
Chapter 18
Sliding Mode Controllers and Observers for
Electromechanical Systems

J. de Leon-Morales

Abstract. Controllers and observers for electromechanical systems are widely used
and implemented in the industry in order to improve its performance. Among differ-
ent electromechanical systems we can find interesting domains of application such
as power systems, UAVs, teleoperation. This paper intents to show the advantages of
the control and observer design using sliding mode techniques. These domains are
related with the research topics of the Mechatronics laboratory of the Nuevo Leon
University, in the CIIDIT-UANL Research Institute.

18.1 Introduction

During the last two decades significant interest on sliding mode control has been
generated in the research community. The success of sliding mode techniques is
the significative performance of the system due to the insensitivity to parameters
variations and the complete rejection of disturbances ( [13]). However, some chal-
lenges are present due to the so-called chattering phenomenon. Several efforts to
explain and reduce the effects of the chattering have been done in order to avoid this
limitation. The propose of this paper is to provide some illustrative applications of
the sliding-mode design which have been developed recently in the Mechatronics
laboratory of the CIIDIT-UANL Research Institute ( [17], [25], [28], [29]).

An overview of the applications of the sliding modes to electromechanical sys-
tems is presented in this work. The control of electrical machines in power systems,
UAVs like small helicopters and the most recent applications in teleoperation of the
electromechanical systems like a robots or machines, are probably the most chal-
lenging topics. We focus on the control of systems using directly or indirectly the
theoretical concepts of sliding mode to achieve stability, regulation or tracking.
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18.1.1 Application Domains of Sliding Mode

18.1.1.1 Power Systems: Synchronous Machine and Multi-machine Systems

The transient stability of power systems is a classical dynamical control system
problem. The application of nonlinear control methods to design the excitation con-
trol has been investigated for improving the transient stability of a power system.
A survey on power systems control shows that most existing controllers are de-
signed assuming that power systems have fixed structure and constant parameters.
However, in power systems uncertainties always exist and they are due to sudden
load shedding, generation tripping, occurrence of faults, change of parameters and
network configuration among others. These problems are some of the typical con-
ditions found in power systems which must be taken into account for control and
observer design (see [11], [12], [14], [16], [17], [18]). In this work, a synchronous
machine connected to an infinity bus (SMIB) and a multi-machine system are con-
sidered for illustrating the control design using sliding mode techniques to improve
the transient stability of such systems.

18.1.1.2 UAV: Twin Rotor System

Recently, a lot of works related with the control of the UAV have been published.
The main objective is to design controllers stabilizing UAV’s taking into account
the perturbations and tracking a specific trajectory. Furthermore, the helicopter is an
aircraft that is lifted, propelled and maneuvered by vertical and horizontal rotors.
All twin rotor aircraft have high cross-coupling in all degrees of motion. For this
reason, this system poses very challenging problem of precise maneuvering in the
presence of cross-coupling ( [19], [20]). In this work, some results are presented by
applying a sliding mode control which is implemented in a setup of a twin rotor
system.

18.1.1.3 Teleoperation

The evolution of important technologies and the development of computational tools
have allowed the implementation of robotic systems in the industry. Recently, the
application of robots in telesurgery and the use the images have permitted to im-
prove accuracy and performance and helping surgeon in complex and delicate surg-
eries, saving time and money. Furthermore, the stability and transparency are two
of the most important topics in teleoperation. In particular, maintain stability of the
closed-loop system irrespective of the behavior of the operator or the environment,
is one of the most important tasks to be considered if a communication medium
(wireless or wired) is included in the scheme. The complexity of the overall system
introduces distortion, delays and losses that impact in the stability and performance.
Several schemes have been proposed to study such systems, for example those
based on passivity, which is inspired in the network theory in transmission lines.
However, sliding-mode control has been used extensively in robotics to cope with
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parametric uncertainties and hard nonlinearities, in particular for time delay tele-
operators, which have gained gradual acceptance due to technological advances. In
this work, a scheme to design a sliding mode teleoperator controller to guarantee
robust tracking under unknown constant time delay is presented ( see for more de-
tails [1], [8], [9]).

18.1.2 Paper Structure

The rest of the work is organized as follows. Section 18.2 shows the general ideas of
sliding modes techniques used to design an observer and a controller of a power sys-
tem, where a mathematical model of one machine connected to the transmission line
to the infinity bus and multi-machine power system are presented. In Section 18.3,
the model of a twin rotor system is presented, where results are given for illustrating
the performance of this methodology. Furthermore, using a master-slave configura-
tion, the teleoperation problem is analyzed in Section 18.4. A control scheme using
a super twisting algorithm based on sliding-modes is given to solve the bilateral
problem which is robust in presence of unknown constant time-delays. Finally, con-
clusions are presented in Section 18.5.

18.2 Power Systems: Synchronous Machine and Multi-machine
Systems

Most of the electrical power systems are operating closer to their technical limits
putting restrictions to supply electrical energy to all customers which represent a big
challenge to the electrical industry. Conventional controllers based on approximated
linearized models are usually tuned at one particular operating point. Nevertheless,
due to nonlinear nature of power systems it may be required to be re-tuned when the
operating point changes, assuring in this way a satisfactory dynamic performance.
Furthermore, in case of severe disturbances, the configuration of power system may
be drastically changed. Under such changing conditions, nonlinear controllers of-
fer an alternative to traditional controllers, allowing to improve the performance of
power systems under such uncertain conditions. In what follows, we present a con-
trol scheme based on sliding mode techniques in order to guarantee the stability
under disturbances present in the line or parametric uncertainties.

18.2.1 Synchronous Machine

Although the existing classical controllers have good dynamical performance for
a wide range of operating conditions and disturbances, however, the real electric
power system have been experimenting a dramatic change in recent years. Because
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of that, a lot of attention has been paid to the application of advanced control tech-
niques in power systems as one of the most promising application areas.

In this Section, the control objective is to design a sliding mode controller for a
synchronous machine connected to an infinity bus (SMIB) in such a way to regulate
the terminal voltage and improve the transient stability of the system over a wide
operating region and under external perturbations.

The equations describing the electromechanical transient behavior of a syn-
chronous machine with flux linkage variations, machine damping and transient
saliency included are the following
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(18.1)

together with the linear algebraic relations between currents and flux linkages:
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where

δ (t) Rotor angle, in radians;
ω(t) Relative speed, in rad/s;
ωs = 2π fs, Synchronous machine speed, in rad/s;
H Inertia constant, in seconds;
D Damping factor;
Tm Mechanical power input, in p.u.
Te Electrical power output, in p.u.;
E f Excitation system voltage, in p.u.
T ′

do Open circuit d-axis time constant, in sec;
T ′

qo Open circuit q-axis time constant, in sec;
T ′′

do d-axis sub-transient time constant, in sec;
T ′′

qo q-axis sub-transient time constant, in sec;
xd d-axis synchronous reactance, in p.u.;
xq q-axis synchronous reactance, in p.u.;
x′d d-axis transient reactance, in p.u.;
x′q q-axis transient reactance, in p.u.;
x′′d d-axis sub-transient reactance, in p.u.;
x′′q q-axis sub-transient reactance, in p.u.;
Iq(t) and Id(t) Currents in d-q reference frame of the generator,
E ′

d(t) Transient EMF in the direct axis,
E ′

q(t) Transient EMF in the quadrature axis,
ψd and ψq Flux linkages, direct and quadrature.
where p.u. stands per unit.

18.2.2 One Axes Model

In power systems, models of reduce dimension are frequently used which take into
account some physical considerations in order to study the transient stability of the
synchronous machine and design a controller.

One of the most used model for designing a nonlinear controller is the so-called
the one axes model. Assuming that the stator sub-transient dynamics and those of
the transmission line are neglected, taking into account that T ′′

qo, T ′′
do and T ′

qo are
sufficiently small, and neglecting the dynamics driven the turbines assuming the
mechanical torque TM is constant, and taking into account the assumption that the
impedance are constant and Xq = X ′

d . Then, a 6th order model of the generator is
represented by the following one axes model

⎧
⎪⎨
⎪⎩
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with the linear algebraic relations:

0 = (Rs + Re) Id− (
X ′

q + Xep
)

Iq +Vssin(δ −θvs) (18.4)

0 = (Rs + Re) Iq− (
X ′

d + Xep
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Id −E ′
q +Vscos(δ −θvs) (18.5)

where Te = E ′
qIq , and E f (t) is the input of the system. Taking the system described

by (18.1), the control problem can be formulated as follows:

Control objective: Considering the dynamical system (18.1) and using the
only available information, design a control law u(t) such that the rotor angle
achieves the prescribed behavior with all the internal variables of the system be-
ing bounded. Then, in order to design a controller some assumptions are introduced.

Assumptions
A1. δ is available by measurement and the operating point (δ ∗, 0, E

′∗
q ) is known.

A2. The mechanical power Pm is constant and known and all system parameters are
known.
A3. No saturation in the model is considered.

18.2.3 Sliding-Mode Controller Design

Now, we introduce the most important results related to high order sliding mode
which will be considered in the sequel (see [3], [4], for more details).

Consider systems belonging to a class of single-input-single-output systems with
a known relative degree r, which are represented by

ẋ = f (x)+ g(x)u, σ = σ(t,x) (18.6)

where x(t0) = x0, t0 ≥ 0, x ∈ Bx ⊂ R
3 is the state vector, u ∈R

n is the control input
vector, the field vectors f and g are assumed to be bounded with their components
being smooth function of x and σ : R

n+1 → R are unknown smooth functions. Bx

denotes a closed and bounded subset, centered at the origin. In order to design a
finite-time convergent controller some conditions are required. Since the relative
degree r of the system is assumed to be constant and known, the control explicitly
appears first time in rth total time derivative of σ and

σ (r) = h(t,x)+ m(t,x)u (18.7)

where h(t,x) = σ (r)|u=0, m(t,x) = (∂/∂u)σ(r) 	= 0. It is supposed that for some
Km,KM,C > 0

0< Km ≤ ∂
∂u

σ (r) ≤ KM |σ (r)|u=0 ≤C (18.8)
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which is always true at least locally. From (18.7) and (18.8),

σ (r) ∈ [−C,C]+ [Km,KM]u (18.9)

The closed differential inclusion is understood here in the Filippov sense, which
means that the right-hand vector set is enlarged in a special way, in order to sat-
isfy certain and semi-continuity conditions. The inclusion only requires to know the
constants r, C, Km and KM of the system (18.6). These conditions allow to give a
solution to this control problem (see [4]).

To design a high order sliding mode control for the system, we consider the fol-
lowing n-dimensional nonlinear surface defined by

σ(x,x∗) = 0 (18.10)

where x∗ is equilibrium point of the system and each function σi : R
3 → R, i =

1, ...,n, is a C1 function such that σi(0) = 0. Then, provided that successive total
time derivatives σ , σ̇ , ...,σ (r−1) are continuous functions of the closed-system state-
space variables, and

σ = σ̇ = ...= σ (r−1) = 0 (18.11)

is a nonempty integral set, the motion of (18.11) is called r-sliding mode. Under the
above considerations the controller which will be designed for finite-time stabiliza-
tion of smooth systems at an equilibrium point, is a quasi-continuous high order slid-
ing mode controller, which is discontinuous at least (18.11), and r− sliding homo-
geneous (see [3] and [4] for more details). This controller can be determined as fol-
lows. Let us i = 0, ...,r−1. Denote ϕ0,r =σ N0,r = |σ |, Ψ0,r = ϕ0,r/N0,r = signσ ,

ϕi,r = σ (i) +βiN
(r−i+1)
i−1,r Ψi−1,r (18.12)

Ni,r = |σ (i)|+βiN
(r−i)/(r−i+1)
i−1,r (18.13)

Ψi,r = ϕi,r/Ni,r (18.14)

where βi, ...,βr−1, α are positive numbers, which are chosen sufficiently large in the
list order, the controller

u =−αΨr−1,r(σ , σ̇ , ...,σ r−1) (18.15)

is r-sliding homogeneous and provided for the finite-time stability, σ = 0. Each
choice of parameters β1, ...,βr−1 determines a controller family applicable to all
systems (21.13) of relative degree r.

18.2.3.1 Differentiator Design

It is clear that in order to implement the control law (18.15), it is necessary to know
the real time exact calculation or direct measurement of σ , σ̇ , σ̈ or all components
of the state vector. However, in order to reduce the number of sensors, the only mea-
surable signal in the system is the rotor angle δ . Combining the controller (18.15)
and the homogeneous differentiator (see [3]) given by
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ż0 = v0

v0 = −λrL1/r|z0 −σ |(r−1)/rsign(z0 −σ)+ z1
...

żk = vk

vk = −λr−kL1/(r−k)|zk − vk−1|(r−k−1)/(r−k)sign(zk − vk−1)+ zk+1
żr−1 = −λ1Lsign(zr−1 − vr−2)

(18.16)

for k = 1,..., r-2; where z0, z1,..., zk are estimates of the k-th derivatives of σ .

18.2.3.2 Sliding-Mode Control for SMIB Power Systems

Now, the proposed methodology is applied to the SMIB system (18.1) as shown in
Figure 18.1. Since system (21.13) has relative degree equal to 3 and x∗ = (x∗1,x

∗
2,x

∗
3)

is a stable equilibrium point of system (21.13). Consider the following nonlinear
switching surface defined by σ(x,x∗) = x1 − x∗1, where

σ̇(x,x∗) = x2

σ̈(x,x∗) = a1−a2x2− a3

a4 + a5(x3−a6)
sin(x1)

Fig. 18.1 Synchronous generator connected to a infinity bus.

Remark 18.1. It is clear that other switching surfaces can be defined.

Simulations results obtained using the following system parameters. Generator:
ωs = 377 rad/s, D = 0, H = 3.542, Tm = 0.6 pu,T ′

do = 6.66, T ′
qo = 0.44, T ′′

do = 0.03,
T ′′

qo = 0.05, xd = 1.7572, xq = 1.5845, x′d = 0.4245, x′q = 1.04, x′′d = 0.25, x′′q = 0.25,
Re = 0. Infinite bus: Vs = 1. Transmission line: R = 0, Xl1 = 0.45, Xl2 = 0.30.
For the differentiator: λ1 = 1.1, λ2 = 1.5, λ3 = 2 and L = 200. Control input
uB: α1 = 0.7. Control input E f : α2 = −20. The initial conditions were chosen
as follows. δo = .744rad; ωo = 377 rad/s ;E ′

qo = 1.34 p.u., E ′
do = 0.165 p.u.;

ψqo = −0.48 p.u.; ψdo = 1.109 p.u. It is worth mentioning that the sliding-mode
differentiator-controller is computed form the 3er model and it is implemented in
the 6th order model.
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The simulation results using the sliding mode control are shown in the Figure 18.2
and Figure 18.3, where we can appreciate the good performance of such controller
under of the presence of a triphasic failure in the line. Notice that the controller stabi-
lize all variables around the equilibrium point and damps out the angle oscillations.
It is clear that the proposed scheme has a good performance inreducing overshoots
and oscillations in few cycles.
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Fig. 18.2 Responses of the system in closed-loop.

18.2.4 Multi-machine Mathematical Model

Now, we study, under some standard assumptions, the dynamics of n interconnected
generators through a transmission network can be described by the one axes model
(21.13), (see [11]). The network has been reduced to internal bus representation as-
suming the loads to be constant impedances and taking into account the presence of
transfer conductances. Then, the dynamical model of the i-th machine is represented
by ⎧⎪⎨

⎪⎩

δ̇i = ωi −ωs

ω̇i = ωs
2Hi

(
Pmi −Di(ωi −ωs)−E ′

qi
Iqi

)

Ė
′
qi

= 1
T
′

di

(E fi −E ′
qi
− (Xdi −X ′

di
)Idi)

(18.17)
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Fig. 18.3 Responses under triphasic failure.

where

Iqi = GiiE
′
qi

+
n

∑
j=1, j 	=i

E ′
q j

{
Gi jcos(δ j − δi)−Bi jsin(δ j − δi)

}

Idi =−BiiE
′
qi
−

n

∑
j=1, j 	=i

E ′
q j

{
Gi jsin(δ j − δi)+ Bi jcos(δ j − δi)

}

Iqi , Idi Currents in d-q reference frame of the i-th generator,
E ′

qi
(t) Transient EMF in the quadrature axis,

E fi(t) The equivalent EMF in the excitation coil,
Xdi , X ′

di
Direct axis and direct axis transient reactance, respectively,

Pmi Mechanical input power,in p.u.
Di Damping factor; in p.u.
Hi inertia constant, in seconds;
T ′

di
Direct axis transient short circuit time constant, in seconds;

δi(t) Rotor angle, in radians;
ωi(t) Relative speed,
ωs = 2π fs Synchronous machine speed, in rad/s;
Gi j, Bi j {i j} nodal conductance and susceptance matrices, respectively,

which are symmetric; at the internal nodes after eliminating all physical buses, in
p.u.. Then, the state space representation of the multi-machine power system is given
by
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⎧⎨
⎩

ẋi1 = xi2

ẋi2 = fi1(X)
ẋi3 = fi2(X)+ ui

where

fi1(X) = ai−bixi2− cix
2
i3 −dixi3

n

∑
j=1, j 	=i

x j3
{

Gi jcos(x j1− xi1)−Bi jsin(x j1− xi1)
}

fi2(x) = − eixi3 + hi

n

∑
j=1, j 	=i

x j3
{

Gi jsin(x j1− xi1)+ Bi jcos(x j1− xi1)
}

ai = (ωs/2Hi)Pmi , bi = (ωs/2Hi)Di, ci = (ωs/2Hi)Gii

di = ωs/2Hi, ei = (1 +(Xdi −X
′
di
)Bii)/T

′
di
, hi = (Xdi −X

′
di
)/T

′
di

are the system parameters, Xi = [xi1,xi2,xi3]T = [δi(t),ωi(t),E
′
qi
(t)]T for i = 1, ...,n,

represents the state vector of i-th subsystem, thus X = [X1,X2, ...,Xn]T is the state
vector of multi-machine system and the control inputs is given by ui = (1/T

′
di
)E f i(t).

The control objective can be established as follows: Considering the model
(18.17) and assuming that the currents Iqi(t) and Idi(t) and the rotor angle δi(t)
of each generator are available for measurement. Then, design a robust excitation
control law for the system (18.17) in such a way the transient stability properties
of system’s operating point are guarantee improving its behavior under presence of
noise in the measurable signals and faults in the network.

18.2.4.1 Sliding-Mode Control for Multi-machine Power Systems

Now, we design a control law for n interconnected machines based on sliding mode
technique in such a way the stability properties of the system are improved. Since
each subsystem (18.17) has relative degree equal to 3, then the resulting control law
is given by

u =−α σ̈ + 2(|σ̇ |+ |σ |2/3)−1/2(σ̇ + |σ |2/3signσ)
|σ̈ |+ 2(|σ̇ |+ |σ |2/3)1/2

(18.18)

Now, considering the following nonlinear switching surface defined by σ(X−X∗)=
(σ1(X −X∗),σ2(X −X∗),σ3(X −X∗))T = 0, where

σi(X) = xi1− x∗i1
σ̇i(X) = xi2

σ̈i(X) = ai−bixi2− cix
2
i3−dixi3Iqi

for i = 1,2,3, X∗
i = (x∗i1,x

∗
i2,x

∗
i3) is an equilibrium point.
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Remark 18.2. It is worth noticing that the controller is expressed only in terms of
local measurable variables (xi1, xi2, xi3) and Iqi for i = 1,2,3 . Consequently, the
resulting controller is a decentralized output feedback (see [3], [14]).

Now, assuming that the only measurable signals in the system are the rotor angle δi,
in order to reduce the number of sensors. Then, the control objective is to implement
a finite-time convergent differentiator based on high order sliding mode, when the
outputs σi = δi − δ ∗i are available to estimate the values of σ̇i and σ̈i. The robust
control law stabilizing the synchronous machine i, for i = 1,2,3; is given by

ui =−αiΨr−1,r(zi0,zi1,zi2) (18.19)

where zi0,zi1, and zi2 are given by the differentiator

żi0 = vi0

vi0 = −λi3L1/3
i |zi0−σi|2/3sign(zi0−σi)+ zi1

żi1 = vi1

vi1 = −λi2L1/2
i |zi1− vi0|1/2sign(zi1 − vi0)+ zi2

żi2 = −λi1Lisign(zi2 − vi1)

(18.20)

and the parameters of the differentiator (18.20) are chosen according to the condition

|σ (r)
i | ≤ Li, when Li satisfies Li ≥Ci +αiKM . Finally, taken the following computer-

tested values λi1 = 1.1, λi2 = 1.5 and λi3 = 2 (see [3] for more details).
Notice that in the differentiator not appear the terms of interconnection, therefore

the control scheme is completely decentralized. Furthermore, the order of the differ-
entiator is not associated with number of machines interconnected in the network, it
depends only on the relative degree of the model of the generator used for achieving
the control objective. Furthermore, finite-time convergence of the observer allows
to design the observer and the control law separately, i.e. the separation principle is
satisfied.

18.2.4.2 Simulation Results

Now, we present some simulation results when the proposed scheme is imple-
mented in a multi-machine system. In Figure 18.4 is shown the multi-machine
system considered which represent a system of 3 generators interconnected. The
numerical values of the generators parameters are presented in the Table 1.

Table 1 Generators parameters.

Parameter Gen1 Gen2 Gen3

H(seg) 23.64 6.4 3.01
Xd(pu) 0.146 0.8958 1.3125
X ′

d(pu) 0.0608 0.1198 0.1813
D(pu) 0.3100 0.5350 0.6000
Pm(pu) 0.7157 1.6295 0.8502
T ′

do(seg) 8.96 6.0 5.89
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Load A
Load B

Load C

Fig. 18.4 Three-machine system.

Furthermore, the topology of the network has been represented by the conductance
and susceptance nodal matrices

G =

⎡
⎣

0.8453 0.2870 0.2095
0.2870 0.4199 0.2132
0.2095 0.2132 0.2770

⎤
⎦ , B =

⎡
⎣
−2.9882 1.5130 1.2256
1.5130 −2.7238 1.0879
1.2256 1.0879 −2.3681

⎤
⎦
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Fig. 18.5 Responses of the three-machine system.
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In order to implement the controller, the following equilibrium point of the three-
machine system is considered.

EP1 :

⎧
⎨
⎩

x∗11 = 0.0396 x∗12 = 0 x∗13 = 1.0566
x∗21 = 0.3444 x∗22 = 0 x∗23 = 1.0502
x∗31 = 0.2300 x∗32 = 0 x∗33 = 1.017

The parameters of the differentiators were selected as follows: λi1 = 1.1, λi2 = 1.5,
λi3 = 2, L = 500, for i = 1,2,3.

The performance of the proposed scheme is illustrated in Figure 18.5, where
the responses of all state variables of the multi-machine system are shown. Notice
that the good performance of the proposed controller has a better performance and
stabilizes the machine variables and damps out the oscillations few cycles after.

18.3 Helicopter: Twin Rotor System

Helicopter is an aircraft that is lifted, propelled and maneuvered by vertical and hor-
izontal rotors. All twin rotor aircrafts have high cross-coupling in all their degrees
of motion. Especially the gyroscopic effect on azimuth dynamics prevents precise
maneuvers by the operator emphasizing the need to compensate cross-coupling, a
task that clearly adds to the workload for the pilot if done manually.

The twin rotor system recreates a simplified behavior of a real helicopter with
fewer degrees of freedom. In real helicopters the control is generally achieved by
tilting appropriately blades of the rotors with the collective and cyclic actuators,
while keeping constant rotor speed. To simplify the mechanical design of the sys-
tem, the twin rotor system setup considered in this presentation, is designed slightly
differently. In this case, the blades of the rotors have a fixed angle of attack, and
control is achieved by controlling the speeds of the rotors. As a consequence of this,
the twin rotor system has highly nonlinear coupled dynamics. Additionally, it tends
to be non-minimum phase system exhibiting unstable zero dynamics. This system
poses very challenging problem of precise maneuvering in the presence of cross-
coupling. It has been extensively investigated under the algorithms ranging from
linear robust control to nonlinear control domains.

In this Section, the control objective is to design a robust controller for a twin
rotor system taking into account the cross-couplings residing in the helicopter dy-
namics in such a way the improve its stability under external disturbances.

18.3.1 Dynamical Model of a Twin Rotor System

The dynamical model of the 2-DOF twin rotor system is described by the following
equations
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ẋ1 = x2

ẋ2 =

{
g [(A−B)cos(x1)−C sin(x1)]+ lmFv − [A + B +C]sin(x1)cos(x1)x2

4

}
Jv

− { fvx2−a1|ωm|x2 + khvuh}
Jv

ẋ3 = xi4

ẋ4 =
ltFh cos(x1)− fhx4−a2|ωt |x4 + kvhuv

Dsin(x1)2 + E cos(x1)2 + F
(18.22)

where X = [x1, ...,x4]T represents the state vector of the system such as X =
[θ , θ̇ ,ψ , ψ̇ ].
θ ,ψ represent vertical and horizontal angles, respectively.
θ̇ , ψ̇ represent vertical and horizontal velocities.
A,B,C,D,E,F are inertial constants taken from experimental setup measures.
lm, lt are the lengths of the main and tail parts of the beam.
fv, fh are viscous friction terms relative to vertical and horizontal axes.
ωm,ωt are angular velocities from main and tail rotors. Relationship has been ex-
perimentally determined, depends on the input voltage.
Jv is the sum of moments of inertia relative to the horizontal axis.
Fv,Fh denote the dependence of the propulsive force on the angular velocity of the
main and tail rotors (experimentally determined).
a1,a2 are model constants.
khv and kvh represent cross-coupling constant terms.
uv and uh represent the voltage applied to motors.
The angles θ and ψ are the measurable outputs.
Velocities θ̇ and ψ̇ are assumed to be non-measurable states.

In the control system and robotic communities have gained interest for the develop-
ment of observers applied to UAVs due to the important developments of embedded
electronics and micro-controllers. This technological improvement has motivated
the testing of more sophisticated algorithms in real time.

Motivated by previous arguments, in what follows a differentiator will be de-
signed in order to solve the problem of speed estimation of a twin rotor system,
when the vertical and horizontal angles are available from measurements.

18.3.1.1 Observer Design

Form the model (18.22), and knowing that the outputs of the system y1 = x1 and y2 =
x3 are measurable, we use a differentiator in order to estimate the non measurable
state components. For that

żi,0 = νi,0

νi,0 = −λi,2L1/2
i |zi,0 −σi|1/2sign(zi,0 −σi)+ zi,1

żi,1 = −λi,1Lisign(zi,1 −νi,0) (18.23)
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Fig. 18.6 Helicopter: twin rotor system setup.

for i = 1,2. Then, the controller is of the form.

ui =−αisign(zi,1)+ |zi,0|1/2 sign(zi,0)) (18.24)

where u1 = uh and u2 = uv.

18.3.1.2 Simulation Results

In this Section, we provide simulation results to illustrate the effectiveness of the
proposed methodology when applied to the twin rotor systems.

The case of study concerns the design of a robust control for twin rotor system
of a 2-DOF helicopter setup (see Figure 18.6).

Platform consists of a beam pivoted on its base in such a way that it can rotate
freely both in the horizontal and vertical planes. At both ends of the beam there
are rotors (main and tail rotors) driven by DC motors. A counterbalance arm with a
weight at its end is fixed to the beam at the pivot. The state of the beam is described
by four process variables: horizontal and vertical angles measured by position sen-
sors fitted at the pivot, and two corresponding angular velocities. Two additional
state variables are the angular velocities of the rotors, measured by tacho-generators
coupled with the driving DC motors.

The numerical values from the system parameters were Jv = 0.02421,m =
0.5920, lm = 0.202, lt = 0.216,g = 9.8,A = 1.0671,B = 1.4678,C = 0.0044,D =
0.0006225,E = 0.0224,F = 0.0021, fv = 45, fh = 90,a1 = 0.1,a2 = 0.1,kvh =
20,khv = 18.
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Fig. 18.7 Reference and horizontal response of helicopter system with 2-DOF.

Fig. 18.8 Reference and vertical response of helicopter system with 2-DOF.

Defining σ1 = y1− yre f ,1 and σ1 = y3− yre f ,2, where yre f ,1 = 0.1sin(wt) of 1/60
Hz frequency and yre f ,2 = 0.4Square(t) of 1/0.015 Hz frequency. Assuming the he-
licopter starts moving from a rest point, initial value of the states variables were
x1(0) = 0.01, x3(0) = 0.01, x2(0) = 0.01, x4(0) = 0.01. Furthermore, the differ-
entiator parameters were chosen as follows: λ1,1 = 1.5, λ1,2 = 1.1, λ2,1 = 1.85,
λ2,2 = 1.81, L1 = 20, L2 = 20. Finally, the control parameters were chosen as fol-
lows: α1 = 18.02, α2 = 450.02.
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In Figure 18.7 and Figure 18.8 are plotted the responses of vertical and horizon-
tal angles, respectively; tracking the desired reference and which are obtained from
the twin rotor system setup. In all simulations, we can see that the output controller
tracks the desired time varying references of the horizontal and vertical angles. Fur-
thermore, we can see that the position and speed converges to the desired references
in finite-time. It is clear that the proposed controller has a good performance in terms
of rate of convergence.

18.4 Teleoperation Bilateral: Master-Slave Systems

18.4.1 Introduction

Recently, the application of nonlinear control theory has attracted the attention of
the research community to understand and overcome problems in bilateral teleop-
eration. Furthermore, teleoperation over the internet has introduced new problems
due to the effects of delays in communications, which may cause instability in the
system.

In a system which is teleoperated basically, a human operator interacts with an in-
terface, called master teleoperator, and drives it in order to govern the remote coun-
terpart, on the opposite side, while another interface (slave operator) is in charge of
directly implementing commands received from the operator on the remote environ-
ment (see [8], [9]).

Several teleoperation schemes considering time-delays have been proposed in
the last decades. However, stability problems have found in these schemes, so that
important improvements have been suggested. Recently, an increased interest on
sliding-mode control has been developed to address the problem of delays in teleop-
eration, which has generated and inspired a line of research in designing controllers
to compensate the effects of these delays in real time (see [26] [27], [25]).

The control objective is to design a robust control for a teleoperator system tak-
ing into account a fixe delay time in the communication system. The scheme applied
contains an impedance control for the master system combined with a second order
sliding mode control and differentiator for the slave system. Thus, this scheme pro-
vides a better performance over a wide range of constant time-delays.

18.4.2 Teleoperation System

In a teleoperation general setting, the human imposes a force on the master ma-
nipulator which in turn results in a displacement that is transmitted to the slave that
mimics that movement. If the slave possess force sensors, then it can reflect or trans-
mit back to the master reaction forces from the task being performed, which enters
into the input torque of the master, and the teleoperator is said to be controlled bi-
laterally.

For sake of simplicity, we consider the dynamics of the 1-DOF master/slave sys-
tems are represented as a mass-damper system
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Mmẍm(t)+Cmẋm(t) = um(t)+ fh(t) (18.25)

Msẍs(t)+Csẋs(t) = us(t)− fe(t) (18.26)

where x and u denote the position and the input torque, respectively; subscript m and
s denote the master and the slave; fh and fe are the force applied at the master by
the human operator, and the force exerted on the slave by the environment, respec-
tively. Also Mi and Ci represent mass and viscous friction coefficient, respectively,
with i = m,s denoting master and slave. Furthermore, a time delay imposed on the
communication channels is assumed to be constant and unknown.

Fig. 18.9 A block diagram of bilateral teleoperation

This bilateral teleoperation system scheme can be represented by the block di-
agram shown in Figure 18.9. Furthermore, the position and force of the master
are transmitted to the slave and the contact force of the slave is sent to the master
through the communication channel, where there is a time delay in the communica-
tion channel. The signals from and to the channel are related as

xd
m(t) = xm(t −T1)

ẋd
m(t) := ẋm(t −T1)

f d
h (t) = fh(t −T1)

f d
e (t) := fe(t −T2)

(18.27)

where xd
m, ẋd

m, and f d
h are the position and velocity of the master, and the force

exerted by a human operator, respectively, which are transmitted to the slave through
the communication channel; f d

e is the external force at the slave transmitted to the
slave through the master; T1 is a time delay of the signal flowing from master to the
slave, and T2 is in the opposite direction.

This delayed signals out of the communication block are then scaled up or down
by some factors, then the position/velocity command to the slave and the force signal
to the master are modified such that xs = Kpxd

m and fh = Kf f d
e , where Kp and Kf are

position and force scale factors, respectively. Then, the state space representation of
(18.25) and (18.26) are given as follows.
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{
ẋm1 = xm2

ẋm2 = − Cm
Mm

xm2 + 1
Mm

um + 1
Mm

fh
(18.28)

{
ẋs1 = xs2

ẋs2 = − Cs
Ms

xs2 + 1
Ms

us− 1
Ms

fe
(18.29)

In what follows, a robust impedance controller as well as a differentiator in order
to estimate the speed and acceleration are designed. It is clear that an extension of
theses results for the multi-variable case can be obtained.

18.4.3 Controller Design

Now, an impedance controller and a sliding-mode based impedance controller are
designed for the master and the slave, respectively.

Consider the following master control structure

um =− fh +Cmẋm +
Mm

M̄m
( fh −Kf f d

e − C̄mẋm − K̄mxm) (18.30)

where M̄m, C̄m, K̄m > 0 are desired inertia, damping coefficient, and stiffness, re-
spectively; of a desired impedance. Substituting (18.30) into (18.25), the closed-
loop impedance error is given by

M̄mẍm + C̄mẋm + K̄mxm = fh −Kf f d
e (18.31)

Consider the slave control design based on second order sliding mode approach
to produce a desired impedance behavior modulated by the environmental contact
force and robust to unknown time-delay. To this end, consider the desired slave
impedance

M̄s ¨̃xs + C̄s ˙̃xs + K̄sx̃s =− fe (18.32)

where M̄s, C̄s, K̄s > 0 are the desired inertia, damping, and stiffness, respectively,
and ¨̃xs := ẍs −Kpẍd

m, ˙̃xs := ẋs −Kpẋd
m, x̃s := xs −Kpxd

m are the slave tracking errors
for acceleration, velocity and position, respectively.

Since we want to obtain (18.32) in closed-loop, then defining the following slid-
ing surface

Ie = M̄s ¨̃xs + C̄s ˙̃xs + K̄sx̃s + fe = 0 (18.33)

Now, let us define the extended error variable as follows

Ω =
1

m̄s

[∫ t

0
Ie(τ)dτ + Ki

∫ t

0

∫ σ

0
sign(Ie(τ))dτdσ

]
(18.34)

where Ki > 0 is the sliding mode gain. Substituting (18.33) into (18.34) and inte-
grating, we finally obtain
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Ω = ˙̃xs +
C̄s

M̄s
x̃s +

1
M̄s

∫ t

0
[K̄sx̃s + fe]dτ +

Ki

M̄s

∫ t

0

∫ σ

0
sign(Ie(τ))dτdσ (18.35)

The slave controller us has the following form

us = −Ms
M̄s

(
C̄s ˙̃xs + K̄sx̃s + fe + Ki

∫ t
0 sign(Ie(τ))dτ

)
+ Ms

M̄m
kKp

(
f d
h −Kf f dd

e − C̄mẋd
m − K̄mxd

m

)
+ fe +Csẋs−KgΩ

(18.36)

where f dd
e = fe(t−2T ), the superscript dd stands for the round trip delay: 2T , Kg >

0, and sign(·) is the discontinuous signum function. The term KgΩ has been added
to achieve stability as it will be seen afterwards. Also, notice that (18.35) requires
acceleration measurement because Ie depends on acceleration. To deal with this
inconvenience, acceleration and velocity are estimated, at master and slave sides, by
means of super twisting observers.

18.4.4 Super Twisting Observer Design

The elimination of sensors to measure velocity and acceleration is an advantage
in robotics because expensive and bulky tachometers are avoided. Then, to reduce
the number of sensors we add to the control scheme a nonlinear super twisting
sliding mode observer (see [6]). This sliding mode observer is based on structural
conditions and the iterative use of the super twisting algorithm. The importance of
such observer is that it can be used as a tool to solve several difficult problems of
observation.

Now, a finite time observer for slave system (18.29) is designed. Consider the
following canonical form.

{
ẋ1 = x2

ẋ2 = F(x1,x2,u,y)
(18.37)

with F(x1,x2,u,y) =− Cs
Ms

x2 + 1
Ms

us− 1
Ms

fh.

Notice that the term F can be seen as unknown input, which must be estimate in
such a way to estimate the acceleration of the slave system.

The super twisting observer for system (18.37) has the following form

˙̂x1 = x̃2 +λ1
√|x̃1− x̂1|sign(x̃1− x̂1)

˙̃x2 = α1sing(x̃1− x̂1)
˙̂x2 = E1[Θ̃ +λ2(

√|x̃2− x̂2|)sign(x̃2− x̂2)]
˙̃Θ = E2α2sign(x̃2− x̂2)

(18.38)

where α1 and α2 are the observer gains, λ1 and λ2 are the corrections factors de-
signed for convergence of the estimation error, which are defined as ei = x̃i− x̂i, for
i = 1,2. Also the scalar functions Ei for i = 1,2 are defined as: Ei = 1 if ei ≤ εi, else
Ei = 0, where εi are small positive constants.
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18.4.5 Simulation Results

Simulation results are obtained using the following parameter values. The parameter
values of the each system are the following. Master System: Cm = 0.9, Mm = 1.9,
M̄m = 1.8641, C̄m = 1.5, Kf = .9, K̄m = 0.01. Slave system: Cs = 0.9, Ms = 7, C̄s =
0.5, M̄s = 0.3, K̄s = 15. The parameters of the controller: Kp = 1, Kg = 500, Ki = 0.1,
and the observer: α1 = 100, α2 = 200, λ1 = 10, λ2 = 750, E1 = 1, E2 = 0.
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Fig. 18.10 Position responses of Master-Slave system.
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Fig. 18.11 Velocity responses of Master-Slave system.
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In Figure 18.10 and Figure 18.11, the position and velocity responses are plot-
ted. We can see the performance of the control when the master system tracks a
desired trajectory and the slave system tracks the master system signal sent by the
communication system with a time delay T, which was chosen of T = 0.5sec..

18.5 Conclusions

In this paper, an overview about the strategies of control and observation based on
sliding modes techniques has been presented and implemented in electrical power
systems (synchronous machine and multi-machines systems), in a twin rotor system
( Helicopter of 2-DOF), and in a master-slave teleoperated bilaterally system, which
are the research fields of the Mechatronics laboratory of the Universidad Autónoma
de Nuevo León, in the CIIDIT-UANL Research Institute.

Furthermore, in all applications presented in this paper, the tested control-
observer strategies based on sliding mode have been demonstrated the good per-
formance as well as the finite-time convergence and robustness under external dis-
turbances.
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ican CONACyT (Consejo Nacional de Ciencia y Tecnología) grant number 105799, by the
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