
J.M. Zain et al. (Eds.): ICSECS 2011, Part III, CCIS 181, pp. 25–40, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Model-Based Web Components Testing: A Prioritization
Approach

Ahmed Al-Herz* and Moataz Ahmed

Information and Computer Science Department,
King Fahd University of Petoleum and Minerals,

Dhaharan 31261, Saudi Arabia
{alherz,moataz}@kfupm.edu.sa

Abstract. Web applications testing and verification is becoming a highly
challenging task. A number of model-based approaches has been proposed to
deal with such a challenge. However, there is no criteria that could be used to
aid practitioners in selecting appropriate approaches suitable for their particular
effort. In this paper we present a set of attributes to serve as criteria
for classifying and comparing these approaches and provide such aid to
practitioners. The set of attributes is also meant to guide researchers interested
in proposing new model-based Web application testing and verification
approaches. The paper discusses a number of representative approaches against
the criteria. Analysis of the discussion highlights some open issues for future
research. In response to one of the issues, we present an approach for
prioritizing components for testing to maximize confidence given a limited
number of test cases to be executed. Some initial results are reported in the
paper.

Keywords: Web applications, model-based testing, testing prioritization, Web
verification.

1 Introduction

Web applications are becoming more complex. As more and more services and
information are made available over the Internet and intranets, Web sites have
become extraordinarily complex, while their correctness is often crucial to the success
of businesses and organizations. Although traditional software testing is already a
notoriously hard, time-consuming and expensive process, Web-site testing presents
even greater challenges. Complexity arises due to several factors, such as a larger
number of hyperlinks, more complex interaction, frequently changing Web pages, and
increased use of distributed servers. Moreover, the environment of Web applications
is more complex than that of typical monolithic or client-server applications – Web
applications interact with many components, such as CGI scripts, browsers, backend
databases, proxy servers, etc., which may increase the risk of interoperability issues.
Furthermore, many Web applications have a large number of users with no training

* Corresponding author.

26 A. Al-Herz and M. Ahmed

on how to use the application – they are likely to exercise it in unpredictable ways.
Therefore, Web sites that are critical to business operations of an organization should
be tested thoroughly and frequently [9].

Modeling helps to manage the complexity of these systems. Several papers
in the literature have studied the problem of web applications modeling for the sake of
managing the overall development complexity. Modeling support is essential to
provide an abstract view of the application. It can help designers during the
design phases by formally defining the requirements, providing multiple levels of
detail as well as providing support for testing prior to implementation. Support from
modeling can also be used in later phases to support verification. Different models
have been proposed, while others have been adapted from existing modeling
techniques for other types of software [1][2] [3][4][5][6][8][22][23][24][25]
[26][27][28] [29] [30] [31] [32] [33].

In this paper we focus on Web applications testing and verification and study the
different model-based approaches for managing associated complexity. In the domain
of model-based testing, it is generally understood that the model is an abstraction or
simplification of the behavior of the application to be tested. The model is captured
in a machine readable format with the sole purpose of acting as both test sequence
(trace) generator and oracle. There are many approaches to proposing a model for the
purpose of Web application verification and testing. This paper studies some models
that are currently applied in the field of verification and testing of web applications.
Our literature survey revealed that some approaches focuses on testing the
navigational aspects of web applications. Others concentrate on solving problems
arising from user interaction with the browser in a way that affects the underlying
process. Others are interested in dealing with static and dynamic behavior. In our bid
to carry out a critical survey of the literature on using models for testing and
verification of Web applications, we discovered that a common ground for classifying
and comparing existing approaches is not available. This motivated our research to
come up with a set of attributes serve as criteria for classifying and comparing various
modeling approaches to Web application testing and verification. This set of
attributes is presented in Section 2.

The analysis of a number of representative approaches against the criteria
highlights some open issues for future research as discussed later. An issue of interest
in this paper is that a typical Web application consists of a large number of
components (i.e., front-end pages and backend processing). A Web page can be
static—where content is constant for all users—or dynamic—where content changes
with user input. A typical Web application could also be distributed. Accordingly,
even regression testing could take weeks to test all of the test cases from a previous
version [13]. Due to time and resources constraints, it would be desirable to help the
tester prioritize the test cases in a way that maximize confidence given a limited
number of test cases to be executed. However, the problem of prioritizing Web
application components for testing did not catch enough researchers’ attention. In this
paper we propose an approach for an approach for prioritizing components to be
tested. Such prioritization could then be used to prioritize corresponding test cases.

 Model-Based Web Components Testing: A Prioritization Approach 27

The rest of paper is organized as follows: Section 2 gives the comparison and
categorization criteria. Section 3 discusses different approaches found in the
literature in light of the criteria. Section 4 presents an approach for suggesting a
prioritization as which component to be tested first. Finally we conclude and
highlight some possible future work in Section 5.

2 Comparison and Categorization Criteria

System modeling is a new emerging technology. System models are created to
capture different aspects of the system behavior. Several modeling languages have
been developed to model state-based software systems, e.g., State Charts, Extended
Finite State Machine (EFSM) [14], and Specification Description Language (SDL)
[15]. System modeling is very popular for modeling state-based systems, e.g.,
computer communications systems, industrial control systems, etc. System models
are used in the development process, e.g., in partial code generation, or in the testing
process to design test cases. Over the years, several model-based test generation
[14][16][17] and test suite reduction [18] techniques have been developed.

Modeling can be viewed from three different perspectives: the objective problem
(security, testing etc.), the particular problem at hand (a specific case with its own
characteristics e.g., ecommerce application), and finally the model type (e.g. FSM,
SDL, etc.). There is still much uncertainty as to which model-based approach suits
which type of Web application testing and/or verification effort. Assessing a model-
based approach, in our own view, should not only be based on the underlying model
expressiveness, but also on characteristics of the overall approach. We address this
type of uncertainty by proposing a set of attributes to allow for classification and
comparison of approaches. These assessment attributes offer more, beyond their
usefulness in carrying out comparison of approaches. They can also serve as
guidance to researchers attempting to develop model-based Web application testing
and verification approaches. We discuss these attributes in the sequel.

Aspects Coverage: This attribute considers the Web application aspects that are
being modeled by the models. These aspects are classified into three categories
namely, static, dynamic and interaction aspects.

Static aspects: Static aspects of web applications include static HTML pages and
the hyper links that connect the static pages with other static HTML pages. When the
user clicks on a static link, a request is sent to the server to retrieve the target page.

Dynamic aspects: These aspects of web application include dynamic HTML pages
that contain dynamic content and links. Dynamic contents and links are generated by
backend processing based on inputs obtained from users or other supporting software.

Interaction aspects: These aspects take into consideration the user interaction with
the web application. User interactions may include back page, switching to another
page by typing the URL in the browser, opening multiple pages at the same time.
Models can capture these types of user interactions and represent the effect on the
content, behavior or the navigation.

28 A. Al-Herz and M. Ahmed

Underlying Model: Web applications components are represented using different
conceptual models, for example, some uses object relation diagram others use finite
state machines model.

Perspective of Modeling: Web application models can be analyzed from different
perspectives, like navigation, and behavior. These perspectives can be static or
dynamic.

Objectives of the Model: Web application models have different objectives, some
models objective is testing, other models objectives are implementation or design
verification and model verification against a set of properties.

Source Code Requirement: Verification or testing can be a white box or a black
box testing or verification. If white box testing is used by a model then the source
code is required while, the black box testing requires test cases only.

Tool Support: Some models are supported by tools for automatic model
generation, verification or testing, while other models are still not supported.

Expressiveness: Some models represent and convey structural, behavioral and
functional aspects of web applications components for both external and internal view
of the component more effectively in this case the expressiveness would be high,
while other models may represent only the structural aspect or the behavioral aspect.
Some models represent the external relations between components only.

Complexity: This attribute determines the complexity of the models, some models
needs complex model to represent the components in term of the size and the attribute
needed to represent entities and relations.

3 Critical Survey

In this section, we present a summary discussion of some representative works based
on our set of attributes. The list of considered approaches in our study is not
exhaustive, but we gave attention to those works we considered representative with
regard to the subject under discussion. We also discuss the shortcomings associated
with the different approaches considered. It is worth noting here that we used
subjective ratings in evaluating the different approaches, e.g., high expressiveness and
low complexity. Future work will investigate applying more quantitative objective
ratings.

3.1 Model Checking-Based Verification of Web Application

Miao et al. [1] focus on automated verification of Web applications by using model
checking method. The approach involves two models, the design model and the
implementation model of a Web application. To verify if an implemented Web
application performs in accordance with its design, the approach analyzes the design
model to generate properties in temporal logic formulas that are model checked on the
implementation model. Their work focuses on black-box automated verification of a
Web application by using model checking method. The approach involves two

 Model-Based Web Components Testing: A Prioritization Approach 29

formal models: a design model denoted by WAD, from which the temporal logic
properties for a Web application are derived, and an implementation model, denoted
by WAI, which is model checked in order to verify those derived properties. An
Object Relation Diagram (ORD) is employed to represent the design structure of a
Web application, i.e., design model. Aiming at the verification of the external
behavior of a Web application from client’s point of view, WAD is intended to
describe Web pages, software components interacting directly with the Web pages,
and their relationships. The Kripke structure used for model checking is employed to
model the implementation of a Web application, it is a type of state transition graph
consisting of nodes representing the reachable states of the system and edges
representing the state transitions of the system. All properties generated from WAD
are model checked on WAI by using model checker SMV (Symbolic Model Verifier).
SMV will provide a diagnostic sequence in the stack whenever a violation of the
property is detected.

With regard to the tool support, this approach offers a prototype which
automatically analyzes the design model to build the properties in CTL and delegates
the task of property verification to the existing model checker SMV where the
implementation model is typed in manually.

The model’s level of expressiveness is considered to be moderate. While it
provides a way to describe the components and the relation between them and the
external view of the model very effectively, the model does not describe the low-level
details and the internal behavior of each component.

The approach is considered to be of moderate complexity; the directed graph
describes the external relation between components.

3.2 Testing Web Applications by Modeling with FSMs

In this approach the authors builds hierarchies of Finite State Machines (FSMs) that
model subsystems of the web applications [2]. This approach proceeds in two phases.
Phase 1 builds a model of the web application. This is done in four steps: (1) the web
application is partitioned into clusters, (2) logical web pages are defined, (3) FSMs
are built for each cluster, and (4) an Application FSM is built to represent the entire
web application. Phase 2 then generates tests from the model defined in Phase 1.

Tool support: They developed a research prototype in Java. It has a graphical editor
to input the FSMs and the constraint descriptions. It also generates expected outputs
in the form of the next state (LWP) to serve as a simple test oracle. Path generation
includes edge coverage and roundtrip. Input selection is based on using an input value
database. The resulting sequences of test inputs are made executable by transforming
them into an Evalid script.

With regard to the level of expressiveness, it is high in the lowest level and low in
the highest level of the hierarchy. The low level details of operations and
interconnection can be observed and described; at the higher level in the hierarchy,
however, the model becomes more abstract, and some of details become invisible.

The approach is considered to be of high complexity in the lowest level and low
complexity in the highest level of the hierarchy. At the low level of the hierarchy,
details of operations and interconnection are modeled by FSM which require many

30 A. Al-Herz and M. Ahmed

and complex interactions but in the higher level in the hierarchy the model becomes
more abstract and simpler.

3.3 An Object-Oriented Web Test Model for Testing Web Applications

Kung et al. in [3] propose a model that extends traditional test models, such as control
flow graph, data flow graph, and finite state machines to web applications for
capturing their test-related artifacts. Based on the proposed test model, test cases for
validating web applications can be derived automatically. In this methodology, both
static and dynamic test artifacts of a web application are extracted to create a Web
Test Model (WTM) instance model. Through the instance model, structural and
behavioral test cases can be derived systematically to benefit test processes. Test
artifacts are represented in the WTM from three perspectives: the object, the behavior,
and the structure.

From the object perspective, entities of a web application are represented using
object relation diagram (ORD) in terms of objects and inter-dependent relationships.

In particular, an ORD = (V, L, E) is a directed graph, where V is a set of nodes
representing the objects, L is a set of labels representing the relationship types, and (E ⊆ V x V x L) is a set of edges representing the relations between the objects, There
are three types of objects in WTM: client pages, server pages, and components, to
accommodate the new features of web applications, new relationship types are
introduced in addition to those in the object-oriented programs. The new relationship
types, navigation, request, response, and redirect are used to model the navigation,
HTTP request/ response, and redirect relations introduced by web applications,
respectively. Thus, in the ORD, the set of labels L = I, Ag, As, N, Req, Rs, Rd, where
I: inheritance, Ag: Aggregation, As: association.

From the behavior perspective, a page navigation diagram (PND) is used to depict
the navigation behavior of a web application. The PND is a finite state machine
(FSM). Each state of the FSM represents a client page. The transition between the
states represents the hyperlink and is labeled by the URL of the hyperlink. The PND
of a web application can be constructed from an ORD. To deal with the dynamic
navigation (the construction of client pages can be dynamic at runtime based on the
data submitted along with the HTTP requests or the internal states of the application.
Hence, the same navigation hyperlink may lead to different client pages). To model
this behavior a guard condition enclosed in brackets is imposed on the transition in
the PND. The guard condition specifies the conditions of the submitted data or
internal system states that must be true in order to fire the transition. To detect the
errors related to navigation behavior a navigation test tree is employed. A navigation
test tree is a spanning tree constructed from a PND, by analyzing the tree; they can
check some properties, such as reachability and deadlock, of the navigation behavior.
At the same time, a set of object state diagrams (OSDs) are used to describe the state
behavior of interacting objects. It can represent the state-dependent behavior of an
object in a web application. The state-dependent behavior for an aggregate object then
can be modeled by a composite OSD (COSD) of the corresponding OSDs.

The structure perspective of the WTM is to extract both control flow and data flow
information of a Web application. To capture control flow and data flow information,
the Block Branch Diagram (BBD) and Function Cluster Diagrams (FCD) are

 Model-Based Web Components Testing: A Prioritization Approach 31

employed in the WTM. The BBD is similar to a control flow graph. It is constructed
for each individual function of a Web application to describe the control and data
flow information, including the internal control structure, variables used/defined,
parameter list, and functions invoked, of a function. Therefore, the BBD can be used
for traditional structural testing of each individual function; the FCD is a set of
function clusters within an object. Each function cluster is a graph G = (V,E), where
V is a set of nodes representing the individual functions and E ⊆ V × V, is a set of
edges representing the calling relations between the nodes.

The approach offers a very high level of expressiveness. Different models are used
to describe external, behavioral and internal aspects of components which can express
the model effectively.

The approach is considered to be of very high complexity. Many models are used
to describe the internal, behavioral and external structure of components so the overall
system model is very complex.

3.4 Formal Verification of Web Applications Modeled by Communicating
Automata

Haydar et al. in [4] devise an algorithm to convert the observed behavior, which they
called a browsing session, into an automata based model. In case of applications
with frames and multiple windows that exhibit concurrent behavior, the browsing
session is partitioned into local browsing sessions, each corresponding to the
frame/window/frameset entities in the application under test. These local sessions are
then converted into communicating automata. They did an implementation for a
framework which includes the following steps: The user defines some desired
attributes through a graphical user interface prior to the analysis process. For
example, reachability properties, and the checking for frame errors , frames having
same name are not active simultaneously. These attributes are used in formulating the
properties to verify on the application. A monitoring tool intercepts HTTP requests
and responses during the navigation of the Web Application Under Test (WAUT).
The intercepted data are fed to an analysis tool, which continuously analyzes the data
in real time (online mode), incrementally builds an internal data structure of the
automata model of the browsing session, and translates it into XML-Promela. The
XML-Promela file is then imported into aSpin, an extension of the Spin model
checker. ASpin then verifies the model against the properties, furthermore the model
checking results include counterexamples that facilitate error tracking.

The approach is supported with a framework that is composed of; GUI to collect
desirable properties from the user, network monitoring tool to intercept HTTP request
and response, analysis tool that builds the communicating automata based on the
received data. The model is fed into aSpin for verification.

The approach offers a low level of expressiveness, as the model describes a session
or multiple sessions, which may not give a full description of the complete model of
the system; it depends on how the user will interact with the application.

The approach is considered to be of high complexity; based on the user input the
FSM can get complex.

32 A. Al-Herz and M. Ahmed

3.5 Verifying Interactive Web Programs

Licata et al. in [5] describe a model checker designed to identify errors in web
software. A technique for automatically generating novel models of web programs
from their source code was presented. These models include the additional control
flow enabled by user operations. They presented a powerful base property language
that permits specification of useful web properties, along with several property idioms
that simplify specification of the most common web properties. The authors model a
web program P by its web control-flow graph (WebCFG). The WebCFG is an
augmented control-flow graph (CFG). User interaction control flows are being added
to the model to build a sound verification tool. The authors reduce user operations to
primitive user operations proposed by Graunke et al. [8]. All traditional browser
operations can be expressed in this calculus; they just account for switch and submit.
Then they construct the WebCFG completely automatically from the source of a web
program using a standard CFG construction technique followed by a simple graph
traversal to add the post-web-interaction nodes and the web-interaction edges. The
resulting model and properties are checkable by language containment. This work
doesn’t address the concurrency issues resulting from multiple simultaneous accesses
to a server by different clients.

With regard to tool support, the authors implemented their own model checker tool
to support their approach.

The approach models are meant to prove properties of interactive web sites by
discovering user operation- related bugs, as well as providing a method for verifying
all-paths properties of interactive web sites.

The approach offers high level of expressiveness. CFGraph describe details of
behaviors of components and how these interact with each other. In addition, adding
the user operations to the model makes the model describe the behavioral aspect
based on the user operations.

The approach is considered to of very high complexity; CFGraph is very complex,
especially when the user operation is involved in the model.

3.6 Web Site Analysis: Structure and Evolution

Ricca et al. in [6] adapts an approach to analyze, test, and restructure web application
based on a reverse engineering paradigm. They didn’t propose models and
formalisms to support the design of web applications; instead, based on the
assumption that a web application already exists, they investigate different well
established methods for the analysis, testing and re-structuring of traditional software
systems, adapting them to the case of Web applications. In [6] web application is
modeled as a graph; nodes and edges are split into different subsets. Nodes subsets
are a set of all web pages; a set of frames for one web page; and a set of all frames.

Edges are also split into three subsets according to the kind of target node; a set of
hyperlinks between pages or a relation showing the composition of web page into
frames; a set of the relations between frames and pages; as they show which page in
which frame is loaded; and a set of relations showing the loading of a page into a
particular frame. The name of the frame is given as a label next to the link. This
model is implemented in ReWeb. The ReWeb [7] tool consists of three modules: a

 Model-Based Web Components Testing: A Prioritization Approach 33

Spider, an Analyzer and a Viewer. The Spider downloads all pages of a target web
site, starting from a given URL and providing the input required by dynamic pages,
and then it builds a model of the downloaded site. The Analyzer uses the UML model
of the web site and the downloaded pages to perform several analyses. Since the
structure of a Web application can be modeled with a graph, several known analysis,
working on graphs, such as flow analysis and traversal algorithms can be applied.
The Viewer provides a Graphical User Interface (GUI) to display the Web application
view as well as the textual output (reports) of the analyses.

With regard to supportability, the approach is supported by the ReWeb tool. The
ReWeb tool can periodically download the entire set of pages in a site. Results of the
analyses are then provided to the user, by exploiting different visualization
techniques. Colors are employed in the history view, while structural and system
views are enriched with powerful navigation facilities. Pop-up windows associated to
nodes are used to show the textual results of the structural analyses.

The level of expressiveness is low; the model described by directed graph only.
The approach is considered to be of low complexity; only a directed graph is involved
in the model.

3.7 Summary

Table 1 shows the summary of the 6 different methods described.

Table 1. Summary of Findings

4 Components Testing Prioritization

From Table 1 we can see that methods discussed are lacking ways to prioritize Web
application components for testing. This untreated aspect is very important especially
when we know that development and deployment cycles of Web applications are
dramatically becoming short, and testing is often considered a cost-intensive and
time-consuming process. Here, we give several suggestions which could be
investigated more thoroughly in future works. First solution is to apply an algorithm

Method Aspect type Model Perspective Objective Source
code

Tool Support Expressiveness Complexity

Miao et al. Static +
dynamic

ORD Navigation +
behavior

Implementation
verification
against design

Yes Prototype Moderate Moderate

Andrwes et al. Static +
dynamic

FSM, AFSM Navigation +
behavior

Testing No Prototype Low Low

Kung et al. Static +
dynamic

ORD, PND,
OSD, BBD,
FCD

Behavior +
navigation

Testing Yes None Very High Very High

Haydar et al. Static +
dynamic

Communicating
automata

Navigation +
behavior

Model
verification
against defined
properties

No GUI +
network
monitoring
tool +
analysis tool

Low High

Licata et al. Interaction WebCFG Interaction
behavior

Model
verification
against
interactive
properties

Yes Implement a
model
checker

High Very High

Ricca et al. Static Directed graph Navigation Original design
verification
during
evolution and
Testing

Yes ReWeb Low Low

34 A. Al-Herz and M. Ahmed

to find the minimum independent dominating set on the graph based model, then we
can consider these set as the highest priority components to test. The rationale here is
that these dominating components can be regarded as super components because they
are connected to many other components. Also the components in this way are either
dominating or dominated by others; so, all components that may lead to other
components can be tested. Another suggestion is to rank components based on the
degree value of a node. So, an important node is involved in a large number of
interactions. For directed networks, there are two notions of degree centrality: one
based on fan in-degree and the other on fan out-degree. A node with high fan in-
degree is ranked higher than those of less degree; since high fan in-degree means that
most probably many components will leads to this component. Betweeness measure
can be used to rank components. The measure reflects the intuition that an important
node will lie on a high proportion of paths between other nodes in the network.

In order to see how these suggested methods works, we will apply these methods

on an ORD model design (Fig. 1).

4.1 Minimum Independent Dominating Set Method (MIDSM)

A dominating set D of a graph G(V, E) is a subset of V in which each vertex v ∈ (V –
D) is adjacent to at least one vertex u ∈ D, i.e., (v, u) ∈ E. An independent dominating
set is a dominating set (where D is independent, i.e., (u, v) ∉ E, for all u, v ∈ D).
Since finding the minimum independent dominating set is NP-Complete problem
[21], we will use a greedy algorithm to find a set that is as minimum as possible.
First, we will find the minimum independent dominating set by using a greedy
algorithm which can be applied on undirected graph and it will choose a node with
maximum degree and delete the neighbors. So, the first step is to convert the model
to an undirected graph, the result can be seen in Fig. 2.

Fig. 1. An ORD design model [1]

 Model-Based Web Components Testing: A Prioritization Approach 35

If we apply the greedy algorithm we will choose node H which corresponds to the
grade web page as the first node because it has degree of four which is the maximum
and delete all neighbors. Now we can select either node A or node D since they have
the highest degree which is two, let us select A assuming there is no any other criteria
for selection. Now we can select node D and then select node K. So, the final set is
H, A, D and K.

Fig. 2. The undirected graph of the ORD model

Analysis

The grade web page is used and uses more components than the other nodes so it is
indeed an important page. The main page was selected as an important page but it is
not since it only contains links to two pages so it is static. Student check component
is important since it check for the validity of the user. The grade list web page is
selected as an important page but it is not since it only contains the final results which
depend on the get grade component which is more important. In addition, the method
missed by two pages which is more than that of the other components. The weakness
of this approach is when there is more than one node with the same degree; in this
case, which one to select? We could define more criteria for selection like the type of
the node and the type of the edge which can impact the selection. Another weakness
is not considering the importance of the direction which may impact the importance
of the components. Also, if we delete the neighbors, we might actually delete an
important component or page.

4.2 The Degree Measure Method (DMM)

The idea behind using a degree measure of importance in a network is the following:
An important node is involved in a large number of interactions. Formally, for an
undirected graph G, the degree centrality of a node u ∈ V(G) is given by Dm(u) =
deg(u) [19]. For directed networks, there are two notions of degree measure: one
based on fan in-degree and the other on fan out-degree, we will use the fan in-degree
measure. Now let us rank the components based on the fan in-degree. Get student
component and grade page have degree 2 which is the highest degree. Then news,
login, login fail, student view, student info, grade list pages, and student check
component with degree of one. The main page has lowest degree with degree of zero.

A C

B D F H

E G

K

I

J

36 A. Al-Herz and M. Ahmed

Analysis

The result show better ranking of importance because if the components which have
high fan in-degree fail then many other components will fail to get the services. Get
student and grades page are used by more components than the other components, so
any failure in these components will make the other component fail. The issue is that
we might have many components with same degree, the question is how we can
prioritize these with same degree; we might add more criteria like the component type
and the fan in-edges types.

4.3 Betweeness Measure Method (BMM)

Now let us use the betweeness measure to rank the importance of the components.
The idea behind this measure is the following: An important node will lie on a high
proportion of paths between other nodes in the network. Formally, for distinct nodes,
u, v, w ∈ V(G), let σuv be the total number of shortest paths between u and v and
σuv(w) be the number of shortest paths from u to v that pass through w. Also, for w ∈
V(G), let V (u) denote the set of all ordered pairs, (u, v) in V(G) V(G) such that u,
v, w are all distinct. Then, the betweenness measure of w, Bm(w), is given by Bm(w)

= ∑ , ∈ [20]. First, all shortest paths between any pairs of components in

the model are found. Then we will go over all components and see on which paths
they exist. The main page and the news page do not come between any other
components in a path so their Bm is 0. Login exists on 8 paths so its Bm is 8. Student
check comes between 14 components on different shortest paths so its Bm is 14.
Student view’s Bm is 15. Get student comes between 4 components on different
shortest paths so its Bm is 4. Student info page’s Bm is 3. Grade component’s Bm is
13. Get grade component exists on 7 paths so its Bm is 7. The grade list page is not
between any other pages so its Bm is 0. From the results we can see that student view
page has the highest Bm then student check component and then the grade page, after
that login, get grade, and get grade and student info page.

Analysis

The results show good ranking because if any components which comes between
many other components fail, then the other components will fail to reach the other
component, which means those components with high Bm are bottle nicks so they are
important and their priority in testing should be high. The weakness in this approach
is that we might have components with the same Bms, the question is which
components is more important within these components, so we need to add more
attributes like the type of components, and the type of edges in these components.

We conducted very rough set of experiments on different randomly developed
networks of components to reflect applications of different sizes. The sizes of the
networks were chosen to be between 100, 500, and 1000 nodes. The topologies of the
networks were chosen randomly. Prioritizations of the components are plotted in
Fig 3 below.

 Model-Based Web Components Testing: A Prioritization Approach 37

 A Web Application with 100 components A Web Application with 500 components

A Web Application with 1000 components

Fig. 3. Betweeness Measurements of Arbitrary Web Applications

Fig. 3 shows that components with more neighbors are of higher betweeness
measurements; and hence are of higher testing priority.

5 Conclusion and Future Work

In this paper we proposed set of attributes for classifying and comparing model-based
Web applications testing and verification approaches. We discussed six different
representative analysis models that are currently applied in the field. We summarized
our discussion in Table 1 which reveals that the methods discussed are lacking ways
to prioritize web application components for testing. We suggested three methods to
allow for prioritizing components: MIDSM, DMM, and BMM. We illustrated the
suggested methods on an ORD design model. The results show that the MIDSM has
some shortcomings and may miss important components and consider not important
components. The DMM and BMM show better results, with some issues. The issues
can be addressed by incorporating more attributes and criteria for selections like the
type of the components, and the edges, these attributes in addition to others can be
investigated in future work. Also, we plan to investigate combining the DMM and
BMM together to rank the components by assigning a percentage for each measure in
future work as well. The percentage can be learned from experience, and using
machine learning methods to find the best percentage. It is worth noting here though

38 A. Al-Herz and M. Ahmed

that in this paper we only demonstrated the approach using an illustrative example; in
future work, we will conduct more rigorous analysis of the different methods.

Another task for future work will focus on replacing the subjective scheme we
used for rating approaches (e.g., with regard to complexity and expressiveness) with
more qualitative one.

Acknowledgements. The authors wish to acknowledge King Fahd University of
Petroleum and Minerals (KFUPM) for utilizing the various facilities in carrying out
this research.

References

[1] Miao, H., Zeng, H.: Model Checking-based Verification of Web Application. In:
Proceedings of 12th IEEE International Conference on Engineering Complex Computer
Systems pp. 47–55 (2007)

[2] Andrews, A., Offutt, J., Alexander, R.: Testing Web Applications by Modeling with
FSMs. Software Systems and Modeling 4(3), 326–345 (2005)

[3] Kung, D.C., Liu, C.H., Hsia, P.: An Object-Oriented Web Test Model for Testing Web
Applications. In: Proceedings of the 1st Asia-Pacific Conference on Web Applications,
pp. 111–120. IEEE Press, New York (2000)

[4] Haydar, M., Petrenko, A., Sahraoui, H.: Formal Verification of Web Applications
Modeled by Communicating Automata. In: Proceedings of the 24th IFIP International
Conference on Formal Techniques for Networked and Distributed Systems, Madrid,
Spain, pp. 115–132 (2004)

[5] Licata, D.R., Krishnamurthi, S.: Verifying interactive web programs. In: Proceedings of
the IEEE International Conference on Automated Software Engineering, pp. 164–173.
IEEE Computer Society, Los Alamitos (2004)

[6] Ricca, F., Tonella, P.: Web site analysis: Structure and evolution. In: Proceedings of the
International Conference on Software Maintenance, pp. 76–86 (2000)

[7] Ricca, F., Tonella, P.: Building a Tool for the Analysis and Testing of Web Applications:
Problems and Solutions. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031,
pp. 373–388. Springer, Heidelberg (2001)

[8] Graunke, P.T., Findler, R.B., Adsul, B., Felleisen, M.: Modeling Web Interactions. In:
Degano, P. (ed.) ESOP 2003. LNCS, vol. 2618, pp. 238–252. Springer, Heidelberg
(2003)

[9] Benedikt, M., Freire, J., Godefroid, P.: VeriWeb: Automatically Testing Dynamic Web
Sites. In: Proceedings of 11th International World Wide Web Conference (2002)

[10] Sampath, S., Bryce, R., Viswanath, G., Kandimalla, V., Koru, A.G.: Prioritizing User-
Session-Based Test Cases for Web Application Testing. In: Proceedings of IEEE Int.
Conf. Software Testing, Verification, and Validation, pp. 141–150 (2008)

[11] Bryce, R.C., Sampath, S., Memon, A.M.: Developing a Single Model and Test
Prioritization Strategies for Event-Driven Software. IEEE Transactions On Software
Engineering 37, 48–64 (2011)

 Model-Based Web Components Testing: A Prioritization Approach 39

[12] Korel, B., Tahat, L.H., Harman, M.: Test Prioritization Using System Models. In:
Proceedings of the 21st IEEE International Conference on Software Maintenance (2005)

[13] Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Prioritizing Test Cases for
Regression Testing. IEEE Trans. Software Eng. 27(10), 929–948 (2001)

[14] Cheng, K., Krishnakumar, A.: Automatic Functional Test Generation Using The
Extended Finite State Machine Model. In: Proceedings of ACM/IEEE Design
Automation Conf. pp. 86–91 (1993)

[15] Dssouli, R., Saleh, K., Aboulhamid, E., En-Nouaary, A., Bourhfir, C.: Test Development
For Communication Protocols: Towards Automation. Computer Networks 31, 1835–1872
(1999)

[16] Dick, J., Faivre, A.: Automating the Generation and Sequencing of Test Case from
Model-Based Specification. In: Proceedings of International Symposium on Formal
Methods, pp. 268–284 (1992)

[17] Vaysburg, B., Tahat, L., Korel, B.: Dependence Analysis in Reduction of Requirement
Based Test Suites. In: Proceedings of ACM International Symposium on Software
Testing and Analysis, pp. 107–111 (2002)

[18] Korel, B., Tahat, L., Vaysburg, B.: Model Based Regression Test Reduction Using
Dependence Analysis. In: Proceeding of IEEE International Conf. on Software
Maintenance, pp. 214–223 (2002)

[19] Nieminen, J.: On centrality in a graph. Scandinavian Journal of Psychology 15, 322–336
(1974)

[20] Freeman, C.: A set of measures of centrality based on betweenness. Sociometry 40, 35–
41 (1977)

[21] Garey, M.R., Johnson, D.S.: Computers and intractability. A guide to the theory of NP-
completeness. W. H. Freeman, San Francisco (1979)

[22] Conallen, J.: Modeling web application architectures with UML. Communications of the
ACM 42(10), 63–71 (1999)

[23] de Alfaro, L.: Model checking the world wide web. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 337–349. Springer, Heidelberg (2001)

[24] Alpuente, M., Ballis, D., Falaschi, M.: A rewriting-based framework for web sites
verification. Electr. Notes Theor. Comput. Sci. 124(1), 41–61 (2005)

[25] Chen, J., Zhao, X.: Formal models for web navigations with session control and browser
cache. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp.
46–60. Springer, Heidelberg (2004)

[26] Bordbar, B., Anastasakis, K.: MDA and Analysis of Web Applications. In: Draheim, D.,
Weber, G. (eds.) TEAA 2005. LNCS, vol. 3888, pp. 44–55. Springer, Heidelberg (2006)

[27] Winckler, M., Palanque, P.: StateWebCharts: A formal description technique dedicated to
navigation modelling of web applications. In: Jorge, J.A., Jardim Nunes, N., Falcão e
Cunha, J. (eds.) DSV-IS 2003. LNCS, vol. 2844, pp. 61–76. Springer, Heidelberg (2003)

[28] Han, M., Hofmeister, C.: Modeling and verification of adaptive navigation in web
applications. In: ICWE. pp. 329–336 (2006)

[29] Di Sciascio, E., Donini, F., Mongiello, M., Piscitelli, G.: Web applications design and
maintenance using symbolic model checking. In: Proceedings of the European
Conference on Software Maintenance and Reengineering, pp. 63–72. IEEE Computer
Society, Los Alamitos, CA, USA (2003)

40 A. Al-Herz and M. Ahmed

[30] Castelluccia, D., Mongiello, M., Ruta, M., Totaro, R.: Waver: A model checking-based
tool to verify web application design. Electr. Notes Theor. Comput. Sci. 157(1), 61–76
(2006)

[31] Bellettini, C., Marchetto, A., Trentini, A.: Webuml: reverse engineering of web
applications. In: SAC, pp. 1662–1669 (2004)

[32] Wu, Y., Outt, J.: Modeling and testing web-based applications. Technical report, George
Mason University (2002)

[33] Syriani, J.A., Mansour, N.: Modeling Web Systems Using SDL. In: Yazıcı, A., Şener, C.
(eds.) ISCIS 2003. LNCS, vol. 2869, pp. 1019–1026. Springer, Heidelberg (2003)

	Model-Based Web Components Testing: A Prioritization Approach
	Introduction
	Comparison and Categorization Criteria
	Critical Survey
	Model Checking-Based Verification of Web Application
	Testing Web Applications by Modeling with FSMs
	An Object-Oriented Web Test Model for Testing Web Applications
	Formal Verification of Web Applications Modeled by Communicating Automata
	Verifying Interactive Web Programs
	Web Site Analysis: Structure and Evolution
	Summary

	Components Testing Prioritization
	Minimum Independent Dominating Set Method (MIDSM)
	The Degree Measure Method (DMM)
	Betweeness Measure Method (BMM)

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

