grammatically correct expression) to standard techniques1.

However, there is yet no general agreement on the basic representation of both
the input and the output to the problem; this is handled in a rather ad-hoc way
by each new proposal instead.

Krahmer et al. [17] make the case for the use of labeled directed graphs in the
context of this problem: graphs are abstract enough to express a large number of
� S. Figueira was partially supported by CONICET (grant PIP 370) and UBA (grant

UBACyT 20020090200116).
1 For exceptions to this practice see, e.g., [16,21].

S. Pogodalla and J.-P. Prost (Eds.): LACL 2011, LNAI 6736, pp. 17–32, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

18 C. Areces, S. Figueira, and D. Goŕın

domains and there are many attractive, and well-known algorithms for dealing
with this type of structures. Indeed, these are nothing other than an alternative
representation of relational models, typically used to provide semantics for formal
languages like first and higher-order logics, modal logics, etc. Even valuations,
the basic models of propositional logic, can be seen as a single-pointed labeled
graph. It is not surprising then that they are well suited to the task.

In this article, we side with [17] and use labeled graphs as input, but we argue
that an important notion has been left out when making this decision. Exactly
because of their generality, graphs do not define, by themselves, a unique notion
of sameness. When do we say that two nodes in the graphs can or cannot be
referred uniquely in terms of their properties? This question only makes sense
once we fix a certain level of expressiveness which determines when two graphs,
or two elements in the same graph, are equivalent.

Expressiveness can be formalized using structural relations on graphs (iso-
morphisms, etc.) or, alternatively, logical languages. Both ways are presented
in §2, where we also discuss how fixing a notion of expressiveness impacts on the
number of instances of the GRE problem that have a solution; the computational
complexity of the GRE algorithms involved; and the complexity of the surface
realization problem. We then investigate the GRE problem in terms of different
notions of expressiveness. We first explore in §3 how well-known algorithms from
computational logic can be applied to GRE. This is a systematization of the ap-
proach of [1], and we are able to answer a complexity question that was left open
there. In §4 we take the opposite route: we take the well-known GRE-algorithm
of [17], identify its underlying expressivity and rewrite in term of other logics.
We then show in §5 that both approaches can be combined and finally discuss in
§6 the size of an RE relative to the expressiveness employed. We conclude in §7
with a short discussion and prospects for future work.

2 Measuring Expressive Power

Relational structures are very suitable for representing situations or scenes. A
relational structure (also called “relational model”) is a non-empty set of objects
–the domain– together with a collection of relations, each with a fixed arity.

Formally, assume a fixed and finite (but otherwise arbitrary) vocabulary of
n-ary relation symbols.2 A relational model M is a tuple 〈Δ, || · ||〉 where Δ is
a nonempty set, and || · || is a suitable interpretation function, that is, ||r|| ⊆ Δn

for every n-ary relation symbol r in the vocabulary. We say that M is finite
whenever Δ is finite. The size of a model M is the sum #Δ + #|| · ||, where #Δ
is the cardinality of Δ and #|| · || is the sum of the sizes of all relations in || · ||.

Figure 1 below shows how we can represent a scene as a relational model.
Intuitively, a, b and d are dogs, while c and e are cats; d is a small beagle; b and
c are also small. We read sniffs(d, e) as “d is sniffing e”.

2 Constants and function symbols can be represented as relations of adequate arity.

Using Logic in the Generation of Referring Expressions 19

Δ = {a, b, c, d, e}
||dog || = {a, b, d}
||cat || = {c, e}

||beagle || = {d}
||small || = {b, c, d}
||sniffs || = {(a, a), (b, a), (c, b), (d, e), (e, d)}

a

dog

b

dog
small

c

cat
small

d

dog
beagle
small

e

cat

sniffs

sniffs sniffs

sniffs

sniffs

Fig. 1. Graph representation of scene S

Logical languages are fit for the task of (formally) describing elements of
a relational structure. Consider, e.g., the classical language of first-order logic
(with equality), FO, given by:

� | xi ≈ xj | r(x̄) | ¬γ | γ ∧ γ′ | ∃xi.γ

where γ, γ′ ∈ FO, r is an n-ary relation symbol and x̄ is an n-tuple of variables.
As usual, γ ∨ γ′ and ∀x.γ are short for ¬(¬γ ∧ ¬γ′) and ¬∃x.¬γ, respectively.
Formulas of the form �, xi ≈ xj and r(x̄) are called atoms.3 Given a relational
model M = 〈Δ, || · ||〉 and a formula γ with free variables4 among x1 . . . xn, we
inductively define the extension or interpretation of γ as the set of n-tuples
||γ||n ⊆ Δn that satisfy:

||�||n = Δn ||xi ≈ xj ||n = {ā | ā∈Δn, ai = aj}
||¬δ||n = Δn \ ||δ||n ||r(xi1 . . . xik

)||n = {ā | ā∈Δn, (ai1 . . . aik
)∈||r||}

||δ ∧ θ||n = ||δ||n ∩ ||θ||n ||∃xl.δ||n = {ā | āe ∈ ||δ′||n+1 for some e}

where 1 ≤ i, j, i1, . . . , ik ≤ n, ā = (a1 . . . an), āe = (a1 . . . an, e) and δ′ is obtained
by replacing all occurrences of xl in δ by xn+1. When the cardinality of the tuples
involved is known from the context we will just write ||γ|| instead of ||γ||n.

With a language syntax and semantics in place, we can now formally define
the problem of L-GRE for a target set of elements T (we slightly adapt the
definition in [1]):

L-GRE Problem

Input: a model M = 〈Δ, || · ||〉 and a nonempty target set T ⊆ Δ.
Output: a formula ϕ ∈ L such that ||ϕ|| = T if it exists, and ⊥ otherwise.

When the output is not ⊥, we say that ϕ is an L-referring expression (L-RE)
for T in M. Simply put then, the output of the L-GRE problem is a formula
of L whose interpretation in the input model is the target set, if such a formula
3 For technical reasons, we include the inequality symbol
≈ as primitive. Equality can

be defined using negation.
4 W.l.o.g. we assume that no variable appears both free and bound, that no variable

is bound twice, and that the index of bound variables in a formula increases from
left to right.

20 C. Areces, S. Figueira, and D. Goŕın

exists. This definition applies also to the GRE for objects of the domain by
taking a singleton set as target.

By using formulas with n free variables one could extend this definition to
describe n-ary relations; but here we are only interested in describing subsets of
the domain. Actually, we shall restrict our attention a little further:

Convention 1. We will only consider relational models with unary and binary
relation symbols (i.e., labeled graphs). We will consistently use p for a unary
relation symbol (and called it a proposition) and r for a binary relation symbol.

This convention captures the usual models of interest when describing scenes as
the one presented in Figure 1. Accommodating relations of higher arity in our
theoretical framework is easy, but it might affect computational complexity.

2.1 Choosing the Appropriate Language

Given a model M, there might be an infinite number of formulas that uniquely
describe a target (even formulas which are not logically equivalent might have
the same interpretation once a model is fixed). Despite having the same inter-
pretation in M, they may be quite different with respect to other parameters.

As it is well known in the automated text generation community, different re-
alizations of the same content might result in expressions which are more or less
appropriate in a given context. Although, as we mentioned in the introduction,
we will only address the content determination part (and not the surface real-
ization part) of the GRE problem, we will argue that generating content using
languages with different expressive power can have an impact in the posterior
surface generation step.

Let us consider again the scene in Figure 1. Formulas γ1–γ4 shown in Table 1
are all such that γi uniquely describes b (i.e., ||γi|| = {b}) in model S. Arguably,
γ1 can be easily realized as “the small dog that sniffs a dog”. Syntactically, γ1 is
characterized as a positive, conjunctive, existential formula (i.e., it contains no
negation and uses only conjunction and existential quantification). Expressions
with these characteristics are, by large, the most commonly found in corpora
as those compiled in [22,9,7]. Formula γ2, on the other hand, contains negation,
disjunction and universal quantification. It could be realized as “the small dog
that only sniffs things that are not cats” which sounds unnatural. Even a small
change in the form of γ2 makes it more palatable: rewrite it using ∃, ¬, and ∧
to obtain “the small dog that is not sniffing a cat”. Similarly, γ3 and γ4 seem
computationally harder to realize than γ1: γ3 contains an inequality (“the dog
sniffing another dog”), while the quantified object appears in the first argument
position in the binary relation in γ4 (“the dog that is sniffed by a small cat”).

Summing up, we can ensure, already during the content determination phase,
certain properties of the generated referring expression by paying attention to
the formal language used in the representation. And we can do this, even before
taking into account other fundamental linguistics aspects that will make certain
realization preferable like saliency, the cognitive capacity of the hearer (can she
recognize a beagle from another kind of dog?), etc.

Using Logic in the Generation of Referring Expressions 21

Table 1. Alternative descriptions for object b in the model shown in Figure 1

γ1 : dog(x) ∧ small(x) ∧ ∃y.(sniffs(x, y) ∧ dog(y))

γ2 : dog(x) ∧ small(x) ∧ ∀y.(¬cat(y) ∨ ¬sniffs(x, y))

γ3 : dog(x) ∧ ∃y.(x
≈ y ∧ dog(y) ∧ sniffs(x, y))

γ4 : dog(x) ∧ ∃y.(cat(y) ∧ small(y) ∧ sniffs(y, x))

As a concrete example, let FO− be the fragment of FO-formulas where the
operator ¬ does not occur (but notice that atoms xi ≈ xj are permitted). By
restricting content determination to FO−, we ensure that formulas like γ2 will
not be generated. If we ban ≈ from the language, γ3 is precluded.

The fact that the representation language used has an impact on content
determination is obvious, but it has not received the attention it deserves. Are-
ces et al. [1] use different description logics (a family of formal languages used
in knowledge representation, see [2]) to classify, and give a formal framework to
previous work on GRE. Let us quickly introduce some of these languages as we
will be mentioning them in future sections. Using description logics instead of
FO fragments is just a notational issue, as most description logics can be seen
as implicit fragments of FO. For example, the language of the description logic
ALC, syntactically defined as the set of formulas,

� | p | ¬γ | γ ∧ γ′ | ∃r.γ

(where p is a propositional symbol, r a binary relational symbol, and γ, γ′ ∈
ALC) corresponds to a syntactic fragment of FO without ≈, as shown by the
standard translation τx:

τxi(�) = � τxi(γ1 ∧ γ2) = τxi(γ1) ∧ τxi(γ2)
τxi(p) = p(xi) τxi(∃r.γ) = ∃xi+1.(r(xi, xi+1) ∧ τxi+1(γ))

τxi(¬γ) = ¬τxi(γ)

Indeed, given a relational model M, the extension of an ALC formula ϕ
in M exactly coincides with the extension of τx1(ϕ) (see, e.g., [2]). Thanks
to this result, for any formula ϕ of ALC and its sublanguages we can define
||ϕ|| = ||τx1(ϕ)||. Coming back to our previous example, by restricting content
generation to ALC formulas (or equivalently, the corresponding fragment of FO)
we would avoid formulas like γ3 (no equality) and γ4 (quantified element appears
always in second argument position).

Generation is discussed in [1] in terms of different description logics like ALC
and EL (ALC without negation). We will extend the results in that paper, con-
sidering for instance EL+ (ALC with negation allowed only in front of unary
relations) but, more generally, we take a model theoretic approach and argue
that the primary question is not whether one should use one or other (descrip-
tion) logic for content generation, but rather which are the semantic differences
one cares about. This determines the required logical formalism but also impacts
on both the content determination and the surface realization problems. Each

22 C. Areces, S. Figueira, and D. Goŕın

logical language can be seen as a compromise between expressiveness, realiz-
ability and computational complexity. The appropriate selection for a particular
GRE task should depend on the actual context.

2.2 Defining Sameness

Intuitively, given a logical language L we say that an object u in a model M1 is
similar in L to an object v in a model M2 whenever all L-formulas satisfied by
u are also satisfied by v. Formally, let M1 = 〈Δ1, || · ||1〉 and M2 = 〈Δ2, || · ||2〉 be
two relational models with u ∈ Δ1 and v ∈ Δ2; we follow the terminology of [1]
and say that u is L-similar to v (notation u

L� v) whenever u ∈ ||γ||1 implies
v ∈ ||γ||2, for every γ ∈ L. It is easy to show that L-similarity is reflexive for all
L, and symmetric for languages that contain negation.

Observe that L-similarity captures the notion of ‘identifiability in L’. If we
take M1 and M2 to be the same model, then an object u in the model can
be uniquely identified using L if there is no object v different from u such that
u

L� v. In other words, if there are two objects u and v in a model M such that
u

L� v, then the L-GRE problem with input M and target T = {u} will not
succeed since for all formulas γ ∈ L we have {u, v} ⊆ ||γ|| = {u}.

The notion of L-similarity then, gives us a handle on the L-GRE problem.
Moreover, we can recast this definition in a structural way, so that we do not
need to consider infinitely many L-formulas to decide whether u is L-similar to
v. We can reinterpret L-similarity in terms of standard model-theoretic notions
like isomorphisms or bisimulations which describe structural properties of the
model, instead. Given two models 〈Δ1, ||·||1〉 and 〈Δ2, ||·||2〉, consider the following
properties of a binary relation ∼ ⊆ Δ1 ×Δ2 (cf. Convention 1):

atomL : If u1∼u2, then u1 ∈ ||p||1 ⇒ u2 ∈ ||p||2
atomR : If u1∼u2, then u2 ∈ ||p||2 ⇒ u1 ∈ ||p||1
relL : If u1∼u2 and (u1, v1) ∈ ||r||1, then ∃v2 s.t. v1∼v2 and (u2, v2) ∈ ||r||2
relR : If u1∼u2 and (u2, v2) ∈ ||r||2, then ∃v1 s.t. u1∼v1 and (u1, v1) ∈ ||r||1
injL : ∼ is an injective function (when restricted to its domain)
injR : ∼−1 is an injective function (when restricted to its domain)

We will say that a non-empty binary relation ∼ is an L-simulation when it
satisfies the properties indicated in Table 2. For example, a non-empty binary
relation that satisfies atomL, and relL is an EL-simulation, as indicated in
row 4 of Table 2. Moreover, we will say that an object v L-simulates u (notation
u

L→v) if there is a relation ∼ satisfying the corresponding properties such that
u ∼ v. The following is a fundamental model-theoretic result:

Theorem 1. If M1 = 〈Δ1, ||·||1〉 and M2 = 〈Δ2, ||·||2〉 are finite models, u ∈ Δ1

and v ∈ Δ2, then u
L� v iff u

L→v (for L ∈ {FO,FO−,ALC, EL, EL+}).

Proof. Some results are well-known: FO→ is isomorphism on labeled graphs [11];
ALC→ corresponds to the notion of bisimulation [3, Def. 2.16]; EL→ is a simulation as
defined in [3, Def. 2.77]. The remaining cases are simple variations of these.

Using Logic in the Generation of Referring Expressions 23

Table 2. L-simulations for several logical languages L

L atomL atomR relL relR injL injR

FO × × × × × ×
FO− × × ×
ALC × × × ×
EL × ×
EL+ × × ×

Therefore, on finite models5 simulations capture exactly the notion of similarity.
The right to left implication does not hold in general on infinite models.
L-simulations allow us to determine, in an effective way, when an object is

indistinguishable from another in a given model with respect to L.
For example, we can verify that a EL→ b in the model of Figure 1 (the relation

∼ = {(a, a), (a, b)} satisfies atomL and relL). Using Theorem 1 we conclude
that there is no EL-description for a, since for any EL-formula γ, if a ∈ ||γ||, then
b ∈ ||γ||. Observe that b EL→ a, since (again applying Theorem 1), b ∈ ||small(x)||
but a /∈ ||small(x)||. If one chooses a language richer than EL, such as EL+, one
may be able to describe a: take, for instance the EL+-formula dog(x)∧¬small (x).

As we will discuss in the next section, simulation gives us an efficient, com-
putationally feasible approach to the L-GRE problem. Algorithms to compute
many kinds of L-simulations are well known (see, [15,18,14,10]), and for many
languages (e.g., ALC, ALC with inverse relations, EL+ and EL) they run in
polynomial time (on the other hand, no polynomial algorithm for FO- or FO−-
simulation is known and even the exact complexity of the problem in these cases
is open [13]).

3 GRE via Simulator Sets

In this section we will discuss how to solve the L-GRE problem using simulation.
Given a model M = 〈Δ, || · ||〉, Theorem 1 tells us that if two distinct elements
u and v in Δ are such that u L→v then every L-formula that is true at u is also
true at v. Hence there is no formula in L that can uniquely refer to u. From this
perspective, knowing whether the model contains an element that is L-similar
but distinct from u is equivalent to decide whether there exists an L-RE for u.

Assume a fixed language L and a model M. Suppose we want to refer to an
element u in the domain of M. We would like to compute the simulator set of
u defined as simM

L (u) = {v ∈ Δ | u L→v}. When the model M is clear from the
context, we just write simL. If simM

L (u) is not the singleton {u}, the L-GRE
problem with target {u} in M will fail.

An algorithm is given in [14] to compute simEL+(v) for each element v of a
given finite model M = 〈Δ, || · ||〉 in time O(#Δ ×#|| · ||). Intuitively, this algo-
rithm defines S(v) as a set of candidates for simulating v and successively refines
it by removing those which fail to simulate v. In the end, S(v) = simEL+(v).

5 Finiteness is not the weakest hypothesis, but it is enough for our development.

24 C. Areces, S. Figueira, and D. Goŕın

The algorithm can be adapted to compute simL for many other languages L. In
particular, we can use it to compute simEL in polynomial time which will give
us the basic algorithm for establishing an upper bound to the complexity of the
EL-GRE problem –this will answer an open question of [1]. The pseudo-code
is shown in Algorithm 1, which uses the following notation: P is a fixed set of
unary relation symbols, for v ∈ Δ, let P (v) = {p ∈ P | v ∈ ||p||} and let also
sucr(v) = {u ∈ Δ | (v, u) ∈ ||r||} for r a binary relation symbol.

Algorithm 1. Computing EL-similarity

input : a finite model M = 〈Δ, || · ||〉
output: ∀v ∈ Δ, the simulator set simM

EL(v) = S(v)

foreach v ∈ Δ do
S(v) := {u ∈ Δ | P (v) ⊆ P (u)}

while ∃r, u, v, w : v ∈ sucr(u), w ∈ S(u), sucr(w) ∩ S(v) = ∅ do
S(u) := S(u) \ {w}

The algorithm is fairly straightforward. We initialize S(v) with the set of all
elements u ∈ Δ such that P (v) ⊆ P (u), i.e., the set of all elements satisfying at
least the same unary relations as v (this guarantees that property atomL holds).
At each step, if there are three elements u, v and w such that for some relation r,
(u, v) ∈ ||r||, w ∈ S(u) (i.e., w is a candidate to simulate u) but sucr(w)∩S(v) = ∅
(there is no element w′ such that (w, w′) ∈ ||r|| and w′ ∈ S(v)) then clearly
condition relL is not satisfied under the supposition that simEL = S. S is ‘too
big’ because w cannot simulate u. Hence w is removed from S(u).

Algorithm 1 will only tell us whether an EL-RE for an element u exists (that
is, whether simEL(u) = {u} or not). It does not compute an EL-formula ϕ
that uniquely refers to v. But we can adapt it to obtain such a formula. Al-
gorithm 1’s main strategy to compute simulations is to successively refine an
over-approximation of the simulator sets. The “reason” behind each refinement
can be encoded using an EL-formula. Using this insight, one can transform an
algorithm that computes L-simulator sets with a similar strategy, into one that
additionally computes an L-RE for each set.

Algorithm 2 shows a transformed version of Algorithm 1 following this princi-
ple. The idea is that each node v ∈ Δ is now tagged with a formula F (v) of EL.
The formulas F (v) are updated along the execution of the loop, whose invariant
ensures that v ∈ ||F (v)|| and ||F (u)|| ⊆ S(u) hold for all u, v ∈ Δ.

Initially F (v) is the conjunction of all the unary relations that satisfy v (if
there is none, then F (v) = �). Each time the algorithm finds elements r, u, v, w
such that (u, v) ∈ ||r||, w ∈ S(u) and sucr(w) ∩ S(v) = ∅, it updates F (u) to
F (u) ∧ ∃r.F (v). Again this new formula ϕ is in EL and it can be shown that
v ∈ ||ϕ|| and w /∈ ||ϕ||, hence witnessing that v

EL� w is false.
Algorithm 2 can be easily modified to calculate the EL+-RE of each simulator

set simEL+ by adjusting the initialization: replace ⊆ by = in the initialization
of S(v) and initialize F (v) as

∧ (
P (v) ∪ P (v)

)
, where P (v) = {¬p | v /∈ ||p||}.

Using Logic in the Generation of Referring Expressions 25

Algorithm 2. Computing EL-similarity and EL-RE

input : a finite model M = 〈Δ, || · ||〉
output: ∀v ∈ Δ, a formula F (v) ∈ EL, and the simulator set S(v) such that

||F (v)|| = S(v) = simEL(v)

foreach v ∈ Δ do
S(v) := {u ∈ Δ | P (v) ⊆ P (u)};
F (v) :=

∧
P (v);

while ∃r, u, v, w : v ∈ sucr(u), w ∈ S(u), sucr(w) ∩ S(v) = ∅ do
invariant ∀u, v : ||F (u)|| ⊆ S(u) ∧ v ∈ ||F (v)||
S(u) := S(u) \ {w};
if ∃r.F (v) is not a conjunct of F (u) then

F (u) := F (u) ∧ ∃r.F (v);

With a naive implementation Algorithm 2 executes in time O(#Δ3× #|| · ||2)
providing a polynomial solution to the EL and EL+-GRE problems. Algorithm 1
can be transformed to run with a lower complexity as in shown in [14]; moreover
this version of the algorithm can be adapted to compute EL- and EL+-RE for
an arbitrary subset of the domain of 〈Δ, || · ||〉 in O(#Δ×#|| · ||) steps. We shall
skip the details.

Theorem 2. The EL and EL+-GRE problems over M = 〈Δ, || · ||〉 have com-
plexity O(#Δ ×#|| · ||).

Theorem 2 answers a question left open in [1]: the EL-GRE problem can be
solved in polynomial time. Note, however, that this result assumes a convenient
representation of formulas like, for example, directed acyclic graphs, to ensure
that each step of the formula construction can be done in O(1). In §6 we will
take a closer look at the issue and its relation to the size of the smallest L-RE.

Algorithm 2 was obtained by adding formula annotations to a standard ‘EL-
simulation-minimization’ algorithm. Given an L-simulation-minimization, we
can typically adapt it in an analogous way to obtain an L-GRE algorithm. The
obtained algorithm computes L-REs for every element of the domain simultane-
ously. This will make it particularly suitable for applications with static domains
requiring references to many objects. Moreover, the algorithm can be adapted to
dynamic domains by using techniques used to recompute simulations (see [19]),
so that only those RE that were affected by a change in the domain need to be
recomputed.

We have not addressed so far other relevant issues of the GRE problem besides
computational complexity. In particular, Algorithm 2 pays no attention to the
use of preferences among relations when generating an RE (i.e., preferring the
selection of certain attributes over others, when possible). While there is room
for improvement (e.g., making a weighted choice instead of the non-deterministic
choice when choosing elements in the main loop of the algorithm), support for
preferences is not one of the strong points of this family of algorithms. We
consider algorithms with strong support for preferences in the following section.

26 C. Areces, S. Figueira, and D. Goŕın

4 GRE via Building Simulated Models

Krahmer et al. [17] introduce an algorithm for content determination based
on the computation of subgraph isomorphisms. It is heavily regulated by cost
functions and is therefore apt to implement different preferences. In fact, they
show that using suitable cost functions it can simulate most of the previous
proposals. Their algorithm takes as input a labeled directed graph G and a node
e and returns, if possible, a connected subgraph H of G, containing e and enough
edges to distinguish e from the other nodes.

In this section we will identify its underlying notion of expressiveness and
will extend it to accommodate other notions. To keep the terminology of [17],
in what follows we may alternatively talk of labeled graphs instead of relational
models. The reader should observe that they are essentially the same mathe-
matical object, but notice that in [17], propositions are encoded using looping
binary relations (e.g., they write dog(e, e) instead of dog(e)).

The main ideas of their algorithm can be intuitively summarized as follows.
Given two labeled graphs H and G, and vertices v of H and w of G, we say that
the pair (v, H) refers to the pair (w, G) iff H is connected and H can be “placed
over” G in such a way that: 1) v is placed over w; 2) each node of H is placed over
a node of G with at least the same unary predicates (but perhaps more); and 3)
each edge from H is placed over an edge with the same label. Furthermore, (v, H)
uniquely refers to (w, G) if (v, H) refers to (w, G) and there is no vertex w′ = w in
G such that (v, H) refers to (w′, G). The formal notion of a labeled graph being
“placed over” another one is that of subgraph isomorphism: H = 〈ΔH , || · ||H〉
can be placed over G iff there is a labeled subgraph (i.e., a graph obtained from
G by possibly deleting certain nodes, edges, and propositions from some nodes)
G′ = 〈ΔG′ , || · ||G′〉 of G such that H is isomorphic to G′, which means that there
is a bijection f : ΔH → ΔG′ such that for all vertices u, v ∈ ΔH , u ∈ ||p||H iff
f(u) ∈ ||p||G′ and (u, v) ∈ ||r||H iff (f(u), f(v)) ∈ ||r||G′ .

As an example, consider the relational model depicted in Figure 1 as a labeled
graph G, and let us discuss the pairs of nodes and connected subgraphs (v, H)
shown in Figure 2. Clearly, (i) refers to the pair (w, G) for any node w ∈ {a, b, d};
(ii) refers to (w, G) for w ∈ {b, d}; and both (iii) and (iv) uniquely refer to (b, G).
Notice that (i)–(iv) can be respectively realized as “a dog”, “a dog that sniffs
something”, “a small dog that sniffs a dog” (cf. γ1 in Table 1) and “the dog that
is sniffed by a small cat” (cf. γ4 in Table 1).

It is important to emphasize that there is a substantial difference between the
algorithm presented in [17] and the one we discussed in the previous sections:

v

dog

v

dog

sniffs

dog

v

dog
small

sniffs
v

dog cat
small

sniffs

(i) (ii) (iii) (iv)

Fig. 2. Some connected subgraphs (v, H) of scene S in Figure 1

Using Logic in the Generation of Referring Expressions 27

while the input is a labeled graph G and a target node v, the output is, in this
case (and unlike the definition of L-GRE problem presented in §2 where the
output is a formula), the cheapest (with respect to some, previously specified
cost function) connected subgraph H of G which uniquely refers to (v, G) if there
is such H , and ⊥ otherwise.

We will not deal with cost functions here; it is enough to know that a cost
function is a monotonic function that assigns to each subgraph of a scene graph
a non-negative number which expresses the goodness of a subgraph –e.g. in
Figure 2, one may tune the cost function so that (iii) is cheaper than (iv), and
hence (iii) will be preferred over (iv).

For reasons of space we will not introduce here the detailed algorithm pro-
posed in [17]. Roughly, it is a straightforward branch and bound algorithm that
systematically tries all relevant subgraphs H of G by starting with the subgraph
containing only vertex v and expanding it recursively by trying to add edges
from G that are adjacent to the subgraph H constructed up to that point. In
the terminology of [17] a distractor is a node of G different from v that is also
referred by H . The algorithm ensures that a subgraph uniquely refers to the
target v when it has no distractors. Reached this point we have a new candidate
for the solution, but there can be other cheaper solution so the search process
continues until the cheapest solution is detected. Cost functions are used to guide
the search process and to give preference to some solutions over others.

Here is the key link between the graph-based method of [17] and our logical-
oriented perspective: on finite relational models, subgraph isomorphism corre-
sponds to FO−-simulations, in the sense that given two nodes u, v of G, there is
a subgraph isomorphic to G via f , containing u and v, and such that f(u) = v iff
u

FO−
→ v. Having made explicit this notion of sameness and, with it, the logical

language associated to it, we can proceed to generalize the algorithm to make it
work for other languages, and to adapt it in order to output a formula instead
of a graph. This is shown in Algorithms 3 and 4.

Algorithm 3. makeREL(v)

input : an implicit finite
G = 〈ΔG, || · ||〉 and
v ∈ ΔG

output: an L-RE for v in G if
there is one, or else ⊥

H := 〈{v}, ∅〉;
f := {v �→ v};
H ′ := findL (v,⊥, H, f);

return buildFL (H ′, v);

Algorithm 4. findL(v, best , H, f)

if best
= ⊥ ∧ cost(best) ≤ cost(H) then
return best

distractors := {n | n ∈ ΔG, n
= v, v
L→n};

if distractors = ∅ then
return H

foreach 〈H ′, f ′〉 ∈ extendL(H,f) do
I := findL (v, best , H ′, f ′);
if best = ⊥∨ cost(I) ≤ cost(best) then

best := I

return best ;

These algorithms are parametric on L; to make them concrete, one needs to
provide appropriate versions of buildFL and extendL. The former transforms
the computed graph which uniquely refers to the target v into an L-RE formula
for v; the latter tells us how to extend H at each step of the main loop of

28 C. Areces, S. Figueira, and D. Goŕın

Algorithm 4. Note that, unlike the presentation of [17], makeREL computes not
only a graph H but also an L-simulation f . In order to make the discussion
of the differences with the original algorithm simpler, we analyze next the case
L = FO− and L = EL.

The case of FO−. From the computed cheapest isomorphic subgraph H ′ one can
easily build an FO−-formula that uniquely describes the target v, as is shown in
Algorithm 5. Observe that if FO-simulations were used instead, we would have
to include also which unary and binary relations do not hold in H ′.

Algorithm 5. buildFFO−(H ′, v)

let H ′ = 〈{a1 . . . an}, || · ||〉,v = a1;

γ :=
∧

ai �=aj

(xi
≈ xj) ∧
∧

(ai,aj)∈||r||
r(xi, xj) ∧

∧
ai∈||p||

p(xi)

return ∃x2 . . .∃xn.γ;

Algorithm 6. extendFO−(H,f)

A := {H+p(u) | u ∈ ΔH ,
u ∈ ||p||G \ ||p||H};

B := {H+r(u, v) | u ∈ ΔH ,
{(u, v), (v, u)} ∩ ||r||G \ ||r||H
= ∅};
return (A ∪ B) × {id};

Regarding the function which extends the given graph in all possible ways (Algo-
rithm 6), since H is a subgraph of G, f is the trivial identity function id(x) = x.
We will see the need for f when discussing the case of less expressive logics
like EL. In extendFO− we follow the notation of [17] and write, for a relational
model G = 〈Δ, || · ||〉, G + p(u) to denote the model 〈Δ ∪ {u}, || · ||′〉 such that
||p||′ = ||p|| ∪ {u} and ||q||′ = ||q|| when q = p. Similarly, G + r(u, v) denotes the
model 〈Δ∪{u, v}, || · ||′〉 such that ||r||′ = ||r||∪{(u, v)} and ||q||′ = ||q|| when q = r.
It is clear, then, that this function is returning all the extensions of H by adding
a missing attribute or relation to H , just like is done in the original algorithm.

The case of EL. Observe that findEL uses an EL-simulation, and any FO−-
simulation is an EL-simulation. One could, in principle, just use extendFO− also
for EL. If we do this, the result of findEL will be a subgraph H of G such that
for every EL-simulation ∼, u ∼ v iff u = v. The problem is that this subgraph
H may contain cycles and, as it is well known, EL (even ALC) are incapable to
distinguish a cycle from its unraveling6. Hence, although subgraph isomorphism
get along with FO−, it is too strong to deal with EL.

A well-known result establishes that every relational model M is equivalent,
with respect to EL-formulas,7 to the unraveling of M. That is, any model and
its unraveling satisfy exactly the same EL-formulas. Moreover, the unraveling
of M is always a tree, and as we show in Algorithm 7, it is straightforward to
extract a suitable EL-formula from a tree.

Therefore, we need extendEL to return all the possible “extensions” of H . Now
“extension” does not mean to be a subgraph of the original graph G anymore.
6 Informally, the unraveling of G, is a new graph, whose points are paths of G from a

given starting node. That is, transition sequences in G are explicitly represented as
nodes in the unraveled model. See [3] for a formal definition.

7 Actually, the result holds even for ALC-formulas.

Using Logic in the Generation of Referring Expressions 29

We do this by either adding a new proposition or a new edge that is present in
the unraveling of G but not in H . This is shown in Algorithm 8.

Algorithm 7. buildFEL(H ′, v)

requires H ′ to be a tree
γ := {∃r.buildFEL(H ′, u) |

(v, u) ∈ ||r||};
return (

∧
γ) ∧ (

∧
v∈||p|| p);

Algorithm 8. extendEL(H,f)

A :=
{〈H+p(u), f〉 | u ∈ ΔH , u ∈ ||p||G \ ||p||H};

B := ∅;
foreach u ∈ ΔG do

foreach uH ∈ ΔH/(f(uh), u) ∈ ||r||G do
if ∀v : (uH , v) ∈ ||r||H ⇒ f(v)
= u
then

n := new node;
B := B ∪
{〈H + r(uH , n), f ∪ {n �→ u}〉};

return A ∪ B;

Observe that the behavior of findEL is quite sensible to the cost function em-
ployed. For instance, on cyclic models, a cost function that does not guarantee
the unraveling is explored in a breadth-first way may lead to non-termination
(since findEL may loop exploring an infinite branch).

As a final note on complexity, although the set of EL-distractors may be
computed more efficiently than FO−-distractors (since EL-distractors can be
computed in polynomial time, and computing FO−-distractors seems to require
a solution to the subgraph isomorphism problem which NP-complete), we cannot
conclude that findEL is more efficient than findFO− in general: the model built
in the first case may be exponentially larger –it is an unraveling, after all. We
will come back to this in §6.

5 Combining GRE Methods

An appealing feature of formulating the GRE problem modulo expressivity is
that one can devise general strategies that combine L-GRE algorithms. We il-
lustrate this with an example.

The algorithms based on L-simulator sets like the ones in §3 simultaneously
compute referring expressions for every object in the domain, and do this for
many logics in polynomial time. This is an interesting property when one antic-
ipates the need of referring to a large number of elements. However, this family
of algorithms is not as flexible in terms of implementing preferences as those we
introduced in §4 –though some flexibility can be obtained by using cost func-
tions for selecting u, v and w in the main loop of Algorithm 2 instead of the
non-deterministic choices.

There is a simple way to obtain an algorithm that is a compromise between
these two techniques. Let A1 and A2 be two procedures that solve the L-GRE
problem based on the techniques of §3 and §4, respectively. One can first com-
pute an L-RE for every possible object using A1 and then (lazily) replace the

30 C. Areces, S. Figueira, and D. Goŕın

calculated RE for u with A2(u) whenever the former does not conform to some
predefined criterion. This is correct but we do better, taking advantage of the
equivalence classes obtained using A1.

Since A1 computes, for a given M = 〈Δ, || · ||〉, the set sim(u) for every u ∈ Δ,
one can build in polynomial time, using the output of A1, the model ML =
〈{[u] | u ∈ Δ}, || · ||L〉, such that: [u] = {v | u

L→ v and v
L→ u} and ||r||L =

{([u1] . . . [un]) | (u1 . . . un) ∈ ||r||}. ML is known as the L-minimization of M.
By a straightforward induction on γ one can verify that (u1 . . . un) ∈ ||γ|| iff
([u1] . . . [un]) ∈ ||γ||L and this implies that γ is an L-RE for u in M iff it is an
L-RE for [u] in ML.

If M has a large number of indistinguishable elements (using L), then ML
will be much smaller than M. Since the computational complexity of A2 depends
on the size of M, for very large scenes, one should compute A2([u]) instead.

6 On the Size of Referring Expressions

The expressive power of a language L determines if there is an L-RE for an
element u. It also influences the size of the shortest L-RE (when they exist).
Intuitively, with more expressive power we are able to ‘see’ more differences and
therefore have more resources at hand to build a shorter formula.

A natural question is, then, whether we can characterize the relative size of
the L-REs for a given L. That is, if we can give (tight) upper bounds for the size
of the shortest L-REs for the elements of an arbitrary model M, as a function
of the size of M.

For the case of one of the most expressive logics considered in this article,
FO−, the answer follows from algorithm makeREFO− in §4. Indeed, if an FO−-
RE exists, it is computed by buildFFO− from a model H that is not bigger than
the input model. It is easy to see that this formula is linear in the size of H and,
therefore the size of any FO−-RE is O(#Δ + #|| · ||). It is not hard to see that
this upper bound holds for FO-REs too.

One is tempted to conclude from Theorem 2 that the size of the shortest EL-
RE is O(#Δ ×#|| · ||), but there is a pitfall. Theorem 2 assumes that formulas
are represented as a DAG and it guarantees that this DAG is polynomial in
the size of the input model. One can easily reconstruct (the syntax tree of) the
formula from the DAG, but this, in principle, may lead to a exponential blow-
up –the result will be an exponentially larger formula, but composed of only a
polynomial number of different subformulas. As the following example shows,
it is indeed possible to obtain an EL-formula that is exponentially larger when
expanding the DAG representation generated by Algorithm 2.

Example 1. Consider a language with only one binary relation r, and let M =
〈Δ, || · ||〉 where Δ = {1, 2, . . . , n} and (i, j) ∈ ||r|| iff i < j. Algorithm 2 initializes
F (j) = � for all j ∈ Δ. Suppose the following choices in the execution: For
i = 1, . . . , n− 1, iterate n− i times picking v = w = n − i + 1 and successively
u = n − i, . . . , 1. It can be shown that each time a formula F (j) is updated, it

Using Logic in the Generation of Referring Expressions 31

changes from ϕ to ϕ ∧ ∃r.ϕ and hence it doubles its size. Since F (1) is updated
n− 1 many times, the size of F (1) is greater than 2n.

The large EL-RE of Example 1 is due to an unfortunate (non-deterministic)
choice of elements. Example 2 shows that another execution leads to a quadratic
RE (but notice the shortest one is linear: (∃r)(n−1).�).

Example 2. Suppose now that in the first n−1 iterations we successively choose
v = w = n− i and u = v − 1 for i = 0 . . . n− 2. It can be seen that for further
convenient choices, F (1) is of size O(n2).

But is it always possible to obtain an EL-RE of size polynomial in the size of
the input model, when we represent a formula as a string, and not as a DAG?
In [12] it is shown that the answer is ‘no’: for L ∈ {ALC, EL, EL+}, the lower
bound for the length of the L-RE is exponential in the size of the input model8,
and this lower bound is tight.

7 Conclusions

The content determination phase during the generation of referring expressions
identifies which ‘properties’ will be used to refer to a given target object or set
of objects. What is considered as a ‘property’ is specified in different ways by
each of the many algorithms for content determination existing in the literature.
In this article, we put forward that this issue can be addressed by deciding
when two elements should be considered to be equal, that is, by deciding which
discriminatory power we want to use. Formally, the discriminatory power we
want to use in a particular case can be specified syntactically by choosing a
particular formal language, or semantically, by choosing a suitable notion of
simulation. It is irrelevant whether we choose first the language (and obtain the
associated notion of simulation afterwards) or vice versa.

We maintain that having both at hand is extremely useful. Obviously, the
formal language will come handy as representation language for the output to
the content determination problem. But perhaps more importantly, once we
have fixed the expressivity we want to use, we can rely on model theoretical
results defining the adequate notion of sameness underlying each language, which
indicates what can and cannot be said (as we discussed in §2). Moreover, we can
transfer general results from the well-developed fields of computational logics and
graph theory as we discuss in §3 and §4, where we generalized known algorithms
into families of GRE algorithms for different logical languages.

An explicit notion of expressiveness also provides a cleaner interface, either
between the content determination and surface realization modules or between
two collaborating content determination modules. An instance of the latter was
exhibited in §5.
8 More precisely, there are infinite models G1, G2, . . . such that for every i, the size of

Gi is linear in i but the size of the minimum RE for some element in Gi is bounded
from below by a function which is exponential on i.

32 C. Areces, S. Figueira, and D. Goŕın

As a future line of research, one may want to avoid sticking to a fixed L but
instead favor an incremental approach in which features of a more expressive
language L1 are used only when L0 is not enough to distinguish certain element.

References

1. Areces, C., Koller, A., Striegnitz, K.: Referring expressions as formulas of descrip-
tion logic. In: Proc. of the 5th INLG, Salt Fork, OH, USA (2008)

2. Baader, F., McGuiness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description
Logic Handbook: Theory, implementation and applications. Cambridge University
Press, Cambridge (2003)

3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

4. Dale, R.: Cooking up referring expressions. In: Proc. of the 27th ACL (1989)
5. Dale, R., Haddock, N.: Generating referring expressions involving relations. In:

Proc. of the 5th EACL (1991)
6. Dale, R., Reiter, E.: Computational interpretations of the Gricean maxims in the

generation of referring expressions. Cognitive Science 19 (1995)
7. Dale, R., Viethen, J.: Referring expression generation through attribute-based

heuristics. In: Proc. of the 12th ENLG Workshop, pp. 58–65 (2009)
8. van Deemter, K.: Generating referring expressions: Boolean extensions of the in-

cremental algorithm. Computational Linguistics 28(1), 37–52 (2002)
9. van Deemter, K., van der Sluis, I., Gatt, A.: Building a semantically transparent

corpus for the generation of referring expressions. In: Proc. of the 4th INLG (2006)
10. Dovier, A., Piazza, C., Policriti, A.: An efficient algorithm for computing bisimu-

lation equivalence. Theor. Comput. Sci. 311, 221–256 (2004)
11. Ebbinghaus, H., Flum, J., Thomas, W.: Mathematical Logic. Springer, Heidelberg

(1996)
12. Figueira, S., Goŕın, D.: On the size of shortest modal descriptions. Advances in

Modal Logic 8, 114–132 (2010)
13. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. Freeman, New York (1979)
14. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite

and infinite graphs. In: Proc. of 36th Annual Symposium on Foundations of Com-
puter Science, pp. 453–462. IEEE Computer Society Press, Los Alamitos (1995)

15. Hopcroft, J.: An nlog(n) algorithm for minimizing states in a finite automaton. In:
Kohave, Z. (ed.) Theory of Machines and Computations. Academic Press, London
(1971)

16. Horacek, H.: An algorithm for generating referential descriptions with flexible in-
terfaces. In: Proc. of the 35th ACL, pp. 206–213 (1997)

17. Krahmer, E., van Erk, S., Verleg, A.: Graph-based generation of referring expres-
sions. Computational Linguistics 29(1) (2003)

18. Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM J. Com-
put. 16(6), 973–989 (1987)

19. Saha, D.: An incremental bisimulation algorithm. In: Arvind, V., Prasad, S. (eds.)
FSTTCS 2007. LNCS, vol. 4855, pp. 204–215. Springer, Heidelberg (2007)

20. Stone, M.: On identifying sets. In: Proc. of the 1st INLG (2000)
21. Stone, M., Webber, B.: Textual economy through close coupling of syntax and

semantics. In: Proc. of the 9th INLG Workshop, pp. 178–187 (1998)
22. Viethen, J., Dale, R.: Algorithms for generating referring expressions: Do they do

what people do? In: Proc. of the 4th INLG (2006)

Polarized Classical Non-associative Lambek

Calculus and Formal Semantics

Arno Bastenhof

Utrecht University

Abstract. While initially motivated for studying natural language syn-
tax, the intuitionistic bias underlying traditional Lambek calculi renders
them particularly suitable to a Montagovian formal semantics through
the Curry-Howard correspondence. Several recent proposals, however,
have departed from the intuitionistic tradition, seeking instead to formu-
late ‘classical’ Lambek calculi. We show that this classical turn need not
come at the cost of the tight connection with formal semantics, concen-
trating on De Groote and Lamarche’s Classical Non-Associative Lambek
calculus (CNL). Our work is founded in Girard’s and Andreoli’s research
into polarities and focused proofs, suggesting the definition of polarized
CNL, its connection to De Groote and Lamarche’s original proposal ex-
plicated through the use of phase spaces. We conclude with a discussion
of related literature, particularly Moortgat’s Lambek-Grishin calculus.

1 Introduction

Categorial grammars in the Lambek tradition seek a proof-theoretic explanation
of natural language syntax: syntactic categories are formulas and derivations are
proofs. Typically, one observes an intuitionistic bias towards single conclusion
sequents, the existence of a Montagovian formal semantics thereby being imme-
diate through the Curry-Howard correspondence. Recent years, however, have
seen proposals for ‘classical Lambek calculi’, retaining the resource sensitivity of
the traditional systems, while dispensing with their intuitionistic asymmetry in
favor of an involutive negation. This article proposes a formal semantics for such
systems, concentrating on Classical Non-Associative Lambek calculus (CNL,
[7]), arguably the most resource sensitive among its kin.

We proceed as follows. §2 briefly recapitulates the basics of CNL. In §3, we
define polarized CNL (CNLpol), drawing from Girard’s research into polarities
and Andreoli’s work on focusing ([5], [1]). Roughly, a dichotomy between positive
and negative formulas is uncovered, serving as a guide to Cut-free proof search
in avoiding ‘don’t care’ non-determinism. A Montagovian formal semantics is
defined for CNLpol , and briefly motivated through simple analyses of (subject)
relativization and quantifier scope ambiguities. We ensure, in §4, that provability
in CNL and CNLpol coincide, using an argument involving phase spaces. §5
concludes with a discussion of several related topics.1

1 Throughout this article, in referring to a previously stated definition (lemma, theo-
rem, corollary, figure) n, we often use the abbreviation D.n (L.n, T.n, C.n, F.n).

S. Pogodalla and J.-P. Prost (Eds.): LACL 2011, LNAI 6736, pp. 33–48, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

34 A. Bastenhof

A,A⊥ �
Ax

Γ, Δ �
Δ, Γ � dp1

Γ • Δ, Θ �
Γ, Δ • Θ � dp2

Δ, A � Γ, A⊥ �
Γ, Δ � Cut

Γ, A • B �
Γ, A � B � �

Γ, A � Δ, B �
Δ • Γ, A � B � �

Fig. 1. CNL defined. Double inference lines indicate applicability in both directions.

2 Classical Non-associative Lambek Calculus

We briefly recapitulate De Groote and Lamarche’s sequent calculus for CNL,
permitting ourselves a few deviations in notation as motivated below.

Definition 1. Formulas in CNL are generated from positive and negative
atoms p, p̄ using the multiplicative disjunction � (par) and -conjunction � (ten-
sor):

A, B ::= p | p̄ | (A � B) | (A � B)

Classicality is affirmed through linear negation ·⊥:

p⊥ = p̄ p̄⊥ = p
(A � B)⊥ = B⊥ � A⊥ (A � B)⊥ = B⊥ � A⊥

Definition 2. Structures Γ, Δ combine formulas into binary-branching trees:

Γ, Δ ::= A | (Γ •Δ)

Definition 3. Figure 1 defines the derivability judgement Γ, Δ �, pairing struc-
tures Γ, Δ into a left-sided sequent. The rules (dp2) and (dp1) remind of both
Yetter’s cyclicity ([17]), as well als Belnap’s display postulates ([2]).

While De Groote and Lamarche employ the more common right-sided sequents,
the left-sided notation facilitates a more transparent correspondence with the
intuitionistic sequents used in Montagovian semantics, as shown in §3.2.

3 Polarized CNL

The current section develops a variation on CNL permitting a correspondence
between Cut-free derivations and linear λ-terms in long β-normal form. Linguis-
tic applications focus on the relation to a Montagovian-style formal semantics.

3.1 Motivation

Our revision of CNL is founded in the research on polarities in logic, ini-
tiated in the early nineties through the independent works of Andreoli ([1])
and Girard ([5]). The former’s efforts concerned the elimination of inessential
non-determinism in näıve backward chaining proof search, while Girard instead

Polarized Classical Non-associative Lambek Calculus and Formal Semantics 35

sought a constructive reading of classical proofs, bypassing Lafont’s critical pairs.
Both ultimately settled on modified sequent calculi carrying explicit partition-
ings of formulas correlated with proof-theortic behavior. Downplayed to a strictly
multiplicative setting, formulas are of either positive or negative polarity, de-
pending on whether or not their inferences are always invertible, preserving the
provability of their conclusion inside their premises. Top-down proof-search then
prioritizes the application of invertible inferences, while enforcing maximal chains
of non-invertible inferences applied to subformulas of the same initial formula.

Girard’s constructivization of classical logic inspired a novel intuitionistic
translation, developed further in [16], [18]. Roughly, the introduction of double
negations is made contingent upon the polarity of the formula being translated,
thus achieving parsimony. We adapt Girard’s translation to CNL by developing
a polarized variant thereof, explicitly distinguishing between positive and neg-
ative formulas. Through a Curry-Howard mapping, we obtain a compositional
semantics along the lines of [11], illustrated by a few simple case analyses.

3.2 Polarization and Derivational Semantics

Definition 4. Formulas in polarized CNL (henceforth CNLpol) are inherently
positive or negative, with shifts ↑, ↓ ([6], §5.3) establishing communication:

P, Q ::= p | (P � Q) | (↓N)
M, N ::= p̄ | (M � N) | (↑P)

Linear negation ·⊥ is revised accordingly, satisfying P⊥⊥ = P and N⊥⊥ = N :

p⊥ = p̄ p̄⊥ = p
(P � Q)⊥ = Q⊥ � P⊥ (M � N)⊥ = N⊥ � M⊥

(↓N)⊥ = ↑N⊥ (↑P)⊥ = ↓P⊥

Remark 5. In practice, we assume ↑, ↓ to bind more strongly than �, �, and
drop brackets accordingly. Thus, P � ↑Q⊥ abbreviates (P � (↑Q⊥)).

The linguistic explanation of Lambek calculi emphasizes a reading of formulas as
syntactic categories. Their inductive structure facilitates a tight correspondence
with semantic types, the formulas of an intuitionistic calculus used to describe
the range of possible denotations for linguistic expressions.

Definition 6. For the purpose of describing the semantic operations associated
with derivability in CNLpol , we will use the following notion of (semantic) type:

τ, σ ::= p | ⊥ | (τ � σ) | ¬τ

We understand all positive atoms p of CNLpol to have been inherited, and to
have been augmented by a distinguished atom ⊥. Compound types include mul-
tiplicative products (τ �σ) (overloading notation) and negations ¬τ . Intuitively,
the latter may be understood by linear negations τ −◦⊥ with ⊥ as result.

Definition 7. Formulas P, N are mapped into types σ+(P), σ−(N), as follows:

36 A. Bastenhof

τx � x : τ
Ax

Γ � s : ¬τ Δ � t : τ
Γ, Δ � (s t) : ⊥ ¬E

Γ, τx � s : ⊥
Γ � λxτs : ¬τ

¬I

Δ � t : σ1 � σ2 Γ, σx
1 , σy

2 � s : τ

Γ, Δ � (case t of 〈xσ1 , yσ2〉s) : τ
�E

Γ � s : τ Δ � t : σ
Γ, Δ � 〈s, t〉 : τ � σ

�I

(λxs t) →β s[t/x]
case 〈t1, t2〉 of 〈x, y〉s →β s[t1/x, t2/y]
(case t of 〈x, y〉s s′) →c case t of 〈x, y〉(s s′)

case (case t of 〈x, y〉s) of 〈u, v〉s′ →c case t of 〈x, y〉(case s of 〈u, v〉s′)

Fig. 2. Target language: typing rules and reductions. The c-conversions correspond to
the commutative conversions of Prawitz ([14]), while the ‘case’ notation follows that
of Wadler ([15]).

σ+(p) = p σ−(p̄) = p
σ+(P � Q) = σ+(P) � σ+(Q) σ−(M � N) = σ−(N) � σ−(M)

σ+(↓N) = ¬σ−(N) σ−(↑P) = ¬σ+(P)

If the analogy of a semantic type as capturing a possible ‘kind’ of denotation is
to be further pursued, we require a means of describing its inhabitants.

Definition 8. F.2 defines a calculus of linear λ-terms, named LP�,¬ (or sim-
ply LP) in reference to the permutative Lambek calculus. Subject of derivability
are sequents Γ � s : τ , establishing inhabitation of s in τ relative to a context
Γ (again overloading notation): a multiset {τx1

1 , . . . , τxn
n } of type assignments

τ1, . . . , τn to the free variables x1, . . . , xn in M . The braces {, } are often ommit-
ted and we loosely write Γ, Δ for multiset union. Finally, sequents are to satisfy
the linearity constraint that each variable in Γ is to occur free in s exactly once.

In practice, we sometimes abbreviate λz(case z of 〈x, y〉s) by paired abstraction
λ〈x, y〉s, not to be taken as a primitive constructor.

Definition 9. The structures Π, Σ of CNLpol are built using solely positive
formulas, annotated by LP’s variables.

Π, Σ ::= P x | (Π •Σ)

Structures Π map into LP contexts σ(Π) by interpreting P x as a type assign-
ment {σ+(P)x} and collapsing the sole structural connective · • · into set union.

Definition 10. Figure 3 defines derivability judgements Π, Σ � s and Π � s :
N for CNLpol , defined by mutual induction. Both carry an LP term s, while N
is said to inhabit the stoup in the latter case (adopting terminology of [5]). In
practice, we will often abbreviate sequences of (dp2) and (dp1) by (dp).

Sequents Π, Σ � s may be understood to implicitly carry ⊥ as the type of s.
More specifically, a straightforward induction proves

Polarized Classical Non-associative Lambek Calculus and Formal Semantics 37

px � x : p̄
Ax

Π,Σ � s

Σ, Π � s
dp1

Π • Σ, Υ � s

Π,Σ • Υ � s
dp2

Π � s : N
Π, ↓Nx � (x s)

↓ Π, P y • Qz � s

Π,P � Qx � case x of 〈y, z〉s
�

Π,P x � s

Π � λx.s : ↑P
↑ Π � s : M Σ � t : N

Σ • Π � 〈t, s〉 : M � N
�

Fig. 3. Sequent rules for CNLpol

Lemma 1. Π, Σ � s and Π � s : N imply, respectively, σ(Π), σ(Σ) � s : ⊥ and
σ(Π) � s : σ−(N) in LP.

Lemma 2. If Π, Σ � s or Π � s : N , then s is in β-normal form.

Example 1. If formulas are categories, then structures are the binary branching
trees oft encountered in linguistic analysis, while proofs are syntactic derivations.
We illustrate this correspondence through the following sample expressions, in-
volving subject relativization (1) and quantifier scope ambiguities (2).

(1) (the) lemma that confuses Hilbert
(2) A lemma confuses everyone.

To model these data, we use atomic propositions s, np and n, categorizing sen-
tences, noun phrases and nouns respectively. Our lexicon assigns the following
(positive) categories to the words involved:

Word Category Lambek category

Hilbert np np
everyone ↓(↑ np � s̄) � s (np/s) � s

a ↓(↑ np � n̄) np/n
lemma n n

confuses ↓((n̄p � ↑ s) � n̄p) (np\s)/np
that ↓((n̄ � ↑n) � ↑(↓ s̄ � np)) (n\n)/(np\s)

For reference purposes, we included the closest corresponding traditional Lambek
formulas, with forward and backward implications A/B and B\A understood as
A�B⊥ and B⊥ �A respectively.2 While the category for ‘everyone’ may appear
unconventional, the key idea is to have it include a subformula of the form ↓N ,
allowing (↓) to fix its scope. Its contractibility to np is what further sets it apart
from the commonly used traditional category s/(np\s). Figures 5 and 6 provide
derivations for (1) and (2), using F.4’s derivation of transitive clauses as a macro.

The terms derived in Figures 5 and 6 constitute the denotations of the ex-
pressions (1) and (2), parameterized over the denotations of the words contained
therein via the use of free variables. Note in particular the derivation of distinct
terms for (2), corresponding to the two available scopal readings.

2 [7] demonstrates CNL embeds (intuitionistic) non-associative Lambek calculus.

38 A. Bastenhof

npx � x : n̄p
Ax

su � u : s̄
Ax

su, ↓ s̄z � (z u)
↓

↓ s̄z, su � (z u)
dp1

↓ s̄z � λu(z u) : ↑ s
↑

↓ s̄z • npx � 〈λu(z u), x〉 : n̄p � ↑ s
�

npy � y : n̄p
Ax

npy • (↓ s̄z • npx) � 〈y, 〈λu(z u), x〉〉 : (n̄p � ↑ s) � n̄p
�

npy • (↓ s̄z • npx), ↓((n̄p � ↑ s) � n̄p)v � (v 〈y, 〈λu(z u), x〉〉)
↓

Fig. 4. A ‘macro’ for deriving transitive clauses

3.3 Lexical Semantics

The previous section left us with the task of instantiating the lexical parameters
feeding the denotations found in Figures 5 and 6. In doing so, we will admit
ourselves some leverage in the strictness of the resource management regime
adopted thus far: while the ‘derivational’ semantics of §3.2 was meant to reflect
the linearity of the source CNLpol , the lexical semantics, constituting our means
of referring to the world around us, need not be so restricted.

Put in more precise terms, in filling the lexical gap left by §3.2, we permit
access to the full simply-typed λ-calculus, augmented by the logical constants of
first-order predicate logic. To start with, the type language is revised thus:

τ, σ ::= e | t | (σ → τ) | (σ × τ)

We have adopted base types e and t, interpreting, respectively, a fixed set of
‘entities’, or discourse referents, and the Boolean truth values. Complex types
are either implications or products, the latter allowing the formation of pairs
〈s, t〉 and the left- and right projections π1(s) and π2(s). In updating our lexical
entries, we associate words of category P with terms of type σ+(P), ‘delinearized’
by systematically replacing ⊥, (τ �σ) and ¬τ with t, τ×σ and τ→t respectively:

Word Category Denotations

Hilbert np hilbert
everyone ↓(↑np � s̄) � s 〈λ〈p,P 〉∀y((person y) ⇒ (P y)) ∧ p,�〉

a ↓(↑np � n̄) λ〈Q, P 〉∃x((Q x) ∧ (P x))
lemma n lemma

confuses ↓((n̄p � ↑ s) � n̄p) λ〈x, 〈q, y〉〉(q ((confuse y) x))
that ↓((n̄ � ↑n) � ↑(↓ s̄ � np)) λ〈R, 〈Z, Q〉〉(Z λz((Q z) ∧ (R 〈λp p, z〉)))

Here, λ〈y, z〉t abbreviates λxτ×σt[π1(x)/y, π2(x)/z]. Note the use of nonlogi-
cal constants hilbert, person, lemma and confuse, of types e, e → t (×2)
and e → (e → t) respectively. Like types, the linear terms of §3.2 carry over
straightforwardly: just replace case analyses case s of 〈x, y〉t with projections
t[π1(s)/x, π2(s)/y]. Substitution of the above lexical denotations for the appro-
priate variables then yields the following terms:

(1) (3 λz((lemma z) ∧ ((confuse hilbert) z)))
(2a) ∀y((person y) ⇒ ∃x((lemma x) ∧ (3 ((confuses y) x)))) ∧ �)
(2b) ∃x((lemma x) ∧ (∀y((person y) ⇒ (3 ((confuses y) x))) ∧ �))

Polarized Classical Non-associative Lambek Calculus and Formal Semantics 39

n � n̄
Ax

n � n̄
Ax

n, ↓ n̄ � ↓

↓ n̄, n � dp

↓ n̄ � ↑n
↑

↓ n̄ • n � n̄ � ↑n
�

np • (↓ s̄ • np), ↓((n̄p � ↑ s) � n̄p) �
↓

↓((n̄p � ↑ s) � n̄p) • np, ↓ s̄ • np �
dp

↓((n̄p � ↑ s) � n̄p) • np, ↓ s̄ � np �
�

↓((n̄p � ↑ s) � n̄p) • np � ↑(↓ s̄ � np)
↑

(↓((n̄p � ↑ s) � n̄p) • np) • (↓ n̄ • n) � (n̄ � ↑n) � ↑(↓ s̄ � np)
�

(↓((n̄p � ↑ s) � n̄p) • np) • (↓ n̄ • n), ↓((n̄ � ↑n) � ↑(↓ s̄ � np)) �
↓

n • (↓((n̄ � ↑n) � ↑(↓ s̄ � np)) • (↓((n̄p � ↑ s) � n̄p) • np)), ↓ n̄ �
dp

1 � 1
Ax

2 � 2
Ax

2, 3 � (3 2)
↓

3, 2 � (3 2)
dp

3 � λ2(3 2)
↑

3 • 1 � 〈λ2(3 2), 1〉
�

7 • (6 • 4), 8 � (8 〈7, 〈λ5(6 5), 4〉〉)
↓

8 • 7, 6 • 4 � (8 〈7, 〈λ5(6 5), 4〉〉)
dp

8 • 7, 9 � case 9 of 〈6, 4〉(8 〈7, 〈λ5(6 5), 4〉〉)
�

8 • 7 � λ〈6, 4〉(8 〈7, 〈λ5(6 5), 4〉〉)
↑

(8 • 7) • (3 • 1) � 〈λ〈6, 4〉(8 〈7, 〈λ5(6 5), 4〉〉), 〈λ2(3 2), 1〉〉
�

(8 • 7) • (3 • 1), 10 � (10 〈λ〈6, 4〉(8 〈7, 〈λ5(6 5), 4〉〉), 〈λ2(3 2), 1〉〉)
↓

1 • (10 • (8 • 7)), 3 � (10 〈λ〈6, 4〉(8 〈7, 〈λ5(6 5), 4〉〉), 〈λ2(3 2), 1〉〉)
dp

Fig. 5. Derivation illustrating subject relativization. Reasons of space dictate the
spreading of the syntactic and semantic components over separate derivation trees.
Furthermore, due to the number of variables involved in the semantics, we use num-
bers as names (not to be confused with De Bruijn notation).

In each case, we are left with a free variable 3, corresponding to the category of
the whole expression. Also, for (2a) and (2b), note φ ∧ � is logically equivalent
with φ. Alternatively, one may use the more complex category ↓(↑np�↑ s)�↓ s̄
for ‘everyone’, with denotation λ〈q, P 〉∀y(q ((person y) ⇒ (P y))), λp p〉.

4 Comparing Provability in CNLpol and CNL

We defined polarized CNL and briefly demonstrated its application to formal
semantics. Suffice it to assure that CNL and CNLpol coincide on provability.
One direction is straightforward: a derivation in CNLpol is easily rewritten into
one of CNL by dropping the shifts. Conversely, we witness a decoration of CNL
formulae with shifts ↑, ↓, generating no (sub)formulas of the form ↓ ↑P or ↑ ↓N ,
s.t. provability in CNL implies provability in CNLpol w.r.t. said decoration.

The bulk of this section is devoted to proving closure of CNLpol under Cut,
using an argument involving phase spaces ([13]). Said models are defined in §4.1,
together with proofs of soundness and completeness. §4.2 uses the results of §4.1
to prove Cut admissibility, and provides the decoration by which we demonstrate
the completeness of CNLpol w.r.t. CNL. In what is to follow, we will only be
concerned with provability, hence omit any mention of term annotations.

40 A. Bastenhof

n
p
4
•(

↓s̄
3
•n

p
1
),
↓(

(n̄
p

�
↑s

)
�

n̄
p
)5

�
(5

〈4
,〈

λ
2
(3

2
),

1
〉〉)

F
.4

(↓
((

n̄
p

�
↑s

)
�

n̄
p
)5

•n
p
4
)
•↓

s̄3
,n

p
1
�

(5
〈4

,〈
λ
2
(3

2
),

1
〉〉)

d
p

(↓
((

n̄
p

�
↑s

)
�

n̄
p
)5

•n
p
4
)
•↓

s̄3
�

λ
1
(5

〈4
,〈

λ
2
(3

2
),

1
〉〉)

:
↑n

p
↑

n
6
�

6
:
n̄

A
x

n
6
•(

(↓
((

n̄
p

�
↑s

)
�

n̄
p
)5

•n
p
4
)
•↓

s̄3
)
�
〈6

,λ
1
(5

〈4
,〈

λ
2
(3

2
),

1
〉〉)

〉:
↑n

p
�

n̄
�

n
6
•(

(↓
((

n̄
p

�
↑s

)
�

n̄
p
)5

•n
p
4
)
•↓

s̄3
),
↓(
↑n

p
�

n̄
)7

�
(7

〈6
,λ

1
(5

〈4
,〈

λ
2
(3

2
),

1
〉〉)

〉)
↓

(↓
s̄3

•(
↓(
↑n

p
�

n̄
)7

•n
6
))

•↓
((

n̄
p

�
↑s

)
�

n̄
p
)5

,n
p
4
�

(7
〈6

,λ
1
(5

〈4
,〈

λ
2
(3

2
),

1
〉〉)

〉)
d
p

(↓
s̄3

•(
↓(
↑n

p
�

n̄
)7

•n
6
))

•↓
((

n̄
p

�
↑s

)
�

n̄
p
)5

�
λ
4
(7

〈6
,λ

1
(5

〈4
,〈

λ
2
(3

2
),

1
〉〉)

〉)
:
↑n

p
↑

s8
�

8
:
s̄

A
x

s8
•(

(↓
s̄3

•(
↓(
↑n

p
�

n̄
)7

•n
6
))

•↓
((

n̄
p

�
↑s

)
�

n̄
p
)5

)
�
〈8

,λ
4
(7

〈6
,λ

1
(5

〈4
,〈

λ
2
(3

2
),

1
〉〉)

〉)〉
:
↑n

p
�

s̄
�

s8
•(

(↓
s̄3

•(
↓(
↑n

p
�

n̄
)7

•n
6
))

•↓
((

n̄
p

�
↑s

)
�

n̄
p
)5

),
↓(
↑n

p
�

s̄)
9
�

(9
〈8

,λ
4
(7

〈6
,λ

1
(5

〈4
,〈

λ
2
(3

2
),

1
〉〉)

〉)〉
)

↓

(↓
s̄3

•(
↓(
↑n

p
�

n̄
)7

•n
6
))

•↓
((

n̄
p

�
↑s

)
�

n̄
p
)5

,↓
(↑

n
p

�
s̄)

9
•s

8
�

(9
〈8

,λ
4
(7

〈6
,λ

1
(5

〈4
,〈

λ
2
(3

2
),

1
〉〉)

〉)〉
)

d
p

(↓
s̄3

•(
↓(
↑n

p
�

n̄
)7

•n
6
))

•↓
((

n̄
p

�
↑s

)
�

n̄
p
)5

,↓
(↑

n
p

�
s̄)

�
s1

0
�

c
a
se

1
0

o
f
〈9

,8
〉(9

〈8
,λ

4
(7

〈6
,λ

1
(5

〈4
,〈

λ
2
(3

2
),

1
〉〉)

〉)〉
)

�

(↓
(↑

n
p

�
n̄
)7

•n
6
)
•(

↓(
(n̄

p
�

↑s
)
�

n̄
p
)5

•↓
(↑

n
p

�
s̄)

�
s1

0
),
↓s̄

3
�

c
a
se

1
0

o
f
〈9

,8
〉(9

〈8
,λ

4
(7

〈6
,λ

1
(5

〈4
,〈

λ
2
(3

2
),

1
〉〉)

〉)〉
)

d
p

n
p
4
•(

↓s̄
3
•n

p
1
),
↓(

(n̄
p

�
↑s

)
�

n̄
p
)5

�
(5

〈4
,〈

λ
2
(3

2
),

1
〉〉)

F
.4

(↓
s̄3

•n
p
1
)
•↓

((
n̄
p

�
↑s

)
�

n̄
p
)5

,n
p
4
�

(5
〈4

,〈
λ
2
(3

2
),

1
〉〉)

d
p

(↓
s̄3

•n
p
1
)
•↓

((
n̄
p

�
↑s

)
�

n̄
p
)5

�
λ
4
(5

〈4
,〈

λ
2
(3

2
),

1
〉〉)

:
↑n

p
↑

s8
�

8
:
s̄

A
x

s8
•(

(↓
s̄3

•n
p
1
)
•↓

((
n̄
p

�
↑s

)
�

n̄
p
)5

)
�
〈8

,λ
4
(5

〈4
,〈

λ
2
(3

2
),

1
〉〉)

〉:
↑n

p
�

s̄
�

s8
•(

(↓
s̄3

•n
p
1
)
•↓

((
n̄
p

�
↑s

)
�

n̄
p
)5

),
↓(
↑n

p
�

s̄)
9
�

(9
〈8

,λ
4
(5

〈4
,〈

λ
2
(3

2
),

1
〉〉)

〉)
↓

(↓
((

n̄
p

�
↑s

)
�

n̄
p
)5

•↓
(↑

n
p

�
s̄)

�
s1

0
)
•↓

s̄3
,n

p
1
�

(9
〈8

,λ
4
(5

〈4
,〈

λ
2
(3

2
),

1
〉〉)

〉)
d
p

(↓
((

n̄
p

�
↑s

)
�

n̄
p
)5

•↓
(↑

n
p

�
s̄)

�
s1

0
)
•↓

s̄3
�

λ
1
(9

〈8
,λ

4
(5

〈4
,〈

λ
2
(3

2
),

1
〉〉)

〉)
:
↑n

p
↑

n
6
�

6
:
n̄

A
x

n
6
•(

(↓
((

n̄
p

�
↑s

)
�

n̄
p
)5

•↓
(↑

n
p

�
s̄)

9
•s

8
)
•↓

s̄3
)
�
〈6

,λ
1
(9

〈8
,λ

4
(5

〈4
,〈

λ
2
(3

2
),

1
〉〉)

〉)〉
:
↑n

p
�

n̄
�

n
6
•(

(↓
((

n̄
p

�
↑s

)
�

n̄
p
)5

•↓
(↑

n
p

�
s̄)

9
•s

8
)
•↓

s̄3
),
↓(
↑n

p
�

n̄
)7

�
(7

〈6
,λ

1
(9

〈8
,λ

4
(5

〈4
,〈

λ
2
(3

2
),

1
〉〉)

〉)〉
)

↓

(↓
s̄3

•(
↓(
↑n

p
�

n̄
)7

•n
6
))

•↓
((

n̄
p

�
↑s

)
�

n̄
p
)5

,↓
(↑

n
p

�
s̄)

9
•s

8
�

(7
〈6

,λ
1
(9

〈8
,λ

4
(5

〈4
,〈

λ
2
(3

2
),

1
〉〉)

〉)〉
)

d
p

(↓
s̄3

•(
↓(
↑n

p
�

n̄
)7

•n
6
))

•↓
((

n̄
p

�
↑s

)
�

n̄
p
)5

,↓
(↑

n
p

�
s̄)

�
s1

0
�

c
a
se

1
0

o
f
〈9

,8
〉(7

〈6
,λ

1
(9

〈8
,λ

4
(5

〈4
,〈

λ
2
(3

2
),

1
〉〉)

〉)〉
)

�

(↓
(↑

n
p

�
n̄
)7

•n
6
)
•(

↓(
(n̄

p
�

↑s
)
�

n̄
p
)5

•↓
(↑

n
p

�
s̄)

�
s1

0
),
↓s̄

3
�

c
a
se

1
0

o
f
〈9

,8
〉(7

〈6
,λ

1
(9

〈8
,λ

4
(5

〈4
,〈

λ
2
(3

2
),

1
〉〉)

〉)〉
)

d
p

F
ig

.
6
.
D

er
iv

a
ti
o
n
s

il
lu

st
ra

ti
n
g

q
u
a
n
ti
fi
er

sc
o
p
e

a
m

b
ig

u
it
ie

s

Polarized Classical Non-associative Lambek Calculus and Formal Semantics 41

4.1 Phase Spaces

Definition 11. A phase space is a 3-tuple 〈P, •,⊥〉 where:

1. P is a non-empty set of phases closed under • : P × P → P .
2. ⊥ ⊆ P × P s.t. ∀x, y, z ∈ P,

〈x, y〉 ∈ ⊥ ⇒ 〈y, x〉 ∈ ⊥
〈x • y, z〉 ∈ ⊥ ⇔ 〈x, y • z〉 ∈ ⊥

As usual, we often identify a phase space by its carrier set P . Define ·⊥ : P(P) →
P(P) by A �→ {x | (∀y ∈ A)(〈x, y〉 ∈ ⊥)}.

Lemma 3. Given P , one easily shows A ⊆ B⊥ iff B ⊆ A⊥ (A, B ∈ P(P)). In
other words, ·⊥ is a Galois connection, and hence ·⊥⊥ a closure operator.

Formulas will be interpreted by facts: subsets A ⊆ P s.t. A = A⊥⊥.

Definition 12. A model consists of a phase space P and a valuation v taking
positive atoms p into facts. v extends to maps v+(·) and v−(·), defined by mutual
induction and acting on arbitrary positive and negative formulas respectively:

v+(p) := v(p) v−(p̄) := v(p)
v+(P � Q) := v+(P)× v+(Q) v−(M � N) := v−(N)× v−(M)

v+(↓N) := v−(N)⊥ v−(↑P) := v+(P)⊥

Here, × : P(P)×P(P) → P(P) is defined A×B := {x•y | x ∈ A⊥, y ∈ B⊥}⊥.
Since Lemma 3 implies A ⊆ A⊥⊥ and A⊥⊥⊥ ⊆ A⊥ for A ⊆ P , this set is a fact.

Lemma 4. v+(P) = v−(↑P)⊥ and v−(N) = v+(↓N)⊥ for any N, P .

Proof. Immediate, since the sets involved are facts.

Lemma 5. For any N, P , v+(P) = v−(P⊥) and (dually) v−(N) = v+(N⊥).

Proof. By a straightforward inductive argument.

Definition 13. To state soundness and completeness, we interpret a structure
Π by dual formulas Π+ and Π−, in the sense that Π+⊥ = Π− and Π−⊥ = Π+:

P+ = P P− = P⊥

(Π •Σ)+ = Π+ � Σ+ (Π •Σ)− = Σ− � Π−

Lemma 6. We have the following equivalences:

v−(↑Π+) ⊆ v−(Σ−) ⇔ v−(↑Σ+) ⊆ v−(Π−)
⇔ v+(↓Σ−) ⊆ v+(Π+) ⇔ v+(↓Π−) ⊆ v+(Σ+)

Proof. Recalling Υ+⊥ = Υ− and Υ−⊥ = Υ+ for arbitrary Υ , we have

v+(↓Σ−) ⊆ v+(Π+) iff v+(Π+)⊥ ⊆ v+(↓Σ−)⊥ (Lemma 3)
iff v−(↑Π+) ⊆ v−(Σ−) (Lemma 4)

42 A. Bastenhof

and

v+(↓Σ−) ⊆ v+(Π+) iff v+(Π+)⊥ ⊆ v+(↓Σ−)⊥ (Lemma 3)
iff v−(Π−)⊥ ⊆ v−(↑Σ+)⊥ (Lemma 5)
iff v+(↓Π−) ⊆ v+(Σ+) (Lemma 4)

and similarly v−(↑Π+) ⊆ v−(Σ−) iff v−(↑Σ+) ⊆ v−(Π−).

Theorem 14. All phase models satisfy the following implications:

Π, Σ � =⇒ v+(↓Π−) ⊆ v+(Σ+)
Π � N =⇒ v−(N) ⊆ v−(Π−)

Proof. By induction on the derivation witnessing Π, Σ � or Π � N , freely mak-
ing use of L.6. The only nontrivial cases are (�) and (dp2).

Case (�). Since v−(Π−)⊥ ⊆ v−(M)⊥ and v−(Σ−)⊥ ⊆ v−(N)⊥ by the induc-
tion hypothesis and L.3, we have

{y • x | x ∈ v−(Π−)⊥, y ∈ v−(Σ−)⊥} ⊆ {y • x | x ∈ v−(M)⊥, y ∈ v−(N)⊥}

with another application of L.3 ensuring v−(M � N) ⊆ v−(Π− � Σ−).

Case (dp2). We check one direction, establishing

((v+(Σ+)× v+(Υ+))⊥ =) v−(↑(Σ • Υ)+) ⊆ v−(Π−)

v−(↑Υ+) ⊆ v−((Π •Σ)−) (= {x • y | x ∈ v−(Π−)⊥, y ∈ v−(Σ−)⊥}⊥)

applying L.6 twice to obtain the desired result. Thus, it suffices to prove 〈z, x •
y〉 ∈ ⊥ on the assumptions (a) z ∈ v−(↑Υ+); (b) x ∈ v−(Π−)⊥; and (c)
y ∈ v−(Σ−)⊥. By applying L.3 on the induction hypothesis, (b) implies x ∈
v+(Σ+) × v+(Υ+) = {y • z | y ∈ v+(Σ+)⊥, z ∈ v+(Υ+)⊥}⊥. By (a), (c) and
Lemmas 4 and 5, y ∈ v+(Σ+)⊥ and z ∈ v+(Υ+)⊥, so that 〈x, y • z〉 ∈ ⊥, iff
〈z, x • y〉 ∈ ⊥.

Definition 15. Completeness will be established w.r.t. the syntactic (phase)
model, defined by taking the structures Π as phases, setting 〈Π, Σ〉 ∈ ⊥ iff
Π, Σ � and letting v(p) = {p}⊥ = {Π | Π, p �}.

The following is our central lemma, resembling results of Okada ([13]) and Her-
belin and Lee ([10]) for linear and intuitionistic logic respectively.

Lemma 7. For arbitrary P, N, Π, Σ, the syntactic model satisfies:

(i) Π ∈ v−(N) implies Π, N⊥ � (iii) Π ∈ v+(P) implies Π, P �
(ii) (∀Π)(Π � N ⇒ Π, Σ �) (iv) (∀Π)(Π � P⊥ ⇒ Π, Σ �)

implies Σ ∈ v−(N) implies Σ ∈ v+(P)

Polarized Classical Non-associative Lambek Calculus and Formal Semantics 43

Proof. First, note that if Π � N (Π � P⊥), then also Π, ↓N � (Π, ↓P⊥ �) by
applying (↓). Consequently, (ii) and (iv) imply, respectively, ↓N ∈ v−(N) and
↓P⊥ ∈ v+(P). In practice, when invoking the induction hypothesis for (ii) or
(iv), we often immediately instantiate them by the latter consequences. To prove
(i)-(iv), we proceed by a simultaneous induction on P, N . We suffice by checking
the cases p̄, ↑P and M �N , the remaining p, ↓N and P �Q being entirely dual.

Case p̄. We show (i) and (ii).

(i) Since v−(p̄) = {p}⊥, Π ∈ v−(p) implies Π, p � by definition.
(ii) Π � p̄ iff Π = p, and p, Σ � again implies Σ ∈ v−(p̄) by definition.

Case ↑P . We show (i) and (ii).

(i) Suppose Π ∈ v−(↑P) = v+(P)⊥. By IH(iv), ↓P⊥ ∈ v+(P), so that
〈Π, ↓P⊥〉 ∈ ⊥, and hence Π, ↓P⊥ � by definition of ⊥.

(ii) We show Σ ∈ v−(↑P) = v+(P)⊥, assuming (a) Π � ↑P implies Π, Σ � for
all Π . Letting (b) Υ ∈ v+(P), it suffices to ensure Σ, Υ �. IH(iii) and (b)
imply Υ, P �, hence Υ � ↑P by (↑). Thus, Υ, Σ � by (a), and we apply (dp1).

Case M � N . We show (i) and (ii).

(i) Let (a) Π ∈ v−(M � N). We show Π, N⊥ •M⊥ �, implying Π, N⊥ �M⊥ �
by (�). By (a), it suffices to ensure M⊥ ∈ v−(M)⊥ and N⊥ ∈ v−(N)⊥. I.e.,
we must ascertain Σ, M⊥ � and Υ, N⊥ � on the assumptions Σ ∈ v−(M)
and Υ ∈ v−(N), but these are immediate consequences of IH(i) and (dp2).

(ii) The following hypotheses will be used:

(a) Π � M � N implies Π, Σ � for all Π

(b) Υ1 ∈ v−(M)⊥

(c) Υ2 ∈ v−(N)⊥

(d) (∀Π1)(Π1 � M ⇒ Π1, Σ • Υ2 �) implies Σ • Υ2 ∈ v−(M)
(e) Π1 � M
(f) (∀Π2)(Π2 � N ⇒ Π2, Π1 •Σ �) implies Π1 •Σ ∈ v−(M)
(g) Π2 � N

Assuming (a), we show Σ ∈ v−(M � N), iff Σ, Υ � for all Υ ∈ {Υ2•Υ1 | Υ1 ∈
v−(M)⊥, Υ2 ∈ v−(N)⊥}. So assume (b), (c). Since Σ, Υ2•Υ1 � iff Σ•Υ2, Υ1 �
by (dp2), it suffices by (b) to prove Σ • Υ2 ∈ v−(M). By (d), i.e., IH(ii), we
need only prove Π1, Σ •Υ2 � on the assumption (e), iff Π1 •Σ, Υ2 � by (dp2).
Applying (c), we must show Π1 • Σ ∈ v−(M), which follows from (f), i.e.,
IH(ii), if we can prove Π2, Π1 • Σ � on the assumption (g). By (dp2) and
(a), this follows from Π2 •Π1 � M � N , witnessed by (e), (g) and (�).

Lemma 8. We have the following implications:

(i) v+(Σ+) ⊆ {Π | Π, Σ �} implies Σ ∈ v−(↑Σ+)
(ii) v−(Σ−) ⊆ {Π | Π, Σ �} implies Σ ∈ v+(↓Σ−)

44 A. Bastenhof

Proof. We show (i), with (ii) being dual:

v+(Σ+) ⊆ {Π | Π, Σ �}
⇔ {Π | Π, Σ �}⊥ ⊆ v+(Σ+)⊥ (L.3)
⇔ {Υ | (∀Π)(Π, Σ �⇒ Υ, Π �)} ⊆ v−(↑Σ+) (def.)

And evidently Σ ∈ {Υ | (∀Π)(Π, Σ �⇒ Υ, Π �)}.

Lemma 9. We have (i) Π ∈ v+(Σ+) implies Π, Σ �; and (ii) Π ∈ v−(Σ−)
implies Π, Σ � for arbitrary Σ, Π.

Proof. By induction on Σ. The base case reduces to (i) and (iii) of L.7. For
Σ = Σ1 • Σ2, we prove (i), with (ii) being similar. So let Π ∈ v+(Σ+

1 � Σ+
2).

The desired result follows if we can show Σ1 ∈ v+(Σ+
1)

⊥
= v−(↑Σ+

1) and
Σ2 ∈ v+(Σ+

2)
⊥

= v−(↑Σ+
2). But this holds by virtue of IH(i) and L.8(i).

Theorem 16. If v+(↓Π−) ⊆ v+(Σ+) in the syntactic model, then Π, Σ �.

Proof. By L.8&9, Π ∈ v+(↓Π−), hence Π ∈ v+(Σ+), so Π, Σ � by L.9.

4.2 Cut Admissibility and Completeness w.r.t. CNL

We proceed with the completeness proof for derivability in CNLpol w.r.t. CNL,
to be witnessed by the following decoration of CNL formulae with shifts.

Definition 17. For A a formula of CNL, let ε(A) = + if A is of the form p or
B � C, and ε(A) = − otherwise. We translate A into a formula �(A) of CNLpol

with no subformulas of the form ↓ ↑P or ↑ ↓N . In the base cases, �(p) = p,
�(p̄) = p̄, while for complex formulae,

ε(A) ε(B) �(A � B) �(A � B)
+ + �(A) � �(B) ↑ �(A) � ↑ �(B)
+ − �(A) � ↓ �(B) ↑ �(A) � �(B)
− + ↓ �(A) � �(B) �(A) � ↑ �(B)
− − ↓ �(A) � ↓ �(B) �(A) � �(B)

Definition 18. The map �(·) is extended to the level of structures Γ as follows:

A �→
{

�(A) if ε(A) = +
↓ �(A) if ε(A) = − �(Γ •Δ) = �(Γ) • �(Δ)

Our intention is to show that Γ, Δ � implies �(Γ), �(Δ) �.

Lemma 10. The following rules are admissible for polarized CNL:

↓N, N⊥ �
Σ, P � Π, ↓P⊥ �

Π, Σ �

Proof. L.7(ii) implies ↓N ∈ v−(N), so that ↓N, N⊥ � by L.7(i). Now suppose
Π, ↓P⊥ � and Σ, P �. By T.14, v+(↓Π−) ⊆ v+(↓P⊥) and v+(↓P⊥) ⊆ v+(Σ+),
hence v+(↓Π−) ⊆ v+(Σ+) so that Π, Σ � by T.16.

Polarized Classical Non-associative Lambek Calculus and Formal Semantics 45

Lemma 11. Let (·)• take positive formulas into structures, as follows:

(p)• = p; (↓N)• = ↓N ; (P � Q)• = (P)• • (Q)•

then (i) Π, (P)• � implies Π, P �; and (ii) (N⊥)• � N , for any P, N .

Proof. We prove (i) by induction on P . If P = p or P = ↓N , the desired result
is immediate. If P = P1 � P2, proceed as follows:

Π, (P1)• • (P2)• �
(P2)• •Π, (P1)• �

dp1, dp2, dp1

Π • P1, (P2)• �
IH, dp2, dp1

Π, P1 • P2 �
IH, dp2

Π, P1 � P2 �
�

Similarly, we prove (ii) by induction on N :

p � p̄
Ax

↓P⊥, P � L.10

↓P⊥ � ↑P
↑

(N⊥
1)• � N1

IH
(N⊥

2)• � N2
IH

(N⊥
2)• • (N⊥

1)• � N1 � N2

�

(N = p̄) (N = ↑P) (N = N1 � N2)

Theorem 19. Γ, Δ � in CNL implies �(Γ), �(Δ) � in CNLpol .

Proof. We proceed by induction on the derivation establishing Γ, Δ �. The cases
(Ax) and (Cut) follow immediately from C.10, possibly with some applications
of (dp1) depending on the value of ε(A). The case (�) is equally trivial, trans-
lating to an application of (�) in CNLpol . Thus, we are left to check

Case (�). Suppose Γ, A � and Δ, B �. Considering all possible values for ε(A)
and ε(B), we have four subcases to check in total. As a typical case, we pick
ε(A) = − and ε(B) = +. Thus, by induction hypothesis, �(Γ), ↓ �(A) � and
�(Δ), �(B) �. We construct a derivation of �(Δ) • �(Γ), ↓(A� ↑B) � as follows:

�(Δ), �(B) �

(�(A)⊥)• � A
L.11(ii)

↓ �(B)⊥, B � L.10

↓ �(B)⊥ � ↓B
↑

↓ �(B)⊥ • (�(A)⊥)• � A � ↑B
�

↓ �(B)⊥ • (�(A)⊥)•, ↓(A � ↑B) �
↓

↓(A � ↑B) • ↓ �(B)⊥, (�(A)⊥)• �
dp1, dp2

↓(A � ↑B) • ↓ �(B)⊥, �(A)⊥ �
L.11(i)

�(Γ), ↓ �(A) �
�(Γ), ↓(A � ↑B) • ↓ �(B)⊥ � L.10

�(Γ) • ↓(A � ↑B), ↓ �(B)⊥ �
dp2

�(Γ) • ↓(A � ↑B), �(Δ) � L.10

�(Δ) • �(Γ), ↓(A � ↑B) � dp1, dp2

46 A. Bastenhof

5 Related Topics

We consider some related topics and directions for future research.

5.1 Focused Proof Search

Though not made explicit in their choice of terminology, Hepple ([9]) and Hen-
driks ([8], Ch.4) were the first to study focused proof search within the Lambek
calculus, with the aim of eliminating spurious ambiguities from Cut-free deriva-
tions. Strictly speaking, CNLpol ’s derivations do not fully conform to Andreoli’s
specifications, as the latter enforces the eager application of invertible inferences.
In the lower derivation of F.6, however, nothing prevents us from postponing the
application of (�) until right before the second application of (�) (adopting a
top-down view). For the moment we have ignored such refinements, seeing as
they have no bearing on the matter of finding a formal semantics.

5.2 The Lambek-Grishin Calculus

The ideas expressed in this article are not limited to CNL. To illustrate, we
briefly discuss a proposal similar to that of De Groote and Lamarche, namely
the Lambek-Grishin calculus of Moortgat and associates (LG, [12]). We sketch
a polarized reinterpretation of LG (henceforth LGpol), adopting a syntax high-
lighting the similarities with CNL, though rather different from Moortgat’s.
Compared to CNL, LG’s formulae include explicit connectives for implications
/, \ and (the dual) subtractions �, �.

P, Q ::= p | (P � Q) | (P � M) | (M � P) | (↓N)
M, N ::= p̄ | (M � N) | (P\M) | (M/P) | (↑P)

Moortgat’s original (two-sided) account of LG lacks negative atoms, added here
for the purpose of allowing classical negation to be defined:

p⊥ = p̄ p̄⊥ = p
(P � Q)⊥ = Q⊥ � P⊥ (M � N)⊥ = N⊥ � M⊥

(P � M)⊥ = M⊥\P⊥ (P\M)⊥ = M⊥ � P⊥

(M � P)⊥ = P⊥/M⊥ (M/P)⊥ = P⊥ � M⊥

(↓N)⊥ = ↑N⊥ (↑P)⊥ = ↓P⊥

The category-type correspondence is adapted straightforwardly:

σ+(p) = p σ−(p̄) = p
σ+(P � Q) = σ+(P) � σ+(Q) σ−(M � N) = σ−(N) � σ−(M)
σ+(P � M) = σ+(P) � σ−(M) σ−(P\M) = σ−(M) � σ+(P)
σ+(M � P) = σ−(M) � σ+(P) σ−(M/P) = σ+(P) � σ−(M)

σ+(↓N) = ¬σ−(N) σ−(↑P) = ¬σ+(P)

The extended logical vocabulary is reflected in the definition of structures:

Π, Σ ::= P | (Π •Σ) | (Π •−Σ) | (Σ −•Π)

Polarized Classical Non-associative Lambek Calculus and Formal Semantics 47

Finally, sequents, as before, are of the form Π, Σ � s or Π � s : N , and made
subject to the following inference rules:

px � x : p̄
Ax

Π � s : N
Π, ↓Nx � (x s)

↓ Π,P x � s

Π � λx.s : ↑P
↑

Γ, Δ � s

Δ, Γ � s
dp1

Π, P y • Qz � s

Π, P � Qx � case x of 〈y, z〉s
�

Π � s : M Σ � t : N
Σ • Π � 〈s, t〉 : M � N

�

Π • Σ, Υ � s

Π, Σ −• Υ � s
dp2

Π,P y •− M⊥z � s

Π,P � Mx � case x of 〈y, z〉s
�

Π � s : M Σ � t : P⊥

Π •− Σ � 〈s, t〉 : P\M
\

Π •− Σ, Υ � s

Π, Σ • Υ � s
dp2

Π,M⊥y −• P z � s

Π,M � P x � case x of 〈y, z〉s
�

Π � s : M Σ � t : P⊥

Σ −• Π � 〈t, s〉 : M/P
/

Completeness w.r.t. traditional (unpolarized) LG may again be established
through use of phase spaces. Details are left to the reader’s imagination.

A competing proposal for associating LG with a formal semantics is offered
by Bernardi and Moortgat ([3]), who define dual call-by-name and call-by-value
continuation-passing style translations into the implicational fragment of intu-
itionistic multiplicative linear logic. The lack of products in the target language
results in semantic types often containing a larger number of double negations.
While the terms used in lexical semantics thereby also grow in size, it does offer
the grammar engineer more possibilities for fine-tuning his denotations.

5.3 Normalization by Evaluation

As a final remark, we point out the constructivity of §4.1’s semantic completeness
proof: rather than finding a countermodel for each unprovable sequent, we found
a model wherein every truth translates into a proof. Explicating the algorithmic
content underlying said proof, we might be able to show normalization for

CNLpol +
Σ, P y � t Π, P⊥x � s

Π, Σ � (λxs λyt)
Cut

In other words, rather than ignoring the term labeling and demonstrating closure
under Cut for provability, like we did in §4, we might instead ascertain the latter
property to hold of the proofs themselves as well. As a result, D.17 and T.19,
when composed with L.1, may then be understood as a double negation transla-
tion for (unpolarized) CNL. Such an argument, when involving the algorithmic
content underlying a demonstration of model-theoretic completeness, makes es-
sential use of a formalization of the constructive metalanguage, say Martin-Löf
type theory or the Calculus of Constructions, as clearly argued in [4]. We leave
these issues for future research.

Acknowledgements. This work has benefited from discussions with Michael
Moortgat and Vincent van Oostrom, as well as from the comments of three
anonymous referees. All remaining errors are my own.

48 A. Bastenhof

References

1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. Journal
of Logic and Computation 2(3), 297–347 (1992)

2. Belnap, N.: Display logic. Journal of Philosophical Logic 11(4), 375–417 (1982)
3. Bernardi, R., Moortgat, M.: Continuation semantics for the Lambek-Grishin cal-

culus. Information and Computation 208(5), 397–416 (2010)
4. Coquand, C.: From semantics to rules: a machine assisted analysis. In: Börger, E.,

Gurevich, Y., Meinke, K. (eds.) CSL 1993. LNCS, vol. 832, pp. 91–105. Springer,
Heidelberg (1994)

5. Girard, J.Y.: A new constructive logic: classical logic. Mathematical Structures in
Computer Science 1(3), 255–296 (1991)

6. Girard, J.Y.: On the meaning of logical rules II: multiplicatives and additives. In:
Foundation of Secure Computation, pp. 183–212. IOS Press, Amsterdam (2000)

7. De Groote, P., Lamarche, F.: Classical non associative Lambek calculus. Studia
Logica 71, 355–388 (2002)

8. Hendriks, H.: Studied flexibility. Categories and types in syntax and semantics.
Ph.D. thesis, ILLC Amsterdam (1993)

9. Hepple, M.: Normal form theorem proving for the Lambek calculus. In: COLING,
pp. 173–178 (1990)

10. Herbelin, H., Lee, G.: Forcing-based cut-elimination for gentzen-style intuitionistic
sequent calculus. In: Ono, H., Kanazawa, M., de Queiroz, R. (eds.) WoLLIC 2009.
LNCS, vol. 5514, pp. 209–217. Springer, Heidelberg (2009)

11. Montague, R.: Universal grammar. Theoria 36(3), 373–398 (1970)
12. Moortgat, M.: Symmetric categorial grammar. Journal of Philosophical

Logic 38(6), 681–710 (2009)
13. Okada, M.: A uniform semantic proof for cut-elimination and completeness of var-

ious first and higher order logics. Theoretical Computer Science 281(1-2), 471–498
(2002)

14. Prawitz, D.: Natural Deduction. Dover Publications, New York (2006)
15. Wadler, P.: A taste of linear logic. In: Borzyszkowski, A., Sokolowski, S. (eds.)

MFCS 1993. LNCS, vol. 711, pp. 185–210. Springer, Heidelberg (1993)
16. Lafont, Y., Reus, B., Streichter, T.: Continuation semantics or expressing implica-

tion by negation. Technical Report 93-21, University of Munich (1993)
17. Yetter, D.: Quantales and (noncommutative) linear logic. Journal of Symbolic

Logic 55(1), 41–64 (1990)
18. Zeilberger, N.: The logical basis of evaluation order and pattern-Matching. Ph.D.

thesis, Carnegie Mellon University (2009)

The Product-Free Lambek-Grishin Calculus Is

NP-Complete

Jeroen Bransen

Utrecht University, The Netherlands

Abstract. The Lambek-Grishin calculus LG is the symmetric extension
of the non-associative Lambek calculus NL. In this paper we prove that
the derivability problem for the product-free fragment of LG is NP-
complete, thus improving on Bransen (2010) where this is shown for LG
with product.

1 Introduction

In his 1958 and 1961 papers, Lambek formulated two versions of the Syntac-
tic Calculus: in (Lambek, 1958), types are assigned to strings, which are then
combined by an associative concatenation operation; in (Lambek, 1961), types
are assigned to phrases (bracketed strings), and the composition operation is
non-associative. These two versions of the Syntactic Calculus are known as as L
and NL respectively.

In terms of recognizing capacity, both NL and L are strictly context-free. For
NL, this was shown in Kandulski (1988). Pentus (1993b) showed that also all
languages recognized by L are context-free: the more liberal associative composi-
tion operation does not bring extra recognizing power. It is well known that there
are natural language patterns that require expressivity beyond context-free. The
original versions of the Syntactic Calculus cannot handle such patterns.

Turning to computational complexity, de Groote (1999) showed that the
derivability problem for NL belongs to PTIME. For L, it has been proved by
Pentus (2003) that this problem is NP-complete and thus belongs to a class of
hard problems. Savateev (2009) shows that the NP-completeness result already
holds for the product-free fragment of L. Given the fact that the step from NL
to L does not lead to recognition beyond context-free, the NP-completeness of
L would seem to be a high price to pay.

Several extensions of the Syntactic Calculus have been proposed to obtain a
higher expressivity. The subject of this paper is the the Lambek-Grishin calculus
LG (Moortgat, 2007, 2009). LG is a symmetric extension of the nonassociative
Lambek calculus NL. In addition to ⊗, \, / (product, left and right division),
LG has dual operations ⊕, �,� (coproduct, left and right difference). These
two families are related by linear distributivity principles.

As for the generative power of LG, Moot (2007) gives an embedding of Lexi-
calized Tree Adjoining Grammars (LTAG) in LG. Melissen (2009) shows that all

S. Pogodalla and J.-P. Prost (Eds.): LACL 2011, LNAI 6736, pp. 49–63, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

50 J. Bransen

languages which are the intersection of a context-free language and the permu-
tation closure of a context-free language are recognizable in LG. This places the
lower bound for LG recognition beyond LTAG. The upper bound is still open.

We have shown in (Bransen, 2010) that the derivability problem for LG is
NP-complete. The present paper improves on this result by proving that NP-
completeness also holds for the product-free fragment of LG, which is less ex-
pressive. Similar to what Pentus did for L, we establish our result by means of
a reduction from SAT. In the case of the construction for LG, the distributivity
principles for the interaction between the ⊗ and ⊕ families play a key role.

2 Lambek-Grishin Calculus

We define the formula language of the product-free fragment of LG as follows.
Let Var be a set of primitive types, we use lowercase letters to refer to an

element of Var . Let formulas be constructed using primitive types and the binary
connectives /, \, � and � as follows:

A, B ::= p | A/B | B\A | A�B | B � A

The sets of input and output structures are constructed using formulas and the
binary structural connectives · ⊗ ·, ·/·, ·\·, · ⊕ ·, · � · and ·� · as follows:

(input) X, Y ::= A | X · ⊗ · Y | X · � · P | P ·� ·X

(output) P, Q ::= A | P · ⊕ ·Q | P · / ·X | X · \ · P

The sequents of the calculus are of the form X → P , and as usual we write
�LGPF

X → P to indicate that the sequent X → P is derivable in the product-
free fragment of LG. The axioms and inference rules are presented in Figure 1,
where we use the display logic from (Goré, 1998), but with different symbols
for the structural connectives. For clarity, we note that the structural product is
often written as a comma, or omitted entirely.

It has been proven by Moortgat (2007) that we have Cut admissibility for
LG. This means that for every derivation using the Cut -rule, there exists a
corresponding derivation that is cut-free. Therefore we will assume that the
Cut-rule is not needed anywhere in a derivation.

3 Preliminaries

3.1 Derivation Length

We will first show that for every derivable sequent there exists a cut-free deriva-
tion that is polynomial in the length of the sequent. The length of a sequent ϕ,
denoted as |ϕ|, is defined as the number of (formula and structural) connectives
used to construct this sequent. A subscript will be used to indicate that we count
only certain connectives, for example |ϕ|�.

The Product-Free Lambek-Grishin Calculus Is NP-Complete 51

p → p Ax

X → A A → P
X → P

Cut

Y → X · \ · P
X · ⊗ · Y → P

r

X → P · / · Y
r

X · � · Q → P

X → P · ⊕ · Q dr

P · � · X → Q
dr

(a) Display rules

X · ⊗ · Y → P · ⊕ · Q
X · � · Q → P · / · Y

d � /
X · ⊗ · Y → P · ⊕ · Q
Y · � · Q → X · \ · P

d � \

X · ⊗ · Y → P · ⊕ · Q
P · � · X → Q · / · Y

d � /
X · ⊗ · Y → P · ⊕ · Q
P · � · Y → X · \ · Q

d � \

(b) Distributivity rules (Grishin’s interaction principles)

X → A · / · B
X → A/B

/R
B · � · A → P

B � A → P
�L

X → B · \ · A
X → B\A

\R A · � · B → P

A � B → P
�L

X → A B → P
B/A → P · / · X

/L X → B A → P
P · � · X → A � B

�R

X → A B → P
A\B → X · \ · P

\L X → B A → P
X · � · P → B � A

�R

(c) Logical rules

Fig. 1. The product-free Lambek-Grishin calculus inference rules

Lemma 1. If �LGPF
ϕ there exists a derivation with at most |ϕ| logical rules.

Proof. If �LGPF
ϕ then there exists a cut-free derivation for ϕ. Because every

logical rule removes one logical connective and there are no rules that introduce
logical connectives, this derivation contains exactly |ϕ|{/,\,�,�} logical rules. !

Lemma 2. If �LGPF
ϕ there exists a derivation with at most 1

4 |ϕ|2 Grishin in-
teractions.

Proof. Let us take a look at the Grishin interaction principles. First of all, it is
not hard to see that the interactions are irreversible. Also note that the interac-
tions happen between the families of input connectives {·⊗ ·, ·/·, ·\·} and output

52 J. Bransen

connectives {· ⊕ ·, · � ·, ·� ·} and that the Grishin interaction principles are the
only rules of inference that apply to both families. So, to any pair of input and
output connectives, at most one Grishin interaction principle can be applied.

If �LGPF
ϕ, let Π be a cut-free derivation of ϕ. The maximum number of

possible Grishin interactions in Π is reached when a Grishin interaction is applied
on every pair of one input and one output connective. Thus, the maximum
number of Grishin interactions in Π is |ϕ|{·⊗·,·/·,·\·} · |ϕ|{·⊕·,·�·,·�·}.

By definition, |ϕ|{·⊗·,·/·,·\·} + |ϕ|{·⊕·,·�·,·�·} = |ϕ|, so the maximum value of
|ϕ|{·⊗·,·/·,·\·} · |ϕ|{·⊕·,·�·,·�·} is reached when |ϕ|{·⊗·,·/·,·\·} = |ϕ|{·⊕·,·�·,·�·} = |ϕ|

2 .
Then the total number of Grishin interactions in Π is |ϕ|

2 · |ϕ|
2 = 1

4 |ϕ|2, so any
cut-free derivation of ϕ will contain at most 1

4 |ϕ|2 Grishin interactions. !

Lemma 3. In a derivation of sequent ϕ at most 2|ϕ| display rules are needed
to display any of the structural parts.

Proof. A structural part in sequent ϕ is nested under at most |ϕ| structural
connectives. For each of these connectives, one or two r or dr rules can display
the desired part, after which the next connective is visible. Thus, at most 2|ϕ|
display rules are needed to display any of the structural parts.

Lemma 4. If �LGPF
ϕ there exists a cut-free derivation of length O(|ϕ|3).

Proof. From Lemma 1 and Lemma 2 we know that there exists a derivation with
at most |ϕ| logical rules and 1

4 |ϕ|2 Grishin interactions. Thus, the derivation
consists of |ϕ| + 1

4 |ϕ|2 rules, with between each pair of consecutive rules the
display rules. From Lemma 3 we know that at most 2|ϕ| display rules are needed
to display any of the structural parts. So, at most 2|ϕ|·(|ϕ|+ 1

4 |ϕ|2) = 2|ϕ|2+ 1
2 |ϕ|3

derivation steps are needed in the shortest possible cut-free derivation for this
sequent, and this is in O(|ϕ|3). !

3.2 Additional Notations

Let us first introduce some additional notations to make the proofs shorter and
more readable.

Let us call an input structure X which does not contain any structural con-
nectives except for · ⊗ · a ⊗-structure. A ⊗-structure can be seen as a binary
tree with ·⊗ · in the internal nodes and formulas in the leafs. Formally we define
⊗-structures U and V as:

U, V ::= A | U · ⊗ · V

We define X [] and P [] as the input and output structures X and P with a
hole in one of their leafs. Formally:

X [] ::= [] | X [] · ⊗ · Y | Y · ⊗ ·X [] | X [] · � ·Q | Y · � ·P [] | Q ·� ·X [] | P [] ·� ·Y

P [] ::= [] | P [] · ⊕ ·Q | Q · ⊕ · P [] | P [] · / · Y | Q · / ·X [] | Y · \ · P [] | X [] · \ ·Q

The Product-Free Lambek-Grishin Calculus Is NP-Complete 53

This notation is similar to the one of de Groote (1999) but with structures. If
X [] is a structure with a hole, we write X [Y] for X [] with its hole filled with
structure Y . We will write X⊗[] for a ⊗-structure with a hole.

Furthermore, we extend the definition of hole to formulas, and define A[] as a
formula A with a hole in it, similarly to what we did for structures. Hence, by
A[B] we mean the formula A[] with its hole filled by formula B.

In order to distinguish between input and output polarity formulas, we write
A• for a formula with input polarity and A◦ for a formula with output polarity.
The polarity indicates whether a formula can be displayed on the lefthand-side
of the turnstyle (input) or the righthand-side (output). Note that for structures
this is already implicitly defined by using X and Y for input polarity and P and
Q for output polarity. This can be extended to formulas in a similar way, and
we will use this notation only in cases where the polarity is not clear from the
context.

3.3 Derived Rules of Inference

Now we will show and prove some derived rules of inference of the product-free
fragment of LG.

If �LGPF
A → B and we want to derive X⊗[A] → P , we can replace A by B

in X⊗[].

Lemma 5. We have the inference rule below:

A → B X⊗[B] → P

X⊗[A] → P
Repl

Proof. We consider three cases:

1. If X⊗[A] = A, it is simply the cut-rule:

A → B B → P
A → P

Cut

2. If X⊗[A] = Y ⊗[A] · ⊗ · V , we can move V to the righthand-side and use
induction to prove the sequent:

A → B

Y ⊗[B] · ⊗ · V → P

Y ⊗[B] → P · / · V
r

Y ⊗[A] → P · / · V
Repl

Y ⊗[A] · ⊗ · V → P
r

3. If X⊗[A] = U · ⊗ · Y ⊗[A], we can move U to the righthand-side and use
induction to prove the sequent:

A → B

U · ⊗ · Y ⊗[B] → P

Y ⊗[B] → U · \ · P
r

Y ⊗[A] → U · \ · P
Repl

U · ⊗ · Y ⊗[A] → P
r

 !

54 J. Bransen

If we want to derive X⊗[A � B] → P , then we can move the expression �B
out of the ⊗-structure.

Lemma 6. We have the inference rule below:

X⊗[A] · � ·B → P

X⊗[A� B] → P
Move

Proof. Let C = A�B. We consider three cases:

1. If X⊗[C] = C, then this is simply the �L-rule:

A · � ·B → Y
C → Y

�L

2. If X⊗[C] = Y ⊗[C] · ⊗ · V , we can move V to the righthand-side and use in-
duction together with the Grishin interaction principles to prove the sequent:

(Y ⊗[A] · ⊗ · V) · � ·B → P

Y ⊗[A] · ⊗ · V → P · ⊕ ·B dr

Y ⊗[A] · � ·B → P · / · V
d� /

Y ⊗[C] → P · / · V Move

Y ⊗[C] · ⊗ · V → P
r

3. If X⊗[C] = U · ⊗ · Y ⊗[C], we can move U to the righthand-side and use in-
duction together with the Grishin interaction principles to prove the sequent:

(U · ⊗ · Y ⊗[A]) · � ·B → P

U · ⊗ · Y ⊗[A] → P · ⊕ ·B dr

Y ⊗[A] · � ·B → U · \ · P
d� \

Y ⊗[C] → U · \ · P Move

U · ⊗ · Y ⊗[C] → P
r

 !

3.4 Type Similarity

The type simililarity relation ∼, introduced by Lambek (1958), is the reflexive
transitive symmetric closure of the derivability relation. Formally we define this
as:

Definition 1. A ∼ B iff there exists a sequence C1 . . . Cn(1 ≤ i ≤ n) such that
C1 = A, Cn = B and Ci → Ci+1 or Ci+1 → Ci for all 1 ≤ i < n.

It was proved by Lambek for L that A ∼ B iff one of the following equivalent
statements holds (the so-called diamond property):

∃C such that A → C and B → C (join)

∃D such that D → A and D → B (meet)

The Product-Free Lambek-Grishin Calculus Is NP-Complete 55

Although this diamond-property also holds for LG, this is unfortunately not true
for the product-free case. However, in this paper we will use a property that is
closely related to the diamond-property to create a choice for the truthvalue of
a variable.

Definition 2. If A ∼ B and C is the join type of A and B that is A → C and

B → C, we define A
C
 B = (A/((C/C)\C)) · ⊗ · ((C/C)\B) as the meet type of

A and B.

The formula equivalent of this structure is also the solution given by Lambek
(1958) for the associative system L, which is in fact the shortest solution for the
non-associative system NL (Foret, 2003).

Lemma 7. If A ∼ B with join-type C and �LGPF
A → P or �LGPF

B → P , then

we also have �LGPF
A

C
 B → P . We can write this as a derived rule of inference:

A → P or B → P

A
C
 B → P

Meet

Proof

1. If A → P :

C → C C → C
C/C → C · / · C /L

C/C → C/C
/R

B → C

(C/C)\B → (C/C) · \ · C \L

(C/C)\B → (C/C)\C \R
A → P

A/((C/C)\C) → P · / · ((C/C)\B)
/L

(A/((C/C)\C)) · ⊗ · ((C/C)\B) → P
r

2. If B → P :

A → C

C → C C → C
C/C → C · / · C /L

(C/C) · ⊗ · C → C
r

C → (C/C) · \ · C
r

C → (C/C)\C \R

A/((C/C)\C) → C · / · C /L

A/((C/C)\C) → C/C
/R

B → P

(C/C)\B → (A/((C/C)\C)) · \ · P \L

(A/((C/C)\C)) · ⊗ · ((C/C)\B) → P
r

 !

The following lemma is the key lemma of this paper, and its use will become
clear to the reader in the construction of Section 4. For an intuition of its use,
refer to subsection 4.1.

56 J. Bransen

Lemma 8. If �LGPF
A

C
 B → P then �LGPF

A → P or �LGPF
B → P .

Proof. By case analysis on the derivation we will show that if �LGPF
(A/((C/

C)\C)) · ⊗ · ((C/C)\B) → P , then �LGPF
A → P or �LGPF

B → P . We will look
at the derivations in a top-down way, and we will do case analysis on the rules
that are applied to the sequent. We will show that in all cases we could change

the derivation in such way that the meet-type A
C
 B in the conclusion could

have immediately been replaced by either A or B.
The first case is where a logical rule is applied on the lefthand-side of the

sequent. At a certain point in the derivation, possibly when P is an atom, one
of the following two rules must be applied:

1. The /L rule, in this case first the r rule is applied so that we have
�LGPF

A/((C/C)\C) → P · / · ((C/C)\B). Now if the /L rule is applied, we
must have that �LGPF

A → P .
2. The \L rule, in this case first the r rule is applied so that we have
�LGPF

(C/C)\B → (A/((C/C)\C)) · \ · P . Now if the \L rule is applied, we
must have that �LGPF

B → P .

The second case happens when a logical rule is applied on the righthand-side of
the sequent. Let δ = {r, dr, d�/, d�\, d�/, d�\} and let δ∗ indicate a (possibly
empty) sequence of structural residuation steps and Grishin interactions. For
example for the �R rule there are two possibilities:

– The lefthand-side ends up in the first premisse of the �R rule:

(A/((C/C)\C)) · ⊗ · ((C/C)\B) → P ′′[A′]
P ′[(A/((C/C)\C)) · ⊗ · ((C/C)\B)] → A′ δ∗

B′ → Q

P ′[(A/((C/C)\C)) · ⊗ · ((C/C)\B)] · � ·Q → A′ �B′ �R

(A/((C/C)\C)) · ⊗ · ((C/C)\B) → P [A′ �B′] δ∗

In order to be able to apply the �R rule, we need to have a formula of the
form A′ � B′ on the righthand-side. In the first step all structural rules are
applied to display this formula in the righthand-side, and we assume that in
the lefthand-side the meet-type ends up in the first structural part (inside a
structure with the remaining parts from P that we call P ′). After the �R
rule has been applied, we can again display our meet-type in the lefthand-
side of the formula by moving all other structural parts from P ′ back to the
righthand-side (P ′′).

In this case it must be that �LGPF
(A/((C/C)\C))·⊗·((C/C)\B) → P ′′[A′],

so from this lemma we know that in this case also �LGPF
A → P ′′[A′] or

�LGPF
B → P ′′[A′]. In the case that �LGPF

A → P ′′[A′], we can show that
�LGPF

A → P [A′ �B′] as follows:

A → P ′′[A′]
P ′[A] → A′ δ∗

B′ → Q

P ′[A] · � ·Q → A′ �B′ �R

A → P [A′ �B′]
δ∗

The Product-Free Lambek-Grishin Calculus Is NP-Complete 57

The case for B is similar.
– The lefthand-side ends up in the second premisse of the �R rule:

Q → A′
(A/((C/C)\C)) · ⊗ · ((C/C)\B) → P ′′[B′]
B′ → P ′[(A/((C/C)\C)) · ⊗ · ((C/C)\B)] δ∗

Q · � · P ′[(A/((C/C)\C)) · ⊗ · ((C/C)\B)] → A′ �B′ �R

(A/((C/C)\C)) · ⊗ · ((C/C)\B) → P [A′ �B′] δ∗

This case is similar to the other case, except that the meet-type ends up in
the other premisse. Note that, although in this case it is temporarily moved
to the righthand-side, the meet-type will still be in an input polarity position
and can therefore be displayed in the lefthand-side again.

In this case it must be that �LGPF
(A/((C/C)\C)) · ⊗ · ((C/C)\B) →

P ′′[B′], and from this lemma we know that in this case also �LGPF
A →

P ′′[B′] or �LGPF
B → P ′′[B′]. In the case that �LGPF

A → P ′′[B′], we can
show that �LGPF

A → P [A′ �B′] as follows:

Q → A′
A → P ′′[B′]
B′ → P ′[A] δ∗

Q · � · P ′[A] → A′ �B′ �R

A → P [A′ �B′] δ∗

The case for B is similar.

The cases for the other logical rules are similar. !

4 Reduction from SAT to LG

For the product-free fragment of L it has been proven by Savateev (2009) that
the derivability problem is also NP-complete. This is a remarkable result that
does not follow directly from the fact that the derivability problem for L itself
is NP-complete. It is known that removing the product restricts the calculus in
an essential way, for example the diamond property does not hold in its original
form in the product-free fragment (Pentus, 1993a). As the diamond property
was used in the original proof by Pentus (2003), it could have been the case that
the reduction from SAT was not possible in the product-free fragment. However,
as Savateev proved this is not the case, and the product-free fragment of L is
also NP-complete.

In this section we will show that we can reduce a Boolean formula in conjunc-
tive normal form to a sequent of the product-free fragment of the Lambek-Grishin
calculus. The size of the resulting sequent will be polynomial in the size of the
Boolean formula. Let ϕ = c1 ∧ . . . ∧ cn be a Boolean formula in conjunctive
normal form with clauses c1 . . . cn and variables x1 . . . xm and for all 1 ≤ j ≤ m
let ¬0xj stand for the literal ¬xj and ¬1xj stand for the literal xj .

Let pi (for 1 ≤ i ≤ n) be distinct primitive types from Var . We define the
following families of types:

58 J. Bransen

Ei
j(t) �

{
pi/(pi\pi) if ¬txj appears in clause ci

pi otherwise
1 ≤ i ≤ n, 1 ≤ j ≤ m
and t ∈ {0, 1}

Ej(t) � ((((s/s)� E1
j (t)) � . . .)� En−1

j (t))� En
j (t) 1 ≤ j ≤ m and t ∈ {0, 1}

H � (((((s/s)� p1)� p2)� . . .)� pn−1)� pn

F 0
j � Ej(0)/((H/H)\H) 1 ≤ j ≤ m

F 1
j � (H/H)\Ej(1) 1 ≤ j ≤ m

G0
m � s

Gi
0 � Gi−1

m 1 ≤ i ≤ n

Gi
j � Gi

j−1 � pi 1 ≤ i ≤ n and 1 ≤ j < m

Gi
m � Gi

m−1 � (pi/(pi\pi)) 1 ≤ i ≤ n

Let ϕ̄ = (F 0
1 ·⊗ ·F 1

1) ·⊗ · (. . . ((F 0
m−1 ·⊗ ·F 1

m−1) ·⊗ · ((F 0
m ·⊗ ·F 1

m) ·⊗ ·s))) → Gn
m

be the product-free LG sequent1 corresponding to the Boolean formula ϕ. We
now claim that � ϕ if and only if �LGPF

ϕ̄.

4.1 Intuition

For each variable we use a meet-type to create a choice for its truthvalue. Remark
that if we have �LGPF

A → C and �LGPF
B → C then, for D1 = A/((C/C)\C)

and D2 = (C/C)\B, we have �LGPF
D1 · ⊗ ·D2 → A and �LGPF

D1 · ⊗ ·D2 → B.
In the construction we now have F 0

j and F 1
j as parts of the meet-type. We can

replace each of these by either Ej(1) or Ej(0), so that we have E1(t1)·⊗·(E2(t2)·
⊗ · (. . . (Em−1(tm−1) ·⊗ · (Em(tm) ·⊗ ·s)))) → Gn

m for some 〈t1, t2 . . . tm−1, tm〉 ∈
{0, 1}m.

Let us call a formula of the form ((((A � B1) � B2) � . . .) � Bn−1) � Bn a
�-stack with n items, and let us call Bn the topmost item of this stack. A is
considered to be the base of this �-stack.

The sequent E1(t1)·⊗·(E2(t2)·⊗·(. . . (Em−1(tm−1)·⊗·(Em(tm)·⊗·s)))) → Gn
m

consists of m �-stacks in the lefthand-side (E1(t1) . . . Em(tm)), each containing
one item for every clause. On the righthand-side there is also a �-stack, with
n ·m items. Because of the logical � connective on the righthand-side, there has
to be a matching item on the lefthand-side for every item from the righthand-
side. By means of the Grishin interactions, every topmost item from a �-stack
in the lefthand-side can directly match with the item on the righthand-side, as
the lefthand-side is an ⊗-structure.

Now the �-stack on the righthand-side will be in order of decreasing clause
number. For each clause it first contains the type pi/(pi\pi), so in the lefthand-
side there has to be at least one item pi/(pi\pi) (meaning that there is a variable
satisfying clause i). Then, there are m− 1 types pi to remove the rest of the pi

or pi/(pi\pi) in the lefthand-side. Note that �LGPF
pi → pi/(pi\pi).

1 Note that the products in this formula are only structural products, which are usually
omitted.

The Product-Free Lambek-Grishin Calculus Is NP-Complete 59

Finally, if all items from the stacks could be removed, there was an assignment
with for each clause a variable satisfying it, so we are left with (s/s) · ⊗ · ((s/
s) ·⊗ · ...((s/s) ·⊗ · s)) → s which is obviously derivable. If it was not satisfyable,
there was at least 1 index i for which there was no pi/(pi\pi) in the lefthand-side,
so the sequent is not derivable.

4.2 Only-If Part

We will now prove that if � ϕ, then �LGPF
ϕ̄. We now assume that � ϕ, so there

is an assignment 〈t1, . . . , tm〉 ∈ {0, 1}m that satisfies ϕ.

Lemma 9. For 1 ≤ i ≤ n, 1 ≤ j ≤ m and t ∈ {0, 1} we have �LGPF
pi → Ei

j(t).

Proof. We consider two cases:

1. If Ei
j(t) = pi this is simply the axiom rule.

2. If Ei
j(t) = pi/(pi\pi) we can prove it as follows:

pi → pi pi → pi

pi\pi → pi · \ · pi
\L

pi · ⊗ · (pi\pi) → pi

r

pi → pi · / · (pi\pi)
r

pi → pi/(pi\pi)
/R

 !

Lemma 10. For 1 ≤ j ≤ m and t ∈ {0, 1} we have �LGPF
Ej(t) → H.

Proof. We can apply the �R rule n times together with Lemma 9 to prove this.
 !

Lemma 11. For 1 ≤ j ≤ m we have �LGPF
F 0

j · ⊗ · F 1
j → Ej(tj).

Proof. From Lemma 10 we know that Hj is the join type of Ej(0) and Ej(1).

Notice that F 0
j · ⊗ ·F 1

j = Ej(0)
H
 Ej(1), so from Lemma 7 we know that in this

case also �LGPF
F 0

j · ⊗ · F 1
j → Ej(tj). !

We can replace each F 0
j · ⊗ · F 1

j in ϕ̄ by Ej(tj).

Lemma 12. If �LGPF
E1(t1) · ⊗ · (. . . (Em−1(tm−1) · ⊗ · (Em(tm) · ⊗ · s))) → Gn

m

then �LGPF
(F 0

1 ·⊗·F 1
1)·⊗·(. . . ((F 0

m−1 ·⊗·F 1
m−1)·⊗·((F 0

m ·⊗·F 1
m)·⊗·s))) → Gn

m.

Proof. This can be proven by applying Lemma 11 in combination with Lemma 5
m times. !

Lemma 13. In E1(t1) ·⊗ · (. . . (Em−1(tm−1) ·⊗ · (Em(tm) ·⊗ · s))) → Gn
m, there

is at least one occurrence of the expression �(pi/(pi\pi)) in the lefthand-side for
every 1 ≤ i ≤ n.

60 J. Bransen

Proof. This sequence of E1(t1), . . . , Em(tm) represent the truthvalue of all vari-
ables, and because this is a satisfying assignment, for all i there is at least
one index k such that ¬tk

xk appears in clause i. By definition we have that
Ei

k(tk) = pi/(pi\pi). !

Lemma 14. �LGPF
E1(t1) · ⊗ · (. . . (Em−1(tm−1) · ⊗ · (Em(tm) · ⊗ · s))) → Gn

m.

Proof. We prove this by induction on the length of Gn
m. By definition we have

that Gn
m = Gn

m−1 � (pn/(pn\pn)), and from Lemma 13 we know that the ex-
pression �(pn/(pn\pn)) occurs on the lefthand-side as outermost part of some
Ek(tk), so by using Lemma 6 we can move this expression to the outside of the
lefthand-side after which we can apply the �R rule.

Now on the righthand-side we have Gn
m−1, which consists of Gn−1

m surrounded
by m−1 occurrences of the expression �pn. In the lefthand-side there are m−1
occurrences of �En

j (tj), for every 1 ≤ j ≤ m (j = k). Using the fact from
Lemma 9 that �LGPF

En
j (tj) → pn, we can again use Lemma 6 and the �R rule

to remove all these expressions from the left- and righthand-side.
The sequent that remains is of exactly the same form, but for n − 1 instead

of n clauses. The same reasoning applies on this sequent, so we can repeat this
process n times. Then, the �R rule has been applied n ·m times in total, and
the sequent will be of the form (s/s) · ⊗ · ((s/s) · ⊗ · . . . ((s/s) · ⊗ · s))) → s.
This can easily be derived, so it must be the case that also �LGPF

E1(t1) · ⊗ ·
(. . . (Em−1(tm−1) · ⊗ · (Em(tm) · ⊗ · s))) → Gn

m. !

Lemma 15. If � ϕ, then �LGPF
ϕ̄,

Proof. From Lemma 14 we know that �LGPF
E1(t1) · ⊗ · (. . . (Em−1(tm−1) · ⊗ ·

(Em(tm) · ⊗ · s))) → Gn
m, and using Lemma 12 we know that in this case also

�LGPF
(F 0

1 ·⊗·F 1
1) ·⊗·(. . . ((F 0

m−1 ·⊗·F 1
m−1) ·⊗·((F 0

m ·⊗·F 1
m) ·⊗·s))) → Gn

m. !

4.3 If Part

For the if part we will need to prove that if �LGPF
ϕ̄, then � ϕ. Let us now

assume that �LGPF
ϕ̄.

Lemma 16. If �LGPF
X → P � Y , then there exist a Q such that Q is part of

X (possibly inside a formula in X) and �LGPF
Y → Q.

Proof. The only rule that matches a � in the righthand-side is the �R rule.
Because this rule needs a · � · connective in the lefthand-side, we know that if
�LGPF

X → P � Y it must be the case that we can turn X into X ′ · � · Q such
that �LGPF

X ′ → P and �LGPF
Y → Q. !

Lemma 17. If �LGPF
E1(t1) ·⊗ · (. . . (Em−1(tm−1) ·⊗ · (Em(tm) ·⊗ · s))) → Gn

m,
then there is an occurrence of pi/(pi\pi) on the lefthand-side at least once for
all 1 ≤ i ≤ n.

The Product-Free Lambek-Grishin Calculus Is NP-Complete 61

Proof. Gn
m by definition contains an occurrence of the expression �(pi/(pi\pi))

for all 1 ≤ i ≤ n. From Lemma 16 we know that somewhere in the lefthand-side
we need an occurrence of a structure Q such that �LGPF

pi/(pi\pi) → Q. From
the construction it is obvious that the only possible type for Q is in this case
pi/(pi\pi). !

Lemma 18. If �LGPF
E1(t1) ·⊗ · (. . . (Em−1(tm−1) ·⊗ · (Em(tm) ·⊗ · s))) → Gn

m,
then 〈t1, . . . , tm−1, tm〉 is a satisfying assignment for the CNF formula.

Proof. From Lemma 17 we know that there is an occurrence of pi/(pi\pi) in the
lefthand-side of the formula for all 1 ≤ i ≤ n. From the definition we know that
for each i there is an index j such that Ei

j(tj) = pi/(pi\pi), and this means that
¬tj xj appears in clause i, so if for every 1 ≤ i ≤ n there is an occurrence of
pi/(pi\pi) in the lefthand-side then all clauses are satisfied. Hence, this choice
of t1 . . . tm is a satisfying assignment. !

Lemma 19. For 1 ≤ j ≤ m and �LGPF
X⊗[F 0

j · ⊗ · F 1
j] → Gn

m we have �LGPF

X⊗[Ej(0)] → Gn
m or �LGPF

X⊗[Ej(1)] → Gn
m.

Proof. We know that X⊗[F 0
j ·⊗ ·F 1

j] is a ⊗-structure, so we can apply the r rule
several times to move all but the structure F 0

j · ⊗ ·F 1
j to the righthand-side. We

then have that �LGPF
F 0

j ·⊗·F 1
j → . . .·\·Gn

m·/·. . . . As remarked in Lemma 11 this
is exactly the meet-type from Lemma 8 with a structural · ⊗ ·, so we know that
now have that �LGPF

Ej(0) → . . .·\·Gn
m ·/·. . . or �LGPF

Ej(1) → . . .·\·Gn
m ·/·. . . .

Finally we can apply the r rule again to move all parts back to the lefthand-side,
to show that �LGPF

X⊗[Ej(0)] → Gn
m or �LGPF

X⊗[Ej(1)] → Gn
m.

Note that F 0
j · ⊗ ·F 1

j provides an explicit switch, which means that the truth-
value of a variable can only be changed in all clauses simultanously. !

Lemma 20. If �LGPF
ϕ̄, then � ϕ.

Proof. By Lemma 19, if �LGPF
(F 0

1 · ⊗ · F 1
1) · ⊗ · (. . . ((F 0

m−1 · ⊗ · F 1
m−1) · ⊗ ·

((F 0
m · ⊗ ·F 1

m) · ⊗ · s))) → Gn
m, then also �LGPF

E1(t1) · ⊗ · (. . . (Em−1(tm−1) · ⊗ ·
(Em(tm) · ⊗ · s))) → Gn

m for some 〈t1, . . . , tm−1, tm〉 ∈ {0, 1}m. From Lemma 18
we know that this is a satisfying assignment for ϕ, so if we assume that �LGPF

ϕ̄,
then � ϕ. !

4.4 Conclusion

Theorem 1. The product-free fragment of LG is NP-complete.

Proof. From Lemma 4 we know that for every derivable sequent there exists
a derivation that is of polynomial length, so the derivability problem for (the
product-free fragment of) LG is in NP . From Lemma 15 and Lemma 20 we can
conclude that we can reduce SAT to the product-free fragment of LG. Because
SAT is a known NP-hard problem (Garey and Johnson, 1979), and our reduction
is polynomial, we can conclude that derivability for the product-free fragment
LG is also NP-hard.

62 J. Bransen

Combining these two facts we conclude that the derivability problem for
the product-free fragment of LG, like the derivability problem for LG, is NP-
complete. !

5 Discussion and Future Work

In this paper we have shown the NP-completeness of the product-free fragment
of LG. Does this result disqualify LG as a formalism for practical use in com-
putational linguistics? We don’t think this conclusion necessarily follows.

Pentus (2010) shows that the derivability problem for Lambek Grammars,
i.e. L with a fixed lexicon, and thus bounded order, belongs to PTIME. This
means that, although the general derivability problem for L is NP-complete, for
the fixed lexicon situation there is a polynomial algorithm that can be used in
practice. Whether a similar situation obtains for LG is a question that requires
further research.

Here are some preliminary ideas. It is not hard to see that the SAT reduction
used in this paper can not be encoded in a (possibly product-free) lexicon for
LG, as the number of distinct primitive types already depends on the length
of the Boolean formula. It is interesting to notice that the construction from
(Melissen, 2009) for encoding the intersection of a context-free grammar with
all permutations of another context-free grammar in LG still holds for LG with
a fixed lexicon. Furthermore, as the construction does not use products, it even
holds for the product-free fragment of LG with a fixed lexicon. This implies that
also with a fixed lexicon, the generative power of LG lies beyond LTAG.

References

Bransen, J.: The Lambek-Grishin calculus is NP-complete. In: Proceedings 15th Con-
ference on Formal Grammar, Copenhagen (2010) (to appear)

de Groote, P.: The Non-associative Lambek Calculus with Product in Polynomial Time.
In: Murray, N.V. (ed.) TABLEAUX 1999. LNCS (LNAI), vol. 1617, pp. 128–139.
Springer, Heidelberg (1999)

Foret, A.: On the computation of joins for non associative Lambek categorial grammars.
In: Proceedings of the 17th International Workshop on Unification (UNIF 2003),
Valencia, Spain, June 8-9 (2003)

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York (1979)

Goré, R.: Substructural logics on display. Logic Jnl IGPL 6(3), 451–504 (1998)
Kandulski, M.: The non-associative Lambek calculus. In: Categorial Grammar. Linguis-

tic and Literary Studies in Eastern Europe (LLSEE), vol. 25, pp. 141–151 (1988)
Lambek, J.: The Mathematics of Sentence Structure. American Mathematical

Monthly 65, 154–170 (1958)
Lambek, J.: On the calculus of syntactic types. In: Structure of Language and Its

Mathematical Aspects, pp. 166–178 (1961)
Melissen, M.: The Generative Capacity of the Lambek–Grishin Calculus: A New Lower

Bound. In: de Groote, P., Egg, M., Kallmeyer, L. (eds.) Formal Grammar. LNCS,
vol. 5591, pp. 118–132. Springer, Heidelberg (2011)

The Product-Free Lambek-Grishin Calculus Is NP-Complete 63

Moortgat, M.: Symmetries in Natural Language Syntax and Semantics: The Lambek-
Grishin Calculus. In: Leivant, D., de Queiroz, R. (eds.) WoLLIC 2007. LNCS,
vol. 4576, pp. 264–284. Springer, Heidelberg (2007)

Moortgat, M.: Symmetric categorial grammar. Journal of Philosophical Logic 38(6),
681–710 (2009)

Moot, R.: Proof nets for display logic. CoRR, abs/0711.2444 (2007)
Pentus, M.: The conjoinability relation in Lambek calculus and linear logic. ILLC

Prepublication Series ML–93–03, Institute for Logic, Language and Computation,
University of Amsterdam (1993a)

Pentus, M.: Lambek grammars are context free. In: Proceedings of the 8th Annual
IEEE Symposium on Logic in Computer Science, pp. 429–433. IEEE Computer
Society Press, Los Alamitos (1993b)

Pentus, M.: Lambek calculus is NP-complete. CUNY Ph.D. Program in Computer
Science Technical Report TR–2003005, CUNY Graduate Center, New York (2003)

Pentus, M.: A Polynomial-Time Algorithm for Lambek Grammars of Bounded Order.
Linguistic Analysis 36, 441–472 (2010)

Savateev, Y.: Product-Free Lambek Calculus Is NP-Complete. In: Artemov, S., Nerode,
A. (eds.) LFCS 2009. LNCS, vol. 5407, pp. 380–394. Springer, Heidelberg (2008)

Copredication, Quantification and Frames

Robin Cooper

Department of Philosophy, Linguistics and Theory of Science,
University of Gothenburg,

Box 200, 405 30 Göteborg, Sweden
cooper@ling.gu.se

http://www.ling.gu.se/~cooper

Abstract. We propose a record type theoretical account of cases of
copredication which have motivated the introduction of dot types in
the Generative Lexicon ([2,1]). We will suggest that using record types
gives us a general account of dot types and also makes a connection
between copredication and the use of hypothetical contexts in a record
type theoretic analysis of dynamic generalized quantifiers. We propose
a view of lexical innovation which draws both on Pustejovsky’s original
work on the Generative Lexicon ([27]) and the notion of resource in
[23,15]. We will also address issues relating to counting objects in terms
of their aspects which are raised in [1].

Keywords: copredication, generalized quantifiers, type theory, records,
frame semantics.

1 Introduction

[2,1] propose a type theoretical approach to account for examples which had
motivated Pustejovsky [27] to introduce dot types. The intuitive idea behind
dot types is that they are compositions of two types which nevertheless allow
the two individual types to be recovered. Consider the examples in (1), based
on examples originally given in [27] and discussed extensively in [1].1

(1)
a. The lunch was delicious
b. The lunch took forever

delicious is a predicate that is normally used of food but not events. The word
“normally” is important here since I think it points to an inherent variability in
natural language semantics. I will talk of innovative uses of words and phrases
and mark them with i as in (2b).

(2)
a. The blancmange was delicious
b. iIFK Göteborg’s last game was delicious

1 I believe that such examples were first reported in the literature by McCawley ([25])
who discussed examples such as John has memorized the score of the Ninth Symphony
and The score of the Ninth Symphony is lying on the piano.

S. Pogodalla and J.-P. Prost (Eds.): LACL 2011, LNAI 6736, pp. 64–79, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

cooper@ling.gu.se
http://www.ling.gu.se/~cooper

Copredication, Quantification and Frames 65

The i in (2b) should not be taken as representing any absolute judgement.
A use might be innovative for one or more of the participants in a dialogue on
first mention but similar uses subsequently in the same dialogue will presumably
not be innovative. If one encounters similar uses in enough other dialogues (in
particular with different dialogue participants) then the usage will become part
of a speaker’s general resources and such uses will no longer be regarded as
innovative even the first time they are encountered in a dialogue. The task of a
linguistic theory is not so much to determine what is innovative but to determine
what mechanisms are available to a speaker in order to produce or interpret a use
which is innovative with respect to the current state of their individual linguistic
knowledge. The Generative Lexicon plays a central role in this as does the notion
of resource developed in [16,22,23,15]. This work points to a shift in our view
grammar and semantics, a move from Montague’s ([26]) dictum “English as a
formal language” to “English as a toolbox for constructing formal languages”.

In those cases where (2b) is innovative, Pustejovsky would say that game
and/or delicious are being coerced to another type in order to get an interpre-
tation. Similarly take forever is a predicate which normally holds of events and
not of food.

(3)
a. iThe blancmange took forever
b. IFK’s last game took forever

Again we can certainly get intepretations out of (3a) but it involves some
kind of coercion. It is not the actual food that takes forever but something like
the eating of it, the preparing of it or waiting for it. Here the coercions are so
standard that it might seem that the i is less justified. In the case of lunch we do
not feel that coercion is necessary. (Coercion readings are, of course, available.
The lunch took forever can mean, for example, that the preparation of the lunch
took forever.) This word seems equally easy to interpret as representing food
or as representing an event. Pustejovsky therefore associates it with a dot type
Food ·Event . This is meant to represent that it will simultaneously behave as
something of type Food and something of type Event and accept predicates of
food and predicates of events.

A natural view might be that this is simply a case of polysemy, that is, that
lunch is ambiguous between a food interpretation and an event interpretation.
If this were the case it would be hard to see what the motivation of the dot type
would be. There would simply be two types one associated with each meaning
of the word. However, [2,1] discuss in detail cases of copredication where one
occurrence of the word simultaneously has both interpretations. Compare (4a)
with (4b) (both examples from Asher and Pustejovsky).

(4)
a. The lunch was delicious but took forever
b. !The bank specializes in IPO’s and is being quickly eroded by

the river

66 R. Cooper

The word bank is ambiguous between meaning a financial institution and the
ground at the side of a river. It appears that a single occurrence of the word
cannot be used in both senses. However, no such problems seem to occur with
lunch. It seems that in some way natural language manages to treat lunch as a
single object which simultaneously has an event and food aspect. Note, however,
that it is possible to get the word bank to have both meanings simultaneously
in examples like (5).

(5) iSam went to the wrong bank

This could be used to report a misunderstanding about which kind of bank was
being referred to. (The point of jokes very often rests on such ambiguities. See [29]
for examples.) I would suggest that for most speakers in normal circumstances
such a reading involves an innovative interpretation of bank obtained by taking
the join or disjunction of two meanings associated with the phonology of bank
in their current lexical resource. Such readings are, however, not available for
lunch.

(6) Kim told me about the wrong lunch

(6) cannot be used to say that Kim told me about the event (in which I was not
interested) rather than the food, something that might be expressed by (7).

(7) Kim told me the wrong things about the lunch. (I was interested
in the food, not the conversation.)

In this paper I will propose an alternative treatment to that given by Asher
and Pustejovsky using type theory with records in the variant TTR that I have
developed in [7,8,9,13] based on work in Martin-Löf type theory [31,5,6,17]. I
will propose (section 2) that records give us a credible model of what Asher ([1])
calls “thick individuals” following Kratzer’s ([21]) use of the notion of “thick
particular”. We will, however, relate our notion to frames ([18,19,30]). I will sug-
gest (section 3) that using record types not only gives us a simple and intuitive
account of dot types but also makes an important connection between copred-
ication and the use of hypothetical contexts in dynamic generalized quantifiers
proposed in [7]. I will show (section 4) how this enables us to give an account of
copredication based on frames. I will suggest (section 5) that the structured ob-
jects provided by record types will make it easier to define the kinds of coercions
we need in order to handle the kind of innovative uses that we have marked with
i in the examples above. Finally (section 6) I will show that this analysis will
allow us to give an account of a puzzle concerning how we count the number of
books on a shelf which is discussed in [1].

2 Frames and Thick Particulars

In [12,13] we propose the use of frames, modelled as records, as a way of ac-
counting for the Partee puzzle regarding temperature and rising. Here we will

Copredication, Quantification and Frames 67

use the same idea to analyze copredication. Consider some particular lunch. As
a “thin particular” (see [21]) we might consider it to be of type Ind, the type
of individuals. One could certainly call into question whether it is an individual
in the same sense as physical objects like people or tables. It certainly seems
very different. Lunches do have a physical aspect in terms of the food served or
eaten. They also have an event aspect which takes place in a space-time location.
We will take account of this difference in terms of the “thick particulars” which
we call lunches. The standard view of thick particulars is that they are objects
together with all their properties. We will, however, use frames which pick out
certain apparently cognitively important properties that individuals can have.
If you want, you can think of them as “moderately thick particulars”. Exactly
which objects correspond to such “moderately thick particulars” and exactly
how thick they are (i.e. how may fields they contain) we imagine depends on
the experience and knowledge of particular agents and what they have come to
regard as defining aspects associated with types. We imagine our frames being
embedded in the kind of learning theory sketched in [23,15].

For the sake of this paper we will think of lunch-frames as being of the type
in (8).

(8) ⎡
⎢⎢⎣

x : Ind
event : Event
food : Food
clunch : lunch ev fd(x, event, food)

⎤
⎥⎥⎦

A frame (that is, a record) which is of this type will have at least four fields
(it may have more) labelled by ‘x’, ‘event’, ‘food’ and ‘clunch’. In both records
and record types there will be at most one field with any particular label. For
the record to be of the type in (8) the objects in the fields have to have the
types indicated in the record type. Thus the field labelled ‘x’ has to contain an
individual, the field labelled ‘event’ has to contain an event, and the field labelled
‘food’ has to contain some food. The fourth field represented in (8) might appear
to contain something other than a type. Intuitively, it represents a constraint
(hence the ‘c’ in the label) that the individual in the record is a lunch with the
event aspect represented in the event-field and the food aspect represented in
the food-field. ‘lunch ev fd(x, event, food)’ is regarded as representing a type of
situation or state of affairs where this constraint holds. This type is also special
in that it is a dependent type. That is, precisely which type this represents
depends on the objects in the ‘x’, ‘event’ and ‘food’ fields of the record you are
considering as a candidate for being of the type in (8). Technical details are
developed in [8,13] where such dependent types are treated as pairs of functions
and sequences of path-names indicating where the arguments of the function are
to be found in the record. Both records and record types are treated as sets of
fields (that is, pairs of labels and objects, in the case of records, and types, in the
case of record types). This means that the order of the fields is not significant.

68 R. Cooper

(8) is much closer to Asher’s ([1]) proposal than the type proposed in [11]
given in (9)

(9)

⎡
⎣x : Ind

c1 : food(x)
c2 : event(x)

⎤
⎦

This claims that there is an individual (i.e. a “thin particular”) which is both
food and an event. Asher argues against this and his analysis of dot types such
as Food ·Event does not have this consequence. While I would take issue with the
detail of Asher’s arguments against this analysis, there is a clear advantage to
(8) in that it gives us food and event objects which can be separately counted.
This will be important in section 6 where we consider the problem of counting
books discussed in [1] and first raised by Tim Fernando in discussion.

We will designate the type in (8) by LunchFrame. How should this type fig-
ure in the content of an utterance of the common noun lunch? Common noun
contents are of type (10)

(10)
[
x:Ind

]
→RecType

that is, the type of functions from records of type
[
x:Ind

]
to record types. A

function of this type will map a frame (a record with a field for an individual
labelled ‘x’) to a record type. Record types do duty (among other things) as
intuitive “propositions”. Thus a “proposition” corresponding to a lunch is served
could be (11)

(11)

⎡
⎣x : Ind

clunch : lunch(x)
cserved : served(x)

⎤
⎦

If this type is non-empty it has to be the case that there is an individual which
is a lunch and which is served. The type being non-empty corresponds to the
“proposition” being “true”. “Falsity” corresponds to the type being empty. The
type (10) corresponds to an intensional version of Montague’s type 〈e, t〉 in that it
is the type of functions that map individuals (represented as “thick particulars”
or frames) to “propositions” modelled as record types (rather than truth-values
as in Montague’s original). We will refer to (10) as Ppty, short for property.

Our standard strategy for interpreting common nouns N with a corresponding
predicate N ′ is shown in (12).

(12) λr:
[
x:Ind

]
(
[
cN ′ :N ′(r.x)

]
)

This is an interpretation where N ′ is predicated of the individual in the x-field or
r (represented by ‘r.x’). In the case of nouns which are associated with a frame
type, like lunch according to our analysis, we need to make the interpretation
exploit the frame type as in (13)

Copredication, Quantification and Frames 69

(13) λr:
[
x:Ind

]
(

⎡
⎣event:Event

food:Food
clunch:lunch ev fd(r.x, event, food)

⎤
⎦)

This proposal diverges from the earlier proposal in [11] which was that the
interpretation of lunch should be

(14) λr:

⎡
⎣x :Ind

c1:food(x)
c2:event(x)

⎤
⎦(

[
c3:lunch(r.x)

]
)

This has the consequence that lunch can only be predicated of objects that are
both food and events, since the characterization of the domain of the function
gives us a presupposition that the argument of lunch is such an object. This
seems to make it difficult handle cases of negation such as (15).

(15) I went to a meeting. It wasn’t a lunch. (So I’m hungry now.)

3 Dynamic Generalized Quantifiers

Following the proposal for the treatment of generalized quantifiers in [7] we will
treat determiners such as a(n) as predicates which hold between two properties,
that is functions of type Ppty. Thus a donkey runs could be represented as (16).

(16)
[
cexists : exists(λr:

[
x:Ind

]
(
[
cdonkey:donkey(r.x)

]
),

λr:
[
x:Ind

]
(
[
crun:run(r.x)

]
))

]

This is the non-dynamic treatment of generalized quantification. The strategy is
to say that a type

(17) q(P1, P2)

is non-empty just in case the corresponding classical generalized quantifier rela-
tion, q∗, as given for example in [3], holds between the set of objects which have
P1 and the set of objects which have P2. We make this precise as follows. If T
is a type, then the extension of T , [̌ T], is to be the set of objects which are of
type T , given in (18).

(18) {a | a : T }

If P is of type Ppty, then the property-extension or P-extension of P , [↓P], is
the set of objects which have the property P , given in (19).

(19)
{a | ∃r[r :

[
x:Ind

]
∧ r.x = a ∧ [̌ P (r)] = ∅]}

70 R. Cooper

So now we can say

(20) q(P1, P2) is a non-empty type just in case q∗ holds between [↓P1]
and [↓P2]

For example if q is ‘exists’ then the type will be non-empty just in case (21)
holds.

(21) [↓P1] ∩ [↓P2] = ∅.

In our treatment of dynamic quantifiers in [7] we required quantifier predi-
cates q to be polymorphic in order to be able to pass information from the first
argument of q to domain type of the second argument. The idea is that in the
interpretation of a sentence like every farmer who owns a donkey likes it the sec-
ond argument of ‘every’ corresponding to likes it will have its domain restricted
to farmers who own a donkey as in (22).

(22) λr :

⎡
⎢⎢⎢⎢⎣

x : Ind
cfarmer : farmer(x)
y : Ind
cdonkey : donkey(y)
cown : own(x,y)

⎤
⎥⎥⎥⎥⎦ (

[
clike:like(r.x,r.y)

]
)

We will use the notation X # T to represent a variable over types which
are subtypes of the record type T . The definition of subtype is a little involved
due to the fact that we have dependencies. See [13] for a precise definition. We
redefine the type Ppty to be that given in (23).

(23) (X #
[
x:Ind

]
) → RecType

that is, the type of a function whose domain type is some subtype of
[
x:Ind

]
and which yields a record type for any object of that subtype.

In order to achieve dynamic quantification we introduce a notion of fixed point
type and use the fixed point type of the first argument to q to restrict the domain
type of the second argument to q. If P :Ppty, we say that a is a fixed point for
P just in case a : P (a). Not all properties will have fixed points, but for the
examples we are discussing here it is straightforward to compute what the type
of the fixed points should be. Consider the property P of being a farmer who
owns a donkey in (24).

(24) λr :
[
x:Ind

]
(

⎡
⎢⎢⎣

cfarmer : farmer(r.x)
y : Ind
cdonkey : donkey(y)
cown : own(r.x,y)

⎤
⎥⎥⎦)

Copredication, Quantification and Frames 71

The fixed points of P will be all and only the records of the type in (25).

(25)

⎡
⎢⎢⎢⎢⎣

x : Ind
cfarmer : farmer(x)
y : Ind
cdonkey : donkey(y)
cown : own(x,y)

⎤
⎥⎥⎥⎥⎦

We will call this the fixed point type of P . Intuitively, the fixed point type is
obtained by extending the type of the domain with the dependent type that
characterises its range. For any property P which has fixed points, we will use
F(P) to represent the fixed point type of P .2

This notion of fixed point type is exploited in order to make the first argu-
ment of the quantifier provide a hypothetical context for the second argument.
The second argument becomes a function which requires as argument (i.e. con-
text) a record which is of the fixed point type of the first argument. We call it
hypothetical because it does not require that there be such a context. It just
characterises the domain of the function.3 The function which is the second ar-
gument is restricted by the fixed point type of the first argument. The restriction
of a function by a type is defined in (26).

(26) If F is a function λv : T1(φ), then the restriction of F by the type
T2 is λv : T1∧. T2(φ)

Here T1∧. T2 represents the merge of T1 and T2 as defined in [13]. It is like standard
meets of types (represented by T1 ∧ T2 where a : T1 ∧ T2 iff a : T1 and a : T2)
except that in the case of record types it merges them together into a single
record type using an operation closely related to graph unification.

We can now redefine what it means for a quantifier relation q to hold between
two properties (the first of which has fixed points) using dynamic quantification
as in (27).

(27) q(P1, P2) is a non-empty type just in case q∗ holds between [↓P1]
and [↓P2 � F(P1)]

4 Treating Copredication

Allowing generalized quantifier predicates to be polymorphic enables us to add
additional constraints on the domains of functions corresponding to verb-phrases.
For example, we require that records which are arguments to take forever in

2 In formulating this precisely we need to make sure that the domain and range types
of P do not have any labels in common.

3 A similar analysis of generalized quantifiers exploiting contexts in type theory is
given in Fernando (2001)

72 R. Cooper

addition to introducing an individual also introduce an event aspect to the
object.

(28) λr:
[
x :Ind
event:Event

]
(
[
cforever:take forever ev(r.x,r.event)

]
)

Similarly be delicious will require that its subject has a food aspect.

(29) λr:
[
x :Ind
food:Food

]
(
[
cdelicious:be delicious fd(r.x,r.food)

]
)

The conjunction be delicious and take forever needs to require that its subject
has both a food and an event aspect.4

(30) λr:

⎡
⎣x :Ind

food :Food
event:Event

⎤
⎦(

[
cdelicious:be delicious fd(r.x,r.food)
cforever :take forever ev(r.x,r.event)

]
)

Notice that the fixed point types of these properties are candidates for frame
types. Similarly, nouns will correspond to properties whose fixed point types are
candidates for frame types.

(31)
a. λr:

[
x:Ind

]
(
[

food : Food
cblancmange : blancmange(r.x,food)

]
)

b. λr:
[
x:Ind

]
(
[

event : Event
cgame : game(r.x,event)

]
)

c. λr:
[
x:Ind

]
(

⎡
⎣event:Event

food:Food
clunch:lunch ev fd(r.x, event, food)

⎤
⎦)

4 This is actually a simplification of the compositional interpretation. Since we allow
meets of types we can define the meet of two functions representing dependent types
(i.e. mapping objects to types). Thus

λr:

[
x :Ind
c1:food(x)

]
(
[
c3:be delicious(r.x)

]
) ∧ λr:

[
x :Ind
c2:event(x)

]
(
[
c4:take forever(r.x)

]
)

is to be

λr:

[
x :Ind
c1:food(x)

]
∧

[
x :Ind
c2:event(x)

]
(
[
c3:be delicious(r.x)

]
∧

[
c4:take forever(r.x)

]
)

which is equivalent to (though not identical with) (30). Since there is no requirement
in our type theory that T1∧T2 is identical with T2∧T1 (although they are equivalent
in that they will always have the same extension) we could in principle have the
means to distinguish examples mentioned by one of the reviewers such as: John read
and burnt the book as opposed to *John burnt and read the book. However, I suspect
that the best way to treat these examples is in terms of Gricean principles concerning
narration, cf. Grice’s example John got into bed and took off his trousers.

Copredication, Quantification and Frames 73

Lunch objects are thus required to have both a food and an event aspect.5

Following the theory of dynamic quantifiers sketched in section 3, the function
which is the first argument to the quantifier predicated is used to further restrict
the domain of the second function. Thus the game took forever would actually
be interpreted in terms of (32).

(32) the(λr:
[
x:Ind

]
(
[
event : Event
cgame : game ev(r.x,event)

]
),

λr:

⎡
⎣x :Ind

event:Event
cgame:game ev(x,event)

⎤
⎦(

[
cforever:took forever ev(r.x,r.event)

]
))

Thus the first argument to the quantifier predicate provides a context in which
the second argument is interpreted by restricting the domain of the second ar-
gument. Normally the information passed on by the first argument is a subtype
of the domain type of the original second argument, taken, we assume from the
currently relevant lexical resource, in this case represented in (28).

With lunch we can use either verb-phrases requiring food or events since in
either case the function corresponding to lunch will provide us with a subtype
of the domain type of the second argument to the quantifier.

5 Treating Lexical Innovation

If we say that the game is delicious, we obtain the dynamic quantification in
(33).

(33) the(λr:
[
x:Ind

]
(
[
event:Event
cgame:game ev(r.x,event)

]
),

λr:

⎡
⎢⎢⎣

x :Ind
event:Event
cgame:game ev(x,event)
food :Food

⎤
⎥⎥⎦(

[
cdelicious:be delicious fd(r.x,r.food)

]
))

Here the fixed point type passed to the second argument from the first argument
is not a subtype of the domain type for delicious in the lexical resource as repre-
sented in (29), since it does not provide the food-aspect required by the second
5 There is perhaps an issue of whether the additional contraints on nouns should be

treated as presuppositions as they are in [11]. Certainly the sentence That pink thing
isn’t blancmange doesn’t seem to require that what is referred to by that pink thing
is food. But then perhaps the difference between the predicate represented by be
blancmange and that represented by blancmange is that the former only introduces
an entailment about food whereas the latter introduces a presupposition. If that is
so then we could go back to treating these aspect constraints as presuppositions.
However, since we are constructing the fixed point type to provide the restriction on
the second argument it does not matter which of the two options we take for present
purposes.

74 R. Cooper

argument. In this case we say that the use of (is) delicious is innovative with re-
spect to the lexical resource. Note that the relative definition of innovation with
respect to a resource is important since we can derive innovation with respect
to a dialogue partner from this – dialogue partners may have different lexical
resources available. Note that (33), although it follows our standard treatment
of dynamic quantification, is not the most natural interpretation of the sentence.
This is because given normal assumptions about resources we have available it
is not easy to construe what a food aspect of a game would be. Thus it is more
natural to coerce the interpretation of delicious to be a predicate of the event
aspect of the game, so the hearer is left with the puzzle of how to figure out a
meaning for delicious that relates to events. This coercion would thus involve a
modification of the lexical resource (29).

This suggests a rather different view of types constructed from type-theoretical
predicates than was suggested in constructive type theory which was created in
order to reason about mathematical objects. Ranta ([28], pp. 53ff) has an illu-
minating discussion of non-mathematical propositions in type theory in which
he suggests that an appropriate proof object for Davidson’s sentence Amundsen
flew over the North Pole would be a Davidsonian event of Amundsen flying over
the North Pole. A problem he points to is that the kind of predicates which nat-
ural language requires are not sets in the constructive mathematical sense. He
mentions predicates like man and tree. The problem seems magnified when we
consider a predicate like delicious with is both vague (there is no obvious exact
boundary between the delicious and the non-delicious) and subjective (what is
delicious for me may not be so for you). He suggests three ways of approach-
ing this problem: (i) work with types rather than sets, (ii) develop techniques
of approximation and (iii) study delimited models of language use. It seems to
me that all three of these should be developed in an adequate type-theoretical
approach to natural language. It seems important that we recognize that human
beings reason with inexact types for which they do not have (or indeed there
may not even exist) clearly defined procedures for determining whether objects
belong to those types or not. Such types may be refined by successive approxi-
mations as a result of being exposed to natural language utterances in a variety
of situations. Finally, we have the ability to “tie down” certain expressions in
a given restricted domain, “for the purposes of discussion” or at least to know
what certain complex expressions would mean under the assumption that exact
interpretations were assigned to their constituent parts. Thus, when being con-
fronted with an innovative use of delicious applied to some game, while the type
itself is perfectly well-defined, we may not have a way of determining exactly
which are the proof-objects which belong to this type. We may observe certain
aspects of the situation to which it was applied and assume they are possibly
relevant, awaiting future uses for further refinement. If we have reason to do so
we may engage in clarification, e.g. What do you mean “delicious”? . It is impor-
tant to note that this can often occasion a refinement in the original speaker’s
view of what they said. It is not the case that speakers always use types which
are exact for them.

Copredication, Quantification and Frames 75

This inexactitude is an important feature of natural language. It appears to
play an important role in making it adaptable to new situations and domains
and a large part of this involves the generation of innovative uses of lexical items,
often involving the creation of new meanings for words already available in a lex-
ical resource. The fact that the interpretation for delicious is inexact, means that
we can begin to consider what it means for a game to be delicious. Innovation
seems much harder with expressions which have an exact interpretation such as
divisible by three, is a prime number . It is very hard to imagine what it might
mean for a game to be divisible by three. On the view of natural languages as
formal languages inexactitude can appear to be a big challenge for semantics.
On the view of natural languages as providing resources (i.e. a toolbox) for the
construction of formal languages, we can regard a lexical resource as providing
an inexact predicate which could be refined to an exact one in a given domain
or application.

6 How Many Books are on the Shelf?

In [1] Asher discusses an example of counting books on a shelf, originally due
to Tim Fernando. Suppose there are exactly two copies of War and Peace, two
copies of Ulysses, and six copies of the Bible on a shelf. How many books are
there on the shelf? If you are counting physical objects the answer is ten. If
you are counting informational or textual objects the answer might be three.
It depends a little whether, for example, the copies of War and Peace actually
contain precisely the same text. Suppose one is the Russian original and the
other is a Swedish translation. In one sense it is the same book but for certain
purposes you might want to count it as two (for example if you are removing
doublets from your library). Similarly you may have two different editions of the
Bible containing the same basic text but with different annotations by different
biblical scholars. Sometimes you will want to count that as one and sometimes
as two. It depends on the purposes you have at hand.

If you look up book on the Berkeley FrameNet (http://framenet.icsi.
berkeley.edu)6 you will find that it has been assigned the following frame ele-
ments: Author, Components, Genre, Text, Title, Topic. This is rather different
from the aspects of books that are normally discussed in the generative lexicon
literature which Asher represent as the types Physical Object and Informational
Object. Of the frame elements one could imagine counting books by Text and
one might be tempted to use Title, though this will go wrong if there are two
books with the same title. (Google books returns 9,950 entries for “Introduction
to Chemistry” . . .). It would seem useful to add a frame element for physical
object to the frame. The Text frame to which book belongs mentions that a text
can be a physical object and has a role for Material (such as vellum). We will
take a property corresponding to book which uses a frame corresponding to the
dot type that Asher discusses.

6 Accessed 13th February, 2011.

http://framenet.icsi.berkeley.edu
http://framenet.icsi.berkeley.edu

76 R. Cooper

(34) λr:
[
x:Ind

]
(

⎡
⎣physobj : PhysObj

infobj : InfObj
cbook : book ph inf(r.x,physobj,infobj)

⎤
⎦)

Our standard way of computing the property extension of this property given
in (19) would give us the set of objects in the x-field. However, given that we
now have aspects in separate fields of our frames we could relativize our notion
of property extension to labels in the frame, as in (35).

(35) The P-extension of P relative to label �, [↓� P], is
{a | ∃r[r :

[
x:Ind

]
∧ r.� = a ∧ [̌ P (r)] = ∅}

Choosing different labels will enable us to obtain property extensions of different
cardinalities as desired.

7 Conclusion

We have suggested that a record type theoretical approach to semantics gives us
an approach to different aspects of objects which have previously been treated
by Asher and Pustejovsky as involving dot types. The approach points to a con-
nection between dynamic generalized quantification and the coercion involved in
innovative uses of linguistic predicates. We have suggested an approach to lexical
innovation which draws on the ideas of resources presented in [16,22,23,15]. Fi-
nally, we have suggested a way in which the approach can be used to account for
the different ways of counting objects that seem to be available to us depending
on the purposes at hand.

The account we present here is very similar in spirit to that presented by Asher
in [1]. The notion of dot type that Asher develops there seems very close to the
notion of record type and the revisions that I have undertaken since the earlier
version of my analysis (creating separate objects to represent aspects) moves the
present approach much closer to Asher’s proposal. One difference between our
approaches is that for me record types are used throughout the TTR approach I
want to support, e.g. as models of DRSs and feature structures and, as developed
in Ginzburg’s work [20], in the analysis of dialogue information states or game-
boards. Thus the kind of phenomena analyzed in this paper do not require an
extension of the type theory already required elsewhere in the theory. In contrast
dot types do not play such a general role in Asher’s theory. Thus I would like to
propose that dot types can be usefully construed as record types.

Related Work: Type Theories Ancient and Modern

Pustejovsky’s work on the generative lexicon and dot-types in particular has
given rise to a considerable number of proposals exploiting type theories of var-
ious kinds. A very useful survey of this work is given in [4]. The proposed treat-
ment of lexical semantics in [4] is similar to ours in that it attempts to enrich
Montague’s type theoretic approach rather than discard it. It differs, however,
in that it eschews the use of record types.

Copredication, Quantification and Frames 77

A recent proposal by Luo [24] presents an approach in terms of coercive sub-
typing. As Luo points out, coercive subtyping is related to the use of record types
where record projection can be used to model the coercions involved. Luo’s ap-
proach is to replace Montague’s type theoretical approach where, for example,
nouns are interpreted in terms of predicates modelled as functions of type 〈e, t〉7
with an approach based on what Luo calls “modern type theories” where nouns
correspond to types. Our approach is rather to create a hybrid of Montague’s
approach and modern type theories where nouns correspond to predicates mod-
elled as objects of type

[
x:Ind

]
→RecType. That is, we have, like Montague, a

predicate modelled as a function, but the result of applying that function to
an appropriate argument is a type as in the “modern type theory” approach.
(My particular proposal is that this type should, furthermore, be a record type.)
What I have given up is the notion of canonicity which Luo discusses. This
notion is extremely important for type theoreticians who have grown up in a
proof theoretic tradition. In place of canonicity I have a notion of model theo-
retic objects associated with types, which, to me, having grown up in a model
theoretic tradition, seems an appropriate way to make sure that the system gets
grounded with canonical objects. There are deep and perplexing issues of both
technical and philosophical nature which arise in this discussion and I do not
pretend to have a complete grasp of all of them. But I am convinced that the
way to illumination is the formulation and comparison of precise proposals for
alternative treatments of the linguistic data.

Acknowledgments. An earlier version of this paper was presented as [11]. It
contains revised material from [10]. The current paper contains an significant
revision of the analysis and an extension of the results in the light of more re-
cent discussion, particularly by Asher. I am grateful for useful comments on
earlier versions of this work to Nicholas Asher, Tim Fernando, Stuart Shieber,
two anonymous reviewers for the GSLT internal conference and participants
in the Language Technology seminar in Gothenburg. I would also like to thank
three anonymous referees for LACL 2011 for insightful comments. This work was
supported by Vetenskapsr̊adet projects 2002-4879 Records, types and computa-
tional dialogue semantics , http://www.ling.gu.se/~cooper/records/, 2005-
4211 Library-based Grammar Engineering, http://www.cs.chalmers.se/
~aarne/GF/doc/vr.html and 2009-1569 Semantic analysis of interaction and co-
ordination in dialogue, http://sites.google.com/site/saicdproject/.

References

1. Asher, N.: Lexical Meaning in Context: A Web of Words. Cambridge University
Press, Cambridge (2011)

2. Asher, N., Pustejovsky, J.: Word Meaning and Commonsense Metaphysics. In:
Course Materials for Type Selection and the Semantics of Local Context, ESSLLI
2005 (2005)

7 Or 〈〈s, e〉, t〉 to be historically precise.

http://www.ling.gu.se/~cooper/records/
http://www.cs.chalmers.se/
http://sites.google.com/site/saicdproject/

78 R. Cooper

3. Barwise, J., Cooper, R.: Generalized quantifiers and natural language. Linguistics
and Philosophy 4(2), 159–219 (1981)

4. Bassac, C., Mery, B., Retoré, C.: Towards a type-theoretical account of lexical
semantics. Journal of Logic, Language and Information 19(2), 229–245 (2010)

5. Betarte, G.: Dependent Record Types and Algebraic Structures in Type Theory.
Ph.D. thesis, Department of Computing Science, University of Gothenburg and
Chalmers University of Technology (1998)

6. Betarte, G., Tasistro, A.: Extension of Martin-Löf’s type theory with record types
and subtyping. In: Sambin, G., Smith, J. (eds.) Twenty-Five Years of Constructive
Type Theory. Oxford Logic Guides, vol. 36. Oxford University Press, Oxford (1998)

7. Cooper, R.: Dynamic generalised quantifiers and hypothetical contexts. In: Ursus
Philosophicus, a festschrift for Björn Haglund. Department of Philosophy, Univer-
sity of Gothenburg (2004), http://www.phil.gu.se/posters/festskrift/

8. Cooper, R.: Austinian truth, attitudes and type theory. Research on Language and
Computation 3, 333–362 (2005)

9. Cooper, R.: Records and record types in semantic theory. Journal of Logic and
Computation 15(2), 99–112 (2005)

10. Cooper, R.: A record type theoretic account of copredication and dynamic gener-
alized quantification. In: Kvantifikator för en Dag, Essays dedicated to Dag West-
erst̊ahl on his sixtieth birthday. Department of Philosophy, University of Gothen-
burg (2006), http://www.phil.gu.se/posters/festskrift3/

11. Cooper, R.: Copredication, dynamic generalized quantification and lexical innova-
tion by coercion. In: Proceedings of GL 2007, Fourth International Workshop on
Generative Approaches to the Lexicon (2007), http://www.ling.gu.se/~cooper/
records/copredinnov.pdf

12. Cooper, R.: Frames in formal semantics. In: Loftsson, H., Rögnvaldsson, E., Hel-
gadóttir, S. (eds.) IceTAL 2010. LNCS, vol. 6233, pp. 103–114. Springer, Heidelberg
(2010)

13. Cooper, R.: Type theory and semantics in flux. In: Kempson, R., Asher, N.,
Fernando, T. (eds.) Handbook of the Philosophy of Science, Philosophy of Lin-
guistics. Elsevier BV, Amsterdam (fthc), general editors: Gabbay, D.M., Tha-
gard, P., Woods, J.: https://sites.google.com/site/typetheorywithrecords/
drafts/ddl-final.pdf

14. Cooper, R., Kempson, R. (eds.): Language in Flux: Dialogue Coordination, Lan-
guage Variation, Change and Evolution, Communication, Mind and Language,
vol. 1. College Publications, London (2008)

15. Cooper, R., Larsson, S.: Compositional and ontological semantics in learning from
corrective feedback and explicit definition. In: Edlund, J., Gustafson, J., Hjal-
marsson, A., Skantze, G. (eds.) Proceedings of DiaHolmia: 2009 Workshop on the
Semantics and Pragmatics of Dialogue, pp. 59–66. Department of Speech, Music
and Hearing, KTH (2009)

16. Cooper, R., Ranta, A.: Natural Languages as Collections of Resources. In: Cooper,
R., Kempson R., (eds.) [14], pp. 109–120

17. Coquand, T., Pollack, R., Takeyama, M.: A logical framework with dependently
typed records. Fundamenta Informaticae XX, 1–22 (2004)

18. Fillmore, C.J.: Frame semantics. In: Linguistics in the Morning Calm, pp. 111–137.
Hanshin Publishing Co., Seoul (1982)

19. Fillmore, C.J.: Frames and the semantics of understanding. Quaderni di Seman-
tica 6(2), 222–254 (1985)

20. Ginzburg, J.: The Interactive Stance: Meaning for Conversation. Oxford University
Press, Oxford (fthc)

http://www.phil.gu.se/posters/festskrift/
http://www.phil.gu.se/posters/festskrift3/
http://www.ling.gu.se/~cooper/records/copredinnov.pdf
http://www.ling.gu.se/~cooper/records/copredinnov.pdf
https://sites.google.com/site/typetheorywithrecords/drafts/ddl-final.pdf
https://sites.google.com/site/typetheorywithrecords/drafts/ddl-final.pdf

Copredication, Quantification and Frames 79

21. Kratzer, A.: An Investigation of the Lumps of Thought. Linguistics and Philoso-
phy 12, 607–653 (1989)

22. Larsson, S.: Formalizing the dynamics of semantic systems in dialogue. In: Cooper,
R., Kempson, R. (eds.) [14], p. 344

23. Larsson, S., Cooper, R.: Towards a formal view of corrective feedback. In: Alishahi,
A., Poibeau, T., Villavicencio, A. (eds.) Proceedings of the Workshop on Cognitive
Aspects of Computational Language Acquisition, pp. 1–9. EACL (2009)

24. Luo, Z.: Type-theoretical semantics with coercive subtyping. In: Proceedings of
SALT 20. pp. 38–56 (2010)

25. McCawley, J.D.: The Role of Semantics in a Grammar. In: Bach, E., Harms, R.T.
(eds.) Universals in Linguistic Theory. Holt, Rinehart and Winston (1968)

26. Montague, R.: Formal Philosophy: Selected Papers of Richard Montague. Yale
University Press, New Haven (1974), ed. and with an introduction by Thomason,
R.H.

27. Pustejovsky, J.: The Generative Lexicon. MIT Press, Cambridge (1995)
28. Ranta, A.: Type-Theoretical Grammar. Clarendon Press, Oxford (1994)
29. Ritchie, G.: The linguistic analysis of jokes. Routledge, London (2004)
30. Ruppenhofer, J., Ellsworth, M., Petruck, M.R., Johnson, C.R., Scheffczyk, J.:

FrameNet II: Extended Theory and Practice (2006), http://framenet.icsi.

berkeley.edu/index.php?option=com_wrapper&Itemid=126

31. Tasistro, A.: Substitution, record types and subtyping in type theory, with appli-
cations to the theory of programming. Ph.D. thesis, Department of Computing
Science, University of Gothenburg and Chalmers University of Technology (1997)

http://framenet.icsi.berkeley.edu/index.php?option=com_wrapper&Itemid=126
http://framenet.icsi.berkeley.edu/index.php?option=com_wrapper&Itemid=126

On Dispersed and Choice Iteration in

Incrementally Learnable Dependency Types

Denis Béchet1, Alexandre Dikovsky1, and Annie Foret2

1 LINA UMR CNRS 6241, Université de Nantes, France
{Denis.Bechet,Alexandre.Dikovsky}@univ-nantes.fr

2 IRISA, Université de Rennes 1, France
Annie.Foret@irisa.fr

Abstract. We study learnability of Categorial Dependency Grammars
(CDG), a family of categorial grammars expressing all kinds of projec-
tive, discontinuous and repeatable dependencies. For these grammars, it
is known that they are not learnable from dependency structures.

We propose two different ways of modelling the repeatable dependen-
cies through iterated types and the two corresponding families of CDG
which cannot distinguish between the dependencies repeatable at least K
times and those repeatable any number of times. For both we show that
they are incrementally learnable in the limit from dependency structures.

Keywords: Grammatical inference, Categorial grammar, Dependency
grammar, Incremental learning, Iterated types.

1 Introduction

Languages generated by grammars in a class G are learnable if there is an
algorithm A which, for every target grammar GT ∈ G and every finite set σ of
generated words, computes a hypothetical grammar A(σ) ∈ G in a way that:

(i) the sequence of languages generated by the grammars A(σ) converges to the
target language L(GT) and
(ii) this is true for any increasing enumeration of sub-languages σ ⊂ L(GT).

This concept due to E.M. Gold [10] is also called learning from strings.
More generally, the hypothetical grammars may be computed from finite sets
of structures defined by the target grammar. This kind of learning is called
learning from structures. Both concepts were intensively studied (see the
surveys in [1] and in [11]). In particular, it is known that any family of gram-
mars generating all finite languages and at least one infinite language (as it is
the case of all classical grammars) is not learnable from strings. At the same
time, some interesting positive results were also obtained. In particular, k-rule
string and term generating grammars are learnable from strings for every k [14]
and k-rigid (i.e. assigning no more than k types per word) classical categorial
grammars (CG) are learnable from the so called “function-argument” structures
and also from strings [4,11].

S. Pogodalla and J.-P. Prost (Eds.): LACL 2011, LNAI 6736, pp. 80–95, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On Dispersed and Choice Iteration 81

In our recent paper [2], we adapt this concept of learning to surface depen-
dency structures (DS), i.e. graphs of named binary relations on words, called
dependencies (see Fig. 1,2,4). Dependencies are asymmetric. When two words

w1, w2 are related through dependency d, w1
d−→ w2, w1 is called governor and

w2 is called subordinate. Dependencies may be projective, i.e. non-crossing,
as in Fig. 1,4, or discontinuous like clit−a−obj, clit−3d−obj in Fig. 2. Very
importantly, the linguistic intuition behind a dependency name d is that it iden-
tifies all syntactic and distributional properties of the subordinate in the context
of its governor. In more detail, it identifies its syntactic role (e.g., “subject”
“direct object”, “copula”, “attribute”, “circumstantial” etc.), its position with
respect to the governor and its part of speech (POS). In principle, the words
dependent through the same dependency are substitutable (see the quasi-Kunze
property in [13]). This might explain why the dependency structure cannot be
completely defined through constituent structure with head selection.

Grammars defining dependency relations directly, in conformity with the ba-
sic dependency structure principles (see [13]) must face the problem of express-
ing the so called repeatable dependencies. These dependencies satisfy specific
conditions most clearly formulated by I. Mel’čuk in the form of the following
Principle of repeatable dependencies (see [13]).

Every dependency is either repeatable or not repeatable. If a dependency
d is not repeatable, then no word may have two subordinates through d.
If d is repeatable, then any word g which governs a subordinate word
s through d may have any number of subordinates through d.

E.g., the verbs may have any number of subordinate circumstantials (but no
more than one direct or indirect complement), the nouns may have any number
of attributes and of modifiers (but no more than one determiner), etc.

We choose the Categorial Dependency Grammars (CDG) [7,5] as the gram-
mars to be inferred from dependency structures because these grammars define
DS directly, without any order restrictions and in particular, they express the re-
peatable dependencies through the so called “iterated” types in conformity with
the Principle of repeatable dependencies. As it was shown in [3], the k-rigid CDG
without iterated types are learnable from analogues of the function-argument
structures (and from strings) as it is the case of the classical categorial gram-
mars. At the same time, even rigid (i.e. 1-rigid) CDG with iterated types are not
learnable from function-argument structures. Moreover, in [2] we show that they
are not learnable from the DS themselves. This may be seen as a proof of un-
learnability from dependency treebanks of dependency grammars which express
dependency relations in accordance with the basic dependency structure princi-
ples (in particular with the Principle of repeatable dependencies). On the other
hand, in strict conformity with this Principle, in [2] a subclass of CDG which
cannot distinguish between the dependencies repeatable K (or more) times and
those repeatable any number of times (the Principle sets K = 2) is defined. For

82 D. Béchet, A. Dikovskym, and A. Foret

these CDG, called in [2] K-star revealing, it is proved that they are incre-
mentally learnable from dependency structures.

It is significant that the Principle of repeatable dependencies is uncertain as
it concerns the precedence order of the repeatable subordinates. Let us consider
the fragment in Fig. 1 of a DS of the French sentence Ils cherchaient pendant
une semaine surtout dans les quartiers nord un des deux évadés en bloquant
systématiquement les entrées - sorties (fr. ∗They tracked for a week especially
in the nord quarters one of the two fugitives systematically blocking entries
and exits). For instance, for K = 3, the dependency circ is repeatable or not
depending on how are counted its occurrences: all together or separately on the
left and on the right of the direct complement évadés.

Fig. 1. Repeatable dependencies

In [2] is considered the simplest interpretation of repeatable dependencies
as consecutively repeatable. This reading cannot be linguistically founded
(even if the consecutively repeatable dependencies are the most frequent). In this
paper two other readings of the repeatability are considered. One reading is max-
imally liberal and says that a subordinate through a repeatable dependency may
be found anywhere on the left (or on the right) of the governor. We call such iter-
ation dispersed. The other reading is closer to the consecutive one, but extends
it with the disjunctive choice of repeatable dependencies which may occur in the
same argument position. Respectively, we consider two extensions of the CDG:
one with the dispersed iteration types (called dispersed iteration CDG) and
the other with the choice iteration types (called choice iteration CDG). For
both we consider the corresponding notion of K-star revealing: the dispersed
K-star revealing and the choice K-star revealing. We show that both
classes are incrementally learnable in the limit from dependency structures.

The plan of this paper is as follows. Section 2 introduces the background no-
tions: Categorial Dependency Grammars, dispersed and choice iterations.
Section 3, presents the notion of incremental learning in the limit. In Section 4,
the condition of K-star revealing is adapted to dispersed iteration CDG and
their incremental learnability from dependency structures is proved. Section 5
presents a similar result for choice iteration CDG.

On Dispersed and Choice Iteration 83

2 Categorial Dependency Grammars with Extended
Iteration Types

2.1 Categorial Dependency Grammars

Categorial Dependency Grammars (CDG) define projective dependency struc-
tures assigning to every word a set of first order types in which the argument
subtypes determine the outgoing dependencies of the word and the head sub-
type determines its incoming dependency. They also define discontinuous depen-
dencies through the so called potentials of the types, i.e. strings of polarized
valencies. Every positive valency in the potential of a word’s type determines
the name and the direction of an outgoing dependency of the word, and every
negative valency determines the name and the direction of the word’s incoming
dependency. The correspondence between the dual valencies (i.e. those having
the same name and direction and the opposite signs) is established using general
valency pairing principles such as FA: Two dual valencies which are first avail-
able in the indicated direction may be paired. In this way, the CDG define the
dependency structures in the most direct and natural way and without any re-
strictions to the word order. Definitions, motivation, illustrations and properties
of various classes of CDG may be found in [7,8,5,6].

Definition 1. Let C be a set of dependency names and V be a set of valency
names. The expressions of the form ↙v, ↖v, ↘v, ↗v, where v ∈ V, are called
polarized valencies. ↖v and ↗v are positive, ↙v and ↘v are negative;
↖ v and ↙ v are left, ↗ v and ↘ v are right. Two polarized valencies with
the same valency name and orientation, but with the opposite signs are dual.

An expression of one of the forms #(↙v), #(↘v), v ∈ V, is called anchor
type or just anchor. An expression of the form d∗ where d ∈ C, is called
iterated dependency type. Anchor and iterated dependency types and depen-
dency names are primitive types.

An expression of the form t = [lm\ . . . \l1\H/ . . . /r1 . . . /rn] in which m, n ≥
0, l1, . . . , lm, r1, . . . , rn are primitive types and H is either a dependency name or
an anchor type, is called basic dependency type. l1, . . . , lm and r1, . . . , rn are
respectively left and right argument subtypes of t. H is called head subtype
of t (or head type for short).

A (possibly empty) string P of polarized valencies is called potential.
A dependency type is an expression BP where B is a basic dependency type

and P is a potential. CAT(C,V) denotes the set of all dependency types over
C and V.

CDG are defined using the following calculus of dependency types 1 (with C ∈ C,
H ∈ C or an anchor, V ∈ V, a basic type α and a residue of a basic type β):

Ll. HP1 [H\β]P2 � [β]P1P2

Il. CP1 [C∗\β]P2 � [C∗\β]P1P2

Ωl. [C∗\β]P � [β]P

1 We show left-oriented rules. The right-oriented are symmetrical.

84 D. Béchet, A. Dikovskym, and A. Foret

Dl. αP1(↙V)P (↖V)P2 � αP1PP2 , if the potential (↙V)P (↖V) satisfies the
following pairing rule FA (first available):

FA : P has no occurrences of ↙V,↖V.

Ll is the classical elimination rule. Eliminating the argument subtype H = #(α)
it constructs the (projective) dependency H and concatenates the potentials.
H = #(α) creates the anchor dependency. Il derives k > 0 instances of C. Ωl

serves for the case k = 0. Dl creates discontinuous dependencies. It pairs
and eliminates dual valencies with name V satisfying the rule FA to create the
discontinuous dependency V.

To compute the DS from proofs, these rules should be relativized with respect
to the word positions in the sentence. To this end, when a type Bv1...vk is assigned
to the word in a position i, it is encoded using the state (B, i)(v1,i)...(vk,i). The
corresponding relativized state calculus is shown in [2]. In this calculus, for every
proof ρ represented as a sequence of rule applications, one may define the DS
constructed in this proof for a sentence x and written DSx(ρ).

Definition 2. A categorial dependency grammar (CDG) is a system G =
(W,C, V, S, λ), where W is a finite set of words, C is a finite set of depen-
dency names containing the selected name S (an axiom), V is a finite set of
valency names, and λ, called lexicon, is a finite substitution on W such that
λ(a) ⊂ CAT(C,V) for each word a ∈ W.

For a DS D and a sentence x, let G(D, x) denote the relation:
“D = DSx(ρ), where ρ is a proof of Γ � S for some Γ ∈ λ(x)”.

Then the language generated by G is the set L(G)=df {w || ∃D G(D, w)} and the
DS-language generated by G is the set Δ(G)=df {D || ∃w G(D, w)}. G1 ≡s G2

iff Δ(G1) = Δ(G2).

CDG are more expressive than CF-grammars (see [5,6]) and analyzed in poly-
nomial time. In fact, they are equivalent to real time pushdown automata with
independent counters [12]. Importantly, they express discontinuous DS in a direct
and natural way. For instance, the DS in Fig. 2 is generated using the following
type assignment:

elle �→ [pred], la �→ [#(↙clit−a−obj)]↙clit−a−obj,
lui �→ [#(↙clit−3d−obj)]↙clit−3d−obj, donnée �→ [aux−a−d]↖clit−3d−obj↖clit−a−obj,
a �→ [#(↙clit−3d−obj)\#(↙clit−a−obj)\pred\S/aux−a−d]

(fr. ∗she itg=fem to him has given)

Fig. 2. Non-projective dependency structure

On Dispersed and Choice Iteration 85

[pred]

[#(↙clit−a−obj)]↙clit−a−obj

[#(↙clit−3d−obj)]↙clit−3d−obj [#(↙clit−3d−obj)\#(↙clit−a−obj)\pred\S/aux−a−d]
(Ll)

[#(↙clit−a−obj)\pred\S/aux−a−d]↙clit−3d−obj

(Ll)
[pred\S/aux−a−d]↙clit−a−obj↙clit−3d−obj

(Ll)
[S/aux−a−d]↙clit−a−obj↙clit−3d−obj [aux−a−d]↖clit−3d−obj↖clit−a−obj

(Lr)
[S]↙clit−a−obj↙clit−3d−obj↖clit−3d−obj↖clit−a−obj

(Dl × 2)
S

Fig. 3. Dependency structure correctness proof

(fr. ∗now all the evenings when he took her home he had to enter [M.Proust])

Fig. 4. Iterated circumstantial dependency

(see the proof in Fig. 3). The iterated types also allow one to naturally express re-
peatable dependencies satisfying the Principle of repeatable dependencies. E.g.,
the repeatable circumstantial dependency circ in Fig. 4 may be determined by
the type [pred\circ∗\S/a−obj] assigned to the verb fallait (had to). One can
see that such repeatable dependencies are of the kind we call “consecutive” in
the Introduction. Iteration-less CDG cannot define such DS. Indeed, the assign-

ments a �→ [α\d] and b �→ [d\β] derive for ab the dependency a
d←− b. Therefore,

the assignments v �→ [c1\S], c �→ [c1\c1], [c1] will derive for ccccv the sequenced

(not iterated) dependencies as in the DS

2.2 Dispersed and Choice Iterations

We will consider two different models of repeatable dependencies. One of them,
called dispersed iteration, represents the case where the subordinates through
a repeatable dependency may occur in any position on the left (respectively, on
the right) of the governor. The other one, called choice iteration, will repre-
sent the case where the subordinates through one of several repeatable dependen-
cies may occur in one and the same argument position. To define these models,
we extend the primitive types with two new primitives: dispersed iteration

86 D. Béchet, A. Dikovskym, and A. Foret

{d∗1, . . . , d∗k} and choice iteration (d1| . . . |dk)∗, where d1, . . . , dk are depen-
dency names.2 Respectively we obtain two kinds of extended types.

Definition 3. 1. We call dispersed iteration types the expressions BP in
which P is a potential, B = [α1\Lm\ . . . \L1\H/ . . . /R1 . . . /Rn/α2], Lm, . . . L1,
H, R1 . . ., Rn are not iterated primitive types and α1, α2 are dispersed iterations
(possibly empty, i.e. k = 0).3

2. We call choice iteration types the expressions BP where P is a potential,
B = [Lm\ . . . \L1\H/ . . . /R1 . . . /Rn], H is a not iterated primitive type and
Lm, . . . L1, R1 . . ., Rn are choice iterations or not iterated primitive types.
3. Grammars using only dispersed iteration types are called dispersed iteration
CDG, those using only choice iteration types are called choice iteration CDG.

Here are the respective extensions of the CDG calculus:

1. Choice iteration rules:
ICl. CP1 [(α1|C|α2)∗\β]P2 � [(α1|C|α2)∗\β]P1P2 .
ΩCl. [(α1|C|α2)∗\β]P � [β]P

LCl and DCl as Ll and Dl in the CDG calculus.
2. Dispersed iteration rules:

LDl. HP1 [{α}\H\β/{γ}]P2 � [{α}\β/{γ}]P1P2

IDl. CP1 [{α1, C
∗, α2}\β/{γ}]P2 � [{α1, C

∗, α2}\β/{γ}]P1P2

ΩDl. [{α1, C
∗, α2}\β/{γ}]P � [{α1, α2}\β/{γ}]P

DDl as Dl in the CDG calculus.
The order of elements in dispersed and choice iterations is irrelevant.

It is not difficult to simulate the dispersed iteration CDG through choice
iteration CDG. Both are analyzed in polynomial time. As it concerns their weak
generative power, both are conservative extensions of the CDG.

3 Incremental Learning

Learning. With every grammar G ∈ C is related an observation set Φ(G) of
G. This may be the generated language L(G) or an image of the constituent
or dependency structures generated by G. Below we call training sequence
for G an enumeration of Φ(G). An algorithm A is an inference algorithm
for C if, for every grammar G ∈ C, A applies to its training sequences σ of
Φ(G) and, for every initial subsequence σ[i] = {s1, . . . , si} of σ, it returns a
hypothetical grammar A(σ[i]) ∈ C. A learns a target grammar G ∈ C if on
any training sequence σ for G A stabilizes on a grammar A(σ[T]) ≡ G.4 The
grammar lim

i→∞
A(σ[i]) = A(σ[T]) returned at the stabilization step is the limit

grammar. A learns C if it learns every grammar in C. C is learnable if there is
an inference algorithm learning C.

2 Both are used in the flat type expressions of the compacted CDG in [9] designed for
large scale wide scope grammars.

3 We suppose that [{}\β] = [β].
4 A stabilizes on σ on step T means that T is the minimal number t for which

there is no t1 > t such that A(σ[t1])
= A(σ[t]).

On Dispersed and Choice Iteration 87

Incremental Learning. Selecting a partial order ,C on the grammars of a class
C compatible with the inclusion of observation sets (G ,C G′ ⇒ Φ(G) ⊆ Φ(G′)),
we can define the following notion of incremental learning algorithm on C.

Definition 4. Let A be an inference algorithm for C and σ be a training se-
quence for a grammar G.
1. A is monotonic on σ if A(σ[i]) ,C A(σ[j]) for all i ≤ j.
2. A is faithful on σ if Φ(A(σ[i])) ⊆ Φ(G) for all i.
3. A is expansive (or consistent) on σ if σ[i] ⊆ Φ(A(σ[i])) for all i.

For G1, G2 ∈ C, G1 ≡s G2 iff Φ(G1) = Φ(G2).

Theorem 1. Let σ be a training sequence for a grammar G. If an inference
algorithm A is monotonic, faithful, and expansive on σ, and if A stabilizes on σ
then lim

i→∞
A(σ[i]) ≡s G.

Proof. Indeed, stabilization implies that lim
i→∞

A(σ[i]) = A(σ[T]) for some T.

Then Φ(A(σ[T])) ⊆ Φ(G) because of faithfulness. At the same time, by expan-

siveness and monotonicity, Φ(G) = σ =
∞⋃

i=1

σ[i] ⊆
∞⋃

i=1

Φ(A(σ[i])) ⊆
T⋃

i=1

Φ(A(σ[i]))

⊆ Φ(A(σ[T])).

4 Incremental Learning of Dispersed Iteration

In paper [2], we present an incremental learning algorithm for K-star revealing
CDG which do not distinguish between the dependencies consecutively repeated
at least K times and those consecutively repeated any number of times.

Below we change the definition of K-star revealing in order to adapt it to
the dispersed iteration. We use Δ(G) as the observation set Φ(G). So the limit
grammar will be strongly equivalent to the target grammar G. The notion of
incrementality we use is based on a partial “flexibility” order ,disp on dispersed
iteration CDG. Basically, this PO corresponds to grammar expansion in the sense
that G1 ,disp G2 means that G2 defines no less dependency structures than G1

and at least as precise dependency structures as G1. It is the reflexive-transitive
closure of the following preorder <disp .

Definition 5. 1. All occurrences of a dependency name d on the left can be
replaced by a single left dispersed iteration of d:
[{fl∗1, . . . , f l∗p}\lm\ · · · \d\li\ · · · \d\ · · · \l1\g/r1 · · · /rn/{fr∗1 , . . . , fr∗q}]P
<disp [{fl∗1, . . . , f l∗p, d

∗}\lm\ · · · \l1\g/r1 · · · /rn/{fr∗1 , . . . , fr∗q}]P .
2. Symmetrically, all occurrences of a dependency name d on the right can be

replaced by a single right dispersed iteration of d.
3. τ <disp τ ′ for sets of types τ, τ ′, if either:

(i) τ ′ = τ ∪ {t} for a type t /∈ τ or
(ii) τ = τ0 ∪ {t′} and τ ′ = τ0 ∪ {t′′}
for a set of types τ0 and some types t′, t′′ such that t′ <disp t′′.

88 D. Béchet, A. Dikovskym, and A. Foret

4. λ <disp λ′ for two type assignments λ and λ′, if λ(w′) <disp λ′(w′) for a
word w′ and λ(w) = λ′(w) for all words w = w′.

5. ,disp is the PO which is the reflexive-transitive closure of the preorder <disp .

It is not difficult to prove that the expressive power of CDG monotonically grows
with respect to this PO.

Proposition 1. Let G1 and G2 be two CDG such that G1 ,disp G2. Then
Δ(G1) ⊆ Δ(G2) and L(G1) ⊆ L(G2).

Below we adapt to the dispersed iteration the basic definitions from [2].

Definition 6
Vicinity: Let D be a DS in which an occurrence of a word w has :
the incoming local dependency h (or the axiom S), the left projective dependen-
cies or anchors lk, . . . , l1 (in this order), the right projective dependencies or
anchors r1, . . . , rm (in this order), and discontinuous dependencies p1(d1), . . . ,
pn(dn), where p1, . . . , pn are polarities and d1, . . . , dn ∈ V are valency names.
Then the vicinity of w in D is the type

V (w, D) = [l1\ . . . \lk\h/rm/ . . . /r1]P ,
in which P is a permutation of p1(d1), . . . , pn(dn) in a standard lexicographical
order, for instance, compatible with the polarity order ↖ < ↘ < ↙ < ↗.

Multiple occurrences of a dependency name d in a vicinity V (w, D) correspond
to a dispersed iteration {f∗

1 , . . . , f∗
p , d∗} in the type assigned to w in a proof

of D. For instance, in the DS in Fig. 4 the vicinity of the participle ramenée
is [aux−a/l−obj]↖clit−a−obj. In this DS, [pred\circ\circ\circ\S/a−obj] is the
vicinity of the verb fallait. This vicinity may be provided by the type assignment
fallait �→ [{circ∗}\pred\S/a−obj].

Definition 7. Let K > 1 be an integer. We define aCDG CK
disp(G), the dispersed

K-star-generalization of G, by recursively adding for every word w and every
dependency name d the types

[{fl∗1, . . . , f l∗p, d
∗}\lm\ · · · \l1\h/r1/ · · · /rn/{fr∗1 , . . . , fr∗q}]P

and
[{fl∗1, . . . , f l∗p}\lm\ · · · \l1\h/r1/ · · · /rn/{fr∗1 , . . . , fr∗q}]P

when w has a type assignment w �→ t, where
t = [{fl∗1, . . . , f l∗p}\lm\ · · · d\li\ · · ·d\ · · · \l1\h/r1/ · · · /rn/{fr∗1 , . . . , fr∗q}]P ,

and t has at least K occurrences of d as left arguments. Symmetrically, we
also add the corresponding types if the K occurrences of d appear in the right
part of t.

For instance, with K = 2, for the type [{x∗}\a\b\a\S/a], will be added the type
[{a∗, x∗}\b\S/a]. The size of CK

disp(G) can be exponential with respect to the
size of G.

Definition 8. Let K > 1 be an integer. CDG G is dispersed K-star reveal-
ing if CK

disp(G) ≡s G

On Dispersed and Choice Iteration 89

Algorithm TGE
(K)
disp (type-generalize-expand):

Input: σ[i] (σ being a training sequence).

Output: CDG TGE
(K)
disp(σ[i]).

let GH = (WH ,CH ,VH , S, λH) where
WH := ∅; CH := {S}; λH := ∅; k := 0
(loop) for i ≥ 0 //Infinite loop on σ

let σ[i + 1] = σ[i] · D;
let (x,E) = D;
(loop) for every w ∈ x

WH := WH ∪ {w};
let V (w, D) = [lm\ · · · \l1\h/r1/ · · · /rn]P

let LT := {l1} ∪ · · · ∪ {lm}
let LF := {d : d ∈ LT, card({i : 1 ≤ i ≤ m, li = d}) ≥ K}
let RT := {r1} ∪ · · · ∪ {rn}
let RF := {d : d ∈ RT, card({i : 1 ≤ i ≤ n, ri = d}) ≥ K}
let tw := [{lf∗

1 , . . . , lf∗
p }\l′m′\ · · · \l′1\h/r′1/ · · · /r′n′/{rf∗

1 , . . . , rf∗
q }]P

where {lf1, . . . , lfp} = LF , {rf1, . . . , rfq} = RF ,
where l′m′ , . . . , l′1 is the sublist of lm, . . . , l1 without elements in LF
where r′1, . . . , r

′
n′ is the sublist of r1, . . . , rn without elements in RF .

λH(w) := λH(w) ∪ {tw}; // expansion

end end

Fig. 5. Inference algorithm TGE
(K)
disp

For instance, if G(t) is the CDG A �→ [a], B �→ [b], C �→ t, where t is a type, then
we can prove that:

– G([{a∗}\b\S/a/b]), G([a\b\S]) and G([a\b\S/{a, b}]) are all the three dis-
persed 2-star revealing,

– neither of G([a\a\S]), G([a\b\a\S]), G([a\S/b/b]) is dispersed 2-star
revealing.

By Definition 7, we may suppose that no subtype may have K left or K right
occurrences in a type of a dispersed K-star revealing grammar.

Theorem 2. The class CDGK→∗
disp of dispersed K-star revealing CDG is (incre-

mentally) learnable from DS.

A proof of this theorem is shown in the Appendix. Algorithm TGE(K)
disp learning

the dispersed K-star revealing CDG is shown in Fig. 5.

Remark 1. This algorithm transforms every observed words’ vicinity v in DS be-
longing to σ[i] into the least type t such that v ,disp t. The grammarTGE(K)

disp(σ[i])
is computed in linear time with respect to |σ[i]|. This algorithm may be easily
transformed into a square time algorithm computing in the limit the minimal
length grammar among all dispersed K-star revealing grammars strongly equiv-
alent to the target grammar.

90 D. Béchet, A. Dikovskym, and A. Foret

5 Incremental Learning of Choice Iteration

In this section, we show an algorithm incrementally learning choice iteration
CDG. For the rest of this section, every iterated type d∗ is considered as the
choice of a unique iterated type (written (d)∗). Above this, the lists of types
in choice iterations will be considered as sets of types. Thus (a|b)∗ = (b|a)∗ =
(a|b|a)∗. The incremental algorithm of [2] may diverge when applied to a choice
iteration. For instance, for the CDG A �→ [a], B �→ [b], C �→ [S/(a|b)∗], this
algorithm will compute for C all the iteration-less types corresponding to all
possible alternations of a and b: [S], [S/a], [S/b] [S/a/b], [S/b/a], [S/a/b/a],
[S/b/a/b], etc. It will also compute all possible alternations of a∗ and b∗: [S],
[S/a∗], [S/b∗] [S/a∗/b∗], [S/b∗/a∗], [S/a∗/b∗/a∗], [S/b∗/a∗/b∗], etc. Thus, the
algorithm will diverge. By the way, the algorithm TGE(K)

disp of the preceding
section will converge on this CDG and compute a grammar strongly equivalent to
the following one: A �→ [a], B �→ [b], C �→ [S/{a∗, b∗}] (equivalent to the original
CDG). Unfortunately, TGE(K)

disp will not converge for all choice iteration CDG.
So we will look for generalizations specific for the choice iteration. In particular,
one should not distinguish between several consecutive choice iterations and their
union. For instance, x∗ followed by (y|z)∗ should be “equivalent” to (x|y|z)∗.
When applied to the vicinity [S/a/c/b/b/a], in the case of K = 2, the learning
algorithm should generalize it to [S/a∗/c/b∗/a∗] and then the segment /b∗/a∗

should be replaced by a single choice iteration giving the type [S/a∗/c/(a|b)∗].
Incremental learning of choice iteration is based on a PO ,ch on CDG, which

is the reflexive-transitive closure of the following preorder <ch.

Definition 9

1. All occurrences of a dependency name d on the left (or on the right) can be
replaced by a single iteration of d∗:
[lm\ · · · \d\ · · · l1\g/r1 · · · /rn]P <ch [lm\ · · · \d∗\ · · · l1\g/r1 · · · /rn]P

(similar on the right).
2. Two consecutive choice iterations can be merged:

[lm\ · · · \(a1| · · · |ap)∗\(b1| · · · |bq)∗\ · · · l1\g/r1 · · · /rn]P

<ch [lm\ · · · \(a1| · · · |ap|b1| · · · |bq)∗\ · · · l1\g/r1 · · · /rn]P

(similar on the right).
3. Same as 3–5 in Definition 5.

Again, it is not difficult to prove that the expressive power of choice iteration
CDG monotonically grows with respect to ,ch.

Definition 10. Let K > 1 be an integer. We define a CDG CK
ch(G), the choice

K-star-generalization of G, by recursively adding for every word w and
every dependency name d:

1. the type [lm\ · · · \d∗\ · · · \d∗\ · · · \l1\h/r1/ · · · /rn]P (every occurrence of d
on the left is replaced by d∗) when w has a type assignment w �→ t, where
t = [lm\ · · · \d\ · · · \d\ · · · \l1\h/r1/ · · · /rn]P , and d appears at least K times
in lm, . . . , d, . . . , l1 or d appears at least one time in a choice iteration of
lm, . . . , l1,

On Dispersed and Choice Iteration 91

2. the type [lm\ · · · \(x1| · · · |xp|y1| · · · |yq)∗\ · · · \l1\h/r1/ · · · /rn]P when w has
a type assignment w �→ t, where

t = [lm\ · · · \(x1| · · · |xp)∗\(y1| · · · |yq)∗\ · · · \l1\h/r1/ · · · /rn]P ,
3. the type [lm\ · · · \l1\h/r1/ · · · /rn]P when w has a type assignment w �→ t,

where t = [lm\ · · · \d∗\ · · · \l1\h/r1/ · · · /rn]P ,
4. the type [lm\ · · · \(x1| · · · |xp)∗\ · · · \l1\h/r1/ · · · /rn]P when w w �→ t, where

t = [lm\ · · · \(d|x1| · · · |xp)∗\ · · · \l1\h/r1/ · · · /rn]P and p > 0.

Symmetrically, are also added the corresponding types for the right part of t.

For instance, when K = 2, for the type [b\a\b\a\S/a], will be added the type
[b∗\a∗\b∗\a∗\S/a].Thenwill also be added [(a|b)∗\b∗\a∗\S/a], [b∗\(a|b)∗\a∗\S/a],
. . . , [(a|b)∗\S/a]. Finally, the single iterations a∗ or b∗ will be erased or (a|b)∗
will be transformed into a∗ or b∗. The size of CK

ch(G) can be exponential with
respect to the size of G.

Definition 11. Let K > 1 be an integer. CDG G is choice K-star revealing
if CK

ch(G) ≡s G

Remark 2. The generalization induced by points (3) and (4) does not introduce
new DS even when G is not choice K-star revealing. These points serve only
to simplify the proof of learnability.

For instance, if G(t) is the CDG with the assignments: A �→ [a], B �→ [b], C �→ t,
where t is a type, then we can prove that:

– G([a∗\b\S/a/b]) and G([a∗\b\a∗\S]) are both choice 2-star revealing,
– G([a\a\S]), G([a\b\a\S]) and G([a∗\b∗\S]) are not choice 2-star revealing.

Now, without loss of generality we may suppose that in every type of a choice
K-star revealing grammar, a subtype d is used at most K − 1 times on the left
and K − 1 on the right. Besides this, there shouldn’t be two consecutive choice
iterations.

Theorem 3. The class CDGK→∗
ch of choice K-star revealing CDG is (incremen-

tally) learnable from DS.

A proof of this theorem is shown in the Appendix.

Remark 3. In fact, a similar proof shows that the CDG in CDGK→∗
disp and CDGK→∗

ch

with potentials of a uniformly bounded length are learnable from strings in the
sense of Gold for every K. Meanwhile, Theorems 2 and 3 are stronger because
they provide incremental learning algorithms.

Algorithm TGE(K)
ch learning the choice K-star revealing CDG is shown in Fig. 6.

Remark 4. This algorithm transforms every observed words’ vicinity v in DS be-
longing to σ[i] into the least type t such that v ,ch t. The grammar TGE(K)

ch (σ[i])
is computed in linear time with respect to |σ[i]|. This algorithm too may be trans-
formed into a square time algorithm computing in the limit the minimal length
grammar among all choice K-star revealing grammars strongly equivalent to the
target grammar.

92 D. Béchet, A. Dikovskym, and A. Foret

Algorithm TGE
(K)
ch (type-generalize-expand):

Input: σ[i] (σ being a training sequence).

Output: CDG TGE
(K)
ch (σ[i]).

let GH = (WH ,CH ,VH , S, λH) where
WH := ∅; CH := {S}; λH := ∅; k := 0
(loop) for i ≥ 0 //Infinite loop on σ

let σ[i + 1] = σ[i] · D;
let (x, E) = D;
(loop) for every w ∈ x

WH := WH ∪ {w};
let V (w, D) = [lm\ · · · \l1\h/r1/ · · · /rn]P

let LT := {l1} ∪ · · · ∪ {lm}
let LI := {d : d ∈ LT, card({i : 1 ≤ i ≤ m, li = d}) ≥ K}
let RT := {r1} ∪ · · · ∪ {rn}
let RI := {d : d ∈ RT, card({i : 1 ≤ i ≤ n, ri = d}) ≥ K}
for 1 ≤ i ≤ m, let l′i = li if li
∈ LI else l′i = l∗i
for 1 ≤ i ≤ n, let r′i = ri if ri
∈ RI else r′i = r∗i
let t′w := [l′m\ · · · \l′1\h/r′1/ · · · /r′n]P // (end of) step I

(loop) while ∃i such that l′i = (x1| · · · |xp)
∗ and l′i+1 = (y1| · · · |yq)

∗

l′i := (x1| · · · |xp|y1| · · · |yq)
∗ and remove l′i+1

(loop) while ∃i such that r′i = (x1| · · · |xp)
∗ and r′i+1 = (y1| · · · |yq)

∗

r′i := (x1| · · · |xp|y1| · · · |yq)
∗ and remove r′i+1

let tw = [l′m′\ · · · \l′1\h/r′1/ · · · /r′n′] // (end of) step II

λH(w) := λH(w) ∪ {tw}; // expansion

end end

Fig. 6. Inference algorithm TGE
(K)
ch

6 Conclusion

In this paper, we propose two different ways of defining repeatable dependencies
through iteration: the dispersed iteration and the choice iteration. Both conform
to the linguistic Principle of repeatable dependencies. We adapt the K-star-
revealing condition in [2] to these new models and show that in both cases the
CDG satisfying the K-star-revealing are incrementally learnable in the limit from
dependency structures. This kind of grammatical inference directly corresponds
to the problem of deterministic extraction of a dependency grammar from a
dependency treebank.

In this paper, the dispersed and the choice iterations are considered separately.
Considered together, they should be related as follows:

[l1\ · · · \lm\(d1| · · · |dk)∗\l(m+1)\ · · · \ln\β]P , [{d∗1, . . . , d∗k}\l1\ · · · \lm\l(m+1)\ · · · \ln\β]P .

Both constructions are necessary in application CDG. For instance, in English,
the type [(modif |attr)∗\det\obj/claus] is admissible for nouns in the syntactic
role of a complement, whereas the type [{modif∗, attr∗}\det\obj/claus] is not:
it allows modifiers and attributes to precede the noun’s determinant. At the
same time, the type [pred\circ∗\S/iobj/dobj/{circ∗}] is admissible for main di-
transitive verbs. It allows circumstantials of a verb to occur in any position with
respect to its direct and indirect complements. The next step should be to study
the learnability of CDG using both primitives.

On Dispersed and Choice Iteration 93

References

1. Angluin, D.: Inductive inference of formal languages from positive data. Informa-
tion and Control 45, 117–135 (1980)

2. Béchet, D., Dikovsky, A., Foret, A.: Two models of learning iterated dependencies.
In: Proc. of the 15th Conference on Formal Grammar (FG 2010), Copenhagen,
Denmark. LNCS (2010) (to appear),
http://www.angl.hu-berlin.de/FG10/fg10_list_of_papers

3. Béchet, D., Dikovsky, A., Foret, A., Moreau, E.: On learning discontinuous depen-
dencies from positive data. In: Proc. of the 9th Intern. Conf. Formal Grammar (FG
2004), Nancy, France, pp. 1–16 (2004)

4. Buszkowski, W., Penn, G.: Categorial grammars determined from linguistic data
by unification. Studia Logica 49, 431–454 (1990)

5. Dekhtyar, M., Dikovsky, A.: Generalized categorial dependency grammars. In:
Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science.
LNCS, vol. 4800, pp. 230–255. Springer, Heidelberg (2008)

6. Dekhtyar, M., Dikovsky, A., Karlov, B.: Iterated dependencies and kleene iteration.
In: Proc. of the 15th Conference on Formal Grammar (FG 2010), Copenhagen,
Denmark. LNCS (2010) (to appear),
http://www.angl.hu-berlin.de/FG10/fg10_list_of_papers

7. Dikovsky, A.: Dependencies as categories. In: Recent Advances in Dependency
Grammars, COLING 2004, pp. 90–97 (2004)

8. Dikovsky, A.: Multimodal categorial dependency grammars. In: Proc. of the 12th
Conference on Formal Grammar, Dublin, Ireland, pp. 1–12 (2007)

9. Dikovsky, A.: Towards wide coverage categorial dependency grammars. In: Proc.
of the ESSLLI 2009 Workshop on Parsing with Categorial Grammars. Book of
Abstracts, Bordeaux, France (2009)

10. Gold, E.M.: Language identification in the limit. Information and Control 10, 447–
474 (1967)

11. Kanazawa, M.: Learnable classes of categorial grammars. Studies in Logic, Lan-
guage and Information, FoLLI & CSLI (1998)

12. Karlov, B.N.: Normal forms and automata for categorial dependency grammars.
Vestnik Tverskogo Gosudarstvennogo Universiteta (Annals of Tver State Univer-
sity). Series: Applied Mathematics 35 (95), 23–43 (2008) (in russ.)

13. Mel’čuk, I.: Dependency Syntax. SUNY Press, Albany, NY (1988)
14. Shinohara, T.: Inductive inference of monotonic formal systems from positive data.

New Generation Computing 8(4), 371–384 (1991)

A Appendix

Proof of Theorem 2

Lemma 1. Let σ be a training sequence for a dispersed K-star revealing CDG G.
Then for all i : TGE

(K)
disp(σ[i]) �disp CK

disp(G).

Proof. As G is dispersed K-star revealing, G and CK
disp(G) are strongly equivalent. For

each DS D in Δ(G) there is a type assignment in CK
disp(G) to the words appearing

in D, which “conforms to” D. More precisely, for a DS D, a word w and vicinity
V (w, D) = [lm\ · · · \l1\h/r1/ · · · /rn]P , we choose the smallest type tw,disp among the

http://www.angl.hu-berlin.de/FG10/fg10_list_of_papers
http://www.angl.hu-berlin.de/FG10/fg10_list_of_papers

94 D. Béchet, A. Dikovskym, and A. Foret

types assigned to w in CK
disp(G), which yield the same DS D in Δ(CK

disp(G)). tw,disp

may be represented as:

[{lf∗
1 , . . . , lf∗

p }\l′m′\ · · · \l′1\h/r′1/ · · · /r′n′/{rf∗
1 , . . . , rf∗

q }]P
′

where P ′ is a permutation of P .
Let tw denote the type computed by the algorithm for w in D.
We show that for this type tw �disp tw,disp (modulo a potentials permutation).
- For each left dispersed iteration d∗ in tw, d occurs at least K times as a left argument
in V (w, D). Since tw,disp is minimal for D, d∗ must be a member of left dispersed
iterations.
- Every dependency name d′ occurs less than K times as a left argument of tw, and
less than K times as a left argument in V (w, D). In tw,disp, either d′ appears the same
number of times as a left argument in the same relative positions, or d′∗ is a member
of left dispersed iterations.
This proves that tw �disp tw,disp.

Lemma 2. The inference algorithm TGE
(K)
disp is monotonic, faithful and expansive on

every training sequence σ of a dispersed K-star revealing CDG.

Proof. By definition, the algorithm TGE
(K)
disp is monotonic (the lexicon is always ex-

tended). It is expansive because for σ[i], we add types to the grammar that are

based on the vicinities of the words of σ[i]. Thus, σ[i] ⊆ Δ(TGE
(K)
disp(σ[i])). To prove

that TGE
(K)
disp is faithful for σ[i] of Δ(G) = Δ(CK(G)), we have to remark that

TGE
(K)
disp(σ[i]) �disp CK

disp(G), using lemma 1.

Lemma 3. The inference algorithm TGE
(K)
disp stabilizes on every training sequence σ

of a dispersed K-star revealing CDG.

Proof. G and CK
disp(G) have a finite number of types and of dependency names.

TGE
(K)
disp(σ[i]) involves a subset of these names, and the same dependency name may

be used as argument at most K−1 times on the left, and K−1 times on the right; there
is a finite number of sets of dispersed types; therefore the algorithm must stabilize.

Proof of Theorem 3

Lemma 4. Let σ be a training sequence for a choice K-star revealing CDG G. Then
for all i : TGE

(K)
ch (σ[i]) �ch CK

ch(G).

Proof. As G is choice K-star revealing, G and CK
ch(G) are strongly equivalent. For each

DS D in Δ(G) there is a type assignment in CK
ch(G) to the words appearing in D, which

“conforms to” D.
More precisely, for a DS D, a word w and its vicinity

V (w, D) = [lm\ · · · \l1\h/r1/ · · · /rn]P ,
we choose the smallest type tw,ch among the types assigned to w in CK

ch(G), which yield
the same DS D in Δ(CK

ch(G)) and to which the rules (1) and (2) in Definition 10 are
not applied. tw,disp may be represented as:

[l′m′\ · · · \l′1\h/r′1/ · · · /r′n′]P
′

where P ′ is a permutation of P .
Let t′w and tw denote the types computed by the algorithm for w in D at the end

of step I and, respectively, of step II.

On Dispersed and Choice Iteration 95

We show that t′w �ch tw,ch and tw �ch tw,ch.
- For each left iteration d∗ in t′w, d occurs at least K times as a left argument in
V (w, D). Since tw,ch is non-extensible by the rules (1) and (2), there is a minimal
length choice iteration in it containing d. If d∗ in t′w corresponds in tw to a choice
iteration C = (d|...)∗, then C corresponds to the largest sublist of iterations in t′w
including this d∗. Therefore, it must appear in tw,ch in a choice iteration larger or
equal to C.
- Every dependency name d which is a left argument subtype in t′w or in tw, occurs
less than K times as a left argument in t′w and tw and less than K times as a left
dependency in V (w, D). Therefore, d appears in tw,ch the same number of times as a
left argument subtype or in a minimal length choice iterations including d in the same
relative positions.
Thus tw �ch tw,ch.

Lemma 5. The inference algorithm TGE
(K)
ch is monotonic, faithful and expansive on

every training sequence σ of a choice K-star revealing CDG.

Proof. By definition, the algorithm TGE
(K)
ch is monotonic (the lexicon is always ex-

tended). It is expansive because for σ[i], the types added to the grammar are calcu-
lated from and are compatible with the vicinities of the words of σ[i]. Thus, σ[i] ⊆
Δ(TGE

(K)
ch (σ[i])). To prove that TGE

(K)
ch is faithful for σ[i] of Δ(G) = Δ(CK

ch(G)),

it suffices to remark that by lemma 4, TGE
(K)
ch (σ[i]) �ch CK

ch(G).

Lemma 6. The inference algorithm TGE
(K)
ch stabilizes on every training sequence σ

of a choice K-star revealing CDG.

Proof. There is a finite set Σch of types and of dependency names in CK
ch(G). The

grammar TGE
(K)
ch (σ[i]) uses a subset of this set. Let t denote a type assigned by the

lexicon of TGE
(K)
ch (σ[i]). The size of the multiset of non-repeatable dependency names

occurring in t is smaller than 2K × |Σch| since a dependency name may be used as an
argument subtype at most K − 1 times on the left, and at most K − 1 times on the
right. Any choice iteration has at most |Σch| elements so the number of choice iteration
is finite. No choice iteration may occur next to another choice iteration. Therefore the
number of types is finite and the algorithm must stabilize.

Closure Properties
of Minimalist Derivation Tree Languages

Thomas Graf

Department of Linguistics
University of California, Los Angeles

tgraf@ucla.edu
http://tgraf.bol.ucla.edu

Abstract. Recently, the question has been raised whether the deriva-
tion tree languages of Minimalist grammars (MGs; [14, 16]) are closed
under intersection with regular tree languages [4, 5]. Using a variation
of a proof technique devised by Thatcher [17], I show that even though
closure under intersection does not obtain, it holds for every MG and
regular tree language that their intersection is identical to the derivation
tree language of some MG modulo category labels. It immediately fol-
lows that the same closure property holds with respect to union, relative
complement, and certain kinds of linear transductions. Moreover, enrich-
ing MGs with the ability to put regular constraints on the shape of their
derivation trees does not increase the formalism’s weak generative capac-
ity. This makes it straightforward to implement numerous linguistically
motivated constraints on the Move operation.

Keywords: Minimalist Grammars, Derivation Tree Languages, Closure
Properties, Regular Tree Languages, Derivational Constraints.

Introduction

Minimalist grammars (MGs) were introduced in [14] as a formalism inspired by
Chomsky’s Minimalist Program [1]. Over the years, MGs have been enriched
with various tools from the syntactic literature (e.g. phases and persistent fea-
tures [15]), most of which do not increase the framework’s weak generative ca-
pacity. One recent extension was proposed in my own work ([4, 5]; I will refer
to these papers in the third person): the addition of reference-set constraints,
which introduce a notion of optimality to the system. Graf proposes to model
these constraints by linear tree transductions mapping the set of derivation trees
of an MG to its subset of optimal derivation trees. He concludes that while the
specific constraints he implements do not increase the weak generative capacity
of MGs, the result carries over to arbitrary reference-set constraints definable by
linear tree transductions only if the class of derivation tree languages is closed
under intersection with regular tree languages — an open problem.

In this paper, I show that even though Minimalist derivation tree languages
are not closed under intersection with regular tree languages, it holds for ev-
ery Minimalist derivation tree language and regular tree language that their

S. Pogodalla and J.-P. Prost (Eds.): LACL 2011, LNAI 6736, pp. 96–111, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://tgraf.bol.ucla.edu

Closure Properties of Minimalist Derivation Tree Languages 97

intersection is a projection of a Minimalist derivation tree language. I call this
property p-closure under intersection with regular tree languages. While this
p-closure result is already sufficient for Graf’s purposes, it turns out that Min-
imalist derivation tree languages enjoy several more p-closure properties that
make them appear very similar to regular tree languages. The p-closure prop-
erties of MGs also entail that their weak generative capacity is unaffected by
the addition of regular control, which proves useful in the implementation of
syntactic constraints such as islandhood, phases and Relativized Minimality.

The paper is laid out as follows: The preliminaries section covers, besides the
definition of MGs, mundane topics such as tree languages and tree automata
and the new yet crucial notion of p-closure. I then proceed to define Minimalist
derivation tree languages and establish some of their basic properties (Sec. 2).
This is followed up by a detailed investigation of their p-closure properties in
Sec. 3, the greatest part of which is devoted to showing p-closure under inter-
section with regular tree languages. In the last part of this paper, I define MGs
with regular control as a formalism with the same weak generative capacity as
standard MGs, and I sketch some potential linguistic applications.

1 Preliminaries and Notation

In this section, I briefly introduce tree languages, tree automata, Minimalist
grammars, and the notion of p-closure, which will be of great importance in this
paper. As usual, N denotes the set of non-negative integers. A tree domain is a
finite subset D of N∗ such that, for w ∈ N∗ and j ∈ N, wj ∈ D implies both
w ∈ D and wi ∈ D for all i < j. Every n ∈ D is called a node. Given nodes
m, n ∈ D, m immediately dominates n iff n = mi, i ∈ N. In this case we also say
m is the mother of n, or conversely, n is a daughter of m. The transitive closure
of the immediate dominance relation is called dominance. A node that does not
dominate any other nodes is a leaf, and the unique node that isn’t dominated
by any nodes is called the root.

Now let Σ be a ranked alphabet, i.e. every σ ∈ Σ has a unique non-negative
rank (arity); Σ(n) is the set of all n-ary symbols in Σ. A Σ-tree is a pair T :=
〈D, �〉, where D is a tree domain and � : D → Σ is a function assigning each
node n a label drawn from Σ such that �(n) ∈ Σ(d) iff n has d daughters.
Usually the alphabet will not be indicated in writing when it is irrelevant or
can be inferred from the context. Sometimes trees will be given in functional
notation such that f(t1, . . . , tn) is the tree where the root node is labeled f and
immediately dominates trees t1, . . . , tn. I denote by TΣ the set of all trees such
that for n ≥ 0, f(t1, . . . , tn) is in TΣ iff f ∈ Σ(n) and ti ∈ TΣ , 1 ≤ i ≤ n. A tree
language is some subset of TΣ. It is regular (a recognizable set) iff it is recognized
by a deterministic bottom-up tree automaton.

Definition 1. A deterministic bottom-up tree automaton is a 4-tuple A :=
〈Σ, Q, F, δ〉, where

– Σ is a ranked alphabet,
– Q is a finite set of states (i.e. of unary symbols q /∈ Σ),

98 T. Graf

– F ⊆ Q is the set of final states,
– δ :

(⋃
n≥0 Qn ×Σ(n)

)
→ Q is the transition function.

In the remainder of this paper, I will refer to deterministic bottom-up tree au-
tomata simply as (tree) automata. The transition function of a tree automaton
can be extended to entire trees in the usual manner. A tree T , then, is rec-
ognized (accepted) by A iff δ(T) ∈ F , and the language recognized by A is
L(A) := {T | δ(T) ∈ F}. At several points in the paper, I also mention tree
transducers. All the reader needs to know about them is that they are the tree
equivalent of string transducers, i.e. they rewrite input trees as output trees.

Given a tree T , a treelet t of T is a continuous substructure of T , that is to
say, there is no node that does not belong to t yet both dominates a node of t
and is dominated by a node of t. In the special case where t contains either all
the nodes of T dominated by some node of t or none of them, we call t a subtree
of T . A projection of a tree language is its image under a function f̂ that is the
pointwise extension of a surjective map f : Σ → Ω between alphabets to tree
languages. Thus projections are a particular kind of relabeling.

Definition 2 (P-Closure). Given a class of languages L and an operation O,
L is p-closed under O iff the result of applying O to some L ∈ L is a projection
of some L′ ∈ L.

We now turn to the definition of MGs, which mostly follows the chain-based
exposition of [16] except that I allow for multiple final categories. This small ex-
tension has no effect on expressivity, as will be explained after the MG apparatus
has been introduced.

Definition 3. A Minimalist grammar is a 6-tuple G := 〈Σ,Feat , F,Types ,Lex ,
Op〉, where

– Σ = ∅ is the alphabet,
– Feat is the union of a non-empty set base of basic features (also called cat-

egory features) and its prefixed variants {= f | f ∈ base}, {+f | f ∈ base},
{−f | f ∈ base} of selector, licensor, and licensee features, respectively,

– F ⊆ base is a set of final categories,
– Types := {::, :} distinguishes lexical from derived expressions,
– the lexicon Lex is a finite subset of Σ∗ × {::} × Feat∗,
– and Op is the set of generating functions to be defined below.

A chain is a triple in Σ∗ × Types × Feat∗, and C denotes the set of all chains
(whence Lex ⊂ C). Non-empty sequences of chains will be referred to as expres-
sions, the set of which is called E. I will usually drop the tuple brackets of chains
and lexical items, but not those of expressions (the exception being depictions of
derivation trees and the definitions of merge and move below).

The set Op of generating functions consists of the operations merge and move.
The operation merge : (E×E) → E is the union of the following three functions,
for s, t ∈ Σ∗, · ∈ Types , f ∈ base, γ ∈ Feat∗, δ ∈ Feat+, and chains α1, . . . , αk,
ι1, . . . , ιk, 0 ≤ k, l:

Closure Properties of Minimalist Derivation Tree Languages 99

s :: = fγ t · f, ι1, . . . , ιk merge1
st : γ, ι1, . . . , ιk

s : = fγ, α1, . . . , αk t · f, ι1, . . . , ιl merge2
ts : γ, α1, . . . , αk, ι1, . . . , ιl

s · = fγ, α1, . . . , αk t · fδ, ι1, . . . , ιl merge3
s : γ, α1, . . . , αk, t : δ, ι1, . . . , ιl

As the domains of all three functions are disjoint, their union is a function, too.
Given one of the configurations above, one also says that s selects t.

The operation move : E → E is the union of the two functions below, with the
notation as above and the further assumption that all chains satisfy the Shortest
Move Constraint (SMC), according to which no two chains in the domain of
move display the same licensee feature −f as their first feature.

s : +fγ, α1, . . . , αi−1,t : −f, αi+1, . . . , αk
move1

ts : γ, α1, . . . , αi−1, αi+1, αk

s : +fγ, α1, . . . , αi−1,t : −fδ, αi+1, . . . , αk
move2

s : γ, α1, . . . , αi−1, t : δ, αi+1, . . . , αk

The language L(G) generated by G is the string component of the subset of the
closure of the lexicon under the generating functions that contains all and only
those expressions consisting of a single chain whose feature component is a single
final category: L(G) := {σ | 〈σ · c〉 ∈ closure(Lex ,Op), · ∈ Types , c ∈ F}.
Example 1. Let G be an MG defined by F := {c} and the lexicon Lex below:

a :: a b :: = a =a + k a c :: = a c
a :: a − k

Two derivation trees of G are depicted in Fig. 1. !
As noted before, I slightly relax the MG formalism by allowing multiple final
categories instead of just one. This is an innocent move. If a relaxed MG has final
categories c1, . . . , cn, we can turn it into a canonical MG by restricting the set
of final categories to some new category c and introducing n new lexical items
of the form ε :: = ci c, where 1 ≤ i ≤ n and ε designates the empty string. The
two grammars have virtually identical derivation tree languages with the only
difference being the merger of a phonetically null c-head as the last step of every
derivation for the canonical variant.

As for their weak generative capacity, MGs were shown in [6, 11, 12] to gen-
erate multiple context-free string languages, whence they constitute a mildly
context-sensitive grammar formalism in the sense of [7]. The set of derivation
trees of an MG, however, is a regular tree language and there is an effective pro-
cedure for obtaining the derived trees from their derivation trees — this holds
even of the strictly more powerful class of MGs with unbounded copying [9, 10].
This is my main reason for considering derivation trees rather than derived trees
(besides the central role of derivation trees in Graf’s work): in contrast to the
latter, they provide a unified, finite-state perspective on both MG variants; how-
ever, derived trees are investigated by Kobele in this volume, and he, too, proves
closure under intersection with regular tree languages.

100 T. Graf

caab : c

c :: = a c aab : a

ab : +k a, a : −k

a :: a b : = a + k a, a : −k

b :: = a = a + k a a :: a − k

cabaab : c

c :: = a c abaab : a

baab : +k a, a : −k

a :: a − k baab : = a + k a

b :: = a = a + k a aab : a

ab : +k a, a : −k

a :: a b : = a + k a, a : −k

b :: = a = a + k a a :: a − k

Fig. 1. Two derivation trees of the MG from example 1

2 Minimalist Derivation Tree Languages

The presentation of derivation trees in the MG literature varies somewhat with
respect to what kind of labels are assigned to the interior nodes. The more com-
mon variant [cf. 16] is what I call string-annotated derivation trees, which were
already encountered by the reader in the example at the end of the preliminaries
section.

Definition 4 (String-annotated Derivation Tree Language). Given an
MG G := 〈Σ,Feat , F,Types ,Lex ,Op〉, its string-annotated derivation tree lan-
guage sder(G) is the largest subset of TE satisfying the following conditions:

– For every leaf node n, �(n) = 〈l〉, l ∈ Lex .
– For every binary branching node n immediately dominating n′ and n′′, it

holds that merge(n′, n′′) is defined and �(n) = merge(n′, n′′).

Closure Properties of Minimalist Derivation Tree Languages 101

– For every unary branching node n immediately dominating n′, move(n′) is
defined and �(n) = move(n′).

– For n the root node, �(n) = 〈σ : c〉, where σ ∈ Σ∗ and c ∈ F .

String-annotated derivation tree languages aren’t particularly interesting from
the perspective of formal language theory as they are defined over an infinite
alphabet (L(G) is infinite in the general case, and so is E). Hence all work
focusing on formal aspects of the derivation trees themselves [cf. 10] assume
that the labels of the interior nodes indicate only which operations have taken
place rather than the outputs of these operations at the respective stages of the
derivations. This kind of derivation tree I refer to as Minimalist derivation tree.1

Definition 5 (Minimalist Derivation Tree Language). Given an MG G,
its Minimalist derivation tree language mder(G) is the set of trees obtained from
sder(G) by the map μ relabeling all interior nodes by the corresponding operation:

– μ(〈l〉) = 〈l〉, where l ∈ Lex
– μ(e(e1, . . . , en)) = op(μ(e1), . . . , μ(en)), where e, e1, . . . , en ∈ E, n ≥ 1, and

op is the unique operation in Op such that op(e1, . . . , en) = e

Note that since the domains of all op ∈ Op are pairwise disjoint, μ is indeed
well-defined and a function. Also, whenever merge and move are used as labels,
I will abbreviate them in the remainder of this paper by M and O, respectively.

It is fairly easy to see that Minimalist derivation tree languages are regular
(consider the deterministic bottom-up tree automaton whose states correspond
to the feature components of the labels of sder(G)). In fact, they are a proper
subset of the regular tree languages and are not closed under intersection with
them.

Theorem 1. The intersection of a Minimalist derivation tree language and a
regular tree language may fail to be a Minimalist derivation tree language.

Proof. Consider once again the Minimalist Grammar from example 1. Let LE ⊆
TLex∪{M,O} contain all trees that have an even number of nodes, and only those.
Then the result of intersecting the Minimalist derivation tree language of G
with LE is not a Minimalist derivation tree language. Among other things, it
contains the Minimalist variant of the top tree in Fig. 1 on the facing page (i.e.
with internal nodes replaced by M and O) but not the bottom one, yet they are
built from the same lexical items and end in a final category, whence either both
of them are in closure(Lex ,Op), or neither is. !

Corollary 1. The image of a Minimalist derivation tree language under a linear
transduction may fail to be a Minimalist derivation tree language, even if domain
and co-domain of the transduction are identical.

Proof. The intersection of two regular tree languages L and R is equivalent to
the image of L under the diagonal of R, which is a linear transduction. !
1 While it may not be in good style to have a technical term coalesce with a more

colloquial one, the homophony is meant to highlight that I regard them as the
canonical version of derivation trees for MGs.

102 T. Graf

3 P-Closure Properties

Theorem 1 and Cor. 1 notwithstanding, it does not take much ingenuity to realize
that the counting condition in the example above can be enforced through the
category and selection features of the feature calculus.

Example 2. Consider the lexical item a :: = a = a + k a, and suppose that the
derivation tree assembled so far contains an even number of nodes. The first
selection feature causes the lexical item itself to be added to the derivation tree,
plus the insertion of a Merge node. Thus the number of nodes in the derivation
tree has increased by 2, which means that it is still even. Assume that at the
next step a single lexical item is merged, increasing the count once more by 2.
Then movement is triggered by the movement licensor feature, leading to the
addition of only one node, so the tree now contains an odd number of nodes.
At this point we only have to ensure that no lexical item of category c may
be merged next in the derivation. The reason is that this would increase the
counter only by 2, wherefore the number of nodes in the derivation tree would
still be odd (and thus illicit), but nonetheless the derivation would be deemed
well-formed, since we merged a lexical item of category c. In order to represent
the arithmetic in the feature calculus, then, we have to replace a :: = a =a + k a
by a :: = ae = ao + k ao and c :: = a c by c :: = ae c. The fully refined grammar
is given below.

a :: ao b :: = ao =ao + k ae c :: = ae c
a :: ao − k b :: = ao =ae + k ao

b :: = ae = ao + k ao

b :: = ae = ae + k ae
 !

The strategy in the example above can easily be generalized to intersection
with arbitrary regular sets by a slight modification of the technique employed
by Thatcher in [17]. Thatcher realized that we may view the states of a tree
automaton as an alphabet which the automaton “adds“ to the original node la-
bels. Therefore, one can simplify any recognizable set R over alphabet Σ to a
degree where it can be described as the derivation tree language of a context-
free grammar (ignoring the distinction between terminals and non-terminals),
even though the class of the latter is properly included in the class of the for-
mer. One does so by first subscripting the symbols in Σ with the states of
the canonical automaton accepting R, and subsequently recasting the transition
rules in terms of rewriting rules — a transition σ(q1, . . . , qn) → q corresponds to
the set {σq → τ1,q1 , . . . , τn,qn | σ(τ1, . . . , τn) is a subtree of some tree of R and
each τi is assigned state qi in some T ∈ R, 1 ≤ i ≤ n}. Thatcher’s strategy, how-
ever, cannot be used if the alphabet of our trees is fixed, as is the case with
Minimalist derivation trees. Internal nodes have to be labeled by M or O, and
adding subscripts to these symbols takes us out of the class of Minimalist deriva-
tion trees. Crucially, though, the internal nodes of a derivation tree are tied to
the leaf nodes in a very peculiar way: every internal node denotes an operation,
and this operation has to be triggered by a feature of some lexical item. So

Closure Properties of Minimalist Derivation Tree Languages 103

while we may not suffix the states of an automaton to the internal node labels
of a Minimalist derivation tree, we can still make them explicit by incorporating
them into the feature calculus.

The first step in sharpening this rough sketch is the introduction of slices.

Definition 6 (Slice). Given a Minimalist derivation tree T := 〈D, �〉 and lex-
ical item l occurring in T , the slice of l is the pair slice(l) := 〈S, �〉, S ⊆ D,
defined as follows:

– l ∈ S,
– if node n ∈ D immediately dominates a node s ∈ S, then n ∈ S iff the

operation denoted by �(n) erased a selector or licensor feature on l.

The unique n ∈ S that isn’t dominated by any n′ ∈ S is called the slice root of l.

Intuitively, slice(l) marks the subpart of the derivation that l has control over
by virtue of its selector and licensor features. The next two lemmas jointly es-
tablish that for any derivation tree T , the set {slice(l) | l a lexical item in T} is
a partition of T .

Lemma 1. For every Minimalist derivation tree T := 〈D, �〉 and lexical item l
in T , slice(l) := 〈S, �〉 is a unary branching treelet.

Proof. That slice(l) is unary branching follows immediately from the definition.
So we only have to show that there is no node n /∈ S that both dominates and is
dominated by nodes in slice(l). Since the selector and licensor features of a lexical
item l cannot be manipulated by any o ∈ Op after l has already been selected
by another lexical item, all these features of l have to occur before its category
feature (which is unique). It is also clear that every licensee feature has to follow
the category feature (move must be triggered by a licensor feature on some lexical
item that is higher than l in the derivation tree, and only the category feature
allows l to be selected by another lexical item so that the derivation can reach
this higher point). Thus it holds for every lexical item that its feature sequence
is an element of {= f, +f | f ∈ base}∗ × base × {−f | f ∈ base}∗, proving the
claim above. !

Lemma 2. Given a Minimalist derivation tree T , every node of T belongs to
some slice.

Proof. Trivial. !

With these basic facts established, we turn to the algorithm that upon being
given an MG G := 〈Σ,FeatG, FG,Types ,LexG,Op〉 and regular language R will
compute an MG G′ such that mder(G)∩R is a projection of mder(G′). We begin
by constructing the canonical automaton AR for R (note that AR is determin-
istic). In the next step, we pick a tree T ∈ R ∩mder(G) and suffix each node n
of T with the state q that AR assigns to n when recognizing T (since AR is de-
terministic, q is unique). After the second step has been applied to all members
of R ∩mder(G), the result will be a set with R ∩mder(G) as its projection. So
far, then, our procedure does not deviate at all from Thatcher’s.

104 T. Graf

O

M

John :: d M

killed :: = d =d + top v M

the :: =n d − top man :: n

q

h

q

p

f

g

f

g

O

M

John :: d M

killed :: = d =d + top v M

the :: =n d − top man :: n

q

h

q

p

f

g

f

g

O

M

John :: dg M

killed :: = df =dg + top vf M

the :: =np df − top man :: np

Fig. 2. Derivation tree of MG G with states of AR (top), and corresponding derivation
tree of G′ with refined categories (bottom)

But now we have to move the state subscripts from the internal nodes into
the lexical items. We do so again in two steps (before proceeding any further,
though, the reader may want to take a look at the simplified example in Fig. 2
to get a better intuition for the procedure). For the first step, we look at each
lexical item and add the subscripted state of its slice root to its category feature
— keep in mind that a lexical item has exactly one such feature. In the second
step, we have to refine the selection features accordingly. Given the definition of
slices, it is easy to see that the (n+1)th node o of slice(l) (counting from l toward
the slice root) denotes the operation that erased the nth feature f of l, n ≥ 1.
If �(o) = M (in which case f is a selector feature), determine the category cq of
the lexical item l′ whose slice root is immediately dominated by o and replace
f by = cq. Repeat this procedure for all selector features of all lexical items in
all trees.2 Call the set of these lexical items with refined category and selector
features LexG′ (which is still finite due to the restriction of AR to finitely many
states). The desired MG is G′ := 〈Σ,FeatG′ , FG′ ,Types ,LexG′ ,Op〉, where

2 Two things are worth mentioning here. First, there seems to be no way around
restricting the selector features of lexical items, as is witnessed by example 2, where
a lexical item of category ao may not select two lexical items of the same category, and
one of category ae may not select two with differing categories. Second, it suffices for
the construction to consider but a finite number of configurations, so a computational
implementation of the procedure is still feasible. This follows from the finiteness of
the lexicon and the index of the Nerode partition induced by the automaton.

Closure Properties of Minimalist Derivation Tree Languages 105

– FeatG′ := {fq, = fq | f ∈ baseG, q a state of AR} ∪ {−f, +f | f ∈ baseG},
and

– FG′ := {cq | c ∈ FG, q a final state of AR}

Lemma 1 and 2 jointly guarantee that the procedure above is well-defined. In
order to prove its correctness, though, we first need one more property of slices.

Lemma 3. Let T := 〈D, �〉 be a derivation tree, S := {slice(l) | l = �(n) for
some leaf n ∈ D}, and S � slice(l) := {slice(l′) ∈ S | l′ was selected by l}. Let
−→s := 〈s1, . . . , sn〉 be a sequence of s ∈ S such that

– s1 ∈ S
– for all 1 ≤ i < n, si+1 ∈ S � si

– S � sn = ∅

For every Minimalist derivation tree, there is at least one such −→s , and for every
choice of −→s , sn := 〈S, �〉 is a slice with |S| = 1.

Proof. The first half of the claim is trivial. As for the second one, if S � sn is
empty, the lexical item l such that sn := slice(l) has no selector features. But
then it has no licensor features either, because these must precede the category
feature, which is the only way l has left to enter the derivation. !

With this unsurprising yet important fact established, we finally turn to the
correctness of the procedure, splitting the claim into two lemmas for the sake of
readability. Note that I use π to denote the projection that strips away the state
suffixes and thus turns LexG′ into LexG again.

Lemma 4. π(mder(G′)) ⊆ R ∩mder(G)

Proof. Assume towards a contradiction π(mder(G′)) ⊆ R∩mder(G). Then there
has to be some tree T ∈ π(mder(G′)) such that T /∈ R∩mder(G). But mder(G)
cannot be a proper subset of π(mder(G′)), so it has to be the case that mder(G) -
T /∈ R. Thus, when recognizing T , AR assigns the root of T some non-final state
q′. Suppose w.l.o.g. that the root node of T belongs to slice(l) for some lexical
item l of final category cq. According to our procedure, cq is a final category iff c
is a final category of G and q is a final state of AR. So if T ∈ π(mder(G′)), there
has to be some T ′ ∈ mder(G) ∩ R such that in both trees the root node is also
the root of slice(l) (otherwise AR never reached a final state in the slice root of
l, whence l isn’t of category cq, a contradiction). Now since AR is deterministic,
the only way for it not to reach state q at the slice root of l in T is if the
state it assigns to the slice root of some lexical item l′ selected by l differs from
the subscript of the corresponding selector feature of l. But the same reasoning
applies to l′ as well, so that we progress further down the tree until we encounter
a lexical item that selects a lexical item l′′ whose slice is of size 1 (by Lem. 3). So
the automaton must have assigned the slice root of l′′ a state different from the
subscript of the category feature of l′′. But AR is bottom-up and deterministic,
wherefore it always assigns the same state to l′′. Contradiction. !

106 T. Graf

Lemma 5. π(mder(G′)) ⊇ R ∩mder(G)

Proof. Assume once again towards a contradiction π(mder(G′)) ⊇ R∩mder(G).
Then there has to be some tree T ∈ R ∩mder(G) such that T /∈ π(mder(G′)).
Since the lexicons of G and G′ are identical modulo state-subscripts, the only
option is that AR and G′ disagree with respect to states, at which point the
reasoning of the previous proof applies unaltered. !

Theorem 2. The class of Minimalist derivation tree languages over Σ, Feat is
p-closed under intersection with regular tree languages.

Corollary 2. The class of Minimalist derivation tree languages over Σ, Feat is
p-closed under intersection and relative complement.

Proof. Since every Minimalist derivation tree language is regular, p-closure under
intersection follows immediately from Thm. 2. Given two Minimalist derivation
tree languages L and M , R := L−M is a regular language, so L−M = L ∩R
is a projection of some Minimalist derivation tree language. !

Note that p-closure under relative complement does not imply p-closure under
complement with respect to the class of Minimalist derivation tree languages over
Σ, Feat , as for each grammar over this signature there exists another grammar
whose derivation tree language is a proper superset of the former’s. However,
when we restrict our attention to the class of all MG whose lexicon is a subset
of some finite set Lex over Σ, Feat , there will be one Minimalist derivation
tree language that subsumes all others and p-closure under relative complement
implies p-closure under complement as desired (which in turns implies p-closure
under union).

Corollary 3. Let Lex be some finite subset of Σ∗ × {::} × Feat∗. Then the
class {mder(G) | G an MG with LexG ⊆ Lex} is p-closed under complement
and union.

P-closure also extends to linear tree transductions whose co-domain is a Min-
imalist derivation tree language. This is of immediate relevance to Graf’s tree
transducer model of reference-set computation, because most reference-set con-
straints are conceived of as filters, that is to say, they map each Minimalist
derivation tree language into a subset of itself.

Corollary 4. Given a linear transduction τ with some Minimalist derivation
tree language L as its co-domain, it holds for every regular tree language R that
its image under τ is a projection of some Minimalist derivation tree language.3

Proof. Follows from Thm. 2 and the fact that the range of a linear transduction
applied to a regular tree language is regular. !
3 My thanks go to an anonymous reviewer for pointing out that the corollary as it was

originally stated was overly restrictive.

Closure Properties of Minimalist Derivation Tree Languages 107

In connection with Graf’s transducer approach, we also observe that the pro-
cedure as it is currently defined may lead to a significant (albeit still linear)
blow-up in the size of the lexicon. The implication for Graf’s work is that a
grammar with reference-set constraints may be notably more succinct than one
without them, even if both define the same tree languages modulo state sub-
scripts. But since it might be the case that the procedure given here can still be
improved upon, this has to remain a conjecture for now.

Conjecture 1. Given a lexicon Lex and n ≥ 0, let Lex (n) := {l ∈ Lex | l has
exactly n selector features}. Now if there is no m > k such that Lex (m)

G = ∅,
then in the worst case

|LexG′ | =
k∑

i=0

(
|Lex (i)

G | · |Q|i+1
)

4 Minimalist Grammars with Regular Control

P-closure under intersection also opens up new ways of incorporating constraints
into MGs. Constraints have proven difficult to study in MGs, and their effects
on the machinery are somewhat unpredictable; for instance, MGs with the SMC
and the so-called Specifier Island Constraint (SPIC) are weaker than MGs that
feature only the SMC, whereas MGs that lack the SMC yet have the SPIC gener-
ate type-0 languages [3]. But adopting the perspective of model-theoretic syntax
[13], we may view constraints as defining formal languages. Thanks to Thm. 2,
then, MGs can be augmented by any finite number of constraints defining regular
tree languages without increasing their weak generative capacity. In fact, even
the strong generative capacity of MGs is mostly unaffected, as the procedure
outlined above only relies on refining category features, which — in the derived
tree — surface only on the head of the highest phrase.

Definition 7 (MGs with Regular Control). A Minimalist Grammar with
Regular Control (MGRC) is a 7-tuple G := 〈Σ,Feat , F,Types ,Lex ,Op,R〉, where

– Σ, Feat, F , Types, Lex , and Op are defined as usual,
– and R is a finite set of regular tree languages.

The language generated by G is the set L(G) := {σ | 〈σ · c〉 ∈ closure(Lex ,Op),
· ∈ Types , c ∈ F , and 〈σ · c〉 is the label of the root of some tree T ∈ sder(G)
such that μ(T) ∈ mder(G) ∩

⋂
R∈R R}.

Theorem 3. MG ≡ MGRC

Given the prominence of constraints in the syntactic literature, it is hardly sur-
prising that there are numerous applications for regular control. The most obvi-
ous one are intervention conditions on movement such as the one illustrated in
(1) below.

(1) a. Whoi did John say that Bill adores ti?
b. ?/* Whoi did John doubt whether Bill adores ti?

108 T. Graf

Without further precautions, a MG that derives (1a) will also derive (1b) as
movement is restricted only by the feature calculus, not the shape of the phono-
logical strings. A regular language can easily militate against such locality viola-
tions. Recall that the states of an automaton recognizing a Minimalist derivation
tree can be taken to represent the feature components of the string-annotated
derivation trees. In order to block (1b), then, one may proceed as follows. Let p
and q be the states that the standard automaton would assign to whether and Bill
hates ti, respectively (we take these states to literally be sequences of feature se-
quences). Now introduce a new state pwh that the automaton assigns to whether
instead of p such that pwh × q ×M is undefined only if q contains no sequence
containing a movement licensee features, in which case pwh×q×M = p×q×M .

It is easy to see that this strategy can be extended to intervention conditions
in general, most of which require the automaton to check the shape of entire
phrases rather than a single word. Two well-known examples are the Complex
NP Constraint, which blocks extraction from a CP that is the complement of
an NP (or rather, DP in contemporary analyses), and the Subject Constraint,
which rules out movement originating from inside a DP in subject position.

(2) * Whoi did John reject the claim that the lobbyists bribed ti?

(3) a. Wherei is it likely that John went ti?
b. * Wherei is that John went ti likely?

A combination of both types of movement constraint is the that -trace effect: in
general, a wh-word can be extracted out of a CP whose complementizer is that,
but not if it is the subject of the clause.

(4) a. Whati did you say that John ate ti?
b. * Whoi did you say that ti ate my burrito?

Here the automaton has to be sensitive to both the nature of the complemen-
tizer and the structural properties of the domain from which the wh-word was
extracted. The sensitivity to that is analogous to the whether -example, while
the distinction between subjects and objects mirrors the domain condition of
the Subject Constraint.

Further examples of linguistic locality constraints that can be captured this
way are the Coordinate Structure Constraint, the Left Branch Condition, and
phases (introduced in [2] and implemented for MGs in [15]). Many of the prin-
ciples formalized in [13] can also be adapted for MGs, although the change from
derived trees to derivation trees will require some slight revisions in certain
cases, in particular binding and control, which rely on a notion of c-command
that might prove tricky to capture on a derivational level.

Through the use of constraints we can also reduce the number of movement
steps in our grammars. In early Minimalism [1], satisfying feature dependencies
between non-adjacent phrases invariably required movement, an assumption in-
herited by MGs. In such a setup, subject-verb agreement, say, is assumed to
be an effect of the subject moving into the specifier of the TP and checking its
person features. But other instances of agreement, e.g. between determiners or

Closure Properties of Minimalist Derivation Tree Languages 109

adjectives on the one hand and nouns on the other, are rather cumbersome to
handle this way. This brought about a major revision of the feature calculus in
order to make feature checking apply a distance in certain cases [2]. As long as
we do not allow unbounded nesting and crossing of the checking paths defined
by this operation, regular constraints can yield the same effect by associating
every lexical item with “pseudo-features” that encode properties not pertinent to
movement. For instance, the Icelandic adjective rauðan ’red’, which is masculine,
singular, accusative, and strongly inflected, could be assigned the corresponding
pseudo-features, which in turn also have to be present on the noun the adjective
combines with. A more interesting case is long-distance subject-verb agreement
in English expletive constructions, as the phenomenon is noticeably more diffi-
cult to capture by manual refinement of categories.

(5) a. * There seems to John to be several men in the garden.
b. There seem to John to be several men in the garden.

But the gerrymandering of the feature calculus need not stop here. We may
also employ regular constraints to incorporate a restricted version of pied-piping.
Pied-piping refers to the phenomenon that a constituent containing some element
with a movement licensee feature seems to be stuck to it for the purposes of
movement.

(6) a. [Which famous linguist]i did Robert write a book [about ti]?
b. [About which famous linguist]i did Robert write a book ti?

In the syntactic literature this is often analyzed as the movement licensee feature
of the DP percolating upwards into the PP. Unfortunately, enriching MGs with
such a feature percolation mechanism allows them to generate any recursively
enumerable language [8]. But at least for the example above, only a very limited
kind of feature percolation is required: it is sufficient to allow both about and
which to carry a movement licensee feature as long as we ensure that the variant
of about with such a feature must merge with a DP such that the determiner of
said DP does not carry the same feature, but could in principle (i.e. there is an
entry in the lexicon with the same phonological string and the same category as
the determiner that also carries the relevant feature). It is easy to see that this
constraint can be enforced by regular means.

Dynamic restrictions on the distribution of features also allows us to work
around certain shortcomings of the SMC. The SMC — albeit essential for keeping
Minimalist derivation trees within the confines of regular tree languages — comes
with its fair share of linguistic inadequacies, in particular with respect to wh-
movement. Since English allows for wh-phrases to stay in situ, every wh-phrase
in an MG must come in two variants, one with a wh-licensee feature, and one
without it. But given this duality, nothing prevents superiority violations like
the one in (7b) (for the sake of simplicity, only wh-movement is indicated by
traces).

(7) a. Whoi ti prefers what?
b. * Whati does who prefer?

110 T. Graf

The ungrammatical (7b) can be derived because who need not carry a wh-licensee
feature, in which case the MG will treat it like any other DP. Consequently,
nothing prevents what from carrying a wh-licensee feature, so the movement
step is licit. Instances of overgeneration like this can be blocked if one takes a
hint from our implementation of pied-piping: the automaton has to verify that
no node along the movement path could potentially carry the same feature. In
(7b) above, this condition is violated because who could be a carrier of the wh-
licensee feature, and so the automaton rejects the derivation tree. Note that a
similar strategy can be used if two identical features have to be distinguished
due to the SMC yet at the same we want to capture specific locality restrictions
they impose on each other (e.g. who being assigned feature wh1 and what feature
wh2 in a multiple wh-movement language). Admittedly the notion “node along
the movement path” has to be carefully worked out and may turn out to be
rather complex in grammars with massive remnant movement. Overall, though,
it seems that this approach goes a long way towards an MG implementation
of Relativized Minimality as envisioned in [15], with the added benefit that the
restrictions imposed at the level of derivation trees also carry over to the strictly
more powerful mechanism of MGs with copying [9].

Conclusion

I defined Minimalist derivation tree languages and showed that they are p-closed
under intersection with regular tree languages, intersection, complement, relative
complement, union, and linear tree transductions whose co-domain is a Minimal-
ist derivation tree language. From these closure properties it follows immediately
that enriching MGs with regular control does not increase their weak generative
capacity. The result has numerous linguistic applications, in particular regarding
locality conditions on movement and reference-set constraints [cf. 4, 5].

Acknowledgments. For their motivational comments and helpful criticism, I
am greatly indebted to Ed Stabler, Ed Keenan, Jens Michaelis, Uwe Mönnich, the
three anonymous reviewers, and the attendees of the UCLA Mathematical Lin-
guistics Circle. The research reported herein was supported by a DOC-fellowship
of the Austrian Academy of Sciences.

References

[1] Chomsky, N.: The Minimalist Program. MIT Press, Cambridge (1995)
[2] Chomsky, N.: Derivation by phase. In: Kenstowicz, M.J. (ed.) Ken Hale: A Life

in Language, pp. 1–52. MIT Press, Cambridge (2001)
[3] Gärtner, H.M., Michaelis, J.: Some remarks on locality conditions and minimalist

grammars. In: Sauerland, U., Gärtner, H.M. (eds.) Interfaces + Recursion = Lan-
guage? Chomsky’s Minimalism and the View from Syntax-Semantics, pp. 161–196.
Mouton de Gruyter, Berlin (2007)

Closure Properties of Minimalist Derivation Tree Languages 111

[4] Graf, T.: Reference-set constraints as linear tree transductions via controlled op-
timality systems. In: Proceedings of the 15th Conference on Formal Grammar
(2010) (to appear)

[5] Graf, T.: A tree transducer model of reference-set computation. UCLA Working
Papers in Linguistics 15, article 4 (2010)

[6] Harkema, H.: A characterization of minimalist languages. In: de Groote, P., Mor-
rill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 193–211.
Springer, Heidelberg (2001)

[7] Joshi, A.: Tree-adjoining grammars: How much context sensitivity is required to
provide reasonable structural descriptions? In: Dowty, D., Karttunen, L., Zwicky,
A. (eds.) Natural Language Parsing, pp. 206–250. Cambridge University Press,
Cambridge (1985)

[8] Kobele, G.M.: Features moving madly: A formal perspective on feature percolation
in the minimalist program. Research on Language and Computation 3(4), 391–410
(2005)

[9] Kobele, G.M.: Generating Copies: An Investigation into Structural Identity in
Language and Grammar. Ph.D. thesis, UCLA (2006)

[10] Kobele, G.M., Retoré, C., Salvati, S.: An Automata-Theoretic Approach to Mini-
malism. In: Rogers, J., Kepser, S. (eds.) Model Theoretic Syntax at 10, pp. 71–80
(2007)

[11] Michaelis, J.: Derivational minimalism is mildly context-sensitive. In: Moortgat,
M. (ed.) LACL 1998. LNCS (LNAI), vol. 2014, pp. 179–198. Springer, Heidelberg
(2001)

[12] Michaelis, J.: Transforming linear context-free rewriting systems into minimalist
grammars. In: de Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS
(LNAI), vol. 2099, pp. 228–244. Springer, Heidelberg (2001)

[13] Rogers, J.: A Descriptive Approach to Language-Theoretic Complexity. CSLI,
Stanford (1998)

[14] Stabler, E.P.: Derivational minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS
(LNAI), vol. 1328, pp. 68–95. Springer, Heidelberg (1997)

[15] Stabler, E.P.: Computational perspectives on minimalism. In: Boeckx, C. (ed.)
Oxford Handbook of Linguistic Minimalism, pp. 617–643. Oxford University Press,
Oxford (2011)

[16] Stabler, E.P., Keenan, E.: Structural similarity. Theoretical Computer Science 293,
345–363 (2003)

[17] Thatcher, J.W.: Characterizing derivation trees for context-free grammars through
a generalization of finite automata theory. Journal of Computer and System Sci-
ences 1, 317–322 (1967)

Well-Nestedness Properly Subsumes

Strict Derivational Minimalism�

Makoto Kanazawa1, Jens Michaelis2, Sylvain Salvati3, and Ryo Yoshinaka4

1 National Institute of Informatics, Tokyo, Japan
2 Bielefeld University, Bielefeld, Germany

3 INRIA Bordeaux – Sud-Ouest, Talence, France
4 Japan Science and Technology Agency, ERATO MINATO Project, Sapporo, Japan

Abstract. Minimalist grammars (MGs) constitute a mildly context-
sensitive formalism when being equipped with a particular locality con-
dition (LC), the shortest move condition. In this format MGs define the
same class of derivable string languages as multiple context-free grammars
(MCFGs). Adding another LC to MGs, the specifier island condition
(SPIC), results in a proper subclass of derivable languages. It is rather
straightforward to see this class is embedded within the class of lan-
guages derivable by some well-nested MCFG (MCFGwn). In this paper
we show that the embedding is even proper. We partially do so adapting
the methods used in [13] to characterize the separation of MCFGwn-
languages from MCFG-languages by means of a “simple copying” theo-
rem. The separation of strict derivational minimalism from well-nested
MCFGs is then characterized by means of a “simple reverse copying” the-
orem. Since for MGs, well-nestedness seems to be a rather ad hoc restric-
tion, whereas for MCFGs, this holds regarding the SPIC, our result may
suggest we are concerned here with a structural difference between MGs
and MCFGs which cannot immediately be overcome in a non-stipulated
manner.

1 Introduction

Inspired by the work originating in [1], the formal type of a minimalist grammar
(MG) has been introduced in [28] as an attempt at a rigorous algebraic formaliza-
tion of the corresponding perspectives adopted within the linguistic framework
of transformational grammar. MGs have been shown to be capable of integrat-
ing, if needed, a variety of arguably “odd” items from the syntactician’s toolbox
such as head movement [28,30], (strict) remnant movement [28,29], affix hopping
[30], copy-movement [14] and relativized minimality [31], to mention some.

Interestingly, the formal MG-setting can also be seen as having anticipated
some of the crucial developments and changes within the theoretical setting of
the minimalist branch of generative grammar since the mid of the 1990s (see e.g.
� This work has essentially been carried out within the joint research project “Open

Problems on Multiple Context-Free Grammars” funded by the National Institute of
Informatics, Tokyo, Japan.

S. Pogodalla and J.-P. Prost (Eds.): LACL 2011, LNAI 6736, pp. 112–128, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Well-Nestedness Properly Subsumes Strict Minimalism 113

[2,3]). Maybe the most prominent deviance from at least the original linguistic
setting was that MGs never incorporated any so-called transderivational con-
straints. However, locality conditions (LCs) applying to the move-operator have
always been of decisive nature within the formal MG-framework. A particular
LC, the shortest move condition (SMC), played a crucial role in showing that
each MG satisfying the definition in [28], and thus, obeying the SMC can be
constructively transformed into a multiple context-free grammar (MCFG) in the
sense of [27] deriving the same string language. The construction presented in [18]
has not only proven the corresponding MG-class to be mildly context-sensitive
in the sense of [11], but also led to a succinct, “chain-based” reformulation of
MGs reducing them to their “bare essentials,” cf. [32]. By means of this reformu-
lation, MGs can be straightforwardly interpreted as a proper subtype of MCFGs.
In particular, all corresponding MCFGs are of rank 2, i.e., the righthand side of
each rule consists of at most two nonterminals. Nevertheless, in terms of deriv-
able string languages the generative power of MCFGs is not reduced as shown
independently in [10] and [20].

In particular building on the work in [16], in [29] a revised MG-type has been
introduced. Throughout that paper this type is not distinguished by name from
the type introduced earlier in [28], although beside the SMC, the revised version
implicitly implements a second LC, which has been explicitly referred to as
specifier island condition (SPIC) in [5] and later work. Closely in keeping with
further theoretical linguistic considerations, in [29] also a particular type of a
strict minimalist grammar (SMG) has been introduced, implementing the SPIC
with somewhat more “strictness,” and leading to heavy pied-piping constructions.
In [19,21] it has been shown that the SMG-class and the MG-class of revised type
define identical classes of derivable languages. From this point of view we consider
the MG-class of revised type an instance of strict derivational minimalism.

With emphasis on particular linguistic aspects, the combinatory power of the
SMC and the SPIC within the MG-framework has been discussed in [6], formal
results have been proven in different other places: we already mentioned [18]
and [10,20] as the sources showing that the class of MCFGs and the class of
MGs obeying the SMC, but not necessarily the SPIC give rise to the same
class of derivable string languages. [15] proves MGs obeying the SPIC, but not
necessarily the SMC to be Turing complete. [26] shows that the decision problem
for MGs neither obeying the SPIC nor the SMC is as hard the the one for proof
search in multiplicative exponential linear logic (MELL) as introduced in [8].1

In [19,21] it is shown that MGs obeying both the SMC and the SPIC de-
rive the same class of string language as a particular subtype of MCFGs of
rank 2, referred to in [19,21] as the type of an MCFG1,2 . Here, we refer to this
subtype as the type of a monadic branching MCFG (MCFGmb). It plays the
central role in our paper: an MCFGmb is an MCFG of rank 2 such that for each
rule with two nonterminals appearing on the righthand side it holds that from
the first nonterminal only simple strings of terminals can be derived, i.e., only

1 The latter result provides a negative answer to the question, whether all languages
generated by such an MG are semilinear?

114 M. Kanazawa et al.

1-tuples of terminal strings can be derived from the first nonterminal instead of
k-tuples for an arbitrary, but fixed k ≥ 1 as in the general MCFG-case. In fact,
it can be shown that the MCFGmb-class constitutes a proper subclass of the
full MCFG-class also in terms of derivable string languages, cf. [22]. Figure 1 is
summing up the complexity results mentioned so far concerning MGs and the
interaction of SMC and SPIC, whereMCFL andMCFLmb denote the classes of
derivable string languages determined the MCFG-class and the MCFGmb-class,
respectively.

MGs

– SMC , – SPIC

+ SMC , – SPIC –SMC , + SPIC

+ SMC , + SPIC

(Michaelis [18, 20], Harkema [10])

MCFL

MCFLmb ���MCFL (Michaelis [19, 21, 22])

MELL-proof search (Salvati [26])

type 0

(Kobele and Michaelis [15])

Fig. 1. The interaction of the SMC and the SPIC with the MG-framework

The proof presented in [22] to separate MCFLmb from MCFL builds on
the inclusion of MCFLmb within MCFLwn, the latter being the class of string
languages derivable by some well-nested MCFG (MCFGwn). MCFLwn in its
turn constitutes a proper subclass of MCFL. As pointed out, e.g., in [23], the
latter was (at least implicitly) known for quite a while. [13], however, crucially
presents a separation theorem relying on arguments on “simple copying” which
were not available in that form before. Whether the inclusion ofMCFLmb within
MCFLwn is proper, has, to the best of our knowledge, been generally open so
far. We show here that the answer is positive. We partially do so adapting the
methods used in [13]. The separation of MCFLmb from MCFLwn, and thus, of
strict derivational minimalism from well-nested MCFGs, is then characterized
by means of a “simple reverse copying” theorem.

2 Multiple Context-Free Grammars

A ranked alphabet is a finite set Δ of the form Δ =
⋃

k≥0 Δ(k), where 〈Δ(k) | k ≥
0〉 is an indexed family of pairwise disjoint sets. The set of trees (over Δ), T (Δ),

Well-Nestedness Properly Subsumes Strict Minimalism 115

is built up recursively in the following way: If for some k ≥ 0, we have d ∈ Δ(k)

and T1, . . . , Tk ∈ T (Δ) then (dT1 · · ·Tk) ∈ T (Δ). In writing trees, we adopt the
abbreviatory convention of dropping the outermost parentheses. Note that in
case k = 0 the string T1 · · ·Tk is the empty string, ε, Therefore we generally
omit the parentheses in this case.

Let N and Σ be a ranked and an unranked alphabet, respectively, with N (0) =
∅, and assume X = {xi | i ≥ 0} to be a countably infinite set of variables ranging
over Σ∗. A rule over 〈N, Σ〉 (or, simply a rule, if 〈N, Σ〉 is understood from
context) is an expression of the form

B0(α1, . . . , αk0) ← B1(x1,1, . . . , x1,k1), . . . , Bn(xn,1, . . . , xn,kn) (1)

for some n ≥ 0 and ki ≥ 1 for i ∈ [0, n] such that for i ∈ [0, n], Bi ∈ N (ki),
and such that for i ∈ [1, k0], αi is a string over Σ ∪ {xi,j | i ∈ [1, n], j ∈ [1, ki]},
where {xi,j | i ∈ [1, n], j ∈ [1, ki]} is a set of pairwise distinct variables from X .
In addition, each xi,j occurs at most once in α1 · · ·αk0 , the concatenation of all
αi “from left to right.” In case n = 0 such a rule is terminating, otherwise it is
non-terminating.

Definition 1. A multiple context-free grammar (MCFG), G, is a quadruple
〈N , Σ , P , S〉, where N is a ranked alphabet of nonterminals with N (0) = ∅,
where Σ is an unranked alphabet of terminals, where P is a finite set of rules
over 〈N, Σ〉, and where S ∈ N (1).

Let G = 〈N , Σ , P , S〉 be an MCFG.
For k0 ≥ 1, and corresponding B0 ∈ N (k0) and w1, . . . , wk0 ∈ Σ∗, we write

�G B0(w1, . . . , wk0) to mean that B0(w1, . . . , wk0) is derivable (in G) according
to the following inference scheme:

�G B1(w1,1, . . . , w1,k1) . . . �G Bn(wn,1, . . . , wn,kn)
�G B0(α1, . . . , αk0)σ

(2)

where B0(α1, . . . , αk0) ← B1(x1,1, . . . , x1,k1), . . . , Bn(xn,1, . . . , xn,kn) is a rule in
P according to (1), where wi,j ∈ Σ∗, and where σ is the substitution which maps
each variable xi,j to wi,j .

The language derivable by G, L(G), is the set {w ∈ Σ∗ | �G S(w)}.

Definition 2. A multiple context-free language (MCFL) is a set (of strings), L,
such that there is an MCFG, G, with L(G) = L.

Let G = 〈N , Σ , P , S〉 be an MCFG.
If A ∈ N (k) for some k ≥ 1 then k is the arity of A, denoted by arity(A). The

dimension of G is defined as the maximum of {arity(A) |A ∈ N}.
If B0(α1, . . . , αk0) ← B1(x1,1, . . . , x1,k1), . . . , Bn(xn,1, . . . , xn,kn) is some rule

p ∈ P according to (1) then the number n is the rank of p, denoted rank(p). Thus,
p is terminating iff rank(p) = 0. The rank of G, denoted rank(G), is defined as
the maximum of {rank(p) | p ∈ P}.

116 M. Kanazawa et al.

For m, r ≥ 1, an m-MCFG(r) is an MCFG, G, of dimension at most m
and rank at most r. An m-MCFL(r) is an MCFL, L, such that there is an
m-MCFG(r), G, with L(G) = L for some m ≥ 1 and r ≥ 1.

We denote by m-MCFG(r) the class of all MCFGs of dimension at most m
and rank at most r, and by m-MCFL(r) the class of all MCFLs generated by
some m-MCFG(r).

We let m-MCFG, MCFG(r), MCFG, m-MCFL, MCFL(r) and MCFL de-
note the classes

⋃
r≥1 m-MCFG(r),

⋃
m≥1 m-MCFG(r),

⋃
m,r≥1 m-MCFG(r),⋃

r≥1 m-MCFL(r),
⋃

m≥1 m-MCFL(r) and
⋃

m,r≥1 m-MCFL(r), respectively.

Theorem 1. Let L = {w#wR |w ∈ L0} for some set of strings L0.

(i) If for some m, r ≥ 1, L0 ∈ m-MCFL(r) then L ∈ 2m-MCFL(r).
(ii) If for some m, r ≥ 1, L ∈ m-MCFL(r) then L0 ∈ m-MCFL(r).

Proof (sketch). Let m, r ≥ 1. (i): constructing an 2m-MCFG(r) G with L(G) = L,
from a given m-MCFG(r) G0 with L(G0) = L0, is straightforward. (ii): the class
of m-MCFL(r) is closed under rational transductions. �

Let G = 〈N , Σ , P , S〉 be an MCFG.

In order to be able to talk about derivation trees of derivable facts, we will
identify P with a ranked alphabet ΔP relying on a bijection f : P → ΔP such
that for each p ∈ P , f(p) ∈ Δ(n) iff rank(p) = n. Derivation trees are trees over
the ranked alphabet ΔP . Derivation trees contexts are trees over the ranked
alphabet ΔP (Y), where ΔP (Y)(n) = Δ

(n)
P for n ≥ 1, and ΔP (Y)(0) = Δ

(0)
P ∪ Y

with Y = {yi | i ≥ 0} being a countably infinite set of variables disjoint from ΔP .
The following inference system associates derivation trees with derivable facts
and derivation tree contexts with facts derivable from some premises:

y : B(x′
1, . . . , x

′
k) � y : B(x′

1, . . . , x
′
k)

(3)

Γ1 �G T1 : B1(β1,1, . . . , β1,k1) . . . Γn �G Tn : Bn(βn,1, . . . , βn,kn)
Γ1, . . . , Γn �G pT1 · · ·Tn : B0(α1, . . . , αk0)σ

(4)

In the first scheme, (3), it holds that y ∈ Y , B ∈ N (k) for some k ≥ 1 and
x′

i ∈ X . In the second scheme, (4), it holds that p is a rule from P of the form

B0(α1, . . . , αk0) ← B1(x1,1, . . . , x1,k1), . . . , Bn(xn,1, . . . , xn,kn)

according to (1), βi,j ∈ (Σ ∪X)∗, and σ is a substitution mapping each xi,j to
βi,j . Each Γi is a finite sequence of premises of the form z : C(x′

1, . . . , x
′
k) with

z ∈ Y , and with C ∈ N (k) for some k ≥ 1 and x′
i ∈ X . It is also understood

that Γi and Γj do not share any variables if i = j. Each Ti is a derivation tree
context over ΔP (Y). For k ≥ 1, A ∈ N (k) and wi ∈ Σ∗ for i ∈ [1, k], it clearly
holds that �G A(w1, . . . , wk) iff �G T : A(w1, . . . , wk) for some derivation tree T
over ΔP .

Well-Nestedness Properly Subsumes Strict Minimalism 117

For each k ≥ 1, A ∈ N (k) is useful if there are wi ∈ Σ∗ for i ∈ [1, k] such that
�G A(w1, . . . , wk), and if there are y ∈ Y , x′

i ∈ X for i ∈ [1, k], α ∈ (Σ ∪X)∗

and some derivation tree T over ΔP (Y) such that y : A(x′
1, . . . , x

′
k) �G T : S(α).

A ∈ N (k) is useless, if it is not useful.

Let B0(α1, . . . , αk0) ← B1(x1,1, . . . , x1,k1), . . . , Bn(xn,1, . . . , xn,kn) be some
rule p ∈ P according to (1).

• p is non-deleting if for i ∈ [1, n] and j ∈ [1, ki], xi,j occurs in α1 · · ·αk0 .
(5)

• p is non-permuting if for i ∈ [1, n] and j, k ∈ [1, ki], j < k implies that
the occurence (if any) of xi,j in α1 · · ·αk0 precedes the occurence (if any)
of xi,k in α1 · · ·αk0 .

(6)
• p is well-nested if it is non-deleting and non-permuting, and for every
i, i′ ∈ [1, n] with i = i′, j ∈ [1, ki − 1] and j′ ∈ [1, ki′ − 1], it additionally
satisfies:
α1 · · ·αk0

/∈ (Σ ∪X)∗xi,j(Σ ∪X)∗xi′,j′(Σ ∪X)∗xi,j+1(Σ ∪X)∗xi′,j′+1(Σ ∪X)∗.
(7)

• p is monadic branching if n ≤ 2, and n = 2 implies k1 = 1.
(8)

Note that, if each p ∈ P is non-deleting then G is a linear context-free rewriting
system (LCFRS) in the sense of [33]; if each p ∈ P is non-permuting then G is
an MCFG in monotone function form in the sense of [19]; and if each p ∈ P is
non-deleting and non-permuting then G is an ordered simple RCG in the sense
of [34] as well as a monotone LCFRS in the sense of [17].

Definition 3. An MCFG G = 〈N , Σ , P , S〉 is well-nested, if each rule p ∈ P
is well-nested in the sense of (7).

Definition 4. An MCFG G = 〈N , Σ , P , S〉 is monadic branching, if each rule
p ∈ P is monadic branching in the sense of (8).

We attach the subscripts “wn” and/or “mb” to “MCFG” and “MCFL” in order
to refer to a well-nested and/or monadic branching MCFG and MCFL of corre-
sponding type. More concretely, we write “MCFGx,” “m-MCFGx,” “MCFGx(r)”
and “m-MCFGx(r)” as well as “MCFLx,” “m-MCFLx,” “MCFLx(r)” and “m-
MCFLx(r)” with x being of the form “wn”, “mb” or “wn,mb.”

We likewise do so with regard to “MCFG” and “MCFL” and the correspond-
ing (sub-)classes of MCFGs and MCFLs.

Corollary 1. For m ≥ 1, m-MCFL(1) = m-MCFLmb(1) = m-MCFLwn(1).

Proof. For m ≥ 1, m-MCFL(1) and m-MCFLmb(1) are identical by defini-
tion. The identity of m-MCFLmb(1) and m-MCFLwn(1) is a special case of
Proposition 1, because we have m-MCFLwn,mb(1)=m-MCFLwn(1). �

118 M. Kanazawa et al.

Theorem 2. MCFL = MCFL(2)

Theorem 3. For m ≥ 1, m-MCFLwn = m-MCFLwn(2).

Theorem 2 is a corollary of Theorem 11 of [24]. Theorem 3 is Lemma 5 of [13].

Theorem 4. For any m, r ≥ 1 let G be an m-MCFG(r).

(i) There is a non-deleting m-MCFG(r), G′, such that L(G) = L(G′).
(ii) If G ∈ MCFGmb then G′ from (i) can also be chosen from MCFGmb.

Proof. This is Corollary 2.2.10 of [19] which essentially follows from both Lemma
2.2 and its concrete proof in [27]. �

Proposition 1. For m ≥ 1, r ∈ [1, 2], m-MCFLmb(r) = m-MCFLwn,mb(r).

Proof. Let G ∈ m-MCFGmb(r) for some m ≥ 1 and r ∈ [1, 2]. By (ii) of the last
theorem we can w.l.o.g. assume G to be non-deleting. Now, transform G into its
non-permuting “closure”, i.e. a non-deleting and non-permuting m-MCFGmb(r),
G′, deriving the same language (cf. Construction 2.4.3 and Corollary 2.4.4 in
[19]). Since each rule in G′ is not only non-deleting and non-permuting, but also
monadic branching, well-nestedness of such a rule holds straightforwardly. �

Proposition 2. MCFL(1) � MCFLmb.

Proof. MCFL(1) ⊆ MCFLmb is an immediate consequence of the correspond-
ing definitions. Because of

• MCFL(1)= ET0Lfin and ET0Lfin ⊆ EDT0L, cf. [4] and [24],2

• CFL− EDT0L = ∅, cf. [4], and
• CFL = 1-MCFL(2) and 1-MCFL(2)⊆MCFLmb

even proper inclusion of MCFL(1) within MCFLmb holds. �

3 Separating MCFLwn from MCFL
In this section we briefly recapitulate the main results from [13], in order to
emphasize the analogies and differences to the way of separating MCFLmb from
MCFLwn presented in the next section. The first theorem is Theorem 8 of [13].

Theorem 5 (copying theorem for MCFLwn). If for some set of strings L0,
L = {w#w |w ∈ L0} holds then for each m ≥ 1, the following are equivalent:

(i) L ∈ m-MCFLwn. (ii) L ∈ m-MCFL(1).

Corollary 2. If for some set of strings L0, L = {w#w |w ∈ L0} holds then the
following are equivalent:

(i) L ∈MCFLwn. (ii) L ∈MCFL(1). (iii) L0 ∈ MCFL(1).
2 CFL denotes the class of all context-free languages. For definitions of the language

classes EDT0L and ET0Lfin as well as their origins see [4].

Well-Nestedness Properly Subsumes Strict Minimalism 119

This is Corollary 9 of [13]. It is proven there relying on two theorems, namely,
the one presented here as Theorem 5 and the equivalent version of our Theorem
1 taking into account the language {w#w |w ∈ L0} instead of {w#wR |w ∈ L0}.

Theorem 6 (separation theorem for MCFLwn). MCFLwn � MCFL.

This is Corollary 10 of [13] following from the last corollary combined with the
facts that CFL −MCFL(1) = ∅, and that for L0 ∈ CFL, {w#w |w ∈ L0} ∈
MCFL.

4 Separating MCFLmb from MCFLwn

We start by presenting an analog to the copying theorem for MCFLwn.

Theorem 7 (reverse copying theorem for MCFLmb). If for some set of
strings L0, L = {w#wR |w ∈ L0} holds then for each m ≥ 1, (i’) implies (ii’):

(i’) L ∈ m-MCFLmb.
(ii’) L ∈ m + 1-MCFLwn(1) and L0 ∈ m + 1-MCFLwn(1).

Corollary 3. If for some set of strings L0, L = {w#wR |w ∈ L0} holds then
the following are equivalent:

(i) L ∈ MCFLmb. (ii) L ∈MCFL(1). (iii) L0 ∈MCFL(1).

Proof. “(iii)⇒(ii)”: special case of Theorem 1. “(ii)⇒(i)”: cf. Proposition 2.
“(i)⇒(iii)”: this is a corollary of Theorem 7. �

Lemma 1. For each L0 ∈ CFL, L = {w#wR |w ∈ L0} ∈ 2-MCFLwn.

Proof. Starting, e.g., with a CFG in Chomsky normal form generating L0, the
construction of an 2-MCFGwn(2) generating L is straightforward. �

Theorem 8 (separation theorem for MCFLmb). MCFLmb � MCFLwn.

Proof. Choose existing L0 ∈ CFL − MCFL(1). Then, by Theorem 7 and 1,
L = {w#wR |w ∈ L0} ∈ 2-MCFLwn −MCFLmb. �

The remaining part of this section is devoted to a detailed description of the
crucial points underlying a proof of Theorem 7.

Proof (sketch) of Theorem 7. For some m ≥ 1, let L ∈ m-MCFLmb. When
having shown that L ∈ m + 1-MCFLwn(1) holds, L0 ∈ m + 1-MCFLwn(1)
follows from Theorem 1 and Corollary 1(ii).

Let G = 〈N, Σ ∪ {#}, P, S〉 be an m-MCFGmb with L(G) = L. W.l.o.g. G
is well-nested by Proposition 1, thus, in particular, each p ∈ P is non-deleting.
Moreover, we can w.l.o.g. assume that each A ∈ N is useful and derives an infinite
set of tuples of strings over Σ, i.e., {〈w1, . . . , wk〉 ∈ (Σ∗)k | �G A(w1, . . . , wk)}
is infinite for k = arity(A). Trivially, Σ can be chosen such that Σ ∩ {#} = ∅.

120 M. Kanazawa et al.

Depending on G, in (21)-(24) we construct a G′ ∈ m + 1-MCFGwn(1) with
L(G′) = L. Before doing so, the crucial properties of G virtually employed by G′

are carefully revealed step by step, and the presented technical details providing
a precise characterization of those properties are summed up in Fig. 4. In a
nutshell, we are concerned with the following situation as to G:

if �G T : S(ŵ # ŵR) for some derivation tree T over ΔP and ŵ ∈ Σ∗,
then looking at T from a bottom-up perspective, the unique instance
of “#” appearing in the derived string ŵ#ŵR is successively passed on
upward from the leftmost leaf of the tree to the root, i.e. along the tree’s
leftmost path, and within no other node of the tree any instance of # is
created or manipulated in another way.

(9)

Consider p ∈ P with rank(p) = 2. Because it is monadic branching, p is of the
form B0(α1, . . . , αk0) ← B1(x1,1, . . . , x1,k1), . . . , Bn(xn,1, . . . , xn,kn) according to
(1) such that n = 2 and k1 = 1. We set A = B0, B = B1 and C = B2, and also
k = k0, l = k2, x′

0 = x1,1 and x′
i = x2,i for i ∈ [1, k2]. Thus, p is of the form

A(α1, . . . , αk) ← B(x′
0), C(x′

1, . . . , x
′
l) (10)

Since A, B and C are useful, there are vi ∈ (Σ ∪ {#})∗ for i ∈ [1, k], ui ∈
(Σ ∪ {#})∗ for i ∈ [0, l] and derivation trees TB and TC over ΔP , and there are
y ∈ Y , x′′

i ∈ X for i ∈ [1, k], α ∈ (Σ ∪ {x′′
i | i ∈ [1, k]})∗ and a derivation tree

context T̃S over ΔP (Y) such that

�G pTBTC : A(v1, . . . , vk) and y : A(x′′
1 , . . . , x′′

k) �G T̃S : S(α) (11)

and
�G TB : B(u0) and �G TC : C(u1, . . . , ul) (12)

We will crucially show that (16) and (18) and, therefore, (20) hold, i.e., we
will show a) that u0 contains exactly one instance of #, while for i ∈ [1, l], ui

does not contain any such instance, b) that l > 1 and c) that, therefore, in case
k > 1, A cannot appear itself on the righthand side of any strictly binary rule
from P . These properties essentially imply (9).

a) Since by choice of G each rule is non-deleting, and because each w̃ ∈ L(G)
is of the form w#wR for some w ∈ Σ∗, from (11) and (12), it follows that

ui ∈ Σ∗{#, ε}Σ∗ holds for each i ∈ [0, l], but ui ∈ Σ∗{#}Σ∗ is true for
at most one i ∈ [0, l], (13)

and, in particular, there exist a unique j0 ∈ [1, k] and v, v ∈ (Σ ∪ {#})∗ with

vj0 = v u0 v (14)

Suppose, u0 ∈ Σ∗. Then again, because of (11) and (12), and since by choice
of G each of its rules is non-deleting, there are w1, w2 ∈ Σ∗ such that, w.l.o.g.,

�G S(w1u0w2#(w1u0w2)R) and thus, �G S(w1u
′w2#(w1u0w2)R) (15)

Well-Nestedness Properly Subsumes Strict Minimalism 121

S(w1 u′ w2 # (w1 u0 w2)
R)

T̃S

A(v1 , . . . , vj0−1 , v u′ v , vj0+1 , . . . , vk)

B(u′)

T ′
B

C(u1 , . . . , ul)

TC

Fig. 2. Derivation tree according to (11)-(15)

whenever �G T ′
B : B(u′) for some u′ ∈ Σ∗ and some derivation tree T ′

B over ΔP .
Figure 2 depicts the situation as fixed in (11)-(15). However, having chosen

G such that, in particular, the nonterminal B derives an infinite set of strings
over Σ, (15) yields a contradiction to the fact that each element in L(G) is of
the form w#w for some w ∈ Σ∗. In other words, in combination with (13), we
have

u0 ∈ Σ∗{#}Σ∗ and ui ∈ Σ∗ for i ∈ [1, l] (16)

b) Suppose, l = 1. Then, we can again derive a contradiction. We can do so
analogously to the case resulting from the assumption that u0 ∈ Σ∗: because
u1 ∈ Σ∗ by (16), we can conclude that there are w1, w2 ∈ Σ∗ such that, w.l.o.g.,

�G S(w1u1w2#(w1u1w2)R) and thus, �G S(w1u
′w2#(w1u1w2)R) (17)

whenever �G C(u′) for some u′ ∈ Σ∗. By choice of G, the nonterminal C derives
an infinite set of strings over Σ, and therefore the assumption l = 1 allows us to
derive strings from S which are not in L(G). Thus, it must hold that

l > 1 (18)

c) Let TS be the derivation tree over ΔP which results from substituting the
variable y ∈ Y within the derivation context T̃S over ΔP (Y) by pTBTC . Recall,
once more, that each rule of G is non-deleting. Thus, from (11)-(14) and (16) it,
moreover, follows that there are u, u, w, w ∈ Σ∗ such that

u0 = u # u , vi ∈ Σ∗ for i = j0 and �G TS : S(w v u # uv w) (19)

The situation as fixed in (11)-(14), (16) and (19) is displayed in Fig. 3. Taking
into account the above considerations on the nonterminal C, in particular, the
properties expressed in (16) and (18), it becomes clear that in case k > 1,

A cannot appear on the righthand side of any p′ ∈ P with rank(p′) = 2. (20)

122 M. Kanazawa et al.

S(w v u # u v w)

T̃S

A(v1 , . . . , vj0−1 , v u # u v , vj0+1 , . . . , vk)

B(u # u)

TB

C(u1 , . . . , ul)

TC

Fig. 3. Derivation tree TS and intermediately derived “objects.”

If A did so, L(G) would, contradicting its definition, include a string consisting
of more than one instance of #. Recall that vj0 ∈ Σ∗{#}Σ∗ by (14) and (16).

Thus, TS and wvu are in fact respective instances of a derivation tree T and
a string ŵ in the sense of the above “nutshell” (9). More concretely, for some
m(S) ≥ 0 there is a finite sequence of derivation tree contexts over ΔP (Y),
〈Vj〉0≤j≤m(S), such that V0 is a tree over ΔP with no occurrence of variables,
and such that for j ∈ [1, m(S)], Vj is a tree over ΔP ({yj}) with exactly on
instance of yj occurring in Vj .

Furthermore, if W0 = V0, and if for j ∈ [1, m(S)], Wj is the result of substi-
tuting yj within Vj by Wj−1 then Wm(S) = TS .

Each Vj is built up in the following way:

• There are particular numbers n(j) = n ≥ 0 and si ≥ 0 for i ∈ [0, n].

• There are nonterminals B(i) ∈ N and C(i,i′) ∈ N for i ∈ [0, n] and i′ ∈ [0, si]
with arity(B(i)) = 1 for i ∈ [1, n], arity(C(0,0)) = 1, and C(0,s0) = S if s0 = 0.

• We let
ri := arity(B(i)) for i ∈ [0, n]

l(i, i′) := arity(C(i,i′)) for i ∈ [0, n] , i′ ∈ [0, si]

• Then, there is a set of pairwise distinct variables

Xj = {x(i)
i′′ , x

(i,i′)
i′′′ | i ∈ [0, n], i′′ ∈ [1, ri], i′ ∈ [0, si], i′′′ ∈ [1, l(i, i′)]} ⊆ X

and there are

α
(i)
i′′ ∈ (Σ ∪ {#} ∪Xj)∗ for i ∈ [0, n] , i′′ ∈ [0, ri]

α
(0)
i′′ ∈ (Σ ∪ {#})∗ for i′′ ∈ [0, r0] in case n = 0

β
(0,i′)
i′′′ ∈ (Σ ∪ {#} ∪Xj)∗ for i′ ∈ [0, s0] , i′′′ ∈ [1, l(0, i′)]

β
(i,i′)
i′′′ ∈ (Σ ∪Xj)∗ for i ∈ [1, n] , i′ ∈ [0, si − 1] , i′′′ ∈ [1, l(i, i′)]

u
(i,si)
i′′′ ∈ Σ∗ for i ∈ [1, n] , i′′′ ∈ [1, l(i, si)]

Well-Nestedness Properly Subsumes Strict Minimalism 123

• such that for i ∈ [0, n−1], there are non-terminating rules from P of the form

p(i) = B(i)(α(i)
1 , . . . , α(i)

ri
) ← B(i+1)(x(i+1)

1) , C(i+1,0)(x(i+1,0)
1 , . . . , x

(i+1,0)
l(i+1,0))

and such that in case n = 0,3 there is a terminating rule from P of the form

p(0) = B(0)(α(0)
1 , . . . , α(0)

r0
) ←

• Furthermore, for i ∈ [1, n], there are terminating rules from P of the form

q(i,si) = C(i,si)(u(i,si)
1 , . . . , u

(i,si)
l(i,si)

) ←

while q(0,s0) = p(0) , implying that C(0,s0) = B(0) , and

for i ∈ [0, n], i′ ∈ [0, si − 1], there are unary branching rules from P of the form

q(i,i′) = C(i,i′)(β(i,i′)
1 , . . . , β

(i,i′)
l(i,i′)) ← C(i,i′+1)(x(i,i′+1)

1 , . . . , x
(i,i′+1)
l(i,i′+1))

• For i ∈ [1, n], we now define derivation trees over ΔP by

T (i,si) := q(i,si) and T (i,i′) := q(i,i′)T (i,i′+1) for i′ ∈ [0, si − 1]

and for yj ∈ Y , we define derivation tree contexts over ΔP ({yj}) by

U (n−1) := p(n−1)yjT
(n,0) in case n > 0

U (i) := p(i)U (i+1)T (i+1,0) for i ∈ [0, n− 2]
U (0) := p(0) in case n = 0

Finally, we set

T (0,s0) := U (0) , T (0,i′) := q(0,i′)T (0,i′+1) for i′ ∈ [0, s0 − 1] and Vj := T (0,0)

• Thus,

yj : B(n)(x(n)
1) �G Vj : C(0,0)(β>) if n > 0 and �G Vj : C(0,0)(β=) if n = 0

for some β> ∈ (Σ ∪ {#, x
(n)
1 })∗ if n > 0, and β= ∈ (Σ ∪ {#})∗ if n = 0. Recall

that arity(C(0,0)) = 1 in general, and that arity(B(n)) = 1 in case n > 0.

Figure 4 aims at making the formal setting as it regards the derivation tree con-
text Vj somewhat more accessible. Note that for i ∈ [0, n − 1], the respective
calculation of the contributions of B(i+1) and C(i+1,0) to B(i) are independent
of each other. Crucially, from a bottom-up perspective, the calculation of the
contribution of B(i+1) can be done first and can be stored in a buffer, while
calculating the contribution of Ci+1. In terms of the arity of a nonterminal the
buffer size needed is 1, since for each i ∈ [0, n− 1], B(i+1) has arity 1. Exactly
this property is used below in order to define the m + 1-MCFG(1), G′, based
on the given m-MCFGmb, G, with L(G′) = L(G): in terms of the transformed
grammar, the subderivation trees T (i, 0) for i ∈ [1, n], i.e. the “ i©-parts” of

3 Note that n = 0 implies {p(i) | i ∈ [0, n − 1]} = ∅.

124 M. Kanazawa et al.

S(w v u # u v w)

C(0,0)(u
(0,0)
1)

B(0)(v
(0)
1 , . . . , v(0)

r0
)

B(1)(u(1)# u(1))

B(2)(u(2)# u(2))

B(n−1)(u(n−1)# u(n−1))

B(n)(v
(n)
1 , . . . , v(n)

rn
) C(n,0)(u

(n,0)
1 , . . . , u

(n,0)
l(n,0))

n©

C(n,sn)(u
(n,sn)
1 , , . . . , u

(n,sn)
l(n,sn))

C(2,0)(u
(2,0)
1 , . . . , u

(2,0)
l(2,0))

2©

C(2,s2)(u
(2,s2)
1 , , . . . , u

(2,s2)
l(2,s2))

C(1,0)(u
(1,0)
1 , . . . , u

(1,0)
l(1,0))

1©

C(1,s1)(u
(1,s1)
1 , , . . . , u

(1,s1)
l(1,s1))

Fig. 4. Typical configuration within derivation tree TS corresponding to derivation tree
context Vj over ΔP ({yj}) for arbitrary j ∈ [0, m(S)]

the original derivation tree context Vj (cf. Fig. 4), become integral parts of
the leftmost path resulting in a completely unary branching derivation tree (cf.
Fig. 5).

For {[A/B] |A, B ∈ N} being a set of pairwise distinct new symbols, define
now G′ = 〈N ′, Σ, P ′, S〉 ∈ m + 1-MCFG(1) depending on G with L(G′) = L.

• The set of nonterminals N ′ =
⋃

k≥0 N ′(k) is defined by N ′(0) = ∅ and

N ′(k+1) = N (k+1) ∪ {[A/B] |A ∈ N (k), B ∈ N (1)} for k ≥ 0 (21)

• In order to define the rule set P ′, we distinguish three types of rules in P .

– A binary branching p ∈ P is of the form A(α1, . . . , αk) ← B(x′
0), C(x′

1, . . . , x
′
l)

in accordance with (10). For each such p ∈ P we let

A(α1, . . . , αk) ← [C/B](x′
0, x

′
1, . . . , x

′
l) ∈ P ′ (22)

– A unary branching p ∈ P is of the form A(α1, . . . , αk) ← C(x′
1, . . . , x

′
l) ac-

cording to (1), where k = k0, l = k1, A = B0, C = B1, x′
i = x1,i for i ∈ [1, l].

For each such p ∈ P , each B ∈ N (1), and some x′
0 ∈ X − {x′

i | i ∈ [1, l]} let

p ∈ P ′ and [A/B](x′
0, α1, . . . , αk) ← [C/B](x′

0, x
′
1, . . . , x

′
l) ∈ P ′ (23)

Well-Nestedness Properly Subsumes Strict Minimalism 125

S(w v u # u v w)

C(0,0)(u
(0,0)
1)

B(0)(v
(0)
1 , . . . , v

(0)
r0)

[C(1,0)/B(1)](u(1)# u(1) , u
(1,0)
1 , . . . , u

(1,0)

l(1,0))

1©

[C(1,s1)/B(1)](u(1)# u(1) , u
(1,s1)
1 , . . . , u

(1,s1)
l(1,s1))

B(1)(u(1)# u(1))

[C(2,0)/B(2)](u(2)# u(2) , u
(2,0)
1 , . . . , u

(2,0)

l(2,0)
)

2©

[C(2,s2)/B(2)](u(2)# u(2) , u
(2,s2)
1 , . . . , u

(2,s2)

l(2,s2))

B(2)(u(2)# u(2))

B(n−1)(u(n−1)#u(n−1))

[C(n,0)/B(n)](u(n)# u(n) , u
(n,0)
1 , . . . , u

(n,0)

l(n,0))

n©

[C(n,sn)/B(n)](u(n)# u(n) , w
(n,sn)
1 , . . . , w

(n,sn)
l(n,sn))

B(n)(v
(n)
1 , . . . , v

(n)
rn)

Fig. 5. Typical configuration within derivation tree of G′ corresponding to the trans-
formed derivation tree context Vj over ΔP ({yj}) for arbitrary j ∈ [0, m(S)]

126 M. Kanazawa et al.

– A terminating p ∈ P is of the form A(w1, . . . , wk) ← in accordance with (1),
where k = k0, A = B0 and wi = αi for i ∈ [1, k]. For each such p ∈ P , each
B ∈ N (1), and some x′

0 ∈ X − {x′
i | i ∈ [1, l]} let

p ∈ P ′ and [A/B](x′
0, w1, . . . , wk) ← B(x′

0) ∈ P ′ (24)

An induction on the length of a derivation showed that L(G′) = L(G). Due
to (20), in G′ we do not have to “lift” by means of “[·/B]” over the lefthand side
of a binary branching rule from G, cf. (22). Rather, the “lifting” instantiated in
(24) and inherited in (23) is validated in (22). Instead of giving more details we
refer back to the considerations above and point to Fig. 4 and 5 depicting how a
derivation tree context Vj is transformed to a corresponding one in terms of G′.

5 Conclusion

We have characterized the separation of monadic branching MCFGs, and thus,
MGs obeying the shortest move condition (SMC) and the specifier island con-
dition (SPIC), from well-nested MCFGs by means of a “simple reverse copying”
theorem concerning the derivable languages. Solving a generally open problem,
the result also provides a direct comparison to the separation of well-nested
MCFGs from MCFGs, and thus, MGs only obeying the SMC, by means of an
already known “simple copying” theorem.

The SPIC provides a rather canonical restriction within the MG-setting.4

Well-nestedness provides a rather canonical restriction on MCFGs, or reversing
the perspective, within the MCFG-framework well-nested MCFGs constitute
a natural generalization of, e.g., tree adjoining grammars, the former crucially
preserving the well-nestedness property of the latter.5 Since on the other hand,
in terms of MGs, well-nestedness seems to be a rather ad hoc restriction, whereas
for MCFGs, this seems to hold with regard to the SPIC, our result may suggest
that we are concerned here with a structural difference between MGs and MCFGs
which cannot immediately be overcome in a non-stipulated manner.

References

1. Chomsky, N.: The Minimalist Program. MIT Press, Cambridge (1995)
2. Chomsky, N.: Derivation by phase. In: Kenstowicz, M. (ed.) Ken Hale. A Life in

Language, pp. 1–52. MIT Press, Cambridge (2001)
3. Chomsky, N.: On phases. In: Freidin, R., Otero, C., Zubizaretta, M.L. (eds.) Foun-

dational Issues in Linguistic Theory, pp. 133–166. MIT Press, Cambridge (2008)
4. Engelfriet, J., Rozenberg, G., Slutzki, G.: Tree transducers, L systems, and two-

way machines. Journal of Computer and System Sciences 20, 150–202 (1980)

4 Independently of possible, linguistically motivated objections, the SPIC might, e.g.,
be interpreted as a “generalized” generalized left branch condition in the sense of [7].

5 It has even be argued that there are good reasons to think that well-nestedness
should be an essential property of the concept of mild context-sensitivity, cf. [12].

Well-Nestedness Properly Subsumes Strict Minimalism 127

5. Gärtner, H.-M., Michaelis, J.: A note on the complexity of constraint interaction:
Locality conditions and minimalist grammars. In: Blache, P., Stabler, E., Bus-
quets, J., Moot, R. (eds.) LACL 2005. LNCS (LNAI), vol. 3492, pp. 114–130.
Springer, Heidelberg (2005)

6. Gärtner, H.M., Michaelis, J.: Some remarks on locality conditions and minimal-
ist grammars. In: Sauerland, U., Gärtner, H.M. (eds.) Interfaces + Recursion =
Language?, pp. 161–195. Mouton de Gruyter, Berlin (2007)

7. Gazdar, G.: Unbounded dependencies and coordinate structure. Linguistic In-
quiry 12, 155–184 (1981)

8. Girard, J.Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
9. de Groote, P., Morrill, G., Retoré, C. (eds.): LACL 2001. LNCS (LNAI), vol. 2099.

Springer, Heidelberg (2001)
10. Harkema, H.: A characterization of minimalist languages. In: de Groote, P. et al

(eds.) [9], pp. 193–211
11. Joshi, A.K.: Tree adjoining grammars: How much context-sensitivity is required

to provide reasonable structural descriptions? In: Dowty, D.R., Karttunen, L.,
Zwicky, A.M. (eds.) Natural Language Parsing, pp. 206–250. Cambridge Univer-
sity Press, New York (1985)

12. Kanazawa, M.: The convergence of well-nested mildly context-sensitive grammar
formalisms (2009), invited talk held at FG-2009, Bordeaux

13. Kanazawa, M., Salvati, S.: The copying power of well-nested multiple context-
free grammars. In: Dediu, A.-H., Fernau, H., Mart́ın-Vide, C. (eds.) LATA 2010.
LNCS, vol. 6031, pp. 344–355. Springer, Heidelberg (2010)

14. Kobele, G.M.: Generating Copies. An investigation into structural identity in
language and grammar. Ph.D. thesis, University of California, Los Angeles (2006)

15. Kobele, G.M., Michaelis, J.: Two type-0 variants of minimalist grammars. In:
Rogers, J. (ed.) [25], pp. 81–91

16. Koopman, H., Szabolcsi, A.: Verbal Complexes. MIT Press, Cambridge (2000)
17. Kracht, M.: The Mathematics of Language. Mouton de Gruyter, Berlin (2003)
18. Michaelis, J.: Derivational minimalism is mildly context-sensitive. In: Moortgat,

M. (ed.) LACL 1998. LNCS (LNAI), vol. 2014, pp. 179–198. Springer, Heidelberg
(2001)

19. Michaelis, J.: On Formal Properties of Minimalist Grammars. Linguistics in Pots-
dam 13, Universitätsbibliothek, Publikationsstelle, Potsdam, Ph.D. thesis (2001)

20. Michaelis, J.: Transforming linear context-free rewriting systems into minimalist
grammars. In: de Groote, et al (eds.) [9], pp. 228–244

21. Michaelis, J.: Observations on strict derivational minimalism. Electronic Notes in
Theoretical Computer Science 53, 192–209 (2004)

22. Michaelis, J.: An additional observation on strict derivational minimalism. In:
Rogers, J. (ed.) [25], pp. 101–111

23. Mönnich, U.: Some remarks on mildly context-sensitive copying. In: Hanneforth,
T., Fanselow, G. (eds.) Language and Logos, pp. 367–389. Akad. Verlag, Berlin
(2010)

24. Rambow, O., Satta, G.: Independent parallelism in finite copying parallel rewrit-
ing systems. Theoretical Computer Science 223, 87–120 (1999)

25. Rogers, J.: Proceedings of FG-MoL 2005. CSLI Publications, Stanford (2009)
26. Salvati, S.: Minimalist grammars in the light of logic. Research Report, INRIA

Bordeaux (2011), http://hal.inria.fr/inria-00563807/en/
27. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free gram-

mars. Theoretical Computer Science 88, 191–229 (1991)

http://hal.inria.fr/inria-00563807/en/

128 M. Kanazawa et al.

28. Stabler, E.P.: Derivational minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS
(LNAI), vol. 1328, pp. 68–95. Springer, Heidelberg (1997)

29. Stabler, E.P.: Remnant movement and complexity. In: Bouma, G., Kruijff, G.J.M.,
Hinrichs, E., Oehrle, R.T. (eds.) Constraints and Resources in Natural Language
Syntax and Semantics, pp. 299–326. CSLI Publications, Stanford (1999)

30. Stabler, E.P.: Recognizing head movement. In: de Groote, P., et al [9], pp. 245–260
31. Stabler, E.P.: Computational perspectives on minimalism. In: Boeckx, C. (ed.)

Oxford Handbook of Linguistic Minimalism, pp. 616–641. Oxford University Press,
New York (2011)

32. Stabler, E.P., Keenan, E.L.: Structural similarity within and among languages.
Theoretical Computer Science 293, 345–363 (2003)

33. Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Characterizing structural descriptions
produced by various grammatical formalisms. In: 25th Annual Meeting of the As-
sociation for Computational Linguistics, Stanford, CA, pp. 104–111. ACL (1987)

34. Villemonte de la Clergerie, É.: Parsing mcs languages with thread automata. In:
Proceedings of the Sixth International Workshop on Tree Adjoining Grammars
and Related Formalisms, Venezia, pp. 101–108 (2002)

Minimalist Tree Languages Are Closed Under

Intersection with Recognizable Tree Languages

Gregory M. Kobele

University of Chicago
kobele@uchicago.edu

Abstract. Minimalist grammars are a mildly context-sensitive gram-
mar framework within which analyses in mainstream chomskyian syntax
can be faithfully represented. Here it is shown that both the derivation
tree languages and derived tree languages of minimalist grammars are
closed under intersection with regular tree languages. This allows us to
conclude that taking into account the possibility of ‘semantic crashes’
in the standard approach to interpreting minimalist structures does not
alter the strong generative capacity of the formalism. In addition, the ad-
dition to minimalist grammars of complexity filters is easily shown using
a similar proof method to not change the class of derived tree languages.

Minimalist grammars (in the sense of [1]) are a formalization of mainstream
chomskyian syntax. In this paper I will show that both derived and derivation
tree languages of minimalist grammars are closed under intersection with reg-
ular tree languages. The technique used in the proofs of this fact is similar to
that of [2], where non-terminals of context-free derivation trees were paired with
states of an automaton. While the closure of the derived tree languages under
regular intersection can be seen to follow from that of the derivation tree lan-
guages (by virtue of the monadic second order relation between the two), the
proof method extends immediately to cases of linguistic interest where the con-
nection is not as obvious, as in the case of ‘complexity filters’ in the sense of [3].
The closure of derived tree languages under regular intersection guarantees that
the kind of semantic interpretation performed in the minimalist literature [4],
which makes use of only a finite domain of types, cannot in virtue of partiality
(semantic ‘crashes’) lead to sets of semantically well-formed trees which could
not be directly derived by some minimalist grammar.

The remainder of the paper is organized as follows. The next section intro-
duces minimalist grammars, as well as some relevant notation. Section 2 con-
tains the proofs of closure under intersection with regular tree languages of both
derivation and derived tree languages of minimalist grammars. Consequences
and extensions of linguistic relevance are discussed in section 3. Finally, section
4 concludes.

1 Formal Preliminaries

Given a finite set A, A∗ denotes the set of all finite sequences of elements over
A. The symbol ε denotes the empty sequence. A ranked alphabet is a finite set

S. Pogodalla and J.-P. Prost (Eds.): LACL 2011, LNAI 6736, pp. 129–144, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

130 G.M. Kobele

F together with a function rank : F → N mapping each symbol in F to a
natural number indicating its arity. Given f ∈ F with arity n = rank(f), I will
sometimes write f (n) to denote f while indicating that it has arity n. The set
T (F) of terms over a ranked alphabet F is the smallest subset of F ∗ containing
all f (0) ∈ F , and such that whenever it contains t1, . . . , tn, it contains f (n)t1 · · · tn
for each f (n) ∈ F . In lieu of writing f (n)t1 · · · tn, I will insert parentheses and
commas for readability, writing in its stead f(t1, . . . , tn). Regular subsets of
terms over an alphabet F can be given in terms of bottom-up tree automata,
which are tuples A = 〈Q, (δf)f∈F 〉, where each δf is a rank(f)-ary function
over Q. An automaton A = 〈Q, (δf)f∈F 〉 induces a function A : T (F) → Q in
the following manner: A(f (n)(t1, . . . , tn)) = δf (A(t1), . . . , A(tn)). For each state
q ∈ Q, the set of terms A−1(q) = {t ∈ TF : A(t) = q} mapped by A to the state
q is a regular term language. It will be convenient in the following to treat A as
operating over T (F ∪ Q), where elements of Q are treated as nullary symbols.
In this case, A(f (n)(s1, . . . , sn)) = δf (q1, . . . , qn), where qi = si if si ∈ Q, and
A(si) otherwise.

A partial function f from A to B is a total function from A to B ∪ {�}. If
f : A → B is a partial function, we say it is undefined at a ∈ A if f(a) = �.
The everywhere undefined function is denoted ∅. Given partial functions f, g :
A → B, their union f ⊕ g is defined iff there is no a ∈ A such that both f
and g are defined at a and f(a) �= g(a). In this case (f ⊕ g)(a) = if f(a) =
� then g(a) else f(a). Given partial f : A → B and a ∈ A, (f/a)(b) = if b =
a then � else f(b). Given a subset B ⊂ A∗ with the property that aw, au ∈ B
implies that w = u, B can be viewed as the partial function fB from A to A∗

such that fB(a) = aw if aw ∈ B and is undefined otherwise. In particular, given
aw ∈ A∗, {aw} : A→ A∗ is the partial function defined only at a.

1.1 Minimalist Grammars

A minimalist grammar is given by a four-tuple G = 〈Σ, sel, lic, Lex〉 where
Σ is a finite set, sel and lic are finite sets of selection and licensing features
respectively which determine a set F := {=x, x, +y, -y : x ∈ sel, y ∈ lic} of
features, Lex ⊂ Σ × F∗ is a finite set of lexical items. Features of the form
=x are selector features, those of the form +y are licensor features, and those
of the form x (-y) are selectee (licensee) features. Treating elements of Σ as
nullary symbols, we define a ranked alphabet S := Σ ∪ {t(0), •(2)}. A term
t ∈ T (S) is headed by its right-most leaf. Conversely, a term t′ ∈ T (S) is a
maximal projection (of its head) in t iff either t′ = t or there is a unary context
C[x], and some t′′ ∈ T (S) such that t = C[•(t′, t′′)] – in other words, t′ is the
left-daughter of some node. The expressions L(G) generated by a minimalist
grammar G is the smallest subset of (T (S)× F+)+ which 1) contains Lex, and
2) is closed under the operations presented in inference rule format below. In
the rules below, m, n ≤ |lic|, 1 ≤ i, j ≤ m, n, φi, ψj ∈ Σ × F+, γ, δ ∈ F+, and

Minimalist Tree Languages Are Closed Under Intersection 131

s1, s2 ∈ T (S).1 In addition, we require in move1 and move2 that φi is the only
pair whose first feature is -c.2

〈s1, =cγ〉, φ1, . . . , φm 〈s2, c〉, ψ1, . . . , ψn

〈•(s2, s1), γ〉, φ1, . . . , φm, ψ1, . . . , ψn
merge1

〈s1, =cγ〉, φ1, . . . , φm 〈s2, cδ〉, ψ1, . . . , ψn

〈•(t, s1), γ〉, φ1, . . . , φm, 〈s2, δ〉, ψ1, . . . , ψn
merge2

〈s1, +cγ〉, φ1, . . . , φi−1, 〈s2, -c〉, φi+1, . . . , φm

〈•(s2, s1), γ〉, φ1, . . . , φi−1, φi+1, . . . , φm
move1

〈s1, +cγ〉, φ1, . . . , φi−1, 〈s2, -cδ〉, φi+1, . . . , φm

〈•(t, s1), γ〉, φ1, . . . , φi−1, 〈s2, δ〉, φi+1, . . . , φm
move2

An element of L(G) is complete iff it is of the form 〈s, c〉. An element of T (S)
is a derived (or surface) tree iff it is the first component of a complete expression.
The derived tree language of G at selectee feature c is defined to be the set of tree
components of complete expressions with feature c, Lc(G) := {s : 〈s, c〉 ∈ L(G)}.

The string language of G at selectee feature c (written Sc(G)) is defined to
be the image of Lc(G) under the mapping y : T (S) → (S0 − {t})∗ which maps
a tree to the string consisting of its leaves in left-to-right order, ignoring traces;
y(t) = ε, y(s(0)) = s, and y(•(t1, t2)) = y(t1)�y(t2).

The following obvious proposition shows that every maximal projection is
headed by some leaf.

Proposition 1. Let G and x ∈ F be arbitrary. Then for every t ∈ Lx(G) there
is a unique maximal decomposition LexProj(t) of t into lexicalized maximal
projections of the form TCon

n
s [t1, . . . , tn], where t �= s(0) ∈ S, t1, . . . , tn ∈ T (S),

and TCon
n
s is the n-ary context over T (S) defined as follows:

1. TCon
0
s := s

2. TCon
n+1
s := •(xn+1,TCon

n
s)

Proof. This follows from the observation that every occurance of a trace (t) in
the surface tree of a complete expression is already itself a maximal projection
(by inspection of the operations), and thus that every maximal projection is
‘lexicalized’. ��

Treating elements of Lex as nullary symbols, we define a ranked alphabet U :=
Lex∪{r(2),v(1)}. The set of derivation (or underlying) terms over G is D(G) :=
T (U). Given d ∈ D(G), we write ev(d) to denote the expression which is the eval-
uation of d in L(G), if it exists (ev : D(G)→ L(G) is the partial injective map-
ping ev(�) = �, ev(v(d)) = move(ev(d)), and ev(r(d1, d2)) = merge(ev(d1), ev(d2)).)

1 In the following rules, all move and merge operations are ‘to the left’. This simpli-
fication made for expository purposes does not affect the results obtained in this
paper.

2 This constraint is called the Shortest Move Constraint (SMC).

132 G.M. Kobele

We identify the set of well-formed, or convergent, derivations with the language
(at a particular state) of a bottom up tree automaton AG = 〈Q, (δf)f∈F 〉, which
is defined next. Given Lex we define suf(Lex) = {η : ∃σ ∈ Σ∗, γ ∈ F∗. 〈σ, γη〉 ∈
Lex} to be the set of suffixes of lexical feature sequences. The states of our
automaton are pairs 〈η, f〉, where η ∈ suf(Lex) and f : {-y : y ∈ lic} →
suf(Lex) is a partial function.3 The functions (δf)f∈F are defined as per the
following.

– For each lexical item � = 〈σ, η〉 ∈ Lex, δ� = 〈η, ∅〉.
– Given state s = 〈+yη, f〉 with f(-y) = -yγ, δv is defined at s iff either

1. γ = ε, in which case δv(s) = 〈η, f/-y〉
2. γ = -zη and f is undefined at -z, in which case δv(s) = 〈η, f/-y ⊕ {γ}〉

– Given states s = 〈=xη, f〉 and s′ = 〈xη′, f ′〉 with f ⊕ f ′ defined, δr is defined
at the pair s, s′ iff either
1. η′ = ε, in which case δr(s, s′) = 〈η, f ⊕ f ′〉
2. η′ = -yγ and f ⊕ f ′ is undefined at -y, in which case δr(s, s′) = 〈η, (f ⊕

f ′)⊕ {η′}〉

A derivation d ∈ D(G) is saturated iff there is some state 〈xη, f〉 beginning
with a selectee feature such that AG(d) = 〈xη, f〉. The convergent derivations at
selectee feature x are defined to be those in Dx(G) := A−1

G (〈x, ∅〉) = {t ∈ T (U) :
AG(t) = 〈x, ∅〉}. It was shown in [5] that for each x, there is a finite copying
top-down tree transducer with regular look-ahead which maps Dx(G) to Lx(G).
This is a simple consequence of the facts that the inference rules above can be
put into the format of a multiple regular tree grammar, that we can restrict our
attention to a finite set of ‘categories’ (as given by suf(Lex)|lic|+1 [6]), and that
a multiple regular tree grammar can be presented in terms of a finite copying
top-down tree transducer with regular look-ahead acting on a regular set [7].

The following facts about convergent derivations will prove useful in the next
section.

Proposition 2. For any G, and any selectee feature x, the following are true:

1. if t ∈ Dx(G) then every leaf of t is of the form 〈σ , ηcγ〉 for η ∈ {=x, +y :
x ∈ sel & y ∈ lic}∗ and γ ∈ {-y : y ∈ lic}∗

2. if t ∈ Dx(G) then every leaf � of t occurs in the n-ary context Con�(η),
where n is the number of selector features � contains, and η is the initial
sequence of selector and licensor features of �, and where Con�(·) is defined
as follows:

(a) Con�(ε) = �

(b) Con�(η +y) = v(Con�(η))
(c) Con�(η =x) = r(Con�(η), xi), where η contains i selector features

3 The SMC condition on the domains of the movement operations allows us to disre-
gard expressions with more than one component beginning with the same feature.

Minimalist Tree Languages Are Closed Under Intersection 133

Proof. 1 is proven by inspection of the definition of the transition functions δf

for the automaton AG; a state 〈+zη, f〉 where f(-z) = xγ, with x /∈ {-y : y ∈ lic}
is not in the domain of any transition function, nor is a state 〈-zη, f〉.

2 is proven by the observations that AG(r(〈η, f〉, 〈γ, g〉)) is defined only if η
begins with some selector feature and γ with some selectee feature, and that
AG(v(〈η, f〉)) is defined only if η begins with some licensor feature. ��

Proposition 2 justifies us in restricting our attention to just those lexica which
contain lexical items of the form 〈σ , ηcγ〉, where η is a string of selector and
licensor features, and γ a string of licensee features. In the following, for � as
above, we write Con� as an abbreviation for Con�(η).

The equivalent of part two of proposition 2 for surface trees can be proven.

Proposition 3. Let G and selectee feature x be arbitrary. Then for every t ∈
Lx(G), each non-trace leaf s in t occurs in a context TCon

|η|
s , for some lexical

item 〈s , ηcγ〉 ∈ Lex.

Proof. Let G, x, t, and s be as in the statement of the proposition, and let
d ∈ Dx(G) be a derivation of t. As the operations of a minimalist grammar
are linear, non-deleting, and introduce only t and • syncategorimatically, we
can identify for each leaf of t the lexical item in d from which it came. Let
s be derived from an occurrence of the lexical item � = 〈s , ηcγ〉 in d. This
item occurs by proposition 2 in the context Con�, and so there are d1, . . . , d|η|
such that d′ = Con�[d1, . . . , d|η|] is the occurrence of (the projection of �) in d.
By inspection of the operations, ev(d′) = 〈r, cγ〉, φ1, . . . , φk is seen to be such
that r instantiates the context TCon

|η|
s . As no further operations can modify r

internally, r occurs in t. ��

Proposition 3 implies that once we know the identity and numerosity of the lexical
items �1, . . . , �n in a complete derivation, the derived tree is gotten by putting
their respectiveTCon� together, along with a certain number of syncategorematic
traces (equal to the total number of licensee features across the �i).

2 Languages

The basic idea of the construction in both proofs is that each attractor feature
of a minimalist lexical item can require that the element whose feature it checks
have a certain property. Furthermore, each attractee feature can indicate that
its lexical item has a certain property. This is done by annotating a feature with
a representation of a particular property. (Then =xp indicates that it is looking
for an x with property p, and -yp indicates that it is a -y which has property
p.) In the cases we will be interested in, P will be the state set of a finite state
automaton.

Given a finite set P of properties, we define a function 〈·〉P which maps a
feature type f ∈ sel ∪ lic to the set {fp : p ∈ P} of its P -variants. Abusing

134 G.M. Kobele

notation, we write 〈·〉P for its extension to features (〈*x〉P := {*xp : p ∈ P}), to
sequences (〈aw〉P := 〈a〉P · 〈w〉P), and to sets (〈X〉P :=

⋃
x∈X〈x〉P). The set of

P -variants of a lexical item � is the set of lexical items whose feature sequences are
P -variants of the feature sequence of � (〈〈σ , γ〉〉P := {〈σ , η〉 : η ∈ 〈γ〉P }), and
the P -variant of a grammar G = 〈Σ, sel, lic, Lex〉 is the grammar whose feature
types, and lexicon are P -variants of G’s (〈G〉P := 〈Σ, 〈sel〉P , 〈lic〉P , 〈Lex〉P 〉).
The operation 〈·〉P can be extended in the obvious way to derivation trees,
mapping leaves (lexical items) to their sets of P -variants, and acting pointwise
on non-leaf nodes (〈f(t1, . . . , tn)〉P := {f(s1, . . . , sn) : si ∈ 〈ti〉P for 1 ≤ i ≤ n}).

Proposition 4. For any G, any P , x ∈ F and q ∈ P , if d ∈ Dxq(〈G〉P), then
〈d〉−1

P ∈ Dx(G). If |P | = 1, then d ∈ Dx(G) implies 〈d〉P ∈ Dxq(〈G〉P).

Proof. Let AG and A〈G〉P
be the automata over derivations of G and 〈G〉P

described in the previous section. Viewed as a function from derivations to
states, we show that AG = 〈·〉−1

P ◦ A〈G〉P
◦ 〈·〉P . First, we have that suf(Lex) =

〈suf(〈Lex〉P)〉−1
P , and thus that the states of AG and A〈G〉P

are in a one-many
correspondence (via 〈·〉P). By the definitions of δv and δr, the transitions at non-
leaf nodes of both machines partially commute with 〈·〉P , in the sense that if
δ(s1, . . . , sn) is defined (in A〈G〉P

), then δ(〈s1〉−1
P , . . . , 〈sn〉−1

P) is defined (in AG)
and is equal to 〈δ(s1, . . . , sn)〉−1

P . Finally, for every �′ ∈ 〈Lex〉P , 〈δ�′〉−1
P = δ〈�′〉−1

P
.

If |P | = 1, then the states are in a bijective correspondence, the transitions
of both machines at non-leaf nodes commute with 〈·〉P , and 〈δ�〉P = δ〈�〉P

. ��

Proposition 5. For any G, any P , and any x ∈ F, it holds for all q ∈ P that
Lx(G) = Lxq(〈G〉P).

Proof. In the forward direction, let q and x be arbitrary, and let t ∈ Lx(G),
with derivation d ∈ Dx(G). By proposition 4, 〈d〉{q} ∈ Dxq(〈G〉P). As features
can be renamed arbitrarily (as long as features that are supposed to match
still do) without affecting the identity of the tree derived, 〈d〉{q} evaluates to
t ∈ Lxq(〈G〉P).

In the reverse direction, let q and x be arbitrary and t ∈ Lxq(〈G〉P) with
derivation d ∈ Dxq(〈G〉P). By proposition 4, 〈d〉−1

P ∈ Dx(G). By the reasoning
just above, evaluating 〈d〉−1

P yields t ∈ Lx(G). ��

While propositions 4 and 5 show that marking up a lexicon does not change
the derived trees, it does have the effect of multiplying derivations for any given
derived object. By selectively removing lexical items from 〈Lex〉P , we can ipso
facto impose meanings on the property symbols.

Example 6. To require that every derivation include lexical item � ∈ Lex, we
take P = {0, 1}, and consider the largest subset X of 〈Lex〉P which satisfies the
following conditions:

1. if �′ ∈ X and �′ ∈ 〈�〉P then the property associated with its category feature
z is 1

Minimalist Tree Languages Are Closed Under Intersection 135

2. if �′ ∈ X and �′ /∈ 〈�〉P , then the property associated with its category feature
z is the maximum of the properties associated with its selector features =xi.

Then every well-formed derivation tree headed by a lexical item with a category
feature with property 1 contains some �′ with �′ ∈ 〈�〉P , and conversely, those
headed by lexical items with some category feature z0 do not contain an �.

This example can actually be viewed as a special case of a more general con-
struction, which restricts our attention to just those derivations that satisfy some
property defined by a regular tree automaton.

Proposition 7. Let G be a minimalist grammar, x a feature, and L a regular
subset of T (U). There is a minimalist grammar GL, a feature y, and a set P
such that 〈Dy(GL)〉−1

P = Dx(G) ∩ L.

Proof. Let G, x, and L be arbitrary as in the statement of the proposition. Let
A = 〈Q, (δ)f∈U 〉 be a deterministic bottom-up tree automaton such that for some
r ∈ Q, A−1(r) = L. The feature y in the statement of the proposition will be
identified with xr. We will be interested in a particular subset LexA ⊆ 〈Lex〉Q,
in which the annotations on the features of lexical items reflect the behaviour of
A on the well-formed derivation trees they occur in.

First, we define a variant of the Con function from proposition 2, a mapping
V : 〈Lex〉Q → T (U ∪Q) from annotated lexical items to terms over U and Q, in
the following manner. Writing V� for V (�), we define V� := Con〈�〉−1

Q
[q1, . . . , qn],

where � = 〈σ , =xq1
1 η1 · · · =xqn

n ηncγ〉, and for 1 ≤ i ≤ n ηi ∈ {+y : y ∈ 〈lic〉Q}∗.
Intuitively, V� calls Con�, and fills in the variables where an argument would be
merged with the state that the automaton must be in when reading the subtree
occuring in that position.

Now, let LexA be the smallest subset of 〈Lex〉Q, such that it contains a lexi-
cal item � = 〈σ , *xa1

1 · · ·*xan
n za-yb1

1 · · ·-ybm
m 〉 ∈ LexQ iff a = A(V�). Intuitively,

we are removing all the lexical items from 〈Lex〉Q whose feature annotations
on selector and category features do not accurately reflect the behaviour of A
on the contexts in which they occur. We prove that for d ∈ D(GL) a saturated
derivation tree with first feature zq, A(〈d〉−1

Q) = q by induction on the heights
of saturated derivation trees. For the base case, let � = 〈σ , z-y1 · · · -ym〉, and
let A(�) = q. Then LexA contains an item � = 〈σ , za-yb1

1 · · · -ybm
m 〉 ∈ LexQ

iff a = A(V�) = A(〈�〉−1
Q) = q. Now assume that the proposition holds of sat-

urated derivation trees up to height n − 1, and let saturated d ∈ D(GL) have
height n. Then d = Con〈�〉−1

Q
[d1, . . . , dk] for some � = 〈σ , *xr1

1 · · · *x
rj

j zqγ〉 ∈
LexA, and saturated derivation trees d1, . . . , dk. By the inductive hypothesis,
A(〈di〉−1

Q) = qi, where the first feature of di is zqi

i , for 1 ≤ i ≤ k. Then
A(Con〈�〉−1

Q
[d1, . . . , dk]) = A(Con〈�〉−1

Q
[q1, . . . , qn]) = A(V�) = q.

Now we are in a position to prove the original proposition. Define GL :=
〈Σ, 〈sel〉Q, 〈lic〉Q, LexA〉, and let t ∈ Dxr(GL). By proposition 4, 〈t〉−1

Q ∈ Dx(G).
As we saw in the previous paragraph, A(〈t〉−1

Q) = r, and thus 〈t〉−1
Q ∈ L. This

establishes the forward containment (⊆). For the reverse direction (⊇), let t ∈

136 G.M. Kobele

Dx(G) ∩ L, and let t′ ∈ 〈t〉Q be such that every selector feature on every leaf
in t is annotated with the state that A is in when it has read the corresponding
argument to that feature, and every selectee feature on every leaf in t is annotated
with the state that A is in when it has read the entire subtree of t which is
the instantiation of the context of that leaf. Clearly, t′ ∈ D(GL). As t ∈ L,
t′ ∈ Dxr(GL), which concludes the proof. ��

It is worth remarking about the constructed GL in the proof of proposition 7
that its lexical items exhibit only certain dependencies amongst their features. In
particular, if some lexical item � ∈ LexA has as its ith feature a licensee feature
-yp, then LexA contains every �′ like � except that instead of -yp, its ith feature
is -yq, for some q ∈ Q. The same holds true of +y features, but not in general
for =x and x features.

From a high-level perspective, proposition 7 shows that we may ‘push’ down
into the features of the leaves the state-annotations on non-terminals in a deriva-
tion tree obtained from Thatcher’s [2] construction of a context-free grammar
from a bottom-up finite state tree automaton.

2.1 Closure under Intersection with Regular Sets

In the previous section we noted that when incorporating regular restrictions on
derivations, we only needed to enforce dependencies among selection features.
Intuitively, all of the information that an automaton traversing a derivation tree
might care about is present already when two expressions are merged together,
and so to ‘keep track’ of this information we only need to encode it on the
features relevant for merger.

By placing constraints on the dependencies between licensing features, we
allow information to be communicated about aspects of the derived objects,
such as whether a particular movement is of an expression that will remain in
its current position, or of one which will continue on (and leave behind a trace).

Proposition 8. Let G be a minimalist grammar, and L ⊆ T (S) a regular tree
language. Then for any x there is a minimalist grammar GL and a feature y
such that Ly(GL) = Lx(G) ∩ L.

Proof. Let G and L and x be arbitrary, and let A = 〈Q, (δs)s∈S〉 be a bottom-up
finite tree automaton such that for some r ∈ Q, A−1(r) = L. As before, we will
identify the y in the statement of the theorem with xr. Define the state t = A(t)
to be the state A is in when it has scanned a trace. As before, we will define a
subset LexA ⊆ 〈Lex〉Q to be our lexicon. First we define a ‘surface counterpart’
of the V mapping from proposition 7, a function R : T (S) × Q∗ → T (S ∪ Q)
from derived tree – state sequence pairs to terms over S and Q, in the following
manner. Writing Rt(w) for R(t, w), we define Rt(w) := TCon

|w|
t [w1, . . . , w|w|],

where TCon
n
t is as in the statement of proposition 1.

Now we define LexA ⊆ 〈Lex〉Q to be the smallest set such that it contains a
lexical item 〈σ , *xa1

1 · · · *xan
n zt-yt

1 · · ·-ya
m〉 ∈ 〈�〉Q iff a ∈ A(Rσ(a1 · · · an)). The

selector and licensor feature annotations are intended to indicate the state the

Minimalist Tree Languages Are Closed Under Intersection 137

automaton is in when it scans the surface item in that position, and the selectee
and licensee feature annotations provide information about what surface term
appears in each of the positions associated with these features. Note that all
but the last selectee and licensee features are annotated with a ‘trace’ – this is
because an expression leaves behind a trace in all but its final position.

Now let X ⊆ L(GL) be the subset of L(GL) containing all and only expressions
φ0, . . . , φk which meet the conditions that

1. for 1 ≤ i ≤ k, the last feature in each φi is annotated with the state that
A is in when it scans the tree component of φi, all other features of each φi

are annotated with t (the state A is in when it scans a trace)
2. φ0 = 〈s, *xa1

1 · · · *x
aj

j zb0-yb1
1 · · ·-ybm

m 〉 is such that A(Rs(a1 · · · aj)) = bm and
b0, . . . , bm−1 = t

We show that X contains LexA and is closed under mergei and movei, for
1 ≤ i ≤ 2, and is therefore equal to L(GL).

– Let � = 〈σ , *xa1
1 · · · *x

aj

j zb0-yb1
1 · · ·-ybm

m 〉 ∈ LexA. Then by definition,
b0 . . . , bm−1 = t, and bm = A(Rσ(a1 · · ·aj)).

– Let φ0, . . . , φk ∈ X be in the domain of the move1 operation. Then φ0 =
〈s, +xa1

1 *xa2
2 · · · *x

aj

j zb0-yb1
1 · · · -ybm

m 〉, and for some i, φi = 〈r, -xa1
1 〉, where

by hypothesis a1 = A(r), and bm = A(Rs(a1 · · · aj)). Then move1(φ0, . . . , φk)
is the expression φ′

0, φ1, . . . , φi−1, φi+1, . . . , φk, where φ′
0 has as its first com-

ponent the term •(r, s), and second component the tail of the feature se-
quence of φ0. By the definition of R, we see that A(R•(r,s)(a2 · · · aj)) =
A(Rs(A(r) a2 · · · aj)) = A(Rs(a1 a2 · · · aj)) = bm.

– Let φ0, . . . , φk ∈ X be in the domain of the move2 operation. Then φ0 =
〈s, +xa1

1 *xa2
2 · · · *x

aj

j zb0-yb1
1 · · · -ybm

m 〉, and φi = 〈r, -xa1
1 -zc1

1 · · · -z
ch

h 〉 for some
i, where by hypothesis a1 = t, c1, . . . , ch−1 = t, ch = A(r), and bm =
A(Rs(a1 · · · aj)). Then the result of applying move2 to φ0, . . . , φk is the ex-
pression φ′

0, φ1, . . . , φ
′
i, . . . , φk, where φ′

0 has as its first component the term
•(t, s), and second component the tail of the feature sequence of φ0, and φ′

i =
〈r, -zc1

1 · · · -zch

h 〉. By the definition of R, we see that A(R•(t,s)(a2 · · · aj)) =
A(Rs(t a2 · · · aj)) = A(Rs(a1 a2 · · ·aj)) = bm.

– the proof for merge1 is similar to that of move1 and is omitted.
– the proof for merge2 is similar to that of move2 and is omitted.

Now let GL := 〈Σ, 〈sel〉Q, 〈lic〉Q, LexA〉. In the forward direction, let t ∈
Lxr(GL). By proposition 5 we have that t ∈ Lx(G). As t ∈ Lxr(GL), it holds
that 〈t, xr〉 ∈ L(GL), which has properties 1 and 2 above, whence t ∈ A−1(r) =
L. In the reverse direction, let t ∈ Lx(G) ∩ L with derivation d ∈ Dx(G).
For each non-trace leaf s in t identify the lexical item �s in d from which it
came (as per proposition 3), and associate s with its annotated surface con-
text Rs(A(t1), . . . , A(tn)), for t1, . . . , tn ∈ T (S) such that TCon

n
s [t1, . . . , tn] ∈

LexProj(t). Define �′s ∈ 〈Lex〉Q to be like �s but where the selector and licen-
sor features are annotated from left to right with A(t1) throught A(tn), the last
feature with A(Rs(A(t1), . . . , A(tn))), and all remaining feautres with t. Clearly,

138 G.M. Kobele

�′s ∈ LexA, and the d′ obtained by replacing all leaves in d in this manner is
a derivation in D(GL). That it is a complete derivation of category xr follows
from its construction, whence ev(d′) = 〈t, xr〉, and t ∈ Lxr(GL), as desired. ��

As an application of proposition 8, we show the known result that the string lan-
guages of minimalist grammars are closed under intersection with regular string
languages. We do this by generating a finite state tree automaton recognizing
all trees with yields in the given regular string language, which can then by 8 be
‘intersected’ with an arbitrary minimalist grammar.

Example 9. Let M = 〈QM , qM
0 , ζ, qM

f 〉 be a regular string automaton, with state
set QM , initial and final states qM

0 and qM
f , respectively, and transition function

ζ : QM×Σ → QM . The set of trees over T (S) whose yield is in L(M) is given by
the regular nondeterministic tree automaton AM = 〈QA, QA

f , (δf)f∈Σ〉 (where
QA

f is the set of final states) defined as follows:

1. QA =
[
QM → QM

]
2. QA

f = {q ∈ QA : q(qM
0) = qM

f }
3. For t(0), δt(q) = q
4. For σ ∈ Σ0, δσ(q) = λx.ζ(q(x), σ)
5. For •(2), δ•(q1, q2) = q1 ◦ q2

Define L :=
⋃

q∈QA
f

A−1
M (q). Then for G a minimalist grammar and x a selectee

feature, there is a feature y such that, Sy(GL)) = Sx(G) ∩ L(M).

Example 9 can be viewed as a particular instance of a much more general
fact.4

Proposition 10. (Courcelle [8])

1. The inverse image of a (MSO) definable set of structures under a (MSO)
definable transduction is (MSO) definable

2. The composition of two (MSO) definable transductions is (MSO) definable.

In particular, if φ : T (S) → Δ∗ is an MSO definable spell-out mapping,
associating trees with strings over Δ, and L ⊆ Δ∗ is a regular string language
of ‘what might have been just said’, then φ−1[L] = {t ∈ T (S) : φ(t) ∈ L} is by
proposition 10 a regular tree language, and thus for any minimalist grammar
G, we can construct another minimalist grammar Gφ−1[L] which derives exactly
those trees in φ−1[L] which are derived by G. As an example, mirror-style head

4 In fact, proposition 8 follows from propositions 7 and 10 as a corollary, as was
pointed out by an anonymous reviewer. Let L be a regular tree language, and φL a
MSO formula defining exactly L. Let G be an arbitrary minimalist grammar, and
let Δ be the MSO definable transduction taking exactly Dx(G) to Lx(G). Then by
proposition 10, S = Δ−1[L] is a regular (i.e. MSO-definable) subset of Dx(G) which
contains a derivation tree d iff d is the derivation of some tree t ∈ L, and thus by
proposition 7, GS exists, and is such that for some y, Ly(GS) = Lx(G) ∩ L.

Minimalist Tree Languages Are Closed Under Intersection 139

movement, as implemented by [9], can be treated in terms of a non-standard
(but MSO definable) spell-out mapping from minimalist trees into strings.

More generally, given a minimalist grammar G, any sequence φ1, . . . , φn of
MSO-definable mappings φi : Ai → Ai+1, where A0 = L(G) and An+1 = Δ∗

can be ‘undone’, in the sense that for any MSO-definable subset L ⊆ Δ∗, (φn ◦
· · · ◦ φ1)−1(L) is a regular subset of L(G), and there is therefore a minimalist
grammar G(φn◦···◦φ1)

−1(L) which generates exactly this regular subset.
Not only does this yield a guarantee of mild-context sensitivity, as the string

languages generable from finitely many MSO transductions applied successively
to a regular tree language is exactly the set of multiple context free languages
(see [10]), this also gives a sort of ‘parsing as intersection’ result [11] for any
extension of the basic framework of minimalist grammars by MSO means.

3 Applications

In this section I discuss three applications of propositions 7 and 8 above.5 I
begin by discussing conditions under which semantic type mismatches (and the
consequent deviance of an utterance) can be incorporated into the grammar.
Next I introduce Koopman’s ‘complexity filters’, and show that they do not
increase the tree generating power of minimalist grammars. Finally, I offer a
formalization of distributed morphology, and show that it is weakly equivalent
to minimalist grammars.

3.1 Semantics

Semantics is often couched in a typed system. In this kind of framework, a
structure might be unable to be assigned a meaning due to a type mismatch,
and thus a semantic interpretation function might be partial. In such a case the
meaningful structures generated by a grammar might be a proper subset of the
structures it generates. Does the possibility of semantic type mismatch render the
problem of finding meaningful parses for strings computationally more difficult?
This question is especially salient in the context of the extended standard theory
[13] and its decendents, where semantic interpretation is of the derived structure,
and not of the structure of the derivation.

Propositions 7 and 8 tell us that, if we can represent the property of be-
ing semantically well-formed in terms of a bottom-up tree automaton, then we
can transform a minimalist grammar generating possibly semantically uninter-
pretable surface trees into one which directly generates only the subset of the first
which are semantically interpretable. This will hold true whether we interpret
surface structures (as do [4]) or derivation trees (as is done in [14]).

While it is not in general true that given a set of typed constants, there are only
finitely many types derivable from them, the textbook of [4] (which is the locus
classicus for semantics in the chomskyian vein) eschews more than application
5 Another application which I do not discuss is to work on economy constraints in

minimalist grammars [12].

140 G.M. Kobele

(αβ ⊕ α⇒ β) and (sometimes) ‘predicate modification’ (αt⊕ αt⇒ αt), closing
any finite set of types under which results in a finite set of types.

3.2 Complexity Filters

[15] analyze verbal complexes in Dutch, German and Hungarian in a syntactic
framework much like the one presented here. They propose to treat these lan-
guages as similar for the purposes of this construction, with the primary locus
of cross-linguistic variation being that some configurations are filtered out in
certain languages. In general, the approach of [15], following [16], is to postu-
late a great number of silent terminal nodes, and that syntactic terminals get
moved about repeatedly in a great number of ways. While this sort of approach
allows for the ‘discovery’ of similar structures underlying very different surface
strings (and in different languages), it tends to overgenerate. ‘Complexity fil-
ters’, as proposed by [15] (and expanded upon in [17,3]), are a way of reigning
in this overgeneration. Koopman proposes that each lexical item � may impose
requirements on the size of the surface expressions t1, . . . , tn which may occur
in TCon�[t1, . . . , tn]. The size of a tree ti is defined in terms of the length of
and labels along the path from the most deeply embedded phonetically overt
terminal in ti to its root. As a concrete example, [3] proposes that the Germanic
prenominal genitive is structurally identical to the English Saxon genitive. The
well-known restrictions on the prenominal genitive in German (that, for exam-
ple, coordinated structures cannot appear) are not due to a different syntax from
the superficially similar English construction, but to a lexical idiosyncracy of the
German ’s counterpart, which prohibits DPs with more than a small amount of
pronounced structure (predominantly proper names and pronouns) to appear in
its specifier. This is as shown in figure 1 (from [17]).

At the end of the derivation, the specifier of gen may not contain a DP more
complex than:

DP

DP

D

gen

Fig. 1. Complexity filter associated with the German prenominal genitive

Importantly, all of the postulated complexity filters can be stated in terms
of MSO logic over trees;6 expressing that the length from the root to the most
deeply embedded overt node is at most n is a simple universally quantified
sentence to the effect that all nodes which are overt have depth less than or

6 This is somewhat overkill, when compared to the attested complexity filters. The
important thing is that the linguist appealing to complexity filters may propose any
recognizable constraint, secure in the knowledge that he is not increasing the strong
generative capacity of minimalist grammars.

Minimalist Tree Languages Are Closed Under Intersection 141

equal to n. Conversely, requiring that a tree have a pronounced node deeper
than some depth n is the negation of the previous statement.

To see that koopmanian complexity filters are admissible in the minimalist
grammar formalism (in the sense that any MG with complexity filters may be
reformulated as one with the same strong generative capacity without such), it
is important to note first that these filters are not quite filters on the surface
tree. As is indicated in figure 1, a complexity filter applies a regular filter to the
surface trees in a particular geometric relationship to a particular lexical item,
not just any head with a particular phonological form.

Toward a formalization, let L1, . . . , Ln be the n complexity filters used in a
minimalist grammar G. We will take each Li 1 ≤ i ≤ n to define a regular tree
language over T (S), and will allow each selector and licensor feature of every
lexical item to be associated with one of these filters. During a derivation, we
check that the filters (if any) associated with a particular feature are respected.
Below are presented two of the additional generating functions needed to take
complexity filters associated with features into account.

〈s1, =c
Lγ〉, φ1, . . . , φm 〈s2, c〉, ψ1, . . . , ψn s2 ∈ L

〈•(s2, s1), γ〉, φ1, . . . , φm, ψ1, . . . , ψn
mergeFilter

1

〈s1, +c
Lγ〉, φ1, . . . , φi−1, 〈s2, -cδ〉, φi+1, . . . , φm t ∈ L

〈•(t, s1), γ〉, φ1, . . . , φi−1, 〈s2, δ〉, φi+1, . . . , φm
moveFilter

2

To recast this in ‘standard’ minimalist grammars, we will take a new lexicon
LexFilter ⊆ 〈Lex〉Q, where Q := Q1×· · ·×Qn∪{1} is the state set of the disjoint
union of the product automaton A1 ⊗ · · · ⊗ An of the automata Ai such that
A−1

i (ri) = Li, 1 ≤ i ≤ n, and the ‘unit’ automaton A1 with one state recognizing
all of T (S). We require that each Ai is total, in that every δi

f is defined on every
input. We want the feature annotations to respect the transitions of A, and so we
are interested in the smallest subset X of LexA ⊆ 〈Lex〉Q meeting the following
conditions, which we will call LexFilter :

1. if � ∈ Lex, then X contains every �′ ∈ LexA such that for n the number of
selector and licensor features of �, and for 1 ≤ i ≤ n,
– if the ith feature of � is associated with complexity filter Lj , then the ith

feature of �′ is annotated with some state q ∈ Q1 × · · · ×Qj−1 × {rj} ×
Qj+1 × · · · ×Qk

– if the ith feature of � is not associated with any complexity filter, then
the ith feature of �′ is annotated with some state q ∈ Q− {1}

2. for each �′ ∈ X with no licensee features, X contains the lexical item �′′,
which is identical to �′ except that its selectee feature is annotated with the
state 1.

Crucially, the state annotation 1 does not appear on any selector or licensor
feature. Note also that because we are drawing lexical items from LexA, the last
feature of a lexical item is annotated with a state which accurately reflects its
structure.

142 G.M. Kobele

Proposition 11. For G a minimalist grammar with complexity filters, and
GFilter the minimalist grammar with lexicon LexFilter, for every selectee fea-
ture x it holds that Lx(G) = Lx1(GFilter).

The proof is similar to that of proposition 8 and is suppressed.

3.3 Distributed Morphology

Distributed Morphology is a theory of the relation between a surface tree and
its yield developed in [18]. There are two particularly salient aspects of this
theory that are relevant here. First, the surface tree may be deformed prior to
computing its yield. These deformations take the following form (from [18]):

morphological merger: a head X may be lowered to the head Y of its com-
plement, forming the complex •(X, Y)

fusion: a node •(X, Y), where X , Y are heads, may be replaced by a new node
Z

fission: a head Z may be replaced by the node •(X, Y)
impoverishment: A head X may be replaced by a head Y
morpheme addition: A term t ∈ L may be replaced by •(t, X)

Clearly, each of the above operations is a regular tree transduction, for any
particular selection of heads X, Y, Z, and regular tree language L.

The second salient aspect of the theory is that ‘lexical insertion takes place
during spell-out’. This means (essentially) that the lexicon is a function from Σ
to feature sequences (i.e. each lexical item is associated with a unique name);
we might as well identify Σ with an initial subset of the natural numbers.7 The
surface tree is then a hierarchical arrangement of natural numbers. Each natural
number can be realized as one of a finite number of strings over Δ∗, depending
on which of a finite number of regular contexts it occurs in. Thus, each lexical
item is associated with an MSO-definable transduction that ‘realizes’ it.

A distributed morphology grammar consists of a minimalist grammar G, along
with a finite sequence of transductions φ1, . . . , φn, where φi is either a lexical
insertion transduction, or a transduction of one of the five types given above. A
string s ∈ Δ∗ belongs to Lx(G, φ) (the language of a grammar G, φ1, . . . , φn at
category x) iff s is the yield of φn ◦ · · · ◦ φ1(t), for some t ∈ Lx(G). As Lx(G) is
the image of a regular set (Dx(G)) under a (direction preserving) MSO-definable
transduction [19], we have that Lx(G, φ) is a multiple context-free language for
any G, φ, and x [20]. Moreover, as by proposition 10 we have that for any s ∈ Δ∗,
(φn ◦ · · ·◦φ1)−1(s) is a regular tree language, we can directly define a minimalist
grammar defining exactly the set Lx(G) ∩ (φn ◦ · · · ◦ φ1)−1(s) by proposition 8,
making in principle available a parsing-as-intersection view of recognition and
parsing in distributed morphology.
7 In ‘reality’, one associates with each lexical item a (non-recursive) attribute value

matrix, and with a subset of the lexical items (the contentful lexical items) a unique
name (dog, cat, etc). The operation of fusion is the unification of AVMs, fission is
splitting one AVM into two, and impoverishment is the removal of certain attribute-
value pairs from an AVM. This is not particularly important for the present purposes.

Minimalist Tree Languages Are Closed Under Intersection 143

4 Conclusion

We have shown that both derived and derivation tree languages of minimal-
ist grammars are closed under intersection with recognizable sets of trees. This
is non-trivial, as neither the derivation tree languages nor the derived tree lan-
guages constitute a well-known family of languages (the derivation tree languages
are a proper subset of the recognizable sets, and the derived tree languages are
a proper subset of the multiple regular tree languages).

These closure results are immediately translatable into results of direct lin-
guistic interest. We can view the linguistic results in terms of the admissibility of
a certain kind of grammar factorization. This is clearest in the case of the exam-
ple of semantic types. We have shown there to be no impact on strong generative
capacity whether we treat semantic type information syntactically, giving us a
direct characterization of the semantically well-typed grammatical sentences, or
semantically, characterizing the semantically well-typed grammatical sentences
in terms of a filter. Whereas it is common consensus that we need to perform
the work of semantic type-checking somewhere in the natural language pipeline,
the complexity filters of Koopman are more controversial. By showing them to
be merely notational devices, we have demonstrated that any rational debate
about their adoption into minimalist grammars must revolve around something
other than syntax, or semantics (perhaps learning).

Courcelle’s results give us access to a weak generative capacity preseving ar-
ray of extensions to a basic theory, and in conjunction with the closure under
intersection results, access to an in-principle parsing method. As however the
size of an automaton recognizing a tree language is not bounded by any elemen-
tary function in the size of the smallest MSO formula defining that language,
and the size of the minimalist grammar recognizing the intersection language is
directly related the number of states of the automaton, the size of the gram-
mar recognizing the intersection is potentially much larger than the original
grammar.8

References

1. Stabler, E.P.: Derivational minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS
(LNAI), vol. 1328, pp. 68–95. Springer, Heidelberg (1997)

2. Thatcher, J.W.: Characterizing derivation trees of context-free grammars through
a generalization of finite automata theory. Journal of Computer and System Sci-
ences 1(4), 317–322 (1967)

3. Koopman, H.: On restricting recursion and the form of syntactic representations.
In: Speas, P., Roeper, T. (eds.) Recursion. Oxford University Press, Oxford (to
appear)

4. Heim, I., Kratzer, A.: Semantics in Generative Grammar. Blackwell Publishers,
Malden (1998)

5. Kobele, G.M., Retoré, C., Salvati, S.: An automata theoretic approach to minimal-
ism. In: Rogers, J., Kepser, S. (eds. Proceedings of the Workshop Model-Theoretic
Syntax at 10, ESSLLI 2007, Dublin (2007)

8 See [21] for some relevant discussion.

144 G.M. Kobele

6. Michaelis, J.: On Formal Properties of Minimalist Grammars. PhD thesis, Univer-
sität Potsdam (2001)

7. Raoult, J.C.: Rational tree relations. Bulletin of the Belgian Mathematical Soci-
ety 4, 149–176 (1997)

8. Courcelle, B.: Monadic second-order definable graph transductions: a survey. The-
oretical Computer Science 126, 53–75 (1994)

9. Kobele, G.M.: Formalizing mirror theory. Grammars 5(3), 177–221 (2002)
10. Engelfriet, J.: Context-free graph grammars. In: Rozenberg, G., Salomaa, A. (eds.)

Handbook of Formal Languages. Beyond Words, vol. 3, pp. 125–213. Springer,
Heidelberg (1997)

11. Lang, B.: Recognition can be harder than parsing. Computational Intelli-
gence 10(4), 486–494 (1994)

12. Graf, T.: A tree transducer model of reference-set computation. UCLA Working
Papers in Linguistics 15, 1–53 (2010)

13. Chomsky, N.: Aspects of the Theory of Syntax. MIT Press, Cambridge (1965)
14. Kobele, G.M.: Generating Copies: An investigation into structural identity in lan-

guage and grammar. PhD thesis, University of California, Los Angeles (2006)
15. Koopman, H., Szabolcsi, A.: Verbal Complexes. MIT Press, Cambridge (2000)
16. Kayne, R.: The Antisymmetry of Syntax. MIT Press, Cambridge (1994)
17. Koopman, H.: Derivations and complexity filters. In: Alexiadou, A., Anagnos-

topoulou, E., Barbiers, S., Gärtner, H.M. (eds.) Dimensions of Movement: From
features to remnants. Linguistik Aktuell/Linguistics Today, vol. 48, pp. 151–188.
John Benjamins, Amsterdam (2002)

18. Halle, M., Marantz, A.: Distributed morphology and the pieces of inflection. In:
Hale, K., Keyser, S.J. (eds.) The View from Building 20, pp. 111–176. MIT Press,
Cambridge (1993)

19. Mönnich, U.: Minimalist syntax, multiple regular tree grammars and direction
preserving tree transductions. In: Rogers, J., Kepser, S. (eds.) Proceedings of the
Workshop Model-Theoretic Syntax at 10, ESSLLI 2007, Dublin (2007)

20. Engelfriet, J., Heyker, L.: The string generating power of context-free hypergraph
grammars. Journal of Computer and System Sciences 43, 328–360 (1991)

21. Morawietz, F., Cornell, T.: The MSO logic-automaton connection in linguistics. In:
Lecomte, A., Lamarche, F., Perrier, G. (eds.) LACL 1997. LNCS (LNAI), vol. 1582,
pp. 112–131. Springer, Heidelberg (1999)

Do Dialogues Have Content?

Staffan Larsson

Department of Philosophy, Linguistics and Theory of Science
Gothenburg University

Box 200, SE405 30 Gothenburg, Sweden
sl@ling.gu.se

Abstract. In this paper, the notion of “the content of a dialogue” is
shown to be problematic in light of the phenomena of semantic coordi-
nation in dialogue, and the associated notion of semantic plasticity – the
ability of meanings to change as a result of language use. Specifically, it
appears that any notion of content in dialogue based on classical model-
theoretical semantics will be insufficient for capturing semantic plastic-
ity. An alternative formal semantics, type theory with records (TTR) is
briefly introduced and is show to be better equipped to deal with se-
mantic coordination and plasticity. However, it is also argued that any
account of content in dialogue which takes semantic coordination seri-
ously will also need to consider the problems it raises for some concepts
central to traditional notions of meaning, namely inference and truth.

1 Introduction

In this paper, the notion of “the content of a dialogue” is shown to be prob-
lematic in light of the phenomena of semantic coordination in dialogue, and the
associated notion of semantic plasticity – the ability of meanings to change as a
result of language use. In Section 1 a specific candidate account of “the content
of a dialogue”, SDRT, is discussed. Section 2 introduces the notions of semantic
coordination and semantic plasticity, using examples of corrective feedback in
first language acquisition. In Section 3, an alternative formal semantics, type
theory with records (TTR) is briefly introduced and is show, in Section 4, to
be better equipped to deal with semantic coordination and plasticity. Finally,
Section 5 presents some general conclusions.

2 The Content of a Dialogue

Segmented Discourse Representation Theory [2] is an approach to discourse
interpretation which is originally (Asher 1993) an extension of Hans Kamp’s
Discourse Representation Theory (DRT). It combines the insights of dynamic
semantics on anaphora with a richer theory of discourse structure.

By supplying a language for representing the logical form of discourse and of
dialogue, and assigning this language a dynamic semantic interpretation, SDRT

S. Pogodalla and J.-P. Prost (Eds.): LACL 2011, LNAI 6736, pp. 145–158, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

146 S. Larsson

offers a candidate account of what could be regarded as “the content of a dia-
logue”. It is, simply, the SDRS (Segmented Discourse Representation Structure)
resulting from parsing and integrating all the utterances in a dialogue, insofar as
it can be be given a model-theoretic interpretation, and can be used for drawing
inferences. A central aspect of SDRT is that it is based on a modal and dynamic
variant of classical model-theoretic semantics.

There are a number of variants of classical model-theoretic semantics. In
modal logic, the truth of a proposition is defined relative to a possible world.
Montagovian intensional model theory adds a so-called intensional operator, and
property theory [5] allows different properties with identical extensions. Despite
the refinements in dealing with intensional vocabulary in these extensions, they
all share a common property with classical model-theoretic semantics, namely
a fundamental extensionality. Extensions of predicates are simply postulated in
terms of the interpretation function F (in a more or less complicated way). The
predicates are atoms, hence unanalysed and without structure.

Note that this paper is not arguing against SDRT per se; as a formal account
of discourse and dialogue it has many merits. For example, it has recently been
extended with a logically precise account of corrections and disagreement in dia-
logue [20], as part of a research agenda with the aim of increasing its coverage of
grounding and other dialogue phenomena. The main reason we mention SDRT
is to show that the idea of using model-theoretic semantics for dialogue is not
far-fetched, but something which is more or less standard practice. However,
one conclusion of the arguments put forward here is that if a theory like SDRT
were to be extended to cover certain phenomena in dialogue which are currently
beyond its intended scope (namely, semantic coordination and semantic plastic-
ity), the classical model-theoretic semantics assigned to SDRSs may need to be
replaced with something else.

3 The Challenge from Semantic Plasticity

3.1 Semantic Coordination and Semantic Plasticity

Here are a few examples of corrective feedback :

– C: That’s a nice bear.
– D: Yes, it’s a nice panda.
– C: Panda.

– Naomi: mittens
– Father: gloves.
– Naomi: gloves.
– Father: when they have fingers in them they are called gloves and when the

fingers are all put together they are called mittens.

– Abe: I’m trying to tip this over, can you tip it over? Can you tip it over?
– Mother: Okay I’ll turn it over for you.

Do Dialogues Have Content? 147

– Adam: Mommy, where my plate?
– Mother: You mean your saucer?

The first one is made up, the others are quoted from various sources in [8]
and [6]. In general, corrective feedback can be regarded as offering an alternative
form to the one that the speaker used.

There is evidence that dialogue interaction plays an important role in estab-
lishing a shared language, not only in first (or second) language acquisition but
also in the coordination of meaning in adult language, in historical language
change, and in language evolution. For example, research on alignment shows
that agents negotiate domain-specific microlanguages for the purposes of dis-
cussing the particular domain at hand [9,15,21,3,16,17]. We will use the term
semantic coordination to refer to the process of interactively coordinating the
meanings of linguistic expressions. Corrective feedback is one of several mech-
anisms for semantic coordination in dialogue; others include explicit definition
and meaning accommodation [19,12,18]. Also, computational work on emergent
vocabularies and category formation [22,4] has shown that it is possible to sim-
ulate part of the dynamics of language and meaning in computers.

On this general view, two agents do not need to share exactly the same lin-
guistic resources (grammar, lexicon etc.) in order to be able to communicate,
and an agent’s linguistic resources can change during the course of a dialogue
when she is confronted with a (for her) innovative use. It seems that speakers of
natural languages are constantly in the process of creating new language to meet
the needs of novel situations in which they find themselves. This fits with a view
of meaning is essentially social. Even if speakers have their own takes on the
language used for talking about the current activity, when a group of speakers
have sufficiently similar takes on the meaning of an expression, the expression
has meaning within that group.

To illustrate how meaning can change as a result of corrective feedback, here’s
one of several possible stories about what happens in the “panda” example above.
C originally takes the meaning of “bear” to be something like “big fuzzy bear-
shaped animal”, where knowing the meaning of “bear-shaped” involves some
capacity to recognize a certain physical shape. C has not hear of pandas, or has
no clear idea what they are. On this particular occasion, C and D are at the
zoo, looking at a panda (which is the shared focus of attention). When C sees
the panda, she notices that it is bear-shaped and hence assumes that it is a
bear. D’s utterance indicates that “panda” is a (more) correct referring phrase
for this animal, and since C (correctly) takes D to be better at English than C,
C decides to adapt to this way of using language. C might reason according to
the Pragmatic principle of contrast [7]: “Speakers take every difference in form
to mark a difference in meaning.” C has observed that D’s use of “panda” refers
to the object in shared focused of attention, and that its colour distinguishes it
from previously observed bears. Based on this, C creates a meaning of “panda”
as (roughly) a big, black-and-white bear-shaped animal. Accordingly, C also
modifies her take on the meaning of “bear” to mean “a big, brown bear-shaped
animal”.

148 S. Larsson

Of course, one may disagree with the analysis proposed here on numerous
points. For our current purposes, however, the details are not so important. The
important observation is that semantic coordination entails semantic plasticity:
that the meaning of an expression may change over time. The research on align-
ment cited above shows that such changes may in fact happen during the course
of a single dialogue.

The examples of corrective feedback given above are taken from first lan-
guage acquisition, where the child detects innovative (for her) uses and adapts
her take on the meaning accordingly. Semantic coordination in first language
acquisition is a special case of semantic coordination in general, where there is
a clear asymmetry between the agents involved with respect to expertise in the
language being acquired. However, a working hypothesis is that the mechanisms
for semantic coordination used in these situations are similar to those which are
used when competent adult language users coordinate their language.

Part of knowing the meaning of a concrete term such as “bear” is being
able to recognize bears and distinguish them from other animals. In the sketchy
account of semantic learning in the panda example above, it was precisely this
aspect of meaning which was being modified. One way of expressing this is that
a “colour” feature was added to the meaning of “bear” with the value “brown”.
This aspect of meaning will here be referred to as perceptual type. The perceptual
type associated with a concrete noun can be thought of as a classifier of sensory
input as indicating presence (or absence) of a referent of that noun. Otherwise
put, knowing the perceptual type of a concrete term allows an agent to identify
referents of using its sensory apparatus.

Cognitively, perceptual types can be represented e.g. using feature-value pairs,
neural networks, (other) statistical methods, or using some hybrid representa-
tion. The addition of a colour feature could be described as merely adding a
feature-value pair to the perceptual type for “bear”, but this is not the only
option. For example, it might be that C in the panda example also updates
her take on what counts as “bear-shaped”. Because pandas chew tough bamboo
stalks for nourishment, they have highly developed muscles around their jaw and
large crushing molars which makes their heads very round in appearance. If C
continues to have a single shape-detector for pandas and bears, she may eventu-
ally retrain her bear-shape classifier slightly to encompass this slight difference
in appearance1.

1 The inclusion of perceptual types, regarded as embodied classifiers of sensory data,
in meanings of linguistic expressions raises the problem how speakers can be co-
ordinated with respect to something which potentially has rather different physio-
biological realisations in each speaker (in terms of the structure of neural networks,
for example). A quick and rough response to this question is that speakers are coordi-
nated on a perceptual type insofar as they agree on their classifications of instances
as belonging to that type or not, regardless of how the classifier is implemented
in each speaker. On this view, meanings are neither purely abstract entities nor
purely psychological entities; instead, they are social entities which have have both
an abstract and a psychological side.

Do Dialogues Have Content? 149

Apart from perceptual type, several other aspects of meanings could poten-
tially be coordinated on, such as compositional semantics ([12]), ontological cat-
egory ([14], [12]), and connotative meaning.

3.2 Semantic Plasticity and Inference

We have argued above that the phenomena of semantic coordination and seman-
tic plasticity are fundamental aspects of the nature of linguistic meaning. Now,
how does semantic coordination and plasticity affect inference and the notion of
content of a dialogue?

Consider this (made up) example:

– C: “I like all animals on TV”
– C: “I saw a bear on TV yesterday”
– ...
– C: “Bear”
– D: “Yes it’s a nice panda”
– C: “Panda”
• C updates meaning for “panda” and “bear”

What content can be inferred from this dialogue? That C likes bears? That C
likes pandas? The problem is that since C’s take on the meaning of “bear” and
“panda” has changed, we don’t really know whether C saw a bear or a panda
on TV.

Here is another example:

– C: ”I have a pair of blue gloves”
– ...
– C: ”Blue ball”
– D: ”Yes it’s a nice green ball”
– C: ”Green ball”
• C updates perceptual type (classifiers) for ”blue” and ”green”

This can be seen as a case of C and D coordinating their takes on the meaning
of “green” (and “blue”). Again we may ask, what content can be inferred from
this dialogue? That C has a pair of blue gloves? That C has a pair of green gloves?
Well, that depends on which classifier (sensor, detector) triggers when C looks
at the gloves in question. To make matters even worse, in a linguistic community
there may be no clear-cut fact as to the correct name of a given colour. Different
speakers may have different takes, and these may change during interactions and
over time2.
2 One could imagine a wide variety of examples of semantic plasticity causing problems

for inference. Above, we have focused on cases where speakers initially have different
takes on the meaning of an expression, but eventually converge. A different case, no
less relevant to the problems we are raising here, are cases where the meaning of an
expression subtly changes during a dialogue, even though the speakers have at every
instance quite similar takes on the meaning in question, and may perhaps not even
notice the semantic changes taking place.

150 S. Larsson

It appears that semantic plasticity causes serious problems for view of a dia-
logue as a conjunction of propositions from which inferences may be drawn using
the rules of standard (first-order or higher order) logic. Since speaker’s takes on
the meanings of words may change during the dialogue, a use of an expression
at time t may not have the same meaning as the use of that expression and time
t′ > t, and this may invalidate an inference from a proposition P uttered at t
and a proposition P ′ uttered at t′ to the conjunction P&P ′.

3.3 Semantic Plasticity and Classical Model-Theoretic Semantics

The solution to this problem, it may be thought, is to incorporate semantic
plasticity in our model-theoretical semantics for dialogue. However, it is difficult
to see how this could be done. Let’s use the gloves example for illustration. We
assume that the interpretation of the phrase “I have blue gloves” uttered by C
involves using F to yield the referent (some object in the model A, let’s call it
a123). Roughly, we have F (C’s blue gloves) = a123. Now, the meaning of the
predicate “blue” is given as a set of objects in A, including a123: F (blue) = {. . . ,
a123, . . .}.

Now, to update the meaning of “blue”, what can we do? Well, the interpreta-
tion of “blue” is a set, so what we can do is to add elements to, or remove elements
from F (blue). For example, as C’s take on the meaning of “blue” changes as a
result of D’s utterance “Yes, it’s a nice green ball”, C should update her take
on F so that F (blue) after the update no longer contains any green objects; it
should instead contain exactly all blue objects in A3.

This seems to require that C is able to compute, for all objects in the model
A, whether they should be included in the new meaning of “blue”; i.e., for all
objects known to C, whether they are blue (in the new sense). This in turn
requires some method of deciding, for each element in A, whether to include it
in F (blue) or not. What would this be? Note that there is no “colour sample” to
compare to, other than perhaps the objects in sight, e.g. the blue ball. It seems
we need some generalisation or description to compare to, but we only have an
extension! Furthermore, we need to apply this method to all elements of A. If
used in this way, model theory seems to commit us to an unrealistic theory of
conceptual learning.

4 An Alternative: TTR

What is needed to be able to account for semantic coordination and semantic plas-
ticity in a formal semantic theory? Well, what seems to be missing in classical
model-theoretical semantics is some structured representation of the intensions of
linguistics expressions. In classical model theory, all we have is (minimally) struc-
tured representations of extensions, and as we have seen above this is not enough.
3 “Blue” can also be analysed as a predicate modifier, i.e. a function from predicates to

extensions: blue(glove)(g). All this does is say that “blue” can mean different things
depending on the object it is ascribed to. However, we still end up with extensions,
i.e. sets, which can only be modified by adding or deleting elements.

Do Dialogues Have Content? 151

4.1 Representing Concepts Using TTR

One theory offering structured meaning representations is type theory with
records (TTR) as characterized in [10,11] and elsewhere. An advantage of TTR
is that it integrates logical techniques such as binding and the lambda-calculus
into feature-structure like objects called record types. Thus we get more struc-
ture than in a traditional formal semantics and more logic than is available in
traditional unification-based systems. The feature structure like properties are
important for developing similarity metrics on meanings and for the straightfor-
ward definition of meanings modifications involving refinement and generaliza-
tion. The logical aspects are important for relating our semantics to the model
and proof theoretic tradition associated with compositional semantics. Below is
an example of a record type:⎡
⎣ ref : Ind

size : size(ref, MuchBiggerThanMe)
shape : shape(ref, BearShape)

⎤
⎦

A record of this type has to have fields with the same labels as those in the
type. (It may also include additional fields not required by the type.) In place
of the types which occur to the right of ‘:’ in the record type, the record must
contain an object of that type. Here is an example of a record of the above
type:⎡
⎢⎢⎣

ref = a123

size = sizesensorreading85
shape = shapesensorreading62
colour = coloursensorreadning78

⎤
⎥⎥⎦

Thus, for example, what occurs to the right of the ‘=’ in the ref field of
the record is an object of type Ind, that is, an individual. Types which are
constructed with predicates like size and shape are sometimes referred to as
“types of proof”. The idea is that something of this type would be a proof that
a given individual (the first argument) has a certain size or shape (the second
argument). One can have different ideas of what kind of objects count as proofs.
Here we are assuming that the proof-objects can be readings from sensors. We
imagine that the mapping from sensor readings to types involves sampling of
analogue data in a way that is not unsimilar to the digitization process involved,
for example, in speech recognition.

Types constructed with predicates may also be dependent. This is represented
by the fact that arguments to the predicate may be represented by labels used
on the left of the ‘:’ elsewhere in the record type. This means, for example, that
in considering whether a record is of the record type, you will need to find a
proof that the object which is in the ref-field of the record has the size repre-
sented by MuchBiggerThanMe. That is, this type depends on the value for the
ref-field.

152 S. Larsson

Some of our types will contain manifest fields [13] like the ref-field in the fol-
lowing type:⎡
⎣ ref=a123 : Ind

size : size(ref, MuchBiggerThanMe)
shape : shape(ref, BearShape)

⎤
⎦

[
ref=a123:Ind

]
is a convenient notation for

[
ref:Inda123

]
where Inda123 is a

singleton type. If a : T , then Ta is a singleton type and b : Ta (i.e. b is of type
Ta) iff b = a. Manifest fields allow us to progressively specify what values are
required for the fields in a type.

An important notion in this kind of type theory is that of subtype. For example,[
ref : Ind
size : size(ref, MuchBiggerThanMe)

]

is a subtype of

[
ref : Ind

]
as is also

[
ref=a123 : Ind

]
The subtype relation corresponds to that of subsumption in typed feature struc-
tures. This gives us the ability to create type hierarchies corresponding to on-
tologies (in the sense, for example, of OWL). Such ontologies (coded in terms of
record types) play an important role in our notion of resources available to an
agent. In fact, modelling concepts in terms of record types commits us to a view
of concepts which is very closely related to work on ontologies. But our view of
the creation of local situation specific and domain related resources in addition
to generic resources means that agents have access not to a single generic ontol-
ogy but also situation specific and domain related ontologies. And, perhaps most
important of all, the process of semantic coordination with an interlocutor can
involve local ad hoc adjustment to an ontology. This plays an important role in
characterizing the options open to an agent when confronted with an innovative
utterance. We attempt to illustrate this below by working in more detail through
a specific example.

4.2 A TTR Account of the “Panda” Example

Using TTR, we can now represent the dynamics of concepts in the example
dialogues above. For example, in the “panda” example, we assume that, before
D’s utterance, C has a concept of “bear” as shown in Figure 1.

As mentioned above, we assume that C correctly understands D’s utterance
as offering “panda” as an alternative for “bear”. Now, assuming that C has not
observed the word “panda” before, C needs to create a panda-concept. Here
C is confronted with a fundamental choice. Should a condition ‘panda(ref)’ be

Do Dialogues Have Content? 153

⎡
⎢⎢⎢⎢⎢⎢⎣

ref : Ind
phys : phys-obj(ref)
anim : animate(ref)
size : size(ref, MuchBiggerThanMe)
shape : shape(ref, BearShape)
bear : bear(ref)

⎤
⎥⎥⎥⎥⎥⎥⎦

Fig. 1. C’s “bear” concept before the interaction

added to the concept in addition to the condition ‘bear(ref)’ making the panda
concept be a subtype of the bear concept or should the panda condition replace
the bear condition, making panda and bear sisters in the ontology? There is
not enough evidence in this simple exchange to determine this.4 We will choose
to replace the bear condition with the panda condition. But there is more that
must happen.

C has observed that the use of “panda” in s refers to the focused object a123.
Following the principle of contrast mentioned above, C takes “panda” to have a
different meaning than “bear” in some respect other than that it is a panda as
opposed to a bear, and looks for something about a123 which might distinguish
it from previously observed bears. For example, the child might decide that it is
the colour (black and white) that distinguishes it from previously observed bears
(which have all been brown)5. C now creates a concept [panda]C of “panda” as
shown in Figure 2.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ref : Ind
phys : phys-obj(ref)
anim : animate(ref)
size : size(ref, MuchBiggerThanMe)
shape : shape(ref, BearShape)
colour : colour(ref, BlackAndWhite)
panda : panda(ref)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 2. C’s concept after integrating D’s utterance

But now if colour is being used to distinguish between bears and pandas in
situation s, C should create a refined bear concept, namely Figure 3 reflecting
the hypothesis that bears are brown.

4.3 TTR and Semantic Plasticity

As we can see, TTR allows structured meanings which can be updated as a
result of interaction in dialogue. Generally, we can think of (takes on) meanings

4 And indeed many people can reach adulthood, the present author included, without
being sure whether pandas are a kind of bear or not.

5 This account relies on C having a memory of previously observed instances of a
concept, in addition to the concept itself (which in the case of “bear” does not
contain information about colour).

154 S. Larsson

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ref : Ind
phys : phys-obj(ref)
anim : animate(ref)
size : size(ref, MuchBiggerThanMe)
shape : shape(ref, BearShape)
colour : colour(ref, Brown)
bear : bear (ref)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 3. C’s “bear” concept after integrating D’s utterance

as types, or classifiers, of situations. All represented aspects of meaning may
be modified, both “propositional” information, e.g. ontological semantics, and
perceptual types (sensors) which may be updated (retrained). In contrast to
classical model theory, we are not updating sets (extensions), but structured
classifiers (intensions).

Another way of looking at the difference between TTR and classical model
theory is to note that TTR assigns objects to types constructed from predicates
(“propositions”), rather than to the predicates themselves. A fundamental type-
theoretical intuition is that something of type P (a) is whatever it is that counts
as a proof object (or a verification) for the fact that a falls under the predicate
P . In a model theory for TTR, the interpretation function F assigns a value to
a type P (a) instead of a predicate P .

Now, let’s assume that a TTR model contains objects of two basic kinds: types
constructed from predicates (“propositions”), and objects (proofs, verifications)
of such types. Verifications may include sensor readings (e.g. output from a
vision recognition system) taken to correspond to situations in the world. The
semantic representation of a predicate (whether derived from a noun phrase,
verb phrase, etc.) can now be structured (as a record type) and contain various
kinds of information, including perceptual type. The compositional semantic
representation of a sentence can be similarly structured.

In such a setting it seems useful to think of perceptual types as compositional.
We thus take it that the perceptual type of a sentence can be composed from
the perceptual types of the constituent expressions of the sentence:

– The perceptual type of “blue” is instantiated by perceptions of blue things
– The perceptual type for “ball” is instantiated by perceptions of balls
– The perceptual type for “blue ball” is instantiated by perceptions of blue

balls
– . . .
– The perceptual type for “Naomi has a blue ball” is instantiated by percep-

tions of situations where Naomi has a blue ball

Here, “perceptions” means “sensor readings from a perceptual systems”. The
idea is that when computing the meaning of a sentence, we construct a complex
sensor from simpler sensors.

When modifying the meaning of an expression e (e.g. “blue”) in TTR, we can
do this by updating some part of the structured meaning of e, e.g. the perceptual

Do Dialogues Have Content? 155

type. As mentioned, one kind of perceptual type is the sensor, which is assumed
to give a positive reading when perceiving a certain kind of situation in the world
(e.g. one involving gloves, or one involving Naomi having a blue ball). One way
of updating a perceptual type, then, is as re-training a sensor. This seems more
sensible than re-classifying all known objects according to an some unknown
algorithm, and relies crucially on having a structured representation intensions
of linguistic expressions.

4.4 Indeterminate Extensions

This view of intensional meaning as involving sensors interfacing with the real
world has important consequences for how we think about extensions. The reason
is that a re-trained sensor cannot immediately tell us which objects and situa-
tions will trigger it – the only way to find out is to apply it in various situations
and see what happens. This means that there is no longer a definite extension
of an expression apart from specific situations of language use. Instead, in each
instance of use of an expression, the situation of use is classified as falling under
the intension of the expression or not.

In general, especially in humans, a classifier does not operate in a vacuum and
may be sensitive to a multitude of aspects of the perceived situation, including
shared and individual goals, various social aspects of the situation, perceptual
factors (light conditions etc), priming effects and more. Classification is thus a
situated, complex and stochastic process. This is also true of classifiers involving
“propositions”, i.e. classifiers whose extensions are (sets of) situations. Whether
a certain classifier (“proposition”) classifies a situation (“is true”) or not cannot
be determined in the abstract, but only by applying the classifier to a situation6.
Accepting this argument does not mean that the notion of truth becomes mean-
ingless, but it does pose a serious problem which needs to be addressed in any
formal theory taking semantic coordination and plasticity seriously.

The notion of type which we end up with if we want to our theory to cover the
perceptual aspects of meanings of linguistic expression is in (at least) one respect
very different from the notion of type in traditional mathematical type theory,
where the objects of any type (i.e. extensions) are always assumed to be known.
Traditional mathematical type theory is similar in this respect to classical model-
theoretic semantics. However, type theory appears to be more open to removing
6 This does not mean that perception and truth are conflated. If C and her friend

E were at the zoo and they both referred to the panda as a bear, it would still be
a panda. However, instead of saying that they were wrong, one could instead say
that they (inadvertedly) established a local semantic convention of not making any
distinction between pandas and bears. Given this convention, they were perfectly
right to call the panda a bear. In cases of expressions referring to natural kinds such
animal species, it is of course fairly clear that there is an external authority deciding
the “proper” convention, e.g. the community of zoologists. However, in other cases,
such as in the case of colour terms, it is much less clear that there is any such
authority. As mentioned above, there may be no clear-cut fact as to the correct
name of a given colour, and different speakers may have different takes, which may
change during interactions and over time.

156 S. Larsson

this assumption than model theory. Treating types as first-class objects, which
can be manipulated and used as classifiers of novel situations, means that type
theory is not as dependent as model theory on having determinate extensions of
expressions.

4.5 Model-Theoretic Sensor Semantics?

But wait a minute – can’t we apply the “sensor” trick in classical model-theoretic
semantics? Can perceptual semantics be modelled in classical model-theoretic
semantics? One idea is to let the model be a collection of sensor readings for a
robot C:

– F (C’s blue gloves) =glovesensor(345)
– F (blue) = {. . . , glovesensor(345), . . .}

The idea is that whenever C’s blue gloves are within C’s field of vision,
glovesensor(345) is active, and whenever a blue object is within C’s field of
vision, one of the sensors readings in F (blue) is active. Again, however, there is
no separate sensor for the colour blue; instead it is given purely extensional def-
inition as a set of sensors, one for each object falling under the general concept.

To update the meaning of “blue”, we can add and remove elements of F (blue)
so that F (blue) after the update contains exactly those sensor readings which are
active when blue (according to the new meaning) objects are in A’s field of vision.
This requires that C is able to compute, for all sensor readings in A, whether they
should be included in the new meaning of “blue”; i.e., for all objects known to
C, whether they are blue (in the new sense). This in turn requires some method
of deciding, for each sensor reading in A, whether to include it in F (blue) or not.
Again, we can ask: What would this be? There is still no “colour sample” to
compare to, other than perhaps the objects in sight, e.g. the blue ball. It seems
we need some generalisation or description to compare to, but we only have an
extension. Again, model theory seems to commit us to an unrealistic theory of
conceptual learning.

5 Conclusion

The phenomena of semantic coordination and semantic plasticity pose some gen-
eral requirements on any formal theory purporting to account for them. Firstly,
any such theory needs to treat intensions of linguistic expressions as first-class
objects, i.e., it needs something equivalent to types. Secondly, these types need to
be structured. The reason is that accounting for semantic plasticity in a way that
makes sense requires the possibility of modifying intensions, and only structured
objects can be modified. Thirdly, as some meanings involve classifying situations
in the world based on perceptions thereof, and since classification of real-world
situations is (in general) a complex stochastic process, any formal theory of se-
mantic plasticity needs to allow for a fundamental indeterminacy of extensions
of linguistic expressions.

Do Dialogues Have Content? 157

While SDRT currently relies on classical model-theoretic semantics, it also
has some features which may be useful if one would extend it to account for
semantic plasticity. It insists on the utility of a level of representation between
language and model, namely the language of SDRSs. Also, SDRSs are structured
meaning representations. It would perhaps be possible to recast SDRT in a type-
theoretic framework, thereby making it better equipped to deal with semantic
plasticity. Recent work by Asher [1] on a type-theoretic account of word meaning
is encouraging in this respect.

To sum up: If we go for the model-theoretic view of meaning, we will (it seems)
have great difficulty accounting for semantic plasticity. TTR can account for se-
mantic plasticity, but this seems to complicate the idea that the truth value of
every proposition is at every point in time determinate (true or false). Further-
more, inferences involving “propositions” (types constructed from predicates)
containing predicates whose meaning has changed during the dialogue are not
always reliable. So semantic coordination and semantic plasticity seems to un-
dermine both model-theoretic interpretation and the ability to draw inferences
from whole dialogues (seen as a conjunction of propositions). So – do dialogues
still have content?

Acknowledgments. This research was supported by The Swedish Bank Ter-
centenary Foundation Project P2007/0717, Semantic Coordination in Dialogue.
I would like to thank Robin Cooper for useful discussion.

References

1. Asher, N.: Lexical Meaning in Context. Cambridge University Press, Cambridge
(2010), http://www.cambridge.org/

2. Asher, N., Lascarides, A.: Logics of Conversation. Cambridge University Press,
Cambridge (2003), http://www.cambridge.org/

3. Brennan, S.E., Clark, H.H.: Conceptual pacts and lexical choice in conversation.
Journal of Experimental Psychology: Learning, Memory and Cognition 22, 482–493
(1996)

4. Briscoe, E.J. (ed.): Linguistic Evolution through Language Acquisition: For-
mal and Computational Models. Cambridge University Press, Cambridge (2002),
http://www.isrl.uiuc.edu/~amag/langev/paper/briscoe2002editedbook.html

5. Chierchia, G., Turner, R.: Semantics and property theory. Linguistics and Philos-
ophy 11(3) (1988)

6. Clark, E.V.: Young children’s uptake of new words in conversation. Language in
Society 36, 157–182 (2007)

7. Clark, E.: The lexicon in acquisition. Cambridge University Press, Cambridge
(1993)

8. Clark, E.V., Wong, A.D.W.: Pragmatic directions about language use: Offers of
words and relations. Language in Society 31, 181–212 (2002)

9. Clark, H.H., Wilkes-Gibbs, D.: Refering as a collaborative process. Cognition 22,
1–39 (1986)

10. Cooper, R.: Austinian truth, attitudes and type theory. Research on Language and
Computation 3, 333–362 (2005)

http://www.cambridge.org/
http://www.cambridge.org/
http://www.isrl.uiuc.edu/~amag/langev/paper/briscoe2002editedbook.html

158 S. Larsson

11. Cooper, R.: Type theory with records and unification-based grammar. In: Hamm,
F., Kepser, S. (eds.) Logics for Linguistic Structures. Mouton de Gruyter (2008),
http://www.ling.gu.se/~cooper/records/ttrhpsg.pdf

12. Cooper, R., Larsson, S.: Compositional and ontological semantics in learning from
corrective feedback and explicit definition. In: Edlund, J., Gustafson, J., Hjal-
marsson, A., Skantze, G. (eds.) Proceedings of DiaHolmia, 2009 Workshop on the
Semantics and Pragmatics of Dialogue (2009)

13. Coquand, T., Pollack, R., Takeyama, M.: A logical framework with dependently
typed records. Fundamenta Informaticae XX, 1–22 (2004)

14. van Diggelen, J., Beun, R.J., Dignum, F., van Eijk, R.M., Meyer, J.J.: Ontology
negotiation in heterogeneous multi-agent systems: The anemone system. Applied
Ontology 2, 267–303 (2007)

15. Garrod, S.C., Anderson, A.: Saying what you mean in dialogue: a study in concep-
tual and semantic co-ordination. Cognition 27, 181–218 (1987)

16. Healey, P.: Expertise or expertese?: The emergence of task-oriented sub-languages.
In: Shafto, M., Langley, P. (eds.) Proceedings of the 19th Annual Conference of
the Cognitive Science Society, pp. 301–306 (1997)

17. Larsson, S.: Coordinating on ad-hoc semantic systems in dialogue. In: Proceedings
of the 10th Workshop on the Semantics and Pragmatics of Dialogue (2007)

18. Larsson, S.: Formalizing the dynamics of semantic systems in dialogue. In: Cooper,
R., Kempson, R. (eds.) Language in Flux - Dialogue Coordination, Language Vari-
ation, Change and Evolution. College Publications, London (2008)

19. Larsson, S., Cooper, R.: Towards a formal view of corrective feedback. In: Alishahi,
A., Poibeau, T., Villavicencio, A. (eds.) Proceedings of the Workshop on Cognitive
Aspects of Computational Language Acquisition, EACL, pp. 1–9 (2009)

20. Lascarides, A.: Agreement, disputes and commitments in dialogue. Journal of Se-
mantics 26, 109–158 (2009)

21. Pickering, M.J., Garrod, S.: Toward a mechanistic psychology of dialogue. Behav-
ioral and Brain Sciences 27(02), 169–226 (2004)

22. Steels, L., Belpaeme, T.: Coordinating perceptually grounded categories through
language: A case study for colour. Behavioral and Brain Sciences 28(4), 469–489
(2005),
http://www.isrl.uiuc.edu/~amag/langev/paper/steels_BBS_color.html,
target Paper, discussion 489-529

http://www.ling.gu.se/~cooper/records/ttrhpsg.pdf
http://www.isrl.uiuc.edu/~amag/langev/paper/steels_BBS_color.html

Contextual Analysis of Word Meanings in

Type-Theoretical Semantics

Zhaohui Luo�

Dept of Computer Science, Royal Holloway, Univ of London
Egham, Surrey TW20 0EX, U.K.

zhaohui@cs.rhul.ac.uk

Abstract. Word meanings are context sensitive and may change in
different situations. In this paper, we consider how contexts and the
associated contextual meanings of words may be represented in type-
theoretical semantics, the formal semantics based on modern type theo-
ries. It is shown, in particular, that the framework of coercive subtyping
provides various useful tools in the representation.

1 Introduction

Word meanings are context sensitive. In any lexical semantics, it is important
to spell out how different word meanings may be disambiguated. In this pa-
per, we make proposals on how some word meanings may be represented in
type-theoretical semantics [34,21], the formal semantics based on modern type
theories, and how disambiguation can be done automatedly based on the repre-
sentation method. In particular, it is shown that coercive subtyping [20] provides
important tools for such a representation in type theory.

We start by dealing with homonymy, when the meanings of a homonym (e.g.,
‘run’) can be disambiguated by their typings in the type-theoretical semantics.
In such cases, overloading provides a suitable representation mechanism for sense
enumeration. We show how coercive subtyping supports the overloading of word
meanings and the automated sense selection.

As word meanings may change from context to context, some uses are only
meaningful in certain contexts, not in others. Since subtyping relations are cru-
cial in representing such informal contexts, we should extend the formal notion
of context (in type theory and other logical systems) to incorporate the assump-
tion of subtyping relations. We formally introduce coercion contexts and show
how they may be used in contextual analysis.

The meanings of some homonyms may not be distinguished by their typings.
For example, in the type-theoretical semantics, common nouns (e.g., ‘bank’) are
interpreted as types; therefore, the semantic typings of CNs are the same (differ-
ent types do not have different ‘typings’) and cannot be used in disambiguation.

� This work is partially supported by the research grant F/07-537/AJ of the Lever-
hulme Trust in U.K.

S. Pogodalla and J.-P. Prost (Eds.): LACL 2011, LNAI 6736, pp. 159–174, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

160 Z. Luo

For such disambiguation, we need to introduce local coercions (i.e., coercion
contexts for terms) so that semantic interpretations can be given as intended.

There are some proposals that words should be given complex and structured
meanings so that contributions to meaning generation can be made effectively
(cf., Pustejovsky’s work on Generative Lexicon Theory [31] and the opposing
views of lexical atomism [12,32]). Although the author does not take a philo-
sophical stand on this, it is worth stating that structured lexical entries have
the potential to contribute to a computational treatment of the semantics in,
for instance, building an inference engine based on a formal semantics. We shall
study how structured lexical meanings of CNs may be represented by Σ-types
and show that such representations are consistent with the successful treatment
of copredication in type-theoretical semantics [21].

For all of the proposals in this paper, experiments have been done in the proof
assistant Coq [9], which implements a modern type theory. This may serve to
verify the proposals, but more importantly, it can be seen as the first step towards
computer-assisted linguistic reasoning with proof engines that implement the
type-theoretical semantics.

In §2, we first give an introduction to type-theoretical semantics. The repre-
sentation of sense enumeration and selection by coercive subtyping is described
in §3. Coercion contexts and local coercions, and their uses in contextual analy-
sis, are studied in §4. In §5, we consider how some of the structured lexical entries
may be represented as Σ-types in the context of studying copredication. Finally,
we briefly describe our Coq experiments in §6, followed by the conclusion where
some future work is discussed.

2 Type-Theoretical Semantics

By a type-theoretical semantics, we mean a formal semantics of natural languages
based on modern type theories such as Martin-Löf’s predicative type theory
[25,29] and the impredicative type theory UTT [18]. Such a semantics is in the
tradition of the Montague grammar [27] but the powerful type structures in
a modern type theory provide new useful mechanisms for formal semantics of
various linguistic features, some of which have been found difficult to describe
in the Montagovian setting.

In this section, we give a brief overview of the basics of type-theoretical se-
mantics, partly to lay down the background and partly to set up notations and
terminologies.

2.1 A Brief Overview

The Montague grammar is based on Church’s simple type theory [6], which is a
single-sorted logic. In Montague grammar, there is a universal type e of entities:
a common noun is interpreted as a function of type e → t and a verb or an
adjective as a function of type (e → t) → (e → t), where t is the type of truth
values.

Contextual Analysis of Word Meanings in Type-Theoretical Semantics 161

In contrast, a modern type theory can be considered as a many-sorted logical
system, where there are many sorts called types that may be used to stand for
the domains to be represented. These types include:

– the propositional types (or logical propositions – see §2.2),
– the inductive types such as the type of natural numbers and Σ-types of

dependent pairs (see the latter in §2.3), and
– other more advanced type constructions such as type universes (see §2.5).

Because of this many-sortedness, it is natural to interpret the noun phrases
as types. Here are several basic interpretation principles one may adopt in a
type-theoretical semantics [34]:

– Common nouns are interpreted as types. For instance, the CNs ‘man’ and
‘human’ can be interpreted as types [[man]] and [[human]], respectively.

– An adjective is interpreted as a predicate over the type that interprets the
domain of the adjective. For instance, ‘handsome’ may be interpreted as a
predicate [[handsome]] : [[man]] → Prop, where Prop is the type of logical
propositions (see §2.2).

– Modified CNs are interpreted as Σ-types (see §2.3 for more details).

Furthermore, the framework of coercive subtyping provides us additional richer
means for type-theoretical semantics [20,21] (see §2.4).

2.2 Embedded Logic

A modern type theory has an embedded logic (or internal logic) based on the
propositions-as-types principle [10,14]. For example, in Martin-Löf’s predicative
type theory, the logical proposition A&B corresponds to the product type A×B
(a special case of Σ-type – see below) and a pair of a proof of A and a proof of
B corresponds to an object of the product type. Similarly, this correspondence
extends to other logical operators: the logical implication (⊃) corresponds to the
function types (→), the universal quantifier (∀) to the dependent Π-types, etc.

For Martin-Löf’s type theory, the embedded logic is first-order and, for im-
predicative type theories such as ECC/UTT [18], the embedded logics are second-
order or higher-order, where there is a type Prop of logical propositions. For-
mally, Prop is a totality and one can quantify over it to form other propositions
(and this process is regarded as ‘circular’ by predicativists [11] or ‘impredicative’,
in the technical jargon).1

In this paper, we shall use Prop in linguistic interpretations. In a type-
theoretical semantics, an assertive sentence is interpreted as a proposition of
type Prop and a verb or an adjective as a predicate of type A→ Prop, where A
is the domain whose objects the verb or adjective can be meaningfully applied
to. For instance, consider the following sentence:

1 Prop is very much like the type t in the simple type theory. The main difference is
that, in modern type theories, we have explicit proof terms of logical propositions.

162 Z. Luo

(1) John is handsome.

With [[John]] : [[man]] and [[handsome]] : [[man]]→ Prop, the above sentence (1)
is interpreted as proposition [[handsome]]([[John]]) of type Prop.

2.3 Dependent Types

Modern type theories contain dependent types. For instance, When A is a type
and P is a predicate over A, Πx:A.P (x) is the dependent function type that, in
the embedded logic, stands for the universally quantified proposition ∀x:A.P (x).
Π-types degenerates to the function type A→ B in the non-dependent case.

Another example of dependent type is the so-called Σ-types. If A is a type
and B is an A-indexed family of types, then Σ(A, B), or sometimes written as
Σx:A.B(x), is a type, consisting of pairs (a, b) such that a is of type A and b is of
type B(a). When B(x) is a constant type (i.e., always the same type no matter
what x is), the Σ-type degenerates into product type A × B of non-dependent
pairs. Σ-types (and product types) are associated projection operations π1 and
π2 so that π1(a, b) = a and π2(a, b) = b, for every (a, b) of type Σ(A, B) or A×B.

In a type-theoretical semantics, modified common nouns are interpreted as
Σ-types. For instance, Σ([[man]], [[handsome]]) is the type of handsome men (or
more precisely, of those men together with proofs that they are handsome).

Notations for Σ-types. A nested Σ-type can be seen as a type of tuples/modules.
The following notations will be adopted (in §5). We shall use⎧⎪⎨

⎪⎩
x1 : A1

...

xn : An

⎫⎪⎬
⎪⎭

to stand for the Σ-type Σx1 : A1Σx2 : A2 ... Σxn−1 : An−1. An. For example,{
name : [[man]]
hproof : [[handsome]](name)

}
stands for Σ([[man]], [[handsome]]).

Coq implementation of Σ-types. In the proof assistant Coq [9], Σ-types are
implemented by means of the ‘record’ mechanism, which provide many automatic
tools, including the following:

– If the record mechanism is used, the projection operators of the Σ-types are
automatedly generated as globally defined terms, named by the ‘labels’ such
as name and hproof in the above example.

– A projection operator may be indicated as a coercion. For instance, if we
want to declare the first projection of the above Σ-type as a coercion, we
may simply write name :> Man when defining the Σ-type. (cf., the definition
of the dot-type PhyInfo in Appendix B.2.)

These automatic tools have greatly helped our experiments in Coq on the type-
theoretical semantics, as reported in §6 and Appendix B.

Contextual Analysis of Word Meanings in Type-Theoretical Semantics 163

2.4 Coercive Subtyping

Coercive subtyping [19,20] is an adequate theory of subtyping for modern type
theories. In computer science, coercive subtyping has been implemented in many
proof assistants such as Coq [9,35], Lego [23,4], Matita [26] and Plastic [5], and
used effectively in interactive theorem proving. It has also been applied to type-
theoretical semantics [21].

The basic idea of coercive subtyping is to consider subtyping as an abbrevi-
ation mechanism: A is a (proper) subtype of B (A < B) if there is a unique
implicit coercion c from type A to type B and, if so, an object a of type A can
be used in any context CB[] that expects an object of type B: CB[a] is legal
(well-typed) and equal to CB[c(a)].

For instance, one may introduce [[man]] < [[human]]. Then, if we assume that
[[John]] : [[man]] and [[shout]] : [[human]]→ Prop, the interpretation (3) of (2) is
well-typed:

(2) John shouts.
(3) [[shout]]([[John]])

according to the rule of coercive subtyping, because [[man]] < [[human]].

2.5 Universes

Other more advanced features in a modern type theory are useful in develop-
ing the theory of type-theoretical semantics. For example, one may collect (the
names of) some types into a type called a universe [25]. Introducing universes
can be considered as a reflection principle: such a universe reflects those types
whose names are its objects.

In type-theoretical semantics, universes can be introduced to help semantic
interpretations. For instance, one may consider the universe cn : Type of all
common noun interpretations and, for each type A that interprets a common
noun, there is a name A in cn. For example,

[[man]] : cn and Tcn([[man]]) = [[man]] .

In practice, we do not distinguish a type in cn and its name by omitting the
overlines and the operator Tcn by simply writing, for instance, [[man]].

Type universes can be used in semantic interpretations. For instance, the
universe cn can be used to give semantic interpretations to adverbs.2 An adverb
modifies a verb (an adjective) to result in a verb (adjective) phrase.3 Since, in
a type-theoretical semantics, verbs and adjectives are interpreted as predicates
over a variety of domains (rather than over a single domain as in the Montagovian
2 As far as the author is aware, there are no proposals in the literature on how adverbs

should be interpreted in a type-theoretical semantics based on modern type theories.
3 There are other adverbs. For example, an adverb may modify sentences to result in

new sentences and, as in Montague grammar [27], such adverbs are interpreted as
functions from Prop to Prop.

164 Z. Luo

setting), adverbs such as ‘loudly’ in ‘John talked loudly’ and ‘simply’ in ‘That
idea is simply ridiculous’ would be interpreted as of type

ΠA : cn. (A→ Prop)→ (A→ Prop).

For instance, for [[talk]] : [[human]] → Prop, the following phrase (4) can be
interpreted as (5), which is of type [[human]]→ Prop:

(4) talk loudly
(5) [[loudly]]([[human]], [[talk]])

Such interpretations of adverbs are experimented in Coq as, for example, shown
in an example at the end of Appendix B.1.

3 Sense Selection via Overloading

In this paper, we shall consider how word meanings can be formalised in a
type-theoretical semantics based on modern type theories. It is important to
emphasise that the formal presentation of word meanings should naturally give
rise to automated disambiguation in contexts so that, when considered in an
interpretation of sentences or even larger linguistic entities where the concerned
word occurs, the correct meaning will be automatedly selected.

In this section, we first start with the simple cases of homonymy and show
that, when the meanings of a homonym can be differentiated by means of typing,
its sense enumeration can be represented with coercive subtyping.

3.1 Sense Enumeration

A word may be homonymous with several unrelated meanings.4 For instance, the
word ‘run’ can be used in the following two sentences with different meanings.

(6) John runs quickly.
(7) John runs a bank.

In a type-theoretical semantics, we may have the following two different meanings
of ‘run’, corresponding to the above uses:

(8) [[run]]1 : [[human]]→ Prop

(9) [[run]]2 : [[human]]→ [[institution]]→ Prop

To represent the sense selection model, we need a mechanism that allows
automated selection of the correct meaning when a sentence is interpreted. For
instance, [[run]]2 in (9) should be selected automatedly when (7) is interpreted.

4 Sense enumeration lexicons have been discussed, e.g., by Pustejovsky [31].

Contextual Analysis of Word Meanings in Type-Theoretical Semantics 165

3.2 Simple Sense Selection via Overloading Based on Coercive
Subtyping

In type theory, simple cases in the sense selection model can be represented by
means of overloading (or ad hoc polymorphism) [36]. Intuitively, in the above
example, the word ‘run’ is overloaded in the sense that it is associated with
more than one meaning. Overloading can be supported by coercive subtyping
[20,4], as explained below.

Assume that w be an arbitrary homonym with different meanings [[w]]i : Ai

(i = 1, ..., n), where Aj �= Ak if j �= k. Let 1w : Type be the inductive unit
type with only one object w : 1w (see Appendix A for the formal details of the
unit type). Then, the meaning of w is represented as the coercions ci : 1w → Ai

(i = 1, ..., n), defined as:
ci(w) = [[w]]i : Ai.

For instance, the above word ‘run’ has two meanings [[run]]1 and [[run]]2 (in (8)
and (9) in the previous subsection). The sense selection model for these two
meanings of ‘run’ is given by the following two coercions:5

c1(run) = [[run]]1 and c2(run) = [[run]]2 .

This has the effect that, for example, in any context C1[run] that requires an
object of type [[human]]→ Prop, we have

C1[run] = C1[c1(run)] = C1[[[run]]1],

and, in any context C2[run] that requires an object of type [[human]]
→ [[institution]]→ Prop, we have

C2[run] = C2[c2(run)] = C2[[[run]]2].

Therefore, through automated insertions of coercions, the sentences (6) and (7)
will both be interpreted correctly as expected.

Remark 1. For some homonyms, their different meanings may have the same
type and therefore cannot be differentiated by typing. For instance, in a type-
theoretical semantics, common nouns are interpreted as types and, therefore, the
disambiguation of a homonymous common noun (e.g., ‘bank’) may depend on
further linguistic information (e.g., in the case of ‘bank’, it may refer to some
financial matters). One can resort to local coercions, as to be discussed in §4.2,
to give formal interpretations in such situations. ��

We have experimented in the proof assistant Coq [9] on sense selection based
on the unit type and coercive subtyping. See Appendix A for unit types and
Appendix B.1 for an example of homonymy.

5 If other meanings of ‘run’ are considered, further coercions are defined accordingly.

166 Z. Luo

4 Representation of Contexts: Coercion Contexts and
Local Coercions

Word meanings are context sensitive. For instance, as discussed in the above
section, a homonym has different meanings when used in different sentences,
or in different sentential contexts. In other circumstances, the contexts are not
sentential; what they describe can be either a special situation or a specific
background. Many usages are only meaningful in such special situations or local
contexts in which, for instance, the meanings of some words change.

Example 1 (reference transfer). Consider the following utterance (cf., [30]):

(10) The ham sandwich shouts.

Assuming that the act of shouting requires that the argument be human, it is
obvious that sentence (10) is not well-formed, unless it is uttered by somebody
in some special extralinguistic context (e.g., by a waiter in a café to refer to a
person who has ordered a ham sandwich). ��

4.1 Coercion Contexts in Type Theory

In a type-theoretical semantics, such local contexts can be described by means
of the formal notion of context in type theory. Traditionally, a context in type
theory is of the form

x1 : A1, ..., xn : An

where Ai is either a data type, in which case xi is assumed to be an object of
that type, or a logical proposition, in which case the proposition Ai is assumed
to be true and xi a proof of Ai. For example, one may have the following context:

m : [[man]], hproof : [[handsome]](m)

which assumes, in layman’s terms, that ‘m is a man’ and ‘m is handsome’ (with
‘hproof’ being a proof).

The formal notion of context can be extended by coercion declarations or
subtyping assumptions, as proposed in [21]. A coercion context is a context
whose entries may be of the form A <c B as well as the usual form x : A. For
instance, the following context may be used to describe the special circumstances
in a café:

(11) ..., [[ham sandwich]] < [[human]], ...

where the subtyping assumption says that a ham sandwich can be coerced into
a person (i.e., the person who has ordered a ham sandwich). In a context such
as (11), the above sentence (10) can be interpreted satisfactorily as intended.

Formally, we have:

Γ � A : Type Γ � B : Type Γ � c : (A)B
Γ, A <c B valid

Γ, A <c B, Γ ′ valid

Γ, A <c B, Γ ′ � A <c B : Type

Contextual Analysis of Word Meanings in Type-Theoretical Semantics 167

where (A)B is the functional kind from A to B in the logical framework (see
Chapter 9 of [18] for formal details.) In other words, coercions can now be in-
troduced in contexts and they are only valid ‘locally’ in the context where they
are introduced. For example, sentence (10) can be reasonably interpreted in a
context which contains the subtyping as shown in (11) and, otherwise, it cannot.

Remark 2. (coherent context) Please note that validity of a context is not enough
anymore for it to be legal. One needs to make sure that the context is coherent,
in the sense that the declared coercions in the context do not lead to more than
one coercion between two types. Since it requires some formal backgrounds to
be treated more concisely, its details are omitted here. ��

Example 2. Consider the following example (adapted from [24]):

(12) Every linguist drinks a glass.

Let’s assume that ‘drink’ be interpreted as:

[[drink]] : [[animated]]→ [[liquid]]→ Prop.

Now, since not every container contains drinks, there should be a special context
in which the above sentence (12) can be interpreted. The coercion context should
contain the following subtyping relations:

[[glass]] < [[beverage]], [[beverage]] < [[liquid]], [[linguist]] < [[animated]]

Then, in a coercion context with the above, (12) can be interpreted as:

(13) ∀l : [[linguist]] . ∃g : [[glass]] . [[drink]](l, g).

In the coercion context, (13) is well-typed. ��

4.2 Local Coercions in Terms

Consider the following phrases that use the homonym ‘bank’:

(14) the bank of the river
(15) the richest bank in the city

From the previous subsection, we know that (14) and (15) can be interpreted in
the following contexts (16) and (17), respectively:

(16) ... [[bank]] < [[riverside]], ...

(17) ... [[bank]] < [[financial institution]], ...

Now, what if we want to use the word ‘bank’ twice with these two different
meanings in the same text (e.g., in a text where (14) is followed not far by

168 Z. Luo

(15))? Although one is not forbidden to introduce a context that contains both
subtyping assumptions:

(18) ... [[bank]] < [[riverside]], ... [[bank]] < [[financial institution]], ...

it may not be known which subtyping relation should be used in which sen-
tence (unless some extra information is available). Automatic selection fails.
Sometimes, the situation is even worse: it may be impossible to assume all the
subtyping relations because it would lead to incoherence.

Such a problem can be solved by introducing local coercions – coercions that
are only effective locally for some terms (expressions in type theory). Coercions
may be introduced into terms by the following rule:

Γ, A <c B � J

Γ � coercion A <c B in J

where J is any of the following four forms of judgement:

k : K, k = k′ : K, K kind, and K = K ′.

For instance, with J ≡ k : K, we have

Γ, A <c B � k : K

Γ � coercion A <c B in k : K

Intuitively, the coercions declared locally are only effective in the expressions in
the scope of the keyword in. For instance, for

coercion [[bank]] < [[financial institution]] in e,

the subtyping relation between [[bank]] and [[financial institution]] is only effec-
tive in the expression e, not outside e.

The key word coercion distributes through the components of J . For exam-
ple, the following two judgements are identified:

coercion A <c B in (k : K)
(coercion A <c B in k) : (coercion A <c B in K)

The introduction of local coercions broadens the scope of interpretation in
applying the above techniques. For example, assuming that (14) and (15) have in-
terpretations [[(14)]] under [[bank]] < [[riverside]] and [[(15)]] under
[[bank]] < [[financial institution]], respectively, then the following two terms
give their semantics and can be used together with no problem:

(19) coercion Bank < Riverside in [[(14)]]
(20) coercion Bank < FinancialInst in [[(15)]]

Since the coercions only take effects in the relevant expressions, the intended
semantics gets represented correctly.

Contextual Analysis of Word Meanings in Type-Theoretical Semantics 169

5 Structured Lexical Entries: Copredication and Beyond

Lexical entries can either be atomic, as advocated by Fodor and Lepore’s lexical
atomism [12,32], or complex and structured as proposed and studied by Puste-
jovsky and others [31]. According to lexical atomism, the basic words such as
‘book’ may only be properly interpreted in an atomic way, while Pustejovsky and
others believe that they should be represented by means of rich and structured
entities which, when combined with other linguistic entities in a sentence, make
important contributions to meaning generations.

In this paper, we shall not argue for or against whether the lexicon should be
generative and structured, but only to investigate, if words should be represented
as complex and structured entities, how it can be done in a type-theoretical se-
mantics. We want to add that, if one can represent word meanings successfully
as structured entities that contribute to meaning generation, it will make sub-
stantial contribution to natural language processing in practice.

In this section, we shall first review how copredication (cf., [3]) can be captured
in the type-theoretical semantics [21] and then show how complex and structured
lexical entries, represented by Σ-types,6 can be dealt with satisfactorily in this
respect.

5.1 Copredication and Dot-Types

The dot-type and its use in lexical semantics were first proposed by Pustejovsky
[31] and further studied by many others including, for example, Asher in the
study of copredication [2,3]. In [21], the author has proposed a type-theoretic
formal treatment of dot-types, with the help of coercive subtyping, and shown
that the type-theoretical semantics with coercive subtyping gives a satisfactory
treatment of copredication, among others.

Example 3 (copredication). Let Phy and Info be the types of physical ob-
jects and informational objects, respectively. One may consider the dot-type Phy•
Info as the type of the objects with both physical and informational aspects. A
dot-type is a subtype of its constituent types: Phy • Info < Phy and Phy •
Info < Info. A book may be considered as having both physical and informa-
tional aspects, reflected as:

(∗) [[book]] < Phy • Info.

Now, consider the following sentence:

(21) John picked up and mastered the book.

In a type-theoretical semantics, we may assume

[[pickup]] : [[human]]→ Phy→ Prop

[[master]] : [[human]]→ Info→ Prop

6 Cooper [8,7] has proposed to use dependent record kinds in Martin-Löf’s type theory
to represent lexical entries. The idea of using Σ-types to represent structured lexical
entries was proposed, but not studied in any depth, in [22].

170 Z. Luo

Because of the above subtyping relationship (∗) (and contravariance of subtyping
for the function types), we have

[[pickup]] : [[human]]→ Phy→ Prop

< [[human]]→ Phy • Info→ Prop

< [[human]]→ [[book]]→ Prop

[[master]] : [[human]]→ Info→ Prop

< [[human]]→ Phy • Info→ Prop

< [[human]]→ [[book]]→ Prop

Therefore, [[pickup]] and [[master]] can both be used in a context where terms
of type [[human]] → [[book]] → Prop are required and the interpretation of the
sentence (21) can proceed as intended. ��

5.2 Generative Lexical Entries as Σ-types

When lexical entries are represented as complex and structured entities, copred-
ication should be able to be treated in a similar way. For the above example, the
key is to make sure that, if we interpret the word ‘book’ as a structured entity,
the subtyping relation (∗) still holds.

Our proposal is that the basic common nouns such as ‘book’ be represented
as Σ-types in type theory (see §2.3 for a brief introduction to Σ-types and the
relevant notations). For example, the lexical entry for ‘book’ (p.15 of [33]) may
be interpreted as the following Σ-type:

[[book]] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Arg : Phy • Info

Qualia :

⎧⎪⎨
⎪⎩

Formal : Hold(p1(Arg), p2(Arg))
Telic : R(Arg)
Agent : ∃h:Human.W (h, Arg)

⎫⎪⎬
⎪⎭

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

where p1 and p2 are the associated projection operators for the dot-type Phy •
Info (see [21] for formal details) and R(x) and W (h, x) informally stand for ‘x
to be read’ and ‘h wrote x’, respectively.

If ‘book’ is given the above structured interpretation, is it true that the sub-
typing relation (∗) still holds? (i.e., do we still have [[book]] ≤ Phy • Info?)
The answer is yes, because we can take the first projection π1 for Σ-types as a
coercion. Therefore, the formal calculations in the previous section goes through.

6 Implementations in Coq

Type theories have been implemented in several proof assistants such as Agda
[1] and Coq [9]. We have used Coq to experiment with the proposal as reported
in this paper. Coq supports the use of coercions. Although it is not completely
satisfactory, it can be used well to implement the examples. (We do not get into
the details here.) Some of the Coq codes are given in Appendix B:

Contextual Analysis of Word Meanings in Type-Theoretical Semantics 171

– In Appendix B.1, we give the Coq codes that implement the examples of
homonyms as described in §3. Please note that, since Coq has certain re-
strictions on what coercions can be defined (esp. concerning function types),
we have to use type-casting in order to make some coercion insertions work.

– In Appendix B.2, we give the Coq codes that interpret ‘book’ as a Σ-type
(implemented in Coq as the ‘record’ mechanism), as in §5.2, and implement
examples of copredication etc; in particular, it shows how the following sen-
tences can be interpreted as intended:

(22) John burned a boring book.
(23) John picked up and mastered book B.

7 Conclusion

Lexical semantics must consider how to give appropriate meaning explanations to
the words which have different meanings in different contexts. We have studied
how this may be done in various situations in the type-theoretical semantics
based on modern type theories. The proposals can all be implemented on the
computer based on the automated selection mechanisms with the help of coercive
subtyping, among others. It would be interesting to see how such a system can
be built based on the type-theoretical semantics.

The study of meta-theory of coercion contexts and local coercions is beyond
the scope of the current paper. Although we do not foresee key difficulties, a
challenge may be concerned with the notion of ‘coherent context’ as mentioned in
Remark 2 in §4.1. The meta-theoretic properties such as strong normalisation do
not just concern valid contexts, but coherent contexts and this new phenomena
may need new tools to be dealt with satisfactorily.

In this paper, we have used Σ-types to represent structured lexical entries of
CNs. However, other words such as verbs should not be represented as types. In
general, the structured semantics of a word may be represented as a pair

(A, φ), where A : Type and φ : A→ Prop.

Such constructions have been studied in the contexts of mathematical theories
[16] and program specifications [17]. Similar constructions seem to be needed in
the current context and further studies are called for in this respect.

Among related work, we should mention that by Francez et al [13], where the
proof-theoretic semantics (cf., [15]) of a fragment of natural language has been
studied. Although it is quite different from type-theoretic semantics, there is
one thing in common: proof-theoretic ideas play a central role in such semantics,
in contrast to the more dominant model-theoretic approaches, including the
Montague semantics.

Finally, it may also be helpful to mention that, in natural language processing,
there is a substantial amount of work on the word sense disambiguation (WSD)
problem (see, for example, [28] for a recent survey) and to emphasise that this
is quite different (e.g., in aims) from the work reported here.

172 Z. Luo

References

1. The Agda proof assistant (2008),
http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php?

2. Asher, N.: A type driven theory of predication with complex types. Fundamenta
Infor. 84(2) (2008)

3. Asher, N.: Lexical Meaning in Context: A Web of Words, draft, CUP (2010)
4. Bailey, A.: The Machine-checked Literate Formalisation of Algebra in Type The-

ory. Ph.D. thesis, University of Manchester (1999)
5. Callaghan, P., Luo, Z.: An implementation of LF with coercive subtyping and

universes. Journal of Automated Reasoning 27(1), 3–27 (2001)
6. Church, A.: A formulation of the simple theory of types. J. Symbolic Logic 5(1)

(1940)
7. Cooper, R.: Records and record types in semantic theory. J. Logic and Computu-

tation 15(2) (2005)
8. Cooper, R.: Copredication, dynamic generalized quantification and lexical inno-

vation by coercion. Proceedings of GL 2007, the Fourth International Workshop
on Generative Approaches to the Lexicon (2007)

9. The Coq Development Team: The Coq Proof Assistant Reference Manual (Version
8.1), INRIA (2007)

10. Curry, H., Feys, R.: Combinatory Logic, vol. 1. North-Holland, Amsterdam (1958)
11. Feferman, S.: Predicativity. In: Shapiro, S. (ed.) The Oxford Handbook of Phi-

losophy of Mathematics and Logic. Oxford Univ. Press, Oxford (2005)
12. Fodor, J.A., Lepore, E.: The emptiness of the lexicon: Reflections on james puste-

jovskys the generative lexicon. Linguistic Inquiry 29(2), 269–288 (1998)
13. Francez, N., Dyckhoff, R.: Proof-theoretic semantics for a natural language frag-

ment. In: Ebert, C., Jäger, G., Michaelis, J. (eds.) MOL 10. LNCS, vol. 6149, pp.
56–71. Springer, Heidelberg (2010)

14. Howard, W.A.: The formulae-as-types notion of construction. In: Hindley, J.,
Seldin, J. (eds.) To H. B. Curry: Essays on Combinatory Logic. Academic Press,
London (1980)

15. Kahle, R., Schroder-Heister, P. (eds.) Synthese, vol. 148(3) (2006)
16. Luo, Z.: A higher-order calculus and theory abstraction. Information and Com-

putation 90(1) (1991)
17. Luo, Z.: Program specification and data refinement in type theory. Mathematical

Structures in Computer Science 3(3) (1993)
18. Luo, Z.: Computation and Reasoning: A Type Theory for Computer Science.

Oxford Univ. Press, Oxford (1994)
19. Luo, Z.: Coercive subtyping in type theory. In: van Dalen, D., Bezem, M. (eds.)

CSL 1996. LNCS, vol. 1258. Springer, Heidelberg (1997)
20. Luo, Z.: Coercive subtyping. J. of Logic and Computation 9(1), 105–130 (1999)
21. Luo, Z.: Type-theoretical semantics with coercive subtyping. In: Semantics and

Linguistic Theory 20 (SALT 20), Vancouver (2010)
22. Luo, Z., Callaghan, P.: Coercive subtyping and lexical semantics (extended ab-

stract). In: Logical Aspects of Computational Linguistics (LACL 1998) (1998)
23. Luo, Z., Pollack, R.: LEGO Proof Development System: User’s Manual. LFCS

Report ECS-LFCS-92-211, Dept. of Computer Science, Univ. of Edinburgh (1992)
24. Marlet, R.: When the generative lexicon meets computational semantics. In: 4th

Inter. Workshop on Generative Approaches to the Lexicon (2007)
25. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis (1984)

http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php?

Contextual Analysis of Word Meanings in Type-Theoretical Semantics 173

26. The Matita proof assistant (2008), http://matita.cs.unibo.it/
27. Montague, R.: Formal Philosophy. Yale University Press, New Haven (1974)
28. Navigli, R.: Word sense disambiguation: a survey. ACM Computing Surveys 41(2)

(2009)
29. Nordström, B., Petersson, K., Smith, J.: Programming in Martin-Löf’s Type The-

ory: An Introduction. Oxford University Press, Oxford (1990)
30. Nunberg, G.: Transfers of meaning. J. of Semantics 12(2) (1995)
31. Pustejovsky, J.: The Generative Lexicon. MIT, Cambridge (1995)
32. Pustejovsky, J.: Generativity and explanation in semantics: A reply to fodor and

lepore. Linguistic Inquiry 29(2), 289–311 (1998)
33. Pustejovsky, J.:The semantics of lexical underspecification.Folia Linguistica (1998)
34. Ranta, A.: Type-Theoretical Grammar. Oxford University Press, Oxford (1994)
35. Säıbi, A.: Typing algorithm in type theory with inheritance. In: POPL 1997 (1997)
36. Strachey, C.: Fundamental concepts in programming languages. Higher-Order and

Symbolic Computation 13(1-2) (2000), (Paper based on 1967 lectures)

A The Unit Type

A unit type is an inductive type that has only one object. It is one of the inductive
types in Martin-Löf’s type theory or UTT, whose formal details can be found in,
for example, Chapter 9 of [18]. In this paper, we consider a class of unit types:
a unit type 1w for each word w. These unit types can be introduced by means
of the following rules

1w : Type w : 1w

C : (1w)Type c : C(w) z : 1w

Ew(C, c, z) : C(z)

together with the computation rule Ew(C, c, w) = c : C(w) stating that, when
applied to the canonical object w, its elimination operator Ew computes to c.
For Coq implementation, see Appendix B.1 for that of 1run.

B Implementations in Coq

B.1 Homonymy in Coq

(* Lexical Semantics using Coq’s records: simple homonymy *)

(* Categories of Sentences & CNs *)

Definition S := Prop.

Definition CN := Set.

Parameters Bank Institution Human Man : CN.

Parameter John : Man.

Axiom mh : Man->Human. Coercion mh : Man >-> Human.

Axiom bi : Bank->Institution. Coercion bi : Bank >-> Institution.

(* unit type for "run" *)

Inductive Onerun : Set := run.

Definition RSem1 := Human->S.

Definition RSem2 := Human->Institution->S.

Parameter run1 : RSem1.

http://matita.cs.unibo.it/

174 Z. Luo

Parameter run2 : RSem2.

Definition r1 (r:Onerun) : RSem1 := run1. Coercion r1 : Onerun >-> RSem1.

Definition r2 (r:Onerun) : RSem2 := run2. Coercion r2 : Onerun >-> RSem2.

(* John runs quickly *)

Parameter quickly : forall (A:CN), (A->S)->(A->S).

Definition john_runs_quickly := quickly Human (run:RSem1) John.

(* John runs a bank *)

Definition john_runs_a_bank := exists b:Bank, (run:RSem2) John b.

B.2 Copredications in Coq

(* Note: Coq’s "record-types" is Sigma-types plus *)

(* auto-defns of projections & coercions *)

(* Categories of Sentences and CNs *)

Definition S := Prop.

Definition CN := Set.

Parameter Human Man : CN.

Axiom mh : Man->Human.

Coercion mh : Man >-> Human.

(* Phy dot Info *)

Parameter Phy Info : CN.

Record PhyInfo : CN := mkPhyInfo { phy :> Phy; info :> Info }.

(* Book as Sigma-type with PhyInfo & BookQualia *)

Parameter Hold : Phy->Info->Prop.

Parameter R : PhyInfo->Prop.

Parameter W : Human->PhyInfo->Prop.

Record BookQualia (A:PhyInfo) : Set :=

mkBookQualia { Formal : Hold A A;

Telic : R A;

Agent : exists h:Human, W h A }.

Record Book : Set := mkBook { Arg :> PhyInfo; Qualia : BookQualia Arg }.

(* "John burned a boring book" *)

Parameter John : Man.

Parameter boring : Info->S.

Record BBook : CN := mkBBook { b :> Book; _ : boring b }.

Parameter burn : Human->Phy->S.

Definition John_burned_a_boring_book := exists b:BBook, (burn John b) : S.

(* copredication: "John picked up and mastered book B" *)

Parameter B : Book.

Parameter pickup : Human->Phy->S.

Parameter master : Human->Info->S.

Definition John_picked_up_and_mastered_book_B

:= and (pickup John B) (master John B).

Logic Programming of the

Displacement Calculus

Glyn Morrill

Universitat Politècnica de Catalunya
morrill@lsi.upc.edu

http: //www-lsi.upc.edu/~morrill/

Abstract. The displacement calculus of Morrill, Valent́ın and Fadda
(2011)[12] forms a foundation for type logical categorial grammar in
which discontinuity is accommodated alongside continuity in a logic
which is free of structural rules and which enjoys Cut-elimination, the
subformula property, decidability, and the finite reading property. The
calculus deploys a new kind of sequent calculus which we call hyperse-
quent calculus in which types and configurations have not only external
context but also internal context, in the case that they are discontinu-
ous. In this paper we consider the logic programming of backward chain-
ing hypersequent proof search for the displacement calculus. We show
how focusing eliminates all spurious ambiguity in the fragment without
antecedent tensors and we illustrate coding of the essential features of
displacement. In this way we lay a basis for parsing/theorem proving
for this calculus, which is being used and extended in a system CatLog
currently under development.

Keywords: categorial grammar, discontinuity, focusing, parsing as
deduction, sequent calculus.

1 Introduction

Morrill, Valent́ın and Fadda (2011)[12] exemplifies applications of the displace-
ment calculus such as quantification, discontinuous idioms, cross-serial depen-
dencies, gapping, parentheticals, and comparative subdeletion. In this paper we
address logic programming of parsing/theorem proving for the calculus by back-
ward chaining (hyper)sequent proof search. We see that all spurious ambiguity
in the fragment without antecedent tensors is eliminated by focusing (Andreoli
1992[1]) — controlling the types to which successive rules of inference are allowed
to apply. Logic programming of the focused proof search depends on predicates
handling the discontinuity, i.e. internal contexts, of discontinuous types and con-
figurations. In Section 2 we review the displacement calculus. In Section 3 we
define the focusing strategy. In Section 4 we look at the logic programming.
We conclude in Section 5. The appendix contains a cover grammar of the PTQ
fragment and output generated by the Prolog implementation CatLog currently
under development.

S. Pogodalla and J.-P. Prost (Eds.): LACL 2011, LNAI 6736, pp. 175–189, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

176 G. Morrill

2 The Displacement Calculus

Let a vocabulary V be a set including a distinguished symbol 1 called the
separator. We define the sort σ(s) of a string s over the vocabulary as the number
of separators it contains. We define the sort domains Li, i ∈ N , as follows:

Li = {s ∈ V ∗| σ(s) = i} (1)

The concatenation of strings of sort i and j is a string of sort i + j, thus the
operation + of concatenation is of functionality Li, Lj → Li+j . We consider also
operations of first and last wrap. Where s is a string of sort at least one and t is
a string, the first wrap s ×> t is the string that results from replacing the first
(leftmost) separator in s by t; in the same way the last wrap s×< t is the string
that results from replacing the last (rightmost) separator in s by t. Clearly first
and last wrap are of functionality Li+1, Lj → Li+j .

In the displacement calculus we define connective families by residuation with
respect to concatenation and first and last wrap. The types so-defined are sorted
according to the functionality of these operations. Thus there are sorted types
Fi, i ∈ N as follows, where 0 is the empty string and k ∈ {>, <}:1

Fj := Fi\Fi+j [A\C] = {s2| ∀s1 ∈ [A], s1+s2 ∈ [C]} under
Fi := Fi+j/Fj [C/B] = {s1| ∀s2 ∈ [B], s1+s2 ∈ [C]} over

Fi+j := Fi·Fj [A·B] = {s1+s2| s1 ∈ [A] & s2 ∈ [B]} product
F0 := I [I] = {0} product unit
Fj := Fi+1↓kFi+j [A↓kC] = {s2| ∀s1 ∈ [A], s1×ks2 ∈ [C]} infix

Fi+1 := Fi+j↑kFj [C↑kB] = {s1| ∀s2 ∈ [B], s1×ks2 ∈ [C]} circumfix
Fi+j := Fi+1�kFj [A�kB] = {s1×ks2| s1 ∈ [A] & s2 ∈ [B]} wrap
F1 := J [J] = {1} wrap unit

(2)

Where A is a type, sA denotes its sort.
Sequent calculus for displacement, which we call hypersequent calculus, in-

volves some novelties. The set O of configurations is defined as follows, where
Λ is the metalinguistic empty string (product unit) and [] is the metalinguistic
separator (wrap unit):

O ::= Λ | [] | F0 | Fi+1{O : . . . : O︸ ︷︷ ︸
i+1 O’s

} | O,O (3)

The fourth clause refers to a discontinuous type of sort i + 1 intercalated by
i + 1 configurations corresponding to the positions of its separators. The sort of
a configuration is the number of (metalinguistic) separators it contains. Where
Δ is a configuration of sort at least one and Γ is a configuration, the metalin-
guistic first wrap Δ|>Γ is the configuration that results from replacing the first
(leftmost) metalinguistic separator in Δ by Γ ; in the same way, the metalin-
guistic last wrap Δ|<Γ is the configuration that results from replacing the last
(rightmost) metalinguistic separator in Δ by Γ .

1 We may abbreviate {↓>,�>, ↑>} as {↓,�, ↑}.

Logic Programming of the Displacement Calculus 177

Where A is a type, its vector −→A is defined by:

−→
A =

⎧⎨
⎩

A if sA = 0
A{[] : . . . : []︸ ︷︷ ︸

sA []’s

} if sA > 0 (4)

Where Δ is a configuration of sort i and Γ1, . . . , Γi are configurations, the
fold Δ ⊗ 〈Γ1, . . . , Γi〉 is the configuration that results from replacing the met-
alinguistic separators in Δ by Γ1, . . . , Γi respectively left-to-right. The standard
distinguished occurrence notation Δ(Γ) signifies an occurrence of subconfigu-
ration Γ with context Δ. This context is external. In displacement calculus a
distinguished occurrence can be discontinuous, i.e. have internal contexts also.
We notate a distinguished potentially discontinuous hyperoccurrence of a subcon-
figuation Γ of sort i with external and internal context Δ as Δ〈Γ 〉 which stands
for Δ0(Γ ⊗ 〈Δ1, . . . , Δi〉) where Δ0 is the external context and Δ1, . . . , Δn are
the internal contexts.

A (hyper)sequent Γ ⇒ A comprises an antecedent configuration Γ and a
succedent type A of the same sort. The (hyper)sequent calculus for displace-
ment is as shown in Figure 1, where k ∈ {>, <}.

3 Focusing

For the Lambek calculus (Lambek 1958[8]) the property of Cut-elimination, that
every theorem has a Cut-free proof, establishes decidability because the Cut-
free sequent search space is finite, but within this space there are still multiple
equivalent proofs differing in inessential rule orderings, resulting in ‘spurious’
ambiguity and computational inefficiency. For example, a complex type identity
axiom instance can alternate with a proof involving succesive left and right
inferences:

N\S ⇒ N\S vs.

N ⇒ N S ⇒ S
\L

N, N\S ⇒ S
\R

N\S ⇒ N\S

(5)

Left and right inferences can sometimes permute, for example:

N ⇒ N

N, N\S ⇒ S
\R

N\S ⇒ N\S
/L

(N\S)/N, N ⇒ N\S

vs.

N ⇒ N N, N\S ⇒ S
/L

N, (N\S)/N, N ⇒ S
\R

(N\S)/N, N ⇒ N\S

(6)

And two left inferences can sometimes permute, for example:

CN ⇒ CN

N ⇒ N S ⇒ S
\L

N, N\S ⇒ S
(

N/CN,CN, N\S ⇒ S

vs.

CN ⇒ CN N ⇒ N
/L

N/CN,CN ⇒ N S ⇒ S
(

N/CN,CN, N\S ⇒ S

(7)

178 G. Morrill

id−→
A ⇒ A

Γ ⇒ A Δ〈−→A〉 ⇒ B
Cut

Δ〈Γ 〉 ⇒ B

Γ ⇒ A Δ〈−→C 〉 ⇒ D
\L

Δ〈Γ,
−−→
A\C〉 ⇒ D

−→
A, Γ ⇒ C

\R
Γ ⇒ A\C

Γ ⇒ B Δ〈−→C 〉 ⇒ D
/L

Δ〈−−→C/B, Γ 〉 ⇒ D

Γ,
−→
B ⇒ C

/R
Γ ⇒ C/B

Δ〈−→A,
−→
B 〉 ⇒ D

·L
Δ〈−−→A·B〉 ⇒ D

Γ1 ⇒ A Γ2 ⇒ B
·R

Γ1, Γ2 ⇒ A·B

Δ〈Λ〉 ⇒ A
IL

Δ〈−→I 〉 ⇒ A
IR

Λ ⇒ I

Γ ⇒ A Δ〈−→C 〉 ⇒ D
↓kL

Δ〈Γ |k−−−→A↓kC〉 ⇒ D

−→
A |kΓ ⇒ C

↓kR
Γ ⇒ A↓kC

Γ ⇒ B Δ〈−→C 〉 ⇒ D
↑kL

Δ〈−−−→C↑kB|kΓ 〉 ⇒ D

Γ |k−→B ⇒ C
↑kR

Γ ⇒ C↑kB

Δ〈−→A |k−→B 〉 ⇒ D
�kL

Δ〈−−−−→A�kB〉 ⇒ D

Γ1 ⇒ A Γ2 ⇒ B
�kR

Γ1|kΓ2 ⇒ A�kB

Δ〈[]〉 ⇒ A
JL

Δ〈−→J 〉 ⇒ A

JR
[] ⇒ J

Fig. 1. (Hyper)sequent calculus for displacement

To deal with this König (1989)[7], Hepple (1990, 1990)[5][4] and Hendriks
(1993)[3] developed normalization for Lambek calculus theorem-proving, in an
approach equivalent to focusing in linear logic where inferences are organized into
alternate phases for synchronous and asynchronous connectives. Consider the
fragment of the Lambek calculus with only antecedent and succedent divisions
and succedent product. Focusing normalization comprises the following strategy:

– The identity axiom id is restricted to atomic types.
– In trying to prove a sequent, right rules are applied first, until the

succedent type is atomic.
– Once the succedent type is atomic, an antecedent type is chosen as

the focus. Successive left division rules will be applied to this focused
type, with its value subtype becoming the focus of the major premise
in each application.

(8)

Logic Programming of the Displacement Calculus 179

This focusing technique eliminates all spurious ambiguity in the fragment (i.e.
without antecedent products) and is complete (Hepple 1990[5], 1990[4] appendix
for the divisions; Hendriks 1993[3]). The focusing strategy for this fragment of
Lambek calculus can be represented by marking types with boxes as shown in
Figure 2; a sequent Γ ⇒ A is proved by proving Γ ⇒ A .2

id
P ⇒ P

Γ (A) ⇒ P
F

Γ (A) ⇒ P

Γ ⇒ A Δ(C) ⇒ D
\L

Δ(Γ, A\C) ⇒ D

A, Γ ⇒ C
\R

Γ ⇒ A\C

Γ ⇒ B Δ(C) ⇒ D
/L

Δ(C/B , Γ) ⇒ D

Γ, B ⇒ C
/R

Γ ⇒ C/B

Γ ⇒ A Δ ⇒ B
·R

Γ, Δ ⇒ A·B

Fig. 2. Focusing for Lambek calculus

The hypersequent calculus for displacement shares the shape of the Lam-
bek calculus in respect of residuation. Distinguished occurrences become dis-
tinguished hyperoccurrences and antecedent active types become vectors, but
otherwise the rules for the continuous connectives of displacement calculus have
exactly the same form as those of the Lambek calculus. And the rules for the
discontinuous connectives in displacement calculus also have this form with the
metalinguistic comma representing concatenation on which the continuous con-
nectives hinge replaced by the defined metalinguistic operations of wrap on which
the discontinuous connectives hinge. In all cases the pattern of residuated triples
and object language/metalanguage interaction is the same in the respects that
effect derivational equivalence. The main contribution of the present paper is
the observation that, consequentially, the same focusing strategy that serves for
Lambek calculus also serves for displacement calculus. For the fragment without
antecedent tensors, focusing for the displacement calculus can be represented as
shown in Figure 3.

2 Note that a necessary condition for a focusing choice to lead to a proof is that the
eventual value of the focus be the atomic succedent, because the last major premise
in the chain of left division inferences must be an identity axiom. Hence focusing
choices (rule F) not satisfying this condition can be discounted.

180 G. Morrill

id
−→
P ⇒ P

Γ 〈 −→
A 〉 ⇒ P

F
Γ 〈A〉 ⇒ P

Γ ⇒ A Δ〈 −→
C 〉 ⇒ D

\L
Δ〈Γ,

−−→
A\C 〉 ⇒ D

−→
A, Γ ⇒ C

\R
Γ ⇒ A\C

Γ ⇒ B Δ〈 −→
C 〉 ⇒ D

/L

Δ〈 −−→
C/B , Γ 〉 ⇒ D

Γ,
−→
B ⇒ C

/R
Γ ⇒ C/B

Γ1 ⇒ A Γ2 ⇒ B
·R

Γ1, Γ2 ⇒ A·B

Γ ⇒ A Δ〈 −→
C 〉 ⇒ D

↓kL

Δ〈Γ |k −−−→
A↓kC 〉 ⇒ D

−→
A |kΓ ⇒ C

↓kR
Γ ⇒ A↓kC

Γ ⇒ B Δ〈 −→
C 〉 ⇒ D

↑kL

Δ〈 −−−→
C↑kB |kΓ 〉 ⇒ D

Γ |k−→B ⇒ C
↑kR

Γ ⇒ C↑kB

Γ1 ⇒ A Γ2 ⇒ B
�kR

Γ1|kΓ2 ⇒ A�kB

Fig. 3. Focusing for displacement calculus

4 Logic Programming

Logic programming of Lambek calculus sequent proof search is straightforward
(Moortgat 1988[9] appendix). Sequent rules are coded as Horn clauses and con-
figurations as lists of types, as illustrated in the following for /L, where for
brevity we use pattern matching for concatenation ⊕:

Γ ⇒ A Δ(C) ⇒ D
/L

Δ(C/B, Γ) ⇒ D
(9)

Logic Programming of the Displacement Calculus 181

p(Δ1 ⊕ [C/B|Γ]⊕Δ2, D)←
p(Γ, B),
p(Δ1 ⊕ [C]⊕Δ2, D).

(10)

Since complex instances of the identity axiom can always be decomposed, it is
appropriate to restrict the identity axiom to atomic types:

id
P ⇒ P

(11)

p([P], P)←
atomic(P). (12)

The programming can be refined to implement the focusing technique by defining
for a goal sequent a first phase in which right rules are applied, followed by choice
of a focus and a second phase in which a left (division) rule may be applied to
the focused type.3 Such an application generates a subgoal at the first phase in
the minor premise and a subgoal at the second phase in the major premise.4

Because the displacement calculus shares the pattern of the Lambek calculus,
the general logic programming considerations carry over. However, in addition
the matching of hyperoccurrences, with internal as well as external contexts,
must be handled. Types in displacement configurations are either of sort zero
A0 or of sort at least one Ai+1{Γ1 : . . . : Γi+1} and a type occurrence may be
encoded as a term l(A,Ls) where A is the type and Ls is a list of its internal
context configurations (empty if sA = 0). If the type is focused we represent
this by encoding it f(A,Ls). A displacement configuration is a list of such terms
and separators 1. Matching hypersequents against the displacement rules de-
pends on the fold operation in terms of which hyperoccurrences are defined. This
is coded as the following predicate fold(+Sin, ?Sout,−Γ,−Δsin, ?Δsout, +Γ1)
which means that configuration Γ is of the sort given by the unary notation
difference list Sin−Sout and Γ1 is the result of replacing in order the separators
of Γ by the configurations given by the difference list Δsin−Δsout:
3 As remarked in fn. 1, since in the Lambek calculus a focusing choice can only lead to

a proof if the eventual value of the focused type is the atomic succedent of the goal
sequent, focusing choices can be restricted to such cases without loss of completeness.
This makes for considerable savings in the search space, because otherwise left divi-
sion rules must test all factorizations of unprovable sequents. The same observation
applies for the displacement calculus.

4 A necessary property for a Lambek sequent to be provable is that it have the same
number of positive (succedent) and negative (antecedent) type occurrences of each
atomic type (the van Benthem count invariant; van Benthem 1991[15]). This is so
because positive and negative occurrences of the same atom must be matched in
identity axioms, and because the rules are multiplicative in the sense of linear logic.
Thus, the proof search for a sequent may be pruned if the sequent does not satisfy
this invariant. Again this makes for considerable savings in the search space because
otherwise left division rules must test all factorizations of unprovable sequents. The
same observation applies for the displacement calculus.

182 G. Morrill

fold(S, S, [], Δs, Δs, []).

fold([1|S], Sout, [1|Γ], [Δ|Δs], Δsout, Δ⊕ Γ1)←
fold(S, Sout, Γ, Δs, Δsout, Γ1).

fold(Sin, Sout, [l(A, Ls)|Γ], Δsin, Δsout, [l(A, Ls1)|Γ1])←
foldlst(Sin, S, Ls, Δsin, Δs, Ls1),
fold(S, Sout, Γ, Δs, Δsout, Γ1).

foldlst(S, S, [], Δs, Δs, []).

foldlst(Sin, Sout, [L|Ls], Δsin, Δsout, [L1|Ls1])←
fold(Sin, S, L, Δsin, Δs, L1),
foldlst(S, Sout, Ls, Δs, Δsout, Ls1).

(13)

To represent the logic programming of displacement rules we give succes-
sive notational transformations starting with the hypersequent calculus meta-
language and ending with Prolog. For /L this is as shown in Figure 4. Here

Γ ⇒ B Δ〈−→C 〉 ⇒ D
/L

Δ〈−−→C/B, Γ 〉 ⇒ D

Γ ⇒ B Δ0(
−→
C ⊗ 〈Δ1, . . . , ΔsC〉) ⇒ D

/L
Δ0((

−−→
C/B, Γ) ⊗ 〈Δ1, . . . , ΔsC〉) ⇒ D

Γ ⇒ B Δ0(
−→
C ⊗ 〈Δ1, . . . , ΔsC〉) ⇒ D

/L
Δ0(

−−→
C/B ⊗ 〈Δ1 : . . . : ΔsC−sB〉, Γ ⊗ 〈Δ1+sC−sB , . . . , ΔsC〉) ⇒ D

Γ ⇒ B Δ0(C{Δ1 : . . . : ΔsC}) ⇒ D
/L

Δ0(C/B{Δ1 : . . . : ΔsC−sB}, Γ ⊗ 〈Δ1+sC−sB , . . . , ΔsC〉) ⇒ D

pleft([f(C/B, Ls1)] ⊕ Γ ′, [f(C, Ls1 ⊕ Ls2)]) ←
ssort(B,SB),
fold(SB, [], Γ, Ls2, [], Γ ′),
p(Γ, B).

pleft([f(C/B, Ls1)|Gamma1], [f(C, Ls)]) :-

ssort(B, SB),

fold(SB, [], Gamma, Ls2, [], Gamma1),

p(Gamma, B),

append(Ls1, Ls2, Ls).

Fig. 4. Programming of /L

Logic Programming of the Displacement Calculus 183

Γ,
−→
B ⇒ C

/R
Γ ⇒ C/B

Γ, B{[] : . . . : []︸ ︷︷ ︸
sB []’s

} ⇒ C

/R
Γ ⇒ C/B

p(Γ,C/B) ←
vector(B,Bvec),
p(Γ ⊕ [Bvec], C).

p(Gamma, C/B) :-

vector(B, Bvec),

append(Gamma, [Bvec], Gamma1),

p(Gamma1, C).

Fig. 5. Programming of /R

Γ ⇒ A Δ〈−→C 〉 ⇒ D
↓>L

Δ〈Γ |>−−−−→
A↓>C〉 ⇒ D

Γ ⇒ A Δ0(
−→
C ⊗ 〈Δ1, . . . , ΔsC〉) ⇒ D

↓>L
Δ0((Γ |>−−−−→

A↓>C) ⊗ 〈Δ1, . . . , ΔsC〉) ⇒ D

Γ ⇒ A Δ0(
−→
C ⊗ 〈Δ1, . . . , ΔsC〉) ⇒ D

↓>L
Δ0(Γ ⊗ 〈−−−−→A↓>C ⊗ 〈Δ1, . . . , Δ1+sC−sA〉, Δ2+sC−sA, . . . , ΔsC〉) ⇒ D

Γ ⇒ A Δ0(C{Δ1, . . . , ΔsC}) ⇒ D
↓>L

Δ0(Γ ⊗ 〈A↓>C{Δ1, . . . , Δ1+sC−sA}, Δ2+sC−sA, . . . , ΔsC〉) ⇒ D

pleft(Γ, [f(C, Ls1 ⊕ Ls2)]) ←
firstins(Γ1, f(A↓>C, Ls1), Γ),
ssort(A,SA),
fold(SA, [], Γ2, [[1]|Ls2], [], Γ1),
p(Γ2, A).

pleft(Gamma, [f(C, Ls1Ls2)]) :-

firstins(Gamma1, f(A ’v<’ C, Ls1), Gamma),

ssort(A, SA),

fold(SA, [], Gamma2, [[1]|Ls2], Gamma1),

p(Gamma2, A),

append(Ls1, Ls2, Ls1Ls2).

Fig. 6. Programming of ↓>L

184 G. Morrill

−→
A |>Γ ⇒ C

↓>R
Γ ⇒ A↓>C

A{[] : [] : . . . : []︸ ︷︷ ︸
sA []’s

}|>Γ ⇒ C

↓>R
Γ ⇒ A↓>C

A{Γ : [] : . . . : []︸ ︷︷ ︸
sA−1 []’s

} ⇒ C

↓>R
Γ ⇒ A↓>C

p(Γ,A↓>C) ←
vector(A, l(A, [[1]|Ls])),
p([l(A, [Γ |Ls])], C).

p(Gamma, A ’v<’ C) :-

vector(A, l(A, [[1]|Ls])),

p([l(A, [Gamma|Ls])], C).

Fig. 7. Programming of ↓kR

pleft(+Γ,−Γ1) means that a left rule replaces a subconfiguration5 Γ in the
conclusion by Γ1 in the major premise. The transformation for /R is shown in
Figure 5. Here vector(+B,−Bvec) means that Bvec is the vector of the type
B. For ↓>L the programming transformations are as shown in Figure 6. Here
firstins(−Γ, +A, +Γ1) means that Γ1 is the result of replacing the first (left-
most) metalinguistic separator in Γ by type A. For ↓>R the programming trans-
formation is as shown in Figure 7. The other rules are implemented similarly on
the basis of the same ideas.

5 Conclusion

The principles presented in this paper form the basis of a Prolog categorial
parser/theorem prover CatLog under development.6 CatLog deals with many
connectives over and above the displacement connectives, but it is the displace-
ment hypersequent calculus, which forms a new multiplicative basis for categorial
logic, which forms its core. The inclusion in CatLog of standard Curry-Howard
type logical categorial semantics is straightforward because the semantic reading
5 An ordinary occurrence, not a hyperoccurrence.
6 An earlier such program Catlog for generalized Lambek calculus based on sequent

calculus normalization was developed in the first half of the 90s, but was not brought
to term because of the absence of a satisfactory treatment of discontinuity. The
introduction of the displacement calculus has allowed this line of investigation to
resume.

Logic Programming of the Displacement Calculus 185

of a derivation is a homomorphic image of the syntactic proof. This paper has
addressed the main technical question for displacement calculus, and hence dis-
placement categorial logic, of backward chaining sequent proof search in a logic
programming parsing as deduction paradigm.

Acknowledgement. I thank three LACL’11 reviewers for valuable comments.
The research reported in the present paper was supported by DGICYT project
SESAAME-BAR (TIN2008-06582-C03-01).

References

1. Andreoli, J.M.: Logic programming with focusing in linear logic. Journal of Logic
and Computation 2(3), 297–347 (1992)

2. Dowty, D.R., Wall, R.E., Peters, S.: Introduction to Montague Semantics. Synthese
Language Library, vol. 11. D. Reidel, Dordrecht (1981)

3. Hendriks, H.: Studied flexibility. Categories and types in syntax and semantics.
PhD thesis, Universiteit van Amsterdam, ILLC, Amsterdam (1993)

4. Hepple, M.: The Grammar and Processing of Order and Dependency. PhD thesis,
University of Edinburgh (1990)

5. Hepple, M.: Normal form theorem proving for the Lambek calculus. In: Karlgren,
H. (ed.) Proceedings of COLING, Stockholm (1990)

6. Jäger, G.: Anaphora and Type Logical Grammar. Trends in Logic – Studia Logica
Library, vol. 24. Springer, Dordrecht (2005)

7. König, E.: Parsing as natural deduction. In: Proceedings of the Annual Meeting of
the Association for Computational Linguistics, Vancouver (1989)

8. Lambek, J.: The mathematics of sentence structure. American Mathematical
Monthly 65, 154–170 (1958); reprinted in Buszkowski, W., Marciszewski, W., van
Benthem, J. (eds.): Categorial Grammar. Linguistic & Literary Studies in Eastern
Europe, vol. 25, pp. 153–172. John Benjamins, Amsterdam (1988)

9. Moortgat, M.: Categorial Investigations: Logical and Linguistic Aspects of the
Lambek Calculus. Foris, Dordrecht, PhD thesis, Universiteit van Amsterdam
(1988)

10. Morrill, G.: Intensionality and Boundedness. Linguistics and Philosophy 13(6),
699–726 (1990)

11. Morrill, G., Valent́ın, O.: On Anaphora and the Binding Principles in Categorial
Grammar. In: Dawar, A., de Queiroz, R. (eds.) WoLLIC 2010. LNCS, vol. 6188,
pp. 176–190. Springer, Heidelberg (2010)

12. Morrill, G., Valent́ın, O., Fadda, M.: The Displacement Calculus. Journal of Logic,
Language and Information 20(1), 1–48 (2011), doi:10.1007/s10849-010-9129-2

13. Morrill, G.V.: Type Logical Grammar: Categorial Logic of Signs. Kluwer Academic
Publishers, Dordrecht (1994)

14. Morrill, G.V.: Categorial Grammar: Logical Syntax, Semantics, and Processing.
Oxford University Press, Oxford (2010)

15. van Benthem, J.: Language in Action: Categories, Lambdas, and Dynamic Logic.
Studies in Logic and the Foundations of Mathematics, vol. 130. North-Holland,
Amsterdam (1991); revised student edition printed in 1995 by the MIT Press

186 G. Morrill

Appendix

This appendix contains unedited LATEX output of CatLog for a cover grammar of
PTQ. A printout of the categorial lexicon is followed by the analyses computed
for example sentences drawn from Dowty, Wall and Peters (1981, ch. 7)[2]. The
categorial logic for the fragment extends displacement calculus with implicitly
universally quantified first order term structure for features on atomic types
(Morrill 1994, ch. 6[13]), the limited contraction for anaphora of Jäger 2005[6],
a difference operator (cf. Morrill and Valent́ın 2010[11]) and modalities for in-
tensionality (Morrill 1990[10], 1994[13] chs. 4 & 5, 2010[14] ch. 8) such that �A
is the type of expressions in intension of type A; 	A represents such expressions
in intension which are rigid designators.

a : �(((SA↑�NB)↓SA)/CNB) : λCλD∃E[(C E) ∧ (D E)]
and : �((SA\SA)/SA) : λBλC[C ∧ B]
and : �(((NA\SB)\(NA\SB))/(NA\SB)) : λCλDλE[(D E) ∧ (C E)]
believes : �((NA\Sf)/CPthat) : believe
bill : �Nm : b
catch : �((NA\Sb)/NB) : catch
doesnt : �((NA\s)/(NA\s)) : ˆλBλC¬(B C)
eat : �((NA\Sb)/NB) : eat
every : �(((SA↑NB)↓SA)/CNB) : λCλD∀E[(C E) → (D E)]
finds : �((NA\Sf)/NB) : finds
fish : �CNn : fish
he : �((�SA|Nm)/(Nm\SA)) : λBB
her : �(�((s↑Nf) − (J•(Nf\s)))↓(�s|Nf)) : λAλB((A B) B)
her : �(((((SA↑Nf) − (J•(Nf\SA)))↑�Nf) − (J•((Nf\s)↑Nf)))↓<(SA↑�Nf)) : λBλC((B C) C)
in : �(((NA\SB)\(NA\SB))/NC) : λDλEλF ((ˇin D) (E F))
is : �((NA\Sf)/NB) : λCλD[D = C]
it : �((SA↑Nn)↓(�SA|Nn)) : λBB
it : �(((((SA↑Nn) − (J•(Nn\SA)))↑�Nn) − (J•((Nn\SB)↑Nn)))↓<(SA↑�Nn)) : λCλD((C D) D)
john : �Nm : j
loses : �((NA\Sf)/NB) : loses
loves : �((NA\Sf)/NB) : loves
man : �CNm : man
necessarily : �(SA/�SA) : nec
or : �((SA\SA)/SA) : λBλC[C ∨ B]
or : �(((NA\Sf)\(NA\Sf))/(NA\Sf)) : λBλCλD[(C D) ∨ (B D)]
park : �CNn : park
seeks : �((NA\Sf)/�(((NB\SC)/ND)\(NB\SC))) : λEλF ((ˇtries ˆ((ˇE ˇfind) F)) F)
she : �((�SA|Nf)/(Nf\SA)) : λBB
slowly : �(�(NA\SB)\(NA\SB)) : slowly
such+that : �((CNA\CNA)/(Sf|NA)) : λBλCλD[(C D) ∧ (B D)]
talks : �(NA\Sf) : talk
that : �(CPthat/�Sf) : λAA
the : �(NA/CNA) : ι
to : �((NA\St)/(NA\Sb)) : λBB
tries : �((NA\Sf)/�(NA\St)) : λBλC((ˇtries ˆ(ˇB C)) C)
unicorn : �CNn : unicorn
walk : �(NA\Sb) : walk
walks : �(NA\Sf) : walk
woman : �CNf : woman

Example (7-16) involves a quantifier phrase in subject position. Here and
always lexical types are modalized outermost because lexical meanings are in-
tensions. Within its modality the type for the quantifier is a functor seeking a
count noun to its right. (A feature variable transmits the gender value.) This
yields a generalized quantifier type which will infix at the position of a nominal
in a sentence, simulating term insertion S14. Example (7-32) involves subject

Logic Programming of the Displacement Calculus 187

(7-16) every+man+talks : Sf

�(((SA↑NB)↓SA)/CNB) : λCλD∀E[(C E) → (D E)],�CNm : man,�(NF\Sf) : talk ⇒ Sf

CNm ⇒ CNm

�L

�CNm ⇒ CNm

Nm ⇒ Nm Sf ⇒ Sf

\L
Nm, Nm\Sf ⇒ Sf

�L

Nm, �(Nm\Sf) ⇒ Sf

↑R
1,�(Nm\Sf) ⇒ Sf↑Nm Sf ⇒ Sf

↓L
(Sf↑Nm)↓Sf ,�(Nm\Sf) ⇒ Sf

/L

((Sf↑Nm)↓Sf)/CNm ,�CNm,�(Nm\Sf) ⇒ Sf

�L

�(((Sf↑Nm)↓Sf)/CNm) ,�CNm,�(Nm\Sf) ⇒ Sf

∀C[(ˇman C) → (ˇtalk C)]

(7-32) every+man+walks+or+talks : Sf

�(((SA↑NB)↓SA)/CNB) : λCλD∀E[(C E) → (D E)],�CNm : man,�(NF\Sf) : walk,�((SG\SG)/SG) : λHλI[I∨
H],�(NJ\Sf) : talk ⇒ Sf

�(((SA↑NB)↓SA)/CNB) : λCλD∀E[(C E) → (D E)],�CNm : man,�(NF\Sf) : walk,�(((NG\Sf)\(NG\Sf))/(NG\Sf)) :
λHλIλJ[(I J) ∨ (H J)],�(NK\Sf) : talk ⇒ Sf

CNm ⇒ CNm

�L

�CNm ⇒ CNm

Nm ⇒ Nm Sf ⇒ Sf

\L
Nm, Nm\Sf ⇒ Sf

�L

Nm, �(Nm\Sf) ⇒ Sf

\R
�(Nm\Sf) ⇒ Nm\Sf

Nm ⇒ Nm Sf ⇒ Sf

\L
Nm, Nm\Sf ⇒ Sf

�L

Nm, �(Nm\Sf) ⇒ Sf

\R
�(Nm\Sf) ⇒ Nm\Sf

Nm ⇒ Nm Sf ⇒ Sf

\L
Nm, Nm\Sf ⇒ Sf

\L
Nm,�(Nm\Sf), (Nm\Sf)\(Nm\Sf) ⇒ Sf

/L

Nm,�(Nm\Sf), ((Nm\Sf)\(Nm\Sf))/(Nm\Sf) ,�(Nm\Sf) ⇒ Sf

�L

Nm,�(Nm\Sf), �(((Nm\Sf)\(Nm\Sf))/(Nm\Sf)) ,�(Nm\Sf) ⇒ Sf

↑R
1,�(Nm\Sf),�(((Nm\Sf)\(Nm\Sf))/(Nm\Sf)),�(Nm\Sf) ⇒ Sf↑Nm Sf ⇒ Sf

↓L
(Sf↑Nm)↓Sf ,�(Nm\Sf),�(((Nm\Sf)\(Nm\Sf))/(Nm\Sf)),�(Nm\Sf) ⇒ Sf

/L

((Sf↑Nm)↓Sf)/CNm ,�CNm,�(Nm\Sf),�(((Nm\Sf)\(Nm\Sf))/(Nm\Sf)),�(Nm\Sf) ⇒ Sf

�L

�(((Sf↑Nm)↓Sf)/CNm) ,�CNm,�(Nm\Sf),�(((Nm\Sf)\(Nm\Sf))/(Nm\Sf)),�(Nm\Sf) ⇒ Sf

∀C[(ˇman C) → [(ˇwalk C) ∨ (ˇtalk C)]]

(7-60, 7-62) john+seeks+a+unicorn : Sf

�Nm : j ,�((NA\Sf)/�(((NB\SC)/ND)\(NB\SC))) : λEλF ((ˇtries ˆ((ˇE ˇfind) F)) F),�(((SG↑�NH)↓SG)/CNH) :
λIλJ∃K[(I K) ∧ (J K)],�CNn : unicorn ⇒ Sf

quantification and verb phrase coordination. Example (7-60, 7-62) involves the
lifted intensional object transitive verb ‘seek’ which is synonymous with ‘try
to find’. The sentence has a specific reading in which there is a unicorn which
John is trying to find, and a non-specific reading in which John is just trying to
bring it about that he finds some, any, unicorn. The latter reading does not have
existential commitment: it can be true without any unicorn actually existing.
The two readings are obtained from derivations in which the indefinite object
term-inserts outside or within the scope of the intensional verb. Example (7-76)

188 G. Morrill

is the classic example of the interaction of the copula and indefinites in Montague
grammar to assign John is a man a logical form equivalent to (ˇman j). Our
grammar conserves this, with a lowered object type for the copula. This same
lower extensional transitive verb type for find means that (7-98), by contrast
with (7-60, 7-62), has only one reading, with existential commitment.

CNn ⇒ CNn

�L

�CNn ⇒ CNn

Nn ⇒ Nn

�L

�Nn ⇒ Nn

NA ⇒ NA SA ⇒ SA

\L
NA, NA\SB ⇒ SB

/L

NA, (NA\SB)/Nn ,�Nn ⇒ SB

\R
(NA\SB)/Nn,�Nn ⇒ NA\SB

\R
�Nn ⇒ ((NA\SB)/Nn)\(NA\SB)

�R

�Nn ⇒ �(((NA\SB)/Nn)\(NA\SB))

Nm ⇒ Nm

�L

�Nm ⇒ Nm Sf ⇒ Sf

\L
�Nm, Nm\Sf ⇒ Sf

/L

�Nm, (Nm\Sf)/�(((NA\SB)/Nn)\(NA\SB)) ,�Nn ⇒ Sf

�L

�Nm, �((Nm\Sf)/�(((NA\SB)/Nn)\(NA\SB))) ,�Nn ⇒ Sf

↑R
�Nm,�((Nm\Sf)/�(((NA\SB)/Nn)\(NA\SB))), 1 ⇒ Sf↑�Nn Sf ⇒ Sf

↓L
�Nm,�((Nm\Sf)/�(((NA\SB)/Nn)\(NA\SB))), (Sf↑�Nn)↓Sf ⇒ Sf

/L

�Nm,�((Nm\Sf)/�(((NA\SB)/Nn)\(NA\SB))), ((Sf↑�Nn)↓Sf)/CNn ,�CNn ⇒ Sf

�L

�Nm,�((Nm\Sf)/�(((NA\SB)/Nn)\(NA\SB))), �(((Sf↑�Nn)↓Sf)/CNn) ,�CNn ⇒ Sf

∃C[(ˇunicorn C) ∧ ((ˇtries ˆ((ˇfind C) j)) j)]

CNn ⇒ CNn

�L

�CNn ⇒ CNn

Nn ⇒ Nn

�L

�Nn ⇒ Nn

NA ⇒ NA SA ⇒ SA

\L
NA, NA\SB ⇒ SB

/L

NA, (NA\SB)/Nn ,�Nn ⇒ SB

↑R
NA, (NA\SB)/Nn, 1 ⇒ SB↑�Nn SA ⇒ SA

↓L
NA, (NA\SB)/Nn, (SB↑�Nn)↓SB ⇒ SB

/L

NA, (NA\SB)/Nn, ((SB↑�Nn)↓SB)/CNn ,�CNn ⇒ SB

�L

NA, (NA\SB)/Nn, �(((SB↑�Nn)↓SB)/CNn) ,�CNn ⇒ SB

\R
(NA\SB)/Nn,�(((SB↑�Nn)↓SB)/CNn),�CNn ⇒ NA\SB

\R
�(((SA↑�Nn)↓SA)/CNn),�CNn ⇒ ((NB\SA)/Nn)\(NB\SA)

�R

�(((SA↑�Nn)↓SA)/CNn),�CNn ⇒ �(((NB\SA)/Nn)\(NB\SA))

Nm ⇒ Nm

�L

�Nm ⇒ Nm Sf ⇒ Sf

\L
�Nm, Nm\Sf ⇒ Sf

/L

�Nm, (Nm\Sf)/�(((NA\SB)/Nn)\(NA\SB)) ,�(((SB↑�Nn)↓SB)/CNn),�CNn ⇒ Sf

�L

�Nm, �((Nm\Sf)/�(((NA\SB)/Nn)\(NA\SB))) ,�(((SB↑�Nn)↓SB)/CNn),�CNn ⇒ Sf

((ˇtries ˆ∃G[(ˇunicorn G) ∧ ((ˇfind G) j)]) j)

(7-76) john+is+a+man : Sf

�Nm : j ,�((NA\Sf)/NB) : λCλD[D = C],�(((SE↑�NF)↓SE)/CNF) : λGλH∃I[(G I) ∧ (H I)],�CNm : man ⇒
Sf

Logic Programming of the Displacement Calculus 189

CNm ⇒ CNm

�L

�CNm ⇒ CNm

Nm ⇒ Nm

�L

�Nm ⇒ Nm

Nm ⇒ Nm

�L

�Nm ⇒ Nm Sf ⇒ Sf

\L
�Nm, Nm\Sf ⇒ Sf

/L

�Nm, (Nm\Sf)/Nm ,�Nm ⇒ Sf

�L

�Nm, �((Nm\Sf)/Nm) ,�Nm ⇒ Sf

↑R
�Nm,�((Nm\Sf)/Nm), 1 ⇒ Sf↑�Nm Sf ⇒ Sf

↓L
�Nm,�((Nm\Sf)/Nm), (Sf↑�Nm)↓Sf ⇒ Sf

/L

�Nm,�((Nm\Sf)/Nm), ((Sf↑�Nm)↓Sf)/CNm ,�CNm ⇒ Sf

�L

�Nm,�((Nm\Sf)/Nm), �(((Sf↑�Nm)↓Sf)/CNm) ,�CNm ⇒ Sf

∃C[(ˇman C) ∧ [j = C]]

(7-98) john+finds+a+unicorn : Sf

�Nm : j ,�((NA\Sf)/NB) : finds,�(((SC↑�ND)↓SC)/CND) : λEλF∃G[(E G) ∧ (F G)],�CNn : unicorn ⇒ Sf

CNn ⇒ CNn

�L

�CNn ⇒ CNn

Nn ⇒ Nn

�L

�Nn ⇒ Nn

Nm ⇒ Nm

�L

�Nm ⇒ Nm Sf ⇒ Sf

\L
�Nm, Nm\Sf ⇒ Sf

/L

�Nm, (Nm\Sf)/Nn ,�Nn ⇒ Sf

�L

�Nm, �((Nm\Sf)/Nn) ,�Nn ⇒ Sf

↑R
�Nm,�((Nm\Sf)/Nn), 1 ⇒ Sf↑�Nn Sf ⇒ Sf

↓L
�Nm,�((Nm\Sf)/Nn), (Sf↑�Nn)↓Sf ⇒ Sf

/L

�Nm,�((Nm\Sf)/Nn), ((Sf↑�Nn)↓Sf)/CNn ,�CNn ⇒ Sf

�L

�Nm,�((Nm\Sf)/Nn), �(((Sf↑�Nn)↓Sf)/CNn) ,�CNn ⇒ Sf

∃C[(ˇunicorn C) ∧ ((ˇfinds C) j)]

Space limitations prevent further illustration, but note for example that the
type for the indefinite has a modal hypothetical subtype, which will allow an
indefinite to take scope at a higher clause, but that the type for every has a
nonmodal hypothetical subtype and will therefore only take scope in its local
clause (Montague did not capture this distinction), and note that the accusative
pronoun her has a type allowing it to take a preceding antecedent in its own
clause or in an embedded clause by secondary wrap, but with use of the difference
operator expressing the Principle B condition that the antecedent cannot be the
subject (Montague did not capture this effect either).

Conditional Logic Cb and Its Tableau System

Yuri Ozaki and Daisuke Bekki

Ochanomizu University,
Graduate School of Humanities and Sciences

{ozaki.yuri,bekki}@is.ocha.ac.jp

Abstract. Conditional logic is a kind of modal logic for analyzing the
truth conditions and inferences of conditional sentences in natural lan-
guage. However, it has been pointed out in the literature that empirical
problems plague all of the previously proposed conditional logics. More-
over, C1 and C2 are defined by imposing certain restrictions on their
Kripke frames, and there exist no corresponding proof systems.

In order to solve these problems, we propose a new system of con-
ditional logic, which we call Cb. Cb is an extension of C+ through the
addition of new rules on accessibility, and it has a corresponding tableau
system. We show that Cb has empirical advantages over C1 and C2 as a
model of inference in natural language, and compare it with other proof
systems of conditional logic.

1 Introduction

1.1 Conditional Sentences in Natural Language and Classical Logic

The following inferences are valid in classical logic:

Antecedent strengthening: A ⊃ B � (A ∧ C) ⊃ B
Transitivity: A ⊃ B, B ⊃ C � A ⊃ C
Contraposition: A ⊃ B � ¬B ⊃ ¬A

If we simply assume classical logic to explain the semantics of natural lan-
guage, the formulae above give rise to the following infelicitous arguments [6].

(1) If it does not rain tomorrow we will go to the cricket. Hence, if it does not
rain tomorrow and I am killed in a car accident tonight then we will go to
the cricket.

(2) If the other candidates pull out, John will get the job. If John gets the job,
the other candidates will be disappointed. Hence, if the other candidates pull
out, they will be disappointed.

(3) If we take the car then it won’t break down en route. Hence, if the car does
break down en route, we didn’t take it.

The reason for such infelicity is that obvious premises can be omitted in con-
ditionals. For example, the first sentence in (1) introduces the condition “it does
not rain” and as we usually do not think about the possibility that we may be
killed in a car accident, we continue to assume that we will not to be killed in
a car accident as an obvious premise. However, the second sentence of (1) has

S. Pogodalla and J.-P. Prost (Eds.): LACL 2011, LNAI 6736, pp. 190–204, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Conditional Logic Cb and Its Tableau System 191

the opposite meaning in that the premise that is omitted as obvious itself leads
to the invalid conclusion. In case (1), what we actually mean to say is:

(1’) If it does not rain tomorrow and I am not killed in a car accident tonight,
then we will go to the cricket tomorrow.

Similar comments can be made about the arguments in (2) and (3). In case
(2), the actual wording should be “if John gets the job and the other candidates
do not pull out, they will be disappointed.” In case (3), the premise “we will
take the car” is omitted and the sentence actually states the opposite, “we didn’t
take it”, making case (3) incomprehensible. Thus, we see that we cannot correctly
address conditionals of natural language with semantics based on classical logic.

Let us discuss case (1) in more detail. The correct sentence for (1) is “if it does
not rain tomorrow then, other things being equal, we will go to the cricket”. We
can call “other things being equal” ceteris paribus. Conditional sentences include
some notion of ceteris paribus, so GA in the conditional sentence “if A and GA,
then B” can be referred to as a ceteris paribus clause, which depends on A.
Therefore, in the example sentence, if A is “it does not rain tomorrow”, then
GA includes the condition that we are not invaded by Martians. If A is “flying
saucers arrive from Mars”, it does not.

Thus, the notion of ceteris paribus is important in conditional sentences of
natural language. Accordingly, some logic systems based on the notion of ceteris
paribus have been proposed; however, they do not sufficiently represent truth
conditions in conditional sentences. This paper, first, discusses a previously de-
veloped logic system for analyzing conditional sentences, and second, presents
an extension of it as a new logic system.

2 Modal Tableau

Modal Tableau is a tableau system for modal logic. In this section, we briefly
describe the version of modal tableau that we adopt from [6]. In modal tableaux,
we put a natural number with each formula to designate a possible world in which
the formula is assumed to be true.

A ∨B, i
↙ ↘

A, i B, i

As the diagram above indicates, the tableau rules for truth functors are the same
as those for classical logic except for the numbers for possible worlds. Four new
rules are added for the modal operators.

¬�A, i ¬♦A, i
↓ ↓

♦¬A, i �¬A, i

�A, i ♦A, i
irj ↓
↓ irj

A, j A, j

In the rules above, r in irj represents the binary accessibility relation R
between two worlds i, j in a Kripke frame 〈W, R, ν〉 of modal logic. W is a

192 Y. Ozaki and D. Bekki

non-empty set and ν is a function that assigns a truth value to each formula,
such that either νw(p) = 1 or νw(p) = 0. i and j are natural numbers, but j
must be new and must not occur at any node above in the same branch.

The two rules on the right are deduced by the following interpretation in
Kripke semantics for � and ♦. For any world w ∈W :

– νw(�A) = 1 if, for all w′ ∈W such that wRw′, νw′(A) = 1;
νw(�A) = 0 otherwise.

– νw(♦A) = 1 if, for some w′ ∈ W such that wRw′, νw′(A) = 1;
νw(♦A) = 0 otherwise.

The two rules on the left can be explained by following proofs respectively.

In any world, w,

νw(¬�A) = 1 iff νw(�A) = 0
iff it is not the case that, for all w′ such that wRw′, νw′(A) = 1
iff for some w′ such that wRw′, νw′(A) = 0
iff for some w′ such that wRw′, νw′(¬A) = 1
iff νw(♦¬A) = 1

In any world, w,

νw(¬♦A) = 1 iff νw(♦A) = 0
iff it is not the case that, for some w′ such that wRw′,νw′(A)=1
iff for all w′ such that wRw′, νw′(A) = 0
iff for all w′ such that wRw′, νw′(¬A) = 1
iff νw(�¬A) = 1

The following is an example of a modal tableau for: � ♦(A ∧B) ⊃ (♦A ∧ ♦B)

¬(♦(A ∧B) ⊃ (♦A ∧ ♦B)), 0
↓

♦(A ∧B), 0
¬(♦A ∧ ♦B), 0
↙ ↘

¬♦A, 0 ¬♦B, 0
↓ ↓

�¬A, 0 �¬B, 0
↓ ↓

0r1 0r1
A ∧B, 1 A ∧B, 1
↓ ↓

A, 1 A, 1
B, 1 B, 1
↓ ↓
¬A, 1 ¬B, 1
× ×

Conditional Logic Cb and Its Tableau System 193

As a proof of a theorem (rather than of deduction), the initial list has only
one formula, ¬(♦(A ∧ B) ⊃ (♦A ∧ ♦B)), 0. The natural numbers for possible
worlds start at 0. When the rule ♦(A ∧B), 0 is applied, the new formula A ∧B
is introduced for both branches and a new world number 1 is assigned to it. It
causes no problem that the same world number is used in both branches as they
do not interact with each other. When we judge whether a given branch closes
or not in modal tableau, we must compare contradictory formulae which are
assigned the same world number, as for A, 1 and ¬A, 1 in the example above.

3 Conditional Logic

In section 1.1, we explained the concept of ceteris paribus in the context of
conditional sentences in natural language. The logic equipped with this concept
is called conditional logic [3,4,8], which is a kind of modal logic held to be useful
as a semantic framework of natural language.

3.1 Syntax of Conditional Logic

Let us write A > B for a conditional with a ceteris paribus condition: “if A, then
B”. The syntax of conditional logic is defined by the following BNF grammar,
where p is a propositional parameter:

F ::= p | ¬F | F ∧ F | F ∨ F | F → F | F ↔ F | �F | ♦F | F > F

3.2 Semantics of Conditional Logic

The Kripke frame of conditional logic consists of a quadruple: 〈W, {RA : A ∈
F}, R, ν〉, where W is a non-empty set, ν is a function that assigns a truth value
to each pair comprising a world, w, and a propositional parameter, p, the same
as for modal logic. “In world w, p is true (or false)” is written as νw(p) = 1
(or νw(p) = 0). R is a binary relation on W which is reflexive, symmetrical and
transitive. Each RA is a binary relation on W for any formula A. Intuitively,
w1RAw2ly means that w2 is the same as w1 except that A is true in w2, which
represents the ceteris paribus condition.

In the settings of conditional logic, � and ♦ are treated as those of system
Kν [6].

– νw(�A) = 1 if, for all w′ ∈ W such that wRw′, νw′(A) = 1; and 0 otherwise.
– For any world w ∈W

νw(♦A) = 1 if, for some w′ ∈ W such that wRw′, νw′(A) = 1; and 0
otherwise.

By means of the notions introduced above, the semantics of A > B is defined
as follows.

– νw(A > B) = 1 iff for all w′ such that wRAw′, νw′(B) = 1 and νw′(B) = 0
otherwise.

194 Y. Ozaki and D. Bekki

Furthermore, in conditional logic, the following conception, fA(w), [A], is
added.

– fA(w) = {x ∈W : wRAx}
– [A] = {w : νw(A) = 1}

Here, fA(w) is the set of worlds accessible to w under RA. Also, R and fA(w)
are interdefinable, since wRAw′ iff w′ ∈ fA(w). [A] is a class of worlds where A
is true, {w : νw(A) = 1}.

With this conception, the semantics of A > B can be simply defined as follows:

– A > B is true in w⇔ fA(w) ⊆ [B]

4 Previous Study

It would seem that conditional logic has a close connection with the phenomenon
of natural language, but there is as yet no logical system that can represent it. In
this section, we briefly explain some logical systems that extend the conditional
logic set out in section 3.

4.1 C+

C+ [1] is logic system which is an extension of conditional logic C by adding the
following conditions on its Kripke frame.

1. fA(w) ⊆ [A]
2. If w ∈ [A], then w ∈ fA(w)

C+ has a tableau system that corresponds to the Kripke frame above. The
following three rules are added to the tableau rules for C:

A > B, i ¬(A > B), i
irAj ↓
↓ irAj

B, j A, j
¬B, j

·
↙ ↘
¬A, i A, i

irAi

The difference from a modal tableau is that each formula has its own relation
of accessible worlds like irAj.

As an example for a tableau proof in C+, we prove A, A > B �C+ B.

A, 0
A > B, 0
¬B, 0
↙ ↘
¬A, 0 A, 0
× 0rA0

↓
B, 0
×

Conditional Logic Cb and Its Tableau System 195

First, the rightmost rule of C+ is applied, which yields 0rA0. Then, the leftmost
rule can be applied to A > B, 0. This is closed by contradiction of ¬B, 0 and
B, 0.

The tableau proof that follows is of p > q ��C+ (p∧r) > q in C+. This tableau
proves that the inferences that result in the infelicitous semantics described in
section 1.1 are not valid when implementing the concept of ceteris paribus.

p > q, 0
¬((p ∧ r) > q), 0

↓
0rp∧r1
p ∧ r, 1
¬q, 1
↓

p, 1
r, 1

↙ ↘
¬p, 0 p, 0
↙ ↘ 0rp0
¬p, 1 p, 1 ↓
× 1rp1 q, 0

↙ ↘
¬q, 1 q, 1

1rq1
×

Not all branches close completely, and for branches which do not do so, namely
p, 1 and ¬q, 1, a similar formula already exists at the upper nodes. Thus, it seems
to apply the same rule infinitely, indicating that this formula is indeed invalid.

Showing that the tree does not close does not mean that the formula is in-
valid, but indicates the possibility that it is invalid. One good way to prove the
invalidity of the formula is to draw a counter-model. Counter-models can be read
off from an open branch of a tableau in a natural way.

The counter-model of the formula above is as follows: w1Rpw1, w0Rp∧rw1 and
νw0(¬p) = 1 and νw1(p) = νw1(¬q) = νw1(r) = 1. In regard to other formulae
for A, the accessibility relation RA is defined such that fA(w) = [A] for all w.
Thus, the interpretation can be depicted as follows, from which we can check
that the accessibility relation of worlds forms an infinite loop. This means that
this tableau is never closed and p > q ��C+ (p ∧ r) > q is proved.

w0
Rp∧r−−−→

Rp

�
w1

¬p p,¬q, r

Similarly, cases (2) and (3) in the 1.1 are invalid in C+. Thus, by extending
to C+, we have solved the problem outlined in the 1.1 that classical logic is too
weak as semantics in natural language.

196 Y. Ozaki and D. Bekki

4.2 S

In section 3.2, we said that w1RAw2 means that w2 is the same as w1 except
that A is true in w2. Thus, we need somehow to consider the notion of similarity
between two worlds, in order to reflect the intuition behind the ceteris paribus
condition. In C and C+, however, the relation RA by no means represents such
notion of similarity.

S is an extension of C+ through the addition of the following three condi-
tions on a Kripke frame1, which express a certain ”similarity” between the two
arguments of RA.

3. If [A] �= φ, then fA(w) �= φ
4. If fA(w) ⊆ [B] and fB(w) ⊆ [A], then fA(w) = fB(w)
5. If fA(w) ∩ [B] �= φ, then fA∧B(w) ⊆ fA(w)

As a result, for example, the inference p > q, q > p � (p > r) ≡ (q > r) is
valid in S, but not in C+.

Proof. Suppose that the premise is true in world w, i.e., fp(w) ⊆ [q] and fq(w) ⊆
[p]. Then, by applying condition 4, fp(w) = fq(w). Hence, fp(w) ⊆ [r] iff fq(w) ⊆
[r], i.e., (p > r)is true in w iff (q > r) is true in w. i.e., (p > r) ≡ (q > r) is true
in w.

Because S does not have a corresponding tableau system, the proof in S can
rely on the semantic notions alone.

4.3 C1, C2

Although S is a stronger logic system than C+, it is still weak as semantics of
natural language. This prompted Stalnaker and Lewis to propose extensions2 of
S: C1 [8] and C2 [3,4]. Conditions 1 to 5 of S above are common conceptions of
C1 and C2 [7].

C1 and C2 also make a difference through the addition of the following con-
ditions. C1 adds the following condition.

6. If w ∈ [A] and w′ ∈ fA(w), then w = w′

C2, on the other hand, adds the following instead of 6.

7. If x ∈ fA(w) and y ∈ fA(w), then x = y

Both condition 6 and condition 7 concern the relationship between two worlds,
but the difference between them is that 7 entails 6, according to 2. So we can say
that C2 is stronger than C1. We can sort these systems by increasing strength
as follows: C+ < S < C1 < C2.
1 The system S is defined as a common part of the conditional logics proposed by

Stalnaker [8] and Lewis [3,4]. Following the convention in [6], we call it S.
2 The names C1 and C2 are taken from [6].

Conditional Logic Cb and Its Tableau System 197

However, C1 and C2 are not without problems [2]. For example, A∧B � A > B
is one of the formulae that is valid in C1 but not in S.

Suppose you go to a fake fortune-teller, who says that you will come into a
large sum of money. And suppose that, purely by accident, you do. The statement
“If the fortune-teller says that you will come into a large sum of money, you will”
still, however, would appear to be false.

Similarly, � (A > B) ∨ (A > ¬B) is an example that it is valid in C2 but not
in S. However, both of the following conditionals would appear to be false: “If
it will either rain tomorrow or it won’t, then it will rain tomorrow” and “If it
will either rain tomorrow or it won’t, then it won’t rain tomorrow.”

Thus, the two conceptions yield empirically wrong predictions, which are good
illustrations that each logic system is too strong to be semantics of natural lan-
guage. Given the above, although C1 and C2 are the strongest existing con-
ditional logic, they do not seem to be suitable as a logic system for natural
language.

5 Proposal: A New Conditional Logic Cb

In section 4, we pointed out the drawbacks with existing systems of conditional
logic. However, viewing them purely from the perspective of the semantics of
natural language, C+ and S are too weak and C1 and C2 are too strong.

Moreover, S, C1 and C2 have no known tableau systems or any other proof sys-
tems. In developing a logic system for natural language, especially in the context
of natural language processing, whether it enables us to compute the entailment
relation between given sentences is an important feature, and is a feature that
has not been achieved in previous studies with a few notable exceptions, such as
[5].

Against such background, we propose here, as semantics of natural language,
a logic system we call Cb that properly extends C+ and has a corresponding
tableau system.

One of the common problems with C+, S, C1 and C2 is when ∧ or ∨ appears
on the accessibility relations: when such truth functions occur in the antecedents
of formulae, we cannot apply any rules, and all inferences including these shall
be invalid.

The system Cb is obtained by adding the following new conditions on the
Kripke frame. It allows the nature that is inherited from C+ to be preserved.

8.
⋃

w′∈fA(w)

fB(w′) ⊆ fA∧B(w)

9. fA(w) ⊆ fA∨B(w)
fB(w) ⊆ fA∨B(w)

Cb has a tableau system which is an extension of that of C+ through the
addition of the following three rules:

198 Y. Ozaki and D. Bekki

irAj
jrBk
↓

irA∧Bk

irAj
↓

irA∨Bj

irAj
↓

irB∨Aj

The additional rules refer only to an accessibility relation not formulae. The left
rule is for ∧. For every irAj and jrBk on the branch, we can derive irA∧Bk. The
right two rules are for ∨. For every irAj on the branch, we can derive irA∨Bj and
irB∨Aj for any B. In section 7 and section 8, we prove that this tableau system is
sound and complete with respect to the Kripke semantics introduced above.

Note that any theorem of C+ is a theorem of Cb. In the next section, we will
verify what inferences are valid in Cb.

6 Empirical Verification

The following tableau is an example of a proof in Cb. We note, in passing, that
all the following inferences are valid in Cb but not in C+, S, C1 or C2.3

Ex.1 (p ∧ q) > r � p > (q > r)

(p ∧ q) > r, 0
¬(p > (q > r)), 0

↓
0rp1
p, 1

¬(q > r), 1
↓

1rq2
q, 2
¬r, 2
↓

0rp∧q2
↓

r, 2
×

This is an example of applying the left rule proposed in section 5.
0rp∧q2 is derived by applying the Cb rule to the second line 0rp1 and the third

line 1rq2. This formula creates a sentence like the following.
“If the rain stops and the water temperature is more than 25◦C, then we can

swim in the pool.”
⇒“If the rain stops, then additionally, if the water temperature is more than
25◦C, we can swim in the pool.”
3 As discussed in section 4.1, we need to construct a counter-model for proving the

invalidity of a formula, but we omit this here due to the space limitations.

Conditional Logic Cb and Its Tableau System 199

Ex.2 (p ∧ q) > r, p > q � p > r

(p ∧ q) > r, 0
p > q, 0
¬(p > r), 0

↓
0rp1
p, 1
¬r, 1
↓

q, 1
↙ ↘
¬q, 1 q, 1
× 1rq1

↓
0rp∧q1
↓

r, 1
×

This inference is little changed from Ex. 1, and similarly to Ex. 1, it applies
the left rule as in section 5 above.

This formula creates a sentences like the following:
“If A and B come, C will also come. And if A comes then B comes.”
⇒ “If A comes then C comes.”

Ex.3 (p ∨ q) > r � (p > r) ∧ (q > r)

(p ∨ q) > r, 0
¬((p > r) ∧ (q > r)), 0
↙ ↘

¬(p > r), 0 ¬(q > r), 0
↓ ↓

0rp1 0rq2
p, 1 q, 2
¬r, 1 ¬r, 2
↓ ↓

0rp∨q1 0rp∨q2
↓ ↓

r, 1 r, 2
× ×

This is an example of applying the right rules proposed in section 5 above.
In order to apply the rule to the antecedent of the formula, it is necessary

to account for the accessibility relation of p ∨ q. Then, after 0rp1 and 0rq2 are

200 Y. Ozaki and D. Bekki

produced, they derive 0rp∨q1 and 0rp∨q2, respectively. Hence, closing becomes
possible by applying the rule to the antecedent of the given formula.

This formula creates sentences like the following:
“If it rains or snows, the game will be cancelled.”
⇒“If it rains, the game will be cancelled and if it snows, the game will be
cancelled.”

Ex.4 p > q, (p ∧ ¬r) > ¬q � p > r

p > q, 0
(p ∧ ¬r) > ¬q, 0

¬(p > r), 0
↓

0rp1
p, 1
¬r, 1
↓

q, 1
↙ ↘

¬¬r, 1 ¬r, 1
↓ 1r¬r1

r, 1 ↓
× 0rp∧¬r1

↓
¬q, 1
×

Although the above inference is valid in Cb, there is a problem in regard to
its empirical validity. For example, the conditional corresponding to this formula
seems to be false: ‘If there are various drinks there, I will go. Even though there
are various drinks, if there is no pizza, I won’t go.”
⇒?∗“If there are various drinks, there will be pizza.”

Ex.5 (p ∧ r) > (r ∧ q), p > r � p > q

(p ∧ r) > (r ∧ q), 0
p > r, 0
¬(p > q), 0

↓
0rp1
p, 1
¬q, 1
↓

r, 1
↙ ↘
¬r, 1 r, 1
× 1rr1

↓

Conditional Logic Cb and Its Tableau System 201

0rp∧r1
↓

r ∧ q, 1
↓

r, 1
q, 1
×

This inference is also valid in Cb, but we cannot find a conditional to corre-
spond to it. In such instance, the system may be too strong. Therefore, in future
research, we need to find a suitable limitation.

7 Soundness

Our proof of the soundness and completeness of Cb is based on the proof of
soundness and completeness of C+ given in [6].

Definition 1 (Faithfulness). Let I = 〈W, R, ν〉 be any Kripke interpretation,
and b be any branch of a tableau. Then, I is faithful to b iff there is a map
g : N→W such that:

1. For every node A, i on b, A is true at g(i) in I.
2. If irAj is on b, g(i)RAg(j) in I.

Lemma 2 (Soundness Lemma). Let b be any branch of a tableau and I =
〈w, R, ν〉 be any Kripke interpretation. If I is faithful to b and a tableau rule is
applied to it, then it produces at least one extension b′ such that I is faithful to
b′.

Proof. Since C+ is proved to be sound with respect to its semantics given in
section 4.1, we merely have to check the case for each rule of Cb.

The argument for the left tableau rule in section 5 is the following. Suppose
there are irpj and jrqk on a branch to which I is faithful and we apply the left
rule and obtain irp∧qk. According to the definition of faithfulness, g(i)rpg(j) and
g(j)rqg(k) are in I. Hence:

g(k) ∈ {x | ∃w′ (g(i)Rpw ∧ wRqx)}
≡

⋃
w′∈fp(w)

fq(g(i))

⊆ fp∧q(g(i)) (according to Condition 8 in section 5)
≡ {x | g(i)Rp∧qx} (according to the definition of fA(w))

Therefore, g(i)Rp∧qg(k), which shows that I is faithful to this extension.
For the right rules, suppose that there is irpj on a branch to which I is

faithful and from applying the rule we obtain irp∨qj. According to the definition
of faithfulness, g(i)rpg(j) is in I. Hence:

202 Y. Ozaki and D. Bekki

g(j) ∈ {x ∈W | g(i)Rpx}
≡ fp(g(i)) (according to the definition of fA(w))
⊆ fp∨q(g(i)) (according to Condition 9 in section 5)
≡ {x ∈W | g(i)Rp∨qx}

Therefore, g(i)Rp∨q(j), which shows that I is faithful to this extension. The case
for irqj can be proved in the same way.

Theorem 3 (Soundness Theorem). The tableau system of Cb is sound with
respect to its semantics, i.e. for finite Σ, if Σ � A then Σ |= A.

Proof. Suppose that Σ �� A. Then we have the interpretation I = 〈W, R, ν〉 that
makes every formula in Σ true and A false, in some world w. Let h : N → W
be a map such that h(0) = w, which makes I faithful to the initial list. When
we apply a rule to the list, there is at least one extension to which I is faithful,
due to the Soundness Lemma. Thus, if the tableau is closed, there is at least one
branch b for which the interpretation I is faithful, and there is a formula B such
that both B and ¬B are on b. This is impossible, however, because it means
ν(B) = 1 and ν(¬B) = 1. Therefore, the tableau must be open, i.e. Σ �� A.

8 Completeness

Definition 4 (Induced Interpretation). Let b be an open branch of a tableau.
The interpretation I = 〈W, R, ν〉 induced by b is defined as follows:

– W = {wi | i occurs in b}
– For any formula A:
• wiRAwj iff irAj is on b, if A occurs as the antecedent of a conditional

or negated conditional at a node of b.
• wiRAwj iff νwj (A) = 1 otherwise.

– νwi(A) =

⎧⎨
⎩

1 if A, i occurs on b
0 if ¬A, i occurs on b
1 or 0 otherwise

Lemma 5 (Completeness Lemma). Let b be any open complete branch of a
tableau. Let I = 〈W, R, ν〉 be the interpretation induced by b. Then:

– if A, i is on b, then νwi(A) = 1
– if ¬A, i is on b, then νwi(A) = 0

Proof. Since the syntax of Cb is the same as that of C and C+, the Completeness
Lemma can be proved in the same way [6].

Theorem 6 (Completeness Theorem). The tableau system of Cb is complete
with respect to its Kripke semantics: for finite Σ, if Σ � A then Σ � A.

Conditional Logic Cb and Its Tableau System 203

Proof. Suppose that Σ �� A. Given an open branch b of the tableau, the inter-
pretation induced by b makes all the formulae in Σ true and A false in w0, by
the Completeness Lemma.

Now we must check that the induced interpretation satisfies conditions 1 and 2
of C+, whose proof is given in [6], and conditions 8 and 9 of Cb given in section 5.

Suppose that b is a completed open branch. For any formula A, either A occurs
on b as an antecedent or not. In the former case, the result holds according to the
definition of RA. In the latter case, let us check the two conditions of Cb in turn.

– For 8, let wx be any world. Suppose that there exists a world wy such
that wiRAwy and wyRBwx. Then, according to the definition of induced
interpretations, irAy and yrBx occur on b. Since b is completed, irA∧Bx
is also on b. Again, according to the definition of induced interpretations,
wiRA∧Bwx holds, as required.

– For 9, let wx be any world such that wiRAwx. According to the definition
of induced interpretations, irAx occurs on b. Since b is completed, irA∨Bx
and irB∨Ax occurs on b for any formula B. So, according to the definition
of induced interpretations, wiRA∨Bwx and wiRB∨Awx hold, as required.

Hence Σ �� A.

9 Conclusion and Future Work

In this paper, we have explored in detail the problems of conditional sentences
in natural language and proposed a new logic system Cb by extending existing
conditional logics.

There are two advantages to our logic Cb: first, as a semantic theory of nat-
ural language, it is empirically more correct than preceding analyses; second, a
tableau proof is available for Cb, which is sound and complete with respect to
its Kripke semantics.

The following figure shows a comparison between S and Cb in regard to their
valid inferences.

S
Cb valid invalid

va
lid p > (q ∧ r) � p > q p > q, q > r � p > r

p > (p > q) � p > q p > q,¬(p > ¬r) � (p ∧ r) > q

in
va

lid

(p ∨ q) > r � (p > r) ∧ (q > r)

(p ∧ q) > r � p > (q > r) (p ∧ r) > (r ∧ q) � (p > q) ∨ (r > q)

(p ∧ q) > r, p > q � p > r

p > q, (p ∧ ¬r) > ¬q � p > r

(p ∧ r) > (r ∧ q), p > r � p > q

204 Y. Ozaki and D. Bekki

This figure indicates that inferences with conditional formulae that include ∧
or ∨ in the antecedent are valid only in Cb, constituting what we believe to be
a substantial extension.

For future work, further examination of the empirical validity of Cb is required.
Cases such as Ex. 4 and Ex. 5 in section 6 may be problematic for the current
version of Cb. Moreover, we should think about how to treat inferences with
a conditional formula whose antecedent contains the negation symbol ¬A. The
availability of an automatic proof and its implementation remain as topics for
future work.

Acknowledgments. We wish to thank Eric McCready, Alastair Butler, Kei
Yoshimoto and Kenichi Asai for their comments on an earlier version of this pa-
per. We would also thank the reviewers of this paper for their useful and valuable
comments. Daisuke Bekki is partially supported by Grant-in-Aid for Young Sci-
entists (A), 22680013, 2010-203, from the Ministry of Education, Science, Sports
and Culture, Japan.

References

1. Chellas, B.F.: Basic conditional logic. Journal of Philosophical Logic 4, 53–133
(1980)

2. Harper, W.L., Stalnaker, R., Pearce, G.: Ifs. Reidel, Dordrecht (1981)
3. Lewis, D.K.: Counterfactuals. Blackwell, Oxford (1973)
4. Lewis, D.K.: Counterfactuals and comparative possibility. Journal of Philosophical

Logic 2 (1973)
5. Muskens, R.: A compositional discourse representation theory. In: The 9th Amster-

dam Colloquium, pp. 467–486 (1993)
6. Priest, G.: An Introduction to Non-Classical Logic. Cambridge Uniersity Press,

Cambridge (2008)
7. Read, S.: Thinking About Logic: An Introduction to the Philosopy of Logic. Oxford

University Press, Oxford (1994)
8. Stalnaker, R.: A Theory of Conditionals, in Studies in Logical Theory. American

Philosophical Quanterly Monograph Series, vol. 2. Basil Blackwell, Oxford (1968)

Are (Linguists’) Propositions (Topos)

Propositions?

Carl Pollard

Department of Linguistics, The Ohio State University,
1712 Neil Avenue, Columbus, Ohio 43210, USA

pollard@ling.ohio-state.edu

Abstract. Lambek([22]) proposed a categorial achitecture for natural
language grammars, whereby syntax and semantics are modelled by a
biclosed monoidal category (bmc) and a cartesian closed category
(ccc) respectively, and semantic interpretation by a functor from syntax
to semantics that preserves the biclosed monoidal structure; essentially
this same architecture underlies the framework of abstract categorial
grammar (ACG, de Groote [12]), except that the bmc is now symmetric,
in keeping with the collapsing of Lambek’s directional implications / and
\ into the linear implication �. At the same time, Lambek proposed that
the semantic ccc bears the additional structure of a topos, and that the
meanings of declarative sentences—linguist’s propositions—can be iden-
tified with propositions in the sense of topos theory, i.e. morphisms from
the terminal object 1 to the subobject classifier Ω. Here we show (1)
that this proposal as it stands is untenable, and (2) that a serviceable
framework results if a preboolean algebra object distinct from Ω
is employed instead. Additionally we show that the resulting categorial
structure provides ‘for free’, via Stone duality, an account of the relation-
ship between fine-grained ‘hyperintensional’ semantics ([6],[33],[27],[28])
and the familiar coarse-grained intensional semantics of Carnap ([2]) and
Montague ([26]).

Keywords: proposition, hyperintension, intension, topos, Stone duality,
preboolean algebra.

1 Introduction

Montague ([26]) was first to systematically apply the methods of mathematical
logic to the analysis of natural language (NL) meaning, and a great deal of the sub-
sequent history of NL semantics has consisted of attempts to repair, improve, or
elaborate on Montague semantics (MS). Lambek ([22]) made a significant though
little-known contribution to this enterprise. Here I focus on one aspect of Lam-
bek’s contribution, namely his proposal that NL meanings be modelled by mor-
phisms in a topos, and that, in particular, declarative sentence meanings (usu-
ally called propositions by linguists and philosophers) can be identified with the
topos-theorist’s propositions, i.e. morphisms from the terminal object 1 to the

S. Pogodalla and J.-P. Prost (Eds.): LACL 2011, LNAI 6736, pp. 205–218, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

206 C. Pollard

subobject classifier Ω.1 Specifically, I will show that although Lambek’s proposal
as it stands is untenable, a serviceable framework results if a preboolean alge-
bra object distinct from Ω is employed instead of Ω itself. Moroever, I will show
that the resulting categorical structure provides ‘for free’, via the natural topos-
theoretic generalization of Stone duality, a straightforward account of the relation-
ship between fine-grained ‘hyperintensional’ semantics (Cresswell [6],[33],[27],[28])
and the familiar coarse-grained intensional semantics of Carnap ([2]) and Mon-
tague ([26]).) and the familiar coarse-grained intensional semantics inherited by
mainstream linguistic semantics from Carnap ([2]) and Montague ([26]).

As is well known, Montague semantics is a synthesis (some would say a hodge-
podge) of ideas from several sources. From Frege ([9]) came the ideas (1) that a
(linguistic) expression has a sense (which does not depend on how things are)
and a reference (which does); (2) that the sense of a declarative sentence is a
proposition and the reference is that proposition’s truth value; and (3) that
the sense of an expression is a function of the senses of its syntactic constituents
(‘compositionality’). From Carnap ([2]) came the idea that meanings are inten-
sions, functions that map each world to the reference at that world. And from
Kripke ([17]) came the idea that worlds are not complete state descriptions (as
per Carnap) or maximal consistent sets of propositions (as per earlier Kripke
([16])), but rather unanalyzed primitives.

Montague’s semantic theory was written in an idiosyncratic higher-order lan-
guage (IL), subsequently shown by Gallin ([10]) to be essentially equivalent to
a version (Ty2) of the Church-Henkin ([5],[13]) simple theory of types with one
additional basic type for worlds. (Hereafter we ignore IL and pretend that Mon-
tague semantics was written in Ty2 all along.) Moreover, this theory was only
one component of a larger account of how strings of words come to express senses
and (relative to a world) denote references. In this account, the relationship be-
tween strings and sense is mediated by an explicit (albeit primitive) categorial
grammar (primitive in the sense of lacking hypothetical proof, along the lines of
Ajdukiewicz ([3]) and Bar-Hillel ([4])) which recursively defines a set of ordered
triples consisting of (1) a string, (2) a syntactic type, and (3) an intension. As
Montague (p. 263) observes, such a grammar defines a function (‘translation’)
from analysis trees (categorial grammar proofs) to intensions. It is this trans-
lation function which, in Lambek’s categorical reformulation, is rendered as a
biclosed monoidal functor.

Of particular importance for present purposes is Montague’s system of seman-
tic types. Besides the truth value type t (Henkin’s o) provided by the logic, there
are two basic types: e, the type of entities (Henkin’s ι) and w (Montague’s s),
the type of worlds. In particular, the type (here called p) for propositions in the
sense of declarative sentence meanings is not a basic type, but rather (in spirit
following Carnap) is defined to be w → t (sets of worlds). Correspondingly, for
a proposition to be true at a world is for the world to be a set-theoretic mem-
ber of the proposition. In this scheme of things, the intensions for the NL ‘logic

1 For discussion of other aspects of Lambek’s categorial semantics and relevant histor-
ical background, see Pollard [29].

Are Propositions Propositions? 207

words’ are the expected boolean operations on propositions, e.g. (here � is ‘is
translated as’):

and � λpqw.(p w) ∧ (q w) : p→ p→ p
implies � λpqw .(p w)→ (q w) : p→ p→ p

i.e. intersection and relative complement of sets of worlds; and the centrally
important relation of NL semantics, entailment, is modelled by subset inclusion
in w→ t:

entails =def λpq.∀w.(p w)→ (q w) : p→ p→ t

At first blush, this seems right because intuitively, for p to entail q is supposed
to mean that, no matter how things are, if p is true with things that way, then
so is q. But it has long been well known (even, in fact, to Montague) that
there are problems with assuming that propositions are sets of worlds. One of
the most obvious of these is the logical omniscience problem: since in MS
entailment is modelled as the subset inclusion order in the set of sets of worlds,
mutually entailing propositions must be equal; and therefore there can be only
one necessary truth, namely the set of all worlds. So anybody who knows some
necessary truth (e.g. that Sarah Palin is Sarah Palin) knows them all (e.g. the
Riemann Hypothesis or its denial, whichever is true).

Logical omniscience is one aspect of a more general problem of granularity:
MS meanings do not make sufficiently fine-grained distinctions to account for a
wide range of robust entailment patterns. Another aspect of granularity is the
problem of donkeys and asses. Thus, since Chiquita is a donkey and Chiquita is
an ass express mutually entailing propositions (call them p and q), MS treats
them as identical. But what if Pedro believes the first but not the second?
Under the standard assumption that belief is a relation between entities and
propositions, that is only possible if p and q are distinct. The moral of this little
story is that, unlike the case of MS, the relation used to model natural-language
entailment better not be antisymmetric. We will return to this in due course.

2 Lambek’s Categorical Semantics

Lambek’s contribution to semantics was to observe that, properly reconstructed,
MS is anything but a hodge-podge of Frege, Kripke, Carnap, and Ajdukiewicz.
In the categorical semantics (hereafter CS) that he proposed, Montague’s primi-
tive applicative categorial grammar is replaced first with Lambek’s ([18]) syntactic
calculus, and then ([22], p. 308) ‘we raise [the] syntactic calculus to the level of a
category by introducing appropriate equations’. The resulting category, called a
a biclosed monoidal category or mbc ([19],[20]), stands in the relation to the
syntactic calculus which generalizes the well-known relation in which a cartesian
closed category (ccc) stands to positive intuitionistic propositional logic: the types
become the objects of the categories, and the morphisms from A to B model (or
perhaps better, reify) equivalence classes of proofs of B from A. Then the cate-
gorical counterpart of a Montagovian analysis tree (or of an equivalence class of

208 C. Pollard

proofs in the syntactic calculus) for a linguistic expression of syntactic type A is
a morphism from I to A, where I is the monoidal unit object of the bmc.

In place of Montague’s semantic model, essentially a standard model (in the
sense of [13]), CS employs a ccc, more specifically, a topos, roughly speaking,
the categorical embodiment of a higher-order type theory, to which we return
below. In the topos, the counterparts of Montagovian meanings (intensions) of
semantic type B are global elements of B, i.e. morphisms from 1 to B where
1 is the terminal object of the topos.

And in place of Montague’s translation function from analysis trees to mean-
ings, CS has a functor (in the sense of category theory, not in the categorial-
grammar sense of a linguistic expression that takes a syntactic argument) from
the bmc to the topos which preserves the biclosed monoidal structure. This
makes sense because a topos is a ccc, and a ccc in turn is a ‘degenerate’ bmc.2

Here the object-level mapping of the functor correponds to Montague’s function
f from English syntactic categories to semantic types. And finally, the meaning
of an expression (morphism in the bmc) is the topos morphism which its image
by this functor at the level of morphisms.

But what is a topos? For present purposes, it suffices to think of a topos as
simply a ccc endowed with enough additional structure to enable one to speak of
the ‘characteristic function’ of a ‘subset’. The most familiar topos is the category
of sets, with sets as the objects and functions with specified codomains (not just
specified domains) as the morphisms. In this case, for a set A, we can identify a
subset B with the morphism m from B to A which is the embedding function
mapping each element of B to ‘itself thought of as an element of A’; while the
characteristic function is a certain ‘A-predicate’ (morphism from A to the set
2 = def {0, 1}), namely the (necessarily unique) function χ whose composition
with m coincides with the function #B from B to 2 which maps every every
element of B to 1. Note here that #B is itself a composition #◦g, where g is the
unique function from B to the singleton set 1 = def {0}, and # is the function
from 1 to 2 that maps 0 to 1.

The notion of a topos is the natural categorical generalization of this situa-
tion, with ‘subset’ replaced by the usual categorical notion of subobject (as an
equivalence class of monics), 2 replaced by a distinguished object Ω, whose global
elements are called propositions, and # replaced by a distinguished proposition
true. (See e.g. Goldblatt ([11]) for detailed definitions and discussion.) For the
ccc to count as a topos, it is required that true classify subobjects. What this
means is that for each monic m : B → A, there must be a unique characteris-
tic morphism char(m) : A → Ω. The precise definition of char 3 has as one
important consequence that char(m) ◦m coincides with true ◦OB, where OB is

2 One can think of this degeneration, which arises from the imposition of equations
corresponding to the structural rules of permutation, contraction, and weakening,
as signaling the transition from the ‘resource sensitivity’ of syntax, where order and
repetition are significant, to the realm of propositional content where they are not.

3 Technically: for χ to count as the char of m, the diagram equating χ◦m with true◦OB

is required not merely to commute but moreover to be a pullback.

Are Propositions Propositions? 209

the unique morphism from B to the terminal object 1; here 0B and true are the
respective categorical generalizations of the functions # and g above. A second
consequence of the definitions of char and subobject classifier is that two monics
have the same char iff they are equivalent as subobjects (in the sense of factoring
through each other). And a third consequence, of particular importance for us,
is that Ω itself is endowed with a natural structure as a heyting algebra object.
(In fact, we could further require that the topos be boolean, in the sense that
LEM (in the form � ∀tt ∨ ¬t) hold in the internal language (see immediately
below), but we do not insist on this. However, since natural language entailment
is usually taken to be classical, we will impose the weaker condition that Ω be a
boolean algebra object.) Toposes so defined generalize not only the category of
sets, but also the notion of ‘model of a higher order theory’; in fact, the (gener-
alized) models of Henkin ([13]) are, up to isomorphism, just the toposes which
are subcategories of the category of sets.

What in CS corresponds to Montague’s IL (or, as we are presenting MS, to
Ty2)? As Lambek and Scott ([23]) discuss at length, just as each ccc corresponds
in a well-known and natural way (i.e. via a categorical equivalence) to a typed
lambda calculus ([21]), so each topos corresponds to a certain higher-order in-
tuitionistic type theory, called the internal language of the topos. Thus the
move from a (mere) ccc to a topos generalizes the move that Church ([5]) made
from (mere) lambda calculus to the simple theory of types, where equality is
represented internally by a family of object-language constants =A, as opposed
to lambda-calculus term equivalence which is defined in the metalanguage.4 And
just as in the simple theory of types ([13]), all the usual intuitionistic (or, if de-
sired, classical) connectives and quantifiers of higher order logic become definable
in terms of (internal) equality.

3 Are Propositions Propositions?

Up to this point, it would appear that CS has to be judged a success: it shows
that Montague was well on the way to having an elegant and natural theory of
NL meaning and its connection with grammar. But what about the granularity
problem? Does CS fare any better than MS did?

To answer this, we have to take into account an aspect of CS that we have
not yet considered, namely Lambek’s proposal to identify senses of declarative
sentences—linguist’s propositions—with topos propositions (morphisms from 1
to Ω). In this connection, recall that Ω is a boolean algebra object, the CS
counterpart of Montague’s denotation for the type p = w → t, namely the
powerset of the set of worlds. In the Montague setting, as noted above, natural
language entailment is modeled as subset inclusion of sets of worlds, which is just
a special case of the order induced induced on a boolean algebra by its boolean
structure, viz. p $ p iff p = p � q. Since, in a topos with boolean Ω, the boolean
4 Under this correspondence, the counterpart of the constant =A in the interal lan-

guage of a topos is char(δA), where δA = def A → A × A is the diagonal morphism
(idA, idA).

210 C. Pollard

connectives of the internal language correspond to the boolean operations on Ω
itself, the CS constant denoting natural language entailment must be subject to
the axiom

� entails = λpq.(p ∧ q) = p : p→ p→ t

or equivalently

� ∀pq.(p entails q) = ((p ∧ q) = p)

Now one thing we can observe right away is that CS is afflicted by the gran-
ularity problem, for the same reason that MS is, namely that entailment is a
(internal) order, and in particular antisymmetric. However, it is important to
appreciate the precise manner in which CS fails to avoid the granularity prob-
lem. It is not merely the straightforward categorical generalization of the fact
the entailment among propositions in MS is antisymmetric. In fact, things are
far worse than that. To see why, recall that in MS, entailment and implication
are distinct. In fact they are not even of the same type: as just noted, entails
has type p → p → t (a binary relation on propositions), whereas implication
was defined in MS as a binary operation on propositions, namely the relative
complement operation on the powerset of the set of worlds:

implies � λpqw .(p w)→ (q w) : p→ p→ p

Now MS is far from perfect, but this distinction between entailment and im-
plication is a feature, not a bug, of MS. In CS though, since Ω is the object
whose global elements model linguistic propositions, it is with respect to the
natural boolean structure on this object that the words and and implies have to
be interpreted, namely as the meet ∧ and relative complement → respectively.
Unfortunately, it is a fact about toposes that → is internally definable in terms
of ∧ and object-language equality ([23], p. 133):

p→ q =def (p ∧ q) = p

i.e. for any two propositions p and q, p→ q is the same morphism as (p∧q) = p,
so that the distinction between implication and entailment collapses! On a more
intuitive level, this collapse comes about because topos propositions are being
forced to do double duty as both the senses of declarative sentences (‘linguis-
tic propositions’) and the corresponding references (‘truth values’), which is re-
flected by the fact that global elements of Ω are often called ‘truth values’ rather
than propositions.

One disastrous consequence of this collapse (one is enough) is what I refer
to as the total omniscience problem. Let p, q, r, and s be the propositions
expressed by the following four sentences:

1. Chiquita is a donkey
2. Frances is a mule.
3. Pedro knows Chiquita is a donkey.
4. Pedro knows Frances is a mule.

Are Propositions Propositions? 211

so that p = (donkey chiquita), q = (mule frances), r = (know p pedro), and s =
(know q pedro). Then we can easily prove (internally):

� (p ∧ q ∧ r)→ s

(Hint: p ∧ q is defined as 〈p, q〉 = 〈true, true〉, and so � (p ∧ q) → (p = q).)
More generally: anyone who knows some (possibly contingent) truth is totally
omniscient (knows every truth, not just necessary ones but contingent ones also!

4 Preboolean Algebras

A way into overcoming this problem was suggested to me (separately) by Drew
Moshier and Bill Lawvere (p.c. 2000), namely to use a boolean algebra object
p distinct from Ω for sentence senses. This is reminiscent of Thomason’s ([33])
intentional logic, with a basic type p distinct from t. Howard Gregory (p.c.,
2001) reminded me that although this solves the total omniscience problem,
it’s no help with logical omniscience because entailment is still antisymmet-
ric. However, there is a way forward: axiomatize p not as a boolean algebra,
but rather as something this just barely misses a boolean algebra, by failing to
be antisymmetric. Such things are called preboolean algebras, or equivalently,
boolean categories, though they tend not to get much respect.5 In fact there
is a familar structure of just this kind, namely the set of formulas of classical
propositional logic preordered by logical consequence. Of course, nobody ever
pays much attention to this algebra; it is usually just seen as a station on the
way to constructing the Lindenbaum algebra by identifying equivalent formulas.
And in the setting of propositional (or even first-order) logic, this is an entirely
natural thing to do, given that substituting an equivalent ψ′ for a subformula
ψ of a given formula φ produces an equivalent formula φ′, a simple consequence
of the fact that the algebra operations are all functorial (i.e. either monotone or
antitone in each argument). But things are different in the realm of linguistic
propositions, where the typical propositional operators (expressed by verbs of
propositional attitude) are not functorial. In that realm, as is widely appreci-
ated (e.g. by advocates of impossible worlds, structured propositions, intentional
logic, and hyperintensional semantics), there is ample cause to doubt that nat-
ural language entailment is antisymmetric.

To understand what a preboolean algebra is, recall that in any preordered set
{A,$}, there is an induced equivalence relation ≡ given by

a ≡ b iff a $ b and b $ a

5 Indeed, it is often noted that boolean categories are uninteresting because they
are just boolean algebras, but this is only true up to categorical equivalence, since
preboolean algebras are just as good boolean categories as boolean algebras are; to
put it another way, boolean algebras are the skeletal boolean categories (ones where
the only isos are identities.)

212 C. Pollard

Then a preboolean algebra is an algebra with operations just like those of a
boolean algebra, except that all the usual equalities obtain only up to equiva-
lence (u.t.e.). To put it another way, a preboolean algebra is an algebra that
yields a boolean algebra when quotiented by its own induced equivalence re-
lation. The topos-internal counterpart of such a thing, an internal boolean
category, or, equivalently, an pre-heyting algebra object that validates Double
Negation Elimination u.t.e., is precisely what we will use to model the (lin-
guists’) propositions preordered by entailment. To this end, we first introduce
the following constants:

Linguistic Propositional Connectives

a. � truth : p
b. � falsity : p
c. � not : p→ p
d. � and : p→ p→ p
e. � or : p→ p→ p
f. � implies : p→ p→ p
g. � entails : p→ p→ t

Here not, and , or , and implies are the respective translations of the English
sentential connectives it is not the case that, and, or, and (static, episodic) if . . .
then.

In the internal language, the preboolean axioms are as follows, where now we
are using p, q, and r as variables of the type p of linguistic propositions, not of
the type Ω of topos propositions, and where

p ≡ q =def (p entails q) ∧ (q entails p)

Axioms for Linguistic Entailment

a. � ∀p.p entails truth
b. � ∀p.falsity entails p
c. � ∀p,q.(p and q) entails p
d. � ∀p,q.(p and q) entails q
e. � ∀p,q,r.((p entails q) ∧ (p entails r))→ (p entails (q and r))
f. � ∀p,q.p entails (p or q)
g. � ∀p,q.q entails (p or q)
h. � ∀p,q,r.((p entails r) ∧ (q entails r))→ ((p or q) entails r)
i. � ∀p,q.(p implies q) and p) entails q
j. � ∀p,q,r.((r and p) entails q)→ (r entails (p implies q))
k. � ∀p.(not p) ≡ (p implies falsity)
l. � ∀p.(not (not p)) entails p

And what about Ω? It hasn’t gone anywhere, but it is no longer being asked
to model the meanings of natural-language declarative sentences. Rather, it is
used, just like Montague’s t, for their reference (see Appendix). In recognition
of that fact, we will rename it from Ω to t, and call its global elements truth
values, reserving the term ‘proposition’ for the linguistic sentence meanings.

Are Propositions Propositions? 213

5 Background on Ultrafilters

Inside our semantic topos, we now have linguistic propositions (type p) and a
preorder on them called entailment, but we have not yet related this preorder
to the linguistic notion of entailment as that relation that obtains between (the
natural-language sentences which express) two propositions just in case, no mat-
ter how things might be, if the first is true with things that way, then so is the
second. These ‘ways things might be’ are what the unanalyzed primitive worlds
of Montague ([26] (and Kripke ([17]) model. But there is an older tradition, ex-
emplified by, inter alia, [15], [16], and [1], wherein worlds are constructed out of
propositions, rather than the other way around, as ultrafilters (or equivalently,
maximal consistent) sets of propositions. Pollard ([28]) sketches the logical un-
derpinnings of a categorical approach along these lines, some features of which
we will amplify and clarify in due course. Before that though, we review some
basic notions about ultrafilters of (pre)boolean algebras.

Our point of departure is the Stone representation theorem (SRT) ([31], [32],
[14]), which relates boolean algebras and their spectra. Here the spectrum
Spec(B) of a boolean algebra B is its set of ultrafilters, topologized as follows.
The open sets are taken to be the unions of the sets Cb, where b ∈ B and
Cb is the set whose members are those ultrafilters to which b belongs. Then it
turns out that the sets Cb are precisely the clopens (open-and-closed subsets) of
Spec(B).6 Then SRT can be stated as follows:

Theorem (Stone Representation Theorem)
For any boolean algebra B, the function mapping each b ∈ B to Cb is an iso-
morphism onto a subalgebra of ℘(Spec(B)).
We call this function the Stone mapping of B. To paraphrase, SRT says that
the Stone mapping embeds B into a powerset algebra.

Obviously, this does not generalize to preboolean algebras, since equivalent
but unequal elements belong to the same ultrafilters. But what will eventually
be of more interest to us is not SRT itself, but rather the main lemma involved
in its proof, which does so generalize:

Lemma ((Pre)Boolean Algebras Have ‘Enough’ Ultrafilters)
If B is a (pre)boolean algebra with order $, and a, b ∈ B such that a �$ b, then
there is an ultrafilter F such that a ∈ F but b �∈ F .

This is a theorem of ZFC, but known to be weaker than Choice.
Now one thing that can be noted right away is that there is a mild reformu-

lation of Montague semantics (MS), call it MS’, wherein propositions are taken
to be primitive and to form a boolean algebra P (so that entailment is still
antisymmetric). If one goes that route, then SRT tells us that, as long as we
identify worlds with ultrafilters, then we we get a natural one-to-one correspon-
dence between propositions and (some, but not all) intensions (functions from

6 Moreover, Spec(B) itself can be shown to be a Stone space, i.e. a compact Haus-
dorff space where every open is a union of clopens. Up to homeomorphism, every
Stone space arises in this way.

214 C. Pollard

worlds to truth values). The key difference between MS and MS’ is that in MS,
every set of worlds counts as a proposition, whereas in MS’, only those sets of
worlds which are clopens of Spec(P) do.7

For die-hard Montagovians, or those who, like Stalnaker ([30]), are willing to
accept the consequences of having an antisymmetric entailment relation, MS’
represents a tenable intermediate position between MS and full-blown hyperten-
sionality. The advantage of MS’ over MS is that, although it doesn’t solve the
granularity problem, it does fix some other, less well-known bugs of MS, of which
we mention just one here. In MS, if we let W be the set of worlds, then there is
a one-to-one correspondence between worlds and the principal ultrafilters over
the boolean algebra ℘(W) of propositions. But (assuming Choice) since there
are infinitely many propositions, ℘(W) must have a nonprincipal ultrafilter F .
And so, F is a maximal consistent set of propositions which does not correspond
to any ‘way things might be’ (i.e. member of W). This puzzle does not arise in
MS’, since there even the nonprincipal ultrafilters count as worlds.

6 Hyperintensional Categorical Semantics

We now turn to elaborating our topos semantics to countenance worlds and
extensions. Worlds are straightforward, since the predicate u : (p → t) → t on
sets of propositions of being an ultrafilter is internally definable ([28]): we can
take the type w of worlds to be a subtype of p→ t whose char is u.

Now we ask: does p have enough ultrafilters? Well, it is known that in any
topos with choice, any preboolean algebra object has enough ultrafilters. But
it is also known ([7]) that toposes with choice are boolean (i.e. � ∀t∈t.t ∨ (¬t)),
which we may not wish to insist on. In any case, the only preboolean object
whose ultrafilters we care about is p, so instead we just directly require of p that
it have enough ultrafilters. To that end, we use the general fact about toposes
that every predicate has a kernel, i.e. for any morphism f : A → t, there
exists an object B and a monic μ : B � A such that char(μ) = f . Now let
μ : w→ p→ t be a kernel of u, let w be a variable of type w, and define

p@w =def λpw.μ w p : p→ w → t

Informally speaking, this says of p that it is one of the facts of w. Now we are
in a position to assert internally the axiom that p have enough ultrafilters:

� ∀pq.¬(p entails q)→ ∃w.p@w ∧ ¬q@w

And from this follows a (very) weak internal form of Stone duality:

� ∀p,q.(∀w.(p@w)↔ (q@w))→ p ≡ q

7 If P were finite, then MS and MS’ would be indistinguishable, since then every set
of worlds would be a clopen; but of course this is a non-starter.

Are Propositions Propositions? 215

That is: if two propositions are facts of the same worlds, then they are equivalent
(but crucially, not necessarily equal). To put it another way, suppose we define
the intension corresponding to a proposition p by

int p =def λw.p@w : w→ t.

Note that int is precisely the internal counterpart of the Stone mapping, except
that it needn’t be monic. Note also that int p is much like a Carnapian intension
([2]), modulo the replacement of (syntactic!) ‘complete state descriptions’ by
(semantic!) ultrafilters. Thus distinct propositions can correspond to one and
the same intension. For this reason we call this framework a hyperintensional
categorical semantics (HCS).

7 Conclusion

The main differences between HCS and MS can be summarized as follows:

– MS is written in the classical simple theory of types; HCS in the internal
language of a (not necessarily classical) topos.

– In MS worlds are primitives and every set of worlds is a proposition; in HCS,
propositions form a preboolean algebra and every ultrafilter is a world.

– In MS meanings are intensions; in HCS meanings are hyperintensions and
their images under the generalized Stone mapping are intensions.

– The reason HCS is more fine-grained than MS is that the Stone mapping at
type p isn’t monic.

There is no shortage of issues remaining. Among them:

– Here we have required the subobject classifier to be boolean, but not required
the topos itself to be boolean. Does it matter?

– Does the framework extend straightfowardly from static to dynamic seman-
tics? (For some steps in this directions, see Martin and Pollard ([24], [25]).

– Here we simplified the semantics of noun phrases by assuming the extensional
type correpsonding to e is e itself (i.e. there is no type distinction between i
(individual concepts) and e (individuals/entities), as there is for Carnap and
Montague. Is such a distinction needed, e.g. for Hesperus-Phosphorus-type
problems, or can they be handled dynamically via discourse referents?

– How should fictional entities be treated, or actual ones which are fictional
from the point of view of other worlds?

– Aside from granularity, does treating worlds as ultrafilters help with other
problems in the analysis of modality, attitudes, and counterfactuality?

Appendix

For reference, we sketch here how to elaborate HCS in order to account for
intensions and extensions at all meaning types (not just p).

216 C. Pollard

(1) Extensional and Intensional Types

– We define the hyperintensional types to be p, e, and types obtained
from these using the cartesian type constructors (1, ×, and →).

– For each hyperintensional type A, the corresponding extensional
type Ext(A) is defined as follows:

Ext(p) = t

Ext(e) = e

Ext(1) = 1

Ext(A×B) = Ext(A)× Ext(B)

Ext(A→ B) = A→ Ext(B)

– the corresponding intensional type is Int(A) =def w→ Ext(A).

(2) Extensions at Worlds

– The extension of a hyperintension a : A at a world w, written
a@w : Ext(A), is defined as follows, where ∗ denotes the unique
inhabitant of 1:
• This was already defined for A = p

• a@w = a for A = e

• ∗@w = ∗
• 〈a, b〉@w = 〈a@w, b@w〉
• a@w = λx.(a x)@w for A = B → C.

(3) Intensions

– the intension of a hyperintension a : A is int a = def λw .a@w :
Int(A)

– a hyperintension has a lower type than the corresponding intension

– intp : p→ w → t coincides with the internal Stone mapping already
defined

– Hence the family of morphisms intA amounts to a generalized Stone
mapping at all hyperintensional types.

Acknowledgments. The research reported here arose in connection with un-
published joint work with Shalom Lappin and Chris Fox. I am indebted to Jim
Lambek and Phil Scott for their help in clarifying the problematic nature of
Lambek’s original proposal, and to Drew Moshier and Bill Lawvere for suggest-
ing (separately) the use of a boolean algebra object of ‘linguistic propositions’
distinct from the subobject classifier.

Are Propositions Propositions? 217

References

1. Adams, R.: Theories of actuality. Noûs 8, 211–231 (1974)
2. Carnap, R.: Meaning and Necessity. University of Chicago Press, Chicago (1947)
3. Ajdukiewicz, K.: Die syntaktische Konnexität. Studia Philosophica 1, 1–27 (1935);

English translation in McCall, S. (ed.) Polish Logic, 1920-1939, 207–231. Oxford
University Press, Oxford

4. Bar-Hillel, Y.: A quasi-arithmetical notation for syntactic description. Language 29,
47–58 (1953)

5. Church, A.: A formulation of the simple theory of types. Journal of Symbolic
Logic 5, 56–68 (1940)

6. Cresswell, M.J.: Hyperintensional logic. Studia Logica 34, 25–48 (1975)
7. Diaconescu, R.: Axiom of choice and complementation. Proc. Amer. Math. Soc. 51,

176–178 (1975)
8. Fox, C., Lappin, S., Pollard, C.: A higher-order fine-grained logic for intensional

semantics. In: Proceedings of the Seventh International Symposium on Logic and
Language, Pécs, Hungary, pp. 37–46 (2002)

9. Frege, G.: On sense and reference. In: Geach, P., Black, M. (eds.) Translations from
the Philosophical Writings of Gottlob Frege, 3rd edn., pp. 56–78. Basil Blackwell,
Oxford (1980)

10. Gallin, D.: Intensional and Higher Order Modal Logic. North-Holland, Amsterdam
(1975)

11. Goldblatt, R.: Topoi: the categorial analysis of logic. North-Holland, Amsterdam
(1983)

12. de Groote, P.: Toward abstract categorial grammars. In: Proceedings of the 39th
Annual Meeting and 10th Conference of the European Chapter of the Association
for Computational Linguistics, pp. 148–155 (2001)

13. Henkin, L.: Completeness in the theory of types. Journal of Symbolic Logic 15,
81–91 (1950)

14. Johnstone, P.: Stone Spaces. Cambridge University Press, Cambridge (1982)
15. Jónsson, B., Tarski, A.: Boolean algebras with operators, part 1. American Journal

of Mathematics 73(4), 891–939 (1951)
16. Kripke, S.: A completeness theorem in modal logic. Journal of Symbolic Logic 24,

1–14 (1959)
17. Kripke, S.: Semantic analysis of modal logic I: normal modal propositional calculi.

Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 9, 67–96
(1963)

18. Lambek, J.: The Mathematics of sentence structure. American Mathematical
Monthly 65, 154–170 (1958)

19. Lambek, J.: Deductive systems and categories I: Syntactic calculus and residuated
categories. Mathematical Systems Theory 2, 287–318 (1968)

20. Lambek, J.: Deductive systems and categories II: Standard constructions and
closed categories. In: Dold, A., Eckmann, B. (eds.) Category Theory, Homology
Theory, and their Applications. Springer Lecture Notes in Mathematics, vol. 86,
pp. 76–122 (1969)

21. Lambek, J.: From λ-calculus to cartesian closed categories. In: Hindley, J., Seldin,
J. (eds.) To H.B. Curry: Essays on Combinatorial Logic, Lambda Calculus, and
Formalism, pp. 375–402. Academic Press, New York (1980)

22. Lambek, J.: Categorial and categorical grammars. In: Oehrle, R., Bach, E.,
Wheeler, D. (eds.) Categorial Grammars and Natural Language Structures. Reidel,
Dordrecht (1988)

218 C. Pollard

23. Lambek, J., Scott, P.J.: Introduction to Higher Order Categorical Logic. Cambridge
University Press, Cambridge (1986)

24. Martin, S., Pollard, C.: Dynamic hyperintensional semantics: enriching contexts
for type-theoretic discourse analysis. In: 15th International Conference on Formal
Grammar (FG 2010), Copenhagen. Springer Lecture Notes in Artificial Intelligence,
(August 2010) (in press)

25. Martin, S., Pollard, C.: Under revision. A higher-order theory of presupposition.
To appear in Special Issue of Studia Logica on Logic and Natural language

26. Montague, R.: The proper treatment of quantification in English. In: Thomason,
R. (ed.) Formal Philosophy: Selected Papers of Richard Montague, pp. 247–270.
Yale University Press, New Haven (1974)

27. Muskens, R.: Sense and the computation of reference. Linguistics and Philoso-
phy 28(4), 473–504 (2005)

28. Pollard, C.: Hyperintensions. Journal of Logic and Computation 18(2), 257–282
(2008)

29. Pollard, C.: Remarks on categorical semantics of natural language. Invited talk pre-
sented at the Workshop on Logic, Categories, and Semantics, Bordeaux (November
2010),
http://www.ling.ohio-state.edu/~pollard/lcs/remarks.pdf

30. Stalnaker, R.: Inquiry. Bradford Books/MIT Press, Cambridge, MA (1984)
31. Stone, M.: The theory of representation for boolean algebras. Transactions of the

American Mathematical Society 40, 37–111 (1936)
32. Stone, M.: Topological representation of distributive lattices and Brouwerian logics.

Časopis pešt. mat. fys. 67, 1–25 (1937)
33. Thomason, R.: A model theory for propositional attitudes. Linguistics and Philos-

ophy 4, 47–70 (1980)

http://www.ling.ohio-state.edu/~pollard/lcs/remarks.pdf

Event in Compositional Dynamic Semantics

Sai Qian1,2,3 and Maxime Amblard1,2

1 LORIA & INRIA Nancy Grand-Est - BP 239 - 54506 Vandœuvre-lès-Nancy Cedex
2 Nancy 2 University, 13 Rue du Marchal Ney - 54037 Nancy Cedex

3 Nancy 1 University, 24-30 Rue Lionnois - BP 60120 | 54003 Nancy Cedex
{sai.qian,maxime.amblard}@loria.fr

Abstract. We present a framework which constructs an event-style dis-
course semantics. The discourse dynamics are encoded in continuation
semantics and various rhetorical relations are embedded in the resulting
interpretation of the framework. We assume discourse and sentence are
distinct semantic objects, that play different roles in meaning evalua-
tion. Moreover, two sets of composition functions, for handling different
discourse relations, are introduced. The paper first gives the necessary
background and motivation for event and dynamic semantics, then the
framework with detailed examples will be introduced.

Keywords: Event, Dynamics, Continuation Semantics, DRT, Discourse
Structure, Rhetorical Relation, Accessibility, λ-calculus.

1 Event Semantics

The idea of relating verbs to certain events or states can be found throughout
the history of philosophy. For example, a simple sentence John cries can be
referred to a crying action, in which John is the agent who carries out the action.
However, there were no real theoretical foundations for semantic proposals based
on events before [5]. In [5], Davidson explained that a certain class of verbs
(action verbs) explicitly imply the existence of underlying events, thus there
should be an implicit event argument in the linguistic realization of verbs.

For instance, traditional Montague Semantics provides John cries the follow-
ing interpretation: Cry(john), where Cry stands for a 1-place predicate denot-
ing the crying event, and john stands for the individual constant in the model.
Davidson’s theory assigns the same sentence another interpretation: ∃e.Cry(e,
john), where Cry becomes a 2-place predicate taking an event variable and its
subject as arguments.

Later on, based on Davidson’s theory of events, Parsons proposed the Neo-
Davidsonian event semantics in [19]. In Parsons’ proposal, several modifications
were made. First, event participants were added in more detail via thematic roles;
second, besides action verbs, state verbs were also associated with an abstract
variable; furthermore, the concepts of holding and culmination for events, the
decomposition of events into subevents, and the modification of subevents by
adverbs were investigated.

S. Pogodalla and J.-P. Prost (Eds.): LACL 2011, LNAI 6736, pp. 219–234, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

220 S. Qian and M. Amblard

As explained in [19], there are various reasons for considering event as an
implicit argument in the semantic representation. Three of the most prominent
ones being adverbial modifiers, perception verbs and explicit references to events.

Adverbial modifiers of a natural language sentence usually bear certain logical
relations with each other. Two known properties are permutation and drop. Take
Sentence (1) as an example.

(1) John buttered the toast slowly, deliberately, in the bathroom, with a
knife, at midnight.

Permutation means the truth conditions of the sentence will not change if the
order of modifiers are alternated, regardless of certain syntactic constraints;
drop means if some modifiers are eliminated from the original context, the new
sentence should always be logically entailed by the original one. In Parsons’
theory, the above sentence is interpreted as ∃e.(Butter(e) ∧ Subject(e, john) ∧
Object(e, toast)∧Slow(e)∧Deliberate(e)∧ In(e, bathroom)...). A similar treat-
ment for adjectival modifiers can also be found in the literature. Compared with
several other semantic proposals, such as increasing the arity of verbs or higher
order logic solutions, event is superior.

Aside from modifiers, perception verbs form another piece of evidence for
applying event in semantic representations. As their name suggests, perception
verbs are verbs that express certain perceptual aspects, such as see, hear, feel
, and etc. The semantics of sentences that contain perception verbs are quite
different from those whose sub-clauses are built with that construction. For in-
stance, we can interpret see in three different ways1:

1. sb. see sb./sth.: e→ e→ t, e.g., Mary sees John.
2. sb. see some fact: e→ t→ t, e.g., Mary sees that John flies.
3. sb. see some event: e→ v → t, e.g., Mary sees John fly.

As the example shows, the first see just means somebody sees somebody or
something. The second see indicates that Mary sees a fact, the fact is John flies.
Even if Mary sees it from TV or newspaper, the sentence is still valid. The third
sentence, in contrast, is true only if Mary directly perceives the event of John
flying with her own sight.

Furthermore, natural language discourses contain examples of various forms
of explicit references (mostly the it anaphor) to events, for example, John sang
on his balcony at midnight. It was horrible.

2 Dynamic Semantics and Discourse Relation

2.1 Dynamic Semantics

In the 1970s, based on the principle of compositionality, Richard Montague com-
bined First Order Logic, λ-calculus, and type theory into the first formal natural
1 “e” and “t” are the same as in traditional Montague Semantics, while “v” stands

for a new type for event.

Event in Compositional Dynamic Semantics 221

language semantic system, which could compositionally generate semantic repre-
sentations. This framework was formalized in [16], [17], and [18]. By convention,
it is named Montague Grammar (MG).

However, despite its huge influence in semantic theory, MG was designed to
handle single sentence semantics. Later on, some linguistic phenomena, such
as anaphora, donkey sentences, and presupposition projection began to draw
people’s attention from MG to other approaches, such as dynamic semantics,
which has a finer-grained conception of meaning. By way of illustration, we can
look at the following “donkey sentence”, which MG fails to explain:

(2) a. A farmer1 owns a donkey2. He1 beats it2.
b. *Every farmer1 owns a donkey2. He? beats it?.

In the traditional MG, the meaning of a sentence is represented as its truth
conditions, that is the circumstances in which the sentence is true. However, in
dynamic semantics, the meaning of a sentence is its context change potential. In
other words, meaning is not a static concept any more, it is viewed as a function
that always builds new information states out of the old ones by updating the
current sentence. Some of the representative works, which emerged since the
1980s, include File Change Semantics [10], Discourse Representation Theory
(DRT) [12], and Dynamic Predicate Logic (DPL) [6].

2.2 A New Approach to Dynamics

Recently in [8], de Groote introduced a new framework, which integrates a notion
of context into MG, based only on Church’s simply-typed λ-calculus. Thus the
concept of discourse dynamicscan be embedded in traditional MG without any
other specific definitions as is the case in other dynamic systems.

In DRT, the problem of extending quantifier scope is tackled by introducing
sets of reference markers. These reference markers act both as existential quanti-
fiers and free variables. Because of their special status, variable renaming is very
important when combining DRT with MG. The framework in [8] is superior in
the computational aspect because the variable renaming has already been solved
with the simply typed λ-calculus. Further more, every new sentence is only pro-
cessed under the environment of the previous context in DRT, but [8] proposed
to evaluate a sentence based on both left and right contexts, which would be
abstracted over its meaning.

In Church’s simple type theory, there are only two atomic types: “ι”, denoting
the type of individual; “o”, denoting the type of proposition2. The new approach
adds one more atomic type “γ”, to express the left contexts, thus the notion of
dynamic context is realized. Consequently, as the right context could be inter-
preted as a proposition given its left context, its type should be γ → o. For the
same reason, the whole discourse could be interpreted as a proposition given
both its left and right contexts. Assuming s and t is respectively the syntactic

2 Here we follow the original denotation in [8], but actually there is no great difference
between “ι”, “o” (Church’s denotation) and “e”, “t” (Montague’s denotation).

222 S. Qian and M. Amblard

category for sentence and discourse, their semantic interpretations are:

�s� = γ → (γ → o)→ o, �t� = γ → (γ → o)→ o

In order to conjoin the meanings of sentences to obtain the composed meaning
of a discourse, the following formula is proposed:

�D.S� = λeφ.�D�e(λe′.�S�e′φ) (1)

in which D is the preceding discourse and S is the sentence currently being
processed. The updated context D.S also possesses the same semantic type as
D and S, it has the potential to update the context. Turning to DRT, if we
assume “x1, x2, · · ·” are reference markers, and “C1, C2, · · ·” are conditions, the
corresponding λ-term for a general DRS in the new framework should be:

λeφ.∃x1 · · ·xn.C1 ∧ · · ·Cm ∧ φe′3

To solve the problem of anaphoric reference, [8] introduced a special choice oper-
ator. The choice operator is represented by some oracles, such as selhe, selshe,
It takes the left context as argument and returns a resolved individual. In order
to update the context, another operator “::” is introduced, which adds new ac-
cessible variables to the processed discourse. For instance, term “a :: e” actually
is interpreted as “{a}

⋃
e” mathematically. In other words, we can view the list

as the discourse referents in DRT.
Finally, let us look at a compositional treatment of Discourse (3) according

to the above formalism. The detailed type and representation for each lexical
entry is presented in the following table:

Word Type Semantic Interpretation
John/Mary (ι→ �s�)→ �s�

λψeφ.ψj/me(λe.φ(j/m :: e))
she λψeφ.ψ(selshee)eφ

kisses �np�→ �np�→ �s� λos.s(λx.o(λyeφ.Kiss(x, y) ∧ φe))
smiles �np�→ �s� λs.s(λxeφ.Smile(x) ∧ φe)

(3) John kisses Mary. She smiles.

(�kisses��Mary�)�John�⇒β λeφ.Kiss(j, m) ∧ φ(m :: j :: e)
�smile��she�⇒β λeφ.Smile(selshe(e)) ∧ φ(e)
�D.S�⇒β λeφ.(Kiss(j, m) ∧ Smile(selshe(j :: m :: e)) ∧ φ(j :: m :: e))

2.3 Discourse Relations and Discourse Structure

Since the emergence of dynamic semantics, people have been changing their
opinion on the notion of meaning. Based on that, many researchers working
on multiple-sentence semantics have studied an abstract and general concept:
3 Here, “e′” is a left context made of “e” and the variables “x1, x2, x3 · · ·”. Its con-

struction depends on the specific structure of the context, for more details see [8].

Event in Compositional Dynamic Semantics 223

discourse structure, in other words, the rhetorical relations, or coherence rela-
tions ([11], [15], [1]). Representative theories include Rhetorical Structure Theory
(RST) and Segmented Discourse Representation Theory (SDRT). The idea that
an internal structure exists in discourse comes naturally. Intuitively, in order
for a context to appear natural, its constituent sentences should bear a certain
coherence with each other, namely discourse relations (DRs). That is also why
it is not the case that any two random sentences can form a natural context.

It is still an open question to identify all existing DRs. But it is generally
agreed there are two classes of DRs, namely the coordinating relations and
the subordinating relations. The former includes relations like Narration, Back-
ground, Result, Parallel, Contrast, etc., while relations such as Elaboration,
Topic, Explanation, and Precondition belong to the latter type. The distinc-
tion of two classes of DRs also has intuitive reasons.

For instance, the function of a sentence over its context could be to introduce
a new topic or to support and explain a topic. Thus the former plays a subordi-
nate role, and the latter plays a coordinate role together with those that function
in the similar way (supporting or explaining). In addition, it is a even more com-
plicated task to determine which DRs belong to which class. [3] provides some
linguistic tests to handle this problem and analyzes some deeper distinctions
between these two classes.

The reason that we introduced different types of DRs is because we can con-
struct a more specific discourse hierarchy based on it. The hierarchy can aid
in the resolution of some semantic or pragmatic phenomena like anaphora. The
original theoretical foundation of this idea dates back to [20], which says that
in a discourse hierarchy, only constituents at accessible nodes can be integrated
into the updated discourse structure. By convention, a subordinating DR creates
a vertical edge and coordinating DR a horizontal edge. The accessible nodes are
all located on the right frontier in the hierarchy. This is also known as the Right
Frontier Constraint. For instance, in Figure 1, Event1, Event3 and Event5 are
on the right frontier, so they stay accessible for further attachments. However,
Event2 and Event4 are blocked, which indicates that variables in these two
nodes cannot be referenced by future anaphora.

Event1
�

Sub1
Event2

�

Event3
�

Coor1
Sub2

Event4
�

Event5
�

Coor2

Fig. 1. Graph Structure Example

224 S. Qian and M. Amblard

So far, we are clear about the fact that discourses do have structures. By com-
paring with other dynamic semantic treatments of phenomena such as pronouns
and tense, we can identify advantages of using DRs. For further illustration, we
use the example from [13]:

(4) a. John had a great evening last night.
b. He had a great meal.
c. He ate salmon.
d. He devoured lots of cheese.
e. He won a dancing competition.
f. *It was a beautiful pink.

Traditional dynamic semantic frameworks, such as DRT, will totally accept Dis-
course (4), because there is no universal quantification or negation to block any
variable. The pronoun it in (4-f) can either refer back to meal, or salmon, or
cheese, or competition. Normally pink will only be used to describe salmon,
which is in the candidate list. However, sentence (4-f) does sound unnatural to
English-speaking readers. Here discourse structure can help to explain. If we
construct the discourse hierarchy according to different types of DRs introduced
above, we obtain the graph in Figure 2.

Elaboration

Elaboration

Narration
He ate salmon He devoured cheese

Narrationgreat meal
He had a

dancing competition
He won a

John had a lovely evening

Fig. 2. Discourse Hierarchy of (4)

Thus, it is clear that (4-f) is not able to be attached to (4-c), where salmon is
located. Relation between (4-c) and (4-d) is a Narration, which is of coordinat-
ing type, so (4-c) is blocked for further reference. In addition, many linguistic
phenomena other than anaphora can be better explained with discourse struc-
ture and the right frontier constraint, such as presupposition projection, definite
descriptions, and word sense disambiguation.

3 Event in Dynamic Semantics

So far, we have first presented the advantages of using events in semantic analysis
over traditional MG, then the motivation for dynamics in discourse semantics,

Event in Compositional Dynamic Semantics 225

and finally the need for DRs in more subtle semantic processing. In this section,
we propose a framework that compositionally constructs event-style discourse
semantics, with various DRs and the accessibility constraint (right frontier con-
straint) embedded. First, we explain how to build representations of single sen-
tences. After that, the meaning construction for discourse, which is based on its
component sentences, will be presented.

3.1 Event-Based Sentential Semantics

As we showed in Section 1, the implicit event argument helps to handle many
linguistic phenomena, such as adverbial modifications, sentential anaphora (it)
resolution. With the notion of thematic relations, the verb predicate will take
only one event variable as argument, instead of multiple variables, each repre-
senting a thematic role relation. Most of the current theories only describe event
semantics from a philosophical or pure linguistic point of view, and the corre-
sponding semantic representations are provided without concrete computational
constructions. That is what our proposal focuses on. Before we introduce our
framework, some assumptions need to be specified.

Thematic roles have been used formally in literature since [9]. However, to
determine how many thematic roles are necessary is still an open question. In
addition, indicating exactly which part of a sentence correlates to which the-
matic role is also a difficult task. In our framework, we only consider the most
elementary and the most widely accepted set of thematic roles. The roles and
their corresponding syntactic categories are listed in the following table:

Thematic Role Syntactic Correspondence
Agent Subject
Theme Direct object; subject of “be”
Goal Indirect object, or with “to”

Benefactive Indirect object, or with “for”
Instrument Object of “with”; subject
Experiencer Subject

Location/Time With “in” or “at”

In [19], the author provides a template-based solution to construct seman-
tic representations with events. Sentences are first classified into different cases
based on their linguistic properties, such as passive, perceptive, causative,
inchoative, etc. Then a unique template is assigned to each case; the number,
types and positions of arguments are specifically designed for that template.
In our proposal, we will also use templates, but a much simpler version. The
templates only contain the most basic thematic roles for certain verbs. They
are subject to modification and enhancement for more complicated cases. For
instance, the template for the verb smile only contains one agent role, while the
verb kiss contains both agent and theme roles.

Furthermore, our proposal will generalize the ontology of event variables. So
to speak, at the current stage we make no distinction between events, states and

226 S. Qian and M. Amblard

processes, for the sake of simplicity (their linguistic differences are described in
[19]). So there will just be one unique variable, representing the underlying event,
or state, or process, indicated by the verb. There is a simple example:

(5) John kisses Mary in the plaza.

Under event semantics, the semantic representation for Sentence (5) should be:

∃e.(Kiss(e) ∧Ag(e, john) ∧ Pat(e, mary) ∧ Loc(e, plaza))4.

In order to obtain the above representation compositionally, we use the following
semantic entries for words in the lexicons:

�John� = john �Mary� = mary
�kiss� = λose.(Kiss(e) ∧Ag(e, s) ∧ Pat(e, o))
�in the plaza� = λPe.(P (e) ∧ Loc(e, plaza))5

Thus, by applying the above four entries to one another in a certain order6, we
can compute the semantic representation of (5) step by step:

1. �kiss��Mary�
⇒β λse.(Kiss(e) ∧Ag(e, s) ∧ Pat(e, mary))

2. (�kiss��Mary�)�John�
⇒β λe.(Kiss(e) ∧Ag(e, john) ∧ Pat(e, mary))

3. �in the plaza�((�kiss��Mary�)�John�)
⇒β λPe.(P (e) ∧ Loc(e, plaza))(λe.(Kiss(e) ∧Ag(e, john) ∧ Pat(e, mary)))
⇒β λe′.(λe.(Kiss(e) ∧Ag(e, john) ∧ Pat(e, mary)))(e′) ∧ Loc(e, plaza)
⇒β λe.(Kiss(e) ∧Ag(e, john) ∧ Pat(e, mary) ∧ Loc(e, plaza))

At this point, the event variable “e” is not yet instantiated as an existential
quantifier. To realize that, we can simply design an EOS (End Of Sentence)
operator7, to which the partial sentence representation could be applied:

�EOS� = λP.∃e.P (e)

As a result, the last step would be:

4. �EOS�(�in the plaza�((�kiss��Mary�)�John�))
⇒β λP.∃e.P (e)(λe.(Kiss(e) ∧Ag(e, john) ∧ Pat(e, mary) ∧ Loc(e, plaza)))
⇒β ∃e.(Kiss(e) ∧Ag(e, john) ∧ Pat(e, mary) ∧ Loc(e, plaza))

In the above solution, the adverbial modifier in the plaza is handled in the
manner that is traditional for intersective adjectives (e.g., tall, red). With a
similar formalism, any number of intersective adverbial modifiers can be added
4 Ag stands for Agent, Pat for Patient and Loc for Location.
5 It is of course possible to break down the interpretation construction of “in the

plaza” into a more detailed level by providing entries for each word, but we give the
compound one for the whole PP just for simplification.

6 The function-argument application can be obtained via shallow syntactic processing.
7 This could be a comma, full stop, exclamation point, or any other punctuation marks.

Event in Compositional Dynamic Semantics 227

to the event structure, as long as the corresponding lexical entry is provided for
each modifier.

The event variable, which is embedded in the verb, is the greatest difference
between our framework and MG. From a computational point of view, we need to
pass the underlying event variable from the verb to other modifiers. As a result,
we first use the λ-operator for the event variable in the verb interpretation, then
the EOS to terminate the evaluation and instantiate the event variable with
an existential quantifier. Another framework which compositionally obtain an
event-style semantics is [4], which introduces the existential quantifier for the
event at the beginning of interpretation.

3.2 Event-Based Discourse Semantics

In the previous part, we showed how to compute single sentence semantics with
events. In this section we will combine event structure with dynamic semantics,
extending our formalism to discourse.

As explained in Section 2.2, [8] expresses dynamics in MG by introducing the
concept of left and right contexts. We adopt the idea, inserting the left and right
contexts into our semantic representations. Thus we bestow upon our event-
based formalism the potential to be updated as in other dynamic systems. To
achieve this, we modify the lexical entries in the previous section as following:

�John� = john �Mary� = mary
�kiss� = λoseab.(Kiss(e) ∧Ag(e, s) ∧ Pat(e, o) ∧ b(e :: a))

�in the plaza� = λPeab.(Peab ∧ Loc(e, plaza))

Here, in contrast to the notation used in [8], “a” stands for the left context and
“b” stands for the right context. In our logical typing system, we use type “v” for
the event variable, and type “α” for the left context. Types “e” and “t” have the
same meaning as convention. In an additional departure from the formalism in
[8], we assume the left context contains the accessibility information of previous
event variables, instead of individual variables. That is why we keep using the
original interpretations for John and Mary, instead of inserting the constants
“john” and “mary” in the left context list structure. However, the list construc-
tor “::” does have a similar meaning. The only difference with the constructor
in [8] is that our “::” takes an event variable and the left context as arguments,
while the previous one takes an individual variable and the left context. Given
the lexical entries above, the semantic representation with a dynamic potential
for Sentence (5) becomes:

1. �in the plaza�((�kiss��Mary�)�John�)
⇒β λeab.(Kiss(e) ∧Ag(e, john) ∧ Pat(e, mary) ∧ Loc(e, plaza)∧ b(e :: a))

Its semantic type also changes from “v → t” into “v → (α → (α → t) → t)”8.
In order to terminate the semantic processing, we need a new EOS symbol:

�EOS� = λP.∃e.PeAB

8 “α → t” is the type for the right context, represented by variable “b”.

228 S. Qian and M. Amblard

Thus we obtain the final interpretation:

2. �EOS�(�in the plaza�((�kiss��Mary�)�John�))
⇒β ∃e.(Kiss(e) ∧Ag(e, john) ∧ Pat(e, mary) ∧ Loc(e, plaza)∧B(e :: A))

The “A” and “B” in the EOS and above formula are not variables any more.
They are just constants of type “α” and “α → t”, respectively, which have the
effect of freezing the left and right contexts. We can see that the new representa-
tion does not seem different from the previous version. That is, of course, because
although we embed the dynamic potential into the entries, we are still evaluating
single sentence semantics. The power of dynamics will not show up until the case
becomes more complicated. So let us consider the following discourse:

(6) a. John kisses Mary in the plaza.
b. She smiles.

To handle Example (6), we need to provide two more entries:

�she� = λPeab.P (Sel(a))eab
�smile� = λseab.(Smile(e) ∧Ag(e, s) ∧ b(e :: a))

Inspired by [8], the interpretation of she is made by an external function:
Sel. This function is supposed to work over a structured representation of the
discourse: we claim that individual variables are defined in the scope of event
variables. Thus the resolution of this anaphora must be first do by picking out
an event variable, and, through this event, choose the correct individual variable
following the previous.

We also apply a type-raising representation for NP (she), because we need
to pass the selection function Sel for further processing. Similar type-raising
version of John and Mary could also be constructed. After type raising, the
only thing that needs to be changed is the order of argument application, and
the resulting logic term will exactly be the same.

So, getting back to Discourse (6), we can first obtain the representations for
(6-a) and (6-b) independently:

1. �in the plaza�((�kiss��Mary�)�John�)
⇒β λeab.(Kiss(e) ∧Ag(e, john) ∧ Pat(e, mary) ∧ Loc(e, plaza)∧ b(e :: a))

2. �she��smile�
⇒β λeab.(Smile(e) ∧Ag(e, Sel(a)) ∧ b(e :: a))

Now the problem is how to combine the two interpretations to yield the discourse
semantics. [8] uses Formula 1 to merge sentence interpretations, which takes the
previous discourse and the current sentence as input, returns a new piece of
updated discourse. Same as DRT, there is no rhetorical relation involved in
[8]. However, this paper goes one step further, aiming to encode the discourse
structure and event accessibility relations between different sentences.

Hence, we make another assumption here: discourse and sentence are distinct
semantic entities, they have different types and meaning evaluations. Every dis-
course contains certain rhetoric relations, while single sentences should be able

Event in Compositional Dynamic Semantics 229

to be interpreted without those relations. That is because we consider the dis-
course structure as a production from sentence composition. Unlike in Formula
1, where discourse D and sentence S have exactly the same semantic properties,
we assign them different types. Drawing from the above assumption, the event
variables should be instantiated into existential quantifier in discourse only, while
they are still of λ-forms in sentences. By way of illustration, the followings are
the most general representations for sentence and discourse:

�S� = λeab.(Pred(e)∧ ... ∧ ba)
�D� = λab.∃e1e2...(Pred1(e1)∧ Pred2(e2)∧ ... ∧Rel1(ei, ej)∧Rel2(em, en)∧ ... ∧ ba′)9

Please note that the interpretation for discourse does not only contain “a′”,
where accessibility relations are located; but also various rhetoric relations, rep-
resented by Rel1, Rel2 and so on. Those rhetoric relations, as we discussed
in Section 2.3, can be classified into either subordinating or coordinating. They
have completely different effects in shaping the discourse structure graphs, which
determines the accessibility relations. Here we do not care about how many dif-
ferent discourse relations there are (such as Narration, Background, Elaboration,
etc.), we just assume if there is a relation, it must belong to one of the two classes.
And those rhetoric relations are added only during the meaning merging process.
As a consequence, we propose two sets of composition functions, according to
different types of DRs.

Subordinating Composition Functions. Based on the right frontier con-
straint, for those discourses and sentences which are connected by subordinating
DRs, all accessible nodes in the previous discourse remain the same, meanwhile
the new sentence will be inserted as accessible in the updated discourse. For
example in Figure 3, when Event6 is added into the discourse by a subordinat-
ing relation with Event5, the current accessible nodes include Event1, Event3,
Event5 and Event6. Hence, we introduce the composition functions for subor-
dinating DRs as follows:

Event1
�

Sub1
Event2

�

Event3
�

Coor1
Sub2

Event4
�

Event5
�

Coor2

�Event6

Sub3

Fig. 3. Graph Structure with Subordinating Relations

9 The left context “a′” in the representation is a complicated structure containing the
event accessibility relation. There will be further examples showing how to create
“a′” from “a” and other event variables.

230 S. Qian and M. Amblard

�SubBas� = λDSab.Da(λa′.∃e.(Sea′b)) (2)

�SubAdv� = λDSab.Da(λa′.∃e.((Sea′b) ∧Rel(Sel(a′), e)) (3)

We suppose that every sentence needs to combine with a previous discourse to
form a new discourse, also including the first sentence in the context. However,
the first sentence could only be combined with an empty discourse:

�Empty� = λab.ba

which in fact contains no context information at all, it is created just for com-
putational reason. That’s why we design two composition functions 2 and 3,
namely the SubBas and the SubAdv, to respectively handle the first sentence
case and all other situations. Now we will construct the interpretation of (6),
as an illustration for our composition functions. Suppose (6-a) and (6-b) hold a
subordinating relation between each other10, then in order to obtain the whole
representation for (6), we first need to combine (6-a) with the empty discourse
by SubBas, then combine the result with (6-b) by SubAdv.

1. �SubBas��Empty��(6-a)�11

⇒β λa1b1.(λa3b3.b3a3)a1(λa2.∃e.(λe′a4b4.(Kiss(e′) ∧ ... ∧ b4(e′ :: a4))ea2b1))
⇒β λa1b1.(λb3.b3a1)(λa2.∃e.(Kiss(e) ∧ ... ∧ b1(e :: a2)))
⇒β λa1b1.∃e.(Kiss(e) ∧ ... ∧ b1(e :: a1))

This step does two things. First, it instantiates the event variable from (6-a) into
an existential quantifier. In addition, it inserts the new event argument into the
accessible list of the left context. Because the empty discourse does not contain
any variable in its left context, the list construction is fairly simple, we just need
a naive “push-in” operation.

2. �SubAdv�(�SubBas��Empty��(6-a)�)�(6-b)�
⇒β λa1b1.(λa3b3.∃e1.(Kiss(e1) ∧ ... ∧ b3(e1 :: a3)))a1(λa2.∃e.(((λe2a4b4.
(Smile(e2) ∧ ... ∧ b4(e2 :: a4)))ea2b1) ∧Rel(Sel(a2), e)))
⇒β λa1b1.(λb3.∃e1.(Kiss(e1)∧...∧b3(e1 :: a1)))(λa2.∃e.(Smile(e)∧...∧b1(e ::
a2) ∧Rel(Sel(a2), e)))
⇒β λa1b1.∃e1.(Kiss(e1)∧...∧∃e.(Smile(e)∧...∧b1(e :: e1 :: a1)∧Rel(Sel(e1 ::
a1), e)))
= λa1b1.∃e1e2.(Kiss(e1)∧...∧Smile(e2)∧...∧b1(e2 :: e1 :: a1)∧Rel(Sel(e1 ::
a1), e2))

Suppose the selection function Sel is able to pick the correct event variable out
of the accessible list, then our desired DRs and accessibility relation would be
successfully encoded in the final logic formula. There are two more remarks for
10 Here is just an assumption, our system does not account how to determine the DRs,

we only focus on encoding those relations.
11 We omit some internal thematic structures for (6-a) just for a clear view of the logic

terms. The same omission will also be carried out for (6-b).

Event in Compositional Dynamic Semantics 231

the subordinating composition functions: 1. no new event variable is created
during the meaning composition, but all event variables with the λ-operator
will be instantiated as existential quantifiers; 2. the composing process will not
change the accessibility condition in the previous discourse, only a new accessible
node is added.

Coordinating Composition Functions. Again, let’s first analyze the effect
of coordinating DRs on accessibility structure. When a new node is added to an
existing discourse with coordinating relation, a horizontal edge is built, as shown
in Figure 4, Event6 and Event5 for example. At the same time, an abstract

Event1
�

Sub1
Event2

�

Event3
�

Coor1
Sub2

Event4
�

Event5
�

Coor2

�

Event6

Coor3

Event5&6
�

Fig. 4. Graph Structure with Coordinating Relations

variable node - Event5&6, is created. This is a distinct property compared to
subordinating DRs. We need the new abstract node because in many cases the
anaphora it could only be resolved with reference to a set of sentences connected
with coordinating relations, as in:

(7) Mary stumbled her ankle. She twisted it. John did so too.

To see more examples, see [14].
Based on the above analysis, we propose the following composition functions:

�CoorBas� = λDSab.Da(λa′.∃e.(Sea′b)) (4)

�CoorAdv� = λDSab.∃ec.Da(λa′.∃e.(Se(ec :: (Del(a′)))b) ∧ Rel(Sel(a′), e, ec)) (5)

Notice that Formula 4 is identical to 2 because both basic composition func-
tions are designed only to handle the first sentence case, in which we do not
really need to distinguish from different DRs (there is even no DR at all). In
contrast to Formula 3, the advanced subordinating function, there are three
main differences in Formula 5. First, apart from instantiating the event variable
of current sentence, another abstract event variable “ec” is created. It is directly
inserted into the accessible list because the new abstract node will always be
at the right frontier in the updated discourse structure. Moreover, we introduce
a new function Del, which takes the current accessible list as argument, and
deletes those nodes which will no longer be accessible in the new discourse. It
works in a similar way as the Sel function. Finally, the Rel function takes three

232 S. Qian and M. Amblard

arguments, including the abstract variable. By doing this we can keep track of
the relation between abstract variables and their component nodes.

Now let us use Discourse (6) again as an illustration. This time we assume
the rhetoric relation between (6-a) and (6-b) is of a coordinating kind. Thus we
will build its semantic representation with 4 and 5.

1. �CoorBas��Empty��(6-a)� = �SubBas��Empty��(6-a)�
⇒β λa1b1.∃e.(Kiss(e) ∧ ... ∧ b1(e :: a1))

2. �CoorAdv�(�CoorBas��Empty��(6-a)�)�(6-b)�
⇒β λSa1b1.∃ec.(λa3b3.∃e1.(Kiss(e1) ∧ ... ∧ b3(e1 :: a3)))a1(λa2.∃e.((λe2a4b4.

(Smile(e2) ∧ ... ∧ b4(e2 :: a4)))e(ec :: (Del(a2)))b1) ∧Rel(Sel(a2), e, ec))
⇒β λSa1b1.∃ec.(λb3.∃e1.(Kiss(e1)∧ ...∧b3(e1 :: a1)))(λa2.∃e.(Smile(e)∧ ...∧
b1(e :: ec :: (Del(a2)))) ∧Rel(Sel(a2), e, ec))
⇒β λSa1b1.∃ece1e2.(Kiss(e1) ∧ ... ∧ Smile(e2) ∧ ... ∧ b1(e2 :: ec :: (Del(e1 ::
a1))) ∧Rel(Sel(e1 :: a1), e2, ec))

As we can see from the final formula, the new event variable “e2” and the
abstract variable “ec” are added into the accessible list. Del will then eliminate
the inaccessible node “e1”, leaving only “e2” and “ec” on the right frontier.

To test the validity of the proposed system, we have implemented all the above
calculus in the Abstract Categorial Grammar [7].

3.3 Comparison with Other Related Works

Recently there are some other semantic frameworks based on discourse struc-
ture, DRT and other dynamic concepts. For example in [2], the authors expressed
SDRT in a non-representational way with dynamic logic. Similar to the formal-
ism presented in our paper, they also use the continuation calculus from [8],
where the concepts of left and right contexts are involved for introducing dy-
namics. However, there are some distinctions between our work and theirs.

First of all, we use an event-style semantics for meaning representation. Con-
sequently, the basic construct of rhetorical relation in our framework is event, in
contrast with the discourse constituent unit (DCU) in [2]. Event-based theory,
as an independent branch of formal semantics, has been studied since a long
time ago. Many lexical properties (mainly for verbs), such as tense and aspect,
causative and inchoative, etc., have already been investigated in detail. By using
event here, we can borrow many off-the-shelf results directly. Also, the DCUs,
which are notated by π in other discourse literatures, are not as concretely de-
fined as events. There are cases where a single DCU contains multiple events.
For instance, “John says he loves Mary. Mary does not believe it.”. Only with
DCU, the resolution for it in the second sentence will cause ambiguity.

In addition, we and [2] make different assumptions over discourse and sen-
tence. The same way as in [8], [2] views the discourse and sentence as identical
semantic construct. However, as explained in Section 3.2, we do distinguish them
as different objects. When encountering a single sentence, we should interpret
it independently, without considering any discourse structure. While discourse

Event in Compositional Dynamic Semantics 233

is not simply a naive composition of component sentences. It should be their
physical merging with various DRs added.

Finally, the DRs originate from different sources in the two works. [2] uses
key words as DR indicator. For example, in discourse “A man walked in, then
he coughed.”, [2] embeds the Narration relation in the interpretation of then.
However, we believe that the DRs only be revealed when sentence and discourse
are combined, they should not emerge in sentence interpretations. So DRs are
presented in the composition functions (Formula 2, 3, 4 and 5) in our work.

4 Conclusion and Future Work

In this paper, we have represented the accessibility relations of natural language
discourse within event semantics. This approach does not depend on any specific
logic, all formulas are in the traditional MG style.

We decide to use event-based structure because it is able to handle sentential
anaphora resolution (e.g., it), adverbial modifiers and other semantic phenom-
ena. Also, applying dynamics to event semantics may largely extend its power,
which was originally developed to treat single sentences. As we know, the acces-
sibility among sentences in discourse depends on various types of DRs. However,
these DRs are usually hard to determine. We assume all DRs be classified into
two types: subordinating and coordinating. Also we obtain the accessibility re-
lation with the right frontier constraint. Based on that, we encode these DRs
and the updating potential for single sentences in a First Order Logic system.

In our approach, we differentiate discourse and sentence as two distinct se-
mantic objects. The DRs are only added during the updating process, which
is realized through the set of composition functions. This choice not only has
computational, but also philosophical evidences.

In this paper, we only focus on representing the DRs and accessibility in
logical forms, but how to determine these DRs, or whether the DRs have a
more complicated effect than the right frontier constraint could be the subjects
of future works. Further more, since we tried to construct the event structure
compositionally, the scoping interaction among the new quantifiers (e.g., ∃e1e2...)
and previous existing ones (e.g., ∃x1x2...) also needs further investigation.

References

1. Asher, N.: Reference to abstract objects in discourse. Springer, Heidelberg (1993)
2. Asher, N., Pogodalla, S.: Sdrt and continuation semantics. Proceedings of LENLS,

Tokyo, Japan VII (2010)
3. Asher, N., Vieu, L.: Subordinating and coordinating discourse relations. Lin-

gua 115(4), 591–610 (2005)

4. Bos, J.: Towards a large-scale formal semantic lexicon for text processing. In: Chiar-
cos, C., Eckart de Castilho, R., Stede, M. (eds.) Proceedings of the Biennal GSCL
Conference From Form to Meaning: Processing Texts Automatically, 2009, pp. 3–14
(2009)

234 S. Qian and M. Amblard

5. Davidson, D.: The logical form of action sentences. In: Rescher, N. (ed.) The Logic
of Decision and Action. University of Pittsburgh Press, Pittsburgh (1967)

6. Groenendijk, J., Stokhof, M.: Dynamic predicate logic. Linguistics and Philoso-
phy 14(1), 39–100 (1991)

7. de Groote, P.: Towards abstract categorial grammars. In: Proceedings of the 39th
Annual Meeting on Association for Computational Linguistics, pp. 252–259. Asso-
ciation for Computational Linguistics (2001)

8. de Groote, P.: Towards a montagovian account of dynamics. In: Proceedings of
Semantics and Linguistic Theory XVI (2006)

9. Gruber, J.S.: Studies in lexical relations. Ph.D. thesis, Massachusetts Institute of
Technology. Dept. of Modern Languages (1965)

10. Heim, I.: File change semantics and the familiarity theory of definiteness. In:
Bäuerle, R., Schwarze, C., von Stechow, A. (eds.) Meaning, Use, and Interpre-
tation of Language, pp. 164–189. Walter de Gruyter, Berlin (1983)

11. Hobbs, J.R.: On the coherence and structure of discourse. CSLI, Center for the
Study of Language and Information, US (1985)

12. Kamp, H.: A theory of truth and semantic representation. In: Groenendijk, J.,
Janssen, T., Stokhof, M. (eds.) Formal Methods in the Study of Language. Mathe-
matical Centre Tracts, vol. 135, pp. 277–322. Mathematisch Centrum, Amsterdam
(1981)

13. Lascarides, A., Asher, N.: Temporal interpretation, discourse relations and com-
monsense entailment. Linguistics and Philosophy 16(5), 437–493 (1993)

14. Lascarides, A., Asher, N.: Segmented discourse representation theory: Dynamic
semantics with discourse structure. Computing Meaning, 87–124 (2007)

15. Mann, W., Thompson, S.: Rhetorical structure theory: Toward a functional theory
of text organization. Text-Interdisciplinary Journal for the Study of Discourse 8(3),
243–281 (1988)

16. Montague, R.: English as A Formal Language. Linguaggi nella societae nella tec-
nica, 189–224 (1970)

17. Montague, R.: Universal Grammar. Theoria 36(3), 373–398 (1970)
18. Montague, R.: The proper treatment of quantification in ordinary english. In: Hin-

tikka, J., Moravcsik, J., Suppes, P. (eds.) Approaches to Natural Language. Reidel,
Dordrecht (1973)

19. Parsons, T.: Events in the Semantics of English: A Study in Subatomic Semantics.
MIT Press, Cambridge (1991)

20. Polanyi, L.: A formal model of the structure of discourse. Journal of Pragmat-
ics 12(5-6), 601–638 (1988)

Using Tree Transducers for Grammatical

Inference

Noémie-Fleur Sandillon-Rezer1,2,3 and Richard Moot1,2,3

1 Université de Bordeaux
LaBRI, 351 cours de la libération

33400 Talence, France
2 CNRS, esplanade des Arts et Métiers

33400 Talence, France
3 SIGNES (INRIA Bordeaux SW), 351 cours de la libération

33400 Talence, France
{nfsr,moot}@labri.fr

http://www.labri.fr/perso/nfsr,

http://www.labri.fr/perso/moot

Abstract. We present a novel way of extracting a categorial grammar
from annotated data. Using the sentences from the Paris VII annotated
treebank [2] as our starting point, we use a tree transducer to convert the
annotated trees from the corpus into categorial grammar derivations.

We describe both the formal aspects and the implementation of the
tree transducer, which is a conservative extension of standard tree trans-
ducers allowing a compact specification of the transductions rules rel-
evant for our purposes, and we discuss the specific set of transduction
rules we use to convert the corpus into AB grammar derivation trees.

Evaluating the resulting tree transducer on the entire corpus, we find
that it produces a treebank finds lexical entries for 90, 0% of the corpus,
though it produces complete derivations for only 75% of all sentence in
the corpus.

1 Introduction

The main goal of our current work is to extract a french categorial grammar
from the annotated corpus of Paris VII.

In 1958, Lambek [16] introduced an algorithm to distinguish sentences from
non-sentences. The basic principle of categorial grammar is that the lexicon
assign a finite set of types1 to words. Types are recursively defined from a set of
basic types; in the current article the basic types we consider are s for sentence
(eg. “Jean aime Marie”), np for noun phrase, (eg. “Jean” or “l’étudiant”), n
for common noun (eg. “étudiant” or “livre”), pp for prepositional phrase (eg.
“à Jean”) and cs for complementized sentence (eg. “que Jean aime Marie”).
For the recursive case, if A and B are types, then both A/B (which will give
an expression of type A when combined with an expression of type B to its
1 In the text, we will use the words “formula”, “type” and “category” interchangeably.

S. Pogodalla and J.-P. Prost (Eds.): LACL 2011, LNAI 6736, pp. 235–250, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

236 N.-F Sandillon-Rezer and R. Moot

right) and B\A (which will give an expression of type A when combined with
an expression of type B to its left) are types as well. The derivation rules, which
model the intuitions behind the types just given, are shown in Figure 1. The
fragment of the Lambek calculus containing only these rules is often called AB.

A/B B

A
[/E]

B B\A
A

[\E]

Fig. 1. The elimination rules for AB

As a simple example, consider a lexicon of Figure 2. which assigns the name
“CSF” the category np and which assigns the past participle “créé” (created)
the complex type (np\s)/np; this complex type indicates that “créé” combines
first with a noun phrase to its right (its object) to form an np\s, which serves
as argument to the auxiliary verb “a” to form an np\s. We can use this lexicon
to derive that “CSF a crée un journal” is a sentence, as shown in Figure 2. Each
leaf in the derivation tree corresponds to a lexical entry (as indicated by a unary
Lex rule), each local subtree corresponds to one of the two derivation rules of
Figure 1 and the root of the tree is labeled s for sentence.

CSF
np

[Lex]

a
(np\s)/(np\s)

[Lex]
(

créé
np\s)/np

[Lex]

un
np/n

[Lex]
journal

n
[Lex]

np [/E]

np\s
[/E]

np\s
[/E]

s [\E]

Fig. 2. Derivation of “CSF a créé un journal”

The goal of this paper is to obtain derivation trees, just like the one shown in
Figure 2 (though generally quite a bit more complicated!) for the sentences of
the Paris VII corpus, which are linguistically annotated, but in a rather different
format.

The rest of this paper is structured as follows. In the next section, we will
talk about previous work on learning categorial grammars, then we will present
the corpus we use as the basis for our grammar learning. In Section 4 we will
introduce the generalized tree transducer which will be the formal tool for trans-
forming the trees from the corpus into derivation trees for categorial grammar;
Section 5 will give some details about its implementation and comment on the
effectiveness of the current implementation for its designated task. The last sec-
tion will conclude and discuss some of the possible extensions of the current
work.

2 Learning Categorial Grammars

Work on learning categorial grammars can be more or less divided into two cate-
gories: a theoretical branch, which is placed within the framework of

Using Tree Transducers for Grammatical Inference 237

identification in the limit introduced by Gold [10] and an applied branch, which
is directed towards providing algorithms which produce categorial grammars on
the basis of pre-existing annotated data.

The theoretical work answers important questions about the properties a class
of grammars must have if we want a grammar learner to converge on the correct
grammar. However, for practical applications, it has the following drawbacks:

– converting an input tree to a structure as required by the grammar induction
algorithms of Buszkowski and Penn [4] and of Kanazawa [13] is not that much
more difficult than converting directly to a proof tree2. Compare Figure 3,
which represents the required input structure for the learning algorithms,
with Figure 2: the only difference is that the arguments (the B formulas in
each rule) are variables in Figure 3 and, as we will see in Section 4.2, the
linguistic annotation generally gives enough clues to determine the correct
instantiation of these variables.

– when we allow the lexicon to assign more than one formula to each word,
the complexity of learning becomes NP-hard [8].

CSF
x1

[Lex]

a
(x1\s)/x2

[Lex]

créé
x2/x3

[Lex]

un
x3/x4

[Lex]
journal

x4
[Lex]

x3
[/E]

x2
[/E]

x1\s
[/E]

s [\E]

Fig. 3. Input trees for the learning algorithms of [4] and [13]

The more applied research, such as [11], [12], [19] and [20], uses special-purpose
algorithms which apply only to the corpus in question, with little hope of reuse
of tools for other corpora. An additional drawback of the use of special-purpose
algorithms is that it is hard to prove the algorithm satisfies specific properties
(besides inspection of the output).

Given the differences in annotation formats between corpora and the gram-
matical differences between languages, adapting a tool from one corpus to an-
other will always be a labour-intensive enterprise. However, it is our hope that
the use of the right kind of formal tool can allow one implementation, though
with different set of parameters and rules files, to serve as the basis for corpus
extraction over different types of corpora.

We believe that tree transducers can be such a tool. In Section 4, we will
present a generalization of the top-down tree transducer, the G-transducer, and
discuss some of its specific properties which make it an attractive tool for trans-
forming linguistically annotated trees into AB derivations.

2 Kanazawa discusses algorithms for categorial grammars from strings as well [13].
However, their high computational complexity excludes them from practical use.

238 N.-F Sandillon-Rezer and R. Moot

3 Presentation of the Paris VII Corpus

As the starting point for our grammatical inference, we have used the Paris VII
Corpus of around 12.000 annotated French sentences, which contains a selection
of articles from the newspaper Le Monde from the period between December
1989 and January 1994.

The corpus has been annotated by the Paris VII Formal Linguistics labo-
ratory “Laboratoire de Linguistique Formelle” [2], using planar trees3 for the
annotation. Figure 4 shows part of an annotation tree from the corpus.

SENT

NP-SUJ

NPP

CSF

VN

V

a

VPP

crée

NP-OBJ

DET

un

NC

journal

...

PP-MOD

...

Fig. 4. Part of an annotation tree from the Paris VII treebank

The root is labeled SENT, for “sentence”, and the leaves represent its words.
Internal nodes are annotated with the following information, depending on
whether or not they are preterminal nodes (ie. the parents of the leaves) [1]:

POS tags: the part-of-speech tags (POS) information is given for the preter-
minal nodes only, indicating the POS tag of its daughter. Examples of the
POS tags used in the Paris VII corpus are: NC for the common nouns (“jour-
nal” in Figure 4), V for inflected verbs (“a” in the same figure), DET for
the determiner (“un” in the figure).

Phrasal types: the other internal nodes are annotated with the syntactic cat-
egory of the node. Examples are noun phrase (NP, “CSF” and “un journal”
in Figure 4), verbal nucleus (VN, which is the verb cluster together with its
clitics and adverbs occurring between the verbs of the cluster, in Figure 4
“a crée” is a verb cluster), adjectival phrase (AP). . . In addition, the edge
connecting the internal node to its parent can be annotated with the role the
node fulfills within its parent category: so an NP inside a sentence (SENT)
can be assigned roles like –SUJ to define the subject, –OBJ for an object,
and -MOD for a sentential modifier. In the text, we will often simplify this
by joining the node and edge label of a daughter node together. Thus, we
will write NP-OBJ for a noun phrase which serves as object to its parent
node (such as “un journal” in the example) and NP-SUJ for the subject
noun phrase (“CSF”).

3 Trees where nodes have a variable number of daughters.

Using Tree Transducers for Grammatical Inference 239

The node and edge labels give us important information about the structure
of the sentence and we will use it to guide the transformation of the annotation
trees into categorial derivations.

The goal of the current paper is to go from a tree like the one shown in
Figure 4 to a tree like the one shown in Figure 2.

4 G-transducer

The main idea of this paper is to use a tree transducer for the automatic conver-
sion of linguistically annotated trees into AB grammar derivations. Tree trans-
ducers have many applications in natural language processing (see [14] for an
overview oriented towards statistical NLP and [7] for an general overview of tree
transducers and their formal properties). However, to the best of our knowledge,
they have not been applied to grammar extraction before. Since a tree trans-
ducer is an automaton translating trees to trees, and both our annotated input
trees and AB derivations are simply trees, tree transducers seem to be a natural
choice for the task at hand.

A transducer is just like an ordinary automaton, except that it writes to an out-
put tape at the same time it reads symbols from its input tape. Where a finite-state
transducer reads and writes strings, a tree transducer reads and writes trees. We
want to apply our transducer to each of the trees in the corpus and obtain as out-
put a derivation tree which is as close as possible to the original annotation. The
output tree is a binary branching tree, where the internal nodes are assigned both
a formula A and one of the labels [/] and [\] and its two daughters are assigned
A/B and B (in the case of [/]) and B and B\A (in the case of [\]), correspond-
ing to the rules [/E] and [\E] from Figure 1. Note that this is the form required
for many of the learning algorithms (see [4, 13] and Figure 3), so our transduc-
ers are compatible with Gold-style learning as well. However, we use additional
rules (explained in 4.2) to assign formulas to the argument nodes B of each rule,
which means that we do not have to deal with formulas containing variables (and
subsequent unification to reduce the lexicon size).

In order to make writing the transduction rules more convenient, we introduce
a slight generalization of the standard top-down tree transducer, which we will
call the G-transducer. Instead of writing many different rules for only marginally
different cases, these rule generalizations of the G-transducer allow us to apply
rules to nodes of arbitrary arity and to have a form of restricted quantification
over node labels. This extension is conservative: it does not augment the expressive
power of the transducer, it only reduces to number of rules we have to write.

4.1 Formal Definition

Definition A generalized transducer is a tuple 〈Q, qi, Qf , X, δ〉 where:

Q is the set of states.
qi is the initial state, qi ∈ Q.
Qf is the set of final states, Qf ⊆ Q.

240 N.-F Sandillon-Rezer and R. Moot

X is the alphabet for reading and writing. X = {A ∪M ∪ T } with A for the
corpus annotation alphabet (SENT, NP, VN, etc.), M for french words, and
T for types (np/n, etc).

δ is the set of transduction rules, of the form
q(f(x1, . . . , xn)) → u[q1(t1), . . . qp(tp))] where for each i ∈ [1, p], either ti ∈
{x1, . . . , xn} or ti = fi(xi,1, . . . xi,m) with xi,j ∈ {x1, . . . , xn}; m ≤ n− 1.
f ∈ A has an arity of n; q, q1, . . . , qn ∈ Q and u ∈ T (r, Xn) (the set of
subtrees with root r ∈ A and with leaves Xn, where each for each xi ∈ Xn,
we have x ∈ A).
In our case, we use a sub-class of these rules:
q(f(x1, . . . , xn))→ u[q1(t1), . . . qp(tp)] where for all i ∈ [1, p],

ti ∈ {x1, . . . xn} or
{

qi = q and
ti = f(xi,1, . . . xi,m)

with (xi,1, . . . xi,m) subsequences of (x1, . . . , xn). We will call these rules
“recursive rules”, since q(f(. . .)) calls q(f(. . .)).

Properties of the transducer. The G-transducer, as we will use it in what follows,
has a number of properties which are shared by other tree transducers:

ε-free: there is no ε−rule in our transducer.
Linear: in the right-hand-side of each rule, each node is unique.
Complete (non-deleting): the nodes which appear in the left-hand-sid of the

rule appear in the right-hand-side as well.
Deterministic: at each state and input, only a single transition applies.
Finite look-ahead: we allow each transduction rule have a complex tree as its

left-hand-side, ie. f and the fi can be complex trees with the indicated yield.
This corresponds to having finite (as opposed to regular) look-ahead.4

Original features. The features which make the G-transducer original, and which,
as we will show in Section 4.2, allow for a compact specification of the transduc-
tion rules, are the following.

Recursivity: A recursive rule applies to a node with a specified label but
with an arbitrary number of daughters nodes. Figure 5 shows an example
where the matched pattern consists of the rightmost daughters only (this
is just for explanatory purposes, the pattern can occur on both sides as
well, as shown in Figure 7). The parent node P has a number of daughters,
daughter nodes 1 to n can be any sequence of nodes but node n + 1 to n + k
match the specified pattern. In other words, the node matches the pattern
of k nodes whatever the number of sister nodes occuring before it. Note that

4 In the terminology used in [14], our transducers are a conservative extension of the
xRLND transducers, where the prefix “x” indicates we allow our rules to have
a complex tree instead of a node as their left hand side, R indicates “Root to
frontier” (ie. top-down) and the remaining letters indicate Linear, Non-deleting and
Deterministic.

Using Tree Transducers for Grammatical Inference 241

P : x

X1 . . . Xn Xn+1 . . . Xn+k →

P : x

P : x

X1 . . . Xn

T : y

Xn+1 . . . Xn+k

Fig. 5. The new P node has less daughters than before the transduction and the
automaton will continue treating it in the same state and with the same output label
as the parent node. This rule will generally be instantiated such that T is binary
branching, and y is x\x.

SENT : s

. . . X →

SENT : s

SENT : s

. . .

X : s\ s

Fig. 6. The same rule will be applied for X ∈ {ADV, PP − MOD, AdP − MOD, ...}

Figure 6 and Figure 7 are also instances of this schema with n = 1 and n = 2
respectively. As shown in Figure 5, the transducer continues recursively to
a new node P with n daughter nodes and can “restructure” nodes n + 1 to
n + k into a subtree T with output label y, with top-down descent to each
of its daughter nodes.

Though these recursive rules generalize the standard definition of trans-
duction rule in allowing rules to match nodes of arbitrary arity, we can, when
given the maximum node arity of the input tree, convert a recursive rule into
a number of “ordinary” transduction rules.

Parametrization: We allow rules with a restricted quantification over node
labels. An example is shown in Figure 6. Here, the variable X can range over
three node labels. Note that is equivalent to spelling out each of the different
instantiations of X into its separate rule, but an important convenience when
writing conversion rules.

Priority System: To avoid non-determinism, the rules are always applied in
the same order (see Figure 7). The only disadvantage of this method is that it

SENT : s

ADV . . . ADV →

SENT : s

ADV : s/s SENT : s

. . . ADV

Fig. 7. When more than one rule can be applied, we always follow a predefined order

242 N.-F Sandillon-Rezer and R. Moot

always gives wide scope to the same nodes. Though this is unfortunate, since
it would bias a parser trained on the resulting trees, it makes no difference
in the types assigned in the lexicon. In addition, it seems difficult to extend
the transducer in such a way as to correctly and automatically deduce scope
information which is not annotated in the corpus.

4.2 Transduction Rules

Even though the G-transducer allows us to specify rule schemata compactly, we
still need to write a large number of transduction rules in order to get a rea-
sonable coverage of the treebank. For the moment, we have focused on the most
frequent combinations of mother node and daughters. The current implementa-
tion uses a total of 1297 transduction rules. In this section, we will schematically
describe the ideas and design principles behind these transduction rules. We will
return to the effectiveness of the transducer in Section 5.3.

For the transduction rules, we have tried to stay as close as possible to the
“standard” way of analysing sentences and complex expressions in categorial
grammars (see [16,22,18,24] for syntactic foundations, but also other extraction
methods such as [11, 12, 19, 20]). For example:

– Common nouns (NC in the corpus) will generally be assigned the type n.
– The noun phrases (NP) will generally be assigned the type np.
– The adjectives will generally have either type n/n or type n\n (French ad-

jectives can occur both before and after the noun).
– The past participles and infinitives have the np\s type.
– etc.

In addition, the treatment of the main syntactic categories are treated as
follows.

The NP nodes: The NP node itself can fulfil the role of subjet (SUJ), objet
(OBJ), attribute of the subjet (ATS) or modifier (MOD5). NP nodes will
be assigned np when appearing as NP, NP-SUJ, NP-ATS, NP-OBJ and x/x
or x\x when appearing as NP-MOD.
The daughters of the NP node are treated as follows.
– DET will always be functor, and its type will be np/n.
– NC, the first NC node will generally be assigned the type n, and any

later NC node the type n\n.
– The adjectives (ADJ and AP nodes) are linked to the nearest NC node,

and, whenever possible, with a modifier type. Most of time, this type will
be n/n or n\n type (french modifiers can occur either before of after the
common noun).

5 NP-MOD is a noun phrase used adverbially as a modifier; examples would be “cette
année” (this year) and “mardi 31 décembre” (tuesday the 31st of december). Its type
will be x/x or x\x, according to the type x of the sub-tree it modifies: that means
s/s for a sentence-initial “Cette année,” but ((np\s)/np)\((np\s)/np) for a modifier
occurring between a transitive verb and its object, and so on.

Using Tree Transducers for Grammatical Inference 243

– Like the adjectives, the modifiers (*-MOD) will be linked to the nearest
subtree containing an NC node, and will be assigned one of the types
n/n, n\n, np/np or np\np.

The VN nodes: contain the conjugated verb, one or more clitics6, adverbs
and any other verbs in the verb cluser.

– Adverbs and modifiers are always modifiers, and have x/x or x\x as
type.

– The VPP, VINF, VPinf and VPpart7 will have the type np\s. This
choice reflects the principle that these arguments contain an implicit
subject8.

– Subject clitics are always np arguments, modifier clitics are always modi-
fiers, object clitics are arguments when they occur to the right of the verb
and functors of type schema X/(X/np) when they occur to its left, where
X is the type of the verb without the clitic. In it simplest incarnation,
this will be X = np\s and the clitic will have type (np\s)/((np\s)/np).
In other words, the clitic selects a transitive verb to its right in order to
form an intransitive verb. Clitics are a difficult linguistic problem, and
this choice follows the reasoning of [15] and [21] as close as is possible in
an AB grammar.

The SENT nodes: The SENT node is the root node of each tree in the corpus.
The generally principle is to move the different modifiers outside of the
sentence domain, as shown in Figure 6, then reduce the verbal group and its
arguments in one transduction rule.

– With the exception of the Sint-MOD node, sentence-initial and sentence-
final adverbs and sentence modifiers will always have s/s or s\s type and
will act as a modifier (see Figure 6).

– Subjects will have the type np.
– Objects, no matter what are their labels, will always be an argument of

the verb.That means a NP-OBJ node will have the np type, a Ssub-OBJ
will be typed cs, a VPpart-OBJ node will be np\s, and so on.

– When a modifier or an adverb occurs next to a VN node, it will modify
the verb (see Figure 8).

– If a VN node has a VPP as its rightmost daughter, and the VN node is
followed by an object, a subject attribute or an object attribute, they will

6 Clitics are words which are strongly linked to the verb; in general they occur directly
before the verb without intervening material. Different clitic forms can fulfil different
grammatical roles: subject, object, or modifiers.

7 VPP : past participle; VINF : infinitive verb; VPinf : verb phrase group with an
infinitive verb as its head; VPpart : verb phrase containing a past participle as its
head.

8 For the more linguistically oriented reader, this choice implements an Extended
Projection Principle [5]

244 N.-F Sandillon-Rezer and R. Moot

SENT : s

NP-SUJ VN MOD + *-ATS →

SENT : s

NP-SUJ : np np\s

(np\s)/a

VN : (np\s)/a MOD+ : ((np\s)/a)\((np\s)/a)

*-ATS : a

Fig. 8. MD ∈ {ADV, PP−MOD, AdP−MOD, ...}. If there is more than one modifier,
we repeat the same scheme. The type of a depends on the ATS node: NP-ATS = np,
AP-ATS = PP-ATS = n\n, Ssub-ATS = cs, VPinf-ATS = np\s. A similar rule applies
if the subject in included in the VN subtree.

SENT : s

NP-SUJ VN

. . . VPP

ATS →

SENT : s

NP-SUJ : np np\s

VN : (np\s)/(np\s)

. . .

np\s

VPP : (np\s)/a ATS : a

Fig. 9. The tree is rebracketed in such a way that the ATS node is an argument of the
VPP node instead of its VN parent. Categories and types for ATS : NP-ATS = np,
AP-ATS = PP-ATS = n\n, Ssub-ATS = cs, VPinf-ATS = np\s.

be arguments of the VPP node instead of the VN node9 (see Figure 9;
note that Figure 4 is an instance of this pattern as well).

The binary nodes: for theses nodes, we have to choose which of the daughters
is the functor, and which is the argument. We apply the first of the following
rules which is appropriate.
– An adverb or a *-MOD node will always be modifier.
– A VN node will always be functor.
– A noun phrase not annotated as NP-MOD will always be argument.
– Inside a prepositional phrase PP , a P or P +D10 will always be functor.

The output of one of our transducer for a given input tree from the corpus
is a binary branching tree, where all nodes are assigned a type and where each
local tree corresponds to an elimination rule. In other words, an AB derivation
tree.
9 The treebank generally annotates arguments to the past participle as arguments to

the entire verb group. As shown in Figure 9 (and Figure 4 as well). The more natural
analysis is for the auxiliary verb to select the past participle only and for the past
participle to select the other arguments.

10 An amalgam of a preposition and a determiner, like “des”, “du”, “au” and “aux”.

Using Tree Transducers for Grammatical Inference 245

5 Implementation

We have implemented the transducer described in Section 4 in a robust system
[23], which reads and writes trees in parenthesized format (as used by tools such
as Tregex [17]) and which implements some additional consistency tests to verify
that the transduction rules conform to the properties specified in Section 4 and
that the output tree is a coherent proof tree (see [23] for the source code).

To complement the transducer, we have added a corpus corrector which repairs
some frequent mistakes in such a way that the output tree can be handled
without problems by the transducer. The two-step approach is summarized in
Figure 10.

corpus corrected corpus derivation trees
corrector transducer

Fig. 10. Schematic representation of the tools

Though the resulting corpus of derivation trees do not constitute a parser, it
contains the information necessary to induce a probabilistic tree automaton (or
a probabilistic context-free grammar), which naturally produces a parse forest
when intersected with an input string.

5.1 Corpus Corrector

Like any large corpus, the Paris VII treebank has a number of mistakes and
inconsistencies. Rather than multiplying the number of transductions in order
to handle these errors, we have decided to implement a separate corpus correction
program, which corrects a number of errors which occur frequently enough to
be a hindrance.

Correction of mistakes: whenever a word can have two functions in a sen-
tence, sometimes the annotation is incorrect. This can happen, for example,
when the past participle of a verb is identical to another verb form. In these
cases, the annotation sometime labels them as an inflected verb form V in-
stead of VPP. As a consequence, the transducer will erroneously apply the
transduction corresponding to an idiomatic form (see Figure 11).

Another annotation mistake is linked to the ending punctuation: in theory,
the PONCT node should always be the daughter of SENT, in practice it is
sometimes more deeply nested. In these cases, we move the punctuation to
the outermost level in order to apply the normal transduction rules (the
ending punctuation has the type s\s).

Corrections of inconsistencies: Given that many people have annotated the
corpus, sometimes the same grammatical construction are annotated differ-
ently from one sentence to another. As shown in Figure 12, coordinations
are a case where the construction shown on the right-hand-side of the figure
corresponds to the type (np\np)/np for the coordination CC (normally, a

246 N.-F Sandillon-Rezer and R. Moot

word like “et” (and) or “ou” (or)). In the corpus, though coordinations of-
ten have the structure shown in Figure 12 on the right, we also frequently
find it annotated as shown on the left (as well as some other variants). The
correction phase converts these structures to the tree shown on the right,
thereby producing a more consistent annotation.

Token conversions needed to apply the transducer: from the implemen-
tation, neither quotes nor colon are read by the program: they are seen as
special characters. They are respectively replaced by \” and –COL–, so the
transducer can treat them.

SENT

. . . VN

V

a

V

eu

. . .

SENT

. . . VN

V

va

ADV

d’ ailleurs

V

bon train

. . .

Fig. 11. Annotation mistake concerning the past participle, easily confused with the
idiomatic form of “aller bon train”

NP

DET NC COORD

CC NP →

NP

NP

DET NC

COORD

CC NP

Fig. 12. In the left tree, it seems that the coordination conjoins an NC node and an
NP node. The more natural analysis is shown on the right: the DET and NC nodes
have a new NP node as parent, making this a standard NP coordination case. This
correction permits to reduce the number of needed rules to treat coordinations.

5.2 Transducer

The implemented transducer takes a forest of parenthesized trees and a rule file
as input, and gives a set of typed binary trees as output.

We have created a language to write the transduction rules. In this language,
the rules are represented in a parenthesized form, as it is shown in Figure 13.
This representation has been chosen to be close to the form of the trees. The
wildcard type ∗ represents the type inherited from the treatment of the parent
node; it will be globally substituted in the output pattern. The wildcard indicates
that, in Figure 13, the NP-MOD can have any type x, depending on previous
transduction rules that have been applied on the whole sentence and that the
DET node, after transduction will have type x/n.

Using Tree Transducers for Grammatical Inference 247

NP-MOD : ∗

DET NC PP →

NP-MOD : ∗

DET : ∗/n n

NC : n PP : n\n

(rule

(NP-MOD:* DET NC PP)

(NP-MOD:* DET:*/n

(:n NC:n PP:n\\n)))

Fig. 13. An example of one of the rules from our rules files, as used by the transducer.
It is shown in its theoretical form (top) and in its parenthesized form (bottom).

When the trees are loaded, they are first verified for syntactic correctness
(for example, we verify that the parentheses are well-bracketed). The rule file is
verified too, and it should satisfy to the following three conditions:

– No information is lost (non-erasing transducer): the nodes included in the
original pattern must appear in the replacement tree.

– Each rule should binarize the output tree: each rule which does not binarize
the pattern it treats is reported. It avoids human mistakes when typing rules
and it ensures that no node will need to be transduced a second time.

– Each type assignment should be coherent in its context: for each binary sub-
tree, the type of the root must be derivable from the types of its daughters,
that is each local subtree corresponds to one of the rules of Figure 1. This
check ensures the transduction rules extract proofs.

Once rules and sentences are loaded, the transduction algorithm is very simple:

– Search for the matching rule.
– When we find it, the tree is transformed.
– Apply the same process to each daughter we need to transform.
– Forward the type if the node has only one daughter.

In addition to a typed binary trees forest, the transducer gives information
about the number of rules applied and used, the untreated sentences and the
configuration for which it has not found any rules.

5.3 Evaluation

Our current transducer generates a lexicon of 24.902 words (90, 0% of the com-
plete corpus, which contains 27.589 words), even if it treats only 75% of the
sentences completely: it uses 1297 rules to analyze 9380 sentences, which rep-
resent a greater coverage than our initial tranducer (372 rules to analyze 550
sentences). Some examples of our lexicon are shown in Figure 14. In addition to
the lexicon, our transducer gives us derivation trees of the corpus of Paris VII
and a second type of lexicon, more generalized, that only lists the different types

248 N.-F Sandillon-Rezer and R. Moot

associated to preterminal nodes. This second lexicon is useful for assigning types
to words which do not have enough occurrence in the training corpus (or which
do not occur at all).

The generated lexicon is highly ambiguous: many frequent words have over
a hundred different formulas assigned to them. For example, “et” (and), which
occurs 3.882 times, has 159 distinct formulas in the lexicon and “lui” (him)
occurs 181 times but has 45 distinct formulas in the lexicon.

The 25% of sentences we don’t analyze contain structures which are complex
and/or very rare: for the moment, we have focused on creating transduction
rules which can be applied to multiple trees.

1079:au - 178:pp_a/n,147:(n\n)/n, 141:(s\s)/n, 92:(s/s)/n,

84:pp/n, 83:(n\n)/n, 33:((np\s)\(np\s))/n, ...

1993:est- 380:(np\s)/np, 364:(np\s)/(n\n), 223:(np\s)/(np\s),

161:(np\s)/pp, ...

8374:la- 7996:np/n, 94:(n\n)/n, 57:(s\s)/n, 43:(s/s)/n, ...

Fig. 14. Extract of the lexicon: the preposition-determiner “au” (to the), used 1079
times in the corpus, occurs 178 times as argument, 147 times as noun modifier, 141
times as sentence-final modifier and 92 times as sentence-initial modifier. The verb
“est” (is), used 1993 times in the corpus, and its most frequent types in the analysis.
As can be seen from the type assignments, it occurs most frequently as a transitive
verb (380 occurrences), a copula verb (364 occurrences) and an auxiliary verb (223
occurrences). The determiner “la” (the) is used 8374 times in the corpus. The most
frequent use is np/n, the usual type for a node DET (determiner) in a nominal phrase.
The two next types are used in a modifier, the first one for a noun modifier and the
second one for a sentence modifier, like“La semaine dernière . . . ” (Last week . . .).

6 Conclusion and Future Work

We have introduced a generalization of the top-down tree transducer and shown
how it can be used as a device for automated grammar extraction. We have
described the transducer formally and talked about the way it is implemented.
In addition, we have shown how the transduction language can be used to convert
a large part of the Paris VII treebank into categorial derivations.

This work opens up several possibilities for future research. The most obvious
is the addition of further transduction rules, with the goal of increasing the
coverage towards the entire corpus and the comparison of our results with the
semi-automatically extracted types which have been obtained in [20]; comparing
the types obtained using both methods would be a useful way of validating both
approaches.

Another possibility for future research is to use our forest of categorial deriva-
tions as input to the algorithm described by Marion and Besombes [3] with an
added stochastic component (which would assign weights to each transition base
roughly on how often this transition has been used in the corpus). This corre-
sponds to using the forest we obtain as output of the transducer as a way of

Using Tree Transducers for Grammatical Inference 249

estimating the weights of a probabilistic parser, in much the same way as has
been done for CCG [6].

In addition, we want to make the types more detailed, distinguishing for
example between verbs which take an infinitival group as an argument and those
which take a past participle as an argument.

A final interesting line of research to follow would be to extend the current
work on tree-to-tree transducers to tree-to-graph transducers [9]. This would
allow us to move from the simple AB grammars towards the different types of
Lambek grammars and their modern incarnations.

Our work is available at [23], under the GNU General Public License.

References

1. Abeillé, A., Clément, L.: Annotation morpho-syntaxique (2003),
http://llf.linguist.jussieu.fr

2. Abeillé, A., Clément, L., Toussenel, F.: Building a treebank for french. Treebanks.
Kluwer, Dordrecht (2003)

3. Besombes, J., Marion, J.: Learning tree languages from positive examples and
membership queries. In: Ben-David, S., Case, J., Maruoka, A. (eds.) ALT 2004.
LNCS (LNAI), vol. 3244, pp. 440–453. Springer, Heidelberg (2004)

4. BuszKowski, W., Penn, G.: Categorial grammars determined from linguistic data
by unification. Studia Logica 49(4), 431–454 (1990),
http://dx.doi.org/10.1007/BF00370157

5. Chomsky, N.: Lectures on government and binding (1981)
6. Clark, S., Curran, J.: Wide-coverage efficient statistical parsing with ccg and log-

linear. Models, Computational Linguistics 33 (2007)
7. Comon, H., Dauchet, M., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.:

Tree automata techniques and applications (1997),
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?doi=10.1.1.125.6165

8. Costa-Florencio, C.: Consistent identification in the limit of any of the classes k-
valued is np-hard. In: de Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001.
LNCS (LNAI), vol. 2099, p. 125. Springer, Heidelberg (2001)

9. Engelfriet, J., Vogler, H.: The translation power of top-down tree-to-graph trans-
ducers. Journal of Computer and System Sciences 49(2) (1993)

10. Gold, E.M.: Language identification in the limit. Information and Control 10(5)
(1967)

11. Hockenmaier, J.: Data and models for statistical parsing with combinatory cate-
gorial grammar (2003)

12. Hockenmaier, J.: Creating a ccgbank and a wide-coverage ccg lexicon for german.
In: Proceedings of COLING/ACL, Sydney (2006)

13. Kanazawa, M.: Learnable Classes of Categorial Grammars. Center for the
Study of Language and Information, Stanford University, Ventura Hall, 220
Panama Street, Stanford, CA 94305-4115 (1998); phone: 650-723-3084; e-mail:
pubs@csli.stanford.edu; World Wide Web:
http://csli-www.stanford.edu/publications/

14. Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural
language processing. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp.
1–24. Springer, Heidelberg (2005)

http://llf.linguist.jussieu.fr
http://dx.doi.org/10.1007/BF00370157
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?doi=10.1.1.125.6165

250 N.-F Sandillon-Rezer and R. Moot

15. Kraak, E.: A deductive account of french object clitics. In: SYntax and Semantics,
pp. 271–312 (1998)

16. Lambek, J.: The mathematics of sentence structure. The American Mathematical
Monthly 65(3), 154–170 (1958), http://www.jstor.org/stable/2310058, article-
type: primary article / Full publication date: March 1958, Mathematical Associa-
tion of America

17. Levy, R., Andrew, G.: Tregex and tsurgeon: tools for querying and manipulating
tree data structures (2006), http://nlp.stanford.edu/software/tregex.shtml

18. Moortgat, M.: Categorial type logics. In: Handbook of Logic and Language, pp.
93–177 (1997),
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.5803

19. Moot, R.: Automated extraction of type-logical supertags from the spoken dutch
corpus. In: Complexity of Lexical Descriptions and its Relevance to Natural Lan-
guage Processing: A Supertagging Approach (2010)

20. Moot, R.: Semi-automated extraction of a wide-coverage type-logical grammar for
french. In: Proceedings TALN 2010, Monreal (2010)

21. Moot, R., Retoré, C.: Les indices pronominaux du français dans les grammaires
catégorielles. Lingvisticae Investigationes 29(1), 137–146 (2006)

22. Morrill, G.V.: Type Logical Grammar: Categorial Logic of Signs. Springer, Heidel-
berg (1994)

23. Sandillon-Rezer, N. (2011), http://www.labri.fr/perso/nfsr/
24. Steedman, M.: The syntactic process (200)

http://www.jstor.org/stable/2310058
http://nlp.stanford.edu/software/tregex.shtml
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.5803
http://www.labri.fr/perso/nfsr/

Distributional Learning of Abstract Categorial

Grammars

Ryo Yoshinaka1,� and Makoto Kanazawa2

1 ERATO MINATO Discrete Structure Manipulation System Project,
Japan Science and Technology Agency
ryoshinaka@erato.ist.hokudai.ac.jp

2 National Institute of Informatics, Japan
kanazawa@nii.ac.jp

Abstract. Recent studies on grammatical inference have demonstrated
the benefits of the learning strategy called “distributional learning” for
context-free and multiple context-free languages. This paper gives a com-
prehensive view of distributional learning of “context-free” formalisms
(roughly in the sense of Courcelle 1987) in terms of abstract categorial
grammars, in which existing “context-free” formalisms can be encoded.

1 Introduction

Recent studies on grammatical inference have demonstrated how powerful “dis-
tributional learning” is for learning context-free languages and context-sensitive
languages. Distributional learning algorithms exploit information on the contexts
in which strings may occur to form a grammatical sentence. Classes of languages
that admit distributional learning algorithms have some characterization on the
distribution of strings in contexts. For example, Clark and Eyraud [1] show
that substitutable context-free languages are efficiently learnable from positive
data, where a language L is said to be substitutable if two strings are congruent
whenever they share a context in which they may occur in L. In other words, a
language L is substitutable if it holds that

u1w1v1, u1w2v1, u2w1v2 ∈ L =⇒ u2w2v2 ∈ L

for any substrings w1,w2 and contexts 〈u1, v1〉, 〈u2, v2〉. In multiple context-
free grammars (mcfgs), a nonterminal determines a set of m-tuples of strings
for some natural number m, hence the corresponding contexts will be (m +
1)-tuples of strings. Accordingly distributional learning algorithms for mcfgs
model and exploit the relation among tuples of strings [2,3,4]. Clark [5] discusses
distributional learning of different formalisms with different learning strategies
from a comprehensive viewpoint. His discussion covers a wide range of string
languages, yet one can look at learning of tree languages from a similar vantage
point. For example, a tree can be decomposed into a connected subgraph and
� The author is concurrently working in Hokkaido University.

S. Pogodalla and J.-P. Prost (Eds.): LACL 2011, LNAI 6736, pp. 251–266, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

252 R. Yoshinaka and M. Kanazawa

the rest of the tree, in which the subgraph can be plugged. This way we exploit
the distribution of a specific kind of subgraph in trees.

Abstract categorial grammars [6], acgs for short, can be seen as a general
framework in which many existing grammar formalisms can be naturally en-
coded. De Groote and Pogodalla [7, 8] have discussed how acgs encode cfgs,
linear context-free rewriting systems (which are equivalent to mcfgs), tree ad-
joining grammars and linear context-free tree grammars, which are generically
called context-free formalisms in the literature [9]. This paper aims to give a com-
prehensive view of distributional learning of context-free formalisms in terms of
acgs, regardless of the kind of language they generate: whether string languages,
tree languages, or something else.

In Section 2, we review the simply typed lambda calculus and present a key
lemma that enables a straightforward generalization of existing distributional
learning algorithms. Acgs are defined in Section 3, where we briefly review de
Groote and Pogodalla’s encoding of existing formalisms in the acg framework.
Section 4 explains how to adapt the ideas of distributional learning to acgs, and
some concrete examples of learning algorithms are presented in Section 5. We
conclude the paper with Section 6.

2 Simply Typed Lambda Calculus

Let A be a non-empty set of atomic types. The set T (A) of types built on A is
defined as the smallest superset of A such that

– if α, β ∈ T (A), then (α→ β) ∈ T (A).

As usual, we suppress parentheses of types assuming right associativity, e.g.,
α → β → γ → δ means (α → (β → (γ → δ))). Moreover, we write α3 → δ for
α→ α→ α→ δ. Let At(α) denote the set of atomic types that occur in α. The
set of positions of positive (negative) occurrences of atomic type p is defined to
be a finite language over {0, 1}, as follows:

occ+
p (p) = {ε},

occ+
p (q) = ∅ for all atomic q �= p,

occ+
p (α→ β) = 1 occ−p (α) ∪ 0 occ+

p (β),

occ−p (q) = ∅ for all atomic q,

occ−p (α→ β) = 1 occ+
p (α) ∪ 0 occ−p (β) .

Let

occ+(α) =
⋃
p∈A

occ+
p (α), occ−(α) =

⋃
p∈A

occ−p (α),

occ(α) = occ+(α) ∪ occ−(α) .

The size of type α, denoted by |α|, is the number of occurrences of atomic types
in α.

Distributional Learning of Abstract Categorial Grammars 253

For two sets A0 and A1 of atomic types, a type substitution η is a mapping from
A0 to T (A1), which is homomorphically extended as η(α→β) = η(α)→η(β). We
often use the suffix notation αη instead of η(α). A type substitution η is called
a type relabeling if pη is atomic for each atomic type p. Two types α1 and α2 are
said to be unifiable if there is a type substitution η such that α1η = α2η. In such
a case, η is called a unifier of α1 and α2. A most general unifier ρ is a unifier
such that for any unifier η, there is a type substitution σ such that η = σ ◦ ρ. If
α1 and α2 are unifiable, mgu(α1, α2) denotes a most general unifier of α1 and α2.
We assume that if ρ = mgu(α1, α2), we have pρ = p for all p �∈ At(α1)∪At(α2).

Let X be a countably infinite set of variables. The set of λ-terms is defined
to be the smallest set that fulfills the following conditions:

– for any x ∈ X , x is a λ-term,
– for any two λ-terms M and N , (MN) is a λ-term,
– for any λ-terms M , (λx.M) is also a λ-term.

We suppress parentheses of λ-terms in such a way that λxyz.MNPQ means
(λx.(λy.(λz.(((MN)P)Q)))), and so on. The notions of subterms, free variables,
β-normal form etc., are defined as usual (see, e.g., [10]). We always identify two
α-equivalent terms. When M β-reduces to N by zero or more steps, we write
M �β N . The set of free variables of a λ-term M is denoted by FV(M).

We call M affine if for every subterm of M of the form NP , FV(N)∩FV(P) =
∅. M is λI if for every subterm of M of the form λx.N , x ∈ FV(N). M is linear
if M is both affine and λI.

A type environment Γ is a finite partial mapping from X to T (A), which
is usually denoted as a list x1 : α1, . . . , xn : αn of pairs of a variable xi and
the assigned type αi. We define λ-terms and typing judgments on them by the
following type assignment system:

Γ, x : α � x : α
(var)

Γ �M : α→ β Γ � N : α

Γ �MN : β
(app)

Γ, x : α �M : β
Γ � λx.M : α→ β

(abs)

If Γ � M : α, then (Γ, α) is a typing of M and M is an inhabitant of (Γ, α).
A pair (Γ, α) is inhabited if it has an inhabitant.

If M has a typing, then there is a typing (Γ, α) such that for every typing
(Γ ′, α′) of M , there is a type substitution σ such that Γσ = Γ ′ � FV(M) and
ασ = α′. Such a typing (Γ, α) is called a principal typing of M . Given a λ-term
M , a principal typing of M can be computed in polynomial time (see [10]).

A deduction of Γ �M :α is η-long if every judgment of the form Δ � N :β→γ
that occurs in it is either the conclusion of an instance of (abs) or the left premise
of an instance of (app). If Γ � M : α has an η-long deduction, M is an η-long
inhabitant of (Γ, α). We also say that M is an η-long inhabitant of α if Γ = ∅.

Lemma 1. Suppose that M is a λI η-long inhabitant of (Γ, α). Let (Γ ′, α′) be
a principal typing of M . Then there is a type relabeling σ such that Γ �FV(M) =
Γ ′σ and α = α′σ.

254 R. Yoshinaka and M. Kanazawa

Theorem 1 (Subject Reduction). If Γ � M : α and M �β N , then Γ �
N : α.

A β-reduction step that contracts a β-redex (λx.P)Q is called non-erasing if
x ∈ FV(P), and non-duplicating if x occurs free at most once in P . A (many-
step) β-reduction is non-erasing (non-duplicating) if it entirely consists of non-
erasing (non-duplicating) β-reduction steps.

Theorem 2 (Subject Expansion). If M �β N by non-erasing and non-
duplicating β-reduction and Γ � N : α, then Γ �M : α.

Note that if M, N are linear, any β-reduction from MN is non-erasing and
non-duplicating.

Let Γ = {x1 : α1, . . . , xn : αn}. For p ∈ A, define

occ+
p (Γ, α0) = { (0, w) | w ∈ occ+

p (α0) } ∪ { (i, w) | w ∈ occ−p (αi), 1 ≤ i ≤ n },
occ−p (Γ, α0) = { (0, w) | w ∈ occ−p (α0) } ∪ { (i, w) | w ∈ occ+

p (αi), 1 ≤ i ≤ n }.

Let

occ+(Γ, α0) =
⋃
p∈A

occ+
p (Γ, α), occ−(Γ, α0) =

⋃
p∈A

occ−p (Γ, α),

occ(Γ, α0) = occ+(Γ, α0) ∪ occ−(Γ, α0) .

A pair (Γ, α) is balanced if | occ+
p (Γ, α)| ≤ 1 and | occ−p (Γ, α)| ≤ 1 for every

atomic type p. (Γ, α) is strictly balanced if | occ+
p (Γ, α)| = | occ−p (Γ, α)| ≤ 1 for

every atomic p.

Theorem 3 (see Hirokawa [11] for history). If M is an affine λ-term,
then M has a balanced principal typing. If M is a linear λ-term, then M has a
strictly balanced principal typing.

Theorem 4 ([11]). If M is a β-normal inhabitant of a balanced pair (Γ, α),
then M is affine.

Theorem 5 (Coherence Theorem [12], see [13]). If M and N are inhab-
itants of a balanced pair (Γ, α), then M =βη N .

Lemma 2. There is a polynomial-time algorithm which takes a balanced pair
(Γ, α) as input and determines whether it is inhabited, and if so, returns its
unique η-long β-normal inhabitant.

Proof. The algorithm given by Bunder [14] runs in polynomial time. ��

Lemma 3. Let α, β be fixed types. There is a polynomial f(n) satisfying the
following conditions: If P is a linear η-long β-normal inhabitant of (Γ, β) =
({z1 : γ1, . . . , zl : γl}, β), where FV(P) = {z1, . . . , zl}, then there are at most
f(|γ1|+ · · ·+ |γl|) pairs of λ-terms (Q, R) such that

Distributional Learning of Abstract Categorial Grammars 255

– Q is a linear η-long β-normal inhabitant of (Γ, α),
– R is a linear η-long β-normal inhabitant of (Γ, α→ β), and
– RQ �β P .

Moreover, given P and Γ as input, one can list all such pairs (Q, R) in polyno-
mial time.

Proof. Let P be a linear η-long β-normal inhabitant of (Γ, β) = ({z1 : γ1, . . . , zl :
γl}, β), with FV(P) = {z1, . . . , zl}. Suppose that a pair of λ-terms (Q, R) sat-
isfies the conditions of the theorem. Since R and Q are linear, RQ �β P by
non-erasing non-duplicating β-reduction. This implies that (FV(Q), FV(R)) is a
partition of FV(P). By Lemma 1 and Theorem 3, Q and R have strictly balanced
principal typings of the form (Γ1, α1) and (Γ2, α2→ β2), respectively, such that
for some type relabelings σ1 and σ2, we have

Γ1σ1 ∪ Γ2σ2 = Γ, α1σ1 = α2σ2 = α, β2σ2 = β .

Let ρ = mgu(α1, α2). Then ρ must be a type relabeling. Without loss of gener-
ality, we may assume that the following conditions hold:

– (Γ1, α1) and (Γ2, α2→ β2) have no atomic type in common,
– for each p ∈ At(α1) ∪ At(α2), pρ is a “fresh” atomic type, i.e., an atomic

type not occurring in (Γ1, α1) or (Γ2, α2→ β2).

Let α′ = α1ρ, β′ = β2ρ, and Γ ′ = (Γ1 ∪ Γ2)ρ. Then (Γ ′, β′) must be a principal
typing of RQ. By the Subject Reduction and Expansion Theorems, this implies
that (Γ ′, β′) is a principal typing of P . This typing is also strictly balanced, by
Theorem 3.

Note that (Γ1 ∪ (Γ ′ � FV(R)), α1) = (Γ1 ∪ (Γ2ρ), α1) is balanced, so by the
Coherence Theorem, Q is its unique η-long β-normal inhabitant. This typing
differs from (Γ ′, α) only in positions where atomic types in At(α1) occur, and
so is completely determined, up to renaming of atomic types, by an injective
mapping

h1 : occ(α)→ occ(Γ, α)

such that

– h1(w) ∈ occ−(Γ, α) for all w ∈ occ+(α),
– h1(w) ∈ occ+(Γ, α) for all w ∈ occ−(α), and
– h1(w) = (0, v) implies h1(v) = (0, w).

There are less than (|γ1|+ · · ·+ |γl|+ |α|)|α| such mappings.
Similarly, the typing ((Γ ′ � FV(Q)) ∪ Γ2, α2 → β2) = ((Γ1ρ) ∪ Γ2, α2 → β2),

and hence R, is completely determined by an injective mapping h2 : occ(α) →
occ(Γ, α→ β) such that

– h2(w) ∈ occ+(Γ, α→ β) for all w ∈ occ+(α),
– h2(w) ∈ occ−(Γ, α→ β) for all w ∈ occ−(α), and
– h2(w) = (0, 1v) implies h1(v) = (0, 1w).

256 R. Yoshinaka and M. Kanazawa

There are less than (|γ1|+ · · ·+ |γl|+ |α|+ |β|)|α| such mappings.
We have proved that for some polynomial f(n) determined by α and β, there

are less than f(|γ1|+· · ·+|γl|) pairs of λ-terms (Q, R) satisfying the conditions of
the lemma. To show that one can enumerate all such pairs in polynomial time, it
suffices to show that, given injective mappings h1, h2, one can determine whether
there is a corresponding pair (Q, R), and if so, output it in polynomial time. Let
(Γ ′, β′) be a principal typing of P , which must be strictly balanced by Theorem 3.
By choosing a fresh atomic type for each pair of positions {(0, w), h1(w)} in
occ(Γ ′, α), the mapping h1 determines a balanced pair

(Γ ′
1, α1)

that differs from (Γ ′, α) only in the positions in { (0, w) | w ∈ dom(h1) }∪rng(h1).
Similarly, the mapping h2 determines a balanced pair (Γ ′

2, α2→ β2) that differs
from (Γ ′, α→ β′) only in the positions in { (0, 1w) | w ∈ dom(h2) } ∪ rng(h2),
where At(α1)∩At(α2) = ∅. By Lemma 2, one can, in polynomial time, determine
whether each is inhabited by a linear λ-term, and if so, produce its unique linear
η-long β-normal inhabitant. Let Q and R be the inhabitants of (Γ ′

1, α1) and of
(Γ ′

2, α2 → β), respectively, obtained this way. To see whether their application
RQ β-reduces to P , first check whether FV(Q) ∩ FV(R) = ∅, and if so, let

Γ1 = Γ ′
1 � FV(Q), Γ2 = Γ ′

2 � FV(R) .

Since (Γ1, α1) and (Γ2, α2→ β2) are balanced, by Lemma 1 and Theorem 3, it
is easy to see that (Γ1, α1) and (Γ2, α2 → β2) must be principal typings of Q
and R, respectively. It follows that (Γ1, α1) and (Γ2, α2→ β2) are both strictly
balanced and share no atomic type. Let ρ = mgu(α1, α2). Then we see that

(Γ1 ∪ Γ2, β2)ρ

is a principal typing of RQ, assuming as before that pρ is “fresh” for each
p ∈ At(α1) ∪ At(α2). By the Coherence Theorem and the Subject Reduction
and Expansion Theorems, RQ �β P if and only if this typing is also a principal
typing of P . This is so just in case (Γ1 ∪Γ2, β2)ρ and (Γ ′, β′) are identical up to
renaming of atomic types, which can be checked in polynomial time. ��

3 Abstract Categorial Grammars

3.1 Definition

A higher-order signature Σ is a triple 〈A, C, τ〉 where A is a finite non-empty set
of atomic types, C is a finite set of constants, and τ is a function from C to T (A).
λ-terms over Σ and their typing judgments are defined by the type assignment
system introduced in the previous subsection enhanced with the axiom

Γ �Σ c : τ(c)
(con)

Distributional Learning of Abstract Categorial Grammars 257

for c ∈ C, where we use �Σ to specify the signature Σ under which the typing
judgement is given. The set of λ-terms over Σ is denoted by Λ(Σ). We understand
Σ∗ to be 〈A∗, C∗, τ∗〉 for any subscript ∗.

For two higher-order signatures Σ0 and Σ1, a term substitution θ is a mapping
from C0 to Λ(Σ1) such that FV(θ(c)) = ∅ for all c ∈ C0. For two higher-order
signatures Σ0 and Σ1, we say that a type substitution η : A0 → T (A1) and a
term substitution θ : C0→Λ(Σ1) are compatible iff �Σ1 θ(c) : τ0(c)η holds for all
c ∈ C0. A lexicon from Σ0 to Σ1 is a compatible pair of a type substitution and
a term substitution. For a lexicon L = 〈η, θ〉, we define θ̂ as the homomorphic
extension of θ that maps a variable to the same variable. Indeed, we always have
�Σ1 θ̂(M) : αη if �Σ0 M : α. We identify a lexicon L = 〈η, θ〉 with the functions
η and θ̂. A lexicon L is said to be linear if it assigns a linear λ-term to every
constant.

Definition 1 (de Groote [6]). An abstract categorial grammar (acg) is a
quadruple G = 〈Σ0, Σ1, L , s〉, where

– Σ0 is a higher-order signature, called the abstract vocabulary,
– Σ1 is a higher-order signature, called the object vocabulary,
– L is a linear lexicon from Σ0 to Σ1,
– s ∈ A0 is called the distinguished type.

An acg G = 〈Σ0, Σ1, L , s〉 generates two languages, the abstract language A(G)
and the object language O(G), defined as

A(G) = { |M |β | �Σ0 M : s },
O(G) = { |L (M)|β |M ∈ A(G) },

where |P |β denotes the β-normal form of P .

We call the triple 〈c, τ0(c), L (c)〉 for c ∈ C0 a lexical entry, and specify an acg

by giving the set of lexical entries and the distinguished type.
The abstract language can be thought of as a set of abstract grammatical

structures, and the object language is regarded as the set of concrete forms ob-
tained from these abstract structures and the lexicon. Thus, we simply speak of
the language generated by an acg to refer to its object language. The term ab-
stract categorial languages (acls) means the object languages of acgs. Elements
of A0 are called abstract atomic types.

Since acgs are concerned with linear λ-terms, hereafter we consider only
linear λ-terms and by a λ-term we mean a linear one. This paper is particularly
concerned with second-order acgs. A second-order acg is an acg whose abstract
constants in C0 have a type of the form p1→ . . .→pn→q for some p1, . . . , pn, q ∈
A0. By an acg we mean a second-order acg.

3.2 Encoding of Context-Free Formalisms in ACGs

Acgs can be seen as a general framework in which different context-free for-
malisms can be encoded. We briefly review de Groote and Pogodalla’s [8] encod-
ing techniques for some context-free formalisms in acgs. This paper does not

258 R. Yoshinaka and M. Kanazawa

give formal definitions of those formalisms. For the details, the reader is referred
to their paper [8].

Strings. For an alphabet T , let ΣT = 〈{o}, T, τ〉 where τ(a) = o→ o for all
a ∈ T . We denote the “string type” o → o by str . A string abcd over T is
encoded by λz.a(b(c(dz))), which is denote as /abcd/. Then for any w ∈ T ∗,
we have �ΣT /w/ : str . Two strings are concatenated by B = λxyz.x(yz), that
is, B/abc//de/ �β /abcde/. For the sake of legibility, we use the infix notation
/abc/ + /de/ to denote B/abc//de/. Obviously + is associative modulo β.

Trees. Trees are constructed over a ranked alphabet T =
⋃

k∈N
T (k) for pairwise

disjoint sets T (0), T (1), A symbol a ∈ T (k) always has k children. For a finite
ranked alphabet T , let ΣT = 〈{o}, T, τ〉 where τ(a) = ok → o if a ∈ T (k). Each
tree over T is straightforwardly translated to a λ-term with no variables.

Context-Free Grammars. Let G = 〈N, T, P, S〉 be a cfg, where N is the
set of nonterminal symbols, T is the set of terminal symbols, P is the set of
production rules and S ∈ N is the distinguished nonterminal. De Groote and
Pogodalla construct an acg GG = 〈Σ0, ΣT , L , S〉 for G as follows. Let A0 =
N and L (B) = str for all B ∈ A0. For each rule π ∈ P of the form B →
u0B1u1 . . . Bnun, where Bi ∈ N and ui ∈ T ∗, GG has the lexical entry

〈cπ, B1→ . . .→ Bn→ B, λx1 . . . xn./u0x1u1 . . . xnun/〉 .

One can see that a nonterminal B generates w ∈ T ∗ iff there is M ∈ Λ(Σ0) such
that �Σ0 M : B and L (M) �β /w/.

Linear Context-Free Rewriting Systems. Nonterminals of an lcfrs are
ranked and each nonterminal of rank m generates m-tuples of strings. We denote
the “m-tuple type” (strm→ str)→ str by tplm. For example, a triple 〈u, v, w〉 is
encoded as λy.y/u//v//w/, which admits the typing judgement �ΣT λy.y/u//v/
/w/ : tpl3. Let G = 〈N, T, P, S〉 be an lcfrs, where N is the set of ranked non-
terminals, T is the set of terminals, P is the set of rules and S ∈ N is the dis-
tinguished nonterminal of rank 1. The corresponding acg GG = 〈Σ0, ΣT , L , s〉
is defined as follows. Let A0 = N and L (B) = tplm for B ∈ N of rank m. For
each rule π ∈ P of the form

B(w1, . . . , wm)→ B1(x1), . . . , Bn(xn),

where xi denotes the sequence of variables xi,1, . . . , xi,mi and wi is a sequence of
terminals and variables, GG has an abstract constant cπ of type B1→. . .→Bn→B
that is mapped by L to

λx1 . . . xny.x1(λx1.x2(λx2. . . . xn(λxn.y/w1/ . . . /wm/) . . .)) .

One can see that a nonterminal B generates 〈v1, . . . , vm〉 ∈ (T ∗)m iff there is
M ∈ Λ(Σ0) such that �Σ0 M : B and L (M) �β λy.y/v1/ . . . /vm/. We have one
more abstract constant f of type S→ s that is mapped to L (f) = λx.x(λz.z),
with which we have L (f)(λy.y/w/) �β /w/.

Distributional Learning of Abstract Categorial Grammars 259

Linear Context-Free Tree Grammars. Nonterminals of an lcftg define
trees with a fixed number of holes on leaves. Let G = 〈N, T, P, S〉 be an lcftg,
where N is the set of ranked nonterminals, T is the set of ranked terminals, P
is the set of rules and S ∈ N is the distinguished nonterminal of rank 0. The
corresponding acg GG = 〈Σ0, ΣT , L , S〉 is defined as follows. Let A0 = N and
L (B) = om→ o for B ∈ N of rank m. Suppose that a rule π ∈ P is of the form
B(x1, . . . , xm) → t, where B is of rank m, t is a tree with some leaves labeled
with x1, . . . , xm, and t has n occurrences of nonterminals B1, . . . , Bn. GG has an
abstract constant cπ of type B1→ . . .→Bn→B that is mapped by L to

λy1 . . . ynx1 . . . xm.t[Bi := yi]1≤i≤n .

One can see that a nonterminal B of rank m generates a tree t with variables
x1, . . . , xm iff there is M such that �Σ0 M : B and L (M) �β λx1 . . . xm.t.

4 Distributional Learning of ACGs

Distributional learning of cfgs models and exploits the distribution of strings
(∈ T ∗) in contexts (∈ T ∗ × T ∗) in the language L of our learning target. The
learner takes an example w ∈ T ∗ and then decomposes w into a substring v and
a context 〈u1, u2〉 such that w = u1vu2. What we do here is to extract possible
intermediate structures that could appear in a derivation process for w ∈ L in a
cfg G∗ that generates L. In a derivation tree t of G∗ that yields w, every subtree
t′ of t determines a substring v of w, and the remaining part of the tree, which is
called a tree context, determines a context 〈u1, u2〉 such that w = u1vu2. Hence,
finding a right decomposition of w ∈ L corresponds to finding a subtree of the
derivation tree and its tree context. If one can find all the right decompositions
and classify them according to the nonterminal rooting the sub-derivation tree,
then the grammar G∗ can be simulated.

One may associate derivation trees of a cfg with λ-terms in the abstract
language of a second-order acg. Indeed those λ-terms are just trees. The yielded
structures of both “trees” are visible to the learner, though those trees themselves
are not. Suppose that a learner is given an example P ∈ O(G∗) from the target
language, where there should be M ∈ A(G) such that L (M) �β P . The learner
cannot observe the term M , yet she would like to decompose P into Q and P ′

so that

– there are M ′, N such that M = N [z := M ′] with �Σ0 M ′ : p for some
p ∈ A0,

– P ′ = L (M ′), Q = L (N).

Clearly Q[z := P ′] �β P holds. We call P ′ an intermediate substructure of P .
For technical convenience, hereafter we assume L (c) to be an η-long β-normal
inhabitant of L (τ0(c)) for any abstract constant c ∈ C0.

Usually a learner is supposed to know what kind of object can be obtained
during the derivation procedure as intermediate structures. In cfgs, they are just

260 R. Yoshinaka and M. Kanazawa

strings, as nonterminals derive strings. Intermediate substructures of lcfrss are
m-tuples of strings derived by their nonterminals, hence the learner for lcfrss,
e.g. [2], extracts an m-tuple of strings from a string. This paper assumes that the
learner knows the types of intermediate substructures of λ-terms in the object
language. More formally, we assume a finite set Ω ⊆ T (A1) such that L (p) ∈ Ω
for any abstract atomic type p ∈ A0 of the target grammar. When the learning
target is acgs that encode cfgs, Ω is just the singleton of the string type str .
When the learning target is acgs that encode lcftgs, Ω consists of types of
the form om → o.

Definition 2. Let us fix an object vocabulary Σ1 = 〈A1, C1, τ1〉. For a finite
set Ω ⊆ T (A1), a type σ ∈ Ω and a natural number m, we define a class
ACG(Ω, σ, m) to consist of second-order acgs 〈Σ0, Σ1, L , s〉 such that

– L (p) ∈ Ω for every p ∈ A0,
– L (s) = σ for the distinguished type s,
– τ0(c) = p1 → · · · → pk → q implies k ≤ m for any c ∈ C0.

For example, acgs that encode cfgs in Chomsky normal form are all in
ACG({str}, str , 2). We assume that the class ACG(Ω, σ, m) of acgs is fixed.
When P , Q and P ′ are η-long β-normal inhabitants of types σ, α → σ and
α, respectively, and QP ′ �β P , we call Q, P ′ and 〈Q, P ′〉, respectively, an α-
context, an α-subterm and an α-decomposition of P . For a set D ⊆ Λ(Σ1) of
η-long β-normal inhabitants of the type σ, let

Subα(D) = {P | P is an α-subterm of some element of D },
Conα(D) = {Q | Q is an α-context of some element of D },

SubΩ(D) =
⋃

α∈Ω

Subα(D), ConΩ(D) =
⋃

α∈Ω

Conα(D) .

Note that Conσ(D) always contains Iσ unless D is empty, where Iα denotes the
η-long β-normal inhabitant of the type α→ α which η-reduces to λz.z. Lemma 3
implies that one can compute those in polynomial time in the size of D.

Corollary 1. Let us fix α and σ. For any P such that �Σ1 P : σ, one can
enumerate all the α-decomposition of P in polynomial time in the size of P .

Proof. For P ∈ Λ(Σ1) with m occurrences of constants c1, . . . , cm, let Γ = { xi :
τ1(ci) | 1 ≤ i ≤ m }, θ = [xi := ci]1≤i≤m, and P̂ be a constant-free λ-term such
that P = P̂ θ. For P̂ ′ and Q̂ such that Γ � P̂ ′ : α and Γ � Q̂ : α→ σ, obtained
by applying the procedure presented in Lemma 3 to P̂ , the pair 〈Q̂θ, P̂ ′θ〉 is an
α-decomposition of P and nothing else can be an α-decomposition of P . ��

Remark 1. When the object signature is a string signature, any cfg in Chom-
sky normal form is encoded by an acg in ACG({str}, str , 2), and every acg in
ACG({str}, str , 2) can be regarded in a straightforward way as an encoding of
a cfg. However, it is not the case for lcfrss. Every lcfrs whose nontermi-
nals have rank at most n and whose rules have at most m nonterminals on the

Distributional Learning of Abstract Categorial Grammars 261

right hand side is encoded in acgs in ACG({tplk | k ≤ n}, str , m), but the class
ACG({tplk | k ≤ n}, str , m) contains acgs that cannot be regarded as an encod-
ing of any lcfrs by the standard interpretation by de Groote and Pogodalla.
In order to apply our discussion to concrete formalisms that one wants to target
specifically, the three parameters Ω, σ, m are not enough. One needs to deter-
mine a reasonable subclass of ACG(Ω, σ, m) and to take subsets of SubΩ(D) and
ConΩ(D) according to the encoding of the target formalism. This paper largely
ignores such details, but as long as one can decide in polynomial time whether
a λ-term corresponds to some construct of the target formalism, which is quite
a natural assumption, the discussion of this paper still applies to the learning of
the formalism.

Proposition 1. The membership problem for the class ACG(Ω, σ, m) is uni-
formly decidable in polynomial time.

Proof. Salvati [15] and Kanazawa [16] show that the membership problem for a
fixed second-order acg is decidable in polynomial time, where the degree of the
polynomial is linear in max{ |L (τ0(c))| | c ∈ C0 }, which has a fixed bound in
ACG(Ω, σ, m). ��

In the next section, we will demonstrate how existing distributional learning
algorithms can be generalized in terms of acgs.

5 Examples of Learning Algorithms

5.1 Substitutable ACGs

Among several properties on grammars/languages proposed so far for which dis-
tributional learning works, we first pick the strongest property, substitutability.
Clark and Eyraud [1] and Yoshinaka [2] have shown that substitutable cfgs and
mcfgs, respectively, are efficiently learnable from positive examples. Those algo-
rithms are quite simple compared to other concrete algorithms of distributional
learning.

The learning scheme we assume is identification in the limit from positive
data. A learner L is given an infinite sequence of positive examples P1, P2, . . .
from the language O(G∗) of a grammar G∗ in the target class such that O(G∗) =
{P1, P2, . . . }. Each time L takes a new example Pn, it outputs a conjecture Gn.
We say that L identifies G∗ in the limit from positive data if for any sequence
of positive examples, there is a point n0 such that Gn = Gn0 for all n > n0 and
O(Gn0) = O(G∗). This subsection presents an efficient algorithm that identifies
all Ω-substitutable acgs in ACG(Ω, σ, m) in the limit from positive data.

Definition 3. An acg G is Ω-substitutable if for every α ∈ Ω,

|Q1P1|β , |Q1P2|β , |Q2P1|β ∈ O(G∗) implies |Q2P2|β ∈ O(G∗)

for any Q1, Q2 ∈ Conα(O(G∗)) and P1, P2 ∈ Subα(O(G∗)). In this case, we say
that P1 and P2 are α-substitutable in O(G∗).

262 R. Yoshinaka and M. Kanazawa

For a finite set D ⊆ O(G∗) of positive examples, our learner constructs an acg

GD = 〈ΣD, Σ1, LD, s〉 as follows. First, we take Ω-subterms of elements of D to
be abstract atomic types:

AD = { [Pα] | P ∈ Subα(D) for α ∈ Ω } ∪ {s} .

Each atomic type of the form [Pα] is mapped to LD([Pα]) = α and LD(s) = σ.
Corollary 1 ensures that one can compute AD in polynomial time. Our grammar
GD has lexical entries of the following three types.

A. 〈A(RP
α1
1 ...P

αk
k)β , [Pα1

1]→ · · · → [Pαk

k]→ [P β
0], R〉

if RP1 . . . Pk �β P0 with k ≤ m,
B. 〈BP α

1 ,P α
2
, [Pα

1]→ [Pα
2], Iα〉 if |QP1|β , |QP2|β ∈ D for some Q ∈ Conα(D),

C. 〈CP σ , [P σ]→ s, Iσ〉 if P ∈ D.

It is clear that lexical entries of Types B and C can be computed in polynomial
time. It is also the case for Type A.

Lemma 4. Fix Σ1, Ω, and m. Let α0, . . . , αk ∈ Ω, with k ≤ m. Given Pi such
that �Σ1 Pi:αi for i = 0, . . . , k, one can enumerate all Q such that QP1 . . . Pk �β

P0 in polynomial time.

Proof. By Corollary 1, one can enumerate all η-long β-normal inhabitant Qk of
αk → α0 such that QkPk �β P0 in polynomial time.1 Then for each Qk, one
can enumerate all Qk−1 such that Qk−1Pk−1 �β Qk. By repeatedly applying
Corollary 1, one can enumerate all sequences Qk, . . . , Q1 such that Qi−1Pi−1 �β

Qi for i = k, . . . , 2 and Qi is an η-long β-normal inhabitant of αi→ . . .→αk→α0

for i = k, . . . , 1 in polynomial time, because we have an upper bound m on k.
We have Q1P1 . . . Pk �β P0. ��

Algorithm 1 shows our learner for Ω-substitutable acgs in ACG(Ω, σ, m).
It is clear that the algorithm updates its conjecture Gn in polynomial time in∑

1≤i≤n ‖Pi‖ where ‖P‖ denotes the size of P .
The correctness of the algorithm can be shown in the same manner as in [1,2].

Lemma 5. If �ΣD M : [Pα], then P and |LD(M)|β are α-substitutable in
O(G∗).

Proof. We prove the lemma by induction on M .
Suppose that M has the form M = A(RP

α1
1 ...P

αk
k)αM1 . . . Mk, where we have

�ΣD Mi : [Pαi

i] for each i = 1, . . . , k and LD(A(RP
α1
1 ...P

αk
k)α) = R. We note that

the base case is given when k = 0. The presence of the abstract constant implies
that there is an α-context Q ∈ Conα(D) such that

|QP |β = |Q(RP1 . . . Pk)|β ∈ D ⊆ O(G∗) .

1 Since Pk is given in this case, we do not need to list all the decompositions of P0.
Only the latter half of the procedure presented in Lemma 3 suffices to get such Qk.

Distributional Learning of Abstract Categorial Grammars 263

Algorithm 1. Learning Ω-Substitutable ACGs
Data: A sequence of positive examples P1, P2, . . .
Result: A sequence of acgs G1, G2, . . .
let Ĝ be an acg such that O(Ĝ) = ∅;
for n = 1, 2, . . . do

read the next example Pn;
if Pn �∈ O(Ĝ) then

let Ĝ = GD for D = {P1, . . . , Pn};
end if
output Ĝ as Gn;

end for

For i = 1, . . . , k, let P ′
i = |LD(Mi)|β and

Qi = |λyi.Q(RP ′
1 . . . P ′

i−1YiPi+1 . . . Pk)|β

where Yi denotes the η-long inhabitant of (yi :αi, αi) that η-reduces to yi. Clearly
Qi is an αi-context. By induction hypothesis, Pi and P ′

i are αi-substitutable.
Then

|QP |β = |Q(RP1 . . . Pk)|β = |Q1P1|β ∈ O(G∗)
=⇒ |Q1P

′
1|β = |Q2P2|β ∈ O(G∗) =⇒ |Q2P

′
2|β = |Q3P3|β ∈ O(G∗)

=⇒ . . . =⇒ |QkP ′
k|β = |Q(RP ′

1 . . . P ′
k)|β = |QLD(M)|β ∈ O(G∗) .

Therefore, P and |LD(M)|β are α-substitutable for each other.
Suppose that M has the form M = BP α

1 ,P αM1. The presence of the constant
BP α

1 ,P α implies that P1 and P are α-substitutable. The induction hypothesis
on �ΣD M1 : [Pα

1] is that P1 and |LD(M1)|β are also α-substitutable. Hence
|LD(M)|β = |IαLD(M1)|β = |LD(M1)|β , P1 and P are all α-substitutable. ��

Corollary 2. If �ΣD M : s, then |LD(M)|β ∈ O(G∗).

Proof. If �ΣD M : s, M must have the form M = CP σM ′ where �ΣD M ′ : [P σ]
and P ∈ D. By Lemma 5, P and |LD(M ′)|β = |LD(M)|β are σ-substitutable. In
particular for the identity σ-context Iσ ∈ Conσ(D), we have that P = |IσP |β ∈
O(G∗) implies |LD(M)|β = |IσLD(M ′)|β ∈ O(G∗). ��

Let the target grammar G∗ = 〈Σ0, Σ1, L∗, s〉. For each atomic type p ∈ A0, we
let Sp and Tp be the smallest λ-terms such that �Σ0 Sp : p and z : p �Σ0 Tp : s,
respectively. Let E∗ = {Tp[z := cSp1 . . . Spk

] | p ∈ A0, c ∈ C0, τ0(c) = p1 →
· · · → pk → p } and D∗ = { |L∗(S)|β ∈ O(G∗) | S ∈ E∗ }.

Lemma 6. For any D ⊇ D∗, if �Σ0 N : p with p ∈ A0, there is M ∈ Λ(ΣD)
such that �ΣD M : [|L∗(Sp)|L∗(p)

β] and LD(M) =β L∗(N).

Proof. By induction on N . Suppose that N = cN1 . . . Nk with τ0(c) = p1 →
. . . pk → p. Let Ppi = |L (Spi)|β and P0 = |L∗(cSp1 . . . Spk

)|β . By definition we

264 R. Yoshinaka and M. Kanazawa

have |L∗(Tp[z := cSp1 . . . Spk
])|β ∈ D and thus we have a lexical entry〈

A
L∗(c)L∗(τ0(c))S

L∗(p1)
p1 ...S

L∗(pk)
pk

, [PL∗(p1)
p1]→ · · · → [PL∗(pk)

pk]→ [PL∗(p)
0], L∗(c)

〉
.

By induction hypothesis, we have Mi ∈ Λ(ΣD) such that �ΣD Mi : [PL∗(pi)
pi]

and LD(Mi) =β L∗(Ni). Thus for M ′ = A
LD(c)L (τ0(c))S

L (p1)
p1 ...S

L (pk)
pk

M1 . . .Mk,

we have �ΣD M ′ : [PL∗(p)
0] and LD(M ′) =β L∗(N).

By Tp[z := Sp], Tp[z := cSp1 . . . Spk
] ∈ E∗, we have |L∗(λz.Tp)Pp|β ,

|L∗(λz.Tp)P0|β ∈ D for Pp = |L∗(Sp)|β . Hence the conjectured grammar has
the lexical entry 〈

B
P

L∗(p)
0 ,P

L∗(p)
p

, [PL∗(p)
0]→ [PL∗(p)

p], IL∗(p)

〉
and the lemma holds for M = B

P
L∗(p)
0 ,P

L∗(p)
p

M ′. ��

Corollary 3. O(G∗) = O(GD) if D ⊇ D∗.

Therefore, once the learner gets a superset of D∗, it always conjectures an acg

that generates the target language. We also remark that the set D∗ is not too
big. D∗ consists of at most |C0| positive examples and each element in D∗ has
the smallest abstract derivation structure that involves a constant c ∈ C0.

5.2 ACGs with the Finite Kernel Property

Clark et al. [17] have proposed an algorithm that learns cfgs with the Finite
Kernel Property and their result is generalized by Yoshinaka [3] to mcfgs. The
learning scheme they use is identification in the limit from positive data and
membership queries, which is the same as the scheme in the previous subsection
except that the learner can query an oracle whether an arbitrary object is in the
learning target and receive an answer in constant time. In order to simplify the
definition of the fkp, we allow each acg to have multiple distinguished types
s1, . . . , sk. These types must all be mapped to the same type by the lexicon.

Definition 4. We say that G ∈ ACG(Ω, σ, m) has the Finite Kernel Property
(fkp) if for each abstract atomic type p ∈ A0, there is an L (p)-subterm Pp of
an element of O(G) such that

{Q ∈ ConL (p)(O(G)) | |QPp|β ∈ O(G) } =
{Q ∈ ConL (p)(O(G)) | |QL (M)|β ∈ O(G) for all M with �Σ0 M : p } .

Algorithm 2 describes our learner for acgs with the fkp. We refrain from ex-
plaining the details of the algorithm and proving the correctness and the effi-
ciency of it, as it is just a translation of existing algorithms, and a general idea
on translation has been provided in the previous subsection. The definition of
our conjecture G (S, C) = 〈ΣS,C , Σ1, LS,C, {s}〉 is given as follows.

AS,C = { [Pα] | P ∈ Sα for α ∈ Ω } ∪ {s},

Distributional Learning of Abstract Categorial Grammars 265

Algorithm 2. Learning ACGs with the FKP
Data: A sequence of strings P1, P2, · · · ∈ O(G∗);
Result: A sequence of acgs G1, G2, · · · ∈ ACG(Ω, σ, m)
let D := ∅; Ĝ := G (∅, ∅);
for n = 1, 2, . . . do

let D := D ∪ {Pn}; Cα := Conα(D) for each α ∈ Ω;
if D � O(Ĝ) then

let Sα := Subα(D) for each α ∈ Ω;
end if
output Ĝ = G (

⋃
α∈Ω Sα,

⋃
α∈Ω Cα) as Gn;

end for

Each atomic type of the form [Pα] is mapped to LS,C([Pα]) = α and LS,C(s) =
σ. We have lexical entries of the following three types.

A. 〈A(RP
α1
1 ...P

αk
k)β , [Pα1

1]→ · · · → [Pαk

k]→ [P β
0], R〉

if RP1 . . . Pk �β P0 with k ≤ m,
B. 〈BP α

1 ,P α
2
, [Pα

1]→ [Pα
2], Iα〉

if |QP2|β ∈ O(G∗) implies |QP1|β ∈ O(G∗) for all Q ∈ Cα,
C. 〈CP σ , [P σ]→ s, Iσ〉 if P ∈ D.

The only difference from the construction of conjectures in the case of learning Ω-
substitutable acgs is the condition for lexical entries of Type B. This is decided
in polynomial time with the aid of the membership oracle.

Theorem 6. Algorithm 2 identifies acgs with the fkp in ACG(Ω, σ, m) in the
limit from positive data and membership queries.

6 Discussions

This paper has demonstrated how substring–context relation should be general-
ized and explained in terms of acgs. For the sake of the clarity, we parameterize
only a set Ω of types to specify classes of our learning target. As discussed in
Remark 1, however, it is easy to bring into our learning algorithm other param-
eters to pick out classes of acgs that exactly match specific classes of string or
tree grammars in well-known formalisms.

Among several results of distributional learning, we have picked two properties
and learning algorithms and demonstrated how they should be explained in terms
of acgs. Other results are also easily translated by the same idea. For example,
one can reasonably define congruential acgs and give a learning algorithm for
them under the same learning scheme as in the preceding work [18, 4].

Acknowledgement

This work was supported in part by Mext Kakenshi 20700124 and by the NII
joint research project “Open Problems on Multiple Context-Free Grammars”.

266 R. Yoshinaka and M. Kanazawa

References

1. Clark, A., Eyraud, R.: Polynomial identification in the limit of substitutable
context-free languages. Journal of Machine Learning Research 8, 1725–1745 (2007)

2. Yoshinaka, R.: Learning mildly context-sensitive languages with multidimensional
substitutability from positive data. In:Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles,
S. (eds.) ALT 2009. LNCS, vol. 5809, pp. 278–292. Springer, Heidelberg (2009)

3. Yoshinaka, R.: Polynomial-time identification of multiple context-free languages
from positive data and membership queries [19], pp. 230–244

4. Yoshinaka, R., Clark, A.: Polynomial time learning of some multiple context-free
languages with a minimally adequate teacher. In: Proceedings of the 15th Confer-
ence on Formal Grammar, Copenhagen, Denmark (2010)

5. Clark, A.: Towards general algorithms for grammatical inference. In: Hutter, M.,
Stephan, F., Vovk, V., Zeugmann, T. (eds.) ALT 2010. LNCS, vol. 6331, pp. 11–30.
Springer, Heidelberg (2010)

6. de Groote, P.: Towards abstract categorial grammars. In: Association for Compu-
tational Linguistics, Proceedings of the Conference on 39th Annual Meeting and
10th Conference of the European Chapter, pp. 148–155 (2001)

7. de Groote, P.: Tree-adjoining grammars as abstract categorial grammars. In:
TAG+6, Proceedings of the 6th International Workshop on Tree Adjoining Gram-
mars and Related Frameworks, Università di Venezia, pp. 145–150 (2002)

8. de Groote, P., Pogodalla, S.: On the expressive power of abstract categorial gram-
mars: Representing context-free formalisms. Journal of Logic, Language and Infor-
mation 13(4), 421–438 (2004)

9. Courcelle, B.: An axiomatic definition of context-free rewriting and its application
to NLC graph grammars. Theoretical Computer Science 55(2-3), 141–181 (1987)

10. Hindley, J.R.: Basic Simple Type Theory. Cambridge University Press, Cambridge
(1997)

11. Hirokawa, S.: Balanced formulas, BCK-minimal formulas and their proofs. In:
Nerode, A., Taitslin, M.A. (eds.) LFCS 1992. LNCS, vol. 620, pp. 198–208.
Springer, Heidelberg (1992)

12. Babaev, A., Soloviev, S.: A coherence theorem for canonical morphism in cartesian
closed categories. Zapiski nauchnykh Seminarov Lenigradskogo Otdeleniya matem-
atichskogo lnstituta im. V.A. Steklova An SSSR 88, 3–29 (1979)

13. Mints, G.: A short introduction to intuitionistic logic. Kluwer Academic/Plenum
Publishers, New York (2000)

14. Bunder, M.W.: Proof finding algorithms for implicational logics. Theoretical Com-
puter Science 232(1-2), 165–186 (2000)

15. Salvati, S.: Problèmes de Filtrage et Problèmes d’analyse pour les Grammaires
Catégorielles Abstraites. PhD thesis, L’Institut National Polytechnique de Lorraine
(2005)

16. Kanazawa, M.: Parsing and generation as Datalog queries. In: Proceedings of the
45th Annual Meeting of the Association for Computational Linguistics, pp. 176–
183 (2007)

17. Clark, A., Eyraud, R., Habrard, A.: Using contextual representations to efficiently
learn context-free languages. Journal of Machine Learning Research 11, 2707–2744
(2010)

18. Clark, A.: Distributional learning of some context-free languages with a minimally
adequate teacher [19], pp. 24–37

19. Sempere, J.M., Garćıa, P. (eds.): ICGI 2010. LNCS, vol. 6339. Springer, Heidelberg
(2010)

Some Generalised Comparative Determiners

Richard Zuber

Rayé des cadres du CNRS, Paris, France
Richard.Zuber@linguist.jussieu.fr

Abstract. Functions denoted by specific comparative expressions called
generalised comparative determiners are analysed. These expressions
form verb arguments when applied to common nouns. They denote func-
tions which take sets and a binary relation as argument and give a set as
result. These functions are thus different from denotations of ”ordinary”
determiners. However, they do obey some similar constraints, properly
generalised. It is shown that verbal arguments obtained from such gen-
eralised determiners extend the expressive power of NLs since functions
that they denote are not just case extensions of type 〈1〉 quantifiers used
to interpret ”ordinary” determiner phrases.

1 Introduction

The basic meaning of the notion of determiner as established in modern formal
linguistics is that of an expression which when applied to one (or more) common
nouns (CNs) forms a noun phrase (NP) or rather a determiner phrase (DP).
NPs are (syntactic) arguments of verb phrases and thus they can occur in various
argumental positions, for instance as grammatical subjects, grammatical objects
or various oblique objects. When a DP occurs in the direct object position (of a
simple sentence of the form NP TVP DP) one can consider that the determiner
which forms it denotes a function which takes a set (the denotation of the CN)
and a binary relation (denotation of the TVP) and gives a set (the denotation of
the TVP+DP) as result. In this paper I will discuss some functions of this type
in cases where they are denoted not by ”ordinary” determiners but by what can
be called generalised determiners, that is expressions which take one or more
common nouns as arguments and which give a verbal argument as result.

There are verbal arguments which cannot occur in every argumental position
and thus are not strictly speaking NPs. Consider (1), (2) and (3):

(1) Leo washed himself.
(2) Leo washed himself and Lea.
(3) a. *Himself washed Leo.

b. *Himself and Lea washed them/themselves/Leo.

In (1) himself occurs in direct object position and is thus similar to an ordinary
noun phrase. In addition it can be conjoined with an ordinary NP to make a
Boolean complex NP which can occur in the direct object position, as shown

S. Pogodalla and J.-P. Prost (Eds.): LACL 2011, LNAI 6736, pp. 267–281, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

268 R. Zuber

in (2). However, neither himself alone nor its Boolean composition with an
ordinary NP can occur in the subject position, as seen in (3a) and (3b).

The case of himself and of its Boolean compound indicated above is well
known: it illustrates (nominal) anaphora. What is less well-known is the fact
that there are expressions forming nominal anaphors in a way similar to the one
in which ”ordinary” DPs are formed: they can be formed by an application of
an anaphoric determiner to a CN. To see this consider the following examples:

(4) Leo shaved every philosopher except himself.
(5) Lea admires most philosophers, including herself.

In (4) the DP-like expression every philosopher except himself and in (5) the
DP-like expression most philosophers, including herself are (complex) nominal
anaphors. What is important for us is that they are formed by the application
of (complex) determiner-like expressions every..., except himself and most...,
including herself, respectively, to the common noun philosophers. These expres-
sions are called anaphoric determiners and, obviously, anaphoric determiners are
generalised determiners.

It is possible to mention many differences between functions denoted by
ordinary determiners and functions denoted by anaphoric determiners (Zuber
2010a). In particular it is useful to consider that anaphoric determiners denote
functions from sets (denotations of common nouns) to functions from binary
relations (denotations of transitive verbs) to sets (denotations of verb phrases).
Or, equivalently, anaphoric determiners denote functions which take a set (or
sets) and a binary relation as argument and give a set as result.

Some languages, for instance Scandinavian, Slavic or Latin, have possessive
anaphoric determiners which are morphologically simple, in contraposition to
those given in (4) and (5) . Slavic type anaphoric determiners and various prop-
erties of functions denoted by them are studied in Zuber 2010b and Zuber 2010c.

In his paper I am going to study another sub-class of generalised determiners,
which I will call comparative determiners. I will in particular show that func-
tions denoted by comparative determiners, though of the same type as functions
denoted by anaphoric determiners, have different formal properties.

As an example of a comparative (generalised) determiner consider (6):

(6) Leo knows more philosophers than Lea.

The expression more...than Lea in (6) takes the common noun philosophers as
argument and makes an expression which can be considered as ”syntactic” ar-
gument of the verb know. In addition this argument cannot occur in the subject
position. Consequently more...than Lea is a generalised determiner.

2 Formal Preliminaries

The following technical and notational preliminary will be useful. Since we are
interested basically in comparatives and proportional quantifiers, both of which

Some Generalised Comparative Determiners 269

are naturally interpreted only in finite universes, we will assume that our universe
of discourse E is finite. Thus all sets (of individuals) considered are sub-sets of
E. For any set A, |A| is the cardinality of A and for any binary relation R the
set aR is defined as follows: aR = {x : 〈a, x〉 ∈ R}.

Since the functions I will discuss are ofen related to quantifiers let me recall
some basic notions concerning generalised quantifiers. Functions from sets (sub-
sets of E) to truth-values are type 〈1〉 quantifiers. Functions from pairs of sets to
truth-values or binary relations between sets are type 〈1, 1〉 quantifiers. They are
denotations of unary determiners. Type 〈1, 1, 1〉 quantifiers are ternary relations
between sets. They are denotations of binary determiners. In fact for some syn-
tactic reasons, one can distinguish two sub-classes of type 〈1, 1, 1〉 quantifiers: (1)
quantifiers whose type is noted 〈〈1, 1〉1〉 and (2) quantifiers whose type is noted
〈1〈1, 1〉〉. The first class corresponds to denotations of binary determiners which
take two nominal arguments (as in More students than teachers danced) and the
second class corresponds to denotations of binary determiners which take two
predicative arguments (as in More students danced than sang).

We will also use the following notation for functions from sets or relations to
sets. A type 〈1, 2 : 1〉 function is a function having a set and a binary relation
as argument and giving a set as result. A type 〈1, 1, 2 : 1〉 function is a function
which takes two sets and one binary relation as arguments and gives a set as a
result. Such functions are denoted by unary and binary generalised determiners.

We are interested in the interpretation of sentences of the form NP TV P
GDP where TV P is a transitive verb phrase and GDP is a generalised deter-
miner phrase (an expression obtained by the application of a generalised deter-
miner to a common noun). In such sentences NP is interpreted by a type 〈1〉
quantifier, which is a set of sets, and TV Ps is interpreted by a binary relation.
Concerning GDP there are two possibilities: if it is an ”ordinary” DP , it is in-
terpreted by a function which is an accusative extension of a type 〈1〉 quantifier
or, if it is not an DP it is interpreted by a function (from binary relations to
sets) which is not an accusative extension of a type 〈1〉 quantifier. An accusative
extension Qacc of a type 〈1〉 quantifier Q is defined as follows (Keenan 1988):

Definition 1. For each type 〈1〉 quantifier Q, Qacc(R) = {a : Q(aR) = 1}.

Thus the accusative extension of a quantifier is a function from binary relations
to sets induced by the quantifier in the way indicated in Definition 1. Accusative
extensions of quantifiers permit one to compute directly denotations of verb
phrases formed from transitive verb phrases and a noun phrase in the position
of the direct object.

Accusative extensions of type 〈1〉 quantifiers are specific type 〈2 : 1〉 func-
tions. They are specific because they satisfy the following accusative extension
condition AE (Keenan and Westerstahl 1997):

Definition 2 (AE). A type 〈2 : 1〉 function F satisfies the accusative extension
condition (AE) iff for R and S binary relations, and a, b ∈ E, if aR = bS then
a ∈ F (R) iff b ∈ F (S).

270 R. Zuber

Not all type 〈2 : 1〉 functions satisfy AE. For instance the function SELF
defined as SELF (R) = {x : 〈x, x〉 ∈ R} which interprets the reflexive pronoun
(as it occurs in (1) for instance) does not satisfy AE. Similarly the type 〈2 : 1〉
function F (R) = MOREl,Ph(R) = {x : |xR ∩ Ph| > |lR ∩ Ph|} (where l is the
individual referred to by Lea and Ph is the set of philosophers), which is denoted
by the verbal argument more philosophers than Lea in (6), does not satisfy AE.

The two functions above satisfy conditions weaker than AE. The function
SELF satisfies the following anaphor condition AC:

Definition 3 (AC). A type 〈2 : 1〉 function F satisfies the anaphor condition
(AC) iff for R and S binary relations, and a ∈ E, if aR = aS then a ∈ F (R)
iff a ∈ F (S).

The AC condition, sometimes called predicate invariance (Keenan and West-
erstahl 1997), is obviously weaker than AE. The function MOREl,Ph above
satisfies another weakening of AE, the so-called argument invariance condition
AI defined in definition 4:

Definition 4 (AI). A type 〈2 : 1〉 function F is argument invariant (AI) iff
for any binary relation R and a, b ∈ E, if aR = bR then a ∈ F (R) iff b ∈ F (R).

The conditions AE, AC and AI concern type 〈2 : 1〉 functions, considered here
as being denoted by ”full” verbal arguments. We are interested in denotations
of generalised determiners, that is expressions forming verbal arguments when
applied to common nouns. When such determiners are unary, that is when they
apply to one common noun, they denote type 〈1, 2 : 1〉 functions. The accusative
extension condition for such functions is as follows:

Definition 5 (D1AE). A type 〈1, 2 : 1〉 function F satisfies the accusative
extension condition for unary determiners (D1AE) iff for R and S binary rela-
tions, X ⊆ E and a, b ∈ E, if aR∩X = bS∩X then a ∈ F (X, R) iff b ∈ F (X, S).

Denotations of ordinary determiners occurring in DPs which take direct object
position satisfy D1AE. More precisely if D is a type 〈1, 1〉 quantifier, then
the function F (X, R) = D(X)acc(R) satisfies D1AE. Denotations of anaphoric
determiners do not satisfy D1AE. For instance the function F (X, R) = {y :
X∩yR = {y}} denoted by the anaphoric determiner no... except himself/herself
does not satisfy D1AE.

Anaphoric functions satisfy the following condition (Zuber 2010c):

Definition 6 (D1AC). A type 〈1, 2 : 1〉 function F satisfies anaphor condition
for unary determiners (D1AC) iff for R and S binary relations X ⊆ E, and
a ∈ E, if aR ∩X = aS ∩X then a ∈ F (X, R) iff a ∈ F (X, S).

In this article we are interested in functions denoted by comparative gener-
alised determiners. As we will see they do not satisfy D1AC. The condition
which characterises such functions is as follows:

Definition 7 (D1AI). A type 〈1, 2 : 1〉 function F satisfies argument invari-
ance for unary determiners (D1AI) iff for any binary relation R, X ⊆ E and
a, b ∈ E, if aR ∩X = bR ∩X then a ∈ F (R) iff b ∈ F (R).

Some Generalised Comparative Determiners 271

The following property gives a justification of condition D1AI:

Proposition 1. If the function F of type 〈1, 2 : 1〉 satisfies D1AI then the
function GA of type 〈2 : 1〉 defined as GA(R) = F (A, R) satisfies AI.

What proposition 1 informally says is that functions satisfying D1AI are those
from which we get functions satisfying AI when fixing their set argument.

Functions from binary relations and sets to sets which satisfy D1AI have the
following obvious property:

Proposition 2. If a function F from binary relations to sets satisfies D1AI
then for any X, Y ⊆ E one has F (X, E × Y) = ∅ or F (X, E × Y) = E.

The conditions specified above are related to the fact that ”proper” anaphors,
anaphoric determiners or comparative generalised determiners cannot occur in
subject position. We have seen that such expressions are close, in some sense,
to expressions denoting various quantifiers. As we will see functions denoted by
generalised comparative determiners, in addition to property of argument invari-
ance satisfy a natural generalisation of the conservativity property characteristic
of ”ordinary” determiners.

Conservativity and related properties (intersectivity, etc) are properties of
quantifiers. It is possible, however to naturally generalise this notion to functions
of the type studied here. We have the following definition (Zuber 2010a):

Definition 8. A function F of type 〈1, 2 : 1〉 is conservative iff F (X, R) =
F (X, (E ×X) ∩R)

The following property gives plausibility to the above definition of generalised
conservativity (Zuber 2010b):

Proposition 3. Let D be a type 〈1, 1〉 quantifier and F a type 〈1, 2 : 1〉 function
defined as: F (X, R) = D(X)acc(R). Then F is conservative iff D is conservative.

It is easy to check that the anaphoric function denoted by the anaphoric deter-
miner no... except himself and the comparative function denoted by the gener-
alised determiner more...than Lea (both mentioned above) are conservative. As is
well established conservative quantifiers have various important sub-classes, such
as classes of intersective, cardinal, etc. quantifiers (cf. Keenan and Westerstahl
1997). It is also possible to generalise the notions of intersective, co-intersective
and cardinal quantifiers in such a way that they apply to type 〈1, 2 : 1〉 functions.
Thus we have the following definitions (Zuber 2010a):

Definition 9. A type 〈1, 2 : 1〉 function is intersective (resp. co-intersective)
iff F (X1, R1) = F (X2, R2) whenever (E × X1) ∩ R1 = (E × X2) ∩ R2 (resp.
(E ×X1) ∩R′

1 = (E ×X2) ∩R′
2).

The following proposition, similar to proposition 1, can be considered as justi-
fying the above definition:

Proposition 4. Let D be a type 〈1, 1〉 quantifier and F a type 〈1, 2 : 1〉 function
defined as: F (X, R) = D(X)acc(R). Then F is intersective (resp. co-intersective)
iff D is intersective (resp. co-intersective).

272 R. Zuber

It is easy to see that both functions mentioned above are intersective.
Concerning co-intersective functions it is easy to show that the function

EV ERY (X)-BUT -SELF (R) defined in (7), and denoted by the anaphoric de-
terminer every... but himself, is co-intersective:

(7) EV ERY (X)-BUT -SELF (R) = {x : X ∩ xR′ = {x}}

It is also possible to generalise other sub-properties of conservativity. Consider so-
called cardinal quantifiers. A type 〈1, 1〉 quantifier F is cardinal iff F (X1)(Y1) =
F (X2)(Y2) whenever |X1∩Y1| = |X2∩Y2|; numerals denote cardinal quantifiers.
Type 〈1, 2 : 1〉 cardinal functions are defined as follows:

Definition 10. A type 〈1, 2 : 1〉 function is cardinal iff F (X1, R1) = F (X2, R2)
whenever ∀y(|X1 ∩ yR1| = |X2 ∩ yR2|)

Obviously, cardinal, intersective and cardinal functions are conservative.
In the next section we will discuss various examples of comparative gener-

alised determiners which denote functions having one of the properties defined
in definitions 8, 9 and 10.

3 Some Unary Comparative Determiners

In this section I will basically discuss numerical comparative (and superlative)
generalised determiners, that is, semantically, quantifiers and more generally
functions applying to sets and relations involving (numerical) comparisons of
cardinalities of various sets. In that way the results will be clear and at the
same time directly extensible to the case of adjectival comparison. However, I
will discuss adjectival comparative (superlative) constructions only briefly since
they give rise to generalised determiners only in a special case.

Let me first clarify the distinction between what have been sometimes called
comparative quantifiers and comparative functions in which we are interested
here and which are not comparative quantifiers (or their case extensions).

Numerical comparisons make it clear that various entities can be compared in
comparative constructions. To show this, let me present two numerical compar-
ative constructions in semantics of which binary (comparative) quantifiers but
not comparative type 〈1, 2 : 1〉 functions are involved. In (8) we have compara-
tive constructions involving what are now known as binary determiners (Keenan
and Moss 1985, Beghelli 1994, Zuber 2009):

(8) a. More students than priests dance.
b. More students dance than talk.

In (8a) we have a binary determiner denoting a type 〈〈1, 1〉1〉 quantifier and in
(8b) a binary determiner denoting a type 〈1〈1, 1〉〉 quantifier. Their semantics is
given in (9) and (10) respectively:

(9) MORE(S)THAN(P)(D) = |S ∩D| > |P ∩D|

Some Generalised Comparative Determiners 273

(10) MORE(S)(D)THAN(T) = |S ∩D| > |S ∩ T |

We know that DPs formed with binary determiners occur in object position:

(11) Leo met more students than priests.

One can say that in (11) we have a binary generalised determiner which denotes a
type 〈1, 1, 2 : 1〉 function. But clearly this is not the case of a genuine generalised
determiner: the DP it forms can occur in subject position (as in (8a), the function
it denotes is just the accusative extension of the function given in (9). Later on
we will see that there are genuine generalised determiners which denote type
〈1, 1, 2 : 1〉 functions.

Consider example (12), similar to the one in (6) used above to illustrate the
case of genuine generalised determiners:

(12) Leo met more students than Lea.

When comparing (12) with (11) we see that different things are compared in
these sentences: in (11) we compare properties that one individual has whereas
in (12) we compare individuals which share one (non trivial) property.

In (12) we have a genuine generalised determiner, more...than Lea. It is gen-
uine because the function it denotes is not an accusative extension of a type
〈1, 1〉 quantifier. Informally this can be seen by the following reasoning in which
condition D1AE is used. Suppose the set of Xs that Bill met is the same as the
set of Xs that Leo met. It does not follow from this that the sentence Bill met
more Xs than Lea has the same truth value as the sentence Leo met more Xs
than Lea.

The function which is denoted by the generalised determiner more...than Lea
is given in (13):

(13) F (X, R) = MOREl(X, R) = {y : |yR ∩ X | > |lR ∩ X |}, where l is the
individual referred to by Lea

It is obvious that the function in (13) satisfies the argument invariance for unary
determiners. Indeed, suppose that (14a) holds. Then clearly (14b) holds as well:

(14) a. aR ∩X = bR ∩X
b. a ∈MOREl(X, R) iff b ∈MOREl(X, R)

It is also easy to show that function MOREl is conservative. We have to show
that MOREl(X, R) = MOREl(X, (E ×X) ∩R). But this is obvious given the
semantics in (13) and the fact that a((E ×X) ∩R) = X ∩ aR.

In fact, the function MOREl has a stronger property than conservativity: it
is cardinal (in the sense of definition 10 above). To show this we have to prove
that (15) holds if (16) holds:

(15) MOREl(X1, R1) = MOREl(X2, R2)
(16) ∀y(|X1 ∩ yR1| = |X2 ∩ yR2|)

274 R. Zuber

We have the following chain of equivalent statements: x ∈ MOREl(X1, R1) iff
(given (13)) |xR1 ∩X1| > |lR1 ∩X1| iff (given (16)) |xR2 ∩X2| > |lR2 ∩X2| iff
x ∈MOREl(X2, R2). Thus MOREl is a cardinal type 〈1, 2 : 1〉 function.

The above example suggests various questions concerning the number, the va-
riety of patterns and the specificity of properties of generalised comparative de-
terminers and of the functions they denote. For instance one would like to know,
roughly speaking, whether there are many other patterns of generalised compar-
ative determiners which denote cardinal functions, whether there are generalised
determiners which denote intersective non cardinal functions, or which denote
conservative non intersective functions, etc. of course such questions cannot be
fully answered here and, in addition some of them should be made more precise.
In what follows I will try to give partial answers to some of these questions.

Observe first that in the above example we can replace the expression more
by less or the same number (of). Obviously the generalised determiners thus
obtained will still denote cardinal functions.

We can still make generalised determiners more complex by adding explicitly
numerals to the determiners discussed above. Consider the example in (17). It
is probably ambiguous with the readings indicated in (18a) and (18b):

(17) Leo read 5 more books than Lea.
(18) a. Leo read exactly 5 more books than Lea.

b. Leo read at least 5 more books than Lea.

In the above examples we have the generalised comparative determiners 5 more...
than Lea and exactly 5 more... than Lea. They denote type 〈1, 2 : 1〉 functions
which are instances of functions given in (19a) and (19b) respectively:

(19) a. EXACTLY -MOREn,i(X, R) = {x : |xR ∩X | = |iR ∩X |+ n}
b. AT -LEAST -MOREn,i(X, R) = {x : |xR ∩X | > |iR ∩X |+ n}

It is easy to show that functions in (19a) and (19b) are cardinal and satisfy
condition D1AI. Moreover, the above examples show that there is an infinite
number of generalised determiners denoting cardinal functions.

It is still possible to make comparative generalised determiners more complex
by making Boolean compounds of them. Such Boolean complex determiners are
given in the following examples:

(20) Leo read more books than Lea but less than 17.
(21) Leo read more books than Lea and more than Bill.
(22) Leo read less books than Lea but more than Bill.

Again, functions involved in the semantics of above examples are cardinal func-
tions. This follows from the observation that functions discussed here form
Boolean algebras, the fact that I will not comment in more detail.

Recall that cardinal functions are intersective ones. One may wonder whether
there are generalised comparative determiners denoting intersective non cardinal
functions. I think that a good example of such a determiner is the same...as Lea

Some Generalised Comparative Determiners 275

as it occurs in (23) . The function denoted by this determiner is an instance of
the function given in (24):

(23) Leo read the same books as Lea.
(24) THE-SAMEi(X, R) = {y : yR ∩X = iR ∩X}.

The function in (24) is intersective. We have to show that (26) follows from (25).
This is true because (25) entails the two equalities given in (27):

(25) (E ×X1) ∩R1 = (E ×X2) ∩R2

(26) {y : yR1 ∩X1 = iR1 ∩X1} iff {y : yR2 ∩X2 = iR2 ∩X2}
(27) (i) yR1 ∩X1 = yR2 ∩X2, (ii) iR1 ∩X1 = iR2 ∩X2

We get the needed result by replacing in (26) the equal parts indicated in (27).
It is also easy to show that function THE-SAMEi given in (24) does not

satisfy D1AE and that it satisfies D1AI.
In quite the same way one can show that the generalised determiner different...

than Lea, as it occurs in (28), denotes an intersective comparative function:

(28) Leo knows different languages than Lea.

One can consider that (28) is ambiguous with possible readings in which the
set of languages known by Leo and by Lea are either ”just” different or they
are disjoint. These two readings can be distinguished by two different functions
DIFFERENTi indicated in (29a) and (29b) respectively:

(29) a. DIFFERENTi(X, R) = {y : yR ∩X �= iR ∩X}
b. DIFFERENTi(X, R) = {y : yR ∩X ∩ iR∩ = ∅}

Both functions, the one in (29a) and the one in (29b), are intersective.
All the examples of generalised determiners presented above contain a com-

plementizer than or as. We discussed basically the cases when these comple-
mentizers are followed by a proper name. In fact this is not necessary: they can
be followed by virtually any NP. Thus we can have generalised determiners like
more... than most students, the same... as some philosophers, different ... than
the ten teachers, etc. The presentation of semantics of such determiners necessi-
tates the generalisation of the notation aR to the notation Qnom(R), where Q is
a type 〈1〉 quantifier, a denotation of an NP. Qnom(R), the nominative extension
of Q is defined as follows:

(30) Qnom(R) = {x : Q(Rx) = 1}, where Rx = {y : 〈y, x〉 ∈ R}

The nominal extension of a type 〈1〉 quantifier is different from its accusative
extension. The difference can be illustrated by the following example. Let Q =
MOST (S). Then MOST (S)nom(R) is the set of objects to which most Ss are
in the relation R whereas MOST (S)acc(R) is the set of objects which are in the
relation R to most Ss.

276 R. Zuber

To see the usefulness of the notation Qnom(R) consider the following example
in (31). The generalised determiner the same... as most students occurring in (31)
denotes the function THE-SAMEMOST (S) given in (32) :

(31) Leo knows the same languages as most students.
(32) THE-SAMEMOST (S)(X, R) = {y : yR ∩X = MOST (S)nom(R) ∩X}

The extension of the complements of than (or of as) enriches, though some-
what trivially, all the classes of generalised comparative determiners we have
considered. There is, however one class of comparative functions formally defined
in the preceding section, which do not seem to be denoted in natural languages:
these are co-intersective functions.

Some superlative constructions also give rise to generalised comparative de-
terminers. It is enough for our purpose to consider that superlatives correspond
to specific conjunctions of comparatives: roughly the oldest man is the man who
is older than m1, and older than m2... and older than mn. So roughly speaking,
to get a superlative we form a conjunction in which conjuncts are the comple-
ments of then. We will indicate implicitly such a conjunction by the expression
than anybody else or anything else. Consider now (33a), its semantics in (33b)
and its superlative counterpart in (34):

(33) a. More teachers danced than sang.
b. MORE(T)(D)THAN(S) = |T ∩D| > |T ∩ S|

(34) More teachers danced than did anything else.

By applying the above idea of conjunction of comparatives we get (35):

(35) MOST (T)(D) = 1 iff ∀X(X ∩D = ∅)→ |T ∩D| > |T ∩X |

The equivalences in (36) and (37) are easy to be proved. From them and (35)
follow the two equivalences in (38):

(36) For all sets X and Y , |X∩Y | > |X ′∩Y | iff ∀Z(X∩Z = ∅)→ |X∩Y | > |Z∩Y |
(37) For any set X, Y , |X | = |X ∩ Y |+ |X ∩ Y ′|
(38) MOST (T)(D) = 1 iff |T ∩D| > |T ∩D′| iff 2× |T ∩D| > |T |

Thus the superlative associated with the comparative construction in which a bi-
nary determiner occurs is the ”classical” determiner most (of) denoting MOST .
It is not a genuine generalised determiner. However, a ”generalised superlative
determiner” can be associated with the comparative construction in (39). Its
superlative counterpart is given in (40a) and its denotation is given in (40b):

(39) Leo read more books than Lea.
(40) a. Leo read more books than anybody else.

b. NSUP (X, R) = {x : ∀y(y �= x→ |xR ∩X | > |yR ∩X |}

The function NSUP is denoted by the following generalised determiners, sup-
posedly equivalent, the most, more than anybody else or the greatest number

Some Generalised Comparative Determiners 277

of. Interestingly, this function is not anaphoric: using proposition 2, one shows
that it does not satisfy D1AC. Informally, suppose that Leo studies precisely
those languages that he knows. It does not follow from this that Leo studies the
greatest number of languages is equivalent to Leo knows the greatest number of
languages.

To conclude this section I give an example of a non-numerical comparative and
superlative constructions which contain a generalised determiner. Consider (41)
which contains the determiner an older... than Lea: Sentence (41) has two read-
ings: absolute, in (42a) and relative, in (42b):

(41) Leo hugged an older woman than Lea.
(42) a. Leo hugged a woman older than Lea.

b. Leo hugged a woman that was older than a woman hugged by Lea.

When the determiner is used in a DP in subject position, as in (43), the relative
reading disappears:

(43) An older woman than Lea was dancing.

Any gradable adjective introduces a (total) relation; in the above case we have
the relation O corresponding to be older than. Consequently in the semantics
of (41) two type 〈1, 2 : 1〉 functions are involved:

(44) a. FO,l(X, R) = {x : ∃y(y ∈ xR ∩X ∧ 〈y, l〉 ∈ O}
b. FO,l(X, R) = {x : ∃y, z(y ∈ xR ∩X ∧ z ∈ lR ∩X ∧ 〈y, z〉 ∈ O}

Only the function in (44b) is a genuine comparative type 〈1, 2 : 1〉 function.
There may be some problems with the above example since it involves some

unicity conditions. The absolute and relative readings are better seen in su-
perlative constructions (the classical paper concerning this problem is Szabolcsi
1986: (45) is ambigous with the two meanings given respectively in (46a), abso-
lute reading, and (46b), relative reading:

(45) Leo hugged the oldest woman
(46) a. Leo hugged a woman who was older than any other woman

b. Leo hugged a woman who was older than any other woman hugged by
anybody else.

Clearly the different readings of the superlatives in (46a) and (46b) are related
to the different comparatives from which they originate. Thus an explanation
of these different readings is easy to conceive along the lines here proposed. In
particular one observes that when the superlative occurs in subject position it
can have only the absolute reading as in (47):

(47) The oldest woman lives in Japan.

The above observation suggests that superlatives with relative readings are not
related to an accusative extension of (the denotation of) any noun phrase, and

278 R. Zuber

thus in particular the superlative itself cannot be considered as an ”ordinary”
noun phrase denoting a type 〈1〉 quantifier. This is indeed the case since it does
not satisfy the AE. We show this informally, just using English examples, by
showing that the corresponding ”comparative-anaphoric” form of superlative,
the one given in (46b) does not satisfy AE. Suppose that (48) holds:

(48) The persons that Leo hugged are the same as those that Bill kissed.

In (48) we have an instance of the conditional part of the AE condition. One
observes now that, given (48), the sentence in (49a) needs not hold the same
truth value as the one in (49b):

(49) a. Leo hugged a woman who is older than any other woman hugged by
anybody else

b. Bill kissed a woman who is older than any other woman kissed by any-
body else.

On the other hand the function interpreting the absolute reading of the superla-
tive does satisfy the AE condition : from (48) follows the identity of truth values
between (50a) and (50b):

(50) a. Leo hugged a woman who is older than any other woman.
b. Bill kissed a woman who is older than any other woman.

The generalised determiner we have in (45) corresponds to the expression the
oldest when it forms the superlative DP which occurs in the object position gives
rise to the relative reading. It denotes the function in (51):

(51) FO,a(X, R) = {x : ∃y(y ∈ xR ∩X ∧ ∀z(z �= y ∧ z ∈ aR ∩X)→ 〈y, z〉O}

In the next section I discuss some binary comparative determiners.

4 Some Binary Generalised Determiners

Recall that natural languages have binary or even n-ary determiners, that is
expressions which take two or n common nouns to form a DP. As Keenan and
Moss 1985 noted, n-ary determiners can be easily obtained by the conjunctions
of common nouns in the ”syntactic” scope of an unary determiner:

(52) Most students, teachers and priests were sleeping.

This sentence probably means that most students and most teachers and most
priests were sleeping and not that most individuals which are students, teachers
and priests (”at the same time”) were sleeping. Under this reading the determiner
most..and...and... is a ternary determiner.

Deterniners taking many common nouns as arguments as illustrated by the
above example have an obvious property: their denotations are Booleanly re-
ducibly to a conjunction of denotations of unary determiners (see Keenan and
Moss 1985). It has been observed, however that natural languages have also

Some Generalised Comparative Determiners 279

binary determiners whose denotations are not reducible in that sense (Keenan
and Moss 1985, Beghelli 1994). For instance, the quantifier denoted by the binary
determiner in (11) above is not Booleanly reducible (cf. Beghelli 1994).

Of course binary determiners occurring in DPs in object position can be con-
sidered as generalised binary determiners: if D2 is a type 〈〈1, 1〉1〉 quantifier then
the function F ((X1, X2, R) = D2(X1, X2)acc(R) is a well-defined type 〈1, 1, 2 : 1〉
function. In what follows I indicate, however, that natural languages have genuine
generalised binary, or even n-ary, comparative determiners. Though the notion
of Boolean reducibility of n-ary determiners will not be made more precise, it
will be intuitively clear that such determiners can be either Boolean reducible
or Boolean irreducible. Moreover, functions denoted by these determiners have
similar properties to the functions denoted by unary determiners: they are ”at
least” conservative and satisfy the condition of argument invariance.

We need first to define various properties of functions denoted by binary
determiners, similar to those which have functions denoted by unary generalised
determiners. Such properties are well-defined for ”ordinary” binary or n-ary
determiners (cf. Keenan and Moss 1985, Beghelli 1994, Zuber 2005, Zuber 2009).
I give here some such definitions for type 〈1, 1, 2 : 1〉 functions. For conservativity
we have the definition 11 and the proposition 5 (Zuber 2010a):

Definition 11. A type 〈1, 1, 2 : 1〉 function F is conservative iff for any X1, X2

⊆ E and any binary relations R1 and R2, if E ×X1 ∩ R1 = E ×X1 ∩ R2 and
E ×X2 ∩R1 = E ×X2 ∩R2 then F (X1, X2, R1) = F (X1, X2, R2).

Proposition 5. A type 〈1, 1, 2 : 1〉 function F is conservative iff for any X1, X2

⊆ E and binary relationR one hasF (X1 , X2, R) = F (X1, X2, (E×(X1∪X2))∩R).

Since many of the determiners we will present denote cardinal functions, here is
the corresponding definition:

Definition 12. A type 〈1, 1, 2 : 1〉 function is cardinal iff F (X1, Y1, R1) =
F (X2Y2, R2) whenever ∀y(|X1 ∩ yR1| = |X2 ∩ yR2|) and ∀x(|Y1 ∩ xR1| =
|Y2 ∩ xR2|)
Finally, the condition of argument invariance for type 〈1, 1, 2 : 1〉 functions is
formulated as follows:

Definition 13 (D2AI). A function F of type 〈1, 1, 2 : 1〉 satisfies argument
invariance condition for binary determiners (D2AI) iff for any a, b ∈ E, X, Y ⊆
E and R a binary relation, if a((E×X)∩R) = b((E×X)∩R) and a((E×Y)∩R) =
b((E × Y) ∩R) then a ∈ F (X, Y, R) iff b ∈ F (X, Y, R).

Let us see now some examples of binary generalised determiners which denote
conservative argument invariant functions. Consider sentence (53): one of its
readings is given in (54a). In (53) we have a binary generalised determiner which
denotes an instance of the type 〈1, 12 : 1〉 function given in (54b):

(53) Leo read more books and articles than Lea.
(54) a. Leo read more books than Lea and more articles than Lea.

b. MOREi,j(X, Y, R) = {y : |yR ∩X > |iR ∩X | ∧ |yR ∩ Y > |jR ∩ Y |}

280 R. Zuber

It is easy to show that function MOREi,j is cardinal and thus conservative. It is
also argument invariant. The fact that (54a) is equivalent to (54b) and that we
have a conjunction in (53) shows that this function is Booleanly reducible. Fur-
thermore, since the number of CNs which can occur as conjuncts in (54a) is not
limited, example (54a) shows how to construct n-ary comparative determiners.

A binary generalised determiner denoting the non-reducible type 〈1, 1, 2 : 1〉
function is given in (55a); the corresponding function is given in (55b) :

(55) a. Leo read more books than Lea articles.
b. MORE2,i(X, Y, R) = {y : |yR ∩X | > |iR ∩ Y |}

Using the method similar to the one used in connection with the example (24)
above one shows that the function in (55b) is cardinal and argument invariant.

We get similar examples be replacing in the above examples more by less or
the same number of. Similarly we can make some Boolean compounds as in (56),
where we also have a generalised binary determiner denoting a cardinal function:

(56) Leo read more books than Lea articles but less than 17 altogether.

Consider finally (57a) and the function in (57b) which is denoted by the gener-
alised determiner three times more... than Lea...:

(57) a. Leo read at least three times more books than Lea articles
b. MORE3×,i(X, Y, R) = {y : |yR ∩X | ≥ 3× |iR ∩ Y |}

The type 〈1, 1, 2 : 1〉 function in (57b) is cardinal.

5 Conclusive Remarks

By analogy with anaphoric determiners I distinguished a subclass of generalised
determiners called comparative determiners. A generalised determiner is an ex-
pression which when applied to one or more common nouns forms a generalised
DP, that is an expression which can serve as argument of a verb phrase. A gen-
uine generalised DP is an expression which cannot serve as the grammatical
subject of a sentence. Anaphoric determiners (studied in Zuber 2010a, 2010b)
are genuine generalised determiners because when applied to a common noun
they form nominal anaphors which are verbal arguments which cannot occur
in subject position. Since I was basically interested in the logical properties of
comparative determiners, no attempt has been made to justify their category
syntactically. From the logical point of view it appears that their denotations
have many striking similarities with denotations of ”ordinary” determiners: for
instance, they are conservative in a naturally generalised sense. Furthermore, as
with ordinary determiners, there are not only unary generalised determiners but
also n-ary ones.

Semantically, comparative DPs, in the same way as nominal anaphor, cannot
be interpreted by functions corresponding to generalised (type 〈1〉) quantifiers
denoted by ordinary NPs. Formally this amounts to saying that denotations

Some Generalised Comparative Determiners 281

comparative DPs do not satisfy the specific invariant condition for type 〈1〉
quantifiers given in called accusative extension condition. They satisfy, however
the strictly weaker condition given of argument invariance. Consequently one can
say that comparative (generalised) DPs essentially augment the expressive power
of, say, English, since the expressive power of English would be less than it is if
the only noun phrases we need were ones interpretable as subjects of main clause
intransitive verbs. The reason is that such DPs must be interpreted by functions
from relations to sets which lie outside the class of generalised quantifiers as
classically defined, that is type 〈2 : 1〉 functions which are not extensions of type
〈1〉 quantifiers.

It might be interesting to notice the analogy with nominal anaphors. Keenan
(1987, 1988, 2007) shows that something similar is true because of the existence
of nominal anaphors. More specifically, anaphors like himself, herself (considered
as the second nominal argument of transitive verbs) also must be interpreted by
functions which do not satisfy the AE, and thus the generalised type 〈1〉 quan-
tifiers are not enough for their interpretation. Anaphoric functions interpreting
nominal anaphors satisfy another weakening of the AE, the condition AC.

References

[1994]Beghelli, F.: Structured Quantifiers. In: Kanazawa, M., Piñon, C. (eds.) Dynam-
ics, Polarity, and Quantification, pp. 119–145. CSLI Publications (1994)

[1987]Keenan, E.L.: Semantic Case Theory. In: Groenendijk, J., Stokhof, M. (eds.)
Sixth Amsterdam Colloquium (1987)

[1988]Keenan, E.L.: On Semantics and the Binding Theory. In: Hawkins, J. (ed.) Ex-
plaining Language Universals, pp. 105–144. Blackwell, Malden (1988)

[2007]Keenan, E.L.: On the denotations of anaphors. Research on Language and Com-
putation 5(1), 5–17 (2007)

[1985]Keenan, E.L., Moss, L.: Generalized quantifiers and the expressive power of nat-
ural language. In: van Benthem, J., ter Meulen, A. (eds.) Generalized Quantifiers,
Foris, Dordrecht, pp. 73–124 (1985)

[1997]Keenan, E.L., Westerst̊ahl, D.: Generalized Quantifiers in Linguistics and Logic.
In: van Benthem, J., ter Meulen, A. (eds.) Handbook of Logic and Language, pp.
837–893. Elsevier, Amsterdam (1997)

[1986]Szabolcsi, A.: Comparative supelatives. In: MIT Working Papers in Linguistics,
pp. 245–266 (1986)

[2005]Zuber, R.: More Algebras for Determiners. In: Blache, P., Stabler, E. (eds.) LACL
2005. LNCS (LNAI), vol. 3492, pp. 347–362. Springer, Heidelberg (2005)

[2009]Zuber, R.: A semantic constraint on binary determiners. Linguistics and Philos-
ophy 32, 95–114 (2009)

[2010a]Zuber, R.: Generalising Conservativity. In: Dawar, A., de Queiroz, R. (eds.)
WoLLIC 2010. LNCS, vol. 6188, pp. 247–258. Springer, Heidelberg (2010a)

[2010b]Zuber, R.: Semantics of Slavic anaphoric possessive determiners. In: Proceedings
of SALT 19 (2010b) forthcoming

[2010c]Zuber, R.: Semantic constraints on anaphoric determiners. Research on Lan-
guage and Computation (2010c) forthcoming

Author Index

Amblard, Maxime 1, 219
Areces, Carlos 17

Bastenhof, Arno 33
Béchet, Denis 80
Bekki, Daisuke 190
Bransen, Jeroen 49

Cooper, Robin 64

Dikovsky, Alexandre 80

Figueira, Santiago 17
Foret, Annie 80

Goŕın, Daniel 17
Graf, Thomas 96

Kanazawa, Makoto 112, 251
Kobele, Gregory M. 129

Larsson, Staffan 145
Luo, Zhaohui 159

Michaelis, Jens 112
Moot, Richard 235
Morrill, Glyn 175

Ozaki, Yuri 190

Pollard, Carl 205

Qian, Sai 219

Salvati, Sylvain 112
Sandillon-Rezer, Noémie-Fleur 235

Yoshinaka, Ryo 112, 251

Zuber, Richard 267

	Title
	Preface
	Organization
	Table of Contents
	Encoding Phases Using Commutativity and Non-commutativity in a Logical Framework
	Commutativity vs. Non-commutativity in Standard MCG and Phases
	Minimalist Categorial Grammars
	Partially Commutative Logic (PCL)
	Labels Encoding Word Order
	Lexicon
	Rules of MCG

	Phases
	Encoding Phases in MCG
	Derivation of a Simple Sentence
	Question
	Blocked Derivation with PIC

	Conclusion
	References

	Using Logic in the Generation of Referring Expressions
	Generating Referring Expressions
	Measuring Expressive Power
	Choosing the Appropriate Language
	Defining Sameness

	GRE via Simulator Sets
	GRE via Building Simulated Models
	Combining GRE Methods
	On the Size of Referring Expressions
	Conclusions
	References

	Polarized Classical Non-associative Lambek Calculus and Formal Semantics
	Introduction
	Classical Non-associative Lambek Calculus
	Polarized CNL
	Motivation
	Polarization and Derivational Semantics
	Lexical Semantics

	Comparing Provability in CNLpol and CNL
	Phase Spaces
	Cut Admissibility and Completeness w.r.t. CNL

	Related Topics
	Focused Proof Search
	The Lambek-Grishin Calculus
	Normalization by Evaluation

	References

	The Product-Free Lambek-Grishin Calculus Is NP-Complete
	Introduction
	Lambek-Grishin Calculus
	Preliminaries
	Derivation Length
	Additional Notations
	Derived Rules of Inference
	Type Similarity

	Reduction from SAT to LG
	Intuition
	Only-If Part
	If Part
	Conclusion

	Discussion and Future Work
	References

	Copredication, Quantification and Frames
	Introduction
	Frames and Thick Particulars
	Dynamic Generalized Quantifiers
	Treating Copredication
	Treating Lexical Innovation
	How Many Books are on the Shelf?
	Conclusion
	References

	On Dispersed and Choice Iteration in Incrementally Learnable Dependency Types
	Introduction
	Categorial Dependency Grammars with Extended Iteration Types
	Categorial Dependency Grammars
	Dispersed and Choice Iterations

	Incremental Learning
	Incremental Learning of Dispersed Iteration
	Incremental Learning of Choice Iteration
	Conclusion
	References

	Closure Properties of Minimalist Derivation Tree Languages
	Preliminaries and Notation
	Minimalist Derivation Tree Languages
	P-Closure Properties
	Minimalist Grammars with Regular Control
	References

	Well-Nestedness Properly Subsumes Strict Derivational Minimalism
	Introduction
	Multiple Context-Free Grammars
	Separating MCFLwn from MCFL
	Separating MCFLmb from MCFLwn
	Conclusion
	References

	Minimalist Tree Languages Are Closed Under Intersection with Recognizable Tree Languages
	Formal Preliminaries
	Minimalist Grammars

	Languages
	Closure under Intersection with Regular Sets

	Applications
	Semantics
	Complexity Filters
	Distributed Morphology

	Conclusion
	References

	Do Dialogues Have Content?
	Introduction
	The Content of a Dialogue
	The Challenge from Semantic Plasticity
	Semantic Coordination and Semantic Plasticity
	Semantic Plasticity and Inference
	Semantic Plasticity and Classical Model-Theoretic Semantics

	An Alternative: TTR
	Representing Concepts Using TTR
	A TTR Account of the ``Panda'' Example
	TTR and Semantic Plasticity
	Indeterminate Extensions
	Model-Theoretic Sensor Semantics?

	Conclusion
	References

	Contextual Analysis of Word Meanings in Type-Theoretical Semantics
	Introduction
	Type-Theoretical Semantics
	A Brief Overview
	Embedded Logic
	Dependent Types
	Coercive Subtyping
	Universes

	Sense Selection via Overloading
	Sense Enumeration
	Simple Sense Selection via Overloading Based on Coercive Subtyping

	Representation of Contexts: Coercion Contexts and Local Coercions
	Coercion Contexts in Type Theory
	Local Coercions in Terms

	Structured Lexical Entries: Copredication and Beyond
	Copredication and Dot-Types
	Generative Lexical Entries as -types

	Implementations in Coq
	Conclusion
	References

	Logic Programming of the Displacement Calculus
	Introduction
	The Displacement Calculus
	Focusing
	Logic Programming
	Conclusion
	References

	Conditional Logic Cb and Its Tableau System
	Introduction
	Conditional Sentences in Natural Language and Classical Logic

	Modal Tableau
	Conditional Logic
	Syntax of Conditional Logic
	Semantics of Conditional Logic

	Previous Study
	C+
	S
	C1 , C2

	Proposal: A New Conditional Logic Cb
	Empirical Verification
	Soundness
	Completeness
	Conclusion and Future Work
	References

	Are (Linguists’) Propositions (Topos) Propositions?
	Introduction
	Lambek’s Categorical Semantics
	Are Propositions Propositions?
	Preboolean Algebras
	Background on Ultrafilters
	Hyperintensional Categorical Semantics
	Conclusion
	References

	Event in Compositional Dynamic Semantics
	Event Semantics
	Dynamic Semantics and Discourse Relation
	Dynamic Semantics
	A New Approach to Dynamics
	Discourse Relations and Discourse Structure

	EventinDynamicSemantics
	Event-Based Sentential Semantics
	Event-Based Discourse Semantics
	Comparison with Other Related Works

	Conclusion and Future Work
	References

	Using Tree Transducers for Grammatical Inference
	Introduction
	Learning Categorial Grammars
	Presentation of the Paris VII Corpus
	G-transducer
	Formal Definition
	Transduction Rules

	Implementation
	Corpus Corrector
	Transducer
	Evaluation

	Conclusion and Future Work
	References

	Distributional Learning of Abstract Categorial Grammars
	Introduction
	Simply Typed Lambda Calculus
	Abstract Categorial Grammars
	Definition
	Encoding of Context-Free Formalisms in ACGs

	Distributional Learning of ACGs
	Examples of Learning Algorithms
	Substitutable ACGs
	ACGs with the Finite Kernel Property

	Discussions
	References

	Some Generalised Comparative Determiners
	Introduction
	Formal Preliminaries
	Some Unary Comparative Determiners
	Some Binary Generalised Determiners
	Conclusive Remarks
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

