


Lecture Notes
in Control and Information Sciences 412

Editors: M. Thoma, F. Allgöwer, M. Morari



Leonid Fridman, Jaime Moreno,
and Rafael Iriarte (Eds.)

Sliding Modes after the First
Decade of the 21st Century

State of the Art

ABC



Series Advisory Board
P. Fleming, P. Kokotovic,
A.B. Kurzhanski, H. Kwakernaak,
A. Rantzer, J.N. Tsitsiklis

Editors

Prof. Leonid Fridman
Universidad Nacional Autonoma de Mexico
Ciudad Universitaria, Instituto de Ingenieria
Departamento de Ingenieria de Control y Robotica
Division de Ingenieria Electrica
04510 Mexico, D.F.
Mexico
E-mail: lfridman@servidor.unam.mx

Prof. Jaime Moreno
Universidad Nacional Autonoma de Mexico
Ciudad Universitaria
Instituto de Ingenieria
04510 Mexico, D.F.
Mexico

Prof. Rafael Iriarte
Universidad Nacional Autonoma
de Mexico
Ciudad Universitaria,
Instituto de Ingenieria
Departamento de Ingenieria de
Control y Robotica
Division de Ingenieria Electrica
04510 Mexico, D.F.
Mexico

ISBN 978-3-642-22163-7 e-ISBN 978-3-642-22164-4

DOI 10.1007/978-3-642-22164-4

Lecture Notes in Control and Information Sciences ISSN 0170-8643

Library of Congress Control Number: 2011931876

c© 2011 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the mate-
rial is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Dupli-
cation of this publication or parts thereof is permitted only under the provisions of the German
Copyright Law of September 9, 1965, in its current version, and permission for use must always
be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com



Lecture Notes in Control and Information Sciences

Edited by M. Thoma, F. Allgöwer, M. Morari

Further volumes of this series can be found on our homepage:
springer.com

Vol. 412: Fridman, L., Moreno, J.,
Iriarte R. (Eds.):
Sliding Modes after the First Decade of the
21st Century
595 p. 2011 [978-3-642-22163-7]

Vol. 411: Kaczorek, T.;
Selected Problems of Fractional Systems Theory
344 p. 2011 [978-3-642-20501-9]

Vol. 410: Bourlès, H., Marinescu, B.;
Linear Time-Varying Systems
637 p. 2011 [978-3-642-19726-0]

Vol. 409: Xia, Y., Fu, M., Liu, G.-P.;
Analysis and Synthesis of
Networked Control Systems
198 p. 2011 [978-3-642-17924-2]

Vol. 408: Richter, J.H.;
Reconfigurable Control of

Nonlinear Dynamical Systems
291 p. 2011 [978-3-642-17627-2]

Vol. 407: Lévine, J., Müllhaupt, P.:
Advances in the Theory of Control,
Signals and Systems with
Physical Modeling
380 p. 2010 [978-3-642-16134-6]

Vol. 406: Bemporad, A., Heemels, M.,
Johansson, M.:
Networked Control Systems
appro. 371 p. 2010 [978-0-85729-032-8]

Vol. 405: Stefanovic, M., Safonov, M.G.:
Safe Adaptive Control
appro. 153 p. 2010 [978-1-84996-452-4]

Vol. 404: Giri, F.; Bai, E.-W. (Eds.):
Block-oriented Nonlinear System Identification
425 p. 2010 [978-1-84996-512-5]

Vol. 403: Tóth, R.;
Modeling and Identification of
Linear Parameter-Varying Systems
319 p. 2010 [978-3-642-13811-9]

Vol. 402: del Re, L.; Allgöwer, F.;
Glielmo, L.; Guardiola, C.;
Kolmanovsky, I. (Eds.):
Automotive Model Predictive Control
284 p. 2010 [978-1-84996-070-0]

Vol. 401: Chesi, G.; Hashimoto, K. (Eds.):
Visual Servoing via Advanced
Numerical Methods
393 p. 2010 [978-1-84996-088-5]

Vol. 400: Tomás-Rodríguez, M.;
Banks, S.P.:
Linear, Time-varying Approximations
to Nonlinear Dynamical Systems
298 p. 2010 [978-1-84996-100-4]

Vol. 399: Edwards, C.; Lombaerts, T.;
Smaili, H. (Eds.):
Fault Tolerant Flight Control
appro. 350 p. 2010 [978-3-642-11689-6]

Vol. 398: Hara, S.; Ohta, Y.;
Willems, J.C.; Hisaya, F. (Eds.):
Perspectives in Mathematical System
Theory, Control, and Signal Processing
appro. 370 p. 2010 [978-3-540-93917-7]

Vol. 397: Yang, H.; Jiang, B.;
Cocquempot, V.:
Fault Tolerant Control Design for
Hybrid Systems
191 p. 2010 [978-3-642-10680-4]

Vol. 396: Kozlowski, K. (Ed.):
Robot Motion and Control 2009
475 p. 2009 [978-1-84882-984-8]

Vol. 395: Talebi, H.A.; Abdollahi, F.;
Patel, R.V.; Khorasani, K.:
Neural Network-Based State
Estimation of Nonlinear Systems
appro. 175 p. 2010 [978-1-4419-1437-8]

Vol. 394: Pipeleers, G.; Demeulenaere, B.;
Swevers, J.:
Optimal Linear Controller Design for
Periodic Inputs
177 p. 2009 [978-1-84882-974-9]

Vol. 393: Ghosh, B.K.; Martin, C.F.;
Zhou, Y.:
Emergent Problems in Nonlinear
Systems and Control
285 p. 2009 [978-3-642-03626-2]



Vol. 392: Bandyopadhyay, B.;
Deepak, F.; Kim, K.-S.:
Sliding Mode Control Using Novel Sliding
Surfaces
137 p. 2009 [978-3-642-03447-3]

Vol. 391: Khaki-Sedigh, A.; Moaveni, B.:
Control Configuration Selection for
Multivariable Plants
232 p. 2009 [978-3-642-03192-2]

Vol. 390: Chesi, G.; Garulli, A.;
Tesi, A.; Vicino, A.:
Homogeneous Polynomial Forms for
Robustness Analysis of Uncertain
Systems
197 p. 2009 [978-1-84882-780-6]

Vol. 389: Bru, R.; Romero-Vivó,
S. (Eds.):
Positive Systems
398 p. 2009 [978-3-642-02893-9]

Vol. 388: Jacques Loiseau, J.; Michiels, W.;
Niculescu, S-I.; Sipahi, R. (Eds.):
Topics in Time Delay Systems
418 p. 2009 [978-3-642-02896-0]

Vol. 387: Xia, Y.;
Fu, M.; Shi, P.:
Analysis and Synthesis of
Dynamical Systems with Time-Delays
283 p. 2009 [978-3-642-02695-9]

Vol. 386: Huang, D.;
Nguang, S.K.:
Robust Control for Uncertain
Networked Control Systems with
Random Delays
159 p. 2009 [978-1-84882-677-9]

Vol. 385: Jungers, R.:
The Joint Spectral Radius
144 p. 2009 [978-3-540-95979-3]

Vol. 384: Magni, L.; Raimondo, D.M.;
Allgöwer, F. (Eds.):
Nonlinear Model Predictive Control
572 p. 2009 [978-3-642-01093-4]

Vol. 383: Sobhani-Tehrani E.;
Khorasani K.;
Fault Diagnosis of Nonlinear Systems
Using a Hybrid Approach
360 p. 2009 [978-0-387-92906-4]

Vol. 382: Bartoszewicz A.;
Nowacka-Leverton A.;
Time-Varying Sliding Modes for Second
and Third Order Systems
192 p. 2009 [978-3-540-92216-2]

Vol. 381: Hirsch M.J.; Commander C.W.;
Pardalos P.M.; Murphey R. (Eds.)
Optimization and Cooperative Control Strategies:
Proceedings of the 8th International Conference
on Cooperative Control and Optimization
459 p. 2009 [978-3-540-88062-2]

Vol. 380: Basin M.
New Trends in Optimal Filtering and Control for
Polynomial and Time-Delay Systems
206 p. 2008 [978-3-540-70802-5]

Vol. 379: Mellodge P.; Kachroo P.;
Model Abstraction in Dynamical Systems:
Application to Mobile Robot Control
116 p. 2008 [978-3-540-70792-9]

Vol. 378: Femat R.; Solis-Perales G.;
Robust Synchronization of Chaotic Systems
Via Feedback
199 p. 2008 [978-3-540-69306-2]

Vol. 377: Patan K.
Artificial Neural Networks for
the Modelling and Fault
Diagnosis of Technical Processes
206 p. 2008 [978-3-540-79871-2]

Vol. 376: Hasegawa Y.
Approximate and Noisy Realization of
Discrete-Time Dynamical Systems
245 p. 2008 [978-3-540-79433-2]

Vol. 375: Bartolini G.;
Fridman L.; Pisano A.; Usai E. (Eds.)
Modern Sliding Mode Control Theory
465 p. 2008 [978-3-540-79015-0]

Vol. 374: Huang B.; Kadali R.
Dynamic Modeling, Predictive Control
and Performance Monitoring
240 p. 2008 [978-1-84800-232-6]

Vol. 373: Wang Q.-G.; Ye Z.; Cai W.-J.;
Hang C.-C.
PID Control for Multivariable Processes
264 p. 2008 [978-3-540-78481-4]

Vol. 372: Zhou J.; Wen C.
Adaptive Backstepping Control of
Uncertain Systems
241 p. 2008 [978-3-540-77806-6]

Vol. 371: Blondel V.D.; Boyd S.P.;
Kimura H. (Eds.)
Recent Advances in Learning and Control
279 p. 2008 [978-1-84800-154-1]

Vol. 370: Lee S.; Suh I.H.;
Kim M.S. (Eds.)
Recent Progress in Robotics:
Viable Robotic Service to Human
410 p. 2008 [978-3-540-76728-2]



Preface

This book is a collection of the Plenary and Semiplenary talks in the joint 11th

IEEE Workshop on Variable Structure Systems (VSS2010) and the principal meet-
ing for the international project supported by Fondo de Cooperación Internacional
en Ciencia y Tecnologı́a Unión Europea - México (FONCICYT) 93302 “Automati-
zation and Monitoring of Energy Production Processes via Sliding Mode Control”.
As the workshop organisers, together with the IEEE Technical Committee on Vari-
able Structure Systems (VSS) and Sliding Modes (SM), we invited the heads of
the 21 leading groups working in the fields of VSS and SM to present the recent
contributions of their groups.

The book consists of three main parts:

Part I: VSS and SM Algorithms and their Analysis
Part II: Design Methods
Part III: Applications

The first part of the book (Part I: VSS and SM Algorithms and their Analysis)
opens with a tutorial by Prof. Fridman. He presents the principal algorithms of
sliding mode (SM) enforcement developed during the last 20 years. The history,
advantages and disadvantages of second order and arbitrary order sliding mode al-
gorithms, Lyapunov-based approach for second order SM, chattering investigation
in higher order sliding mode (HOSM) controllers, HOSM-based observation and
identification, integral sliding modes, adaptive SM controllers, HOSM-controllers-
based uncertainties compensation, SM control for hybrid systems, output-based
LQ control, relay delay control and SM control for distributed parameter systems
are discussed. Furthermore, this chapter formulates and discusses important open
problems.

Chapter 2, by Arie Levant, develops robust exact differentiators based on the
homogeneity approach in order to produce robust output-feedback controllers. The
chapter also presents simulation results and applications in the fields of control,
signal and image processing.

The third chapter, by Igor M. Boiko, gives an overview of some available and
emerging frequency domain methods of analysis of systems having conventional and
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second-order sliding modes. The method of analysis of transient oscillations is given
in detail. Furthermore, a frequency-domain criterion of finite-time convergence is
presented in the chapter.

Chapter 4, by Jaime A. Moreno, presents advances in the design of Second Order
Sliding Modes algorithms using Lyapunov methods, based on recently developed
Lyapunov functions for some of these algorithms.

In the fifth chapter a new sliding mode control technique for a class of SISO dy-
namic systems is presented by Zhihong Man, Suiyang Khoo, Xinghuo Yu, Chunyan
Miao, Jiong Jin and Feisiang Tay. An intelligent sliding mode controller is designed,
for both stable and unstable closed-loop systems, which uses a recursive learning
structure to assure that no chattering occurs in the sliding mode control system.
The proposed controller design does not require a priori information on the upper
and/or the lower bounds of the unknown system parameters and uncertain system
dynamics.

Chapter 6, by Alessandro Pisano, Milan Rapaić and Elio Usai, outlines some
results concerning the application of second-order sliding-mode techniques in the
framework of control and estimation problems for some classes of fractional-order
systems. Through the use of fractional-order sliding manifolds the authors present
results concerning control, estimation and observation problems. The applicabil-
ity of this theory in the framework of fault detection is also presented in the
experimental section.

In Chapter 7, by Lei Yu, Jean-Pierre Barbot, Djamila Benmerzouk, Driss Boutat,
Thierry Floquet and Gang Zheng, the authors discuss relations between first and
high order sliding mode algorithms and both types of Zeno behaviors of switched
dynamical systems. The finite time error convergence of a super-twisting based ob-
server is studied, making use of the Henstock-Kurzweil integral. Finally, a two-tanks
example is included to highlight the main ideas of the chapter.

As the start to the second part of the book (Part II: Design Methods), Chapter 8
by Xiaoran Han, Emilia Fridman and Sarah K. Spurgeon considers the development
of sliding mode control strategies for linear, time delay systems with bounded dis-
turbances that are not necessarily matched. A static output feedback sliding mode
control design is considered in which Linear Matrix Inequalities (LMIs) are derived
to compute solutions to both the existence problem and the finite time reachabil-
ity problem that minimize the ultimate bound of the reduced-order sliding mode
dynamics in the presence of time varying delay and unmatched disturbances. The
emphasis of the chapter is on the development of frameworks that are constructive
and applicable to real problems.

Next, in Chapter 9 by Hebertt Sira Ramı́rez, Alberto Luviano Juárez and John
Cortés Romero, a new feedback controller design approach, devoid of state mea-
surements, for the sliding mode control of a large class of linear switched systems
is proposed. The approach regards the average Generalized Proportional Integral
(GPI) output feedback controller design as a guide for defining the sliding mode
features. It is assumed that the available output signal coincides with the system’s
flat output, an output capable of parameterizing all the variables in the system and
exhibits no zero dynamics. Simulation results are presented along with experimental
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results for the trajectory tracking problem on a popular DC-to-DC switched power
converter of the “buck” type.

Chapter 10, by Liu Hsu, Eduardo V. L. Nunes, Tiago Roux Oliveira, Alessandro
Jacoud Peixoto, José Paulo V. S. Cunha, Ramon R. Costa and Fernando Lizarralde,
describes the main results developed by the authors in the area of output-feedback
sliding mode control with a focus on SISO nonlinear systems. A linear growth re-
striction on the unmeasured states is assumed, while less restrictive conditions are
imposed on the growth of nonlinearities depending on the measured output for the
systems under consideration. Different tracking controllers for plants with arbitrary
relative degree are presented and several approaches to overcome the relative de-
gree obstacle are considered. Some experimental results are presented to illustrate
the applicability of the control schemes in real systems.

In Chapter 11, by Christopher Edwards, Halim Alwi, Chee P. Tan and José
Manuel Andrade da Silva, the use of sliding mode ideas for fault detection leading
to fault tolerant control is described. The chapter discusses how sliding mode con-
trol and observer design methods can be advantageously used towards this end. A
sliding mode observer is used to robustly estimate any unknown fault signal existing
within the system based on appropriate scaling of the equivalent output estimation
error injection signal. One advantage of these sliding mode methods over more tra-
ditional residual based observer schemes is that because the faults are reconstructed,
both the “shape” and size of the faults are preserved. A further benefit of this ap-
proach is that because faults are reconstructed, these signals can be used to correct
a faulty sensor; for example, to maintain reasonable performance until appropriate
maintenance may be undertaken. This “virtual sensor” can be used in the control
algorithm to form the output tracking error signal which is processed to generate
the control signal. A recent application of sliding mode controllers for fault tolerant
control is also presented.

The mean-square and mean-module filtering problems for a linear system with
Gaussian white noises are then addressed in Chapter 12 by Michael Basin. Here,
it is shown that the designed sliding mode mean-square filter generates the mean-
square estimate, which has the same minimum estimation error variance as the best
estimate given by the classical Kalman-Bucy filter, although the gain matrices of
both filters are different. Furthermore, the designed sliding mode mean-module fil-
ter generates a mean-module estimate with a better value of the mean-module crite-
rion in comparison to the mean-square Kalman-Bucy filter. The theoretical result is
complemented with an illustrative example verifying performance of the designed
filters. The paper then addresses the optimal controller problem for a linear system
over linear observations with respect to different Bolza-Meyer criteria. The optimal
solutions are obtained as sliding mode controllers, each consisting of a sliding mode
filter and a sliding mode regulator. Performance of the obtained optimal controllers
is verified in the illustrative example against the conventional LQG controller that
is optimal for the quadratic Bolza-Meyer criterion.

Yuri Shtessel, Simon Baev, Christopher Edwards, Sarah Spurgeon and Alan Zi-
nober study the problem of causal output tracking and observation in non-minimum
phase nonlinear systems in Chapter 13. The extended method of Stable System
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Center (ESSC) is used in two-fold manner: i) to generate reference profile for un-
stable internal states; ii) to estimate states of unstable internal dynamics. Two ap-
plications of the proposed technique are considered for illustration purposes: out-
put voltage tracking in a nonminimum phase DC/DC electric power converter and
output tracking in SISO systems with time-delayed output feedback. Numerical
simulations are used to illustrate theoretical results.

Part II closes with Chapter 14 by Bijnan Bandyopadhyay and Fulwani Deepak.
In this chapter, a nonlinear sliding surface is discussed to improve the transient re-
sponse for general discrete-time MIMO linear systems with matched perturbations.
The nonlinear surface modulates the closed-loop damping ratio from an initially low
to final high value to achieve better transient performance. The control law is based
on the discrete-time sliding mode equivalent control and thus eliminates chattering.
The control law is proposed for both the case when the disturbance bound is known
and the case when it is not. Multirate output feedback is used to relax the need of
the entire state vector for implementation of the control law. A possible extension
of the nonlinear surface to input-delay systems is also presented.

The last part of the book (Part III: Applications) opens with Chapter 15 by
Michael Defoort, Thierry Floquet, Anne-Marie Kokosy and Wilfrid Perruquetti.
This chapter derives a scheme for real time motion planning and robust control
of a swarm of nonholonomic mobile robots evolving in an uncertain environment.
This scheme consists of two main parts: (i) a real time collision-free motion planner;
(ii) a trajectory tracking controller. In implementation, the motion planner dynam-
ically generates the optimal trajectory while the robot runs. High precision motion
tracking is achieved by the design of a higher order sliding mode controller based
on geometric homogeneity properties. Experiments demonstrate the effectiveness of
the proposed strategy.

Chapter 16, by Domingo Biel, Arnau Dòria-Cerezo, Enric Fossas, Raúl S. Muñoz-
Aguilar and Rafael Ramos-Lara, reports two applications of SMC in power elec-
tronics: energy generation using a wound rotor synchronous machine and chattering
reduction in a buck converter. In the former, three control schemes are analyzed,
each with a particular sliding surface, while the latter uses Field Parallel Gate Ar-
rays (FPGA) to reduce chattering in a buck converter based on a paper by V. Utkin;
simulations and experimental results are included in both applications.

In Chapter 17 Franck Plestan, Vincent Brégeault, Alain Glumineau, Yuri Sht-
essel and Emmanuel Moulay present advanced control methodologies of uncertain
nonlinear systems. The authors first propose an adaptive sliding mode controller
that preserves the robustness of the system in the presence of bounded uncertain-
ties/perturbations with unknown bounds. Due to the on-line adaptation, the proposed
approach allows reducing control chattering. Then, a high order sliding mode con-
trol strategy that features a priory knowledge of the convergence time is presented.
Finally, an output feedback second order sliding mode controller is presented and
discussed. The control algorithms are applied to experimental set-up equipped by
electrical or electropneumatic actuators.

Chapter 18 by Jesús de León Morales presents some control applications for elec-
tromechanical systems. This chapter intends to show the advantages of using sliding
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mode techniques for control and observer design purposes oriented towards imple-
mentation. These domains are related with the research topics of the Mechatronics
laboratory in the CIIDIT-UANL Research Institute, Nuevo Leon University.

Luis Martı́nez-Salamero and Angel Cid-Pastor study the use of sliding motions
in converters in Chapter 19. This control strategy allows a systematic design of the
three canonical elements for power processing, i.e., DC transformer, power gyrator
and loss-free resistor (LFR). A search of candidates is performed by studying a
great number of converters with topological constraints imposed by the nature of
each canonical element. Several examples ranging from DC impedance matching
by means of a DC transformer to LFR-based power factor correction illustrate the
application of the synthesis.

Chapter 20, by Antonella Ferrara and Luca Massimiliano Capisani, address the
use of higher order sliding modes to design robotic controllers. The chapter presents
the application of the Second Order Sliding Mode (SOSM) design methodology to
the control and supervision of industrial manipulators by proposing a robust con-
trol scheme and a diagnostic scheme to detect and, possibly, isolate and identify
faults acting on the components of the system. The proposed SOSM motion con-
troller and the SOSM observers designed to construct the diagnostic scheme are
theoretically developed, and their practical application is described. Lastly, the au-
thors experimentally verify the proposed approaches on a COMAU SMART3-S2
industrial robot manipulator.

In the closing chapter of the book, Chapter 21, Alexander G. Loukianov, Jose
M. Cañedo, B. Castillo-Toledo and Edgar N. Sánchez present the systematic design
of robust stabilizing nonlinear controllers for electric machines (synchronous and
induction) in continuous and discrete time. This design is based on the combina-
tion of the Block Control feedback linearization, Sliding Mode (SM) and Neural
Network (NN) control techniques. The Block Control technique is used to design a
nonlinear sliding manifold in order to achieve error tracking. Then an SM algorithm,
including integral and discrete time SMs, is implemented to ensure finite time con-
vergence of the state vector to the designed SM manifold in the presence of matched
and unmatched perturbations. This control scheme is the extended by including an
NN identifier designed in the NBC form and used instead of the physical model.

It is our hope that this book will provide a clear and complete picture on the
current state-of-the-art of VSS and SM theory.

Finally, we would like to thank Alfredo Sosa, a postgraduate student at the Na-
tional Autonomous University of Mexico (UNAM), for all his work during the
editing process of this book.

Mexico City, 2010 Leonid Fridman
Jaime Moreno
Rafael Iriarte
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Chapter 1
Sliding Mode Enforcement after 1990:
Main Results and Some Open Problems

L. Fridman

The objective of this chapter is to try to analyze the main stages in the development
of sliding mode enforcing control algorithms, starting from the first Variable Struc-
ture Systems workshop (VSS90). I would like to underline that this is my personal
opinion, I am just trying to understand the steps we have made as a community dur-
ing the last twenty years after VSS90 as well as which problems still remain open.
Of course, generally I will concentrate the chapter on results in open problems I
have discovered working with my group and coauthors.

1.1 Sliding Mode Control Up until 1990

The history of VSS up until the early 70’s has been described in [148]. By 1980,
the main part of classical SMC theory had been finished and later reported in Prof.
Utkin’s monograph in Russian in 1981 (English version [151]). In this monograph
(see also accomplished result [46]), the two-step procedure for sliding mode control
design was clearly stated:

1. Sliding surface design;
2. Discontinuous(relay or unit) controllers ensuring the sliding modes.

The main advantages of SMC were the following:

• exact compensation (insensitivity) w.r.t. bounded matched uncertainties;
• reduced order of sliding equations;
• finite-time convergence to the sliding surface.

However, the following disadvantages were evident:

• chattering;
• insensitivity only w.r.t. matched perturbations;
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• the sliding variables converge in finite-time: however, the state variables
only converge asymptotically;

• non-ideal closed-loop performance in presence of parasitic dynamics, discretiza-
tion and noises;

• the sliding surface design is restricted to have relative degree one with respect
to the control, i.e. higher order derivatives are required for the sliding surface
design.

It is impossible to observe all the papers devoted to sliding surface design.
That is why I will concentrate this chapter on the development of control
algorithms, enforcing sliding motions.

1.2 Second Order Sliding Modes: First Generation

By the early 80’s, the control community had understood that the main disadvantage
of SMC is the “chattering” effect [151]. It has been shown that this effect is mainly
caused by unmodelled cascade dynamics which increase the system’s relative degree
and perturb the ideal sliding mode existing in the system [31].

In order to overcome the chattering problem in the sliding mode, the second order
sliding mode (SOSM) concept was introduced in the Ph.D. dissertation of A. Levant
(Levantovskii).

Definition ( [51]). The point (x, ẋ) = (0,0) is called a second order sliding mode
point if it is a solution of system

ẍ = f (t,x, ẋ)+ g(t,x, ẋ)u x,(t), f (t),g(t) ∈ R

in the Filippov [57] sense.

1.2.1 Twisting Algorithm

The first and simplest SOSM algorithm is the so-called “twisting algorithm”(TA).
For a relative degree two system the TA takes the form:

u =−asign(ẋ)−bsign(x), b> a

where u,x ∈ R. Under the assumption of known bounds for f and g and with pa-
rameters a and b of the controller chosen appropriately [51], the twisting algorithm
ensures the finite time exact convergence of both x and ẋ, i.e. there exists T > 0
such that for all t > T , x(t) = ẋ(t) = 0. Thus the TA is said to be a SOSM control
algorithm since it provides the existence of a (stable) “second order sliding mode”
at the origin (x, ẋ) = (0,0).

With the use of the TA, the sliding surface design is no longer needed for one
degree of freedom mechanical systems. Moreover, the TA collapses the dynamics of
such systems!
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Under additional assumptions regarding the smoothness of the system, the al-
gorithm has been used to attenuate chattering in relative degree one systems by
including an integrator in the control input

ẋ = f (t,x)+ g(t,x)u,
u̇ = v,
v =−asign(ẋ)−bsign(x),

and in this way, the actual control u is absolutely continuous.

1.2.2 The First Criticism of SOSM

On the end of 80th the SOSM was criticized. The main two points of criticism was
the following:

1. Definition 1.2 of a SOSM does not provide a clear difference between a first (or
traditional) and second order sliding mode. To see this, let us consider the case
of a traditional sliding mode on a stable linear surface ẋ + cx = 0. In this case,
the origin (ẋ,x) = (0,0) consists of an integral curve corresponding to the initial
conditions x(0) = 0, ẋ(0) = 0. Thus, according to Definition 1.2, a traditional (or
first order) sliding mode also contains a second order sliding mode in the origin.

2. The anti-chattering strategy for a first order sliding mode makes use of the
derivative ẋ. Thus, if by any reason it is possible to measure ẋ and addition-
ally g(t,x) is also known, then the uncertainty f = ẋ− gu is also known and
can be compensated without any discontinuous control! In this case, what is the
reason for the use of a SMC?

Both of these points will be addressed later on.

1.2.3 The Super-Twisting Algorithm

As we have discussed, the use of the twisting algorithm in a system with relative
degree one allowed to exactly compensate a (absolutely continuous) disturbance
by means of an absolutely continuous control. However, this approach required the
derivative ẋ. At the end of 80’s, the main issue was the question if this was actually
possible without the use of derivatives.

The super twisting algorithm (STA):

ẋ = f (t,x)+ g(t,x)u,
u =−k1|x| 1

2 sign(x)+ v,
v̇ =−k2sign(x),

(1.1)

for any f is Lipshitz bounded uncertainty/disturbance for some constants k1 and k2

ensures [89] exact finite time convergence to the second sliding mode set x(t) =
ẋ(t) = 0,∀t ≥ T without usage of ẋ. If we consider system (1.1) as having x as the
measured output, the STA is an output-feedback controller.
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Fig. 1.1 Existence of first and second order sliding modes: first order sliding modes (on the
line), a second order sliding mode (at the origin)

This last property of the STA allowed to construct a second-order sliding mode
differentiator [90] and gave further impetus to the development of the mathematical
theory and applications of SOSM algorithms. We now briefly describe the idea be-
hind it. Let f (t) be a signal to be differentiated and assume that | f̈ (t)| ≤ L, with L
being a known constant. Take x1 = f ,x2 = ḟ ; then the problem can be reformulated
as finding an observer for

ẋ1 = x2, ẋ2 = f̈ , y = x1,

where f̈ (t) is considered as a bounded perturbation. Since the STA does not require
derivatives, which in this case would be the state x2, it only uses output injection
and results particularly useful in the form of a STA observer

˙̂x1 =−k1|x̂1 − y| 1
2 sign(x̂1− y)+ x̂2,

˙̂x2 =−k2sign(x̂1− y),

Once the constants k1 and k2 are appropriately chosen, the convergence of the STA
ensures that the equalities ( f − x̂1) = ( ḟ − x̂2) = 0 are established after a finite-
time transient. Thus x̂2 is an estimate for the derivative ḟ (t) and turns out to be the
best possible one ( [90]) in the sense of [84] when (bounded Lebesgue-measurable)
noise or discretization are present. However, the difficult geometrical proof of the
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STA convergence remained as the main disadvantage for this algorithm, thereby
preventing further generalizations.

1.2.4 The Sub-Optimal Algorithm

SOSM attracted the full attention of the international control community after a
presentation at the Third IEEE Workshop on Variable Structure and Lyapunov
Theory [65] and the publication of the first tutorial paper on High Order Sliding
Modes (HOSMs) [66]. Since 1996 the number of publications on second order slid-
ing modes theory and applications has grown exponentially, generally through the
efforts of Professor Bartolini and his group (see for instance [12] and references
therein and also [112] with the similar idea). The results of Prof. Bartolini’s group
are based on another SOSM controller that does not (explicitly) need derivatives,
the Sub-Optimal Algorithm(SOA):

ẍ = f (t,x, ẋ)+ g(t,x, ẋ)u,
u =−Umsign(x− 1

2 x∗),

where x∗ is the last extrema of the curve x(t). The SOA algorithm is also able to
guarantee the finite time exact convergence x(t) = ẋ(t) = 0,∀t ≥ T once the param-
eter Um has been tuned large enough. This SOA algorithm has been used to solve
numerous relevant control problems, see for instance [11] or [16] and the references
therein. To smooth out the control law for relative degree one systems, the SOA can
be used in the same manner as the TA (1.2.1).

1.2.5 Recapitulations

The use of the Super Twisting and Sub-Optimal SOSM algorithms for smooth sys-
tems allows substituting the use of a discontinuous control by means of an absolutely
continuous one. Additionally, their use offers:

1. Chattering attenuation (but not its complete removal [27, 26, 29, 28]).
2. Differentiator obtained using the STA and SOA:

• finite-time exact estimation of derivatives under ideal conditions, i.e. in the
absence of both noise and sampling;

• the best possible approximation in the sense of [84] of order O(δ ) w.r.t. dis-
crete sampling and of order O(

√
ε) w.r.t. deterministic Lebesgue-measurable

noise bounded by ε .

For relative degree 2 systems, the use of the TA and the SOA allows:

• Reducing the order of the sliding dynamics up to (n− 2) but the design of
the sliding surface of order (n−2) is still necessary;

• For one degree of freedom mechanical systems, both the SOA and the TA
provide dynamic collapse, i.e. the sliding surface design is no longer needed.
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However, the following problems remain open:

3. The problem of exact finite-time stabilization (dynamic collapse) and exact dis-
turbance compensation for SISO systems with arbitrary relative degree.

4. The performance under noise and sampling during the cascade use of these al-

gorithms provides a precision of order O(δ
1

2r−1 ) w.r.t. the sampling step and

O(ε
1
2r ) w.r.t. deterministic Lebesgue-measurable noise bounded by ε but can

not provide the best possible asymptotic accuracy for the higher order deriva-
tives in the sense of [84]. The construction of a high order differentiator provid-
ing the best possible asymptotic accuracy in the sense of [84] remains open as
well.

1.3 Second Generation: Arbitrary Order Sliding Mode
Controllers

Let
ẋ = f (t,x)+ g(t,x)u, x ∈ R

n

σ = σ(x,t),

where σ ∈ R is an output to be exactly stabilized in finite-time at σ = 0, u ∈ R is
the control input and x ∈ R

n is the state. Let the output σ have a fixed and known
relative degree r ∈ R

n. In such a case, the control problem is translated into the
finite-time stabilization of an uncertain differential equation or, equivalently, of the
following differential inclusion

σ (r) ∈ [−C,C]+ [Km,KM ]u, (1.2)

where C,Km and KM are known constants parameterizing the uncertainty of the
original system. If r ≤ 2, the first order SM or SOSM controllers are able to solve
the problem. However, the case when r > 2 in the end of 90th remained as open
issue.

1.3.1 Discussion on the Definition of r-th Order Sliding Motions

First, an analogous definition of an r-th order sliding mode was required. Let the
r-th order sliding set Sr be determined by the following equalities

σ = σ̇ = · · · = σ (r−1) = 0.

The following definition was introduced in [91]:

Definition 1.1. The set Sr is said to contain an r-th order sliding mode if it consists
(locally) of integral curves of the system in Filippov’s sense.

Now let us recall the discussion on Subsection 1.2.1 about the ambiguity between
the definitions of a first and second order sliding mode. In fact, the same situation is
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also present with Definition 1.1 of an r-th order sliding motion. Indeed, if a stable
first order sliding mode is induced on a linear surface c0σ (r) +c1σ (r−1)+ · · ·+crσ =
0 the point σ = σ̇ = · · · = σ (r−1) = 0 consists of an integral curve of the system
given by the conditions σ(0) = · · · = σ (r−1)(0) = 0. In this sense, the first order
sliding mode also contains an r-th order sliding mode at the origin. To prevent this
situation, the following definition in the spirit of [47] is proposed:

Definition 1.2. The set Sr is said to contain an r-th order sliding mode if it consists
of integral curves of the system in Filippov’s sense and there exists a vicinity N ⊆
R

n of Sr in which the shift operator is not invertible.

This last definition is equivalent to the following definition:

Definition 1.3. The set Sr is said to contain an r-th order sliding mode if there exists
a vicinity N ⊆R

n of Sr such that for any initial condition from N the trajectories
of the system (in Filippov’s sense) converge to Sr in finite-time.

The problem of defining vector order sliding modes for the MIMO systems
remained to be open.

1.3.2 Arbitrary Order Sliding Mode Controllers

In 2001, the first arbitrary order SM controller was introduced in [91]. Such con-
trollers allowed solving the finite-time enforcement of an r-th order sliding mode
and exact matched perturbation/ uncertainties compensation.

Given the relative degree r of the output, HOSM controllers are constructed using
a recursion. The following is the recursion for the first reported kind of HOSM
controllers: the so-called “nested” ones [91]. Let p be the least common multiple of
1,2, . . . ,r. Also let

ϕ0,r = σ , N1,r = |σ | r−1
r ,

ϕi,r = σ (i) +βiNi,rsign(ϕi−1,r), Ni,r =
(
|σ | p

r + · · ·+ |σ (i−1)| p
r−1+1

) r−i
p
,

and the r-th order sliding mode controller

u =−αsign
(
ϕr−1,r(σ , σ̇ , . . . ,σ (r−1))

)
. (1.3)

be applied to system (1.1). Then this algorithm provides for the finite-time stabi-
lization of σ , σ̇ = 0 and,therefore, of its successive derivatives up to σ (r−1). Thus it
provides for the existence of an r-th order sliding mode in the set Sr. The parame-
ters βi can be selected in advance in such a way that only the gain of the controller
α has to be selected large enough.

Since controller (1.3) uses the output and it successive derivatives, the HOSM
arbitrary order differentiator, introduced in [92], was instrumental for the applica-
bility of HOSM controllers. Let σ(t) be a signal to be differentiated k−1 times and
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assume that |σ (k)| ≤ L, with L being a known constant. Then, the (k− 1)-th order
HOSM differentiator takes the following form

ż0 = v0 =−λkL
1

k+1 |z0 −σ | k
k+1 sign(z0 −σ)+ z1,

ż1 = v1 =−λk−1L
1
k |z1− v0|

k−1
k sign(z1 − v0)+ z2,

...

żk−1 = vk−1 =−λ1L
1
2 |zk−1 − vk−2|

1
2 sign(zk−1 − vk−2)+ zk,

żk =−λ0Lsign(zk − vk−1).

(1.4)

where zi is the estimation of the true derivative σ (i)(t). The differentiator ensures
the finite-time exact differentiation under ideal conditions of exact measurement
in continuous time. The only information needed is upper bound, L, for |σ (k+1)|.
Then a parametric sequence {λi} > 0, i = 0,1, . . . ,k, is recursively built, which
provides for the convergence of the differentiators for each order k. In particular,
the parameters λ0 = 1.1, λ1 = 1.5, λ2 = 2, λ3 = 3, λ4 = 5, λ5 = 8 are enough up
until the 5-th differentiation order. With discrete sampling, the differential equations
are replaced by their Euler approximations. This differentiator provides for the best
possible asymptotic accuracy in the presence of input noises or discrete sampling
[92, 84] for the rth derivative:

• order O(δ ) with respect to discrete sampling,

• order O(ε
1

r+1 ) with respect to bounded deterministic Lebesgue measurable noise.

The use of the HOSM arbitrary order differentiator together with the HOSM ar-
bitrary order controller allowed the design and the implementation of a universal
arbitrary-order HOSM output-feedback controller for uncertain single-input single-
output (SISO) systems ensuring the finite-time output stabilization in spite of distur-
bances. At this point, the advantage of using homogeneity properties in the system
in order to systematize the controller design became evident, and in fact all previous
existing algorithms turned out to be also homogeneous [93].

It was also pointed out [93] that any exact controller must be discontinuous at
least in the set σ = σ̇ = · · · = σ (r−1) = 0 to be able to compensate exactly for the
class of bounded matched perturbation/uncertainties. The Quasi-Continuous HOSM
controllers [95, 94] are continuous everywhere except in such point. They are also
constructed using a recursion:

ϕ0,r = σ , N0,r = |σ |, Ψ0,r = ϕ0,r
N0,r

= signσ ,

ϕi,r = σ (i) +βiN
r−i

r−i+1
i−1,r Ψi−1,r, Ni,r = |σ (i)|+βiN

r−i
r−i+1

i−1,r , Ψi,r = ϕi,r
Ni,r
,

and
u =−αΨr−1,r(σ , σ̇ , . . . ,σ (r−1)). (1.5)

The advantage of Quasi-Continuous controllers with respect to Nested ones strives
in the chattering reduction due to the decrease of discontinuities in the controller
( [95, 94]).
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Fig. 1.2 Black box control diagram

At this point, it is worth remarking that several other approaches for the design of
arbitrary order sliding mode controllers have been proposed ever since. For instance,
results based on minimum-time optimal controllers and integral sliding modes have
been developed in [85, 112, 15] as well as the use of homogeneous finite-time
convergent controllers [23] with robustness provided by first order SM [44].

1.3.3 Black-Box Control [92]

HOSM approach allows to solve the problem of finite-time output stabilization of a
black box system(see Figure 1.2). The only information needed from the system is:

• the upper bound for the relative degree r of the plant;
• the level of the smoothness k for the control signal for which the actuators

hardware is tolerant;
• the bounds for the differential inclusion (1.2).

In this case only one parameter, α , has to be tuned large enough in order to pro-
vide either a finite time exact stabilization of the output or a finite time exact
tracking. Moreover, if σ is known to be (r + k−1) times differentiable, the con-
troller can be k times differentiable by including k integrators in the control input
and thus attenuating chattering (it is reasonable to put k = 0,1 only).

However, the following points for HOSM controllers remained to be unsolved:
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• The homogeneity features of the system, that were essential in the convergence
proof, were destroyed if an adaptation of the gain of the controller was attempted.
Thus it was not possible to reduce the gain of the controller once the system ap-
proached the origin, a desirable feature which would allow to decrease chattering.

• The time constant for finite time convergence is tending to infinity together with
growing of the norm of initial conditions.

• Only asymptotic accuracy ensured by HOSM controllers and differentiators is
proved. The constants for estimations of accuracy need to be computed.

1.4 Terminal Sliding Mode Control

The idea of the terminal sliding mode control was first reported in [152, 105, 106],
where a terminal sliding variable (vector) with a nonlinear term is proposed for a
second-order nonlinear system as well as an n-link rigid robotic manipulator system
with uncertain dynamics, to solve the finite time error convergence problem, after
the closed-loop error dynamics reaches and then remains on the terminal sliding
mode surface. The basic principle of the terminal sliding mode control is described
as follows. Consider the second order linear or nonlinear system

ẋ1 = x2

ẋ2 = f (x1,x2)+ b(x1,x2)u(t) (1.6)

where x1 and x2 are the system states, f (·) and b(·) 	= 0 are linear or nonlinear
functions of x1 and x2, and u is the control input. In order to achieve the finite time
convergence of the state variables, the following first-order terminal sliding variable
is defined:

s = x2 +βxq/p
1

where β > 0, p and q are positive odd integers with

p> q (1.7)

With a properly designed sliding mode controller of the form:

u(x) =
{

u+ (x) if s > 0
u− (x) if s < 0

the terminal sliding variable s can be driven to the terminal sliding mode surface
s = 0 in a finite time. On the terminal sliding mode surface, the system dynamics
are then determined by the following nonlinear differential equation:

ẋ1 =−βxq/p
1 (1.8)
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It has been shown in [162] and [163] that x1 = 0 is the terminal attractor of the
system (1.6). Indeed, if the initial value of x1 at t = 0 is x1 (0)(	= 0) and two positive
odd integers p and q satisfy (1.7), the relaxation time t1 for a solution of the system
(1.6) is then given by

t1 =−β−1

0∫

x1(0)

dx1

xq/p
1

=
|x1 (0)|1−q/p

β (1−q/p)
(1.9)

Expression (1.9) means that the system state x1 converges to zero in a finite time
on the terminal sliding mode surface (1.8), and the system state x2 also converges
to zero in a finite time identically. For the terminal sliding mode tracking control of
an n-link robotic manipulator in [105, 106] and [107], the terminal sliding variable
vector S is defined as:

S = Cẽ

where

C =
[
C1 C2

]
=

⎛
⎜⎝

c11 1
. . .

. . .
cnn 1

⎞
⎟⎠

with cii > 0 for i = 1, · · ·n, and

ẽ =
[
ε p2/p2

1 · · · ε p2/p2
n ε̇1 · · · ε̇n

]T

with εi the tracking error between the i-th joint angle and the desired reference signal
[105]. The input torque vector of the robotic manipulator can then be designed,
using the system states and the upper and the lower bounds of unknown system
parameters and unknown system uncertainties, to drive the sliding variable vector
S to the sliding mode surface S = 0, and on the sliding mode surface, the system
tracking error dynamics satisfy the following relationship:

ciiε
p2/p2
i + ε̇i = 0 for i = 1, · · ·n

and then the tracking error converges to zero in a finite time. In [158], the terminal
sliding mode control was extended to control a class of high-order SISO system:

ẋi = xi+1 i = 1, · · ·n−1

ẋn =
n

∑
j=1

a jx j + u(t)

with the following hierarchical terminal sliding mode structure:

s1 = ṡ0 +β1sq1/p1
0
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s2 = ṡ1 +β2sq2/p2
1

...

sn−1 = ṡn−2 +βn−1sqn−1/pn−1
n−2

where s0 = x1, βi > 0, pi > qi, pi and qi are positive odd integers. As shown
in [158], the controller is designed to drive the sliding variable sn−1 to zero in a
finite time. Considering the chain-like structure of the sliding mode surface, the
sliding variables sn−2, · · · s0 can then converge to zero in a finite time sequentially.
In [159], the terminal sliding mode control of the following MIMO linear systems
was considered:

Ẋ1 = A11X1 + A12X2

Ẋ2 = A21X1 + A22X2 + B2U

where X1 ∈ Rn−m and X2 ∈ Rm are the system states, A11 ∈ R(n−m)×(n−m), A12 ∈
R(n−m)×m, A21 ∈ Rm×(n−m), A22 ∈ Rm×m and B2 ∈ Rm×m are the system parameter
matrices, the pair

(
A11, A12

)
is controllable, B2 is non-singular, and n−m≤m. The

new terminal sliding mode structure, developed by adding a nonlinear term to the
conventional linear sliding mode surface, is of the form:

S = C1X1 +C2X2 +C3Xq/p
1

where C1 ∈ Rm×(n−m), C2 ∈ Rm×m and C3 ∈ Rm×(n−m) are the terminal sliding mode
parameter matrices, the matrix C2 is full rank of m, the odd positive integers p and
q satisfy the following condition together with (1.7):

2q> p

and Xq/p
1 is a vector defined as

Xq/p
1 =

[
xq/p

1 xq/p
2 · · · xq/p

n−m

]T

It has been shown in [153] that, if the sliding mode parameter matrices are chosen
in that

A11−A12C−1
2 C1 = 0

and
A12C−1

2 C3 = diag(βi)

with βi > 0, i = 1, 2, · · · ,n−m, the sliding mode controller can be designed to
drive the sliding variable S to the sliding mode surface S = 0 in a finite time, and
then the system states X1 and X2 converge to zero in a finite time. It was noted by
many researchers that the terminal sliding mode control methods developed in [105]
and [159] have the singularity problem. The research in [153] and [55] discussed the
singularity issue in detail and proposed a global non-singular terminal sliding mode
control, where the first-order terminal sliding mode variable is defined as:
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s = x1 +
1
β

xp/q
2 (1.10)

where the constant β ¿0, p and q are positive odd integers satisfy (1.7). It was
also noted that, as the closed-loop dynamics with the terminal sliding mode con-
trollers [152, 105] is far away from the system origin, the convergence speed is
relatively low, compared with the conventional linear sliding mode control. In or-
der to improve the convergence, a new terminal sliding variable based on [153] was
developed in [160, 156] and [54] with the following form:

s = ẋ1 +αx1 +βxq/p
2

where α > 0, parameters β , p and q are chosen as in (1.10). Although the termi-
nal sliding mode technique has been widely applied to the control of mechanical
systems, electrical systems, aircraft systems and other complex systems, as seen
in [82,83,146,161,157], the development of this technique is still at its initial stage,
and many theoretical researches need to be done in the near future.

1.5 Third Generation: Non-Homogeneous HOSMs

In [98], HOSM controllers were extended to include a variable gain and thus became
non-homogeneous. In this case the controller takes the form

u =−αΦ(t,x)Ψr−1,r(σ , σ̇ , . . . ,σ (r−1)), (1.11)

where the “gain function” Φ(t,x) > 0 can be selected to solve the problem for the
case when the boundaries of the differential inclusion (1.2) are not constant. This
feature also allows a reduction in the chattering by decreasing the amplitude of the
controller.

1.6 Lyapunov Based Approach

As we have pointed out, in [96] the design of SOSMs was systematized using a
homogeneity point of view. However this approach, based on geometric methods,
prevented further generalizations of the algorithms.

Due to this, there were several attempts to give an analytic proof for the con-
vergence of SOSM algorithms. At the beginning only weak (semidefinite negative)
Lyapunov functions were reported for the TA (see for instance [119]). A strong Lya-
punov function for both the TA and the STA was reported in [130, 131], obtained
using a modification of Zubov’s method [166]. However, this Lyapunov function
was so intricate that it also prevented exploring new modifications to the algorithms.

In that same year (2009) Prof. Moreno presented a simpler Lyapunov function for
the super-twisting algorithm that had the structure of a quadratic function [111, 39]
of the terms forming STA. This function provided an estimate for the convergence
time and also allowed to make the first modification of the STA by including linear



16 L. Fridman

terms that improved its convergence and robustness properties [39]. Moreover, the
approach proposed in [39] allowing to use well known Lyapunov equations and LMI
solutions for STA analysis.

In this section we will recall another interesting modification of the STA that was
possible due to a Lyapunov analysis: the STA with variable gains [40]. It is well
known that first order SM algorithms with variable gains improve the performance
of the system by decreasing the amplitude of the control signal and thus of the
chattering [151]. The STA with variable gains (VGSTA) has the following structure

ẋ1 =−k1(t,x)φ1(x1)+ x2 + g1(t,x),
ẋ2 =−k2(t,x)φ2(x1)+ g2(t,x)

where the functions g1 and g2 are disturbances and the VGSTA is composed of the
gain functions k1(t,x), k2(t,x) and of the functions

φ1(x1) = |x1| 1
2 sign(x1)+ k3x1, k3 > 0,

φ2(x1) = 0.5sign(x1)+ 1.5k3|x1| 1
2 sign(x1)+ k2

3x1

Under the assumption that the disturbances satisfy the bounds

|g1(t,x)| ≤ ρ1(t,x)|φ1(x1)|, |g2(t,x)| ≤ ρ2(t,x)|φ2(x1)|

for some known continuous functions ρ1, ρ2 and that the gains are selected to satisfy

k1 (t,x)>
[

1
4ε [2ερ1 +ρ2]

2 + 2ερ2 + ε+[2ε +ρ1 (t,x)]
(
β + 4ε2

)]
,

k2 (t,x)> 4ε2 + 2εk1 (t,x) ,

for some ε > 0, then the finite-time stability of x1 = 0 is ensured.
This approach may be widely exploited in the near future because it allows:

• designing absolutely continuous SM controllers capable of compensating Lip-
shitz continuous perturbations/uncertainties which may grow together with the
states;

• adaptation of the control law.

1.7 Chattering Problem and HOSM

The main motivation for the development of SOSM control algorithms was the elim-
ination of chattering. The chattering phenomenon is caused by the inevitable exis-
tence of the so-called parasitic or unmodelled dynamics that exist along with the
principal dynamics of the plant, thereby increasing the relative degree of output.
Thus, in traditional sliding modes, chattering appears due to the fact that s (the slid-
ing variable) is too small, but ṡ is not; this causes a high frequency motion to appear
in the system.

When second order sliding modes appeared in the 80’s, along with their boom in
the last half of the 90’s, it was thought that the problem of chattering was solved.
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This was not completely true: a chattering reduction is achieved, but nevertheless a
high frequency phenomenon still appears. In fact, the claimed chattering-free prop-
erty associated with SOSM algorithms has not been and cannot be achieved even in
the case of continuous SOSM algorithms [26].

In this section we present three different approaches to the chattering problem.
The first one [26], [27], [28] uses frequency domain methods to show the existence
of periodic motions in first order and also higher order sliding mode algorithms.
This approach leads to the conclusion that even though SOSM algorithms are able
to adjust chattering, they do not provide chattering free control.

The second approach based on the singularly perturbed analysis to the chattering
problem [97].

The third approach [3] is devoted to a formal definition of chattering and its clas-
sification according to the amount of energy that it dissipates. It allows to analyze
the differences between first and high order sliding motions and also with respect to
other approaches like high-gain control.

1.7.1 Chattering Analysis in the Frequency Domain

The methodology presented in this section is based on the describing function (DF)
method, which provides only approximate solutions. The DF method provides a
simple, efficient solution of the periodic problem. The accuracy of the obtained
results can always be assessed via simulations. The DF method is reasonably precise
for chattering analysis because chattering means the high frequency oscillations,

Fig. 1.3 Block diagram of the system governed by TA
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i.e. higher harmonics should to be filtered out by the plant and consequently the
system satisfies the filter hypothesis.

The use of the DF method will, therefore, be justified in the section devoted to
examples and simulations.

For exact frequency-domain analysis of chattering and approximate frequency-
domain analysis of transients in SM control systems, please refer to [24] and the
chapter of Dr. I. Boiko in this book, respectively.

1.7.1.1 Twisting Algorithm and Its DF Analysis

Let the plant (or the plant plus actuator) be given by the following differential
equations:

ẋ = Ax + Bu, y = Cx (1.12)

where A and B are matrices of respective dimensions; x ∈ R
n and y ∈ R may be

treated either as the sliding variable or as the system output. We assume that the
plant is asymptotically stable, apart from some possible integrating terms, and that
it is a low-pass filter. We shall also use the plant description in the form of a transfer
function W (s) := C(Is−A)−1B.

Let the control be the twisting algorithm [51, 89]:

u =−c1sign(y)− c2sign(ẏ), (1.13)

where c1 and c2 are positive values, c1 > c2 > 0.
Assume that a periodic motion occurs in the system with the twisting algorithm

and find the parameters of this periodic motion. As normally accepted in the DF
analysis, we assume that the harmonic response of the plant is that of a low-pass
filter, such that the output of the plant is a harmonic oscillation. The DF of the
twisting algorithm, denoted by N(a1), is the first harmonic of the periodic control
signal divided by the amplitude of y(t) [7]:

N =
4

πa1
(c1 + jc2), (1.14)

where a1 is the amplitude of the input to the nonlinearity (of y(t) in our case).
Let us note that the DF of the twisting algorithm only depends on the value of the
amplitude. This suggests finding the parameters of the limit cycle via the solution
of the harmonic balance equation [7]:

W ( jΩ)N(a) =−1, (1.15)

where a is the generic amplitude of the oscillation at the input of the nonlinearity
and W ( jΩ) is the complex frequency response characteristic (Nyquist plot) of the
plant. Using the notation of the twisting algorithm this equation can be rewritten as
follows:

W ( jΩ) =− 1
N(a1)

, (1.16)
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Fig. 1.4 Solving the harmonic balance equation for TA

where the function on the right-hand side is given by:

− 1
N

= πa1
−c1 + jc2

4(c2
1 + c2

2)
.

Equation (1.15) is equivalent to the condition of the complex frequency response
characteristic of the open-loop system intersecting the real axis at the point (−1, j0).
The graphical illustration of the technique of solving equation (1.15) is given in
Fig. 1.4. The function− 1

N is a straight line, the slope of which depends on the c2/c1

ratio. This line is located in the second quadrant of the complex plane. The point
of intersection of this function and the Nyquist plot W ( jϖ) provides the solution
of the periodic problem. This point gives the frequency of the oscillation and the
amplitude a1. Therefore, if the transfer function of the plant (or plant plus actuator)
has relative degree higher than two, then a periodic motion may occur in such a
system. For that reason, if an actuator of first or higher order is added to the plant of
relative degree two driven by the twisting controller a periodic motion may occur in
the system.

The conditions for the existence of a periodic solution in a system with the twist-
ing controller can be derived from the analysis of Fig. 1.4. Obviously, every system
with a plant of relative degree three or higher would have a point of intersection with
the negative reciprocal of the DF of the twisting algorithm and, therefore, a periodic
solution would exist.
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Fig. 1.5 Block diagram of the system governed by STA

This is applicable to so called “ twisting as a filter” algorithm. The introduction
of the integrator in series with the plant makes the relative degree of this part of the
system equal to two. As a result, any actuator introduced in the loop increases the
overall relative degree to at least three. In this case, there always exists a point of
intersection of the Nyquist plot of the series connection of the actuator, the plant
and the integrator and of the negative reciprocal of the DF of the twisting algorithm.
Thus, if an actuator of first or higher order is added to the plant with relative degree
one a periodic motion may occur in the system with the twisting as a filter algorithm.

1.7.1.2 Super-Twisting Algorithm and Its DF Analysis

A similar approach as in the last section can be used to perform a DF analysis for
the super-twisting algorithm:

u =−k1sign(y)+ v, v̇ =−k2|y| 1
2 sign(y),

The DF of the STA is given by

N = N1 + N2 =
4k1

πay

1
jΩ

+
1.1128k2√

ay
. (1.17)

where ay is the amplitude of the output oscillations. Let us note that the DF of the
super-twisting algorithm depends on the values of both the amplitude, ay, and the
frequency, Ω . The parameters of the limit cycle may be found via the solution of
the harmonic balance equation (1.15), where the DF N is given by (1.17).
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Fig. 1.6 Level curves for −1/N in the super-twisting case

The DF of the STA can be depicted as a number of plots representing the de-
pendency on the amplitude, with each of those plots corresponding to a certain fre-
quency. The frequency range of interest lies below the frequency corresponding to
the intersection of the Nyquist plot and the real axis. The plots of the function−1/N
are depicted in Fig. 1.6. Plots 1-4 correspond to four different frequencies with the
following relationship: Ω1 > Ω2 > Ω3 > Ω4. Each of those plots represents the
dependence of the DF on the amplitude value.

By solving the harmonic balance equation (1.15), it is possible to prove the
existence of a periodic solutions:

Proposition 1.1. If the relative degree of the plant is two or higher and the plant
does not have double zero poles then at least one solution may exist of the equation
(1.16) for the super-twisting algorithm.

It is important that the point of intersection be located in the third quadrant of the
complex plane. Therefore, if the transfer function of the plant (or plant plus actu-
ator) has relative degree higher than one, a periodic motion may occur in such a
system. For that reason, if parasitic dynamics of first or higher order are added
to the principal dynamics of relative degree one driven by the super-twisting con-
troller then, once again, a periodic motion may occur in the system. Moreover, the
frequency of the periodic solution for the super-twisting algorithm is always lower
than the frequency of the periodic motion in the system with the classical first order
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SM relay controller since the latter is determined by the point of the intersection of
the Nyquist plot and the real axis.

In [80, 81, 30] different SOSM controllers are studied in terms of their trans-
fer properties, which allows investigating the response of the system to an external
signal representing either a disturbance, which the system is supposed to reject, or
the reference input, which the system is supposed to track. An approach based on
the Locus of a Perturbed Relay System (LPRS) [24] is developed making refer-
ence to linear plant/actuator sensor dynamics and to the “generalized sub-optimal”
second-order sliding mode control algorithm in the closed loop [30].

1.7.2 Singularly Perturbed Analysis of Homogeneous Sliding
Modes in the Presence of Fast Actuators

Till now, the robustness of homogeneous sliding modes had been proven with re-
spect to switching imperfections, small delays and noises [93]. In reality, the control
affects a plant by means of an actuator. A proper mathematical model of the actuator
is often uncertain, and, as a result, it is not accounted for at the control-design stage.
The purpose of the actuator is to properly transmit the input, and it does so when
the input changes smoothly and slowly. For this reason the actuator needs to be fast,
exact and stable. Unfortunately, high-frequency discontinuous inputs cause uncon-
trolled vibrations of the actuator and of the closed SOSM system (see [27], [26], [28]
and references therein).

That is why the proper way to describe the behavior of control systems with fast
actuators is through the singularly perturbed technique. For first order sliding mode
systems the singularly perturbed analysis of chattering was proposed and developed
in [60], [61]. For the SOSM such analysis is performed in [29], [28].

Most of known HOSM controllers are homogeneous [96], [93]. Here, following
[97], we will analyze the accuracy of homogeneous HOSMs with respect to the
presence of unaccounted-for fast stable actuators.

Let a smooth dynamic system with a smooth output function σ be closed by
some possibly-dynamic discontinuous feedback and be understood in the Filippov
sense [57]. Then, provided that the successive total time derivatives σ , σ̇ , ...,σ (r−1)

be continuous functions of the closed-system state-space variables and the set σ =
σ̇ =, ...,= σ (r−1) = 0 be a non-empty integral set, the motion on the set is called
a sliding (rth order sliding) mode [92], [93]. Sliding modes used in most variable
structure systems are of the first order.

Let the dynamic system and the output (sliding variable) σ have the form

ẋ = a(t,x)+ b(t,x)v, σ = σ (t,x) (1.18)

where x∈ Rn, t ∈ R, σ ∈ R, the r−1 total time derivatives are measured in real time,
v∈R is the input, and n is uncertain. Provided an r-sliding mode σ = 0 is established
in (1.18), asymptotic of σ are to be estimated in the presence of unaccounted-for fast
stable actuators.
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Assumption 1.1. The smooth, uncertain functions a, b and σ are defined in some
open region Ωx ∈ Rn+1. It is supposed that, provided the input v be a Lebesgue-
measurable function of time, |v| ≤ vM, all solutions starting from an open region
Ωx ∈ Rn at t = ta can be extended in time up to t = tb > ta without leaving Ω . The
constant vM > 0 is introduced in Assumption 1.4.

Existence of such tb is trivial for any vM > 0 and bounded Ωx.

Assumption 1.2. The relative degree r of the system is assumed to be constant and
known. That means that for the first time the input variable v explicitly appears in
the rth total time derivative of σ . It is possible to verify that

σ (r) = h(t,x)+ g(t,x)v (1.19)

where h(t,x) = σ (r)|v = 0, g(t,x) = (∂/∂v)σ (r) are some unknown smooth func-
tions. The set Ωx is supposed to contain rsliding points at the time t = ta, i.e. points
satisfying σ = σ̇ =, ...,= σ (r−1) = 0.

Assumption 1.3. It is supposed that the inequalities

0< Km ≤ ∂
∂v

σ (n) ≤ KM,
∣∣∣σ (r)

∣∣∣
v=0

≤C (1.20)

hold in Ω for some Km, KM, C > 0. Conditions (1.20) are formulated in terms of
input-output relations.

The actuator model is described by the equations

μ ż = f (z,u) , v = v(z) (1.21)

where z ∈ R, u ∈ R are the control and the input of the actuator respectively, output
v(z) is continuous, f ∈ (z,u) is a locally bounded Borel-measurable function and
the time constant μ > 0 is a small parameter. Recall that all differential equations
are understood in the Filippov sense [57].

The control u is determined by a feedback of the form

u = U
(
σ , σ̇ , ...,σ (r−1)

)
(1.22)

where U is a function, continuous almost everywhere, bounded by some constant
uM > 0 in its absolute value.

When applied directly to (1.18), i.e. with

v = u (1.23)

this control is supposed to locally establish the r-sliding mode σ = 0 (see also As-
sumption 1.6 below). In order to apply (1.22) one needs to measure or estimate r−1
derivatives of σ .

Assumption 1.4. The initial values of actuator (1.21) belong to a compact region
Ωz0. The actuator features Bounded-Input-Bounded-State (BIBS) property for some
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value of μ . As |u| ≤ uM, this provides for the infinite extension in time of any solution
of (1.21) and z belonging to another compact region Ωz independent of μ . Indeed,
μ can be excluded by the time transformation τ = t/μ . This assumption also causes
the actuator output v to be bounded in its absolute value by some constant vM > 0.

Assumption 1.5. The dynamic output-feedback (1.22) is supposed to be r−sliding
homogeneous [93], which means that the identity

U
(
σ , σ̇ , ...,σ (r−1)

)
= U

(
κ rσ ,κ r−1σ̇ , ...,κσ (r−1)

)
(1.24)

is kept for any. It is also assumed that the control function U is locally Lipschitzian
everywhere except in a finite number of smooth manifolds comprising the closed set

Γ in the space with coordinatesΣ =
(
σ , σ̇ , ...,σ (r−1)

)
. Note that, due to homogene-

ity property (1.24), set Γ contains the origin Σ = 0, where function U is inevitably
discontinuous [93].

Assumption 1.6. It is assumed that with control (1.22) applied directly to the in-
clusion, a finite-time stable inclusion (1.22), (1.23) is created.

Assumption 1.7. The actuator is assumed exact in the following sense. With μ = 1
and any constant value of u, |u| ≤ uM, the output v uniformly tends to u. In other
words, for any δ > 0 there exists T > 0 such that with any u, u = const, |u| ≤
uM, z(0) ∈ Ωz, the inequality |v−u| ≤ δ is kept after the transient time T . It is
also required that the function f (z,u) in (1.21) be uniformly continuous in u, which
means that ‖ f (z,u)− f (z,u +Δu)‖ tends to 0 with Δu → 0 uniformly in z ∈ Ωz,
|u| ≤ uM.

Assumption 1.8. It is supposed that the change of (1.22), (1.23) at the set Γ to

v ∈
{

U (Σ) ,
[−vM,vM] ,

Σ /∈ Γ
Σ ∈ Γ (1.25)

does not destroy the finite-time convergence, i.e. (1.19),(1.25) is also finite time
stable.

The asymptotic sliding accuracy is calculated in the following main Lemma.

Lemma 1.1. Under Assumptions 1.1-1.6 suppose that for some μ = μ0 there exists
a ball, B, centered at Σ = 0 and a bounded invariant set, Θ , which in finite time
attracts all trajectories of the inclusion (1.21), (1.22) starting within B×Ωz0. Then
there exist a time moment t1 ∈ (ta, tb), a0,a1, ...,ar−1 > 0, and a vicinity Q of the
r-sliding set in Ωx at t = ta, such that with a sufficiently small μ > 0 the inequalities

|σ |< a0μ r, |σ̇ |< a1μ r−1, ...,
∣∣∣σ (r−1)

∣∣∣< ar−1μ are kept with t ≥ t1 for any trajectory

of (1.18), (1.21), (1.22) starting within Q at t = ta.

Theorem 1.1. Let Assumptions 1.1-1.8 hold. Then the conditions of Lemma 1.1 hold
and the corresponding asymptotic sliding accuracy is obtained.
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1.7.3 Energy Based Approach [3]

Consider an absolutely continuous scalar signal ξ (t) ∈ R, t ∈ [0,T ]. Also let ξ̄ be
an absolutely continuous “nominal signal” such that ξ is considered as its perturbed
value. Let Δξ = ξ − ξ̄ , and introduce virtual dry (Coloumb) friction, which is a
force of constant magnitude k directed against the motion vector Δξ̇ . Its work or
“heat release” during an infinitesimal time increment dt equals −ksign(Δξ̇ )Δξ̇dt =
−k|Δξ̇ |dt. Define the L1-chattering of the signal ξ (t) with respect to ξ̄ (t) as the
energy required to overcome such friction with k = 1, i.e.

L1-chat
(
ξ , ξ̄ ;0,T

)
:=

T∫

0

|ξ̇ (t)− ˙̄ξ |dt

In other words, L1-chattering is the distance between ξ̇ and ˙̄ξ in the L1-metric, or the
variation of the signal difference Δξ . Similarly, considering virtual viscous friction
proportional to Δξ , obtain

L2-chat
(
ξ , ξ̄ ;0,T

)
=

⎡
⎣

T∫

0

|ξ̇ (t)− ˙̄ξ |2dt

⎤
⎦

1/2

.

Let x(t) ∈ R
n, t ∈ [0,T ], be an absolutely continuous vector function, and M(t,x)

be some positive-definite continuous symmetric matrix with a determinant different
from 0. The chattering of the trajectory x(t) with respect to x̄(t) is defined as

Lp-chat(x, x̄;0,T ) =

⎡
⎣

T∫

0

[(ẋ(t)− ˙̄x(t))M (t,x) (ẋ(t)− ˙̄x(t))]p dt

⎤
⎦

1/p

Matrix M is introduced here to take into account a local metric. Note that with M = I
the L1-chattering is the length of the curve x(t)− x̄(t).

1.7.3.1 Classification: Chattering Family

The notions introduced depend on the time scale and the space coordinates. The
following notions are free of this drawback.

Consider a family of absolutely continuous trajectories (signals) x(t,ε) ∈ R
n,

t ∈ [0,T ], ε ∈ R
l . The family of chattering parameters εi measure some imperfec-

tions and tend to zero. Define the nominal trajectory (signal) as the limit trajectory
(signal) x̄(t) := limε→0 x(t,ε), t ∈ [0,T ]. Chattering is not defined in the case when
the limit trajectory x̄(t) does not exist or is not absolutely continuous. For chattering
classification the well known Lp technique is used.

Definition 1.4. Lp-chattering is said to be
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i) infinitesimal, if the “heat release” is infinitesimal, i.e.

lim
ε→0

Lp-chat(x, x̄;0,T ) = 0,

ii) bounded if the “heat release” is bounded, i.e.

lim
ε→0

Lp-chat(x, x̄;0,T )> 0,

iii)unbounded if the “heat release” is not bounded, i.e.

lim
ε→0

Lp-chat(x, x̄;0,T ) = ∞.

The last two chattering types are to be considered as potentially destructive.
In [3] it is shown that high gain controller design can cause unbounded “heat

release”.

1.7.4 Recapitulation

1. The use of phrases such as chattering free or chattering eliminationi s not cor-
rect. Continuous HOSM based controllers can eliminate chattering in the math-
ematical model of the system but not in the system itself, i.e. they can only
adjust chattering, not eliminate it.

2. Chattering in continuous high gain controllers may have unbounded heat release.

1.7.5 Open Problems

• estimation of HOSMs accuracy in smooth controllers in the presence of fast
actuators;

• compensator design for SOSM and HOSM controllers (e.g. [134] for the twisting
controller);

• finding the solutions which will allow the adjustment of chattering by system
design;

• for the observer-based case, find the sufficient and necessary conditions for
chattering adjustment and accuracy for the observer-based approach suggested
in [31](see also [151]).

1.8 HOSM Observation and Identification

The problems of state observation and unknown input estimation have been actively
developed using the Sliding Mode approach (see, for example, the corresponding
chapters in the [151] and the recent tutorials [58, 50, 132, 144]). The first sliding
modes observers (SMO) were designed for systems with relative degree one with
respect to the unknown inputs [50]. Generally, they were developed for systems



1 Sliding Mode Enforcement after 1990 27

which satisfy the necessary and sufficient conditions to estimate the entire state
vector without differentiation of the output (i.e., for the systems with relative degree
one w.r.t. the unknown inputs) (see also [145]). A recent and most complete tutorial,
about such kind of observers is made by Prof. S. Spurgeon [144].

It turns out that the conditions to estimate the entire state vector without differen-
tiation of the output are not satisfied for the state observation of a mechanical system
where only positions are measured [41], [43]. To overcome the restriction of rela-
tive degree one w.r.t the unknown inputs, an idea was suggested: to transform the
system into a triangular form and use a step by step sliding mode observer based on
the successive reconstruction of each element of the transformed state vector with
filtration in each step (see, e.g., [75, 1]).

The design of the observers that need a regular form is restricted to the fulfillment
of a specific relative degree condition [58]. The essence of the observers that use the
triangular form is to recover information from the derivatives of the output of the
system which are not affected by the unknown inputs. Such derivatives can be esti-
mated via a second order sliding mode technique, specifically by the super-twisting
algorithm. In the last two decades some second-order sliding-mode algorithms have
been designed. However, they still require consecutive differentiations.

One of the problems with the recently proposed SMO is that the differentiation
procedure is done step-by-step using the super-twisting algorithm which increases
the error due to the sample time of sensors or computer calculations. Also, as in the
majority of exact sliding mode observers, it is assumed that the unknown input vec-
tor is uniformly bounded. Three kinds of sliding mode observers has been proposed
recently for overcoming such a problem. In [33], [19], [20] an algebraic observer
was suggested which made use of the STA in each differentiation step. The authors
of [59] proposed first using a step-by step differentiation process to generate a new
system output, and then designing a first order sliding mode. The second approach
was proposed in [68, 67, 17, 63] allowing the use of arbitrary order robust exact dif-
ferentiators providing the best possible accuracy of the observer w.r.t. the sampling
step and bounded deterministic noise in the sense of [84]. Furthermore, in [17] it is
no longer necessary to have bounded unknown inputs.

One of the important properties of SMO is that they allow reconstructing the
unknown inputs which, depending of their nature, allow the use of observers for fault
detection and isolation ( [137,145]), identification of uncertain parameters ( [43,19])
and compensation of disturbances ( [56]). However, all the mentioned observers
consider that in order to estimate the unknown inputs it is necessary to estimate
the state vector first. In [21], necessary and sufficient conditions were given for the
estimation of unknown inputs, which do not require the state to be estimated.

1.8.1 HOSM Observation and Unknown Inputs Identification

Let Σ be a linear system whose dynamics are governed by the following equations:

Σ :

{
ẋ (t) = Ax(t)+ Dw(t)
y(t) = Cx(t)+ Fw(t) (1.26)
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The state vector is represented by x(t) ∈ R
n, w(t) ∈ R

m represents the unknown
input vector and y(t) ∈ R

p is the system output. Without loss of generality, it is

assumed that rank

[
D
F

]
= m.

Definition 1.5. Σ is called strongly observable if y(t) = 0 for all t ≥ 0 implies
x(t) = 0 for all t ≥ 0.

To overcome the restriction of consecutive differentiation the following observer de-
sign was proposed in [17] for strongly observable systems. The extension to strongly
detectable systems is also given in that paper.

In the next lines we give a simplified design of the observer. The main idea is
to express x as a differentiation operator to y. Let the matrices Mk+1 be defined by
means of the following algorithm:

Mk+1 = N⊥⊥
k+1Nk+1, M1 =

(
F⊥C

)⊥⊥
F⊥C

Nk+1 = Tk

(
MkA

D

)
, Tk =

(
MkD

F

)⊥ (1.27)

Defining Φ1 := J1y, where1 J1 :=
(
F⊥C

)⊥⊥
F⊥, leads to

Φ1 =
(

F⊥C
)⊥⊥

F⊥Cx = M1x (1.28)

Now with Φ2 := N⊥⊥
2 T1

[
d
dt M1x

y

]
, and moving the differentiation operator outside

of the parenthesis, the following identity is obtained2

Φ2 = M2x =
d
dt

N⊥⊥
2 T1

[
J1 0
0 I

][
y

y[1]

]
=

d
dt

J2

[
y

y[1]

]

Matrix J2 is defined by the previous identity. Then, we can generalize the procedure

as follows: defining Φk := N⊥⊥
k Tk−1

[
d
dt Mk−1x

y

]
(k = 2, . . . ,n−1), the identity

1 The notation X⊥ means a full row rank orthogonal matrix to X , i.e. X⊥X = 0 and
rankX⊥ = n− rankX . The matrix X⊥⊥ must satisfy the conditions rankX⊥⊥ = rankX and

det

[
X⊥

X⊥⊥

]
	= 0.

2 Let f (t) be a vector function, f [k] represents the k-th anti-differentiator of f (t), i.e.

f [k] (t) =
∫ t

0

∫ τ1

0
· · ·

∫ τk−1

0
f (τk)dτk · · ·dτ2dτ1, f [0] (t) = f (t).
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Φk = Mkx =
dk−1

dtk−1 N⊥⊥
k Tk−1

[
Jk−1 0

0 I

]
⎡
⎢⎢⎢⎣

y
y[1]

...
y[k−1]

⎤
⎥⎥⎥⎦ =

dk−1

dtk−1 Jk

⎡
⎢⎢⎢⎣

y
y[1]

...
y[k−1]

⎤
⎥⎥⎥⎦ (1.29)

holds, where Jk = N⊥⊥
k Tk−1

[
Jk−1 0

0 I

]
.

Thus, the state vector x can be expressed by the identity

x =
dn−1

dtn−1 M−1
n Jn

⎡
⎢⎢⎢⎣

y
y[1]

...
y[n−1]

⎤
⎥⎥⎥⎦ (1.30)

By defining H (t) as

H (t) = M−1
n Jn

⎡
⎢⎢⎢⎣

y
y[1]

...
y[n−1]

⎤
⎥⎥⎥⎦ (1.31)

we obtain that x(t) =
dn−1

dtn−1 H (t). Then, vector x(t) can be obtain by means of a

high order differentiator [92].
Thus, the j-th term of x(t) can be estimated in the following way

ż j,0 = λ0
∣∣z j,0−Hj

∣∣ n−1
n sign

(
z j,0 −Hj

)
+ z j,1

ż j,1 = λ1
∣∣z j,1− ż j,0

∣∣ n−2
n−1 sign

(
z j,1 − ż j,0

)
+ z j,2

...

ż j,n−2 = λn−2
∣∣z j,n−2− ż j,n−3

∣∣1/2
sign

(
z j,n−2− ż j,n−3

)
+ z j,n−1

ż j,n−1 = λn−1sign
(
z j,n−1− ż j,n−2

)

(1.32)

With the proper selection of constants λi (i = 0, · · · , n̄H − 1), there exists a finite
time t j such that the identity z j,n−1 (t) = dn−1

dtn−1 Hj (t) is achieved for all t ≥ t j. The

constants λi can be calculated in the following form, λi = λ0iK1/(n̄H−i) (t), where
K (t) is a continuous function and, at time t, K (t) is a known local Lipschitz constant
for x(t) and λ0i is calculated for the case when K (t) = 1 (λ0i may be calculated
through simulations). A value of λ0i (i = 0, · · · , n̄H −1) for a fifth order differentiator
was given in [92], with λ00 = 12, λ01 = 8, λ02 = 5, λ03 = 3, λ04 = 1.5, and λ05 = 1.1.

Remark 1.1. The restriction over the boundedness of x(t) can be avoided by means
of a more elaborated technique, using a linear compensator and defining an extended
vector which includes the perturbations. For more details see [17].
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Thus, defining the vector zn−1 =
[

z1,n−1 · · · zl,n−1
]T , we achieve in a finite time the

identity
zn−1 (t) = x(t)

If we assume that w(t) is differentiable with a bounded derivative then we can
extended the state vector as

xex (t) =
[

x(t)
w(t)

]

In such a way, the previous procedure can be applied to the extended vector xex (t).
If we define n̄ = n + m, and we use a differentiator of order n̄− 1, we obtain the
following identities,

zn̄−1 (t) = xex (t)

Remark 1.1. Indeed, if we consider that D = B, then we can use the estimated un-
known input in the control law to compensate the effects of the matched
disturbances [56].

1.8.2 Time Invariant Parameter Identification

Let us assume that we have reconstructed w(t), the complementary part of the ex-
tended state vector xex(t), by means of an adaptable variable ŵ(t). Using regressor
notation, we can write w(t) as

w(t) = θ (t)ϕ(t,x,u)

where θ (t) ∈ R
n×l is a matrix composed by the value of the uncertain parameters

and ϕ(t,x,u) ∈ R
l is a known nonlinear function vector.

Through a shorter notation, function ϕ(t,x,u) will be referred to as ϕ(t). Now,
using the auxiliary variable σ for integration in time, we have that

1
t

∫ t

0
ŵ(σ)ϕT (σ)dσ = θ

1
t

∫ t

0
ϕ(σ)ϕ(σ)T dσ (1.33)

Therefore, the system parameters can be estimated from (1.33) by

θ̂ (t) =
[∫ t

0
ŵ(σ)ϕT (σ)dσ

][∫ t

0
ϕ(σ)ϕT (σ)dσ

]−1

(1.34)

where θ̂ is the estimation of θ . For any square matrix the next equalities holds

Γ−1(t)Γ (t) = I,
Γ−1(t)Γ̇ (t)+ Γ̇−1(t)Γ (t) = 0

(1.35)

Let us define Γ (t) =
[∫ t

0 ϕ(σ)ϕT (σ)dσ
]−1

. Using (1.35) we can rewrite (1.34) in
the form:

˙̂θ =
[∫ t

0
ŵ(σ)ϕT (σ)dσ

]
Γ̇ (t)+ ŵ(t)ϕT (t)Γ (t)
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Now, using equation (1.34) we can write

˙̂θ = θ̂Γ−1(t)Γ̇ (t)+ ŵ(t)ϕT (t)Γ (t)

The equalities (1.35) allow us to write a dynamic expression to compute θ as

˙̂θ =
[
−θ̂ϕ(t)+ ŵ(t)

]
ϕT (t)Γ (t). (1.36)

In the same way, a dynamic form to find Γ (t) is given by

Γ̇ (t) =−Γ (t)ϕ(t)ϕT (t)Γ (t) (1.37)

The average values of the real w(t) satisfy the equality

∫ t

0
w(σ)ϕT (σ)dσ = θ

∫ t

0
ϕ(σ)ϕT (σ)dσ

then

θ =
[∫ t

0
w(σ)ϕT (σ)dσ

]
Γ (t).

Taking into account that in practice ŵ = w + ε , we have the following identity for
θ :

θ =
[∫ t

0
ŵ(σ)ϕT (σ)dσ +

∫ t

0
ε(σ)ϕT (σ)dσ

]
Γ (t). (1.38)

Let us assume ŵ = θ̂ϕ(t). In this case equation (1.38) becomes

θ =
[
θ̂
∫ t

0
ϕ(σ)ϕT (σ)dσ +

∫ t

0
ε(σ)ϕT (σ)dσ

]
Γ (t),

which may be rewritten as

θ = θ̂ +
[∫ t

0
ε(σ)ϕT (σ)dσ

]
Γ (t). (1.39)

Thus, it is possible to define the convergence conditions

sup ||tΓ (t)||< ∞, (1.40)

||1
t

∫ t

0
ε(σ)ϕT (σ)dσ || → 0 as t → ∞. (1.41)

Condition (1.40), known as the persistent excitation condition, requires the non-
singularity of the matrix Γ−1(t) =

∫ t
0 ϕ(σ)ϕT (σ)dσ . To avoid this restriction let

us introduce the term ρI where 0 < ρ << 1 and I is the unit matrix and redefine
Γ−1(t) as

Γ−1(t) =
∫ t

0

(
ϕ(σ)ϕT (σ)dσ

)
+ρI
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In this case the value of Γ−1(t) is always non-singular.
Notice that the introduction of the term ρI is equivalent to setting the initial

conditions of (1.37) as

Γ (0) = ρ−1I, 0< ρ-small enough

The introduction of the term ρ ensures that the condition sup ||tΓ (t)|| < ∞ be sat-
isfied, but it does not guarantee the convergence of the estimated parameters to the
real values. The convergence of the estimated values to the real ones is ensured by
the persistent excitation condition

liminf
t→∞

1
t

∫ t

0

(
ϕ(σ)ϕ(σ)T dσ

)
> 0

Condition (1.41) refers to the unknown input estimation process, and it gives the
convergence quality of the identification. The estimated parameters will tend to the
real parameters values as fast as the term 1

t

∫ t
0 ε(σ)ϕ(σ)T dσ converges to zero.

In [43] the continuous time version of the forgetting factor method(FFM) is
suggested.

1.8.3 Further Development

This obviously will increase the sort of systems that can be considered. A procedure
to reconstruct the unknown inputs by means of sliding mode differentiators was also
proposed. Then, in future research, the possibility of using unknown input estima-
tors (without state observation) for fault detection and isolation, for example, should
be considered.

For nonlinear systems there also exists a variety of works dedicated to the design
of SMO. Unlike in the case of linear systems, almost all of them use a sufficient con-
dition (of triangularization and relative degree) for the observer design. For instance,
affine nonlinear systems with scalar output and relative degree equal to the dimen-
sion of the state [154], complete vector relative degree and a transformation [69] and
complete relative degree without transformation [42]. In [9] a more general class of
systems is considered. Here, the basic idea is that when the triangular form can not
be achieved, an extended triangular form is proposed. The most general observer is
given in [6] for affine nonlinear systems with meromorphic vector fields and without
known inputs. In this last work, an observer using the output and its derivatives (es-
timated using the HOSM differentiator) is constructed under almost sufficient and
necessary structural conditions.

1.8.4 Recapitulation

1. HOSM observers were designed ensuring:

• the finite time theoretically exact identification of smooth unknown inputs for
strongly observable systems;
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• the best possible asymptotic accuracy of unknown inputs estimation in the sense
of [84];

• the theoretically exact identification of smooth unknown inputs for strongly
detectable systems;

• the continuous version of the least square method providing asymptotic
parameter identification

• the continuous version of the forgetting factor method ( [43], [19]).

1.8.5 Open Problems

1. HOSMOs ensure finite time exact convergence but they still can not ensure the
separation principle because the convergence time is unknown. Moreover, in the
case when the initial conditions tend to infinity the convergence time grows to
infinity. That is why the design of uniformly convergent HOSMO observers with
prescribed convergence time is desired. The first paper about uniform exact
observability is published in VSS10 [38].

2. HOSMOs are designed for a wide class of nonlinear systems, but not for the
most general cases. This is why the following are still needed:

• HOSMO design for nonlinear MIMO systems without a strong restriction on the
relative degree,

• HOSMO design for nonlinear MIMO systems without transformations;
• HOSMO design for distributed parameters systems;

3. Modifications of the least square method providing parameter identification in
finite time.

1.9 Integral Sliding Mode Control

Integral sliding modes [109,150,149] were suggested as a tool to reach the following
goals:

• compensation of matched perturbations starting form the initial moment, i.e.
ensuring the sliding mode starting form the initial moment;

• preservation of the dimension of the initial system, i.e. saving the system
dynamics previously designed for the ideal case (without perturbation).
These two attractive properties of ISM allows them to be successfully used in
different kinds of applications, e.g. robotics (see, for example [45]) and design
problems (see, for example [35]).

Suppose that a control law u = u0(x, t) achieving the control objective (e.g. steering,
stabilization or tracking) is already available for an ideal, nominal system

ẋ = f (x,t)+ B(x)u , x ∈ Rn ,u ∈ Rm . (1.42)
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Furthermore, suppose that instead of the ideal system (1.42), one has a perturbed
system

ẋ = f (x,t)+ B(x)(u + δ )+φum ,

where δ is a matched disturbance and φum is an unmatched disturbance. Then, a
sliding mode control law u1(x,t) can be easily included such that the closed-loop

ẋ = f (x,t)+ B(x)(u0 + u1 + δ )+φum

is insensitive to δ .
One begins by constructing the sliding variable

s(x,t) = g(x)− z(t) , s(x,t) ∈ Rm ,

where

z(t) = g(x0)+
∫ t

t0
G(x) [ f (x,τ)+ B(x)u0(x,τ)] G(x) =

∂g
∂x

(x)

(gradients are regarded as row vectors) and g(x) is any function such that G(x)B(x)
is invertible.

Notice first that, at t = t0, we have s = 0, thus the system starts at the sliding
surface (there is no reaching time). Let us now compute the time derivative of s:

ṡ = G(x) [ f (x,t)+ B(x)(u0 + u1 + δ )+φum− f (x, t)−B(x)u0]
= G(x)B(x)(u1 + δ )+ G(x)φum .

It can be readily seen that if δ and φum are bounded by known functions, then it is
possible to construct a unit control u1 ensuring ṡ = 0. The equivalent control is

ueq =−δ − (G(x)B(x))−1G(x)φum ,

so the trajectories of the system at the sliding surface are given by

ẋ = f (x,t)+ B(x)u0 +
[
I−B(x)(G(x)B(x))−1G(x)

]
φum ,

which shows the insensitivity with respect to δ .
It is clear that the projection matrix G(x) should

• not amplify the remnant perturbation

φsm =

⎡
⎢⎣I−B(x)(G(x)B(x))−1G(x)︸ ︷︷ ︸

Γ (x)

⎤
⎥⎦φum , (1.43)

• minimize (1.43).
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It has been shown in [35] that, if B(x) is constant (B(x) = B), then G may be chosen
such that it minimizes the norm of the projection matrix

Γ (x) =
[
I−B(GB)−1G

]
(1.44)

In the optimal case,
G = B+

(B+ is the Moore-Penrose pseudo inverse of B), the Euclidean norm of φsm is
minimal, and φsm = φφm, i.e. the unmatched perturbation is not amplified.

This result has been extended in [135] to systems which do not posses a constant
B(x), but that have a certain regular form. Under certain integrability conditions
on B(x), the optimal can be found for systems which are not necessarily in regular
form. To further attenuate φr one can design u0 using H∞ techniques [34, 35].

1.10 HOSM Output Based Control

High Order Sliding Modes allowed solving the finite-time output regulation and
exact disturbance compensation problem for single-input single-output (SISO) sys-
tems. After this, the question was the applicability of the HOSM approach to multi-
input multi-output (MIMO) systems and for state stabilization. Let us consider the
case of a linear system

ẋ = Ax + B[u + w(t)],
y = Cx,

(1.45)

where x∈R
n, y∈R

p, u,w∈R
m are the state, measured output, controlled input and

disturbance, respectively.
The first natural extension of the HOSM methodology was to consider a MIMO

system with vector relative degree. In such case, each output can be controlled inde-
pendently as a SISO system and the exact finite-time output regulation problem is
solvable using HOSMs. Moreover, if the relative degree is complete (i.e. the sum of
the individual relative degrees is equal to the state dimension), then the finite-time
output stability yields finite-time state stabilization.

However, in a more general case where the system has more outputs than
inputs or simply when the system does not have vector relative degree, a more de-
tailed structural analysis of the system is required in order to apply the HOSM ap-
proach. Since, in general, we can expect that HOSM controllers are able to provide
finite-time stabilization of the output, we should assume that the finite-time output
stabilization of y = 0 has to yield finite-time state stabilization of x = 0 in spite
of disturbances. This, for linear systems, turns out to be equivalent to the absence
of invariant zeros or of the strong observability of the system [76] with respect to
the measured output y. Unfortunately, it is not possible to control the output y di-
rectly every time, especially when there exist more outputs than inputs. However,
strong observability offers a short-come to this problem by providing necessary and
sufficient conditions for estimating the state (in finite-time) using only the measured
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output (and its derivatives estimated by HOSM differentiators) in spite of the inputs.
Once the state has been estimated in finite-time, the controllability of the system en-
sures the existence of a “fictitious” output with full vector relative degree [103]
that can be easily controlled with the use of HOSMs to provide the finite-time
stabilization of the state.

The extension to the MIMO case has been done in [13, 49, 44, 5, 6]. The whole
state is assumed to be known in [13], and the traditional sign function of the first
order sliding modes (1-SMs) is replaced with a 2-SM controller. The resulting con-
trol is both robust and exact, but there is no finite-time stable output regulation and
the whole state is used, not only the output. The case of well-defined vector relative
degree is considered in [44, 49], and an output based controller is developed. Only
asymptotic stability is ensured in [49], and moreover the system has to be BIBS
stable with respect to a smooth disturbance. Only the output regulation problem is
considered in [44]. In [5], the general case for a controllable and strongly observable
linear system is considered and solved obtaining the finite-time exact state stabiliza-
tion based on output feedback. In [6] the notion of strong observability is extended
and characterized for a fairly wide class of nonlinear systems and it allows obtain-
ing the finite-time exact state stabilization of strongly observable and flat nonlinear
systems.

Another aspect of this problem arises due to the interaction between the con-
troller and the observer (or differentiator). In general, it is necessary to turn on the
controller once the differentiator has converged. Since the HOSM differentiator con-
verges in finite-time this problem can be solved by waiting a sufficient amount of
time and then turning on the controller. The problem of real time detection of the
convergence time of the HOSM differentiator is considered in [4] where a criterion
is developed and used to turn on the controller at an appropriate time.

One way to avoid any initialization phase is by using a hybrid differentiator
scheme [114, 113]. The idea is to design a switching law to select between some
general estimator, that provides an input-to-state practical stability property for
any plant/controller initial conditions, and a locally exact differentiator in such a
way that global stability properties are achieved and in addition exact tracking is
ultimately achieved.

Other approaches for output feedback SMC are also outlined in the Chapter
by prof. Liu Hsu and co-workers. For the sake of simplicity, the focus is main-
tained on single-input-single-output (SISO) nonlinear systems, although several
results have been extended to the control of multi-input-multi-output (MIMO)
systems [78,117,116]. For the considered class of nonlinear systems, linear growth
restriction on the unmeasured states is assumed, while less restrictive conditions are
imposed to the growth of nonlinearities depending on the measured output. More-
over, the high frequency gain (HFG) is uncertain in norm but with known sign.
The case of unknown HFG sign (unknown control direction) can be coped with the
monitoring function approach presented in [114]. Alternative tracking controllers
for plants with arbitrary relative degree using different approaches to overcome
the relative degree obstacle are briefly described: linear or variable structure lead
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filters [77], high-gain observers with constant or dynamic gain [128], hybrid estima-
tion schemes combining lead filters or observers with locally exact differentiators
based on high-order sliding mode [114, 113].

The proposed output feedback controllers discussed employ linear lead filters or
HGO only to generate the switching law. The modulation function (variable gain)
in the control law is synthesized using signals from the standard input-output filters
from MRAC which are free of peaking. The dwell-time strategy for control activa-
tion introduced in [115] is another approach for peaking avoidance. The dwell-time
method allows the inclusion of more general class of uncertain strongly nonlin-
ear systems. It can also enhance the stability and performance of the HGO based
controllers.

1.10.1 Open Problems

• uniformly convergent observation and control algorithms are needed,
• relationship between controllability, strong observability and flatness.

1.11 Adaptive Sliding Mode Control

Adaptive control is usually used in order to achieve a desired state or output track-
ing performance(chattering adjustement). When the HOSMs algorithms were de-
veloped it was common opinion that adaptive sliding mode control(ASMC) is not
needed anymore. The reason was the following: applying ASMC we only can ad-
just the discontinuous control gain but the control is still discontinuous. Applying
HOSM controllers (STA for the case of relative degree one) for the case when the
perturbation is Lipshitz continuous we can have absolutely continuous controller
adjusting chattering, i. e. having self adaptation property and avoid filtration of the
outputs.

However, there are 2 principal cases when the usage of ASMC seems to be
reasonable.

1. When the perturbations/uncertainties are discontinuous but their bounds of are
known.

2. When the bounds of the perturbations/uncertainties are known.

1.11.1 ASMC with Known Bounds for the Disturbance

It is acknowledged fact that adaptive sliding mode control (ASMC) techniques are
useful in estimating uncertainties/disturbances, even with known bounds, in order to
compensate them explicitly while relaxing the burden on the high frequency portion
of the SMC, which in turn yields chattering reduction. This kind of ASMCs have
been successfully applied to robotic control with unmodelled dynamics [164], for
friction identification and compensation [143] and for coupling identification and
compensation in MEMS gyroscopes [53]. These ASMC techniques include:
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• A gain adaptation algorithm in the 2-sliding mode controller that allowed achiev-
ing improved accuracy of the sliding variable stabilization typical of 3-sliding
mode [14],

• ASMC that have been applied for estimation and compensation of the sen-
sor’s disturbance terms and the external disturbances acting on the plant with
aerospace applications [74, 138],

• Fuzzy logic ASMC techniques, but usually they can only guarantee zone
convergence; see, for instance, [100],

• An ASMC method proposed in [10], [86] allows adapting the SMC control gain.
The idea is based on estimating the equivalent control: once the sliding mode
occurs, the disturbance magnitude may be evaluated and allows an adequate
tuning of the control gain. This approach requires the knowledge of the uncertain-
ties/perturbations bounds and the use of a low-pass filter, which introduces sig-
nal magnitude attenuation, delay, and transient behavior when disturbances are
acting.

• The output-feedback model-reference sliding mode controller (MRAC) for mul-
tivariable linear systems based on the adaptive control formulation and on the
unit vector control approach is presented in [127]. The high frequency gain
matrix of the plant is not assumed to be known.

1.11.2 ASMC without Known Bounds for the Disturbance

The case when the boundaries of disturbances/uncertainties exist but are unknown
is of extreme importance for developing new ASMC techniques from a theoretical
and applications viewpoint. These ASMC techniques include

• ASMC presented in [79], where the gain dynamics directly depend on the sliding
variable: the control gain is increased until the sliding mode is not established.
Once this is the case, the gain dynamics equal 0. The main drawback to this
approach is the gain over-estimation with respect to the uncertainties bound.

• Adaptive continuous control with the asymptotic sliding mode that is robust
to actuator failures, nonlinear perturbations, and bounded external disturbances
with unknown bounds is presented in [110].

• A gain adaptation technique for traditional SMC that does not overestimate the
control gain has been proposed and applied to an electropneumatic actuator in
[32]

• A gain adaptation technique for 2- SMC that does not overestimate the control
gain has been proposed in [139]

• An adaptive continuous/smooth finite reaching time 2-SMC is proposed in [138]

1.12 HOSM Based Unmatched Uncertainties Compensation

It is a known issue that classical sliding mode (SM) control [151] is not able to com-
pensate both matched and unmatched perturbations [48]. Nevertheless, controllers
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based on HOSM algorithms may be applied in order to reject the effect of
unmatched perturbations. Next, some of this schemes are presented.

1.12.1 Black Box Control via HOSM

Consider a Single-Input-Single-Output system of the form

ẋ1 = f1(x1, t)+ B1(x1, t)x2 +ω1(x1, t)
ẋi = fi(xi,t)+ Bi(xi, t)xi+1 +ωi(xi,t)
ẋn = fn(x,t)+ Bn(x, t)u +ωn(x, t)

i = 2, ...,n−1
σ : (t,ξ ) → σ(t,ξ ) ∈ R

(1.46)

where x ∈ Rn is the state vector, xi ∈ R, x̄i = [x1 . . .xi]T , and u ∈ R is the control.
Moreover fi and Bi are smooth scalar functions, ωi is a bounded unknown pertur-
bation term due to parameter variations and external disturbances with at least n− i
bounded derivatives w.r.t. system (1.46), Bi 	= 0 ∀x ∈ X ⊂ Rn, t ∈ [0,∞) and σ is
the measured output. The task is to achieve σ ≡ 0.

It is assumed that system (1.46) has a constant and known relative degree r.
Then it follows that σ (r) = h(t,ξ )+ g(t,ξ )u, g(t,ξ ) 	= 0 holds, where h(t,ξ ) =
σ (r)|u=0, g(t,ξ ) = ∂

∂uσ
(r) if the inequalities 0< Km ≤ ∂

∂uσ
(r) ≤ KM, |σ (r)|u=0| ≤C

are fulfilled for some Km,KM,C> 0. The trajectories of (1.46) are assumed infinitely
extendible in time for any Lebesgue-measurable bounded control u(t,x). The next
differential inclusion is implied

σ (r) ∈ [−C,C]+ [Km,KM]u (1.47)

As it was described earlier, the above problem may be solved by the Quasi-
Continuous controller [95], which is constructed to ensure that σ = σ̇ = . . . =
σ (r−1) = 0 is established in finite time.

In [101] compensation of unmatched perturbations is tackled using the block
control approach combined with HOSM algorithms in order to consider unmodelled
actuators in the controller design.

1.12.2 Model Based Application of HOSM

In [52] a new design algorithm for systems in strict-feedback form, a special case of
the BC-form, is proposed. This algorithm achieves finite-time exact tracking of the
desired output in the presence of smooth unmatched perturbations. These features
are accomplished via the use of quasi-continuous high-order sliding modes (HOSM)
and a hierarchical design approach. In the first step the desired dynamic for the
first state is defined by the desired tracking signal. After the first step, the desired
dynamic for each state is defined by the previous one. Each virtual control is divided
into two parts, the first one is intended to compensate the nominal nonlinear part of
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the system and the second one is aimed at achieving the desired dynamics in spite
of perturbations.

Consider the class of systems of equation (1.46), with the output y = x1. The
control problem is to design a controller such that the output y tracks a smooth
desired reference yd with bounded derivatives, in spite of the presence of unknown
bounded perturbations. The whole state vector x is assumed to be known.

At each step i the constraint σi = 0 is established and kept by means of the virtual
control xi+1 = φi, which forms the constraint σi+1 = xi+1−φi for the next step.

Step 1. Defining x2 = φ1, the next virtual controller is constructed

φ1(x1,t,u1) = B1(x1, t)−1{− f1(x1, t)+ u1}
u(n−1)

1 = −α1Hn(σ1, σ̇1, . . . ,σ
(n−1)
1 )

(1.48)

where σ1 = x1−yd and Hn is an n-th order sliding mode algorithm that is introduced

in φ1 through n−1 integrators. The derivatives σ1, σ̇1, . . . ,σ
(n−1)
1 are calculated by

means of robust differentiators with finite-time convergence [92].

Step i. The remaining virtual controls are constructed as follows.

φi(xi,t,ui) = Bi(xi,t)−1{− fi(xi, t)+ ui}
u(n−i)

i = −αiHn−i+1(σi, σ̇i, . . . ,σ
(n−i)
i )

σi = xi −φi−1; i = 2, . . . ,n.
(1.49)

where Hn−i+1 is an n− i + 1-th order sliding algorithm. Notice that in step n, the
real control is calculated i.e. φn = u.

u = Bn(x,t)−1{− fn(x, t)+ un}; un =−αnsign(σn).

It is possible to smooth out the control signal by raising the order of the QC con-
troller in each φ . If this is done, the super-twisting algorithm can also be used in un.
The following theorem describes the result.

Theorem 1.2. Provided that ωi(xi,t) in system (1.46) and yd are smooth func-
tions with n− i and n bounded derivatives respectively the above hierarchic de-
sign results in an ultimate controller u, providing for the finite time stability of

σ1 = x1 − yd = σ̇1 = . . .= σ (n−1)
1 = 0 in system (1.46).

1.12.3 Exact Unmatched Uncertainties Compensation Based on
HOSM Observation

Let us consider a linear time invariant system with unknown inputs

ẋ = Ax + Bu + Dw(t),
y = Cx,
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where x ∈ R
n, u ∈ R

m, y ∈ R
p and w ∈ R

q are the state vector, the control, the
measured output of the system and the unknown input (or disturbance), respectively.
In addition, and without loss of generality, let us assume that rankC = p, rankB = m,
rankD = q and that the triplet (A,D,C) is strongly observable, such that the state x(t)
may be recovered in finite-time using only the output and its derivatives (through the
use of the HOSM differentiator). Under the additional assumption on the smooth-
ness of the unknown input w, i.e. |ẇ(t)| ≤ L, an extra derivative of the estimated
state can be computed, thus obtaining an estimate for ẋ. Under these considerations,
an estimate for the unknown input may be obtained as

ŵ = D+ [ẋ−Ax−Bu],

With this estimate of the unknown input, it is natural to try to compensate the effect
of the unknown input in the system as much as possible. Direct compensation of the
part of w that is matched to u is direct. To see this apply the state transformation

T =
[

B⊥
B+

]
which allows to rewrite the system as

ẋ1 = A11x1 + A12x2 + D1w,
ẋ2 = A21x2 + A22x2 + D2w+ u

(1.50)

with x1 ∈R
n−m, x2 ∈ R

m. If

D1 ∈ spanA12, (1.51)

then taking
u =−D2ŵ+ v,

the effect of matched disturbances can be reduced and theoretically (if all the
derivatives are exact) completely removed without the direct application of a dis-
continuous control signal.

Another option is to consider the estimate of the disturbance into the sliding
surface design as s = x2 + Kx1 + Gŵ, where matrices K and G are to be designed
to provide for both stability and performance and the control is constructed as an
unitary control

u =−ρ(x)
s
‖s‖ .

1.12.4 Conclusions

Three methods for finite time compensation of unmatched perturbations of inputs
are suggested.

Open problems

1. Design a global compensation technique joining the Lyapunov backstepping
techniques together with HOSM techniques.

2.Observer based compensation for the case when condition (1.51) is not satisfied.
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1.13 VSS Methods for Hybrid Systems

A variety of sliding mode observers can be found in the literature of the last two
decades. Firstly, the observation process was followed by means of classical slid-
ing modes. Then, when second and higher order sliding modes were introduced,
the observers were designed for a larger class of systems. This allows removing the
relative degree restriction w.r.t. the unknown inputs required when using classical
sliding modes. Furthermore, when using high order sliding mode observers (HOS-
MOs), the unknown inputs can be reconstructed in finite time. These characteristics
make high order sliding mode observers an attractive option when the reconstruction
of the state and/or unknown inputs is needed.

1.13.1 Hybrid Nonlinear Systems

The finite-time convergence and exact disturbance compensation of HOSMOs
makes them ideal for implementation in hybrid systems. One of the main proper-
ties that makes HOSMO ideal for hybrid systems is that one can make the observer
converge before a switching occurs, provided that a minimum dwell time exists.
Since the class of hybrid systems is quite big, HOSMOs have been used in different
forms.

• For nonlinear autonomous switching systems with jumps, an observer has been
designed which allows the simultaneous reconstruction of the continuous state
vector, the discrete state vector and even the unknown inputs [8].

• For Lagrangian systems an observer has been designed allowing the reconstruc-
tion of the state vector in finite time in [136], where the HOSMO was copied
from [41].

1.13.2 Hybrid Linear Systems

There is still a few number of papers that can be found in the literature of sliding
mode observers of hybrid linear systems. We can find the following works:

• A HOSMO is designed in [18] for switched linear systems where the mechanism
that activates the switching event is completely unknown (discrete state is un-
known). There, by means of a HOSMO, both the discrete and continuous state
can be reconstructed in finite time.

• A HOSMO is designed for linear switched systems with unknown inputs in [22].
The discrete events are assumed to be known. This allows designing an observer
that does not lose convergence at any switching instant.

1.13.3 Open Problems

The following are some of the still unsolved, but actual, problems of research in
sliding mode observation of hybrid systems.
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Global Observation. One of the drawbacks that still has not been solved is the
global convergence w.r.t. the initial conditions. Due to the restrictions of high order
sliding modes, one has to know a region where the state vector begins. That is why a
design of global observers seems to be an interesting challenge. A possible solution
is the use of the new uniform HOSMO proposed in [38], [37].

Zenon Phenomenon. The case when the Zenon phenomenon appears is another
problem to be solved when HOSMO are designed; some efforts have been done in
this sense by Prof. Barbot and his collaborators [155].

Parameter estimation The estimation of parameter uncertainties is yet another
problem to be solved. This problem is still in the early stages of investigation,
but already some efforts have been made and soon results might be shown.

We can continue talking about particular problems that can be tackled using
HOSMO, but it is enough to say that all that has been done up until now using
HOSMO may be investigated for the case of hybrid systems with all the possibilities
this type of systems allows, i.e. switched systems, autonomous switching systems,
systems with jumps, chaotic hybrid systems, etc. Therefore, we can say that SM ob-
servation is still in the beginning of its development and is thus a promissory topic
of research.

1.14 Relay Control with Delay

Relay control systems occur in many industrial applications. They are simple in
realization, cheap, very effective and sometimes have better dynamics than tradi-
tional linear systems [147]. The relay nature may be inherent in both sensors and
controllers. For example, the HEGO-sensor in the air-to-fuel ratio control system
of automobile engine is a relay measurer [36], while the control systems of electric
drives have on-off “switches”as relay control inputs [149]. The preferable control
strategy essentially depends on the device (sensor and/or controller) having the relay
nature.

On the other hand, time delays that usually take place in feedback control systems
can not be ignored, because they lead to “unmodelled” oscillations (such as “chat-
tering” [149]) and/or system instability [104]. This phenomenon is typical of relay
control systems [149], [64]. The presence of time delays, together with system un-
certainties (such as external disturbances, errors in system parameters estimations,
unknown and variable time delay), makes the problem of the control design and the
stability analysis of relay control systems essentially complex.

1.14.1 Oscillatory Nature of Relay Delayed Systems

The equation
ẋ(t) =−sign(x(t −1)) (1.52)

has a 4-periodic solutions
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g0(t) =
{

t for −1 ≤ t ≤ 1,
2− t for 1 ≤ t ≤ 3.

g0(t + 4k) = g0(t) , k ∈ Z.

Since
ġ0(t) =−sign[g0(t −1−4n)]

and transforming t to (4n + 1)t we obtain

1
4n + 1

[g0((4n + 1)t)]′ =−sign
1

4n + 1
g0((4n + 1)(t−1)).

This means that there exists a countable set of periodic solutions, steady modes,
or more concisely, a SM. Namely, it is easy to verify that the 4/(4n + 1)-periodic
function

gn(t) =
1

4n + 1
g0((4n + 1)t) , t ∈ R

is a solution of (1.52) for each integer n≥ 1. It is necessary to remark that the initial
function ϕn,which generates the corresponding steady mode gn, has 2n zeros on the
time interv al (−1,0).

In [64] it was shown that each solution x(t) 	≡ 0 of (1.52), after a finite time,
coincides with one of the gn(t +α) for some n ≥ 0, α ∈ R. Consequently, in the
simplest scalar relay delayed control system, only oscillatory solutions can occur.
Moreover, a solution gn(t) is stable for n = 0, and unstable for n ≥ 1.

Fig. 1.7 The set of steady modes
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1.14.2 Methods of the Relay Delayed Control Design

Time delay compensation (or prediction) and the control of system oscillations are
two modern approaches to the problem of control design for time delay systems.

1.14.3 Prediction Method

Pade approximation of delay that reduces the relay delay output tracking problem
to the sliding mode control for nonminimum phase system was suggested in [140].
In [133], [102], [99] some implementations of a prediction method for sliding mode
control design can be found.

Consider the time delayed control system of the form

ẋ(t) = Ax(t)+ Bu(t−h)+ D f (t) (1.53)

where x∈R
n is the vector of the system state, A∈R

n×n is the system matrix, u∈R
m

is the vector of control inputs, B ∈ Rn×m is the matrix of the control gains, and h> 0
is a time delay input assumed to be known.

The typical prediction equation [99, 102] for system (1.53) has the form

y(t) = eAhx(t)+
∫ 0

−h
e−θABu(t +θ )dθ (1.54)

Obviously, the calculation of the prediction variable y(t) requires information about
the control forces u(t) generated during the time interval [t − h, t). We assume that
such information can be stored and used for the control purpose.

In this case the predictor variable y(t) satisfies the following equation

ẏ(t) = Ay(t)+ Bu(t)+ eAhD f (t) (1.55)

According to the predictor method [108, 133, 102], in order to stabilize the orig-
inal system (1.53) we need to design the stabilizing controller for the prediction
system (1.55). Unfortunately, in the disturbed case ( f 	= 0) the property y(t) → 0
does not imply x(t) → 0, even when the matching condition range(D)⊆ range(B)
holds. The integral term in formula (1.54) is non-zero in the general case (see, for
example, [62]). Particularly, for the sliding mode controller application we have
u(t) = ueq(t) 	= 0, where ueq(t) is an equivalent control. Moreover, the property
y(t) → 0 can be guaranteed by implementing the sliding mode control algorithm in
the predictor system (1.55) only in the case when range(eAhD)⊆ range(B).

Therefore, the proposed technique does not allow to realize a sliding mode in
the system state space [142]; it may ensure the sliding motion only in the predictor
space [62] and leaves the system state oscillations produced by uncertainties without
consideration.
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1.14.4 Methods of Oscillation Control

PI control algorithms for amplitude control of one dimensional relay systems with
delay in the input was suggested in [2]. Methods for relay control of system
oscillations can be found in [70], [71], [141], [129].

Consider the control system with time delay of the form

ẋ(t) = Ax(t)+ Bu(x(t−h(t)))+ f (t,x(t)) (1.56)

where x ∈ Rn is a state space vector, the system matrix A ∈ Rn×n is allowed to be
unstable, B∈ Rn×m is a control gain matrix, u∈ Rn is a vector of control inputs, h(t)
is a time delay and the unknown function f (t,x(t)) describes system uncertainties.

We suggest that the full state space vector be available for measurement with an
unknown but bounded time delay h(t)

0 ≤ h(t)≤ h0 (1.57)

where h0 is known. The function h(t) is supposed to be piece-wise continuous.
System (1.56) is considered under initial conditions of the form

x(t) = ϕ(t), for t ∈ [−h0,0]

where ϕ(t) is an arbitrary function of time.
The control u(·) in system (1.56) is a relay

u(·) = (−p1sign[S1(·)], ...,−pmsign[Sm(·)])T (1.58)

where the positive parameters pi > 0,(i = 1,2, ...,m) and the linear mappings Si :
Rn → R,(i = 1,2, ...,m) should be designed.

All existing control algorithms for uncertain relay delayed systems do not guar-
antee system stability in the traditional sense [102], [70], [71]. They only provide
practical stability, such as convergence to a certain zone. Therefore, below we intro-
duce two special definitions of practical stability for relay delayed control systems.

Definition 1.6. System (1.56) is called ε - stabilizable, if for some fixed ε > 0 there
exists a control u(·) of the form (1.58) and a δ > 0, such that any solution xϕ(t) of
system (1.56) with the initial function ϕ(t) : ‖ϕ(0)‖< δ is bounded

∥∥xϕ (t)
∥∥< ε for ∀t ≥ 0

In other words, system (1.56) is ε - stable, if the designed control holds any system
solution inside the given ε - neighborhood of the origin. Such system motion is
typical for relay time delayed systems [64] and completely differs from Lyapunov
stability since the control u(·) and δ > 0 may not exist for all ε > 0.

Definition 1.7. System (1.56) is called Rε - stabilizable if, for some fixed ε > 0 and
fixed R > ε , there exist a control u(·) of the form (1.58) and a time instant T > 0
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such that any solution xϕ(t) of system (1.56) with the initial functionϕ(t) : ‖ϕ(0)‖<
R converges to zone ε in a finite time T

∥∥xϕ(t)
∥∥< ε for ∀t ≥ T

This stability form is similar to that of semiglobal stability with only one difference:
asymptotic convergence to origin replaced by finite time convergence to a zone.
Therefore, it can be also called practical semiglobal stability [71].

In [64] the necessary condition

λh0 < ln(2) (1.59)

was given for the existence of nontrivial bounded solutions for a scalar system

ẋ = λx− psign[x(t −h0)],λ , p,h0 > 0 (1.60)

Condition (1.59) is a necessary and sufficient condition for the ε- stabilization of
system (1.60). The condition (1.59) analyzed was discovered by I. Boiko using
frequency methods [25].

Papers [70], [129] extend this result to the case of vector control systems.
The methods of Rε - stabilization are also presented in [71, 141]. They are based

on control gain adaptation and need a multi-step property of the control inputs (i.e.
each relay control input may have some finite or discrete set of values). These
methods typically require a stronger stabilization condition, such as λh0 ≤ 1

2 ln(2).

1.14.5 Open Problems

1. Generalize conditions of stabilization and gain adaptation algorithms for the
nonlinear case.

2. Extension of the Lyapunov methods for relay delay systems allowing to
generalize the gain adaptation methods.

1.15 Distributed Parameter Systems

Many important plants, such as time-delay systems, flexible manipulators and struc-
tures as well as heat transfer processes, combustion, and fluid mechanical systems,
are governed by functional and partial differential equations or, more generally,
equations in a Hilbert space. As these systems are often described by models with a
significant degree of uncertainties, it is of interest to develop consistent stabilization
methods that are capable of utilizing time-delay and distributed parameter mod-
els and providing the desired system performance in spite of the model uncertain-
ties. The presence of an unbounded operator in the state equation precludes from a
simple extension of finite-dimensional control algorithms.
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Theoretical results obtained in an abstract infinite - dimensional setting [87, 88,
120, 118, 126, 165] were further supported by applications to distributed parameter
and time delay systems.

A stabilizing discontinuous control law, developed for infinite dimensional sys-
tems [118, 125, 126, 121], was obtained from the Lyapunov min-max approach, the
origins of which may be found in [72, 73]. It was synthesized to guarantee that the
time derivative of a Lyapunov functional, selected for a nominal system, remain
negative definite on the trajectories of the system with perturbations caused by un-
certainties of a plant operator and environment conditions. The approach gave rise
to a so-called unit feedback signal, whose norm is equal to one everywhere with the
exception of the sliding surface where it undergoes discontinuities.

In [121] the unit feedback synthesis was developed for a class of linear infinite-
dimensional systems with a finite-dimensional unstable part using finite-dimensional
sensing and actuation. An output feedback controller is synthesized by coupling an
infinite-dimensional Luenberger state observer and a unit state feedback controller.
In order to obtain the fully practical finite-dimensional framework for controller
synthesis a finite-dimensional approximation of the Luenberger observer, as well
as a continuous approximation of the unit feedback controller, is carried out at the
implementation stage.

Implementation, performance and robustness issues of the unit output feed-
back control design are illustrated in a simulation study of the linearization of the
Kuramoto–Sivashinsky equation (KSE) around the spatially-uniform steady-state
solution with periodic boundary conditions. While unforced, the KSE describes
incipient instabilities in a variety of physical and chemical systems and a control
problem that arises here is to avoid the appearance of instabilities in the closed-loop
system.

In [120], the unit control approach was extended to Hilbert space-valued mini-
mum phase semilinear systems. The control algorithms presented ensured asymp-
totic stability, global or local accordingly, as state feedback or output feedback is
available. The desired robustness properties of the closed-loop system against ex-
ternal disturbances with an a priori known norm bounds made the algorithms ex-
tremely suited for stabilization of the underlying system operating under uncertainty
conditions. It was particularly shown that discontinuous feedback stabilization was
constructively available in the case where complex nonlinear dynamics of the un-
certain system did not admit factoring out a destabilizing nonlinear gain and thus
the destabilizing gain could not be handled through nonlinear damping.

The theory was applied to the stabilization of chemical processes around pre-
specified steady-state temperature and concentration profiles corresponding to a
desired coolant temperature. Performance issues of the unit feedback design were
illustrated in a simulation study of the plug flow reactor.

In the recent publications [122, 123, 124], the second order sliding mode con-
trol (twisting and supertwisting) algorithms were generalized towards the infinite-
dimensional setting and applied for controlling heat and wave processes, operating
under uncertainty conditions.
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Chapter 2
Finite-Time Stability and High Relative Degrees
in Sliding-Mode Control

Arie Levant

Abstract. Establishing and exactly keeping constraints of high relative degrees is
a central problem of the modern sliding-mode control. Its solution in finite-time
is based on so-called high-order sliding modes, and is reduced to finite-time sta-
bilization of an auxiliary uncertain system. Such stabilization is mostly based on
the homogeneity approach. Robust exact differentiators are also developed in this
way and are used to produce robust output-feedback controllers. The resulting
controllers feature high accuracy in the presence of sampling noises and delays,
ultimate robustness to the presence of unaccounted-for fast stable dynamics of ac-
tuators and sensors, and to small model uncertainties affecting the relative degrees.
The dangerous types of the chattering effect are removed artificially increasing the
relative degree. Parameters of the controllers and differentiators can be adjusted to
provide for the needed convergence rate, and can be also adapted in real time. Simu-
lation results and applications are presented in the fields of control, signal and image
processing.

2.1 Introduction

Sliding mode (SM) control is used to cope with heavy uncertainty conditions. The
corresponding approach [18,56,58] is based on the exact keeping of a properly cho-
sen function (sliding variable) at zero by means of high-frequency control switching.
Although very robust and accurate, the approach also features certain drawbacks.
The standard sliding mode may be implemented only if the relative degree of the
sliding variable is 1, i.e. control has to explicitly appear already in its first total time
derivative. Another problem is that the high-frequency control switching may cause
dangerous vibrations called the chattering effect [14, ?, 23].
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The issues can be settled in a few ways. High-gain control with saturation is
used to overcome the chattering effect approximating the sign-function in a narrow
boundary layer around the switching manifold [54], the sliding-sector method [24]
avoids chattering in control of disturbed linear time-invariant systems. This paper
surveys the sliding-mode order approach [30] which addresses both the chattering
and the relative-degree restrictions, while preserving the sliding-mode features and
improving the accuracy in the presence of small imperfections.

Establishing the needed constraint σ = 0 requires the stabilization of the slid-
ing variable σ at zero. The corresponding auxiliary dynamic system is of the order
of the relative degree and is typically uncertain. Theoretically it also allows feed-
back linearization [25], though the system uncertainty prevents its direct utilization.
Finite-time stabilization is preferable, since it provides for higher robustness, sim-
pler overall performance analysis, and, as it is further shown, for higher accuracy
in the presence of small sampling noises and delays. With the relative degree 1
such finite-time stabilization is easily obtained by means of the relay control, which
is widely used in the standard sliding-mode control. With higher relative degrees
the problem is much more complicated. The standard sliding-mode design suggests
choosing a new auxiliary sliding variable of the first relative degree. That variable
is usually a linear combination of the original sliding variable σ and its successive
total time derivatives [54, 52], which leads to only exponential stabilization of σ .
The finite-time stabilization corresponds to the high-order sliding-mode (HOSM)
approach [30, 45, 4].

HOSM actually is a motion on the discontinuity set of a dynamic system under-
stood in Filippov’s sense [20]. The sliding order characterizes the dynamics smooth-
ness degree in the vicinity of the mode. Let the task be to make some smooth scalar
function σ vanish, keeping it at zero afterwards. Then successively differentiating
σ along trajectories, a discontinuity will be encountered sooner or later in the gen-
eral case. Thus, a sliding mode σ = 0 may be classified by the number r of the first
successive total time derivative σ (r) which is not a continuous function of the state
space variables or does not exist due to some reason, like trajectory nonuniqueness.
That number is called the sliding order [30, 32]. If σ is a vector, also the sliding
order is a vector.

The words “rth order sliding” are often abridged to “r-sliding”. The term “r-
sliding controller” replaces the longer expression “finite-time-convergent r-sliding
mode controller”. The sliding order usually coincides with the relative degree,
provided the control is discontinuous and the relative degree exists.

The standard sliding mode, on which most variable structure systems (VSS) are
based, is of the first order (σ̇ is discontinuous). The standard-sliding-mode preci-
sion sup|σ | is proportional to the time interval between the measurements or to
the switching delay. Asymptotically stable HOSMs arise in systems with traditional
sliding-mode control, if the relative degree of the sliding variable σ is higher than
1. The limit sliding-accuracy asymptotics is the same in that case, as of the stan-
dard 1-sliding mode [54]. The asymptotic convergence to the constraint inevitably
complicates the overall system performance analysis.
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Actually r-sliding controllers’ design [32,33,45] requires only the knowledge of
the system relative degree r. The produced control is a discontinuous function of σ
and of its real-time-calculated successive derivatives σ̇ , . . . ,σ (r−1). Realizations of
r-sliding mode provide for the sliding precision of up to the rth order with respect
to sampling intervals and delays [30].

Since the HOSM method is developed for arbitrary relative degree, one just needs
to consider the control derivative of some order as a new virtual control in order to
get the needed smoothness degree of the real control and to diminish the chattering
[30, 4, 5]. Indeed the procedure was recently theoretically proved to only leave the
non-harmful chattering of infinitesimal energy [36]. While finite-time-convergent
arbitrary-order sliding-mode controllers are still mostly theoretically studied [17,
16,21,32,33,35], 2-sliding controllers are already successfully implemented for the
solution of practical problems [1,6,11,12,15,19,26,29,44,48,?,53,51,55], hundreds
of references are available.

In order to stabilize the sliding variable dynamics in finite time, one usually needs
to use the homogeneity approach [3,13]. As a result, almost all known r-sliding con-
trollers possess specific homogeneity called the r-sliding homogeneity [33]. The
homogeneity makes the convergence proofs of the HOSM controllers standard and
provides for the highest possible asymptotic accuracy [30] in the presence of mea-
surement noises, delays and discrete measurements. Thus, with τ being the sampling
interval, the accuracy σ = O(τr) is attained [33]. These asymptotical features are
preserved, when a robust exact homogeneous differentiator of the order r−1 [32] is
applied as a standard part of the homogeneous output-feedback r-sliding controller.

While most results were obtained for the Single-Input Single-Output (SISO) case,
a few theoretical results were obtained for the Multi-Input Multi-Output (MIMO)
case [5, 16] with a well-defined vector relative degree.

The standard SISO r-SM control problem statement assumes the uniform bound-
edness of the functional coefficients appearing in the rth derivative of the slid-
ing variable. Such assumptions usually only apply to bounded operational regions.
These restrictions have been recently removed [8, 42]. Similarly the requirement
of the highest derivative boundedness has been removed from the HOSM differ-
entiators [34]. Thus, global applications of HOSM controllers and observers be-
comes possible. Such global versions of HOSM controllers and differentiators are
inevitably not homogeneous, but they usually remain homogeneous in a small
vicinity of HOSM.

The recent results prove the ultimate robustness of the homogeneous sliding
modes with respect to various dynamic perturbations, including singular perturba-
tions corresponding to the dynamics of fast stable actuators and sensors [36,41] and
small perturbations changing the system relative degree [39].

Simulation demonstrates the practical applicability of the approach in control,
signal and image processing.
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2.2 Preliminaries

Definition 2.1. A differential inclusion ẋ∈ F(x),x ∈R
n, is further called a Filippov

differential inclusion [20] if the vector set F(x) is non-empty, closed, convex, locally
bounded and upper-semicontinuous. The latter condition means that the maximal
distance of the points of F(x) from the set F(y) vanishes when x → y. Solutions are
defined as absolutely-continuous functions of time satisfying the inclusion almost
everywhere.

Such solutions always exist and have most of the well-known standard properties
except the uniqueness [20].

Definition 2.2. It is said that a differential equation ẋ = f (x),x ∈R
n, with a locally-

bounded Lebesgue-measurable right-hand side is understood in the Filippov sense
[20], if it is replaced by a special Filippov differential inclusion ẋ ∈ F(x), where

F(x) =
⋂

δ>0

⋂
μN=0

co f (Oδ (x)\N).

Here μ is the Lebesgue measure, Oδ (x) is the δ -vicinity of x, and coM denotes
the convex closure of M. In the most usual case, when f is continuous almost ev-
erywhere, the procedure is to take F(x) being the convex closure of the set of all
possible limit values of f at a given point x, obtained when its continuity point y
tends to x. In the general case approximate-continuity [50] points y can be taken
(one of the equivalent definitions by Filippov [20]). A solution of ẋ = f (x) is de-
fined as a solution of ẋ ∈ F(x). Obviously, values of f on any set of the measure
0 do not influence the Filippov solutions. Note that with continuous f the standard
definition is obtained.

In order to better understand the definition note that any possible Filippov ve-
locity has the form ẋ = λ1 f1 + . . .+λn+1 fn+1,λ1 + . . .+λn + 1 = 1,λi ≥ 0, where
f1, . . . , fn+1 are some values of f obtained as limits at the point x along sequences
of continuity (approximate continuity) points. Thus, ẋ can be considered as a mean
value of the velocity taking on the values fi during the time share λiΔ t of a current
infinitesimal time interval Δ t.

Definition 2.3. Consider a discontinuous differential equation ẋ = f (x) (Filippov
differential inclusion ẋ ∈ F(x)) with a smooth output function σ = σ(x), and let it
be understood in the Filippov sense. Then, provided that

1. successive total time derivatives σ , σ̇ , . . . ,σ (r−1) are continuous functions of x,
2. the set

σ = σ̇ = σ̈ = . . .= σ (r−1) = 0 (2.1)

is a non-empty integral set,
3. the Filippov set of admissible velocities at the r-sliding points (2.1) contains

more than one vector,
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the motion on set (2.1) is said to exist in r-sliding (rth-order sliding) mode [30, 31].
Set (2.1) is called r-sliding set. It is said that the sliding order is strictly r, if the next
derivative σ (r) is discontinuous or does not exist as a single-valued function of x.
The non-autonomous case is reduced to the considered one introducing the fictitious
equation ṫ = 1.

Note that the third requirement is not standard and means that set (2.1) is a discon-
tinuity set of the equation. It is only introduced here to exclude extraneous cases of
integral manifolds of continuous differential equations. The standard sliding mode
used in the traditional VSSs is of the first order (σ is continuous, and σ̇ is discon-
tinuous). The notion of the sliding order appears to be connected with the relative
degree notion.

Definition 2.4. A smooth autonomous SISO system ẋ = a(x)+b(x)u with the con-
trol u and output σ is said to have the relative degree r, if the Lie derivatives locally
satisfy the conditions [25]

Lbσ = LaLbσ = . . .= Lr−2
a Lbσ = 0,Lr−1

a Lbσ 	= 0.

It can be shown that the equality of the relative degree to r actually means that the
successive total time derivatives σ , σ̇ , . . . ,σ (r−1) do not depend on control and can
be taken as a part of new local coordinates, and σ (r) linearly depends on u with the
nonzero coefficient Lr−1

a Lbσ . Also here the non-autonomous case is reduced to the
autonomous one introducing the fictitious equation ṫ = 1.

2.3 SISO Regulation Problem

First consider an uncertain smooth nonlinear Single-Input Single-Output (SISO)
system ẋ = f (t,x,u),x∈R

n,t,u∈R with a smooth output s(t,x)∈R. Let the goal be
to make the output s(t, x) to track some real-time-measured smooth signal sc(t). In-
troducing a new auxiliary control v∈R, u̇ = v, and the outputσ(t,x) = s(t,x)−sc(t),
obtain a new affine-in-control system d

dt (x,u)t = ( f (t,x,u) ,0)t + (0,1)tv with the
control task to make σ(t,x) vanish. Therefore, the further consideration is restricted
only to systems affine in control.

2.3.1 Standard SISO Regulation Problem and the Idea of Its
Solution

Consider a dynamic system of the form

ẋ = a(t,x)+ b(t,x)u, σ = σ(t,x), (2.2)

where x ∈ R
n,a,b and σ : R

n+1 → R are unknown smooth functions, u ∈ R, the
dimension n might be also uncertain. Only measurements of σ are available in real
time. The task is to provide in finite time for exactly keeping σ ≡ 0. The relative
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degree r of the system is assumed to be constant and known. In other words, for the
first time the control explicitly appears in the rth total time derivative of σ and

σ (r) = h(t,x)+ g(t,x)u, (2.3)

where h(t,x) = σ (r)|u=0,g(t,x) = ∂
∂uσ

(r) 	= 0. It is supposed that for some
Km,KM,C > 0

0< Km ≤ ∂
∂uσ

(r) ≤ KM,
∣∣∣σ (r)|u=0

∣∣∣≤C, (2.4)

which is always true at least in compact operation regions. Trajectories of (2.2) are
assumed infinitely extendible in time for any Lebesgue-measurable bounded control
u(t,x). Finite-time stabilization of smooth systems at an equilibrium point by means
of continuous control is considered in [3, 13]. In our case any continuous control

u = φ
(
σ , σ̇ , . . . ,σ (r−1)

)
(2.5)

providing for σ ≡ 0, should satisfy the equality φ(0,0, . . . ,0) = −h(t,x)/g(t,x),
whenever (2.1) holds. Since the problem uncertainty prevents it, the control has to
be discontinuous at least on the set (2.1). Hence, the r-sliding mode σ = 0 is to be
established. As follows from (2.3), (2.4)

σ (r) ∈ [−C,C]+ [Km,KM ]u. (2.6)

The differential inclusion (2.5), (2.6) is understood here in the Filippov sense, which
means that the right-hand vector set is enlarged at the discontinuity points of (2.5),
in order to satisfy the convexity and semicontinuity conditions from Definition 1.
The Filippov procedure from Definition 2 is applied for this aim to the function
(2.5), and the resulting scalar set is substituted for u in (2.6). The obtained inclusion
does not “remember” anything on system (2.2) except the constants r,C,Km,KM .
Thus, provided (2.4) holds, the finite-time stabilization of (2.6) at the origin simul-
taneously solves the stated problem for all systems (2.2). Note that the realization of
this plan requires real-time differentiation of the output. The controllers, which are
designed in this paper, are r-sliding homogeneous [33]. The corresponding notion is
introduced below.

2.4 Homogeneity, Finite-Time Stability and Accuracy

Definition 2.5. A function f : R
n →R (respectively a vector-set field F(x)⊂R

n,x∈
R

n, or a vector field f : R
n → R

n) is called homogeneous of the degree q ∈ R with
the dilation

dκ : (x1,x2, . . . ,xn) → (κm1x1,κm2x2, . . . ,κmnxn)

[3], where m1, . . . ,mn are some positive numbers (weights), if for any κ > 0 the
identity f (x) = κ−q f (dκx) holds (respectively F(x) = κ−qd−1

κ F(dκx), or f (x) =
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κ−qd−1
κ f (dx)). The non-zero homogeneity degree q of a vector field can always be

scaled to ±1 by an appropriate proportional change of the weights m1, . . . ,mn.

Note that the homogeneity of a vector field f (x) (a vector-set field F(x)) can equiv-
alently be defined as the invariance of the differential equation ẋ = f (x) (differential
inclusion ẋ ∈ F(x)) with respect to the combined time-coordinate transformation

Gκ : (t,x) → (κ pt,dκx),

where p, p = −q, might naturally be considered as the weight of t. Indeed, the
homogeneity condition can be rewritten as

ẋ ∈ F(x) ⇔ d(dκx)
d(κ pt)

∈ F(dκx).

Examples. In the following the weights of x1,x2 are 3 and 2 respectively. Then the
function x2

1 + x3
2 is homogeneous of the weight (degree) 6:

(
κ3x1

)2 +
(
κ2x2

)3 =

κ6
(
x2

1 + x3
2

)
. The differential inequality |ẋ1|+ ẋ4/3

2 ≤ x4/3
1 + x2

2 corresponds to the
homogeneous differential inclusion

(ẋ1, ẋ2) ∈ (z1,z2) : |z1|+ z4/3
2 ≤ x4/3

1 + x2
2

of the degree +1. The system of differential equations

{
ẋ1 = x2

ẋ2 =−x1/3
1 −|x1/2

2 |signx2
(2.7)

is of the degree -1 and is finite-time stable [13].

1o. A differential inclusion ẋ ∈ F(x) (equation ẋ = f (x)) is further called globally
uniformly finite-time stable at 0, if x(t) = 0 is a Lyapunov-stable solution and for any
R> 0 exists T > 0 such that any trajectory starting within the disk ||x||<R stabilizes
at zero in the time T. 2o. A differential inclusion ẋ ∈ F(x) (equation ẋ = f (x)) is
further called globally uniformly asymptotically stable at 0, if it is Lyapunov stable
and for any R > 0,ε > 0 exists T > 0 such that any trajectory starting within the
disk ||x|| < R enters the disk ||x|| < ε in the time T to stay there forever. A set D
is called dilation retractable if dκD ⊂ D for any κ ∈ [0,1]. In other words with any
its point x it contains the whole line dκx,κ ∈ [0,1]. 3o. A homogeneous differential
inclusion ẋ ∈ F(x) (equation ẋ = f (x)) is further called contractive if there are 2
compact sets D1,D2 and T > 0, such that D2 lies in the interior of D1 and contains
the origin; D1 is dilation-retractable; and all trajectories starting at the time 0 within
D1 are localized in D2 at the time moment T .

Theorem 2.1. [33]. Let ẋ ∈ F(x) be a homogeneous Filippov inclusion with a neg-
ative homogeneous degree −p, then properties 1o,2o and 3o are equivalent and the
maximal settling time is a continuous homogeneous function of the initial conditions
of the degree p.
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Finite-time stability of homogeneous discontinuous differential equations was also
considered in [47].

Proof. Obviously, both 1o and 2o imply 3o , and 1o implies 2o . Thus, it is enough
to prove that 3o implies 1o . All trajectories starting in the set D1 concentrate in a
smaller set D2 in time T . Applying the homogeneity transformation obtain that the
same is true with respect to the sets dκD1,dκD2 and the time κT for any κ > 0.
An infinite collapsing chain of embedded regions is now constructed, such that any
point belongs to one of the regions, and the resulting convergence time is majored
by a geometric series. ��
Due to the continuous dependence of solutions of the Filippov inclusion ẋ ∈ F(x)
on its graph Γ = (x,y)|y ∈ F(x) [20], the contraction feature 3o is obviously robust
with respect to perturbations causing small changes of the inclusion graph in some
vicinity of the origin.

Corollary 2.1. [33] The global uniform finite-time stability of homogeneous differ-
ential equations (Filippov inclusions) with negative homogeneous degree is robust
with respect to locally small homogeneous perturbations.

Let ẋ ∈ F(x) be a homogeneous Filippov differential inclusion. Consider the case of
“noisy measurements” of xi with the magnitude βiτmi ,βi,τ > 0,

ẋ ∈ F(x1 +β1[−1,1]τm1 , . . . ,xn +βn[−1,1]τmn).

Successively applying the global closure of the right-hand-side graph and the convex
closure at each point x, obtain some new Filippov differential inclusion ẋ ∈ Fτ(x).

Theorem 2.2. [33]. Let ẋ ∈ F(x) be a globally uniformly finite-time stable homo-
geneous Filippov inclusion with the homogeneity weights m1, . . . ,mn and the degree
−p < 0, and let τ > 0. Suppose that a continuous function x(t) be defined for any
t ≥ −τ p and satisfy some initial conditions x(t) = ξ (t), t ∈ [−τ p,0]. Then if x(t) is
a solution of the disturbed differential inclusion

ẋ(t) ∈ Fτ(x(t +[−τ p,0])), 0< t < ∞,

the inequalities |xi| < γiτmi are established in finite time with some positive
constants γi independent of τ and ξ .

Note that Theorem 2.2 covers the cases of retarded or discrete noisy measure-
ments of all, or some of the coordinates, and any mixed cases. In particular,
infinitely extendible solutions certainly exist in the case of noisy discrete mea-
surements of some variables or in the constant time-delay case. For example, with
small delays of the order of τ introduced in the right-hand side of (2.7) the accuracy
x1 = O(τ3), ẋ1 = x2 = O(τ2) is obtained. As follows from Corollary 2.1, with suf-

ficiently small ε the addition of the term εx2/3
1 in the first equation of (2.7) disturbs

neither the finite-time stability, nor the above asymptotic accuracy.
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2.5 Homogeneous Sliding Modes

Suppose that feedback (2.5) imparts homogeneity properties to the closed-loop in-
clusion (2.5), (2.6). Due to the term [−C,C], the right-hand side of (2.5) can only
have the homogeneity degree 0 with C 	= 0. Indeed, with a positive degree the right
hand side of (2.5), (2.6) approaches zero near the origin, which is not possible with
C 	= 0. With a negative degree it is not bounded near the origin, which contradicts
the local boundedness of φ . Thus, the homogeneity degree of σ (r−1) is to be oppo-
site to the degree of the whole system. Scaling the system homogeneity degree to
-1, achieve that the homogeneity weights of t,σ , σ̇ , . . . ,σ (r−1) are 1,r,r− 1, . . . ,1
respectively. This homogeneity is further called the r-sliding homogeneity. The in-
clusion (2.5), (2.6) is called r-sliding homogeneous if for any κ > 0 the combined
time-coordinate transformation

Gκ : (t,σ , σ̇ , . . . ,σ (r−1)) → (κt,κ rσ ,κ r−1σ̇ , . . . ,κσ (r−1)) (2.8)

preserves the closed-loop inclusion (2.5), (2.6). Note that the Filippov differential
inclusion corresponding to the closed-loop inclusion (2.5), (2.6) is also r-sliding
homogeneous.

Transformation (2.8) transfers (2.5), (2.6) into

dr(κrσ)
(dκt)r ∈ [−C,C]+ [Km,KM]φ(κ rσ ,κ r−1σ̇ , . . . ,κσ (r−1)).

Hence, (2.5), (2.6) is r-sliding homogeneous if

φ(κ rσ ,κ r−1σ̇ , . . . ,κσ (r−1)) ≡ φ(σ , σ̇ , . . . ,σ (r−1)). (2.9)

Definition 2.6. Controller (2.5) is called r-sliding homogeneous (rth order sliding
homogeneous) if (2.9) holds for any (σ , σ̇ , . . . ,σ (r−1)) and κ > 0. The correspond-
ing sliding mode is also called homogeneous (if exists).

Such a homogeneous controller is inevitably discontinuous at the origin (0, . . . ,0),
unless φ is a constant function. It is also uniformly bounded, since it is locally
bounded and takes on all its values in any vicinity of the origin. Recall that the values
of φ on any zero-measure set do not affect the corresponding Filippov inclusion.

Almost all known r-sliding controllers, r ≥ 2, are r-sliding homogeneous. The
only important exception is the terminal 2-sliding controller maintaining 1-sliding
mode σ̇+βσρ ≡ 0, where ρ = (2k+1)/(2m+1),β > 0,k<m, and k,m are natural
numbers [45]. Indeed, the homogeneity requires ρ = 1/2 and σ ≥ 0.

2.5.1 Second Order Sliding Mode Controllers

Let r = 2. As follows from the previous Section it is sufficient to construct a 2-
sliding-homogeneous contractive controller. Their discrete-sampling versions pro-
vide for the accuracy described in Theorem 2.2, i.e. σ = O(τ2), σ̇ = O(τ). Similarly,
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the noisy measurements lead to the accuracy σ = O(ε), σ̇ = O(ε1/2), if the maximal
errors of σ and σ̇ sampling are of the order of ε and ε1/2 respectively.

Design of such 2-sliding controllers is greatly facilitated by the simple geometry
of the 2-dimensional phase plane with coordinates σ , σ̇ : any smooth curve locally
divides the plane in two parts. It is easy to construct any number of such controllers
[37]. Only few controllers are presented here.

The twisting controller [30]

u =−(r1signσ + r2signσ̇),

has the convergence conditions

Fig. 2.1 Convergence of various 2-sliding homogeneous controllers

(r1 + r2)Km −C> (r1 − r2)KM +C,(r1− r2)Km >C.

Its typical trajectory in the plane σ , σ̇ is shown in Fig. 2.1a. A homogeneous form
of the controller with prescribed convergence law (Fig. 2.1b; [30])

u =−αsign(σ̇ +β |σ |1/2signσ),αKm −C> β 2/2
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is a 2-sliding homogeneous analogue of the terminal sliding mode controller origi-
nally featuring a singularity at σ = 0 [45]. The 2-sliding stability analysis is based
on the fact that all the trajectories in the plane σ , σ̇ which pass through a given
continuity point of u = φ(σ , σ̇ ) are confined between the properly chosen trajec-
tories of the homogeneous differential equations σ̈ = ±C + KMφ(σ , σ̇ ) and σ̈ =
±C+Kmφ(σ , σ̇ ). These border trajectories cannot be crossed by other paths, if φ is
locally Lipschitzian, and may be often chosen as boundaries of appropriate dilation-
retractable regions [37]. A region is dilation-retractable iff, with each its point
(σ , σ̇), it contains all the points of the parabolic segment (κ2σ ,κσ̇),0 ≤ κ ≤ 1.
The popular sub-optimal controller [4, 5, 6, 7] is defined by the formula

u =−r1sign(σ −σ∗/2)+ r2signσ∗,r1 > r2 > 0,

where σ∗ is the value of σ detected at the closest time in the past when σ̇ was 0.
The initial value of σ∗ is 0. The corresponding convergence conditions are

2[(r1 + r2)Km −C]> (r1 − r2)KM +C,(r1− r2)Km >C.

Usually the moments when σ̇ changes its sign are detected using finite differences.
The control u depends actually on the whole history of measurements of σ̇ and σ ,
and does not have the feedback form (2.5). Nevertheless, with r = 2 the homogeneity
transformation (2.8) preserves its trajectories, and it is natural to call it 2-sliding
homogeneous in the broad sense. Also the statements of Theorems 2.1, 2.2 remain
valid for this controller.

An important class of HOSM controllers comprises recently proposed so-called
quasi-continuous controllers. Controller (2.5) is called quasi-continuous [35], if
it can be redefined according to continuity everywhere except the r-sliding mani-
fold σ = σ̇ = . . . = σ (r−1) = 0. Due to always present disturbances and noises, in
practice, with the sliding order r > 1 the general-case trajectory does never hit the
r-sliding manifold, for the r-sliding condition has the codimension r. Hence, the
control practically remains continuous function of time all the time. As a result,
the chattering is significantly reduced. Following is a 2-sliding controller with such
features [35]:

u =−α σ̇ +β |σ |1/2signσ
σ̇ +β |σ |1/2

,β > 0.

This control is continuous everywhere except the origin. It vanishes on the parabola
σ̇ +β |σ |1/2signσ = 0. With sufficiently large α there are such numbers ρ1,ρ2,0<
ρ1 < β < ρ2 that all the trajectories enter the region between the curves σ̇ +
ρt |σ |1/2signσ = 0 and cannot leave it (Fig. 2.1c). The contractivity property of the
controller is demonstrated in Fig. 2.1d.

2.5.2 Arbitrary Order Sliding Mode Controllers

Following are two most known r-sliding controller families [32,35]. The controllers
of the form
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u =−αΨr−1,r(σ , σ̇ , . . . ,σ (r−1)),

are defined by recursive procedures, have the magnitude α > 0, and solve the gen-
eral output regulation problem from Section 2.3. The parameters of the controllers
can be chosen in advance for each relative degree r. Only the magnitude α is to be
adjusted for any fixed C,Km,KM , most conveniently by computer simulation, avoid-
ing complicated and redundantly large estimations. Obviously, α is to be negative
with (∂/∂u)σ (r) < 0. In the following β1, . . . ,βr−1 > 0 are the controller parame-
ters, and i = 1, . . . ,r−1.

1. The following procedure defines the “nested” r-sliding controller [32], based on
a pseudo-nested structure of 1-sliding modes. Let q> 1. The controller is built
by the following recursive procedure:

Ni,r = (|σ |q/r + |σ̇ |q/(r−1) + . . .+ |σ (i−1)|q/(r−i+1))(r−i)/q;

Ψ0,r = signσ ,φi,r = σ (i) +βiNi,rΨi−1,r Ψi,r = signφi,r;u =−αΨr−1,r.

Following are the nested sliding-mode controllers (of the first family) for r ≤ 4
with tested βi and q being the least multiple of 1, . . . ,r:

a. u =−αsignσ ,
b. u =−αsign(σ̇ + |σ |1/2signσ),
c. u =−σsign(σ̈ + 2(|σ̇ |3 + |σ |2)1/6sign(σ̇ + |σ |2/3signσ)),
d.

u =−αsign
(...σ + 3(σ̈6 + σ̇4 + |σ |3)1/12sign

[
σ̈ +(σ̇4 + |σ |3)1/6

sign(σ̇ + 0.5|σ |3/4signσ)
])
.

Though these controllers can be given an intuitive inexact explanation based
on recursively nested standard sliding modes, the proper explanation is more
complicated [32], since no sliding mode is possible on discontinuous surfaces,
and a complicated motion arises around the control discontinuity set.

The discontinuity set of nested sliding-mode controllers is a complicated
stratified set with codimension varying in the range from 1 to r, which causes
certain transient chattering. To avoid it one needs to artificially increase the
relative degree.

2. Quasi-continuous r-sliding controller is a feedback function of σ , σ̇ , . . . ,σ (r−1)

being continuous everywhere except the manifold σ = σ̇ = . . .= σ (r−1) of the
r-sliding mode. In the presence of errors in evaluation of σ and its derivatives,
these equalities never take place simultaneously with r > 1. Therefore, control
practically turns to be a continuous function of time. The following procedure
defines a family of such controllers [35]:

φ0,r = σ ,N0,r = |σ |, Ψ0,r = φ0,r/N0,r = signσ ,
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φi,r = σ (i) +βiN
(r−i)/(r−i+1)
i−1,r Ψi−1,r,

Ni,r = |σ (i)|+βiN
(r−i)/(r−i+1)
i−1,r ,Ψi,r = φi,r/Ni,r. u =−αΨr−1,r

Following are quasi-continuous controllers with r ≤ 4 and simulation-tested βi.

a. u =−αsignσ ,
b. u =−α(σ̇ + |σ |1/2signσ)/(σ̇ + |σ |1/2),
c. u =−α[σ̈ + 2(|σ̇ |2/3)−1/2(σ̇ + |σ |2/3signσ)]/[σ̈ + 2(|σ̇ |2/3)1/2],
d.

φ3,4 =
...
σ + 3[σ̈ +(|σ̇ |+ 0.5|σ |3/4)−1/3(σ̇ + 0.5|σ |3/4signσ)]

[|σ̈ +(|σ̇ |+ 0.5|σ |3/4)2/3]1/2,

N3,4 = |...σ |+ 3[|σ̈ +(|σ̇ |+ 0.5|σ |3/4)2/3]1/2, u =−αφ3,4/N3,4.

It is easy to see that the sets of parameters βi are chosen the same for both fam-
ilies with r ≤ 4. Note that while enlarging α increases the class (2.4) of systems,
to which the controller is applicable, parameters βi, are tuned to provide for the
needed convergence rate [42]. The author considers the second family as the best
one. In addition to the reduced chattering, another advantage of these controllers is
the simplicity of their coefficients’ adjustment (Section 2.7).

Theorem 2.3. Each representative of the order r of the above two families of
arbitrary-order sliding-mode controllers is r-sliding homogeneous. A finite-time
stable r-sliding mode is established with properly chosen parameters.

The proof of the Theorem is based on Theorem 2.1, i.e. on the proof of the con-
tractivity property. Asymptotic accuracies of these controllers are readily obtained
from Theorem 2.2. In particular σ (i) = O(τr−i), i = 0,1, . . . ,r− 1, if the measure-
ments are performed with the sampling interval τ . A controller providing for the
time-optimal stabilization of the inclusion (2.6) under the restriction |u| ≤ α was
recently proposed [17]. Such controllers are also r-sliding homogeneous providing
for the accuracies corresponding to Theorem 2.2. Unfortunately, in practice they are
only available for r ≤ 3.

Chattering Attenuation. The standard chattering attenuation procedure is to con-
sider the control derivative as a new control input, increasing the relative degree and
the sliding order by one [30, 5, 6]. That procedure is studied in Section 2.8. It was
many times successfully applied in practice [8,26,44], etc, though formally the con-
vergence is only locally ensured in some vicinity of the (r+1)-sliding mode σ ≡ 0.
Global convergence can be easily obtained in the case of the transition from the
relative degree 1 to 2 [30, 37]; semi-global convergence can be assured with higher
relative degrees [40].
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2.6 Differentiation and Output-Feedback Control

Any r-sliding homogeneous controller can be complemented by an (r− 1)th or-
der differentiator [2, 7, 27, 29, 57] producing an output-feedback controller. In order
to preserve the demonstrated exactness, finite-time stability and the corresponding
asymptotic properties, the natural way is to calculate σ̇ , . . . , ˙σ (r−1) in real time by
means of a robust finite-time convergent exact homogeneous differentiator [31, 32].
Its application is possible due to the boundedness of σ (r) provided by the bounded-
ness of the feedback function φ in (2.5).

2.6.1 Arbitrary Order Robust Exact Differentiation

Let the input signal f (t) be a function defined on [0,∞) and consisting of a bounded
Lebesgue-measurable noise with unknown features, and of an unknown base signal
f0(t), whose kth derivative has a known Lipschitz constant L > 0. The problem of
finding real-time robust estimations of ḟ0(t), f̈0(t), . . . , f 0(k)(t) being exact in the
absence of measurement noises is solved by the differentiator [33]

ż0 = v0,v0 =−λkL1/(k+1)|z0− f (t)|k/(k+1)sign(z0 − f (t))+ z1, (2.10)

ż1 = v1,v1 =−λk−1L1/k|z1 − v0|(k−1)/ksign(z1− v0)+ z2, (2.11)

. . . (2.12)

żk−1 = vk−1,vk−1 =−λ1L1/2|zk−1− vk−2|1/2sign(zk−1 − vk−2)+ zk, (2.13)

żk =−λ0Lsign(zk − vk−1). (2.14)

The parameters λ0,λ1, . . . ,λk > 0 being properly chosen, the following equalities
are true in the absence of input noises after a finite time of the transient process:

z0 = f0(t);zi = vi−1 = f (i)
0 (t), i = 1, . . . ,k.

Note that the differentiator has a recursive structure. Once the parameters λ0,λ1,
. . . ,λk−1 are properly chosen for the (k−1)th order differentiator with the Lipschitz
constant L, only one parameter λk is needed to be tuned for the kth order differentia-
tor with the same Lipschitz constant. The parameter λk is just to be taken sufficiently
large. Any λ0 > 1 can be used to start this process. Such differentiator can be used
in any feedback, trivially providing for the separation principle [2, 33].

Proof. Denote σi = (zi − f (i)(t))/L. Dividing by L all equations and subtracting
f (i+1)(t)/L from both sides of the equation with żi on the left, i = 0, . . . ,k, obtain

σ̇0 =−λk|σ0|k/(k+1)sign(σ0)+σ1,

σ̇1 =−λk−1|σ1− σ̇0|(k−1)/ksign(σ1 − σ̇0)+σ2,

σ̇k−1 =−λ1|σk−1− σ̇k−2|1/2sign(σk−1 − σ̇k−2)+σk,

σ̇k ∈ −λ0sign(σk − σ̇k−1)+ [−1,1].
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where the inclusion f (k+1)(t)/L ∈ [−1,1] is used in the last line. This differen-
tial inclusion is homogeneous with the homogeneity degree -1 and the weights k +
1,k, . . . ,1 of 0,1, . . . ,k respectively. The finite time convergence of the differentiator
follows from the contractivity property of this inclusion [32] and
Theorem 2.1. ��
Thus an infinite sequence of parameters λi can be built, valid for all k. In partic-
ular, one can choose λ0 = 1.1,λ1 = 1.5,λ2 = 2,λ3 = 3,λ4 = 5,λ5 = 8, which
is enough for k ≤ 5. Another possible choice of the differentiator parameters with
k ≤ 5 is λ0 = 1.1,λ1 = 1.5,λ2 = 3,λ3 = 5,λ4 = 8,λ5 = 12 [35, 34]. Theorem
2.2 provides for the asymptotic accuracy of the differentiator. Let the measurement
noise be any Lebesgue-measurable function with the magnitude not exceeding ε .

Then the accuracy |zi(t)− f (i)
0 (t)| = O(ε(k+1−i)/(k+1)) is obtained. That accuracy

is shown to be the best possible [28, 31]. It was recently proved that the differen-
tiator continues to locally converge in finite time also in the case, when L = L(t)
is a continuous function of time [34]. If L is absolutely continuous and the log-
arithmical derivative L̇/L is uniformly bounded, then the convergence region is
constant and can be done arbitrarily large increasing L; moreover in the presence
of a Lebesgue-measurable sampling noise with the magnitude L(t,x) the accuracy

|zi(t)− f (i)
0 (t)| = O(ε(k−i+1)/(k+1))L(t,x) is obtained. If the sampling interval is τ ,

differential equations (2.10) should be replaced by their Euler approximations. In

that case the accuracy |zi(t)− f (i)
0 (t)| = O(τ(k−i+1))L(t,x) is obtained. Differentia-

tors (2.10) with constant and variable parameters L have been already proved useful
for global exact observation [10, 12].

2.6.2 Output-Feedback Control

Suppose that the assumptions of the standard SISO regulation problem (Section
2.3.1) are satisfied. Introducing the above differentiator of the order r− 1 in the
feed-back, obtain an output-feedback r-sliding controller

u = φ(z0,z1, . . . ,zr−1), (2.15)

ż0 = v0,v0 =−λr−1L1/r|z0 −σ (r−1)/r
| sign(z0 −σ)+ z1,

ż1 = v1,v1 =−λr−2L1/(r−1)|z1 − v0|(r−2)/(r−1)sign(z1− v0)+ z2,

. . .

żr−2 = vr−2,vr−2 =−λ1L1/2|zr−2 − vr−3|1/2sign(zr−2 − vr−3)+ zr−1,

żr−1 =−λ0Lsign(zr−1 − vr−2),

(2.16)

where L is constant, L ≥ C + sup|φ |KM , and parameters λi of differentiator (2.16)
are chosen in advance (Subsection 2.6.1).
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Theorem 2.4. Let controller (2.5) be r-sliding homogeneous and finite-time stable,
and the parameters of the differentiator (2.15) be properly chosen with respect to
the upper bound of |φ |. Then in the absence of measurement noises the output-
feedback controller (2.15), (2.16) provides for the finite-time convergence of each
trajectory to the r-sliding mode σ = 0; otherwise convergence to a set defined by the
inequalities |σ |< γ0ε, |σ̇ |< γ1ε(r−1)/r, . . . ,σ (r−1) < γr−1ε1/r is ensured, where ε is
the unknown measurement noise magnitude and γ0,γ1, . . . ,γr−1 are some positive
constants.

Proof. Denote si = zi −σ (i). Then using σ (i) ∈ [−L,L] controller (2.15), (2.16) can
be rewritten as

u =−αφ(s0 +σ ,s1 + σ̇ , . . . ,sr−1 +σ (r−1)), (2.17)

ṡ0 =−λr−1L1/r|s0|(r−1)/rsign(s0)+ s1,

ṡ1 =−λr−2L1/(r−1)|s1 − ṡ0|(r−2)/(r−1)sign(s1 − ṡ0)+ s2,

. . .

ṡr−2 =−λ1L1/2|sr−2− ṡr−3|1/2sign(sr−2 − ṡr−3)+ sr−1,

ṡr−1 ∈ −λ0Lsign(sr − ṡr−2)+ [−L,L].

(2.18)

Solutions of (2.3), (2.15), (2.16) correspond to solutions of the Filippov differential
inclusion (2.6), (2.17), (2.18). Assign the weights r− i to si,σ (i), i = 0,1, . . . ,r−1,
and obtain a homogeneous differential inclusion (2.6), (2.17), (2.18) of the degree
-1. Let the initial conditions belong to some ball in the space si,σ (i). Due to the
finite-time stability of the differentiator part (2.18) of the inclusion, it collapses in
a bounded finite time, and the controller becomes equivalent to (2.5), which is uni-
formly finite-time stabilizing by assumption. Due to the boundedness of the control
no solution leaves some larger ball till the moment, when s ≡ 0, . . . ,sr−1 ≡ 0 is es-
tablished. Hence, (2.6), (2.17), (2.18) is also globally uniformly finite-time stable.
Theorems 2.1, 2.2 finish the proof. ��
In the absence of measurement noises the convergence time is bounded by a contin-
uous function of the initial conditions in the space σ , σ̇ , . . . ,σ (r−1),s0,s1, . . . ,sr−1.
This function is homogeneous of the weight 1 and vanishes at the origin (Theorem
2.1). Let σ measurements be carried out with a sampling interval τ , or let them
be corrupted by a noise being an unknown bounded Lebesgue-measurable function
of time of the magnitude ε , then solutions of (2.3), (2.15), (2.16) are infinitely ex-
tendible in time under the assumptions of Section 2.2, and the following Theorem
is a simple consequence of Theorem 2.2.

Theorem 2.5. The discrete-measurement version of the controller (2.15), (2.16)
with the sampling interval provides in the absence of measurement noises for the
inequalities

|σ |< δ0ε, |σ̇ |< δ1ε(r−1), . . . ,σ (r−1) < δr−1
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for some γ0,γ1, . . . ,γr−1 > 0. In the presence of a measurement noise of the magni-
tude ε the accuracies

|σ |< σ0ε, |σ̇ |< δ1ε(r−1)/r, . . . ,σ (r−1) < δr−1ε1/r

are obtained for some δ0,δ1, . . . ,δr−1 > 0.

The asymptotic accuracy provided by Theorem 2.5 is the best possible with discon-
tinuous σ (r) and discrete sampling [32]. A Theorem corresponding to the case of
discrete noisy sampling is also easily formulated basing on Theorem 2.2. Note that
the lacking derivatives can be also estimated by means of divided finite differences,
providing for robust control with homogeneous sliding modes [38]. The results of
this Section are also valid for the sub-optimal controller [4]. Hence, actually the
problem stated in Section 2.2 is solved.

2.7 Adjustment of the Controllers

It is shown here that the control amplitude can be taken variable, and a procedure is
presented for the adjustment of the coefficients in order to get a needed convergence
rate.

2.7.1 Control Magnitude Adjustment

Condition (2.4) is rather restrictive and is mostly only locally fulfilled, which im-
plies only local (or semi-global) applicability of the described approach in prac-
tice. Indeed, one needs to take the control magnitude large enough for the whole
operational region. Consider a more general case, when as previously

σ (r) = h(t,x)+ g(t,x)u,

but h might be not bounded, and g might be not separated from zero. Instead, assume
that a locally bounded Lebesgue-measurable non-zero function Φ(t,x) be available,
such that for any positive d with sufficiently large α the inequality

αg(t,x)Φ(t,x) > d + |h(t,x)|

holds for any t,x. The goal is to make the control magnitude a feedback adjustable
function. It is also assumed that, if σ remains bounded, trajectories of (2.1) are in-
finitely extendible in time for any Lebesgue-measurable control u(t,x) with bounded
quotient u/Φ . This assumption is needed only to avoid finite-time escape. In prac-
tice the system is often required to be weakly minimum phase. Note also that ac-
tuator presence might in practice prevent effectiveness of any global control due to
saturation effects. For simplicity the full information on the system state is assumed
available. In particular, t,x,σ and its r − 1 successive derivatives are measured.
Consider the controller

u =−αΦ(t,x)Ψr−1,r(σ , σ̇ , . . . ,σ (r−1)), (2.19)
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where α > 0, and Ψr−1,r is one of the two r-sliding homogeneous controllers
introduced in Subsection 2.5.2.

Theorem 2.6. [42]. With properly chosen parameters of the controllerΨr−1,r and
sufficiently large α > 0 controller (2.19) provides for the finite-time establishment
of the identity σ ≡ 0 for any initial conditions. Moreover, any increase of the gain
function Φ does not interfere with the convergence.

While the function Φ can be chosen large to control exploding systems, it is also
reasonable to make the function Φ decrease and even vanish, when approaching the
system operational point, therefore reducing the chattering [42, 44]. Note that con-
troller (2.19) is not homogeneous. The global-convergence differentiator (2.10) with
variable parameter L [34] can be implemented here resulting in an output feedback.

2.7.2 Parameter Adjustment

Controller parameters presented in Section 2.5 provide for the formal solution of the
stated problem. Nevertheless, in practice one often needs to adjust the convergence
rate, either to slow it down relaxing the requirements to actuators, or to accelerate
it in order to meet some system requirements. Note in that context that redundantly
enlarging the magnitude parameter of controllers from Section 2.5 does not acceler-
ate the convergence, but only increases the chattering, while its reduction may lead
to the convergence loss. The main procedure is to take the controller

u = λ rαΨr−1,r(σ , σ̇/λ , . . . ,σ (r−1)/λ r−1), λ > 0.

instead of
u =−αΨr−1,r(σ , σ̇ , . . . ,σ (r−1))

providing for the approximately λ times reduction of the convergence time. Exact
formulations (Levant et al., 2006b) are omitted here in order to avoid unnecessary
complication. In the case of quasi-continuous controllers (Section 2.5) the form of
controller is preserved. The new parameters β̃1, . . . , β̃r−1, α̃ are calculated according
to the formulas β̃1 = λβ1, β̃2 = λ r/(r−1)β2, . . . , β̃r−1 = λ r/2βr−1, α̃ = λ rα . Follow-
ing are the resulting quasi-continuous controllers with r ≤ 4, simulation-tested βi

and a general gain function Φ:

1. u =−αΦsignσ
2. u =−αΦ(σ̇ +λ |σ |1/2signσ)/(|σ̇ |+λ |σ |1/2),
3. u=−αΦ[σ̈+2λ 3/2(|σ̇ |+λ |σ |2/3)−1/2(σ̇+λ |σ |2/3signσ)]/[|σ̈ |+2λ 3/2(|σ̇ |+

λ |σ |2/3)1/2],
4. φ3,4 =

...
σ + 3λ 2[σ̈ +λ 4/3(|σ̇ |+ 0.5λ |σ |3/4)−1/3(σ̇ + 0.5λ |σ |3/4signσ)]

[|σ̈ |+λ 4/3(|σ̇ |+ 0.5λ |σ |3/4)2/3]−1/2,

N3,4 = |...σ |+ 3λ 2[|σ̈ |+λ 4/3(|σ̇ |+ 0.5λ |σ |3/4)2/3]1/2,

u =−αΦφ3,4/N3,4.
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2.8 Advanced Issues

Chattering analysis and attenuation, robustness issues, and choosing the controller
parameters are considered here.

2.8.1 Chattering Analysis

The following presentation follows [36]. The notion of mathematical chattering in-
evitably depends on the time and coordinate scales. For example, the temperature
measured at some fixed place in London does not fluctuate much in one hour, but
if the time is measured in years, then the chattering is very apparent. At the same
time, compared with the temperature on Mercury, these vibrations are negligible.
Thus, the chattering of a signal is to be considered with respect to some nominal
signal, which is known from the context. Consider an absolutely continuous scalar
signal ξ (t) ∈ R,t ∈ [0,T ]. Also let ξ̄ be an absolutely continuous nominal signal,
such that ξ is considered as its disturbance. Let Δξ = ξ − ξ̄ , and introduce virtual
dry (Coloumb) friction, which is a force of constant magnitude k directed against
the motion vector Δξ̇ (t). Its work (“heat release”) during an infinitesimal time in-
crement dt equals −ksign(Δξ̇ )Δξ̇dt = −k|Δξ̇ |dt. Define the L1-chattering of the
signal ξ (t) with respect to ξ̄ (t) as the energy required to overcome such friction
with k = 1, i.e.

L1 − chat(ξ , ξ̄ ;0,T ) =
T∫

0

|ξ̇ (t)− ˙̄ξ |dt.

In other words, L1-chattering is the distance between ξ̇ and ˙̄ξ in the L1-metric, or the
variation of the signal difference Δξ . Similarly, considering virtual viscous friction
proportional to Δξ̇ , obtain L2-chattering. Other power models of friction produce
Lp-chattering, p ¿ 1, which is defined in the obvious way. If the nominal signal ξ̄
is not defined, the linear signal ξ (0)+ t(ξ (T)− ξ (0))/T is naturally used for the
comparison. The three last arguments of the chattering function can be omitted in
the sequel, if they are known from the context. Let x(t) ∈ R

n, t ∈ [0,T ], be an abso-
lutely continuous vector function, and M(t,x) be some positive-definite continuous
symmetric matrix with the determinant separated from 0. The chattering of the tra-
jectory x(t) with respect to x̄(t) is defined as

Lp− chat(x, x̄,0,T ) = {
T∫

0

[(ẋt(t)− ˙̄xt)M(t,x)(ẋ(t)− ˙̄x)]
p/2

dt}
1/p

.

The matrix M is introduced here to take into account a local metric. Note that with
M = I the L1-chattering is the length of the curve x(t)− x̄(t).

Chattering Family. The notions introduced depend on the time scale and the space
coordinates. The following notions are free of this drawback. Consider a family
of absolutely continuous trajectories (signals) x(t,ε) ∈ R

n, t ∈ [0,T ],ε ∈ R
l . The
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family chattering parameters εi measure some imperfections and tend to zero. De-
fine the nominal trajectory (signal) as the limit trajectory (signal) x̄(t) = lim

ε→0
x(t,ε),

t ∈ [0,T ]. Chattering is not defined in the case when the limit trajectory x̄(t) does
not exist or is not absolutely continuous.

• Lp-chattering is classified as infinitesimal, if the “heat release” is infinitesimal,
i.e. lim

ε→0
Lp− chat(x, x̄;0,T ) = 0;

• Lp-chattering is classified as bounded if lim
ε→0

Lp− chat(x, x̄;0,T )> 0;

• Lp-chattering is classified as unbounded if the “heat release” is not bounded, i.e
lim
ε→0

Lp− chat(x, x̄;0,T ) = ∞.

The last two chattering types are to be considered as potentially destructive. Obvi-
ously, if L1-chattering is infinitesimal, the length of the trajectory x(t,ε) tends to the
length of x̄(t). The chattering is bounded or unbounded iff the length of x(t,ε) is
respectively bounded or unbounded when ε → 0.

Proposition 2.1. Let x(t,ε) uniformly tend to x̄(t) with ε → 0. Then the above
classification of chattering is invariant with respect to smooth transformations of
time and coordinates, and to the choice of a continuous positive-definite symmetric
matrix M.

Proof. Indeed, it follows from the uniform convergence that the trajectories are con-
fined to a compact region. The proposition now follows from the boundedness from
above and from below of the norm of the Jacobi matrix of the transformation. ��
Proposition 2.2. Let x(t,ε) uniformly tend to x̄(t) with ε → 0. Then the chattering
is infinitesimal, iff the chattering of all coordinates of x(t,ε) is infinitesimal. The
chattering is unbounded iff the projection to some subset of the coordinates has
unbounded chattering. The chattering is bounded iff it is not unbounded, and the
projection to some subset of the coordinates has bounded chattering.

Proof. This is a simple consequence of Proposition 2.2. ��
Suppose now that the mathematical model of a closed-loop control system is
decoupled into two subsystems,

ẋ = Xξ (t,x,y), ẏ = Yξ (t,x,y),

where ε is a chattering parameter. Consider any local chattering family of that sys-
tem. Then, similarly to Proposition 2.2, the above classification of the chattering of
the vector coordinate x does not depend on any smooth state coordinate transforma-
tion of the form x̃ = x̃(t,x), ỹ = ỹ(t,x,y).

Assume that the chattering of the vector coordinate x of the first subsystem is con-
sidered dangerous, while the chattering of the second subsystem is not important for
some practical reason. In particular, this can be the case when the vector coordinate
y of the second subsystem corresponds to some internal computer variables. In the
following, the first subsystem is called main and may contain the models of any
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chattering-sensitive devices including actuators and sensors; the second subsystem
is called auxiliary.

It is said that there is infinitesimal (Lp-)chattering in a closed-loop control sys-
tem depending on a small vector chattering parameter if any local chattering family
of the main-subsystem trajectories features infinitesimal chattering. The chattering
is called unbounded if there exists a local chattering family of the main subsystem
with unbounded chattering. The chattering is called bounded if it is not unbounded
and there exists a local chattering family of the main subsystem with bounded
chattering.

The least possible chattering in this classification is the infinitesimal one. In other
words, infinitesimal chattering is present in any real control system, as a result of
infinitesimal disturbances of a different nature. The prefix Lp- is omitted in the cases
when the corresponding statement on chattering does not depend on p ≤ 1. This is
true everywhere in the sequel.

Examples. It can be shown [36] that only infinitesimal heat release is possible
in mechanical systems with infinitesimal chattering. Consider a smooth dynamic
system

ẋ = a(t,x)+ b(t,x)u, (2.20)

where x ∈ R
n,u ∈ Rm.

Continuous feedback. Let system (2.20) be closed by some continuous feedback
u = U(t,x), and ε be the maximal magnitude of the measurement noise and control
delays. Then only infinitesimal chattering is present in the system.

Standard sliding mode. Let σ(t,x) = 0,σ ∈R
m, be a vector constraint to be kept

in the standard sliding mode. Let the vector relative degree of σ be (1,1, . . . ,1),
which means that

σ̇ =Θ1(t,x)+Θ2(t,x)u, (2.21)

with some smooth Θ1,Θ2 and detΘ2 	= 0. Taking

u =−KΘ−1
2 σ/||σ ||,K > sup||Θ1||, (2.22)

obtain a local first-order sliding mode σ ≡ 0. Consider any regularization parameter
ε having the physical sense of switching imperfections, such as switching delays,
small measurement errors, hysteresis etc., which vanish when ε = 0. Then the VSS
(2.20) - (2.22) features bounded chattering.

Now let (2.20) be a Single-Input Single-Output (SISO) system, u∈R,σ ∈R, and
let the relative degree be r, which means that the system can be rewritten in the form

σ (r) = h(t,θ ,Σ)+ g(t,θ ,Σ)u, KM ≥ g ≥ Km > 0, (2.23)

θ̇ =Θ(t,θ ,Σ), ζ ∈R
n−r (2.24)
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where Σ = (σ , σ̇ , . . . ,σ (r−1)), and, without any loss of generality, the function g
is assumed positive. Suppose that h be uniformly bounded in any bounded region
of the space ζ ,Σ and (2.24) features the Bounded-Input-Bounded-State (BIBS)
property with Σ considered as the input.

High-gain control. In the case when the functions g and h are uncertain, a
high-gain feedback is applied,

u =−ks,s = σ (r−1) +β1σ (r−2) + . . .+βr−1σ , (2.25)

where λ r−1 +β1λ r−2 + . . .+βr−1λ is a Hurwitz polynomial. It can be shown that,
provided k is sufficiently large, such feedback provides for the semi-global con-
vergence into a set ||Σ || ≤ d,d = O(1/k). System (2.23)-(2.25) features infinites-
imal chattering with any fixed k and small noises. In order to improve the perfor-
mance, one needs to increase k. It is easy to show that with the chattering parameter
μ = 1/k → 0, a system with infinitesimal chattering is obtained in the absence of
noise.

Now introduce some infinitesimal noise of the magnitude ε → 0 in the measure-
ments of the function s. Let possible noises be any smooth functions of time of the
magnitude ε . Then the chattering in system (2.23) - (2.25) is unbounded with the
chattering parameters μ = 1/k → 0 and ε → 0. The reason is that σ (r) can start
to follow the noise with μ = o(ε). This result applies also to the estimation of the
chattering of multi-input multi-output (MIMO) systems. Indeed, it is sufficient to fix
all feedback components except one in order to prove the possibility of unbounded
chattering. Introduction of control saturation turns the chattering into bounded.

HOSM control. Suppose that the assumptions of Section 2.5 hold. Apply r-
sliding homogeneous control (2.5). Suppose that σ (i), i = 0,1, . . . ,r − 1, is mea-
sured with noises of the magnitudes γ̃iεr−i, and variable delays not exceeding
γ̃iε , where γ̃i,γi are some positive constants. Then (Sections 2.5, 2.6) the accuracy
|σ |< a0εr, |σ̇ |< a1εr−1, . . . , |σ (r−1)|< ar−1ε is established in finite time with some
positive constants a0,a1, . . . ,ar−1 independent of ε . The result does not change when
only σ is measured and all its derivatives are estimated by means of an (r-1)th or-
der robust differentiator. Note that with ε = 0 the exact r-sliding mode σ ≡ 0 is
established. The above connection between the measurement noise magnitudes and
delays is not restrictive, since in reality there are concrete noises and delays, which
can be considered as samples of a virtual family indexed by ε in a non-unique way.
Moreover, actual noise magnitudes can be lower, preserving the same upper esti-
mations and the worst-case asymptotics. Following from the above result, there is
no unbounded chattering in the system (2.2), (2.5). Indeed, after the coordinates are
chosen as in (2.23), (2.24), it is obvious that the only coordinate which can reveal
bounded or unbounded chattering is σ (r−1). Its chattering function is bounded due
to the boundedness of σ (r). Thus, unbounded chattering is impossible. In fact there
is bounded chattering in that case.

Chattering Attenuation. The chattering attenuation procedure [30, 36] is based
on treating the derivative u(l) as a new control. As a result, the relative degree
is artificially increased to r + l, and u(i), i = 0, . . . , l − 1, are included in the set
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of coordinates. Global (r = l = 1) [30, 34] or semiglobal [40] convergence is en-
sured for the (r + l)-sliding mode. As follows from Sections 2.5, 2.6 the accuracies
σ = O(εr+l), σ̇ = O(εr+l−1), . . . ,σ (r) = O(ε l) are obtained with time delays of the
order of ε and the measurement errors of σ (i) being O(εr+l−i). Thus, only infinites-
imal chattering takes place in that case. Moreover, chattering functions of the plant
trajectories are of the order O(ε l). These results are trivially extended to the MIMO
case with a vector relative degree and a vector sliding order.

2.8.2 Robustness Issues

Practical application of any control approach requires its robustness to be shown
with respect to inevitably present imperfections. In more general perspective such
robustness can be considered as an important case of the approximability prop-
erty [9]. In reality the control u affects the system via an additional dynamic sys-
tem called actuator, while the sliding variable is estimated by another system called
sensor. Also the main system does not exactly describe the real process, i.e. small
perturbations exist; small delays and noises corrupt the connections (Fig. 2.2).

Moreover, the very division of a controlled system into an actuator, a plant and a
sensor is not unique. For example, any actuator or sensor can always be integrated
in the plant drastically changing the relative degree. Often a model with the smallest
possible relative degree is chosen at the design stage. That is the main reason, why
in practice relative degrees usually equal 2 or 3 and almost never exceed 5.

As it was shown, most HOSM controllers feature homogeneity properties. The
robustness of homogeneous sliding modes with respect to the presence of switching
imperfections, small delays, noises was proved in Sections 2.5, 2.6. The perfor-
mance has recently also been shown to be robust with respect to the presence of
unaccounted-for fast stable actuators and sensors [41], i.e. under the assumptions
of Section 2.5 the functions σ , σ̇ , . . . ,σ (r−1) remain infinitesimally small. Thus, the
conclusion is that such singular perturbations do not amplify the chattering, if the
internal variables of actuators and sensors are excluded from the main system.

Fig. 2.2 Disturbed control system

A well-known weak point of the HOSM applications is the requirement that the
relative degree of the sliding variable be well-defined, constant and known. Any
small general perturbation or model inaccuracy can lead to the decrease of the rela-
tive degree, or even to its disappearance.



82 A. Levant

It is proved in the paper presented at VSS’2010 by A. Levant that the robustness
is preserved when all mentioned disturbances are present simultaneously, provided
an output-feedback homogeneous controller (2.15), (2.16) is applied, making use
of a finite-time-stable differentiator. The differentiator is needed, though it already
does not estimate derivatives of σ , since, due to the system disturbance, the output
σ might be not differentiable. Also in that case the chattering is not amplified. In
other words the chattering attenuation procedure is still effective.

2.8.3 Choosing the Parameters

Let the relative degree be r. Recall that the recursive construction procedures for the
nested SM controllers and the quasi-continuous controllers (Section 2.5.2) involve
the construction of the functions φi,r, i = 1, . . . ,r− 1, depending on the parameters
β j > 0, j = 1, . . . , i.

Theorem 2.7. [43] Let for some i = 1, . . . ,r−2 the equality

φi−1,r(σ , σ̇ , . . . ,σ (i−1)) = 0

define a finite-time stable differential equation, then with any sufficiently large βi

also φi−1,r(σ , σ̇ , . . . ,σ (i)) = 0 is finite-time stable. Parameters βi, i = 1, . . . ,r− 1,
constitute a proper choice of parameters for the corresponding r-SM controller, if
the differential equation φr−1,r(σ , σ̇ , . . . ,σ (r−1)) = 0 is finite time stable.

It follows from the theorem that the parameters β1, . . . ,βr−1 can be chosen one-by-
one by means of relatively simple simulation of concrete differential equations.

2.9 Application and Simulation Examples

Only the main points of the presented results are demonstrated.

2.9.1 Control Simulation

Practical application of HOSM control is presented in a lot of papers, only to men-
tion here [1, 6, 15, 19, 26, 44, 46, 53, 51]. Consider a simple kinematic model of car
control

ẋ = V cosφ , ẏ = V sinφ , φ̇ = V
Δ tanθ , θ̇ = v,

where x and y are Cartesian coordinates of the rear-axle middle point, φ is the ori-
entation angle, V is the longitudinal velocity, Δ is the length between the two axles
and θ is the steering angle (i.e. the real input) (Fig. 2.3), ε is the disturbance param-
eter, v is the system input (control). The task is to steer the car from a given initial
position to the trajectory y = g(x), where g(x) and y are assumed to be available in
real time.
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Define σ = y− g(x). Let V = const = 10m/s,Δ = 5m,x = y = φ = θ = 0 at
t = 0,g(x) = 10sin(0.05x)+ 5.

The relative degree of the system is 3 and the quasi-continuous 3-sliding con-
troller (Section 2.5.2) solves the problem. It was taken α = 2,L = 400. The resulting
output-feedback controller (2.15), (2.16) is

Fig. 2.3 Kinematic car model

v =−2[s2 + 2(|s1|+ |s0|2/3)−1/2(s1 + |s0|2/3signs0)]/[|s2|+ 2(|s1|+ |s0|2/3)1/2],

ṡ0 = ϖ0, ϖ0 =−14.74|s0−σ |2/3sign(s0−σ)+ s1,

ṡ1 = ϖ1,ϖ1 =−30|s1−ϖ0|1/2sign(s1−ϖ0)+ s2, ṡ2 =−440sign(s2 −ϖ1).

The controller parameter α is convenient to find by simulation. The differentia-
tor parameter L = 400 is taken deliberately large, in order to provide for bet-
ter performance in the presence of measurement errors (L = 25 is also sufficient,
but is much worse with sampling noises). The control was applied only from
t = 1, in order to provide some time for the differentiator convergence. The in-
tegration was carried out according to the Euler method (the only reliable inte-
gration method with discontinuous dynamics), the sampling step being equal to
the integration step τ = 10−4. In the absence of noises the tracking accuracies
|σ | ≤ 5.4 ·10−7, |σ̇ | ≤ 2.4 ·10−4, |σ̈ | ≤ 0.042 were obtained. With τ = 10−5 the ac-
curacies |σ | ≤ 5.6 · 10−10, |σ̇ |1.4 · 10−5, |σ̈ | ≤ 0.0042 were attained, which mainly
corresponds to the asymptotics stated in Theorem 2.5. The car trajectory, 3-sliding
tracking errors, steering angle θ and its derivative u are shown in Fig. 2.4a, b, c, d
respectively. It is seen from Fig. 2.4c that the control u remains continuous until the
very entrance into the 3-sliding mode. The steering angle θ remains rather smooth
and is quite feasible.

Robustness of HOSM. Consider now a disturbed kinematic model

ẋ = V (cosφ + ε sin(θ + v + 0.1)), ẏ = V (sinφ − ε sin(θ + v−0.1)),

φ̇ = V
Δ tanθ , θ̇ = v,



84 A. Levant

Fig. 2.4 Quasi-continuous 3-sliding car control

where ε is the disturbance magnitude and apply the same control. Let the actuator
and the sensor be described by the systems

μ ż1 = z2,

μ ż2 =−2(2−0.5sin(t + 1))sign(z1 −u)−3z2,v = z1 +η1(t);

λ ζ̇1 = ζ2,

λ ζ̇2 =−(ζ1− x)3 +(ζ1− x)+ (1 + 0.2cost)ζ2,

s = ζ1−g(x)+η2(t).

Here u,v are the input and the output of the actuator, s is the sensor output, to
be substituted for σ into the differentiator. It is taken ζ1 = −10,ζ2 = 20,u(0) =
0,z1(0) = z2(0) = 0 at t = 0,ηi are noises, |η1| ≤ ε1, |η2| ≤ ε2. The actual “gen-
eralized” relative degree now is 1 (the system is not affine in control anymore).
The discontinuous derivative of the steering angle directly affects the car coor-
dinates x and y. The maximal tracking error does not exceed 0.5 meters with
ε = 0.05,λ = μ = 0.02,ε1 = 0,ε2 = 0.1 (Fig. 2.5). The error does not exceed 0.05
meters with ε = 0.05,λ = μ = 0.01,ε1 = ε2 = 0; and 0.005m with ε = λ = μ =
0.001,ε1 = ε2 = 0.
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Fig. 2.5 Output regulation of the perturbed model with ε = 0.05,λ = μ = 0.02,ε1 = 0,ε2 =
0.1

Chattering of Aircraft Pitch Control. The chattering of a mechanical actuator is
demonstrated here. A practical aircraft control problem [44] is to get the pitch angle
θ of a flying platform to track some signal θc given in real time. The actual nonlinear
dynamic system is given by its linear 5-dimensional approximations, calculated for
42 equilibrium points within the Altitude - Mach flight envelope and containing
significant uncertainties. The relative degree is 2. Details are presented in [44]. The
actuator (stepper motor servo) output v is to follow the input u. The output v changes
its value 512 times per second with a step of ±0.2, or remains the same. It gets the
input 64 times per second and stops to react for 1/32 s each time, when sign(u− v)
changes. The actuator output has the physical meaning of the horizontal stabilizer
angle, and its significant chattering is not acceptable.

Following are unpublished simulation results (1994) revealing the chattering fea-
tures of a linear dynamic control based on the H∞ approach and a 3-sliding-mode
control practically applied afterwards in the operational system (1997). In order to
produce a Lipschitzian control, the 3-sliding-mode controller was constructed ac-
cording to the described chattering attenuation procedure. The comparison of the
performances is shown in Fig. 2.6. The control switches from the linear control to
the 3-sliding-mode control at t = 31.5. The chattering is caused by the inevitably
relatively large linear-control gain.
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Fig. 2.6 Chattering of the aircraft horizontal stabilizer: a switch from a linear control to a
3-sliding one

2.9.2 Signal Processing: Real-Time Differentiation

Following is the 5th order differentiator:

ż0 = v0,v0 =−8L1/6|z0 − f (t)|5/6sign(z0 − f (t))+ z1,

ż1 = v1,v1 =−5L1/5|z1 − v0|4/5sign(z1 − v0)+ z2,

ż2 = v2,v2 =−3L1/4|z2 − v1|4/5sign(z2 − v1)+ z3,

ż3 = v3,v3 =−2L1/3|z3 − v2|4/5sign(z3 − v2)+ z4,

ż4 = v4,v4 =−1L1/2|z4 − v3|4/5sign(z4 − v3)+ z5,

ż5 =−1.1Lsign(z5 − v4); f (6) ≤ L.

It is applied with L = 1 for the differentiation of the function

f (t) = sin 0.5t + cos0.5t, | f (6)| ≤ L = 1.

The initial values of the differentiator variables are taken zero. In practice it is rea-
sonable to take the initial value of z0 equal to the current sampled value of f (t),
significantly shortening the transient. Convergence of the differentiator is demon-
strated in Fig. 2.7. The 5th derivative is not exact due to the software restrictions
(insufficient number of valuable digits within the long double precision format).
Higher order differentiation requires special software to be used.

Differentiation with Variable Parameter L. Consider a differential equation

y(4) +
...
y + ÿ+ ẏ = (cos0.5t + 0.5sint + 0.5)(

...
y −2ẏ+ y)

with initial values y(0) = 55, ẏ(0) =−100, ÿ(0) =−25,
...
y (0) = 1000. The measured

output is y(t), the parametric function
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Fig. 2.7 5th order differentiation

Fig. 2.8 Variable parameter L. The input signal and its derivatives (a), convergence of the
differentiator (b)

L(t) = 3(y2 + ẏ2 + ÿ2 +
...
y 2 + 36)1/2

is taken. The third order differentiator (2.10) is taken with λ0 = 1.1,λ1 = 1.5,λ2 =
2,λ3 = 3. The initial values of the differentiator are z0(0) = 10,z1(0) = z2(0) =
z3(0) = 0. The graphs of y, ẏ, ÿ,

...
y are shown in Fig. 2.8a. It is seen that the

functions tend to infinity fast. In particular they are “measured” in millions, and
y(4) is about 7.5 · 106 at t = 10. The accuracies |z0 − y| ≤ 6.0 · 10−6, |z1 − ẏ| ≤
1.1 · 10−4, |z2 − ÿ| ≤ 0.97, |z3 −

...
y | ≤ 4.4 · 103 are obtained with τ = 10−4. In the

graph scale of Fig. 2.8a the estimations z0,z1,z2,z3 cannot be distinguished re-
spectively from y, ẏ, ÿ,

...
y . Convergence of the differentiator outputs during the first
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Fig. 2.9 Edge detection

2 time units is demonstrated in Fig. 2.8b. Note that also here the graph of z0 can-
not be distinguished from the graph of y. The normalized coordinates σ0(t) =
(z0(t)− y(t))/L(t),σ1(t) = (z1(t)− ẏ(t))/L(t),σ2(t) = (z2(t)− ÿ(t))/L(t),σ3(t) =
(z3(t)−

...
y (t))/L(t) get the accuracies |σ0| ≤ 6.9 · 10−16, |σ1| ≤ 1.2 · 10−11, |σ2| ≤

1.0 ·10−7, |σ3| ≤ 4.6 ·10−4 with τ = 10−4. With τ = 10−3 the accuracies change to
|σ0| ≤ 2.0 ·10−12, |σ1| ≤ 5.0 ·10−9, |σ2| ≤ 5.2 ·10−6, |σ3| ≤ 2.4 ·10−3.

2.9.3 Image Processing

A gray image is represented in computers as a noisy function given on a planar
grid, which takes integer values in the range 0 - 255. In particular, 0 and 255 corre-
spond to the black and to the white respectively. An edge point is defined as a point
of the maximal gradient. Samples of 3 successive rows from a real gray photo are
presented in Fig. 2.9a together with the results of the first-order differentiation (2.10)
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Fig. 2.10 Smoothing a curve

of their arithmetical average, L = 3. The differentiation was carried out in both di-
rections, starting from each row end, and the arithmetical average was taken exter-
minating lags. A zoom of the same graph in a vicinity of an edge point is shown in
Fig. 2.9b. Some results of the edge detection are demonstrated in Fig. 2.9c,d. These
results were obtained by the author in the framework of a practical research project
fulfilled by the Institute of Industrial Mathematics (Beer-Sheva, Israel, 2000) for
Cognitense Ltd. The simplicity of the differentiator application allows easy tangent
line calculation for a curve in an image. It is shown in Fig. 2.10 how a crack of
the edge of a piece given by a photo is found and eliminated (the edge was already
previously found, and its points were numbered).
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2.10 Conclusions

The sliding-mode order approach allows the exact finite-time stabilization at zero
of sliding variables with high relative degrees. Homogeneity features of dynamical
systems and differential inclusions greatly simplify the proofs of finite-time conver-
gence and provide for the easy calculation of the asymptotical accuracy in the pres-
ence of delays and measurement errors. The homogeneity approach provides a con-
venient effective framework for the design of high-order sliding mode controllers.
Dangerous forms of the chattering effect are effectively treated without compromis-
ing the main advantages of sliding-mode control. The approach features ultimate
robustness with respect to the presence of unaccounted-for fast dynamics of stable
actuators and sensors, model inaccuracies changing the relative degrees, measure-
ment errors and delays. Non-homogeneous versions of the developed controllers
and differentiators provide for the global applications removing the boundedness
conditions.
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Chapter 3
Frequency-Domain Methods in Conventional
and Higher-Order Sliding Mode Control

Igor M. Boiko

Abstract. Sliding mode control has become a mature theory and found a number
of useful applications. The theory of sliding mode control is based on mostly state
space models and Lyapunov approach to analysis of the convergence of the system
states to the sliding surface. This approach often limits the analysis to the second-
order systems. Frequency-domain methods could potentially overcome the above-
mentioned limitation of the state-space approach. Yet they find limited applications
in sliding mode control theory. The present article is aimed at giving an overview
of some available and emerging frequency domain methods of analysis of systems
having conventional and second-order sliding modes. The method of analysis of
transient oscillations is given in detail. A frequency-domain criterion of finite-time
convergence is presented.

3.1 Introduction

Sliding mode control theory has become a mature theory and found a number of
useful applications. The theory of sliding mode (SM) control is mostly based on
state space models and the Lyapunov approach to analysis of the convergence of
the system states to the sliding surface. This approach often limits the analysis to
the second-order systems. Frequency domain methods could potentially overcome
the above-mentioned limitation inherent in the state-space approach. Yet they find
limited applications in SM control theory despite introduction of these methods into
SM control at the time of the initial phase of the development of the SM control the-
ory [21,17]. The approach of [21,17] was based on the describing function method.
With respect to analysis of SM control systems, methods [18, 10] can be mentioned
too – as allowing for frequency-domain analysis of chattering in SM control systems
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having relay control and affected by parasitic dynamics. It is worth noting that the
above-mentioned methods can be applied to the analysis of real (non-ideal) sliding
modes, which occur in the systems affected by parasitic dynamics of various kinds
(of sensors and actuators, for example), and revealed as self-excited oscillations or
chattering. The modification of the describing function analysis presented in [9],
vice versa, could potentially be applied to analysis of ideal sliding modes. After a
long period of lack of interest to frequency domain methods from the SM control
community, some new developments emerged in [5], and with respect to the new
class of sliding mode control systems – higher-order sliding mode control systems
– in [7, 6].

The present article is aimed at giving a brief overview of available and perspective
frequency domain methods of analysis of systems having conventional and second-
order sliding modes (SOSM) and presenting a new development of the frequency-
domain techniques to analysis of transient modes in SM systems.

3.2 Ideal and Real Sliding Modes: Poincare Maps and
Frequency-Domain Approach

According to the SM control theory (see [19]) the system has two modes of opera-
tion: the convergence of the states to the sliding surface (the reaching phase) and the
sliding along the sliding surface after the reaching phase is finished. It is also known
that if the system includes some kind of parasitic dynamics then the ideal sliding
along the sliding surface cannot be achieved, and high-frequency self-excited os-
cillations in the vicinity of the sliding surface (chattering) occur instead. The same
chattering process exists not only around the sliding surface but also in the vicinity
of the origin after all transients caused by the initial conditions of the system end.
Generally, for the two considered cases, the system trajectories in the vicinity of the
sliding surface either reveal the Lyapunov stable finite-time convergence (ideal SM)
or the existence of an invariant set (SM system having parasitic dynamics) [19]. It
can be shown that the size of this invariant set depends on the contribution of the
parasitic dynamics, which can be estimated, for example, by the values of the time
constants associated with these parasitic dynamics [8]. If instead of the state vari-
ables, the so-called sliding variable (which may be defined as a weighted sum of all
the state variables) is considered then the convergence process in the system can be
considered as the convergence process of the sliding variable.

The frequency-domain approach and related to this approach the Poincare map
analysis use a different concept. In the case of the ideal SM, the Poincare map of
the system is a series of convergent points, so that a fixed point does not exist. In the
case of non-ideal SM, due to the existence of parasitic dynamics, a fixed point does
exist, which corresponds to a limit cycle or a periodic motion of a certain frequency.
Fig. 3.1 illustrates these two cases.

Therefore, there exist two different analysis problem related to SM control sys-
tems: analysis of the transient processes of convergence of the states in the system
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Fig. 3.1 Poincare maps: for process without limit cycle (P1) and for process with limit cycle
(P2)

with ideal SM, and analysis of the real SM, which occurs in the system with par-
asitic dynamics. The latter includes analysis of the parameters of chattering and
of the input-output properties of the system (response to external disturbances and
signals). It can be noted that the first problem is much more complex than the sec-
ond one from the perspective of the application of frequency domain methods. In
the problem of analysis of chattering or input-output properties in the system in
which chattering takes place, the frequency-domain approach is a “natural” tool be-
cause a periodic process of certain frequency exists. Frequency-domain methods
provide significant advantages over other methods of analysis. Among frequency-
domain methods intended for this type of analysis are both approximate [9, 2] and
exact [5] methods. For the analysis of convergence in the systems with ideal SM,
the frequency-domain methods do not provide such visible advantages as in the for-
mer case. However, the natural feature of the frequency-domain methods of being
“system order independent” may result in noticeable advantages as far as the system
order is higher than two (especially if it is a high number). The following sections of
the present article provide some elaboration on that. The relationship of problems
and frequency-domain methods in SM control can be illustrated by the following
diagram (Fig. 3.2).

Frequency-domain methods of analysis of SM in systems with parasitic dynam-
ics, both conventional SM and second-order SM systems, were presented in a num-
ber of recent publications (see [5, 7, 6] and references within). On the contrary,
frequency-domain methods of analysis of ideal sliding modes, and, therefore, anal-
ysis of transient modes (because the steady oscillatory modes do not occur) in con-
ventional and second-order SM systems is a new area, which to our best knowledge
has not been presented so far in the literature.

The following material of this article is aimed at the developmentof the frequency-
domain approach to the analysis of transient modes in conventional and second-
order SM systems, in particular at the analysis of the conditions of finite-time and
asymptotic convergence.
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Fig. 3.2 Problems and frequency-domain methods in SM control

3.3 Analysis of Convergence – Quasi-Static DF Approach

The problems of finite-time convergence in the analysis of conventional sliding-
mode (SM) and second-order sliding mode (SOSM) control systems are of great im-
portance. In fact, an algorithm cannot be legitimately called a SOSM without proof
of the finite-time convergence. There are a number of SOSM algorithms available
now, for which the property of finite-time convergence has been proved, and others
for which this property is still awaiting for the proof. The most popular SOSMs are
“twisting”, “super-twisting”, “twisting-as-a-filter” [12,13], “sub-optimal” [4,3], and
some others [16]. The problems of finite-time convergence and convergence rate are
valid problems in the conventional SM control [19] and “terminal SM” [15,20] con-
trol too. Recently, an interest to frequency-domain analysis of SOSM systems using
the describing function (DF) method [2] and other approaches was shown [7, 6].
These and other publications, however, concern the problem of finding periodic
motions in SOSM systems affected by parasitic dynamics of sensors and actua-
tors. If only the principal dynamics of the system are taken into account the SOSM
systems reveal converging transient motions, analysis of which requires a different
approach. There exists an approach to analysis of transient oscillations in non-linear
systems that are still based on the DF method [9]. It can be considered an extension
of method [11]. The term transient oscillations can be used to describe a process that
is oscillatory in nature and is given by a sinusoid with slowly changing frequency
and amplitude, which very precisely fits the character of transients in SOSM sys-
tems. The use of a frequency-domain approach for analysis of convergence type of
SOSM systems would provide a number of advantages over the direct solution of
the differential equations or methods based on Lyapunov techniques. The most im-
portant one is the unification of the treatment of all the algorithms based on some
frequency-domain characteristics. This in turn may lead to the formulation of some
criteria that should be satisfied for a SOSM algorithm to provide a finite-time con-
vergence, and simple rules that would allow one to develop new SOSM algorithms.
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The article is organized as follows. At first we are going to consider and analyze a
system comprising the twisting SOSM controller and a second-order plant – via the
quasi-static DF approach. The frequency and the amplitude of the oscillations are
found as functions of time. Then analysis of the type of convergence is considered.
After that the developed approach is extended to a higher-order plant. We shall give
examples throughout the article.

Filtering Hypothesis for Transient Oscillations.
One of the conditions of the applicability and validity of the DF method to analy-
sis of self-excited oscillations is the condition of the low-pass filtering properties of
the linear part (plant) of the system to be valid. In fact, the condition of the ideal
low-pass filtering is assumed, so that no higher harmonics are propagated through
the plant. In the case of a transient oscillation, this hypothesis cannot be directly
applied because the transient oscillation is not a periodic signal and cannot be ex-
panded into a Fourier series. Therefore, some modification and reformulation of the
filtering hypothesis becomes necessary.

We will use the following transformation of the time coordinate that will allow us
to obtain the oscillation of certain constant frequency (which may not be a periodic
motion, as the amplitude may still be a function of time). However, for the sake
of illustration of the idea we disregard the cases of variable amplitude and assume
that the amplitude of the input to the nonlinearity remains constant. We consider the
following input to the nonlinearity:

y(t) = asinΨ(t) (3.1)

where Ψ(t) =
t∫

0
Ω(τ)dτ +ϕ is the instantaneous phase, is selected to satisfy the

initial conditions, and Ω(t) = Ψ̇(t) is the instantaneous frequency. The nonlinearity
u = f (y) produces the output u(t) = f (y(t)) as the reaction to the input (3.1). We
formulate the filtering hypothesis as follows.

Definition 3.1. If (a) there is a system comprising serially connected nonlinearity
and linear dynamics, with y(t) being the input to the nonlinearity, u(t) = f (y(t))
being the output of the nonlinearity (input to the linear dynamics), and y1(t) being
the output of the linear dynamics, and (b) there exists a transformation of time τ =
g(t), t ∈ [t0;t1], where t1 can be either finite value or infinity, such that y(τ) is a
periodic function of frequency Ω̃ , and u(τ) = f (y(τ)) can be expanded into the
Fourier series as follows:

u(τ) =
A0

2
+

∞

∑
k=1

(
Ak cosΩ̃τ + Bk sinΩ̃τ

)
,

where Ak and Bk are the coefficient of the Fourier series that are calculated through
known formulas, and (c) the linear dynamics have ideal low-pass filtering properties
with respect to signal u(τ), so that
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y1(τ) ≈ auKl sin(Ω̃ t +φl), (3.2)

where au =
√

Ak
2 + Bk

2 is the amplitude of the first harmonic of the control signal,
Kl is the gain of the linear dynamics (at frequency Ω̃ ), φl is the phase shift (lag) of
the linear dynamics (at frequency Ω̃ ), then we say that the linear dynamics possess
the ideal low-pass filtering (LPF) property.

We should note that no frequency-dependent amplitude attenuation and phase lag
is assumed in formula (3.2), which cannot be true in real life. For that reason it
is termed as the ideal low-pass filtering. Fig. 3.3 illustrates the idea of the first har-
monic in a signal of time-varying frequency and the ideal LPF for a transient oscilla-
tion. Every linear dynamics that have LPF property also have frequency-dependent
amplitude attenuation (which in fact is the same property: the former follows from
the latter). Therefore, practical (or real) LPF property will be different from the ideal
one because gain Kl and phase lag φ will be frequency-dependent. The output of the
linear dynamics that possess real LPF property as a function of the original time is
given by the following formula:

y1(t) ≈ aKl(Ω ,a, ȧ)sin(Ψ (t)+φl(Ω ,a, ȧ)), (3.3)

where Ω(t) = Ψ̇ (t), and Kl(Ω ,a, ȧ) is the gain of the linear dynamics, φl(Ω ,a, ȧ) is
the phase shift (lag) of the linear dynamics.

Fig. 3.3 First harmonic and ideal low-pass filtering for signal of variable frequency

Formula (3.3) constitutes the quasi-static formulation of the real LPF property of
the linear dynamics, which enables us to use the so-called quasi-static approach to
the DF analysis of transient oscillations [9].
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Describing Function Analysis of Second-Order Systems with SOSM.
We now carry out a frequency-domain analysis of the transient process in a SOSM
control system. Let the plant be given as follows:

ẋ = Ax+ Bu

y = Cx,
(3.4)

and the controller be the “twisting” SOSM controller [12] given as follows:

u =−c1 · signy− c2 · signẏ, (3.5)

We shall first consider the case of the second-order system with

A =
[

0 1
−a1 −a2

]
,B =

[
0 b2

]T
,C =

[
1 0

]
,a1 ≥ 0,a2 > 0,b2 > 0.

We shall also use the transfer function of the plant determined in accordance with
(3.4) as Wl(s) = b2/(s2 + a2s + a1). However, we note that the transfer function is
used as a format of the dynamics description rather than as a method of analysis
and it is only used as a method of analysis where it is explicitly stated. We apply
the describing function method (DF) in the following quasi-static formulation [9].
Assume that the plant is a low-pass filter, and y(t) is a damped oscillation of variable
frequency, so that a(t) is the instantaneous amplitude andΨ(t) is the instantaneous
phase of oscillations of y(t):

y(t) = a(t)sinΨ(t), (3.6)

with the same meaning of the variables as in formula (3.1). Replace the nonlineari-
ties in equation (3.5) with their DFs – like in [8]. For the first relay:

N1(a) =
4c1

πa
, (3.7)

and for the second relay

N2(a∗) =
4c2

πa∗
, (3.8)

where a∗ is the instantaneous amplitude of ẏ(t), which still needs to be obtained.
Find amplitude a∗ via differentiating (3.6).

ẏ(t) = a(t) [σ(t)sinΨ(t)+Ω(t)cosΨ(t)] , (3.9)

where σ(t) = ȧ(t)/a(t) is the instantaneous decay. Therefore,
a∗ = a

√
σ2(t)+Ω 2(t), and the DF for the second relay can be rewritten as

N2(a) =
4c2

πa
√
σ2 +Ω 2

. (3.10)
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Now we write the formula for the transfer function of the closed-loop system via
replacing the nonlinearities with respective DFs:

Wcl(s) =
(N1(a)+ sN2(a))b2

s2 +(a2 + N2(a)b2)s+ a1 + N1(a)b2
.

The characteristic equation of the closed-loop system is, therefore,

s2 + 2ξωns+ωn
2 = 0, (3.11)

where ξ = 0.5(a2 + N2(a)b2)/
√

a1 + N1(a)b2, ωn =
√

a1 + N1(a)b2. (Note: the
characteristic equation can also be obtained through other approaches; finding the
denominator of the transfer function of the closed-loop system is only one of them.
We emphasize that this transfer function cannot be used for analysis of the propa-
gation of the signals through the closed-loop system; it is used here as a means of
deriving the characteristic equation). The instantaneous decay is:

σ(t) =−ξωn =−0.5(a2 + N2(a)b2) (3.12)

By definition, the instantaneous decay provides the instantaneous rate of the am-
plitude change: σ(t) = ȧ(t)/a(t). The instantaneous amplitude can be found via
solving the following differential equation:

ȧ(t) = a(t)σ(t), a(0) = a0. (3.13)

The formulas for the instantaneous decay and instantaneous frequency are as fol-
lows.

σ(t) =−0.5

(
a2 +

4c2b2

πa(t)
√
σ2(t)+Ω 2(t)

)
, (3.14)

Ω(t) = 0.5

√√√√4

(
a1 +

4c1b2

πa(t)

)
−

(
a2 +

4c2b2

πa(t)
√
σ2(t)+Ω 2(t)

)2

. (3.15)

The formulas for the instantaneous amplitude (3.13), instantaneous decay (3.14)
and instantaneous frequency (3.15) make a set of one differential and two algebraic
equations. The proposed solution algorithm is as follows. Express Ω from (3.14):

Ω =

√
16c2

2b2
2

π2a2(2σ + a2)
2 −σ2 (3.16)

and substitute the expression in formula (3.15). Solve this equation for σ .

σ =− 2c2b2√
π2a2a1 + 4πac1b2

− a2

2
(3.17)
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Substitution of (3.17) in (3.13) yields the following differential equation for a(t).

ȧ =− 2c2b2a√
π2a2a1 + 4πac1b2

− a2

2
a, a(0) = a0. (3.18)

Formula (3.18) is a first-order nonlinear differential equation of the type:

ż =−λ z−g(z), z(0) = z0 > 0, (3.19)

where g(z) = α√
1+β/z

, α = 2c2b2
π√a1

, β = 4c1b2
πa1

, λ = a2
2 , z = a. The nonlinear function

g(z) has infinite derivative at z = 0, which makes the finite-time convergence of the
process given by (3.18) possible. Prove it and assess the convergence time. At first
prove an auxiliary lemma.

Lemma 3.1. For the first-order nonlinear differential equation

ż =−g(z), (3.20)

where g(z) > 0 for all z > 0, and g(0) = 0, and the initial condition z(0) = z0 > 0
the following holds. If there exists a function h(z), such that h(z) ≤ g(z) for all
z ∈ [

0;z0
]
,h(z) > 0, and h(0) = 0, so that a finite-time convergence to zero in the

equation

ż =−h(z) (3.21)

takes place
(
z(Th) = 0,z ∈ [

0;z0
])

then the finite-time convergence to zero in the
original equation takes place too, with the convergence time Tg ≤ Th.

Proof. Transform equation (3.20) into an equation with z being an independent vari-
able and time being a dependent variable: dt/dz = −1/g(z) , from which the time

can be found as t(z) = −
z∫

z0

1
g(z)dz, and the convergence time as: Tg = −

0∫
z0

1
g(z)dz =

z0∫
0

1
g(z)dz. Now, since h(z) ≤ g(z) and g(z) > 0, h(z)> 0 for all z > 0, the following

inequality holds: Th =−
0∫

z0

1
h(z)dz =

z0∫
0

1
h(z)dz ≥ Tg. ��

Theorem 3.1. The process of conversion of the amplitude described by (3.18) from
the initial value a0 provides finite-time conversion with the conversion time not
exceeding

T ∗ =
2
λ

(
ln

(
λ
√

z0 +
α√

z0 +β

)
− ln

α√
z0 +β

)
(3.22)

Proof. Consider equation (3.19), which is a reformulated (3.18). Replace nonlin-
earity g(z) in it with another nonlinearity h(z) such that h(z) ≤ g(z), z ∈ [0;z0],
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for which the finite-time conversion property can be (has been) proved. Select
h(z) to be h(z) = ρ

√
z, ρ > 0. Select parameter ρ = α√

z0+β
to satisfy the re-

quirement h(z) ≤ g(z), z ∈ [0;z0]. Also, note that h(z0) = g(z0). Therefore, since

g2(z) = α2z
z+β and h2(z) = α2z

z0+β , g2(z) ≥ h2(z) for all z ∈ [0;z0]. Via the substitute
z1 =

√
z, and respectively ż = 2z1ż1, the equation containing the square root func-

tion is transformed into a linear equation: ż1 =−0.5ρz1−0.5λ , which has a solution
z1(t) =− ρ

λ (1−e−0.5λ t)+ z1(0)e−0.5λ t . By solving the equation z1(T∗) = 0 find T∗
as given by (3.22). ��
Corollary 3.1. We also note that if parameter c2 = 0 in (3.5) then, according to
Theorem 3.2, T ∗ →∞ and asymptotic convergence takes place. In this case we have
the so-called asymptotic second-order sliding mode.

The nonlinear functions g(z) and h(z) for c1 = 50, c2 = 5 and other parameters
of the above example are presented in Fig. 3.4. The considered first-order sys-
tem with the square root nonlinearity (assuming also symmetric properties of the
square root function for negative z) is known as having a terminal sliding mode (or
power-fractional sliding mode) [15, 20], which has finite-time convergence. Since
h(z) ≤ g(z), z ∈ [0;z0], according to Lemma 3.1, the system (3.19) provides a
faster convergence than the system with the square root nonlinearity. Time T ∗ serves
as a higher estimate of the convergence time in system (3.18).

An example of analysis of the system with the linear plant Wl(s) = 1/(s2 + s+1)
and the twisting controller with c1 = 50, c2 = 5 is given in Fig. 3.5. The theoret-
ical value of the higher estimate of the convergence time is T ∗ = 4.85, which is
close to the theoretical convergence time due to closeness of functions g(z) and h(z)
(Fig. 3.4). The theoretical analysis is given along with the simulations. One can
see that the proposed approach provides a good estimate of the SOSM transient
dynamics.

3.4 Frequency-Domain Characteristics and Convergence Rate

The approach to analysis of convergence of the SOSM-controlled system given
above involves consideration of instantaneous amplitude, frequency and decay.
Now, with those methodology and results available, we look at the problem of the
existence of periodic motions, asymptotic and finite time convergence considering
the condition of the harmonic balance in the system. Periodic motions can exist
in the system if the Nyquist plot of the plant W ( jω) intersects the negative recip-
rocal of the DF −N−1(a) (Fig. 3.6). In Fig. 3.6, two Nyquist plots corresponding
to the second- W1( jω) and third-order W2( jω) plants and two negative recipro-
cal DF corresponding to the relay control −N1

−1(a) and to the twisting algorithm
−N2

−1(a) [7] are depicted. Intersection of W2( jω) with either of the DFs provides
a periodic solution (points A or B) of finite frequency and amplitude. Plot W1( jω)
does not have any points of intersection with either −N1

−1(a) or −N2
−1(a) except

the origin. However, the character of the process in the system is different – depend-
ing on whether the control is an ideal relay (plot −N1

−1(a)) or the SOSM control
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Fig. 3.4 Functions g(z) and h(z) of differential equation for amplitude

Fig. 3.5 Example of analysis of twisting SOSM controlled system

(plot −N2
−1(a)). In the former case the convergence is asymptotic (see Corollary

3.1), in the second one – it is finite-time.
Let us consider the condition of the phase balance that is a part of the har-

monic balance condition. For a periodic motion to occur in the system the following
condition must hold:

φl(Ω)+ argN(a) =−π , (3.23)

where Ω is the frequency and a is the amplitude of the self-excited periodic mo-
tion, φl(ω) = argWl( jω) is the phase characteristic of the plant. Considering the
plant with W1( jω) we should note that there is a significant difference between the
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Fig. 3.6 Determination of periodic motions and decaying oscillations

controls with DFs −N1
−1(a) and −N2

−1(a). In the first case, formally speaking,
there is a frequency at which the phase balance condition (3.23) holds. This fre-
quency is Ω = ∞. Therefore, we might say that in the system with W1( jω) and
−N1

−1(a), a periodic motion of infinite frequency occurs. In the second case, a
periodic motion cannot occur at any frequency (including Ω = ∞). There is a con-
dition that we shall further refer as a phase deficit. Quantitatively, let us term the
phase deficit as the minimum phase value that needs to be added (with the negative
sign) to the phase characteristic of the plant to make the phase balance condition
hold at some frequency (including the case of Ω = ∞). Note: we do not consider
now the case of possibly non-monotone frequency characteristics. The phase deficit
is depicted in Fig. 3.6 as φd . Therefore,

φl(Ω)−φd + argN(a) =−π , (3.24)

assuming that φd ≥ 0 and argN(a) ≥ 0 for SOSM.
Now consider controllers that include a nonlinearity with infinite derivative in

zero. For this type of nonlinearity, the DF N(a) → ∞ if a → 0 and, therefore,
−N−1(a)→ 0 if a→ 0. Also, assume that −N−1(a) is a straight line in the complex
plane (other types of −N−1(a) will be considered below). Formulate the following
theorem.

Theorem 3.2. For the second-order plant given by (3.4) and the controller having
the describing function N(a) that satisfies the condition: ImN(a)

ReN(a) = const (the neg-
ative reciprocal DF of the controller is a straight line in the complex plane), the
following three modes of oscillations can occur (necessary conditions).

A. A periodic motion occurs only if the phase deficit value is negative.
B. An oscillation having asymptotic convergence of the amplitude to zero (periodic

process of infinite frequency and zero amplitude) occurs only if the phase deficit
value is zero.
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C. An oscillation having finite-time convergence of the amplitude to zero occurs
only if the phase deficit value is positive.

Proof. A. If the phase deficit is negative there always exists a point of intersection
of the Nyquist plot of the plant and of the negative reciprocal of the DF of the
controller (follows from the definition of the phase deficit). Therefore, there is
a solution of the harmonic balance equation [9, 2], and a self-excited periodic
motion occurs.

C. It follows from the definition of the nonlinearity of the controller that

N(a) =
k1

r(a)
+ j

k2

r(a)
, (3.25)

where k1 > 0, k2 > 0 are constant coefficients, r(a) is an increasing function of

the amplitude a: dr(a)
da > 0 for all a ∈ [0;∞), such that r(0) = 0 (examples of

this function can be r(a) = a, r(a) =
√

a, etc.). The negative reciprocal of (3.25)
becomes

−N−1(a) =− r(a)
k1

2 + k2
2 (k1 − jk2)

Therefore, the phase deficit for this system is φd = arctan(k2/k1 ). Considering
that y(t) = a(t)sinΨ (t) and ẏ(t) = a(t) [σ(t)sinΨ(t)+Ω(t)cosΨ(t)] represent
the response of the nonlinear controller to signal y(t) as an expansion in the basis
of functions y(t), ẏ(t) (weighted sum), the following holds:

u(t)≈−
(

p1y(t)+
p2

Ω
ẏ(t)

)
=−a

(
(p1 + p2

σ
Ω

)sinΨ + p2 cosΨ
)
, (3.26)

where the sign “-” is attributed to the negative feedback, the “approximate equal-
ity” is due to the use of the approximate DF method. (Note: that basis would be
an orthogonal one if the decay were zero.) The weight p2 = k2/r(a); the weight
p1 can be determined for a particular controller. It reduces to p1 = k1/r(a) when
σ = 0. It follows from (3.26) that the controller output can be represented as
follows:

u(t)≈−
(

p1 +
p2

Ω
s
)

y(t),

where s = d
dt . Similar to (3.19), we can write the following formula for the

instantaneous decay:

σ =−0.5

(
a2 +

p2(a)
Ω

b2

)
=−0.5

(
a2 +

k2

r(a)Ω
b2

)
(3.27)

and instantaneous frequency (similar to (3.14), (3.15)):

Ω = 0.5

√
4(a1 + p1(a)b2)−

(
a2 +

k2

r(a)Ω
b2

)2

.
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As an auxiliary result, find the following limit from the last formula:

lim
a→0

r(a)Ω = lim
a→0

0.5r(a)

√
4(a1 + p1(a)b2)−

(
a2 +

k2

r(a)Ω
b2

)2

= 0,

considering that Ω → ∞ when a → 0 and r(0) = 0. Therefore, considering the
differential equation for the amplitude

ȧ = aσ =− k2

2r(a)Ω
b2a− a2

2
a, (3.28)

one can see that the nonlinearity present in this equation is the one with g(0) =
0 and infinite derivative at a = 0: g(a) = k2b2a

2r(a)Ω , lim
a→0

g(a) = 0 (follows from

dr(a)
da > 0), g′(a) = k2b2

2

(
1

r(a)Ω − ar′(a)
r2(a)Ω − adΩ

�da
r(a)Ω2

)
, lim

a→0
g′(a) = ∞ (due to the

first term in the brackets; considering also boundedness on the second term, and
the derivative dΩ/da < 0). These dynamics define a terminal sliding mode and
finite convergence time [6]. This completes the proof for option C.

B. For this option, coefficient k2 in (3.25) is zero. As follows from (3.28) ȧ =
−0.5a2a, thus, providing exponential (asymptotic) convergence.

��
It follows from (3.22) and (3.28) that within the finite-time convergence option, the
convergence time depends on k2 and, therefore, on the phase deficit value. When the
phase deficit tends to zero the convergence time tends to infinity.

3.5 Extension to Higher-Order Plants

Relationship between the frequency-response properties of the plant and controller,
and the transient process convergence rate was investigated for second-order
systems. One would legitimately expect similar properties from a higher-order sys-
tem as far as relative degree of the plant remains the same (two) because the con-
vergence properties depend on the high-frequency part of the frequency response.
We now carry out this analysis from a different, however, point of view. We shall
now formulate and prove the following statement, which is the extension of the
properties considered above to higher-order plants.

Theorem 3.3. In the system (3.4) controlled by the twisting controller (3.5), asymp-
totic convergence takes place only if c2 = 0, and finite-time convergence takes place
only if c2 > 0.

Proof. Prove the theorem via assuming that the harmonic balance condition holds
in the origin and showing that this is a valid assumption for c2 = 0, which leads to
the conclusion about the asymptotic convergence, and invalid assumption for c2 >
0 necessitating finite-time convergence (proof by contradiction). Assume that the
harmonic balance condition of the following form holds in the origin:
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[N1(a01)+ jΩ0 ·N2(a02)]Wl( jΩ0) =−1, (3.29)

where a01 → 0, a02 → 0, Ω0 → ∞, subscript “0” denotes the variable in the origin.
We investigate convergence of the transient process in the vicinity of the origin by
giving the amplitude a small increment and analyzing the type of convergence from
this disturbed initial point. We shall consider that the harmonic balance equation
will still be valid at small increments of the amplitude – similarly to how it is done
for oscillations of finite frequency [14, 1]:

[N1(a01 +Δa1)+ (Δσ + j(Ω0 +ΔΩ)) ·N2(a02 +Δa2)]
·Wl(Δσ + j(Ω0 +ΔΩ)) =−1

(3.30)

Taking the derivative with respect to a1 from both sides of (3.30) yields:

∂N1

∂a1

∣∣∣∣
a1=0

·Wl( jΩ0)+ jΩ0
∂N2

∂a1

∣∣∣∣
a1=0

·Wl( jΩ0)

+
∂Wl

∂ s

∣∣∣∣
s= jΩ0

ds
da1

N1(a01)+ N2(a02)
ds

da1
Wl( jΩ0)

+ jΩ0N2(a02)
∂Wl

∂ s

∣∣∣∣
s= jΩ0

ds
da1

= 0

(3.31)

where s = Δσ + j(Ω0 +ΔΩ) is the Laplace variable; the derivatives ∂N1
∂a1

and ∂N2
∂a1

can be obtained by differentiating (3.7) and (3.10), respectively, as follows:

∂N1

∂a1
=− 4c1

πa2
1

,
∂N2

∂a1
=− 4c2

πΩa2
1

.

Express the quantity ds
da1

from equation (3.31).

ds
da1

=
1

a1

{
∂ lnWl
∂ s

∣∣∣
s= jΩ0

+ c2
Ω0

c1− jc2
c2

1+c2
2

} .

Considering that s = Δσ + j(Ω0 +ΔΩ) and, therefore, ds
da1

= d(Δσ)
da1

+ j d(ΔΩ)
da1

=
dσ
da1

+ j dΩ
da1

, we can write the following expression for the derivative of the decay:

dσ
da1

= Re
1

a1

{
∂ lnWl
∂ s

∣∣∣
s= jΩ0

+ c2
Ω0

c1− jc2
c2

1+c2
2

}

=
1
a1

∂ argWl
∂ lnΩ0

+ c1c2
c2

1+c2
2{

∂ argWl
∂ lnΩ0

+ c1c2
c2

1+c2
2

}2
+

{
∂ ln|Wl |
lnΩ0

+ c2
2

c2
1+c2

2

}2

(3.32)
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where

∂ ln |Wl |
∂ lnΩ0

=
∂ ln |Wl |
∂ lnω

∣∣∣∣
ω=Ω0

= lim
ω→∞

∂ ln |Wl |
∂ lnω

=−r, (3.33)

r is the relative degree of the plant transfer function, which reflects the fact of the
existence of high-frequency asymptotes of the Bode magnitude plot,

∂ argWl

∂ lnΩ0
=

∂ argWl

∂ lnω

∣∣∣∣
ω=Ω0

= lim
ω→∞

∂ argWl

∂ lnω
= 0− (3.34)

With account of (3.33) and (3.34), formula (3.32) can be rewritten as follows:

dσ
d lna1

=

c1c2
c2

1+c2
2
+ 0−

{
c1c2

c2
1+c2

2

}2
+

{
−r + c2

2
c2

1+c2
2

}2 . (3.35)

It follows from formula (3.35) that if c2 = 0 then dσ
d lna1

= 0 and if c2 > 0 then
dσ

d lna1
> 0. Before interpreting these conclusions, we analyse the derivative dσ

d lna1
.

By definition σ = ȧ1/a1 and, therefore,

dσ
d lna1

= a1
dσ
da1

= a1
d (ȧ1/a1)

da1
=

dȧ1

da1
− ȧ1

a1
(3.36)

We can interpret (3.36) as the second-order differential equation with state variables
a1 and ȧ1 without explicit time and draw the phase portrait of this second-order
system in the phase plane using the isoclines technique (Fig. 3.7).

Fig. 3.7 Phase trajectory of system (3.36) with isoclines shown

Denote two angles (their tangents) as tanφ = dȧ1
da1

and tanψ = ȧ1
a1

; φ gives the
slope of the tangent line in a point of the phase portrait and ψ gives the slope of
the vector from the origin to a point of the phase portrait. The condition dσ

d lna1
= 0
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means that the angles φ and ψ must be equal, which means in turn that the phase
portrait is a strait line and ȧ1/a1 = const. The last condition constitutes the asymp-
totic convergence of a1 to 0.

In the case when c2 > 0, the angle Φ (absolute value) is always greater than the
angle φ (absolute value). In fact, the difference between the tangents of these angles

is equal to q =
c1c2

c2
1+c2

2{
c1c2

c2
1+c2

2

}2

+
{
−r+

c2
2

c2
1+c2

2

}2 in any point of the phase portrait. Therefore,

the phase trajectories of the system dȧ1
da1

− ȧ1
a1

= q look like in Fig. 3.7 (the example
of c1 = 10, c2 = 10, r = 2, and q = 0.2), with the trajectory schematically shown
by the dash line. The fact that the difference between the tangents of the angles φ
and Φ must be constant and equal to q in all points (including the origin) results in
the infinite slope of the phase trajectories in the origin (the difference of two infinite
values still gives q, which would be impossible with finite slopes). Therefore, in the
vicinity of the origin, the differential equation for the amplitude is ȧ1 = h(a1), with
function h(a1)≤ 0 having infinite slope at a1 → 0.

Now prove that the equation ȧ1 = h(a1), with function h(a1) ≤ 0 having infinite
slope at a1 → 0, features finite-time convergence. Define a majoring nonlinearity as
h2(a1) = −βaα1 for the function h(a1) through the selection of values α and β in
such a way that in the initial point the following two equalities hold: h2(a1) = h(a1)
and dh2(a1)

da1
= dh(a1)

da1
. This results in the following two equations: dȧ1

da1
= q + ȧ1

a1
=

−αβaα−1
1 and tanψ = ȧ1

a1
= −βa1

α−1. Solution of these equations results in the

following expressions: α = 1− q
tanψ , β = a10

α−1 tanψ , where a10 is the value of
a1 in the initial point. It follows from the last formulas if α and β are selected
to ensure the same initial point and the same initial slope for the original and the
majoring nonlinearities then in all other points corresponding to any selected ψ the
slope (absolute value) of the original nonlinearity is steeper than the slope of the
majoring nonlinearity. Therefore, h(a1) = h2(a1) < 0 for all a1 ∈ (0;a10). Since
differential equation ȧ1 = −βaα1 has finite-time convergence [15, 20], according to
Theorem 3.1, the original equation ȧ1 = h(a1) (or ȧ1

a1
= σ →−∞) has finite-time

convergence of a1 to 0.
Because we assumed the existence of a periodic solution in the origin, which

requires the fulfilments of the condition σ = 0 at a1 → 0, and we also showed that
it is the case only if c2 = 0, and therefore, our assumption was not valid for c2 > 0,
we can now conclude that asymptotic convergence of the transient oscillation takes
place only if c2 = 0, and finite-time convergence takes place if c2 > 0. ��

3.6 Extention to Other Types of Controllers

The relationship between the DF of the controller and the possibility of a partic-
ular mode of the transient process to occur was established above. However, this
was done for a particular type of controllers – namely the one that satisfies the
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condition ImN(a)/ReN(a) = const. This holds for the twisting controller [12], the
sub-optimal algorithm [4,3], and possibly some other controllers/algorithm that can
be designed in the future. Yet, it is not a condition that is always satisfied. However,
only values of the amplitude a ≤ a0 are realized in the convergence process, and,
respectively, only the low-amplitude segment of the function −N−1(a) is utilized.
Therefore, the fact of finite-time convergence depends on the shape of −N−1(a)
only in the vicinity of the origin (in the complex plane), so that if the process starts
from certain amplitude, only the amplitudes in the range from the initial one to
zero will be attained. Furthermore, if the process starts at some finite amplitude,
the time over which it reaches another smaller finite amplitude will always be finite.
Therefore, to establish the fact of finite time convergence one needs to analyse only a
very small vicinity of the origin, and consequently, what is important in that respect
is the location of the low amplitude asymptote of the plot −N−1(a).

Let us reformulate the definition of the phase deficit and define it as the minimum
phase value that needs to be added (with the negative sign) to the phase characteristic
of the plant to make the high-frequency asymptote of the Nyquist plot of the plant
to coincide with the low-amplitude asymptote of the negative reciprocal DF of the
controller. The noted property can also be extended to plants of higher order and
relative degree two – as considered above: a higher-order system would exhibit the
properties of the corresponding second-order system at high enough frequencies.
We illustrate this statement through analysis of two different controllers. Let the
plant be the one that was considered in the above examples, and the control be

u =−c1 · signy− c2 · f (ẏ), (3.37)

with nonlinear function f (ẏ) being in the first case f (ẏ) = fI(ẏ) = sign(ẏ) and in the
second case f (ẏ) = fII(ẏ) = sign(ẏ) · (ẏ)2. The DF formula for the

second nonlinearity is: NII(a) = 2
πa

π∫
0

(asinθ )2 sinθdθ = 2a
3π . Also, the DF of the

Fig. 3.8 Negative reciprocal of N1(a) and N2(a)
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Fig. 3.9 Transients in the system with controllers 1 and 2; zoomed picture for time 4.5s-5.0s

relay function is given by formula (3.7). Therefore, the DF of the first controller
is N1(a) = 4c1

πa + j 4c2
πa , and of the second controller is N2(a) = 4c1

πa + j 2ac2
3π . Select

c1 = 10, c2 = 2 and compute and plot the negative reciprocal functions of N1(a) and
N2(a) (Fig. 3.8). Indeed, the system with controller having the DF N1(a) reveals a
finite time convergence, while the controller with DF N2(a) shows asymptotic con-
vergence (Fig. 3.9). A zoomed image shows the process after 4.5s, which reveals
the type of convergence.

3.7 Conclusions

The article provides an overview of the frequency-domain methods in sliding mode
control. It is pointed out that there exist two problems: analysis of sliding modes
in the systems affected by parasitic dynamics and analysis of ideal sliding modes.
These two problems require two different frequency-domain approaches to the anal-
ysis: the one based on the assumption of the existence of a fixed point of the Poincare
map and the other one for the case of the absence of any fixed point of Poincare
map. A frequency-domain approach to analysis of transient oscillatory processes
in systems with SOSM (which corresponds to the second case) is presented in de-
tail. The approach involves application of the describing function method in the
quasi-static formulation to analysis of the transient oscillation and consideration of
the instantaneous values of the frequency, amplitude and decay of the oscillations.
The presented development leads to a simple criterion of the existence of a finite-
time or asymptotic conversion, which involves just one characteristic – the phase
deficit. The presented methodology can be used for the development of new SOSM
algorithms.
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Chapter 4
Lyapunov Approach for Analysis and Design of
Second Order Sliding Mode Algorithms

Jaime A. Moreno

Abstract. Lyapunov functions are a basic tool for analysis and design in the modern
control theory, and there are many different design methodologies based on Lya-
punov theory. Second Order Sliding Modes, and in particular, the Super-Twisting
Algorithm (STA), are a powerful tool for the design of controllers, observers and
differentiators having very attractive dynamic features: they converge in finite time,
even in presence of persistently acting bounded perturbations. This property, that
we will call exactness, can be achieved because of the discontinuous nature of the
STA. The design of control or observation algorithms based on Second Order Slid-
ing Modes has been performed until now using either geometric or homogeneous
approaches, but not Lyapunov methods. The reason for this situation is simple: only
recently has been possible to find adequate Lyapunov functions for some of these
algorithms. In this paper some recent advances in this direction will be presented
and extended.

Index terms: Sliding Modes, Variable Structure Control, Lyapunov Methods,
Riccati Equations.

4.1 Introduction

The Super-Twisting Algorithm (STA) is a well-known second order sliding modes
(SOSM) algorithm introduced by [16]. It was first designed as an absolutely con-
tinuous control law, allowing to compensate Lipschitz perturbations exactly and
ensuring finite time convergence. This algorithm is widely used to substitute dis-
continuous controllers by continuous ones and it has been widely used for con-
trol [2, 7, 16, 18, 19, 12] (see also [4], [38], [13]). In [16] a controlled system given
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by ξ̇ (t) = u(t)+ϕ (t) is considered, where ξ is the scalar state variable, and π (t)
is an unknown input or perturbation. The STA proposed in [16] is the control
algorithm described by

u(t) = u1 (t)+ u2 (t) ,
u1 (t) =−k1 |ξ |1/2 sign(ξ ) , u̇2 (t) =−k2 sign(ξ ) ,

(4.1)

that, under some conditions on k1, k2, is a second-order sliding algorithm, that is
robust against a perturbation π (t) with a bounded derivative |π̇ (t)| ≤ L, and that
does not require the derivative of ξ for its implementation. The properties of STA
control in the frequency domain are studied in [8], [15].

The algorithm received another meaning when it was first used to design robust
exact differentiators [17,37], [18] and observers ( [9], [5], [11]), providing finite time
convergence for the observer even in the presence of unknown inputs. For observer
design or robust exact differentiators a more appropriate form is

ẋ1 = −k1 |x1|1/2 sign(x1)+ x2 +ρ1 (x,t)
ẋ2 = −k2 sign(x1)+ρ2 (x,t)

(4.2)

where xi are the scalar state variables, ki are gains to be designed, and ρi are the
perturbation terms. The change of variables x1 = ξ , x2 = u2 shows the equivalence
of (4.1) and (4.2), with ρ1 (x,t) = 0, ρ2 (x, t) = π̇ (t). Since the righthand side of
(4.2) is discontinuous, its solutions will be understood in the sense of Filippov [10].

Finite time convergence and robustness for the STA has been proved by geomet-
rical methods [16], [9], [19], or by means of the Homogeneity properties [3] of the
algorithm [18, 34], [19], [35]. These methods are very restricted for analysis and
design of the algorithms. For example, an estimation of the convergence time is not
possible by any of them, and the design of the gains is not possible by means of
Homogeneity methods.

Lyapunov functions have became a basic tool for analysis and design in modern
control theory, so it is natural to look for Lyapunov functions for the STA. It is well-
known that Vw (x) = k2 |x1|+ 1

2 x2
2 is a weak Lyapunov function for the system (4.2)

without perturbations, since V̇ (x) =−k1k3 |x1|1/2 is only negative semidefinite. (Fi-
nite time) convergence can only be asserted by using a generalization of LaSalle’s
invariance principle for discontinuous systems [34], but it is not possible to provide
robustness results, or to estimate the convergence time from it. By a detailed anal-
ysis of the weak Lyapunov function

√
Vw (x) in [41], finite time and robust conver-

gence for the STA is proved. A strict (or strong) Lyapunov function, i.e. a positive
definite (p.d.) function with negative definite (n.d.) derivative, has been proposed
in [39], from which an estimation of the convergence time for the perturbed STA
is drawn. However, the form of the function makes it difficult to operate with it for
applications or further developments.

In contrast, the strict Lyapunov functions proposed in [20] are very simple, since
they are Quadratic-like functions, similar to the ones usually employed for linear
systems. In that paper a modification to the STA is introduced, consisting in the
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addition of linear correction terms to the purely nonlinear terms of the STA. These
extra degrees of freedom provide a stronger attraction force to the algorithm, when
the trajectories are far away from the origin. This is the case since the added linear
terms are stronger than the nonlinear ones far from the origin. So a faster conver-
gence and an enhanced robustness of the stability to a wider class of perturbations
is obtained. Since the modified algorithm is not homogeneous it is not possible to
use the homogeneity theory [3, 18, 19, 35] to prove convergence and stability ro-
bustness. The Lyapunov function introduced in [39] is also not appropriate for this
case. In [20] a strong and robust Lyapunov function is introduced, but its handling,
although simple, is cumbersome.

In [23] a Generalized STA (GSTA) is introduced, that includes the classical STA
and the modified STA introduced in [20]. For the GSTA a linear framework for the
design of quadratic Lyapunov functions is developed in [23]. This means that, for
the nominal case without perturbations, Algebraic Lyapunov Equations (ALE) are
used for the design of a family of quadratic Lyapunov functions, and each member
of the family assures the convergence in finite time and gives an estimate of that
convergence time. When perturbations satisfying sector-like conditions are consid-
ered, a family of robust Lyapunov functions are designed using Algebraic Riccati
Inequalities (ARI), or the corresponding LMIs. Its frequency domain interpretations,
as the circle criterion, can also be used to study the robust stability of the STA when
bounded perturbations act on it.

In [21] an optimal estimation of the convergence time, based on the quadratic
Lyapunov functions of [23], is provided. In [28, 29] it was shown that the conver-
gence time of the STA can be made independent (uniform) of the initial condition, if
high-order terms are added to the algorithm. To establish this uniform property the
quadratic Lyapunov functions from [23] are not appropriate, so that a non-quadratic
Lyapunov function has to be introduced. A STA with variable gains (VGSTA) has
been introduced in [25], which allows to robustify the algorithm against perturba-
tions, for which a time and/or state dependent upper bound is known. A further ap-
plication of the VGSTA is for adaptive control purposes [26]. All these algorithms
are easily designed by means of their Lyapunov functions, and they can find differ-
ent applications [24, 27, 28, 29, 30, 33]. Lyapunov functions for other algorithms are
also under study [32, 31].

In this paper, all these results of Lyapunov functions for the STA are unified and
extended. We consider a general second order algorithm, that includes discontin-
uous algorithms such as the STA and the GSTA, but also continuous algorithms,
that have been used for control or observation purposes (with arbitrary order), with
special emphasis in obtaining finite-time convergence [1, 36]. For this generalized
algorithm, with or without considering perturbations, we provide a unified method
to design quadratic or non-quadratic Lyapunov functions, when the gains are con-
sidered constant. For the case of variable gains, quadratic Lyapunov functions are
proposed. From the Lyapunov functions conditions for the finite time convergence
or the uniform convergence (in the initial state) are derived, and estimates of the
convergence time are derived. The robustness properties can also be obtained. This
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allows to design the gains of the algorithm to attain desired robustness and conver-
gence properties. For the design of quadratic Lyapunov functions a linear frame-
work, as the one proposed for the GSTA in [23], can be provided for the whole
family of algorithms. Moreover, the method also provides Chetaev’s functions to
prove instability. This is a distinguishing feature of our method compared to the
ones in the literature for continuous and homogeneous algorithms [1,36]. Although
our Lyapunov functions are very simple, and are simple to handle, they have a strik-
ing property: they are continuous, but not Lipschitz continuous. This means that
standard Lyapunov theorems cannot be applied. However, it is shown that they can
be used in the usual form in order to provide stability results. Finally, an important
result is obtained for the STA, or in general, for the discontinuous algorithms in the
family: they are the only ones in the whole family that provide convergence to the
origin in finite-time and despite of perturbations that do not vanish at the origin.
This is a distinguishing feature of the class of STA, that is due to its discontinuous
nature.

4.2 Problem Statement and Main Results

In this paper we consider a second order system, named here as Generic Second
Order Algorithm (GSOA), and described by the differential equation

ẋ1 =−k1 (t)φ1 (x1)+ x2 +ρ1 (t,x)
ẋ2 =−k2 (t)φ2 (x1)+ρ2 (t,x) , (4.3)

where xi, i = 1,2, are the scalar state variables, ki (t) are positive, continuous
gain functions to be designed, ρi (t,x), i = 1,2, are time-varying and/or nonlinear
perturbations, and the nonlinearities φ1 (x1) and φ2 (x1) are

φ1 (x1) = μ1 |x1|p sign(x1)+ μ2 |x1|q sign(x1) , μ1 , μ2 ≥ 0 , (4.4a)

φ2 (x1) = μ2
1 p |x1|2p−1 sign(x1)+ μ1μ2 (p + q)|x1|p+q−1 sign(x1)+ (4.4b)

+ μ2
2 q |x1|2q−1 sign(x1) ,

with μ1, μ2 ≥ 0 non negative constants and q ≥ 1 ≥ p ≥ 1
2 are real numbers. Note

that φ1 (x1) and φ2 (x1) are monotone increasing continuous functions for all p> 1
2 ,

but when p = 1
2 the function φ2 (x1) has a (bounded) discontinuity at x1 = 0. Since

φ2 (x1) is not necessarily a continuous function, in general the differential equation
(4.3) does not have classical solutions, so that solutions of (4.3) are all trajectories in
the sense of Filippov [10]. The cases with 0< p< 1

2 will be excluded, since φ2 (x1)
has an unbounded discontinuity at x1 = 0.

For different values of the parameters (μ1, μ2, p, q) some important particular
cases are recovered:

(L) A linear algorithm is recovered when (μ1, μ2, p, q) = (1, 0, 1, 1), so that
φ1 (x1) = x1, φ2 (x1) = x1.
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(STA). The classical Super-Twisting Algorithm (STA), originally proposed in
[16], is obtained by setting (μ1, μ2, p, q) =

(
1, 0, 1

2 , q
)
, so that φ1 (x1) =

|x1|
1
2 sign(x1), φ2 (x1) = 1

2 sign(x1). Note that in this case φ2 (x1) is a discon-
tinuous function.

(H). A Homogeneous Algorithm is obtained if φ1 (x1) = |x1|p sign(x1), φ2 (x1) =
p |x1|2p−1 sign(x1), for p ≥ 1

2 . When p = 1
2 the previous ST algorithm is recov-

ered. In this case system (4.3) is homogeneous [3, 18].
(GSTA). For p = 1

2 and q = 1 the Generalized Super-Twisting Algorithm (GSTA)
proposed in [23] is obtained.

All these algorithms use constant gains k1, k2. However, a Variable Gain Super-
Twisting Algorithm (VGSTA) has been proposed in [25], that corresponds to the
GSTA with variable gains ki (t).

Note that the GSO Algorithm (4.3) has a lower order term μ1 |x1|p sign(x1),
where 1 ≥ p ≥ 1

2 , and a higher order term μ2 |x1|q sign(x1), with q ≥ 1. The conver-
gence properties of the algorithm (4.3), with and without perturbations, are highly
dependent on the values of p and q.

Several Types of (asymptotic) Stability will be considered:

Definition 4.1. The origin x = 0 for system (4.3) is (locally) globally

• Finite-time stable, if all trajectories starting in (a neighborhood of x = 0) R
2

converge to x = 0 in finite time.
• Exponentially stable, if all trajectories starting in (a neighborhood of x = 0) R

2

converge to x = 0 exponentially.
• Asymptotically stable, if all trajectories starting in (a neighborhood of x = 0) R

2

converge to x = 0 asymptotically.
• Uniformly stable, if all trajectories starting in R

2 converge to a neighborhood of
x = 0 in finite time, and the convergence time is uniformly (upper) bounded with
respect to the initial condition.

• Robustly stable, if all trajectories starting in (a neighborhood of x = 0) R
2 con-

verge to x = 0 for a family of perturbations vanishing at the origin.
• Exactly stable, if all trajectories starting in (a neighborhood of x = 0) R

2 converge
to x = 0 in finite time, for a family of perturbations that is non vanishing at the
origin.

• Practically stable, if all trajectories starting in (a neighborhood of x = 0) R
2

converge to a neighborhood of x = 0 in finite time, for a family of perturbations
non vanishing at the origin.

In this paper we provide a rather complete characterization of the properties of the
GSOA for all values q ≥ 1 ≥ p ≥ 1

2 . The main features are:

• Families of strict (or strong) Lyapunov functions, i.e. whose derivative is neg-
ative definite, are constructed for the GSOA, with and without perturbations,
for all values of (p,q). These Lyapunov functions are simple (for example, of
quadratic type).
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• The construction of the Lyapunov functions is systematic, and they provide the
full set of stabilizing (constant) gains (k1,k2).

• The type of stability (finite-time, exponential, asymptotic, uniform) and its ro-
bustness properties, are characterized by means of the Lyapunov functions.

• An estimation of the (finite-time) convergence time is provided by means of the
Lyapunov function.

Low order term p High order term q Stability Type

p = 1 q = 1
Exponential
Robust

Non Uniform
Practical

1
2 < p< 1 q = 1

Finite-Time
Robust

Non Uniform
Practical

p = 1
2 q = 1

Finite-Time
Exact

Non Uniform
Practical

p = 1 q> 1
Exponential
Robust

Uniform
Practical

1
2 < p< 1 q> 1

Finite-Time
Robust

Uniform
Practical

p = 1
2 q> 1

Finite-Time
Exact

Uniform
Practical

It is well known that for p = q = 1 the linear algorithm converges exponentially for
adequately selected gains k1, k2, and in the presence of perturbations either exponen-
tial stability or practical stability will be reached, depending on the characteristics
of the perturbation term. In presence of bounded perturbations, not vanishing at the
origin, only practical stability can be achieved. From the previous Table it is clear
that:

• The low order term is responsible for the type of stability: if p = 1 convergence is
exponential, for p> 1 convergence is asymptotic and for 1

2 ≤ p< 1 convergence
is in finite-time.

• The high order term is responsible for the uniformity of the convergence with
respect to the initial condition: if q ≤ 1 there is no uniformity, and for q > 1 the
convergence is uniform.

• For p = 1
2 robustness of the stability with respect to perturbations is exact, a

distinguishing feature, since for no other value of p this property is obtained.
Since this is the only value of p for which the algorithm GSOA is discontinuous,
this strong robustness property is a consequence of the discontinuous control.
This unique and strong robustness feature distinguishes the STA (or GSTA) from
all other algorithms.

In what follows several stability and robustness results for the GSOA will be pre-
sented. The case with constant gains will be considered in detail, and then a brief
extension to the varying gain case will be given. Due to space limitations, only some
proofs of the results will be provided in the Appendix.
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4.3 Finite Time Convergence of Unperturbed GSOA with
Constant Gains

In this section it is shown that for 1
2 ≤ p< 1 all trajectories of the GSOA (4.3) with

constant gains k1, k2, converge robustly and in finite time to the origin. Moreover,
for p = 1

2 the convergence is exact, meaning that the origin is reached in finite time
despite of bounded perturbations, a unique feature of this algorithm. A quadratic
(robust) Lyapunov function will be constructed to characterize these properties. The
values of the gains (k1,k2) to achieve these properties can be calculated by means of
an Algebraic Lyapunov Equation (ALE) in the unperturbed case, or by means of an
Algebraic Riccati Inequality (ARI) for the perturbed case, resembling the methods
used for Linear Time Invariant systems in classical linear control theory. Moreover,
these conditions are necessary to achieve stability, and the convergence time can be
estimated from the Lyapunov function.

4.3.1 Stability Analysis without Perturbations: An ALE Approach

For system (4.3) without perturbations, when k1,k2 > 0 are positive constants, the
quadratic form

VQ(x) = ζT Pζ , (4.5)

where
ζT = ΦT (x) =

[
φ1 (x1) , x2

]
, (4.6)

and matrix P = PT > 0 is the unique symmetric and positive definite solution of the
Algebraic Lyapunov Equation (ALE)

AT P+ PA =−Q (4.7)

with the Hurwitz matrix

A =
[−k1 , 1
−k2 0

]
, (4.8)

and an arbitrary symmetric and positive definite matrix Q = QT > 0, provides a
family of strong (strict) Lyapunov functions for (4.3), when μ1 > 0. Notice that
Φ (x) is a global homeomorphism for every (p,q), with 1

2 ≤ p ≤ 1, and for p = 1 it
is a diffeomorphism.

Remark 4.1. Since VQ (x) (4.5) (and also VN (x) (4.20) introduced below) is contin-
uous but not locally Lipschitz, the usual versions of Lyapunov Theorem [10, 3, 34]
cannot be used here. However, it is possible to show that VQ (ϕ (t,x0)) is an abso-
lutely continuous (AC) function of time along the state trajectories ϕ (t,x0) of the
differential equation (4.3). This implies that it is differentiable almost everywhere,
and on those points the derivative can be calculated in the usual way, i.e. apply-
ing the chain rule. Moreover, if the derivative V̇Q is negative definite almost every-
where, then VQ (ϕ (t,x0)) is monotone decreasing and converges to zero, what is the
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condition required by Zubov’s Theorem [40, Theorem 20.2, p. 568.]. The same
argument is also valid for all the proofs of the present paper.

Theorem 4.1. Consider the system (4.3) with μ1 > 0, and constant gains k1 , k2.
The following statements are equivalent:

(i) The origin x = 0 of (4.3) is asymptotically stable.
(ii) Matrix A (4.8) is Hurwitz, i.e. all its eigenvalues have negative real parts.

(iii) The constant gains are positive, i.e. k1 > 0 , k2 > 0.
(iv) For every symmetric and positive definite matrix Q = QT > 0, the ALE (4.7) has

a unique symmetric and positive definite solution P = PT > 0.

In this case the function (4.5) is a global, strong Lyapunov function for system
(4.3). The time derivative V̇Q of the Lyapunov function, taken along the trajectories
of the system, satisfy the differential inequality

V̇Q ≤−γ1 (Q,μ1)V
3p−1

2p
Q (x)− γ2 (Q,μ2) |x1|q−1VQ (x) , (4.9)

where

γ1 (Q,μ1) � μ
1
p

1 p
λmin{Q}λ

1−p
2p

min {P}
λmax {P} , γ2 (Q,μ2) � μ2q

λmin{Q}
λmax{P}

are scalars depending on the selection of the matrix Q and μ1, μ2.

In the proof of the Theorem it is shown that the stability of the equilibrium x = 0 of
(4.3) is completely determined by the stability of the matrix A, i.e. of the associated
LTI system ξ̇ = Aξ : if A is stable or unstable, then so is the equilibrium point of
(4.3). This is a remarkable fact.

4.3.2 Convergence Time

From Lyapunov’s inequality (4.9) it is possible to conclude that: (i) the GSOA con-
verges to the origin in finite time when 1

2 ≤ p< 1 (μ1 > 0), and (ii) an upper bound
for the convergence time can be estimated.

Proposition 4.1. Suppose that k1 > 0 , k2 > 0, and μ2 ≥ 0. Then a trajectory of the
STA (4.3) starting at x0 ∈ R

2 converges to the origin in finite time if 1
2 ≤ p < 1

(μ1 > 0), and it reaches that point at most after a time

T (x0) =

⎧
⎪⎨
⎪⎩

2p
(1−p)γ1(Q,μ1)V

1−p
2p

Q (x0) if μ2 = 0 or q> 1

2p
(1−p)γ2(Q,μ2) ln

(
1 + γ2(Q,μ2)

γ1(Q,μ1)V
1−p
2p

Q (x0)
)

if μ2 > 0 and q = 1
, (4.10)

where VQ (x), γ1 (Q,μ1) and γ2 (Q,μ2) are given in Proposition 4.1. When p = 1
(μ1 > 0) the convergence is exponential.
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4.4 Robustness and Exactness of the Perturbed GSOA with
Constant Gains

Consider now the GSOA with constant gains, when time-varying and/or nonlinear
perturbations (ρi (t,x), i = 1,2) are present,

ẋ1 =−k1φ1 (x1)+ x2 +ρ1 (t,x)
ẋ2 =−k2φ2 (x1)+ρ2 (t,x) . (4.11)

Using the vector ζ (4.6) it is possible to write (4.11) as

ζ̇ = φ ′1 (x1)

[−k1φ1 (x1)+ x2 +ρ1 (t,x)
−k2φ1 (x1)+ ρ2(t,x)

φ ′1(x1)

]
= φ ′1 (x1) (Aζ + ρ̃) ,

with A as in (4.8) and

ρ̃ (t,ζ ) =

[
ρ1 (t,x)(

1
pμ1|x1|p−1+qμ2|x1|q−1

)
ρ2 (t,x)

]

x=ϕ−1(ζ )

.

4.4.1 The Class of Perturbations

In the forthcoming analysis it will be assumed that the components of the (trans-
formed) perturbation term ρ̃ (t,ζ ) satisfy the sector conditions (for i = 1,2 and
∀t ≥ 0 and ∀ζ ∈ R

2)

ωi (ρ̃i,ζ ) =−ρ̃2
i (t,ζ )+ g2

i ζ
2
1 =

[
ρ̃i

ζ

]T [−1 0
0 g2

i CTC

][
ρ̃i

ζ

]
≥ 0 ,

where C = [1 , 0]. This is equivalent to |ρ̃i (t,ζ )| ≤ gi |ζi|, with gi > 0, or, in original
variables, to |ρi (t,x)| ≤ gi |φi (x1)|. It follows that

ω (ρ̃ ,ζ ) = θ1ω1 (ρ̃1,ζ )+θ2ω2 (ρ̃2,ζ ) ≥ 0 , ∀θi ≥ 0 , i = 1,2 ,

and ω (ρ̃,ζ ) can be written in a quadratic form as

ω (ρ̃,ζ ) =
[
ρ̃ (t,ζ )

ζ

]T [−Θ 0
0 R

][
ρ̃ (t,ζ )

ζ

]
≥ 0 ,

where

Θ =
[
θ1 0
0 θ2

]
, R =

(
θ1g2

1 +θ2g2
2

)
CTC .

In the next paragraph it will be shown that the GSOA (4.3) is robust against pertur-
bations satisfying these restrictions, when the (constant) gains (k1,k2) are selected
appropriately. Note that
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|ρ1 (t,x)| ≤ g1 (μ1 |x1|p + μ2 |x1|q) (4.12a)

|ρ2 (t,x)| ≤ g2

(
pμ2

1 |x1|2p−1 +(p + q)μ1μ2 |x1|p+q−1 + qμ2
2 |x1|2q−1

)
(4.12b)

so that both ρ1 (t,x) and ρ2 (t,x) have to vanish at the origin, i.e. ρ1 (t,0) = 0 and
ρ2 (t,0)= 0 for all values q≥ 1≥ p> 1

2 . However, for p = 1
2 , as in the (Generalized)

STA,

−1
2

g2μ2
1 ≤ ρ2 (t,0)≤ 1

2
g2μ2

1

the perturbation ρ2 (t,x) does not have to vanish at the origin, so that it can withstand
persistently exciting perturbation terms!, a property that is only possible by using
discontinuous control. The growth of the perturbation for large values of x is given
by the degree q of the high order term. Other perturbations, for example depending
on x2, can also be considered by using different sectors (see [23]).

4.4.2 Robust Stability Analysis: A Riccati Inequality Approach

It is possible to construct a robust, quadratic Lyapunov function to ensure the con-
vergence in finite time (when 1> p≥ 1

2 and μ1 > 0) and to estimate it, when certain
conditions are satisfied.

Theorem 4.2. Suppose that there exist a symmetric and positive definite matrix P =
PT > 0, positive constants θi > 0, i = 1,2, and ε > 0 so that the matrix inequality
(MI)

[
AT P + PA + εP+ R PB

BT P −Θ
]
≤ 0 , (4.13)

or equivalently, the Algebraic Riccati Inequality (ARI)

AT P+ PA + εP+ R + PBΘ−1BT P ≤ 0 , (4.14)

are satisfied, where

B =
[

1 0
0 1

]
, B =

[
1
0

]
, B =

[
0
1

]
,

depending on whether ρ1 (t,x) and ρ2 (t,x), only ρ1 (t,x), or only ρ2 (t,x) are
present, respectively. In this case the origin is globally, robustly stable, so that all
trajectories of system (4.11) converge to the origin for all perturbations satisfying
(4.12), and the quadratic form VQ (x) = ζT Pζ is a strong, robust Lyapunov function
for system (4.11). For 1 > p ≥ 1

2 and μ1 > 0 every trajectory reaches the origin in
a finite-time smaller than
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T (x0) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2

(1−p)εμ
1
p

1 λ
1−p
2p

min {P}
V

1−p
2p

Q (x0) if μ2 = 0 or q> 1

2p
(1−p)qεμ2

ln

⎛
⎝1 + qμ2

pμ
1
p

1 λ
1−p
2p

min {P}
V

1−p
2p

Q (x0)

⎞
⎠ if μ2 > 0 and q = 1

,

(4.15)

where x0 is the initial state. For p = 1 and μ1 > 0 convergence is exponential. When
p = 1

2 the origin is exactly stable.

The previous result shows how to analyze the robust stability of the GSTA: given
certain gains k1, k2 of the GSTA and given the perturbation terms if the ARI (4.14),
or equivalently, the Matrix Inequality (8.15) are feasible, then the robust finite time
stability of the algorithm is assured, and a Strong Lyapunov Function can be cal-
culated. Note that in (8.15) one can replace the term εP by εI without altering
the solvability conditions. In that case (8.15) is a Linear Matrix Inequality in the
unknowns, so that efficient algorithms can be used for solving it.

However, a very important application of the Theorem is for design purposes:
given the perturbation terms find gains k1, k2 of the GSTA, if they exist, so that
robust finite time stability of the algorithm is assured and a certain convergence
time Td is met (for all initial states in a compact set). In order to find such gains let
us write

A =
[−k1 1
−k2 0

]
= A0−KC , A0 =

[
0 1
0 0

]
, C =

[
1 0

]
, K =

[
k1

k2

]
.

In this case the problem is to find a symmetric and positive definite matrix P = PT >
0, positive constants θi > 0, i = 1,2, a gain matrix K and ε > 0 so that the matrix
inequality [

AT
0 P+ PA0−CT KT P−PKC+ εP+ R PB

BT P −Θ
]
≤ 0 (4.16)

is feasible. Again, replacing εP by εI in (4.16) does not affect its solvability. (4.16)
is then a LMI in the unknowns P, PK, ε , Θ .

4.4.3 Practical Stability

When the perturbation is large then convergence to the origin can be lost. However,
”practical” stability, i.e. ultimate and uniform boundedness [14, Section 4.8], can
still be achieved.

Theorem 4.3. Suppose that the perturbation terms of the system (4.2) are globally
bounded by

|ρ1| ≤ δ1 , |ρ2| ≤ δ2 , (4.17)

for some constants δ1,δ2 ≥ 0, that the gains k1 > 0, k2 > 0 are positive, that q ≥ 1,
and μ1 > 0. Then the trajectories are ultimate and uniformly bounded, i.e. the system
is practically stable, if one of the following conditions are satisfied:
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1. μ2 = 0, p = 1
2 , δ1 ≥ 0 is arbitrary and

δ2 <
μ2

1λmin {Q}
4λmax{P} . (4.18)

2. μ2 = 0, 1
2 < p ≤ 1 and δ1, δ2 are arbitrary.

3. μ2 > 0and δ1, δ2 are arbitrary.

Note that for the classic STA (where p = 1
2 and μ2 = 0) the trajectories of the system

do not remain bounded for every bounded (4.17) perturbation: for this it is required
that δ2 satisfies (4.18), i.e. that the perturbation ρ2 is small enough. This is due to
the boundedness of φ2 (x1). However, the algorithms with 1

2 < p ≤ 1 have bounded
trajectories for arbitrarily bounded perturbations (4.17), i.e. there are no restrictions
on the values of δ1,δ2. If there is a linear or a higher order term in φ1 (x1), i.e. μ2 > 0
and q ≥ 1, then all algorithms have bounded trajectories for arbitrarily bounded
perturbations (4.17), with no restrictions on the values of δ1,δ2.

4.4.4 Frequency Domain Interpretation: The Circle Criterium

An important and recurrent topic in linear control theory is the interpretation of anal-
ysis and design methods in the frequency domain. There are also classical relation-
ships between LMIs as (8.15) or Riccati inequalities as (4.14) and certain Frequency
domain inequalities. These connections can therefore be used for the analysis or the
design of GSOA. Instead of dealing with the general theory in this paragraph this
possibility will be illustrated by means of an example.

Consider the GSOA with constant gains and a perturbation term

ẋ1 =−k1φ1 (x1)+ x2

ẋ2 =−k2φ2 (x1)+ρ2 (t,x) ,

where φ1 (x1) and φ2 (x1) are as in (4.4), and it is assumed that the perturbation
ρ2 (t,x) is bounded by (4.12b), where we use g = g2. The robust stability analysis
can be performed through the LMI (in this case Θ is scalar and can be set to one
without loss of generality)

[
AT P+ PA + εP+ g2CTC PB

BT P −1

]
≤ 0 , B =

[
0
1

]
. (4.19)

Using the classical circle criterium [14] the Linear Matrix Inequality (4.19) will
be satisfied if and only if the Nyquist diagram of the transfer function G(s) =
C (sI−A)−1 B = 1/

(
s2 + k1s+ k2

)
is contained in the circle centered at the origin

and with radius g, that is, iff

max
ω

|G( jω)|2 =

{ 1
k2

2
if k2− 1

2 k2
1 < 0

1
k2

1(k2− 1
4 k2

1)
if k2− 1

2 k2
1 > 0

∣∣∣∣∣<
1
g2 .
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Fig. 4.1 States of the GSO Algorithm without perturbation and for different values of p
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Fig. 4.2 States of the GSO Algorithm with a persistent perturbation ρ2(t,x) = 1.9sin(10t),
for different values of p

For design purposes it follows that there are two possibilities of selecting the gains
k1 > 0, k2 > 0 so that the GSOA will converge to the origin, despite of a perturbation
bounded by g:
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• Select k2 such that k2 > g and then select k2
1 > 2k2.

• Select k1 and k2 such that both inequalities k2
1

(
k2− 1

4 k2
1

)
> g2 and 2k2 > k2

1 are
satisfied. This is the case if, for example, one selects k1 > g and k2 >

1
2 k2

1 + 1.

For a selection of the gains as k2 = 2 and k1 = 3 the simulated state trajectories,
without and with a perturbation ρ2(t,x) = 1.9sin(10t), are presented in Figures 4.1
and 4.2, respectively, for four values of p =

( 3
2 , 1 , 3

4 ,
1
2

)
. Note in Figure 4.1 that

for p = 3
2 the convergence is asymptotic, and for p = 1 the trajectories converge

exponentially. For p = 3
4 and p = 1

2 trajectories converge in finite-time. Under a
persistent and bounded perturbation (see Figure 4.2) the trajectories are finally and
uniformly bounded for the values of p =

( 3
2 , 1 , 3

4

)
. However, for p = 1

2 , that cor-
responds to the STA, the convergence is exact: the trajectories converge to zero in
finite-time despite of the bounded perturbation.

4.5 Uniformity of the GSOA with Constant Gains

In the previous section it was shown that global and robust finite-time stability of
the origin of the GSOA can be proved when 1 > p ≥ 1

2 and μ1 > 0. Instead, expo-
nential stability is obtained if p = 1 and μ1 > 0. In these results the value of q, the
degree of the high order term, is of no importance. In fact, as can be seen in (4.9),
the q-dependent term in V̇Q is only negative semidefinite, except when q = 1, and
so it is not possible to show that the convergence velocity is increased by the pres-
ence of this term, using the quadratic Lyapunov function VQ (4.5). In this section we
will show that the presence of a high order term μ2 |x1|q sign(x1) can indeed highly
accelerate the convergence to zero of the trajectories. In fact, if q > 1 this accel-
eration is so strong that the convergence becomes uniform in the initial condition
(see Definition 4.1), that is, the time to reach a neighborhood of the origin (or the
origin itself if p < 1) is uniformly bounded by a constant! Since this rather strong
convergence property cannot be characterized by the quadratic Lyapunov function
VQ, and alternative strict or strong (non quadratic) Lyapunov function VN (x) for the
GSOA (4.3) will be introduced here. The use of VN (x) allows us to characterize the
uniform convergence property for the GSOA. Moreover, combining the quadratic
VQ and the non quadratic VN strong Lyapunov functions for the GSOA all prop-
erties of the algorithm can be established. Note that for VN (x) the observations in
Remark 4.1 are important.

4.5.1 A Non Quadratic Strong Lyapunov Function for the GSOA

We consider an alternative strong Lyapunov function for the system.

Theorem 4.4. Consider the system (4.3) with k1 > 0 , k2 > 0 constant. The
continuous function

VN (x) = α |φ1 (x1)|2−β |φ1 (x1)|
1
q sign(x1) |x2|

2q−1
q sign(x2)+ δx2

2 , (4.20)
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where α = k2δ , β = 1, δ > 0, is a global, strong Lyapunov function for system
(4.3) for δ sufficiently large. Moreover, the derivative V̇N of the Lyapunov function
satisfies the differential inequality

V̇N ≤−1
q
νmin

(
1

4δ max{1,k2}
) 3q−1

2q

V
3q−1

2q
N (x) , (4.21)

where

νmin � min
x1∈R

pμ1 |x1|p−q + qμ2
(
μ1 |x1|p−q + μ2

) q−1
q

. (4.22)

For q> 1 and μ2 > 0 global asymptotic stability of the origin is assured.

It is interesting to note, that VN (4.20) is also a strong (strict) Lyapunov function for
system (4.3). Compared to VQ, whose derivative V̇Q (4.9) is bounded by a negative
definite term containing the power 3p−1

2p of VQ that is smaller than 1 for p < 1, the

derivative V̇N (4.21) is bounded by a negative definite term containing the power
3q−1

2q that is greater than 1 for q> 1. And therefore, both Lyapunov functions reflect
different properties of the algorithm.

4.5.2 Uniformity in the Convergence

When p< 1< q the convergence will be uniform and in finite time, this means that
every trajectory converges to zero in a time smaller than a constant, independent of
the initial condition! This result will be established using W (x) = VQ (x)+VN (x),
the sum of the quadratic VQ (x) (4.5) and the non quadratic VN (x) (4.20) Lyapunov
functions, as a Lyapunov function for the GSOA.

Proposition 4.2. Suppose that k1 > 0 , k2 > 0, μ1,μ2 > 0 and 1
2 ≤ p< 1< q. Then

a trajectory of the GSOA (4.3) starting at x0 ∈ R
2 converges to the origin in finite

time and it reaches that point at most after a time

T (x0) =
2q

(q−1)κ2

(
1

μ
q−1
2q

− 1

W
q−1
2q (x0)

)
+

2p
(1− p)κ1

μ
1−p
2p , (4.23)

where W (x) = VQ (x)+VN (x), μ is any value satisfying 0< μ <W (x0), and κ1, κ2

are constants given in (4.30a,4.30b). Moreover, the convergence time is uniformly
bounded by

Tmax =
2q

(q−1)κ2

(
κ2

κ1

) q−p
p(q−1)

+
2p

(1− p)κ1

(
κ1

κ2

) q(1−p)
q−p

, (4.24)

i.e. any trajectory converges to x = 0 in a time smaller than Tmax.



128 J.A. Moreno

4.5.3 An Alternative Robust Lyapunov Function

When perturbation terms satisfying the conditions (4.12) are present, it is possible
to show that the non quadratic function (4.20) is a robust, strong Lyapunov function.

Proposition 4.3. Consider the system (4.3) with perturbations satisfying (4.12), and
with constant gains k1, k2 sufficiently large. Then the continuous function VN (x)
(4.20), where α = k2δ , β = 1, δ > 0, is a global, robust, strong Lyapunov function
for system (4.3) for δ sufficiently large. Moreover, the derivative V̇N of the Lyapunov
function satisfies the differential inequality

V̇N ≤−2ψminνmin

(
1

4δ max{1,k2}
) 3q−1

2q

V
3q−1

2q
N (x) , (4.25)

where νmin is as in (4.22) and ψmin is as in (4.33). For q > 1 and μ2 > 0 robust,
and global asymptotic stability of the origin is assured. Moreover, if μ1,μ2 > 0 and
1
2 ≤ p < 1 < q the origin is robust and uniformly stable, and for p = 1

2 the origin
is exactly stable. In these cases the expressions for the reaching time (4.23), and its
upper bound (4.24) are also valid, if the values for the constants κ1, κ2 are modified
appropriately.

Using the non quadratic Lyapunov function it is possible to show that Theorem
4.3 is valid for every q ≥ 1. This means that a higher order term allows the
algorithms to have bounded trajectories for every bounded perturbation.

4.6 The GSOA with Variable Gains

In the previous sections the GSOA (4.3) has been considered with constant gains
(k1,k2). Our aim in this section is to allow the gains (k1 (t) ,k2 (t)) to be time-varying
(or in fact, to be functions of other variables). The main advantage of having variable
gains consists in being able to “adapt” on line the values of the gains to external
perturbations, when a varying bound of the perturbation is known.

Consider the GSOA (4.3) with variable gains

ẋ1 =−k1 (t)φ1 (x1)+ x2 +ρ1 (t,x)
ẋ2 =−k2 (t)φ2 (x1)+ρ2 (t,x) ,

where φ1 (x1) and φ2 (x1) are as in (4.4). Assume that the perturbations are bounded
as (compare to (4.12))

|ρ1 (t,x)| ≤ g1 (t,x) |φ1 (x1)| (4.26a)

|ρ2 (t,x)| ≤ g2 (t,x) |φ2 (x1)| , (4.26b)

where g1 (t,x)≥ 0, g2 (t,x)≥ 0 are known continuous functions. It will be shown by
means of a constant, strong, quadratic Lyapunov function (4.5), that an appropriate
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selection of the gains, according to the variation of the perturbations, renders the
origin globally and robustly stable. Moreover, when p = 1

2 it is exactly stable.

Theorem 4.5. Consider the GSOA (4.3), and suppose that the perturbations satisfy
(4.26) for some known continuous functions g1 (t,x) ≥ 0, g2 (t,x) ≥ 0. Choose the
(variable) gains as

k1 (t,x) = δ + 1
β

{
1

4ε [2εg1 + g2]
2 + 2εg2 + ε+[2ε+ g1 (t,x)]

(
β + 4ε2

)}

k2 (t,x) = β + 4ε2 + 2εk1 (t,x) ,
(4.27)

where β > 0, ε > 0, δ > 0 are arbitrary positive constants. Then x = 0 is a globally,
robustly stable point, so that all trajectories of system (4.3) converge to the origin
for all perturbations, and the quadratic form VQ (x) = ζT Pζ (4.5) is a strong, robust
Lyapunov function. For 1 > p ≥ 1

2 and μ1 > 0 every trajectory reaches the origin
in a finite-time smaller than

T (x0) =

⎧
⎪⎨
⎪⎩

2p
(1−p)γ1

V
1−p
2p

Q (x0) if μ2 = 0 or q> 1

2p
(1−p)γ2

ln

(
1 + γ2

γ1
V

1−p
2p

Q (x0)
)

if μ2 > 0 and q = 1
, (4.28)

where γ1 and γ2 are as in (4.35), and x0 is the initial state. For p = 1 and μ1 > 0
convergence is exponential. When p = 1

2 the origin is exactly stable.

4.7 Conclusions

In this paper a Generalized Second Order Algorithm (GSOA) (4.3) has been in-
troduced, that includes several Second Order Sliding Modes Algorithms of the
STA type, and many other continuous algorithms, with constant or time-varying
gains, and considering perturbations. For this (large) family of algorithms two dif-
ferent strong (strict) and robust Lyapunov functions are developed: a quadratic and
a non-quadratic one. Each of them is useful to establish different properties of the
algorithms. The quadratic Lyapunov functions are used to determine finite-time con-
vergence and to estimate the convergence time from every initial condition. More-
over, robustness for perturbations strong near the origin can be established. For the
quadratic one a linear framework has been developed, that makes it very easy to
design the gains in order to achieve some convergence or robustness properties.
In this linear framework the calculations are done in the same fashion as for LTI
systems, where Algebraic Lyapunov Equations have to be solved to find the Lya-
punov function in the unperturbed case, or Algebraic Riccati Inequalities in the per-
turbed case. Also frequency domain interpretations are possible, such as the classical
Circle Criterion. The non-quadratic Lyapunov functions are used to determine uni-
form convergence properties, that is, when the convergence of the trajectories has
an upper bound for every initial condition. The (uniform) convergence time can be
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estimated from these non quadratic Lyapunov functions and robustness against per-
turbations. For time-varying gains (constant) quadratic Lyapunov functions have
been designed, that allow to adapt the gains of the converging algorithms.

One distinguishing feature of the Lyapunov functions proposed here is that they
are very simple, but they are also non-smooth. This means that classical Lyapunov
theorems cannot be used to prove the convergence. Despite of this, it is shown that
one can use these functions in much the same form as with classical (smooth) Lya-
punov functions. The user, in fact, can forget the non smoothness issue, and operate
with the functions as usual.

An important result of the paper is that the discontinuous algorithms, in particu-
lar the Super-Twisting Algorithm (STA), have a unique and distinguishing property
among all other (continuous) algorithms: the origin is exactly stable, that means,
that the equilibrium point is reached in finite-time and despite of perturbations that
are non vanishing at the origin! This important property cannot be achieved by
continuous functions.

We expect that the Lyapunov functions proposed in this paper will facilitate the
analysis and design of systems with STA-like algorithms. Among other possibilities
opened by the Lyapunov treatment is the study of interconnected systems, what is a
very interesting topic for analysis and design. There are many other algorithms and
topics not considered in this paper, and that deserve particular attention. Although
Lyapunov functions for non-homogeneous STA-type algorithms have been consid-
ered in [31], there are still many open questions. Initial steps for Lyapunov analysis
of second order algorithms of the Twisting-Algorithm type have been done in [32].
An important direction is the Lyapunov analysis for Higher Order Sliding Modes
Algorithms.
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CyT (Consejo Nacional de Ciencia y Tecnologia) , grant 51244, and Programa de Apoyo a
Proyectos de Investigación e Innovación Tecnológica (PAPIIT) , UNAM, grant IN117610.

4.8 Appendix

In this appendix we collect the proofs of the results. From the classical Young’s
inequality it is easy to show the following

Lemma 4.1. For every real numbers a> 0, b> 0, c> 0, p> 1, q> 1, with 1
p + 1

q = 1
the following inequality is satisfied

ab ≤ cp ap

p
+ c−q bq

q
.

The next result justifies the use of continuous but non-locally Lipschitz Lyapunov
functions to prove the stability of the origin of (4.3). Denote as ϕ (t,x0) any
(absolutely continuous) solution of the differential inclusion (4.3).
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Lemma 4.2. Consider a continuous, positive definite function W : R
2 → R, and

suppose that it can be written as the

W (x) =
N

∑
i=1

αi (x1)βi (x2) ,

where βi (x2) are continuously differentiable and αi (x1) are absolutely continu-
ous (AC) functions. Suppose furthermore that αi (x1) are continuously differen-
tiable everywhere, except on the point x1 = 0. Moreover, assume that when a tra-
jectory ϕ (t,x0) of system (4.3) is in R, a domain in R

2, and it reaches the set
S =

{
(x1,x2) ∈ R

2 | x1 = 0
}

, i.e. ϕ1 (T,x0) = 0, there is a time interval ΔT =
(T − τ,T + τ) for which |ϕ2 (t,x0)| > |ρ1 (t,x)| when t ∈ ΔT . Under these condi-
tions the function W (t) = W (ϕ (t,x0)), evaluated along a trajectory of system (4.3),
is absolutely continuous when ϕ (t,x0) ∈ R. The derivative Ẇ (t) exists almost ev-
erywhere and, on the set R�S , it can be calculated in the usual form applying the
chain rule

Ẇ =
∂W (x)
∂x

[−k1 (t)φ1 (x1)+ x2 +ρ1 (t,x)
−k2 (t)φ2 (x1)+ρ2 (t,x)

]
, ∀x ∈ R�S .

If Ẇ (t) ≤ 0 (≥ 0), ∀x ∈ R�S , then W (ϕ (t,x0)) is non-increasing
(non-decreasing) as long as ϕ (t,x0) ∈R. Moreover, if

Ẇ (ϕ (t,x0)) ≤−γ (W (ϕ (t,x0)))

for t ∈ [t0,T ], with T > t0, then

W (ϕ (t,x0))≤W (ϕ (t0,x0))−
∫ t

t0
γ (W (ϕ (τ,x0)))dτ , ∀t ∈ [t0,T ] .

Proof. Because of the lack of differentiability of W (x) the usual Lyapunov’s
Theorem [14] cannot be applied. However, a continuous W (x) can be used as a
Lyapunov function, in the same spirit as in the theorem of Zubov [40, Theorem
20.2, p. 568.], if it is possible to show that it decreases monotonically along the
trajectories of the system, and converges to zero, what we will show next.

Since the state trajectories ϕ (t,x0) of the differential inclusion (4.3) are AC func-
tions of time, and W (x) is AC, it follows that W (ϕ (t,x0)) is a continuous function
of time. Since, in general, the composition of two AC functions h ◦ g fails to be
AC [6, p. 391], except when h is Lipschitz or g is monotone [6, p. 391], it is not
possible to ensure that V (ϕ (t,x0)) is AC. Since βi (x2) are continuously differen-
tiable, and therefore Lipschitz, it follows that βi (ϕ2 (t,x0)) is AC. The same is true
for αi (ϕ1 (t,x0)), except when ϕ1 (t,x0) = 0. However, in this case, due to the fact
that |ϕ2 (t,x0)| > |ρ1 (t,x)| when t ∈ ΔT , it follows form the differential equation
ẋ1 = −k1 (t)φ1 (x1)+ x2 +ρ1 (t,x) that, when x1 is in a neighborhood of 0, ẋ1 > 0
(or ẋ1 < 0), so that ϕ1 (t,x0) will be monotone increasing (or monotone decreasing)
during the interval t ∈ ΔT . This shows that αi (ϕ1 (t,x0)) is AC. Since the sum and
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product of AC functions is AC W (ϕ (t,x0)) is AC, as long as ϕ (t,x0) ∈ R, and it
has a derivative almost everywhere. This derivative can be calculated by the chain
rule, where the function is continuously differentiable, that is, on the set R�S .
If R contains the origin, and x = 0 is an equilibrium point for the system, then if
the origin is reached, then W (0) = 0 and the constant function is AC. It is well-
known [6, 3], that if an AC function satisfies Ẇ (t) ≤ 0 (or ≥ 0) almost everywhere,
then it is non-increasing (or non-decreasing). Finally, since an AC function is the
integral of its derivative [6], then

W (ϕ (t,x0))−W (ϕ (t0,x0)) =
∫ t

t0
Ẇ (ϕ (τ,x0))dτ ≤−

∫ t

t0
γ (W (ϕ (τ,x0)))dτ .

��

4.8.1 Proof of Theorem 4.1

Equivalence of items (ii), (iii) and (iv) is a well-known fact from Lyapunov stability
of Linear Time Invariant Systems. Now it will be shown that (ii) =⇒ (i). For any
Q = QT > 0, with A Hurwitz, it follows that P, the solution of the ALE (4.7), sat-
isfies the stated properties [14]. VQ (x) (4.5) is AC and continuously differentiable
everywhere except on the set S =

{
(x1,x2) ∈ R

2 | x1 = 0
}

. Moreover, for P posi-
tive definite it is a positive definite and radially unbounded function in R

2. Suppose
that ϕ2 (T,x0) 	= 0 at the instant t = T , when ϕ1 (t,x0) crosses zero. Then from the
differential inclusion ẋ1 ∈ −k1φ1 (x1)+ x2 follows that ϕ1 (t,x0) will be monotoni-
cally increasing or decreasing during an interval containing T . If ϕ2 (t,x0) = 0 when
ϕ1 (t,x0) crosses zero, then ϕ1 (t,x0) will stay in zero. Lemma 4.2 is satisfied, with
R�S = R

2
�S .

Note that one can write φ2 (x1) = φ ′1 (x1)φ1 (x1), where φ ′1 (x1) = pμ1 |x1|p−1 +
qμ2 |x1|q−1. Since

ζ̇ =
[
φ ′1 (x1){−k1φ1 (x1)+ x2}
−k2φ2 (x1)

]
= φ ′1 (x1)

[−k1 , 1
−k2 , 0

]
ζ = φ ′1 (x1)Aζ ,

the derivative of the candidate Lyapunov function is

V̇Q(x) = ζ̇T Pζ + ζT Pζ̇ = φ ′1 (x1)ζT (
AT P+ PA

)
ζ =−φ ′1 (x1)ζT Qζ

where Q satisfies the ALE (4.7). Recall the standard inequality for quadratic forms

λmin {P}‖ζ‖2
2 ≤ ζT Pζ ≤ λmax{P}‖ζ‖2

2 ,

where

‖ζ‖2
2 = φ2

1 (x1)+ x2
2 = μ2

1 |x1|2p + 2μ1μ2 |x1|p+q + μ2
2 |x1|2q + x2

2

is the Euclidean norm of ζ , and note that the inequality
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|x1|1−p ≤
(

1
μ1

|φ1 (x1)|
) 1−p

p

≤
(

1
μ1

‖ζ‖2

) 1−p
p

≤
⎛
⎝ V

1
2

Q (x)

μ1λ
1
2

min{P}

⎞
⎠

1−p
p

(4.29)

is satisfied for every 1
2 ≤ p < 1 and μ1 > 0, and therefore

−|x1|p−1 ≤−
⎛
⎝ V

1
2

Q (x)

μ1λ
1
2

min{P}

⎞
⎠

p−1
p

.

This shows that

V̇Q ≤−λmin{Q}φ ′1 (x1)‖ζ‖2
2 ≤−λmin{Q}

(
μ1 p |x1|p−1 + μ2q |x1|q−1

)
‖ζ‖2

2

≤−μ1

pλmin{Q}
(
μ1λ

1
2

min {P}
) p−1

p

λmax{P} V
3p−1

2p
Q (x)− μ2

λmin {Q}q
λmax {P} |x1|q−1 VQ (x) ,

so that V (ϕ (t,x0)) is monotonically decreasing, and by Zubov’s Theorem [40, The-
orem 20.2, p. 568.], the origin is asymptotically stable. This shows that VQ (x) is a
strong Lyapunov function when μ1 > 0 or μ2 > 0 and q = 1. Note that 1

2 ≤ 3p−1
2p ≤ 1,

so that for μ1 > 0 and 1
2 ≤ p < 1 the convergence is in finite time. For μ1 > 0 and

p = 1 and when μ1 = 0, μ2 > 0 and q = 1 the convergence is also exponential. If
μ1 = 0, μ2 > 0 and q > 1 the Lyapunov function is weak, since the derivative is
negative semidefinite.

Now we show that (i) =⇒ (ii), or equivalently, that ∼(ii) =⇒ ∼(i). So assume
that A is not Hurwitz, so we will show that x = 0 is not assymptotically stable for
(4.3). Several cases are possible here.

1. The ALE (4.7) does not have a unique solution P for every Q: This is the case
if the eigenvalues λ1 (A), λ2 (A) of A are such that λ1 (A)+λ2 (A) = 0. It is easy
to prove that this is the case if and only if k1 = 0. Consider three subcases:

a. k2 > 0. The eigenvalues of A are imaginary. P =
[

k2 0
0 1

]
, and Q = 0 are

solutions of (4.7). So that VQ (x) is p.d. and V̇Q (x) = 0. This means that
V (ϕ (t,x0)) remains constant along the solutions of the system, and so it
does not converge to zero.

b. k2 = 0. A has two eigenvalues at the origin with Jordan form J =
[

0 1
0 0

]
.

c. k2 < 0. The eigenvalues of A are real, with the same magnitude but different

signs. In this and the preceeding case P =
[

p1 0
0 p2

]
> 0, and
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Q =
[

0 k2 p2− p1

k2 p2− p1 0

]
are solutions of (4.7). Using Lemma 4.2, in-

stability can be proved by a simple extension of the proof of Chetaev’s
theorem for linear systems [14].

2. The ALE (4.7) does have a unique solution P for every Q: This is the case if
λ1 (A)+λ2 (A) 	= 0, that is k1 	= 0. Consider two subcases:

a. Matrix A is Antihurwitz, that is, both eigenvalues have positive real parts. In
this case the ALE (4.7) has a positive definite solution P for every negative
definite matrix Q. In this case VQ (x) > 0 has a p.d. derivative V̇Q (x) > 0.
Using Lemma 4.2, instability can be proved by a simple extension of the
proof of Chetaev’s Theorem for linear systems [14].

b. The eigenvalues of A are real, one positive and the other negative or zero.
Using Lemma 4.2, instability can be proved by a simple extension of the
proof of Chetaev’s Theorem for linear systems [14].

��

4.8.2 Proof of Proposition 4.1

Note that the solution of the differential equation

v̇ =−γ1v
3p−1

2p , v(0) = v0 ≥ 0

is given by

v(t) =
(

v
1−p
2p

0 −
(

1− 3p−1
2p

)
γ1t

) 2p
1−p

if γ1 > 0 ,
1
2
≤ p< 1 .

More over, the DE

v̇ =−γ1v
3p−1

2p − γ2v , v(0) = v0 ≥ 0

using the transformation w(t) = exp(γ2t)v(t) leads to

ẇ = γ2 exp(γ2t)v + exp(γ2t)
(
−γ1v

3p−1
2p − γ2v

)
=−γ1 exp(γ2t)(exp(−γ2t)w)

3p−1
2p

=−γ1 exp

(
1− p

2p
γ2t

)
w

3p−1
2p , w(0) = v0 ≥ 0 .

Its solution, found by separation of variables,

w(t)∫

w(0)

dw

w
3p−1

2p

=−γ1

t∫

0

exp

(
1− p

2p
γ2τ

)
dτ
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is given by

2p
1− p

w
1−p
2p (t) =

2p
1− p

w
1−p
2p (0)− 2pγ1

(1− p)γ2

[
exp

(
1− p

2p
γ2t

)
−1

]

and therefore

v(t)
1−p
2p = exp

(
−1− p

2p
γ2t

)
v

1−p
2p

0 − γ1

γ2
exp

(
−1− p

2p
γ2t

)[
exp

(
1− p

2p
γ2t

)
−1

]
.

It follows from (4.9) and the Lemma 4.2 that VQ (t)≤ v(t) when VQ (x0)≤ v0. There-
fore, x(t) converges to zero in finite time (when μ1 > 1) and reaches that value at
most after a time given by (4.10). ��

4.8.3 Proof of Theorem 4.2

The derivative of the candidate Lyapunov function along the trajectories of the per-
turbed system (4.11) is

V̇Q = φ ′1 (x1)
{
ζT (

AT P+ PA
)
ζ + ρ̃T BT Pζ + ζT PBρ̃

}

= φ ′1 (x1)
[
ζ
ρ̃

]T [
AT P+ PA PB

BT P 0

][
ζ
ρ̃

]

≤ φ ′1 (x1)

{[
ζ
ρ̃

]T [
AT P + PA PB

BT P 0

][
ζ
ρ̃

]
+ω (ρ̃ ,ζ )

}

= φ ′1 (x1)
[
ζ
ρ̃

]T [
AT P+ PA + R PB

BT P −Θ
][

ζ
ρ̃

]
≤−φ ′1 (x1)εVQ

V̇Q ≤−pεμ1 |x1|p−1VQ −qεμ2 |x1|q−1 VQ

≤−pεμ
1
p

1 λ
1−p
2p

min {P}V
3p−1

2p
Q (x)−qεμ2 |x1|q−1 VQ (x)

By similar arguments as the ones in Theorem 4.1 and Proposition 4.1, it can be
shown that the state converges to zero in finite time, at most after T (x0) (4.15) units
of time.

Using the Schur complement it is easy to see that the Matrix Inequality (8.15)
and the Algebraic Riccati Inequality (4.14) are equivalent. ��

4.8.4 Proof of Theorem 4.3

Consider a P = PT > 0 such that (4.5) is a Lyapunov function for the un-
perturbed system. Given some perturbation constants δ1,δ2 there is a set R ={

x ∈ R
2 | ‖ζ‖2 > r

}
such that ϕ1 (t,x0) is monotone when it crosses zero in R.
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Therefore, from Lemma 4.2, it follows that VQ (ϕ (t,x0)) is AC, and V̇Q along the
solutions of the perturbed system (4.2), where it exists, is given by (when q = 1)

V̇Q = −φ ′1 (x1)
{
ζT Qζ − [

ρ1 0
]

Pζ
}

+2
[

0 ρ2
]

Pζ

≤−φ ′1 (x1)
{
λmin {Q}‖ζ‖2

2−δ1λmax {P}‖ζ‖2

}
+2δ2λmax {P}‖ζ‖2

≤−
(

pμ1 |x1|p−1 +μ2

){
λmin {Q}‖ζ‖2

2 −δ1λmax {P}‖ζ‖2

}
+2δ2λmax {P}‖ζ‖2

≤−pμ1 |x1|p−1
{
λmin {Q}‖ζ‖2

2−δ1λmax {P}‖ζ‖2

}
−μ2λmin {Q}‖ζ‖2

2 +

+(μ2δ1 +2δ2)λmax {P}‖ζ‖2

≤−pμ1

(
1
μ1

‖ζ‖2

) p−1
p {

λmin {Q}‖ζ‖2
2−δ1λmax {P}‖ζ‖2

}
−μ2λmin {Q}‖ζ‖2

2 +

+(μ2δ1 +2δ2)λmax {P}‖ζ‖2

≤−pμ
1
p

1 λmin {Q}‖ζ‖
3p−1

p

2 + pμ
1
p

1 δ1λmax {P}‖ζ‖
2p−1

p

2 −μ2λmin {Q}‖ζ‖2
2 +

+(μ2δ1 +2δ2)λmax {P}‖ζ‖2 ,

where the inequality (obtained from (4.29)), and valid for 1
2 ≤ p ≤ 1 and μ1 > 0,

−|x1|p−1 ≤−
(

1
μ1

‖ζ‖2

) p−1
p

has been used. If p = 1
2 and μ2 = 0 this becomes

V̇Q ≤−
(

1
2
μ2

1λmin{Q}−2δ2λmax {P}
)
‖ζ‖2 +

1
2
μ2

1δ1λmax {P} .

When

δ2 <
μ2

1λmin{Q}
4λmax{P}

V̇Q ≤−κ
(

1
2
μ2

1λmin {Q}−2δ2λmax {P}
)
‖ζ‖2 − (1−κ)

(
1
2
μ2

1λmin {Q}−2δ2λmax {P}
)
‖ζ‖2 +

+
1
2
μ2

1δ1λmax {P}

V̇Q ≤−κ
( 1

2μ
2
1λmin{Q}−2δ2λmax {P})

λ
1
2

max{P}
V

1
2

Q (x) ,

∀‖ζ‖2 >
μ2

1δ1λmax {P}
2(1−κ)

(
1
2μ

2
1λmin {Q}−2δ2λmax{P}) ,
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for any 0 < κ < 1. This shows the practical stability, i.e. the final and uniform
boundedness of the trajectories if δ2 is small enough.

If 1
2 < p ≤ 1, μ1 > 0 and μ2 = 0 then

V̇Q ≤−pμ
1
p

1 λmin{Q}‖ζ‖
3p−1

p
2 + 2δ2λmax {P}‖ζ‖2 + pμ

1
p

1 δ1λmax {P}‖ζ‖
2p−1

p
2

and
3p−1

p
> 1>

2p−1
p

.

This implies that for any 0< κ < 1

V̇Q ≤−κ pμ
1
p

1 λmin{Q}‖ζ‖
3p−1

p
2 , ∀‖ζ‖2 /∈ B ,

≤−κ pμ
1
p

1 λmin{Q}
λ

3p−1
2p

max {P}
V

3p−1
2p

Q (x) , ∀‖ζ‖2 /∈ B ,

where B is the compact set given by

B =
{

x ∈ R
2 | 2δ2λmax {P}+ pμ

1
p

1 δ1λmax {P}‖ζ‖
p−1

p

2 ≥ (1−κ) pμ
1
p

1 λmin {Q}‖ζ‖
2p−1

p

2

}
.

Note that for 1
2 < p ≤ 1 the set B contains the origin, and, since 2p−1

p > p−1
p , it is

bounded. This implies that the trajectories of the system are ”practically” stable, i.e.
they are finally and uniformly bounded.

Finally, when μ2 > 0 then

V̇Q ≤−
(
μ2 ‖ζ‖

1−p
p

2 + pμ
1
p

1

)
λmin {Q}‖ζ‖

3p−1
p

2 + pμ
1
p

1 δ1λmax {P}‖ζ‖
2p−1

p
2 +

+(μ2δ1 + 2δ2)λmax {P}‖ζ‖2 ,

what implies that for any 0< κ < 1

V̇Q ≤−κ
(
μ2 ‖ζ‖

1−p
p

2 + pμ
1
p

1

)
λmin {Q}‖ζ‖

3p−1
p

2 , ∀‖ζ‖2 /∈D ,

≤−κ pμ
1
p

1 λmin {Q}
λ

3p−1
2p

max {P}
V

3p−1
2p

Q (x)−κ
μ2λmin {Q}
λmax{P} VQ (x) , ∀‖ζ‖2 /∈D ,

where D is the compact set given by

D =
{

x ∈ R
2 | (μ2δ1 + 2δ2)λmax {P}+ pμ

1
p

1 δ1λmax{P}‖ζ‖
p−1

p
2

≥ (1−κ)
(
μ2 ‖ζ‖

1−p
p

2 + pμ
1
p

1

)
λmin{Q}‖ζ‖

2p−1
p

2

}
.
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This implies that the trajectories of the system are ”practically” stable, i.e. they are
finally and uniformly bounded. ��

4.8.5 Proof of Theorem 4.4

The derivative of VN (x) is given by

V̇N (x) =−|φ1 (x1)|
1−q

q φ ′1 (x1)
{

2αk1 |φ1 (x1)|
3q−1

q −2(α− k2δ )φ
2q−1

q
1 (x1)x2+

−1
q
βk1φ1 (x1) |x2|

2q−1
q sign(x2)− k2

2q−1
q

β |φ1 (x1)|2 |x2|
q−1

q +
1
q
β |x2|

3q−1
q

}

If q = 1

V̇N (x) = −φ ′1 (x1)
{

(2αk1 −k2β ) |φ1 (x1)|2 −2

(
α−k2δ +

1
2
βk1

)
φ1 (x1)x2 +β |x2|2

}

≤−μ2ζT
[

(2αk1 −k2β ) −(
α−k2δ + 1

2βk1
)

−(
α−k2δ + 1

2βk1
)

β

]
ζ

where ζT =
[
φ1 (x1) , x2

]
, and the last inequality follows from

φ ′1 (x1) =
(

pμ1 |x1|p−1 + μ2

)
≥ μ2. V̇ (x) is negative definite iff

(2αk1− k2β )β −
(
α− k2δ +

1
2
βk1

)2

> 0 .

Setting α = k2δ one obtains

δ >
β
2

(
1
k1

+
k1

4k2

)
.

When q> 1, from Lemma 4.1 it follows that

φ
2q−1

q
1 (x1)x2 ≤ |φ1 (x1)|

2q−1
q |x2| ≤ γ

3q−1
2q−1

1
3q−1
2q−1

|φ1 (x1)|
2q−1

q
3q−1
2q−1 +

γ
− 3q−1

q
1
3q−1

q

|x2|
3q−1

q ,

|φ1 (x1)| |x2|
2q−1

q ≤ γ
3q−1

q
2
3q−1

q

|φ1 (x1)|
3q−1

q +
γ
− 3q−1

2q−1
2
3q−1
2q−1

|x2|
2q−1

q
3q−1
2q−1 ,

|φ1 (x1)|2 |x2|
q−1

q ≤ γ
3q−1

2q
3
3q−1

2q

|φ1 (x1)|2
3q−1

2q +
γ
− 3q−1

q−1
3
3q−1
q−1

|x2|
q−1

q
3q−1
q−1 ,

are valid for
{

3q−1
2q−1 > 1, 3q−1

q > 1, 3q−1
2q > 1

}
, that is

{
q> 1

2 ,q>
1
2 ,q> 1

}
, and ev-

ery γ1,γ2,γ3 > 0. Using these three inequalities one obtains
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V̇N (x) ≤−|φ1 (x1)|
1−q

q φ ′1 (x1){⎡
⎣2αk1 −2 |(α−k2δ )| γ

3q−1
2q−1

1
3q−1
2q−1

− 1
q
βk1

γ
3q−1

q

2
3q−1

q

−k2
2q−1

q
β
γ

3q−1
2q

3
3q−1

2q

⎤
⎦ |φ1 (x1)|

3q−1
q +

+

⎡
⎣1

q
β −2 |(α−k2δ )| γ

− 3q−1
q

1
3q−1

q

− 1
q
βk1

γ
− 3q−1

2q−1

2
3q−1
2q−1

−k2
2q−1

q
β
γ
− 3q−1

q−1

3
3q−1
q−1

⎤
⎦ |x2|

3q−1
q

⎫
⎬
⎭

Choosing
α = k2δ

then

V̇N (x) ≤−|φ1 (x1)|
1−q

q φ ′1 (x1)
{[

2δk1k2− 1
3q−1

βk1γ
3q−1

q

2 −2k2
2q−1
3q−1

βγ
3q−1

2q

3

]
×

|φ1 (x1)|
3q−1

q +
1
q
β
[

1−k1
2q−1
3q−1

γ
− 3q−1

2q−1

2 −k2
(2q−1) (q−1)

3q−1
γ
− 3q−1

q−1

3

]
|x2|

3q−1
q

}
.

Note that

ν (x1) � |φ1 (x1)|
1−q

q φ ′1 (x1) = (μ1 |x1|p + μ2 |x1|q)
1−q

q

(
pμ1 |x1|p−1 + qμ2 |x1|q−1

)

=
pμ1 |x1|p−q + qμ2

(
μ1 |x1|p−q + μ2

) q−1
q

=

pμ1
|x1|q−p + qμ2

(
μ1

|x1|q−p + μ2

) q−1
q

.

It follows that

ν (x1)> 0 , ∀x1 , lim
|x1|→∞

ν (x1) = qμ
1
q

2 ,

lim
|x1|→0

ν (x1) = lim
|x1|→0

pμ
1
q

1

|x1|(q−p) 1
q

= ∞ ,

and νmin = minx1∈Rν (x1), the minimum of ν (x1) exists and νmin > 0.
Choosing γ2,γ3 > 0 such that

1>
2q−1
3q−1

(
k1γ

− 3q−1
2q−1

2 + k2 (q−1)γ
− 3q−1

q−1
3

)
,

what is always possible, and choosing

δ >
β

2k1k2 (3q−1)

(
k1γ

3q−1
q

2 + 2k2 (2q−1)γ
3q−1

2q
3

)

it follows that V̇N (x) is negative definite. In particular, if
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γ2 =
(

4
2q−1
3q−1

k1

) 2q−1
3q−1

, γ3 =
(

4
2q−1
3q−1

k2 (q−1)
) q−1

3q−1

and

δ >
β

2k1k2 (3q−1)

(
k1γ

3q−1
q

2 + 2k2 (2q−1)γ
3q−1

2q
3

)
+

1
2q

β
2k1k2

one finally obtains that

V̇N (x) ≤− 1
2q

βνmin

(
|φ1 (x1)|

3q−1
q + |x2|

3q−1
q

)
< 0 .

To show positive definiteness of VN note that ∀γ4 > 0 , q> 1
2

|φ1 (x1)|
1
q |x2|

2q−1
q ≤ γ2q

4

2q
|φ1 (x1)|

1
q 2q +

γ
− 2q

2q−1
4

2q
2q−1

|x2|
2q−1

q
2q

2q−1 ,

and therefore

VN (x) ≤
(
α +β

γ2q
4

2q

)
|φ1 (x1)|2 +

(
δ +

2q−1
2q

βγ
− 2q

2q−1
4

)
x2

2

VN (x) ≥
(
α−β

γ2q
4

2q

)
|φ1 (x1)|2 +

(
δ − 2q−1

2q
βγ

− 2q
2q−1

4

)
x2

2 .

If

α > β
γ2q

4

2q
, δ >

2q−1
2q

βγ
− 2q

2q−1
4

or, equivalently (
2q−1

2q
β
δ

) 2q−1
2q

< γ4 <

(
2qα
β

) 1
2q

.

Such a γ4 exists if and only if

β <
(

1
2q−1

) 2q−1
2q

2qδ
2q−1

2q α
1
2q .

In this case VN (x) is positive definite.
Setting (without loss of generality) β = 1, and since α = k2δ , it is required to

choose

δ > max

⎧⎨
⎩

(2q−1)
2q−1

2q

2qk
1

2q

2

,
1

2k1k2 (3q−1)

(
k1γ

3q−1
q

2 +2k2 (2q−1) γ
3q−1

2q

3

)
+

1
2q

1
2k1k2

⎫⎬
⎭

so that VN (x) is positive definite and V̇N (x) is negative definite and
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VN (x)≤ 2δ
(

k2 |φ1 (x1)|2 + x2
2

)
≤ 2δ max{1,k2}

(
|φ1 (x1)|2 + x2

2

)

V̇N (x)≤− 1
2q

νmin

(
|φ1 (x1)|

3q−1
q + |x2|

3q−1
q

)
< 0 .

Note that for q> 1, 3q−1
q > 2, and using the standard inequality

[
1
2

(
|φ1 (x1)|2 + x2

2

)] 1
2

≤
[

1
2

(
|φ1 (x1)|

3q−1
q + |x2|

3q−1
q

)] q
3q−1

it follows that

(
1
2

) q−1
2q (

|φ1 (x1)|2 + x2
2

) 3q−1
2q ≤

(
|φ1 (x1)|

3q−1
q + |x2|

3q−1
q

)

and therefore

V̇N (x) ≤− 1
2q

νmin

(
|φ1 (x1)|

3q−1
q + |x2|

3q−1
q

)

≤− 1
2q

(
1
2

) q−1
2q

νmin

(
|φ1 (x1)|2 + x2

2

) 3q−1
2q

≤−1
q
νmin

(
1

4δ max{1,k2}
) 3q−1

2q

V
3q−1

2q
N (x) .

Since for q> 1, 3q−1
2q > 1 asymptotic convergence to the origin is assured. ��

4.8.6 Proof of Proposition 4.2

Consider as a Lyapunov function the sum of both Lyapunov functions (4.5) and
(4.20)

W (x) = VQ (x)+VN (x) .

It is clear that

Ẇ (x) ≤−γ1 (Q,μ1)V
3p−1

2p
Q (x)− 1

q
νmin

(
1

4δ max{1,k2}
) 3q−1

2q

V
3q−1

2q
N (x) .

Recall that ‖ζ‖2
2 = φ2

1 (x1)+ x2
2 and

λmin {P}‖ζ‖2
2 ≤VQ (x) ≤ λmax {P}‖ζ‖2

2

θmin ‖ζ‖2
2 ≤VN (x) ≤ 2δ max{1,k2}‖ζ‖2

2

so that
W (x) ≤ [λmax {P}+ 2δ max{1,k2}]‖ζ‖2

2
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and therefore

Ẇ (x) ≤−γ1 (Q,μ1)λ
3p−1

2p

min {P}‖ζ‖
3p−1

p

2 − 1
q
νmin

(
1

4δ max{1,k2}
) 3q−1

2q

θ
3q−1

2q

min ‖ζ‖
3q−1

p

2

≤−κ1W
3p−1

2p (x)−κ2W
3q−1

2q (x) ,

where

κ1 =
γ1 (Q,μ1)λ

3p−1
2p

min {P}
[λmax {P}+ 2δ max{1,k2}]

3p−1
2p

, (4.30a)

κ2 =
1
q
νmin

(
θmin

4δ max{1,k2} [λmax {P}+ 2δ max{1,k2}]
) 3q−1

2q

. (4.30b)

Note that the solution of the differential equation

v̇ =−κ2v
3q−1

2q , v(0) = v0 ≥ 0

is given by

v(t) =
1

⎛
⎝ 1

v
q−1
2q

0

+
(

q−1
2q

)
κ2t

⎞
⎠

2q
q−1

if κ2 > 0 , 1< q .

Since W satisfies both differential inequalities Ẇ (x) ≤ −κ1W
3p−1

2p (x) and Ẇ (x) ≤
−κ2W

3q−1
2q (x) the value of W is below the solution of any of both inequalities. So

W (t)≤min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
W

1−p
2p (x0)−

(
1− p

2p

)
κ1t

) 2p
1−p

,
1

(
1

W
q−1
2q (x0)

+
(

q−1
2q

)
κ2t

) 2q
q−1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

From this expression it is possible to estimate the convergence time, in the following
form: consider a trajectory starting at point x0, at an energy level W (x0). An upper
bound T1 (x0) of the time at which it reaches the surface level W (x) = μ , for some
0< μ <W (x0), can be calculated from

1
(

1

W
q−1
2q (x0)

+
(

q−1
2q

)
κ2T1 (x0)

) 2q
q−1

= μ
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as

T1 (x0) =
2q

(q−1)κ2

(
1

μ
q−1
2q

− 1

W
q−1
2q (x0)

)

Now starting from this surface μ an upperbound T2 (x0) to reach the origin can be
calculated from (

μ
1−p
2p −

(
1− p

2p

)
κ1T2 (x0)

) 2p
1−p

= 0

as

T2 (x0) =
2p

(1− p)κ1
μ

1−p
2p .

And therefore the (total) time to reach the origin can be estimated as

T (x0) = T1 (x0)+ T2 (x0) =
2q

(q−1)κ2

(
1

μ
q−1
2q

− 1

W
q−1
2q (x0)

)
+

2p
(1− p)κ1

μ
1−p
2p ,

for every 0 < μ <W (x0). From this expression it is clear that (i) every trajectory
converges to zero in finite time, and (ii) the convergence time is uniformly upper
bounded by a constant, that can be estimated as

Tmax (μ) =
2q

(q−1)κ2

1

μ
q−1
2q

+
2p

(1− p)κ1
μ

1−p
2p .

This function achieves a minimum at

μ =
(
κ1

κ2

) 2pq
q−p

,

so that the best estimate of the uniform convergence time is

Tmax =
2q

(q−1)κ2

(
κ2

κ1

) q−p
p(q−1)

+
2p

(1− p)κ1

(
κ1

κ2

) q(1−p)
q−p

.

��

4.8.7 Proof of Proposition 4.3

Since the perturbation terms are bounded as |ρ1 (t,x)| ≤ g1 |φ1 (x1)| , |ρ2 (t,x)| ≤
g2 |φ2 (x1)|, then there exist functions g̃1 (t), g̃2 (t) such that ρ1 (t,x) = g̃1 (t)φ1 (x1) ,
ρ2 (t,x) = g̃2 (t)φ2 (x1), with |g̃1 (t)| ≤ g1, and |g̃2 (t)| ≤ g2. The derivative of VN (x)
is given by
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V̇N (x) =−|φ1 (x1)|
1−q

q φ ′1 (x1)
{

2α k̂1 (t) |φ1 (x1)|
3q−1

q +

−2
(
α− k̂2 (t)δ

) |φ1 (x1)|
2q−1

q sign (x1)x2 − 1
q
β k̂1 (t)φ1 (x1) |x2|

2q−1
q sign (x2)+

−k̂2 (t)
2q−1

q
β |φ1 (x1)|2 |x2|

q−1
q +

1
q
β |x2|

3q−1
q

}
,

where k̂1 (t) = k1 − g̃1 (t), k̂2 (t) = k2 − g̃2 (t). In a similar form as in the proof of
Theorem 4.4 (using Lemma 4.1) one obtains

V̇N (x) ≤−|φ1 (x1)|
1−q

q φ ′1 (x1)
{
ψ1 (t) |φ1 (x1)|

3q−1
q +ψ2 (t) |x2|

3q−1
q

}
,

where

ψ1 (t) = 2α k̂1 (t)−2
∣∣(α− k̂2 (t)δ

)∣∣ 2q−1
3q−1

γ
3q−1
2q−1

1 −β k̂1 (t)
1

3q−1
γ

3q−1
q

2 +

−2β k̂2 (t)
2q−1
3q−1

γ
3q−1

2q
3

ψ2 (t) =
1
q
β −2

∣∣(α− k̂2 (t)δ
)∣∣ q

3q−1
γ
−
(

3q−1
q

)

1 − 1
q
β k̂1 (t)

2q−1
3q−1

γ
−
(

3q−1
2q−1

)

2 +

−β k̂2 (t)
2q−1

q
q−1

3q−1
γ
−
(

3q−1
q−1

)

3 .

For negative definiteness it is required that ψ1 (t)> 0 and ψ2 (t)> 0. Assuming that
k1 > b1g1 and k2 > b2g2 it follows that k1−g1 ≤ k̂1 (t)≤ k1 +g1, k2−g2 ≤ k̂2 (t)≤
k2 + g2 and

∣∣(α− k̃2 (t)δ
)∣∣ = |α− k2δ + g̃2 (t)δ | ≤ |α− k2δ |+ g2δ .

Choosing α = k2δ it follows that

ψ1 (t)≥ βϒ1−2g2δ
2q−1
3q−1

γ
3q−1
2q−1

1 , ψ2 (t)≥ 1
q
βϒ2−2g2δ

q
3q−1

γ
−
(

3q−1
q

)

1 ,

ϒ1 = 2k2k̄1
δ
β
− k̄1

1
3q−1

γ
3q−1

q
2 −2k̄2

2q−1
3q−1

γ
3q−1

2q
3 ,

ϒ2 = 1− k̄1
2q−1
3q−1

γ
−
(

3q−1
2q−1

)

2 − k̄2
(2q−1)(q−1)

3q−1
γ
−
(

3q−1
q−1

)

3

where k̄1 = k1−g1, k̄2 = k2−g2. ψ1 (t)> 0 and ψ2 (t)> 0 if

βϒ1 > 2g2δ
2q−1
3q−1

γ
3q−1
2q−1

1 ,
1
q
βϒ2 > 2g2δ

q
3q−1

γ
−
(

3q−1
q

)

1

or equivalently
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(
q2

3q−1
2g2δ
βϒ2

) q
3q−1

< γ1 <

(
3q−1
2q−1

βϒ1

2g2δ

) 2q−1
3q−1

.

Such a γ1 exists iff

(
q2

3q−1
2g2δ
βϒ2

) q
3q−1

<

(
3q−1
2q−1

βϒ1

2g2δ

) 2q−1
3q−1

,

or

2
q

2q
3q−1 (2q−1)

2q−1
3q−1

3q−1
g2

δ
β
<ϒ

q
3q−1

2 ϒ
2q−1
3q−1

1 (4.31)

Choosing, for example, γ2 and γ3 such that

k̄1
2q−1
3q−1

γ
−
(

3q−1
2q−1

)

2 =
1
4
, k̄2

(2q−1)(q−1)
3q−1

γ
−
(

3q−1
q−1

)

3 =
1
4

thenϒ2 = 1/2 and (4.31) becomes

2
4q−1
2q−1 q

2q
2q−1 (2q−1)

(3q−1)
3q−1
2q−1

g
3q−1
2q−1
2

(
δ
β

) 3q−1
2q−1

+
(4(2q−1))

2q−1
q

(3q−1)
3q−1

q

k̄
3q−1

q
1

+ 2(4(q−1))
q−1
2q

(2q−1)
3q−1

2q

(3q−1)
3q−1

2q

k̄
3q−1

2q
2 < 2k̄1k2

δ
β
.

Selecting, for example,
δ
β

= η k̄
2q−1

q
1 , η > 0 (4.32)

the previous inequality becomes

k̄1 >
2

2q−1
3q−1 (q−1)

q−1
2(3q−1) (2q−1)

1
2

(3q−1)
1
2

[
2ηk2−

(
2

4q−1
2q−1 q

2q
2q−1 (2q−1)

(3q−1)
3q−1
2q−1

g
3q−1
2q−1
2 η

3q−1
2q−1 + (4(2q−1))

2q−1
q

(3q−1)
3q−1

q

)] q
3q−1

k̄
1
2
2 ,

that can be always satisfied selecting k2 large enough, so that the denominator is
positive, and then making k̄1 large enough. Setting

ψmin = min{ψ1 (t) , ψ2 (t)} (4.33)

and with νmin defined in (4.22), one finally obtains that

V̇N (x) ≤−ψminνmin

(
|φ1 (x1)|

3q−1
q + |x2|

3q−1
q

)
< 0 .

Recall from Theorem 4.4 that VN is positive definite if (using α = k2δ )
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(2q−1)
2q−1

2q

2qk
1

2q
2

<
δ
β
.

This condition and (4.32) can be satisfied simultaneously if η and/or k̄1 are selected
large enough. It follows that

V̇N (x) ≤−2ψminνmin

(
1

4δ max{1,k2}
) 3q−1

2q

V
3q−1

2q
N (x) .

Since for q> 1, 3q−1
2q > 1 asymptotic convergence to the origin is assured.

The last part of the Proposition can be proved in a similar form as Proposition 4.2,
noting that W (x) = VQ (x)+VN (x) is a robust Lyapunov function for the system.

If q = 1

V̇N (x) =−φ ′1 (x1)
{(

2α k̃1 (t)− k̃2 (t)β
) |φ1 (x1)|2 +

−2

(
α− k̃2 (t)δ +

1
2
β k̃1 (t)

)
φ1 (x1)x2 +β |x2|2

}

≤−μ2ζT
[ (

2α k̃1 (t)− k̃2 (t)β
) −(

α− k̃2 (t)δ + 1
2β k̃1 (t)

)
−(

α− k̃2 (t)δ + 1
2β k̃1 (t)

)
β

]
ζ

where ζT =
[
φ1 (x1) , x2

]
, and the last inequality follows from

φ ′1 (x1) =
(

pμ1 |x1|p−1 + μ2

)
≥ μ2. V̇ (x) is negative definite iff

(
2α k̃1 (t)− k̃2 (t)β

)
β −

(
α− k̃2 (t)δ +

1
2
β k̃1 (t)

)2

≥ (2α (k1−g1)− (k2 +g2)β )β+

−
(∣∣∣∣α−k2δ +

1
2
βk1

∣∣∣∣+g2δ +
1
2
βg1

)2

> 0 .

Setting α = k2δ one obtains

2k2
δ
β

(k1−g1)> (k2 + g2)+
(

1
2

k1 +
1
2

g1 + g2
δ
β

)2

. ��

4.8.8 Proof of Theorem 4.5

Consider as a candidate Lyapunov function the quadratic form (4.5), with the
constant, positive definite matrix P = PT , given by

P =
[

p1 p3

p3 p2

]
=

[
β + 4ε2 , −2ε
−2ε 1

]
, (4.34)

with arbitrary positive constants β > 0, ε > 0. Note that due to (4.26) we can
write ρ1 (t,x) = α1 (t,x)φ1 (x1), and ρ2 (t,x) = α2 (t,x)φ2 (x1) for some functions
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|α1 (t,x)| ≤ g1 (t,x) and |α2 (t,x)| ≤ g2 (t,x). Using these functions and noting that
φ2 (x1) = φ ′1 (x1)φ1 (x1) one can show that

ζ̇ = φ ′1 (x1)
[−(k1 (t,x)−α1 (t,x)) , 1
−(k2 (t,x)−α2 (t,x)) 0

]
ζ = φ ′1 (s)A (t,x)ζ .

for every point in R
2\S , where this derivative exists. Similarly one can calculate

the derivative of V (x) on the same set as

V̇Q = φ ′1 (s)ζT (
A T (t,x)P + PA (t,x)

)
ζ =−φ ′1 (s)ζT Q(t,x)ζ

where

Q(t,x) =
[

2(k1 (t,x)−α1 (t,x)) p1 + 2(k2 (t,x)−α2 (t,x)) p3 �
(k1 (t,x)−α1 (t,x)) p3 +(k2 (t,x)−α2 (t,x)) p2− p1 , −2p3

]
.

With the selection of P in (4.34) and the gains in (4.27) it follows that (the arguments
of the functions were left out)

Q−2εI=
[

2βk1 + 4ε (2εk1− k2)−2
(
β + 4ε2

)
α1 + 4εα2−2ε �

k2 −2εk1−
(
β + 4ε2

)
+ 2εα1−α2 , 2ε

]

=
[

2βk1−
(
β + 4ε2

)
(4ε + 2α1)+ 4εα2−2ε �

2εα1 −α2 , 2ε

]

that is positive definite for every value of (t,x). This shows that

V̇Q =−φ ′1 (x1)ζT Q(t,x)ζ ≤−2εφ ′1 (x1)ζTζ ≤−γ1V
3p−1

2p
Q − γ2 |x1|q−1VQ ,

where

γ1 = 2μ1

pε
(
μ1λ

1
2

min {P}
) p−1

p

λmax{P} , γ2 = 2μ2
εq

λmax {P} . (4.35)

The rest of the proof is analogous to the proofs of Theorem 4.1 and Proposition
4.1. ��
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Chapter 5
A New Design of Sliding Mode Control Systems

Zhihong Man, Suiyang Khoo, Xinghuo Yu, Chunyan Miao, Jiong Jin,
and Feisiang Tay

Abstract. A new sliding mode control technique for a class of SISO dynamic sys-
tems is presented in this chapter. It is seen that the stability status of the closed-loop
system is first checked, based on the approximation of the most recent information
of the first-order derivative of the Lyapunov function of the closed-loop system, an
intelligent sliding mode controller can then be designed with the following intelli-
gent features: (i) If the closed-loop system is stable, the correction term in the con-
troller will continuously adjust control signal to drive the closed-loop trajectory to
reach the sliding mode surface in a finite time and the desired closed-loop dynamics
with the zero-error convergence can then be achieved on the sliding mode surface.
(ii) If, however, the closed-loop system is unstable, the correction term is capable of
modifying the control signal to continuously reduce the value of the derivative of the
Lyapunov function from the positive to the negative and then drives the closed-loop
trajectory to reach the sliding mode surface and ensures that the desired closed-loop

Zhihong Man · Feisiang Tay
Faculty of Engineering and Industrial Sciences,
Swinburne University of Technology,
VIC 3122, Australia

Suiyang Khoo
School of Engineering, Deakin University, VIC 3217, Australia

Xinghuo Yu
Platform Technologies Research Institute, RMIT University,
VIC 3001, Australia

Chunyan Miao
School of Computer Engineering,
Nanyang Technological University, Singapore, 639798

Jiong Jin
Department of Electrical and Electronic Engineering,
The University of Melbourne,
VIC 3010, Australia

L. Fridman et al. (Eds.): Sliding Modes, LNCIS 412, pp. 151–167.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011



152 Z. Man et al.

dynamics can be obtained on the sliding mode surface. The main advantages of this
new sliding mode control technique over the conventional one are that no chattering
occurs in the sliding mode control system because of the recursive learning control
structure; the system uncertainties are embedded in the Lipschitz-like condition and
thus, no priori information on the upper and/or the lower bounds of the unknown
system parameters and uncertain system dynamics is required for the controller de-
sign; the zero-error convergence can be achieved after the closed-loop dynamics
reaches the sliding mode surface and remains on it. The performance for control-
ling a third-order linear system is evaluated in the simulation section to show the
effectiveness and efficiency of the new sliding mode control technique.

5.1 Introduction

Since 1950s, sliding mode control has been extensively investigated and success-
fully applied for controlling linear systems, nonlinear systems and complex
systems with unknown system parameters, uncertain dynamics and external dis-
turbances [25, 10, 20, 5, 24, 18, 17, 6, 26, 19, 13, 16, 8, 1, 12, 3, 7, 4, 2, 14]. Generally
speaking, if the information on the upper and/or the lower bounds of the unknown
system parameters, uncertain dynamics and the external disturbances is known, a
high-speed switching sliding mode controller can be designed to drive the closed-
loop trajectory to reach the sliding mode surface and then remain on it to ensure that
the desired closed-loop dynamics with the zero-error convergence can be achieved,
which is insensitive to the unknown system parameters, uncertain dynamics and the
external disturbances.

Switching/chattering of sliding mode control signals crossing the sliding mode
surfaces is an important characteristic in all current sliding mode control systems.
It has been well-known that, in order to eliminate the effects of uncertainties and
guarantee the zero-error convergence on the sliding mode surface, a switching pro-
cess, which keeps the closed-loop dynamics on the sliding mode surface, is nec-
essary. However, the chattering issue has largely restricted the applications of the
sliding mode control technique in practice, since the high-speed chattering control
signals require that the controlled systems have a wide frequency band in order to
response the high frequency control actions efficiently, and also, the chattering con-
trol signals may excite some undesired high frequency mode in the closed-loop
systems, which may not be considered and included in the system models. Al-
though the boundary-layer technique can be used to eliminate the chattering as seen
in [20, 5, 24, 18, 17, 6, 26], the property of the zero-error convergence is lost as the
sign function is replaced by the sigmoid function in sliding mode control signals.
In fact, for more than 50 years, the researchers in the area of sliding mode control
systems have been exploring the possibility of developing a new sliding mode con-
trol technique which ensures both the zero-error convergence and the chattering-free
characteristics in sliding mode control systems with uncertainties.
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In this chapter, we present a new sliding mode control technique for a class
of SISO dynamic systems. The new sliding mode controller has an intelligent
recursive-learning structure, consisting of a most recent control signal and a cor-
rection term [21, 9, 22, 23]. However, the correction term of the new sliding mode
controller in this paper is updated by using the estimate of the most recent informa-
tion on the gradient of the Lyapunov function, in order to continuously adjust the
stability and convergence of the closed-loop system. For instance, if the closed-loop
system is stable, the correction term in the controller will continuously adjust the
control signal in the sense that the closed-loop system trajectory can reach the slid-
ing mode surface in a finite time and remains on it, the desired closed-loop dynamics
with the zero-error converge can then be achieved on the sliding mode surface. How-
ever, if the closed-loop system is unstable, the correction term in the controller will
correct the control signal to continuously reduce the value of the derivative of the
Lyapunov function from the positive to the negative, and then drives the closed-loop
trajectory to reach the sliding mode surface in a finite time and guarantees that the
desired closed-loop dynamics with the zero-error converge can be achieved on the
sliding mode surface. Because of the recursive learning structure of the new sliding
mode controller, after the closed-loop system trajectory reaches the sliding mode
surface, the sliding variable does not cross the sliding mode surface with the zigzag
motion, and therefore no chattering occurs in the closed-loop sliding mode control
system.

Another distinguishing characteristic of this new sliding mode control technique
is that the Lipschitz-like condition, describing the important dynamic property of
the closed-loop system with or without uncertain dynamics, is proposed, which
states that the difference between the current value of the first-order derivative of
the Lyapunov function and its most recent value is sufficiently small as the sam-
pling period is sufficiently small. It will be seen that, as the Lipschitz-like condi-
tion is used for designing the sliding mode controller, the information of the un-
certain system dynamics is embedded in the Lipschitz-like condition, and thus, the
upper and/or the lower bounds of the unknown system parameters and the uncertain
system dynamics are not required. It will be further seen from next few sections
that the sliding mode control design is greatly simplified and many desired prop-
erties such as the chattering-free and zero-error convergence and robustness with
respect to uncertain dynamics can all be achieved in the new sliding mode control
systems.

The rest of the chapter is organized as follows: In Section 5.2, the SISO dynamic
system model, the state equation of the sliding variable and its derivatives, and the
new sliding mode control structure are formulated. In Section 5.3, the convergence
analysis of the closed-loop dynamics equipped with the new sliding mode controller
is studied in detail, and some important properties on the intelligent learning, robust-
ness, and chattering-free are also addressed. In Section 5.4, a simulation example for
controlling a third-order uncertain linear system is presented to show the effective-
ness and efficiency of the proposed new sliding mode control technique. Section 5.5
concludes with some further work.
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5.2 Problem Formulation

Consider a class of SISO dynamic systems described by the following differential
equation:

x(n) = f
(

x(t) , ẋ (t) , · · · ,x(n−2) (t) ,x(n−1) (t)
)

+ b
(

x(t) , ẋ(t) , · · · ,x(n−2) (t) ,x(n−1) (t)
)

u(t) (5.1)

where t is the time, x(t) is the system output, x(i) (t)(i = 1,2, ,n) is the ith-order

derivative of x(t), u(t) is the control input, f
(

x(t) , ẋ(t) , · · · ,x(n−2) (t) ,x(n−1) (t)
)

and b
(

x(t) , ẋ(t) , · · · ,x(n−2) (t) ,x(n−1) (t)
)

are the unknown linear or nonlinear

functions. For simplicity, in the following analysis we use f (t) and b(t) to replace

f
(

x(t) , ẋ (t) , · · · ,x(n−2) (t) ,x(n−1) (t)
)

and b
(

x(t) , ẋ (t) , · · · ,x(n−2) (t) ,x(n−1) (t)
)

,

respectively.
In this chapter, we assume that the SISO dynamic system in (5.1) is controllable

with b(t) = b
(

x(t) , ẋ (t) , · · · ,x(n−2) (t) ,x(n−1) (t)
)
> 0. As in [15, 11], we define

a simple first-order sliding variable s(t) for the nth-order SISO system in (5.1) as
follows:

s(t) = ẋ(t)+λx(t) (5.2)

where λ is a positive constant.

Remark 5.1. It is easy to understand that, if a controller u(t) can be designed to drive
the first-order sliding variable s(t) in (5.2) to zero in a finite time, the system output
x(t) can then exponentially converge to zero on the sliding mode surface s(t) = 0.

For the further process, differentiating the sliding variable s(t) with respect to the
time t for n−1 times, we obtain the following equations:

ṡ(t) = ẍ(t)+λ ẋ(t)
s̈(t) = (t)+λ ẍ(t)

... (5.3)

s(n−1) (t) = x(n) (t)+λx(n−1) (t)

= f
(

x(t) , ẋ(t) , · · ·x(n−1) (t)
)

+ b
(

x(t) , ẋ(t) , · · ·x(n−1) (t)
)

u(t)+λx(n−1) (t)

Defining the following state variable vector:

z(t) =
[
s(t) ṡ(t) · · · s(n−2) (t)

]T
(5.4)

we can represent (5.3) in the following matrix form:
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⎡
⎢⎢⎢⎢⎢⎣

ṡ (t)
s̈ (t)

...
s(n−2) (t)
s(n−1) (t)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 0 · · · 0
...

...
0 0 · · · 0 1
0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

s(t)
ṡ(t)

...
s(n−3) (t)
s(n−2) (t)

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0

f (t)

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0

b(t)

⎤
⎥⎥⎥⎥⎥⎦

u(t)+

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0

λx(n−1) (t)

⎤
⎥⎥⎥⎥⎥⎦

(5.5)

or more compactly

ż (t) = Az(t)+ F (t)+ B(t)u(t)+ P(t) (5.6)

where

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 0 · · · 0
...

...
0 0 · · · 0 1
0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦
, F (t) =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0

f (t)

⎤
⎥⎥⎥⎥⎥⎦
, B(t) =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0

b(t)

⎤
⎥⎥⎥⎥⎥⎦

and

P(t) =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0

λx(n−1) (t)

⎤
⎥⎥⎥⎥⎥⎦

(5.7)

The sliding mode controller proposed in this chapter is of the form:

u(t) = u(t − τ)−Δu(t) (5.8)

with the correction term:

Δu(t) =

⎧
⎨
⎩

s(n−2)(t)

|s(n−2)(t)|2
(
η1

ˆ̇V (t − τ)+β
∣∣∣ ˆ̇V (t − τ)

∣∣∣+η2

∣∣∣ ˆ̇V (t −2τ)
∣∣∣
)

s(n−2) (t) 	= 0

0 s(n−2) (t) = 0
(5.9)
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where ˆ̇V (t − τ) is the approximation of V̇ (t − τ), V̇ (t) is the first-order derivative
of the Lyapunov function candidate V (t) = zT (t)z(t)/2, chosen for the closed-loop
system, and computed as follows:

V̇ (t) = ϕ (φ (t) ,u(t)) = z(t)T ż (t) = z(t)T [Az(t)+ F (t)+ B(t)u(t)+ P(t)]

= z(t)T Az(t)+ z(t)T F (t)+ z(t)T P(t)+ z(t)T B(t)u(t) (5.10)

ˆ̇V (t − τ), the estimate of V̇ (t − τ), is computed as:

ˆ̇V (t − τ) =
V (t)−V (t − τ)

τ
(5.11)

with the time-delay τ chosen to be sufficiently small in the sense that there exist
a large positive number M >> 1 and a small positive constant β1, such that the
following inequalities are held:

|ϕ (φ (t) ,u(t − τ))−ϕ (φ (t − τ) ,u(t − τ))|< 1
M
|ϕ (φ (t − τ) ,u(t − τ))| (5.12)

for both ϕ (φ (t) ,u(t − τ)) 	= 0 and ϕ (φ (t − τ) ,u(t − τ)) 	= 0, and

∣∣δ (
V̇ (t − τ)

)∣∣ =
∣∣∣V̇ (t − τ)− ˆ̇V (t − τ)

∣∣∣≤ β1

∣∣∣ ˆ̇V (t − τ)
∣∣∣ 	= 0 (5.13)

the control parameters η1 and β in the correction term of the controller and the
scalar β1 in (5.13) are chosen to satisfy the following inequalities:

1
M
< η1b(t)< 1− 1

M
(5.14)

and

β > η1β1 (5.15)

the positive constant control parameter η2 in the correction term in (5.9) will be
determined later.

Remark 5.2. Since the time delay τ is chosen to be sufficiently small in this paper,
we can reasonably assume that

• ˆ̇V (t − τ) is nonzero when the closed-loop dynamics is not constrained on the
sliding mode surface s(t) = 0.

• V̇ (t − τ) and ˆ̇V (t − τ) have the same sign for V̇ (t − τ) 	= 0, that is,

sign
(
V̇ (t − τ)

)
= sign

(
ˆ̇V (t − τ)

)
(5.16)
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Remark 5.3. Using (5.14) in (5.12), we obtain

|ϕ (φ (t) ,u(t − τ))−ϕ (φ (t − τ) ,u(t − τ))|< η1b(t)
∣∣V̇ (t − τ)

∣∣ (5.17)

for both ϕ (φ (t) ,u(t − τ)) 	= 0 and ϕ (φ (t − τ) ,u(t − τ)) 	= 0.

(5.17) is called the Lipschitz-like condition, which states that the difference be-
tween the current value of the gradient of the Lyapunov function and its most recent
value is very small as the time delay τ is sufficiently small. It will be seen from
the next section that it is because of the use of the Lipschitz-like condition that no
information on the upper and/or the lower bounds of the unknown system param-
eters and the uncertain dynamics is required for designing sliding mode controller,
and the Lipschitz-like condition also plays a very important role in the convergence
analysis of the closed-loop sliding mode control system with uncertain dynamics
and guarantees that the controller u(t), updated using the most recent information

on ˆ̇V (t − τ) and ˆ̇V (t −2τ), can correct the motion of the closed-loop dynamics and
drives the state variable vector z(t) to converge to zero in a finite time, and then
the system output x(t) exponentially converges to zero on the sliding mode surface
s(t) = 0. The detailed convergence analysis is given in the next section.

5.3 Convergence Analysis

Theorem 5.1. Consider the state equation in (5.6) for a class of SISO dynamic sys-
tems in (5.1). The system output x(t) asymptotically converges to zero if the control
input u(t) is designed as in (5.8) with the correction term in (5.9).

Proof. Differentiating the Lyapunov function V (t) = z(t)T z(t)/2 with respect to
the time t and using (5.8) and (5.9), we have

V̇ (t) = z(t)T [Az(t)+ F (t)+ B(t)u(t)+ P(t)]

= z(t)T Az(t)+ z(t)T F (t)+ z(t)T P(t)+ z(t)T B(t)u(t)

= z(t)T Az(t)+ z(t)T F (t)+ z(t)T P(t)+ z(t)T B(t)u(t − τ)

−z(t)T B(t)
s(n−2) (t)∣∣s(n−2) (t)

∣∣2
(
η1

ˆ̇V (t − τ)+β
∣∣∣ ˆ̇V (t − τ)

∣∣∣+η2
ˆ̇V (t −2τ)

)
(5.18)

It is noted that

z(t)T B(t)
s(n−2) (t)∣∣s(n−2) (t)

∣∣2 = b(t) (5.19)

(5.18) can then be further expressed as:
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V̇ (t) =
[
z(t)T Az(t)+ z(t)T F (t)+ z(t)T P(t)+ z(t)T B(t)u(t − τ)

]

−η1b(t) ˆ̇V (t − τ)−βb(t)
∣∣∣ ˆ̇V (t − τ)

∣∣∣−η2b(t)
∣∣∣ ˆ̇V (t −2τ)

∣∣∣
=

[
z(t)T Az(t)+ z(t)T F (t)+ z(t)T P(t)+ z(t)T B(t)u(t − τ)

]

−η1b(t)
(
V̇ (t − τ)−δ

(
V̇ (t − τ)

))−βb(t)
∣∣∣ ˆ̇V (t − τ)

∣∣∣−η2b(t)
∣∣∣ ˆ̇V (t −2τ)

∣∣∣
−
[
z(t − τ)T Az(t − τ)+ z(t − τ)T F (t − τ)+ z(t − τ)T P(t − τ)+ z(t − τ)T B(t − τ)u(t − τ)

]

+
[
z(t − τ)T Az(t − τ)+ z(t − τ)T F (t − τ)+ z(t − τ)T P(t − τ)+ z(t − τ)T B(t − τ)u(t − τ)

]

= ϕ (φ (t) ,u(t − τ))−η1b(t)V̇ (t − τ)+η1b(t)δ
(
V̇ (t − τ)

)−βb(t)
∣∣∣ ˆ̇V (t − τ)

∣∣∣
−η2b(t)

∣∣∣ ˆ̇V (t −2τ)
∣∣∣−ϕ (φ (t − τ) ,u(t − τ))+ϕ (φ (t − τ) ,u(t − τ))

= V̇ (t − τ)− [
η1b(t)V̇ (t − τ)− [ϕ (φ (t) ,u(t − τ))−ϕ (φ (t − τ) ,u(t − τ))]

]

+η1b(t)δ
(
V̇ (t − τ)

)−βb(t)
∣∣∣ ˆ̇V (t − τ)

∣∣∣−η2b(t)
∣∣∣ ˆ̇V (t −2τ)

∣∣∣ (5.20)

From the Lipschitz-like condition in (5.17), we see that V̇ (t − τ) and the term
η1b(t)V̇ (t − τ)− [ϕ (φ (t) ,u(t − τ))−ϕ (φ (t − τ) ,u(t − τ))] have the same sign.
Thus, for the case that V̇ (t − τ)< 0,

0> η1b(t)V̇ (t − τ)− [ϕ (φ (t) ,u(t − τ))−ϕ (φ (t − τ) ,u(t − τ))]
> 2η1b(t)V̇ (t − τ) (5.21)

then V̇ (t) in (5.20) satisfies the following inequality:

V̇ (t)< V̇ (t − τ)+η1b(t)δ
(
V̇ (t − τ)

) −βb(t)
∣∣∣ ˆ̇V (t − τ)

∣∣∣−η2b(t)
∣∣∣ ˆ̇V (t −2τ)

∣∣∣
(5.22)

It is noted that

−βb(t)
∣∣∣ ˆ̇V (t − τ)

∣∣∣+η1b(t)δ
(
V̇ (t − τ)

)

≤−βb(t)
∣∣∣ ˆ̇V (t − τ)

∣∣∣+η1b(t)
∣∣δ (

V̇ (t − τ)
)∣∣

≤−βb(t)
∣∣∣ ˆ̇V (t − τ)

∣∣∣+η1b(t)β1

∣∣∣ ˆ̇V (t − τ)
∣∣∣

=−(β −η1β1)b(t)
∣∣∣ ˆ̇V (t − τ)

∣∣∣< 0 (5.23)

Using (5.23) in (5.22), we have

V̇ (t)< V̇ (t − τ)< 0 (5.24)

Since
∣∣V̇ (t)

∣∣> ∣∣V̇ (t − τ)
∣∣> 0 and V̇ (t) is more negative as the time t is increased,

V (t) will converge to zero in a finite time, that is, the closed-loop dynamics reaches
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the sliding mode surface s(t) = 0 in a finite time, and thus, the system output x(t)
will asymptotically converge to zero on the sliding mode surface s(t) = 0.

For the case that V̇ (t − τ)> 0, based on (5.17), we have

0< η1b(t)V̇ (t − τ)− [ϕ (φ (t) ,u(t − τ))−ϕ (φ (t − τ) ,u(t − τ))]
< 2η1b(t)V̇ (t − τ) (5.25)

then (5.20) can be expressed as:

V̇ (t)< V̇ (t − τ)+η1b(t)δ
(
V̇ (t − τ)

)−βb(t)
∣∣∣ ˆ̇V (t − τ)

∣∣∣−η2b(t)
∣∣∣ ˆ̇V (t −2τ)

∣∣∣
≤ V̇ (t − τ)+η1b(t)

∣∣δ (
V̇ (t − τ)

)∣∣−βb(t)
∣∣∣ ˆ̇V (t − τ)

∣∣∣−η2b(t)
∣∣∣ ˆ̇V (t −2τ)

∣∣∣
≤ V̇ (t − τ)+η1β1b(t)

∣∣∣ ˆ̇V (t − τ)
∣∣∣−βb(t)

∣∣∣ ˆ̇V (t − τ)
∣∣∣−η2b(t)

∣∣∣ ˆ̇V (t −2τ)
∣∣∣

= V̇ (t − τ)− (β −η1β1)b(t)
∣∣∣ ˆ̇V (t − τ)

∣∣∣−η2b(t)
∣∣∣ ˆ̇V (t −2τ)

∣∣∣
< V̇ (t − τ)−η2b(t)

∣∣∣ ˆ̇V (t −2τ)
∣∣∣< V̇ (t − τ) (5.26)

(5.26) indicates that the sliding mode control law in (5.8) continuously makes V̇ (t)
smaller than V̇ (t − τ) when V̇ (t − τ)> 0.

Suppose that, at the time t = t1, V̇ (t) is driven to zero, that is,

V̇ (t1) = ϕ (φ (t1) ,u(t1)) = 0 (5.27)

At t = t1 + τ , (5.20) can be expressed as:

V̇ (t1 + τ) = V̇ (t1)−
[
η1b(t1 + τ)V̇ (t1)− [ϕ (φ (t1 + τ) ,u(t1))−ϕ (φ (t1) ,u(t1))]

]

+η1b(t1 + τ)δ
(
V̇ (t1)

)−β b(t1 + τ)
∣∣∣ ˆ̇V (t1)

∣∣∣−η2b(t1 + τ)
∣∣∣ ˆ̇V (t1− τ)

∣∣∣
= ϕ (φ (t1 + τ) ,u(t1))−η2b(t1 + τ)

∣∣∣ ˆ̇V (t1− τ)
∣∣∣

−β b(t1 + τ)
∣∣∣ ˆ̇V (t1)

∣∣∣+η1b(t1 + τ)δ
(
V̇ (t1)

)
(5.28)

It is noted that

−β b(t1 + τ)
∣∣∣ ˆ̇V (t1)

∣∣∣+η1b(t1 + τ)δ
(
V̇ (t1)

)

≤−β b(t1 + τ)
∣∣∣ ˆ̇V (t1)

∣∣∣+η1b(t1 + τ)β1

∣∣∣ ˆ̇V (t1)
∣∣∣

=−(β −η1β1)b(t1 + τ)
∣∣∣ ˆ̇V (t1)

∣∣∣< 0 (5.29)

In addition, ϕ (φ (t1 + τ) ,u(t1)) is upper bounded and
∣∣∣ ˆ̇V (t1 − τ)

∣∣∣ is nonzero. Thus,

there exists a positive number η2 such that the following inequality is held:
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ϕ (φ (t1 + τ) ,u(t1))−η2b(t1 + τ)
∣∣∣ ˆ̇V (t1− τ)

∣∣∣< 0 (5.30)

Therefore, using (5.29) and (5.30) in (5.28), we obtain

V̇ (t1 + τ)≤−(β −η1)b(t1 + τ)
∣∣∣ ˆ̇V (t1)

∣∣∣
+

[
ϕ (φ (t1 + τ) ,u(t1))−η2b(t1 + τ)

∣∣∣ ˆ̇V (t1 − τ)
∣∣∣
]
< 0 (5.31)

(5.31) means that

V̇ (t)< 0 for t > t1 (5.32)

The analysis from (5.25) to (5.32) shows that the sliding mode controller in (5.8) is
capable of continuously reducing the value of V̇ (t) from the positive to the negative,
and the closed-loop trajectory can then be driven to the sliding mode surface in
a finite time, as discussed for the case that V̇ (t − τ) < 0, and guarantees that the
system output x(t) asymptotically converges to zero on the sliding mode surface
s(t) = 0.

In summary, based on the analysis from (5.18) to (5.32), we conclude that the new
sliding mode controller in (5.8) guarantees that the closed-loop system trajectory
reaches the sliding mode surface s(t) = 0 in a finite time and the system output x(t)
can then asymptotically converge to zero on the sliding mode surface. ��
Remark 5.4. It should be noted that, if s(n−2) (t) 	= 0 at t = 0+, the control process
with the controller in (5.8) guarantees that, for t > 0+, s(n−2) (t) cannot be zero in any
time interval. This is because, if s(n−2) (t) equals zero in a time interval, the signals
s(n−3) (t), s(n−4) (t), , s(t) will all go infinity. This contradicts to the facts that (i) the
controller u(t) in (5.8) can drive the state variable vector z(t) to converge to zero in
a finite time if V̇ (t − τ) < 0 and (ii) the controller u(t) is capable of continuously
reducing the value of V̇ (t) from the positive to the negative and then drives the state
variable vector z(t) to converge to zero in a finite time, as shown in the analysis of
Theorem 5.1. However, it is possible for s(n−2) (t) to be zero at some single points
that are neither the local minima nor the global minimum. Since the system trajectory
cannot remain at these points, it must move toward the system origin.

Remark 5.5. The intelligent learning capability of the proposed sliding mode control
technique has been clearly seen from the proof of Theorem 5.1. The primary infor-
mation to help the controller to make decision at the time t is the value of ˆ̇V (t − τ),
the approximation of V̇ (t − τ), which is the most recent information of the gradient

of the Lyapunov function at the time t− τ with the property that sign
(

ˆ̇V (t − τ)
)

=

sign
(
V̇ (t − τ)

)
, for V̇ (t − τ) 	= 0, as the time delay τ is sufficiently small. In par-

ticular, if V̇ (t − τ) < 0, the controller ensures that V̇ (t) < V̇ (t − τ) < 0 and V̇ (t)
is more negative as the time t is increased. Thus, the closed-loop trajectory reaches
the sliding mode surface in a finite time. On the other hand, if V̇ (t − τ) > 0, the
controller will gradually reduce the value of V̇ (t) from the positive to the negative
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and then drives the closed-loop trajectory to reach the sliding mode surface in a fi-
nite time. On the sliding mode surface, the system output asymptotically converges
to zero.

Remark 5.6. It is seen that the control component η2
∣∣V̇ (t −2τ)

∣∣ in the correction
term in (5.9) makes the V̇ (t) more negative and thus speeds up the convergence of
the state variable vector z(t) toward the sliding mode surface. However, the most
important role of the term η2

∣∣V̇ (t −2τ)
∣∣ in this new sliding mode control system is

that, at the points where V̇ (t) = 0 but V (t) 	= 0, it is able to drive V̇ (t) to cross the
zero from the positive to the negative and then guarantees the closed-loop dynamics
to reach the sliding mode surface in a finite time, as discussed from (5.25) to (5.32).

Remark 5.7. It should be highlighted that the sliding mode controller in (5.8) does
not require any information about the upper and/or the lower bounds of the uncertain
system parameters and the uncertain dynamics, and is designed based only on the
current measurements of the state variables and the most recent information about
the system input and output as well as the estimate of the gradient of the Lyapunov
function. Therefore, the proposed sliding mode control technique is robust with
respect to system uncertainties.

5.4 A Simulation Example

In order to illustrate the performance of the proposed sliding mode control
technique, we consider the following third-order linear system:

(t) =−a1x(t)−a2ẋ (t)−a3ẍ(t)+ bu(t) (5.33)

where system parameters and the initial values of the state variables are a1 = 6,
a2 = 11, a3 = 6, b = 1, x(0) = 0.3, ẋ (0) = 0 and ẍ(0) = 0, respectively. Defining
the following first-order sliding variable:

s(t) = ẋ(t)+λx(t) (5.34)

and differentiating s(t) with respect to the time t for two times, we obtain the fol-
lowing state equation:

[
ṡ(t)
s̈(t)

]
=

[
0 1
0 0

][
s(t)
ṡ(t)

]
+

[
0

f (t)

]
+

[
0
2

]
u(t)+

[
0

λ ẋ(t)

]
(5.35)

with

f (t) =−(6x(t)+ 11ẋ(t)+ 6ẍ(t)) (5.36)

Based on (5.8), we design the sliding mode controller as follows:

u(t) = u(t − τ)− ṡ(t)

|ṡ (t)|2
(
η1

ˆ̇V (t − τ)+β
∣∣∣ ˆ̇V (t − τ)

∣∣∣+η2

∣∣∣ ˆ̇V (t −2τ)
∣∣∣
)

(5.37)
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(a) The sliding variable s(t)

(b) The system output x(t)

(c) The control input u(t)

Fig. 5.1 x0 = [0.3 0 0],τ = 0.01s.
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(a) The sliding variable s(t)

(b) The system output x(t)

(c) The control input u(t)

Fig. 5.2 Increased sampled period from τ = 0.01s to τ = 0.02s
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(a) The sliding variable s(t)

(b) The system output x(t)

(c) The control input u(t)

Fig. 5.3 Nonzero initial velocity ẋ (0) = 0.1



5 A New Design of Sliding Mode Control Systems 165

The Runge-Kutta method is used to solve the closed-loop nonlinear differential
equation numerically. Figure 5.1(a) - Figure 5.1(c) show the sliding variable s(t),
the system output x(t) and the control signal u(t), respectively, where the slid-
ing mode parameter is chosen as λ = 10, the sampling period ΔT = 0.01s, the
time delay τ = 0.01s, and the control parameters in the correction term are set to
η1 = 0.0025, β1 = 0.003 and η2 = 0.005, and scalar β in (5.13) is computed using
(5.15) as: β = 2η1β1 = 0.00015. It is seen that the sliding variable s(t) converges
to zero in a finite time, the system output x(t) then exponentially converges to zero
on the sliding mode surface, and the control signal u(t) is completely chattering-
free.

Figure 5.2(a) - Figure 5.2(c) show the sliding variable s(t), the system output
x(t) and the control signal u(t), respectively, where the sliding mode parameter λ ,
the control parameters η1, β1 and η2 and the scalar β are the same as the ones in
Figure 5.1(a) - Figure 5.1(c), but the sampling period (the time delay τ) is increased
from 0.01s to 0.02s. It is seen that the system performance does not degenerated by
the lower sampling frequency, instead, the overshoots are greatly reduced and the
convergence is faster than the one in Figure 5.1(a) - Figure 5.1(c).

Figure 5.3(a) - Figure 5.3(c) show the sliding variable s(t), the system output x(t)
and the control signal u(t), respectively, where the sliding mode parameter λ , the
control parameters η1, β1, η2 and the scalar β , the sampling period (the time delay
τ), the initial values of the position x(t) and the acceleration ẍ(t) are the same as
the ones in Figure 5.2(a) - Figure 5.2(c), but the initial value of the velocity signal
ẋ(t) is chosen as ẋ(0) = 0.1. It is seen that, although the controller takes more time
to handle the effect of the non-zero ẋ(0) and the large overshoots of both s(t) and
x(t) occur in Figure 5.3(a) and Figure 5.3(b), respectively, both the sliding variable
s(t) and the system output x(t) converge to zero, and the control signal remains the
chattering-free.

5.5 Conclusions

In this chapter, a new sliding mode control technique with a learning control struc-
ture has been developed. The theoretical analysis and the simulation results have
shown that the new sliding mode control technique can not only drive the closed-
loop trajectory to reach the sliding surface in a finite time and guarantee the de-
sired closed-loop dynamics with the zero-error convergence on the sliding mode
surface, but also have the privilege of chattering-free characteristic, which makes
the proposed sliding mode control potentially have a wide range of applications in
the near future. The further work for using the proposed new sliding mode con-
trol technique to control MIMO linear and nonlinear systems, sampled data sys-
tems, dynamical fuzzy systems and consensus networks is under the authors’
investigation.
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15. Rodrigueza, A., De Leóna, J., Fridman, L.: Quasi-continuous high-order sliding-mode
controllers for reduced-order chaos synchronization. International Journal of Control 43,
948–961 (2008)

16. Seshagiri, S., Khalil, H.K.: On Introducing integral action in sliding mode control. pp.
1473–1478 (2002)

17. Slotine, J.J.E.: Sliding controller design for nonlinear systems. International Journal of
Control 40, 421–434 (1984)

18. Slotine, J.J.E., Sastry, S.S.: Tracking control of nonlinear system using sliding surface
with application to robotic manipulators. International Journal of Control 40, 46–92
(1983)

19. Utkin, V.: Sliding Modes in Control and Optimization. Springer, Berlin (1992)
20. Utkin, V., Young, K.D.: Methods for constructing discontinuity planes in multidimen-

sional variable structure systems. Automat. Remote Contr. 39, 1466–1470 (1978)
21. Wang, D.: A simple iterative learning controller for manipulators with flexible joints.

Automatica 31, 1341–1344 (1995)



5 A New Design of Sliding Mode Control Systems 167

22. Xu, J., Qu, Z.: Robust iterative learning control for a class of nonlinear systems. Auto-
matica 34, 983–988 (1998)

23. Xu, J., Yan, R.: Iterative learning control design without a priori knowledge of the control
direction. Automatica 40, 1803–1809 (2004)

24. Young, K.D.: Design of variable structure model following control system. IEEE Trans-
action on Automatic Control 23, 1079–1085 (1978)

25. Yu, X., Kaynak, O.: Sliding mode control with soft computing: A survey. IEEE Transac-
tion on Industrial Electronics 56, 3275–3285 (2009)

26. Zinober, A.: Introduction to variable structure control. Deterministic Nonlinear Control.
Peregrinus, U.K (1990)



Chapter 6
Second-Order Sliding Mode Approaches to
Control and Estimation for Fractional Order
Dynamics

A. Pisano, M. Rapaić, and E. Usai

Abstract. This chapter outlines some results concerning the application of second-
order sliding-mode techniques in the framework of control and estimation problems
for some classes of fractional-order systems (FOS). Concerning the control prob-
lems, a second-order sliding mode control approach is developed to stabilize a class
of linear uncertain multivariable fractional-order dynamics. Concerning estimation
and observation problems, two main results are illustrated. A method for recon-
structing in finite time an external disturbance acting on a known FOS is presented,
and, as a second instance, a method for estimating the discrete state of a switched
FOS is discussed. Both the schemes make use of second-order sliding mode ob-
servers. The method for discrete state reconstruction in switched FOS find useful
application in the framework of fault detection, as shown in the experimental section
part. Key point of all the approaches herein presented is the use of fractional-order
sliding manifolds. Simple controller/observer tuning formulas are constructively de-
veloped along the paper by Lyapunov analysis. Simulation and experimental results
confirm the expected performance.

6.1 Introduction

Fractional–order systems, i.e. dynamical systems described using fractional (or,
more precisely, non-integer) order derivative and integral operators, are studied with
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growing interest in recent years [16, 25, 44, 41, 14], and it has become apparent that
a large number of physical phenomena can be modeled by fractional–order mod-
els in the areas of bioengineering [30], transport phenomena [4], economy [45] and
mechanics [1, 5, 43], medical sciences [17] and others (see [44]).

The pioneering applications of fractions calculus in control theory date back to
the sixties [31]. In the nineties, Oustaloup proposed a non-integer robust control
strategy named CRONE (Commande Robuste d’Ordre Non-Entier) [37]. Another
well known fractional control algorithm is the fractional PID (FPID, or PIλDμ )
controller introduced by Podlubny [41, 42], and its “partial” versions PIλ and PDμ

(see e.g. the recent paper [29]).
Recently, optimal control theory has been generalized to incorporate models of

fractional order [1, 2, 3, 24] and fractional calculus is penetrating other nonlinear
control paradigms such as the model-reference adaptive control [23, 52, 26], or
flatness-based control [32].

In the present chapter we deal with several classes of uncertain commensurate
fractional-order linear systems, including both time-invariant and switched dynam-
ics. Commensurate FOS are vastly studied in the literature [23,11,48] and can been
seen as the natural generalization of state-space models of conventional,
integer-order, systems.

Although fractional calculus has been previously combined with sliding mode
(SM) techniques [49, 50] in controlling linear and nonlinear integer-order systems
[10, 19], SM techniques have been applied to control fractional-order systems only
recently, see [46,20,47]. In [46] perfectly known linear MIMO dynamics were stud-
ied, and a first-order sliding mode stabilizing controller was suggested, while in [20]
nonlinear single-input fractional-order dynamics expressed in a form that can be
considered as a fractional-order version of the chain-of-integrators “Brunowsky”
normal form were studied. Sliding manifolds containing fractional-order derivatives
were used in both works [46, 20]. In [47] the control of a special class of Single In-
put Single Output (SISO) switched fractional order systems (SFOS) is addressed
from the viewpoints of the Generalized Proportional Integral (GPI) feedback con-
trol approach and a sliding mode based Σ −Δ modulation implementation of an
average model based designed feedback controller. In [15] an application of SMC
to fractional order dynamics arising in economics was presented.

The main drawback of sliding mode control is the so-called “chattering” phe-
nomenon, namely the occurrence of undesirable high-frequency vibrations of the
system variables which are caused by the discontinuous high-frequency nature of
first-order sliding-mode control signals. The second (and higher) order sliding mode
control (2-SMC) approach is a recent and quite active area of investigation in the
sliding mode control theory [6, 27, 7]. It was developed starting from the mid eight-
ies [21,22] to the main aim of improving the control accuracy and alleviating the un-
desired chattering effect by removing the control discontinuity while keeping similar
properties of robustness analogous as those featured by the conventional first-order
sliding mode approach.
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The design of nonlinear (possibly discontinuous) observers for FOS is a topic not
yet addressed in the literature. Although some results are known about the estima-
tion and compensation of disturbances [12], the state observer design is up to now
limited to the standard application of Luenberger-like observers for perfectly known
FOS [13], and basic issues of observability are still under study [9, 35].

In the present paper, the second-order sliding mode approach is applied for con-
trol and estimation purposes in the framework of FOS. A key point of the proposed
approaches is the use of special fractional-order sliding variables whose first-order
total time derivatives contain integer derivatives of the state variables only, thus
being manageable by conventional Lyapunov theory.

As for controller design, we revise the results achieved in the recent authors’ work
[40]. As for the observer design we present original material concerning two distinct
problems. A method for reconstructing in finite time an external disturbance acting
on a known FOS is presented, and, furthermore, a method for estimating the discrete
state of a switched FOS is discussed. Both the schemes make use of second-order
sliding mode observers. The method for discrete state reconstruction in switched
FOS find useful application in the framework of fault detection, as shown in the
experimental section part. The proposed controllers and observers are very simple
to implement and characterized by simple and constructive tuning conditions.

The outline of the paper is as follows. The next Section 6.2 recalls some pre-
liminaries on fractional calculus. Section 6.3 contains the problem formulation of
the control problem dealt with, namely the stabilization of perturbed linear mul-
tivariable FOS, along with the suggested procedures for sliding manifold design
(Subsect. 6.3.1), controller design (Subsect. 6.3.2), and simulation results. Section
6.4 contains the proposed results concerning estimation and observation, namely a
method for disturbance estimation in a class of FOS (Subsect. 6.4.1), and a method
for discrete state identification in switched FOS (Subsect. 6.4.2), along with the cor-
responding Simulation results (Subsect. 6.4.3). Section 6.5 presents an experimental
application of the approach in Subsection 6.4.2 to a problem of fault diagnosis in a
hydraulic system. Section 6.6 draws finally some concluding remarks.

6.2 Preliminaries on Fractional Calculus

Fractional calculus (FC) is a remarkably old topic. Its origins can be traced back
to the end of seventeenth century, to the famous correspondence between Marquise
de L’Hospital and G. W. Leibnitz in 1695. Since than it has been addressed by
many famous mathematicians, including Euler, Lagrange, Laplace, Fourier and oth-
ers. However, in consequent centuries it remained a purely theoretical topic, with
little if any connections to practical problems in physics and engineering. In recent
decades, FC is found to be a valuable tool in many applied disciplines, ranging from
mechanics and elasticity to control theory and signal processing. The first text de-
voted solely to fractional calculus is the book by Oldham and Spanier [36] published
in 1974. Since then, numerous texts emerged (see e.g. [41, 25]).
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Several definitions of fractional operators appear in literature. In the present
chapter the so called Riemann–Liouville approach is adopted. The Riemann–
Liouville fractional integral of order α ≥ 0 is defined as

Iαx(t) =
1

Γ (α)

∫ t

0
x(τ)(t − τ)α−1dτ (6.1)

where x(t) is a scalar or a vector signal and Γ (α) is the Euler’s Gamma function

Γ (α) =
∫ ∞

0
να−1e−νdν. (6.2)

For integer values of integration order α Riemann–Liouville fractional integral is
equivalent to the classical n-fold integral. In fact, in such a case eq. (6.1) reduces to
the well known Cauchy formula

Inx(t) =
1

(n−1)!

∫ t

0
x(τ)(t − τ)n−1dτ. (6.3)

The Riemann–Liouville fractional derivative of order α ≥ 0 is defined as

Dαx(t) =
dn

dtn In−α (6.4)

where n is the integer number such that n− 1 < α ≤ n. It can be proven, although
this is not trivial, that for integer values of α fractional derivative coincides with the
classical one. Within the current paper α ∈ (0,1) is of primary interest. For such
values of α the definition (6.4) becomes

Dαx(t) =
1

Γ (1−α)
d
dt

∫ t

0

x(τ)
(t − τ)α

dτ (6.5)

Let us prove the following statement that will be used in the sequel.

Lemma 6.1. Consider a vector signal z(t)∈R
m. Let α ∈ (0,1). If there exists t1 <∞

such that
Iαz(t) = 0 ∀t ≥ t1 (6.6)

then
lim
t→∞

z(t) = 0. (6.7)

Proof of Lemma 6.1. To prove the claim, first note that (6.6) is equivalent to Iαz(t)=
a(t) where a(t) is an arbitrary function identically equal to zero for t ≥ t1. On
the other hand, since the fractional derivative is the left inverse of the fractional
integral [25], this is equivalent to saying that z(t) = Dαa(t), or

z(t) =
1

Γ (1−α)
d
dt

∫ t

0

a(τ)
(t − τ)α

dτ (6.8)

For large values of t, in fact for all t ≥ t1, this reduces to
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z(t) =
1

Γ (1−α)
d
dt

∫ t1

0

a(τ)
(t − τ)α

dτ (6.9)

because a(t) clips the upper limit of the integral. The time variable t can now be seen
as a parameter, and under mild regularity conditions for the function a(τ) (namely,
function g(t,τ) = a(τ)(t − τ)−α must be absolutely integrable in the interval τ ∈
[0,t1]) the derivative operator can be brought inside the integral, yielding

z(t) =
1

Γ (1−α)

∫ t1

0
a(τ)

∂
∂ t

1
(t − τ)α

dτ =
−α

Γ (1−α)

∫ t1

0
a(τ)

1
(t − τ)α+1 dτ

(6.10)
Now, it is clear that

|z(t)| ≤ α
Γ (1−α)

∫ t1

0
|a(τ)| 1

|t − τ|α+1 dτ (6.11)

and, since the right hand side tends to zero when t approaches infinity, |z(t)| must
be also. Lemma 6.1 is proven. ��
The conditions for the asymptotic stability of fractional order dynamics are well
understood for commensurate linear time-invariant FOS

Dαz = Az, z ∈ Rm, α ∈ (0,1) (6.12)

for which the necessary and sufficient condition is known in terms of a constraint
on the eigenvalues of the system characteristic matrix. The following Lemma holds:

Lemma 6.2. [11, 48] Consider system (6.12), and let λi(A) (i = 1,2, ...,m) be
the eigenvalues of matrix A. The system is asymptotically stable if and only if the
following condition holds

|arg(λi(A))|> α
π
2
, i = 1,2, ...,m (6.13)

The above Lemma recovers the well known results of classical control theory when
α = 1, and interestingly states that asymptotically FOS are allowed to have eigen-
values with positive real part, provided that the imaginary part is sufficiently large
in magnitude.

6.3 Second-Order Sliding Mode Controllers for Multivariable
Linear FOS

Consider a fractional-order linear multivariable system affected by a matched
unknown perturbation

Dαx(t) = Ax(t)+ B(u(t)+ d (t)) 0< α < 1 (6.14)
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where x(t) ∈ R
n represents the “state” vector, which is supposed to be available for

measurement, u(t) ∈ R
m represents the input vector, A and B are the characteristic

and control matrices, having appropriate dimensions, and d (t) is an uncertain, suffi-
ciently smooth, disturbance. The class of fractional-order dynamics (6.14) is called
commensurate because all internal variables x(t) are differentiated with the same or-
der α . In this paper, we consider only the commensurate case. However, this is not
a major restriction, since a variety of fractional order models are in fact commen-
surate. For example, all input/ouput models with fractional derivatives of rational
order can be seen as commensurate, with α equal to the reciprocal value of the least
common multiple of denominators of all derivatives appearing in the model.

As noted earlier, (6.14) can be seen as a generalization of classical state-space
model. However, fractional order systems are inherently infinite dimensional, and
therefore the components of x(t) can not be seen as states of the considered systems.
To emphasize this, and in accordance to [23], the term vector-space model will be
used in the sequel to denote (6.14). The components of x(t) will be denoted as the
internal variables.

Let us introduce the following assumptions:
Assumption A1. (A,B) is a controllable pair, with the matrix B being full rank

(rank(B) = m)
Assumption A2. A known constant dMd exists such that ‖ d

dt d(t)‖ ≤ dMd

The control task is the asymptotic stabilization of the system (6.14).
We define the m-dimensional sliding manifold in the form

σ = CI1−αx = 0 (6.15)

where σ ∈ R
m and C ∈ R

m×n is a constant matrix.

6.3.1 Sliding Manifold Design

This step concerns the design of the matrix C in order to assign a prescribed stable
sliding mode dynamics.

The “sliding mode dynamics” is the dynamics of the original system after that
it has been constrained to evolve on the sliding manifold σ = 0. Considering the
special form (17.2) for the selected sliding manifold, the sliding mode dynamics is
actually described by a fractional-order integro-differential system of the type

Dαx = Ax + B(u + d)
σ = CI1−αx = 0

(6.16)

with σ = [σ1 σ2 . . . σm].
The standard approaches to sliding mode dynamics analysis for linear MIMO

systems [18] do not readily apply to the considered case because of the sliding vari-
able σ do not contain x directly, but its fractional integral of order (1−α) instead.
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From the linearity of the fractional integral operator, the sliding manifold can be
written in the form

σ = I1−α(Cx) = 0 (6.17)

The integral of order (1−α) of every component of vector Cx is steered to zero.
This means, according to Lemma 6.1, that every component of vector Cx tends to
zero asymptotically starting from the moment at which σ is identically zero.

The analysis of the sliding mode dynamics can then refer to the following system

Dαx = Ax + B(u + d) (6.18)

Cx = η(t) (6.19)

where η(t) is an asymptotically vanishing term. Let matrix C be selected in such a
way that the square matrix CB, of order m, be nonsingular.

Since rank(B) = m there exist an invertible transformation matrix T such that

T B =
[

0
B2

]
(6.20)

where B2 ∈ R
m×m is nonsingular. The transformed internal vector z can be con-

structed as
z = T x (6.21)

with z = [zT
1 zT

2 ]T , z1 ∈ R
n−m, z2 ∈ R

m, such that the transformed system dynamics
is

Dαz1 = A11z1 + A12z2 (6.22)

Dαz2 = A21z1 + A22z2 + B2(u + d) (6.23)

CT−1z = η(t) (6.24)

with the matrices Ai j such that

TAT−1 =
[

A11 A12

A21 A22

]
(6.25)

Actually, the output map equation (6.24) of the transformed system represents an
m-dimensional algebraic constraint involving the system internal variables xi(t) that
reduces the order of the sliding mode dynamics with respect to that of the original
plant. Let us partition matrix CT−1 as

CT−1 = [C1 C2] (6.26)

in such a way that
CT−1z = C1z1 +C2z2 (6.27)

The assumption that the matrix product CB is nonsingular implies that the matrix
C2 is nonsingular too [18]. One can rewrite the output equation as
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z2 =−C−1
2 C1z1 +C−1

2 η(t) (6.28)

By considering (6.28) into the first of (6.24) it yields the following sliding mode
dynamics governing equation

Dαz1 = (A11−A12C
−1
2 C1)z1 + A12C

−1
2 η(t) (6.29)

z2 = −C−1
2 C1z1 +C−1

2 η(t) (6.30)

Thus, the criteria for selecting the C matrix are as follows:
- CB must be nonsingular
- M = C−1

2 C1 must be such that the following dynamics is asymptotically stable

Dαz1 = (A11−A12M)z1 + A12C
−1
2 η(t) = Āz1 + A12C−1

2 η(t) (6.31)

with implicit definition of matrix Ā = A11 −A12M. Since signal η(t) is asymptot-
ically vanishing, the asymptotic stability properties of system (6.31) will be gov-
erned by its characteristic matrix Ā only. Once the asymptotic convergence to zero
of vector z1 is ensured by the appropriate selection of the matrix M, the successive
asymptotic vanishing of vector z2 trivially results from (6.30).

Thus, by Lemma 6.2, the matrix M should be designed to place the eigenvalues
of the matrix Ā = A11−A12M according to the restriction (6.13). The possibility of
assigning the eigenvalues of the matrix Ā = A11 −A12M is grant by the following
Proposition.

Proposition 6.1. [18, p. 39] The matrix pair (A11,A12) is controllable if and only
if the matrix pair (A,B) is controllable.

It should be noted that the above design procedure, fixing M = C−1
2 C1 only, does not

uniquely determine matrix C. A computationally convenient way to set the matrices
C1 and C2 is according to C2 = Im, C1 = M, which gives rise to

C = [M Im]T (6.32)

where Im is the m-th order identity matrix.

Remark 6.1. A possible choice for the transformation matrix T is

T =
[

B⊥
T1

]
(6.33)

where B⊥ is a matrix such that B⊥B = 0 and B⊥ is linearly independent of B, and T1

is any matrix that makes T and T1B nonsingular. A possible choice for T1 is

T1 = (BT B)−1BT (6.34)

Clearly, this choice guarantees the decomposition (6.20), with B2 = T1B = I.
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6.3.2 Control-Input Design

This step concerns the design of a control input vector u(t) steering the system
(6.14) in finite time onto the sliding manifold (17.2). The task is not trivial due to,
both, the presence of the unknown disturbance and the fractional-order nature of the
system dynamics. By (6.4) it yields that

σ̇ = C
d
dt

I1−αx = CDαx (6.35)

In light of the plant equation (6.14) it follows that the dynamics of the sliding vari-
able σ is of integer order and uniform vector relative degree one.

σ̇ = CAx +CB(u + d) (6.36)

The control vector u = [u1 u2 . . . um] is expressed as follows

u = (CB)−1v (6.37)

v = −CAx(t)− k1σ − k2|σ |1/2sign(σ)+ w (6.38)

ẇ = −k3sign(σ) (6.39)

where the following notation is used to give (6.38)-(6.39) a more compact
representation.

|σ |1/2sign(σ) = [
√|σ1|sign(σ1), . . . ,

√|σm|sign(σm)]T
(6.40)

The next Theorem is proven.

Theorem 6.1. Consider system (6.14) satisfying the Assumptions A1, A2, and the
sliding manifold (17.2) with the C matrix designed according to the procedure given
in the Section 6.3.1. Then, the control law (6.37)-(6.40), with the scalar parameters
k1, k2, k3 fulfilling the following tuning conditions

k1 > 2
√
ρ k2 > 0 k3 > ρ

√
k1 ρ = ‖CB‖dMd (6.41)

will steer the system (6.14) asymptotically to the origin.

Proof. The closed loop system dynamics is obtained as follows considering (6.37)
into (6.36)

σ̇ = CBd− k1σ − k2|σ |1/2sign(σ)+ w
ẇ =−k3sign(σ)

(6.42)

Define the following new variable z = w +CBd, and rewrite system (6.42) in the
new σ − z coordinates

σ̇ =−k1σ − k2|σ |1/2sign(σ)+ z
ż =−k3sign(σ)+CB d

dt d(t)
(6.43)
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The dynamics of the variable pairs (σi,zi) ∈ R
2, i = 1,2, ...,m, are decoupled one

each other, then to simplify the stability analysis it is convenient to refer to the
decoupled systems independently

σ̇i =−k1σi− k2|σi|1/2sign(σi)+ zi i = 1,2, ...,m
żi =−k3sign(σi)+ ciB d

dt d(t)
(6.44)

with ci being the i-th row of matrix C. For the uncertain term ciB d
dt d(t) the following

bound holds by virtue of assumption A3

∣∣∣∣ciB
d
dt

d(t)
∣∣∣∣≤ ‖CB‖dMd (6.45)

The dynamics (6.44)-(6.45) is a special case of the more general second-order dy-
namics studied in [34, Theorem 5]. The same Lyapunov function as that used in [34]
is considered:

Vi = 2k3|σi|+ 1
2

z2
i +

1
2

(
k1|σi|1/2sign(σi)+ k1σi− zi

)2
(6.46)

which can be rewritten as follows

Vi = ξ T
i Hξi (6.47)

ξi =

⎡
⎣
|σi|1/2sign(σi)

σi

zi

⎤
⎦H =

⎡
⎣

(4k3 + k2
2) k1k2 −k2

k1k2 k12 −k1

−k2 −k1 2

⎤
⎦ (6.48)

By evaluating the derivative of (6.47)-(6.48) along the trajectories of system (6.44)-
(6.45), and considering the tuning rules (6.41), it can be found two positive constants
γ1 and γ2 such that

V̇i ≤−γ1Vi− γ2
√

Vi (6.49)

which easily implies, by simple application of the comparison Lemma, that all the Vi

Lyapunov functions, i = 1,2, ...,m, tend to zero in a finite time, and the same holds
for the vector σ . As shown in the Section 6.4, the finite time vanishing of the sliding
vector variable σ guarantees that all the x(t) solutions of the uncertain system (6.14)
will tend globally and asymptotically to zero. This proves the Theorem. ��

6.3.3 Implementation Issues

In general, fractional order dynamics describe the behavior of infinite dimensional
systems by means of a finite-dimensional vector whose components are related
one each other by fractional-order differential relationships. In the present chap-
ter it is shown that if the desired sliding surface is also defined in the fractional
manner (17.2) then its derivative can be exactly expressed as in (6.36) through the
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linear right-hand side of the commensurate fractional-order dynamics (6.14).
Starting from this place, all specifics related to the fractional calculus completely
disappear, and never appear again. This means that the stability of an infinite dimen-
sional system has been converted into standard sliding-mode analysis of a
finite-dimensional dynamics.

The proposed approach requires the availability of the sliding variable (17.2)
which is related to the vector space via a fractional order integration operator of or-
der (1−α). Fractional order operators are infinite dimensional ones that do not allow
an exact algorithmic on-line computation. Thus, it is impossible to measure exactly
the sliding variable vector. However, numerical approximations are available that
allow to obtain an estimate of the fractional-order integral of an available signal.
Among the most well-known ones are the methods based on Oustaloup’s rational
approximation. This and other analogue realizations of fractional-order operators
were discussed in [38]. Different numerical approximations are reported in [51, 8].
By means of these methods, rational approximations of fractional-order operators
are obtained in the form of FIR or IIR digital filters. By choosing filters of suffi-
ciently high order, the approximation error can be made arbitrarily small in a desired
frequency range.

In this chapter the fractional integrals were computed numerically in a “general
purpose” fashion (i.e. with no pre-specified frequency range of interest), using the
left Euler approximation of the fractional integral (6.1). The entire time interval
[0,t], with t = NT , is divided into segments of length T , and the sampling instants
tn = nT (n = 0,1, ...,N) will be considered in the approximate formula explained as
follows

Iαx(tn) =
1

Γ (α)

∫ tn

0
x(τ)(tn − τ)α−1dτ

=
1

Γ (α)

n

∑
k=0

∫ (k+1)T

kT
x(τ)(nT − τ)α−1dτ

≈ 1
Γ (α)

n

∑
k=0

x(kT )
∫ (k+1)T

kT
(nT − τ)α−1dτ

=
n

∑
k=0

x(kT )w(nT − kT ), (6.50)

where,

w(nT − kT ) =
1

Γ (α)

∫ (k+1)T

kT
(nT − τ)α−1dτ. (6.51)

The above approximation to the fractional integral retains the hereditary properties
of fractional operators: the entire process history is taken into consideration. How-
ever, if the sampling time T is small, the number of terms in the approximation sum
(6.50) may become unreasonably high even for relativelly small values of time t.
Therefore, the maximal number of terms was limited, and the approximation used
in the sequel is
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Iαx(tn) =
n

∑
k=max(0,n−N)

x(kT )w(nT − kT ), (6.52)

with nmax = 5000. Fractional derivatives were approximated according to (6.4),
where the first order derivative was approximated by finite differences. The resulting
approximate formulas implement, therefore, high-order FIR filters.

The overall approximation error in the sliding variable estimation can be under-
stood as an additive measurement noise corrupting the sliding variable. As it is well
known, sliding-mode based variable structure control algorithms feature good prop-
erties of robustness against the measurement noise and discretization effects.

6.3.4 Simulation Results

Distributed parameters processes, heat transfer in particular, constitute a rich area
of application of fractional calculus. Recently, Melchior and coworkers [ [44], page
493] considered a test bench involving a long aluminum rod heated from one of its
sides, and showed a good agreement between the experimental data and a commen-
surate fractional-order linear model of the system. The input u(t) to such model is
the thermal flux applied at one end of the rod, and the output is the actual tempera-
ture at a prescribed section of the rod. The obtained model is commensurate, and its
vector-space formulation is as follows

D0.5x(t) =

⎡
⎣

0 1 0
0 0 1
0 −0.0601251 −0.42833

⎤
⎦x(t)+

⎡
⎣

0
0
1

⎤
⎦u(t). (6.53)

In the sequel, we will assume that all of the vector-space variables are accessible
for measurement and will use this model to test the control strategies discussed
previously. We also added a matching disturbance

d(t) = 0.9sin(0.2πt) (6.54)

as in (6.14) to test the robustness properties of the suggested sliding mode con-
trollers. Clearly, the bounding constant dMd in the Assumption A2 can be the
selected as

dMd = 1 (6.55)

In order to design the vector C defining the sliding manifold the transformation
matrix T is computed first according to (6.33)-(8.1). It yields

T =

⎡
⎣

0 1 0
−1 0 0
0 0 1

⎤
⎦ (6.56)

The resulting decomposition (6.25) yields
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A11 =
[

0 0
−1 0

]
, A21 =

[
0
0

]
, A12 =

[−0.0601 0
]
, A12 =−0.4283 (6.57)

The matrix M = [5 −6] places the eigenvalues of matrix A11−A12M in the location
[−2−3], which is selected according to the stability condition (6.13) of Lemma 6.2.
Vector C defining the chosen sliding manifold is then derived according to (6.32) as
C = [6 5 1]. Since CB = 1 the norm of CB, which is involved in the controller tuning
formulas, takes also unit value,i.e. ‖CB‖ = 1. The suggested second order sliding
mode control algorithm (6.37)-(6.38) has been implemented with the following pa-
rameter values, that are selected according to the tuning inequalities (6.41): ρ = 1,
k1 = 3, k2 = 3, k3 = 2.

In all tests, the sampling period Ts = 0.0001s has been used. The fractional order
dynamics is simulated by first computing the fundamental matrix Φ(t), equal to the
inverse Laplace transform of (s0.5I−A)−1, where s is the Laplace variable and I is
the unit matrix of appropriate size. The inverse Laplace transform was calculated
using the series expansion method introduced by Atanacković et al. [4]. The vector-
space response is then calculated according to

x(t) = Φ(t)I0 +
∫ t

0
Φ(t − τ)Bu(τ)dτ (6.58)

with I0 = limt→0 Dα−1x(t) being the initial condition (not equal to x(0)). In the
following simulations I0 was set to [0 0 1].

The Figure 6.1 shows the time evolution of the three internal variables. The figure
6.2 displays the control input u(t) which is a continuous function of time. The time
history of the sliding variable σ(t) is reported in the Figure 6.3. The test confirms
the good robustness properties of the approach.

6.4 Second-Order Sliding Mode Based Observation and
Estimation for FOS

Two distinct problems shall be addressed later on. A method for reconstructing in
finite time an external disturbance acting on a known FOS is presented, and, fur-
thermore, a method for estimating the discrete state of a switched FOS is discussed.
Both the schemes make use of second-order sliding mode observers, and, in partic-
ular, the latter will be experimentally verified through its application to a problem
of fault diagnosis (Section 6.5).

6.4.1 Disturbance Observer for FOS

Consider now a generalized form of the fractional-order system (6.14):

Dαx(t) = Ax(t)+ Bu(t)+ F + d (t) 0< α < 1 (6.59)
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Fig. 6.1 The internal variables x1,x2,x3.
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Fig. 6.2 The control input u.

where x(t) ∈ R
n represents the system’s vector-space model [23], whose compo-

nents (the internal variables) are supposed to be available for measurement, u(t) ∈
R

m represents the known input vector, A and B are the characteristic and control
matrices and F is an affine term, having appropriate dimensions, and d (t) ∈ R

n is a
sufficiently smooth uncertain disturbance.
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Fig. 6.3 The sliding variable σ .

The problem of reconstructing the disturbance d(t) is tackled.
Assume what follows
Assumption A3. It can be found a constant dMd such that

∥∥∥∥
d
dt

d(t)
∥∥∥∥≤ dMd (6.60)

It is proposed the next observer

Dα x̂(t) = Ax(t)+ Bu(t)+ F + w(t) (6.61)

where the observer injection input term w(t) is computed by means of the dynamical
super-twisting plus linear controller:

ε = I1−α(x̂− x) (6.62)

w = w1 + w2 (6.63)

w1 = −k1ε− k2|ε|1/2sign(ε) (6.64)

ẇ2 = −k3sign(ε) (6.65)

By a proper generalization of the stability results demonstrated in the Theorem 6.1,
it can be shown that under the Assumption A3 the system (6.61)-(6.65) with appro-
priate observer gains permits the reconstruction of the disturbance since the next
equality holds starting from a finite time instant T in accordance with:

w2(t) = d(t), t ≥ T (6.66)

Theorem 6.2. Consider system (6.59) fulfilling the Assumption A3 along with the
observer (6.61)-(6.65) with the gain parameters chosen according to the next
inequalities:
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k1 > 2
√
ρ k2 > 0 k3 > ρ

√
k1 ρ = dMd (6.67)

Then, there is a finite T > 0 such that the relation (6.66) holds.

Proof of Theorem 6.2. The time derivative of the error variable ε (6.62) is:

ε̇ = Dα x̂(t)−Dαx(t) (6.68)

which, considering the plant and observer dynamics (6.59)-(6.65) yields the
following:

ε̇ = w(t)−d(t) =−k1ε− k2|ε|1/2sign(ε)+ w2(t)−d(t) (6.69)

By making the change of variable

z(t) = w2(t)−d(t) (6.70)

one can augment and rewrite (6.69) as

ε̇ = w(t)−d(t) =

= −k1ε− k2|ε|1/2sign(ε)+ z(t) (6.71)

ż = −k3sign(ε)− d
dt

d(t) (6.72)

System (6.71)-(6.72) is equivalent to the system (6.43) that was dealt with in the
proof of Theorem 6.1. Therefore, the asymptotic stability of (6.71)-(6.72) follows
by the same Lyapunov analysis made in the proof of Theorem 6.1 using the functions

Vi = ξ T
i Hξi, i = 1,2, ...,n (6.73)

ξi =

⎡
⎣
|εi|1/2sign(εi)

εi

zi

⎤
⎦H =

⎡
⎣

(4k3 + k2
2) k1k2 −k2

k1k2 k12 −k1

−k2 −k1 2

⎤
⎦ (6.74)

where εi and zi are generic entries of ε and z (i = 1,2, ...,n). It turns out that the
tuning conditions (6.67) guarantee the attainment of condition

V̇i ≤−γ1Vi− γ2
√

Vi, γ1,γ2 > 0 (6.75)

that guarantees the finite time convergence of ε and z to zero starting from some
finite moment T > 0. By the definition (6.70) of z(t), it directly follows the condition
(6.66) . Theorem 6.2 is proven. ��

6.4.2 Discrete-Mode Identification for Switched FOS

Consider now a switched and unperturbed version of system (6.59)
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Dαx(t) = A j(t)x(t)+ B j(t)u(t)+ Fj(t) 0< α < 1 j(t) ∈ {1,2, ...,q} (6.76)

where x(t) ∈ R
n, u(t) ∈ R

m, and where the so-called “commutation signal” (or
“discrete state”) j(t) determines the actual system dynamics among the possible
q “operation mode” represented by the triplets (Ai,Bi,Fi), i = 1,2, ...,q.

Consider the next expression for the piecewise constant commutation signal

j(t) = jk, tk−1 ≤ t < tk, k = 1,2, ...,∞ (6.77)

where t0 = 0 and tk are the “switching times” at which the discrete state is changing.
Let the next dwell-time restriction holds for the switching sequence

tk − tk−1 ≥ Δ , k = 1,2, ...,∞ (6.78)

The dwell time restrictions inhibits the occurrence of the so-called “Zeno
phenomenon” for the considered switched dynamics, namely the occurrence of in-
finitely fast changes in the system modes. Note, however, that if the control ma-
trix B is constant (i.e., if B1 = B2 = ... = Bq = B) then the control input u(t)
can be discontinuous and of arbitrarily high (theoretically infinite) switching
frequency.

Some specific operation modes in the set {1,2, ...,q} are supposed to correspond
to faulty conditions for system (6.76) that need to be detect for real-time monitoring
and fault diagnosis purposes. The pair (x(t),u(t)) is supposed to be accessible for
measurements. The task is to reconstruct the unknown discrete state j(t). The logic
that drives the mode switchings can be either driven by internal system’s variables or
driven by an external supervisor, in any case it is unknown to the designer. Then, the
identification of the correct mode after the switching times will require a transient.
This transient should be faster that the Δ value involved in dwell time restriction,
otherwise the estimation will be use-less.

A parallel stage containing q observers, one for each of the possible modes of
operation, is suggested:

Dα x̂i (t) = Aix(t)+ Biu(t)+ Fi + vi, i = 1,2, ...,q (6.79)

where vi is the injection input for the i− th observer, to be designed.
Denote the observation error for the i-th observer as

ei = x̂i− xi (6.80)

Then the switched and fractional order error dynamics will be given by

Dαei (t) = (Ai −A j(t))x(t)+ (Bi−B j(t))u(t)+ (Fi−Fj(t))+ vi(t) (6.81)

It can be then separated the error dynamics of the “correct” observer (i.e., that
having the index i which matches the current mode of operation j(t)):

Dαei (t) = vi(t), i = j(t) (6.82)
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and the error dynamics of the remaining “wrong” observers:

Dαei (t) = (Ai−A j(t))x(t)+(Bi−B j(t))u(t)+(Fi−Fj(t))+vi(t), i 	= j(t) (6.83)

Denote

ΔA j
i = Ai −A j(t) (6.84)

ΔB j
i = Bi −B j(t) (6.85)

ΔF j
i = Fi−Fj(t) (6.86)

and
ϕ j

i (x,u,t) = ΔA j
i x(t)+ΔB j

i u(t)+ΔF j
i (6.87)

then (6.83) is rewritten as

Dαei (t) = ϕ j
i (x,u, t)+ vi(t), i 	= j(t) (6.88)

Concerning the state- and input-dependent functions ϕ j
i (x,u, t) entering the dynam-

ics (6.88 ) of the wrong observers, in order to guarantee the identifiability of the
correct mode they should not be identically zero. Then it is made the next

Assumption A4.
∥∥∥ϕ j

i (x,u,t)
∥∥∥ 	= 0, ∀i, j = 1,2, ...,q, i 	= j (6.89)

The above assumption A4 should be understood as a constraint on the dynamics of
the switched system and in particular on the resulting (x− u) time evolutions. In
other words it could be said that the manifolds ϕ j

i (x,u, t) = 0 should not contain
admissible x(t)−u(t) trajectories of the switched system.

Functions ϕ j
i (x,u,t) are also supposed to be smooth enough according to the next

Assumption A5. There is a constant Φ such that
∥∥∥∥

d
dt
ϕ j

i (x,u, t)
∥∥∥∥≤Φ, ∀i, j = 1,2, ...,q (6.90)

Clearly, the above Assumption implies a bounded, although arbitrarily large, admis-
sible domain for the evolution of the (x,u) trajectories in the respective space. This
gives semi-global validity to the presented discrete mode observer.

The design of the observer injection terms is carried out by the same technique
adopted in the previous subsection:

σi = I1−α(x̂i − x) (6.91)

vi = v1i + v2i (6.92)

v1i = −k1σi − k2|σi|1/2sign(σi) (6.93)

v̇2i = −k3sign(σi) (6.94)
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The new error variables σi are introduced in (6.91), which involves a non-integer
order integration of the original error variables ei. It is worth to note that the dynam-
ics of the variable σi is of integer order:

σ̇i =
{

vi(t) i = j(t)
ϕ j

i (x,u, t)+ vi(t) i 	= j(t)
(6.95)

It can be defined a unique set of tuning rules for all the gains of the q observers.
Consider the next inequalities involving the tuning coefficients:

k1 > 2Φ k2 > 0 k3 >Φ
√

k1 (6.96)

The main idea behind the proposed observer structure is that, after a finite transient
starting at any switching times, the injection input v2i(t) will be identically zero for
the correct observer and will be separated from zero for the wrong observers. This
can be obtained, by virtue of Assumption A4, if the finite-time convergence to zero
of σi and σ̇i is provided for all the q observers (i = 1,2, ...,q).

Let the maximal finite transient duration be denoted as T . Then, in that case, pro-
vided that T < Δ , the next relationship directly derives by the achieved conditions
σ1 = σ̇1 = σ̇2 = ...= σ̇q = 0:

v2i(t) =
{

0 i = j(t)
−ϕ j

i (x,u, t) i 	= j(t)
tk−1 + T ≤ t ≤ tk, k = 1,2, ... (6.97)

On the basis of (6.95), and by taking into account the Assumption A4 as well, it
can be developed a simple method for estimating the actual discrete state j(t) by
comparing the norms of the the observer signals v21(t), v22(t), ..., v2q(t) looking for
the closest to zero:

ĵ(t) = arg mini‖v2i(t)‖ (6.98)

The proposed scheme for the identification of the discrete state in the switched FOS
(6.76) is summarized in the next Theorem:

Theorem 6.3. Consider the switched FOS (6.76), fulfilling the Assumptions A4 and
A5, and the observers (6.79), (6.91)-(6.94) with the observer gains chosen according
to (6.96). Then, the discrete state estimation (6.98) will be such that

ĵ(t) = j(t), tk−1 + T ≤ t ≤ tk, k = 1,2, ... (6.99)

Proof of Theorem 6.3. By combining (6.82) and (6.83), the dynamics of the error
variables ei is given by:

Dαei (t) =
{

vi(t) i = j(t)
ϕ j

i (x,u, t)+ vi(t) i 	= j(t)
(6.100)

Then, by (6.62) the dynamics of the modified error variables σi is of integer order,
and it is given by (6.95). By (6.77), during the first switching interval t ∈ (0, t1) the
actual mode is j(t) = j1. Then (6.95) specializes as
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σ̇ j1 = v j1(t) (6.101)

σ̇i(t) = ϕ j
i (x,u, t)+ vi(t), i = 1,2, ...,q, i 	= j1 (6.102)

Considering (6.92-(6.65) into (6.101) yields

σ̇ j1(t) = −k1σ j1 − k2|σ j1 |1/2sign(σ j1)+ v2, j1(t) (6.103)

v̇2, j1 = −k3sign(σ j1) (6.104)

σ̇i(t) = −k1σi − k2|σi|1/2sign(σi)+ v2,i(t)+ϕ j
i (x,u,t) (6.105)

v̇2,i = −k3sign(σi) i = 1,2, ...,q, i 	= j1 (6.106)

By introducing the new coordinates

zi(t) = v2,i(t)+ϕ j
i (x,u, t) (6.107)

one can augment and rewrite (6.105)-(6.106) as

σ̇i = −k1σi − k2|σi|1/2sign(σi)+ zi(t) (6.108)

żi = −k3sign(σi)+
d
dt
ϕ j

i (x,u, t) i = 1,2, ...,q, i 	= j1 (6.109)

In light of the assumption A5, systems (6.103)-(6.104) and (6.108)-(6.109) are
equivalent to the system (6.43) that was dealt with in the proof of Theorem 6.1.
Therefore, taking into account the observer tuning conditions (6.67), the finite time
convergence to zero of σi (i = 1,2, ...n), v2, j1 , and zi (i = 1,2, ...,q, i 	= j1 ) can
be demonstrated following by the same Lyapunov analysis made in the proof of
Theorem 6.1.

Let T > 0 be the transient time. By increasing the Φ constant in the tuning for-
mulas, the transient time can be made as small as desired [28, 39], and in particular
such that T << Δ .

Then, considering (6.70), during the first switching interval the next conditions
are achieved:

v2 j1(t) = 0 T < t < t1 (6.110)

v2i(t) = −ϕ j
i (x,u, t), i = 1,2, ...,q, i 	= j1 (6.111)

In light of the assumption A4, the residual-based estimation logic (6.98) provides
the reconstruction of the discrete state after the transient time T, i.e.

ĵ(t) = j1, 0 + T ≤ t ≤ t1 (6.112)

At the time moment t = T1 the discrete state will be changing. A new transient of
length T is activated for the observer error dynamics, at the end of which the next
conditions will be in force:
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v2 j2(t) = 0 t1 + T < t < t2 (6.113)

v2i(t) = −ϕ j
i (x,u, t), i = 1,2, ...,q, i 	= j2 (6.114)

Thus the estimation logic (6.98) still provides the reconstruction of the discrete state
after the transient time, i.e.

ĵ(t) = j2, t1 + T < t < t2 (6.115)

By iteration on the successive switching intervals, condition (6.99), and so Theorem
6.3, is proven. ��
Remark 6.1. The logic (6.98) appears not completely effective, since in some case it
can happen that Assumption A4 is violated and, as a result, also the wrong residuals
v2i(t) (i 	= j(t)) can occasionally cross the zero value. Note that this event becomes
highly improbable when the order n of the systems is growing.

On the other hand, only the correct residual (i = j(t)) can stay at (or, more realis-
tically, close to) zero for long time intervals. Hence the next averaged residuals can
be considered

Ri(t) =
∫ t

t−δ
‖v2i(τ)‖dτ. (6.116)

where δ is a small time delay (the width of a receding horizon window of obser-
vation for the residuals ‖v2i‖), along with the corresponding modified discrete state
evaluation strategy

ĵ(t) = arg miniRi(t) (6.117)

6.4.3 Simulation Results

Some simulation examples will be presented and discussed to illustrate the
effectiveness of the presented disturbance and discrete-state observers.

6.4.4 Disturbance Estimation Test

Let us consider first the disturbance estimation problem. Consider the commensu-
rate perturbed fractional-order system

D0.6x =
[−1 0

0 −2

]
x +

[
1
1

]
u+ d (6.118)

where d is a vector of unmeasurable disturbances to be estimated. For the purpose
of the current example, let us assume that the disturbance signal is

d(t) =
[

1
sin(t)

]
h(t −0.5), (6.119)
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with h being the unit step signal. Clearly system (6.118)-(6.119) belongs to the class
of systems (6.59), and the Assumption A3 is fulfilled at any t ≥ 0.5 with the value
dMd = 1.

The state is assumed to be fully available and the algorithm (6.61)-(6.65) can
be used for state estimation. The sampling time was chosen to be T = 1ms, while
the parameters of the disturbance estimation algorithm were selected as k1 = 1.5,
k2 = 0.25 and k3 = 2 in accordance with the tuning formulas (6.67).

Figure 6.4 depicts the components of the actual and estimated disturbance sig-
nal. The solid line represents the actual profile of the disturbance signals acting on
the dynamics of the first and second internal variable, respectively. The estimated
disturbances are plotted with dashed lines.
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Fig. 6.4 Disturbance estimation test. Actual and estimated disturbance.

6.4.5 Discrete State Estimation Test

Now let us consider the discrete state estimation problem for the affine switched
FOS (6.76) with the order of differentiation α = 0.6 and q = 3 distinct sub-models
defined by the matrix triplets

A1 =
[−1 0

0 −2

]
, B1 =

[
1
1

]
, F1 =

[
0
0

]
(6.120)
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A2 =
[

0 1
−2 0

]
, B2 =

[
1
0

]
, F2 =

[
0
0

]
(6.121)

A3 =
[−6 −4

1.5 −1

]
, B3 =

[
0
1

]
, F3 =

[
0
0

]
(6.122)

The discrete state is changed according to the next rule

j(t) =

⎧
⎨
⎩

1 0 ≤ t < 2
2 2< t ≤ 4
3 4< t <≤ 6

(6.123)

The parallel stage of observers (6.79), (6.91)-(6.94) have been implemented with the
gains k1 = 2, k2 = 2 k3 = 2. The discrete state and the residual signals ‖v21‖, ‖v22‖,
‖v23‖ corresponding to the different observers are presented in Figure 6.5. It can be
noted that the “correct” residuals tend to zero in the corresponding time intervals,
while the “wrong” residual keep always separated from zero except some isolated
time instant (the residual of mode 1 becomes zero around t = 5.5, however promptly
leaving the zero value). To cope with this fact, the modified residual evaluation
strategy (6.116)-(6.117) has been implemented, with the length of the time window
chosen as δ = 0.1s. The actual and discrete state are depicted in the Figure 6.6 which
confirms the correct performance of the discrete mode observer.
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Fig. 6.5 Discrete state estimation test. The residuals ‖v21‖, ‖v22‖, ‖v23‖.
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Fig. 6.6 Discrete state estimation test. Actual and estimated discrete state.

6.5 Experimental Fault Detection of a Hydraulic Plant

The discrete state estimation algorithm previously described will now be exploited
to detect certain faults in a laboratory hydraulic system. The experimental hydraulic
setup is shown in Figure 6.7. The centrifugal pump (P) draws the water from the
lower tank (TL) into the upper tank (TU). The flow is adjusted by the electrical
servo valve (FV). The flow is measured using the flow meter and the pulse flow
transmitter (FT). The level in the upper tank is measured by the float level sensor
and transmitter (LT).

Fig. 6.7 ”Feedback” Level/Flow Process Control System, PROCON 38-001
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Fig. 6.8 Pump fault detection test. The residuals R1(t) and R2(t) (upper plot) and the esti-
mated discrete state (lower plot)

The considered fault is a reduction of the pump rotating speed, which reduces the
amount of flow. The fault has been reproduced in the experimental setup by reducing
the pump control signals from the nominal value (healthy condition) to the 70%
(faulty condition). Two fractional order models have been derived via least square
identification for the healthy and faulty behaviour. Then, the suggested method for
discrete state reconstruction can be applied as a fault diagnosis logic, by identifying
whether the actual mode of operation is the nominal or faulty one.

Before any processing the measurements were scaled into the [0,1] interval, with
0 and 1 denoting the minimal and maximal measured value of the physical quantity.
Denote the normalized flow measurements by f (t) and the normalized pump control
signal by v(t). The measurement sampling time was selected as Ts = 10ms.

A scalar (n = m = 1) affine model has been identified for the nominal and faulty
working regimes. The nominal regime model is

D0.9 f (t) =−0.0186 f (t)+ 0.03v(t)−0.0043 (6.124)

and the faulty regime model was

D0.9 f (t) =−0.6532 f (t)+ 0.1412v(t)+0.5082 (6.125)
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The parallel stage of observers (6.79), (6.62)-(6.94) has been implemented with the
gains k1 = 1, k2 = 2 k3 = 0.5. As before, the residual signal was chosen as the
integral of ‖v21‖ and ‖v22‖ in a receding horizon time window of width δ = 1s,
according to the modified residual evaluation strategy (6.116)-(6.117).

During the experimental test, the fault is activated at time t = 90. The residuals
corresponding to the two observers are presented in Figure 6.8 along with the esti-
mated discrete state where “1” stands for the nominal behaviour, and “0” stands for
the faulty one. In both plots, the solid vertical line denotes the instant at which the
fault occurs. The fault is identified after less than 4 seconds.

6.6 Conclusions

Second-order sliding mode techniques have been suggested in order to solve control
and estimation problems for certain classes of fractional-order dynamics. The core
of the proposed approaches, for both the control and estimation problems addressed,
was the selection of special fractional-order sliding variables. The presented re-
sults show that “fractional-order” second-order sliding mode control has a good
potential in the field of control and estimation for FOS. Among the possible lines
of improvement of the presented results, more general classes of linear FOS (e.g.
the non-commensurate ones), as well as some classes of nonlinear fractional-order
dynamics could be studied. Taking into account non-matching uncertainties and dis-
turbances in the models is another important subject to be tackled in next research
activities, both for the control and observation tasks, which can be possibly achieved
by developing a fractional-order version of the the integral sliding mode approach
and/or by generalizing to the FOS the concepts of strong observability [33].

Ackowledgements. The authors gratefully acknowledge the financial support from the FP7
European Research Projects “PRODI - Power plants Robustification by fault Diagnosis and
Isolation techniques”, grant no.224233 and by European-Mexico Cooperation Program
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4. Atanacković, T.M., Pilipović, S., Zorica, D.: A diffusion wave equation with two frac-
tional derivatives of different order. Journal of Physics A 40, 5319–5333 (2007)
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38. Petráš, I., Podlubny, I., O’Leary, P., Dorcak, L., Vinagre, B.: Analogue Realizations of

Fractional-Order Controllers. In: FBERG, TU Kosice, Kosice (2002)
39. Polyakov, A., Poznyak, A.: Lyapunov function design for finite- time convergence anal-

ysis: ”Twisting” controller for second-order slidingmode realization. Automatica 45(2),
444–448 (2009)

40. Pisano, A., Rapaic, M., Jelecic, Z., Usai, E.: Sliding mode control approaches to the ro-
bust regulation of linear multivariable fractional-order dynamics. International Journal of
Robust and Nonlinear Control (2010), doi:10.1002/rnc.1565 (published online on April
9, 2010)

41. Podlubny, I.: Fractional Differential Equations. Academic Press, London (1999)
42. Podlubny, I.: Fractional Order Systems and PIλDμ -Controllers. IEEE Transactions on

Automatic Control 44(1), 208–214 (1999)
43. Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Physical Review

E 53(2), 1890–1899 (1995)
44. Sabatier, J., Agrawal, O.P., Tenreiro Machado, J.A.: Advances in Fractional Calculus -

Theoretical Developments and Applications in Physics and Engineering. Springer, Hei-
delberg (2007)

45. Scalas, E.: On the Application of Fractional Calculus in Finance and Economics. Ple-
nary Lecture paper. In: Proc. 3rd IFAC Workshop on Fractional Differentiation and its
Applications, Ankara, Turkey (2008)

46. Si-Ammour, A., Djennoune, S., Bettayeb, M.: A sliding mode control for linear frac-
tional systems with input and state delays. Communications in Nonlinear Science and
Numerical Simulation 14(5), 2310–2318 (2009)



6 Sliding Mode Control of Fractional-Order Dynamics 197

47. Sira-Ramı́rez, H., Feliu-Battle, V.: A Generalized PI Sliding Mode and PWM Control of
Switched Fractional Systems. In: Bartolini, G., Fridman, L., Pisano, A., Usai, E. (eds.)
Modern Sliding Mode Control Theory. New Perspectives and Applications. LNCIS,
vol. 375, pp. 215–236. Springer, Heidelberg (2008)

48. Tavazoei, M.H., Haeri, M.: A note on the stability of fractional order systems. Mathe-
matics and Computers in Simulation 79, 1566–1576 (2009)

49. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Berlin (1992)
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Chapter 7
Discussion about Sliding Mode Algorithms,
Zeno Phenomena and Observability

L. Yu, J.-P. Barbot, D. Benmerzouk, D. Boutat, T. Floquet, and G. Zheng

Abstract. This chapter is devoted to a discussion about the relations between first
and high order sliding mode algorithms and both types of Zeno (Chattering and Gen-
uinely) behaviors of switched dynamical systems. Firstly, the Henstock-Kurzweil
integral is recalled in order to set up the problem of switched systems with Zeno
phenomena, which enables to include Filippov solution and take into account some
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singularities. Then, observer designs based on the well-known super twisting algo-
rithm are proposed. For this kind of problems, the importance of finite time conver-
gence of the observation error is studied, and some simulations are given to highlight
the discussion. Lastly, the two tanks example is given in order to point out the dif-
ferences between both Zeno phenomena types, to show that there is life after Zeno
and that a higher order sliding mode observer can be efficient before, during and
after both Zeno phenomena types.

7.1 Discussion on Zeno and Sliding Mode Behavior

First order sliding mode concept has been well-known in control system theory for
at least fifty years, especially since the book of Filippov [14]. A system exhibiting a
first order sliding mode behavior can be seen as a variable structure system converg-
ing in finite time towards some constraint manifold and then sliding on this mani-
fold by means of permanent switches at an infinite frequency between two system
structures. Commutations at infinite frequency between two subsystems is named as
Zeno1 phenomena in the hybrid dynamical system theory. The relation between first
order sliding mode and Zeno phenomena generates a huge set of questions, such as:

1. Is first order sliding mode the only Zeno phenomena?
2. Do all Zeno phenomena always exhibit a sliding mode?
3. Is it possible to use a sliding mode approach in the context of hybrid dynamical

systems?
4. Is there life after Zeno?
5. Are specific mathematical tools required?

The answer to the first question is no. In fact, since at least the pioneer works of
S. Emelyanov, S. Korovin and A. Levant [13], [26], a new type of sliding modes
has been introduced called higher order sliding modes. This type of sliding mode
ensures a finite time convergence onto a constraint manifold defined by the vanish-
ing of some constraint variable s and at least its first derivative ṡ along the system
trajectories. The requirement that ṡ must be also equal to zero in finite time has an
important consequence on the qualitative behavior of Zeno phenomena. For exam-
ple, in [31] Chapter 8 page 228, it is proved that the twisting algorithm generates
an infinite number of commutation in finite time, where any dwell time2 is strictly
different to zero. Actually, one can distinguish different qualitative behaviors such
as the chattering Zeno phenomena and the genuinely Zeno phenomena, see Ames
et al. [2]. Roughly speaking, the chattering Zeno phenomena is equivalent to obtain
a dwell time equal to zero after a finite number of commutations, as it is exactly the
case for first order sliding mode. On the other hand, the genuinely Zeno phenom-
ena corresponds to obtain an infinity of commutation before obtaining a dwell time
equal to zero, and this is exactly the case of the twisting algorithm.

1 This refers to Zeno of Elea and its paradoxes, see for example “Achille and the tortoise”.
2 Time interval between two switching instants.
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The answer to the second question is also no. For instance, consider the bouncing
ball example (see [2] and [20]). This is a switched system with jumps (actually an
impact system [6]) that exhibits a Zeno phenomena. This kind of system has only
one dynamic and has a jump state at the impact instant before to roll on the floor. It
is shown in [2] that the bouncing ball case generates a genuinely Zeno phenomena
and that the solution after the Zeno point (impact accumulation point) satisfies a
holonomic constraint which is different from the Filippov solution.

The answer to the third question is yes. This will be proved in Section 7.4 where
a sliding mode observer for a particular class of hybrid systems will be designed on
the basis of our previous work [34].

The answer to the fourth question is also yes. In the example of the bouncing ball,
even if the model changes after the Zeno time, meaning in some sense that “there is
no life of the original model after Zeno”, it will be shown that it is not the case for
the two tanks example.

The answer to the fifth question is also yes. In fact, in order to consider the most
general class of systems, the most general definition of integral has to be considered.
To the best of our knowledge, the most general integral definition is the Henstock-
Kurzweil-Pettis integral (H-K-P integral). Nevertheless, for the sake of simplicity,
this chapter will only deal with the Henstock-Kurzweil integral (H-K integral) [18]
which is recalled in the Section 7.3.

7.2 Zeno Types

In this chapter, we will consider Hybrid Dynamical Systems belonging to the fol-
lowing class of switched systems without state jump:

⎧
⎨
⎩

ẋ = f (x)+ g(x)q = f (x)+
n
∑

i=1
gi (x)qi

y = h(x)
(7.1)

where x ∈U ⊂ Rn is the set of admissible continuous state, y ∈ R is the measured
output and where the vector fields f : U → Rn, gi : U → Rn and h : U → R are
sufficiently smooth. Moreover qi : R+ → Q = {0,1} is the discrete component of
the discrete vector q.

The definition of time trajectory and Zeno phenomenon given in [28, 23] can be
stated as follows:

Definition 7.1. A time trajectory is a finite or infinite sequence of intervals TN =
{Ii}N

i=0, where N ∈ N, such that:

• Ii = [τi,τi+1], τi ≤ τi+1 for all 0 ≤ i ≤ N .
• If N is limited, either IN = [τN ,τN+1] with τN ≤ τN+1 and τ∞ bounded or IN =

[τN ,τN+1[ for τN ≤ τN+1 ≤ ∞.
• For all i corresponds a discrete transition qi(t) such that qi(t) is constant for

t ∈ [τi,τi+1] .
• For all i and t ∈ [τi,τi+1] corresponds a continuous evolution x(t).
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Definition 7.2
A dynamical system is called Zeno if t∞ :=

∞
∑

i=0
(τi+1 − τi) is bounded.

This means that the system takes an infinite amount of discrete transitions in a finite
amount of time, in this case the time t∞ is called Zeno time.

It is known that there exist two fundamental types of Zeno:

Definition 7.3

• Chattering Zeno: There exist a finite number C ∈ N and a bounded value t∞
such that:
t∞ =

∞
∑

i=0
(τi+1− τi) and ∀ j >C, [t j+1− t j] = 0.

• Genuinely Zeno: There exist C ∈ N and a bounded value t∞ such that:

t∞ =
∞
∑

i=0
(τi+1− τi) and ∀ j >C, [t j+1− t j]> 0.

Consider for example the twisting algorithm [13, 17, 26]. It is clear that the conver-
gence on the constrained manifold given by s = ṡ = 0 is due to a Genuinely Zeno
phenomenon [31]. Nevertheless, after the finite time convergence on this manifold,
the Zeno behavior is a chattering phenomenon. So, for the twisting algorithm the
Zeno type changes but the process never leaves the Zeno behavior.

7.3 Mathematical Recalls of H-K Integral

The H-K integral, also known as the gauge integral, the generalized Riemann in-
tegral, was defined independently by Henstock and Kurzweil in the 1950’s. Let us
recall both the definitions related to the Riemann integral and the H-K integral in
order to clarify their differences.

Definition 7.4. Consider a real function f defined on an interval [a,b] ⊂ R. For
any tagged partition P of [a,b] such as a = x0 < x1 < x2 < · · · < xn = b, and τi ∈
[xi−1,xi]⊂ [a,b], consider

f (P) :=
n

∑
i=1

f (τi)(xi − xi−1).

For any given function δ : [a,b] → R∗
+, P is said to be a δ -fine tagged partition of

[a,b] if hi := xi− xi−1 < δ (τi) where δ is called a gauge for each i.

Definition 7.5. A number I is called the Riemann integral (respectively the H-K in-
tegral) of f : [a,b]→ R if for each constant ε > 0, there exists a constant δ (respec-
tively a function δ : [a,b]→ R∗

+), such that whenever P is a δ -fine tagged partition
of [a,b], one has |I− f (P)|< ε .

Roughly speaking, the integral of f on [a,b] is obtained by approximating the region
under the curve defined on [a,b] as a union of small rectangles. The Riemann inte-
gral requires that all those rectangles depend on a constant δ while the H-K integral
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uses a more sophisticated δ (δ depends on τi). In fact, when a function f oscillates
more quickly at some points of the interval [a,b], one has to tighten the step hi at
these points in order to approximate more accurately the associated surface. This is
possible by choosing hi < δ (τi) such that δ (τi) is a sufficiently small positive value
that depends on the place from where the rectangle of height f (τi) is considered
(see Fig. 7.1).

Fig. 7.1 Illustrative explanation of H-K Gauge

To highlight the principle of the H-K integral, consider the two following
examples.

Example 7.1. Consider the function f defined on [0,1] as follows:

f (x) =
{

x−1 sin(x−2) on ]0,1]
0 forx = 0.

This function is neither Riemann nor Lebesgue integrable, but H-K integrable, and
this can be proved by using a special choice of gauge (that requires skill and effort)
given as follows:

δ (τ) =

{√
ε if τ = 0

min
{

τ
2 ,

ετ4

24

}
if 0< τ ≤ 1.

Example 7.2. Consider the function g defined on [0,1] as follows:

g(x) =
{

x if x ∈ Q
0 if x /∈ Q

where Q represents the set of rationales. This function is discontinuous everywhere,
and thus it is not Riemann integrable but H-K integrable. It can be proved that its
value is equal to 0 by using a special choice of the gauge given by:
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δ (τ) =
{

2− j−1ε if τ = p j

1 if τ /∈ Q

where p1, p2, . . . , p j, . . . are the rationales.

Thus, taking a more general form of the gauge δ (instead of δ constant) yields a
richer class of possible integrands and permits to obtain that:

Riemann integrable functions ⊂ Lebesgue integrable functions ⊂ H-K integrable
functions

Note that the H-K integral can also be generalized to bounded or unbounded sets in
Rn and to more general spaces such as Banach spaces or ordered spaces. The most
important feature of the H-K integral is its wider applicability. Moreover, it can
avoid abstract notions such as set theory, σ algebras or inner and outer measures.
This can be seen from the equivalence:

a set E ⊂ [a,b] is Lebesgue integrable ⇐⇒ its characteristic function is H-K
integrable

Moreover, many classical results formulated in the framework of the Lebesgue the-
ory, such as the Lemma of Fatou or the fundamental theorem of calculus, can be
simplified (assumptions on continuity for example are omitted when H-K integra-
bility is considered) [18].

Another important result is the Hake’s Theorem which states that it is not nec-
essary to consider “improper” H-K integral (as it is the case of Riemann integral)
because the construction of the H-K integral makes any “improper” H-K integral
be a “proper” integral. Note also that other integrals, such as Denjoy integral, Per-
ron integral, Lee and Vyborny integral, all turn out to be “equivalent” to the H-K
integral.

Some authors proposed an extension of the H-K integral, called
Kurzweil-Henstock-Pettis integral (H-K-P integral) (see [8]) which offers an inter-
esting possible applicability to Fourier analysis and differential equations. In this
case, the solution of a Cauchy problem given by:

Ẋ = f (t,X(t)) with X(0) = X0

is studied as the solution of the following integral equation:

X(t) = X0 +
∫ t

0
f (μ ,X(μ))dμ

where the integral is in the sense of H-K. It does not require strong assumptions on
the considered system. So it can be seen as a tool that defines more accurately (and
take into account) the specific and quick oscillations of the considered dynamics.
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7.4 Observability and Observer Design for Some Classes of
Hybrid Dynamical System

The following three classes of switched systems without jump are considered.

7.4.1 First Basic Observability Form

The first proposed observability form is:

⎛
⎜⎜⎜⎜⎜⎝

ż1

ż2

ż3
...

żn

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 0 0

1
. . . 0 0 0

0
. . . 0 0 0

...
. . .

. . .
. . .

...
0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

z1

z2

z3
...

zn

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

f̃q

0
0
...
0

⎞
⎟⎟⎟⎟⎟⎠

(7.2)

y = h̃(z) = zn (7.3)

where q is the discrete vector and f̃q is a continuous function with respect to z
and parameterized by q. This system is regularly weakly locally observable and the
observability is independent from the discrete vector q.

7.4.2 Second Basic Observability Form

The second proposed observability form is:

ż = α0(z)+ γq(y), q ∈ Q (7.4)

y = h̃(z) = zn (7.5)

where z ∈ R
n and y ∈R

Assumption 7.1. The pair (α0(z),y) is regularly locally weakly observable3.

7.4.3 Extended Observability Form

The following extended observability form includes both previous forms:

3 In addition to the classical locally weakly observability condition (see [19]), the first n−1
derivatives in the rank condition are requested to be regular i.e.

Rank

⎛
⎜⎝

dh̃
...

dLn−1
α0

h̃

⎞
⎟⎠ |Z = n
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⎛
⎜⎝

ξ̇1
...

ξ̇r−1

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ξ1
...

ξr−1

ξr

⎞
⎟⎟⎟⎠ (7.6)

η̇1 = ξ̇r = α0(ξ ,η)+ γq(ξ ) (7.7)
˙̃η = β0(ξ ,η)+ δq(ξ ) (7.8)

y = ξ1 (7.9)

where ξ = (ξ1 · · ·ξr)
T , η = (η1, · · · ,ηn−r+1)

T and η̃ = (η2, · · · ,ηn−r+1)
T .

Assumption 7.2.

The pair

((
α0(ξ ,η)
β0(ξ ,η)

)
,η1

)
is uniformly weakly locally observable4.

In this paper, any consideration on the existence of the diffeomorphisms which
transform a switched system into one of these forms is given, nevertheless suffi-
cient conditions may be found in our previous work [34].

7.4.4 Discussion on the Observability of the First Basic
Observability Form

For the form (7.2)-(7.3), an estimate of the continuous state ξ can be obtained via
an algebraic estimator as defined in [29, 30], a sliding mode observer ( [3, 12]), or
a high order sliding mode observer [9, 16, 27, 32], because y and the n−1 first time
derivatives of y provide sufficient information in order to estimate the continuous
state.

7.4.5 Discussion on the Observability of the Second Basic
Observability Form

In the form (7.4)-(7.5), the discrete state q is not considered as an unknown pertur-
bation but as an input, consequently the following assumption is requested:

Assumption 7.3.
The discrete state q is known and γq(y) is Henstock-Kurzweil-Pettis integrable5 (see
[18], [8], [33]) or NV-Integrable [10].

Clearly, this assumption can not be satisfied in the case of Zeno phenomena, such
as for the Chattering Zeno (i.e. after some time the dwell time is exactly equal to
zero) or for the Genuinely Zeno (i.e. the dwell time is never equal to zero) [2]. So, in

4 Uniformly with respect to ξ .
5 See also Denjoy-Khinchine integrable.
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practice, it is only possible to obtain the filtered discrete state q f , instead of the real
discrete state q. Consequently, Assumption 7.3 is replaced by the following one:

Assumption 7.4.

• a- The system (7.4)-(7.5) is affine with respect to the discrete state q, i.e. γq(y) =
γ(y)q, where γ is at least a C1 function of y.

• b- The functions γ(y)q and γ(y)q f are Henstock-Kurzweil-Pettis integrable and
the mean value q f is measured via a low pass filter with a large enough band-
width on the time interval [0,α].

Moreover, consider the following system:

ż = α0(z) (7.10)

y = h̃(z) = zn (7.11)

and assume that:

Assumption 7.1. For the system (7.10)-(7.11), there exists an observer such that
the continuous state observation error (i.e. the difference between the continuous
state ant its estimate) is exponentially stable.

Remark 7.1. Under some specific assumptions such as Lipschitz condition or per-
sistent excitation, it is possible to design classical high gain observers [4] or adaptive
observers [7]. Without the perturbation term, those observers can guarantee the ex-
ponential stability of the continuous state observation error.

Then, it is possible to set the following proposition:

Proposition 7.1.

• A) Under Assumptions 7.1, 7.3 and 7.1, system (7.4)-(7.5) with Zeno phenomenon
is observable6.

• B) Under Assumptions 7.1, 7.4 and 7.1, system (7.4)-(7.5) with Zeno phenomenon
is practically observable7.

Proof. Proof of part A: there exists an observer of the form:

˙̂z = β (ẑ,y, ŷ) (7.12)

ŷ = ẑn (7.13)

which ensures the exponential stability of the continuous state observation error
e = z− ẑ for system (7.10), (7.11). Consequently, there exists a Lyapunov function
V (e) with respect to (7.10), (7.11) and (7.12), (7.13) such that:

V̇ =
∂V
∂e

(α0(z)−β (ẑ,y, ŷ))<−KV (7.14)

6 The observation error can be assigned to zero.
7 The observation error can be constrained to lie within any measurable vicinity of zero but

not zero.
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with K > 0.
Modifying (7.12), (7.13) as follows:

˙̂z = β (ẑ,y, ŷ)+ γq f (y) withγq f (y) = γ(y)q f (7.15)

ŷ = zn (7.16)

the state observation error for system (7.4)-(7.5) and observer (7.15)-(7.16) is expo-
nentially stable. Using the previous Lyapunov function, one has:

V̇ =
∂V
∂e

(α0(z)−β (ẑ,y, ŷ)+ γq(y)− γq f (y))<−K′V

where K′ = K + supt∈[0,α ]{|o(y(t))|}.
Proof of part B: the observation error for systems (7.4)-(7.5) and (7.15)-(7.16) be-
comes:

ė = α0(z)−β (ẑ,y, ŷ)+ γ(y)(q−q f )

From condition b) of Assumption 7.4, one obtains that

ṗ = γ(y)p with p = q−q f

is a Cauchy problem for each fixed initial value p0 in the sense of Henstock-Kurzweil-
Pettis integrals.

Using the same method as Filippov in [15] page 17 and setting ε = e− p, one
has:

ε̇ = α0(z)−β (ẑ,y, ŷ) (7.17)

which admits a local solution in the Carathéodory sense for t ∈ [0,Γ ] ⊂ [0,α].
Moreover, Assumption 7.1 and the observer (7.12)-(7.13) ensure that there exists
a Lyapunov function V (e) for (7.10)-(7.11) which satisfies (7.14). Consequently,
derivation of V (ε) with respect to (7.17) gives:

V̇ =
∂V
∂ε

(α0(z)−β (ẑ,y, ŷ)) (7.18)

Since ε = e− p, one has ∂V
∂ε |ε = ∂V

∂e |ε and from Assumption 7.1, it is possible to
rewrite (7.18) as follows:

V̇ =
∂V
∂e

|e(α0(z)−β (ẑ,y, ŷ))

−1
2
∂ 2V
∂e2 |e[O(p)⊗ (α0(z)−β (ẑ,y, ŷ))]+ O(p2)

with limp→0 O(p) = 0.
As for all ε > 0, there exists a filter and t1 ≥ 0 such that ∀t > t1, we have

‖p‖= sup
0≤t≤Γ

∣∣∣∣
∫ t

t1
γ(y(σ))(q(σ)−q f (σ))dσ

∣∣∣∣< ε
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one obtains

V̇ (ε) ≤ −K′V (ε)+
1
2

∣∣∣∣
∂ 2V
∂e2 |e[O(p)⊗ (α0(z)−β (ẑ,y, ŷ))]

∣∣∣∣
+ |O(||p||2)| (7.19)

Consequently, it is possible, for each Vd > 0, to set ε << Vd
2 and the inequality (7.19)

becomes
V̇ (ε) ≤−K′V (ε)+ |O(ε)|

So, one can conclude that for e /∈ EVd := {e : V (e)<Vd}, one has:

V̇ (ε) ≤−K′′

2
V (ε) for some K′′ > 0

because ε << Vd
2 guarantees that |O(ε)|< Vd

2 . ��

7.4.6 Observability for the Extended Observability Form

For system (11.55)-(7.9), according to the previous discussion on the observability
for the two basic forms, one can easily conclude:

Corollary 7.1.
Under Assumptions 7.2, 7.4 and 7.1, the system (11.55)-(7.9) with Zeno phenomenon
is practically observable.

Consequently, it is possible to design an hybrid observer for this system: for the
observation of ξ , a step-by-step high order sliding mode observer can be designed
to obtain a finite time estimate of ξ . So, after the convergence of ξ , ξr (or η1) can
be considered as an output, and one can design an asymptotic observer (for example
a high gain observer) to estimate η , as shown in Figure 7.2.

Fig. 7.2 Hybrid observer scheme.
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Example 7.3. Consider the following system:
⎧
⎪⎪⎨
⎪⎪⎩

ż1 = z2

ż2 = z3 − z3
2 + 3

2 z2 + 1
2γq(z2)

ż3 =−z2

y = z1

(7.20)

with γq(z2) = sign(w) · z2, where w is a high frequency noise. This form of q
theoretically leads to a Zeno phenomena.
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Fig. 7.3 Results of Observer for system (7.20) for z2.

0 5 10 15 20
−5

0

5

10

15

20

t/s

z 3

 

 
Observation
Real State

Fig. 7.4 Results of Observer for system (7.20) for z3.

For this example, one can follow the scheme shown in Fig. 7.2 to build an hy-
brid observer. First, one considers the states z1 and z2, where z1 is known and z2 is
observed through a sliding mode observer. Denote ẑ2 as the observation of z2. Then
the remaining state dynamics has the following form:

⎧
⎨
⎩

ż2 = z3 − z3
2 + 3

2 z2 + 1
2 γq(z2)

ż3 =−z2

y′ = z2

where the value of z2 is taken as the output of the subsystem (7.21), i.e. y′ = ẑ2. One
can observe the state z3 using a high gain observer. The performances are shown
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in Fig. 7.3 and 7.4, where Fig. 7.3 shows the state z2 and the observed state ẑ2 and
where Fig. 7.4 depicts the same for z3. In fact, the high gain observer (with ẑ2 as
output and z2,z3 as states) must be switched on only after the convergence of the
finite time sliding mode observer (with z1 as output and z1,z2 as states). Hence one
can assign ẑ3 to be zero at the beginning of the observation procedure.

7.5 The Two Tanks Example

consider the two water tanks example [21] in Fig. 7.5, which is a typical switched
system where Zeno behavior may exist if the commutation of the water distribution
between both tanks is considered instantaneous with respect to the other dynamics.

Fig. 7.5 Two water tanks system

The simplified model of the two water tanks system described in Fig. 7.5 is given
by: (

ḣ1

ḣ2

)
=

(
v− v1

−v2

)
+

(−v
v

)
q

where h1,h2 are the water levels for each tanks, v1,v2 are the flows of water out
of the tanks, v is a constant input flow of water which goes through a pipe and into
either tank at any particular time point, and q is the switching state of the pipe which
is determined by the transient conditions (see Fig. 7.6 and Fig. 7.7 for two different
cases).

By considering Torricelli’s law, one has v1 =
√

2gh1 and v2 =
√

2gh2, where g is
the gravity. Then the dynamic can be rewritten as

(
ḣ1

ḣ2

)
=

(
v−√

2gh1

−√2gh2

)
+

(−v
v

)
q (7.21)
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Fig. 7.6 The transient of discrete state for the case 1 (h1 = 2h2).

Fig. 7.7 The transient of discrete state for the case 2 (h1 = 4 and h2 = 1.5).

Assume that the only measured signal is y = h1 + h2 (v and q are supposed to be
unknown). Then the system is regularly locally weakly observable:

rank

(
dy
dẏ

)
= rank

(
1 1
−1√
2gh1

−1√
2gh2

)
= 2 (7.22)

excepted on the set SO

SO = {(h1,h2)T : h1 = h2}.
This set is a set of observability singularities and it is a manifold of dimension
n− 1 = 1. Moreover, SO separates the state space in two parts. It is important to
note that SO characterizes the singularity observability considering only y and ẏ.
However, there exist several different observability definitions for nonlinear systems
and hybrid systems [5], [11], [20], [22], [25], involving high order output derivatives
with order greater than the dimension of the state space.

Moreover, the system satisfies the observability matching condition [31]8

8 Considering a system of the following form:

ẋ = f (x)+g(x)q

y = h(x)

the observability matching condition with respect to q is satisfied if Lgh = ...= Ln−2
g h = 0.
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∂y
∂q

=
∂ ẏ
∂q

= 0 (7.23)

Conditions (7.22) and (7.23) are necessary and sufficient conditions for the exis-
tence of a diffeomorphism which transforms, at least locally, the system (7.21) into
the first basic normal form. Then, under the diffeomorphism ξ = φ(h1,h2) with
φ1(h1,h2) = h1 + h2 and φ2(h1,h2) = v−√

2gh1 −
√

2gh2, the system is locally
transformed into the first basic normal form (7.2)-(7.3):

ξ̇1 = ξ2 (7.24)

ξ̇2 = −
√

g
2

(
(v−√

2gh1− vq)√
h1

+
(vq−√

2gh2)√
h2

)

y = ξ1

where

h1 =
1
4

⎛
⎝v− ξ2√

2g
+ μ

√
2ξ1− (v− ξ2)2

2g

⎞
⎠

2

,

h2 =
1
4

⎛
⎝v− ξ2√

2g
− μ

√
2ξ1− (v− ξ2)2

2g

⎞
⎠

2

.

Using this state transformation, one has to choose either the trajectories are in the
subspaces S+

O = {(h1,h2) : h1 > h2} or S−O = {(h1,h2) : h1 < h2}, where SO is the
boundary between both of them. Thus, μ = 1 if the state is in S+

O and μ =−1 if the
state is in S−O . In both cases given in Fig. 7.6 and Fig. 7.7, the system behavior is
principally or exclusively in the subspace h1 > h2. Then the appropriate change of
coordinates is μ = 1. This highlights the fact that the diffeomorphism is only a local
transformation and in this case the validity domains are strongly related to SO.

Regarding the particular properties of the hybrid dynamical system (observabil-
ity matching condition and regularly locally weakly observability) and taking advan-
tage of the basic normal form (7.24), a higher order sliding mode observer [9,16,27]
only made here of one super twisting algorithm step because the knowledge of the
discrete state q is not required. The proposed observer is the following:

˙̂ξ1 = ξ̂2 +λ |y− ξ̂1| 1
2sign(y− ξ̂1)

˙̂ξ2 = αsign(y− ξ̂1) (7.25)

ŷ = ξ̂1

Setting e1 = ξ1− ξ̂1 and e2 = ξ2− ξ̂2, the observation error dynamics is:
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ė1 = e2−λ |e1| 1
2sign(e1)

ė2 = ξ̇2−αsign(e1) (7.26)

which is stable for appropriate values of α and λ [27, 32]. In the given simulations,
λ = 5, α = 40 and a computation step equal to 10−5s is used with the solver ode5
of Matlab.

Case 1. (Fig. 7.6) exhibits a chattering Zeno phenomena (Imin = 0 when the state
behavior reaches the sliding manifold h1 = 2h2 approximatively at time t = 0.2s) and
the system slides on the switching manifold until h1 � 2.5 and h2 � 1.25 (see the
green trajectory in Fig. 7.8 and Fig 7.9). Note that the Zeno time t∞ in this case is not
unique, because during all the period the system slides on the switching manifold,
there is an infinite number of commutations in every small time interval. The fact
that the Zeno behavior is not restricted to a particular time instant t∞, but appears
during a finite or infinite time interval is characteristic of a sliding mode behavior.
Here, when the system has reached the switched manifold given by h1 = 2h2, the
system never leaves the constrained manifold (it is an invariant one).

The system behavior (in green) and the observer behavior (in red) are given in
Fig. 7.8 and Fig. 7.9 for an appropriate choice of coordinate and a wrong choice of
coordinate, respectively.

The observation errors in original coordinates are given in Fig 7.10. As the origi-
nal behavior does not cross SO (in blue in Fig. 7.8 and Fig. 7.9), the observer (7.25)
converges and it is not at all influenced by the Zeno behavior of the observed system
(even if it is a chattering Zeno which slides on the switching manifold).

Case 2. (Fig. 7.7) exhibits a genuinely Zeno phenomena. Roughly speaking, the
system switches more and more quickly and infinitely until the time t∞ � 1.6 which
corresponds to the time when the state is equal to the desired one (h1 = 4 and h2 =
1.5). After that, there is still life [2] (see the green trajectory in Fig. 7.12). The
system trajectories in the phase plane are given in Fig. 7.11 and Fig. 7.12 with an
appropriate and a wrong choice of coordinate, respectively. Life after Zeno is due
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Fig. 7.8 The phase plane with an appropriate choice of coordinate.
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Fig. 7.9 he phase plane with a wrong choice of coordinate.
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Fig. 7.10 The observation errors in the original coordinates.

to the fact that the input v is strictly smaller than v1 + v2 (the desired point is semi
attractive, in fact the state behavior reaches (h1 = 4, h2 = 1.5) only if the initial
conditions verify h1 + h2 � 5.5). Since the original system trajectory (in green)
crosses the observability singularity set SO, the observer trajectory diverges when
the trajectory is in the opposite subspace. Moreover, when the system trajectory is
close to the observability singularity set SO, the observation errors increase even if
the coordinates choice is correct.

The observation errors in the canonical coordinates ξ are given in Fig. 7.13 (e1 =
ξ1− ξ̂1 in blue and e2 = ξ̇1− ˙̂ξ1 in red). The observation errors are shown only during
the first second, because the higher order sliding mode observer (7.25) converges in
a finite time � 0.1s and is not substantially perturbed by the SO crossing or by
the Zeno behavior of the original system. The observation errors in the original
coordinates (h1, h2) are given in Fig. 7.14 and it is clear, for such coordinates, that
the error dynamics are strongly influenced by the crossing of SO. The Zeno time
is t∞ � 1.6s (when h1 = 4 and h2 = 1.5). Then, the system converges to a limit
cycle and the observer works well in both coordinates (original coordinates with
appropriate choice and canonical coordinates) because the limit cycle does not cross
SO.
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Fig. 7.11 The phase plane with an appropriate choice of coordinate.
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Fig. 7.12 The phase plane with a wrong choice of coordinate.
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Fig. 7.13 The observation errors in the canonical coordinates.
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Fig. 7.14 The observation error in the original coordinates.

7.6 Conclusion

In this chapter, the links between sliding mode and Zeno phenomenon have been
highlighted and it can be thought that many tools and methods of sliding mode
theory could be successfully used for hybrid dynamical system under Zeno phe-
nomenon (even if sliding mode control does not consider state jump as it is the case
for example of the bouncing ball). Moreover, it is probably interesting to find new
sliding mode controls inspired by some “physical” systems which exhibits Zeno be-
haviors [1], [28]. In order to emphasis again the links between Zeno phenomenon
and sliding mode, note that, for physical systems, Zeno phenomenon is due to model
approximations [24] while sliding mode control is based on an actuator idealization,
and that both simulations can be very difficult [21].
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Part II
Sliding Mode Control Design



Chapter 8
Output Feedback Sliding Mode Control of
Uncertain Systems in the Presence of State Delay
with Applications

X. Han, E. Fridman, and S.K. Spurgeon

Abstract. This chapter considers the development of sliding mode control strategies
for linear, time delay systems with bounded disturbances that are not necessarily
matched. The emphasis is on the development of frameworks that are
constructive and applicable to real problems. For many systems it may not be prac-
tical to measure all the system states and therefore a static output feedback sliding
mode control design paradigm is considered. The novel feature of the method is
that Linear Matrix Inequalities (LMIs) are derived to compute solutions to both the
existence problem and the finite time reachability problem that minimize the ulti-
mate bound of the reduced-order sliding mode dynamics in the presence of time
varying delay and unmatched disturbances. The methodology is therefore construc-
tive and provides guarantees on the level of closed-loop performance that will be
achieved by uncertain systems which experience delay. An uncertain model with
both matched and unmatched disturbances from the literature provides a tutorial ex-
ample of the proposed method. A case study involving the practical application of
the design methodology in the area of liquid monopropellant rocket motor control is
also presented.

8.1 Introduction

The control of time-delay systems is known to be of industrial and applications sig-
nificance. Such problems largely fall into two main categories. The first category
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arises because of the need to model systems more accurately given increasing per-
formance expectations. Many processes, such as manufacturing processes and the
internal combustion engine, include such after effect phenomena in their inner dy-
namics and time delay is also produced via the actuators, sensors and field networks
involved in the practical implementation of feedback control strategies. The second
class of problems arises when time delays are used as a modelling tool to simplify
some infinite dimensional systems. This tool is used for constructing models of
distributed systems modelled by partial differential equations where a set of finite
dimensional state variables with appropriate time delay characteristics can be used
to represent heat exchange processes, for example.

The application of sliding mode control to the problem of systems with time-
delay is a far from trivial problem generically, involving the combination of de-
lay phenomenon with relay actuators which has the potential to induce oscillations
around the sliding surface during the sliding mode. There are a number of papers
which have considered the problem. The development of sliding mode controllers
for operation in the presence of single or multiple, constant or time-varying state
delays was solved by [14]. This uses the usual regular form method of solution and
the uncertainty is assumed to be matched, so that the effects will be rejected by an
appropriately designed sliding mode control strategy. The work assumed full state
availability. The problem was also considered by [19] where a class of uncertain
time delay systems with multiple fixed delays in the system states is considered.
The paper considers unmatched and time varying parameter uncertainties together
with matched and bounded external disturbances, but again full state information is
assumed to be available to the controller. Work in [18] considers sliding mode con-
trol of an uncertain system in the presence of fixed state-delay, but again full-state
feedback is assumed.

The assumption of full-state feedback is a limiting one in practice as it may be
prohibitively expensive, and indeed, sometimes impossible, to measure all the state
variables. One approach to solve this problem is to implement the controller with
an observer, where the observer provides state estimates for use by the controller.
However, the implementation of the controller-observer is more involved and the
theoretical frameworks to ensure stability across the range of practical operation
of the plant may be challenging. A more straightforward approach is to use only
the subset of state information that is available, i.e. the measured output, within
the control design paradigm. This chapter will provide an insight into what can
be achieved via a sliding mode approach to output feedback control of time delay
systems, which may experience both matched and unmatched uncertainty.

It is known that in the presence of bounded disturbances that do not vanish as
the state approaches an equilibrium point, asymptotic stability is, in general, not
possible. However, under certain conditions, the ultimate boundedness of the sys-
tem’s trajectories can be achieved [2]. Sliding Mode Control (SMC) is known for
its complete robustness to so-called matched uncertainties and disturbances [22],
as demonstrated in the work of [14] referenced above, but the closed-loop perfor-
mance will be affected by the presence of unmatched uncertainty. For example,
in [10] robustness properties of integral sliding-mode controllers are studied where
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the euclidean norm of the unmatched perturbation is minimized by selecting a pro-
jection matrix. The approach articulated in this chapter will employ tools of ultimate
boundedness to develop a framework for output feedback sliding mode control of
time delay systems which experience unmatched uncertainty.

There are typically two facets to the design of a static output feedback sliding
mode control. One is the existence problem, i.e., the design of a switching surface
in the output vector space which is usually of lower order than the state vector
space. Consider first the switching surface design problem for uncertain systems,
where time-delay effects are not considered. Two different methods of designing
sliding surfaces using eigenvalue assignment and eigenvector techniques were pro-
posed in [9], [25]. A canonical form via which the static output feedback sliding
mode control design problem is converted to a static output feedback stabilization
problem for a particular subsystem triple was provided in [8]. However, the solution
to the general static output feedback problem, even for linear time-invariant systems,
is still open. Iterative LMI approaches have been exploited to solve the static output
feedback problem using a bilinear matrix inequality formulation, see [3], [17], [4].
In [6], where the regular form was not used for synthesization of the control law,
LMIs were derived for switching function design whilst minimizing the cost func-
tion associated with the control. Sufficient conditions for static output feedback con-
troller design using LMIs have also been sought. Although only sufficient, the solu-
tions have the advantage of being linear and, hence, easily tractable using standard
optimization techniques, see, [20], [5]. The second facet in the design of a sliding
mode output feedback controller is the control, or reachability, synthesis problem
whereby a control is determined to ensure the sliding surface is attractive. It is non-
trivial to synthesize a control law only using the output vector, even for the situation
where time-delay effects are not considered, since the derivative of the sliding sur-
face is always related to the unmeasured states and this derivative appears in the
reachability condition. As well within the existence problem, LMI methods have
also been considered within the context of developing a sliding mode control strat-
egy which solves the reachability problem for a given sliding surface. For example,
LMI methods which yield reachability conditions for designing static sliding mode
output feedback controllers were presented in [7].

In the context of output feedback sliding mode control for time-delay systems, the
existence and reachability problems for systems in the presence of matched uncer-
tainty are considered in [15]. The delay is assumed to be time-varying and bounded
where the upper bound is known. In line with the development of output feedback
controllers in the non-delayed case, LMIs are used to select all the parameters of the
closed-loop sliding mode controller. Central to the work is the descriptor Lyapunov-
Krasovskii functional method from [11], which is used to design a switching func-
tion and verify that the magnitude of the linear gain used to construct the controller
is an appropriate solution to the reachability problem.

Central to the work presented in this chapter is the same descriptor approach [11]
[15], which is applied to derive LMIs for the solution of the sliding mode output
feedback control problem in the presence of both matched and unmatched distur-
bances and time varying state delays. It is demonstrated that the state trajectories
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of the system converge towards a ball with a prespecified exponential convergence
rate. In Section 8.2 the problem formulation is described and an appropriate general
framework to accomplish the output feedback sliding mode control design is de-
scribed in Section 8.3. A constructive solution to the existence problem is presented
in Section 8.4 and Section 8.5 shows the formulation of the reachability problem
which will ensure that the sliding mode is reached. A problem from the literature is
used to provide a tutorial example of how the paradigm can be used to solve both the
existence and reachability problems for practical design. A case study relating to the
control of a liquid monopropellant rocket motor system is used to further illustrate
the design process in Section 8.6.

Notation. Rn denotes the n dimensional Euclidean space with vector norm ‖ · ‖
or the induced matrix norm, Rn×m is the set of all n×m real matrices. P > 0, for
P ∈ Rn×n, means that P is symmetric and positive definite whereas ∗ means the
symmetric entries of a LMI.

8.2 Problem Formulation

Consider an uncertain dynamical system of the form

ẋ(t) = Ax(t)+ Adx(t − τ(t))+ Bu(t)+ B1w(t)
y(t) = Cx(t)
x(t0 − τ(t)) = φ(τ(t)) f or τ(t) ∈ [0 h]

(8.1)

where x ∈ Rn, u ∈ Rm,w ∈ Rk and y ∈ R p with m < p < n, φ is absolutely con-
tinuous with square integrable φ̇ , h is an upper-bound on the time-delay function
(0 ≤ τ(t) ≤ h, ∀t ≥ 0). The time-varying delay may be either slowly varying (i.e. a
differentiable delay with τ̇(t)≤ d < 1) or fast varying (piecewise continuous delay).
Assume that the nominal linear system (A,Ad,B,B1,C) is known and that the input
and output matrices B and C are both of full rank. The disturbance is assumed to be
bounded whereby ‖w(t)‖ ≤ Δ with a known upper bound Δ > 0. A control strategy
will be sought which induces an ideal sliding motion with desirable performance
characteristics on the surface

S = {x ∈ Rn : s(t) = FCx(t) = 0} (8.2)

for some selected matrix F ∈ Rm×p so that the motion, when restricted to S , is
stable.

8.3 A General Framework for Design

The first problem considered is how to choose F , which parameterises the switch-
ing surface in (8.2) and hence the dynamic performance of the system in the sliding
mode, so that the associated sliding motion is stable. A control law will then be
determined to guarantee the existence of a sliding motion. A convenient system
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representation closely allied to the usual regular form used for sliding mode con-
trol design is employed. It can be shown that if rank(CB) = m and system triple
(A, B, C) are minimum phase, there exists a coordinate system xr = Trx,
xr = [x1 x2]T , in which the system (A,Ad ,B,B1,C) has the transformed structure

Ar =
[

A11 A12

A21 A22

]
Adr =

[
Ad11 Ad12

Ad21 Ad22

]
Br =

[
0

B2

]
B1r =

[
B11

B12

]
Cr =

[
0 T

]
(8.3)

where B2 ∈ Rm×m is non-singular and T ∈ R p×p is orthogonal [8]. Furthermore,
A11, Ad11 ∈R(n−m)×(n−m) and the remaining sub-blocks are partitioned accordingly.
Let [

F1 F2
]
= FT (8.4)

where F1 ∈ Rm×(p−m) and F2 ∈ Rm×m. As a result

FCr =
[

F1C1 F2
]

(8.5)

where
C1 =

[
0(p−m)×(n−p) I(p−m)

]
(8.6)

It is straightforward to see that FCrBr = F2B2 and the square matrix F2 is nonsingu-
lar. By assumption, the system contains both matched and unmatched uncertainties
and therefore the sliding motion is independent of the matched uncertainty but de-
pendent on the unmatched uncertainty. In terms of the coordinate framework defined
above, the reduced-order sliding mode dynamics are governed by the following re-
duced order system

ẋ1(t) = (A11−A12KC1)x1(t)+ (Ad11−Ad12KC1)x1(t − τ(t))+ B11w(t) (8.7)

The response of this system must therefore be ultimately bounded, where K =
F−1

2 F1, and the problem of hyperplane design is equivalent to a static output feed-
back problem for the system (A11, Ad11, A12, Ad12, C1), where (A11 + Ad11, A12 +
Ad12) is assumed controllable and (A11 + Ad11, C1) observable. Note that the pres-
ence of the unmatched uncertainty means that, in general, asymptotic stability can-
not be attained by the system (8.7). This is formalised in terms of the existence
problem, which must be solved to determine the switching surface, in the next
section.

8.4 Existence Problem

It will be shown that the system (8.3) is exponentially attracted to a bounded re-
gion in Rn if the reduced-order system (8.7) is exponentially attracted to a bounded
domain in Rn−m. Consider the Lyapunov-Krasovskii functional below for the expo-
nential stability analysis of (8.7)
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V (t) = xT
1 (t)Px1(t)+

∫ t

t−h
eα(s−t)xT

1 (s)Ex1(s)ds+
∫ t

t−τ(t)
eα(s−t)xT

1 (s)Sx1(s)ds

+ h
∫ 0

−h

∫ t

t+θ
eα(s−t)ẋT

1 (s)Rẋ1(s)dsdθ (8.8)

with (n−m)×(n−m)-matrices P> 0 and E ≥ 0,S≥ 0,R≥ 0. To prove exponential
stability of the system (8.7) using (8.8), it is necessary to use the following lemma.

Lemma 8.1. [12] Let V : [0,∞)→R+ be an absolutely continuous function. If there
exist α > 0 and b > 0 such that the derivative of V satisfies almost everywhere the
inequality

d
dt

V (t)+αV(t)−b‖w(t)‖2 ≤ 0

then it follows that for all ‖w(t)‖ ≤ Δ

V (t)≤ e−α(t−t0)V (t0)+ b
α Δ

2, t ≥ t0.

Differentiating V (t) from (8.8) yields

M = 2xT
1 (t)Pẋ1(t)+ h2ẋ1

T (t)Rẋ1(t)
−he−αh ∫ t

t−h ẋ1
T (s)Rẋ1(s)ds+ xT

1 (t)(E + S)x1(t)
−xT

1 (t −h)Ex1(t −h)e−αh +αxT
1 (t)Px1(t)

−(1− τ̇(t))xT
1 (t − τ(t))Sx1(t − τ(t))e−ατ(t)

−bwT (t)w(t).

(8.9)

Further using the identity

−h
∫ t

t−h ẋ1
T (s)Rẋ1(s)ds

=−h
∫ t−τ(t)

t−h ẋ1
T (s)Rẋ1(s)ds−h

∫ t
t−τ(t) ẋ1

T (s)Rẋ1(s)ds
(8.10)

and applying Jensen’s inequality

∫ t
t−τ(t) ẋ1

T (s)Rẋ1(s)ds ≥ 1
h

∫ t
t−τ(t) ẋ1

T (s)dsR
∫ t

t−τ(t) ẋ1(s)ds (8.11)

and

∫ t−τ(t)
t−h ẋ1

T (s)Rẋ1(s)ds ≥ 1
h

∫ t−τ(t)
t−h ẋ1

T (s)dsR
∫ t−τ(t)

t−h ẋ1(s)ds. (8.12)

then equation (8.9) becomes

M ≤ 2xT
1 (t)Pẋ1

T (t)+αxT
1 (t)Px1(t)+ h2ẋ1

T (t)Rẋ1(t)
−[

(
x1(t)− x1(t − τ(t))

)T
R
(
x1(t)− x1(t − τ(t))

)−(
x1(t − τ(t))− x1(t −h)

)T
R
(
x1(t − τ(t))− x1(t −h)

)
]e−αh

+xT
1 (t)(E + S)x1(t)− xT

1 (t −h)Ex1(t −h)e−αh

−(1−d)xT
1 (t − τ(t))Sx1(t − τ(t))e−αh−bwT (t)w(t)

(8.13)
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Using the descriptor method as in [11] and the free-weighting matrices technique
from [16]

0 ≡ 2(xT
1 (t)PT

2 + ẋ1
T (t)PT

3 )[−ẋ1(t)+ (A11−A12KC1)
x1(t)+ (Ad11−Ad12KC1)x1(t − τ(t))+ B11w(t)] (8.14)

where matrix parameters P2, P3 = εP2 ∈ Rn−m are added to the right-hand side
of (8.13). Setting η(t) = col{x1(t), ẋ1(t),x1(t −h),x1(t − τ(t)),w(t)}, then M ≤
ηT (t)Θη(t) ≤ 0 if the matrix Θ < 0. Multiplying matrix Θ from the right and the
left by diag{P−1

2 ,P−1
2 ,P−1

2 ,P−1
2 , I} and its transpose respectively and denoting

Q2 = P−1
2 , P̂ = QT

2 PQ2, R̂ = QT
2 RQ2, Ê = QT

2 EQ2, Ŝ = QT
2 SQ2

it followsΘ < 0 ⇔ Θ̂ < 0 where

Θ̂ =

⎡
⎢⎢⎢⎢⎢⎣

θ̂11 θ̂12 0 θ̂14 θ̂15

∗ θ̂22 0 θ̂24 θ̂25

∗ ∗ θ̂33 θ̂34 0
∗ ∗ ∗ θ̂44 0
∗ ∗ ∗ ∗ θ̂55

⎤
⎥⎥⎥⎥⎥⎦
< 0 (8.15)

and

θ̂11 = (A11−A12KC1)Q2 +αP̂+ QT
2 (A11−A12KC1)T + Ê + Ŝ− R̂e−αh

θ̂12 = P̂−Q2 + εQT
2 (A11−A12KC1)T

θ̂14 = (Ad11−Ad12KC1)Q2 + R̂e−αh

θ̂15 = B11 θ̂22 =−εQ2 − εQT
2 + h2R̂

θ̂24 = ε(Ad11 −Ad12KC1)Q2 θ̂25 = εB11

θ̂33 =−(Ê + R̂)e−αh θ̂34 = R̂e−αh

θ̂44 =−2e−αhR̂− (1−d)Ŝe−αh θ̂55 =−bI

(8.16)

Select the LMI variable Q2 in the following form

Q2 =
[

Q11 Q12

Q22M δQ22

]
(8.17)

where Q22 is a (p−m)× (p−m) matrix, M is a (p−m)× (n− p) tuning matrix
and δ is a tuning parameter to be selected by the designer. It follows that

KC1Q2 =
[

KQ22M δKQ22
]

Defining Y = KQ22 it follows that
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KC1Q2 =
[

YM δY
]

(8.18)

To construct K, substitute (8.18) into (8.16) to yield

θ̂11 = A11Q2−A12[Y δY ]+ QT
2 AT

11 +αP̂− [YM δY ]T AT
12 + Ê + Ŝ− R̂e−αh

θ̂12 = P̂−Q2 + εQT
2 AT

11− ε[YM δY ]T AT
12

θ̂14 = Ad11Q2−Ad12[YM δY ]+ R̂e−αh

θ̂15 = B11 θ̂22 =−εQ2− εQT
2 + h2R̂

θ̂24 = εAd11Q2 − εAd12[YM δY ] θ̂25 = εB11

θ̂33 =−(Ê + R̂)e−αh θ̂34 = R̂e−αh

θ̂44 =−2e−αhR̂− (1−d)Ŝe−αh θ̂55 =−bI
(8.19)

The following Proposition can now be stated:

Proposition 8.1. Given scalars h > 0, d < 1, α > 0, ε , δ , b and a matrix M ∈
R(p−m)×(n−p), if there exist (n−m)× (n−m) matrices P̂ > 0, Ê ≥ 0, Ŝ ≥ 0, R̂ ≥
0 and matrices Q22 ∈ R(p−m)×(p−m), Q11 ∈ R(n−p)×(n−p), Q12 ∈ R(n−p)×(p−m),
Y ∈ Rm×(p−m) such that the LMI (8.15) with matrix entries (8.19) holds, then the
reduced order system (8.7), where K = Y Q−1

22 , is exponentially attracted to the el-
lipsoid

xT
1 (t)Px1(t)≤ b

α
Δ2 (8.20)

where P = Q−T
2 P̂Q−1

2 , for all differentiable delays 0≤ τ(t)≤ h, τ̇(t)≤ d< 1. More-
over, the reduced order dynamics (8.7) is exponentially stable for all piecewise-
continuous delays 0 ≤ τ(t) ≤ h, if the LMI (8.15) is feasible with Ŝ = 0.

Once K is obtained the sliding function matrix is defined as

F =
[

K Im
]

T−1

where T is from matrix Cr in (8.3). From (8.20) the reduced order sliding mode
dynamics are ultimately bounded by

‖x1(t)‖2 ≤ b
αλ (P)

Δ2 (8.21)

where λ (P) denotes the minimum eigenvalue of matrix P. It follows from the trans-
formed structure that the output equation is

y(t) = Crxr(t) (8.22)

In the ideal sliding mode
x2(t) =−KC1x1(t) (8.23)
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Substituting from (8.23) in (8.22) and denoting the upperbound of ‖x1(t)‖2 as t →∞
by γ = b

αλ (P)Δ
2, the corresponding bound on the output during the ideal sliding

mode is given by
‖y(t)‖2 ≤ ‖Cr‖2(‖KC1‖2 + 1)γ (8.24)

Example 8.1. Consider a third order system from [23] which incorporates both
matched and unmatched disturbances. Two different solutions to the existence prob-
lem demonstrate how the ultimate bound of the sliding mode dynamics can be min-
imized, according to Proposition 8.1. Consider the system

ẋ(t) =

⎡
⎣
−3 0 1
1 2 0
0 1 −2

⎤
⎦x(t)+

⎡
⎣

0
1
0

⎤
⎦u(t)+

⎡
⎣

2
1
0

⎤
⎦sin(t)

y(t) =
[

0 1 0
1 1 0

]
x(t)

(8.25)

The transformed structure of (8.25) according to the representation (8.3) is

Ar =

⎡
⎣
−2 −0.71 1
0.71 −3 0
0.5 −2.12 2

⎤
⎦ , Br =

⎡
⎣

0
0
1

⎤
⎦ , B1r =

⎡
⎣

0
1.41

2

⎤
⎦

Cr =
[

0 −0.71 1
0 0.71 1

]
(8.26)

Subsystem (A11, A12, B11, C1) is given by

A11 =
[ −2 −0.71

0.71 −3

]
, A12 =

[
1
0

]
, B11 =

[
0

1.41

]
, C1 =

[
0 1

]
(8.27)

The switching surface design problem is solved by developing a static output feed-
back controller for this subsystem. Choosing the tuning parameter in the LMI (8.15)
with entries (8.19) as δ = 0.9, ε = 0.34, M = .1 and choosingα = 4, b = 0.000005,
then it is obtained that K =−0.29. Define

F =
[−0.29 1

]
T−1, where T =

[−0.71 1
0.71 1

]

The poles of the reduced order system A11−A12KC1 are given by
[−2.5± j0.22

]
,

and by Proposition 8.1 the states of the reduced order system and the outputs in
the ideal sliding mode are ultimately bounded by ‖x1(t)‖ ≤ 2.57, ‖y(t)‖ ≤ 3.78
respectively.

Choosing different parameter settings as α = 0.04, b = 5, δ = 0.9, ε = 0.4, M =
1, then a second parameterization of the switching surface is obtained as K̂ =−1.58.
The second switching function is then given by
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F̂ =
[−1.58 1

]
T−1

The poles of the reduced order sliding mode dynamics A11 −A12K̂C1 are
[−1.57,

−3.43
]
. The ultimate bounds on the states of the reduced order system and on the

outputs in the ideal sliding mode in this case are ‖x1(t)‖ ≤ 33.7 and ‖y(t)‖ ≤ 89
respectively. As can be seen, the ultimate bound on the trajectories ‖y(t)‖ obtained
by using K is smaller than that obtained by using K̂, and we intuitively expect the
first switching function to provide better sliding mode performance than the second.
This will be verified in the later simulations.

Having addressed the existence problem and formulated a methodology to pre-
scribe the ideal sliding mode dynamics, it is now necessary to develop a control
strategy to ensure the sliding mode is attained.

8.5 Reachability Problem

It is first necessary to perform a coordinate transformation which will express the
system dynamics in terms of the states of the reduced order sliding mode dynamics
and the dynamics of the sliding variables, s(t). This facilitates solution of the reach-
ability problem. It can be shown [7] that the following system transformation and

control structure exist such that z(t) = T1xr(t), where T1 =
[

In−m 0
KC1 Im

]
so that the

system (Ā, Ād , B̄,FC̄) has the property

Ā =
[

Ā11 Ā12

Ā21 Ā22

]
Ād =

[
Ād11 Ād12
Ād21 Ād22

]
B̄ =

[
0
Im

]
B̄1 =

[
B̄11

B̄12

]
FC̄ =

[
0 Im

]
(8.28)

where z1(t) = x1(t), z2(t) = s(t). Note that Ā11 = A11−A12KC1 and Ād11 = Ad11−
Ad12KC1 exhibit the reduced order sliding-mode dynamics. Also, C̄ = [0 T̄ ], where
T̄ ∈ R p×p is nonsingular. The control law is defined by

u(t) =−Gy(t)− vy(t) (8.29)

where

G =
[

G1 G2
]

T̄−1 (8.30)

vy(t) =

{
ρ Fy(t)
||Fy(t)|| if Fy(t) 	= 0
0 otherwise

(8.31)

where G1 ∈ Rm×(p−m), G2 ∈ Rm×m, F =
[

K Im
]

T−1. The uncertain system (8.1)
in the z coordinate system becomes

ż(t) = Āz(t)+ Ādz(t − τ(t))+ B̄u(t)+ B̄1w(t) (8.32)
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Closing the loop in the system (8.32) with the control law (8.29) yields

ż(t) = A0z(t)+ Ādz(t − τ(t))− B̄vy(t)+ B̄1w(t) (8.33)

where A0 = Ā− B̄GC̄. Let P̄ be a symmetric positive definite matrix partitioned

conformably with (8.28) so that P̄ =
[

P̄1 0
0 P̄2

]
. It follows that P̄B̄ = (FC̄)T P2 and

from (8.28) Fy(t) = z2(t). It can be shown that

ψ = P̄A0 + AT
0 P̄

=
[

P̄1Ā11 + ĀT
11P̄1 P̄1Ā12 +(Ā21−G1C1)T P̄2

∗ P̄2Ā22 + ĀT
22P̄2− P̄2G2− (P̄2G2)T

]

=
[

P̄1Ā11 + ĀT
11P̄1 P̄1Ā12 + ĀT

21P̄2− (L1C1)T

∗ P̄2Ā22 + ĀT
22P̄2−L2− (L2)T

]
(8.34)

where L1 = P̄2G1 and L2 = P̄2G2. A stability condition for the full order closed loop
system can be derived using the following Lyapunov-Krasovskii functional

V (t) = zT (t)P̄z(t)+
∫ t

t−h
eᾱ(s−t)zT (s)Ēz(s)ds +

∫ t

t−τ(t)
eᾱ(s−t)zT (s)S̄z(s)ds

+ h
∫ 0

−h

∫ t

t+θ
eᾱ(s−t)żT (s)R̄ż(s)dsdθ (8.35)

where Ē ≥ 0, S̄ ≥ 0 and R̄ =
[

R̄1 0
0 0

]
where R̄1 ≥ 0 (as it is desired to determine a

stability condition for the time delay system which is delay-independent of z2(t)).
Then

M̄ = V̇ + ᾱV − b̄wT (t)w(t)
≤ 2zT (t)P̄żT (t)+ ᾱzT (t)P̄z(t)+ h2żT (t)R̄ż(t)
− [(z(t)− z(t − τ(t)))T R̄(z(t)− z(t − τ(t)))
+ (z(t − τ(t))− z(t−h))T R̄(z(t − τ(t))− z(t−h))]e−ᾱh

+ zT (t)(Ē + S̄)z(t)− zT (t −h)Ēz(t −h)e−ᾱh

− (1−d)zT (t − τ(t))S̄z(t − τ(t))e−ᾱτ(t) − b̄wT (t)w(t) (8.36)

Substitute the right-hand side of equation (8.33) into (8.36). Setting ς(t) = col{z(t),
z(t −h),z(t− τ(t)),w(t)}, then

V̇ (t)≤ ς(t)TΦhς(t)+ h2żT (t)R̄ż(t)+ 2zT P̄B̄(B̄12w(t)− vy(t))< 0 (8.37)

is satisfied if ςT (t)Φhς(t) + h2żT (t)R̄ż(t) < 0 and 2zT P̄B̄(B̄12w(t)− vy(t)) < 0,
where
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Φh =

⎡
⎢⎢⎢⎢⎣

φ11 0 P̄Ād + R̄e−ᾱh

[
P̄1B̄11

0

]

∗ φ22 R̄e−ᾱh 0
∗ ∗ −2e−ᾱhR̄− (1−d)S̄e−ᾱh 0
∗ ∗ ∗ −b̄I

⎤
⎥⎥⎥⎥⎦

(8.38)

with
φ11 = ψ + ᾱP̄ + S̄+ Ē − R̄e−ᾱh; φ22 =−(Ē + R̄)e−ᾱh

Setting ξ (t) = col{z(t),z(t − h),z(t − τ(t)),w(t),vy(t)} and I =
[

I(n−m) 0
]T

, it is
obtained that

h2żT (t)R̄ż(t) = [zT (t)AT
0 + zT (t − τ(t))ĀT

d − vT
y (t)B̄T + wT (t)B̄T

1 ]h2R̄[A0z(t)

+ Ādz(t − τ(t))− B̄vy(t)+ B̄1w(t)]

= ξ T (t)

⎡
⎢⎢⎢⎢⎣

AT
0

0
ĀT

d
B̄T

1
B̄T

⎤
⎥⎥⎥⎥⎦

Ih2R̄1I
T

⎡
⎢⎢⎢⎢⎣

AT
0

0
ĀT

d
B̄T

1
B̄T

⎤
⎥⎥⎥⎥⎦

T

ξ (t) (8.39)

Using the Schur complement, ξ T (t)Φhξ (t)+ h2żT (t)R̄ż(t)< 0 holds if

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φh

hAT
0

[
I(n−m)

0

]
R̄1

0

hĀT
d

[
I(n−m)

0

]
R̄1

hB̄T
1

[
I(n−m)

0

]
R̄1

∗ ∗ ∗ ∗ −R̄1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (8.40)

for some ᾱ > 0, b̄> 0 and 0 ≤ τ(t)≤ h, i.e. to ensure the exponential attractiveness
of (8.33) to the ellipsoid zT (t)P̄z(t) ≤ b̄

ᾱ Δ
2. Given the control structure in (8.30)

then

2zT (t)P̄B̄(B̄12w(t)− vy(t))
= 2zT

2 (t)P̄2(B̄12w(t)− vy(t))
≤−2ρP̄2‖z2(t)‖+ 2P̄2‖B̄12‖‖z2(t)‖Δ
< 0

The latter inequality implies exponential attractivity of the ellipsoid zT (t)P̄z(t) ≤
b̄
ᾱ Δ

2, thus for t → ∞, zT (t−τ(t))P̄z(t −τ(t))≤ b̄
ᾱ Δ

2 holds. The following proposi-
tion can now be stated:
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Proposition 8.2. Given scalars h> 0, d < 1, ᾱ > 0, b̄> 0, assume there exist n×n
matrices P̄ = diag{P̄1, P̄2}> 0 with P2 ∈Rm×m, Ē ≥ 0, S̄ ≥ 0, a (n−m)× (n−m)-
matrix R̄1 ≥ 0, L1 ∈ Rm×(p−m), L2 ∈ Rm×m such that LMI (8.40) is feasible. Then
for ρ > ‖B̄12‖Δ the closed-loop system (8.33), where G1 = P̄−1

2 L1, G2 = P̄−1
2 L2,

is exponentially attracted to the ellipsoid zT (t)P̄z(t) ≤ b̄
ᾱ Δ

2 for all τ(t) ∈ [0,h].
Consequently it also holds that zT (t − τ(t))P̄z(t − τ(t))≤ b̄

ᾱ Δ
2 for t → ∞.

Denote

AL
0 = [0 Im]A0; ĀL

d = [0 Im]Ād ; β =
b̄
ᾱ
Δ2 (8.41)

given δ̄ > 0, conditions will now be derived that guarantee the solutions of (8.28)
satisfy the bound

‖AL
0z(t)‖+‖AL

dz(t − τ(t))‖< δ̄ (8.42)

for t → ∞. Note that

zT (t)(AL
0)T (AL

0)z(t) ≤ δ̄ 2
1

zT (t)P̄z(t)
β

zT (t − τ(t))(AL
d)

T (AL
d)z(t − τ(t))≤ δ̄ 2

2
zT (t−τ(t))P̄z(t−τ(t))

β

(8.43)

where δ̄ = δ̄1 + δ̄2. Hence, the following inequalities hold

(AL
0)

T (AL
0)≤ δ̄ 2

1 P̄
β ; (AL

d)
T (AL

d) ≤ δ̄ 2
2 P̄
β (8.44)

and, by Schur complements, the following inequalities
[
− δ̄ 2

1 P̄
β (AL

0)T

∗ −I

]
< 0;

[
− δ̄ 2

2 P̄
β (AL

d)
T

∗ −I

]
< 0 (8.45)

guarantee that for all the solutions, the bound in equation (8.42) holds for t → ∞.

Corollary 8.1. Given scalars ᾱ > 0, b̄ > 0, let there exist n × n matrices P̄ =
diag{P̄1, P̄2}> 0, Ē ≥ 0, S̄≥ 0, a (n−m)×(n−m)-matrix R̄1 ≥ 0, L1 ∈Rm×(p−m),
L2 ∈ Rm×m such that the LMI (8.40) is feasible for 0 ≤ τ(t) ≤ h, τ̇(t) ≤ d < 1. Let
δ̄1 and δ̄2 satisfy (8.45) with the notation given in (8.41). Then for

ρ > ‖B12‖Δ + δ̄ (8.46)

an ideal sliding motion takes place on the surface S .

Proof. Substituting the control law it follows from (8.32) that

ṡ(t) = FC̄A0z(t)+ FC̄Ādz((t − τ(t))+ (B̄12w(t)− vy(t))

Let Vc : Rm →R be defined by Vc(s) = 2sT (t)P̄2s(t). It follows that

P̄2FC̄A0 = P̄2AL
0; P̄2FC̄Ad = P̄2AL

d
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Starting from initial condition z(t0), it can be verified that there exists t1 > 0 such
that for all t ≥ t1,

V̇c(s) = 2sT (t)P̄2AL
0z(t)+ 2sT (t)P̄2AL

dz(t − τ(t))+ 2sT (t)P̄2(B̄12w(t)− vy(t))
≤ 2‖s(t)‖‖P̄2‖(‖AL

0z(t)‖+‖AL
dz(t − τ(t))‖)−2δ̄‖s(t)‖‖P̄2‖

< −2η‖s(t)‖ (8.47)

where η = δ̄ −‖AL
0z(t)‖−‖AL

dz(t − τ(t))‖. A sliding motion will thus be attained
in finite time.

��
Example 8.2. Two solutions to the reachability problem will now be performed for
the uncertain system (8.25) corresponding to the existence problem solutions pro-
posed in Example 8.1 with K, K̂ respectively. A control gain G is designed based
on K, which brings the full order closed-loop system into a bounded region centered
about the sliding surface. Setting ᾱ = 1, b̄ = 0.004 in Proposition 8.2, then

G =
[

6.3, 1.9
]

The closed-loop poles of A− BGC are
[−6.3, −2.5, −2.4

]
. The switching gain

ρ = 2.5 which is derived from LMI (8.45) will ensure the sliding surface is reached
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time (s)
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Fig. 8.1 Closed-loop response of system (8.25) with the first controller
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in finite time. It was observed in the simulation that the bound on the reduced order
sliding dynamics is ‖x1(t)‖ ≤ 0.44 which compares favourably with the estimated
bound ‖x1(t)‖ ≤ 2.57. As may be expected, the theoretical bounds are conserva-
tive. Figure 8.1 shows that the outputs of the system are stable with ultimate bound
‖y(t)‖ ≤ 0.47 in the simulation plots. The sliding surface is reached in finite time.

Based on K̂ with ᾱ = 1, b̄ = 0.004,

Ĝ =
[

55.5, −18.7
]

The closed-loop poles of A−BĜC are
[−34.7, −3.4, −1.6

]
. The switching gain

ρ̂ = 7.23. It was observed in the simulation that the bound on ‖x1(t)‖≤ 0.5 whereas
the estimated bound was ‖x1(t)‖ ≤ 33.7. Figure 8.2 shows that the outputs of the
system are stable with ultimate bound ‖y(t)‖ ≤ 1.15.

Recall from Example 8.1 that the estimated ultimate bound of the closed loop
trajectories ‖y(t)‖ obtained by using K is smaller than that computed for K̂. It is
thus expected that the ultimate bound on ‖y(t)‖ will be smaller using K than using
K̂. This can be verified in Figure 8.1 and Figure 8.2 where the actual bounds on the
output y(t) are less using K and both bounds lie within the theoretical predictions.
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Fig. 8.2 Closed-loop response of system (8.25) with the second controller
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8.6 Liquid Monopropellant Rocket Motor Control

Control of a liquid monopropellant rocket motor with a pressure feeding system
is a challenging problem as the system is an unstable, time delay system. When it
is stabilised via linear state feedback, the robustness of the system is unsatisfactory
and [26] have demonstrated the advantage of applying a state feedback sliding mode
control in this regard. The case study presented here will consider output feedback
sliding mode control of the system using the methodology described in the chapter.

The model of the liquid monopropellant rocket motor has been previously consid-
ered in [26] [24]. The model assumes nonsteady flow and takes account of nonuni-
form lag to form a linearised model of the combustion chamber and feeding system.
The states are given by

x1(t) relative deviation of the instantaneous combustion chamber pressure from its
steady-state value

x2(t) relative deviation of the instantaneous mass flow upstream of the capacitance
from its steady-state value

x3(t) relative deviation of the instantaneous mass flow rate of the injected
propellant from its steady-state value

x4(t) ratio between the deviation of the instantaneous pressure at a point from its
steady-state value and twice the injector pressure drop in steady-state
operation

The outputs have been chosen to be the second and fourth states. With the pressure
exponent of the combustion process assumed to be 0.8 the system description is
given from [24] as

A =

⎡
⎢⎢⎣
−0.2 0 0 0

0 0 0 −1
−1 0 −1 1
0 1 −1 0

⎤
⎥⎥⎦ Ad =

⎡
⎢⎢⎣
−0.8 0 1 0

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ B =

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ C =

[
0 1 0 0
0 0 0 1

]
(8.48)

The transformed system used to solve the existence problem is given by

Ar =

⎡
⎢⎢⎣
−0.2 0 0 0
−1 −1 1 0
0 −1 0 1
0 0 −1 0

⎤
⎥⎥⎦ Adr =

⎡
⎢⎢⎣
−0.8 1 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ Br =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ Cr =

[
0 0 0 1
0 0 1 0

]
(8.49)

and the reduced subsystem matrices are

A11 =

⎡
⎣
−0.2 0 0
−1 −1 1
0 −1 0

⎤
⎦ A12 =

⎡
⎣

0
0
1

⎤
⎦ Ad11 =

⎡
⎣
−0.8 1 0

0 0 0
0 0 0

⎤
⎦ Ad12 =

⎡
⎣

0
0
0

⎤
⎦ C1 =

[
0 0 1

]

(8.50)
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Suppose the initial conditions x(t0) =
[

1, −1, 5, 20
]T in the simulation. To con-

struct K for the reduced order system (8.7) according to the Proposition 8.1, the
parameter settings in the LMI (8.15) with entries (8.19) are selected with the
delay-upperbound h = 0.82s and the rate of change of the time varying delay
τ̇(t)≤ d = 0.1. If for δ = 40, ε = 0.9, M =

[
5, 2

]
and choosingα = 0.1, b = 0.005,

then it is obtained that the LMI variable K = 6.93. The sliding function matrix is
therefore

F =
[

1, 6.93
]

which provides stable sliding mode dynamics where the poles of the non delayed
dynamics A11−A12KC1 are

[−6.75, −1.17, −0.2
]

(8.51)

Following the solution of the existence problem, which will provide stable sliding
mode dynamics, reachability of the sliding surface must be considered. Setting ᾱ =
0.04, b̄ = 2 in Proposition 8.2, it is obtained that

G =
[

23.2, 115.5
]

(8.52)

The closed-loop poles of A−BGC are
[−15.9, −7.03, −1.25, −0.2

]
(8.53)

A switching gain ρ = 0.1, which satisfies the LMI (8.45), will ensure the finite time
reachability to the sliding surface, as seen in Figure 8.3, where asymptotic stability
of the system outputs is observed.

Control design without taking account of possible occurrences of disturbances
can lead to undesirable performance. Unlike matched uncertainties whose effects on
the system can be directly rejected by use of an appropriate sliding mode control, un-
matched uncertainties or disturbances affect the dynamics in the sliding mode. The
corresponding effects on the states may lead to violation of the finite time reacha-
bility of the sliding surface as demonstrated below. Assume that the control design
above has been performed and an unmatched, unknown but bounded disturbance
occurs at 35s with disturbance distribution B1 =

[
1 0 0 0

]T
w(t) where ‖w(t)‖ ≤ 2.

Note the value of w(t) is taken to be large enough to demonstrate the potential ef-
fect of the disturbance to the system and the advantage of taking knowledge of the
disturbance into the design process in the proposed scheme. As can be seen from
Fig 8.4, the sliding surface is reached and maintained until 35s after which time
the dynamic response is disturbed and lies within a boundary of the ideal sliding
surface. Outputs become ultimately bounded due to the effects of the unmatched
disturbances.

By using knowledge of the unknown but bounded disturbance, then the following
design is performed. Construct K for the reduced order system (8.7) with delay
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Fig. 8.3 Closed-loop response of (8.48) with varying delay τ(t) ≤ 0.82s

and unmatched disturbance B1 according to Proposition 8.1. Parameter settings in
the LMI (8.15) with entries (8.19) are selected this time the same as for the initial
design, where the effects of the disturbance were not considered. Therefore setting
delay-upperbound h = 0.82s, rate of change of the time varying delay τ̇(t) ≤ d =
0.1, δ = 40, ε = 0.9, M =

[
5, 2

]
, α = 0.1, b = 0.005, it is obtained that K = 7 and

the sliding function matrix is given by

F =
[

1, 7
]

The poles of the subsystem A11−A12KC1 are

[−6.82, −1.17, −0.2
]

It is known that the performance of the closed loop system will be affected by
both matched and unmatched disturbances during the transient period to the sliding
surface, but will be unaffected by matched disturbances after the sliding surface is
reached. Therefore taking account the bound of the unmatched disturbance into the
LMIs design, a control G with larger gain will be derived which yields a shorter
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transient time from the initial states to the sliding surface to minimize the effects of
the disturbances. Choose the same setting as before ᾱ = 0.04, b̄ = 2 in Proposition
8.2, it is obtained that

G =
[

2880, 20132
]

(8.54)

The closed-loop poles of A−BGC are
[−2873.2, −6.8, −1.2, −0.2

]
(8.55)

A switching gain ρ = 14000 derived from the LMI (8.45) is seen to be large in
order to ensure the finite time reachability condition is satisfied. Figure 8.5 shows
that sliding surface is reached in finite time and remains on it afterwards despite
the unmatched disturbance. However the outputs of the system still remain ulti-
mately bounded due to the effects of unmatched bounded disturbances with the
bound ‖y(t)‖ ≤ 1.6. The design proposes a methodology which allows systematic
synthesis of a sliding mode control for a system with delay and both matched and
unmatched disturbances, through a set of LMIs conditions to derive the switching
gain which ensures the finite time reachability of the sliding surface.
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Fig. 8.4 Closed loop response disturbed by unmatched disturbance w(t) at t = 35s
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Fig. 8.5 Closed-loop response of (8.48) with varying delay τ(t) ≤ 0.82s and unmatched
disturbance ‖w(t)‖ ≤ 2.

8.7 Conclusion

The development of output feedback based sliding mode schemes for systems in
the presence of state delay and both matched and unmatched disturbances has been
presented. A descriptor Lyapunov functional approach has been used for switching
function design. The methodology has been implemented using LMIs and can give
desirable static output feedback sliding mode control dynamics with guaranteed ul-
timate bound. A novel feature of the method is that the switching control gain as
well as the switching surface is determined using LMIs. A numerical example as
well as an application study on a liquid monopropellant rocket motor demonstrates
the methodology and its effectiveness.

References

1. Benton, R.E., Smith, D.A.: A static-output feedback design procedure for robust emer-
gency lateral control of a highway vehicle. IEEE Trans. Automatic Control Syst. Tech-
nol. 13, 618–623 (2005)



8 Output Feedback Sliding Mode Control of Uncertain Systems 243

2. Brockman, M.L., Corless, M.: Quadratic boundedness of nominally linear systems. Int.
J. Control 71, 1105–1117 (1998)

3. Cao, Y.Y., Lam, J., Sun, Y.X.: Static output feedback stabilization: An ILMI approach.
Automatica 34, 1641–1645 (1998)

4. Choi, H.H.: Variable structure output feedback control for a class of uncertain dynamic
systems. Automatica 38, 335–341 (2002)

5. Crusius, C.A.R., Trofino, A.: Sufficient LMI conditions for output feedback control prob-
lems. IEEE Trans. Automatic Control 44, 1053–1057 (1999)

6. Edwards, C.: A practical method for the design of sliding mode controllers using linear
matrix inequalities. Automatica 40, 1761–1769 (2004)

7. Edwards, C., Akoachere, A., Spurgeon, S.K.: Sliding mode output feedback controller
design using linear matrix inequalities. IEEE Trans. Automatic Control 46, 115–119
(2001)

8. Edwards, C., Spurgeon, S.K.: Sliding mode stabilization of uncertain systems using only
output information. Int. J. Control 62, 1129–1144 (1995)

9. El-Khazali, R., Decarlo, R.A.: Output feedback variable sturcture controllers. IEEE
Trans. Automatic Control 31, 805–816 (1995)

10. Fernando, C., Fridman, L.: Analysis and Design of Integral Sliding Manifolds for
Systems With Unmatched Perturbations. IEEE Trans. Automatic Control 51, 853–858
(2006)

11. Fridman, E.: New Lyapunov-Krasovskii functionals for stability of linear retarded and
neutral type systems. Systems Control Letters 42, 233–240 (2001)

12. Fridman, E., Dambrine, M.: Control under Quantization, Saturation and Delay: A LMI
approach. Automatica 10, 2258–2264 (2009)

13. Fridman, E., Dambrine, M., Yeganefar, N.: On matrix inequalities approach to input to
state stability. Automatica 44, 2364–2369 (2008)

14. Gouaisbaut, F., Dambrine, M., Richard, J.P.: Robust control of delay systems: a sliding
mode control design via LMI. Systems and Control Letters 46, 219–230 (2002)

15. Han, X., Fridman, E., Spurgeon, S.K., Edwards, C.: On the design of sliding mode static
output feedback controllers for systems with state delay. IEEE Trans. Industrial Elec-
tronics 56, 3656–3664 (2009)

16. He, Y., Wang, Q.G., Lin, C., Wu, M.: Delay range dependent stability for systems with
time-varying delay. Automatica 43, 371–376 (2007)

17. Huang, D., Nguang, S.K.: Robust H∞ static output feedback control of fuzzy systems:
An ILMI approach. IEEE Trans. Syst. 36, 216–222 (2006)

18. Jafarov, E.M.: Robust sliding mode controller design techniques for stabilisation of mul-
tivariable time-delay systems with parameter perturbations and external disturbances.
International Journal of Systems Science 36, 433–444 (2005)

19. Li, X., DeCarlo, R.A.: Robust sliding mode control of uncertain time delay systems. Int.
J. Control 76, 1296–1305 (2003)

20. Shaked, U.: An LPD approach to robust H2 and H∞ static output feedback design. IEEE
Trans. Automatic Control 48, 866–872 (2003)

21. Seuret, A., Edwards, C., Spurgeon, S., Fridman, E.: Static output feedback sliding mode
control design via an artificial stabilizing delay. IEEE Trans. Automatic Control 54, 256–
265 (2009)

22. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, New York (1992)



244 X. Han, E. Fridman, and S.K. Spurgeon

23. Xiang, J., Wei, W., Su, H.: An ILMI approach to robust static output feedback sliding
mode control. Int. J. Control 79, 1930–1935 (2006)

24. Xie, L., Fridman, E., Shaked, U.: Robust H∞ control of distributed delay systems with
application to combustion control. IEEE Trans. Automatic Conrol 46, 1930–1935 (2001)

25. Zak, S.H., Hui, S.: On variable structure output feedback controllers for uncertain dy-
namic systems. IEEE Trans. Automatic Control 38, 1509–1512 (1993)

26. Zheng, F., Cheng, M., Gao, W.: Variable Structure Control of Time-delay Systems with
a Simulation Study on Stabilizing Combustion in Liquid Propellant Rocket Motors. Au-
tomatica 31, 1031–1037 (1995)



Chapter 9
Sliding Mode Controller Design: An
Input-Output Approach

Hebertt Sira-Ramı́rez, Alberto Luviano-Juárez, and John Cortés-Romero

Abstract. In this chapter, we propose a new feedback controller design approach
for the sliding mode control of a large class of linear switched systems. The method
is devoid of state measurements, and it efficiently extends the sliding mode control
methodology to traditional input-output descriptions of the plant. The approach is
based on regarding the average Generalized Proportional Integral (GPI) output feed-
back controller design as a guide for defining the sliding mode features. Throughout,
it is assumed that the available output signal coincides with the system’s flat output,
an output capable of completely differentially parameterizing all the variables in the
system (inputs, original outputs and state variables) and exhibits no zero dynamics.
Encouraging simulation results are presented in connection with a tutorial exam-
ple. Experimental results are also presented for the trajectory tracking problem on a
popular DC-to-DC switched power converter of the “buck” type.

9.1 Introduction

Sliding mode control has undergone a substantial development since its early in-
ception in the former Soviet Union. For a detailed survey of the many early con-
tributions and the fundamental theoretical aspects of this field, the reader is invited
to revise the authoritative book by Prof. V. Utkin [2]. Recent books by Edwards
and Spurgeon [3] and by Utkin et al. [4] depict the breath of the theory and the
efficient possibilities for practical applications. Sliding mode control, however, is
intimately tied to the state variable formulation of dynamical systems. The need
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for often unavailable states, or unmeasured output phase variables, leads to the use
of asymptotic observers. These facts substantially limit the applicability of sliding
mode control, specially in the realm of nonlinear systems where, we should recall,
asymptotic observers represent an issue which has not been entirely resolved. A con-
tribution towards using sliding mode control without state measurements was given
by H. Sira-Ramı́rez and R. Silva-Ortigoza [5] in the context of sigma-delta modula-
tion. In this approach to sliding mode control, an average output feedback controller
design is produced which induces a desirable closed loop behavior. This closed loop
behavior is enforced as the zero dynamics of an exogenous sliding mode behavior,
imposed on a first order nonlinear dynamics defining the sigma-delta modulator.
These devices were commonly used in communications systems for translating con-
tinuous signals into discrete valued signals (See the pioneering work of Steele [6],
and the book by Norsworthy et al. [7] for the natural implications in analog to digital
conversion. The output of the modulator is, thus, the switching input signal directly
affecting the plant. The robustness, or lack thereof, of the average design is directly
bestowed on the sigma-delta modulation implementation.

In this chapter, we propose a robust Generalized Proportional Integral (GPI) ap-
proach for sliding mode controller design on switched systems. GPI control has
been established as an efficient linear control technique that circumvents the need
for asymptotic observers ( See Fliess et al. [8]) and it has been shown, in [5], to
be intimately related to classical compensator networks design. Here, we advocate
the creation of sliding motion behavior on a sliding surface obtained by integration
from the explicit expression of the robust average GPI feedback control input. The
average input is to be viewed as a desirable equivalent control, which is a funda-
mental concept in sliding mode control, (Utkin [2]). The proposed method does not
resort to asymptotic state observers and efficiently extends the sliding mode con-
trol methodology to traditional input-output, frequency domain, descriptions of the
average model of the given switched plant. The underlying design task reduces to
that of a robust average output feedback control scheme and it is found to be inti-
mately related to the sigma-delta modulation scheme. The proposed GPI approach
to sliding mode design is based on a key observation regarding the switched con-
trol interpretation of the robust GPI controller designed for the smooth regulation
of the average model of the given switched plant. Our proposal states that the av-
erage GPI controller design is to be viewed as an equivalent control, arising from
an ideal sliding dynamics, whose corresponding sliding surface coordinate func-
tion is to be determined. The resulting sliding surface coordinate function turns out
to be a low pass filtered stable output tracking error differential polynomial. The
main limitation of the new approach lies in the assumption that the available output
signal coincides with the system’s flat output (See Fliess et al. [9], and also Sira-
Ramı́rez and Agrawal [10]) and, hence, the underlying average linear system is,
both, controllable and, also, observable from this special output. Nevertheless, this
limitation is easily lifted in the more general case of minimum phase, input-output,
systems with unavailable flat outputs. A simulation examples is presented, and, also,
an experimental result is reported solving a trajectory tracking problem on a popular
DC-to-DC power converter of the “buck” type.
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Section 9.6 contains an introductory example which presents, in a tutorial fash-
ion, the fundamental idea behind the GPI based sliding mode control design method-
ology. Generally speaking, there exist two alternative approaches for the average
robust GPI controller design: an observer-free approach and a GPI observer-based
approach. Here we explain and develop both design approaches. Section 9.4 presents
a simulation example directly applying the results of the tutorial example in Section
9.6. Section 9.5 deals with the design of a sliding mode controller for a “buck” con-
verter plant in a trajectory tracking task within a DC to AC output voltage conversion
scheme and presents the corresponding experimental results. The conclusions and
suggestions for further work are collected at the end of the chapter.

9.2 An Introductory Example

Consider a perturbed, switched controlled, third order integrating plant of the form:

y(3) = κu + ξ (t), u ∈ {0,1} (9.1)

where u is a discrete valued signal representing a switching action taking values in
the discrete set {0,1}. The perturbation input signal, ξ (t), is completely unknown
but uniformly, absolutely, bounded by some real number a priori unknown. The
parameter κ is assumed to be a known scalar constant.

Suppose it is desired to track a given smooth reference trajectory y∗(t) from ar-
bitrary initial conditions based, solely, on the knowledge of the control input u and
of the output y.

We set, in relation to the given switched controlled plant, the following perturbed
average system model in which u is replaced by a smooth signal uav bounded in the
closed interval [0,1] of the real line, and the corresponding output signal is replaced
by yav. In other words, we set the perturbed average system as,

y(3)
av = κuav + ξ (t), uav ∈ [0,1] (9.2)

We now pose, on the perturbed average system model (9.2), the problem of accu-
rately tracking the given smooth reference signal, y∗(t), via a suitable output feed-
back control design, in spite of the unkwnon but bounded perturbation input ξ (t). It
is further assumed that the viability of tracking the given reference signal, y∗(t), is
assessed by the fact that the corresponding (unperturbed) open loop average control
input, u∗av(t), off-line computed as: u∗av(t) = ÿ∗(t), is comfortably bounded by the
closed interval [0,1]. Note that the nominal average control input must ignore, for
lack of knowledge, the presence of the perturbation input.

9.2.1 An Average GPI Controller Design Devoid of Observers

A GPI controller for the tracking of the reference signal, y∗(t), in the average system
(9.2) proceeds as follows:
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1) Compute the open loop, perturbed, average tracking error dynamics as,

e(3)
y,av = κeu,av + ξ (t) (9.3)

where ey,av = yav − y∗(t) and eu,av = uav − u∗av(t). We denote, henceforth, u∗av(t)
simply as u∗(t).

2) Build a robust linear output feedback controller for the average system, under
the assumption that the perturbation input, ξ (t), exhibits negligible higher order
derivatives, say, of fourth order, thus it may be locally approximated by an arbitrary
element of a family of fixed, third degree, Taylor time-polynomial. The robust GPI
controller is then given by,

eu,av =− 1
κ

[
k6s6 + k5s5 + · · ·+ k1s+ k0

s4(s2 + k8s+ k7)

]
ey,av (9.4)

The closed loop tracking error system is thus, dominantly, governed by the slightly
right-hand-side perturbed version of the following linear, homogeneous, system,

e(9)
y,av + k8e(8)

y,av + · · ·+ k1ėy,av + k0ey,av = 0 (9.5)

whose coefficients may be readily determined so that ey,av(t) asymptotically, expo-
nentially decays to zero in an ideal fashion. However, due to the presence of the
small residual of the perturbation input, not completely canceled by the fourth or-
der derivation operation explicitly appearing in the denominator of the proposed
controller (9.4), one may only guarantee asymptotic exponential convergence to the
interior of a disk, of small radius, in the average tracking error phase space. The
radius of this disk can be made as small as desired by choosing the set of gains:
{k8,k7, . . . ,k1,k0}, so that the roots of the corresponding characteristic polynomial
to (9.5) are located deep into the left half of the complex plane.

The figure below depicts the interpretation of (9.4) as a block diagram where a
saturation block has been included to emphasize the fact that: uav ∈ [0,1].
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Fig. 9.1 GPI average control scheme for a third order perturbed integrator plant.
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Letting z be defined as

z =− 1
κ

[
1

s4(s2 + k8s+ k7)

]
(yav(s)− y∗(s)) (9.6)

Let uδ , be suggestive of a correction input term, complementing the faulty nominal
control input u∗(t) and actually representing the output of the linear compensator
acting on the output error signal: −(yav− y∗(t))/κ . We have,

uav−u∗(t) = uδ = k6ż6 + k5z6 + · · ·+ k1z2 + k0z1 (9.7)

where,
ż1 = z2

ż2 = z3

...

ż5 = z6

ż6 = −k8z6 − k7z5 − 1
κ

(yav − y∗(t))

z = z1 (9.8)

In terms of a canonical state space realization of the dynamic output feedback con-
troller (9.4), the average control input, uav, results in the following expression:

uav = u∗(t)+ (k5− k6k8)z6 +(k4− k6k7)z5 + k3z4 + k2z3 + k1z2 + k0z1

−k6

κ
(yav − y∗(t)) (9.9)

It is convenient to take all the initial conditions of the dynamic output feedback
controller to be zero.

Since the average controller is a high-gain controller one easily avoids large tran-
sients leading to possible controller output saturations by smoothly “clutching” the
output reference trajectory, y∗(t), via multiplication by a smooth interpolating poly-
nomial factor of the Bézier type. A second alternative, with similar effects, is based
on the traditional anti-reset windup strategy applied to the multiple integration term
in the controller (See Aström and Murray [11]), for enlightening details)

9.2.2 A Switched Control Interpretation of the Average Design

As far as the control of the switched system (9.1) is concerned, we would like to
bestow, or, somehow, impose, on its sliding mode controlled closed loop system, the
nice average asymptotic stability features of the previously designed average GPI
dynamical feedback controller in an equivalent control sense. One may then regard
the average control input, uav, as an equivalent control, ueq, whose corresponding
sliding surface coordinate function, σ , needs to be determined. Thus we let, for the
switched system,
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ueq = u∗(t)+ (k5− k6k8)z6 +(k4− k6k7)z5 + k3z4 + k2z3 + k1z2 + k0z1

−k6

κ
(y− y∗(t)) =: u∗(t)+ uδ (9.10)

where yav has been replaced by the actual system output y. Clearly, the equation gen-
erating the equivalent control, ueq, arises, primarily, from the well known invariance
condition: σ̇ = 0, particularized at σ = 0. We thus find, via a single integration oper-
ation, with zero initial conditions on the controller state variables: z j, j = 1, ...,6, the
following convenient integral expression for the sliding surface coordinate function
σ :

σ =
∫ t

0
[u∗(τ)+ uδ (τ)−u]dτ (9.11)

In other words,
σ̇ = u∗(t)+ uδ −u = uav(t)−u (9.12)

It is assumed that the sum, u∗(t)+ uδ , that we still, abusively, call: uav(t), is uni-
formly bounded by the interval [0,1]. It is, then, easy to establish the existence of a
sliding regime on the zero level set of the sliding surface coordinate function, σ , i.e.,
on σ = 0. For this, we propose to use the following discontinuous feedback control
strategy for the switched control input u.

u =
1
2

[1 + sign σ ] (9.13)

which precisely corresponds to the feedback control scheme shown in Figure 9.2.
Note that, from (9.12) and (9.13), if and only if, 0< uav(t) = u∗(t)+ uδ < 1, then,

σσ̇ = σ
(

uav(t)− 1
2

[1 + sign σ ]
)
< 0 (9.14)

and a sliding regime exists on σ = 0 (See Utkin [2]).
It is easy to see that the three integrations in the block diagram of Figure 9.2

can be equivalently carried out with a single integration performed just before the
switching law inside the nonlinear block synthesizing the actual control input u.
The scheme shown in Figure 9.3 entirely coincides with the Σ −Δ modulation im-
plementation of the average GPI controller on the switched system as advocated in
Sira-Ramı́rez and Ortigoza (see [12] and, also, [5]).

9.2.3 A GPI Observer Based Approach

Consider, again, the average output trajectory tracking error perturbed system,
treated in the previous section,

e(3)
y,av = κeu,av + ξ (t) (9.15)
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Fig. 9.2 GPI based sliding mode control scheme for a third order switched perturbed inte-
grator plant.
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Fig. 9.3 GPI based Σ −Δ sliding mode control scheme for a third order switched perturbed
integrator plant.

Independently of the structural nature of, ξ (t), regarding a possible state depen-
dent nature, or its characterization as a purely exogenous time disturbance input,
we regard ξ (t) as a smooth, uniformly absolutely bounded time input signal which,
as in the previous developments, is treated as an arbitrary element of a family of
local, fixed degree, Taylor time-polynomial inputs. The fundamental difference is
that instead of attempting a direct canceling of this input from a controller with suf-
ficient integrations, we now attempt to on-line estimate the signal, ξ (t), by means
of a, sufficiently high gain, asymptotic linear observer. This observer, however, is
equipped with an internal self-updating local internal model of, ξ (t), of polynomial
character and of fixed order. As before, we take this polynomial to be a fourth degree
time polynomial denoted by the variable z1. Clearly, we assume that, ideally, in the

adopted model, z(4)
1 = 0. However, for analysis purposes on the effects of the actual

perturbation input, we take: z(4)
1 = ϕ(4)(t), to be a uniformly, absolutely, bounded

signal.
We thus consider the state space representation of the average tracking error per-

turbed dynamics, (9.15). The state space model is, thus,
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ė1 = e2

ė2 = e3

ė3 = κeu,av + z1

ż1 = z2

ż2 = z3

ż3 = z4

ż4 = 0 (9.16)

where e1 = ey,av, e2 = ėy,av, e3 = ëy,av and where the observer signal, z1, locally
approximates ϕ(t) in a fixed degree time-polynomial fashion.

An asymptotic observer for the given tracking error dynamics, based on the
model (9.16), is just given by

˙̂e1 = ê2 +λ6(e1− ê1)
˙̂e2 = ê3 +λ5(e1− ê1)
˙̂e3 = κeu,av + ẑ1 +λ4(e1− ê1)
˙̂z1 = ẑ2 +λ3(e1 − ê1)
˙̂z2 = ẑ3 +λ2(e1 − ê1)
˙̂z3 = ẑ4 +λ1(e1 − ê1)
˙̂z4 = λ0(e1 − ê1) (9.17)

Let ẽ1 = ẽ = e1 − ê1= ey,av − ê1, denote the, redundant, observer reconstruction
error of the average output tracking error e1. Also, let z̃1 = ϕ(t)− ẑ1 denote the
actual disturbance reconstruction error, associated with the signal z1 =ϕ(t). Clearly,
z̃2 = ϕ̇(t)− ẑ2, etc. The reconstruction error evolves according to,

˙̃e1 = ẽ2−λ6ẽ1

˙̃e2 = ẽ3−λ5ẽ1

˙̃e3 = z̃1−λ4ẽ1

˙̃z1 = z̃2−λ3ẽ1

˙̃z2 = z̃3−λ2ẽ1

˙̃z3 = z̃4−λ1ẽ1

˙̃z4 = ϕ(4)(t)−λ0ẽ1 (9.18)

ẽ(7) +λ6ẽ(6) +λ5ẽ(5) +λ4ẽ(4) +λ3ẽ(3) +λ2ẽ(2) +λ1ẽ(1) +λ0ẽ = ϕ(4)(t) (9.19)

It follows that if ϕ(4)(t) is an absolutely, uniformly, bounded time signal, and pro-
vided the choice of the design parameters {λ7, ...,λ0}, is made in such a manner that
the roots of the associated characteristic polynomial in the complex variable s,
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po(s) = s7 +λ6s6 +λ5s5 +λ4s4 +λ3s3 +λ2s2 +λ1s+λ0 (9.20)

are located deep into the left half of the complex plane, then the reconstruction error
trajectories, ẽ1(t) = ẽ(t), and those of its time derivatives, converge towards a small
as desired disk, of radius ε , around the origin of the observer reconstruction error
state space. In fact, the quantity, ε , is inversely related to the modulus of the small-
est assigned root of po(s) (see [1] for details). Clearly, if ẽ and its time derivatives,
ẽ(i), i = 1,2, ..., can be made uniformly absolutely bounded, in a small as desired
neighborhood of the origin, then the difference: z̃1 = ϕ(t)− z1 = ˙̃e3 +λ4ẽ1 is also
uniformly, absolutely, bounded by a small positive constant. This means that, z1,
closely estimates, ϕ(t), for appropriately chosen observer design constants. More-
over, respectively ê j, j = 2,3 closely reconstructs the tracking error derivatives, e j,
j = 2,3. This information, provided by the GPI observer, is most useful in the con-
struction of an average output tracking error based dynamical feedback controller.

The average feedback controller is then proposed to be:

eu,av =
1
κ

[−ẑ1 − k2ê3 − k1ê2 − k0e1] (9.21)

After convergence of the estimated tracking error derivatives to a small neighbor-
hood of their actual values, the average closed loop system is approximately gov-
erned by the following dynamics

e(3)
y,av + k2ëy,av + k1ėy,av + k0ey,av = ϕ(t)− ϕ̂(t)+ ζ (t) (9.22)

where ζ (t) summarizes the joint contribution of the tracking error derivatives small
estimation errors. It follows that if the average feedback control gains: {k2,k1,k0},
are chosen in such a manner that the roots of the associated characteristic
polynomial,

pc(s) = s3 + k2s2 + k1s+ k0 (9.23)

are located deep into the left half of the complex plane, then the average tracking er-
ror ey,av and its time derivatives, converge towards a small as desired disk around the
origin of the tracking error state space where all tracking error trajectories remain
uniformly, absolutely, bounded. As a consequence, the output, y(t), of the system
closely follows the given output reference trajectory, y∗(t).

The average control input is then expressed as:

uav = u∗(t)− 1
κ

[ẑ1 + k2ê3 + k1ê2 + k0e] = u∗(t)−uδ (9.24)

where uδ is the dynamic feedback correction term, complementing the nominal con-
trol input u∗(t).

Interpreting, as in the previous section, the average control input as the equivalent
control of a sliding regime defined on a certain sliding surface coordinate function
σ , yet to be determined, a viable expression from where the equivalent control input
might have been solved for, is given by the invariance condition:
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σ̇ = −u + u∗(t)− 1
κ

[ẑ1 + k2ê3 + k1ê2 + k0e]

= −u + u∗(t)−uδ = 0 (9.25)

We denote, with an abuse of notation, uav = u∗(t)− uδ . We assume that, in steady
state, uav(t) is uniformly bounded within the closed interval, [0,1], of the real line.

The sliding surface coordinate signal is obtained via direct integration, with re-
spect to time, of the previous expression. We have

σ =
∫ t

0
[uav(τ)−u]dτ (9.26)

In the immediate vicinity of the sliding surface σ = 0, one has

σσ̇ = σ (uav(t)−u) (9.27)

The fact that, uniformly in time, uav(t) satisfies: 0< uav(t)< 1, then, the choice,

u =
1
2
(1 + sign σ) (9.28)

guarantees that sufficiently close to the sliding surfaceσ = 0, the inequality,σσ̇ < 0,
is satisfied and a sliding regime exists on σ = 0, in finite time.

As a consequence of the sliding motion, occurring in finite time, on the exoge-
nous sliding surface σ = 0, the invariance condition: σ̇ = 0, is ideally satisfied.
As a consequence, the equivalent control input, ueq, associated with this exogenous
sliding motion, is given by

ueq = uav = u∗(t)−uδ (9.29)

The crucial importance of the average controller design becomes clear, as it repre-
sents the equivalent control of the sliding motions taking place on σ = 0. The ideal
sliding dynamics, corresponding to the sliding regime on σ = 0, coincides with the
average closed loop controlled responses.

9.3 Definitions and Main Results

Let x ∈ R
n and u ∈ {0,1}. Consider the linear, time-varying, switched, system:

ẋ = A(t)x + b(t)u, y = c(t)x, with A(t), b(t) and c(t) matrices of appropriate di-
mensions, whose elements take values in the set of continuous functions defined
on the real line. We define the average system associated with the switched system
the system described by ż = A(t)z+ b(t)uav, yav = c(t)z, where uav is a continuous
function bounded in the closed interval [0,1]. Under such circumstances, the vector
z represents the averaged state function corresponding to x and the average output
yav corresponds with y.

We say the switched system, ẋ = A(t)x+b(t)u, y = c(t)x, is, on the average, uni-
formly controllable and uniformly observable if the pairs (A(t),b(t)) and (c(t),A(t))
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are, respectively, uniformly controllable and uniformly observable pairs, i.e., if
ż = A(t)z+ b(t)uav, yav = c(t)z is uniformly controllable and uniformly observable
with uav unrestricted. We assume, however, that the uniform controllability property
locally holds when the values of the average control input, uav(t), are uniformly
bounded within the compact interval [0,1].

The system ż = A(t)z + b(t)uav, y = c(t)z is said to flat, with flat output y, if all
the components of the state functions z(t) and the unrestricted control input uav are
parameterizable in terms of y and a finite number of its time derivatives. Flatness is
equivalent to uniform controllability. Moreover, the system is uniformly observable
from the flat output.

We generalize the developments in the example of the previous section as
follows:

Proposition 9.1. We are given an n-dimensional, single-input single-output (SISO),
switched, linear, on the average uniformly observable, and uniformly controllable
system of the form,

ẋ = A(t)x + b(t)u + ζ (t), y = c(t)x (9.30)

where x∈R
n, u∈ {0,1} and ζ (t) is an “unmatched”, smooth, external perturbation

input (i.e., ζ (t) is not in the image of b(t)). Let the output, y, be a flat output of
the system,. Under such circumstances, consider the associated simplified average
scalar input-output system,

y(n) = κ(t)uav + ξ (t) (9.31)

where ξ (t) is a, possibly, state dependent perturbation input, including the effect of
the unmatched external perturbation inputs ζ (t). and assumed to be locally approx-
imated by a Taylor time-polynomial model of degree m. The perturbation input ξ (t)
is, hence, assumed to exhibit finitely uniformly, absolutely, bounded time derivatives
beyond, and including, the order m. Suppose it is desired to have the output y of
the system, track a given smooth output reference trajectory y∗(t), within a small as
desired error ey(t) = y(t)−y∗(t), i.e., the tracking error ey(t) is to uniformly remain
absolutely bounded by a small, constant, quantity ε , i.e., |ey(t)|< ε . Let u∗(t) denote
the unperturbed nominal input trajectory, faulty computed as u∗(t) = 1

κ(t) [y
∗(t)](n).

Then, the following scalar controller, written, with an abuse of notation combining
signals in the frequency domain and in the time domain, as:

uav = u∗(t)− 1
κ(t)

[
kn+msn+m + · · ·+ k1s+ k0

sm+1(sn−1 + k2n+m−1sn−2 + · · ·+ kn+m+1)

]
(y− y∗(t)) (9.32)

asymptotically exponentially, uniformly, forces the closed loop system trajectories to
converge towards the interior of a disk, centered around the origin in the tracking er-
ror space of phase coordinates, provided the set of coefficients: {k2n+m−1, ...,k1,k0},
are chosen in such a way that the polynomial, p(s), in the complex variables s, de-
fined by,

p(s) = s2n+m + k2n+m−1s2n+m−2 + · · ·+ k1s+ k0 (9.33)
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is a Hurwitz polynomial, with roots located well to the left of the imaginary axis of
the complex plane.

The switched implementation of the above average output feedback controller
is carried out through a Σ −Δ modulator. All robustness features of the average
design are bestowed into the switched implementation through the corresponding
ideal sliding dynamics.

Proof. The proof is obtained by direct calculation of the closed loop system per-
turbed characteristic differential equation. Notice that uniform local controllability
of the average system prevents the scalar function κ(t) to cross, or adopt in any open
interval of time, the value of zero. Hence, multiplicative cancelation of κ(t), by its
inverse, is a uniformly well defined operation. We have, with k2n+m = 1,

e2n+m
y + k2n+m−1e2n+m−2

y + · · ·+ k1ėy + k0ey =
n

∑
j=0

k2n+m− j
dm+n− j

dtm+n− j ξ (t)

In accordance with the assumption that ξ (t) is locally approximated by an element
of a family of Taylor time-polynomials of fixed degree m, we have that time deriva-
tives beyond the order m result in a small perturbation input exciting the left hand
side of the closed loop dynamics of the system. As long as the roots of the domi-
nant closed loop characteristic polynomial, p(s), are chosen to lay sufficiently far
into the left half of the complex plane, the time response of the output of the closed
loop system converges, in an asymptotically exponential fashion, to a small disk
around the origin of the tracking error phase space. The larger the modulus of the
imposed closed loop system poles, the smaller the neighborhood delimited by the
disk around the origin. The details of the proof may be found in [1]. The second part
of the proposition follows from well known results about Sigma−Δ modulation in
sliding mode control (see [12] and [5] for details). ��
A second possibility, already explored in the previous section, is to implement a
traditional average state feedback controller, through a GPI observer, which simul-
taneously estimates the state dependent plus external perturbation input and allows
its efficient on-line cancelation in a rather approximate manner. We state the result
as follows:

Proposition 9.2. Suppose all hypothesis on the given switched system remain valid.
Consider, as before, the non-phenomenological average model of a linear time-
varying, non-matching, externally perturbed switched system,

y(n) = κ(t)uav + ξ (t)

where ξ (t) is a, possibly, state dependent perturbation input, including the effect of
the unmatched external perturbation inputs ζ (t). Let e1 denote the tracking error
(y− y∗(t)), e2 = ė1, e3 = ë1, etc. Then, the following scalar estimated state average
feedback controller:



9 Sliding Mode Controller Design: An Input-Output Approach 257

uav = u∗(t)− 1
κ(t)

[ẑ1 + kn−1ên + ...+ k1ê2 + k0e1] (9.34)

with coefficients chosen so that the roots of the associated characteristic polynomial
pc(s) given by

pc(s) = sn + kn−1sn−1 + ...+ k1s+ k0 (9.35)

and variables ê j, j=2,...n-1, given by the following observer,

˙̂e1 = ê2 +λn+m−1(e1 − ê1)
˙̂e2 = ê3 +λn+m−2(e1 − ê1)
... =

˙̂en = ên−1 +κ(t)u + ẑ1 +λm(e1 − ê1)
˙̂z1 = ẑ2 +λm−1(e1 − ê1)
... =

˙̂zm−1 = ẑm−2 +λ1(e1 − ê1)
˙̂zm = λ0(e1− ê1) (9.36)

asymptotically exponentially, uniformly, forces the tracking error estimates, ê1,...,ên,
and the disturbance estimate, ẑ1, to converge arbitrarily close towards the actual
corresponding values of the tracking errors, its time derivatives and the actual dis-
turbance signal ξ (t). In other words, the estimation errors, of the tracking errors,
converge towards the interior of a disk, centered around the origin of the phase
space of the reconstruction error, provided the set of coefficients: λn+m−1, ...,λ1,λ0,
are chosen in such a way that the polynomial, po(s), in the complex variables s,
defined by,

po(s) = sn+m +λn+m−1sn+m−1 + · · ·+λ1s+λ0 (9.37)

is a Hurwitz polynomial, with roots located well to the left of the imaginary axis
of the complex plane. Moreover, the static average feedback controller forces the
output tracking error, and its time derivatives, to a vicinity of zero in the tracking
error phase space, provided the set of coefficients {k0, ...,kn−1} are chosen in such
a manner that pc(s) is a Hurwitz polynomial.

9.4 An Application Example with Simulations

In this section we present an illustrative example of the average GPI based controller
design method and its corresponding switched interpretation. We deal with a linear
composite system of the cascade type. We explore both, the state free approach,
and the observer based approach for the average designs. Simulations results are
included to assess the validity of the proposed approaches.
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9.4.1 An Observer-Free Approach

Consider a third order linear dynamic system modeling a normalized 3-compartment
cascade process (see [13]).

θ̇1 = θ2 −θ1

θ̇2 = θ1 −2θ2 +θ3

θ̇3 = θ2 −2θ3 + u

y = θ1 (9.38)

where the input variable, u, takes values in the discrete set {0,1}. The equilibrium
point for the system is characterized by θ1 = θ2 = θ3 =Θ with u =Θ . We assume
the equilibrium point satisfies 0<Θ < 1.

It is desired to smoothly rise from a given output equilibrium point, θ1 = θ2 =
θ3 =Θinit , with, 0 <Θinit < 1, to a final desired equilibrium point, 0 <Θ f inal < 1,
within a finite time interval [0,T ].

The input output model is readily obtained to be

y(3) + 5ÿ+ 6ẏ+ y = u (9.39)

We thus consider the simplified model as a perturbed chain of integrators

y(3) = u + ξ (t) (9.40)

where ξ (t) = −5ÿ−6ẏ− y is a state-dependent perturbation input of unknown but
bounded nature1. However, in order to make the controller task more challenging,
we addition to the state dependent perturbation input, ξ (t), a rather wild external
perturbation input. We set

ξ (t) =−5ÿ−6ẏ− y + 0.3e− sin2(3t) cos(0.1t
√

t) (9.41)

Since the system conforms, exactly, to the tutorial example in the previous section,
with κ = 1, we directly use the GPI based switching controller designed there. Fig-
ure 9.4 depicts the performance of the proposed GPI based sliding mode controller
on the simulation example. The perturbation input ξ results to be large, as compared
to the output and control input variables of the system. We emphasize that such a
large perturbation cannot be handled by traditional, state dependent, sliding mode
control without running into control input saturations or locality of the existence of
the sliding regime.

1 The idea of regarding state-dependent perturbations as unknown but bounded time signals
that need to be directly overcome, or, else, estimated and then canceled, is extensively used
in sliding mode control [2]. It has also been advocated, as active disturbance rejection by
the late Prof. J. Han in a number of academic and successful industrial applications [14],
it is also at the core of intelligent PID control recently introduced by Fliess and Join [15]
and it has been advocated by Prof. C.D. Johnson since the seventies under the name of
disturbance accommodation(see, for instance, [16]).
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Fig. 9.4 Performance of GPI based sliding mode controller for a 3-compartment cascade
switched system

The GPI controller parameters were chosen in accordance with the asymptotic
exponential stability of (9.5) by gathering the parameters from the desired closed
loop characteristic polynomial, p(s), given by

p(s) = (s2 + 2ζωns+ω2
n)4(s+ p) (9.42)

with ζ = 1, ωn = 10, p = 10. The output reference trajectory y∗(t) was set to be a
Bézier interpolating polynomial smoothly connecting the initial equilibriumΘinit =
0.5 to the desired final equilibrium point Θ f inal = 0.8 in T = 25 normalized time
units. The nominal control input, u∗(t), was set to be u∗(t) = 0.5 + [y∗](3)(t) in
order to reflect the impossibility of its accurate, a priori computation. The constant
term was added to guarantee the initial state and control input equilibrium.

9.4.2 A GPI Observer Based Approach

Consider the tracking error system corresponding to the simplified dynamics (9.42)

e(3)
y = eu,av + ξ (t) (9.43)
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with ey = yav − y∗(t) and eu,av = uav − u∗(t). As before, and due to the fact that
the state-dependent perturbation input ξ (t) is assumed to be unknown, the nominal
average control input, u∗(t), is computed on the basis of the unperturbed simplified
system. In other words, we take u∗(t) = [y∗av(t)](3). The discrepancies between this
adopted nominal control input and the actual nominal control input, are relegated to
the uncertain signal ξ (t).

The tracking error model, including the approximate internal model for the per-
turbation input ξ (t) is just

ė1 = e2

ė2 = e3

ė3 = eu,av + z1

ż1 = z2

ż2 = z3

ż3 = z4

ż4 = 0

ey = e1 (9.44)

where we have used a third degree, self-updating, time-polynomial approximation,
z1, as the internal model of ξ (t) in the tracking error model.

As in the previous section, the tracking error system and its approximate model
conforms, exactly, to the general third order example treated before, with κ = 1. We,
thus, directly propose the GPI observer based switching controller designed in that
section. A GPI observer for the, simplified, approximate, average perturbed tracking
error system corresponding to (9.44) is given by,

˙̂e1 = ê2 +λ6(e1− ê1)
˙̂e2 = ê3 +λ5(e1− ê1)
˙̂e3 = eu,av + ẑ1 +λ4(e1− ê1)
˙̂z1 = ẑ2 +λ3(e1 − ê1)
˙̂z2 = ẑ3 +λ2(e1 − ê1)
˙̂z3 = ẑ4 +λ1(e1 − ê1)
˙̂z4 = λ0(e1− ê1) (9.45)

The observer based controller is then given by

eu,av = [−ẑ1− k2ê3− k1ê2− k0e1] (9.46)

The average control input is then obtained as:

uav = u∗(t)− [ẑ1 + k2ê3 + k1ê2 + k0e1] (9.47)
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Fig. 9.5 Performance of GPI observer based sliding mode controller for a 3-compartment
cascade switched system

Figure 9.5 depicts the performance of the proposed GPI based sliding mode con-
troller on the simulation example.

In this instance the seventh order characteristic polynomial of the estimation error
dynamics was determined with the help of the desired characteristic polynomial
(s2 + 2ζoωnos +ω2

no)
3(s + po) with z = 1, ωno = po = 20. The gains of the steady

state characteristic polynomial for the closed loop dynamics: s3 + k2s2 + k1s + k0

were set in accordance with (s2 +2ζcωncs+ω2
nc)(s+ pc), with ζc = 1, ωnc = pc = 1.

The state-dependent unknown perturbation input ξ (t) is, as before, given by ξ (t) =
−5ÿ−6ẏ− y + 0.1exp(−sin2(3t))cos(0.1t

√
t).

9.5 A “Buck” Converter Example with Experimental Results

In this section, we devote attention to the experimental implementation of the pro-
posed input-output control scheme for switched systems, which is based on the aver-
age GPI controller design. Due to space limitations, we describe below the technical
details of the laboratory implementation for the case of the observer-free approach.
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The results obtained with the observer approach are similar and, in fact, rather ef-
fective too.

9.5.1 The Buck Converter Model

Consider the “buck” converter circuit shown in Figure 9.6. The system of differential
equations which ideally describes the converter dynamics is given by:

di
dt

=
1
L

(−v + uE),

dv
dt

=
1
C

(
i− v

R

)
,

y = v (9.48)

where i describes the inductor current and v represents the output capacitor voltage.
The parameters L and C represent, respectively, the inductance and the capacitance
of the elements in the circuit. E is the constant voltage of the battery feeding the sys-
tem. The control input u represents the switch position function and it takes values
in the discrete set {0,1}. The previous system is addressed as the “switched model”.

Notice that the ideal model (9.48) does not incorporate the parasitic semicon-
ductor voltages in the diodes, the conducting resistances in the transistors, nor the
internal resistance of the battery or of the inductor element. All these unknown terms
will be lumped into a single, un-modeled, state-dependent, yet bounded, perturba-
tion input, ξ (t), affecting the simplified input-output dynamics.

E
u = 0

u = 1 L

C R

i +

−
v

Fig. 9.6 “Buck” converter circuit

The input-output representation of the average idealized model of the converter,
with uav ∈ [0,1], is described by,

ÿav +
1

RC
ẏav +

1
LC

yav =
E

LC
uav (9.49)
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This average model can be further simplified to be considered as a perturbed
second order integrator, with constant input gain, of the form:

ÿav = κuav + ξ (t), κ =
E

LC
(9.50)

The perturbation input, ξ (t), is an unknown, state-dependent, perturbation input of
the form:

ξ (t) =−(1/RC)ẏav − (1/LC)yav +ϕ(t), (9.51)

with ϕ(t) representing all the parasitic resistances and the un-modeled voltage
sources in the circuit.

9.5.2 The GPI Sliding Mode Controller

It is desired to have the output voltage, y = v, of the converter track a biased sinu-
soidal reference signal of the form y∗(t) = A+Bsin(ωt +φ). The coefficients A and
B are chosen so that the viability condition is satisfied, at least, by the ill-computed
average nominal control input, u∗(t) = (1/κ)ÿ∗(t), is bounded within the interval
[0,1] of the real line.

A robust average GPI controller for the second order dynamics can be readily de-
signed by taking the perturbation input, ξ (t), to be locally approximated by, say, an
element of a family of fixed, second degree, Taylor time-polynomials. The average
robust GPI controller is simply given by,

uav = u∗(t)+ uδ
uδ = [k4ż4 + k3z4 + k2z3 + k1z2 + k0z1]
ż1 = z2

ż2 = z3

ż3 = z4

ż4 = −k5z4 − LC
E

(y− y∗(t)) (9.52)

or, equivalently, in the frequency domain

uav(s) = u∗(s)− LC
E

[
k4s4 + ...+ k1s+ k0

s3(s+ k5)

]
(y(s)− y∗(s)) (9.53)

This controller yields the average closed loop system

e(6)
y,av + k5e(5)

y,av + k4e(4)
y,av + ...+ k1ėy,av + k0ey,av ≈ 0 (9.54)

The GPI controller gains {k5,k4, ...,k0} are chosen so that the prevailing linear be-
havior, comprised in the dominant closed loop characteristic polynomial, p(s) =
s6 + k5s5 + ...+ k1s + k0 exhibits all its roots deep in the left half of the complex
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plane. One, customarily, identifies such gains, by equating p(s) to a desired polyno-
mial of the form pd(s) = (s2 + 2ζωns+ω2

n )3, with 0< ζ < 1, ωn > 0.
The sliding mode controller is then readily synthesized as

u =
1
2

(1 + sign σ)

σ =
∫ t

0
[u∗(τ)+ uδ (τ)−u(τ)]dτ (9.55)

Note that the resistor load parameter R is unknown to the controller and, in fact, if
time variations do exist on this parameter, then the perturbation input ξ (t) turns out
to be,

ξ (t) =−
(

1
R(t)C

)
ẏav −

(
1

LC
− Ṙ(t)

R2(t)C

)
yav +ϕ(t) (9.56)

and the same proposed GPI based sliding mode controller still applies.

9.5.3 Experimental Results

Some experiments were carried out to assess the performance of the proposed GPI
based discontinuous feedback control scheme on an actual “buck” converter plant.
A buck converter prototype (see figure 9.11) was designed with the following pa-
rameters: E = 15 [V], L = 16 [mH], C = 5 [μF], R = 25 [Ω ]. The switching action
was performed by means of a MOSFET transistor (NTE2984), as depicted in fig-
ure 9.8 with an isolation circuit based on a TTL optocoupler (NTE3087). Since the
optocoupler inverts the logical input, it is necessary to invert previously the input
signal in the control algorithm. The isolation schematics is shown in figure 9.9. The
controller was devised in a MATLAB - xPC Target environment using a sampling
period of 60 [μs]. The communication between the “buck” circuit and the controller
was performed by a National Instruments PCI-6025E data acquisition card, where
a digital output was used as control signal and one analog input was taken for the
buck voltage adquisition. A voltage conditioning circuit consisting in a scaling of
the capacitor voltage, besides an operational amplifier isolation module was imple-
mented. In this case, we used a scaling factor of 1/3. Figure 9.10 reproduces the

Buck
Circuit

Opto-Isolating
Module

Voltage
Conditioning

Circuit

Host
PC

Target
PC

D
A

Q
PC

I-
60

25
E

u v

v/3

Fig. 9.7 Block diagram of the control system
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Fig. 9.8 Semiconductor realization of the Buck converter.
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Fig. 9.10 Voltage conditioning circuit.

schematics of the conditioning circuit. The interconnection of the modules can be
appreciated in a block diagram form as depicted in figure 9.7. The output reference
trajectory to be tracked, y∗(t) = v∗(t), was set to be a biased sinusoidal signal of the
form:

v∗(t) = 8 + 4sin

(
10πt +

3π
2

)

Figure 9.12, shows the fast output reference trajectory tracking process achieved
by the proposed GPI sliding mode controller. The sliding behavior, characterized
by high frequency input switchings, arises immediately after the controller is acti-
vated. The voltage y(t) = v(t) tracks the desired output reference trajectory y∗(t),
with negligible tracking error in spite of all uncertainties. In order to further test the
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Fig. 9.11 Experimental prototype.
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Fig. 9.12 Experimental results using the GPI sliding strategy in a trajectory tracking task,
under unexpected load changes.

robustness features of the proposed output feedback discontinuous control scheme,
we devised a large, un-modeled, load variation exhibiting an abrupt, step-like,
change of a 100% of its nominal value. We allowed the load parameter perturba-
tion to be of the following form:

R = 25 + 25 U (t −0.6) (9.57)

where U (t) stands for the unit step function.
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9.6 Conclusions

In this article, we have proposed a switch-mode robust output feedback controller
design approach for the regulation, and trajectory tracking, of controllable linear
switched systems described by traditional input-output, frequency domain, repre-
sentations. The proposed discontinuous feedback controllers lead the closed loop
system towards a robust sliding mode behavior capable of sustaining large unknown
perturbation inputs. As such, the proposed design methodology does not require the
availability of state variables, nor the explicit use of traditional asymptotic state ob-
servers. The approach is fundamentally based on the GPI controller design method-
ology for the smooth regulation of the average model of the given linear, switched,
plant. The proposed approach, most naturally applies to the class of flat linear sys-
tems with measurable flat output, i.e., controllable linear systems whose measured
output is precisely given by the flat output. These systems are naturally devoid of any
zero dynamics. The method may also be easily extended to minimum phase linear
systems, whose available output does not coincide with the flat output. Experimen-
tal results were also presented for a DC-to-AC power conversion scheme involving
a suitable trajectory tracking problem on a popular switched DC-to-DC electronic
power converter of the “buck” type. The proposed, state-free, sliding mode control
design method is easily extended to nonlinear switched systems, with enhanced ro-
bustness features that largely allow for the simplification of the nonlinear output
dynamics to that of a linear chain of perturbed integrators with possibly nonlinear
input gains (see Sira-Ramı́rez et al. [17] for an induction motor example).

A topic that deserves utmost attention, in the upcoming future, is the extension
of the proposed sliding mode controller design method to the class of nonlinear
systems exhibiting input delays (an example, dealing with delays, out of the sliding
mode context may be found in Sira-Ramı́rez et al. [19])

The proposed, state-free, sliding mode control design method is easily extended
to nonlinear switched systems, with enhanced robustness features that largely al-
low for the simplification of the nonlinear output dynamics to that of a linear chain
of perturbed integrators with possibly nonlinear input gains (see Sira-Ramı́rez et
al. [17] for an induction motor example). This development requires, in the average
design, the combination of suitable linear GPI observers, which are the dual counter-
parts of GPI controllers, and traditional estimated states linear feedback controllers
(see Sira-Ramı́rez et al. [18] for a mechanical system example). A fundamental lim-
itation of this extension is the need to have a minimum-phase plant. Flatness, how-
ever, may allow for an elegant circumvention of the problem. This will be the topic
of future publications. A topic that deserves utmost attention is the extension of the
proposed sliding mode controller design method to the class of nonlinear systems
exhibiting input delays (an example may be found in Sira-Ramı́rez et al. [19])
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Chapter 10
Output Feedback Sliding Mode Control
Approaches Using Observers and/or
Differentiators
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José Paulo V.S. Cunha, Ramon R. Costa, and Fernando Lizarralde

Abstract. This chapter briefly describes the main results developed by the authors
in the area of output feedback sliding mode control. For the sake of simplicity,
the focus is maintained on uncertain single-input-single-output (SISO) nonlinear
systems, although several results have been extended to the control of multi-input-
multi-output (MIMO) systems. For the considered class of nonlinear systems, linear
growth restriction on the unmeasured states is assumed, while less restrictive condi-
tions are imposed to the growth of nonlinearities depending on the measured output.
We present different tracking controllers for plants with arbitrary relative degree.
We consider several approaches to overcome the relative degree obstacle: linear or
variable structure lead filters, high-gain observers with constant or dynamic gain,
global hybrid estimation schemes combining lead filters or observers with locally
exact differentiators based on high-order sliding mode. Global or semi-global sta-
bility properties can be proved either for asymptotic exact tracking or for tracking
within a small residual error. Some experimental results are presented to illustrate
the applicability of the control schemes in real systems.
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10.1 Introduction

The research in output feedback sliding mode control (SMC) has been intensified
over the last two decades. This has been motivated by the need to overcome prac-
tical difficulties in implementing conventional variable structure controllers, which
rely on state feedback. In early attempts to circumvent this problem, lead filters
were used to reconstruct the unmeasured states. However, this usually led to control
chattering that severely limited the potential advantages of ideal SMC [51].

The pioneering work [3] proposed the use of asymptotic observers to cope with
the lack of full state measurements. The main idea was to reformulate the switching
functions in terms of the observed states. It was shown that chattering could thereby
be avoided even in the presence of unmodeled dynamics since an ideal SMC loop
around the discontinuous function could be preserved through the observer. How-
ever, in this seminal paper, the plant model was assumed known and no external
disturbances were included.

Other papers followed in the direction of including plant uncertainties and dis-
turbances. In [18], [16] and [22], the variable structure model-reference adaptive
controller (VS-MRAC) was proposed for uncertain linear plants as a robust alter-
native to MRAC based on parameter adaptation. Robust state estimators were also
used to deal with uncertainties, for instance, high-gain observers (HGOs) [11] and
sliding mode observers [52, 8].

As a more recent trend, a new class of output feedback SMC schemes based on
higher-order sliding mode for plants of arbitrary relative degree has been considered
by several authors [32,1,14]. One tool for the implementation of higher-order SMC
is the so called robust exact differentiator (RED) [32]. Theoretically, controllers
based on this differentiator, may lead to exact output tracking. However, the RED
can only guarantee local/semi-global closed-loop stability properties, since it re-
quires a uniform constant Lipschitz bound for the n-th derivative of the input signal,
which is not valid for arbitrary initial conditions in closed-loop applications.

The present chapter briefly describes the main results developed by the authors
in the area of output feedback sliding mode control. For the sake of simplicity, the
focus is maintained on single-input-single-output (SISO) systems, although several
works have already considered the control of multi-input-multi-output (MIMO) sys-
tems, e.g., [21, 20, 23, 42]. Moreover, we restrict ourselves to a class of uncertain
nonlinear systems with linear growth restriction on the unmeasured states, while
less restrictive conditions are imposed to the measured output. As a consequence,
finite-time escape is not precluded for the open-loop system.

Different output feedback sliding mode controllers for the output tracking of a
reference model are presented, considering several approaches for the recovery of
unmeasured states and relative degree compensation: linear or variable structure
lead filters, high-gain observers with constant or dynamic gain, global hybrid esti-
mation schemes combining lead filters or observers with locally exact differentia-
tors based on high-order sliding mode. Global or semi-global stability properties
have been obtained with some residual tracking error or even with asymptotic exact
tracking.
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This chapter is organized as follows. Section 10.2 presents some preliminary
concepts, definitions, notations and properties. Section 10.3 describes the plant, the
reference model and the control objective. A parametrization for the output feed-
back model matching control and the output error equations are described in Sec-
tion 10.4. In Section 10.5, a norm state observer and a norm bound for the equivalent
disturbance are derived. Section 10.6 presents the conventional sliding mode design.
Several relative degree compensation schemes are discussed in Section 10.7. Some
alternatives to avoid the peaking phenomena are briefly discussed in Section 10.8.
In Section 10.9 a brief discussion about chattering alleviation is presented. Sec-
tion 10.10 describes a binary model-reference adaptive controller (B-MRAC) which
applies VSC concepts to improve the robustness and transient performance of a
parameter adaptation control algorithm. Experimental results are discussed in Sec-
tion 10.11 and some conclusions are presented in Section 10.12.

10.2 Preliminaries

• The Euclidean norm of a vector x and the corresponding induced norm of a matrix
A are denoted by ‖x‖ and ‖A‖, respectively.

• The symbol “s” represents either the Laplace variable or the differential operator
“d/dt”, according to the context.

• The output of a linear system with transfer function H(s) and input u is written
H(s)u. Pure convolution h(t)∗u(t) is denoted by H(s)∗u, with h(t) being the
impulse response of H(s).

• Classes K , K∞ functions are defined as usual [30, p. 144].
• ISS and ISpS mean Input-to-State-Stable (or Stability) and Input-to-State-

Practical-Stability, respectively [29].
• Filippov’s definition for the solution of discontinuous differential equations is

assumed throughout the paper [12]. In order to avoid clutter, the symbol u alone,
without the argument t, represents a switching control law which is not a usual
function of t when sliding mode takes place. On the other hand, we denote the
extended equivalent control [50], [21, Sec. 2.3] by u(t) (instead of ueq(t)) which,
by definition, is piece-wise continuous. Note that u can always be replaced by
u(t) in the right-hand side of the differential equations.

10.3 Problem Statement

Consider a single-input-single-output nonlinear uncertain plant described by

ẋ = fp(x,t)+ bu , fp(x,t) = Ax +φ(x, t) , (10.1)

y = hT x ,

where x ∈ R
n is the state, u ∈ R is the control input, y ∈ R is the measured output

and φ : R
n×R

+ →R
n is a state dependent uncertain nonlinear disturbance, possibly

unmatched. The triple {A,b,hT} is in the canonical controllable form with uncertain
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constant matrices A (lower companion form) and hT = [h1 h2 . . . h(n−n∗+1) 0 . . . 0].
Note that h(n−n∗+1) = hT An∗−1b, which coincides with the general expression for
the high frequency gain of the linear subsystem {A,b,hT} [30, p. 512].

10.3.1 Basic Assumptions

Without loss of generality, we assume that the initial time is t = 0. All uncertain
parameters belong to some compact set Ωp such that the necessary uncertainty
bounds, to be defined later, are available for design. In Ωp we assume that: (i) φ
is locally Lipschitz in x (∀x), piecewise continuous in t (∀t) and sufficiently smooth;
(ii) {A,b,hT} represents a linear plant which is minimum-phase, observable, has
known order n and known relative degree n∗, as is usual in Model Reference Adap-
tive Control (MRAC) [26]. Our main additional assumptions are:

(A1) There exists a global diffeomorphism (x̄, t) = T (x, t), x̄T := [ηT ξ T ], η ∈
R

n−n∗ , which transforms (10.1) into the normal form [30, p. 516], with ξ =
[y ẏ . . .y(n∗−1)]T and

η̇ = F0(η ,ξ ) ,

ξ̇ = Arξ + Brkp[u + d(x, t)] ,
y = ξ1 ,

where kp := hT An∗−1b = h(n−n∗+1) is the constant plant high frequency gain
(HFG) with known sign, Ar,Br is in the Brunovsky’s controller form and the
η-dynamics is ISS from ξ to η (minimum-phase condition).

According to (A1), the plant (10.1) has relative degree n∗ and the HFG kp is un-
certain in norm but with known sign. The case of unknown HFG sign (unknown
control direction) can be coped with the monitoring function approach presented
in [43] and [53].

The above assumption is satisfied, for instance, by systems (10.1) with φ(x, t) =
[φ1(x1,y,t) φ2(x1,x2,y,t) · · · φn(x1, . . . ,xn,y, t)]T triangular in the unmeasured
states. We further assume that:

(A2) The term φ is norm bounded by ‖φ(x, t)‖ ≤ kx‖x‖+ ϕ(y, t), ∀x, t, where
kx ≥ 0 is a known scalar and ϕ : R×R

+ → R
+ is a known function piecewise

continuous in t and continuous in y, and ϕ(y, t) ≤Ψϕ(|y|)+ kϕ , whereΨϕ ∈ K∞
is locally Lipschitz and kϕ > 0 is a constant.

According to (A2), no particular growth condition, such as linear growth or exis-
tence of a global Lipschitz constant, is imposed on ϕ . Therefore, nonlinearities like
ϕ(y)=y2 can be included and thus, finite-time escape is not precluded a priori and
for each solution of (10.1) there exists a maximal time interval of definition given
by [0,tM), where tM may be finite or infinite.
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10.3.2 Control Objective

The aim is to achieve global or semi-global stability properties in the sense of uni-
form signal boundedness and asymptotic output tracking, i.e., the output tracking
error

e(t) = y(t)− ym(t) (10.2)

should asymptotically tend to zero (exact tracking) or at least to a small residual set.
The desired trajectory ym(t) is assumed to be generated by a reference model of the
form:

ym = M(s)r =
km

L(s)(s+ am)
r , L(s) = s(n∗−1) +

n∗

∑
i=2

ln∗−i s(n∗−i) , (10.3)

where km > 0, am > 0, the reference signal r(t) is assumed piecewise continuous
and uniformly bounded and L(s) is a Hurwitz polynomial.

10.4 Output Tracking Error Equation

In this section, an output feedback model matching control u∗ is derived so that,
when u = u∗, the transfer function of the closed loop system is the same as that of
the model. Then, the relevant output error equation is obtained. To this end, a key
idea is to transform φ to an input (matched) disturbance.

10.4.1 Output Feedback Model Matching Control

In order to obtain an output feedback model matching control, we first introduce
the regressor vector ω := [ωT

1 ωT
2 y r]T , using the following input and output (I/O)

filters of MRAC design [26]:

ω̇1 =Λω1 + gu , ω̇2 =Λω2 + gy , (10.4)

where Λ ∈ R
(n−1)×(n−1) is Hurwitz and g is a constant vector such that {Λ ,g} is

controllable. Such filters are needed due to the lack of full state measurement of the
plant and replace a state observer. Then, the model matching control is parametrized
as

u = θTω , θT := [θT
1 θT

2 θ3 θ4] . (10.5)

If φ ≡ 0, the closed loop transfer function from r to y is denoted by Gc(s,θ ). As
is well known [26], there exists a constant vector θ ∗ which solves the equation
Gc(s,θ ) = M(s) provided that the zeros of the model are eigenvalues of Λ . Thus, if
φ ≡ 0, a model matching control law is given by u∗ = θ ∗Tω . Further, θ ∗ is unique
if the model is of order n. In particular, model matching requires θ ∗4 = km/kp. Since
the plant parameters are uncertain, θ ∗ is not available. However, we assume that θ ∗
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is elementwise bounded by a known constant vector θ̄ (|θ ∗i | ≤ θ̄i, ∀i). Thus, u∗ can
also be norm bounded by available signals.

10.4.2 Error Equation and Equivalent Nonlinear Input
Disturbance

Considering XT := [xT ωT
1 ωT

2 ], with u replaced by u− u∗ + u∗, and noting that,
for appropriate matrices Ω1 and Ω2, ω = Ω1X +Ω2r, one can write the state space
representation of (10.1) and (10.4) as [20, Sec. 6.2]

Ẋ = AcX + bcr + bck∗[u−u∗]+ Bφφ , y = hT
c X , (10.6)

where Bφ = [I 0 0]T and k∗ := 1/θ ∗4 . Note that {Ac,bc,hT
c } is a non-minimal stable

realization of M(s). The desired trajectory ym can also be generated by:

Ẋm = AcXm + bck∗[θ ∗4 r−dφ ]+ Bφφ , ym = hT
c Xm , (10.7)

where the equivalent input disturbance dφ = (k∗M(s))−1hT
c (sI−Ac)−1Bφφ can be

written as
dφ := Wn∗−1φ (n∗−1) + . . .+W1φ̇ +W0φ +W̄φ (s)∗φ , (10.8)

with W̄φ being a row vector of strictly proper and bounded-input-bounded-output
stable transfer functions and Wi ∈ R

n are constant row vectors obtained from the
model parameters and the Markov parameters corresponding to hT

c (sI −Ac)−1Bφ .
Note that from the relative degree assumption of (A1), u does not appear in dφ
which involves the derivatives of the output y only up to order n∗ −1 .

Now, from (10.6)–(10.7), one has

Ẋe = AcXe + bck∗[u− ū] , e = hT
c Xe , Xe := X −Xm , (10.9)

e = k∗M(s)[u− ū] , ū(t) := θ ∗Tω(t)−dφ , (10.10)

where ū is the model matching control in the presence of φ [23].

10.5 Norm State Observer and Norm Bound for Equivalent
Disturbance

Since we assume sufficient differentiability for φ , one can findΨφ ∈ K and a con-
stant kφ > 0 such that |dφ | ≤Ψφ (‖x‖)+W̄φ (s)∗‖φ‖+kφ . Considering (A2) and ap-
plying [20, Lemma 3] to (10.6), it is possible to find k∗x > 0 such that, for kx ∈ [0,k∗x ]
a norm bound for X and x can be obtained through first order approximation fil-
ters (FOAFs) (see details in [20]) similarly to norm state observers [48, 31, 40, 42].
Therefore, one has ‖x(t)‖ ≤ x̂(t)+ π̂(t), where
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x̂(t) :=
1

s+λx
[c1ϕ(y, t)+ c2‖ω(t)‖] , (10.11)

with c1,c2,λx > 0 being appropriate constants that can be computed by the opti-
mization methods described in [6]. The exponentially decaying term π̂ accounts
for initial conditions [20]. Moreover, from (A2) and (10.11), one has ‖φ(x,t)‖ ≤
kxx̂(t)+ϕ(y, t), modulo π̂ term, and one can write |dφ | ≤ d̂φ + π̂φ , where π̂φ is a
decaying term,

d̂φ (t) :=Ψφ (|x̂(t)|)+
cφ

s+ γφ
[kxx̂(t)+ϕ(y, t)]+ kφ , (10.12)

and
cφ

s+γφ is a FOAF designed for W̄φ (s), with appropriate positive constants cφ and
γφ .

10.6 Output Feedback Sliding Mode Controller

For plants with n∗ = 1, M(s) in (10.3) is strictly positive real (SPR). Applying [22,
Lemma 1] to the error equation in (10.10), global exponential stability and finite-
time exact tracking is guaranteed with u = −[sgn(kp)] f (t)sgn(e) where the modu-
lation function f (t) satisfies f (t) ≥ |ū|+ δ , with ū defined in (10.10) and δ being a
positive constant, which can be arbitrarily small.

A possible choice for a modulation function f (t) to satisfy the latter inequality,
modulo exponentially decaying terms, is given by

f (t) = θ̄T |ω(t)|+ |d̂φ(t)|+ δ , (10.13)

with d̂φ given in (10.12). Thus, f (t) can be implemented using only available
signals.

For the case of plants with n∗ > 1, the modulation function design can be re-
peated, but M(s) is not SPR. However, with the multiplier L(s), M(s)L(s) is SPR
and from (10.10):

σ = k∗M(s)L(s)[u− ū] , (10.14)

with
σ = L(s)e = e(n∗−1) + ln∗−2e(n∗−2) + . . .+ l1ė+ l0e . (10.15)

Thus, using u =−[sgn(kp)] f (t)sgn(σ) we recover the n∗ = 1 case results. The prob-
lem is that the ideal sliding variable σ is not available since L(s) is non-causal. In
order to overcome this problem the following control law is considered:

u =− [sgn(kp)] f (t)sgn(σ̂) , (10.16)

where σ̂ is an estimate for σ obtained from one of the following relative degree
compensation strategies.



276 L. Hsu et al.

10.7 Relative Degree Compensation

In this section, some alternatives are proposed to estimate σ and to provide a sur-
rogate for the non-causal operator L(s) (10.3) by means of: (a) ordinary or variable
structure lead filters, (b) high-gain observers with constant or dynamic gain and (c) a
hybrid estimation scheme which combines, via a suitable switching rule, one of the
previous compensation alternatives with a local robust exact differentiator based on
high-order sliding mode.

10.7.1 Linear Lead Filter

The linear lead filter is given by:

σ̂l = La(s)e , La(s) =
L(s)

F(τs)
, (10.17)

where τ > 0 is a sufficiently small constant, and F(τs) is a Hurwitz polynomial
with F(0) = 1, for instance F(τs) = (τs+1)(n

∗−1). As τ tends to zero, La(s) and σ̂l

approximate L(s) and σ , respectively. Replacing the ideal sliding variable σ by its
estimate σ̂ = σ̂l in the control law (10.16), global/semi-global stability properties
can be guaranteed [43, 37]. However, the linear lead filter cannot provide the exact
estimate of σ , and is well known to lead to control chattering with residual tracking
error since the ideal sliding loop (ISL) [51] around the switching function of the
variable structure system is destroyed due to the small lag introduced by F−1(τs).
On the other hand, if a prediction error loop is used as detailed in [15], the ISL can
be preserved and control chattering is theoretically avoided.

10.7.2 Variable Structure Lead Filter

Variable structure lead filters (VSLF) had been proposed by Ezerov and Utkin
[16, 28]. A solution to robust model reference control based on VSLF’s and the
prediction error [16] given by

ê = knomM(s)L(s)
(
u0−L−1(s)uN

)
, (10.18)

where knom := knom
p /km, knom

p is a nominal value for kp, was extensively explored in
the VS-MRAC controller presented by [16,22,21,23] and illustrated in Figures 10.1
and 10.2.

In this case, the operator L(s) can be written as L(s) = L1(s) . . .LN(s), where
Li(s) = s+αi, αi > 0, and N := n∗−1, is chosen such that M(s)L(s) is SPR. In Fig-
ure 10.1, the operator L is an approximation of L(s) realized by the chain of VSLF’s
depicted in Fig. 10.2. If n∗ = 1, L(s) = L = 1, then the prediction error becomes
null, i.e., ê ≡ 0 and one can remove the internal loops passing by knomM(s)L(s).

The averaging filters F−1
i (τs) in Figure 10.2 are low-pass filters with unit

DC gain, where Fi(τs) are Hurwitz polynomials in τs and Fi(0) = 1, e.g.,
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Fig. 10.1 Block diagram of the VS-MRAC. The I/O filters and the computation of the
modulation function f0 are omitted to avoid clutter. The realization of L is presented in
Figure 10.2.
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Fig. 10.2 Implementation of the operator L via variable structure lead filters.

Fi(τs) = τs+1. When the time constant τ is sufficiently small, they give an approx-
imation of the equivalent control signals (ui)eq [50]. Indeed, this control system for
linear systems is globally exponentially stable with respect to a small residual set of
order O(τ) as had been proved in [22].

In spite of the more involved implementation of the VSLF’s, which requires sev-
eral filters for the computation of the modulation functions f1, . . . , fN for the relays,
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they are less noise sensitive when compared to standard linear lead filters, as is dis-
cussed in [15].

10.7.3 High-Gain Observers

The strong impact of HGO theory can be easily verified from the literature. Of par-
ticular interest in high-gain control designs, which include sliding mode control, is
the fact that HGO can provide approximations of the output time-derivatives pre-
serving a high frequency loop [3,15] that is absent when using cascaded linear lead
filters. As a consequence, HGO based sliding mode control may be designed so
that ideal sliding mode can be produced thus avoiding prohibitive low frequency
chattering which may occur, e.g., with lead filters [10, 33].

10.7.3.1 High-Gain Observer with Constant Gain

To develop a model-reference controller based on an HGO, a natural idea would be
to estimate the plant state, as in the robust stabilization controller of [38]. However,
in the trajectory tracking controller [39] and in the model-reference controller [7],
the state of an error equation is estimated rather than the plant state. In this way,
the reference model (stable and perfectly known) is used instead of the plant model
(uncertain and possibly unstable) for the estimator, since the design of an observer
for the reference model is easier than the design of an observer for the plant [4]. For
this purpose, we rewrite (10.10) as the minimal order error equation

ẋe = AMxe + BMk∗ [u− ū+πe] , (10.19)

e = CMxe , (10.20)

where xe is the new error state and

AM =

⎡
⎢⎢⎢⎣

−an∗−1 1 · · · 0
...

. . .
...

−a1 0 1
−a0 0 · · · 0

⎤
⎥⎥⎥⎦ , BM =

⎡
⎢⎢⎢⎣

0
...
0

kM

⎤
⎥⎥⎥⎦ , CM =

[
1 0 · · · 0

]
, (10.21)

is the minimal realization of M(s)= km/(sn∗ + an∗−1sn∗−1 + . . .+ a1s + a0) in the
observer canonical form. The exponentially decaying scalar signal πe in (10.19)
represents the effects of uncontrollable states of the complete error equation (10.9).

It is possible to design a matrix S∈R
1×n∗ , which defines the ideal sliding surface

σ=Sxe=0 with xe from (10.19), such that {AM,BM,S} is a realization of the transfer
function M(s)L(s), which has relative degree one [7, eq. (17)]. Since the state xe is
not measured, the proposed control law is given in (10.16) with the modulation
function (10.13) and the sliding variable σ̂ given by

σ̂o = Sx̂e , (10.22)
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where x̂e is an estimate for the state error xe provided by the HGO:

˙̂xe = AMx̂e + BMknomu− [
α(ε−1)−aM

]
ẽ , (10.23)

ẽ = CMx̂e − e , (10.24)

where ẽ is the observer output error, and aM =[an∗−1, . . . ,a1,a0]T . The coefficients
αi in the observer feedback vector [34]

α(ε−1) =
[
αn∗−1
ε · · · α1

εn∗−1
α0
εn∗

]T
(10.25)

must be chosen so that the characteristic polynomial of the closed-loop observer is
Hurwitz, which holds if Nα(s) = sn∗ +αn∗−1sn∗−1 + · · ·+α0 is Hurwitz and ε>0.
Since it is desired that the uncertainties and disturbances have negligible effects in
the estimated state x̂e, the norm of the observer feedback vector (‖α(ε−1)‖) should
be large, which requires ε to be sufficiently small.

The proposed controller can be represented by the diagram in Fig. 10.3. For lin-
ear systems, this controller is globally exponentially stable with respect to a small
residual set of order O(ε) [7]. For nonlinear systems of the class satisfying assump-
tions (A1) and (A2), this controller can be designed such that the closed-loop system
is semi-globally stable [40, 41].
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ẽ
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ym
M(s)
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Plant

Ideal Sliding Loop

− f sgn(σ̂o)

Fig. 10.3 Model-reference sliding mode controller based on a high-gain observer for systems
with relative degree n∗≥2. The I/O filters and the synthesis of the modulation function f are
not shown to avoid clutter.
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10.7.3.2 High-Gain Observer with Dynamic Gain

Most available output feedback SMC designs, including the previous approaches
mentioned above, achieves global results only under rather stringent assumptions
such as linearly or uniformly globally bounded vector fields. In the recent years,
Praly [46] and then several others have shown that, by using dynamic observer gain,
global results can be achieved without invoking the global Lipschitz conditions or
“output feedback” forms [27].

In [44, 45], it is shown that an output feedback SMC strategy based on an HGO
with dynamic observer gain in conjunction with norm state observers can also be
used for a state of the art class of nonlinear systems to guarantee global practical
tracking. Such a class encompasses, for example, uncertain systems (10.1) satisfying
assumptions (A1) and (A2) or systems in lower triangular form [27] where:

|φi| ≤ kx(η ,y,t) [|x1|+ . . .+ |xi|]+ϕ(η ,y,t) , i = 1, . . . ,n∗ , (10.26)

that is, the nonlinearities φi have linear growth condition in the unmeasured states
and growth rate kx possibly depending on the inverse dynamics unmeasured state η
in (A1), on the system output y and time. Strong polynomial nonlinearities ϕ in the
inverse dynamics state and in the output system are also allowed.

Unlike the previous section, the HGO provides an estimate ξ̂ for the partial plant
state ξ in (A1). In this case, the HGO is given by

˙̂ξ = Arξ̂ + Bru + HεLo(y−Crξ̂ ) , (10.27)

where Cr := [1 0 . . . 0] and Lo and Hε are defined as

Lo := [ l1 . . . ln∗ ]T , and Hε := diag(ε−1, . . . ,ε−n∗) . (10.28)

The observer gain Lo is such that sn∗ + l1sn∗−1 + . . .+ ln∗ is Hurwitz. On the other
hand, instead of using a constant ε , we introduce a variable parameter ε(t) > 0,
∀t ∈ [0,tM), of the form

ε(x̂,t) :=
ε̄

1 +ψε(x̂,t)
, (10.29)

where ψε , named domination function, is non-negative and continuous in its argu-
ments, x̂ is the norm bound for the plant state x given in (10.11) and ε̄>0 is a design
constant.

The HGO gain is inversely proportional to the small parameter ε which is time-
varying due to the domination function ψε(x̂,t) in (10.29). In [45], properties for
ψε(x̂,t) were established so that one can prove that the HGO estimation error is
ultimately small, provided ε̄ is chosen sufficiently small.

For each system trajectory, ε is absolutely continuous and ε ≤ ε̄ . Note that ε is
bounded for t in any finite sub-interval of [0, tM). Therefore,

ε(x̂,t) ∈ [ε, ε̄ ] , ∀t∈ [t∗, tM) , (10.30)
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for some t∗ ∈ [0, tM) and ε ∈ (0, ε̄).
The proposed control law is given in (10.16) with the modulation function (10.13)

and the sliding variable σ̂ given by

σ̂ = S(ξ̂ − ξm) , (10.31)

where ξm := [ ym ẏm . . . y(n∗−1)
m ]T and S is designed as in HGO with constant gain

case. Then, by means of a novel ISS lemma for output feedback [45, Lemma 1],
we can conclude global practical tracking. Thus, we could apply the dynamic gain
HGO proposed in [44, 45] and peaking free norm state observers in order to extend
the global tracking results via output feedback SMC to the class of nonlinear plants
considered here.

In order to illustrate the time varying behavior of the variable parameter ε(t), we
consider the following simple academic case with no zeros dynamics and relative
degree two (n∗ = 2):

ẋ1 = x2 ,

ẋ2 =−δ1x2 + kpu + δ2y2 + δ3 sin(2πδ4t) ,
y = x1 .

The plant is in the normal form given in (A1), with kpd = −δ1x2 + δ2y2 +
δ3 sin(2πδ4t). The uncertain parameters are: 1≤ kp ≤ 2, 1≤ δ1, δ2 < 3, 0.5≤ δ3 < 2
and 8 ≤ δ4 ≤ 10 (Hz). The actual plant parameters, assumed unknown, are kp = 2,
δ1 = 2, δ2 = 1, δ3 = 0.7 and δ4 = 10. Note that, since x1 = y is measured, only a norm
bound for x2 = ẏ is needed. Moreover, by noting that δ1 > 0 a norm bound for x2 = ẏ
can be easily obtained from the x2-dynamics. The norm bound for the plant state
x̂ = 2|v1|+ |v2|+ |y| is valid modulo exponentially decaying terms, where v1 and v2

are such that: v̇1 =−v1 +u and v̇2 =−v2 +8|v1|+3y2 +2 (for details see [45]). The
desired trajectory ym is generated with M(s) = 4

(s+2)2 and r = sgn(sin(0.5πt)). The

modulation and the HGO domination function are given by f = 15|v1|+ 7.4|v2|+
4.4|y|+3y2 +4|r|+2.1 and ψε = 56|v1|+28|v2|+13|y|+15y2 +‖yt‖e−t +22, re-
spectively, where ‖yt‖ denotes the L∞e norm of the signal y(t). Moreover, the HGO
and the sliding surface are implemented with l1 = 2, l2 = 1 and S = [ 2 1 ].

For y(0) = 0 and ẏ(0) = 0 and with a constant and large value of ε(t) = ε̄ = 1 an
apparent degradation in the closed loop tracking accuracy (y does not even converge
to ym) is observed in Fig. 10.4 (a). Moreover, for y(0) = 5 and ẏ(0) = 0, the plant
output escapes at t ≈ 1.79 seconds (not shown). On the other hand, when the time
varying ε(t) is implemented with the same large value for ε̄ = 1, the plant output
converges to the desired trajectory from y(0) = 5, as shown in Fig. 10.4 (b). In this
case, the time evolution of ε(t) is shown in Fig. 10.4 (c), from which one can verify
that a constant ε = ε̄ = 0.0005 could be used. However, this value is not known a
priori. Moreover, care must be taken in reducing ε̄ , since there exists a trade off
between measurement noise reduction and tracking accuracy.
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Fig. 10.4 Simulation results: (a) y,ym when ε is held constant at ε = 1, with y(0) = 0 and
ẏ(0) = 0; (b) y,ym when ε(t) is time-varying according to (10.29) with ε̄ = 1, y(0) = 5 and
ẏ(0) = 0; (c) the time varying ε(t).

10.7.4 Hybrid Estimation Scheme

Here, we restrict the class of plants, requiring that the term φ(x,t) in (10.1) to be
given by φ(x,t) = bd(x,t), where d(x, t) is assumed to be uncertain, locally inte-
grable and uniformly bounded by |d(x, t)| ≤ d̄(t), ∀t, with d̄(t) being known. In this
case, the SMC using a lead filter can provide global stability properties, even in the
presence of an additive disturbance βα of order O(τ) in the output of the estimator
σ̂l [37,43]. A similar result can be derived for the other previously presented relative
degree compensation strategies. However, if lead filters or high-gain observers are
used to generate the sliding function [13, 2], one cannot ensure exact tracking for
plants with relative degree greater than one.

In order to recover exact tracking, one can use the following differentiator based
on higher-order sliding mode [32]:

η̇0 = v0, v0 =−λ0|η0− e(t)| n
n+1 sgn(η0 − e(t))+η1 ,

...

η̇i = vi, vi =−λi|ηi− vi−1| n−i
n−i+1 sgn(ηi − vi−1)+ηi+1 ,

...
η̇n = −λn sgn(ηn − vn−1) .

(10.32)
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According to [32, Theorem 1], if the parametersλi (i = 0, . . . ,n) are properly chosen,
(10.32) can provide the exact derivatives, in the absence of noise, after a finite-time
transient process. Then, η0 = e, η1 = ė, etc. Hence, a RED of order (n∗ −1) can be
used to estimate σ (10.14) as follows:

σ̂r = ηn∗−1 + ln∗−2ηn∗−2 + · · ·+ l1η1 + l0η0 , (10.33)

If the control law u =− [sgn(kp)] f (t)sgn(σ̂r) is used, only local/semi-global stabil-
ity properties could be guaranteed, even for linear systems, since [32, Theorem 1]
requires that e(n∗)(t) should be uniformly bounded, which cannot be guaranteed a
priori in the closed-loop system.

It should be noted that a modified version of the RED with time-dependent pa-
rameters, which allows differentiation of signals with unbounded higher derivatives,
was proposed in [33]. However, if such modified RED were used in closed-loop con-
trol, its parameters could became quite large to ensure stability, making the RED
exceedingly sensitive to noise and discretization [32, 33].

In the following, a hybrid estimation scheme is designed, trying to combine the
desirable features of the RED and the previous estimation schemes.

The idea is to design a switching law to select between some general estima-
tor (referred to as ISpS estimator), that provides an input-to-state practical stability
property, with a locally exact differentiator in such a way that the stability properties
are preserved and, in addition, exact tracking is achieved. More precisely, the ISpS
estimator is such that the stability property of the closed-loop system is preserved,
even in the presence of a bounded additive disturbance βα at the output of the esti-
mator, i.e., the closed-loop system is ISpS with respect to the disturbance βα [37].
For instance, the lead filter and the high-gain observer satisfy this ISpS property.

The objective is to design a control scheme so as to achieve global exact track-
ing. To this end, we propose a hybrid estimator, named GRED, which consists of a
convex combination of the estimate σ̂e provided by the ISpS estimator and the RED
estimate σ̂r according to (see Figure 10.5):

σ̂g = α(σ̃re)σ̂e(t)+ [1−α(σ̃re)] σ̂r(t) , (10.34)

where σ̃re = σ̂r−σ̂e is the difference between both estimators. The switching func-
tion α(σ̃re) is a continuous, state dependent modulation which assumes values in
the interval [0,1] and allows the controller to smoothly change from one estimator
to the other.

We now propose the following switching law for α:

α(σ̃re) =

⎧
⎨
⎩

0 , if |σ̃re|< εM − c ,
(|σ̃re|− εM + c)/c , if εM − c ≤ |σ̃re|< εM ,

1 , if |σ̃re| ≥ εM ,
(10.35)

where 0< c< εM is a boundary layer used to smoothen the switching function, and
εM is an appropriate positive design parameter.
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Fig. 10.5 Global RED based Sliding Mode Controller (GRED-SMC).

From (10.34), it can be concluded that βα := σ̂g − σ̂e = (1−α)σ̃re and, with
(10.35), one has

σ̂g = σ̂e +βα , and |βα | ≤ εM , (10.36)

which means that the resulting system is equivalent to a SMC using an ISpS esti-
mator in the presence of the output disturbance βα , which is uniformly bounded.
Thus, global stability properties of the overall closed loop system can be assured
and ultimately exact estimation of σ can be obtained [36, 37].

If we consider a broader class of plants, allowing a term φ that satisfies Assump-
tion (A2), then only the SMC using a modified HGO with a dynamically variable
gain can ensure global stability properties. However, this approach cannot guarantee
exact tracking. To this end, we can implement the hybrid estimation scheme using
this modified HGO, according to [36].

10.8 Peaking Phenomena Avoidance

It is well known that HGOs and linear lead filters may generate peaking in their sig-
nals. Peaking phenomena may be destabilizing and even provoke finite-time escape
in closed-loop nonlinear systems [49]. Even for linear systems, peaking may lead to
unacceptable transient performance [7].

For the case of real eigenvalues, the sliding variable σ̂l(t) of (10.17) generated by
the lead filter as well as σ̂o(t) in (10.22) generated by the HGO contain a transient
term of the form a

μb e−
ct
μ ,

for some appropriate constants a,b,c > 0 possibly depending on the system initial
conditions. The small parameter μ represents the time constant τ in the linear lead
filter or ε in the HGO. Thus, the sliding variables σ̂l(t) and σ̂o(t) eventually ex-
hibit an impulsive-like transient behavior, as μ → 0, where the transient peaks to
O(1/μ) values before decaying rapidly to zero [30], which is the origin of peaking
phenomena.
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Some alternatives for peaking alleviation developed by other researchers are the
following:

1. The amplitude of the control signal can be globally bounded through saturation
[38,39]. This may restrict stability to become local or semi-global and precludes
global stabilization of unstable linear systems;

2. The HGO free of peaking proposed by [5], which is based on a time-varying
observer gain. Initially, the observer gain vector has small norm such that peak-
ing is avoided. Thereafter, the observer gain vector converges exponentially to
some specified high-gain vector such that the estimation error becomes small
after the initial transient has vanished. However, this algorithm may fail in ac-
tual systems since disturbances may excite peaking when the observer gain is
large, as recognized in [5].

3. The semi-high-gain observer [34], which is an HGO with a non conservative
value for the observer gain, computed such that the closed-loop stability is guar-
anteed. However, this procedure, which was developed for stabilization pur-
poses, seems inadequate for tracking applications where the observer gain must
be large enough to keep the residual output error small.

The proposed output feedback controllers discussed in this chapter employ linear
lead filters or HGO only to generate the switching law. The modulation function
in the control law is synthesized using signals from the I/O filters which are free of
peaking. This will lead us to obtain global (or semi-global) stability without peaking
phenomena in the plant and control signals. It is remarkable that the original VS-
MRAC [16, 22] developed for linear systems is intrinsically free of peaking since it
is based on variable structure lead filters.

The dwell-time strategy for control activation introduced in [41, 40] is another
approach for peaking avoidance. In this strategy, we only use the HGO estimates in
the modulation function after a certain dwell-time τD, which is chosen large enough
to allow the peaking transients of the HGO state to settle down, and small enough
to ensure that the system trajectories do not leave a small prescribed compact set,
thus avoiding finite-time escape. For t ≤ τD, we set u := 0. Other possibilities for
assigning the value of u during the dwell-time could of course be envisaged.

The dwell-time method allows the inclusion of a more general class of uncertain
strongly nonlinear systems satisfying a polynomial type growth even in the unmea-
sured state, not only in the measured output. It can also enhance the stability and
performance of the HGO based controllers.

10.9 Chattering Alleviation

The importance of the existence of ideal sliding mode has been discussed in sev-
eral works, e.g., [51, p. 210], [3], [15]. In the absence of measurement noise, the
switching frequency can be arbitrarily increased by reducing the sampling period
in practical real-time computer implementation of the control scheme or by reduc-
ing the delay of switching devices in the case of analog implementation. In many
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applications, such as in electrical drives or converters, high frequency switching
is acceptable and, therefore, the advantages of sliding mode control are preserved.
In contrast, when using linear differentiators to replace the states required in the
switching function σ̂ , inevitable small lags are introduced in the high-frequency
loop and this usually leads to chattering with limited frequency, almost indepen-
dent of the sampling period or switching delay, thus deteriorating the performance
of sliding mode control. Achieving the ideal sliding mode avoids chattering in the
sense that its effect would not be noticed at the plant output since chattering would
occur with infinite frequency. Of course, noise, delay or unmodeled dynamics are
ubiquitous in practical applications. So, as a rule, perfect tracking is not achievable
in practice. However, when a given controller theoretically guarantees the existence
of ideal sliding mode in the absence of such “imperfections”, one should expect
better performance in practice. Several ways to alleviate chattering were proposed
in the literature. For the VS-MRAC, the introduction of a fast low pass filter was
proposed to obtain what was called “Smooth Sliding Control”, preserving an ideal
sliding loop [15].

In the next section, we present the binary adaptive controller which bridges the
parameter adaptive control with the SMC. The interest is that, through the increase
of the adaptation gain, one can make the adaptive controller tend to the SMC. A
compromise between the control precision and the level of chattering can be found
by tuning the gain. Indeed, when the adaptation gain is sufficiently low, chattering
does not occur but the performance may not be satisfactory. Hence such gain can
be tuned so as to get the best from both approaches while avoiding their drawbacks,
e.g., chattering.

10.10 Binary Model Reference Adaptive Control

The well known error equation of MRAC for linear plants of relative degree n∗ = 1
is of the form (see eq. (10.9))

Ẋe = AcXe + bck∗
[
u−θ ∗Tω

]
, (10.37)

e = y− ym = hT
c Xe ,

u = θTω ,

where {Ac,bc,hT
c } is an appropriate nonminimal realization of the reference model

transfer function assumed SPR.
The gradient adaptation law with a σ -modification [25] is given by

θ̇ =−σθ − γeω , σ > 0 , (10.38)

with adaptation gain γ > 0. In variable structure adaptive control, according to [16],
the input u can be

u =− f (t)sgn(e), f (t)>
∣∣∣θ ∗T

ω
∣∣∣ . (10.39)
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For instance, u =−Mθ ‖ω‖ sgn(e) , with Mθ > ‖θ ∗‖ .
A binary version of (10.39) is given in [9] as follows

u = Mθ ‖ω‖μ(t) , (10.40)

μ̇(t) =
{−α sgn(e) , if |μ(t)| ≤ 1 ,

−βμ(t) , if |μ(t)|> 1 ,
(10.41)

t ≥ 0, |μ(0)| ≤ 1, where α and β are positive constants. It can be shown that all such
solutions satisfy |μ(t)| ≤ 1 , ∀t > 0 and, moreover, when α →+∞, (10.41) becomes
the bang-bang law μ = −sgn(e) . Thus, the binary MRAC (B-MRAC) (10.40) and
(10.41) tends to the VSC law (10.39) as α →+∞, in some sense.

It was proved in [19] that a B-MRAC with predictable and uniform transient
behavior can be derived from the MRAC by using a projection factor and by (essen-
tially) increasing the speed of adaptation, while keeping the adjustable parameter
vector θ inside some finite ball of appropriate radius. The projection factor is given
by:

σ =
{

0 , if ‖θ‖<Mθ or σeq < 0 ,
σeq , if ‖θ‖ ≥ Mθ and σeq ≥ 0 ,

(10.42)

where σeq = 1− γeθTω/‖θ‖2 and Mθ > ‖θ ∗‖ is constant. Let Bθ = {θ : ‖θ‖ ≤
Mθ}. Assuming that θ (0) ∈ Bθ , the projection factor acts as follows. If at any time
θ (t) is on the sphere ‖θ‖ = Mθ and the term −γωT e points outwards such sphere,
the update vector is projected onto the tangent plane of the sphere; alternatively, if
it points inwards, the σ -factor is equal to zero and θ (t) moves to the interior of the
sphere. Then, it is straightforward to prove that the closed ball Bθ is invariant [17],
i.e., θ (t) ∈ Bθ , ∀t ≥ 0.

The B-MRAC has excellent adaptation properties for large enough γ . This results
from the fact if Mθ > ‖θ ∗‖, then ‖Xe(t)‖ tends exponentially fast to some residual
set of order O(

√
1/γ). The foregoing properties were proved in [19] and [24] for

the case of arbitrary relative degree.

10.11 Experimental Results

In this section, experiments with a DC motor are presented in order to illustrate the
applicability of some of the proposed strategies to actual systems. Here, we restrict
ourselves to some of the considered relative degree compensation schemes. Other
experimental results can be found in [7, 35].

The experiments were performed using a laboratory prototype based on a perma-
nent magnet DC motor 2342024CR from MicroMo Electronics, Inc., with built in
gear box (1:43). The control algorithm was implemented on a motion control system
(Arcs Inc.) based on a digital signal processor (DSP) hosted in a microcomputer. The
control signal u is the armature voltage, which is generated by a 12-bit digital-to-
analog converter connected to a linear power amplifier (motor driver). The sampling
frequency is 2.5 kHz. The motor angular position is measured by an incremental
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optical encoder with resolution 1000 counts per revolution (cpr). The resolution of
the measured angular position of the load is 172000 cpr due to the gear box and the
electronics on the card.

The following nominal relative degree two model of the DC motor is used, ne-
glecting the small electrical time constant

Gp(s) =
y
u

=
kp

s(s+ 10)
, (10.43)

where y is the angular position in degrees, u is the armature voltage in volts and the
gain kp ∈ [600,1000] is uncertain.

The aim of the experiment discussed here is to evaluate the practical advantage of
RED (α = 0), compared to a linear lead filter, in a real application, which also jus-
tifies the combination of the lead filter plus RED in order to obtain precise tracking
with global stability properties.

In this experiment, the reference model is M(s) = 20
(s+5)(s+20) and the linear lead

filter is given by L
F = (s+5)

(τs+1) , with τ = 2 ms. The nonlinear lead filter (RED) is
implemented as in (10.32) with λ0 = 100 and λ1 = 2500.

In order to simplify the control implementation, a constant modulation function
was chosen to be f (t) = 5 which is sufficient enough to guarantee the model fol-
lowing. In what follows, we discuss in detail the results of the experiment.
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Fig. 10.6 Experiments using linear lead filter or RED based nonlinear lead filter: (a) output
error e (tracking a sinusoid); (b) output error e in response to step inputs; (c) y (solid) and
reference step inputs (dashed). All angles are expressed in degrees.
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In Figure 10.6(a), the linear lead filter is applied for t ∈ [0,16) seconds. Then for
t ∈ [16,26] seconds, it was manually switched to the nonlinear lead filter (α = 0) and
finally, it was switched back to the linear lead filter. One can clearly note the better
performance of the RED based (nonlinear) filter and the performance degradation
caused by the phase lag of the linear lead filter, with τ = 2 ms. This time constant
was experimentally tuned as small as possible so that the control chattering was
acceptable.

Figures 10.6(b) and 10.6(c) present the response of the system to step changes in
the reference input. For t ∈ [14,28] seconds and t ∈ [37,45] seconds, only the non-
linear lead filter is used, while in the remaining intervals of time, the linear lead filter
is used. Noticeable chattering results in the latter case, during the steady state in the
step following experiment. In contrast, the chattering is practically eliminated in the
case of the nonlinear lead filter. Thus, remarkably superior regulation performance
is observed when the RED based nonlinear lead filter is used.

10.12 Concluding Remarks

In this chapter, output feedback sliding mode controllers for output tracking of a
reference model were presented. After a brief overview of the main approaches
and results available in the literature, the focus was maintained on the controller
named variable structure model-reference adaptive controller (VS-MRAC), which is
a robust alternative to the well known model-reference adaptive controller (MRAC)
based on parameter adaptation. More recently [53], the VS-MRAC has been referred
as the variable structure model reference robust control (VS-MRRC) since it is based
on signal synthesis without the need of parameter adaptation.

Several approaches for unmeasured states estimation have been considered to im-
plement the switching laws. The control signals are free of peaking since the modu-
lation functions use conventional input-output filters usual in the MRAC framework.
Global or semi-global closed-loop stability properties are achieved for a class of un-
certain nonlinear systems with arbitrary relative degree and linear growth restriction
on the unmeasured states. It is noteworthy that less restrictive conditions are im-
posed to the measured output.

Exact output tracking is achieved by means of a hybrid compensator which com-
bines linear lead filters or high-gain observers (HGO) with robust exact differentia-
tors based on high-order sliding mode. For the class of nonlinear plants considered
here, which encompasses minimum-phase systems with nonlinearities affinely norm
bounded by unmeasured states with constant growth rate, global output tracking is
achieved by using an HGO with dynamic gain. Experimental results are provided to
show the applicability of some of the proposed methods.

Further developments could include the combination of the hybrid compensator
and the dynamic HGO in order to obtain global exact output tracking. A well known
limitation of model-reference control is that the plant is required to be minimum
phase [26]. Output stabilization/tracking of uncertain nonminimum-phase plants
is still an interesting contemporary issue. On the other hand, the adaptive pole
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placement control (APPC) can be applied to nonminimum phase plants, since it
has been developed in an indirect approach and does not require the cancellation
of plant zeros. The Variable Structure Adaptive Pole Placement Control developed
by [47] is based on new switching laws which replace the traditional integral adap-
tive laws. This new controller has significant performance improvements, such as
fast transient and robustness to parametric uncertainties and disturbances.

Acknowledgements. This work was partially supported by CNPq, FAPERJ and CAPES
(Brazil).
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Chapter 11
Sliding Modes for Fault Detection and Fault
Tolerant Control

C. Edwards, H. Alwi, C.P. Tan, and J.M. Andrade da Silva

Abstract. This chapter will describe the use of sliding mode ideas for fault detec-
tion leading to fault tolerant control. The fundamental purpose of a fault detection
and isolation (FDI) scheme is to generate an alarm when a fault occurs and to pin-
point the source. Fault tolerant control (FTC) systems seek to provide, at worst, a
degraded level of performance (compared to the fault free situation) in the event of a
fault or failure developing in the system. This chapter will discuss how sliding mode
methods for control system design and observer design, can be advantageously used
for such schemes. The sliding mode observer FDI schemes seek to robustly estimate
any unknown fault signal existing within the system based on appropriate scaling of
the equivalent output estimation error injection signal. Both actuator fault and sen-
sor fault problems are considered. One advantage of these sliding mode methods
over more traditional residual based observer schemes is that because the faults are
reconstructed, both the ‘shape’ and size of the faults are preserved. In the absence
of modelling discrepancies, the faults would be reconstructed perfectly. In the un-
certain case, the thresholds set for the reconstruction signals for alarm purposes,
correspond directly to the level of faults than can (or must) be tolerated. A fur-
ther benefit of this approach is that because faults are reconstructed, these signals
can be used to correct a faulty sensor for example, to maintain reasonable perfor-
mance until appropriate maintenance could be undertaken. This ‘virtual sensor’ can
be used in the control algorithm to form the output tracking error signal which is pro-
cessed to generate the control signal. In particular the chapter discusses recent ad-
vances which seek to obviate the traditional relative degree one minimum phaseness
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conditions. Also the effects of unmatched uncertainty are discussed. In all the meth-
ods proposed, efficient Linear Matrix Inequality methods are employed to synthesis
the required gains. A recent application of sliding mode controllers for fault tolerant
control is also presented. Here the inherent robustness properties of sliding modes
to matched uncertainty are exploited. Although sliding mode controllers can cope
easily with faults, they are not able to directly deal with failures – i.e. the total loss
of an actuator. In order to overcome this, the integration of a sliding mode scheme
with a control allocation framework is considered whereby the effectiveness level
of the actuators is used by the control allocation scheme to redistribute the control
signals to the ‘healthy’ actuators when a fault occurs.

11.1 Introduction

The fundamental purpose of a fault detection and isolation (FDI) scheme is to gen-
erate an alarm when a fault occurs and to pin-point the source [38]. Fault tolerant
control (FTC) systems seek to provide, at worst, a degraded level of performance
(compared to the fault free situation) in the event of a fault or failure developing
in the system. Most existing FDI schemes in the literature are concerned with the
design of so-called residuals. These residual signals are used as ‘alarms’ to indicate
the occurrence of a fault, and if properly designed, give information from which
the source of the fault may be identified. In analytic redundancy approaches, the
residuals are (usually dynamic) weightings of the difference between the measured
plant output and the output of a model of the system. Many fault detection methods
are observer based; the observer will usually be designed from a model which will
inevitably not be a perfect representation of the real system. In terms of the observer
design, the plant/model mismatch will usually be encapsulated as uncertainty. The
design procedure for the FDI scheme must then seek to minimize the effect of the
uncertainty in an effort to minimize false alarms and missed faults when the scheme
is implemented on a real system [12].

In the last decade the use of sliding mode observers for FDI has been explored.
The novelty of the approach lies in the ability of sliding mode observers to recon-
struct un-measurable signals within a process by appropriate scaling and filtering
of the so-called ‘equivalent output error injection’ [23]. This is a unique property
of sliding mode observers, which emanates from the fact that the introduction of a
sliding motion forces the outputs of the observer to perfectly track the plant mea-
surements [23]. Reconstruction approaches attempt to capture both the magnitude
and ‘shape’ of the faults, which can be advantageous. The fact that even in the pres-
ence of faults the output of the sliding mode observer still perfectly follows the plant
output, means residuals formulated in the usual way – i.e. as functions of the out-
put estimation error – would always be zero. As a consequence, the effect of the
faults is seen through the fact that the equivalent output error injection term must
compensate for the fault in order to maintain sliding.
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11.2 Sliding Mode Observers for Fault Detection

A relevant model of the problem may be posed as

ẋ = Ax + Qξ (x,t)+ M f (u, t) (11.1)

y = Cx, (11.2)

where A ∈ R
n×n, Q ∈ R

n×h, M ∈ R
n×q and C ∈ R

p×n. The state x(t) is assumed
to be unknown. The bounded unknown function f (u, t) represents the actuator fault
to be estimated. The term ξ (x,t) represents uncertainty affecting the system and is
assumed to satisfy

‖ξ (x,t)‖ ≤ k1‖u(t)‖+α(t,y(t))+ k2 (11.3)

where k1 and k2 are scalars and α(·) is a known function. In [21], under passivity-
like conditions for the system ((A−GC),M,C), where G represents a design gain in
the observer, it was shown the sliding mode dynamics associated with the observer
error can be decoupled from the uncertainty/faults. Unlike existing work where only
estimates of the faults are obtained, here the fault can be precisely reconstructed,
i.e. asymptotically estimated with an arbitrary level of accuracy. The same class of
systems is considered in [23] but a more flexible stance is adopted. Two assumptions
are made:

A1) rank(CM)=rank(M)
A2) the invariant zeros of the matrix triple (A,M,C) lie in the left half plane.

In [21] an observer of the form

˙̂x(t) = Ax̂(t)+ Bu(t)−Gley(t)+ Gnν (11.4)

ŷ(t) = Cx̂(t) (11.5)

where Gl ∈R
n×p and Gn ∈R

n×p are gain matrices to be designed. The output error
injection vector ν ∈ R

p, which induces a sliding motion, is given by

ν =

{
−ρ(t,y(t),u(t))

P2ey(t)
‖P2ey(t)‖ if ey(t) 	= 0

0 otherwise

(11.6)

where ey(t) = ŷ(t)− y(t) is the output estimation error. In the above, P2 ∈ R
p×p is

a symmetric positive definite (s.p.d.) matrix. The function ρ : R+×R
p×R

m → R+
is chosen to satisfy

ρ(t,y,u)≥ k1‖u(t)‖+α(t,y(t))+ k2 +η (11.7)

where η ∈ R+. An estimate of the unknown fault is then postulated as

f̂ (t) = Wνeq(t) (11.8)
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where νeq represents the equivalent injection necessary to maintain a sliding motion
and W ∈ R

q×p. The idea is to synthesize the gains Gl , Gn and W so that

• in the absence of uncertainty f̂ → f as t → ∞;
• if uncertainty is present then ‖ f̂ − f‖ is minimized in an appropriate norm.

The synthesis of the observer design parameters can be posed as a convex optimiza-
tion problem and solved using Linear Matrix Inequality (LMI) techniques [8] in a
systematic way. If ‘precise’ fault reconstruction is not possible, the LMI optimiza-
tion seeks to minimize the effect of the uncertainty on the reconstruction. Robust-
ness to the uncertainty in the modelling process is vital. The disturbances corrupt
the reconstruction, and could produce a significantly nonzero reconstruction when
there are no faults, or worse, mask the effect of a fault. Edwards et al. [23,22] used a
sliding mode observer [21] to reconstruct faults, in which there was no explicit con-
sideration of the disturbances or uncertainty. Tan & Edwards [43] built on the work
in [22, 23] and presented a design algorithm for the observer, using LMIs, such that
the L2 gain from the disturbances to the fault reconstruction is minimized. Saif &
Guan [39] aggregated the faults and disturbances to form a new augmented ‘fault’
vector and used a linear unknown input observer to reconstruct the new ‘fault’ vec-
tor. A necessary condition in [23,22,43,39] is that the first Markov parameter of the
system connecting the fault to the output must be full rank. This limits the class of
systems to which [23, 22, 43, 39] are applicable.

Recently, there have been developments in fault reconstruction for systems whose
first Markov parameter is not full rank. Floquet & Barbot [26] transformed the sys-
tem into an ‘output information’ form such that existing sliding mode observer tech-
niques can be implemented to estimate the states in finite time and reconstruct the
faults. However, in [26] there is no explicit consideration of disturbances or uncer-
tainty. Higher order sliding mode schemes have been suggested by [5, 14, 29]. The
work in [29] uses the concept of ‘strong observability’ together with higher order
sliding mode observers. Strong observability has also been exploited in [5] using
a hierarchy of observers. Chen & Saif advocate a bank of high-order sliding-mode
differentiators to obtain derivatives of the outputs and then estimate the faults from
these signals [14]. Floquet et.al suggest the use of exact differentiators to generate
derivatives of the measurements to ‘create’ additional outputs [27] to circumvent
relative degree assumptions. However all the work in [26, 14, 27, 5, 29] does not
consider uncertainty – unless the faults and uncertainty are augmented and treated
as ‘unknown inputs’. In this case the number of disturbances plus faults must not
exceed the number of outputs. This results in strong constraints which must be satis-
fied, and hence a smaller class of systems for which the results are applicable. Ng et
al. [37] extended the work in [43] exploiting two sliding mode observers in cascade;
known signals from the first observer were considered as outputs of a ‘fictitious’
system which has a full rank (first) Markov parameter; then a second sliding mode
observer is designed based on the fictitious system to reconstruct the fault. This en-
ables robust fault reconstruction for systems where the number of disturbances and
faults exceed the number of outputs (which cannot be achieved by [26, 14]). The
next section builds on [37] using multiple observers in cascade.
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11.3 A Cascade Based Robust Fault Reconstruction Scheme

The use of sliding mode observers in a cascade framework for unknown input esti-
mation is not new [40,34,33,35]. However the work in [33] assumes full state mea-
surement, whilst [34] does not consider any external disturbances. Although [40]
considers both faults and uncertainties, they are aggregated and are both treated as
unknown inputs – this introduces considerable conservatism. Here the faults and
disturbances are treated differently. Using similar techniques as in [37], measurable
signals from an observer are used as outputs of a fictitious system; the next observer
is designed for the fictitious system and the known signals from this observer are
used as outputs of another fictitious system. The process is repeated until a ficti-
tious system whose (first) Markov parameter is full rank is obtained. The technique
proposed in [43] is then used to robustly reconstruct the fault. This results in robust
fault reconstruction applicable to a wider class of systems than in [37]. The final
fictitious system is found to be in the same framework as [43] which minimizes the
L2 gain from the disturbances to the fault reconstruction; this enables the algorithm
to be applicable for systems when the number of outputs are less than the sum of
faults and disturbance channels. In addition, it is found that the design of previous
observers does not affect the sliding motion of the final observer, which implies that
the L2 gain from the disturbances to the fault reconstruction is not affected. First
re-write the system in (11.1)-(11.2) as

ẋ1 = A1x1 + M1 f 1 + Q1ξ 1 (11.9)

y1 = C1x1 (11.10)

where x1 ∈ R
n1

are the states, y1 ∈ R
p are the outputs and f 1 ∈ R

q are unknown
faults. The signals ξ 1 ∈ R

h are uncertainties or dynamics that represent the mis-
match between the linear model (11.9) and the real plant. Assume without loss of
generality rank(M1) = q,rank(C1) = p and rank(C1M1) = r̄1 < q, implying that
r̄1 ≤ min{p,q}. Since rank(C1) = p, then C1 can be written without loss of gener-
ality in the form C1 =

[
0 Ip

]
.

The objective is to reconstruct f 1 whilst minimizing the effects of ξ 1 on the fault
reconstruction. If h + q > p and r̄1 < q, then the approaches suggested in [23, 22,
39,43,40,5,14,29,26,27] are not applicable. In this situation, the following section
proposes the cascade observer scheme.

For the algorithm which will be described in the sequel, partition the matrices
from (11.9) as

A1 =
[

A1
1 A1

2
A1

3 A1
4

]
, M1 =

[
M1

1
M1

2

]
, Q1 =

[
Q1

1
Q1

2

]
�n1−p

�p

where A1
1 is square. Since by assumption C1 =

[
0 Ip

]
and rank(C1M1) = r̄1, then it

follows that rank(M1
2) = r̄1. In the above, Q1 has no particular structure.
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11.3.1 Summary of Fault Reconstruction Algorithm

The fault reconstruction method can be summarized in the following steps. Set i = 1
and enter the following algorithm:

1. Consider the generic uncertain faulty system

ẋi = Aixi + Mi f i + Qiξ i (11.11)

yi = Cixi (11.12)

and define r̄i := rank(CiMi).

a. If rank(CiMi) = rank(Mi), set i = k and jump to step 7.
b. If rank(CiMi) < rank(Mi) and i = n1, then the method cannot be used to

reconstruct the faults [44] and terminate the algorithm.

If neither (a) nor (b) are satisfied, proceed to the next step.
2. For the case when i = 1, define the following

M̄0
11 := M1

1 ,M̄
0
12 := M1

2 ,m
1 := p, r̄0 := 0 (11.13)

Ã0
13 := A1

3, Ã
0
11 := A1

1, Ā0
Ω = α0 = M̄0

22 = φ (11.14)

where φ is the empty matrix. Then Ai and Mi can be expanded as

⎡
⎢⎢⎢⎢⎣

Āi−1
Ω 0 � 0 0
� Ãi−1

11 � 0 0
� Ãi−1

13 � 0 0
� 0 � −α i−1I 0
� � � 0 −α i−1I

⎤
⎥⎥⎥⎥⎦

Mi =

⎡
⎢⎢⎢⎢⎣

0 0
M̄i−1

11 0
M̄i−1

12 0
0 0
0 α i−1M̄i−1

22

⎤
⎥⎥⎥⎥⎦

�(i−1)h

�ni−p−(i−1)h

�mi

�p−r̄i−1−mi

�r̄i−1

(11.15)
3. Define orthogonal matrices Di ∈ R

mi×mi
and T i

2 ∈ R
(q−r̄i−1)×(q−r̄i−1) such that

[
I 0
0 (Di)−1

][
M̄i−1

11
M̄i−1

12

]
(T i

2)
−1 =

⎡
⎣

Mi
11 Mi

12
0 0
0 Mi

22

⎤
⎦ (11.16)

and Mi
22 ∈R

ri×ri
is invertible. Let T i

1 := T i
11×diag

{
Ini−p,(D

i)−1, Ip−mi

}
where

T i
11 =

⎡
⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 0 0
0 I 0 −Mi

12(M
i
22)

−1 0 0
0 0 I 0 0 0
0 0 0 0 I 0
0 0 0 I 0 0
0 0 0 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎦

�h

�ni−p−h

�mi−ri

�p−mi−r̄i−1

�ri

�r̄i−1

(11.17)
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Define

Ãi
3 := (Di)−1Ãi−1

13 =
[

Ãi
31

Ãi
32

]
�mi−ri

�ri (11.18)

and
Ãi

1 := Ãi−1
11 −Mi

12(M
i
22)

−1Ãi
32 (11.19)

Perform the coordinate transformation

xi → T i
1xi, f i → f i+1 :=

[
T i

2 0
0 Ir̄i−1

]

︸ ︷︷ ︸
T i

f

f i (11.20)

then the matrix triple (Ai,Mi,Ci) will have the form

[
Ai

1 Ai
2

Ai
3 Ai

4

]
=

⎡
⎢⎢⎢⎢⎣

Āi−1
Ω 0 �
� Ãi

1 �

� Ãi
31 �

� 0 �
� � �

⎤
⎥⎥⎥⎥⎦

[
Mi

1
Mi

2

]
=

⎡
⎢⎢⎢⎢⎣

0 0
Mi

11 0
0 0
0 0
0 M̄i

22

⎤
⎥⎥⎥⎥⎦

�(i−1)h

�ni−p−(i−1)h

�mi−ri

�p−mi−r̄i−1

�r̄i

(11.21)

(11.22)

where Ci =
[

0 Ci
2

]
and

M̄i
22 =

[
Mi

22 0
0 α i−1M̄i−1

22

]
�ri

�r̄i−1 and Ci
2 = diag

{
Di, Ip−mi

}
⎡
⎢⎢⎣

I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I

⎤
⎥⎥⎦
�mi−ri

�p−r̄i−1−mi

�ri

�r̄i−1

4. Assume ξ i satisfies
ξ̇ i = Ai

Ωξ
i + Bi

Ωξ
i+1 (11.23)

Augment (11.23) with (11.11) to obtain

˙̄xi = Āix̄i + M̄i f i+1 + Q̄iξ i+1 (11.24)

yi = C̄ix̄i (11.25)

where

Āi =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ai
Ω 0 0 0
� Āi−1

Ω 0 �
� � Ãi

1 �

� � Ãi
31 �

� � 0 �
� � � �

⎤
⎥⎥⎥⎥⎥⎥⎦

�h

�(i−1)h

�ni−p−(i−1)h

�mi−ri

�p−mi−r̄i−1

�r̄i

M̄i =

⎡
⎢⎢⎣

0 0
Mi

11 0
0 0
0 M̄i

22

⎤
⎥⎥⎦
�ih

�n1−p−(i−1)h

�p−r̄i

�r̄i
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Define

Āi
Ω :=

[
Ai
Ω 0
� Āi−1

Ω

]
⇒ Āi =

⎡
⎢⎢⎢⎢⎣

Āi
Ω 0 0
� Ãi

1 �

Q̄i
21 Ãi

31 �
� 0 �
� � �

⎤
⎥⎥⎥⎥⎦

�ih

�ni−p−(i−1)h

�mi−ri

�p−mi−r̄i−1

�r̄i

5. Define mi+1 := rank(Ãi
31). If mi+1 < q− r̄i, then the fault can never be fully

reconstructed [44] and terminate the algorithm. Otherwise, let Ui
1 and Ui

2 be
invertible matrices of dimension mi − ri and ni− p− (i−1)h such that

Ui
1Ãi

31(U
i
2)
−1 =

[
0 Imi+1

0 0

]
, Ui

1Q̄i
21 =

[
Q̄i

211
Q̄i

212

]
(11.26)

where Q̄i
211,Q̄

i
212 are matrices with no particular structure. Also partition

Ui
2Ãi

1(U
i
2)
−1 =

[
Ãi

11 Ãi
12

Ãi
13 Ãi

14

]
�ni−p−mi+1−(i−1)h

�mi+1 (11.27)

Define a transformation x̄i → T̄ ix̄i where T̄ i := diag
{

Iih,Ui
2,U

i
1, Ip+ri−mi

}
T̄ i

1
with

T̄ i
1 :=

⎡
⎢⎢⎣

I 0 0 0
0 I 0 0

Q̄i
211 0 I 0
0 0 0 I

⎤
⎥⎥⎦
�ih

�ni−p−(i−1)h−mi+1

�mi+1

�p

(11.28)

then Āi,M̄i,C̄i are transformed to be

[
Āi

1 Āi
2

Āi
3 Āi

4

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

Āi
Ω 0 0 �
� Ãi

11 Ãi
12 �

� Ãi
13 Ãi

14 �

0 0 I �
� � � �
� � � �

⎤
⎥⎥⎥⎥⎥⎥⎦

[
M̄i

1
M̄i

2

]
=

⎡
⎢⎢⎢⎢⎣

0 0
M̄i

11 0
M̄i

12 0
0 0
0 M̄i

22

⎤
⎥⎥⎥⎥⎦

�ih

�ni−p−mi+1−(i−1)h

�mi+1

�p−r̄i

�r̄i

(11.29)

and
C̄i =

[
0 C̄i

2

]
where detC̄i

2 	= 0 (11.30)

Finally partition

Āi
3 =

[
Āi

31
Āi

32

]
�mi+1

�p−mi+1 (11.31)

which from (11.29) results in Āi
31 =

[
0 Imi+1

]
.
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6. A sliding mode observer [21] for the system (11.24) - (11.25) is

˙̂
¯ ix = Āi ˆ̄xi − Ḡi

l ē
i
y + Ḡi

nν̄
i (11.32)

ŷi = C̄ix̄i (11.33)

where ˆ̄xi ∈ R
n̄i

is the estimate of x̄i and ēi
y = ŷi − yi is the output estimation

error. The matrices Ḡi
l ,Ḡ

i
n ∈ R

n̄i×p are observer gains (to be designed). In the
coordinate system of (11.29) - (11.30), Ḡi

n will be assumed to have the structure

Ḡi
n =

[−L̄i

Ip

]
(P̄i

oC̄i
2)
−1, L̄i =

[
L̄i

o 0
]

(11.34)

where P̄i
o ∈ R

p×p is a s.p.d matrix, L̄i ∈ R
(n̄i−p)×p and L̄i

o ∈ R
(n̄i−p)×mi+1

. The
term ν̄ i in (11.32) is a discontinuous term defined by

ν̄ i =−ρ̄ i ēi
y

‖ēi
y‖
, ρ̄ i ∈ R+ (11.35)

Define ēi := ˆ̄xi− x̄i as the state estimation error, and combine equations (11.24),
(11.25) and (11.32) - (11.33) to obtain the error system

˙̄ei = (Āi− Ḡi
lC̄

i)ēi + Ḡi
nν̄

i − M̄i f i+1 − Q̄iξ i+1 (11.36)

Proposition 11.1. [43] Consider a s.p.d. matrix

P̄i =
[

P̄i
1 P̄i

1L̄i

(P̄i
1L̄i)T (C̄i

2)
T P̄i

oC̄i
2 +(L̄i)T P̄i

1L̄i

]
(11.37)

where P̄i
1 ∈ R

(n̄i−p)×(n̄i−p). Assume that

P̄i(Āi− Ḡi
lC̄

i)+ (Āi− Ḡi
lC̄

i)T P̄i < 0 (11.38)

Then, for a large enough ρ̄ i in (11.35), an ideal sliding motion takes place on
S̄

i =
{

ēi : C̄iēi = 0
}

in finite time.

Apply a change of coordinates T i
L to (11.29) - (11.30) and Ḡi

n in (11.34) where

T i
L :=

[
In̄i−p L̄i

0 C̄i
2

]

then Āi,M̄i,C̄i,Q̄i from (11.29) - (11.30) and Ḡi
n are transformed to have the

structures

Āi →
[

Āi
1 + L̄i

oĀi
31 �

C̄i
2Āi

3 �

]
, M̄i →

[
M̄i

1
C̄i

2M̄i
2

]
(11.39)

C̄i → [
0 Ip

]
, Q̄i → [

Q̄i
10

]
, Ḡi

n →
[

0
(P̄i

o)
−1

]
(11.40)
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Assume that a sliding motion is taking place on S̄
i so that ēi

y = ˙̄ei
y = 0, then

(11.36) can be partitioned in the new coordinates associated with (11.39) -
(11.40) as

˙̄ei
1 = (Āi

1 + L̄i
oĀi

31)ē
i
1 − M̄i

1 f i+1 − Q̄i
1ξ

i+1 (11.41)

0 = C̄i
2Āi

3ēi
1 − C̄i

2M̄i
2 f i+1 +(P̄i

o)
−1ν̄ i

eq (11.42)

where ν̄ i
eq is the equivalent output error injection required to maintain a slid-

ing motion [23, 22]. As the term ēi
y is a measurable signal, the signal ν̄ i

eq is
computable online and is available for use in an online FDI scheme [23, 22].

Define wi :=−ēi
1 and re-arrange (11.41) - (11.42) to obtain

ẇi = (Āi
1 + L̄i

oĀi
31)w

i + M̄i
1 f i+1 + Q̄i

1ξ
i+1 (11.43)

(P̄i
oC̄i

2)
−1ν̄ i

eq = Āi
3wi + M̄i

2 f i+1 (11.44)

and let

zi := (P̄i
oC̄i

2)
−1ν̄ i

eq =
[

zi
1

zi
2

]
�mi+1

�p−mi+1

Note, as argued above, zi
1 and zi

2 are available in real time. Substituting for Āi
3

from (11.31) results in

zi
1 =

[
0 Imi+1

]
wi (11.45)

zi
2 = Āi

32wi +
[

0 0
0 M̄i

22

]
f i+1 (11.46)

Define a signal zi
f , (also available in real time), as an output from a stable filter

żi
f :=−α izi

f +α izi
2 (11.47)

where α i ∈R+. From (11.46) and (11.47):

żi
f =−α izi

f +α iĀi
32wi +

[
0 0
0 α iM̄i

22

]
f i+1 (11.48)

Combining (11.43), (11.45) and (11.48) the following state-space system

ẋi+1 = Ai+1xi+1 + Mi+1 f i+1 + Qi+1ξ i+1 (11.49)

yi+1 = Ci+1xi+1 (11.50)

can be obtained where xi+1 := col(wi,zi
f ) and yi+1 := col(zi

1,z
i
f ) and
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Ai+1 :=
[

Āi
1 + L̄i

oĀi
31 0

α iĀi
32 −α iIp−mi+1

]
Mi+1 :=

⎡
⎣

M̄i
1[

0 0
0 α iM̄i

22

]
⎤
⎦ Qi+1 :=

[
Q̄i

1
0

]

(11.51)
and

Ci+1 :=
[

0 Ip
]

(11.52)

Notice that (11.49) is in the form of (11.9) and Ci+1 and Ci have the same
structure. It is clear that f i+1 ∈ R

q,ξ i+1 ∈ R
h. Let xi+1 ∈ R

ni+1
,yi+1 ∈ R

p and
define r̄i+1 := rank(Ci+1Mi+1). Note that r̄i+1 ≤ q. It can be seen that

ni+1 = ni + h−mi+1 (11.53)

Increment the counter i by 1 and return to step 1.
7. Since rank(CkMk) = rank(Mk), then the robust fault reconstruction approach

from [43] may be adopted to estimate f k, which minimizes the effect of the
disturbance ξ k. Define f̂ k to be the estimate of f k, then the reconstruction of f 1

can be obtained from

f̂ 1 := (T k
f )−1...(T 2

f )−1(T 1
f )−1 f̂ k (11.54)

where the T i
f are defined in (11.20).

Remarks 11.1.

• Notice from the structure of Ai in (11.15), the matrix L̄i−1
o appears only in the last

p columns of Ai. From the structure of Ci in (11.52), it is clear that L̄i−1
o affects

only the p output states of xi, and hence L̄i−1
o will not affect the reduced order

sliding motion of observer i and also all subsequent observers. From [43], the
quality of the fault reconstruction depends on the sliding motion of observer k,
which is independent of L̄i

o from previous observers.
• The equivalent output error injection in (11.42) can be obtained by approximat-

ing the discontinuous term in (11.35) using a smoothing function or by low pass
filtering [20]. In a cascade observer scheme, inaccuracies due to the approxima-
tions will be compounded and this could adversely affect the quality of the fault
reconstruction. A solution to this would be to use second order sliding mode
approaches which do not require approximations to obtain the equivalent out-
put error injection [5]. This can be done by replacing the discontinuous term in
(35) with the supertwisting structure [5]. Details of this approach are described
in [44].

11.3.2 Design Example

The method described above will now be demonstrated using a model of a civil
aircraft [19] whose matrices are given as follows:
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A1 =

⎡
⎢⎢⎢⎢⎣

−0.5137 −0.5831 −0.6228 0.0004 0
1.0064 −0.6284 −0.0352 −0.0021 0

0 0 −37.0000 0 0
0 1.7171 0 −0.0166 −9.8046

1.0000 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, M1 =

⎡
⎢⎢⎢⎢⎣

0
0

37
0
0

⎤
⎥⎥⎥⎥⎦

where the states are q,α,elevator position,Vtas,θ . The input is the elevator com-
mand. It is assumed that the first and second rows of the matrix A1 contain uncertain-
ties. The problem is to reconstruct actuator faults using only measurement of speed
and pitch angle. Notice that the method in [26] cannot be used on this system as there
is no consideration of the disturbance ξ 1. If the signals f 1 and ξ 1 are augmented to
form a new ‘fault’ vector, this results in the new ‘fault’ vector having 3 components.
The number of outputs in this system is only 2, and hence the methods in [26, 40]
are not applicable. It can be established that n1 = 5, p = 2,q = 1,h = 2, r̄1 = 0.

The filter matrices that appropriately describe the characteristics of ξ 1 are chosen
here as A1

Ω =−10I2,B1
Ω = 10I2. Note this choice is not unique: in this example, first

order linear filter realizations have been chosen, although higher order filters could
equally well have been used. The crucial decision is the choice of the filter band-
width and not the particular choice of filter itself. With this choice of filter, it can be
shown that C2M2 = 0, and hence r̄2 = 0 which results in r2 = 0. Here the matrices
A2
Ω ,B

2
Ω that describe ξ 2 are chosen as A2

Ω = −10I2,B2
Ω = 10I2. It can be shown

this gives m3 = 1 and rank(C3M3) = rank(M3). Finally, the robust sliding mode
observer can be designed based on A3,M3,C3,Q3 using Step 7 of the algorithm.

Figure 11.1 shows the nominal case when there is no uncertainty. The left sub-
figure of Figure 11.2 shows the disturbances ξ 1 that impact on the system, and the
right subfigure shows ξ 3 which is the fictitious disturbance signal obtained from ξ 1

by performing the operation ξ 2 = 1
10 ξ̇

1 + ξ 1,ξ 3 = 1
10 ξ̇

2 + ξ 2 (which is the reverse
of the filtering process of ξ 3 used to obtain ξ 1. It can be seen in Figure 11.2 that ξ 3

is visually identical to ξ 1 which implies the weighting function for the disturbance

0 5 10 15 20
−0.02

0

0.02

0.04

ac
tua

tor
 fa

ult
 (d

eg
)

0.06

0.08

0.1

Time (s)
0 5 10 15 20

−0.02

0

0.02

0.04

rec
on

str
uc

ted
 fa

ult
 (d

eg
)

0.06

0.08

0.1

Time (s)

Fig. 11.1 The fault applied to the actuator (left) and its reconstruction (right) for the case
when ΔA1 = 0 i.e. when there is no uncertainty.
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Fig. 11.2 The components of ξ 1 (left) and the fictitious signal ξ 3 (right)
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Fig. 11.3 The fault reconstruction in the presence of uncertainty in A1.

using the values of A1
Ω = A2

Ω = −10I2,B1
Ω = B2

Ω = 10I2 is valid for this example.
The right subfigure of Figure 11.3 shows the fault reconstruction. Although there is
a slight degradation due to ΔA1, the reconstruction is not severely affected by ξ 1

(which is significant – being more than 10% of the magnitude of the fault).

11.4 Reconstruction of Incipient Sensor Faults

The methods for sensor fault estimation proposed in [43, 42] require one (testable)
assumption, to guarantee the existence of the observer design. A sufficient con-
dition in [43, 42] is that the system needs to be open-loop stable in order to
robustly estimate the sensor faults. Open-loop stability is not a necessary condi-
tion, but for open-loop unstable systems with certain classes of faults, examples
can be constructed such that the methods in [43, 42] are not applicable. Note that
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classical linear unknown input observers (UIO) also cannot be employed in this
situation [24, 11, 13, 17, 39].

This section discusses a new observer design for sensor fault reconstruction
which addresses this restriction. In particular the proposed observer designs are ap-
plicable for open-loop stable and unstable systems. Consider initially1 a nominal
dynamical system affected by sensor faults modelled as

ẋ(t) = Ax(t)+ Bu(t) (11.55)

y(t) = Cx(t)+ F fo(t) (11.56)

where A ∈R
n×n,B ∈R

n×m,C ∈R
p×n and F ∈R

p×q, with n ≥ p> q. Assume that
the matrices C and F have full row and column rank respectively. Without loss
of generality, it can be assumed that the outputs of the system have been reordered
(and scaled if necessary) so that the matrix F has a structure

F =
[

0
Iq

]
(11.57)

The function fo : R+ → R
q is unknown but smooth and bounded. The signal fo(t)

represents (additive) sensor faults and F represents a distribution matrix, which in-
dicates which of the sensors providing measurements are prone to possible faults.

The objective is to design a sliding mode observer to reconstruct the faults fo(t)
using only y(t) and u(t). Suppose the signal fo is smooth and assume

ϕ(t) := ḟo(t) (11.58)

It is assumed that the sensor faults are incipient and so ‖ϕ(t)‖ is small in magnitude,
but over time the effects of the fault increment, and become significant. Equations
(11.55) and (11.58) can be combined to give a system of order n + q with states
xa := col(x, fo) in the form

[
ẋ(t)
ḟo(t)

]
=

[
A 0
0 0

]

︸ ︷︷ ︸
Aa

[
x(t)
fo(t)

]
+

[
B
0

]

︸︷︷︸
Ba

u(t)+
[

0
Iq

]

︸ ︷︷ ︸
Fa

ϕ(t) (11.59)

y(t) =
[

C F
]

︸ ︷︷ ︸
Ca

[
x(t)

fo(t)

]
(11.60)

Equations (11.59) and (11.60) represent an unknown input problem for (Aa,Fa,Ca)
driven by the unmeasurable signal ϕ(t). From (11.60), and based on the structure of
F in (11.57),

Ca =
[

C F
]
=

[
C1 0
C2 Iq

]
(11.61)

1 An extension to uncertain systems is discussed in [4].
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where C1 ∈R
p−q×n and C2 ∈ R

q×n. Notice (Aa,Fa,Ca) is inherently relative degree
one since CaFa = F and rank(F) = q by assumption.

Lemma 11.1. [4] The triple (Aa,Fa,Ca) is minimum phase iff (A,C1) is detectable.

Lemma 11.2. [4] The pair (Aa,Ca) is observable if (A,C1) does not have an unob-
servable mode at zero or if the open loop system in (11.55) is stable.

Assume without loss of generality that C from (11.56) is given as

C =
[

C1

C2

]
=

[
0 0 Ip−q

0 Iq 0

]
(11.62)

For any system with C of full rank, this canonical form can be achieved by a change
of coordinates. Change coordinates in (11.59) and (11.60) according to xa → T xa

where

T =
[

In 0
C2 Iq

]
(11.63)

The triple in the new coordinates is (TAaT−1,T Fa,CaT−1) where

TAaT−1 =
[

A 0
C2A 0

]
CaT−1 =

[
0 Ip

]
T Fa = Fa =

[
0
Iq

]
(11.64)

from the definition of C1 in (11.62). In the xa coordinates

fo(t) = Cf xa(t) (11.65)

where
Cf :=

[
0q×n Iq

]
(11.66)

After the change of coordinates xa → Txa the new matrix relating the states to the
fault signals fo is

Cf T−1 =
[

0 Iq
][ I 0

−C2 Iq

]
=

[
0q×(n−p) −Iq 0q×(p−q) Iq

]
(11.67)

using C2 as defined in (11.62). Write

Aa =
[

A11 A12

A21 A22

]
=

⎡
⎣

A11 A12

A211

A212
A22

⎤
⎦ (11.68)

where A11 ∈ R
(n+q−p)×(n+q−p). Define A211 as the top p − q rows of A21. By

construction, the unobservable modes of (A11,A211) are the invariant zeros of
(Aa,Fa,Ca) [23]. Also define F2 ∈ R

p×q as the bottom p rows of Fa so that

F2 =
[

0(p−q)×q

Iq

]
(11.69)
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Assumption 1: Assume that the triple (A,B,C) is such that the new pair (A,C1)
associated with (11.59)-(11.61) does not have unobservable modes at the origin.

For the system in (11.59) - (11.60) consider a sliding mode observer of the form
given in (11.4)-(11.5). An appropriate gain Gn for the nonlinear injection term ν in
(11.4) is

Gn =
[−L

Ip

]
where L =

[
L1 L2

]
(11.70)

and L1 ∈R
(n+q−p)×(p−q) and L2 ∈R

(n+q−p)×q represent design freedom [21,45]. If
e := z− xa then

ė(t) = (Aa −GlCa)e(t)−Faϕ + Gnν (11.71)

where ϕ is defined in (11.58). For an appropriate choice of ρ(t,y,u) in (11.6), it can
be shown that an ideal sliding motion takes place on S = {e : Cae = 0} in finite
time: for details see [43]. The sliding motion is governed by

ė = (Aa−Gn(CaGn)−1CaAa)e− (Fa−Gn(CaGn)−1CaFa)ϕ (11.72)

Partition the state error vector e from (11.71), conformably with the canonical form
in (11.68), as col(e1,ey). To identify the reduced order sliding motion, perform a
further change of coordinates according to the nonsingular matrix

TL =
[

In+q−p L
0 Ip

]
(11.73)

so that
e = (e1,ey) → (e1 + Ley,ey) ≡ (ẽ1,ey) =: ẽ (11.74)

It can be easily verified that in the coordinate system in (11.74), during the sliding
motion, the error system (i.e. the reduced order sliding motion) can be written as

˙̃e1(t) =
(
A11 + L1A211 + L2A212

)
ẽ1(t)+ L2ϕ (11.75)

ėy(t) = ey(t) = 0 (11.76)

The matrices L1 and L2 needed to be chosen to ensure A11 +LA211 +L2A212 is stable
for the sliding motion to be stable. The effect of ϕ on the estimation f̂o is given by
Cf e = C̃f ẽ where C̃f = Cf T−1

L and Cf is given in (11.66). It can be verified

C̃f =
[

0n−p×q Iq ∗
]

(11.77)

where ∗ represents a matrix which plays no part in the subsequent analysis. During
the sliding motion,

C̃f ẽ =
[

0n−p×q Iq ∗
][ ẽ1

ey

]
=

[
0n−p×q Iq

]
︸ ︷︷ ︸

Ce

ẽ1 (11.78)

since ey = 0 during sliding. The effect of ϕ on the reconstruction is G̃(s)ϕ where
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G̃(s) :=
[

A11 + L1A211 + L2A212 L2

Ce 0

]
(11.79)

and Ce is defined in (11.78). Since the pair (A11,A211) is observable, from the par-
tition of A21 in (11.68) to obtain A211 and A212, it follows that there exist L1 and L2

so that A11 + L1A211 + L2A212 is stable. Furthermore:

Proposition 11.2. [4] If (Aa,Fa,Ca) from (11.55)-(11.56) is minimum phase, then
a sliding mode observer of the form in (11.4)-(11.5) exists such that f̂o = Cf xa → fo

as t → ∞.

Proposition 11.3. [4] If the system matrix A from (11.55) is stable, f̂o = Cf za → fo

as t → ∞.

Remark 11.1. If A from (11.55) is unstable then for certain fault conditions, (A,C1)
may be unobservable and perfect reconstruction is not possible. Furthermore if
(A,C1) is undetectable making (Aa,Fa,Ca) nonminimum phase, then as argued
in [24], unknown input observers cannot be employed to reject ϕ (see for exam-
ple [39, 17, 13, 11]).

Define a Lyapunov matrix for the error system in (11.71) of the form

P =
[

P11 P12

PT
12 P22

]
(11.80)

where P11 ∈ R
(n+q−p)×(n+q−p) is s.p.d. Let Gl ∈R

(n+q)×p be a matrix satisfying

P(Aa−GlCa)+ (Aa−GlCa)TP< 0 (11.81)

Here, the design of Gl from (11.4) will be chosen to satisfy
⎡
⎣

P(Aa−GlCa)+ (Aa−GlCa)TP P(GlD−Bd) ET

(GlD−Bd)TP −γ0Ip+q 0
E 0 −γ0Iq

⎤
⎦< 0 (11.82)

The matrices Bd ∈ R
(n+q)×(p+q), D ∈ R

p×(p+q) in (11.82) are defined as

Bd :=
[

0 Fa
]

(11.83)

D :=
[

D1 0
]

(11.84)

where D1 ∈ R
p×p and

E =
[

Ce FT
2

]
(11.85)

where Ce is defined in (11.78). Formally the design problem is:
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For given D1 and γ0: minimize γ with respect to P, subject to (11.82) and
⎡
⎣

X11 −P122 Ce

−PT
122 −γIq 0

Ce 0 −γIq

⎤
⎦ < 0 (11.86)

P > 0 (11.87)

This is a convex optimization problem. Standard LMI software such as [30] can
be used to synthesize numerically γ and P. Once P has been determined, L can be
determined as L = P−1

11 P12. As argued in [42] a possible choice of the s.p.d matrix
P0 associated with the unit-vector term (11.6) is P0 = P22−P21P−1

11 P12.

11.4.1 Simulation Results

The ADMIRE model represents a small rigid fighter aircraft with a delta-canard
configuration. Details of the model can be found in [28]. The linear model used
for design has been obtained at a low speed flight condition of Mach 0.22 at an
altitude of 3000m and is similar to the one in [32]. The states are x = [α β p q r]T

with controlled outputs α,β , p; where α is angle of attack (AoA) (rad), β is sideslip
angle (rad), p is roll rate (rad/sec), q is pitch rate (rad/sec) and r is yaw rate (rad/sec).

The linear model is open-loop unstable, which is a typical characteristic of fighter
aircraft to allow high manoeuvrability. It is assumed that the sensor for the pitch rate
(q) is prone to faults. It can be shown the associated augmented system (Aa,Fa,Ca)

0 20 40 60 80 100 120 140 160 180 200
−5

0

5

10

15

20

25

30

time (sec)

S
en

so
r 

fa
ul

t (
de

g)

 

 
estimated fault
actual fault

(a) ramp fault

0 20 40 60 80 100 120 140 160 180 200
−20

−10

0

10

20

30

40

50

time (sec)

S
en

so
r 

fa
ul

t (
de

g)

 

 
estimated fault
actual fault

(b) smooth step fault

Fig. 11.4 Sensor fault reconstruction on the pitch rate (q) sensor on ADMIRE full nonlinear
model
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is non–minimum phase [4]. The design parameters for the observer were chosen as,
γ0 = 10 from (11.82) and D1 = I3 from (11.84); this yields ‖G̃(s)‖∞ = 1.2212.

The simulation in Figure 11.4 has been obtained from the full nonlinear ADMIRE
model with the aircraft undergoing a banking manoeuvre and change in altitude.
Figure 11.4 shows the results of the fault reconstruction using different sensor fault
shapes, to show the effectiveness of the method. In both conditions, the proposed
scheme provides satisfactory fault reconstructions on the q sensor when tested on
the full nonlinear model. As expected, perfect fault estimation cannot be achieved.

11.5 Unmatched Parametric Uncertainty

This section considers the effect of parametric uncertainty on state estimation.
Consider

ẋ(t) =
(
A +ΔA(t)

)
x(t)+ B

(
u(t)+ ξ (t,x,u)

)
(11.88)

y(t) = Cx(t) (11.89)

where A ∈ R
n×n, B ∈ R

n×m and C ∈ R
p×n. The uncertain system matrix ΔA(t) de-

pends upon the time-varying uncertain vector θ (t) : R+ →Θ , where Θ ⊆ R
r is the

parameter space. In this section it is again assumed that A1 holds, i.e rank(CB) = m.
If the state estimation error is defined as

e(t) = x̂(t)− x(t) (11.90)

then, it follows from (11.88) and (11.4) that the error system dynamics are governed
by

ė(t) =
(
A−GlC

)
e(t)−ΔA(t)x(t)+ Gnν−Bξ (·) (11.91)

Note the effect of the mismatched uncertainty contained in ΔA(t) cannot be rejected.
The problem to be addressed consists of synthesizing a sliding mode observer de-
fined in (11.4)-(11.5) which guarantees robust stable error system dynamics and the
existence of a stable sliding motion, despite the uncertainties present in the system
(11.88)-(11.89), in finite time on the sliding hyperplane

SObs =
{

e(t) ∈ R
n : ey(t) = Ce(t) = 0

}
(11.92)

Under assumption A1 it can be assumed the system in (11.88)- (11.89) has the
structure

A =
[

A11 A12

A21 A22

]
B =

[
0

B2

]
C =

[
0 T

]
(11.93)

where B2 ∈ R
m×m and T ∈ R

p×p. The gain associated with the nonlinear injection
can be parameterized as

Gn =
[−LT T

T T

]
where L =

[
L1 0

]

and L1 ∈ R
(n−p)×(p−m). The error system dynamics given in (11.91) are clearly in-

fluenced by the effect of the mismatched uncertainty. The next lemma is concerned



312 C. Edwards et al.

with the uniform ultimate boundedness of the uncertain error system (11.91). Let
ΔAu represent the unmatched component of ΔA then

Lemma 11.3. [16] Let Ωe ⊂ R
n be a bounded set defined by

Ωe =
{

e(t) ∈R
n : ‖e(t)‖< 2‖ΔAu(t)x(t)‖γ−1

λ + γe

}
(11.94)

where γλ ∈ R+, and γe ∈ R+ is a small design scalar. Assuming ‖ΔAu(t)x(t)‖ is
bounded, the estimation error e(t) is ultimately bounded with respect to the set Ωe.

From the change of coordinates e → TLe = ẽ, where

TL =
[

In−p L
0 T

]

the uncertain error system dynamics can be written as follows

˙̃e1(t) = Ã11ẽ1(t)+ΔAu(t)x(t) (11.95)

ėy(t) = Ã21ẽ1(t)+ Astb
22 ey(t)+ν− B̃2ξΔ (t,x,u) (11.96)

where Ã11 is stable. Define (ẽ1,ey) := ẽ where ẽ1 ∈R
n−p then

Lemma 11.4. [16] A sliding motion takes place in finite time tσ on the sliding
surface SObs within the domain

Ωσ =
{(

ẽ1(t),ey(t)
)

: ‖TÃ21ẽ1(t)‖< ‖B̃2‖η− γσ
}

(11.97)

where γσ ∈ R+ is a small design scalar.

An LMI-based approach is proposed using a polytopic description involving the
mismatched uncertainty to synthesize the gains. The following additional assump-
tion is employed throughout this section:

A3) The matrix ΔAu(t), defined in (11.95), is affine with respect to the uncertain
parameters denoted in vector form by θ (t) = [θ1(t) θ2(t) · · · θr(t)]

T. These
uncertain parameters satisfy

θ i � θi � θ i for i = 1, . . . ,r (11.98)

and define a convex set in the parameter spaceΘ ⊆ R
r.

From the assumption above, the uncertain reduced-order output error system (11.95)
admits a polytopic representation given by

PObs
L =

{
N

∑
j=1

μ jΦ j :
N

∑
j=1

μ j = 1, μ j ≥ 0 for j = 1, . . . ,N

}
(11.99)

where N = 2r is the number of vertices of PObs
L and

Φ j =
[(

A11 + L1A211
)
ΔAu j

I(n−p) 0

]
(11.100)
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for j = 1, . . . ,N. Let γ0 be a positive scalar. Then (11.95) is stable and satisfies

‖ẽ1(t)‖2 < γ0‖x(t)‖2 (11.101)

if and only if there exists a s.p.d. matrix P1 ∈ R
(n−p)×(n−p) such that

[(
A11 + L1A211

)T
P1 + P1

(
A11 + L1A211

)
+ I(n−p) P1ΔAu j(

P1ΔAu j
)T −γ2

0 In

]
< 0 (11.102)

for j = 1, . . . ,N

Proposition 11.4. [16] Consider a reduced-order output error system matrix given
by

Φẽ1x(t) =
[(

A11 + L1A211
)
ΔAu(t)

I(n−p) 0

]
(11.103)

where A11 and A211 are known matrices such that the pair (A11,A211) is detectable.
Then, the solution of the optimization problem: minimize γ0 with respect to Q1 and
FL subject to

⎡
⎣

AT
11Q1 + Q1A11 + AT

211FT
L + FLA211 Q1ΔAu j I(n−p)(

Q1ΔAu j
)T −γ0In 0

I(n−p) 0 −γ0I(n−p)

⎤
⎦ < 0 (11.104)

Q1 > 0 (11.105)

guarantees
‖ẽ1(t)‖2 < γ0‖x(t)‖2 (11.106)

The gain matrix L1 can be straightforwardly computed as

L1 = Q−1
1 FL (11.107)

Once L1 ∈ R
(n−p)×(p−m) is designed the observer gain matrices can be computed.

11.6 Fault Tolerant Control

The inherent robustness properties of sliding modes to matched uncertainty make
it a natural candidate for passive fault tolerant control. It is argued in [1] that a
broad class of actuator faults can be accommodated by an appropriate scheme which
monitors quantitatively the extent to which a sliding motion (in a control context) is
being attained and then triggers an adaptive mechanism if there is deterioration in
performance. The controller is based around a state-feedback sliding mode scheme
and the gain associated with the nonlinear term is allowed to adaptively increase
when the onset of a fault is detected. Compared to other FTC schemes, the controller
is simple and yet is shown to work across the entire ‘up and away’ flight envelope.

Although the controller in [1] copes easily with faults, it is not able to directly
deal with failures – i.e. the total loss of an actuator. In order to overcome this, the
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integration of a sliding mode scheme with a control allocation framework has been
considered in [2] where the effectiveness level of the actuators is used by the control
allocation scheme to redistribute the control signals to the ‘healthier’ actuators when
a fault occurs.

One of the challenges of using traditional control ideas for systems with redun-
dancy, i.e. over-actuated systems, is how to deal with these additional degrees of
freedom. Control allocation (CA) has emerged as one of the most studied techniques
when dealing with such problems (see for example [25, 7, 10, 18]). One benefit of
using CA structure for fault tolerant control (FTC) is that the controller remains
the same and the control effort is distributed to all available actuators without re-
configuration. This is vital in terms of simplicity of design. Recently, [2] developed
a rigorous design procedure from a theoretical perspective to achieve FTC while
proving stability for a class of faults and failures. The work in [2] has been used to
design lateral and longitudinal controllers for the GARTEUR FM-AG16 benchmark
problem ( [41]). The GARTEUR FM-AG16 action group has undertaken an exten-
sive study to establish the benefits of using state of the art fault detection and FTC
methods for aerospace systems ( [19,46,15,36,31]). The control allocation scheme
described here uses actuator effectiveness levels to redistribute the control signals
to the functioning healthy actuators when a fault or failure occurs ( [2]).

11.6.1 Design Procedures

Consider a situation where a fault associated with the actuators develops in a system.
It will be assumed that the system subject to actuator faults or failures about a trim
condition, can be written as

ẋ(t) = Ax(t)+ Bu(t)−BK(t)u(t)+ BK(t)d(t) (11.108)

where A ∈ R
n×n and B ∈ R

n×m. The unknown input d(t) represents the effect of
faults which appear if K(t) 	= 0, and models, for example, an additional moment
generated by a control surface stuck in a non-neutral position. The effectiveness
gain K(t)= diag(k1(t), . . . ,km(t)) where the ki(t) are scalars satisfying 0≤ ki(t)≤ 1.
These scalars model a decrease in effectiveness of a particular actuator. If ki(t) =
0, the ith actuator is working perfectly whereas if ki(t) > 0, a fault is present. If
ki(t) = 1 the actuator has failed completely. Here the control is distributed based
on the efficiency of the actuators through K(t), and redistributed to the remaining
‘healthy’ ones when faults/failures occur [2].

The idea is that if an actuator fault occurs, the control input u(t) is reallocated to
minimize the use of the faulty control surfaces. This section considers the design of
a controller of the form

u(t) = N(k1, . . . ,km)v(t) (11.109)

where N ∈R
m×l with l <m is a matrix which depends on the effectiveness levels of

the actuators and v(t)∈R
l is a sliding mode based controller. The steps to synthesize

the controller are given below:
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11.6.1.1 Pre–design Calculations

This subsection outlines the sliding mode CA controller development from [2].

1. Make a re–ordering of the states in (11.108) so that the input distribution matrix
B is partitioned as:

B =
[

B1

B2

]
(11.110)

where B1 ∈ R
(n−l)×m and B2 ∈ R

l×m has rank l. Typically in aircraft systems,
B2 is associated with angular acceleration in roll, pitch and yaw ( [32]).

2. Scale the states so that B2BT
2 = I and ‖B2‖ = 1.

3. Let the ‘virtual control’

ν(t) := B2u(t) (11.111)

By direct manipulation, the true control signal u(t) is recovered as

u(t) = B†
2ν(t) (11.112)

where B†
2 ∈ R

m×l is a right pseudo-inverse of the matrix B2. In [2], the pseudo-
inverse was chosen as

B†
2 := WBT

2(B2WBT
2)−1 (11.113)

where W ∈ R
m×m is a s.p.d diagonal matrix. It can be shown that the pseudo-

inverse in (11.113) arises from the optimization problem

min
u

uTW−1u subject to B2u = ν (11.114)

The work in [2] advocates the choice

W := I−K (11.115)

and so W = diag{w1, . . . ,wm} where wi = 1− ki. Note in a fault free situation
W = I. As ki → 1, wi → 0 and so the associated component ui in (11.114) is
weighted heavily since 1

wi
becomes large.

4. For analysis purposes, d(t) from (11.108) will be considered as zero since, as
an exogenous signal, it plays no part in determining closed loop stability, and
represents the trim point correction which needs to be compensated for by the
pilot.

5. Define
ν̂(t) := (B2W 2BT

2)(B2WBT
2)−1ν(t) (11.116)

and change the coordinates of the system in (11.108) using the linear transfor-
mation x(t) → x̂(t) = Trx(t) where

Tr :=
[

I −B1BT
2

0 I

]
(11.117)
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to achieve the canonical form given by

[
˙̂x1
˙̂x2

]
=

[
Â11 Â12

Â21 Â22

]

︸ ︷︷ ︸
Â

[
x̂1

x̂2

]
+

[
0
Il

]

︸︷︷︸
B̂

ν̂ +
[

B1BN
2 B+

2
0

]
ν̂ (11.118)

where
B+

2 := W 2BT
2(B2W 2BT

2)−1 (11.119)

and
BN

2 := (I−BT
2B2) (11.120)

6. Compute the smallest possible scalar γ0 such that

‖B+
2 ‖ = ‖W 2BT

2(B2W 2BT
2)−1‖< γ0 (11.121)

for all 0<W ≤ I. A finite value of γ0 is guaranteed to exist ( [2]).

The virtual control law will now be designed based on the fault-free condition
(K = 0) in which the top partition of the last term in (11.118) is zero since
B1BN

2 B+
2 |W=I = 0. The selection of the sliding surface is the first part of sliding

mode controller design and defines the system’s closed–loop performance. Define
the switching function σ(t) : R

n → R
l to be σ(t) = Sx(t) where S ∈ R

l×n and
det(SBν) 	= 0. The matrix S represents design freedom. Define a hyperplane

S = {x(t) ∈ R
n : Sx(t) = 0}

In the x̂(t) coordinates in (11.118), a choice for the sliding surface is

Ŝ := ST−1
r =

[
M Il

]
(11.122)

where M ∈R
l×(n−l) represents design freedom. The objective is to compute M from

(11.122) so that Ã11 := Â11− Â12M is stable. If (Â, B̂) is controllable, then (Â11, Â12)
is controllable ( [20]) and a matrix M can always be found to make Ã11 stable.

Proposition 11.5. [2] During a fault or failure condition, for any combination of
0< wi ≤ 1, the closed–loop system will be stable if

0 ≤ γ2γ0

1− γ1γ0
< 1 (11.123)

where the scalar γ0 is defined in (11.121), γ1 is defined as

γ1 := ‖MB1BN
2 ‖ (11.124)

while
γ2 := ‖G(s)‖∞ (11.125)

where G(s) := Ã21(sI− Ã11)−1B1BN
2 and the matrix Ã21 := MÃ11 + Â21− Â22M. By

construction the transfer function G(s) is stable.
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The matrix M has been chosen using the following procedure:

1. Compute γ0 to satisfy (11.121).
2. Compute and check if γ1 := ‖MB1BN

2 ‖ < 1
γo

is satisfied. Otherwise re–design
the matrix M.

3. Calculate the transfer function matrix G(s), then if ‖G(s)‖∞ := γ2 <
1
γ0
− γ1,

the closed–loop is guaranteed to be stable ∀ 0 < W ≤ I. Otherwise consider
re–designing the matrix M.

11.6.1.2 The Control Law

The proposed control law from [2] has a structure ν̂(t) = ν̂l(t)+ ν̂n(t) where

ν̂l(t) :=−Ã21x̂1(t)− Ã22σ(t) (11.126)

and Ã22 := MÂ12 + Â22. The nonlinear component is defined to be

ν̂n(t) :=−ρ(t,x) σ(t)
‖σ(t)‖ for σ(t) 	= 0 (11.127)

where σ(t) = Ŝx̂(t). The non-linear gain

ρ(t,x) :=
γ1γ0‖ν̂l(t)‖+η

1− γ1γ0
(11.128)

ensures a sliding motion occurs on S in finite time. The final control law is

u(t) = WBT
2(B2W 2BT

2)−1ν̂(t) (11.129)

11.6.2 Benchmark Simulation Results

The results considered here are all based on the GARTEUR FM-AG16 benchmark
problem [41, 3]. The information necessary to compute W on–line in real time will
be supplied by assuming a measurement of the actual actuator deflection is avail-
able. This is not an unrealistic assumption in aircraft systems [9]. Alternatively a
fault reconstruction scheme (e.g. [43] or [47]) can also be used.

The controller design objective considered here is to bring a faulty aircraft to a
near landing condition. This can be achieved by a change of direction through a
‘banking turn’ manoeuvre, followed by a decrease in altitude and speed. This can
be achieved by tracking appropriate roll angle (φ ) and sideslip angle (β ) commands
(laterally), and tracking flight path angle (FPA) and airspeed (Vtas) commands (lon-
gitudinally).

A linearization of the benchmark model ( [41]) has been obtained around a fault
free operating condition of 263,000Kg, 92.6m/s true airspeed, and an altitude of
600m at 25.6% of maximum thrust and at a 20◦ flap position. For design purposes,
four longitudinal states (xlong = [q Vtas α θ ]T which represent pitch rate, true air-
speed, angle of attack, pitch angle respectively) are considered, together with four
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Fig. 11.5 ELAL 1862 failure tests on SIMONA simulator (pictures courtesy of the Interna-
tional Research Institute for Simulation, Motion and Navigation (SIMONA))

lateral states (xlat = [p r β φ ]T which represent roll rate, yaw rate, sideslip angle and
roll angle). After some aggregation, the lateral control surfaces are

δlat = [δair δail δaor δaol δsp1−4 δsp5 δsp8 δsp9−12 δr, e1lat e2lat e3lat e4lat ]
T

which represent aileron deflection (right & left - inner & outer)(rad), spoiler deflec-
tions (left: 1-4 & 5 - right: 8 & 9-12) (rad), rudder deflection (rad) and lateral engine
pressure ratios (EPR). The longitudinal control surfaces are
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δlong = [δe δs e1long e2long e3long e4long ]
T

which represent elevator deflection (rad), horizontal stabilizer deflection (rad), and
longitudinal EPR.
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Fig. 11.6 ELAL 1862 scenario: SMC controller: controlled states

The proposed scheme was implemented on the SIMONA flight simulator at Delft
University of Technology [6]. Figure 11.5 summarizes the results of piloted tests
based on the ELAL 1862 failure scenario in which engines no. 3 and 4 detached and
caused significant damage to the right wing [41]. Figure 5(a) shows the compar-
isons between the implemented sliding mode CA scheme and the piloted classical
controller. Figure 5(a) clearly shows that the proposed scheme manages to main-
tain nominal performance and achieve safe near landing condition. Meanwhile, the
piloted classical controller crashes during the final stage of the test flight before
lining up with the runway. Figure 5(c) shows the actual pilot’s view inside the SI-
MONA cockpit near to landing. Details of the states and control surface deflections
are shown below in Figures 11.6 and 11.7.
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11.7 Conclusions

This chapter described the use of sliding mode ideas for fault detection leading to
fault tolerant control. The sliding mode observer FDI schemes robustly estimate any
unknown fault signal existing within the system based on appropriate scaling of the
equivalent output estimation error injection signal. One advantage of these sliding
mode methods over more traditional residual based observer schemes is that because
the faults are reconstructed, both the ‘shape’ and size of the faults are preserved. A
further benefit of this approach is that because faults are reconstructed, these signals
can be used to correct a faulty sensor for example, to maintain reasonable perfor-
mance until appropriate maintenance could be undertaken. In particular the chapter
discussed recent advances to obviate the traditional relative degree one minimum
phase conditions. Also the effects of unmatched uncertainty were discussed. In all
the methods proposed, efficient Linear Matrix Inequality methods can be employed
to synthesis the required gains. A recent application of sliding mode controllers for
fault tolerant control was presented in which the inherent robustness properties of
sliding modes to matched uncertainty were exploited. In order to cope with total
failures, the integration of a sliding mode scheme with a control allocation frame-
work was considered whereby the effectiveness level of the actuators was used by
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the control allocation scheme to redistribute the control signals to the ’healthy’ ones
when a fault occurs.
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Chapter 12
Applying Sliding Mode Technique to Optimal
Filter and Controller Design

Michael Basin

Abstract. This paper addresses the mean-square and mean-module filtering prob-
lems for a linear system with Gaussian white noises. The obtained solutions contain
a sliding mode term, signum of the innovations process. It is shown that the de-
signed sliding mode mean-square filter generates the mean-square estimate, which
has the same minimum estimation error variance as the best estimate given by the
classical Kalman-Bucy filter, although the gain matrices of both filters are differ-
ent. The designed sliding mode mean-module filter generates the mean-module es-
timate, which yields a better value of the mean-module criterion in comparison to
the mean-square Kalman-Bucy filter. The theoretical result is complemented with
an illustrative example verifying performance of the designed filters. It is demon-
strated that the estimates produced by the designed sliding mode mean-square filter
and the Kalman-Bucy filter yield the same estimation error variance, and there is an
advantage in favor of the designed sliding mode mean-module filter. Then, the paper
addresses the optimal controller problem for a linear system over linear observations
with respect to different Bolza-Meyer criteria, where 1) the integral control and state
energy terms are quadratic and the non-integral term is of the first degree or 2) the
control energy term is quadratic and the state energy terms are of the first degree.
The optimal solutions are obtained as sliding mode controllers, each consisting of a
sliding mode filter and a sliding mode regulator, whereas the conventional feedback
LQG controller fails to provide a causal solution. Performance of the obtained opti-
mal controllers is verified in the illustrative example against the conventional LQG
controller that is optimal for the quadratic Bolza-Meyer criterion. The simulation
results confirm an advantage in favor of the designed sliding mode controllers.
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12.1 Introduction

Since the sliding mode control was invented in the beginning of 1970s (see a histor-
ical review in [1, 2, 3]), it has been applied to solve several classes of problems. For
instance, the sliding mode control methodology has been used in stabilization [4,5],
tracking [6,7], observer design [8,9], frequency domain analysis [10], and other con-
trol problems. Promising modifications of the original sliding mode concept, such
as integral sliding mode [11] and higher order sliding modes [12, 3], have been de-
veloped. The sliding mode optimal regulators has been recently designed for linear
systems with son-quadratic Bolza-Meyer criteria [13, 14]. Application of the slid-
ing mode method is extended even to stochastic systems [15, 16, 17] and stochastic
filtering problems [18,19]. However, to the best of authors’ knowledge, that no slid-
ing mode filtering algorithms solving the mean-square or mean-module filtering and
controller problems have been designed even for linear systems. Meanwhile, sim-
ply the fact that the sliding mode control has a transparent physical sense [1] and is
successfully applied to many technical problems [4] leads to a conjecture that the
sliding mode mean-square and mean-module filters, dual to sliding mode regulators
obtained in [13] and [14], should exist. Furthermore, combining the sliding mode
mean-square and mean-module filters to be designed with the sliding mode regula-
tors obtained in [13] and [14] leads to the design of the sliding mode mean-square
and mean-module controllers providing solutions to the optimal control problems if
the system state is not directly measured.

This paper presents the solutions to the mean-square and mean-module filter-
ing problems for linear systems, which contain a sliding mode term, signum of the
innovations process. It is shown that the designed sliding mode mean-square fil-
ter generates the mean-square estimate, which has the same minimum estimation
error variance as the best estimate given by the classical Kalman-Bucy filter [20],
although the gain matrices of both filters are different. To the best of our knowledge,
this is the first designed sliding mode filter that is optimal with respect to the mean-
square criterion and yields the estimate with the same structural properties as the
conventional optimal filter. On the other hand, the designed sliding mode filter gen-
erates the mean-module estimate, which yields a better value of the mean-module
criterion in comparison to the mean-square Kalman-Bucy filter. To the best of our
knowledge, this is the first designed sliding mode filter that is optimal with respect
to the mean-module criterion. The theoretical result is complemented with an il-
lustrative example verifying performance of the designed filters. It is demonstrated
that the estimates produced by the designed filter and the Kalman-Bucy filter yield
the estimate with the same minimum estimation error variance, whereas there is an
advantage in favor of the designed sliding mode mean-module filter.

Then, the paper presents the solutions to the optimal controller problems for a
linear system over linear observations with respect to different Bolza-Meyer cri-
teria, where 1) the integral control and state energy terms are quadratic and the
non-integral term is of the first degree or 2) the control energy term is quadratic and
the state energy terms are of the first degree. That type of criteria would be use-
ful in the joint control and parameter identification problems where the objective
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should be reached for a finite time. The theoretical results are complemented with
illustrative examples verifying performance of the designed controller algorithms.
The designed sliding mode controllers are compared to the feedback LQG con-
troller corresponding to the quadratic Bolza-Meyer criterion, which is based on the
Kalman-Bucy filter [20] and the conventional LQ regulator [21,22]. The simulation
results confirm an advantage in favor of the designed sliding mode controllers.

The paper is organized as follows. Section 12.2 states the mean-square and mean-
module filtering problems for linear systems with Gaussian white noises. The sliding
mode solutions to the mean-square and mean-module filtering problems are given in
Sections 12.3 and 12.4, respectively, which also contain illustrative examples. The
proofs of the obtained results are given in Appendices 1 and 2. Section 12.5 states
the corresponding optimal controller problems for linear systems over linear obser-
vations with non-quadratic Bolza-Meyer criterions. The sliding mode solutions to
the controller problems based on the mean-square and mean-module filtering prob-
lems are given in Sections 12.6 and 12.7, respectively, which also contain illustrative
examples. Section 12.8 presents conclusions to this study.

12.2 Optimal Filtering Problem

12.2.1 Problem Statement

Let (Ω ,F,P) be a complete probability space with an increasing right-continuous
family of σ -algebras Ft ,t ≥ t0, and let (W1(t),Ft , t ≥ t0) and (W2(t),Ft , t ≥ t0)
be independent standard Wiener processes. The Ft -measurable random process
(x(t),y(t)) is described by a linear differential equation for the system state

dx(t) = (a0(t)+ a(t)x(t))dt + b(t)dW1(t), x(t0) = x0, (1)

and a linear differential equation for the observation process

dY (t) = A(t)x(t)dt + B(t)dW2(t). (2)

Here, x(t) ∈ Rn is the state vector and y(t) ∈ Rm, m ≤ n, is the observation process.
The initial condition x0 ∈ Rn is a Gaussian vector such that x0, W1(t), and W2(t) are
independent. It is assumed that B(t)BT (t) is a positive definite matrix. All coeffi-
cients in (1)–(2) are deterministic functions of time of appropriate dimensions.

The state and observation equations can also be written in an alternative form

ẋ(t) = a0(t)+ a(t)x(t)+ b(t)ψ1(t), x(t0) = x0, (1∗)

y(t) = A(t)x(t)+ B(t)ψ2(t), (2∗)

where y(t) = Ẏ (t), and ψ1(t) and ψ2(t) are white Gaussian noises, which are the
weak mean square derivatives of standard Wiener process W1(t), and W2(t) (see
[23]). The representations (1),(2) and (1∗),(2∗) are equivalent ( [24]). The equations
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(1∗),(2∗) present the conventional form for the equations (1),(2), which is actually
used in practice.

The estimation problem is to find the estimate x̂(t) of the system state x(t), based
on the observation process Y (t) = {y(s), t0 ≤ s≤ t}, that minimizes the mean-square
norm

J = E[(x(t)− x̂(t))T (x(t)− x̂(t)) | FY
t ] (3)

at every time moment t. Here, E[z(t) | FY
t ] means the conditional expectation of a

stochastic process z(t) = (x(t)− x̂(t))T (x(t)− x̂(t)) with respect to the σ - algebra
FY

t generated by the observation process Y (t) in the interval [t0, t]. As known [23],
this estimate is given by the conditional expectation

x̂(t) = m(t) = E(x(t) | FY
t )

of the system state x(t) with respect to the σ - algebra FY
t generated by the observa-

tion process Y (t) in the interval [t0, t]. As usual, the matrix function

P(t) = E[(x(t)−m(t))(x(t)−m(t))T | FY
t ]

is the estimation error variance.
The well-known solution to the stated filtering problem is the Kalman-Bucy filter

[20]. An alternative solution involving the sliding mode term is given in Section 12.3
and then proved in Appendix 1. As demonstrated, the obtained sliding mode filter is
optimal with respect to the criterion (3).

This paper also addresses the mean-module filtering problem to find the estimate
x̂(t) of the system state x(t), based on the observation process Y (t) = {y(s), t0 ≤ s≤
t}, that minimizes the mean-module norm

J = E[(| x(t)− x̂(t) |) | FY
t ] (4)

at every time moment t. Here, | x |= [| x1 |, . . . , | xn |] ∈ Rn is defined as the vector of
absolute values of the components of the vector x ∈ Rn.

The solution to the stated filtering problem, involving the sliding mode term, is
given in Section 12.4 and then proved in Appendix 2. As demonstrated, the obtained
sliding mode filter is optimal with respect to the criterion (4).

12.3 Mean-Square Filter Design

The solution to the mean-square filtering problem for the linear system (1) and the
criterion (3) is given as follows. The mean-square estimate satisfies the differential
equation with the sliding mode term

ṁ(t) = a0(t)+ a(t)m(t)+ Q(t)AT(t)(B(t)BT (t))−1× (5)

A(t)sign[AT (t)(A(t)AT (t))−1y(t)−m(t)],
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with the initial condition m(t0) = E(x(t0) | FY
t0 ). Here, the Signum function of a

vector x = [x1, . . . ,xn] ∈ Rn is defined as sign[x] = [sign(x1), . . . , sign(xn)] ∈ Rn, and
the signum function of a scalar x is defined as sign(x) = 1, if x > 0, sign(x) = 0, if
x = 0, and sign(x) =−1, if x < 0 ( [25]).

The matrix function Q(t) satisfies the matrix equation with time-varying coeffi-
cients

Q̇(t) = (b(t)bT (t))∗ | AT (t)(A(t)AT (t))−1y(t)−m(t) | +a(t)Q(t), (6)

with the initial condition

Q(t0) = E[(x(t0)−m(t0)(x(t0)−m(t0)T | FY
t0 ]∗

| AT (t0)(A(t0)AT (t0))−1y(t0)−m(t0) |
.
Here, | x |= [| x1 |, . . . , | xn |] ∈ Rn is defined as the vector of absolute values of
the components of the vector x ∈ Rn, and A∗ b denotes a product between a matrix
A∈ Rn×n and a vector b∈ Rn, that results in the matrix defined as follows: all entries
of the j-th column of the matrix A are multiplied by the j-th component of the vector
b, j = 1, . . . ,n.

The presented result is formulated in the following theorem and proved in
Appendix 1.

Theorem 12.1. The mean-square filter for the linear system state (1) over the linear
observations (2) is given by the equation (5) for the estimate m(t) = E(x(t) | FY

t )
and the equation (6) for the filter gain matrix Q(t).

12.3.1 Example 1

This section presents an illustrative example of designing the mean-square sliding
mode filter for a linear system (1),(2), using the filtering equations (5),(6).

Consider a scalar linear unmeasured state

ẋ(t) = x(t)+ψ1(t), x(0) = x0, (7)

and the scalar linear observation process

y(t) = x(t)+ψ2(t), (8)

where ψ1(t) and ψ2(t) are white Gaussian noises, which are the weak mean square
derivatives of standard Wiener processes (see [23]). The equations (7),(8) corre-
spond to the alternative conventional form (1∗),(2∗) for the equations (1),(2).

The filtering problem is to find the mean-square estimate for the linear state (7),
using linear observations (8) confused with independent and identically distributed
disturbances modeled as white Gaussian noises.
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The filtering equations (5),(6) take the following particular form for the system
(7),(8)

ṁ(t) = m(t)+ Q(t)sign[y(t)−m(t)], (9)

with the initial condition m(0) = E(x(0) | y(0)) = m0,

Q̇(t) = Q(t)+ | y(t)−m(t) |, (10)

with the initial condition Q(0) = E((x(0)−m(0))(x(0)−m(0))T | y(0))∗ | y(0)−
m(0) |.

The estimates obtained upon solving the equations (9),(10) are compared to the
estimates satisfying the Kalman-Bucy filtering equations [20] for the linear system
(7),(8)

ṁK(t) = mK(t)+ P(t)[y(t)−mK(t)], (11)

with the initial condition m(0) = E(x(0) | y(0)) = m0,

Ṗ(t) = 1 + 2P(t)−P2(t), (12)

with the initial condition P(0) = E((x(0)−m(0))(x(0)−m(0))T | y(0)).
Numerical simulation results are obtained solving the systems of filtering equa-

tions (9),(10) and (11),(12). The obtained values of the estimates m(t) and mK(t)
satisfying the equations (9) and (11), respectively, are compared to the real values
of the state variables x(t) in (7).

For each of the two filters (9),(10) and (11),(12) and the reference system (7),(8),
involved in simulation, the following initial values are assigned: x0 = 1, m0 = 10,
P(0) = 100, Q(0) = 866.9. The filtering horizon is set to T = 0.4. Gaussian distur-
bances ψ1(t) and ψ2(t) in (7),(8) are realized using the built-in MatLab white noise
function.

The following graphs are obtained: graphs of the reference state x(t), satisfying
the equation (7), the mean-square sliding mode filter estimate m(t), satisfying the
equations (9), and the Kalman-Bucy filter estimate mK(t), satisfying the equation
(11), are shown in the entire simulation interval [0,0.4] in Fig. 1. In addition, the
graph of the mean-square sliding mode filter estimate m(t) averaged by a Butter-
worth filter and all the variables of Fig. 1 are shown in detail in the interval [0.2,0.4]
in Fig. 2.

It can be observed that the estimates given by both filters generate the same
minimum estimation error variance, although the gain matrices Q(t) and P(t) are
different.

12.3.2 Appendix 1

Proof of Theorem 12.1. The well-known classical solution to the filtering problem
for a linear system (1∗) over linear observations (2∗) with respect to the mean-square
criterion (3) is given by the Kalman-Bucy filter [20]. The mean-square estimate
m(t) = E(x(t) | FY

t ) is governed by the equation
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ṁ(t) = a0(t)+ a(t)m(t)+ P(t)AT(t)(B(t)BT (t))−1× (13)

A(t)[AT (t)(A(t)AT (t))−1y(t)−m(t)].

with the initial condition m(t0) = E(x(t0) | FY
t0 ). The mean-square estimation error

variance matrix P(t) satisfies the Riccati equation

Ṗ(t) = a(t)P(t)+ P(t)aT(t)+ b(t)bT (t)−

P(t)AT (t)(B(t)BT (t))−1A(t)P(t), (14)

with the initial condition P(t0) = E[(x(t0)−m(t0)(x(t0)−m(t0)T | FY
t0 ].

Let us show that the Kalman-Bucy filter (13),(14) coincides with the designed
mean-square filter (5),(6). Indeed, upon introducing the new gain matrix Q(t) =
P(t)∗ | AT (t)(A(t)AT (t))−1y(t)−m(t) |, the estimate equation (13) coincides with
the equation (5). Furthermore, in view of (14),(1), and the equality

A(t)(AT (t)(A(t)AT (t))−1y(t)−m(t)) =

= A(t)(x(t)−m(t)+ AT(t)(A(t)AT (t))−1B(t)ψ2(t)),

the newly introduced gain matrix Q(t) satisfies the equation

Q̇(t) = E(Q̇(t) | FY
t ) = E

(d(P(t)∗ | AT (t)(A(t)AT (t))−1y(t)−m(t) |)
dt

| FY
t

)
=

E
(dP(t)

dt
∗ | AT (t)(A(t)AT (t))−1y(t)−m(t) |+

P(t)∗ d(| AT (t)(A(t)AT (t))−1y(t)−m(t) |)
dt

| FY
t

)
=

E
(
(P(t)aT (t)+ a(t)P(t)+ b(t)bT(t)−

P(t)AT (t)(B(t)BT (t))−1A(t)P(t))∗ | AT (t)(A(t)AT (t))−1y(t)−m(t) |+
(−P(t)aT (t)∗ | AT (t)(A(t)AT (t))−1y(t)−m(t) |+

P(t)AT (t)(B(t)BT (t))−1A(t)P(t)∗ | AT (t)(A(t)AT (t))−1y(t)−m(t) |) | FY
t

)
=

b(t)bT (t)∗ | AT (t)(A(t)AT (t))−1y(t)−m(t) |+
a(t)P(t)∗ | AT (t)(A(t)AT (t))−1y(t)−m(t) |=

b(t)bT (t)∗ | AT (t)(A(t)AT (t))−1y(t)−m(t) |+a(t)Q(t),

with the initial condition
Q(t0) = E[(x(t0)−m(t0)(x(t0)− m(t0)T | FY

t0 ]∗ | AT (t0)(A(t0)AT (t0))−1y(t0)−
m(t0) |, which coincides with (6). The theorem is proved. ��
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12.4 Mean-Module Filter Design

The solution to the mean-module filtering problem for the linear system (1) and the
criterion (4) is given as follows. The mean-module estimate satisfies the differential
equation with the sliding mode term

ṁ(t) = a0(t)+ a(t)m(t)+ Q(t)AT(t)(B(t)BT (t))−1× (15)

A(t)sign[AT (t)(A(t)AT (t))−1y(t)−m(t)].

with the initial condition m(t0) = E(x(t0) | FY
t0 ), where the Signum function is de-

fined as in Section 12.3.
The matrix function Q(t) satisfies the matrix equation with time-varying coeffi-

cients
Q̇(t) = b(t)bT (t)+ a(t)Q(t), (16)

with the initial condition
Q(t0) = E[(x(t0)−m(t0))(sign(AT (t0)(A(t0)AT (t0))−1A(t0)x(t0)−m(t0)))T | FY

t0 ].
The presented result is formulated in the following theorem and proved in Ap-

pendix 2.

Theorem 12.2. The mean-module filter for the linear system state (1) over the linear
observations (2) is given by the equation (15) for the estimate m(t) and the equation
(16) for the filter gain matrix Q(t).

12.4.1 Example 2

This section presents an illustrative example of designing the mean-module sliding
mode filter for a linear system (1),(2), using the filtering equations (15),(16).

Consider again a scalar linear unmeasured state

ẋ(t) = x(t)+ψ1(t), x(0) = x0, (17)

and the scalar linear observation process

y(t) = x(t)+ψ2(t), (18)

where ψ1(t) and ψ2(t) are white Gaussian noises.
The filtering problem is to find the mean-module estimate for the linear state (17),

using linear observations (18) confused with independent and identically distributed
disturbances modeled as white Gaussian noises.

The filtering equations (15),(16) take the following particular form for the system
(17),(18)

ṁ(t) = m(t)+ Q(t)sign[y(t)−m(t)], (19)
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with the initial condition m(0) = E(x(0) | y(0)) = m0,

Q̇(t) = Q(t)+ 1, (20)

with the initial condition Q(0) = E((x(0)−m(0))(sign(x(0)−m(0)))T | y(0)).
The estimates obtained upon solving the equations (19),(20) are also compared

to the estimates satisfying the Kalman-Bucy filtering equations (11),(12).
For each of the two filters (19),(20) and (11),(12) and the reference system

(17),(18), involved in simulation, the following initial values are assigned: x0 = 1,
m0 = 10, P(0) = Q(0) = 100. The filtering horizon is set to T = 0.4.

Note that the initial conditions P(0) and Q(0) are assigned equal for simulation
purposes, since the results should be compared with respect to the mean-module
criterion (4). If the initial value for Q is assigned as Q(0) = 10, the Kalman-Bucy
filter would yield a better result as the best mean-square linear filter.

The following graphs are obtained: graphs of the reference state x(t), satisfying
the equation (17), the mean-module sliding mode filter estimate m(t), satisfying the
equations (19), and the mean-square Kalman-Bucy filter estimate mK(t), satisfying
the equation (12), are shown in the entire simulation interval [0,0.4] in Fig. 3.

It can be observed that the mean-module sliding mode filter (19),(20) yields a
certainly better value of the mean-module criterion (4) in comparison to the Kalman-
Bucy filter (11),(12).

Note that the comparison of the designed mean-module sliding mode filter
(19),(20) to the best mean-square Kalman-Bucy filter (11),(12) with respect to the
criterion (4) is conducted for illustration purposes, since the filter (19),(20) should
theoretically yield a better result, as follows from Theorem 12.2.

12.4.2 Appendix 2

Proof of Theorem 12.2. According to the general filtering theory based on the in-
novations process [23], the optimal estimate is a linear function of the minimized
residual criterion. For instance, the mean-square Kalman-Bucy estimate linearly de-
pends on the integral of x(t)− E(x(t) | FY

t ), which is the derivative of the mini-
mized mean-square residue (1/2)(x(t)−E(x(t) | FY

t ))T (x(t)−E(x(t) | FY
t )), given

that the right-side of the Kalman-Bucy filter estimate equation linearly includes the
derivative term x(t)−E(x(t) | FY

t ) (see [20]). Similarly, the mean-module estimate
equation linearly includes the derivative sign(x(t)−E(x(t)) | FY

t ) of the minimized
mean-module residue | x(t)−E(x(t) |FY

t ) | in the criterion (4). Therefore, the mean-
module estimate can be represented by the equation (15)

ṁ(t) = a0(t)+ a(t)m(t)+ Q(t)AT(t)(B(t)BT (t))−1×

A(t)sign[AT (t)(A(t)AT (t))−1y(t)−m(t)].

with the initial condition m(t0) = E(x(t0) |FY
t0 ). Here, the gain matrix Q(t) should be

selected to minimize the conditional variance of the estimation error produced by the
estimate m(t). According to the Ito formula (see, for example, [23]), the equation for
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Fig. 12.1 Graphs of the unmeasured state (7) x(t) (thin solid), the mean-square sliding mode
estimate (9) m(t) (thick solid), and the Kalman-Bucy estimate (11) mK(t) (dashed) in the
interval [0,0.4].

the estimation error conditional variance P(t) = E[(x(t)−m(t))(x(t)−m(t))T |FY
t ],

produced by the estimate m(t), takes the form

Ṗ(t) = a(t)P(t)+ P(t)aT(t)+ b(t)bT (t)−Q(t)AT (t)(B(t)BT (t))−1A(t)×

E(sign(AT (t)(A(t)AT (t))−1A(t)x(t)−m(t))(x(t)−m(t))T | FY
t )−

E((x(t)−m(t))(sign(AT (t)(A(t)AT (t))−1A(t)x(t)−m(t))T | FY
t )×

AT (t)(B(t)BT (t))−1A(t)QT (t)+ Q(t)AT (t)(B(t)BT (t))−1A(t)QT (t).

As follows from the preceding equation, the variable P(t) is minimized, if the gain
matrix Q(t) is assigned as

Q(t) = E((x(t)−m(t))(sign(AT (t)(A(t)AT (t))−1A(t)x(t)−m(t)))T | FY
t ).

In view of the Ito formula, the equation for Q(t) is given by (16), with the initial con-
dition Q(t0) = E[(x(t0)−m(t0))(sign(AT (t0)(A(t0)AT (t0))−1A(t0)x(t0)−m(t0)))T |
FY

t0 ]. The theorem is proved. ��
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Fig. 12.2 Graphs of the unmeasured state (7) x(t) (thin solid), the mean-square sliding mode
estimate (9) m(t) (thick solid), the mean-square sliding mode estimate (9) m(t) averaged by
a Butterworth filter (dashed and dotted), and the Kalman-Bucy estimate (11) mK(t) (dashed)
in the interval [0.2,0.4].

12.5 Optimal Controller Problem

12.5.1 Problem Statement

Let (Ω ,F,P) be a complete probability space with an increasing right-continuous
family of σ -algebras Ft ,t ≥ t0, and let (W1(t),Ft , t ≥ t0) and (W2(t),Ft , t ≥ t0) be
independent Wiener processes. The Ft-measurable random process (x(t),y(t)) is de-
scribed by a linear differential equation for the system state

dx(t) = a(t)x(t)dt + B(t)u(t)dt + b(t)dW1(t), x(t0) = x0, (21)

and a linear differential equation for the observation process

dy(t) = A(t)x(t)dt + G(t)dW2(t). (22)

Here, x(t) ∈ Rn is the state vector, u(t) ∈ Rl is the control input, and y(t) ∈ Rm is
the linear observation vector, m ≤ n. The initial condition x0 ∈ Rn is a Gaussian
vector such that x0, W1(t) ∈ Rp, and W2(t) ∈ Rq are independent. The observation
matrix A(t)∈Rm×n is not supposed to be invertible or even square. It is assumed that
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Fig. 12.3 Graphs of the unmeasured state (15) x(t) (thin solid), the mean-module sliding
mode estimate (17) m(t) (thick solid), and the Kalman-Bucy estimate (11) mK(t) (dashed) in
the interval [0,0.4].

G(t)GT (t) is a positive definite matrix, therefore, m ≤ q. All coefficients in (21)–
(22) are deterministic functions of appropriate dimensions. Without loss of gener-
ality, the system (1) (pair (a(t),B(t))) is assumed to be controllable for almost all
t ≥ t0, i.e, the uncontrollable state components are removed from the consideration.

The state and observation equations can also be written in an alternative form

ẋ(t) = a(t)x(t)+ B(t)u(t)+ b(t)ψ1(t), x(t0) = x0, (21∗)

y(t) = A(t)x(t)+ B(t)ψ2(t), (22∗)

where y(t) = Ẏ (t), and ψ1(t) and ψ2(t) are white Gaussian noises, which are the
weak mean square derivatives of standard Wiener process W1(t), and W2(t) (see
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[23]). The representations (21),(22) and (21∗),(22∗) are equivalent ( [24]). The equa-
tions (21∗),(22∗) present the conventional form for the equations (21),(22), which is
actually used in practice.

In the classical linear optimal controller problem [21,22], the criterion to be min-
imized is defined as a quadratic Bolza-Meyer functional:

J3 = E[
1
2
[x(T )]Tψ [x(T )]+

1
2

∫ T

t0
(uT (s)R(s)u(s)+ xT (s)L(s)x(s))ds],

where R(t) is positive and ψ , L(t) are nonnegative definite symmetric matrix func-
tions, and T > t0 is a certain time moment. The symbol E[ f (x)] means the expec-
tation (mean) of a function f of a random variable x, and aT denotes transpose to a
vector (matrix) a. The solution to this problem is well-known [21, 22] and consid-
ered fundamental for the optimal linear systems theory.

In this paper, the criteria to be minimized include a non-quadratic terminal term
or both non-quadratic state energy terms and are defined as follows:

J1 = E[
n

∑
i=1

ψii | xi(T ) | +1
2

∫ T

t0
(uT (s)R(s)u(s)+ xT (s)L(s)x(s))ds], (23)

J2 = E[
n

∑
i=1

ψii | xi(T ) |+
∫ T

t0

1
2
(uT (s)R(s)u(s))ds+

n

∑
i=1

Lii(s) | xi(s) | ds], (24)

where R(s) is positive and L(s) is a nonnegative definite continuous symmetric ma-
trix functions, ψ is a diagonal nonnegative definite matrix, and | xi | denotes the
absolute value of the component xi of the vector x ∈ Rn.

The optimal controller problem is to find the control u∗(t), t ∈ [t0,T ], that mini-
mizes the criterion J along with the unobserved trajectory x∗(t), t ∈ [t0,T ], generated
upon substituting u∗(t) into the state equation (21).

Solutions to the stated optimal control problems are given in the next sections.

12.6 Mean-Square Controller Design

12.6.1 Separation Principle. I

Solving the first problem, in accordance with the separation principle for linear
stochastic systems (see [21, 22]), the unmeasured linear state x(t), satisfying (21),
is replaced with its mean-square estimate m(t) over linear observations y(t) (22),
which is obtained using the mean-square sliding mode filter (5),(6)

ṁ(t) = a(t)m(t)+ B(t)u(t)+ K(t)AT(t)(B(t)BT (t))−1× (25)

A(t)sign[AT (t)(A(t)AT (t))−1y(t)−m(t)].

m(t0) = m0 = E(x(t0) | FY
t0 ),
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K̇(t) = (b(t)bT (t))∗ | AT (t)(A(t)AT (t))−1y(t)−m(t) | +a(t)K(t), (26)

K(t0) = E[(x(t0)−m(t0)(x(t0)−m(t0)T | FY
t0 ]∗

| AT (t0)(A(t0)AT (t0))−1y(t0)−m(t0) | .
Here, the Signum function of a vector x = [x1, . . . ,xn] ∈ Rn is defined as sign[x] =
[sign(x1), . . . , sign(xn)] ∈ Rn, and the signum function of a scalar x is defined as
sign(x) = 1, if x > 0, sign(x) = 0, if x = 0, and sign(x) = −1, if x < 0 ( [25]). A
vector | x |= [| x1 |, . . . , | xn |] ∈ Rn is defined as the vector of absolute values of
the components of the vector x ∈ Rn, and A∗ b denotes a product between a matrix
A∈ Rn×n and a vector b∈ Rn, that results in the matrix defined as follows: all entries
of the j-th column of the matrix A are multiplied by the j-th component of the vector
b, j = 1, . . . ,n.

Recall that m(t) is the mean-square estimate for the state vector x(t), based on
the observation process Y (t) = {y(s),t0 ≤ s ≤ t}, that minimizes the mean-square
norm

H = E[(x(t)−m(t))T (x(t)−m(t)) | FY
t ]

at every time moment t. Here, E[ξ (t) | FY
t ] means the conditional expectation of a

stochastic process ξ (t) = (x(t)−m(t))T (x(t)−m(t)) with respect to the σ - algebra
FY

t generated by the observation process Y (t) in the interval [t0, t]. As known [23],
this optimal estimate is given by the conditional expectation

m(t) = E(x(t) | FY
t )

of the system state x(t) with respect to the σ - algebra FY
t generated by the observa-

tion process Y (t) in the interval [t0, t]. As usual, the matrix function

P(t) = E[(x(t)−m(t))(x(t)−m(t))T | FY
t ]

is the estimation error variance.
It is readily verified (see [21,22]) that the optimal control problem for the system

state (21) and cost function (23) is equivalent to the optimal control problem for the
estimate (25) and the cost function J1 represented as

J1 =
n

∑
i=1

ψii | mi(T ) | +1
2

∫ T

t0
(uT (s)R(s)u(s)+ mT (s)L(s)m(s))ds+

1
2

∫ T

t0
tr[P(s)L(s)]ds+ tr[P−1(T )K(T )ψ ], (27)

where tr[A] denotes trace of a matrix A. Since the latter part of J1 does not depend
on control u(t) or state x(t), the reduced effective cost function M1 to be minimized
takes the form

M1 =
n

∑
i=1

ψii | mi(T ) |+1
2

∫ T

t0
(uT (s)R(s)u(s)+ mT (s)L(s)m(s))ds. (28)
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Thus, the solution to the optimal control problem specified by (21),(23) can be found
solving the optimal control problem given by (24),(28). Finally, the minimal value
of the criterion J1 should be determined using (27). This conclusion presents the
separation principle for linear systems with a non-quadratic criterion (23).

12.6.2 Optimal Controller Problem Solution. I

The optimal solution to the control problem defined by (24),(28) is given in [13].
Applying the separation principle from the previous subsection to the sliding mode
mean-square filter (25),(26) and the sliding mode optimal regulator in [13], the op-
timal controller solving the original problem (21)–(23) is given by the following
theorem.

Theorem 12.3. The optimal controller for a linear system (21) over linear obser-
vations (22) with respect to a non-quadratic criterion (23) is given by the control
law

u(t) = R−1(t)BT (t)Q(t)sign[m(t)], (29)

where the matrix function Q(t) is the solution of the matrix equation

Q̇(t) = L(t)∗ | m(t) | −aT (t)Q(t). (30)

The terminal condition for the equation (30) is defined as Q(T ) = −ψ , if the state
m(t) does not reach the sliding manifold m(t) = 0 within the time interval [t0,T ],
m(t) 	= 0, t ∈ [t0,T ]. Otherwise, if the state m(t) reaches the sliding manifold m(t) =
0 within the time interval [t0,T ], m(t) = 0 for some t ∈ [t0,T ], then Q(t) is set equal
to a matrix function Q0(t) that is such a solution of (30) that m(t) reaches the sliding
manifold m(t) = 0 under the control law (28) with the matrix Q0(t) exactly at the
final time moment t = T , m(T ) = 0, but m(t) 	= 0, t < T .

Upon substituting the optimal control (29) into the equation (25), the following
optimally controlled state estimate equation is obtained

ṁ(t) = a(t)m(t)+ B(t)R−1(t)BT (t)Q(t)sign[m(t)]+

K(t)AT (t)(B(t)BT (t))−1A(t)sign[AT (t)(A(t)AT (t))−1y(t)−m(t)], (31)

with the initial condition m(t0) = E(x(t0) | FY
t ).

Proof. Readily follows applying the separation principle from the previous subsec-
tion to the sliding mode mean-square filter (25),(26) and the sliding mode optimal
regulator in [13]. ��
Thus, the optimally controlled estimate equation (31), the control gain matrix equa-
tion (30), the optimal control law (29), and the filter gain matrix equation (25) give
the complete solution to the optimal controller problem for linear systems over lin-
ear observations and a non-quadratic cost function (23).
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12.6.3 Example 3

This section presents an example of designing the optimal sliding mode controller
for a linear system (21) over linear observations (22) with a non-quadratic criterion
(23), using the controller (26),(29)–(31), and comparing it to the best available LQG
controller.

Consider a linear state equation

ẋ(t) = x(t)+ u(t)+ψ1(t), x(0) = 1, (32)

and a linear observation process

y(t) = x(t)+ψ2(t), (33)

where ψ1(t) and ψ2(t) are white Gaussian noises, which are the weak mean square
derivatives of standard Wiener processes (see [23]). The equations (32),(33) corre-
spond to the alternative conventional form (21∗),(22∗) for the equations (21),(22).

The controller problem is to find the control u(t), t ∈ [0,T ], T = 1.2, that mini-
mizes the criterion

J1 = 50 | x(T ) |+1
2

∫ T

0
(u2(t)+ x2(t))dt, (34)

In other words, the control problem is to minimize the overall energy of the state x
using the minimal overall energy of control u.

Applying the sliding-mode controller (26),(29)–(31), the control law (29) is given
by

u(t) = Q(t)sign[x(t)], (35)

where m(t) satisfies the equation

ṁ(t) = m(t)+ u(t)+ K(t)sign[y(t)−m(t)], (36)

with the initial condition m(0) = E(x(0) | y(0)) = m0, K(t) satisfies the equation

K̇(t) = K(t)+ | y(t)−m(t) |, (37)

with the initial condition K(0) = E((x(0)−m(0))(x(0)−m(0))T | y(0))∗ | y(0)−
m(0) |, and Q(t) satisfies the equation

Q̇(t) =| m(t) | −Q(t), (38)

with the terminal condition Q(1.2) =−50, if m(t) 	= 0 for any t < 5, and Q∗(t∗) = 0,
where t∗ is the time that the estimate m(t) reaches the sliding manifold m = 0 at the
final moment t = T , otherwise.

Upon substituting the control (35) and the obtained expressions for K(t) and Q(t)
into (36), the optimally controlled state estimate equation takes the form
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ṁ(t) = m(t)+ Q(t)sign[m(t)]+ K(t)sign[y(t)−m(t)], (39)

with the initial condition m(0) = E(x(0) | y(0)) = m0. The obtained system (37)–
(39) can be solved using simple numerical methods, such as “shooting.” This
method consists in varying initial conditions of (18) until the given terminal con-
dition is satisfied.

For numerical simulation of the system (32),(33) and the controller (35)–(39),
the initial values x(0) = 1, m(0) = 10, and P(0) = 866.25 are assigned. The final
time is set to T = 1.2. The disturbances ψ1(t) in (32) and ψ2(t) in (33) are realized
using the built-in MatLab white noise function.

The system (37)–(39) is first simulated with the terminal condition Q∗(1.2) =
−50. As the simulation shows, the state m(t) reaches zero before the final mo-
ment T = 1.2. Accordingly, the terminal condition for the equation (38) is reset
to Q∗(1.2) = −ψ0 such that m(1.2) = 0, and the system (37)–(39) is simulated
again. The results obtained applying the controller (35)–(39) to the system (12) are
shown in Fig. 4, which presents the graphs of the controlled state (32) x(t), the
controlled estimate (39) m(t), the control (35) u(t), and the criterion (34) J1(t) in
the interval [0,1.2]. The value of the criterion (34) at the final moment T = 1.2 is
J1(1.2) = 4.985.

The designed sliding mode controller (26),(29)–(31) is compared to the best lin-
ear controller for the criterion J3 with the quadratic non-integral term

J3 = 25x2(T )+
1
2

∫ T

0
(u2(t)+ x2(t))dt, (40)

As follows from the optimal LQG theory [21,22], the linear control law is given by

u(t) = Q(t)m(t), (41)

where where m(t) satisfies the equation

ṁ(t) = m(t)+ u(t)+ P(t)[y(t)−m(t)], (42)

with the initial condition m(0) = E(x(0) | y(0)) = m0, the variance P(t) satisfies the
Riccati equation

Ṗ(t) = 1 + 2P(t)−P2(t), (43)

with the initial condition P(0) = E((x(0)−m(0))(x(0)−m(0))T | y(0)), and Q(t)
satisfies the Riccati equation

Q̇(t) = 1−2Q(t)−Q2(t), Q(1.2) =−50. (44)

Upon substituting the control (41) and the obtained expressions for P(t) and Q(t)
into (42), the optimally controlled state estimate equation takes the form

ṁ(t) = m(t)+ Q(t)m(t)+ P(t)[y(t)−m(t)], (45)

with the initial condition m(0) = E(x(0) | y(0)) = m0.
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Note that the comparison of the designed sliding mode controller (26),(29)–(31)
to the best LQG controller (41)–(45) with respect to the criterion (34) is conducted
for illustration purposes, since the controller (26),(29)–(31) should theoretically
yield a better result, as follows from Theorem 12.3.

The results obtained applying the controller (26),(29)–(31) to the system
(32),(33) are shown in Fig. 4, which presents the graphs of the controlled state (32)
x(t), the controlled estimate (35) m(t), the control (31) u(t), and the criterion (34)
J1(t) in the interval [0,1.2]. The value of the criterion (34) at the final moment
T = 1.2 is J1(1.2) = 7.51.

It can be observed that the sliding mode controller (26),(29)–(31) yields a cer-
tainly better value of the criterion (34) in comparison to the linear feedback LQG
controller (41)–(45). Note that the classical linear feedback LQG controller fails to
provide a causal optimal control for the criterion (34).

12.7 Mean-Module Controller Design

12.7.1 Separation Principle. II

Solving the second problem, the unmeasured linear state x(t), satisfying (21), is re-
placed with its mean-module estimate m(t) over linear observations y(t) (22), which
is obtained using the mean-module sliding mode filter (15),(16)

ṁ(t) = a(t)m(t)+ B(t)u(t)+ K(t)AT(t)(B(t)BT (t))−1× (46)

A(t)sign[AT (t)(A(t)AT (t))−1y(t)−m(t)].

m(t0) = m0 = E(x(t0) | FY
t0 ),

K̇(t) = b(t)bT (t)+ a(t)K(t), (47)

K(t0) = E[(x(t0)−m(t0)(sign(AT (t)(A(t)AT (t))−1A(t)x(t0)−m(t0)))T | FY
t0 ].

Here, m(t) is the mean-module estimate for the state vector x(t), based on the ob-
servation process Y (t) = {y(s),t0 ≤ s ≤ t}, that minimizes the mean-module norm

J = E[(| x(t)− x̂(t) |) | FY
t ]

at every time moment t.
It is readily verified (see [21,22]) that the optimal control problem for the system

state (21) and cost function (24) is equivalent to the optimal control problem for the
estimate (46) and the cost function J2 represented as

J2 =
n

∑
i=1

ψii | mi(T ) | +
∫ T

t0

1
2
(uT (s)R(s)u(s))ds+

n

∑
i=1

Lii(s) | mi(s) | ds+

1
2

∫ T

t0
tr[K(s)L(s)]ds+ tr[K(T )ψ ], (48)
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where tr[A] denotes trace of a matrix A. Since the latter part of J2 does not depend
on control u(t) or state x(t), the reduced effective cost function M2 to be minimized
takes the form

M2 =
n

∑
i=1

ψii | mi(T ) |+
∫ T

t0

1
2
(uT (s)R(s)u(s))ds+

n

∑
i=1

Lii(s) | mi(s) | ds. (49)

Thus, the solution to the optimal control problem specified by (21),(24) can be found
solving the optimal control problem given by (46),(49). Finally, the minimal value
of the criterion J2 should be determined using (48). This conclusion presents the
separation principle for linear systems with a non-quadratic criterion (24).

12.7.2 Optimal Controller Problem Solution. II

The optimal solution to the control problem defined by (46),(49) is given in [14].
Applying the separation principle from the previous subsection to the sliding mode
mean-module filter (45),(46) and the sliding mode optimal regulator in [14], the op-
timal controller solving the original problem (21),(22),(24) is given by the following
theorem.

Theorem 12.4. The optimal controller for a linear system (21) over linear obser-
vations (22) with respect to a non-quadratic criterion (24) is given by the control
law

u(t) = R−1(t)BT (t)Q(t)sign[m(t)], (50)

where the matrix function Q(t) is the solution of the matrix equation

Q̇(t) = L(t)−aT (t)Q(t). (51)

The terminal condition for the equation (51) is defined as Q(T ) = −ψ , if the
state x(t) does not reach the sliding manifold m(t) = 0 within the time interval
[t0,T ], m(t) 	= 0, t ∈ [t0,T ]. Otherwise, if the state m(t) reaches the sliding manifold
m(t) = 0 within the time interval [t0,T ], then the terminal condition for Q(t) is set
to zero at the time moment t∗, Q(t∗) = 0, where t∗ is the maximum possible time of
reaching the sliding manifold m(t) = 0. In other words, there exists no such solution
to the system of equations (21), (50), (51) satisfying the conditions m(t0) = m0 and
Q(t1) = 0, t1 > t∗, that m(t) 	= 0 for t < t1 and m(t) = 0 for some t ≥ t1.

Upon substituting the optimal control (50) into the equation (46), the following
optimally controlled state estimate equation is obtained

ṁ(t) = a(t)m(t)+ B(t)R−1(t)BT (t)Q(t)sign[m(t)]+ K(t)AT (t)(B(t)BT (t))−1×

A(t)sign[AT (t)(A(t)AT (t))−1y(t)−m(t)], (52)

with the initial condition m(t0) = E(x(t0) | FY
t ).
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Proof. Readily follows applying the separation principle from the previous subsec-
tion to the sliding mode mean-module filter (45),(46) and the sliding mode optimal
regulator in [14]. ��
Thus, the optimally controlled state estimate equation (52), the control gain matrix
equation (51), the optimal control law (50), and the filter gain matrix equation (47)
give the complete solution to the optimal controller problem for linear systems over
linear observations and a non-quadratic cost function (24).

12.7.3 Example 4

This section presents an example of designing the optimal sliding mode controller
for a linear system (21) over linear observations (22) with a non-quadratic criterion
(24), using the controller (47),(50)–(52), and comparing it to the best available LQG
controller.

Consider a linear state equation

ẋ(t) = x(t)+ u(t)+ψ1(t), x(0) = 1, (53)

and a linear observation process

y(t) = x(t)+ψ2(t), (54)

where ψ1(t) and ψ2(t) are white Gaussian noises.
The controller problem is to find the control u(t), t ∈ [0,T ], T = 1.2, that mini-

mizes the criterion

J2 = 50 | x(T ) |+
∫ T

0

1
2
(u2(t))+ | x(t) | dt, (55)

In other words, the control problem is to minimize the overall energy of the state x
using the minimal overall energy of control u.

Applying the sliding-mode controller (47),(50)–(52), the control law (50) is given
by

u(t) = Q(t)sign[x(t)], (56)

where m(t) satisfies the equation

ṁ(t) = m(t)+ u(t)+ K(t)sign[y(t)−m(t)], (57)

with the initial condition m(0) = E(x(0) | y(0)) = m0, K(t) satisfies the equation

K̇(t) = K(t)+ 1, (58)

with the initial condition K(0) = E((x(0)−m(0))(sign(x(0)−m(0)))T | y(0)), and
Q(t) satisfies the equation

Q̇(t) = 1−Q(t), (59)
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Fig. 12.4 Sliding mode controller optimal with respect to criterion J1 vs. linear feedback
controller in the entire simulation interval [0,1.2]. 1. Sliding mode controller. Graphs of the
controlled state (32) x(t) (thin solid line) and the controlled estimate (39) m(t) (thick solid
line); 2. Linear feedback controller. Graphs of the controlled state (32) x(t) (thin solid line)
and the controlled estimate (45) m(t) (thick solid line); 3. Control. Graphs of the sliding
mode control (35) u∗(t) (thick solid line) and the linear feedback control (41) u(t) (thin solid
line); 4. Criterion. Graphs of the criterion (34) J1 produced by the sliding mode controller
(thick solid line) and by the linear feedback controller (thin solid line).
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Fig. 12.5 Sliding mode controller optimal with respect to criterion J1 vs. linear feedback
controller in the entire simulation interval [0,1.2]. 1. Sliding mode controller. Graphs of the
controlled state (53) x(t) (thin solid line) and the controlled estimate (60) m(t) (thick solid
line); 2. Linear feedback controller. Graphs of the controlled state (53) x(t) (thin solid line)
and the controlled estimate (45) m(t) (thick solid line); 3. Control. Graphs of the sliding
mode control (56) u∗(t) (thick solid line) and the linear feedback control (41) u(t) (thin solid
line); 4. Criterion. Graphs of the criterion (55) J1 produced by the sliding mode controller
(thick solid line) and by the linear feedback controller (thin solid line).
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with the terminal condition Q∗(t∗) = 0, where t∗ is the maximum possible time of
reaching the sliding manifold m(t) = 0 by the state estimate m(t).

Upon substituting the control (56) and the obtained expressions for K(t) and Q(t)
into (53), the optimally controlled state estimate equation takes the form

ṁ(t) = m(t)+ Q(t)sign[m(t)]+ K(t)sign[y(t)−m(t)], (60)

with the initial condition m(0) = E(x(0) | y(0)) = m0.
For numerical simulation of the system (53),(54) and the controller (56)–(60),

the initial values x(0) = 1, m(0) = 10, and P(0) = 100 are assigned. The final time
is set to T = 1.2. The disturbances ψ1(t) in (53) and ψ2(t) in (54) are realized using
the built-in MatLab white noise function.

The results obtained applying the controller (56)–(60) to the system (53) are
shown in Fig. 5, which presents the graphs of the controlled state (53) x(t), the
controlled estimate (60) m(t), the control (56) u(t), and the criterion (55) J2(t) in
the interval [0,1.2]. The value of the criterion (55) at the final moment T = 1.2 is
J2(1.2) = 5.634.

The optimal sliding-mode controller (47),(50)–(52) is compared to the best linear
regulator (41)–(45) for the criterion (40) J3.

Again, the comparison of the designed sliding mode controller (47),(50)–(52) to
the best LQG controller (41)–(45) with respect to the criterion (40) is conducted for
illustration purposes, since the controller (47),(50)–(52) should theoretically yield a
better result, as follows from Theorem 12.4.

The results obtained applying the controller (47),(50)–(52) to the system
(53),(54) are shown in Fig. 5, which presents the graphs of the controlled state (53)
x(t), the controlled estimate (60) m(t), the control (56) u(t), and the criterion (55)
J2(t) in the interval [0,1.2]. The value of the criterion (55) at the final moment
T = 1.2 is J2(1.2) = 7.586.

It can be observed that the sliding mode controller (47),(50)–(52) yields a cer-
tainly better value of the criterion (55) in comparison to the linear feedback LQG
controller (41)–(45). Note again that the classical linear feedback LQG controller
fails to provide a causal optimal control for the criterion (45).

12.8 Conclusions

This paper presents the mean-square and mean-module filtering problems and de-
signs the solutions as filters based on a sliding mode gain. Both filtering problems
are considered for linear systems with Gaussian white noises. It is shown that the de-
signed sliding mode mean-square filter generates the mean-square estimate, which
has the same minimum estimation error variance as the best estimate given by the
classical Kalman-Bucy filter, although the gain matrices of both filters are differ-
ent. It is numerically verified in an example that the estimates produced by the de-
signed sliding mode mean-square filter and the Kalman-Bucy filter yield the same
minimum estimation error variance. On the other hand, the designed sliding mode
mean-module filter generates the mean-module estimate, which yields a better value
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of the mean-module criterion in comparison to the mean-square Kalman-Bucy filter.
This conclusion is theoretically proved and numerically verified in an example. The
proposed approach based on involving a sliding mode innovations term is expected
to be applicable to other filtering problems with non-mean-square criteria, where the
conventional Kalman-Bucy linear filter would not work, in particular, to polynomial
systems. Then, the paper presents two optimal controller problems, whose solu-
tions are given by sliding mode controllers, each consisting of a sliding mode filter
and a sliding mode regulator. The optimal controller problems are considered for
a linear system over linear observations with respect to two different Bolza-Meyer
criteria, where 1) the integral control and state energy terms are quadratic and the
non-integral term is of the first degree or 2) the control energy term is quadratic and
the state energy terms are of the first degree. It is shown that the optimal solutions
are given by causal sliding mode controllers, whereas the conventional linear feed-
back controller fails to provide feasible solutions. The proposed approach based on a
sliding mode control is expected to be applicable to optimal controller problems for
nonlinear polynomial systems with non-quadratic criteria, where the conventional
linear feedback controller would not work.

Acknowledgements. The author thanks the Mexican National Science and Technology
Council (CONACyT) for financial support under Grant 55584 and joint Mexico-EU FON-
CICyT Grant 93302.
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Chapter 13
Output Tracking and Observation in
Nonminimum Phase Systems via Classical and
Higher Order Sliding Modes

Y. Shtessel, S. Baev, C. Edwards, S. Spurgeon, and A. Zinober

Abstract. The problem of causal output tracking and observation in non-minimum
phase nonlinear systems is studied. The extended method of Stable System Center
(ESSC) is used in two-fold manner: i) to generate reference profile for unstable in-
ternal states; ii) to estimate states of unstable internal dynamics. Two applications
of the proposed technique are considered for illustration purposes: output voltage
tracking in a nonminimum phase DC/DC electric power converter and output track-
ing in SISO systems with time-delayed output feedback. A variety of traditional and
higher-order sliding mode (HOSM) control and observation methods is employed in
the majority of algorithms. Most of the theoretical results are covered by numerical
simulations.
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13.1 Introduction

The problem of nonminimum phase output tracking is a challenging and nontriv-
ial control problem. However, it keeps generating new ideas and control techniques
with continuously improving contributions. Originally introduced as a purely theo-
retical problem, it has found itself applicable to many real-life applications including
DC/DC power converters [25] and aircraft control [15,14]. The control problem han-
dles a class of dynamical systems, where the internal or zero-dynamics are unstable,
making traditional and powerful control methods such as feedback linearization [11]
and sliding mode control [22, 7, 23, 5] difficult to apply.

Tremendous efforts have been applied to address many of the issues mentioned
above. Several control techniques have been proposed for the noncausal case where
the tracking reference profile is assumed to be known beforehand. An approximate
solution for a special class of systems and trajectories is proposed in [9]. Exact
tracking of a known trajectory given by a noncausal system is achieved via a sta-
ble nonlinear inverse in [6]. The problem of nonminimum phase output tracking of
nonlinear systems is handled in [10] through redefinition of the control.

A successful attempt to improve the causality of the tracking has been made
in [16]. The authors address the problem of asymptotic output tracking for a class
of nonlinear uncertain systems, where the output reference profile together with un-
matched external disturbances are defined by an unknown linear exosystem with
known characteristic polynomial. The proposed method improves the causality with
respect to the existing state of art, but the assumption that the characteristic poly-
nomial of the exogenous system is known means its impact is a theoretical break-
through. An extension to the result of [16] has been proposed in [3,2], where the ex-
ogenous system, responsible for generating the output reference profile is assumed
to be unknown, but of given order. Its characteristic polynomial is identified online
via a higher order sliding mode (HOSM) parameter observer [12, 1] and it is used
for generating the reference profile for the internal state. The real restriction of the
method proposed in [3,2], is the unrealistic assumption of internal state availability.

In this paper, a multistage observer is employed to recover the unstable inter-
nal state. It relaxes the limitations of the previous work and converts the tracking
problem to an output feedback oriented one. The contributions of the proposed
work, with respect to the cornerstone results, published in [16], are summarized as
follows:

1. A causal output reference profile is assumed to be generated by an unknown
linear exosystem of given order. The coefficients of the corresponding charac-
teristic polynomial, which are used in the controller design, are recovered by a
higher order sliding mode parameter observer [1];

2. Employing the multistage observer along with a HOSM differentiator [12], al-
lows estimation of the full state vector, including the unstable internal state;
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3. Using the estimated state vector allows:

a. asymptotic output feedback tracking of the causal reference profile;
b. identification of the unknown input, forcing the I/O dynamics;

13.2 System Description

Consider a nonlinear plant model, presented in the form of input/output dynamics
⎛
⎜⎜⎝

y(r1)
1
...

y(rm)
m

⎞
⎟⎟⎠ = φ(ξ ,η)+ f(t)+ u(ξ ,η), (13.1)

with internal dynamics
η̇ = Qη + Gξ (13.2)

where

u � {u1,u2, . . . ,um} ∈ R
m is the control input;

y � {y1,y2, . . . ,ym} ∈ R
m is the commanded output (available for measure-

ment);
[r1,r2, . . . ,rm] ∈ R

m is the vector relative degree;
r = r1 + r2 + · · ·+ rm is the total relative degree;
n is the total order of the system (n> r);
p = n− r is the order of the internal dynamics (p> 0);
η ∈ R

p are the states of the unstable internal dynamics (not available for mea-
surement);
ξ ∈ R

r is the combined output state vector;
φ(·) � {φ1,φ2, . . . ,φm}T ∈ R

m is a known smooth and bounded vector field;
f(t) ∈ R

m is a sufficiently smooth, bounded unknown input/disturbance;
Q ∈ R

p×p is a known non-Hurwitz gain matrix;
G ∈ R

p×r is a known gain matrix.

Remark 13.1. The system (13.1),(13.2) is nonminimum phase due to the non-
Hurwitz nature of Q.

The output state vector is constructed from all the outputs along with an appropriate
number of their time derivatives:

ξ = {y1, . . . ,y
(r1−2)
1 , . . . ,ym, . . . ,y

(rm−2)
m︸ ︷︷ ︸

ξ1∈Rr−m

,y(r1−1)
1 , . . . ,y(rm−1)

m︸ ︷︷ ︸
ξ2∈Rm

}T (13.3)

Remark 13.2. The input-output (I/O) substates given by equation (13.3) are avail-
able for the controller design since they can be reconstructed in finite time using the
exact HOSM differentiator of ri-order [12]:
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żi,0 = νi,0

νi,0 = −λi,0 |zi,0 − yi|ri/(ri+1) sign(zi,0 − yi)+ zi,1
...

żi, j = νi, j, j = 1,ri −1
νi, j = −λi, j |zi, j −νi, j−1|(ri− j)/(ri− j+1) sign

(
zi, j −νi, j−1

)
+ zi, j+1,

...
żi,ri = −λi,ri sign(zi,ri −νi,ri−1)

(13.4)

where |y(ri+1)
i | ≤ Li (∀i = 1,m) and the positive design constants λi, j > λi, j+1 (∀i =

1,m and ∀ j = 0,ri −1) should be selected sufficiently large to provide finite time

convergence zi, j−1 → y( j−1)
i (∀i = 1,m and ∀ j = 1,ri + 1)

Without loss of generality, the nonlinear vector field φ(ξ ,η) can be written as

φ(ξ ,η) = D11 ξ1 + D12 ξ2 + D2η +φ0(ξ1,ξ2,η), (13.5)

which after being substituted into (13.1) provides a redefined form of the I/O dy-
namics:

ξ̇1 = A11 ξ1 + A12ξ2 (13.6a)

ξ̇2 = D11 ξ1 + D12 ξ2 + D2η +φ0(ξ1,ξ2,η)+ f (t)+ u (13.6b)

where φ0(·) is a known nonlinear vector field. The internal dynamics (13.2) can be
rewritten in a form

η̇ = Qη + G1 ξ1 + G2 ξ2 (13.7)

where G = [G1,G2], G1 ∈ R
p×(r−m), G2 ∈R

p×m.
The I/O dynamics (13.6) are now written in a canonical form where the first (r−

m) differential equations implicitly represent the geometry of the output state vector
in a phase variable format, while the last m equations reflect dynamical properties.

Such an observation imposes the structure on the gain matrices:
A11 ∈ R

(r−m)×(r−m), A12 ∈ R
(r−m)×m. Each of them can be presented in a

block format:

A11 = diag{A1
11,A

2
11, . . . ,A

m
11}, A12 = col{A1

12,A
2
12, . . . ,A

m
12}, (13.8)

where

Ai
11 =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
0 0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎦
∈ R

(ri−1)×(ri−1), A j
12 =

⎡
⎢⎢⎢⎢⎢⎣

0 . . . 0 0 . . . 0 0
0 . . . 0 0 . . . 0 0
...

. . .
...

...
. . .

...
...

0 . . . 0 0 . . . 0 0
0 . . . 0 1 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎦
∈ R

(r j−1)×(r j−1)

jth column

(13.9)
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13.3 Problem Formulation

The problem is to design an output-feedback based control law that provides asymp-
totic tracking of the causal output reference profile yc in the nonminimum phase
nonlinear system (13.6),(13.7) in the presence of a bounded disturbance f(t)

lim
t→∞

‖yc(t)−y(t)‖= 0 (13.10)

where t stands for time.

13.4 Sliding Mode Control Design

Assume that the output reference profiles ycj ( j = 1,m) along with time derivatives

up to r j-order are given in real time. The command ξc =
[
ξ T

c1
,ξ T

c2

]T to the full output
reference state vector (13.3) can be constructed by analogy to ξ , according to (13.3).
Furthermore, the full output state tracking error eξ can be constructed by analogy to
(13.3), employing the HOSM differentiator (13.4) [12]:

eξ = {ey1 , . . . ,e
(r1−2)
y1 , . . . ,eym , . . . ,e

(rm−2)
ym︸ ︷︷ ︸

eξ1

,e(r1−1)
y1 , . . . ,e(rm−1)

ym︸ ︷︷ ︸
eξ2

}T (13.11)

The output tracking problem (13.10) is transformed to

lim
t→∞

‖ξc(t)− ξ (t)‖= lim
t→∞

‖eξ (t)‖ = 0 (13.12)

This problem cannot be addressed using just the I/O dynamics given by (13.6), since
the causal internal dynamics given by (13.7) are unstable. Therefore, the output
tracking problem (13.12) is reduced to the state tracking problem that comprises
(13.12) and

lim
t→∞

‖ηc(t)−η(t)‖= lim
t→∞

‖eη(t)‖ = 0 (13.13)

where ηc(t) is a bounded particular solution of the unstable internal dynamics

η̇c = Qηc +θ (13.14)

forced by a causal input θ = G1 ξ1c +G2 ξ2c that is available in current time. Using
the extended method of stable system center (ESSC), a bounded estimate η̂c can be
generated online, such that η̂c asymptotically converges to a true bounded solution
ηc of (13.14) as time increases, with a prescribed convergence rate.

13.4.1 The Extended Method of Stable System Center

The ESSC method numerically solves the unstable differential equation (13.14)
without explicit integration, where ηc ∈R

p, Q ∈R
p×p is non-Hurwitz, and θ ∈R

p

is a causal forcing term available for measurement.
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The basis for the ESSC method — the method of Stable System Center (SSC)
[16], assumes that the unstable differential equation (13.14) is forced by a causal
(available in current time) term θ , which can be piece-wise modeled by an LTI ex-
ogenous system with known characteristic polynomial. An extension, that turns the
SSC into the ESSC, relaxes this assumption, and requires knowing only the order of
the above mentioned exogenous system. A corresponding characteristic polynomial
is reconstructed online using a HOSM-based parameter observer [1]. This innova-
tion significantly improves the causality of the problem. The development of the
proposed ESSC method is based on the following Lemma.

Lemma 13.1 (Reconstruction of the Characteristic Polynomial). Given an LTI
system of known order k

ż = Az, θ = C z (13.15)

where z ∈ R
k, θ ∈ R

p, k > p so that:

i. the output θ available for measurement;
ii. the unknown matrices A ∈ R

k×k, C ∈ R
p×k are supposed to satisfy the observ-

ability condition:

rank(M) = k, M =
[
CT ,AT CT , . . . ,

(
Ak−1

)T
CT

]T

∈ R
pk×k, (13.16)

iii. the eigenvalues of the matrix A are located in the left half of the complex plane
or on the imaginary axis (non-repeated).

then

a. there exists a constant matrix Ã, similar to the matrix A, that satisfies an alge-
braic equation:

γ(t) = Ãψ(t), (13.17)

where

ψ(t) = Dω1(t), γ(t) = Dω2(t), ω1(t) =
[
θ T , θ̇ T , . . . ,

(
θ (k−1)

)T
]T

∈ R
pk, ω2 = ω̇1,

(13.18)

and the vectors ω1(t), ω2(t) are obtained in real time by differentiating the
output θ (t) using HOSM differentiators [12] that are similar to (13.4). The
arbitrary, but known constant matrix D ∈ R

k×mk is assumed to be of full rank,
i.e. rank(D) = k.

b. the entries of the matrix Ã can be reconstructed as:

Ã =
t∫

t−kΔ

det(Ψ (τ))Γ (τ)adj(Ψ(τ))dτ

/ t∫

t−kΔ

[det(Ψ(τ))]2 dτ (13.19)

where
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Ψ(t) =
[
ψ(t0) ψ(t1) . . . ψ(tk−1)

]
, Γ (t) =

[
γ(t0) γ(t1) . . . γ(tk−1)

]
,

(13.20)
with ti = t − iΔ , and Δ > 0 is a constant time interval.

Proof. The kth order exact HOSM differentiator is applied to the jth component of
the output vector θ ∈ R

p of system (13.15)

ω̇0, j =v0, j, v0, j =−λ0
∣∣ω0, j −θ j

∣∣ k
k+1 sign

(
ω0, j −θ j

)
+ω1, j

ω̇i, j =vi, j, vi, j = −λi
∣∣ωi, j −vi−1, j

∣∣ k−i
k−i+1 sign

(
ωi, j −vi−1, j

)
+ ω̇i+1, j , i = 1,k−1

ω̇k, j =−λk sign
(
ωk, j −vk−1, j

)
(13.21)

where the equality ωi, j = θ (i)
j holds after finite time convergence, affected by the

selection [12] of coefficients λi. Combining components ωi, j gives

[
ω0,1, . . . ,ω0,m, . . .ωk,1, . . . ,ωk,m

]T =
[
θT , θ̇T , . . . ,

(
θ (k)

)T
]T

(13.22)

Introduce two auxiliary vectors:

ω1 =
[
ω0,1, . . . ,ω0,p, . . .ωk−1,1, . . . ,ωk−1,p

]T
, ω2 =

[
ω1,1, . . . ,ω1,p, . . .ωk,1, . . . ,ωk,p

]T

(13.23)

which are related as ω2 = ω̇1.
Combining eqs. (13.15), (13.16), and (13.23)

ω1 = M z (13.24)

Introduce an arbitrary constant matrix D ∈ R
k×pk of full rank, i.e. rank(D) = k.

Pre-multiplying the left and right hand sides of (13.24) by D yields

Dω1 = DM z (13.25)

Note that DM ∈ R
k×k is a square, nonsingular matrix. Therefore, the following

expression can be derived from (13.25):

z = (DM)−1 Dω1 (13.26)

Differentiating (13.25) and taking into account (13.26) gives

D ω̇1 = (DM) ż = (DM)Az = (DM)A(DM)−1 Dω1. (13.27)

Denoting
ψ(t) = Dω1(t), γ(t) = Dω2(t) = D ω̇1(t) (13.28)

and introducing matrix Ã connected to the A by a similarity transformation Ã =
(DM)A(DM)−1, eq. (13.27) is reduced to the form
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γ(t) = Ãψ(t) (13.29)

and item i) of Lemma 13.1 is proven.
Note that the vectors γ(t), and ψ(t) are known online, and eq. (13.29) can be

treated as a system of k linear equations in a regressive form with respect to the
unknown matrix Ã that comprises k2 unknown terms ãi, j for i, j = 1,k which are
to be identified. Since there are k2 unknowns and only k equations, this problem
can not be solved uniquely. Since γ(t), and ψ(t) are vector functions given in real
time (measured or computed), k measurements of these vectors could be performed.
Then, each pair of measurements γ(ti), and ψ(ti), taken at the same time t = ti
are supposed to satisfy eq. (13.29). Therefore, eq. (13.29) can be extended to the
following linear matrix equation

Γ = ÃΨ (13.30)

whereΨ and Γ are defined by (13.20). A unique solution of system (13.30) can be
easily obtained as

Ã = ΓΨ−1 =
Γ adj(Ψ )
det(Ψ)

(13.31)

However, if the vectors γ(t) and ψ(t) are measured/estimated online with noise, the
computation error in (13.31) could be large. In this case, it is beneficial to identify
the matrix Ã using the least square parameter estimation (LSPE) method. The mea-
surement/estimation instants are varied with time, keeping a certain time interval
between them, i.e. ti = t − iΔ , where Δ > 0 is a constant time-interval. The matrix
Ã reconstruction in (13.31) can be averaged, while a norm of the estimation error is
minimized

Ã =
t∫

t−kΔ

det(Ψ(τ))Γ (τ)adj(Ψ (τ))dτ

/ t∫

t−kΔ

[det(Ψ (τ))]2 dτ (13.32)

and the Lemma is proven. ��
Remark 13.3. It is worth noting that if the entire vector z in system (13.15) is
measured then the matrix A in eq. (13.15) can be estimated using the sliding
mode parameter observer proposed in the work [24]. The algorithm formulated in
Lemma 13.1 assumes that only the output vector θ , whose dimension is less than
the dimension of the state vector z, is available for measurement. Also, a use of the
LSPE method in the proposed algorithm allows minimizing the effect of measure-
ment noise to the matrix Ã estimation.

Remark 13.4. Once the matrix Ã estimated, it is straightforward to identify its char-
acteristic polynomial

Pk(λ ) = λ k + pk−1λ k−1 + · · ·+ p1λ + p0, (13.33)
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which coincides with the one for A in equation (13.15) due to the similarity of Ã and
A. Eigenvalues of both matrices A and Ã are considered to be located in the left half
of the complex plane or on the imaginary axis (non-repeated).

The remainder of the ESSC method development is computing a bounded particular
solution of the unstable differential equation (13.14), is presented in the following
Theorem.

Theorem 13.1 (Extended Method of Stable System Center). Given the unstable
differential equation (13.14), driven by a causal signal θ (·), which is available for
measurement, and the following set of conditions:

i. the matrix Q in (13.14) is nonsingular;
ii. the internal dynamics forcing term θ (·) can be piece-wise modeled as the out-

put of a dynamical process given by the unknown LTI system of differential
equations (13.15) of known order k

then, the estimate η̂c ∈R
p for the internal state command ηc ∈R

p can be generated
by a matrix differential equation:

η̂(k)
c +Ck−1 η̂

(k−1)
c + . . .+C1

˙̂ηc +C0 η̂c =−
(

Pk−1 θ (k−1) + . . .+ P1 θ̇ + P0θ
)

(13.34)
where the numbers C0,C1, . . . ,Ck−1 are chosen to provide desired eigenvalue place-
ment of convergence η̂c → ηc, and the matrices Pk−1, . . . ,P1,P0 ∈ R

p×p are given
by:

Pk−1 =
(

I+Ck−1 Q−1 + · · ·+C0 Q−k
)
·
(

I+ pk−1 Q−1 + . . .+ p0 Q−k
)−1− I

Pk−2 = Ck−2 Q−1 + · · ·+C0 Q−(k−1)− (Pk−1 + I) ·
(

pk−2 Q−1 + . . .+ p0 Q−(k−1)
)

...

P1 = C1 Q−1 +C0 Q−2− (Pk−1 + I) · (p1 Q−1 + p0 Q−2)

P0 = C0 Q−1− (Pk−1 + I) p0 Q−1

(13.35)
where the coefficients p0, p1, . . . , pk−1 of the characteristic polynomial (13.33) are
reconstructed based on Lemma 13.1.

Proof. Construct an auxiliary system

˙̂ηc = Q η̂c +θ (·)+ g(t) (13.36)

where η̂c ∈ R
p; Q ∈ R

p×p is non-Hurwitz; θ (·) ∈ R
p is a causal forcing term de-

scribed by the unknown LTI system of differential equations (13.15). Assume con-
ditions i. and ii. of Lemma 13.1 are satisfied and the coefficients p0, p1, . . . , pk−1 of
the characteristic polynomial (13.33) of system (13.15) can be computed online.
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The vector g(t) ∈ R
p is constrained by

η̂(k)
c + pk−1 η̂

(k−1)
c + · · ·+ p1

˙̂ηc + p0 η̂c = Fk−1 g(t)(k−1) + · · ·+ F1 ġ(t)+ F0 g(t),
(13.37)

where the numbers p0, p1, . . . , pk−1 are the coefficients of the characteristic polyno-
mial (13.33), and the matrices Fk−1, . . . ,F1,F0 ∈ R

p×p are to be selected.
It is possible to uncouple (13.36) and (13.37) with respect to g(t) as

(I−Fk−1)g(t)(k) +(pk−1 I+QFk−1 −Fk−2)g(t)(k−1) + · · ·+(p1 I+QF1 −F0) ġ(t)+(p0 I+QF0)g(t) =

−
(
θ (k) + pk−1 θ (k−1) + · · ·+ p1 θ̇ + p0 θ

)

(13.38)

and

(I−Fk−1) η̂
(k)
c +(pk−1 I+Fk−1 Q−Fk−2) η̂

(k−1)
c + · · ·+(p1 I+F1 Q−F0) ˙̂ηc +(p0 I+F0 Q) η̂c =

−
(

Fk−1 θ (k−1) + · · ·+F1 θ̇ +F0 θ
)
.

(13.39)

Since the term θ can be piece-wise modeled by an unknown linear exosystem
(13.15) of known order k with characteristic polynomial (13.33), and the polyno-
mial coefficients can be identified online, then

θ (k) + pk−1θ (k−1) + · · ·+ p1 θ̇ + p0θ ≡ 0

almost everywhere. The matrices F0,F1, . . . ,Fk−1 are selected to ensure g→0
asymptotically by enforcing the following equality:

g(t)(k) + (I−Fk−1)−1(pk−1 I+QFk−1−Fk−2)g(t)(k−1) + · · ·+(I−Fk−1)−1(p1 I+F1 Q−F0) ġ(t)+

(I−Fk−1)−1(p0 I+F0 Q)g(t) = g(t)k +Ck−1 g(t)(k−1) + · · ·+C1 ġ(t)+C0 g(t)
(13.40)

where the coefficients C0,C1, . . . ,Ck−1 are selected to provide given eigenvalue
placement of the g(t)→0 convergence.

The matrices Fk−1, . . . ,F1,F0 are calculated by equating similar terms in the left
and right hand sides of (13.40). Specifically

F0 =[I−Fk−1]
(
C0 Q−1)− (

p0 Q−1)

F1 =[I−Fk−1]
(
C1 Q−1 +C0 Q−2)− (

p1 Q−1 + p0 Q−2)

...

Fk−1 =[I−Fk−1]
(

Ck−1 Q−1 + · · ·+C0 Q−(k−1)
)
−

(
pk−1 Q−1 + · · ·+ p0 Q−(k−1)

)

(13.41)
from where
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Fk−1 = I−
(

I+ pk−1 Q−1 + · · ·+ p0 Q−k
)
·
(

I+Ck−1 Q−1 + . . .+C0 Q−k
)−1

(13.42)
Substituting (13.41) and (13.42) into (13.39) gives (13.34) and (13.35). Since
g(t)→0 asymptotically with a given convergence rate, then

˙̂ηc = Q η̂c +θ (·)+ g(t) ∴ η̇c = Qηc +θ (·) (13.43)

and η̂c → ηc as time increases and the theorem is proven. ��
Remark 13.5. The ESSC method consists of two successive procedures:

1. the identification of the coefficients p0, p1, . . . , pk−1 of the characteristic poly-
nomial (13.33);

2. the use of the SSC method to design the linear filter (13.34) that generates η̂c(t)
on the basis of θ (t) being available in current time.

13.4.2 Sliding Variable and Sliding Mode Control

The following tracking error dynamics are identified:

ėξ1
= ξ̇c1 − ξ̇1 = A11 eξ1

+A12 eξ2
+

(
ξ̇c1 −A11 ξc1 +A12 ξc2

)

ėξ2
= ξ̇c2 − ξ̇2 = D11 eξ1

+D12 eξ2
+D2 eη −φ0(ξ1,ξ2,η)− f(t)−u +

(
ξ̇2c −D2ηc −D11 ξc1 −D12 ξc2

)

ėη = η̇c − η̇ = Qeη +G1 eξ1
+G2 eξ2

+(η̇c −Qηc −G1 ξc1 −G2 ξc2 )
(13.44)

It is worth noting that ξ̇c1 −A11 ξc1 +A12 ξc2 ≡ 0 and η̇c−Qηc−G1 ξc1 −G2 ξc2 →
0 as time increases. Therefore, the asymptotic dynamics for the system (13.44) can
be presented as

ėξ1
= A11 eξ1

+A12 eξ2

ėξ2
= D11 eξ1

+D12 eξ2
+D2 eη −φ0(ξ1,ξ2,η)− f(t)−u+

(
ξ̇2c −D2ηc −D11 ξc1 −D12 ξc2

)

ėη = Qeη +G1 eξ1
+G2 eξ2

(13.45)

Introduce a vector sliding variable

σ � Seξ1
+ eξ2

+ Teη , (13.46)

where S ∈ R
m×(r−m) and T ∈ R

m×p are design matrices (see Theorem 13.2 for de-
tails). The internal variable η is assumed to be available at this moment (it is esti-
mated via the asymptotic observer that is presented in Section 13.5).

The sliding variable dynamics are identified as follows:

σ̇ =Ψ0− f(t)−u (13.47)
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where

Ψ0 � (SA11 + D11 + TG1) eξ1
+(SA12 + D12 + TG2) eξ2

+(D2 + TQ) eη−

φ0(ξ1,ξ2,η)+
(
ξ̇2c −D2ηc −D11 ξc1 −D12 ξc2

)

(13.48)
is the known part of the σ -dynamics that can be compensated algebraically in the
control law. The following sliding mode control law [22, 7]

u = u1 + u2

u1 =Ψ0, u2 = ρ
σ
‖σ‖ , ‖f(t)‖< ρ

(13.49)

drives σ → 0 in finite time.

13.4.3 The Nonminimum Phase System Output Tracking Error
Dynamics in the Sliding Mode

The dynamics of system (13.6),(13.7) in the sliding mode (σ = 0) are given by the
following Theorem

Theorem 13.2. Given the system described by (13.6),(13.7), and the control de-
signed according to (13.49), then the tracking errors eξ and eη will approach zero
as time increases, in accordance with the linear differential equation

⎡
⎣ėξ1

ėη

⎤
⎦ =

⎡
⎣A11−A12 S −A12 T

G1−G2 S Q−G2 T

⎤
⎦
⎡
⎣eξ1

eη

⎤
⎦

eξ2
=−Teη −Seξ1

(13.50)

where eξ =
[
eT
ξ1
,eT

ξ2

]T
and the design matrices S and T, introduced in (13.46),

are chosen to provide a desirable convergence rate (eigenvalues placement) to the
compensated error dynamics (13.50).

Proof. The sliding mode has been established by the control law in (13.49) in a
finite time

σ � Seξ1
+ eξ2

+ Teη = 0 ∴ eξ2
=−Seξ1

−Teη (13.51)

Substitution of eξ2
into the first and third equations of system (13.45) and replace-

ment of the second equation in (13.45) by (13.51) yields equation (13.50). Next,
the design matrices S and T, introduced in (13.46), are to be selected to provide
given eigenvalues placement of the system matrix of the compensated error dynam-
ics (13.50)
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Ā =

⎡
⎣A11−A12 S −A12 T

G1−G2 S Q−G2 T

⎤
⎦ (13.52)

and the theorem is proven. ��

13.5 Observer for the Unstable Internal Dynamics

The control law (13.46), (13.49) has been designed under the temporary assumption
of known internal dynamics η , which are not available according to the problem
formulation. The design of a feedback-oriented observer for the nonminimum phase
system (13.6),(13.7) is studied in this section.

The proposed implementation employs basic ideas of Luenberger observers
along with the extended method of stable system center (see Section 13.4.1). The
complete solution allows asymptotic identification of the unstable internal state
η and the unknown bounded input f(t) based on the measurement of the output
states ξ .

First, a traditional Luenberger observer for system (13.6),(13.7) is designed. The
estimation errors do not converge to zero due to disturbance f(t). The computable,
but non-vanishing output state estimation errors êξ1

= ξ1 − ξ̂1 and êξ2
= ξ2 − ξ̂2

drive the non-computable internal state estimation error êη = η − η̂ that has to be
estimated in order to recover the internal state η .

Second, the ESSC method is employed to reconstruct the internal state estimation
error êη , which is used for recovering the internal state η as êη + η̂.

13.5.1 Luenberger Observer Design

Consider the dynamics of the Luenberger observer

˙̂ξ1 = A11 ξ̂1 + A12 ξ̂2 + L11 êξ1
+ L12 êξ2

˙̂ξ2 = D11 ξ̂1 + D12 ξ̂2 + D2 η̂ +φ0(ξ1,ξ2, η̂)+ u+ L21 êξ1
+ L22 êξ2

˙̂η = Q η̂ + G1 ξ̂1 + G2 ξ̂2 + L31 êξ1
+ L32 êξ2

(13.53)

where Li, j are the observer design matrices of appropriate dimension.
Consider the error dynamics of the Luenberger observer (13.53):

⎡
⎣

˙̂eξ1
˙̂eξ2
˙̂eη

⎤
⎦ =

⎡
⎣

A11−L11 A12 −L12 0
D11−L21 D12 −L22 D2
G1 −L31 G2 −L32 Q

⎤
⎦
⎡
⎣

êξ1

êξ2

êη

⎤
⎦+

⎡
⎢⎣

0

f(t)+
[
φ0(ξ1,ξ2,η)−φ0(ξ̂1, ξ̂2, η̂)

]

0

⎤
⎥⎦

(13.54)

The design matrices Li, j are to be selected to provide a desirable rate of asymptotic
convergence for the homogenous component of the observation errors.
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13.5.2 Reconstruction of the Internal State

Only the homogenous component of estimation errors êξ1
, êξ2

, and êη converge to
the origin from proper selection of the observer matrices Li, j . However, the un-
known term f(t) directly excites the I/O dynamics (13.6) and makes the estimation
errors obey some forced trajectory.

The last equation in (13.54) can be rewritten as

˙̂eη = Qêη + θ̂(·) (13.55)

where θ̂ (·) = (G1−L31) êξ1
+(G2−L32) êξ2

which falls into the format of equation
(13.14). Therefore, the ESSC method (see Section 13.4.1) can be used to estimate
a bounded particular solution of the unstable differential equation (13.55). The esti-
mated solution ēη asymptotically converges to the internal state estimation error êη
as time increases, i.e.

lim
t→∞

‖ēη(t)− êη(t)‖ = 0, (13.56)

with a given convergence rate.
Finally, due to the equality η = êη + η̂ , a true estimate η̄ of the internal state η

can be derived as
η̄ = ēη + η̂, lim

t→∞
‖η̄(t)−η(t)‖= 0, (13.57)

with t being the time variable.

13.5.3 Reconstruction of the External Disturbance

Disturbance reconstruction is considered in many works, see for instance [23, 8].
In this paper the external disturbance f(t) is asymptotically reconstructed using the
second equation in (13.54)

f̂(t) = ˙̂eξ2
− (D11 −L21) êξ1

− (D12−L22) êξ2
−D2 ēη −

[
φ0(ξ1,ξ2,η)−φ0(ξ̂1, ξ̂2, η̂)

]

(13.58)

where ˙̂eξ2
is exactly reconstructed in finite time by differentiating êξ2

using the
HOSM differentiator (13.4), with entry-wise substitution of êξ2

instead of y. The

last term in (13.58) converges to zero asymptotically since η̂ → η , ξ̂1 → ξ1 and
ξ̂2 → ξ2 as time increases.

Note that lim
t→∞

‖f̂(t)− f(t)‖ = 0, since the observation error êη can only be esti-

mated asymptotically.

13.6 Case Study 1: Output Voltage Tracking in Nonminimum
Phase DC/DC Electric Power Converter

Switched power DC/DC converters are used in a big variety of real life applica-
tions [22, 7, 20], including generation of a set of DC voltages from one DC power
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supply [17, 25]. Not only a constant DC voltage, but also given in real time com-
manded voltage profile of the preserved polarity, can be generated using mentioned
power converters [17, 25, 19]. In the case of boost DC/DC converter, the nonmini-
mum phase nature of the problem requires special attention: direct regulating of the
output voltage results in unstable growing of the phase current and finally causes
damage of the converter.

The proposed solution is based on the ESSC method and HOSM control/
observation algorithms [12]. Not only it maintains boundedness of the unstable in-
ternal state while tracking desired voltage profile, but also estimates uncertainty in
the internal impedance of the voltage source and load resistance.

13.6.1 Model of the Boost DC/DC Converter

A boost DC/DC electric power converter (Fig. 13.1) can be modeled according to
the following system of nonlinear differential equations:

⎧
⎪⎨
⎪⎩

L
d i
dτ

=−i r + E −V0 u

C
d V0

dτ
=− 1

R
V0 + iu

(13.59)

where u ∈ [0,1] is the control input; i is the inductor current (available for mea-
surement); V0 is the output voltage (available for measurement); L is a known input
inductance; r is an impedance of the DC voltage source; C is a known output capac-
itance; R is an equivalent load resistance; τ is real time.

Fig. 13.1 Boost DC/DC converter circuit

Model (13.59) is presented in natural coordinates, where the input current and
the output voltage are the model states. This particular presentation of the plant
model does not make its nonminimum phase nature to show up. More convenient
presentation of the converter dynamics, from the control law design standpoint, is to
be used. Introduce a normalization of the model parameters along with the new state
vector, which allows writing the model (13.59) in the normal canonical form [11]:
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d y
d t

= ẏ =− 2
γR

y +
√

y(η− y)+ v
√

y(η− y) (13.60a)

dη
d t

= η̇ =−2γr (η− y)+ 2
√
η− y− 2

γR
y (13.60b)

where

y =
1

E2 V 2
0 is the output state;

η =
1

E2 V 2
0 +

L
C E2 i2 is the internal state;

v ∈ [−1,1] is the “new” control, defined as v = 2u−1;

γr = r
√

C/L is the source quality factor;

γR = R
√

C/L is the load factor;

t =
τ√
LC

is the “new” (scaled) model time.

System (13.60) is presented in a form of input/output dynamics (13.60a), and inter-
nal (forced zero) dynamics (13.60b). Due to instability of the latter, the system is of
nonminimum phase.

The internal dynamics (13.60b) appear to be presented as highly nonlinear dif-
ferential equation which does not allow to apply the proposed methodology (ESSC
method). The linearization of the latter in a small vicinity of some operating point
{y0,η0}T is proposed to overcome such an issue. The idea is to present the nonlinear
dynamics (13.60b) in the linearized form

η̇ = Qη + K y + S, (13.61)

where piece-wise constant coefficients Q > 0, K, and S are functions of γr, γR, y0,
η0 and are assumed to be known.

Consider a small vicinity of the operating point, where the linearized form
(13.61) is valid (fairly presents nonlinear internal dynamics). The pair (y0,η0) is
supposed to be a solution of the right-hand-side of (13.60b)

η0 = y0 +

(
1

2γr
−

√
1

4γ2
r
− y0

γr γR

)2

(13.62)

which is real, only if the solvability condition holds

1
4γ2

r
− y0

γr γR
≥0 ∴ y0 ≤ R

4r
(13.63)

The coefficients of the linearized internal dynamics, given by (13.61), can now be
evaluated as follows

Q =−2γr +
1√

η0 − y0
> 0, S =

√
η0− y0, K = 2γr− 2

γR
− 1√

η0− y0
. (13.64)
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Remark 13.6. An uncertainty of the generally unknown parameters γr and γR may
become a reason of significant reduction of the linearization quality since they di-
rectly effect coefficients Q and K. This issue can be addressed by employing a slid-
ing mode parameter observer (SMPO), presented in Section 13.6.5, which allows
asymptotic reconstruction of γr and γR.

13.6.2 The Problem Formulation

The problem is in designing of a control law v(t), which will provide causal output
tracking of a causal commanded (reference) output profile yc(t):

lim
t→∞

‖y(t)− yc(t)‖ = 0 (13.65)

in the presence of bounded uncertainties of converter parameters γr and γR, whose
nominal values γr0 and γR0 are assumed to be known.

Remark 13.7. Output reference profile yc(t) is assumed to be generated by unknown
linear exogenous system of given order. Its characteristic polynomial is identified
online and then is used in the control law design.

13.6.3 Sliding Mode Controller Design

The originally introduced problem of direct output voltage tracking is reduced to the
conventional state tracking. In other words, given reference profile yc is used twice:
as a desirable trajectory for the output state y, and as an input of the ESSC filter
which generates a bounded reference profile ηc for the unstable internal state η (see
Section 13.6.4 for details on ESSC filter design).

Assume that profile ηc, satisfying the linear differential equation (13.61), is
known. A sliding mode control law, forcing the asymptotic state tracking

lim
t→∞

‖y(t)− yc(t)‖ = 0, lim
t→∞

‖η(t)−ηc(t)‖ = 0 (13.66)

can now be designed. First of all, the two state tracking errors are introduced

ey = yc− y, eη = ηc −η , (13.67)

and their dynamics are identified along the system trajectory

ėy = ẏc +
2
γR

y−
√

y(η− y)− v
√

y(η− y), ėη = Qeη + K ey. (13.68)

Introduce a sliding variable σ = ey +T eη , where the design constant T ∈R is to be
selected to provide a desirable rate of compensated error stabilization in the sliding
mode.
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The σ -dynamics are identified as

σ̇ =ψ−bv, ψ = ẏc+
2
γR

y−
√

y(η− y)+T Qeη +T K ey, b =
√

y(η− y).

(13.69)
The traditional sliding mode control law [22, 7]

v = sign(σ) (13.70)

stabilizes σ at the origin in a finite time. In the sliding mode (σ = 0), the following
dynamics of a reduced order describes the motion of the system

ėη = Qeη + K ey, ey =−T eη . (13.71)

The design constant T can now be selected to provide a desirable eigenvalue place-
ment of (Q−K T ), which is responsible for the compensated error stabilization rate.

Remark 13.8. Finite time stabilization of the sliding variable σ guarantees, that the
tracking errors (especially eη whose dynamics are purely unstable due to Q > 0)
will not diverge tremendously during the reaching phase. Instead, they will take
some bounded values — starting point for asymptotic convergence to the origin
with the selected eigenvalue (Q−K T ).

13.6.4 Generation of a Bounded Profile ηc

It was assumed for the purpose of the controller design, that bounded profile ηc

satisfies the unstable differential equation (13.61), therefore, the generation process
is equivalent to the finding of a bounded particular solution of

η̇c = Qηc + K yc + S, (13.72)

The instability of (13.72) does not allow direct numerical integration. Instead,
the extended method of stable system center (ESSC) is to be employed to esti-
mate/generate ηc. The method is covered in details in Section 13.4.1.

13.6.5 Sliding Mode Parameter Observer

The sliding mode parameter obserever is used to estimate values of uncertain param-
eters γr and γR. Such values are then used for evaluation of the linearized internal
dynamics’ coefficients Q and K as (13.64) in (13.61). The “hat” notation is intro-
duced here to differentiate the estimates and the real (existing) values, e.g. γ̂r stands
for the estimate of γr. That “hat”-noted estimations are to be used in (13.64) and
thereafter instead of γr and γR respectively, making all following derivations depen-
dant on the output of SMPO.
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Consider the original nonlinear dynamics of the converter given in (13.60), where
uncertain parameters γr and γR are assumed to be piece-wise constants with known
nominal values γr0 and γR0 respectively.

Introduce a sliding mode observer dynamics:

{
˙̂y =− 2

γR0
ŷ +

√
y(η− y)+ v

√
y(η− y)+ μ1

˙̂η =−2γr0 (η̂− ŷ)+ 2
√
η− y− 2

γR0
ŷ + μ2

(13.73)

where ŷ, η̂ are the observer states, and μ = {μ1,μ2}T is a vector injection term to
be designed. Introduce an observation error:

ê = {êy, êη}T , êy = y− ŷ, êη = η− η̂ (13.74)

which dynamics are identified as follows

˙̂e =
[

ŷ 0
ŷ η̂− ŷ

][
2/γR0

2γr0

]
−

[
y 0
y η− y

][
2/γR

2γr

]
− μ (13.75)

The injection term μ is proposed to be designed according to unit vector control
(UVC) approach [22, 7]:

μ = ρ
ê
‖ê‖ (13.76)

where design constant ρ > 0 should be selected big enough to provide a finite time
stabilization of the observation error e.

In the sliding mode (e = 0), which is established by injection (13.76) in finite
time, the following equality holds:

[
ŷ 0
ŷ η̂− ŷ

][
2/γR0 −2/γR

2γr0 −2γr

]
= μeq (13.77)

where μeq is the equivalent injection that can be asymptotically reconstructed by
entry-wise low-pass filtering (LPF) of the discontinuous vector term μ :

μ̂eq j = LPF(μ j), j = 1,2 (13.78)

Finally, estimates γ̂r and γ̂R can be reconstructed from the solution of linear system
(13.77):

γ̂R =
(

1
γR0

− z1

2

)−1

, γ̂r = γr0 −
z2

2
,

[
z1

z2

]
=

[
ŷ 0
ŷ η̂− ŷ

]−1

μ̂eq. (13.79)

13.6.6 Numerical Simulations

Boost converter model in the normal canonical form (13.60) has been used for sim-
ulation purposes. Reference profile yc is assumed to be constructed as sinusoidal
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signal of arbitrary piece-wise magnitude and frequency, shifted by arbitrary positive
piece-wise constant DC level. Such level is estimated by feeding signal yc through a
low-pass filter, and is used to calculate the operating point component y0. The other
component η0 is calculated according to (13.62).

A 3rd order linear exogenous system can be used to describe the dynamics of yc

profile, which yields the same 3rd order of the ESSC filter.
For simulation purposes, output reference profile yc and uncertain parameters γr

and γR are defined as:

yc(t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

5+0.5 sin(3t), t≤20

10, 20< t≤60

10+ sin(1.5t), 60< t≤75

15+1.5 sin(5t), t > 75

, γR =

{
2.53, t≤40

3.79, t > 40
, γr =

{
3.79×10−3, t≤40

2.53×10−3, t > 40

(13.80)

while the nominal values are known as γR0 = 3.16 and γr0 = 3.16×10−3 respectively.
Simulation plots are shown in Figures 13.2–13.4.

Fig. 13.2 Tracking performance of the output state states

The first two plots illustrate the output (Figure 13.2) and internal (Figure 13.3)
state tracking performance. There are number of brakes during the tracking process,
caused by abrupt change of either circuit parameters or tracking profile dynamics.
Each break is detected as a destruction of the sliding mode, and is followed by the
reconstruction phase, where all major coefficients are recalculated and are used for
further tracking.

Sliding variable of the state tracking controller, shown in Figure 13.4, clearly il-
lustrates time intervals of “good” tracking (σ is bounded by some layer, proportional
to the simulation step size) and the ones, where tracking is broken.
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Fig. 13.3 Tracking performance of the internal state states

Fig. 13.4 Sliding variable of the state tracking controller

13.7 Case Study 2: SISO Output Tracking in Systems with
Time Delay in Control Feedback

Output or measurement delay a is common feature in many technical systems and
must be taken into account while designing control law. The causal output tracking
problem in such systems can be accomplished by reducing the output-delay sys-
tem into a nonminimum phase one [18, 13] by means of Padé approximation. The
accuracy of the approximation is proportional to the order of the introduced unsta-
ble internal dynamics. Once the system is approximated, the previously introduced
approach for output tracking in nonminimum phase systems is employed: (i) the
output tracking problem is reduced to state tracking one; (ii) the method of stable
system center (SSC) is used to generate a bounded reference profile for unstable
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internal state (introduced as a result of Padé approximation); (iii) sliding mode con-
trol is used for state tracking.

13.7.1 Preliminaries

Consider a controllable fully feedback linearizable nonlinear SISO system:

ẋ = f (x, t)+ g(x, t)u, y = h(x) (13.81)

where x(t) ∈ R
n is a state vector, y(t) ∈ R is a controlled output, and u(t) ∈ R is a

control input. The output tracking profile yc(t)∈R is given in realtime for the output
y(t) to be tracked asymptotically, i.e. y(t) → yc(t) as time increases. It is assumed
that yc(t) is generated by a linear exogenous system with a known characteristic
polynomial. It is important to note that lack of knowledge about such an exosys-
tem turns out the output tracking problem to be a causal one. The characteristic
polynomial of power k, presenting dynamics of yc is given as

Pk(λ ) = λ k + pk−1λ k−1 + · · ·+ p1λ + p0 (13.82)

Remark 13.9. The causality of the problem can be further improved by using Ex-
tended Method of Stable System Center which relaxes requirements in such a way
that only order k of the characteristic polynomial needs to be known while coeffi-
cients p j ( j = 0,k−1) of the polynomial can be reconstructed by means of identifi-
cation algorithm presented in Section 13.4.1.

13.7.1.1 Reduction of the Relative Degree

Assuming system (13.81) has relative degree n, so it can be represented [11] as

y(n) = φ(ξ , t)+ b(ξ , t)u (13.83)

where ξ = [y, ẏ, . . . ,y(n−1)] ∈ R
n and φ(·) and b(·) 	= 0 are smooth and bounded

functions of their parameters.
Following the approach developed by Gopalswamy and Hedrick in [9], the dy-

namics of the system (13.83) can be rewritten in a form of arbitrary relative degree
r < n via redefinition of the output. Such a transformation appears to be well pre-
sented in many works [18, 13] and is not covered in details here.

A particular case of r = 2 is studied in this work. The internal dynamics are stable
and can be disregarded from consideration with respect to output tracking problem.
The input/output dynamics are given as

{
q̇1 = q2

q̇2 = φ̂ (·)+ b(·)u
(13.84)
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where q1(t) = y(n−2)(t)+an−3 y(n−3) + · · ·+a1 ẏ+a0 y is the new (redefined) output
and φ̂ (·) is a smooth and bounded function of its parameters. System function φ̂(·)
can be derived from φ(·) honoring to the relative degree reduction procedure. More
details can be found in [18, 13].

The output reference profile yc(t) also needs to be redefined

q1c(t) = y(n−2)
c (t)+ an−3 y(n−3)

c + · · ·+ a1 ẏc + a0 yc (13.85)

Remark 13.10. The dynamics of the reference profile is immutable to output redefi-
nition and the same characteristic polynomial (13.82) is about to be used.

13.7.1.2 Time Delayed Output

The root of the problem is caused by a time delay in the measurements of the con-
trolled output. Opposite to so-called in-system delay which appears in the structural
definition of the system, i.e. in function φ̂(·) and can be compensated by means of
robust control, the output delay comes out to be a really challenging problem: con-
trol function calculated from the most recent but delayed measurement gets outdated
at the time of being applied and does not properly affect the system’s trajectory.

One of the ways to deal with the problem is to use Padé approximation [4] sys-
tem’s to turn the output-delayed system out into a nonminimum phase one. It intro-
duces extra internal dynamics, which are unstable, but vanishes out the delay effect.
The accuracy of the approximation is bound to its order that comes out to be the
order of introduced internal dynamics.

The delayed output can be described as

ŷ(t) = q1(t − τ) (13.86)

where τ is small and known.

13.7.2 Problem Formulation

Given a minimum phase SISO system of relative degree two, presented by its in-
put/output dynamics (13.84) and the delayed output measurements (13.86). The
problem is to provide asymptotic output tracking

lim
t→∞

|ŷ(t)−q1c(t)| = 0 (13.87)

where reference profile’s dynamics are described by a known characteristic polyno-
mial (13.82).

13.7.3 Padé Approximation

Applying Laplace transformation to (13.86) yields ŷ(s)/q1(s) = e−sτ where time-
delay transfer function e−sτ can be presented by means of first-, second- or third
order Padé approximation [4] correspondingly as
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e−sτ ≈ 2− sτ
2 + sτ

, e−sτ ≈ 12−6sτ+ s2 τ2

12 + 6sτ+ s2 τ2 , e−sτ ≈ 120−60sτ+ 12s2 τ2 − s3 τ3

120 + 60sτ+ 12s2 τ2 + s3 τ3 .

(13.88)
Once the approximation applied, the delayed output ŷ(t) turns out into approximated
one ỹ(t) which is to be used in place of ŷ(t) thereafter.

In general approximating dynamics can be written in a normal form [11] as
⎧
⎪⎨
⎪⎩

η̇ = Q1η + Q2 ỹ
˙̃y = η̇1 +(−1)m q2

q̇2 = φ̂(·)+ b(·)u

(13.89)

where m is the order of Padé approximation, η = [η1,η2, . . .]T ∈ R
m is the vector

of internal states, and η1 = ỹ− (−1)m q1. Matrices Q1 ∈ R
m×m and Q2 ∈ R

m×1 are
respectively defined with respect to the order of approximation. For the first order:

Q1 =
2
τ
, Q2 =−4

τ
(13.90)

for the second order

Q1 =

[
0 1

− 12
τ2

6
τ

]
, Q2 =−12

τ

[
1
6
τ

]
(13.91)

and for the third order

Q1 =

⎡
⎢⎣

0 1 0

0 0 1
120
τ3 − 60

τ2
12
τ

⎤
⎥⎦ , Q2 =−1

τ

⎡
⎢⎣

24
288
τ

2256
τ2

⎤
⎥⎦ (13.92)

Since matrices Q1 in (13.90)–(13.92) are non-Hurwitz, equation (13.89) represents
a nonminimum phase system without time delay.

The original output-delay-system tracking problem has been reduced to a
nonminimum-phase-system tracking problem by means of Padé approximation.
Such a control problem is addressed in the following subsection.

13.7.4 Design of a Sliding Mode Controller for Causal Output
Tracking

The method of Stable System Center (SSC) [16] is used in this section to address the
output tracking problem in a nonminimum phase system. First of all the problem is
to be reduced to a state-tracking by means of introducing a bounded reference profile
ηc for the unstable internal state η . For control purposes (will be seen in the next
subsection) such a reference profile should satisfy differential equation presenting
unstable internal dynamics:
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η̇c = Q1ηc + Q2 q1c (13.93)

where q1c is an output reference profile given in (13.85). The dimension of vector
ηc fits the one of the internal state η and is equal to the order of Padé approximation
m.

13.7.4.1 Method of Stable System Center

The method of Stable System Center allows finding a bounded particular solution
of the unstable differential equation (13.93) on the basis of known dynamics of the
reference profile q1c(t).

Assume that characteristic polynomial (13.82) is given as

P3(λ ) = λ 3 + 0 ·λ 2 +ω2
n λ + 0 = λ

(
λ 2 +ω2

n

)

which in general describes a harmonical signal with a DC bias:

q1c = A + B sinωn t +C cosωn t (13.94)

with A, B, C, and ωn being piecewise constants.
According to the method of stable system center, a bounded particular solution

ηc can be estimated as η̂c which is generated by a matrix differential equation:

η̂(3)
c + c2 η̂

(2)
c + c1 η̂

(1)
c + c0 η̂c =−

(
P2 θ

(2)
c + P1θ

(1)
c + P0θc

)
(13.95)

where θc = Q2 q1c and matrices P0, P1, and P2 are computed as follows:

⎧
⎪⎪⎨
⎪⎪⎩

P0 = c0 Q−1
1

P1 =
[
(c1 −ω2

n )Q−1
1 +(c0− c2ω2

n )Q−2
1

](
I +ω2

n Q−2
1

)−1

P2 =
[
c2 Q−1

1 +(c1−ω2
n )Q−2

1 + c0 Q−3
1

](
I +ω2

n Q−2
1

)−1

(13.96)

Coefficients c0, c1, and c2 are chosen to provide desired eigenvalues of the homo-
geneous differential equation

η̂(3)
c + c2 η̂

(2)
c + c1 η̂

(1)
c + c0 η̂c = 0

describing asymptotic convergence of η̂c to ηc.

13.7.4.2 Second Order Sliding Mode Control

Once the reference profile for the unstable internal state η is computed (estimated
as η̂c by means of SSC method), a state tracking problem can be addressed. It is
proposed to use the second order sliding mode control algorithm [12] as the system
under consideration has relative degree equal to two.
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The sliding variable is defined as

σ = eq +C eη (13.97)

where eq = q1c − ỹ and eη = η̂c−η . Its 2nd-order time-derivative is identified along
the system’s trajectory as

σ̈ = q̈1c − ¨̃y+C
( ¨̂ηc − η̈

)
= q̈1c − η̈1 − (−1) j φ̂ +C

( ¨̂ηc − η̈
)

︸ ︷︷ ︸
Ψ

−(−1) jbu =Ψ − (−1) jbu

(13.98)

and the second order sliding mode control [12] can be designed as

u = (−1)m b−1ρsign
(
σ̇ +λ |σ |1/2 sign(σ)

)
(13.99)

where ρ is a sufficiently large positive gain and λ is a positive constant. Existence
of the sliding mode as well as detailed guideline on selection of ρ and λ are given
in [12].

Assume existence of the second order sliding mode (σ = σ̇ = 0) which will take
place in a finite time upon proper selection of controller parameters ρ and λ . Ac-
counting to (13.93) and description of the internal dynamics in (13.89) the following
DAE system is used to describe the motion of the system in sliding mode:

{
ėη = ˙̂ηc − η̇ = Q1 eη + Q2 ey

ey =−C eη
∴ ėη = (Q1 −Q2C)eη (13.100)

so matrix C can be selected to provide desired asymptotic convergence of eη (t)
which results in convergence of ey(t) at the same time.

13.7.5 Numerical Example

The proposed methodology can be illustrated on the example of second order system
with relative degree two: ⎧

⎪⎨
⎪⎩

ẋ1 = x2

ẋ2 =−x2 + u

y = x1

(13.101)

which naturally fits form (13.84) so no output redefinition is needed.
The controlled output y(t) is assumed to be accessible with a time delay τ such

that ŷ = y(t− τ). Applying the first order Padé approximation to the output-delayed
system (13.101) yields the following dynamics:
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⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

η̇1 =
2
τ
η1− 4

τ
ỹ

˙̃y = η̇1− z2

ż1 = z2

ż2 =−z2 + u

(13.102)

where ỹ is an approximation to the delayed output y, accessible with no delay; z1,
z2 are states of the input/output dynamics; and η1 is the state of unstable internal
dynamics.

The two simulations1 with different feedback signals have been conducted: the
one that uses ỹ(t) (approximation of the delayed output which can be estimated, for
example, by means of Smith Predictor [21]) and the one that uses y(t− τ) (real out-
put of the system measured with a delay). In both cases the same set of parameters
has been used: c0 = 1000, c1 = 300, c2 = 30, ωn = 2, A = 1, B = 2, C1 = −0.75,
τ = 0.2, ρ = 25, λ = 1, which yields control the following control law:

u =−25sign
(
σ̇ + |σ |1/2sign(σ)

)
(13.103)

Fig. 13.5 Output tracking via SOSM control: output approximation ỹ(t) as feedback

It is obvious from observing the simulation plots shown on Figures 13.5 and 13.6,
that the best output tracking performance can be achieved by using non-existent
approximation ỹ(t) of the system’s output (Figure 13.5) rather than via using delayed
output (Figure 13.6) as a feedback.. Identification of ỹ(t) by means of measurement
delayed output can be accomplished via using Smith Predictor [21].

1 Simulation plots are taken from [13].
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Fig. 13.6 Output tracking via SOSM control: delayed output y(t − τ) as feedback

13.8 Conclusions

The modern approach of causal output feedback tracking in a class of nonminimum
phase nonlinear systems has been studied. The main contributions of the work can
be summarized as follows: (i) The unmeasurable unstable internal states have been
recovered together with the unknown input using the proposed observer; (ii) Output
feedback stabilization of the tracking error has been accomplished using sliding
mode control; (iii) The extended method of stable system center has been used in
the internal state observer and for generation of the internal state bounded reference
profile; (iv) The efficiency of the proposed output feedback tracking methodology
for causal non-minimum phase nonlinear systems has been confirmed via two case
studies:

1. Causal output voltage tracking for nonminimum phase boost DC/DC converter;

2. Causal output tracking in systems with time-delayed control feedback.

The former case explicitly illustrates the majority of algorithms proposed in the
work while the latter introduces an approach of reducing a nonlinear system with
time-delayed output to a nonminimum phase system via Padé approximation. The
reduced system is then handled by means of method of stable system center and
higher-order sliding mode control algorithm.
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Chapter 14
Discrete-Time Sliding Mode Control Using
Output Feedback and Nonlinear Surface

Bijnan Bandyopadhyay and Fulwani Deepak

Abstract. In this chapter, a nonlinear sliding surface is discussed to improve the
transient response for general discrete-time multiple input multiple output linear
systems with matched perturbations. The nonlinear surface modulates the closed
loop damping ratio from an initial low to final high value to achieve better transient
performance. The control law is based on the discrete-time sliding mode equivalent
control and thus eliminates chattering. The control law is proposed based on two
approaches: (1) reaching law based approach which needs only disturbance bounds
and (2) disturbance observer based approach. Multirate output feedback is used to
relax the need of the entire state vector for implementation of the control law. A
possible extension of the nonlinear surface to input-delay systems is also presented.

14.1 Introduction

Beginning in the late 1970s and continuing today, the sliding mode control has re-
ceived plenty of attention due to its insensitivity to disturbances and parameter varia-
tions. The well known sliding mode control is a particular type of Variable Structure
Control System (VSCS). Recently many successful practical applications of sliding
mode control (SMC) have established the importance of sliding mode theory which
has mainly been developed in the last three decades. This fact is also witnessed by
many special issues of learned journals focusing on sliding mode control [8, 10].
The research in this field was initiated by Emel’yanov and his colleagues [19,20] in
the former USSR, and the design paradigm now forms a mature and an established
approach for robust control and estimation. The idea of sliding mode control (SMC)
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was not known to the control community at large until a survey article published by
Utkin [40] and a book by Itkis [27].

SMC design can be divided into two subparts viz. (1) the design of a stable sur-
face and (2) the design of a control law to force the system states onto the chosen
surface in finite time. The design of the surface should address all the constraints
and required specifications therefore it should be designed optimally to meet all
the requirements. The initial phase when the state trajectory is directed towards
a sliding surface is called reaching phase. During the reaching phase, the system
is sensitive to all types of disturbances. However, a control law can be designed
which ensures finite time reaching of sliding surface even in the presence of uncer-
tainties and disturbances. The effectiveness of SMC in the robust control of linear
uncertain systems prompted the research on sliding mode control in other types of
systems. Thus, a few researchers worked on the sliding mode control of nonlinear
systems [5,37] and time delay systems [43,44]. To relax the need for measuring the
entire state vector, an output feedback based sliding mode concept is also proposed
in [17, 18, 16] which widens the scope of sliding mode control. However, due to
the flexibility of implementation, most of the controllers are implemented through
digital signal processor or high end microcontrollers. Due to this reason study and
research on discrete sliding mode has received a considerable amount of attention
(e.g., see [7, 4, 23, 3] and [28], among many).

In SMC, the sliding surface decides closed loop dynamics, therefore it should be
designed such that it addresses all the requirements. One of the key requirements in
many applications like robotics, electric drives, process control, vehicle and motion
control is the high performance in an uncertain environment. To enhance the perfor-
mance of the system with sliding mode control algorithms, a time-varying switching
surface is proposed by many researchers in [14,6,15,9]. Majority of these solutions
are for second order and third order systems. In [15], an algorithm based on moving
switching line is presented for second order system to enhance the performance and
to eliminate the reaching phase. However, in [6] it is shown that this method does
not ensure complete insensitivity to external disturbances and model mismatches.
This happens because switching line slope changes in discrete steps and between
two consecutive steps the state trajectory is in the reaching phase, therefore the sys-
tem loses invariance during the transient phase when the switching line slope is
being changed. In [34], a strategy based on fuzzy logic is devised to change the pa-
rameters of switching surfaces of higher order systems. Some researchers proposed
nonlinear surfaces to improve the performance. In [46, 26], proximate time optimal
control is used to design the switching line for hard disc drive seek control appli-
cations. This approach is applicable to second-order systems only. In a paper [30],
the authors proposed a nonlinear sliding surface and they also noted that for higher
order system their approach becomes computationally intensive. Most of the exist-
ing solutions to improve the performance are applicable to second and third order
system, although some are very important from the practical point of view (e.g.,
see [9]). To the best of our knowledge, a few results are devoted to enhance the per-
formance of higher order systems. These observations motivate us to search for a
better technique to ensure high performance in an uncertain environment.
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To ensure high performance, system should settle quickly without any overshoot.
It is well understood that a low overshoot can be achieved at the cost of high settling
time. Low settling time is also necessary for a quick response. Thus, most of the de-
sign schemes make a tradeoff between these two transient performance indices, and
the damping ratio is chosen as a fixed number. Notable exceptions exist, of course,
in [31], the authors proposed a seminal idea of composite nonlinear feedback (CNF)
for a class of second order systems subject to actuator saturation. CNF uses a vari-
able damping ratio to achieve high performance. CNF control consists of a linear
feedback law and a nonlinear law without any switching element. The linear part
is designed for a small damping ratio to achieve a quick response. The nonlinear
feedback is used to increase the damping ratio as the output approaches the com-
manded target reference and thus overshoot is avoided. CNF applies more control
efforts when the output is closer to the commanded target reference, resulting in a
better utilization of the actuator capacity.

Subsequently, CNF controller was extended for general higher order SISO and
MIMO systems in [39, 38, 12, 25] for the state feedback and output feedback cases.
However, all these methods ensure performance only for perfectly known systems
or when disturbance is constant. In [11], an enhanced CNF controller is proposed
by adding integral action in the forward path. However, in [13], it is shown that
integral action in forward path does not give robust performance for all types of
disturbances. To solve this problem, in [13], a robust CNF controller is proposed
based on constant disturbance estimation which is observed by an observer, and the
effect of constant bias is compensated.

In general, model uncertainty and disturbances are inevitable in actual applica-
tions, which would restrict the applicability of aforementioned results in practice.
To be effective in practice, along with the change of damping ratio, the controller
should reject all kinds of disturbances. The existing CNF based algorithms have
addressed the issue of robustness partially, i.e., by considering only constant dis-
turbances. CNF algorithm also needs an inversion of plant model which may not
be possible for an uncertain system. To solve the problem of achieving high per-
formance with robustness, in this work a nonlinear sliding surfaces based algorithm
for a discrete-time uncertain system is proposed. The proposed nonlinear surface
change the closed loop damping ratio of the system as the output approaches a set-
point. Initially, the nonlinear surface keeps the damping ratio to a low value to en-
sure a quick response and as the output approaches the setpoint, the system is made
highly damped to avoid the overshoot. The nonlinear surface continuously changes
the damping ratio of system from its initial low value to the final high value. A
control law to ensure the existence of sliding mode with the nonlinear surface is
proposed. During the sliding mode, the system dynamics is governed by the slid-
ing surface parameters. Therefore, the system becomes insensitive towards matched
perturbations and thus robustness is achieved. The results reported in this chapter
are based on our work in [1].

The brief outline of this chapter is as follows. Section 14.2 contains a brief re-
view of the multirate output feedback strategy. The structure of nonlinear sliding
surface and the proof of its stability is given in Section 14.3. Section 14.4 discusses
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two approaches to design the control law, of which the first is based on a reaching
law approach and the second is based on disturbance observer. A possible extension
to input-delay system is discussed in Section 14.5. Application and simulation re-
sults are presented in Section 14.6 followed by a brief summary of the chapter in
Section 14.7.

14.2 Multirate Output Feedback

The implementation of SMC law requires the availability of the entire state vector.
However, the complete state vector is seldom available. One of the ways to over-
come this problem is to construct an observer. However, this may add additional
complexity in the system. Moreover, it is not always desirable to construct observer
for an uncertain system. Hence one has to resort to output feedback design. It is well
known that a complete pole placement can not be achieved using static output feed-
back. A concept known as multirate output feedback technique [3, 28] is of static
output feedback kind and at the same time gives any arbitrary closed loop pole con-
figuration. In what follows, we briefly review Multirate Output Feedback (MROF)
technique.

� �
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Fig. 14.1 Visualization of multirate sampling process

In MROF technique, the output is sampled at faster rate as compared to the con-
trol input. Consider the system described by the following equations
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ẋ(t) = Ax(t)+ Bu(t)+ Bd(t) (14.1a)

y(t) = C1x(t). (14.1b)

Let the above continuous system be sampled at τ period and under the assump-
tion that disturbance does not change in relatively small sampling period. Discrete
equivalent of the above continuous plant can be written as follows

x(k + 1) = Φx(k)+Γ u(k)+Γd(k) (14.2a)

y(k) = C1x(k). (14.2b)

where x(k) ∈ R
n, u(k) ∈ R

m, y(k) ∈ R
p are respectively the state, input, and con-

trolled output of the system. C1 is output matrix, Φ = eAτ , Γ =
∫ τ

0 (eAλdλ )B, and
d(k) is a matched uncertainty. The principle of MROF technique is shown in the
Figure 14.1. The following assumptions are made:

A1. Disturbance remains constant during a sampling period τ .
A2. The pair (Φ , Γ ) is stabilizable.
A3. The pair (Φ , C1) is observable.

A1 is necessary because the matched perturbation is considered. It should be noted
that without the assumption A1 matched perturbation in continuous time becomes
unmatched in discrete-time. Moreover, if the sampling rate is sufficiently high, then,
it is reasonable to assume that disturbance remains constant over a sampling period
τ . Let the input u be applied with a sampling interval of τ seconds and the system
output is sampled with a faster sampling period of Δ = τ/N seconds, where N is
an integer greater than or equal to the observability index [3] of the system. Let the
triplet (ΦΔ ,ΓΔ ,C1) represents the system in (14.1) sampled at Δ rate. Using the fact
that u is unchanged in the interval τ < t < (k+1)τ , the τ system state dynamics can
be constructed from the Δ system dynamics. Further, if the past N multirate-sampled
system outputs are represented as

Yk =

⎡
⎢⎢⎣

y(kτ− τ)
y(kτ− τ+Δ)

:
y(kτ −Δ)

⎤
⎥⎥⎦ (14.3)

then τ system with multirate output samples can be represented as follows:

x(k + 1) = Φx(k)+Γ u(k)+Γd(k) (14.4)

Yk+1 = C0x(k)+ D0u(k)+ D0d(k). (14.5)

Where

C0 =

⎡
⎢⎢⎣

C1

C1ΦΔ
:

C1ΦN−1
Δ

⎤
⎥⎥⎦ ,D0 =

⎡
⎢⎢⎣

0
C1ΓΔ

:
C1ΣN−2

j=0 Φ j
ΔΓΔ

⎤
⎥⎥⎦ . (14.6)
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From (14.4) and (14.5), x(k) can be expressed using the past multirate output sam-
ples Yk and the immediate past control input u(k−1) as

x(k) = LyYk + Luu(k−1)+ Lud(k−1) (14.7)

where

Ly = Φ(CT
0 C0)−1CT

0 (14.8)

Lu = Γ −Φ(CT
0 C0)−1CT

0 D0. (14.9)

It is clear from the above explanation that by the previous samples of output, im-
mediate previous input and disturbance value, one can exactly compute the states of
system. The visualization of multirate sampling is shown in Figure 14.1.

14.3 Nonlinear Sliding Surface

This section discusses the design of sliding surface for general MIMO case with
matched perturbation. Without loss of generality, the plant described by (14.2) can
be transformed into regular form by using some orthogonal transformation matrix
Tr as

z1(k + 1) = Φ11z1(k)+Φ12z2(k) (14.10)

z2(k + 1) = Φ21z1(k)+Φ22z2(k)+Γ2u(k)+ d̃(k) (14.11)

y(k) = Cz(k). (14.12)

Where z1 ∈R
n−m, z2 ∈ R

m, C = C1(Tr)−1,

d̃(k) = TrΓ d(k) ∈R
m, Γ2 is a full rank m×m matrix, z = Trx =

[
z1

z2

]
. Define

Φreg :=
[
Φ11 Φ12

Φ21 Φ22

]
. (14.13)

Let the desired trajectory be zd :=
[

z1d

z2d

]
. For notational simplicity let us define the

following:

c1(k) := F −Ψ(y(k))ΦT
12P(Φ11−Φ12F), (14.14a)

cT :=
[

c1(k) Im
]

(14.14b)

e1(k) := z1(k)− z1d(k) (14.14c)

e2(k) := z2(k)− z2d(k), (14.14d)
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where Im is an identity matrix of m×m, Ψ (y(k)) is an m×m diagonal matrix with
non-positive entries and F is chosen such that (Φ11 −Φ12F) has stable eigenvalues
and dominant poles have a low damping ratio.

The sliding surface for the system in regular form is proposed as

s(k) := cT (k)e(k), (14.15a)

=
[

c1(k) Im
][ z1(k)− z1d(k)

z2(k)− z2d(k)

]
(14.15b)

=
[

F −Ψ(y(k))ΦT
12P(Φ11−Φ12F) Im

]×
[

e1(k)
e2(k)

]
(14.15c)

The diagonal matrixΨ (y(k)) is used to change the damping ratio of the closed-loop
system. P is an (n−m)×(n−m) positive definite matrix, obtained from the solution
of the following Lyapunov equation

P = (Φ11−Φ12F)T P(Φ11 −Φ12F)+W (14.16)

for some positive definite matrix W . Such a matrix P exists because (Φ11−Φ12F) is
a stable matrix. Furthermore, s(k) ∈R

m is a vector comprising of m sliding surfaces
defined as

s(k) =
[

s1 s2 · · · sm
]T

(14.17)

where si ∈R, i = 1,2, · · ·m.

Matrix of Nonlinear FunctionsΨ (y(k)):

The diagonal matrix of nonlinear function is used to change the system’s closed
loop damping ratio as the output(s) approaches the setpoint. It is chosen such that
its elements change from 0 to -βi according to some chosen nonlinear function. One
possible choice ofΨ(y(k)) is as follows

Ψ(y(k)) =

⎡
⎣
Ψ(y(k))1 ... 0

: . :
0 ... Ψ(y(k))m

⎤
⎦ .

where

Ψ(y(k))i =−βi
| |y(k−1)i− r(k)i|αi −|y(0)i− r(0)i|αi |

|y(0)i− r(0)i|αi
,

i = 1 · · ·m. (14.18)

In the above equation, r(k)i is a reference trajectory, βi is used as a tuning parameter
which contributes in deciding the final damping ratio and αi decides the rate (speed)
of change of damping ratio. The aforementioned choice of Ψ(y(k)) is similar in
structure as suggested in [13] with reduced dimension. To compute the function
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Ψ(y(k)) at k = 0, the output y(−1) can be approximated with y(0). It should be
noted that the choice of Ψ(y(k)) is not unique and any function with the above
mentioned property can be used. Another possible choice [31] is as follows

Ψ(y(k))i =−βie
−k̄i|y(k−1)i−r(k)i| (14.19)

where k̄i is a positive constant. The nonlinear function should ideally have zero ini-
tial value. So, initially damping ratio remains small which is contributed by F . Initial
value of function given by (14.18) is zero but needs more computation while (14.19)
has some small non-zero initial value but from the implementation viewpoint is sim-
pler. The matrixΨ (y(k)) is chosen so that it satisfies the following condition

2Ψ(y(k))+Ψ(y(k))ΦT
12PΦ12Ψ(y(k)) ≤ 0. (14.20)

The above condition essentially limits the absolute maximum value of the function
Ψ(y(k))i. This limitation occurs because in discrete-time system closed loop poles
have to be inside the unit circle unlike a continuous-time system where the closed-
loop poles can be shifted into a deep left of complex plane. During sliding mode
s(k) = 0. So from (14.15),

e2(k) =−c1(k)e1(k). (14.21)

From (14.10) and (14.21) the system equation in sliding mode becomes

e1(k + 1) = Φ11eqe1(k)+Φ12Ψ(y(k))ΦT
12PΦ11eqe1(k)+

Φ11z1d(k)+Φ12z2d(k)− z1d(k + 1) (14.22)

where Φ11eq = (Φ11 −Φ12F). For the tracking problem, the desired trajectory is
consistently generated using the system equations given in 14.10 [33,21] and due to
this there exist some control ud(k) such that

z1d(k + 1) = Φ11z1d(k)+Φ12z2d(k) (14.23)

z2d(k + 1) = Φ21z1d(k)+Φ22z2d(k)+Γ2ud(k).

Using (14.22) and (14.24), closed loop system (14.22) becomes

e1(k + 1) = Φ11eqe1(k)+Φ12Ψ(y(k))ΦT
12PΦ11eqe1(k). (14.24)

To prove the stability of the sliding surface, the stability of the above subsystem
need to be proved which is proved in the following theorem. In further discussion,
for notational simplicity, the argument k for some variables is dropped i.e f stands
for f (k).

Theorem 14.1. If (Φ11 −Φ12F) is stable and Ψ(y(k)) is defined by (14.18) or
(14.19) which satisfies (14.20) then, the subsystem in (14.24) is stable.
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Proof. Let a Lyapunov function for system (14.24) be defined as follows

V (k) = eT
1 (k)Pe1(k).

Increment of V (k) becomes

ΔV (k) = V (k + 1)−V(k)
⇒ ΔV (k) = eT

1 (k + 1)Pe1(k + 1)− eT
1 (k)Pe1(k)

= {Φ11eqe1(k)+Φ12Ψ(y(k))ΦT
12PΦ11eqe1(k)}T ×

P{Φ11eqe1(k)+Φ12Ψ(y(k))ΦT
12PΦ11eqe1(k)}− e1(k)T Pe1(k)

= eT
1 ΦT

11eqPΦ12Ψ (y(k))ΦT
12PΦ11eqe1 + eT

1ΦT
11eqPΦ11eqe1− eT

1 Pe1 +

eT
1 Φ

T
11eqPΦ12Ψ (y(k))ΦT

12PΦ11eqe1 +

eT
1 Φ

T
11eqPΦ12ΦT

12Φ12Ψ(y(k))ΦT
12PΦ11eqe1

= −eT
1 We1 + eT

1Φ
T
11eqPΦ12{2Ψ(y(k))

+Ψ(y(k))ΦT
12PΦ12Ψ(y(k))}ΦT

12PΦ11eqe1

Let eT
1 Φ

T
11eqPΦ12 = MT therefore

ΔV (k) = MT{2Ψ(y(k))+Ψ(y(k))ΦT
12PΦ12Ψ(y(k))}M− eT

1 We1.

From the condition (14.20) it follows

ΔV (k) ≤ −eT
1 We1.

So the system represented by (14.24) is stable. Hence the nonlinear surface is stable
and thus the theorem is proved. ��
It should be noted that the system in sliding mode can be stabilized by any negative
functionΨ (y(k)) which satisfies (14.20).

Remark 14.1. During sliding, the system dynamics is decided by the subsystem de-
scribed by (14.24). It can be observed that the poles of subsystem (14.24) changes
as Ψ (y(k))i changes from 0 to −βi. The main purpose of adding a nonlinear com-
ponent in the sliding surface is to add significant value to control input as the output
reaches closer to the set point. The subsystem is stable for any non-positive value of
Ψ(y(k)i where i = 1...m which satisfy (14.20). Function Ψ(y(k))i changes from 0
to −βi as output tracks the reference signal. For any intermediate value ofΨ (y(k))i

also the system (14.24) is stable. It is proved in [12] that introduction of this function
changes damping ratio of system from an initial value ζ1 to a final value ζ2 where
ζ2 > ζ1. Initially, when Ψ(y(k)i) = 0, the damping ratio is determined by F which
is designed for a low damping ratio. When output reaches closer to the reference,
the function Ψ(y(k)i) contributes (adds) significantly to the damping ratio of the
system and the steady state value ofΨ (y(k)i) becomes,Ψ(y(k))i ≈−βi. Therefore,
the subsystem (14.24) can be written as
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e1(k + 1) = (Φ11 −Φ12F −Φ12βΦT
12P(Φ11 −Φ12F))e1(k) (14.25)

where

β =

⎡
⎣
β1 ... 0
: . :
0 ... βm

⎤
⎦ .

Equation (14.25) decides the final damping ratio, therefore the parameter β and
matrix P should be so designed that the dominant poles of (14.25) have the desired
damping ratio.

One possible way to design P and β is by trial and error. Choose a diagonal
matrix W and solve (14.16) for P. Through simulation, adjust the diagonal weight
of W until a satisfactory response is obtained. This technique generally gives better
response after proper tuning. To design the matrix P, an LMI based formulation can
also be used. While formulating LMI, the condition (14.20) needs to be satisfied to
ensure stability along with the other constraints.

14.4 Control Laws

The sliding surface discussed in the previous section is nonlinear. Here the surface
parameters are changing at every instant. The control law should be chosen in such
a way that from any initial condition, the system trajectory is attracted towards the
sliding surface in finite time. To ensure the attractiveness of sliding surface, the con-
dition |si(k + 1)| < |si(k)| i = 1,2, · · · m should be satisfied. In discrete-time
system, the equivalent control [42, 41] ensures attractiveness of sliding surface and
keeps the trajectory on sliding surface at each sampling instant. However, to im-
plement the equivalent control law for an uncertain discrete-time system, the actual
value of uncertainty is needed. In practice it is difficult to obtain the exact value
of an uncertainty and this gives rise to a boundary layer around the sliding surface
s(k) = 0. The width of the boundary layer depends on how the unknown distur-
bance is estimated. In this section we present two methods to design a controller
which brings sliding motion (a boundary layer around the surface for an uncertain
system) in finite time. In the first method, a controller is designed based on the so
called reaching law approach proposed in [35] which estimates an unknown distur-
bance by its average value. The second method estimates the current disturbance by
its previous sampling instant disturbance value [45, 36]. The first method is simple
from the implementation viewpoint and the width of the boundary layer is bounded
by the spread of the disturbance. While the second method requires a disturbance
observer and the width of the boundary layer is bounded by the rate of change of
the disturbance. Furthermore, it ensures almost complete rejection of slowly vary-
ing disturbances. In what follows multi-rate output feedback control law based on
these two approaches is discussed. In the following analysis a subscript i can take
any integer value between 1 to m; recall m stands for the number of inputs.



14 Discrete-Time Sliding Mode Control 391

14.4.1 Control Law Based on Reaching Law Approach

In this subsection a control law is derived using a reaching law approach. The control
law requires only disturbance bounds. Reaching law is so constructed that it replaces
the actual unknown disturbance terms in control law by its respective average values.
From (14.15), s(k + 1) can be expressed as

s(k + 1) = cT (k + 1)Tr{(x(k + 1))− xd(k + 1)}
⇒ s(k + 1) = cT (k + 1)TrΦx(k)+ cT (k + 1)TrΓ u(k)+ cT (k + 1)TrΓ

d(k)− cT (k + 1)Trxd(k + 1)
(14.26)

Using (14.7) and (14.26), the switching function s(k + 1) can be written in terms of
output as follows

s(k + 1) = cT (k + 1)TrΦLyYk + cT (k + 1)TrΦLuu(k−1)+
cT (k + 1)TrΦLud(k−1)+ cT(k + 1)TrΓ u(k)+
cT (k + 1)TrΓ d(k)− x̃d(k + 1), (14.27)

where
x̃d(k + 1) = cT (k + 1)Trxd(k + 1). (14.28)

To reach the sliding surface in one sampling instant the reaching law becomes

s(k + 1) = 0.

If control law is obtained from the above reaching law then it contains uncertain
terms. However, in general, only bounds of uncertainty are known, therefore as a
remedy reaching law is constructed so that the actual unknown disturbance is re-
placed (estimated) by its average value. To simplify the notation let us assume with-
out loss of generality
dm(k) := cT (k + 1)TrΦLud(k−1),
dn(k) := cT (k + 1)TrΓ d(k).
It should be noted that dm(k)∈R

m and dn(k)∈R
m. Let us assume elements of dm(k)

and dn(k) defined as:

dm(k) :=
[

dm1(k) dm2(k) · · · dmm(k)
]T

dn(k) :=
[

dn1(k) dn2(k) · · · dnm(k)
]T

Let us also assume that dmLi, dmUi and dnLi, dnUi are the lower and upper bounds of
dmi(k) and dni(k) respectively where i = 1,2, · · ·m. Thus the mean and the spread of
dmi(k) and dni(k) can be computed as
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dmMi =
dmLi + dmUi

2
, dmSi =

dmUi −dmLi

2
(14.29a)

dnMi =
dnUi + dnLi

2
, dnSi =

dnUi −dnLi

2
. (14.29b)

In the above equation the subscript M is to specify the mean value and the subscript
S is used to specify the spread. Now consider a modified reaching law [35]

si(k + 1) = dmi(k)−dmMi + dni(k)−dnMi (14.30)

With the above modification of reaching law, the deviation of the state trajectory
from si(k) = 0 reduces in the presence of disturbance. Using the reaching law
(14.30) and s(k + 1) from (14.27), a control law can be derived as

u(k) = −(cT (k + 1)TrΓ )−1{cT (k + 1)TrΦLyYk +
cT (k + 1)TrΦLuu(k−1)+ dmM + dnM − x̃d(k + 1)}. (14.31)

From the reaching law (14.30), the magnitude of sliding mode band is given as

|si(k)| ≤ |dmSi|+ |dnSi|. (14.32)

Control law (14.31) does not require the entire state vector. To implement the control
law, controller uses past outputs, immediate past inputs and disturbance bounds are
needed; and to evaluate cT (k+1) only y(k) is needed. It should be noted that there is
no switching term in the control law unlike that used in [24]. For the system without
disturbance, the trajectory with the proposed law does not deviate from the sliding
surface.

14.4.1.1 Existence of Sliding Mode

With the proposed control law (14.31), boundary layer (the band of quasi sliding
mode) for si(k) is given in (14.32). It can be shown that in the reaching phase i.e.
for |si(k)|> |dmSi|+ |dnSi|, the condition |si(k + 1)|< |si(k)| is satisfied.

Let a Lyapunov function vi(k) be defined as vi(k) = |si(k)|

⇒ Δvi(k) = |si(k + 1)|− |si(k)|

substituting si(k + 1) from (14.30)

Δvi(k) = |dmi(k)−dmMi + dni(k)−dnMi|− |si(k)|

⇒ Δvi(k) ≤ |dmi(k)−dmMi|+ |dni(k)−dnMi|− |si(k)|

Further using (14.29)

Δvi(k) ≤ |dmSi|+ |dnSi|− |si(k)|
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So during the reaching phase i.e. for |si(k)|> |dmSi|+ |dnSi|.

Δvi(k) < 0

⇒ |si(k + 1)|< |si(k)|

It can be concluded from the above that during reaching phase when |si(k)| >
|dmSi|+ |dnSi|, reaching condition |si(k + 1)|< |si(k)| is satisfied by the control law
(14.31), therefore the existence of DSM is proved. By considering the bounded con-
trol input, the existence condition is also proved in [4, 41] using equivalent control
approach for state feedback case. A similar approach can be used to prove the same
result for the output feedback case.

14.4.2 Control Law with Disturbance Observer

In the previous subsection the control law is obtained from a reaching law in which
an actual unknown disturbance is estimated by its average value. In this subsection
a method is discussed in which the actual disturbance is approximated (estimated)
by a disturbance at the previous sampling instant. The state vector of the system and
the previous instant disturbance can be expressed in terms of previous outputs as
proposed in [3, 29].

x(k) = L̃yYk + L̃uu(k−1) (14.33)

d(k−1) = G2Yk −G2D0u(k−1) (14.34)

Where L̃y = ΦG1 +ΓG2 L̃u = Γ − (ΦG1 +ΓG2)D0

While

[
G1

G2

]
= G =

[
C0 D0

]†
is obtained by taking the generalized inverse (Moor-

Penrose inverse) of
[

C0 D0
]

and Yk, C0, D0 can be computed from (14.3) and (14.6).
To obtain the control law, reaching law s(k + 1) = 0 is used. From (14.26) and
reaching law s(k + 1) = 0 one can write input u(k) as follows

u(k) = −(cT (k + 1)TrΓ )−1{cT (k + 1)TrΦx(k)−
cT (k + 1)Trxd(k + 1)+ dn(k)} (14.35)

where dn(k) = cT (k + 1)TrΓ d(k) as defined earlier. In the above equation, except
dn(k) everything is known. To obtain dn(k), one needs the actual disturbance d(k)
therefore as proposed in [45,36], dn(k) can be estimated with dn(k−1). To compute
dn(k−1) one requires d(k−1). To estimate dn(k), one can use its previous sampling
instant disturbance dn(k− 1) [36]. Substituting the value of x(k) from (14.33), the
control law can be written in terms of past output as follows

u(k) = −(cT (k + 1)TrΓ )−1{cT (k + 1)TrΦ(L̃yYk + L̃uu(k−1))−
x̃d(k + 1)+ dn(k−1)} (14.36)
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where x̃d(k + 1) can be computed from (14.28) and

dn(k−1) = cT (k)TrΓ (G2Yk −G2D0). (14.37)

Using (14.26), (14.33), (14.36), (14.37) leads to

s(k + 1) = dn(k)−dn(k−1).

From the above equation it follows

si(k + 1) = dni(k)−dni(k−1).

From the above expression it is straightforward to verify that the switching func-
tion si(k) is bounded by the rate of change of disturbance. For constant and slowly
varying disturbances this method almost completely eliminates the effect of distur-
bances on the system performance and thus ensures invariance. Taking into account
the availability of high speed DSP and microcontrollers, the sampling time can be
chosen sufficiently small and this leads to small value of boundary layer thickness
(dni(k)−dni(k−1)).

14.5 Extension to Input-Delay Systems

The nonlinear surfaces and corresponding control laws can also be used for a system
with input delay. Consider the following system

x(k + 1) = Φx(k)+Γ u(k−h)+ Dρ(k) (14.38a)

y(k) = C1x(k) (14.38b)

u(k) = Θ(k) k =−h,−h + 1, ...0 (14.38c)

where x(k) ∈ R
n, u(k) ∈ R, y(k) ∈ R are respectively the state, the input, and the

output of the system.Φ ,Γ , C1 are matrices of appropriate dimensions, h is an integer
which denotes the amount of delay and Θ(k) denotes an initial condition. Θ(k)
is generally available because it refers to past inputs which were applied to the
system in past. D is a column matrix and ρ(k) ∈ R. The term Dρ(k) accounts for
an uncertainty which has both matched and unmatched components. In input-delay
systems a control input applied at the kth sampling instant becomes effective at
the (k +h)th sampling instant due to the delay in the input. This situation demands
that at the kth instant the controller should know the future value of the state at the
(k + h)th instant. This can be accomplished by predicting the state from the plant
dynamics. Consider a predictor [32]

x̂(k) := x(k + h) := Φhx(k)+
0

∑
i=−h+1

Φ−iΓ u(k + i−1). (14.39)
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From (14.38) and (14.39), the system can be described in x̂ coordinates as follows

x̂(k + 1) = Φ x̂(k)+Γu(k)+ΦhDρ(k). (14.40)

It should be noted that the predicted state and the actual state are generated from
the same dynamical system and there is always an ’h’ time step difference between
them. The value of the predicted state x̂ at any sampling instant k, is the value of the
actual state at the (k +h)th sampling instant. We can write the output in terms of the
predicted state as follows

ŷ(k) = C1x̂(k). (14.41)

The system described in (14.40) is similar to the system in (14.2) except the pres-
ence of unmatched perturbations. If the uncertain term ΦhDρ(k) is assumed to be
matched then surface and control law (state feedback based) can be designed in a
similar way as it is discussed in the previous section. Interested readers are encour-
aged to refer our work in [2] for a detailed discussion with unmatched perturbations.

14.6 Magnetic Tape Position Tracking

In this section a magnetic-tape-drive servo is presented to illustrate the proposed
method. The control of tension and position of a moving tape is a generic control
problem in industries. Applications vary widely from digital tape transport to thin
film manufacturing. For position control of read-write head, the detailed dynamics
are given in [22]. A schematic diagram is given in Figure 14.2. Here the control
system requirement is to achieve the commanded position of tape over read-write
head. While achieving the required position, the control system should maintain a
specific tension in the tape.

x1 x2

i1

i2

Fig. 14.2 Schematic diagram of magnetic tape position control
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The continuous time model of the system is given as

ẋ = Ax + Bu + Bd

y = C1x

where

A =

⎡
⎢⎢⎣

0 0 −10 0
0 0 0 10

3.3150 −3.3150 −0.5882 −0.5882
3.3150 −3.3150 −0.5882 −0.5882

⎤
⎥⎥⎦ ,

B =

⎡
⎢⎢⎣

0 0
0 0

8.5330 0
0 8.5330

⎤
⎥⎥⎦ ,

C1 =
[

0.5 0.5 0 0
−2.113 2.113 0.375 0.375

]
.

Here x = [x1 x2 ω1 ω2]T x1, x2 are the positions of the tape at capstans (in mm)
and ω1, ω2 are angular velocities motor/capstan assemblies; u = [i1 i2]T i1 and i2
are currents supplied to drive motors and d(t) is smooth disturbance. The output of
the system is given by

y(t) =
[

y1(t)
y2(t)

]
=

[
fp(t)
Te(t)

]

where fp is the position of the tape over read-write head in mm, and Te is the tension
in the tape in N. The following control objectives need to be achieved.

1. Magnetic tape should achieve commanded position over read-write head.
2. Settling time ts should be less than 2.5 seconds
3. Overshoot should be less than 20 %.
4. The tape tension, Te should be 2N with the constraint 0< Te < 4N.
5. Input current should not exceed 3A at each drive motor.
6. The controlled system should be robust.

To design a discrete sliding mode controller, discretize the model with sampling rate
τ = 0.05 as suggested in [22]. Discrete model of the plant under assumption A1 is
given as follows

x(k + 1) = Φx(k)+Γ u(k)+Γd(k), (14.42)

y(k) = C1x(k) (14.43)
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where

Φ =

⎡
⎢⎢⎣

0.9599 0.0401 −0.4861 0.0139
0.0401 0.9599 −0.0139 0.4861
0.1566 −0.1566 0.9321 −0.0679
0.1566 −0.1566 −0.0679 0.9321

⎤
⎥⎥⎦ ,

Γ =

⎡
⎢⎢⎣
−0.1049 0.0017
−0.0017 0.1049
0.4148 −0.0118
−0.0118 0.4148

⎤
⎥⎥⎦ .

C1 =
[

0.5000 0.5000 0 0
−2.1130 2.1130 0.3750 0.3750

]
. (14.44)

First consider d(k) = 0 to show the improvement with the proposed nonlinear
sliding surface then a disturbance will added to show robustness of the controller.
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Fig. 14.3 Response of output y(k) with different sliding surfaces

Step 1: Transform the system in regular form by an appropriate Tr matrix
Let z = Trx therefore in regular form the system equations becomes

z1(k + 1) = Φ11z1 +Φ12z2, (14.45)

z2(k + 1) = Φ21z1 +Φ22z2 +Γ2u + d̃(k), (14.46)

y = Cz. (14.47)
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where Φ11 =
[

0.8802 −0.0021
−0.0021 0.8803

]
, Φ12 =

[−0.4727 0.0237
0.0185 0.4728

]
,

Φ21 =
[

0.1678 0.1325
−0.1476 −0.1709

]
, Φ22 =

[
1.0177 0.1057
0.1057 1.0059

]
, Γ2 =

[
0.4281 −0.0238
−0.0000 −0.4274

]
. C =

[
0.4768 −0.4932 −0.1246 −0.1179
−1.9866 −1.9208 0.8623 −0.9116

]

Based on output requirement yd = [1 2]T the required constant state trajectory is
xd = [0.5267 1.4733 0 0]T and r(k) = [1 2]T

Step 2: Design of nonlinear sliding surface
Nonlinear sliding surface is composed of a constant and a nonlinear term. Initially
the nonlinear term is zero, therefore the constant term decides initial damping ratio
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(ζ1) and settling time (ts1). For initial settling time ts1 = 1.3sec. and initial damping
ratio ζ1 = 0.7054 gain matrix F can be computed as

F =
[−0.0847 −0.2713
−0.2809 0.0815

]
.

For W =
[

3.0336 0
0 3.0336

]
solving the Lyapunov equation (14.16) for P gives

P =
[

3.7682 0
0 3.7682

]
.

Matrix P is positive definite as required. MatrixΨ (y(k)) is given as follows

Ψ (y(k)) =
[
Ψ (y(k))1 0

0 Ψ(y(k))2

]
. Functions Ψ (y(k))1 and Ψ(y(k))2 can be

computed from (14.18) with the following parameters
β1 = 0.4, α1 = 8, β2 = 0.15, α2 = 8. From the above values switching function s(k)
can be computed.

Step 3: Design of control law.
From (14.31) control law with d(k) = 0

u(k) = −(cT TrΓ )−1{cT (k + 1)TrΦLyYk +
cT (k + 1)TrΦLuu(k−1)− x̃d(k + 1)}. (14.48)

In the above equation cT (k + 1) is computed from y(k). The observability index for
the system is 4, therefore N is chosen 4. Let Ly = [L1 : L2]

L1 =

⎡
⎢⎢⎣
−0.5000 0.0178 0.0000 −0.0339
−0.5000 −0.0178 0.0000 0.0339
2.4000 −0.5594 0.8000 −0.1870
−2.4000 −0.5594 −0.8000 −0.1870

⎤
⎥⎥⎦

L2 =

⎡
⎢⎢⎣

0.5000 −0.0845 1.0000 −0.1336
0.5000 0.0845 1.0000 0.1336
−0.8000 0.1819 −2.4000 0.5436
0.8000 0.1819 2.4000 0.5436

⎤
⎥⎥⎦

Lu =

⎡
⎢⎢⎣
−0.0231 0.0102
−0.0102 0.0231
0.1903 −0.0764
−0.0764 0.1903

⎤
⎥⎥⎦

x̃d(k + 1) can be computed from (14.28).
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Design of linear sliding surfaces:
Performance of the proposed nonlinear sliding surface is compared with the con-
troller designed with different linear sliding surfaces. The system output response
is plotted for different sliding surfaces and the proposed nonlinear sliding surface.
Parameters of linear sliding surface(ζ and ts) are chosen based on the values of
corresponding parameters of the nonlinear surface at different instants. When the
nonlinear sliding surface is used, the poles of the closed loop system changes as
output approaches the reference. This changes the damping ratio and settling time
from its initial values ζ1 and ts1 to final values ζ2 and ts2. During the course of
change, at different instants, the system has different damping ratios and settling
times; linear surfaces are designed based on these parameters at some time instants.
The following three different linear sliding surfaces are designed

Linear surface 1 with ζ = 0.6,ts = 2.0
Linear surface 2 with ζ = 0.7,ts = 1.8
Linear surface 3 with ζ = 0.8,ts = 1.6

Responses obtained by these three different sliding surfaces are compared with that
of obtained by the nonlinear sliding surface. A control law for linear sliding surface
is given as follows

u(k) = −(c̄T TrΓ )−1{c̄T TrΦLyYk + c̄T TrΦLuu(k−1)+
dm0 + d10− x̃d(k + 1)}. (14.49)

where
x̃d(k + 1) = c̄T Trxd(k + 1).

In the above control law c̄T can be designed to obtain a desired damping ratio by
using regular form and pole placement approach.

14.6.1 Comparison with Different Linear Sliding Surfaces

Responses of tape position y1(k) and tension in tape y2(k) are plotted which are ob-
tained using the nonlinear sliding surface and different linear sliding surfaces. Figure
14.3 shows the response of y(k) with the controller designed with different sliding
surfaces. The plot clearly shows that with the nonlinear sliding surface performance
improves significantly. With the proposed surface position settles in 0.5 seconds
without any overshoot. The minimum improvement in settling time for position is
50%. It can be seen that the proposed surface ensures quick response without any
overshoot. Switching function s(k) goes to zero in two sampling instants which can
be seen from Figure 14.4. Plot of input is shown in Figure 14.5 which confirms that
chattering is eliminated because of equivalent control.



14 Discrete-Time Sliding Mode Control 401

Table 14.1 Settling time of tape position obtained by the proposed sliding surface versus
surfaces with different ζ

Type of sliding surface Peak (%) Settling ts(sec.)
overshoot Time

surface with ζ=0.6 and ts = 2 10 % 2.4
surface with ζ=0.7 and ts = 1.8 7.5% 1.5
surface with ζ=0.8 and ts = 1.6 5.4% 1.7

Proposed surface 1% 0.5

14.6.2 Nonlinear Sliding Surface with Disturbance

Plant is perturbed by external matched disturbance d(k) = 0.04sin(8πkτ) to vali-
date robustness of the proposed surface. The responses obtained by the control law
designed based on the reaching law approach (14.31) and the control law with dis-
turbance observer(14.36) are compared.
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Fig. 14.6 Plot of outputs, when nonlinear sliding surface is used with plant disturbance and
control is based on reaching law approach.

14.6.2.1 Control Law Designed Based on Reaching Law Approach

Response of the outputs and sliding surfaces are plotted in Figures 14.6 and 14.7.
The control law in (14.31) is implemented. In symmetric disturbance upper and
lower bounds are same, therefore dmM = dnM = 0 Amplitude of sliding mode band
is

|dmS1|+ |dnS1| = 0.0545

|dmS2|+ |dnS2| = 0.0559
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Fig. 14.7 Plot of the nonlinear switching function with disturbance and control is based on
reaching law approach.
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Fig. 14.8 Plot of outputs, when nonlinear sliding surface is used with plant disturbance and
control law with disturbance observer.

The first equation corresponds to the first sliding surface band size and the second
equation is the band size for the second sliding surface.

14.6.2.2 Control Law Designed Based on Disturbance Observer

Following the procedure described in Section 14.4 control law as per (14.36) is
designed. To implement the control law constant matrices L̃y,L̃u,G1,G2 are obtained
as discussed in Section 14.4. Figure 14.8 shows plot of tape position and tension in
the tape when the plant is subjected to a disturbance. It can be seen that the effect of
disturbance is very small on both outputs. Figure 14.9 shows evolution of switching
function. It can be verified that the band is significantly reduced because of the
disturbance observer.
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Fig. 14.9 Plot of the nonlinear switching function with disturbance and control law with
disturbance observer.

14.7 Summary

The design of a nonlinear sliding surface, which allows the closed-loop system to
simultaneously achieve low overshoot and low settling time, has been presented in
this chapter. It has been shown how this high performance can be combined with
high robustness (to matched uncertainty) and effective disturbance rejection. By
application, it has been shown (Table I) that the nonlinear surface gives a minimum
of 50% improvement in settling time (and negligible overshoot) when compared to
linear surfaces.
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Chapter 15
Higher Order Sliding Modes in Collaborative
Robotics

Michael Defoort, Thierry Floquet, Anne-Marie Kökösy, and Wilfrid Perruquetti

Abstract. In this chapter, a scheme for real time motion planning and robust control
of a swarm of nonholonomic mobile robots evolving in an uncertain environment is
derived. This scheme consists of two main parts: (i) a real time collision-free motion
planner; (ii) a trajectory tracking controller. In implementation, the motion planner
dynamically generates the optimal trajectory while the robot runs. High precision
motion tracking is achieved by the design of a higher order sliding mode controller
based on geometric homogeneity properties. Experimental investigations have been
conducted using several test benchmarks of mobile robots in order to demonstrate
the effectiveness of the proposed strategy.

15.1 Introduction

The coordinated control of multiple autonomous mobile robots has become an im-
portant robotics research field. Cooperative robotics concerns a network of robots
exchanging information in order to tackle a common problem and there are many
potential advantages of such systems over a single robot, including greater flexibil-
ity, adaptability and robustness. It can provide solutions to several applicative fields
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including manufacturing, supervision (forest fire, military applications, . . . ), space
or underwater exploration, medical applications, . . .

Among all the topics of study in this field, this chapter focuses on the problem
of the navigation of a swarm of autonomous mobile robots evolving in a partially
known or unknown environment with obstacles. In many cooperative tasks such
as surveillance mapping, search, rescue or area data acquisition, the swarm must
navigate between known initial and final points without collisions.

Wheeled mobile robots have been widely studied in the last two decades due to
their practical importance and theoretically interesting properties. Indeed, there are
considerable research efforts toward solving mobile robot navigation in different ap-
plications in indoor and outdoor environments (see [1, 2] and the survey paper [3]).
For some navigation tasks like planetary exploration, robots are required to travel
long distances within constrained resources (energy, time. . . ). In such cases, ef-
ficient motion planning and control algorithms are needed in order to achieve the
goal while meeting certain performance issue, such as geometric-based or time-
based criteria. Although motion planning and control are closely related in the robot
navigation problem, they are usually addressed as two separate problems in most of
the existing literature. Motion planning consists in generating a collision-free tra-
jectory from the initial to the final desired positions and control is the determination
of the physical inputs to the robot motion components, so that the robots accurately
track the reference trajectories in spite of model uncertainties and external perturba-
tions. These two problems are typically solved using methods from different areas
such as those in artificial intelligence and control theory. Such a separation makes it
difficult to address robot performances in a complete application, since the planned
trajectory may not be efficiently tracked. This fact can imply that the meaning of
optimization in each step is lost. For instance, in a typical time optimal trajectory
planning, the open-loop control schemes result in bang-bang or bang-singular-bang
controls [4]. However, the discontinuities of the planned open-loop control may not
produce a satisfactory path tracking result in practice and will not be applicable to
high speed traveling. In this research, path planning and motion control are designed
accordingly.

A survey of nonholonomic control problems can be found in [5]. Obstacles to
the tracking of nonholonomic systems are the uncontrollability of their linear ap-
proximation and the fact that the Brockett necessary condition to the existence of
a smooth time-invariant state feedback is not satisfied [6]. To overcome these dif-
ficulties, various methods have been investigated: homogeneous and time-varying
feedbacks [7,8], sinusoidal and polynomial controls [9], piecewise continuous con-
trols [10]. However, most of these methods do not provide both fast convergence and
good robustness properties. Most of the control laws ensuring exponential or finite
time convergence [11] are known to be non-robust under disturbances or modeling
errors. On the other hand, control design methodologies like smooth time varying
feedback [8], are quite insensitive to perturbations but imply a slow convergence.
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In many other works about the stabilization of nonholonomic systems [12,13,14,
15], the derived control laws are of discontinuous type, providing for fast conver-
gence and robustness properties, but can lead to discontinuous velocities in prac-
tice. This difficulty can be overcome by adding cascade integrators in the path of
the usual control inputs so that the discontinuous part of the control is embedded in
higher time derivatives of the variables associated to the mechanical parts. Further-
more, applying a discontinuous control on electrical inputs appears relevant since
the latter are most of time made of switching electrical devices.

The discussed claims for discontinuous actions, cascade integrators and robust-
ness properties naturally suggest the use of higher order sliding modes in control
problems of wheeled mobile robots. This discontinuous control technique consists
in constraining the system motion along manifolds of reduced dimensionality in the
state space and is applicable to a broad variety of practical applications. In higher
order sliding mode theory, the sliding surface is defined by the vanishing of a corre-
sponding sliding variable s and its successive time derivatives up to a certain order,
i.e. the rth order sliding set:

S r =
{

x ∈ R
n : σ = σ̇(x) = . . .= σ (r−1)(x) = 0

}
,

where x is the state vector of the system. A control law leading to such a behavior is
called a rth order ideal sliding mode algorithm with respect to s. Higher order sliding
modes, that are characterized by a discontinuous control acting on the rth, r> 1, time
derivatives of the sliding variable (instead of the first time derivative in classical
sliding mode, r = 1), can reduce the chattering phenomenon while preserving the
robustness properties. This control technic has been recently applied in several fields
such as in mechanics [16], [17], [18], mobile robotics [13], [19], [20] or electric
machines [21], [22].

In Section 17.4, a higher order sliding mode control algorithm is proposed for a
class of uncertain multi-input multi-output nonlinear systems. This problem can be
seen as the finite time stabilization of a higher order input-output dynamical system
with bounded uncertainties. The control scheme is based on geometric homogeneity
and sliding mode control. The proposed procedure provides explicit conditions on
the controller parameters and guarantees robustness against uncertainties.

Section 15.3 deals with the problem of real time motion planning and robust
control of a swarm of nonholonomic mobile robots evolving in an uncertain envi-
ronment. General control issues in collaborative robotics are first briefly discussed.
Then, the path planning problem is formulated as a constrained receding horizon
planning problem and is solved in real time with an efficient computational method
that combines nonlinear control theory, B-spline basis function and nonlinear pro-
gramming. After that, the robust tracking control problems without and with co-
ordination are solved using the algorithm developed in Section 17.4. The efficacy,
good performance of obstacle avoidance, real time and high robustness properties
are demonstrated by experimental results.
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15.2 Some Contributions on Higher Order Sliding Mode

15.2.1 Problem Formulation

A constructive algorithm that combines a finite time controller based on geomet-
ric homogeneity with a discontinuous controller based on SMC in order to ensure
the robustness with respect to the uncertainties is derived. Consider the following
general multi-input multi-output nonlinear uncertain system:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = f (x)+∑m
i=1 gi(x)ui

y1 = σ1(x)
...

ym = σm(x)

(15.1)

where x ∈ R
n and u = [u1, . . . ,um]T ∈ R

m are the state variable and the control in-
put, respectively. f (x) and g(x) = [g1(x), . . . ,gm(x)]T are uncertain smooth func-
tions. σ(x) = [σ1(x), . . . ,σm(x)]T ∈ R

m is a smooth measurable output vector. The
uncertainties on f (x) and g(x) are due to parameter variations, unmodeled dynamics
or external disturbances and do not necessarily satisfy the matching condition. The
control objective consists in the vanishing of the output σ(x) in finite time.

Assumption 15.1. The relative degree vector r = [r1, . . . ,rm]T of the system (15.1)
with respect to σ(x) is assumed to be constant and known. It means that the m×m
matrix:

B(x) =

⎡
⎢⎢⎣

Lg1Lr1−1
f σ1(x) . . . LgmLr1−1

f σ1(x)
...

...
Lg1Lrm−1

f σm(x) . . . LgmLrm−1
f σm(x)

⎤
⎥⎥⎦

is nonsingular and Lg j L
k
fσi(x) = 0, for 1 ≤ i ≤ m, 1 ≤ j ≤ m and 0 ≤ k < ri − 1.

Moreover, it is supposed that the associated zero dynamics is asymptotically stable.

Definition 15.1. [23] Consider the nonlinear system (15.1) and the sliding variable

σ(x). Assume that the time derivatives σi, σ̇i, . . . , σ
(ri−1)
i for all i = 1, . . . ,m are

continuous functions. The manifold defined as:

S r =

⎧
⎪⎪⎨
⎪⎪⎩

x :

∣∣∣∣∣∣∣∣

σ1(x) = σ̇1(x) = . . .= σ (r1−1)
1 (x) = 0

...

σm(x) = σ̇m(x) = . . .= σ (rm−1)
m (x) = 0

⎫
⎪⎪⎬
⎪⎪⎭

is called the rth order sliding set. If it is non empty and locally an integral set in the
Filippov sense [24], the motion on S r is called rth order sliding mode with respect
to the sliding variable σ .

The rth order SMC approach allows the finite time stabilization of the system on
S r by defining a suitable discontinuous control law. The rth

i time derivative of each
function σi yields:
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[
σ (r1)

1 (x), . . . ,σ (rm)
m (x)

]T
= A(x)+ B(x)u (15.2)

with

A(x) =
[
Lr1

f σ1(x), . . . ,L
rm
f σm(x)

]T
.

Assumption 15.2. Solutions of the state differential equation (15.2) with discontin-
uous right-hand side are defined in the sense of Filippov [24].

Assumption 15.3. The vector A(x) and the matrix B(x):
{

A(x) = A(x)+ΔA(x)
B(x) = B(x)+ΔB(x) (15.3)

are partitioned into a nominal part, A and B, known a priori, and uncertain bounded
functions ΔA and ΔB. The matrix B is non-singular. Furthermore, there exist an a
priori known nonlinear function ρ(x) and an a priori known constant 1 ≥ α > 0
such that the uncertain functions satisfy the following inequalities:

{
‖ ΔA(x)−ΔB(x)B−1(x)A(x) ‖ ≤ ρ(x)
‖ ΔB(x)B−1(x) ‖ ≤ 1−α

(15.4)

for x ∈ X ⊂ R
n, X being an open subset of R

n within which the boundedness of
the system trajectories is ensured.

Apply to the system (15.2) the following preliminary feedback:

u = B
−1{−A+ w} (15.5)

where w = [w1, . . . ,wm]T ∈R
m is the auxiliary control input. This feedback partially

decouples the nominal system (i.e. without uncertainties). Thus, the system (15.2)
can be expressed as follows:

[
σ (r1)

1 , . . . ,σ (rm)
m

]T
=

[
Im +ΔBB

−1
]

w−ΔBB
−1

A +ΔA (15.6)

where Im denotes the m×m identity matrix.
The rth order SMC of system (15.1) with respect to the sliding variable σ is

equivalent to the finite time stabilization of the multivariable uncertain system:

ż1,i = z2,i
...

żri−1,i = zri ,i

, ∀i = {1, . . . ,m}

[żr1,1, żr2,2, . . . , żrm,m]T =
[
Im +ΔBB

−1
]

w−ΔBB
−1

A+ΔA

(15.7)

with 1 ≤ i ≤ m, 1 ≤ j ≤ ri, z j,i = σ ( j−1)
i , zi = [z1,i,z2,i, . . . ,zri ,i]

T and z =[
zT

1 , . . . ,z
T
m

]T
.



414 M. Defoort et al.

15.2.2 Design of a Higher Order Sliding Mode Controller

The resolution of the finite time stabilization is a delicate task which has generally
been studied for homogeneous systems of negative degree with respect to a flow of a
complete vector field. Indeed, for this kind of systems, finite time stability is equiv-
alent to asymptotic stability (see [25, 26, 27, 28, 29, 30] for more details). However,
the existing techniques are generally neither constructive nor robust with respect to
uncertainties. To the authors’ knowledge, a constructive feedback control law for fi-
nite time stabilization of all-dimension chain of integrators without uncertainty has
only been proposed in [26]. Before designing a robust finite time controller, let us
recall the algorithm given in [26].

15.2.2.1 Finite Time Stabilization of an Integrator Chain System

Consider the nominal system of (15.7) (i.e. ΔA = 0 and ΔB = 0), which is represented
by m single-input single-output independent integrator chains, defined as follows:

∀i ∈ {1, . . . ,m},

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ż1,i = z2,i
...

żri−1,i = zri ,i

żri,i = wnom,i

(15.8)

The following result, introduced in [26], proves the existence of a continuous finite
time stabilizing feedback controller for system (15.8) by giving an explicit con-
struction involving a small parameter. This controller makes the closed-loop system
asymptotically stable and homogeneous of negative degree with respect to a suit-
able dilation so that finite time stability follows. Note that the proof of asymptotic
stability along with a continuity argument is based on the existence of a nonempty
compact set that is strictly positively invariant with respect to the closed-loop vector
field. One can refer to [26] for further details.

Theorem 15.1. (Theorem 8.1 in [26]) Let the positive constants k1,i, . . . ,kri,i be such
that polynomial pri + kri,i p

ri−1 + . . .+ k2,i p+ k1,i is Hurwitz. There exists εi ∈ (0,1)
such that, for every νi ∈ (1− εi,1), the system (15.8) is stabilized at the origin in
finite time under the feedback:

wnom,i(zi) =−k1,i sign(z1,i) |z1,i|ν1,i − . . .− kri,i sign(zri,i) |zri ,i|νri,i (15.9)

where the standard notation sign(.) denotes the signum function and ν1,i, . . . ,νri ,i

satisfy:

ν j−1,i =
ν j,iν j+1,i

2ν j+1,i−ν j,i
, j ∈ {2, . . . ,ri}

with νri+1,i = 1 and νri,i = νi.

Let us generalize the results given in [26] by designing a robust discontinuous con-
trol law which ensures the finite time stabilization of system (15.7).
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15.2.2.2 Robust Finite Time Controller Design

The higher order SMC algorithm is designed in two steps:

1. the design of a finite time controller wnom(z) which guarantees the finite time
stabilization of the nominal system (15.8) at the origin,

2. the design of a discontinuous control law wdisc(z) which enables to reject the
uncertainties of the system (15.7) and ensures that the control objectives are
fulfilled.

In order to stabilize in finite time the uncertain system (15.7), define the following
control law: {

w(z) = wnom(z)+ wdisc(z,zaux)
żaux = −wnom(z) (15.10)

The auxiliary function zaux ∈ R
m will be used in the design of the sliding variable

associated with the discontinuous control law wdisc(z,zaux) ∈ R
m. The control law

wnom(z) = [wnom,1(z1), . . . ,wnom,m(zm)]T ∈R
m is given by equation (15.9).

Define the sliding variable s(z) ∈ R
m, associated with wdisc, as follows:

s(z) = [zr1,1,zr2,2, . . . ,zrm,m]T + zaux (15.11)

The time derivative of s along the system trajectories is given by:

ṡ = [żr1,1, żr2,2, . . . , żrm,m]T + żaux

=
[
Im +ΔBB

−1
]

w−ΔBB
−1

A+ΔA−wnom

=
[
Im +ΔBB

−1
]

wdisc −ΔBB
−1

A +ΔA +ΔBB
−1

wnom

The control law wdisc is defined to ensure the sliding motion on {x ∈ X : s(x) = 0}
is guaranteed in spite of uncertainties and is of the following form:

wdisc =−G(z)sign(s) (15.12)

where the gain satisfies:

G(z) ≥ (1−α)‖wnom(z)‖+ρ+η
α

(15.13)

with η > 0. The notation sign
(
[s1, . . . sm]T

)
denotes [sign(s1) , . . . ,sign(sm)]T .

Theorem 15.2. [31] Consider the nonlinear system (15.1) and assume that as-
sumptions 15.1-15.3 are fulfilled. Then, the control law

u = B
−1 {−A+ wnom(z)+ wdisc(z,zaux)

}
(15.14)

where żaux =−wnom(z), wnom(z) and wdisc(z,zaux) are given by equations (15.9) and
(15.12), respectively, ensures the establishment of a higher order sliding mode with
respect to σ in finite time.
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Proof. Choose the following Lyapunov function:

V =
1
2

sT s

The time derivative of V along the system trajectories is expressed as:

V̇ = sT
([

Im +ΔBB
−1

]
wdisc −ΔBB

−1
A+ΔA +ΔBB

−1
wnom

)

= sT
(
−G

[
Im +ΔBB

−1
]

sign(s)−ΔBB
−1

A +ΔA +ΔBB
−1

wnom

)

Under the bounding relations in Assumption 15.3 and the choice of the gain (15.13),
one obtains:

V̇ ≤−G‖s‖+(1−α)G‖s‖+(1−α)‖wnom‖‖s‖+ρ‖s‖
≤ (−αG+(1−α)‖wnom‖+ρ)‖s‖
≤ −η‖s‖
≤ −η

√
2
√

V

Thus, the system trajectories evolve on the manifold {x ∈ X : s(x) = 0} in finite
time and remains there in spite of the uncertainties. According to Assumption 15.3,
the matrix Im +ΔBB

−1
is invertible. In sliding mode, the equivalent control of wdisc,

denoted weq
disc, obtained by writing ṡ = 0 (see [32] for further details), is given by:

weq
disc =

[
Im +ΔBB

−1
]−1 (

ΔBB
−1

A−ΔA−ΔBB
−1

wnom

)
. (15.15)

Substituting w = wnom + weq
disc into (15.7), one obtains the equivalent closed-loop

dynamics, in sliding mode, similar to the nominal system (15.8). Since the control
law wnom is designed using Theorem 15.1, the system trajectories converge to zero
in finite time. Therefore, a rth order sliding mode with respect to σ is established in
finite time. ��
Remark 15.1. The missing derivatives of σi (1 ≤ i ≤ m) can be estimated on-line by
the means of the robust exact finite time convergent differentiator [33].

Remark 15.2. Note that the higher order sliding mode controller is designed to ob-
tain the finite time stabilization of the uncertain chain of integrators (and hence,
to increase the convergence accuracy) but does not alleviate the chattering phe-
nomenon. Indeed, because of the new choice of the sliding variable, the discon-
tinuous control is still applied on the control input, as in the classical first order
sliding mode case. Nevertheless, a super-twisting algorithm can be used in (15.12)
in order to alleviate the chattering phenomenon and the proof of the finite time con-
vergence onto the manifold {x ∈ X : s(x) = 0} can also be shown using Lyapunov
arguments.
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15.3 Collaborative Robotics Issues

15.3.1 Context

Cooperative robotics is concerned with a network of robots exchanging informa-
tion in order to tackle a common problem. Thus, cooperative multi-robot systems
have the possibility to solve problems more efficiently than a single one, but also
problems that cannot be handled by a single one. Such deployment of large scale
networks of cooperative robots can also provide complex behaviors by using simple
agent based behaviors.

Tasks of cooperative robotics concern socially useful applications of robotics that
can be found in the military, civil and spatial domains. It concerns missions which
were historically automated, either because they represent a danger or a certain dif-
ficulty for a human being, or because a machine is more adapted and more effective
than human operators. Robotics service (handling, cleaning, surveillance) covers
certain needs untreated today, because they are difficult to be handled by operators.
Thus, cooperative robotics, strongly imbricated with service robotics, concerns a lot
of applications in which the researchers are particularly interested:

1. The carriage of loads and the collection of objects in dangerous areas.
2. The use of cooperative machines on building zones may speed up their achieve-

ment, increase security and allow operations that are impracticable for humans.
3. For the detection and the coordinated neutralization of land mines, the coop-

eration would allow to cover the widest zone without involving more human
operators, while reducing the duration of the operation.

4. The security/surveillance of private properties: the surveillance and the detec-
tion of intrusion are tasks that robots can typically carry out. Cooperation allows
the surveillance of a larger area.

Beyond the scientific interest to make cooperative robots interacting rationally with
their environment and the fundamental research problems to be tackled, the con-
sidered problem has important social and economic stakes. Today, mobile robots
become more and more complex, integrate capacities of perception, communication
and adaptation to various operation domains and aim at meeting better and better
robustness, ergonomics and safety requirements.

15.3.2 Control Issues

The results presented in this chapter have been obtained within a multidisciplinary
research framework, the Robocoop project, started in 2003 at the LAGIS laboratory,
which deals with issues in cooperative mobile robots. The software architecture of
each robot of the swarm proposed in this paper is depicted in figure 15.1.

The blocks “Perception” and “Localization” receive information from the pro-
prioceptive and exteroceptive sensors of the robot. In the “Localization” block, the
information is processed in order to obtain the robot position and orientation. In
the “Perception” block, the measurements obtained from the sensors are used in
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Fig. 15.1 Software architecture for an autonomous mobile robot.

order to obtain information about the position and the shape of the obstacles in the
robot neighborhood. The block “Strategy” receives information about the robot lo-
calization and the environment, and about the internal state of the robot. With this
information, it must evaluate the robot situation, and if necessary, it can ask comple-
mentary information to the robots in its neighborhood in order to make a decision
about the direction of the robot movement.

Aspects such as localization and strategy designs are currently under investiga-
tion. In this chapter, under the assumption that the robots have the knowledge of
their localization on the map and information about the obstacles in their neighbor-
hood, algorithms are proposed to solve the problems of:

• collaborative path planning,
• higher order sliding mode based collaborative control design for mobile robots

including robust path tracking control.

15.3.3 Problem Formulation and Navigation Strategy

15.3.3.1 Dynamic Model of the Robots

Each robot An, n ∈ (1, . . . ,N), shown in Fig. 15.2, is of unicycle-type. Its two fixed
driving wheels of radius rn, separated by 2ρn, are independently controlled by two
actuators (DC motors) and the passive wheel prevents the robot from tipping over
as it moves on a plane. Its configuration is given by:

ηn = [xn,yn,θn]T

where (xn,yn) is the position of its center of mass Cn and θn is its orientation in the
global frame.
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Fig. 15.2 Unicycle-type robot.

Under the pure rolling and non slipping condition [34], the ideal kinematic equa-
tions are:

η̇n =

⎡
⎣

cosθn 0
sinθn 0

0 1

⎤
⎦
[

vn

wn

]
(15.16)

where vn and wn are the linear and angular velocities, respectively.

Remark 15.3. Due to practical limitations, the speed un = [ẋn, ẏn]T of An is restricted
to lie in a closed interval Sn

Sn =
{

un ∈R
2 | ‖un‖ ≤ un,max

}
(15.17)

15.3.3.2 Assumptions and Control Objective

Assumption 15.4. The following assumptions are made in this study:

• Each robot An (n ∈ {1, . . . ,N}) knows its position pn = [xn,yn]T , its velocity
un = [ẋn, ẏn]T and its goal position pn,des = pn(t f in) (t f in is the final time instant).
Note that the task location pn,des is chosen by some kind of high-level directive,
for instance, the output of a task allocation problem.

• Each mobile robot has a physical safety area which is centered at Cn with a
radius Rn, and has a circular communication area which is also centered at Cn

with a radius R̄n. Note that R̄n is strictly larger than Rn +R j, j ∈ (1, . . . ,N), j 	= n.
• Robots have on-board sensors which can detect surrounding objects and vehicles

within a range with a small margin of error.
• The obstacles are static and convex. Without loss of any generality1, the ith

(i = 1, . . .) obstacle in the environment is included in a 2-D circle, denoted by
Bi(pobsi ,Robsi) where pobsi = (Xi,Yi) is its center and Robsi is its radius.

1 It is trivial to allow the envelope of an obstacle to be represented by union/intersection
of several circles. The envelopes could also be polygonal. Mathematically, circular en-
velopes can be represented by second order inequalities while polygonal envelopes can be
described by first order linear inequalities.
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• Each robot An can reliably communicate with the other robots A j ( j 	= n, j ∈
{1, . . . ,N}) of the swarm in its communication area.

Definition 15.2. ∀tk ∈
[
tini,t f in

]
(tini is the initial time instant), ∀An (n∈ {1, . . . ,N}),

the detected obstacle set On(tk) is defined as the subset

On(tk) ⊂ {B1(pobs1 ,Robs1),B2(pobs2 ,Robs2), . . . ,}

of obstacles in the range of the robot sensors.

Note that the detected obstacle set is time dependent and evolves as long as the
robot moves and discovers new obstacles (see Fig. 15.3-15.4). In order to ensure the
collision avoidance with obstacles, for all t ≥ 0, the distance between the robot and
the detected obstacles (i.e Omn ∈On(t)), ‖pn(t)− pobsmn

‖ must satisfy:

‖pn(t)− pobsmn
‖ ≥ Rn + Robsmn

(15.18)

yn(0)

xn(0) −→
i

−→
j

O

Detected obstacle set On(0)

Range of robot’s sensors

Fig. 15.3 Detected obstacle set at time tk = 0s.

The objective is to find the control input τn for each robot An such that, under
Assumption 15.4:

• An is stabilized toward its desired point pn,des, i.e.

lim
t→∞

‖pn(t)− pn,des‖ = 0 (15.19)

• collisions between robots are avoided,
• obstacles avoidance is ensured,
• physical limitations of robots are satisfied,
• all computations are done on board in a decentralized cooperative way.

In order to solve this problem, reference trajectories that satisfy the above require-
ments and that can be computed on-line are designed. Then, sliding mode control
laws that ensure the robust tracking of the reference trajectories are derived.
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Fig. 15.4 Detected obstacle set at time tk = 1s.

15.3.4 Path Planning

The aim of path planning is to compute admissible trajectories for a swarm of mo-
bile robots such that they can evolve in an unknown environment from an initial
configuration to a final configuration without collision and, eventually, in minimal
time respecting an acceptable geometrical shape during the movement. Some con-
straints must be taken into account:

• constraints due to physics (energy limitation, maximal velocity and acceleration
of the robots)

• obstacle avoidance,
• collision avoidance with the robots and other mobile objects,
• distances between robots (communication constraints),
• geometry of the formation,
• time constraints (in the case of rescue missions), energy constraints (batteries

duration, . . . ).

The path planning problem is expressed as an optimal problem under constraints:
find the optimal control and the optimal trajectory of each robot which minimize a
cost function (i.e. minimal time or minimal energy or a mix between minimal time
and minimal energy) and which satisfies the constraints enumerated above. In order
to solve this problem in real time, we proposed an approach based on dynamical
optimization over a sliding horizon and based on the flatness property.

First a scheme of coordination according to the method described above was
designed via a global supervisor, which can be seen as a the leader of the swarm
(centralized approach). In that case, the supervisor generates trajectories for all the
vehicles by solving an optimization problem of large dimension. However, the lack
of autonomy of robots with regard to the supervisor, the centralization of the infor-
mation and the costs in terms of calculation time make difficult the on-line imple-
mentation of this strategy.
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In order to get rid of these drawbacks, and to strongly decentralize the path plan-
ning algorithm, we propose an on-line decentralized algorithm on a sliding horizon,
based only on the available local information for each robot. It consists in decom-
posing the problem of path planning of each robot into two steps. In the first one,
every robot builds an intuitive trajectory using local information and taking only the
obstacles into account. In the same time, each robot analyzes, by using its sensors,
the potential problems which may appear (loss of communication or collision with
another robot). In the second one, the robots which can be in collision or loose the
communication with the other robots of the swarm adjust their intuitive trajectories
by taking constraints of communication and of collision avoidance with the robots
into account. This distributed implementation increases not only the autonomy of
robots, but also reduces the complexity in term of calculations with regard to a cen-
tralized implementation.

The purpose of the distributed receding horizon planner is to decompose the over-
all problem into a family of simple receding horizon planning problems which are
implemented on each robot An.

Definition 15.3. [36] (conflict) A conflict occurs between two cooperative robots
An and A j at time tk ≥ tini if they are not in collision at tk, but at some future time,
a collision may occur.

The following proposition, based on the concept of velocity obstacle [37], is useful
to check the occurence of conflicts.

Lemma 15.1. [38] Define for each pair (An,A j), the following variables depicted
in Fig. 15.5:

βn j(tk) = arg(un(tk)−u j(tk))− arg(p j(tk)− pn(tk))

αn j(tk) = arcsin

(
Rn + R j

‖p j(tk)− pn(tk)‖
)

A necessary and sufficient condition for no conflict between An and A j at tk is:

|βn j(tk)| ≥ αn j(tk) (15.20)

Definition 15.4. (conflict subset) For each An, the conflict subset Nn(tk) at time
tk ≥ tini is the set of all robots which are in the communication area of An and in
conflict with An.

In every distributed optimal control problem, the same constant planning horizon
Tp ∈ R

+ and constant update period Tc ∈ R
+ (Tc < Tp) are used. In practice, Tc

is typically the time allocated for the resolution of the distributed optimal control
problem. At each update, denoted tk (k ∈ N),

tk = tini + kTc (15.21)
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Fig. 15.5 Velocity obstacle concept

each robot computes, in parallel, an optimal planned collision-free trajectory. The
distribution is achieved by having each vehicle exchanging its presumed informa-
tion with other vehicles. A key element of this work is that the vehicles must only
exchange information with robots belonging to the conflict set, enabling the local
optimization to be based on local information. This is important because it reduces
the communication requirements and the computational complexity.

First, every vehicle An must presume some preferred trajectories for robots A j

belonging to the conflict subset in order to plan its optimal conflict-free trajectory.
Two difficulties can be stated:

• the definition of a unique presumed trajectory for each robot,
• the coherence between what a vehicle plans to do (the real optimal planned tra-

jectory) and what the other robots believe that the vehicle will plan to do (the
presumed trajectory).

The proposed solution is to divide each receding horizon planning problem into two
steps. In each time interval [tk−1, tk),

Step 1. Each robot An computes its presumed trajectory, denoted by p̂n(t, tk)
and its corresponding velocity, denoted by ûn(t, tk). This trajectory is obtained
without taking the coupling constraints (i.e. collision avoidance between robots)
into account.
Step 2. The robots which may produce collision adjust their presumed trajec-
tory by taking the collision avoidance constraint into account and using local
exchanged information. This new trajectory, denoted by p∗n(t, tk), is called the
optimal planned trajectory and is evaluated over the planning horizon Tp, i.e.
t ∈ [tk,tk + Tp]. It is the trajectory that the robot must track during the time inter-
val [tk,tk+1]. The associated velocities are denoted by u∗n(t, tk).

Remark 15.4. Note that the first argument of p∗n, p̂n, u∗n and ûn denotes time. The
second argument is only added to distinguish at which receding horizon update the
trajectory and velocity are computed.
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The collection of distributed receding horizon planning problems is formally defined
as Problems 1-2 for each robot An.

Problem 1: Over each interval [tk−1,tk), let the following optimal control problem
associated with the nth robot which consists in determining the presumed velocity
ûn(t,tk) and the presumed trajectory p̂n(t,tk) which do not take the coupling con-
straint into account:
Find: the feasible presumed pair (p̂n(t, tk), ûn(t,tk)) subject to ∀t ≥ tk:

⎧
⎪⎪⎨
⎪⎪⎩

p̂n(tk,tk) = p∗n(tk,tk−1)
ûn(tk,tk) = u∗n(tk,tk−1)
‖ p̂n(t, tk)− pobsmn

‖ ≥ Rn + Robsmn
, ∀Omn ∈On(tk−1)

ûn(t,tk) ∈ Sn

(15.22)

Remark 15.5. During the initialization step, that is to say before the robots move,
we denote: ⎧⎨

⎩
t−1 = tini

p∗n(t0,t−1) = pn(tini)
u∗n(t0,t−1) = un(tini)

Problem 2: For each robot An, define the optimal control problem over each
interval [tk−1,tk), which consists in:

Given: the conflict subset Nn(tk−1), the presumed pairs (p̂i(t,tk), ûi(t, tk)),
∀i ∈ {i ∈ N |Ai ∈ Nn(tk−1)}.

Find: the feasible optimal collision-free trajectory and velocity pairs
(p∗n(t,tk),u∗n(t,tk)) that minimizes:

∫ tk+Tp

tk

(
an∑

i

Uni,rep(t)+‖p∗n(t,tk)− p̂n(t, tk)‖
)

dt (15.23)

subject to ∀t ∈ [tk,tk + Tp]:
⎧⎪⎪⎨
⎪⎪⎩

p∗n(tk,tk) = p∗n(tk,tk−1)
u∗n(tk,tk) = u∗n(tk,tk−1)
‖p∗n(t, tk)− pobsmn

‖ ≥ Rn + Robsmn
, ∀Omn ∈On(tk−1)

u∗n(t,tk) ∈ Sn

(15.24)

where

Uni,rep(t) =

{
0 if dni(t)≥ bn

1
2

(
1

dni(t)
− 1

bn

)2
else

dni(t) = ‖p∗n(t, tk)− p̂i(t,tk)‖− (Rn + Ri)

(15.25)

an and bn are strictly positive factors which can vary among robots to reflect differ-
ences in aggressiveness (an < 1, bn � 1) and shyness (an > 1, bn � 1).
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Remark 15.6. One can note that the first part of the cost (15.23) is designed to
enforce the collision avoidance between cooperative robots. This term, based on
artificial potential fields [2], is designed such that it equals to infinity when a colli-
sion between robots occurs and decreases according to the relative distance between
robots.

The second part of the cost (15.23), i.e. the term ‖p∗n(t, tk)− p̂n(t, tk)‖, is a way
of penalizing the deviation of the optimal planned trajectory p∗n(t, tk) from the pre-
sumed trajectory p̂n(t,tk), which is the trajectory that other robots rely on. In previ-
ous work, this term was incorporated into the decentralized receding horizon planner
as a constraint [39]. The formulation presented here is an improvement over this past
formulation, since the penalty yields an optimization problem that is much easier to
solve.

Remark 15.7. One can note that the constraints (15.24) which guarantee the continu-
ity of the trajectory and control inputs require the optimal trajectory p∗n(tk, tk−1) and
velocity u∗n(tk,tk−1) computed in the previous step. Therefore, the proposed plan-
ner is not able to reject external disturbances or inherent discrepancies between the
model and the real process. However, it takes the real time constraint into account.
Indeed, each robot has a limited time to plan its trajectory. The time allocated to
make its decision depends on its perception sensors, its computation delays, etc.
and is less than the update period Tc (see Fig. 15.6).

tk tk+1

Presumed trajectory

Optimal planned trajectory

p∗n(t, tk−1)

p∗n(t, tk)

p∗n(t, tk)

Comput.

of

Comput.

of
p∗n(t, tk+1)

Fig. 15.6 Implementation of the receding horizon planner

Remark 15.8. A compromise must be done between reactivity and computation
time. Indeed, the planning horizon must be sufficiently small in order to have good
enough results in terms of computation time. However, it must be higher than the
update period to guarantee enough reactivity.

To numerically solve Problems 1-2, a nonlinear trajectory generation algorithm [40]
is applied. It is based on finding trajectory curves in a lower dimensional space
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using the flatness property (see [35]). Flatness means that all the state variables and
the inputs of a dynamical system can be parameterized in terms of so-called flat
outputs (or linearizing outputs) and a finite number of their successive time deriva-
tives. This is the case of most of mobile robots, for which the flat outputs are the
coordinates of the center of gravity up to a translation. For example, for the unicycle
type mobile robot which model is described by equations (15.16). The flat outputs

are (xn,yn). Indeed, one has: θn = arctan
(

ẏn
ẋn

)
, vn =±

√
ẋ2

n + ẏ2
n and wn = ẋnÿn−ẏnẍn

ẋ2
n+ẏ2

n
.

Using this property, all the dynamics of the vehicles, as well as the constraints, can
be expressed as functions of the flat outputs and their time derivatives.

Then, the problem is to minimize a criteria that only depends on the flat outputs
and their time derivatives. This optimal problem can be easily transformed into a
nonlinear programming problem, using B-spline functions in order to approximate
the trajectory of the flat outputs (a constrained feasible sequential quadratic opti-
mization algorithm is used to find the B-splines coefficients that optimize the per-
formance objective while respecting the constraints), and also to deduce the optimal
control u(t) = [v(t),w(t)]T and the optimal trajectory p∗(t) = [x∗(t) y∗(t) θ ∗(t)]T .

This algorithms was tested and compared with other existing methods (the de-
tails of these results can be found in [39]) and advantages of the approach were
highlighted in terms of low computation time, communication resources, easiness
of implementation (such as the number of parameters), high performances and the
fact that there is no supervisor.

15.3.5 Path Tracking

Due to the use of the flatness property, the reference trajectory (x∗n,y∗n,θ ∗n ), generated
by the motion planner, fulfills the differential system:

⎡
⎣

ẋ∗n
ẏ∗n
θ̇ ∗n

⎤
⎦ =

⎡
⎣

cosθ ∗n 0
sinθ ∗n 0

0 1

⎤
⎦
[

v∗n
w∗

n

]
(15.26)

By directly applying v∗n and w∗
n, the robots do not follow the reference trajectory. In-

deed, in practical applications, they operate under uncertainty conditions. Once the
desired trajectories have been computed, robust control algorithms must be designed
so that the robots accurately track the reference trajectories in spite of model uncer-
tainties and external perturbations. Two different cases are described here: tracking
with and without coordination between robots.

15.3.5.1 Tracking Problem without Coordination

The simplest scenario for the swarm navigation is to assume that the robots have to
track accurately the planned trajectory without any constraints with respect to their
relative positions. In this subsection, the index n is dropped to simplify the notation.
In order to express the unicycle type model (15.16) in a form more suitable for the
control design, the global invertible transformation is defined [42]:
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[
z,XT ]T = T

[
x̃, ỹ, θ̃

]T
(15.27)

where the transformation matrix T is defined as:

T =

⎡
⎣
θ̃ cosθ −2sinθ θ̃ sinθ + 2cosθ 0

0 0 1
cosθ sinθ 0

⎤
⎦ (15.28)

where z ∈ R and X = [x1,x2] ∈ R
2 are auxiliary tracking error variables, x̃, ỹ, θ̃ are

the difference between the actual and the reference trajectories, i.e:

x̃ = x− x∗ ỹ = y− y∗ θ̃ = θ −θ ∗ (15.29)

After taking the time derivative of (15.27), the error dynamics can be expressed as:
{

ż = Y T JX + P
Ẋ = Y

(15.30)

where J is a constant, skew symmetric matrix defined as:

J =
[

0 −1
1 0

]

and P =−2(w∗x2 − v∗ sinx1) .
The auxiliary variable Y = [y1,y2]

T introduced in (15.30) is defined as follows:

{
y1 = w−w∗

y2 = v−w(x̃sinθ − ỹcosθ )− v∗ cos θ̃
(15.31)

In many works about the stabilization of nonholonomic systems, the derived control
laws are of discontinuous type and may lead to discontinuous velocities in practice.
This difficulty can be overcome by taking into account the dynamic model of the
mobile robot such that the discontinuous part of the control is embedded in the
higher time derivatives of the mechanical parts. This remains to add integrators in
the model as follows: ⎧

⎨
⎩

ż = Y T JX + P
Ẋ = Y
Ẏ = U

(15.32)

where U ∈R
2 is the new control input.

Due to the presence of uncertainties, it is of practical interest to study the follow-
ing uncertain nonlinear system:

ż = Y T JX +π1(Ξ , t) (15.33)

Ẋ = Y +π2(Ξ , t) (15.34)

Ẏ = U +π3(Ξ , t) (15.35)
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where the state vector is Ξ = [z,XT ,Y T ]T ∈ R
5 and the control input is U ∈ R

2.
πi(Ξ ,t) represent parametric uncertainties or disturbances and are assumed to be
sufficiently smooth functions such that:

‖πi(Ξ , t)‖ ≤ Πi(Ξ), i = 1,2,3
‖π̇i(Ξ , t)‖ ≤ Π̄i(Ξ), i = 1,2

(15.36)

where Πi and Π̄i are known nonnegative functions. It is worth stressing, that if
π1(Ξ ,t) 	= 0 and π2(Ξ ,t) 	= 0, the disturbance is not satisfying the well-known
matching condition and is not assumed to be vanishing.

The system (15.33)-(15.35), if undisturbed, can be seen as the interconnection of
two subsystems: a 4th order one represented by a chain of two 2−dimensional inte-
grators with drift terms, and a scalar nonlinear system whose dynamics is entirely
driven by the subsystem (15.33).

Remark 15.9. It can be noticed that it is essential to stabilize z first. Indeed, if
π1(Ξ ,t) = 0, once X and Y are stabilized, one can no longer set the z−dynamics.

The problems considered is to find stabilizing control laws for (15.33)-(15.35) in
spite of the presence of uncertainties.

Since z has to be stabilized first, it appears interesting to set the following sliding
variable [σ1,σ2]

T ∈R
2 as:

σ1 = ż+ k1z
σ2 = ψ̇ + k2ψ

(15.37)

with

ψ =
1
2

XT X −ϕ(z)− 1
2
ε (15.38)

k1,k2 are strictly positive constants, 0< ε � 1 and ϕ : R→R>0 is a twice differen-
tiable positive definite function. Applying a second order sliding mode controller as
defined in Section 17.4, the practical stabilization of the tracking errors is ensured.
The details of these results can be found in [41, 42]).

15.3.5.2 Tracking Problem with Coordination

Here, it is assumed that a specific geometric shape of the swarm of robots has to be
kept. For this, a control scheme based on a leader-follower approach is developed
and the following model, that take into account the independent actuators of the
wheels and the uncertainties, is considered (see [43]):

⎡
⎣

ẍn

ÿn

θ̈n

⎤
⎦ =

⎡
⎣
−ẏnθ̇n

ẋnθ̇n

0

⎤
⎦+

⎡
⎣

cosθn 0
sinθn 0

0 1

⎤
⎦(I2 +Δn)Tn +πn (15.39)

where

• the control input is Tn =
[

Fn
mn
, τn

Jn

]T
. mn and Jn are the known nominal robot mass

and moment of inertia. Fn and τn denotes the force and the torque, respectively.
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• I2 denotes the 2×2 identity matrix,
• πn stands for the disturbances (slipping or skidding effects),

• Δn =
[
εn 0
0 ε ′n

]
where εn and ε ′n represents variations on the mass and the inertia

of the robot, respectively.

To achieve the coordinated tracking control without using GPS systems for each
robot, a decentralized strategy based on a leader-follower approach is proposed.
Figure 15.7 presents the motion on a plane for two neighboring unicycles. Let lik ∈
R>0 be the relative distance between Ai and Ak:

lik =
√

(xi − xk −d cosθk)2 +(yi− yk −d sinθk)2 (15.40)

where d is the distance between Ck and the front of the robot. The coordinates (xk +
d cosθk,yk +d sinθk) denote the position of the camera of Ak. Let ψik ∈ (−π ,π ] be
the relative bearing defined as:

ψik = π+ ζik −θi (15.41)

and ζik = arctan yi−yk−d sinθk
xi−xk−d cosθk

.

Robot i

Robot k

ψik

lik

θi

θk

d

−→
j

−→
iO

ζik

Fig. 15.7 Leader-follower pair.
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Remark 15.10. If each robot is equipped with a pan-controlled monochromatic cam-
era, the relative coordinates lik and ψik can be estimated from a single image [44].

Definition 15.5. (Formation geometry) The required geometry of the formation is
given by:

• η∗
1 = (x∗1,y

∗
1,θ ∗1 ) being tracked by the formation’s leader2

• the desired relative distance l∗ik and angle ψ∗
ik between Ai and Ak. These desired

time-varying parameters are computed from the optimal planned trajectories us-
ing equations (15.40)-(15.41).

Let hik = [lik,ψik]
T be the relative configuration of Ak with respect to Ai. Differen-

tiating twice lik and ψik yields:

ḧik =ϒ (I2 +Δk)Tk + F + P (15.42)

where

• ϒ =

[
cosϕik d sinϕik
− sinϕik

lik
d cosϕik

lik

]
is a non-singular matrix,

• ϕik = ψik +θik,
• θik = θi −θk,
• P reflects the disturbances and the parameter variations.

The control objective is to design a robust control law Tk that allows Ak to track its
leader Ai with a desired relative configuration h∗ik =

[
l∗ik,ψ

∗
ik

]T .
Define the tracking error vector eik ∈ R

4 as:

eik =
[
eT

ik,1,e
T
ik,2

]T
(15.43)

where eik,1 and eik,2 ∈ R
2 are defined by:

{
eik,1 = h∗ik −hik

eik,2 = ḣ∗ik − ḣik
(15.44)

The tracking error dynamics is expressed as:

ėik =
[

eik,2

ḧ∗ik −ϒ (I2 +Δk)Tk −F −P

]
(15.45)

Assumption 15.5. It is assumed that each robot knows:

• its relative position [lik,ψik],
• its relative orientation θik.

2 For a unicycle type mobile robot, a saturated robust controller has been proposed in [45]
to asymptotically stabilize the tracking errors x∗1 − x1, y∗1 − y1 and θ ∗1 −θ1 in spite of the
uncertainties.
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Define the sliding variable as follows:

σk =
[
σ1,k
σ2,k

]
= eik,1 (15.46)

The control objective is to generate a second order SMC on the suitable sliding
surface σk for each follower, that is to say to constrain the system trajectories to
evolve on:

{eik : σk = σ̇k = 0} .
The second time derivative of σk yields:

σ̈k = ḧ∗ik −ϒ (I2 +Δk)Tk −F −P (15.47)

Define the following state feedback control:

Tk =−ϒ−1
([

v1,k

v2,k

]
− ḧ∗ik + F

)
(15.48)

such that one gets:
σ̈k =

(
I2 +ϒΔkϒ−1)τk −P (15.49)

where
P = P +ϒΔkϒ−1ḧ∗ik

Assumption 15.6. It is supposed that there are an a priori known nonlinear function
ρ(eik) and an a priori known constant 1≥α > 0 such that the parameter variations
satisfy the following inequalities:

{ ‖ P ‖ ≤ ρ(eik)
‖ϒΔkϒ−1 ‖ ≤ 1−α (15.50)

Apply the proposed sliding mode controller defined in Section 17.4:
⎧
⎪⎪⎨
⎪⎪⎩

τk = τnom,k + τdisc,k

żaux = −τnom,k

τnom,k = −k1,k sign(σk) |σk|ν1,k − k2,k sign(σ̇k) |σ̇k|ν2,k

τdisc,k = −ϒ sign(σ̇k + zaux)

where the term τnom is obtained via Theorem 15.1 and the gainϒ is tuned in order to
satisfy condition (15.13). Then, the swarm of the robots is asymptotically stabilized
to the desired formation. The details of these results can be found in [43].

15.3.6 Experimental Results

The experiments are performed with a team of three nonholonomic mobile robots
which are two wheels differentially driven robots as shown in Fig. 15.8. The geo-
metrical shape of each robot An is included in a circle of radius Rn = 0.2m. The
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Fig. 15.8 The Pekee nonholonomic mobile robots.

robot Pekee is equipped with 15 infra-red telemeters sensors, two encoders, a WiFi
wireless cartridge and a miniature color vision camera C-Cam8.

A limitation of the embedded vision camera is that its resolution quickly de-
creases with the distance of the objects. Indeed, the range of this sensor is about
1.5m. The localization and mapping method reported in [46] are applied.

We also consider communication constraints given by:
{ ‖p1(t)− p2(t)‖ ≤ dcom,
‖p2(t)− p3(t)‖ ≤ dcom,

(15.51)

where dcom = 2.5m is the broadcasting range of each robot. The associated commu-
nication graph is depicted in Fig. 15.9.

R1 R3R2

Fig. 15.9 Communication graph for the experiment.

The parameters used in the experiment for the decentralized receding horizon
motion planner are given in Table 15.1. At the beginning, the geometrical shape of
the group is triangular. The task is to drive these robots to form a desired triangu-
lar shape while avoiding collisions and maintaining the communication constraints.

Table 15.1 Parameters of the receding horizon planners.

Tp 2s
Tc 0.5s
an 1s
bn 2



15 Higher Order Sliding Modes in Collaborative Robotics 433

Due to the existence of obstacles, robots must pass through narrow ways and con-
straint each other in the team. In order to track the optimal planned trajectory, each
robot uses the robust closed-loop controller described in the Section Path Track-
ing. Fig. 15.10 shows six snapshots of our experiment. During the motion, each
robot computes its optimal planned trajectory using local exchanged information.
Fig. 15.10(a) depicts the three robots at the beginning. In Fig. 15.10(a)-(f), they
approach their goal positions to form the desired geometrical shape while avoid-
ing collision and maintaining communication links. This experiment demonstrates
that the proposed receding horizon planner manages to accomplish the desired
objectives.

Another experiment using 7 Miabot robots (see Fig. 15.11) has been real-
ized. The Miabot robot is produced by Merlin Robotics System. This 8cm*8cm

(a) At the beginning. (b) After 10s.

(c) After 15s. (d) After 20s.

(e) After 25s. (f) At the end.

Fig. 15.10 Three Pekee mobile robots flocking from initial configurations to a desired region,
avoiding collisions and maintaining communication constraints.



434 M. Defoort et al.

Fig. 15.11 The Miabot nonholonomic mobile robots.

robot is nonholonomic, has two encoder sensors for the position and a bluetooth
connection with the PC. Each robot has a range vision of 0.8m. The path planning
horizon sampling time is Tc = 250 ms, the maximum linear speed is unmax =
0.1m.s−1 the maximum acceleration is anmax = 0.2m.s−2, and the maximum angu-
lar speed is wnmax = π

2 rad.s−1. The minimum distance between each robot and the
obstacles, and the distance between each robot and its neighbors are d(An,Omn)>
0.2m, d(An,Ap) > 0.2m In this experiment, the path planning algorithm is associ-
ated with a high level algorithm, which guarantees that robots can navigate without
collision in an environment with obstacles which have a general shape. One can
refer to [47] for more details.

15.4 Conclusion

During the Robocoop project, several tools have been proposed in order to perform
the autonomous navigation of a swarm of mobiles robots. It is important to plan
in real time a trajectory for each robot that takes into account the obstacles in the
robot neighborhood, the physical robot limitations (maximal acceleration, maximal
velocities), the robot model (kinematic or dynamic), the broadcasting range, some
optimal constraints such as time or energy. The proposed decentralized path plan-
ning algorithm was considered as a constrained optimal problem with a receding
horizon. The use of the flatness property of the robot allows the use of this algorithm
for a large class of robots. Higher order sliding modes based control algorithms have
also been designed such that each robot tracks accurately and robustly the desired
optimal trajectory. All the proposed algorithms were implemented on several mobile
robot benchmarks.

Current research is concerned with robot perception and localization which are
some of the most important challenges for autonomous navigation of swarms.
Strategies are also studied in order to increase the efficiency of the swarm (for in-
stance, any robot can help its neighbors if they are in a critical situation).
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Chapter 16
Two Applications of Sliding Mode Control in
Energy Generation and Power Electronics

D. Biel, A. Dòria-Cerezo, E. Fossas, R.S. Muñoz-Aguilar, and R. Ramos-Lara

16.1 Introduction

Power electronics is concerned with electromechanical systems that carry power. In
a wide sense, power electronics includes the analysis, synthesis and implementation
of electrical motors and generators, as well as power converters. Several controllers
designed in the framework of Sliding Mode can be found in specialized literature;
in particular it is worth to quote the book of V.I. Utkin, J. Guldner and J. Shi [8]
where several motors, generators and power converters were studied in the SMC
domain. The authors took benefit of these systems to explain the advantages of SM
as a robust control methodology and to show most of its applications in dynami-
cal systems: as estimators, observers, . . . This chapter is also devoted to electrical
generators and power converters stressing implementation issues. We want to em-
phasize implementation procedures based on theory in front of the trial and error,
a tuning method widely used even at universities. On the other way around, we are
also interested in theoretical problems appeared when implementing algorithms.

The chapter is organized in two sections. In the first one, a Wound Rotor Syn-
chronous Machine is analysed as an isolated energy generator. Three SMC control
schemes are considered. The first sliding surface is a cylinder and for the second
and third cases two control loops are considered: in both cases the sliding surface
for the inner loop is a plane and the outer loop contains an integral term which is

D. Biel · R. Ramos-Lara
Institute of Industrial and Control Engineering (IOC) and Dpt. of Electronics
e-mail: {biel,lara}@eel.upc.edu
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implemented as a standard PI in the second case and through a dynamics extension
in the third one. In all the three cases, stability of the equilibrium points were anal-
ysed and SMC were derived to guarantee local fulfilment of the reaching condition.
Simulations were used to select which of the designed controllers was the most suit-
able to be implemented. Finally, the robustness of the closed loop system is experi-
mentally shown. The second section is devoted to a problem that comes from SMC
implementation in power converters. Power converters, because its topology on/off,
are particularly suitable to be controlled using SM. However, as it is widely reported,
the implementation of SMC in actual plants produces chattering. Even in most of
the cases this chattering can be highly reduced by several procedures, none of them
is appropriate for switched systems. Recently, V. Utkin and co-workers proposed a
new methodology in [5] based on interleaving techniques that are very common in
power electronics. A Field Parallel Gate Arrays (FPGA) based implementation of
this new methodology is reported here. Utkin and co-workers methodology depends
on specific gains that are parameter dependent, we used FPGA to make a robust
implementation of that methodology. A section of conclusions ends the chapter.

16.2 Sliding Mode Control of a Wound Rotor Synchronous
Generator

Electrical energy is mainly generated interconnecting electric generators driven by
prime-movers which are basically wind, hydro, steam turbines or internal combus-
tion engines. The standard power systems are composed mainly by Wound Rotor
Synchronous Generators (WRSG) connected in parallel setting up a theoretical in-
finite bus. Hence, this kind of machine uses to be studied connected to an infinite
bus called “power grid” [1]. Thus, the own grid determines the stator voltage and
frequency, while the rotor voltage helps to improve the power factor and to compen-
sate the reactive power at the connection point. A significantly different scenario
is when the WRSG is isolated from the grid. For this insulated configuration, the
mechanical speed determines the frequency, and the rotor voltage is used to set the
stator voltage amplitude.

Sliding Mode Control has been proposed as a suitable method for controlling
electrical machines [8]. In this Section we present a set of SMC for a stand-alone
WRSG feeding a resistive load. In the first case, a sliding surface directly based
on the error of the stator voltage amplitude is intended [7]. The switching function
results in a polynomial of degree 2 and the equivalent control can not be defined in
the whole sliding surface. A second and third switching surfaces consist in the error
in the d-component of the stator voltage [4] and an outer I and PI loops respectively.

All the controllers are robust to variations in machine and load parameters. Local
stability of the closed loop dynamics is proved invoking small-signal methods. It
worth to mention the simplicity of the proposed controllers, they only require volt-
age measurements and are easily implementable. To conclude, some comparative
simulations allow to determine the benefits and the handicaps of each controller
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even that, in general, the first and the third sliding controllers provide very satisfac-
tory responses. Experimental results are included.

16.2.1 System Description

Figure 16.1 shows the proposed scenario: a primary mover drags a WRSG, which
acts as a generator to fed an isolated load. ωm is the mechanical speed, vs, vF , is
and iF are the stator and field voltages and currents. On the one hand the system
is assumed to be in an isolated connection and the mechanical speed externally
regulated by the primary mover. On the other hand, the voltage amplitude must be
regulated through the rotor field voltage.

WRSG
LoadICE

+-

is
ωm

vs

iF

vF

Fig. 16.1 Scheme of a stand-alone wound rotor synchronous generator.

The electrical part of the WRSG can be described, using the dq coordinates [3],
as

L
dx
dt

=

⎛
⎝

−Rs ωLs 0
−ωLs −Rs −ωLm

0 0 −RF

⎞
⎠x +

⎛
⎝

vd

vq

vF

⎞
⎠ (16.1)

where

L =

⎛
⎝

Ls 0 Lm

0 Ls 0
Lm 0 LF

⎞
⎠

is the inductance matrix, xT = (id , iq, iF)∈R
3 are the dq-stator and field currents, Rs

and RF are the stator and field resistances, Ls, Lm and LF are the stator, magnetizing
and field inductances, ω is the electrical speed (ω = npωm, where np is the number
of pole pairs), vd , vq are the dq-stator voltages and vF is the field voltage which will
be used as a control input.

In order to have the complete model of a WRSG connected to a resistive load RL,
let vT

L = (vLd ,vLq)∈R
2 and iTL = (iLd , iLq)∈R

2 be the dq load voltages and currents,
related by (

vLd

vLq

)
= RL

(
iLd

iLq

)
, (16.2)
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and RL, the resistance value. According to the interconnection rules, vs = vL, iL =
−is, hence from (16.1) and (16.2), the full system can be written as

L
dx
dt

= Ax + BvF, (16.3)

where L is the inductance matrix defined before,

A =

⎛
⎝
−(Rs + RL) ωLs 0
−ωLs −(Rs + RL) −ωLm

0 0 −RF

⎞
⎠ and B =

⎛
⎝

0
0
1

⎞
⎠ .

The equilibrium points parametrized by the control input vF result in a straight line
defined by

x∗T (vF) =
[
−ω2LsLm

RF |Zs|2 ,−
ωLm(Rs + RL)

RF |Zs|2 ,
1

RF

]
vF (16.4)

where |Zs|2 = ω2L2
s +(Rs + RL)2.

It is supposed that the synchronous machine feeds the load with a nominal sta-
tor voltage amplitude and frequency. The stator frequency, directly given by the
mechanical speed, is assumed to be externally regulated; the stator voltage ampli-

tude Vs =
√

v2
d + v2

q = RL

√
i2d + i2q is the control objective and the control input is

the field voltage vF . Note that Vs = Vre f defines a cylinder in the state space then,
the desired equilibrium points are the intersection of the straight line (16.4) and
this cylinder. Using polar coordinates (id , iq) = Is · (cosδ ,sinδ ) where, Is = Vs

RL
, it

is easy to obtain i∗d = Vre f
RL

cosδ ∗, i∗q = Vre f
RL

sinδ ∗ and i∗F = −Vre f
RL

Ls
Lm cosδ ∗ . Hence,

δ ∗ = arctan((Rs + RL)/(ωLs)). Actually, there are two equilibrium points δ ∗, given
by the two values of the arctan function. Furthermore, the value of the field voltage
in equilibria is v∗F =± [(RF Ls)/(RLLm cosδ ∗)]Vre f .

16.2.2 Direct Sliding Mode Controller

A SMC based on the error in the stator voltage amplitude is synthesized here. It
will result in an easily implementable and reduced cost single control loop. The
switching function s(x) is defined as follows:

s(x) = V 2
s −V 2

re f = R2
L(i

2
d + i2q)−V 2

re f . (16.5)

The equivalent control results in

ueq =−
(
∂ s
∂x

L−1B

)−1 ∂ s
∂x

L−1Ax. (16.6)

By replacing matrices and partial derivatives in (16.6), we have
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ueq = RFiF − LF

Lm
(Rs + RL)id +ωLmiq− μ

Ls

(
(Rs + RL)

Lm
iq +ω iF

)
iq
id
, (16.7)

where μ = LsLF −L2
m is always positive. In the three dimensional space (id , iq, iF),

the sliding surface is a cylinder. Sliding motion can be expected only in the cylinder
subset defined by id 	= 0 where transversallity condition holds. The smaller the id ,
the higher the equivalent control. Therefore, a closed subset of the sliding domain
must be taken to obtain a bounded control effort ueq.

Adding and subtracting Bueq to s · ṡ = s ∂ s
∂x L−1 (Ax + BvF) and thanks to de defi-

nition of ueq it can be proved that the control action defined by

vF = ueq− k · sign

(
s · ∂ s

∂x
·L−1B

)
, (16.8)

with k > 0, fulfils the stability condition s · ṡ < 0. Evaluating
(

s · ∂ s
∂x ·L−1B

)
in

(16.8) and taking into account that 2R2
LLm

LsLF−L2
m
> 0, (16.8) can be simplified as

vF = ueq − k sign(−s · id). The control action vF is implemented using a DC-DC
power converter which commutes between two discrete signal values, −VDC and
VDC. Hence, the actual rotor voltage applied is

vF =
{

VDC if s id < 0
−VDC if s id > 0

(16.9)

Furthermore, since voltages are accessible variables and are used to compute the
switching function, the switching policy in (16.9) is given in voltage terms, i.e.
vF = sign(s · vd) ·VDC. Then, the closed loop shows sliding modes on the subset
of s = 0 defined by the transversallity condition and −VDC < ueq <VDC. Moreover,
it is robust to plant parameter and load variations. The proposed control scheme
is depicted in Figure 16.2. θ is the rotor position (required to compute the dq-
transformation) and vabc are the three-phase stator voltages. A hysteresis block is
added to limit the switching frequency.

WRSG
+

−

abc−dq 

 

V 2
s

V 2
re f

vabc

vd

vq

v2
d + v2

q

vF−s

θ

Fig. 16.2 Control scheme for a stand-alone wound rotor synchronous generator: Direct SMC

The subset of the cylinder where the transversallity condition holds has two con-
nected components and there is a symmetry between the dynamics on each compo-
nent. Taking (iq, iF) as local variables the ISD is given by
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diq
dt

= −ω
√

Y 2 − i2q−aiq−ω
a
c

iF , (16.10)

diF
dt

= − 1√
Y 2 − i2q

(
cY 2 +ω iqiF

)
. (16.11)

where a = Rs+RL
Ls

, c = Rs+RL
Lm

and Y 2 =
V 2

re f

R2
L

are positive. There is a unique equilibrium

point, (i∗q, i∗F), in each connected component at

(i∗d , i
∗
F) =

(
Y sinδ ∗,−cY

(
cosδ ∗

a
+

sinδ ∗

ω

))
.

that is locally asymptotically stable. Figure 16.3 shows the trajectory through
(iq(0), iF(0)) = (0,0) in the phase portrait of ISD defined in the subset {(id , iq, iF)∈
R

3 | id = +
√

((V 2
re f −R2

L · i2q)/R2
L) and −Vre f < iq ·RL < Vre f }. The parameter val-

ues are those in Subsections 16.2.5 and 16.2.6 where numerical simulations and ex-
periments are performed. The equilibrium point is i∗q =−2.41A and i∗F = 10.06A.1

Fig. 16.3 Ideal Sliding Dynamics: phase portrait and trajectory with initial condition iq(0) =
0 and iF(0) = 0.

Notice the local stability of the equilibrium point. However, trajectories starting

close to iq = −Vre f
RL

and iF >
Vre f (Rs+RL)

ωLmRL
, and to iq = Vre f

RL
and iF < −Vre f (Rs+RL)

ωLmRL
escape from the cylinder.

1 In this analysis, the rotor parameters are referred to the stator; in the real application, the
rotor current applied to the machine at the equilibrium point becomes, 2.515A.
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16.2.3 Sliding Mode Control with an Outer-PI Loop

Figure 16.4 shows a control algorithm based on two loops; a SMC inner-loop and a
PI outer-loop which provides vre f

d , the reference of the d-component stator voltage
amplitude to reach Vre f . Roughly speaking, when the system is faced with a per-
turbation, the PI loop places the sliding surface in the appropriate regulation point.

WRSG

+

−

PI
+

−

abc−dq 

vF

vd

vq

svre f
d

Vs

Vre f

θ

vabc

√
v2

d + v2
q

Fig. 16.4 Control scheme for a wound rotor synchronous generator: SMC with an outer-PI
loop.

The whole stability proof is based on the assumption of a fast inner-loop, with
respect to the PI dynamics. The switching surface, s(x) = 0 is given by

s(x) = vd(x)− vre f
d = RL · id − vre f

d (16.12)

and vre f
d is defined by the PI outer-loop controller. s(x) = 0 defines the plane id =

vre f
d /RL. The equivalent control, ueq results in

ueq =
1

Lm
(−LF(Rs + RL)id +ωLsLF iq + LmRF iF). (16.13)

There is sliding motion on s(x) = 0 provided that the s · ds
dt < 0 holds. From (16.3)

s · ds
dt

= s · ∂ s
∂x

L−1 · (Ax + BvF)< 0 (16.14)

which, thanks to the definition of ueq, can be written as−s·(RL Lm))·(vF −ueq)/μ <
0. Finally, as RL ,Lm and μ are positive, the reachability condition yields s · (ueq −
vF) < 0. Using vF = ±VDC, the switching policy vF = VDCsign(s) provides sliding
modes in the subset of s = 0 where −VDC < ueq <VDC. The ISD results in the stable
linear system

diq
dt

= −Rs + RL

Ls
iq− ωLm

Ls
iF − ω

RL
vre f

d (16.15)

diF
dt

=
ωLs

Lm
iq− Rs + RL

LmRL
vre f

d . (16.16)
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The outer-loop consists in a simple PI controller. Considering a fast inner-loop, the
closed-loop system reduces to (16.15) and (16.16), where vre f

d and Vs are the control

input and the output respectively. The linearisation of Vs around (vre f
d , i∗q) so that

Vre f =
√

(vre f∗
d )2 + R2

Li∗2
q results in

Vs �Vre f +
vre f∗

d

Vre f
(vre f

d − vre f∗
d )+

R2
Li∗q

Vre f
(iq− i∗q) (16.17)

where vre f∗
d = Vre f cosδ ∗. Additionally, equation (16.17) can be rewritten as Vs �

vre f
d cosδ ∗ + RLiq sinδ ∗ which is a function of (vre f

d , iq) but it is independent of the
voltage component of the point around which function Vs is linearised. The transfer
function2 G(s) = Vs(s)/vre f

d (s) and the closed loop transfer function W (s) result in

G(s) =
cos2 δ ∗s2 +ω2

cosδ ∗s2 +ω sinδ ∗s+ω2 cosδ ∗
, W (s) =

c3s3 + c2s2 + c1s+ c0

b3s3 + b2s2 + b1s+ b0
(16.18)

where c3 = kp cos2 δ ∗, c2 = ki cos2 δ ∗, c1 = kpω2, c0 = kiω2, b3 = cosδ ∗(kp cosδ ∗+
1), b2 = (ω sinδ ∗+ ki cos2 δ ∗), b1 = ω2(kp + cosδ ∗) and b0 = kiω2. Stability con-
ditions for the PI controller can be obtained through the Routh-Hurwitz criterion.
Namely, kp >−1/cosδ ∗, 0< ki < ω · (kp sinδ ∗ + cosδ ∗)/(cosδ ∗ sinδ ∗).

16.2.4 Dynamic Sliding Mode Controller

The third SMC is defined in a dynamic extension of system (16.3). The error dy-
namics in the d-component of the stator voltage is extended by an integral term. The
switching function is obtained by adding the error in the d-component of the sta-
tor voltage and the integral of this error. This results in a robust controller which
block diagram is shown in Figure 16.5. Let the dynamic extension given by a
new variable z defined by ż = V 2

s −V 2
re f . Then, the proposed switching surface is

sz(x) = vd − vre f
d + k · z where vre f

d = Vre f cos δ̃ ∗ is the vd nominal value3 for a given
Vre f . The equivalent control uzeq = ueq + μ

LmRL
k · ż is equal to the former equiva-

lent control plus the error in the d-component of the stator voltage. Tacking into
account that RL,Lm,μ > 0 and proceeding as usual, reachability condition yields
sz(uzeq−vF)< 0 and, consequently, the switching control policy vF = VDC ·sign(sz)
guaranties sliding motion on the subset of sz = 0 defined by −VDC < uzeq <VDC.

Let us define ξ = vre f
d − kz, then the ideal sliding dynamics can be written as

2 This transfer function takes the form G(s) = 1 + Q(s). Hence, a jump in vre f
d results in a

jump in a Vs. But this only occurs presuming ideal sliding dynamics. In a real application,
VDC limitations and the own dynamics of the inner loop will filter the output signal Vs.

3 The tilde denotes that this value depends on RL, Rs and Ls estimations.
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WRSG
+

−+

−

++

abc−dq 

vF

vd

z

sz

vre f
dV 2

s

V 2
re f ∫

k

vq

θ

vabc

v2
d + v2

q

Fig. 16.5 Control scheme for a wound rotor synchronous generator: Direct SMC.

diq
dt

= −Rs + RL

Ls
iq− ωLm

Ls
iF − ω

RL
ξ (16.19)

diF
dt

=
kLsRL

μLm
i2q +

ωLs

Lm
iq +

kLs

μLmRL
ξ 2− Rs + RL

LmRL
ξ − kLs

μLmRLRL
V 2

re f (16.20)

dξ
dt

= −kR2
L

μ
i2q−

k
μ
ξ 2 +

k
μ

V 2
re f . (16.21)

Local stability can be analysed by means of the small signal model around the equi-
librium point.

16.2.5 Simulations

The controllers presented above ensure regulation of the stator voltage amplitude of
a WRSG to a given reference. The three control algorithms were simulated using
the same conditions (parameters values, initial conditions, numerical methods...) in
order to select the candidate to be tested in the experimental platform.

The parameters of the WRSG correspond to the machine used in the experimen-
tal results (see next subsection). Mechanical speed is set to ωm = 1500rpm and
VDC = 35V. Initial conditions are Vre f = 200

√
2V with a resistive load RL = 120Ω .

Simulation tests show the response of the closed loop system under a load change
to RL = 64Ω at t = 0.05s. The controller gains are: kp = 1000, ki = 100 (for the
SMC+PI controller) and k = 0.2 (for the Dynamic SMC scheme). Simulations have
been performed using a variable step integration method. The ON/OFF controller
was simulated by means of a 10kHz sampling frequency zero order holder.

Figure 16.6 shows the three-phase stator voltages and the switching function for
each control algorithm. Notice that the Dynamic SMC approach, has a slower re-
sponse than the other controllers. This can also be noticed in Figure 16.7, where the
stator voltage amplitude is plotted. Additional plots in Figure 16.8 help to discard
the Dynamic SMC, and suggest that both the Direct SMC and the SMC+PI schemes
are good candidates to be experimentally tested. The former is implemented in the
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Fig. 16.6 Comparative simulation: three-phase stator voltages and switching function for a
change from one half to full load value.
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Fig. 16.7 Comparative simulation: Stator voltage amplitude for a change from one half to
full load value.

next subsection because it performs similarly to the SMC+PI controller but the im-
plementation is easier.
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Fig. 16.8 Comparative simulation: stator and field currents, and the field voltage applied for
a change from one half to full load value.

16.2.6 Experimental Results

The Direct Sliding Mode Controller has been tested in a real (2.4kVA, 4 poles three-
phase) WRSG. The nominal characteristics and the WRSG parameters are shown in
Table 16.14, respectively.

Table 16.1 WRSG Characteristics and parameters.

Motor Characteristics Parameters
f = 50Hz n = 1500rpm P = 2.4kVA Rs = 3.06Ω Ls = 0.48H RF = 39.65Ω
3ph Δ /Y VF = 100V Lm = 0.31H LF = 3.87H n = 4
IF = 2.4A Vs = 220/380V Is = 6.3/3.65A R′

F = 2.48Ω L′F = 0.24H

In this case, the WRSG is dragged by a DC motor which emulates the primary
mover proposed in subsection 16.2.1. This machine, employed to provide a con-
stant speed of 1500rpm to the WRSG (which corresponds to a frequency of 50Hz),
is a 3kW machine with the 4Q2 commercial speed controller from Control Tech-
niques Drives Ltd. The power converter connected to the field circuit is a full bridge
DC/DC converter that can provide±VDC voltages. The VDC voltage is obtained from
the power grid with a diode rectifier, a L filter and a capacitor DC bus. For the experi-
mental tests the bus voltage is set to VDC = 137.5V. The resistive load is composed of

4 The apostrophe signal indicates that the parameters are referred from the rotor to the stator,
and n is the transformation relationship.
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two interconnected banks, with a half or full load values (equivalent to RL = 128Ω
and RL = 64Ω for the nominal voltage).

The control algorithm is programmed into a Texas Instruments floating point
150Mhz Digital Signal Processor (DSP TMS 320F28335). The DSP has 16 ADC
channels with 12-bit resolution, with a maximum conversion speed of 12.5MSPS,
6 PWM and 6 HRPWM outputs and 88 GPIO pins which can be used to commu-
nication purposes. Three phase stator voltages are measured using two differential
sensors and assuming a balanced load. Position is measured as well in order to com-
pute the dq transformation. These measures are acquired through a DSP which is
programmed from a personal computer. Real Time Workshop C code generation
from Matlab/Simulink is used in order to simplify the code implementation to the
DSP without needing a C code editor. Also Texas Target support package is used
to configure the ADC, PWM, SPI, GPIO ports and interruptions. The sliding mode
controller has been implemented so that a maximum 10kHz switching frequency is
allowed.

In a first experiment, the reference line voltage is set to 380Vrms (which corre-
sponds to Vs = 220

√
2V), and the load is suddenly increased from one half to the

full load value. Results for the three-phase stator voltages and switching function
are shown in Figure 9(a). A zero error in the stator voltage amplitude with a fast
time response is achieved. The controller needs less than one stator voltage cycle to
recover the reference (details are zoomed at the bottom of Figure 9(a)). Actually, the
switching function oscillates around zero but the resulting chattering phenomenon
is not reflected in the experimental test due to the filter effect of the digital to ana-
log converter. Simulation results show that chattering is less than 2-3% of the sta-
tor voltage amplitude. The stator voltage amplitude, reference voltage, actual and
equivalent controls are depicted in Figure 9(b). Note that, as it was expected from
the simulations, experimental results reveal a good performance.

(a) (b)

Fig. 16.9 Experimental results: load change from one half to full load value. (a) Three-phase
stator voltages and switching function for a change from one half to full load value. (b) Stator
voltage amplitude and its reference and, switching control police, and its filtered value, for a
change from half to full load value.
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(a) (b)

Fig. 16.10 Experimental results: Vre f changes from 250Vrms to 380Vrms (a) Three-phase
stator voltages and switching function. (b) Switching control policy, and its filtered value.

In the second experiment, a step change in the stator voltage amplitude reference
is performed. From an initial line value of 250Vrms, the reference is set to 380Vrms.
In this case, the load is kept at its half load value (RL = 128Ω ). Again, experimental
tests (Figures 10(a) and 10(b)) show good stator voltage regulation. The field voltage
and the switch driver signal and its filtered value are shown in Figure 10(b). It is
interesting to note that sliding mode is lost for a short period when the reference
voltage changes. However, it recovers quickly, and the equivalent control returns to
the operation strip.

The third experiment shows that the controller, firstly designed to be robust to
resistive loads, is also robust to inductive-resistive ones. The reference line voltage is
set to 380Vrms. The initial load is the half load value used in the previous tests and,
suddenly, a 736W induction motor is connected. The three phase stator voltages and
the switching action are depicted in Figure 11(a). Stator voltage regulation is lost
while sliding motion is not achieved. In the meantime the actual control saturates.
The stator voltage amplitude and the reference are shown in Figure 11(b). It is worth
noticing again the good performance of the closed loop system.

16.3 Implementing ON/OFF Controllers by Field Parallel Gate
Arrays (FPGA)

Sliding Mode Control stands out for its properties of robustness in front of parameter
variations and external disturbances. It has been successfully applied in power elec-
tronics however, the ripple (“chattering”) caused by actual implementations consti-
tutes its main drawback. Several solutions to suppress the aforementioned chattering
can be found in technical literature but, unfortunately, they can not be applied to
switched systems. Recently, Hoon Lee et al. proposed a new methodology in [5] to
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(a) (b)

Fig. 16.11 Experimental results: load change from one half load value to IM connection
(a) Three-phase stator voltages and switching function. (b) Stator voltage amplitude and its
reference, and, switching control police, and its filtered value.

reduce chattering in power converters. This section is devoted to a specific imple-
mentation of that methodology. The on/off control action is implemented through
Field Parallel Gate Arrays (FPGA). FPGA allows to compute the on/off switching
frequency which is used to tune an integral gain, this yielding the closed loop system
robust in front of line and load perturbations.

16.3.1 Chattering Reduction

Let us consider a system which is in charge of regulating an output y by means of a
relay as in Figure 16.12, where the Phase-1 block corresponds to a relative degree
1, first order transfer function with time-constant τ and canonical gain k0. Thus,

ds
dt

=
dyre f

dt
− dy

dt
= a−Msign(s) (16.22)

where a = a(t) = dyre f
dt + y

τ and M = k0
τ . Note that there is sliding motion on s =

0 provided that |a| < M. However, since the switching frequency is finite, actual
trajectories do not slide, they evolve on a sawtooth around the switching surface
producing chattering.

Several solutions to reduce the chattering were reported in the literature. In [8]
a solution to totally eliminate the chattering utilize observers. Another way to de-
crease the chattering without designing any asymptotic observers is to implement
state-dependent switching gain for discontinuous control [6]. However, for SMC of
power converter systems with “on/off” as the only admissible switching operation
mode, any of the above methodologies cannot be applicable, and a natural way to re-
duce chattering is increasing switching frequency. This is not always possible due to
the limitation of switching frequency or losses in power converters. New results by
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Hoon Lee et al. in [5] show that taking benefit of interleaving processes, chattering
can be reduced. The key points of that new procedure are:

• a multi-phase inner loop instead of a 1-phase one,
• modifying the reference appropriately, i.e. taking as a new reference yre f0 = yre f

m ,
• some properties of the Fourier expansions.

Two structures named phase interconnected and phase master-slave systems were
described in [5]. The underlying theory is summarized here for the 2-phase master-
slave model in Figure 16.13. As in the single phase case,

yre f ys+
− v Phase 1

Fig. 16.12 Inner loop in a 1-phase system.

yre f0 s1

k
s

s∗2

v1

v2

+

+

−

−

Phase 1

Phase 2

Fig. 16.13 A 2-phase master-slave system.

ds1

dt
= a−Msign(s1) (16.23)

ds∗2
dt

= kM [sign(s1)− sign(s∗2)] (16.24)

where now

s1 = yre f0 − y1 (16.25)

s∗2 = k
∫

M [sign(s1)− sign(s∗2)]dt, (16.26)

presumed that the relay gains and the dynamics in the two phases are identical.
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Δ

T1 T2

T

(a) Periodic s1 dynamics.

Δ
2

Δ
2

− Δ
2

− Δ
2

(0)

(1) (2)

(3)(4)(a+M,−2kM)
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(a−M,0)

(b) Periodic (s1,s∗2) dynamics.

Fig. 16.14 (a) Periodic s1 dynamics. (b) Periodic (s1,s∗2) dynamics.

Figure 14(a) shows the s1 dynamics in steady-state. Presuming that
dyre f0

dt , and
state variables are practically constant5, s1 period can be computed from the figure
as

T = T1 + T2 =
Δ

M−a
+

Δ
M + a

=
2ΔM

M2−a2 (16.27)

In figure 14(b), a periodic trajectory in the (s1,s∗2)-plane is drawn for a > 0. Based
on this trajectory, the phase shift results in

Tφ =
Δ

2kM
(16.28)

which is equal to the time from changing s∗2 from (2) to (3) in figure 14(b).
The block diagram in Figure 16.13 allows implementing a phase shift between

phases 1 and 2 while Δ
2kM (M + |a|)< Δ where Δ is the hysteresis width and k and

M are the integral and relay gains respectively. This is equivalent to

M + |a|< 2kM. (16.29)

Note that the ideal sliding dynamics in the interconnected system results in y1 =
y2 = yre f0 . Suppose that a master-slave m−phases linear system is designed so that
the period chattering is the same in each phase, and two consecutive phases have
the same phase-shift T

m . Since chattering is a periodic function, it can be represented
using Fourier series with frequencies ωn = 2πn

T , for n = 1,2, . . . ,∞. It can be proved
that all harmonics except for n = l ·m, l ∈ Z are suppressed in the output signal.
Hence, chattering amplitude can be reduced to desired level by increasing the num-
ber of phases. Additionally, since the T−average of the sliding surface is zero, there
is no continuous component in the Fourier expansion. See [5] for details.

5 The dominant term in ṡ1 is Msign(s1).
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16.3.2 A m−Phases Parallel Buck Converter

The results just summarized will be applied here to a parallel buck converter. It is
modeled by the system of ODE

L
di1
dt

= −RLi1 − vC + Eu1 (16.30)

...
...

... (16.31)

L
dim
dt

= −RLim − vC + Eum (16.32)

C
dvC

dt
= i1 + · · ·+ im− vC

R
(16.33)

where il refers to the current in the l−th phase inductor, vC refers to the output
voltage and ul ∈ {0, 1} are the switches. Inductances L and losses resistors RL are
presumed to be the same for all phases. Let us assume we deal with a m−phase buck
converter which phases are shifted Tφ = T

m . Then from equations (16.27) and (16.28)
the value of k can be obtained. Finally, replacing it in equation (16.29) and using
|a|<M, this bound on a can be improved. It yields |a|<M

(
1− 2

m

)
. Particularizing

this bound for the half-bridge DC-DC buck converter gives

1
L

∣∣∣∣
E
2
−

(
RL

mR
+ 1

)
v∗C

∣∣∣∣<
E
2L

(
1− 2

m

)
(16.34)

which, in turn, taking v∗C = αE and defining α̂ = α
(

RL
mR + 1

)
yields the necessary

and sufficient conditions α̂ > 1
m if α̂ < 0.5 and α̂ < 1− 1

m if α̂ > 0.5.

16.3.2.1 FPGA Implementation Issues and Experimental Results

An analogue implementation of sliding mode control of a step-down multi-phase
converter was presented in [2]. The switches were power Mosfets IRF9530, man-
aged by Driver ICL7667, and diodes BYW29. Switching frequency was set at
100kHz for a load resistance of 2Ω . The current reference Ire f used in the first
switching surface was generated by means of a PI controller in order to regulate the
output voltage to a selected reference. As it was reported in that paper, the current
ripple cancellation (the switching chattering) was properly minimized for nominal
parameters, but the current ripple was considerably increased when the input volt-
age, the load or the reference voltage vary from their nominal value. Experimental
measures confirmed the loss of robustness predicted by the theory, which was due
to setting a constant value for parameters k and M. To fix this problem, these two
parameters must be properly adapted to the changes of the equivalent control. With
this aim, a digital implementation approach, which minimizes the current ripple and
is robust with respect to load perturbations and changes in the input and reference
voltages, is performed.
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The approach is based on measuring the switching period of the Master switching
surface and on using this measure adapt the value of parameter k of the Slaves
switching surfaces. To this end, a digital device in charge of real-time measuring the
switching signal and determining its period is required. The period value is then used
to calculate the phase-shift among phases TΦ = Ts/m and, finally, parameter k is
obtained as k = Δ/TΦ . Additionally, in order to get a proper adaptation of parameter
M, a feed-forward loop is added to take into account input voltage changes. It is
worth to denote the assumptions that have been considered:

• It is assumed that all phases are identical, this leading to the same equivalent
control.

• Since digital device needs several clock periods to calculate parameter k value,
an overall delay must be taken into account. It is assumed that this delay does
not significantly modify the controlled system dynamics. Anyway, an accurate
implementation can lead to neglect this delay. Specifically, the use of a Spartan-
XC3S200 FPGA for implementation issues gives rise to a delay lower than 0.2%
with respect the switching period (the clock frequency was 100MHz and the
switching frequency of 100kHz was adjusted for the nominal parameters).

• K = k ·M is used as the parameter to be adapted in the real implementation.

An electronic prototype of 4−phase converter was built with the nominal parame-
ters: E = 10V, L = 22μH, C = 10μF, R = 2Ω and RL = 700mΩ . The Master switch-
ing surface, the hysteresis width comparator and the PI outer loop were implemented
by means of analogue devices such as amplifier operational. The Slaves switch-
ing surfaces and their hysteresis comparators were programmed within a Spartan-
XC3S200 FPGA. The FPGA has several advantages (high processing speed, high
device capability, user-friendly design environment and low device cost) with re-
spect to other digital platforms such as general-purpose microprocessors or Dig-
ital Signal Processors (DSP). Parallel architecture execution performed by FPGA
devices leads to designs with low processing time and, additionally, gives flexibil-
ity and modularity. Actually, the proposed design can be easily extended to con-
trol more phases and to add new algorithms such as power management or fault-
tolerance procedures. Spartan-XC3S200 FPGA has 1920 Slices, twelve 18K-bit
block RAMs, twelve 18x18 hardware multipliers and four Digital Clock Managers
(DCM). This design spent 821 Slices (42% of the available Slices resources), 1
block RAM (8%), 8 hardware multiplier (66%) and 1 DCM (25%).

The following tests were performed to validate the proposed K-adaptive control:

A. First set of experimental results: Input voltage variation test
In this case the control proposal was tested when the input voltage takes values
from E = 7.5V to E = 14V. The reference voltage and the load were set to Vre f =
5V and R = 2Ω , respectively. Experimental results when parameter K was fixed
to the value which eliminates the chattering (E = 10V,Vre f = 4.59V) and when the
dynamical adaptation of K was used are shown in the following figures. Figure 16.15
shows the master inductor current and the control signal of the slaves converters for
an input voltage of E = 7.5V when K remains constant and when it is adapted
through the proposed procedure. As it can be seen in these figures, there is a 65kHz
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switching frequency approximately and the phase-shift is equally distributed when
K is properly adapted. The output voltage, the reference voltage (scaled by 0.5),
the master current and the sum of the currents are displayed in Figures 16.16 and
16.17 for a nominal K and when K is dynamically adapted. Parameters were set
to E = 10V and E = 14V, respectively. In these plots it can be easily observed
how the switching frequency is of 100kHz and 120kHz for E = 10V and E = 14V,
respectively and the ripple of the sum of currents was lower when the K-adaptive
control is used, this providing an equitable phase-shift among phases. In the case
when K remains fixed the ripple of the sum of currents increases as duty cycle
moves away from 0.5, since K was adjusted for ripple cancelation for this value. In
the case of a dynamically adapted K, the sum of currents supports the same ripple
as it can be verified by comparing Figures 16.16 and 16.17.

B. Second set of experimental results: Load variation test
Figure 16.18 shows the transient response when the reference voltage is set to Vre f =
5V and the load varies from R = 2Ω to R = 1Ω and from R = 1Ω to R = 2Ω .
Simulation results agree with the theoretical predictions: the converter presents a
fast transient response and the output voltage recovers the reference one. For both
load values the current ripple has been minimized.

C. Third set of experimental results: Reference voltage variation test
The controllers were also tested when the reference voltage changes from Vre f = 4V
to Vre f = 6V and from Vre f = 8V to Vre f = 6V when the load was of R = 2Ω .
Figure 16.19 depicts the output voltage, the reference voltage (scaled by 0.5), the
sum of the currents and the master current when the reference voltage changes from
Vre f = 4V to Vre f = 6V and from Vre f = 8V to Vre f = 6V. As it can be seen in the
plots, the converter acquires the desired value with a brief transient and the ripple of
sum of currents remains small due to the adaptive control action on K.

16.4 Conclusions

Two applications of SMC in power electronics were presented in this chapter: the
design of a controller for a stand alone Wound Rotor Synchronous Machine and a
robust FPGA based implementation of a new technique to reduce chattering. Both
show the applicability of SMC and the good features it provides: ease of implemen-
tation, robustness, response velocity, . . . .

SMC provided solutions for the stand alone WRSG from different perspectives.
Slight modifications in the control design transforms each algorithm in a completely
new scheme. For instance, the addition of an integral term can be done adding an
outer loop with a standard PI or dynamically extending the initial system. The per-
formances these controllers set are highly different.

As for the power converters, a SMC FPGA-based approach to reduce chattering
as well as to improve line and load robustness in a step-down multi-phase converter
was presented. This approach allows both to regulate the output voltage to a selected
reference and to minimize the current ripple. This last goal is obtained by means of
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(a)

(b)

Fig. 16.15 Steady-state master current and slaves control signal for E = 7.5V and Vre f = 5V
(a) when K remains fixed, (b) when K is dynamically adapted.
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(a)

(b)

Fig. 16.16 Input voltage, output voltage, sum of the currents and master current for E = 10V
and Vre f = 5V (a) when K remains fixed, (b) when K is dynamically adapted.
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(a)

(b)

Fig. 16.17 Input voltage, output voltage, sum of the currents and master current for E = 14V
and Vre f = 5V (a) when K remains fixed, (b) when K is dynamically adapted.
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(a)

(b)

Fig. 16.18 Load variation. Input voltage, output voltage, sum of currents and master current
when the load changes (a) from R = 2Ω to R = 1Ω ; (b) from R = 1Ω to R = 2Ω .
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(a)

(b)

Fig. 16.19 Reference voltage variation. Output voltage, reference voltage (scaled by 0.5),
sum of currents and master current (a) when the reference voltage changes from 4V to 6V;
(b) when the reference voltage changes from 8V to 6V.
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dynamically adjusting a specific gain which is characteristic of the SMC of multi-
phase converters [5], [2].
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Chapter 17
Advances in High Order and Adaptive Sliding
Mode Control – Theory and Applications

F. Plestan, V. Brégeault, A. Glumineau, Y. Shtessel, and E. Moulay

Abstract. The objective of this chapter is to present advanced control methodologies
of uncertain nonlinear systems. Firstly, adaptive sliding mode controller that retains
the system’s robustness in the presence of the bounded uncertainties/perturbations
with unknown bounds is proposed. Due to the on-line adaptation, the proposed ap-
proach allows reducing control chattering. Secondly, a high order sliding mode con-
trol strategy that features a priory knowledge of the convergence time is presented.
Finally, the output feedback second order sliding mode controller is presented and
discussed. The control algorithms are applied to experimental set-up equipped by
electrical or electropneumatic actuators.

17.1 Introduction

The objective of this chapter is to display major results obtained at IRCCyN, Nantes,
France in the last 5 years, on sliding mode control of nonlinear uncertain systems,
and the perspectives of future research works. The presented results are dedicated
to two topics : the first one is about the very recent results on adaptive sliding mode
control, whereas the second part of the chapter presents methodologies for high
order sliding mode control (HOSM) of uncertain nonlinear systems. In the third
part of the chapter, the results of the applications of the several newly developed
sliding mode control laws to the real experimental set-ups (electropneumatic and
electrical actuators) are demonstrated.
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The main purpose of the proposed adaptive sliding mode control approach is to re-
tain a robustness feature of the controller to the bounded uncertainties/perturbations
without knowledge of their bounds. The proposed sliding mode control with the
on-line gain adaptation law allows not to overestimate the control gains. A di-
rect consequence of the limitation of the gain value limitation is the chattering
reduction.

Concerning HOSM control, all the presented results have been obtained in order
to achieve the following objectives. Firstly, given that one of the features of HOSM
control is the finite time convergence, the convergence time is precisely known and
arbitrarily tuned a priori; secondly, the sliding mode occurs as early as the initial
time, which ensures robustness features all over the entire response of the system.
Finally, the strategy can be applied any order of sliding mode (greater or equal to
the relative degree).

The chapter is organized as follows. Section 17.2 states the problem of high or-
der sliding mode control for uncertain nonlinear systems. This section introduces
the definitions of high order sliding surface, real sliding mode and shows that the
HOSM control problem can be viewed as the stabilization at the origin (or in a vicin-
ity of the origin) of an uncertain nonlinear system. Section 17.3 presents a solution
for adaptive control, only for “standard” (first order) sliding mode control. Section
17.4 presents two approaches for HOSM control. The first one is based on the con-
cept of integral sliding mode whereas the second one uses precomputed trajectories.
A subsection devoted to an original output feedback second order sliding mode con-
trol completes the section. Finally, Section 17.5 establishes the applicability of all
the control approaches by applying them to real experimental set-ups equipped by
electrical or electropneumatic actuators.

17.2 Problem Statement

In this section, the problem of HOSM control of an uncertain nonlinear system is
stated and written as the stabilization of an uncertain chain of integrators. Consider
an uncertain nonlinear system1

ẋ = f (x)+ g(x)u
y = h(x) (17.1)

where x ∈ X ⊂ IRn is the state variable, u ∈ IR is the input control and y ∈ IR is the
output function. X is a bounded open subset of IRn within which the boundedness of
the system dynamics is ensured. Let σ(x,t) denote the sliding variable defined as

σ(x, t) = h(x)−hd(t) (17.2)

with hd(t) being the smooth and differentiable enough desired trajectory. σ(x, t),
f (x) and g(x) are smooth functions, f (x) and g(x) being uncertain. Assume that

1 For a sake of clarity, only SISO systems are considered in this chapter.
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H1. The sliding mode order r is equal to the relative degree of σ w.r.t. (17.1).

Remark 17.1. The problem of zero dynamics stability is not studied here.

Remark 17.2. In case of sliding mode order larger than the relative degree of σ ,
the problem is a natural development of the current work, through the extension of
system (17.1) by introduction of successive time derivatives of control input (see for
example [10, 15]). All the results displayed in the sequel can then be applied to the
extended system.

The control objective is to fulfill the constraint σ(x, t) = 0 in finite time and then to
keep it exactly at 0 by some feedback. The rth order sliding mode is defined as

Definition 17.1. [11] Consider the nonlinear system (17.1), and let the system be
closed by some possibly-dynamical discontinuous feedback. The variable σ is a
continuous function. The set

S = {x ∈ X, t > 0 | σ(x,t) = σ̇(x, t) = · · · = σ (r−1)(x, t) = 0} (17.3)

is called “rth order sliding surface”, is non-empty and is locally an integral set in
the Filippov sense [2], i.e. it consists of Filippov’s trajectories of the discontinuous
dynamical system. The motion on S is called “rth order sliding mode” with respect
to the sliding variable σ .

In real applications, due to the use of sampled control and neglected dynamics, the
“ideal” sliding mode as defined in Definition 17.1 can not be established. Then, it is
necessary to introduce the concept of “real” sliding mode. For a sake of clarity, only
the “first order” real sliding mode concept is introduced here.

Definition 17.2. [11] Given the sliding variable σ(x,t), the “real sliding surface”
associated to (17.1) is defined as (with δ > 0)

S∗ = {x ∈ X, t > 0 | |σ |< δ}. (17.4)

Definition 17.3. [11] Consider the non-empty real sliding surface S∗ given by
(17.4), and assume that it is locally an integral set in the Filippov sense. The
corresponding behavior of system (17.1) on (17.4) is called “real sliding mode”
with respect to the sliding variable σ(x,t).

The rth order sliding mode control approach allows the finite time stabilization to
zero of the sliding variable σ and its r−1 first time derivatives by defining a suitable
discontinuous control function. The output σ satisfies equation [13]

σ (r) = Φ̄(x)+Γ (x)u−h(r)
d (t) = Φ(x,t)+Γ (x)u (17.5)

with Γ (x) = LgLr−1
f h(x), Φ̄(x) = Lr

f h(x) and Φ(x,t) = Φ̄(x)−h(r)
d (t). Assume that
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H2. The solutions are understood in the Filippov sense [2], and the system trajec-
tories are supposed to be infinitely extendible in time for any bounded Lebesgue
measurable input.

Then, the rth order sliding mode control of (17.1) with respect to the sliding variable
σ is equivalent to the finite time stabilization of

Ż1 = A11Z1 + A12Z2

Ż2 = Φ +Γ u
(17.6)

with
Z1 = [Z10 Z11 · · · Z1r−2]T := [σ σ̇ · · · σ (r−2)]T , Z2 = σ (r−1).

A11 ((r−1)× (r−1) matrix) and A12 ((r−1)×1 vector) are such that Z1 dynamics
are the ones of chain of integrators. For a sake of clarity in the sequel, consider the
following hypothesis

H3. Uncertain functions Φ and Γ can be decomposed

Φ = Φn +ΔΦ, Γ = Γn +ΔΓ (17.7)

with Φn and Γn the nominal bounded values (well-known), and ΔΦ and ΔΓ the
bounded uncertainties for x ∈X and t ≥ 0. Furthermore, the functionΓn is invertible
for x ∈ X and t ≥ 0.

By applying the deterministic feedback controller

u = Γ−1
n · (−Φn + v) , (17.8)

system (17.6) becomes

Ż1 = A11Z1 + A12Z2

Ż2 =
[
ΔΦ −ΔΓ ·Γ−1

n ·Φn
]

︸ ︷︷ ︸
ϕ(·)

+
[
1 +ΔΓ ·Γ−1

n

]
︸ ︷︷ ︸

γ(·)
·v (17.9)

H4. Functions ϕ(x,t) and γ(x) are bounded uncertain functions, and, without loss
of generality, let also γ(x) be strictly positive. Thus, there exist constants Km > 0,
KM > 0 and C0 ≥ 0 such that 0< Km ≤ γ(x) ≤ KM and |ϕ(x,t)| ≤C0 for x ∈ X.

Then, the rth order sliding mode control of (17.1) with respect to the sliding variable
σ is equivalent to the finite time stabilization of

Ż1 = A11Z1 + A12Z2

Ż2 = ϕ + γv
(17.10)

Under Assumption H4, system (17.10) can be viewed as a chain of integrators with
uncertain bounded terms ϕ and γ . Then, the problem can be stated as the finite time
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stabilization of (17.10) in a linear uncertain context when considering the nonlinear
functions γ and ϕ as bounded non structured parametric uncertainties.

In case of a “standard” (first order) sliding mode, the previous problem can be
reduced to the design of a discontinuous controller v such that the system

σ̇ = ϕ + γv (17.11)

is stabilized in a vicinity of the origin. In the following section, an adaptive solution
of the form v =−K(t) · sign(σ) is proposed.

17.3 Adaptive Sliding Mode Control

In this section, an adaptive sliding mode controller is proposed: this result is given
in the case of first order sliding mode control (r = 1). The previously presented
bounds Km, KM and C0 are supposed to exist but are not known. The control gain
has therefore to be dynamically tuned in order to be adapted to perturbations and
uncertainties. The solution proposed in [16] is displayed in the sequel. Consider the
controller

v = −K(t) · sign(σ(x, t)) (17.12)

with the gain K(t) defined such that

K̇ =
{

K̄ · |σ(x, t)| · sign(|σ(x, t)|− ε) if K > μ
μ if K ≤ μ (17.13)

with K(0) > 0, K̄ > 0, ε > 0 and μ > 0 very small. The parameter μ is introduced
in order to get only positive values for K.

Discussion. (see Figure 17.1) Suppose that K(0)> μ and, at t = 0, |σ(x(0),0)|> ε .
Then, from (17.13), the gain K(t) is increasing, i.e.

K̇ = K̄ · |σ(x, t)|.

There exists a time instant t1 (see Figure 17.1) such that |σ(x(t1), t1)| < ε , i.e. t1
is a reaching time. As a real sliding mode is established, it means that the gain
K(t) is large enough with respect to uncertainties and perturbations. Then, it can be
decreased in order to limit control magnitude and then to attenuate the chattering.
Then, from t = t1, K-gain adaptation law reads as

K̇ =−K̄ · |σ(x, t)|.

The gain K(t) is decreasing and then is adjusted by allowing to get a more ad-
equate value with respect to uncertainties/perturbations magnitude. However, if
disturbances/uncertainties contained in ϕ and γ exceed some value that makes
|σ(x,t)|> ε (from t = t2 - see Figure 17.1), then the adaptation law becomes again
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K̇ = K̄ · |σ(x,t)|

until the next reaching time t3 (see Figure 17.1), i.e. from t = t3, |σ(x(t), t)|< ε , and
so on.

 (x,t)  

t

t

K(t)

t1 t2 t3

Fig. 17.1 Behavior of σ(x,t) and K(t) versus time around ε-convergence domain.

Lemma 17.1. [16] Given the nonlinear uncertain system (17.1) with the sliding
variable σ(x,t) dynamics (17.5) with r = 1 controlled by (17.8)-(17.12)-(17.13),
the gain K(t) has an upper-bound, i.e. there exists a positive constant K∗ so that

K(t) ≤ K∗, ∀t > 0.

Theorem 17.1. [16] Given the nonlinear uncertain system (17.1) with the sliding
variable σ(x,t) dynamics (17.5) with r = 1 controlled by (17.8)-(17.12)-(17.13),
there exists a finite time tF > 0 so that a real sliding mode is established for all
t ≥ tF , i.e. |σ(x,t)|< δ for t ≥ tF , with

δ =

√
ε2 +

C2
0

K̄Km
. (17.14)

Sketch of proof. [16] The proof detailed in [16] is based on Lyapunov’s approach
and shows that, when |σ | > ε , then the control strategy ensures that |σ | < ε in a
finite time. Furthermore, it is proved that, once σ has reached ε-domain, system tra-
jectories are such that |σ | is evolving in a vicinity of ε whose the bound is given by
δ . Therefore, the proof shows that there is the establishment of a real sliding mode
given that, in a finite time, |σ | < δ . Consider the following Lyapunov candidate
function

V =
1
2
σ2 +

1
2α

(K−K∗)2 (17.15)

By introducing βσ =−C0 + Km ·K∗ and

ξ =−Km · |σ |+ K̄
α
· |σ | · sign(|σ |− ε)−βK
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with βK > 0 a positive constant, it yields from [16]

V̇ ≤ −βσ · |σ |−βK · |K−K∗|− ξ

= −βσ ·
√

2
|σ |√

2
−βK ·

√
2α

|K−K∗|√
2α

− ξ

≤ −min{βσ
√

2,βK

√
2α}

( |σ |√
2

+
|K−K∗|√

2α

)
− ξ ≤−β ·V 1/2− ξ

(17.16)

with β =
√

2 min{βσ ,βK
√
α}.

• Suppose that |σ |> ε . ξ is positive if

−Km · |σ |+ K̄
α
· |σ |−βK > 0 ⇒ α <

K̄ · ε
Km · ε+βK

. (17.17)

From (17.16), one gets V̇ ≤ −β ·V 1/2. It is always possible to choose α such that
the previous inequality fulfills. Therefore, finite time convergence to a domain
|σ | ≤ ε is guaranteed from any initial condition |σ(0)|> ε .

• Case 2. Suppose now that |σ | < ε . Function ξ in (17.16) can be negative. It
means that V̇ would be sign indefinite, and it is not possible to conclude on the
closed-loop system stability. Therefore, |σ | can increase over ε . As soon as |σ |
becomes greater than ε , V̇ ≤−β ·V 1/2 and V starts decreasing. Decrease of V can
be achieved via increase of K allowing |σ | to increase before it starts decreasing
down to |σ | ≤ ε . Without loss of generality, by supposing σ0 = σ(0) = ε+ and
K0 = K(0)> 0, the overshoot can be estimated from σ(t) and K(t). In the “worst”
case, these both latter functions read as [16]

σ(t) =

√
σ2

0 +
(C0−K0Km)2

K̄Km
sin

(√
K̄Kmt +Θσ

)

K(t) =

√
σ2

0
K̄

Km
+

(
K0 − C0

Km

)2

sin
(√

K̄Kmt +ΘK

)
+

C0

Km
.

(17.18)

with Θσ and ΘK constants depending on all the parameters. It appears from
(17.18) that, when σ0 = ε+ → ε , the maximum value δ of σM reads as

δ =

√
ε2 +

C2
0

K̄Km
. (17.19)

Finally, σ converges to the domain |σ | ≤ ε in a finite time, but could be sustained
in the bigger domain |σ | ≤ δ . Therefore, the real sliding mode exists in the domain
|σ | ≤ δ .

The previously presented adaptive control law is only usable for first order sliding
mode establishment. Future researches can be made in order to extend this results
to high order sliding mode control. Note that some of the authors have still obtained
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preliminary results for second order sliding mode control, which allow to get more
accurate results without any information on the uncertainties and perturbations (only
the boundness feature is known).

17.4 High Order Sliding Mode Control

17.4.1 A Unified Approach

The two controllers presented in this section allow the establishment of a rth order
sliding mode by knowing the bounds of the uncertainties and perturbations. The
control laws stabilize system (17.5) (or system (17.10)) to zero (or near zero) in
an a priori finite time in spite of uncertainties / perturbations. For each developed
control algorithm, the design procedure takes place in two stages

Stage 1. Trajectories of (17.5) (or system (17.10)) are forced to converge to the
origin (or its vicinity), i.e. for (17.10), [ZT

1 Z2]T = 0r×1 in a finite time tF .
Stage 2. From t = tF , trajectories of (17.5) (or system (17.10)) are forced to stay

at the origin (or its vicinity).

The design of the control law is then as follows. First-of-all, the sliding surface is
defined such that, if the system is evolving on it, one ensures σ = σ̇ = · · ·=σ (r−1) =
0 in a finite time. Furthermore, the discontinuous control law is designed to make
the sliding surface attractive in spite of the uncertainties and perturbations. The way
to state the high order sliding mode controller design in terms of specific trajectories
tracking contributes to the originality of the approaches.

17.4.1.1 Sliding Surface Design

From the sliding variable σ(x, t) (17.2), let S be the so-called switching variable
defined as

S = σ (r−1) +F (·) (17.20)

with F a function depending on time t and/or state vector x. This latter function
has a key-role in the design of the proposed solutions for high order sliding mode
control. Associated to this switching variable, the sliding surface SS is defined as

SS = {x ∈ X | S = 0}, (17.21)

The main idea consists in an adequate choice for the function F . By supposing
that the control law forces the system trajectories to evolve on SS, it ensures that,
from a finite time (a priori defined), the system trajectories are evolving on S. As
mentioned previously, this latter behavior ideally induces a high order sliding mode
with respect to σ .

Remark 17.3. In the case of a dynamical sliding mode [3,21], function F is defined
as

F = λr−2σ (r−2) +λr−3σ (r−3) + · · ·+λ0σ (17.22)
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with λr−2, · · · ,λ0 chosen such that P(z) = zr−1 +λr−2zr−2 + · · ·+λ0 is Hurwitz. A
control law v = −K · sign(σ (r−1) +F ) ensures a finite time convergence to SS if
gain K is well-tuned with respect to uncertainties and perturbations. On the other
hand side, this choice of function F does not allow a finite time convergence to S:
there is no establishment of high order sliding mode with respect to σ .

17.4.1.2 Controller Design

The control law v is now divided into two terms2: a continuous one v0 and a discon-
tinuous one v1 such that

v = v0 + v1. (17.23)

In order to make the surface SS attractive, the discontinuous term v1 reads as, for
0 ≤ t ≤ tF ,

v1 = −K · sign(S) =−K · sign(Z2 +F ) =−K · sign
(

s(r−1) +F
)

(17.24)

with K tuned by taking into account uncertainties and perturbations, bounds of time
derivatives of F and the bound of continuous term v0 (see details in [8, 9, 10, 15]),
such that the sliding condition

S · Ṡ < −η |S| (17.25)

is fulfilled, with η > 0. One has

S · Ṡ = S · (ϕ + γ · (v0 + v1)+ Ḟ
)

= S · (ϕ + γ · [v0−K · sign(S)]+ Ḟ
)
.

Suppose that S > 0 (the computations would be similar for S< 0): one gets

ϕ−K · γ + v0 · γ + Ḟ <−η ⇒ K >
ϕ + v0 · γ + Ḟ +η

γ
.

Knowing the bounds C0, Km and denoting FM = Max0≤t≤tF

[∣∣Ḟ (t)
∣∣] and v0M =

Max0≤t≤tF [|v0|], one gets the following condition on the gain K ensuring the con-
vergence of the system to the surface SS

K >
C0 + v0M +FM +η

Km
. (17.26)

In the sequel, the design of two specified function F is given, as well as the corre-
sponding control terms v0 and v1.

2 This decomposition will be used in the sequel, for the description of the proposed
algorithms.
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17.4.2 Control Solutions and Design of Functions F

In the sequel, two different approaches for the design of the function F are pro-
posed. As written previously, the function F is designed in order to allow the con-
troller to ensure the establishment, in a finite time, of a high order sliding mode
behaviour. In each control solution, the computation of F is based on a linear
control law with finite time convergence. In this section, two control solutions are
presented3

• The first one [10] is based on the concept of Integral sliding mode [24], which
introduces dynamics in the control algorithm. One of its advantages is the can-
celation of the reaching phase: the system is evolving on the surface early from
t = 0, which allows to perfectly know the convergence time.

• The second one uses precomputed trajectories derived from open-loop linear con-
trol law. These trajectories are computed such that the system evolves on the
sliding surface early from t = 0.

17.4.2.1 Integral Sliding Mode Control [10]

The use of the concept of the Integral Sliding mode for the synthesis of high
order sliding mode control makes the result original because it is the first result
using this concept in a such context. This concept developed in [24] consists in
considering first-of-all the “ideal” system (i.e. the system without uncertainties
and perturbations) for which a continuous control law v0 is designed in order to
drive it to 0 in a finite time. Then, considering that the control law reads as (17.23),
the discontinuous part v1 is added to the continuous one v0 in order to perfectly
track, early from t = 0, “ideal” system trajectories, in spite of perturbations and
uncertainties.

Design of the continuous term v0. The term v0 is designed on the assump-
tion that there is no uncertainty nor perturbation; in this case, the system (17.1) is
equivalent to the system (17.10) with ϕ = 0 and γ = 1. One gets

Σre f

{
Ż1 = A11Z1 + A12Z2

Ż2 = v0
⇒ Ż = A ·Z + B · v0 (17.27)

with4 Z = [ZT
1 Z2]T . The term v0 allows to force the trajectories of system (17.27) to

reach the origin in a finite time, and to maintain them at this point. A solution for v0

used in [10] is given by [18] and is based on a H2 optimal feedback control over a
finite time interval with fixed final states; this solution is displayed in the following
theorem.

3 In [8,9], the solution is based on a LQ control law. This strategy, which will be not detailed
in this chapter because of the lack of space, only allows the establishment of a “real” sliding
mode.

4 Recall that, in the current context, Z = [σ(x,t) σ̇(x,t) · · · σ (r−1)(x,t)]T .
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Theorem 17.2. [18] Consider linear system (17.27) with (A,B) reachable. A con-
trol law v0 minimizing the criteria

J =
1
2

∫ tF

0
ZT QZ + v2

0 dt (17.28)

with tF < +∞, |Z(0)| < +∞ and Q a symmetric positive definite matrix under the
fixed final state constraint Z(tF ) = 0 and driving system (17.27) to Z(t) = 0 at t = tF
from Z(0) is given by

v0 = −BT MZ(t)+ BTδ (t) (17.29)

with δ (t) and M defined by

δ̇ = −(AT −MBBT ) δ ,
0 = MA + AT M−MBBT M + Q.

(17.30)

Initial condition δ (0) of δ (t) is selected in order to satisfy the terminal condition
Z(tF) = 0.

Design of the discontinuous term v1. As mentioned previously, the objective con-
sists in forcing the “real” system (17.10) to behave like the “ideal” linear system
(17.27), early from t = 0, by rejecting uncertainties and perturbations thanks to the
discontinuous term v1. A solution consists in defining the switching variable S as

S = σ (r−1) +σ0,r−1(t)︸ ︷︷ ︸
F

(17.31)

with σ0,r−1(t) an exogenous variable defined as

σ̇0,r−1 =−v0, σ0,r−1(0) =−σ (r−1)(0) (17.32)

It implies that S(0)= 0: then, the system is in sliding motion on S from t = 0. Thanks
to an adequate tuning of the gain K (equation (17.26)), the discontinuous control v1

v1 = −Ksign(S)

forces the system (17.10) to evolve on the surface S and then to follow the “ideal”
system (17.27): dynamics of (17.10) allows the establishment of an ideal high order
sliding mode behavior from t = tF .

Remark 17.4. The switching variable (17.31) only depends on σ (r−1) and then re-
quires its highly accurate knowledge: this time derivative is obtained by differentiat-
ing r−1 times the sliding variable σ (by supposing that it is measured) for example
through the use of robust time differentiators [12]. Then, by a practical point-of-
view, the sampling allows to obtain a real sliding mode. However, it yields to a
delayed and noised information which can strongly decrease the performances of
the controller in term of finite time convergence, accuracy, . . . This drawback can be
limited thanks to the choice of the switching variable defined as a function of σ , σ̇ ,
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. . ., σ (r−1). The control law v reads as v = v0 + v1 with v0 defined as previously and
v1 as

v1 =−Ksign

⎛
⎜⎝σ (r−1) +σ0,r−1 +λr−2(σ (r−2) +σ0,r−2)+ · · ·+λ0(σ +σ0,0)︸ ︷︷ ︸

F

⎞
⎟⎠

(17.33)
with σ0,r−1(t), σ0,r−2(t), . . . , σ0,0(t) exogenous variables defined by

σ̇0,0 = σ0,1, σ0,0(0) =−σ(0)
σ̇0,1 = σ0,2, σ0,1(0) =−σ̇(0)

...
σ̇0,r−1 =−v0, σ0,r−1(0) =−σ (r−1)(0)

(17.34)

The coefficients λ∗ in F are chosen such that the polynomial P(s) = sr−1 +
λr−2sr−2 + . . .+ λ0s (s being a complex variable) is Hurwitz. From (17.34), S(0)
and each of its terms equal 0. In [4, 6], it has been proved that the proposed control
law ensures the establishment of a rth order sliding mode behavior for the “ideal”
case and of a real rth order sliding mode for a sampled control.

One of the advantages of the integral sliding mode approach is the absence of reach-
ing phase to the sliding surface, given that the system is evolving in the surface early
from the initial time. It implies that the convergence time is a priori known. How-
ever, this approach requires the use of an auxiliary dynamical system, which could
be a drawback for example in case of embedded systems because of online compu-
tations. The approach developed in the next section will allow to remove the use of
auxiliary dynamical system.

17.4.2.2 Precomputed Trajectories [15]

The objective of this control law strategy consists in providing a solution without
use of an auxiliary dynamical system while keeping the features

• Robustness versus uncertainties and perturbations,
• Establishment in finite time of a high order sliding mode behavior with a priori

knowledge of the finite time convergence,
• The system evolves on the sliding surface early from the initial time.

Let us recall that the switching variable S reads as

S = σ (r−1) +F (t)

with F a time-varying function. Define the function F as F
(r−1)

= F . F (t) has
to verify the following features
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• The system is evolving early from the initial time on the sliding surface

SS = {x ∈ X | σ +F (·) = 0, σ̇ + Ḟ (·) = 0, . . . , σ (r−1) +F
(r−1)

(·) = 0}
which removes the transient phase required to reach the surface, i.e.

F (0) = −σ(x(0),0),Ḟ (0) = −σ̇(x(0),0), . . . ,F (r−1)(0) = −σ (r−1)(x(0),0).
(17.35)

This first constraint is not strong ; only the knowledge of the initial conditions of
the sliding variable and its r−1 first time derivatives is required.

• The second constraint consists in stating that the system has to reach an rth order
sliding mode behavior with respect to σ(x,t) at exactly t = tF by evolving on SS.
From the definition of this latter, one has

σ(x(t f ),t f ) = 0, σ̇(x(t f ), t f ) = 0, . . . , σ (r−1)(x(t f ),t f ) = 0 (17.36)

which implies

F (t f ) = 0, ˙̄F (t f ) = 0, . . . , F
(r−1)

(t f ) = 0. (17.37)

Suppose that the following hypothesis is fulfilled

H5. There exists at least one j ∈ IN such that 0 ≤ j ≤ r − 1 and
σ ( j)(0) 	= 0.

Under H5, it is always possible [15] to find a function F (t) (and then F (t)) satisfy-
ing (17.35)-(17.37). A solution5 proposed in [15] reads as (with k arbitrarily chosen
such that 0 ≤ k ≤ r−1 and σ (k)(x(0),0) 	= 0)

F (t) = KF eFtTσ (k)(x(0),0) ⇒ F (t) = KF Fr−1eFtTσ (k)(x(0),0) (17.38)

with F a stable r× r-matrix (all its eigenvalues are negative), T a 2r×1-vector and
0 ≤ k ≤ r−1.

Lemma 17.2. [15] Suppose that Hypothesis H5 is fulfilled. Then, there always
exists a stable matrix F and a matrix T such that matrix KF defined as (with
0 ≤ k ≤ r−1)

KF =
[
Fr−1Tσ (k)(0) | Fr−1eFtF T | Fr−2Tσ (k)(0) | Fr−2eFtF T | . . . | Tσ (k)(0) | eFtF T

]

is invertible.

Then, a control law v ensuring the establishment of an r-th order sliding mode be-
havior with respect to the sliding variable σ(x,t) in a finite time tF is defined as
v = v0 + v1 with [15] v0 = 0 and

5 In [19], a time-varying polynomial function is used. The advantage of an exponential func-
tion F (t) = KF eFtTσ (k)(x(0),0), k ∈ IN is that it is usable for all sliding mode order
whereas, in the case of a polynomial function, its order has to be adapted to the sliding
mode order.
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v1 =
{−Ksign(σ (r−1) +F (t)) for 0 ≤ t ≤ tF
−Ksign(σ (r−1)) for t > tF

(17.39)

K and F (t) being respectively defined by (17.26) and (17.35)-(17.37)-(17.38).

Remark 17.5.

• One recalls that this control strategy can be easily used for practical applications
(no auxiliary dynamical system, off-line computation of the function F (t), con-
structive condition for gain computation [15]).

• As previously for Integral Sliding Mode, in the case of application (finite sam-
pling frequency), the switching variable must be adapted in order to take into
account the “approached” time derivatives of the sliding variable. A real HOSM
is then obtained. Then, in [6], a control law u defined as v = v0 + v1 with v0 = 0
and

v1 =−Ksign
(
σ (r−1) +F

(r−1)
+λr−2(σ (r−2) +F

(r−2)
)+ . . .+λ0(σ +F )

)
.

Given initial and final (at t = tF ) conditions on F , this control law u ensures the
establishment of r-th order sliding mode behavior at exactly t = tF .

17.4.3 Second Order Sliding Mode Control by Static Output
Feedback [17]

A drawback of the HOSM controllers is the requirement of high order time deriva-
tives of the switching variable. Then, the use of time differentiators is required :
however, they introduce noisy informations in the controller, which can be harmful
for the closed-loop system. An other solution consists in using static output feed-
back, i.e. the controller is using the sliding variable, and no time derivative of it. One
of the most popular solutions is the “Super-Twisting” algorithm [11]. This algorithm
is a second order sliding mode one but is only applicable to nonlinear systems with
a sliding variable whose relative degree equals 1. This drawback has been removed
in [17]: the proposed controller is applicable to systems with sliding variable whose
relative degree equals 1 or 2. The control law is also using a switching strategy for
the gain, which allows the finite time convergence in a vicinity of the origin, and
then the establishment of a real second order sliding mode. The control law is de-
veloped in the case of finite sampling frequency. In the sequel, we first give the main
idea of this output feedback controller through its application to a double integrator.
Then, one proposes a solution for system (17.1) with r = 2.

17.4.3.1 Control of a Double Integrator

Consider the following system
ż1 = z2

ż2 = u
(17.40)

with
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u = −K(t) sign(z1(kTe)) (17.41)

and Te the sampling period, K > 0 and k ∈ IN (k can be viewed as a time counter).
Gain K is constant on the time interval t ∈ [k ·Te,(k + 1) ·Te[, and k(0) = 0.

Comments. The commutation of the gain K(t), at an adequate time, between
Ks and KL, is crucial for the convergence and allows the system to reach a trajectory
closer from the origin. As described in Figure 17.2, system (17.40) is starting from
the point O and then follows the parabola (O,B) with the control gain equal to Ks.
Given the sampling period, the control law is re-evaluated at each black point of
the parabola. Due to this sampling period, the system takes into account the z1-sign
change only at B, which introduces a delay for the commutation of the control law.
It is obvious that, if the gain K(t) is maintained to the value Ks, the trajectory will
follow the parabola (B,D) which yields to divergence. By using a sufficiently high
gain KL, it allows the system to reach the point C which is over the symmetric
parabola of (0,A) with respect to vertical axis, and then which is on a parabola
closer from the origin. The use of a large gain KL allows to compensate the delay
due the sampling period by adding a sufficiently large energy to the system.

z
2

z
1

A

B

C

D

E

O

Fig. 17.2 Phase portrait of system (17.40).

Theorem 17.3. [17] Consider system (17.40) controlled by (17.41) and a gain
Ks > 0. Then, there always exists a sufficiently large gain KL with 0< Ks < KL < ∞
such that the gain K(t) defined as

K(t) =
{

Ks if t /∈ T
KL if t ∈ T

(17.42)

with T = {t | sign(z1(kTe)) 	= sign(z1((k−1)Te))} and the control law (17.41) en-
sures the establishment of a real second order sliding mode for system (17.40) with
respect to z1, i.e. there exists a finite time tF such that, for t ≥ tF ,
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|z1| ≤
[
(KL −Ks)+

(KL + Ks)2

2KL

]
·T 2

e ,

|z2| ≤ KL + Ks

2
·Te

(17.43)

17.4.3.2 Extension to Uncertain Nonlinear Systems Control

This result has been extended for the second order sliding mode control of uncertain
nonlinear systems, through the following theorem.

Theorem 17.4. [17] Consider nonlinear system (17.1) with sliding variable σ(x, t).
Suppose that assumptions H1-H4 are fulfilled with r = 2, and state the gain Ks

such that Ks >C0/Km. Then, there always exists a sufficiently large gain KM with
0< Km < KM < ∞ such that the gain K(t) defined as

K(t) =
{

Ks if t /∈ T
KL if t ∈ T

(17.44)

with T = {t | sign(s(kTe)) 	= sign(s((k−1)Te))} , k ∈ IN and the control input

u = −K(t) · sign(s(kTe)) (17.45)

ensures the establishment of a real second order sliding mode for system (17.1) with
respect to sliding variable σ(x,t).

17.5 Applications

This section presents some practical applications of the previous high order sliding
mode controllers. The main objectives of the following works were, not only to
develop new methodologies for such kind of controllers, but also to evaluate their
feasibility and their behaviors in case of real applications. In the sequel, results
obtained by the authors for the control of electrical and electropneumatic actuators
are recalled.

17.5.1 Control of Electropneumatic Actuator

Control of pneumatic actuators is a challenging problem, viewed their increasing
popularity (law maintenance cost, lightweight and good force/weight ratio), in spite
of their traditional drawbacks (friction, variation of the actuators dynamics due to
large change of load and piston position along the cylinder stroke, nonlinearities,
...). Due to uncertainties on the model, robust controllers are necessary to ensure
position tracking with high precision. In that way, sliding mode controllers have
been used for electropneumatic actuators [1, 14, 26, 22]. However, since the sam-
pling frequency of the controller is limited and dynamics of the servodistributor
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is neglected, chattering will be produced. The spool of the valve is excited which
induced noise due to the air going from source to exhaust and an undesirable deteri-
oration of the servodistributor. Then, there is a real interest to control such actuators
with robust controllers, in SISO (only the position of the electropneumatic actua-
tor is controlled) or MIMO (both position and pressure in one of the chambers are
controller) cases.

17.5.1.1 Actuator Description and Model

The considered experimental set-up (Figure 17.3) consists of two actuators, respec-
tively named the “main” actuator and the “perturbation” one. Only multivariable
control of the “main” one is considered here (the “perturbation” actuator is used to
generate the varying load (external force).

Fig. 17.3 Photo of electropneumatic system. On the left hand side is the “main” actuator
whose position and pressure in a chamber can be controlled. On the right hand side is the
“perturbation” actuator which provides varying load force.

The “main” actuator is a double effect pneumatic cylinder with two chambers re-
spectively denoted P (as positive) and N (negative). The air mass flow rate entering
inside each chamber is regulated by two 3 ways servovalve; these latter are voltage-
controlled (control input uP for P-chamber and control input uN for N-chamber).
The pneumatic jack horizontally moves a load carriage of mass M. This carriage is
coupled to the “perturbation” actuator6. The control objective is to drive the position
of the main actuator, and the mean pressures of the “main” actuator to desired tra-
jectories whereas the “perturbation” actuator provides an external unknown force.
The mathematical model of the controlled “main” actuator is given by (for details,
see [6, 7])

ẋ = f (x)+ g(x)ū (17.46)

with x = [pP pN dy y]T , ū = [uP uN ]T the control input,

6 No detail is given here on the “perturbation” actuator and its control. Its goal is to provide
a dynamical load external force versus the main actuator. In some results displayed in the
sequel, this “perturbation” actuator has been modeled by 4 springs in order to simulate an
aerodynamic load.
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f (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

krT
VP(y)

[ϕP − S
rT

pPdy]

krT
VN(y)

[ϕN +
S

rT
pNdy]

1
M

[SpP −SpN −bvdy−F]

dy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, g(x) =

⎡
⎢⎢⎢⎢⎢⎣

krT
VP(y)

ψP 0

0
krT

VN(y)
ψN

0 0
0 0

⎤
⎥⎥⎥⎥⎥⎦

where pX is the pressure inside the chamber X (X being N or P), y and dy are the
piston position and the piston velocity respectively of the “main” actuator, VX is
the volume in the chamber X , S is the piston area, and ϕX and ψX are both 5th-
order experimentally obtained polynomials with respect to pX [20] so that the mass
flow rate provided from the servodistributor X reads as qmX = ϕX +ψX · uX ; k is
the polytropic constant, r is the perfect gas constant and T is the temperature in
the chambers (supposed to be equal to the external temperature). It is assumed that
uncertainties in the values of polytropic constant k, mass flow qmX , temperature T ,
mass M, and viscous friction coefficient bv are additive and bounded with unknown
bounds, i.e. for example, M = Mn +ΔM with Mn the nominal mass and ΔM the mass
uncertainty such that |ΔM|<MM . The external perturbation F is also bounded with
an unknown bound. Then, system (17.46) is rewritten as

ẋ = ( fn(x)+Δ f (x))+ (gn(x)+Δg(x)) · ū (17.47)

with fn(x), gn(x) to be the nominal dynamical terms, and Δ f (x), Δg(x) to be the un-
certain terms (details on these vector and matrix are displayed in [8]). The position,
pressures and control are limited by the physical domain X defined as

X = {x∈ IR | −70 mm≤ y≤+70 mm,−1m/s≤ dy≤ 1 m/s,1 bar≤ pP,N ≤ 7 bar}.

Furthermore, one has −10 V ≤ uP ≤ 10 V and −10 V ≤ uN ≤ 10 V . Note also that
∀x ∈ X, VP(y)> 0 and VN(y)> 0.

17.5.1.2 Adaptive Sliding Mode Control [16]

Design of the controller. Defining

σ =
[
σ1

σ2

]
=

[
ḋy+λv ·dy +λy · (y− yd)

pP + pN

2
− pd

]
, (17.48)

the σ -dynamics reads as
[
σ̇1

σ̇2

]
= Φ̄(x, t)+ Γ̄ (x) ·

[
uP

uN

]
(17.49)
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with Φ̄(x,t) and Γ̄ (x) derived from (17.46)-(17.47). From (17.47), one has Φ̄ =
Φ̄n +ΔΦ̄ and Γ̄ = Γ̄n +ΔΓ̄ . Matrix Γ̄n is invertible for all x ∈ X given that both
volumes VP and VN can not be equal to zero. Then ū reads as

ū = Γ̄−1
n ·

(
−Φ̄n +

[
v1

v2

])
. (17.50)

It yields
σ̇ =

(
ΔΦ̄−ΔΓ̄ Γ̄−1

n Φ̄n
)
+

(
I+ΔΓ̄ Γ̄−1

n

) · v̄ (17.51)

with v̄ = [v1 v2]
T . Thanks to the identification process, the uncertainties are limited

to reasonable values such that Γ = I+ΔΓ̄ · Γ̄−1
n is still positive definite and diago-

nally dominant. Furthermore,
(
ΔΦ̄−ΔΓ̄ Γ̄−1

n Φ̄n
)

and
(
I+ΔΓ̄ Γ̄−1

n

)
are bounded

for all x ∈ X. Then, from (17.12)-(17.13), control input vi is defined as (with
i = {1,2})

vi = −Ki(t) · sign(σi) (17.52)

with the gain Ki(t) defined by (17.13).

Experimentations. They have been made with a sampling period T = 0.1
ms. Measured are the position y and both pressures pP and pN . The speed is
reconstructed by means of a simple filtered differentiator. Mechanical and physical
parameters of the “main” actuator, and controller parameters are detailed in [16].
Figures 17.4 displays position and pressure, and their respective errors with respect
to their desired values in spite of perturbation force (unknown by the controller);
this latter force is displayed by Figure 17.5 - Bottom. Furthermore, Figure 17.5-Left
displays control inputs uP and uN . The position chattering is much lower than the
pressure one, which is due to the smaller parameter ε1 with respect to ε2. A more
precise regulation of the pressure would require the reduction of ε2. Note that
there are no strong saturations or chattering effects. Figure 17.5-Right displays
the evolution of K(t) and shows the adaptation of the gain K(t) with respect to
uncertainties and perturbations.

17.5.1.3 Integral Sliding Mode Control [4]

The objective consists in designing a robust (with respect to uncertainties/
disturbances) position controller: in this case, the problem appears as a SISO one
which implies that uP = −uN = u. Define σ the sliding variable as σ = y− yd(t):
from (17.46), its relative degree with respect to u equals 3. One has

σ (3) = Φ(x, t)+Γ (x)u (17.53)

with Φ(x,t) and Γ (x) derived from (17.46)-(17.47). From (17.47), one has Φ =
Φn +ΔΦ and Γ = Γn +ΔΓ . The control law is defined as

u = Γ−1
n · [−Φn + v]
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Fig. 17.4 LEFT. Top. Position y (m) versus time (sec) - Bottom. Mean pressure in the two
chambers (bar) versus time (sec). RIGHT Top. Error (m) between current and desired po-
sitions of the actuator versus time (sec) - Bottom. Error (bar) between current and desired
mean pressures in the two chambers versus time (sec).
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Fig. 17.5 LEFT Top. Control input uP (V ) versus time (sec) - Middle. Control input uN (V )
versus time (sec) - Bottom. Perturbation force (N) versus time (sec). RIGHT Top. Adaptive
gain K1(t) versus time (sec) - Bottom. Adaptive gain K2(t) versus time (sec).

with Γn (resp. Φn) the nominal value of Γ (resp. Φ). Then, one gets

σ (3) =
(
ΔΦ−ΔΓΓ−1

n Φn
)
+

(
1 +ΔΓΓ−1

n

) · v (17.54)

Consider the so-called “nominal” system (with Z = [σ σ̇ σ̈ ]T , and ΔΦ = ΔΓ = 0)

Ż =

⎡
⎣

0 1 0
0 0 1
0 0 0

⎤
⎦

︸ ︷︷ ︸
A

Z +

⎡
⎣

0
0
1

⎤
⎦

︸ ︷︷ ︸
B

v
(17.55)
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which has the same form than system (17.27). As mentioned in Section 17.4.2.1,
the integral sliding mode controller v reads as v = v0 + v1.

Continuous part v0. Given the matrix Q (see details in [4]), from (17.30), one gets
the matrix M. From (17.30), one gets δ (t) = eAmtδ (0) with Am = −[

AT −MBBT
]
.

Then, given δ (t), and from (17.55)-(17.29), one gets Ż = −AT
mZ + BBT eAmtδ (0).

By multiplying both side of previous equation by eAT
mt , and integrating from t = 0

to t = tF , with Z(tF) = 0, one gets

Z(0) = −
[∫ tF

0
eAT

mtBBT eAmtdt

]

︸ ︷︷ ︸
H

·δ (0)

Matrix H is the partial reachability Gramian of linear system ẋ = Amx + Bv and is,
viewed the form of Am, B and tF < ∞, invertible. Then, the initial condition δ (0)
ensuring that Z(tF) = 0 can be derived from δ (0) = −H−1Z(0). The matrix H is
evaluated using an algorithm from [25] which yields δ1(0) = −3.6034e4, δ2(0) =
−3.6034e3 and δ3(0) =−1.2002e2 for σ(0) = [0.016 0 0]T and a convergence time
fixed to tF = 0.2 sec. Then, v0 reads as (with |v0|< v0M = 120)

v0 =
{−BT Mσ(t)+ BTδ (t) for 0 ≤ t ≤ tF
−BT Mσ(t) for t > tF

(17.56)

with δ verifying (17.30).

Discontinuous part v1. Let introduce now S as

S = σ̈ +σ0,2(t)+ 2ξωn (σ̇ +σ0,1(t))+ω2
n (σ +σ0,0(t))

with
σ̇0,2 =−v0, σ̇0,1 = σ0,2, σ̇0,0 = σ0,1

and σ0,2(0) = −σ̈(x(0),0), σ0,1(0) = −σ̇(x(0),0), σ0,0(0) = −σ(x(0),0). From
(17.33), one gets v1 =−K · sign(S).

Experimentations. They have been made by choosing ξ = 0.7, ωn = 200 rad · s−1

and K = 105, this latter allowing to ensure the sliding conditions by taking into
account the uncertainties. The convergence time has been fixed at tF = 0.5 s.
For the results displayed in the sequel, the load actuator has been changed into
“unknown” load composed by springs (for details, see [6]). The actuator position
(Figure 17.6-Left) converges to the desired trajectory in 0.5s (which is the stated
convergence time tF ) controller without overshoot. The maximum error position in
steady state is 0.18mm. During all trajectory tracking, input is realistic even if there
is some saturation phenomena (Figure 17.6-Right).
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Fig. 17.6 LEFT. Top. Desired and current positions (mm) versus time (sec). Bottom. Posi-
tions errors (mm) versus time (sec). RIGHT. Control input uP = −uN (V) versus time (sec).

17.5.2 Control of Induction Motor [23]

This section, which is entirely based on [23], is devoted to robust control of in-
duction motors, in order to evaluate the applicability and the performances of the
“pre-computed trajectories” high order sliding mode approach. In [23], an adaptive
interconnected observer and high order sliding mode control of induction motors
without mechanical sensors (speed sensor and load torque sensor) are proposed and
experimentally evaluated. Only controller is displayed in the sequel of the chapter.
Note that the adaptive interconnected observer developed in [23] estimates fluxes,
angular velocity, load torque and the stator resistance, whereas the speed-flux con-
trol law is based on previously described control law with “pre-computed trajecto-
ries”. Furthermore, in [23], the stability of closed-loop system (with controller and
observer) based on Lyapunov theory is proved. Note finally that these results take
place in “sensorless control” of electrical motors.

17.5.2.1 Model of an Induction Motor

The model is based on the motor equations in a rotating d and q-axis and reads as
⎡
⎢⎢⎢⎢⎣

i̇sd

i̇sq

φ̇rd

φ̇rq

Ω̇

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

baφrd + bpΩφrq− γisd +ωsisq

baφrq−bpΩφrd − γisq−ωsisd

−aφrd +(ωs− pΩ)φrq + aMsrisd

−aφrq− (ωs− pΩ)φrd + aMsrisq

m(φrd isq−φrqisd)− cΩ − 1
J Tl

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

m1 0
0 m1

0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎦

[
usd

usq

]
(17.57)

with isd , isq,φrd ,φrq,usd,usq,Ω , Tl and ωs respectively the stator currents, the rotor
fluxes, the stator voltage inputs, the angular speed, the load torque and the stator
frequency (defined in Section 17.5). The subscripts s and r refer to the stator and
rotor. The parameters a, b, c, γ , m, and m1 are defined in [23]. Msr is the mutual
inductance between the stator and rotor windings, p the number of pole-pair, J the
inertia of the system (motor and load) and fv the viscous damping coefficient.
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17.5.2.2 Precomputed Trajectories High Order Sliding Mode Controller

As introduced before, the goal is to design a robust (with respect to uncertain-
ties/disturbances) flux and speed controller. Define σφ and σΩ the sliding vector
as

σ =
[
σφ
σΩ

]
=

[
φrd −φ∗
Ω −Ω ∗

]
(17.58)

with φ∗ and Ω ∗ respectively the flux and speed references. From (17.57), it yields
that the relative degree of σφ and σΩ with respect to u equals 2 (r = 2), which
implies that at least a 2nd order sliding mode controller is required. In order to avoid
the “chattering” effect and to improve the robustness of the controller, according
to previous design, 3rd order HOSM controllers are designed for the two outputs,

which means that the discontinuous term is applied to σ (3)
φ and σ (3)

Ω through u̇. One
has [

σ (2)
φ

σ (2)
Ω

]
=

[
Φφ (·)
ΦΩ (·)

]
+Γφ ,Ω (·)

[
usd

usq

]
(17.59)

with each component Φφ , ΦΩ and Γφ ,Ω detailed in [23]. As the previous applica-
tions, one considers that each previous function can be written as a nominal part and
an uncertain one,

Φφ = Φφn +Δφ , ΦΩ = ΦΩn +ΔΩ , Γφ ,Ω = Γn +ΔΓ (17.60)

such that Φφn , ΦΩn and Γn are the well-known nominal terms whereas Δφ , ΔΩ and
ΔΓ contain all the uncertainties due to parameters variations and disturbance. Sup-
pose that these uncertainties are bounded. The control input u reads as (note that
matrix Γn is invertible on the work domain)7

[
usd

usq

]
= Γ−1

n

[
−
[
Φφn

ΦΩn

]
+

[
vsd

vsq

]]
. (17.61)

From (17.59)-(17.61), and by time-differentiating8 system (17.59), one gets

[
σ (3)
φ

σ (3)
Ω

]
= Φ +Γ ·

[
v̇sd

v̇sq

]
. (17.62)

The control law design takes 2 steps: the design of the switching variable and the
discontinuous input.

7 The interest of a such feedback is the minimization of the control discontinuous function
gain.

8 Details are available in [23], especially on the features of system (17.59), these features
allowing time differentiation.
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Switching vector. The switching vector S reads as

• For t ≤ tF .

Sφ = σ (2)
φ − F̈Φ + 2ζφωnφ (σ̇φ − ḞΦ)+ω2

nφ (σφ −FΦ)

SΩ = σ (2)
Ω − F̈Ω + 2ζΩωnΩ (σ̇Ω − ḞΩ )+ω2

nΩ (σΩ −FΩ )
(17.63)

with FΦ = Kφ eFtTσφ (0) and FΩ = KΩ eFtTσΩ (0). The choice of these very spe-
cific both reference functions has to be made for their C∞ class ; the tuning method
for F and T is displayed in [15], which allows to calculate

• For t > tF .

Sφ = σ (2)
φ + 2ζφωnφ σ̇φ +ω2

nφσφ
SΩ = σ (2)

Ω + 2ζΩωnΩσ̇Ω +ω2
nΩσΩ

(17.64)

Discontinuous input. The control discontinuous input reads as
[

v̇sd

v̇sq

]
=

[ −Kφ .sign(Sφ )
−KΩ .sign(SΩ )

]
(17.65)

Experimentations. [23] The sliding mode controller parameters are chosen such
that tF = 0.3sec and

• t ≤ 5 sec. ζφ = 0.35, ωnφ = 316 rad/s, αφ = 6.104, ζΩ = 1.56, ωnΩ =
32 rad/s, αΩ = 8.104,

• t > 5 sec. ζφ = 0.35, ωnφ = 447 rad/s, αφ = 15.104, ζΩ = 0.7, ωnΩ =
200 rad/s, αΩ = 8.106

Rotor speed and flux amplitude are provided by observers whereas flux angle
is provided by estimator. The experimental sampling time T equals 200μs. The
experimental results9 of the nominal case with identified parameters (except stator
resistance) are shown in Fig. 17.7. These figures show the good performance of the
complete system observer-controller in trajectory tracking and disturbance rejec-
tion. The estimated motor speed (Fig. 17.7b) converges to the measured speed (Fig.
17.7a) near and under conditions of unobservability (details of these latter condi-
tions are displayed in [23]). It is the same conclusion for estimated flux (Fig. 17.7f)
with respect to reference flux (Fig. 17.7e). The estimated load torque (Fig. 17.7d)
converges to the measured load torque (Fig. 17.7c), under conditions of observabil-
ity and at very low frequency (conditions of unobservability) (between 7 and 9 sec).
Nevertheless, it appears a small static error when the motor speed increases (be-
tween 4 and 6 sec). The load torque is well rejected excepted at the time when it is
applied (Fig. 17.7h and j at time 1.5s and 5s) and when it is removed (Fig. 17.7h and

9 For each figure, each line is refereed to a, c: measured speed and load torque, e: reference
flux, b, d, f, g: estimated speed, load torque, flux and stator resistance, h, i, j: speed, load
torque and flux estimation error.
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Fig. 17.7 Experimental result in nominal case.

j at time 2.5s). On Figure 17.7g, it can be viewed that the stator resistance estima-
tion remains almost constant despite of noise and transient dynamics of speed and
load torque. This test shows the capability of the proposed controller to guarantee
flux and speed tracking of slowly varying speed reference with excitation frequency
close to zero (between 7 and 9 sec).
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Fig. 17.8 Experimental result with rotor resistance variation (+50%).

17.6 Conclusion

This chapter presents control methodologies for controlling uncertain nonlinear
systems, all these results being developed through joined works including Con-
trol group of IRCCyN, Nantes, France. The presented methods can be divided in
two groups : adaptive solutions for standard (first order) sliding mode control, and
high order sliding mode control solutions (including static output feedback for sec-
ond order sliding mode). The proposed adaptive sliding mode controller allows
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retaining robustness and accuracy without knowledge of the uncertainties / pertur-
bations bounds, while dynamically adapting the gain versus the current-time uncer-
tainties magnitude. Then, two high order sliding mode strategies are presented, one
of their features being the a priori knowledge of the convergence time. An output
feedback second order sliding mode controller is also presented: it ensures the es-
tablishment of a second order sliding mode without using the time derivative of the
switching variable. The efficacy of these control algorithms has been verified on
experimental set-up equipped with electrical or electropneumatic actuators.
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Chapter 18
Sliding Mode Controllers and Observers for
Electromechanical Systems

J. de Leon-Morales

Abstract. Controllers and observers for electromechanical systems are widely used
and implemented in the industry in order to improve its performance. Among differ-
ent electromechanical systems we can find interesting domains of application such
as power systems, UAVs, teleoperation. This paper intents to show the advantages of
the control and observer design using sliding mode techniques. These domains are
related with the research topics of the Mechatronics laboratory of the Nuevo Leon
University, in the CIIDIT-UANL Research Institute.

18.1 Introduction

During the last two decades significant interest on sliding mode control has been
generated in the research community. The success of sliding mode techniques is
the significative performance of the system due to the insensitivity to parameters
variations and the complete rejection of disturbances ( [13]). However, some chal-
lenges are present due to the so-called chattering phenomenon. Several efforts to
explain and reduce the effects of the chattering have been done in order to avoid this
limitation. The propose of this paper is to provide some illustrative applications of
the sliding-mode design which have been developed recently in the Mechatronics
laboratory of the CIIDIT-UANL Research Institute ( [17], [25], [28], [29]).

An overview of the applications of the sliding modes to electromechanical sys-
tems is presented in this work. The control of electrical machines in power systems,
UAVs like small helicopters and the most recent applications in teleoperation of the
electromechanical systems like a robots or machines, are probably the most chal-
lenging topics. We focus on the control of systems using directly or indirectly the
theoretical concepts of sliding mode to achieve stability, regulation or tracking.
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18.1.1 Application Domains of Sliding Mode

18.1.1.1 Power Systems: Synchronous Machine and Multi-machine Systems

The transient stability of power systems is a classical dynamical control system
problem. The application of nonlinear control methods to design the excitation con-
trol has been investigated for improving the transient stability of a power system.
A survey on power systems control shows that most existing controllers are de-
signed assuming that power systems have fixed structure and constant parameters.
However, in power systems uncertainties always exist and they are due to sudden
load shedding, generation tripping, occurrence of faults, change of parameters and
network configuration among others. These problems are some of the typical con-
ditions found in power systems which must be taken into account for control and
observer design (see [11], [12], [14], [16], [17], [18]). In this work, a synchronous
machine connected to an infinity bus (SMIB) and a multi-machine system are con-
sidered for illustrating the control design using sliding mode techniques to improve
the transient stability of such systems.

18.1.1.2 UAV: Twin Rotor System

Recently, a lot of works related with the control of the UAV have been published.
The main objective is to design controllers stabilizing UAV’s taking into account
the perturbations and tracking a specific trajectory. Furthermore, the helicopter is an
aircraft that is lifted, propelled and maneuvered by vertical and horizontal rotors.
All twin rotor aircraft have high cross-coupling in all degrees of motion. For this
reason, this system poses very challenging problem of precise maneuvering in the
presence of cross-coupling ( [19], [20]). In this work, some results are presented by
applying a sliding mode control which is implemented in a setup of a twin rotor
system.

18.1.1.3 Teleoperation

The evolution of important technologies and the development of computational tools
have allowed the implementation of robotic systems in the industry. Recently, the
application of robots in telesurgery and the use the images have permitted to im-
prove accuracy and performance and helping surgeon in complex and delicate surg-
eries, saving time and money. Furthermore, the stability and transparency are two
of the most important topics in teleoperation. In particular, maintain stability of the
closed-loop system irrespective of the behavior of the operator or the environment,
is one of the most important tasks to be considered if a communication medium
(wireless or wired) is included in the scheme. The complexity of the overall system
introduces distortion, delays and losses that impact in the stability and performance.
Several schemes have been proposed to study such systems, for example those
based on passivity, which is inspired in the network theory in transmission lines.
However, sliding-mode control has been used extensively in robotics to cope with
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parametric uncertainties and hard nonlinearities, in particular for time delay tele-
operators, which have gained gradual acceptance due to technological advances. In
this work, a scheme to design a sliding mode teleoperator controller to guarantee
robust tracking under unknown constant time delay is presented ( see for more de-
tails [1], [8], [9]).

18.1.2 Paper Structure

The rest of the work is organized as follows. Section 18.2 shows the general ideas of
sliding modes techniques used to design an observer and a controller of a power sys-
tem, where a mathematical model of one machine connected to the transmission line
to the infinity bus and multi-machine power system are presented. In Section 18.3,
the model of a twin rotor system is presented, where results are given for illustrating
the performance of this methodology. Furthermore, using a master-slave configura-
tion, the teleoperation problem is analyzed in Section 18.4. A control scheme using
a super twisting algorithm based on sliding-modes is given to solve the bilateral
problem which is robust in presence of unknown constant time-delays. Finally, con-
clusions are presented in Section 18.5.

18.2 Power Systems: Synchronous Machine and Multi-machine
Systems

Most of the electrical power systems are operating closer to their technical limits
putting restrictions to supply electrical energy to all customers which represent a big
challenge to the electrical industry. Conventional controllers based on approximated
linearized models are usually tuned at one particular operating point. Nevertheless,
due to nonlinear nature of power systems it may be required to be re-tuned when the
operating point changes, assuring in this way a satisfactory dynamic performance.
Furthermore, in case of severe disturbances, the configuration of power system may
be drastically changed. Under such changing conditions, nonlinear controllers of-
fer an alternative to traditional controllers, allowing to improve the performance of
power systems under such uncertain conditions. In what follows, we present a con-
trol scheme based on sliding mode techniques in order to guarantee the stability
under disturbances present in the line or parametric uncertainties.

18.2.1 Synchronous Machine

Although the existing classical controllers have good dynamical performance for
a wide range of operating conditions and disturbances, however, the real electric
power system have been experimenting a dramatic change in recent years. Because
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of that, a lot of attention has been paid to the application of advanced control tech-
niques in power systems as one of the most promising application areas.

In this Section, the control objective is to design a sliding mode controller for a
synchronous machine connected to an infinity bus (SMIB) in such a way to regulate
the terminal voltage and improve the transient stability of the system over a wide
operating region and under external perturbations.

The equations describing the electromechanical transient behavior of a syn-
chronous machine with flux linkage variations, machine damping and transient
saliency included are the following
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(18.1)

together with the linear algebraic relations between currents and flux linkages:
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where

δ (t) Rotor angle, in radians;
ω(t) Relative speed, in rad/s;
ωs = 2π fs, Synchronous machine speed, in rad/s;
H Inertia constant, in seconds;
D Damping factor;
Tm Mechanical power input, in p.u.
Te Electrical power output, in p.u.;
E f Excitation system voltage, in p.u.
T ′

do Open circuit d-axis time constant, in sec;
T ′

qo Open circuit q-axis time constant, in sec;
T ′′

do d-axis sub-transient time constant, in sec;
T ′′

qo q-axis sub-transient time constant, in sec;
xd d-axis synchronous reactance, in p.u.;
xq q-axis synchronous reactance, in p.u.;
x′d d-axis transient reactance, in p.u.;
x′q q-axis transient reactance, in p.u.;
x′′d d-axis sub-transient reactance, in p.u.;
x′′q q-axis sub-transient reactance, in p.u.;
Iq(t) and Id(t) Currents in d-q reference frame of the generator,
E ′

d(t) Transient EMF in the direct axis,
E ′

q(t) Transient EMF in the quadrature axis,
ψd and ψq Flux linkages, direct and quadrature.
where p.u. stands per unit.

18.2.2 One Axes Model

In power systems, models of reduce dimension are frequently used which take into
account some physical considerations in order to study the transient stability of the
synchronous machine and design a controller.

One of the most used model for designing a nonlinear controller is the so-called
the one axes model. Assuming that the stator sub-transient dynamics and those of
the transmission line are neglected, taking into account that T ′′

qo, T ′′
do and T ′

qo are
sufficiently small, and neglecting the dynamics driven the turbines assuming the
mechanical torque TM is constant, and taking into account the assumption that the
impedance are constant and Xq = X ′

d . Then, a 6th order model of the generator is
represented by the following one axes model

⎧
⎪⎨
⎪⎩

δ̇ = ω−ωs

ω̇ = ωs
2H

(
Pm −D(ω−ωs)−E ′

qi
Iqi

)
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q− (Xd −X ′
d)Id)

(18.3)
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with the linear algebraic relations:

0 = (Rs + Re) Id− (
X ′

q + Xep
)

Iq +Vssin(δ −θvs) (18.4)

0 = (Rs + Re) Iq− (
X ′

d + Xep
)

Id −E ′
q +Vscos(δ −θvs) (18.5)

where Te = E ′
qIq , and E f (t) is the input of the system. Taking the system described

by (18.1), the control problem can be formulated as follows:

Control objective: Considering the dynamical system (18.1) and using the
only available information, design a control law u(t) such that the rotor angle
achieves the prescribed behavior with all the internal variables of the system be-
ing bounded. Then, in order to design a controller some assumptions are introduced.

Assumptions
A1. δ is available by measurement and the operating point (δ ∗, 0, E

′∗
q ) is known.

A2. The mechanical power Pm is constant and known and all system parameters are
known.
A3. No saturation in the model is considered.

18.2.3 Sliding-Mode Controller Design

Now, we introduce the most important results related to high order sliding mode
which will be considered in the sequel (see [3], [4], for more details).

Consider systems belonging to a class of single-input-single-output systems with
a known relative degree r, which are represented by

ẋ = f (x)+ g(x)u, σ = σ(t,x) (18.6)

where x(t0) = x0, t0 ≥ 0, x ∈ Bx ⊂ R
3 is the state vector, u ∈R

n is the control input
vector, the field vectors f and g are assumed to be bounded with their components
being smooth function of x and σ : R

n+1 → R are unknown smooth functions. Bx

denotes a closed and bounded subset, centered at the origin. In order to design a
finite-time convergent controller some conditions are required. Since the relative
degree r of the system is assumed to be constant and known, the control explicitly
appears first time in rth total time derivative of σ and

σ (r) = h(t,x)+ m(t,x)u (18.7)

where h(t,x) = σ (r)|u=0, m(t,x) = (∂/∂u)σ(r) 	= 0. It is supposed that for some
Km,KM,C > 0

0< Km ≤ ∂
∂u

σ (r) ≤ KM |σ (r)|u=0 ≤C (18.8)
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which is always true at least locally. From (18.7) and (18.8),

σ (r) ∈ [−C,C]+ [Km,KM]u (18.9)

The closed differential inclusion is understood here in the Filippov sense, which
means that the right-hand vector set is enlarged in a special way, in order to sat-
isfy certain and semi-continuity conditions. The inclusion only requires to know the
constants r, C, Km and KM of the system (18.6). These conditions allow to give a
solution to this control problem (see [4]).

To design a high order sliding mode control for the system, we consider the fol-
lowing n-dimensional nonlinear surface defined by

σ(x,x∗) = 0 (18.10)

where x∗ is equilibrium point of the system and each function σi : R
3 → R, i =

1, ...,n, is a C1 function such that σi(0) = 0. Then, provided that successive total
time derivatives σ , σ̇ , ...,σ (r−1) are continuous functions of the closed-system state-
space variables, and

σ = σ̇ = ...= σ (r−1) = 0 (18.11)

is a nonempty integral set, the motion of (18.11) is called r-sliding mode. Under the
above considerations the controller which will be designed for finite-time stabiliza-
tion of smooth systems at an equilibrium point, is a quasi-continuous high order slid-
ing mode controller, which is discontinuous at least (18.11), and r− sliding homo-
geneous (see [3] and [4] for more details). This controller can be determined as fol-
lows. Let us i = 0, ...,r−1. Denote ϕ0,r =σ N0,r = |σ |, Ψ0,r = ϕ0,r/N0,r = signσ ,

ϕi,r = σ (i) +βiN
(r−i+1)
i−1,r Ψi−1,r (18.12)

Ni,r = |σ (i)|+βiN
(r−i)/(r−i+1)
i−1,r (18.13)

Ψi,r = ϕi,r/Ni,r (18.14)

where βi, ...,βr−1, α are positive numbers, which are chosen sufficiently large in the
list order, the controller

u =−αΨr−1,r(σ , σ̇ , ...,σ r−1) (18.15)

is r-sliding homogeneous and provided for the finite-time stability, σ = 0. Each
choice of parameters β1, ...,βr−1 determines a controller family applicable to all
systems (21.13) of relative degree r.

18.2.3.1 Differentiator Design

It is clear that in order to implement the control law (18.15), it is necessary to know
the real time exact calculation or direct measurement of σ , σ̇ , σ̈ or all components
of the state vector. However, in order to reduce the number of sensors, the only mea-
surable signal in the system is the rotor angle δ . Combining the controller (18.15)
and the homogeneous differentiator (see [3]) given by
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ż0 = v0

v0 = −λrL1/r|z0 −σ |(r−1)/rsign(z0 −σ)+ z1
...

żk = vk

vk = −λr−kL1/(r−k)|zk − vk−1|(r−k−1)/(r−k)sign(zk − vk−1)+ zk+1
żr−1 = −λ1Lsign(zr−1 − vr−2)

(18.16)

for k = 1,..., r-2; where z0, z1,..., zk are estimates of the k-th derivatives of σ .

18.2.3.2 Sliding-Mode Control for SMIB Power Systems

Now, the proposed methodology is applied to the SMIB system (18.1) as shown in
Figure 18.1. Since system (21.13) has relative degree equal to 3 and x∗ = (x∗1,x

∗
2,x

∗
3)

is a stable equilibrium point of system (21.13). Consider the following nonlinear
switching surface defined by σ(x,x∗) = x1 − x∗1, where

σ̇(x,x∗) = x2

σ̈(x,x∗) = a1−a2x2− a3

a4 + a5(x3−a6)
sin(x1)

Fig. 18.1 Synchronous generator connected to a infinity bus.

Remark 18.1. It is clear that other switching surfaces can be defined.

Simulations results obtained using the following system parameters. Generator:
ωs = 377 rad/s, D = 0, H = 3.542, Tm = 0.6 pu,T ′

do = 6.66, T ′
qo = 0.44, T ′′

do = 0.03,
T ′′

qo = 0.05, xd = 1.7572, xq = 1.5845, x′d = 0.4245, x′q = 1.04, x′′d = 0.25, x′′q = 0.25,
Re = 0. Infinite bus: Vs = 1. Transmission line: R = 0, Xl1 = 0.45, Xl2 = 0.30.
For the differentiator: λ1 = 1.1, λ2 = 1.5, λ3 = 2 and L = 200. Control input
uB: α1 = 0.7. Control input E f : α2 = −20. The initial conditions were chosen
as follows. δo = .744rad; ωo = 377 rad/s ;E ′

qo = 1.34 p.u., E ′
do = 0.165 p.u.;

ψqo = −0.48 p.u.; ψdo = 1.109 p.u. It is worth mentioning that the sliding-mode
differentiator-controller is computed form the 3er model and it is implemented in
the 6th order model.
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The simulation results using the sliding mode control are shown in the Figure 18.2
and Figure 18.3, where we can appreciate the good performance of such controller
under of the presence of a triphasic failure in the line. Notice that the controller stabi-
lize all variables around the equilibrium point and damps out the angle oscillations.
It is clear that the proposed scheme has a good performance inreducing overshoots
and oscillations in few cycles.
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Fig. 18.2 Responses of the system in closed-loop.

18.2.4 Multi-machine Mathematical Model

Now, we study, under some standard assumptions, the dynamics of n interconnected
generators through a transmission network can be described by the one axes model
(21.13), (see [11]). The network has been reduced to internal bus representation as-
suming the loads to be constant impedances and taking into account the presence of
transfer conductances. Then, the dynamical model of the i-th machine is represented
by ⎧⎪⎨

⎪⎩

δ̇i = ωi −ωs

ω̇i = ωs
2Hi

(
Pmi −Di(ωi −ωs)−E ′

qi
Iqi

)

Ė
′
qi

= 1
T
′

di

(E fi −E ′
qi
− (Xdi −X ′

di
)Idi)

(18.17)
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Fig. 18.3 Responses under triphasic failure.

where

Iqi = GiiE
′
qi

+
n

∑
j=1, j 	=i

E ′
q j

{
Gi jcos(δ j − δi)−Bi jsin(δ j − δi)

}

Idi =−BiiE
′
qi
−

n

∑
j=1, j 	=i

E ′
q j

{
Gi jsin(δ j − δi)+ Bi jcos(δ j − δi)

}

Iqi , Idi Currents in d-q reference frame of the i-th generator,
E ′

qi
(t) Transient EMF in the quadrature axis,

E fi(t) The equivalent EMF in the excitation coil,
Xdi , X ′

di
Direct axis and direct axis transient reactance, respectively,

Pmi Mechanical input power,in p.u.
Di Damping factor; in p.u.
Hi inertia constant, in seconds;
T ′

di
Direct axis transient short circuit time constant, in seconds;

δi(t) Rotor angle, in radians;
ωi(t) Relative speed,
ωs = 2π fs Synchronous machine speed, in rad/s;
Gi j, Bi j {i j} nodal conductance and susceptance matrices, respectively,

which are symmetric; at the internal nodes after eliminating all physical buses, in
p.u.. Then, the state space representation of the multi-machine power system is given
by
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⎧⎨
⎩

ẋi1 = xi2

ẋi2 = fi1(X)
ẋi3 = fi2(X)+ ui

where

fi1(X) = ai−bixi2− cix
2
i3 −dixi3

n

∑
j=1, j 	=i

x j3
{

Gi jcos(x j1− xi1)−Bi jsin(x j1− xi1)
}

fi2(x) = − eixi3 + hi

n

∑
j=1, j 	=i

x j3
{

Gi jsin(x j1− xi1)+ Bi jcos(x j1− xi1)
}

ai = (ωs/2Hi)Pmi , bi = (ωs/2Hi)Di, ci = (ωs/2Hi)Gii

di = ωs/2Hi, ei = (1 +(Xdi −X
′
di
)Bii)/T

′
di
, hi = (Xdi −X

′
di
)/T

′
di

are the system parameters, Xi = [xi1,xi2,xi3]T = [δi(t),ωi(t),E
′
qi
(t)]T for i = 1, ...,n,

represents the state vector of i-th subsystem, thus X = [X1,X2, ...,Xn]T is the state
vector of multi-machine system and the control inputs is given by ui = (1/T

′
di
)E f i(t).

The control objective can be established as follows: Considering the model
(18.17) and assuming that the currents Iqi(t) and Idi(t) and the rotor angle δi(t)
of each generator are available for measurement. Then, design a robust excitation
control law for the system (18.17) in such a way the transient stability properties
of system’s operating point are guarantee improving its behavior under presence of
noise in the measurable signals and faults in the network.

18.2.4.1 Sliding-Mode Control for Multi-machine Power Systems

Now, we design a control law for n interconnected machines based on sliding mode
technique in such a way the stability properties of the system are improved. Since
each subsystem (18.17) has relative degree equal to 3, then the resulting control law
is given by

u =−α σ̈ + 2(|σ̇ |+ |σ |2/3)−1/2(σ̇ + |σ |2/3signσ)
|σ̈ |+ 2(|σ̇ |+ |σ |2/3)1/2

(18.18)

Now, considering the following nonlinear switching surface defined by σ(X−X∗)=
(σ1(X −X∗),σ2(X −X∗),σ3(X −X∗))T = 0, where

σi(X) = xi1− x∗i1
σ̇i(X) = xi2

σ̈i(X) = ai−bixi2− cix
2
i3−dixi3Iqi

for i = 1,2,3, X∗
i = (x∗i1,x

∗
i2,x

∗
i3) is an equilibrium point.
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Remark 18.2. It is worth noticing that the controller is expressed only in terms of
local measurable variables (xi1, xi2, xi3) and Iqi for i = 1,2,3 . Consequently, the
resulting controller is a decentralized output feedback (see [3], [14]).

Now, assuming that the only measurable signals in the system are the rotor angle δi,
in order to reduce the number of sensors. Then, the control objective is to implement
a finite-time convergent differentiator based on high order sliding mode, when the
outputs σi = δi − δ ∗i are available to estimate the values of σ̇i and σ̈i. The robust
control law stabilizing the synchronous machine i, for i = 1,2,3; is given by

ui =−αiΨr−1,r(zi0,zi1,zi2) (18.19)

where zi0,zi1, and zi2 are given by the differentiator

żi0 = vi0

vi0 = −λi3L1/3
i |zi0−σi|2/3sign(zi0−σi)+ zi1

żi1 = vi1

vi1 = −λi2L1/2
i |zi1− vi0|1/2sign(zi1 − vi0)+ zi2

żi2 = −λi1Lisign(zi2 − vi1)

(18.20)

and the parameters of the differentiator (18.20) are chosen according to the condition

|σ (r)
i | ≤ Li, when Li satisfies Li ≥Ci +αiKM . Finally, taken the following computer-

tested values λi1 = 1.1, λi2 = 1.5 and λi3 = 2 (see [3] for more details).
Notice that in the differentiator not appear the terms of interconnection, therefore

the control scheme is completely decentralized. Furthermore, the order of the differ-
entiator is not associated with number of machines interconnected in the network, it
depends only on the relative degree of the model of the generator used for achieving
the control objective. Furthermore, finite-time convergence of the observer allows
to design the observer and the control law separately, i.e. the separation principle is
satisfied.

18.2.4.2 Simulation Results

Now, we present some simulation results when the proposed scheme is imple-
mented in a multi-machine system. In Figure 18.4 is shown the multi-machine
system considered which represent a system of 3 generators interconnected. The
numerical values of the generators parameters are presented in the Table 1.

Table 1 Generators parameters.

Parameter Gen1 Gen2 Gen3

H(seg) 23.64 6.4 3.01
Xd(pu) 0.146 0.8958 1.3125
X ′

d(pu) 0.0608 0.1198 0.1813
D(pu) 0.3100 0.5350 0.6000
Pm(pu) 0.7157 1.6295 0.8502
T ′

do(seg) 8.96 6.0 5.89



18 Sliding Mode Controllers and Observers for Electromechanical Systems 505

Load A
Load B

Load C

Fig. 18.4 Three-machine system.

Furthermore, the topology of the network has been represented by the conductance
and susceptance nodal matrices

G =

⎡
⎣

0.8453 0.2870 0.2095
0.2870 0.4199 0.2132
0.2095 0.2132 0.2770

⎤
⎦ , B =

⎡
⎣
−2.9882 1.5130 1.2256
1.5130 −2.7238 1.0879
1.2256 1.0879 −2.3681

⎤
⎦
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Fig. 18.5 Responses of the three-machine system.
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In order to implement the controller, the following equilibrium point of the three-
machine system is considered.

EP1 :

⎧
⎨
⎩

x∗11 = 0.0396 x∗12 = 0 x∗13 = 1.0566
x∗21 = 0.3444 x∗22 = 0 x∗23 = 1.0502
x∗31 = 0.2300 x∗32 = 0 x∗33 = 1.017

The parameters of the differentiators were selected as follows: λi1 = 1.1, λi2 = 1.5,
λi3 = 2, L = 500, for i = 1,2,3.

The performance of the proposed scheme is illustrated in Figure 18.5, where
the responses of all state variables of the multi-machine system are shown. Notice
that the good performance of the proposed controller has a better performance and
stabilizes the machine variables and damps out the oscillations few cycles after.

18.3 Helicopter: Twin Rotor System

Helicopter is an aircraft that is lifted, propelled and maneuvered by vertical and hor-
izontal rotors. All twin rotor aircrafts have high cross-coupling in all their degrees
of motion. Especially the gyroscopic effect on azimuth dynamics prevents precise
maneuvers by the operator emphasizing the need to compensate cross-coupling, a
task that clearly adds to the workload for the pilot if done manually.

The twin rotor system recreates a simplified behavior of a real helicopter with
fewer degrees of freedom. In real helicopters the control is generally achieved by
tilting appropriately blades of the rotors with the collective and cyclic actuators,
while keeping constant rotor speed. To simplify the mechanical design of the sys-
tem, the twin rotor system setup considered in this presentation, is designed slightly
differently. In this case, the blades of the rotors have a fixed angle of attack, and
control is achieved by controlling the speeds of the rotors. As a consequence of this,
the twin rotor system has highly nonlinear coupled dynamics. Additionally, it tends
to be non-minimum phase system exhibiting unstable zero dynamics. This system
poses very challenging problem of precise maneuvering in the presence of cross-
coupling. It has been extensively investigated under the algorithms ranging from
linear robust control to nonlinear control domains.

In this Section, the control objective is to design a robust controller for a twin
rotor system taking into account the cross-couplings residing in the helicopter dy-
namics in such a way the improve its stability under external disturbances.

18.3.1 Dynamical Model of a Twin Rotor System

The dynamical model of the 2-DOF twin rotor system is described by the following
equations
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ẋ1 = x2

ẋ2 =

{
g [(A−B)cos(x1)−C sin(x1)]+ lmFv − [A + B +C]sin(x1)cos(x1)x2

4

}
Jv

− { fvx2−a1|ωm|x2 + khvuh}
Jv

ẋ3 = xi4

ẋ4 =
ltFh cos(x1)− fhx4−a2|ωt |x4 + kvhuv

Dsin(x1)2 + E cos(x1)2 + F
(18.22)

where X = [x1, ...,x4]T represents the state vector of the system such as X =
[θ , θ̇ ,ψ , ψ̇ ].
θ ,ψ represent vertical and horizontal angles, respectively.
θ̇ , ψ̇ represent vertical and horizontal velocities.
A,B,C,D,E,F are inertial constants taken from experimental setup measures.
lm, lt are the lengths of the main and tail parts of the beam.
fv, fh are viscous friction terms relative to vertical and horizontal axes.
ωm,ωt are angular velocities from main and tail rotors. Relationship has been ex-
perimentally determined, depends on the input voltage.
Jv is the sum of moments of inertia relative to the horizontal axis.
Fv,Fh denote the dependence of the propulsive force on the angular velocity of the
main and tail rotors (experimentally determined).
a1,a2 are model constants.
khv and kvh represent cross-coupling constant terms.
uv and uh represent the voltage applied to motors.
The angles θ and ψ are the measurable outputs.
Velocities θ̇ and ψ̇ are assumed to be non-measurable states.

In the control system and robotic communities have gained interest for the develop-
ment of observers applied to UAVs due to the important developments of embedded
electronics and micro-controllers. This technological improvement has motivated
the testing of more sophisticated algorithms in real time.

Motivated by previous arguments, in what follows a differentiator will be de-
signed in order to solve the problem of speed estimation of a twin rotor system,
when the vertical and horizontal angles are available from measurements.

18.3.1.1 Observer Design

Form the model (18.22), and knowing that the outputs of the system y1 = x1 and y2 =
x3 are measurable, we use a differentiator in order to estimate the non measurable
state components. For that

żi,0 = νi,0

νi,0 = −λi,2L1/2
i |zi,0 −σi|1/2sign(zi,0 −σi)+ zi,1

żi,1 = −λi,1Lisign(zi,1 −νi,0) (18.23)
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Fig. 18.6 Helicopter: twin rotor system setup.

for i = 1,2. Then, the controller is of the form.

ui =−αisign(zi,1)+ |zi,0|1/2 sign(zi,0)) (18.24)

where u1 = uh and u2 = uv.

18.3.1.2 Simulation Results

In this Section, we provide simulation results to illustrate the effectiveness of the
proposed methodology when applied to the twin rotor systems.

The case of study concerns the design of a robust control for twin rotor system
of a 2-DOF helicopter setup (see Figure 18.6).

Platform consists of a beam pivoted on its base in such a way that it can rotate
freely both in the horizontal and vertical planes. At both ends of the beam there
are rotors (main and tail rotors) driven by DC motors. A counterbalance arm with a
weight at its end is fixed to the beam at the pivot. The state of the beam is described
by four process variables: horizontal and vertical angles measured by position sen-
sors fitted at the pivot, and two corresponding angular velocities. Two additional
state variables are the angular velocities of the rotors, measured by tacho-generators
coupled with the driving DC motors.

The numerical values from the system parameters were Jv = 0.02421,m =
0.5920, lm = 0.202, lt = 0.216,g = 9.8,A = 1.0671,B = 1.4678,C = 0.0044,D =
0.0006225,E = 0.0224,F = 0.0021, fv = 45, fh = 90,a1 = 0.1,a2 = 0.1,kvh =
20,khv = 18.



18 Sliding Mode Controllers and Observers for Electromechanical Systems 509

Fig. 18.7 Reference and horizontal response of helicopter system with 2-DOF.

Fig. 18.8 Reference and vertical response of helicopter system with 2-DOF.

Defining σ1 = y1− yre f ,1 and σ1 = y3− yre f ,2, where yre f ,1 = 0.1sin(wt) of 1/60
Hz frequency and yre f ,2 = 0.4Square(t) of 1/0.015 Hz frequency. Assuming the he-
licopter starts moving from a rest point, initial value of the states variables were
x1(0) = 0.01, x3(0) = 0.01, x2(0) = 0.01, x4(0) = 0.01. Furthermore, the differ-
entiator parameters were chosen as follows: λ1,1 = 1.5, λ1,2 = 1.1, λ2,1 = 1.85,
λ2,2 = 1.81, L1 = 20, L2 = 20. Finally, the control parameters were chosen as fol-
lows: α1 = 18.02, α2 = 450.02.
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In Figure 18.7 and Figure 18.8 are plotted the responses of vertical and horizon-
tal angles, respectively; tracking the desired reference and which are obtained from
the twin rotor system setup. In all simulations, we can see that the output controller
tracks the desired time varying references of the horizontal and vertical angles. Fur-
thermore, we can see that the position and speed converges to the desired references
in finite-time. It is clear that the proposed controller has a good performance in terms
of rate of convergence.

18.4 Teleoperation Bilateral: Master-Slave Systems

18.4.1 Introduction

Recently, the application of nonlinear control theory has attracted the attention of
the research community to understand and overcome problems in bilateral teleop-
eration. Furthermore, teleoperation over the internet has introduced new problems
due to the effects of delays in communications, which may cause instability in the
system.

In a system which is teleoperated basically, a human operator interacts with an in-
terface, called master teleoperator, and drives it in order to govern the remote coun-
terpart, on the opposite side, while another interface (slave operator) is in charge of
directly implementing commands received from the operator on the remote environ-
ment (see [8], [9]).

Several teleoperation schemes considering time-delays have been proposed in
the last decades. However, stability problems have found in these schemes, so that
important improvements have been suggested. Recently, an increased interest on
sliding-mode control has been developed to address the problem of delays in teleop-
eration, which has generated and inspired a line of research in designing controllers
to compensate the effects of these delays in real time (see [26] [27], [25]).

The control objective is to design a robust control for a teleoperator system tak-
ing into account a fixe delay time in the communication system. The scheme applied
contains an impedance control for the master system combined with a second order
sliding mode control and differentiator for the slave system. Thus, this scheme pro-
vides a better performance over a wide range of constant time-delays.

18.4.2 Teleoperation System

In a teleoperation general setting, the human imposes a force on the master ma-
nipulator which in turn results in a displacement that is transmitted to the slave that
mimics that movement. If the slave possess force sensors, then it can reflect or trans-
mit back to the master reaction forces from the task being performed, which enters
into the input torque of the master, and the teleoperator is said to be controlled bi-
laterally.

For sake of simplicity, we consider the dynamics of the 1-DOF master/slave sys-
tems are represented as a mass-damper system
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Mmẍm(t)+Cmẋm(t) = um(t)+ fh(t) (18.25)

Msẍs(t)+Csẋs(t) = us(t)− fe(t) (18.26)

where x and u denote the position and the input torque, respectively; subscript m and
s denote the master and the slave; fh and fe are the force applied at the master by
the human operator, and the force exerted on the slave by the environment, respec-
tively. Also Mi and Ci represent mass and viscous friction coefficient, respectively,
with i = m,s denoting master and slave. Furthermore, a time delay imposed on the
communication channels is assumed to be constant and unknown.

Fig. 18.9 A block diagram of bilateral teleoperation

This bilateral teleoperation system scheme can be represented by the block di-
agram shown in Figure 18.9. Furthermore, the position and force of the master
are transmitted to the slave and the contact force of the slave is sent to the master
through the communication channel, where there is a time delay in the communica-
tion channel. The signals from and to the channel are related as

xd
m(t) = xm(t −T1)

ẋd
m(t) := ẋm(t −T1)

f d
h (t) = fh(t −T1)

f d
e (t) := fe(t −T2)

(18.27)

where xd
m, ẋd

m, and f d
h are the position and velocity of the master, and the force

exerted by a human operator, respectively, which are transmitted to the slave through
the communication channel; f d

e is the external force at the slave transmitted to the
slave through the master; T1 is a time delay of the signal flowing from master to the
slave, and T2 is in the opposite direction.

This delayed signals out of the communication block are then scaled up or down
by some factors, then the position/velocity command to the slave and the force signal
to the master are modified such that xs = Kpxd

m and fh = Kf f d
e , where Kp and Kf are

position and force scale factors, respectively. Then, the state space representation of
(18.25) and (18.26) are given as follows.
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{
ẋm1 = xm2

ẋm2 = − Cm
Mm

xm2 + 1
Mm

um + 1
Mm

fh
(18.28)

{
ẋs1 = xs2

ẋs2 = − Cs
Ms

xs2 + 1
Ms

us− 1
Ms

fe
(18.29)

In what follows, a robust impedance controller as well as a differentiator in order
to estimate the speed and acceleration are designed. It is clear that an extension of
theses results for the multi-variable case can be obtained.

18.4.3 Controller Design

Now, an impedance controller and a sliding-mode based impedance controller are
designed for the master and the slave, respectively.

Consider the following master control structure

um =− fh +Cmẋm +
Mm

M̄m
( fh −Kf f d

e − C̄mẋm − K̄mxm) (18.30)

where M̄m, C̄m, K̄m > 0 are desired inertia, damping coefficient, and stiffness, re-
spectively; of a desired impedance. Substituting (18.30) into (18.25), the closed-
loop impedance error is given by

M̄mẍm + C̄mẋm + K̄mxm = fh −Kf f d
e (18.31)

Consider the slave control design based on second order sliding mode approach
to produce a desired impedance behavior modulated by the environmental contact
force and robust to unknown time-delay. To this end, consider the desired slave
impedance

M̄s ¨̃xs + C̄s ˙̃xs + K̄sx̃s =− fe (18.32)

where M̄s, C̄s, K̄s > 0 are the desired inertia, damping, and stiffness, respectively,
and ¨̃xs := ẍs −Kpẍd

m, ˙̃xs := ẋs −Kpẋd
m, x̃s := xs −Kpxd

m are the slave tracking errors
for acceleration, velocity and position, respectively.

Since we want to obtain (18.32) in closed-loop, then defining the following slid-
ing surface

Ie = M̄s ¨̃xs + C̄s ˙̃xs + K̄sx̃s + fe = 0 (18.33)

Now, let us define the extended error variable as follows

Ω =
1

m̄s

[∫ t

0
Ie(τ)dτ + Ki

∫ t

0

∫ σ

0
sign(Ie(τ))dτdσ

]
(18.34)

where Ki > 0 is the sliding mode gain. Substituting (18.33) into (18.34) and inte-
grating, we finally obtain
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Ω = ˙̃xs +
C̄s

M̄s
x̃s +

1
M̄s

∫ t

0
[K̄sx̃s + fe]dτ +

Ki

M̄s

∫ t

0

∫ σ

0
sign(Ie(τ))dτdσ (18.35)

The slave controller us has the following form

us = −Ms
M̄s

(
C̄s ˙̃xs + K̄sx̃s + fe + Ki

∫ t
0 sign(Ie(τ))dτ

)
+ Ms

M̄m
kKp

(
f d
h −Kf f dd

e − C̄mẋd
m − K̄mxd

m

)
+ fe +Csẋs−KgΩ

(18.36)

where f dd
e = fe(t−2T ), the superscript dd stands for the round trip delay: 2T , Kg >

0, and sign(·) is the discontinuous signum function. The term KgΩ has been added
to achieve stability as it will be seen afterwards. Also, notice that (18.35) requires
acceleration measurement because Ie depends on acceleration. To deal with this
inconvenience, acceleration and velocity are estimated, at master and slave sides, by
means of super twisting observers.

18.4.4 Super Twisting Observer Design

The elimination of sensors to measure velocity and acceleration is an advantage
in robotics because expensive and bulky tachometers are avoided. Then, to reduce
the number of sensors we add to the control scheme a nonlinear super twisting
sliding mode observer (see [6]). This sliding mode observer is based on structural
conditions and the iterative use of the super twisting algorithm. The importance of
such observer is that it can be used as a tool to solve several difficult problems of
observation.

Now, a finite time observer for slave system (18.29) is designed. Consider the
following canonical form.

{
ẋ1 = x2

ẋ2 = F(x1,x2,u,y)
(18.37)

with F(x1,x2,u,y) =− Cs
Ms

x2 + 1
Ms

us− 1
Ms

fh.

Notice that the term F can be seen as unknown input, which must be estimate in
such a way to estimate the acceleration of the slave system.

The super twisting observer for system (18.37) has the following form

˙̂x1 = x̃2 +λ1
√|x̃1− x̂1|sign(x̃1− x̂1)

˙̃x2 = α1sing(x̃1− x̂1)
˙̂x2 = E1[Θ̃ +λ2(

√|x̃2− x̂2|)sign(x̃2− x̂2)]
˙̃Θ = E2α2sign(x̃2− x̂2)

(18.38)

where α1 and α2 are the observer gains, λ1 and λ2 are the corrections factors de-
signed for convergence of the estimation error, which are defined as ei = x̃i− x̂i, for
i = 1,2. Also the scalar functions Ei for i = 1,2 are defined as: Ei = 1 if ei ≤ εi, else
Ei = 0, where εi are small positive constants.



514 J. de Leon-Morales

18.4.5 Simulation Results

Simulation results are obtained using the following parameter values. The parameter
values of the each system are the following. Master System: Cm = 0.9, Mm = 1.9,
M̄m = 1.8641, C̄m = 1.5, Kf = .9, K̄m = 0.01. Slave system: Cs = 0.9, Ms = 7, C̄s =
0.5, M̄s = 0.3, K̄s = 15. The parameters of the controller: Kp = 1, Kg = 500, Ki = 0.1,
and the observer: α1 = 100, α2 = 200, λ1 = 10, λ2 = 750, E1 = 1, E2 = 0.
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Fig. 18.10 Position responses of Master-Slave system.
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Fig. 18.11 Velocity responses of Master-Slave system.
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In Figure 18.10 and Figure 18.11, the position and velocity responses are plot-
ted. We can see the performance of the control when the master system tracks a
desired trajectory and the slave system tracks the master system signal sent by the
communication system with a time delay T, which was chosen of T = 0.5sec..

18.5 Conclusions

In this paper, an overview about the strategies of control and observation based on
sliding modes techniques has been presented and implemented in electrical power
systems (synchronous machine and multi-machines systems), in a twin rotor system
( Helicopter of 2-DOF), and in a master-slave teleoperated bilaterally system, which
are the research fields of the Mechatronics laboratory of the Universidad Autónoma
de Nuevo León, in the CIIDIT-UANL Research Institute.

Furthermore, in all applications presented in this paper, the tested control-
observer strategies based on sliding mode have been demonstrated the good per-
formance as well as the finite-time convergence and robustness under external dis-
turbances.

Acknowledgements. The author gratefully acknowledges the financial support by the Mex-
ican CONACyT (Consejo Nacional de Ciencia y Tecnología) grant number 105799, by the
FONCyT (Fondo Nacional para la Ciencia y la Tecnología) project number 93302.
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7. Walcott, B.L., Żak, S.H.: State observation of nonlinear uncertain dynamical systems.
IEEE Transactions on Automatic Control 32, 88–104 (1987)

8. Slotine, J.J., Hedrick, J.K., Misawa, E.A.: On sliding observers for nonlinear systems.
ASME Journal Dynamical Systems Measurement Control 109, 245–252 (1987)

9. Hoyakem, P.F., Spong, M.W.: Bilateral Teleoperation: An historical survey. Automat-
ica 42, 2035–2057 (2006)

10. Li, C., Elbuluk, M.: A sliding mode observer for sensorless control of permanent magnet
synchronous motors. In: Industry Applications Conference (2001)



516 J. de Leon-Morales

11. Bergen, A.: Power System Analysis. Prentice-Hall, Englewood Cliffs (1986)
12. Utkin, V.I., Guldner, J., Shi, J.: Sliding mode control in electromechanical systems. Tay-

lor & Francis, Abington (1999)
13. Utkin, V.I.: Sliding modes in control and optimization. Comunications and Control

Engineering Series. Springer, Heidelberg (1992)
14. Chapman, J.W., Ilic, M.D., King, C.A., Eng, L., Kaufman, H.: Stabilizing a multi-

machine power system via decentralized feedback linearizing excitation control. IEEE
Trans. on Power Systems 8(1), 830–839 (1993)

15. Ortega, R., Galaz, M., Astolfi, A., Sun, Y., Shen, T.: Transient stabilization of multima-
chine power systems with nontrivial transfer conductances. IEEE Trans. on Automatic
Control 50(1), 60–75 (2005)

16. Taore, D., Plestan, F., Glumineau, A., de Leon, J.: Sensroless induction motor: Hihg
sliding mode controller and adaptive interconnected observer. IEEE Trans. Ind. Elec-
tron 55(1), 3818–3827 (2008)

17. Colbia-Vega, A., de Leon-Morales, J., Fridman, L., Salas-Pena, O., Mata-Jimenez, M.T.:
Robust excitation control design using sliding-mode technique for multimachine power
systems. Electric Power Systems Research 78(1), 1627–1634 (2008)

18. Loukianov, A.G., Caedo, J.M., Utkin, V.I., Cabrera-Vazquez, J.: Discontinuous Con-
troller for Power System: Sliding-Mode Block Control Approach. IEEE Trans. On In-
dustrial Electronics 51(2), 340–353 (2004)

19. Valavanis, K.P.: Advances in Unmanned Aerial Vehicle, University of south Florida
Tampa, Florida. Springer, Heidelberg (2007)

20. Stengel, R.: Flight Dynamics, November 2004. Princeton University Press, Princeton
(2004)

21. Zyskowky, M.K.: Aircraft Simulation Techniques Used in Low-Cost, Commercial Soft-
ware. In: AIAA 2003, vol. 5818 (August 2003)

22. Melin, T.: A Vortex Lattice Matlab Implementation for linear Aerodynamic Wing Appli-
cations. Masters Thesis, Royal Institute of Technology, KTH (2000)

23. Etkin, B.: Dynamics of Flight Stability and Control, 3rd edn. John Wiley and Sons, Inc.,
Chichester (1996)

24. Naveed, U., Whidborne, J.F.: A lateral Directional Flight Control System for the MOB
Blended Wing Body. Departament of Aerospace Sciences. Cranfield University, Bed-
fordshire MK45 OAL, UK

25. Guerra-Torres, C., de Leon-Morales, J., Glumineau, A., Traore, D., Boisliveau, R.: Tele-
operation of an Experimental Platform of Electrical Machines through the Internet. In-
ternational Journal of Online Engineering (iJOE) 42(1) (2121) ISSN 1861-2121

26. Garcia-Valdovinos, L.G., Parra-Vega, V., Arteaga, M.: Higher-order sliding mode
impedance bilateral teleoperation with robust state estimation under constant unknown
time delay. In: Proceedings IEEE/ASME Int. Conf. on Advanced Intelligent Mechatron-
ics, pp. 1293–1298 (2005)

27. Cho, H.C., Park, J.H.: Stable bilateral teleoperatin under a time delay using a robuste
impedance control. Mechatronics 15, 611–625 (2005)

28. Rodriguez, A., De Leon, J., Fridman, L.: Quasi-continuous high-order sliding-mode con-
trollers for reduced-order chaos synchronization. International Journal of Non-Linear
Mechanics 43, 948–961 (2008)

29. Rodriguez, A., De Leon, J., Fridman, L.: Synchronization in reduced-order of chaotic
systems via control approaches based on high-order sliding-mode observer. Chaos, Soli-
tons and Fractals 42, 3219–3233 (2009)



Chapter 19
Synthesis of Canonical Elements for Power
Processing Based on Sliding-Mode Control

Luis Martínez-Salamero and Angel Cid-Pastor

Abstract. Inducing sliding motions in appropriate converters allows a systematic
design of the three canonical elements for power processing, i.e., DC transformer,
power gyrator and loss-free resistor (LFR). A search of candidates is performed by
studying a great number of converters with topological constraints imposed by the
nature of each canonical element. Several examples ranging from DC impedance
matching by means of a DC transformer to LFR-based power factor correction il-
lustrate the application of the synthesis.

19.1 Introduction

The domain of Power Electronics lies in the field of conversion and control of elec-
tric energy for industrial, commercial or domestic applications. Many times identi-
fied with Industrial Electronics, Power Electronics is the result of the interaction of
independent disciplines with a high degree of maturity, such as Control Theory and
Circuit Theory, with technological subjects in permanent change such as Analogue
and Digital Electronics, Microprocessors, Semiconductor Power Devices, VLSI cir-
cuits and Electrical Machines [24].

Power Electronics has been a key element in the regulation and control of elec-
trical machines during more than sixty years, and it was initially associated with
high power and high current processes. Later, at the end of the sixties of last cen-
tury, it underwent an alternative development in high frequency, low power, and
low current systems with the appearance of the DC-DC switching converters in the
electrical architecture of satellites and other spacecrafts systems.

DC-DC switching converters were gradually becoming the basic core of power
supplies for terrestrial applications, where computer and telecommunication indus-
tries are their greatest debtors, and nowadays they are key elements in the electrical
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518 L. Martínez-Salamero and A. Cid-Pastor

architecture of any electronic instrumentation equipment. The importance of this de-
velopment has had its correlation in a very dynamic market, in constant expansion
and with permanent attractive challenges for engineers.

The design of switching converters requires interdisciplinary knowledge to fu-
sion notions of analysis and modeling, simulation and control with technological
expertise in magnetic design, capacitive components and power devices employed
in the converter realization [12].

The most simple way to describe a switching converter is by means of a two-
port element, so that in the input port energy is extracted from a non-regulated DC
source, i.e., battery, photovoltaic (PV) panel, rectifier or fuel cell, to be supplied
according to specifications to a load connected at the output port. Thus, we can find
stable consume and strict margins of output voltages in instrumentation equipments,
pulsating consume in laser supplies or large consume margins in motor supplies.

The electrical architecture of power supplied has evolved from an initial cen-
tralized configuration to a present distributed configuration [20]. Centralized power
systems use only one converter with multiple outputs with different voltage val-
ues and regulation levels, these output being connected to their respective loads by
means of individual buses .Their main advantage lies in the concentration in a single
box of all the technology for power processing , this including the thermal manage-
ment. However, their adaptation to the requirements of the new generation of power
equipments is very limited. On the other hand, distributed power systems are of
modular type, employ multiple converters located in different points, and combine
voltages and currents to satisfy the load specifications. They are specially indicated
for high-power applications and can be easily standardized, so that low power tech-
niques can be used in their design. They employ an input converter that provides
an intermediate DC bus whereto multiple converters acting as interface with their
respective loads are connected. These converters are located at the point of load,
and are used to provide the local voltages required by their respective loads. This
type of architecture shows significant advantages over the centralized approach in
terms of thermal management and encapsulating, decrease of the basic modular el-
ement, reduction of harmonic components and electromagnetic interference (EMI),
design standardization, maintenance and flexibility to design complex architectures.
Distributed power architectures are nowadays the best candidate to fulfill the re-
quirements of the new power supply architectures among which we have to point
out the one corresponding to microprocessors which should operate with clock fre-
quencies of gigahertz from a power converter delivering voltages low of a 1 V and
nominal current loads of 30 A or more.

There are two families of converters, namely, the hard switching converters and
the resonant converters. The hard switching converters are dominant in the industrial
area of electrical architectures for power supplies and will be the subject of this
paper.
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19.2 Power Processing Systems

Power Processing is a technical field defined by some of the pioneers in power sup-
plies almost 40 years ago with the aim to organize systematically both teaching and
research in the area of power electronics that at that time had already achieved ma-
turity. The name was by analogy with and in contrast to Signal Processing, in which
the information content is processed by electronic devices at the expense of some
power consumption. In Power Processing the main objective is to minimize energy
loss in transforming one form of electrical power into another according to some
signal control [24]. If we observe the elements used in an analogue signal proces-
sor, we will find resistors, capacitors and semiconductors in linear operation, the
inductors being excluded because they are bulky, heavy and do not fit to integrated
circuits. In a clear cut contrast, in a Power Processing system the basic elements are
inductors, capacitors and semiconductors operating in switched mode, the resistor
being the forbidden element in any configuration.

The basic electronic functions of a power processing system are 1) voltage regu-
lation 2) DC impedance matching 3) capability of association with other processors
4) generation of power signals by tracking variable reference signals. Converter as-
sociation constitutes the key element of modern power distribution structures due
basically to the employ of modular systems whose use is justified by reasons of ef-
ficiency and standardization. There are five basic distribution structures to provide
functions of paralleling, cascading, stacking, source splitting and load splitting [20].

DC impedance matching in power processing basically means to match a PV
generator and a DC load. In most of the cases found in the technical literature,
the converter has implicitly performed the canonical function of a DC transformer.
However, there are other canonical elements in power processing [27], namely, the
power gyrator and the loss-free resistor that can be used to improve the efficiency
and versatility of power distribution systems and can also provide impedance match-
ing in photovoltaic systems.

In this paper, a systematic procedure for the synthesis of canonical elements for
power processing is presented in a unified way. The three basic elements, i.e., DC
transformer, power gyrator and loss-free resistor are designed by inducing sliding
motions in appropriate DC-DC switching converters whose respective equilibrium
states are characterized by the corresponding descriptive equation of the canonical
element. This paper is organized as follows. A generalized canonical element for
the synthesis is presented in Section 19.3. DC Transformers are analyzed in Section
19.3. Power gyrators and loss-free resistors are studied in Sections 19.5 and 19.6
respectively. The PV impedance matching problem is analyzed in Section 19.7 with
experimental results for a boost converter with output filter acting as a DC trans-
former interfacing a PV generator and a battery. DC-AC conversion in a modular
chain for PV systems is studied in Section 19.8. Power distribution based on gyra-
tors is covered in Section 19.9. Power factor correction by means of loss-free resis-
tors is investigated in Section 19.10. Finally, conclusions and discussion on future
research are given in Section 19.11.
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19.3 Generalized Canonical Element

Fig. 19.1 shows the block diagram of a generalized canonical element for power
processing. It consists of a switching converter, which is controlled by means of a
sliding mode regulation loop [22]. The switching surface is given by S(x) = K1i1 +
K2i2 +K3v1 +K4v2 and can be particularized in the following cases: a) K3 = K4 = 0,
b) K1 = K2 = 0, c) K1 = K4 = 0, d) K2 = K3 = 0, e) K2 = K4 = 0. Cases a) and b)
result in a DC transformer, cases c) and d) lead to a power gyrator and case e) yields
a loss-free resistor.

Fig. 19.1 Block diagram of a generalized canonical element for power processing

There are two main approaches in the use of sliding-mode control in switching
power converters. The first one is based on the fact that for single input systems
a suitable Lyapunov function is V (t,x) = s2(x)/2, which is positive definite. If the
switched feedback gains are chosen so that

dV (t,x)
dt

= s
ds
dt
< 0 (19.1)

in the domain of attraction, then the state trajectory converges to the surface and is
restricted to the surface for all subsequent time. This procedure is used in the works
of Bilalovic [1], Venkataraman et al. [36, 37], Malesani et al. [21] and Tan et al.
[31,30]. The second approach is based on Filippov’s method [13] and its immediate
corollary, which is known as the method of the equivalent control [32,33,34] and can
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be easily applicable to multi-input systems. This technique has been used by Sira-
Ramirez [28] considering sliding surfaces of the form x j = K, for some state variable
that is desired to be regulated at the level K. It has been also used in [23, 8, 6, 10]
for surfaces that are a linear combination of the converter state variables yielding
interesting results for the design of new power devices.

On the other hand, it has to be pointed out that imposing a sliding mode regime
using a combination of voltages and currents requires the corresponding variables
to be either continuous function of time or represent independent generators [36].
Therefore, this condition establishes the main topological constraint in all the above
mentioned cases and will be the base for searching the candidates to implement the
different canonical elements.

19.4 Synthesis of DC Transformers

The goal of the synthesis is to design a switching structure whose equations in
steady-state are given by

V2 = nV1

I2 =
I1

n

(19.2)

where I1,V1, and I2,V2 are the steady-state averaged values of input and output vari-
ables respectively.

Equations (19.2) define a DC transformer, which can be synthesised particularis-
ing the block diagram of Fig. 19.1 in cases A or B.

CASE A
The sliding surface is given by S(x) = K1i1 + K2i2. In steady-state S(x) = 0, i.e.,

I2 = −K1I1
K2

= I1
n with n = −K2

K1
. On the other hand, since the converter in Fig. 19.1

is ideal and therefore is a POPI structure (DC Power output=DC Power input) [27],
equation (19.2) will be automatically satisfied.

The sliding constraint requires both i1 and i2 to be continuous function of time,
this implying the existence of a series inductor in both ports. The most simple con-
verters with such constraints at both ports are fourth order, namely, buck with input
filter (BIF), boost with output filter (BOF), Ćuk converter and Ćuk converter with
galvanic isolation (Fig. 19.2).

Example of Case A

a) Equivalent Control. Fig. 19.3 shows the block diagram of a Ćuk converter with
a feedback loop forcing the converter dynamics to evolve on the surface S(x) =
K1i1 + K2i2 where −K2

K1
= K. The absence of external periodic signal together

with the ideal comparator makes this system self-oscillating [23].
In the continuous conduction mode the converter has only one structural

change during a switching period and therefore it can be represented by two
piecewise-linear vector differential equations as follows:
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(a) (b)

(c) (d)

Fig. 19.2 Fourth order converters with non-pulsating input and output currents. (a) buck
converter with input filter (b) boost converter with output filter (c) Ćuk converter (d) Ćuk
converter with galvanic isolation

Fig. 19.3 Self-oscillating Ćuk converter with sliding-mode control

Ẋ = A1X + B1 during TON (19.3)

Ẋ = A2X + B2 during TOFF (19.4)

where X = [i1, i2,vC1,v2]+ is the state vector and matrices A1,B1,A2,B2 are given
by

A1 =

⎡
⎢⎢⎣

0 0 0 0
0 0 1/L2 1/L2

0 −1/C1 0 0
0 −1/C1 0 −1/RC2

⎤
⎥⎥⎦ B1 =

[
Vg/L1 0 0 0

]
(19.5)

Equations (19.3) and (19.4) can be combined in only one bilinear expression

Ẋ = (A1X + B1) u +(A2X + B2) (1−u) (19.6)
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where u = 1 during TON and u = 0 during TOFF. Equation (19.4) can be expressed
as follows:

Ẋ = A2X + B2 +(A1 −A2) X u +(B1 −B2) u (19.7)

From (19.3) and (19.5), the following set of differential equations is derived

di1
dt

=−vC1

L1
+

vC1

L1
u +

Vg

L1

di2
dt

=− v2

L2
+

vC1

L2
u

dvC1

dt

=
i1
C1

− i1
C1

u− i2
C1

u
dv2

dt
=

i2
C2

− v2

RC2
(19.8)

Assuming S(x) = K1i1 + K2i2 as sliding surface and imposing the invariance

conditions [28] S(x) = 0 and dS(x)
dt = 0 in (19.8) lead to the following expression

of the equivalent control ueq(x)

ueq(x) =
K1L2(vC1 −Vg)+ K2L1v2

vC1(K1L2 + K2L1)
(19.9)

From (19.9) we conclude that a sliding regime will exist if the following condi-
tion is fulfilled

K2

K1
	= L2

L1
(19.10)

Now, the discrete variable u is substituted by a continuous variable ueq(x) which
can take all the values between 0 and 1. This variable ueq(x) represents the con-
trol law that describes the behavior of the system restricted to the switching
surface where the system motion takes place on the average [32, 33, 34, 13].
Therefore, ueq(x) is bounded by the minimum and maximum values of u

0< ueq(x)< 1 (19.11)

b) Equilibrium Point. Substituting u by ueq(x) in (19.8) and taking into account
the constraint i2 = −K1i1

K2
imposed by the switching surface will result in the

following ideal sliding dynamics:

g1(x) =
di1
dt

− vC1

L1
+

K1L2(vC1 −Vg)+ K2L1v2

L1(L2K1 + L1K2)
+

Vg

L1
(19.12)

g2(x) =
dvC1

dt
=

i1
C1

− i1
C1

(
1− K1

K2

) K1
L1

(vC1−Vg)+ K2
L2

v2

vC1

(
K1
L1

+ K2
L2

) (19.13)

g3(x) =
dv2

dt
=− K1i1

K2C2
− v2

RC2
(19.14)

The coordinates of the equilibrium point x∗ = [I1, I2, VC1, V2]
+ are given by
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x∗ =

[(
K2

K1

)2 Vg

R
, − K2

K1

Vg

R
,

(
1− K2

K1

)
Vg, − K2

K1
Vg

]
(19.15)

Note that

V2 =−K2

K1
Vg (19.16)

I2 =−K1

K2
I1 (19.17)

Expressions (19.16) and (19.17) define the transformer behavior of the converter
in steady-state. It has to be pointed out that K2/K1 must be negative due to the
sign inversion in the output voltage of the Ćuk converter.

Hence, the sliding domain for the output voltage will be expressed as

V2 <Vg if − K2

K1
< 1 (step-down behavior) (19.18)

V2 >Vg if − K2

K1
> 1 (step-up behavior) (19.19)

From (19.9) and (19.15), the expression of the equivalent control in the equilib-
rium point ueq(x∗) can be derived

ueq(x∗) =
V2

VC1
(19.20)

which is bounded by the minimum and maximum values of u

0<
V2

VC1
< 1 (19.21)

c) Stability Analysis. The ideal sliding dynamics given by equations (19.12)-(19.14)
is nonlinear. In order to study the stability of the system, equations (19.12)-
(19.14) will be linearized around the equilibrium point x∗. The corresponding
Jacobian matrix J can be expressed as follows

J =

⎡
⎢⎢⎢⎣

∂g1(x)
∂ i1

∣∣∣
x∗

∂g1(x)
∂vC1

∣∣∣
x∗

∂g1(x)
∂v2

∣∣∣
x∗

∂g2(x)
∂ i1

∣∣∣
x∗

∂g2(x)
∂vC1

∣∣∣
x∗

∂g2(x)
∂v2

∣∣∣
x∗

∂g3(x)
∂ i1

∣∣∣
x∗

∂g3(x)
∂vC1

∣∣∣
x∗

∂g3(x)
∂v2

∣∣∣
x∗

⎤
⎥⎥⎥⎦ (19.22)

where

J =

⎡
⎢⎢⎣

0 − K2
L1K2+L2K1

K2
L1K2+L2K1

0 − K2(L1K2
2 +L2K2

1)
C1RK1(K1−K2)(L1K2+L2K1)

K2
L1K2+L2K1

− K1
C2K2

0 − 1
C2R

⎤
⎥⎥⎦ =

⎡
⎣

0 a −a
0 b c
d 0 e

⎤
⎦ (19.23)
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Therefore, the characteristic equation of the linearized system will be given by
⎛
⎝

s −a a
0 s−b −c
−d 0 s− e

⎞
⎠ = s3 + ms2 + ns+ p = 0 (19.24)

where

m =
C1K1 (K1−K2)(L1K2 + L2K1)−C2K2

(
L1K2

2 + L2K2
1

)
C1C2RK1 (K1 −K2)(L1K2 + L2K1)

n =
C1R2K2

1 (K1 −K2)−K2
(
L1K2

2 + L2K2
1

)
C1C2R2K1 (K1 −K2)(L1K2 + L2K1)

p =− K1K2

C1C2R(K1−K2)(L1K2 + L2K1)

(19.25)

The application of the Routh Criterium to the characteristic equation (19.24)
reveals that all the roots will be located in the left-half plane if the following
condition is fulfilled

L1K2 + L2K1 > 0 with K1 > 0 and K2 < 0 (19.26)

Condition (19.24) guarantees the system stability for small perturbations around
the equilibrium point.

d) Control Implementation. The control law must force S(x) ·dS(x)/dt < 0 to guar-
antee that a sliding mode exists on the sliding surface and is reachable in finite
time from all initial states in the state space [37]. This requirement leads to the
following switching control law

u = 1 if S(x)< 0,u = 0 if S(x)> 0 (19.27)

e) Experimental Results. Fig. 19.4 shows the experimental behavior of input and
output variables in steady-state. In such figure, Vo, Vin, Io and Iin correspond re-
spectively to V2,Vg, I2 and I1 in the converter analysis. The converter has voltage
step-up behavior delivering -27.30 V at the output port for a DC input voltage
of 11.59 V which corresponds to a voltage dc gain of 2.35. Input current I1 is
5.05 A while output current I2 is 2.02 A, this representing a current DC gain
of 0.4. Note that the inverse of the current DC gain (2.5) is practically the volt-
age DC gain, which demonstrates the transformer characteristics of the proposed
circuit. The slight difference between 2.35 and 2.5 is due to the converter power
losses of approximately 3 W. The transient behavior of the converter when the
load has pulsating characteristics of step type changing periodically every 14 ms
between R = 14Ω and R = 28Ω is depicted in Fig. 19.5. Note that the output
voltage remains practically constant during the transient-state and that the load
perturbations are absorbed by the input current.
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Fig. 19.4 Steady-state waveforms of the circuit depicted in Fig. 19.3.

Fig. 19.5 Converter behavior for pulsating load perturbations of the circuit depicted in Fig.
19.3.

A similar analysis of the sliding-mode regime in BIF and BOF converters reveals
that both of them have an equilibrium point with transformer characteristics but
only BOF is stable [23].

CASE B
Similarly, the surface S(x) = K3v1 +K4v2 will result in a DC transformer using both
input and output voltages. In this case, the sliding constraint only requires v2 to be
a continuous function of time because the continuous nature of the input voltage is
ensured by the different DC energy sources, i.e., battery, PV panel, rectifier bridge,
fuel cell etc. The continuous nature of the output voltage is also guaranteed in all
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voltage to voltage converters due to the existence of a capacitor connected in parallel
with the output load.

The analysis of the sliding-mode regime in the elementary converters shows that
boost and buck-boost exhibit an unstable equilibrium point with transformer char-
acteristics. The buck converter, in turn, does not admit a sliding regime but it yields
a stable limit cycle [28,15,16]. A sliding-mode leading to a stable equilibrium point
with transformer characteristics can be induced in the two-inductor voltage step-
down converter depicted in Fig. 19.6(a) [14].

(a) (b)

Fig. 19.6 (a) Two inductor voltage step down-converter, (b) Boost converter with output
filter, magnetic coupling and capacitive damping.

Finally, a DC transformer with voltage step-up characteristics can be imple-
mented using a BOF converter with magnetic coupling and capacitive damping as
illustrated in Fig. 19.6(b) [3]. The hysteretic control does not result in a sliding-mode
regime but it yields a stable limit cycle as in the buck converter.

19.5 Power Gyrator

A power gyrator is a two-port structure characterized by any of the following set of
equations

I1 = gV2, I2 = gV1 (19.28)

V1 = rI2,V2 = rI1 (19.29)

where V1,V2, I1, and I2 have been previously defined.
The set of equations (19.28) defines a power gyrator of type G whereas the set

(19.29) corresponds to a gyrator of type R [8]. Both types of gyrator can be imple-
mented by particularizing the block diagram of Fig. 19.1 in cases C and D.

CASE C
The surface S(x) = K2i2 +K3v1 results in a G-gyrator with controlled output current.
The sliding constraint requires i2 to be a continuous function of time, this implying
the existence of a series inductor at the output port. Moreover, in order to minimize
EMI levels, a pulsating current will not be allowed at the input port and therefore the
power gyrator will also require a series inductor at the input port. The most simple
converters with such constraints are represented in Fig. 19.2. It was shown in [6] that
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both BIF and Ćuk converter can exhibit stable G-gyrator characteristics if capacitive
damping are inserted and certain parametric conditions are satisfied.

CASE D
The sliding surface S(x) = K1i1 +K4v2 can lead to a G-gyrator with controlled input
current or to a gyrator of type R. In the first case we impose a sliding behavior to
i1 considering v2 as independent voltage. The best candidate for this type of gyrator
is the Ćuk converter which provides a sliding regime with an unconditionally stable
point of equilibrium [8]. In the second case, i1 is an input current source ig that will
be transformed into an output voltage source by means of the gyrator action. The
current source at the input port precludes the existence of a series inductor in that
port. On the other hand, in order to minimize EMI levels, a pulsating current will
not be allowed at the output port and therefore the R-gyrator will require a series
inductor at the output port. The most simple converters with these topological con-
straints are shown in Fig. 19.7. Such converters are derived by slight modification
of the BOF converter, Ćuk converter and Ćuk converter with galvanic isolation.

(a)

(b)

(c)

Fig. 19.7 Current to voltage DC-DC switching converters with non-pulsating input and out-
put currents a) boost converter with output filter b) Ćuk converter c) Ćuk converter with
galvanic isolation.

19.6 Loss-Free Resistors

The case E corresponds to the synthesis of a loss-free resistor whose notion was
introduced by Singer [26] and, so far, it has been limited to the recognition that
certain switching converters exhibit resistive input impedance in steady-state in



19 SMC Based Synthesis for Power Processing 529

discontinuous conduction mode. This is the case of the buck-boost, SEPIC and
Ćuk converter, which have been employed, due to this property, as power factor
correctors by including only one loop of voltage regulation with pulse width modu-
lation [18, 4, 11, 17, 25, 2, 29].

On the other hand, the introduction of sliding-mode control in the power fac-
tor correction has its main antecedent in the work of Rossetto et al. [35], in which
a switching surface defined as a linear combination of the input current error and
output voltage error was proposed in the Ćuk converter with galvanic isolation. De-
pending on the relative values of the coefficients multiplying each error, the input
current or the output voltage can be more precisely regulated. The result is a good
example of the existing trade-off between the increase of the circuit response veloc-
ity and the reduction of the input current distortion. A loss-free resistor is defined
by the following equations

V1 = rI1 (19.30)

V1I1 = V2I2 (19.31)

It can be implemented as shown in Fig. 19.8 by means of the sliding surface
S(x) = K1i1 + K3v1, where i1 represents the controlled variable and v1 is the inde-
pendent voltage. The sliding constraint in this design requires i1 to be a continuous
function of time, this implying the existence of a series inductor at the input port.
The simplest converters with this constraint at the input port are the boost converter
and the fourth order structures BOF, BIF, Ćuk converter with galvanic isolation and
SEPIC. It has been demonstrated in [10] that the boost converter has unconditionally
stable equilibrium point with loss-free resistor characteristics.

A similar analysis of the sliding-mode regime in Ćuk, BOF and SEPIC converters
reveals that all of them have an equilibrium point with LFR characteristics. BOF and
Ćuk converters are unconditionally stable and SEPIC is stable provided that certain
parametric conditions are fulfilled.

19.7 Impedance Matching

In the last years, a significant increase of photovoltaic (PV) installations has taken
place around the world mainly due to the progressive decrease of solar panel cost,
and also to certain government policies establishing attractive purchase prices for
the electric energy produced by renewable energies. These new market conditions
make visible a production map of electric energy where small companies and indi-
viduals are melted together with great investment groups.

A key technical issue in this new production map is the optimization of the energy
transfer in PV conversion chains, where extracting the maximum power from the
panel (DC matching) is one the most important aspects of such optimization.

Fig. 19.10 illustrates the problem of matching a PV generator to a DC load. The
interface element can be indistinctly a DC transformer, a power gyrator or a loss-
free resistor. The DC load can be modeled by means of the function v2 = fo(i2),
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Fig. 19.8 Block diagram of a DC-DC switching converter with LFR characteristics

(a)

(b)

Fig. 19.9 Other converters with non pulsating input current (a) boost converter, (b) SEPIC
converter.

which corresponds to the one-port description of the usual DC loads supplied by a
PV generator and can be expressed as

v2 = f0(i2) = VB + RLi2

where VB > 0 and RL > 0.
We will analyze the three possible solutions of impedance matching in the case

that the load is battery with a very small equivalent series resistance (RL → 0).
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Fig. 19.10 Matching a PV generator to a DC load using a canonical element for power
processing.

A) DC Transformer. Equations (19.1) and (19.7) lead to

v1 = fin(i1) ≈ VB

n
(19.32)

Fig. 19.11(a) shows the intersection of characteristics fo(i2) and fin(i1) with
the PV curve under different hypotheses. We assume that the direct connection
of the load to the panel would correspond to an operating point (VB) where
the output current of the PV generator is zero. This is due to the fact that the
battery voltage is greater than the open circuit voltage of the PV generator. It
can be deduced from (19.32) that fin(i1) will be placed below fo(i2) if n > 1.
Therefore, the intersection point C could be placed at the left side of M for a
certain value of the transformer ratio n1 > 1. On the other hand, the intersection
point D will correspond to a transformer ratio n2 > n1. Finally, it has to be
pointed out that the objective of a DC impedance matching design is to achieve
a finopt characteristics so that it intersects the PV curve at the maximum power
point M.

B) Power Gyrator. Assuming a G-gyrator with either controlled input or output
current, the variation of the gyrator conductance changes the PV panel operating
point as depicted in Fig. 19.11(b). In such figure the operating points P1 and P2

correspond respectively to conductances g1 and g2 with g2 > g1. As in the DC
transformer case, we have supposed that the battery voltage is greater than the
open circuit voltage of the PV generator. The objective of the matching is to find
an optimal value of the conductance, so that fin(g) characteristics intersects the
PV curve at the maximum power point.

C) Loss-Free Resistor. Similarly, the variation of the parameter r of a loss-free resis-
tor changes the operating point of the solar panel as illustrated in Fig. 19.11(c).
Operating points A and B correspond respectively to resistances r1 and r2 with
r1 > r2. The goal of the matching is to find an optimal value of the resistance
that leads to an intersection of PV and fin(r) characteristics at the maximum
power point.

D) Time-Varying Parameters. The transformer ratio, the gyrator conductance or the
loss-free resistor resistance can be made time varying and periodic in steady-
state as illustrated in Fig. 19.12(a) where α(t) indistinctly represents any of
these parameters.
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(a) (b)

(c)

Fig. 19.11 PV panel operating points for an impedance matching with (a) a DC transformer,
(b) a power gyrator, (c) a loss-free resistor.

The insertion of maximum power point tracking (MPPT) in the control loop
should generate the signal α(t) with the aim of eventually yielding a stable
oscillation around the maximum power point M regardless of the system initial
conditions and atmospheric variations. E and F illustrate in Fig. 19.12 the nearest
points to M allowing this stable oscillation. Fig. 19.12(b) and 19.12(c) show
respectively the corresponding waveforms of panel voltage and panel current
assuming a first-order Taylor development for both variables. It can be observed
that α(t) and v(t) are in phase while i(t) is in opposite phase.

Also, it can be observed that the instant corresponding to α(t) = αopt cor-
responds in Fig 11 to fin(αopt), this resulting in voltage VM and current IM of
the maximum power point indicated in Fig. 19.12(b) and Fig. 19.12(c). Among
the different MPPT techniques, the extremum-seeking control offers robustness
and large-signal stability and guarantees a stable oscillation around the maxi-
mum power point in spite of changes of initial conditions and atmospheric pa-
rameters [19]. In our case, signal α(t) is obtained in the block diagram of the
extremum-seeking control system depicted in Fig. 19.13.

The equations describing the system behavior are governed by an integrator,
a differentiator and a logic circuit. The output of the integrator is α(t) whereas
the differentiator output is the time-derivative of the power panel. The logic
circuit provides a signal ε(t) that can be ±1. The sign of ε(t) is changed when
the differentiator output is negative and the sign is held when the differentiator
output is positive.
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Fig. 19.12 (a) Periodic behaviour in steady-state of the defining parameter of a canonical
power processing element, (b) panel voltage, (c) panel current

Fig. 19.13 Generation of α(t) by means of means of a maximum power point tracking
scheme based on extremum-seeking control

Fig. 19.14 Steady-state behavior of PV array variables

Fig. 19.14 illustrates the results of applying the scheme of Fig. 19.13 in a
DC transformer implemented by a boost converter with output filter.
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19.8 DC-AC Conversion

A key technical element in the photovoltaic market is the DC-AC PV inverter whose
optimal topology is still an open problem. Fig. 19.15 shows the basic structure of a
modular one-phase inverter consisting in the connection of three cascaded stages.
The first stage is a step boost converter-based loss-free resistor with maximum
power point tracking. The second stage uses a power G-gyrator and transforms a
DC voltage into a fully rectified current of 100 Hz. The H-bridge performs the DC-
AC conversion and subsequently a 50 Hz transformer with a 1:13 transformer ratio
provides the connection to the mains.

Fig. 19.15 Block diagram of a modular one-phase PV inverter

A. Voltage Step-Up Stage with MPTT Function. This stage has two objectives, i.e.,
absorbing the maximum power from the solar panel and step-up the voltage in
order to decrease the conduction losses. Note that the impedance matching in a
solar is the electronic function that imposes the panel operation at the maximum
power point. The impedance matching is performed by a loss-free resistor as
shown in Fig. 19.16.

B. Buck Converter Stage. The aim of this stage is to transform the DC voltage at
the output of the LFR into a fully rectified sinusoidal waveform of 100 Hz (Fig.
19.17). A buck converter acting as a G-semi-gyrator with controlled output cur-
rent is used to perform the transformation. It is shown in [9] that buck converter
exhibit stable G-gyrator characteristics. The output port of this semi-gyrator can
be modeled as a current source. This fact facilitates the connection in parallel of
the output ports of this type of semi-gyrators. [7].

A classification and synthesis of power gyrators was presented in [8] where
the notion of semi-gyrator was also defined. Note that a semi-gyrator satisfies the
same equations (19.28) and (19.29) than the gyrator but the current can be dis-
continuous in either the input or output port. Thus, a semi-gyrator of type G with
controlled output current has a pulsating input current whose steady-state aver-
age value is proportional to the steady-state average output voltage and whose
output current is a continuous function with a steady-state value proportional to
the DC input voltage. Fig. 19.17 illustrates the block diagram of a semi-gyrator
of type G with controlled output current where the gyrator conductance g is a
fully rectified sinusoidal waveform of 100 Hz. Therefore, the output current will
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Fig. 19.16 Block diagram of switching converter with LFR characteristics acting as a PV
impedance matching stage

Fig. 19.17 Block diagram of a switching converter in sliding-mode operation with semi-
gyrator characteristics

be proportional to the input voltage, the proportionality constant being a time-
varying function g(t). Since g(t) is a fully rectified waveform, the output current
will have the same shape and its amplitude will depend on both g(t) and input
voltage whose value will in turn depend on the power supplied by the PV panel.

C. H-Bridge and Grid Connection. An H-bridge is used to perform the conversion
of the DC fully rectified sinusoidal current of 100 Hz at the gyrator output port
into a sinusoidal voltage of 50 Hz which eventually is delivered to the grid by
means of a low frequency transformer.
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D. Parallel Connection of Additional PV Modules. The parallel connection of the
output ports of gyrators of type G with controlled output current yields the ad-
dition of their respective output currents. Fig. 19.18 illustrates the application of
the proposed modular structure in the case of n independent solar panels. Note
that each solar panel is connected to an LFR with MPPT function in order to de-
liver the maximum power. On the other hand, each LFR is connected in cascade
with a semi-gyrator of type G with controlled output current. Subsequently, the
semi-gyrator output ports are connected in parallel to obtain a high current level,
which eventually is transformed into a high power sinusoidal voltage and sent to
the mains.

Fig. 19.18 Block diagram of the parallel connection of n solar panels

19.9 Power Distribution

Distributed power systems (DPS) and distributed generation systems (DGS) are in-
creasingly used in advanced electronic systems. While DPS are becoming a key
issue in the power supply configuration of computer and information systems, DGS
have been increasing dramatically in recent years due to the growing importance
of renewable energy systems. The bus voltage of a DPS can be either DC or AC,
this leading to two different DPS architectures. In DGS, the distribution is mainly
carried out in AC because most of these systems are connected to the utility grid.

In this section, we illustrate the use of power gyrators to implement a DC bus
architecture for power distribution using power gyrators as shown in Fig. 19.19.

The DC bus architecture consists in the cascade connection of a G-gyrator-
based source splitting structure and an R-gyrator stage [8]. The source splitting
is performed by paralleling the N output ports of the G-gyrators whose corre-
sponding input ports are excited by independent sources that can model batter-
ies, fuel cells or photovoltaic panels. Currents i21, i22, . . . , i2n are proportional to
vg1,vg2, . . . ,vgn respectively, this resulting in the input current of the R-gyrator given
by i2T = g1vg1 + g2vg2 + . . .+ gnvgn. The R-gyrator stage performs the current to
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Fig. 19.19 Cascade connection of n-paralleled power G-gyrators and a power R-gyrator

voltage (i− v) conversion yielding the output DC voltage given by vo = ri2T with
inherent voltage regulation in the case of load perturbation. This means that although
a load perturbation results in an output current change of the R-gyrator and there-
fore in an input voltage variation, the output voltage remains constant. Perturbations
in the output voltage due to changes in the input voltage values vg1,vg2, . . . ,vgn can
be minimized by adding a simple regulation loop that will lead the output voltage
to recover its DC steady-state value with a small overshoot after a fast transient
state. Also, the output current perturbations in the G-gyrators due to input voltage
changes can be distributed among the different gyrators of the source splitting stage
by adding a current regulation loop for active current sharing as reported in [5].

The most suitable converter structures for a G-gyrator realization are either a
buck converter with input filter (BIF) or a Ćuk converter whereas an R-gyrator stage
can be only implemented by means of a boost converter with output filter (BOF).

19.10 Power Factor Correction

All electronic equipments supplied by the AC mains should present at the input
port a sinusoidal current waveform with negligible total harmonic distortion. Power
factor correction is then mandatory for these systems that should fulfill strict speci-
fications given by different norms.

A direct application of a boost converter-based LFR analyzed in Section 19.6 is
a power factor correction (PFC) pre-regulator as shown in Fig. 19.20. The rectified
bridge is supplied by an AC source of 22 Vrms and 50 Hz. Fig. 19.21(a) and 19.21(b)
show the PSIM simulated responses in steady and transient-states respectively.

The simulation parameters are VAC = 22 Vrms 50Hz, R=60 Ω , L=100 μH,
C=1000 μF and r=3.75 Ω . Note that the phase-shift between LFR input voltage
and current is zero in Fig. 19.21(a), this implying a unity power factor at the recti-
fier input.
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Fig. 19.20 Pre-regulator for power factor correction based on a loss-free resistor in sliding
operation.

(a) (b)

Fig. 19.21 (a) Steady-state response of the boost converter-based LFR acting as PFC pre-
regulator, (b) Transient response of the PFC pre-regulator depicted in Fig. 19.20 to load per-
turbations of step type (60 Ω -30 Ω -60 Ω ).

19.11 Conclusions

The three types of canonical elements for power processing can be implemented fol-
lowing the systematic procedure described in this paper. The basic functions defin-
ing each canonical element have been designed by means of a simple sliding-mode
regulation loop. All canonical elements have “sliding inside”. The disclosed ele-
ments can be designed as standardized modules to facilitate their association and
the implementation of modern electrical architectures for either distributed power
systems or distributed generation systems. The implementation and test of each ele-
ment is simple and requires low-power techniques. High-power can be achieved by
increasing the number of elements in specific associations. The modularity of the
elements has been demonstrated in the realization of a DC-AC inverter for photo-
voltaic applications and in the power distribution by means of gyrators in a DC bus.
All canonical elements can be successfully used to solve the DC matching problem
in PV systems. A DC transformer with an appropriate MPPT algorithm has illus-
trated the application. Finally, it has been shown that pre-regulation for power factor
correction is a direct application of LFRs.



19 SMC Based Synthesis for Power Processing 539

References

1. Bilalovic, F., Music, O., Sabanovic, A.: Buck converter regulator operating in the sliding
mode. In: Proceedings of the 1983 Seventh International PCI Conference, pp. 331–340
(1983)
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6. Cid-Pastor, A., Martínez-Salamero, L., Alonso, C., Estibals, B., Alzieu, J., Schweitz, G.,
Shmilovitz, D.: Analysis and design of power gyrators in sliding-mode operation. IEE
Proceedings Electric Power Applications 152(4), 821–826 (2005)

7. Cid-Pastor, A., Martinez-Salamero, L., Alonso, C., Leyva, R., Singer, S.: Paralleling dc-
dc switching converters by means of power gyrators. IEEE Trans. On Power Electron-
ics 22(6), 2444–2453 (2007)

8. Cid-Pastor, A., Martinez-Salamero, L., Alonso, C., Schweitz, G., Calvente, J., Singer,
S.: Classification and synthesis of power gyrators. IEE Proc. Electric Power Applica-
tions 153(6), 802–808 (2006)

9. Cid-Pastor, A., Martinez-Salamero, L., El Aroudi, A., Hernando-Ureta, D.: Analysis of
a modular one-phase pv inverter. In: 6th International Multi-Conference on Systems,
Signals and Devices, SSD 2009, March 23-26, 2009, pp. 23–26 (2009)

10. Cid-Pastor, A., Martinez-Salamero, L., Ribes, U., El Aroudi, A.: Analysis and design of
a loss-free resistor based on a boost converter in sliding-operation. In: Proceedings of the
14th Internacional symposium on Power Electronics, Novi Sad, Serbia (2007)

11. Erickson, R., Madigan, M., Singer, S.: Design of a simple high-power-factor rectifier
based on the flyback converter. In: APEC Conf. Proc., pp. 792–801 (1990)

12. Erickson, R., Maksimovic, D.: Fundamental of Power Electronics, 2nd edn. Kluwer Aca-
demic Publishers, USA (2001)

13. Filippov, A.: Differential equations with discontinuous right hand sides. Am. Math. Soc.
Transl. 42, 199–231 (1964)

14. Garcés, P., Calvente, J., Leyva, R., Martínez-Salamero, L.: Análisis de un convertidor
reductor de dos inductores como mdulo regulador de voltaje. In: Actas del SAAEI 2002,
Alcal de Henares, pp. 69–72 (2002)

15. Bábáa, I.M., Wilson, I.M.H., Yu, T.G.,, Y.: Analitic solutions of limit cycles in a feed-
backregulated converter system with hysteresis. IEEE Trans. Autom. Contr. 13, 524–531
(1968)

16. Judd, F., Cheng, C.: Analysis and optimal design of self-oscillating dc-dc converters.
IEEE Transact. On Circuit Theory 18(6), 651–658 (1971)

17. Liu, K.H., Liu, Y.L.: Current waveform distortion in power factor correction circuits
employing discontinuous-mode boost converters. In: PESC Conf. Proc., pp. 825–829
(1989)

18. Kocher, M., Steigerwald, R.: An ac-to-dc converter with high quality input wave-forms.
IEEE Trans. on Industry Applications 19(4), 586–599 (1983)
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22. Martínez-Salamero, L.: Syntheis of canonical elements for power processing. In: Pro-
ceedings of the 6th International Multi-Conference on Systems, Signals and Devices,
SSD 2009, pp. 23–26 (2009)

23. Martinez-Salamero, L., Valderrama-Blavi, H., Giral, R., Alonso, C., Estibals, B., Cid-
Pastor, A.: Self-oscillating dc-to-dc switching converters with transformer characteris-
tics. IEEE Transactions on Aerospace and Electronic Systems 41, 710–716 (2005)

24. Middlebrook, R.: Power electronics: An emerging discipline, advances in switched-mode
power conversion. TESLAco 1, 11–15 (1981)

25. Simonetti, D., Sebastian, J., dos Reis, F., Uceda, J.: Design criteria for sepic and ćuk
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Chapter 20
Second Order Sliding Modes to Control and
Supervise Industrial Robot Manipulators

Antonella Ferrara and Luca Massimiliano Capisani

Abstract. On the basis of classical studies in robotics, it seems that the conventional
sliding mode approach is not a suitable technique to design robotic controllers, due
to the presence of the so-called chattering effect. However, studies have shown that
a good reduction of the chattering effect can be achieved by relying on higher order
sliding modes. This chapter presents the application of the Second Order Sliding
Mode (SOSM) design methodology to the control and supervision of industrial ma-
nipulators, by proposing a robust control scheme and a diagnostic scheme to detect
and, possibly, isolate and identify faults acting on the components of the system. The
proposed SOSM motion controller and the SOSM observers designed to construct
the diagnostic scheme are theoretically developed, and their practical application is
suitably described. Indeed, the proposed approaches are experimentally verified on
a COMAU SMART3-S2 industrial robot manipulator, obtaining satisfactory results.

20.1 Introduction

Motion control of rigid robot manipulators is a complex problem, mainly because
of the nonlinearities and the coupling effects typical of robotic systems. In the past
years, different approaches have been proposed in order to solve this problem, such
as, for instance, decentralized control [2, 43, 24, 60], feedback linearization [44, 45,
1,62,36,18], model predictive control [58,42,57], adaptive control [3,26,52,50,25,
53, 21, 18, 59, 66, 9, 61], as well as sliding mode control [60, 2, 62, 36, 39, 61, 23, 67,
41, 5, 11, 10, 27, 67].

Sliding mode control [65, 33] has the advantage of being robust versus a signifi-
cant class of parameter uncertainties and bounded disturbances. Yet, it is a common
opinion that sliding mode control is not appropriate to be applied in the robotic field,
due to its major drawback, the so-called chattering phenomenon, see [38,13,12,14].
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In case of conventional (i.e. first order) sliding mode control laws, chattering
can be circumvented by approximating, with a continuous function, the sign func-
tion. Yet, in this way, only pseudo-sliding modes are generated and the positive
features of sliding mode control, among which robustness, are lost. Recent studies
have shown that a good reduction of the chattering effect can be achieved by relying
on higher order sliding modes [49, 46, 31]. In particular, by adopting the so-called
second order sliding mode control approach [6, 4, 7, 8, 11, 13, 14], the chattering ef-
fect can be made less critical by confining the discontinuity necessary to enforce
sliding modes to the derivative of the control law. The idea underlying such an ap-
proach is that of enforcing a sliding mode on the manifold s[x(t)] = ṡ[x(t)] = 0 in
the system state space, by using a signal function of s[x(t)], but directly acting only
on s̈[x(t)]. In case of relative degree one systems, this signal, which turns out to be
discontinuous, is the derivative of the actual control signal.

The aim of this chapter is to investigate the possibility of applying the sliding
mode design methodology also in robotics. In the first part of the chapter, an inverse
dynamics-based second order sliding mode control scheme to perform the motion
control of robot manipulators is proposed. The theoretical analysis is developed and
an experimental verification is made to evaluate the performances of the proposal.

The second part of the chapter is devoted to fault diagnosis. The purpose is to
verify if the robot, controlled via the proposed SOSM approach, can also be super-
vised in order to detect, and possibly isolate and identify faults occurring on the
actuators or on the sensors. In a robotic system, faults can be modelled as an unex-
pected change of the dynamics of the system or as an unexpected presence of un-
known signals affecting the components of the system [55,56,30,32,37,35,28,29].
Sliding mode based techniques are frequently adopted to accomplish the state ob-
servation [54,34,40] so as to generate suitable residuals which are useful to indicate
the presence of faults. Usually, the fault diagnosis is possible by combining multiple
sliding mode state observers [35, 64, 63, 22].

The proposed fault diagnosis approach is based on an Unknown Input Observer
(UIO) (see [34]) to detect and identify actuator faults, and on a Generalized Ob-
server Scheme (GOS) [37] to detect sensor faults. Robustness of the observers is
enhanced by considering as input law of each observer a SOSM law, in particular of
Sub-Optimal type [7].

Experimental results which confirm the satisfactory performances of the proposal
are presented in the chapter. The experimental tests have been performed on a CO-
MAU SMART3-S2 industrial robot manipulator.

20.2 Problem Formulation

This chapter deals with two main problems which have been theoretically and ex-
perimentally investigated.

1. Design a robust motion controller for robotic manipulators, able to steer a posi-
tion tracking error to zero exponentially.
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2. Design a fault diagnosis approach in order to make the fault detection, the fault
isolation, and the fault identification possible while the robotic manipulator is
operating under the previously designed control. The considered faults can oc-
cur on the actuators (even multiple and simultaneous faults are acceptable) or
on a particular sensor of the system (multiple sensor faults which are not simul-
taneous are also possible).

20.2.1 The Manipulator Model

In absence of faults the dynamics of a n-joints robot manipulator can be written in
the joint space, by using the Lagrangian approach, as

τ(t) = B(q)q̈+C(q, q̇)q̇+ g(q)+ Fvq̇ = B(q)q̈+ n(q, q̇) (20.1)

(see [60]) where q ∈R
n, B(q) ∈R

n×n is the inertia matrix, C(q, q̇)q̇ ∈R
n represents

centripetal and Coriolis torques, Fv ∈ R
n×n is the viscous friction diagonal matrix,

and g(q) ∈ R
n is the vector of gravitational torques. In this chapter, it is assumed

that the term n(q, q̇) in (20.1) can be identified, while the term B(q) is regarded as
known. Then, the following relationship holds

τ = B(q)q̈+ n̂(q, q̇)+η = τ̂+η , η = n− n̂ (20.2)

where η is uncertain. Yet by virtue of the particular application considered, η can be
assumed to be bounded. Obviously, model (20.1) includes a number of parameters
which need to be identified [19].

Second Order
Sliding Mode

Controller ++

+

+-

+qd

n(q, q̇)

q

q̈d

y τ
B(q)

w ∫

Fig. 20.1 The proposed SOSM control scheme for the industrial robot.

20.3 Solution to the Problem 1: Robust Motion Control for
Robot Manipulators

One of the aims of this chapter is to show the efficacy of sliding mode control as a
robust methodology to design motion controllers for robot manipulators, in contrast
to a rather common opinion which judges it as inappropriate because of the vibration
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it can induce due to the chattering effect. The proposal object of the present chapter,
based on [20], consists in coupling a classical inverse dynamics control scheme
with a multi-input multi output (MIMO) sliding mode controller. To circumvent
the problems tied to the use of a discontinuous control law, SOSM methodology is
adopted to design such a controller. The overall control scheme is illustrated in Fig.
20.1.

20.3.1 Design of the Inverse Dynamics Part of the Control
Scheme

The inverse dynamics control consists in transforming the nonlinear system (20.1)
into a linear and decoupled system by means of a suitable nonlinear feedback, see
[2, 62, 60]. More specifically, by choosing

τ = B(q)y(t)+ n(q, q̇) (20.3)

with n(q, q̇) = C(q, q̇)q̇ + Fvq̇ + Fssign(q̇) + g(q), system (20.1) simply becomes
q̈(t) = y(t).

Note that, even if the term n(q, q̇) in (20.3) is accurately identified, it can be
quite different from the real one because of uncertainties and unmodelled dynam-
ics, unmodelled frictions effects, elasticity and joint plays. Now assume that the
term n̂(q, q̇) includes the identified centripetal, Coriolis, gravity and friction torques
terms, while the inertia matrix B(q) is assumed to be known. So letting

τ = B(q)y(t)+ n̂(q, q̇) (20.4)

the compensated system becomes

q̈ = y(t)+ B(q)−1ñ(q, q̇) = y(t)−η(t) (20.5)

where η = −B−1(q)ñ(q, q̇) and ñ(q, q̇) = n̂(q, q̇)− n(q, q̇). The y(t) signal is re-
garded as an auxiliary input signal which is obtained by combining two different
actions

y(t) = ysm(t)+ q̈d(t) (20.6)

where qd is a continuous reference signal that has to be tracked with q̇di Lispchitz,
and ysm(t) has to be designed so as to enforce the robust tracking.

20.3.2 Design of the Proposed Second Order Sliding Mode
Controller

To design the motion controller for robot manipulators here proposed, the so-called
Sub-Optimal Sliding Mode Control (SOSMC) approach, introduced in [6], and ex-
tended to the multi-input case in [8] has been followed. Thus, taking into account
the system dynamics (20.5) and the error state vector
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xi =
[

x1i

x2i

]
=

[
ei

ėi

]
, ei = qdi−qi (20.7)

an auxiliary second order state can be introduced, by letting

ξi(t) =
[
ξi1(t)
ξi2(t)

]
=

[
si(t)
ṡi(t)

]
(20.8)

where si is the sliding variable, i.e.

si = s(xi) = x2i +βx1i, β > 0. (20.9)

In this case, the following auxiliary system can be formulated for each joint i

⎧
⎨
⎩

ξ̇i1(t) = ξi2(t)
ξ̇i2(t) = η̇i(t)+βηi(t)−βyi(t)+β q̈di(t)− ẏsmi(t)
ẏsmi(t) = wi(t)+β ëi(t)

(20.10)

where ysm(t) can be determined, for each joint i, as follows

ysmi(t) =
∫ t

t0
wi(t)dt +β ėi(t) (20.11)

t0 being the initial time instant. Note that in (20.10), wi(t) can be regarded as an
auxiliary control signal still to be designed and η̇i(t) can be regarded as an uncertain
term. To apply the second order sliding mode design methodology, we require that
η̇i(t) is bounded, i.e. we assume that

| η̇i(t) |< Fi ∀i (20.12)

this means that to perform the synthesis procedure we are now considering a model
which is simplified with respect to the model of the robot manipulator indicated in
(20.1). In other terms, in the design of the second order sliding mode controller the
dry friction term is neglected. In spite of this simplification, it will be shown that the
proposed controller provides satisfactory performance even in experimental cases in
which dry friction is surely present.

The design of the second order MIMO sliding mode control law can be carried
out separately for each joint and the following result can be proved.

Theorem 20.1. Given system (20.1) where τ(t) is selected as in (20.4) and yi as in
(20.6), (20.11), choosing the control signal wi as

wi(t) = +αiWiMAX sign

{
ξi1(t)− 1

2
ξi1MAX

}
(20.13)

with

WiMAX >

(
Fi

α∗ ;
4Fi

3−α∗

)
, α∗ ∈ (0,1] (20.14)
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where ξi1MAX is the last extremal value of ξi1(t) and αi is chosen according with
the algorithm described in [7], then, starting from any initial condition xi(t0) = x0i,
the second order sliding manifold [si, ṡi]T = 0 is reached in finite time for each i-th
subsystem, and the origin of the state space of the error system is an asymptotically
stable equilibrium point of the controlled system.

Proof. By applying Theorem 1 in [7], it can be claimed that the choice of the aux-
iliary control signal wi ensures the finite reaching of

ξi1 = ξi2 = 0 (20.15)

As in the case of first order sliding mode control, by virtue of (20.8) one has that also
si = 0, i.e. the sliding manifold, is reached in finite time. Moreover, si = 0 implies
that,

si = x2i +βx1i = ėi +βei = 0 (20.16)

Then the dynamical behavior of the error can be described by ėi = −βei. Con-
sequently, the manipulator asymptotically tracks the desired trajectory for each
joint. ��
Remark 20.1. The actual control signal acting on joint i, namely, ysmi(t), is contin-
uous, so attaining the requirement of avoiding the possible generation of vibrations.

Remark 20.2. Note that the weak point of the Sub-Optimal controller is the need
to detect, in real time, the extremal values ξi1MAX of the sliding variable ξ i1(t). In
practical applications, the extremal values are not detected with ideal precision. If
such values are detected with a delay, due to discrete sampling, in absence of mea-
surement noise, then, it is possible to prove that a vicinity of the origin of the ξi1,ξi2

state plane can be reached in finite time, see [6]. Yet, if some measurement noise
exists, as it is reasonable in practice, the sampling interval needs to be chosen taking
into account the measurement noise magnitude, to avoid performance degradation.
More specifically, according to [46] and [48], the sampling interval has to be pro-
portional to the square root of the measurement noise magnitude. In the experiments
described in the next section, this requirement has been taken into account in select-
ing the sampling interval, relying on a rough estimation of the measurement errors.
A possible alternative, to circumvent this problem, is to use a different approach
to detect ξi1MAX . Indeed, one could use a “Robust exact differentiator” such as that
is defined by [47] which is based on second order sliding modes to determine ξi2.
Then, ξi1MAX is the value of ξi1 when ξi2 = 0. The value ξi1MAX determined in this
way can be used in the control law (20.13).

20.4 Experimental Results on Motion Control

In this section, the results obtained by applying the proposed control scheme to a
COMAU SMART3-S2 industrial robot are presented. They are also compared with
those obtained by applying the Super Twisting second order sliding mode strategy
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Fig. 20.2 The COMAU SMART3-S2 robot manipulator.

(see [46] and [47]), conventional first order sliding mode control law, and a classical
PID controller.

20.4.1 The Considered Industrial Robot

The control and the supervision approaches described in this chapter have been
experimentally tested on the SMART3-S2 industrial anthropomorphic rigid robot
manipulator by COMAU, located at the Department of Electrical Engineering of
the University of Pavia, and shown in Fig. 20.2. It consists of six links and six
rotational joints driven by brushless electric motors. For the sake of simplicity, in
this chapter it is assumed that the robot is constrained to move in a vertical plane
and joints 1, 4 and 6 are not used. As a result, it is possible to consider the robot as
a three link-three joint, in the sequel numbered as {1, 2, 3}, planar manipulator as
schematically represented in Fig. 20.2. Yet, the proposed methods are general and
can be applied to a n-joints robot.

In Fig. 20.2 and in Table 20.1, the following symbols will be used: mi is the
mass, Ji is the inertia, qi is the angular position, li represents the link length and bi

the center of mass position with respect to the i-th link.
The six electrical motors of the COMAU SMART3-S2 robot are actuated by us-

ing as input signal six currents generated by the PWM power suppliers which are
present in the COMAU C3G-900 Control Unit. This actuation system can be con-
trolled via a Personal Computer by sending to the PWM six integer values belonging
to the interval [-2047, 2047]. These values are converted by the PWM into six val-
ues of current in the interval [-30,30] (A). In this chapter we assume that the torques
generated by actuators depend linearly on the currents generated by the power sup-
pliers and that such currents are provided with accuracy. This assumption can ap-
pear rather strong. Yet, by executing experimental tests, it can be seen that for low
to medium frequency input signals, the generated torque signals are very precise.
Clearly, in the case of the first order sliding mode controller, high frequency control
signals are generated. Then, it can happen that the actuators do not generate exactly
the prescribed torque. In particular, one can observe a reduction of the frequency
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of the torque signals with respect to the sampling frequency, which can produce
performance degradation due to chattering effect. By using the second order sliding
mode controllers, continuous input signals are generated, hence an accurate torque
generation by the motors becomes feasible.

The considered industrial robot can be modelled as in (20.1). To perform the
identification, the dynamical model (20.1) has been written in the following form

Y = Φ(q, q̇, q̈)θ o +V (20.17)

where the nonlinear matrix function Φ(·) ∈ R
3N×9 represents the model (20.1) in

a parametrized linear form, N being the number of sampled data, and 3 being the
number of the considered joints. The term θ o = [γ1, . . . ,γ9]T , γi ∈ R, represents the
unknown parameter vector to be estimated, while Y ∈ R

3N is the torque applied by
the actuators, and V ∈R

3N is the noise acting on Y , which is the input of the robotic
system. The parametrization of θ o and the values of the parameters determined via
the Maximum Likelihood method (expressed in SI units) for the considered robot
are shown in Table 20.1, see [19].

Table 20.1 (Left) Parametrization of the manipulator model. (Right) Average value and vari-
ance for the estimated parameters.

Parameter Meaning Identified Value Variance
γ1 m3b2

3 +J3 0.297 0.003
γ2 J3 +m3(l2

2 +b2
3)+J2 +m2b2

2 10.07 0.04
γ3 J3 +m3(l2

1 + l2
2 +b2

3)+J2 +m2(l2
1 +b2

2)+J1 +m1b2
1 87.91 0.2

γ4 m1b1 +m2l1 +m3l1 57.03 0.06
γ5,γ6 m2b2 +m3l2, m3b3 9.21, 0.316 0.02, 0.003

γ7,γ8,γ9 Fv1,Fv2,Fv3 66.3, 14.71, 8.29 0.3, 0.1, 0.02

As for the controller, it has a sampling time of 0.001 (s), a 12 bit D/A and a
16 bit A/D converters. The joints positions are acquired by resolvers, fastened on
the three motors, holding mechanical reducers with ratio {207,60,37} respectively,
while the maximum torques are {1825,528,71} (Nm). Note that in applying the
auxiliary control signal in (20.13), the following parameters values have been used:
α∗ = 0.8, W1MAX = 362, W2MAX = 607, W1MAX = 10286. Apart from the features of
the experimental setup already mentioned, it is necessary to note that the evaluation
of the sliding variable requires the evaluation of the derivative of the error signal,
i.e., x2i in (20.9). In order to avoid estimation errors a robust exact differentiator is
used. This differentiator is described in [47].

20.4.2 The Experiments

The proposed control strategy has been tested with the following reference
trajectories:
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• A fifth order polynomial which consists in a fast and large but smooth enough
variation of the three set point signals.

• A step reference signal, which consists in a discontinuous signal in order to em-
phasize the performances in the reaching phase of the algorithm.

• A sinusoidal reference signal, in order to emphasize the exact tracking perfor-
mances typical of the sliding mode control.

• A spline reference signal, which consists in fast tracking and positioning phases
in order to test the reaching capability of the algorithm when a discontinuous
velocity signal is imposed.

Finally, an experimental evaluation of the good properties of the proposed second
order sliding mode control strategy can be made relying on the a Root Mean Square
Error Index, i.e.,

eRMSi =

√√√√ N

∑
j=1

(qdi j −qi j)2

N−1
(20.18)

where N is the number of sampled data. The results obtained for the first order and
the second order sliding mode controllers are reported in Table 20.2.

Table 20.2 Comparison of the Root Mean Square Errors for the three joints using First Order
Sliding Mode Control (FOSMC) and second order sliding mode control when the reference
trajectories described above are imposed to the robot (experimental results).

5-th order polynomial st. Two degrees step
RMSE (deg) RMSE (deg)

PID 2.252 1.455 2.076 0.0022 0.0013 0.0026
FOSMC 0.0178 0.1384 0.0630 0.0128 0.0524 0.0739
Super-Twisting 0.1423 0.1801 0.0875 0.0016 0.0108 0.0157
Sub-Optimal 0.0037 0.0133 0.0465 0.0019 0.0162 0.0213

Sinusoidal signal Spline signal
RMSE (deg) RMSE (deg)

PID 1.234 1.800 2.964 0.0064 0.0099 0.0036
FOSMC 0.0322 0.2135 0.2617 0.0173 0.0484 0.0299
Super-Twisting 0.0126 0.1125 0.1649 0.0068 0.0445 0.0641
Sub-Optimal 0.0125 0.0737 0.1365 0.0051 0.0051 0.1051

20.4.2.1 Experimental Results Obtained with the Fifth Order Polynomial
Reference

The first reference signal is designed as to respect the boundedness requirements
introduced to develop the theoretical treatment

[pol5d(0), d
dt pol5d(0), d2

dt2 pol5d(0)] = [0,0,0]
[pol5d(1), d

dt pol5d(1), d2

dt2 pol5d(1)] = [1,0,0]
(20.19)
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obtaining the reference multiplier

pol5d(t) =

⎧
⎨
⎩

0 t < 0
10t3−15t4 + 6t5 0 ≤ t ≤ 1
1 t > 1

(20.20)

the three reference signals for the joints are obtained as follows

qdi(t) = Aipol5d(t −1) (20.21)

where Ai = (70,50,70) (deg).
The results obtained with the proposed SOSMC applied to the robot manipulator

are showed in Fig. 20.3. One can observe that the tracking performances are satis-
factory in both the dynamic and static phase. The RMSE values for this experiment
are compared with those obtained using a first order sliding mode controller, a su-
per twisting second order sliding mode controller and a classical PID control law in
Table 20.2. These values are obtained by considering only the time interval starting
from 1.5 (s) to 2.5 (s), i.e. the time interval in which a fast movement of the entire
robot is performed. It is clear that, in this way, a very good enhancement of the
tracking performances can be obtained by relying on a SOSM controller, at least for
the first and the second joint considered. The third joint, however, results affected
by a highly uncertain friction effect, function of the angular position q3 of the joint,
leading to a higher switching action of w3(t). Note that with this reference signal,
the sliding condition can be guaranteed at every time instant of the control phase.

20.4.2.2 Experimental Results Obtained with the Step Reference Signal

In this case, a 2 (deg) discontinuous step is imposed simultaneously as a refer-
ence signal for the three considered joints. It can be noted that using the proposed
SOSMC strategy, the discretization chatter effect, see [67], and the audible chatter-
ing (audible noise) result very low, compared with those obtained with the first order
sliding mode control (see [20]). In Fig. 20.4 the tracking performances of the three
considered joints and the corresponding error signals are shown, while in Table 20.2
the RMS Errors relevant to the three joints are reported. Note that they have been
evaluated in the steady state, when the sliding manifold has been reached. From
the results, it is clear that the sub-optimal and the super-twisting algorithm reach
approximatively the same precision for the tracking error. The comparison with the
first order sliding mode control algorithm show that a very good enhancement of the
results can be obtained with the second order sliding modes control algorithms.

20.4.2.3 Experimental Results Obtained with the Sinusoidal and the Spline
Reference Signals

The sinusoidal reference trajectory is given by

qdi(t) = A′
i sin

(
2π

t
bi

)
(20.22)



20 SOSM Control and Supervision of Industrial Robots 551

0 1 2 3 4 5
−20

0

20

40

0 1 2 3 4 5
0

20

40

q 
an

d 
q d o

f j
oi

nt
 1

, 2
, 3

 [d
eg

]

0 1 2 3 4 5
0

20
40
60

time [s]

q
3

q
d3

q
2

q
d2

q
1

q
d1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.02

0.04

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

e 
of

 jo
in

t 1
, 2

, 3
 [d

eg
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

time [s]

e
3

e
2

e
1

Fig. 20.3 Good tracking of the continuous polynomial reference trajectory using the pro-
posed control scheme applied to the COMAU SMART3-S2 robot (the reference trajectories
versus the measured joint angular positions on the first three plots; the tracking errors on the
last three plots).

with i = 1,2,3, where A′
i are respectively (30,30,40) (deg) and bi are (3,2,1.5) (s)

while the spline reference trajectory is chosen as

q̇di(t) =

⎧
⎪⎪⎨
⎪⎪⎩

A′′
i if t −N P ≤ 1

0 if 1< t −N P ≤ 3
−A′′

i if 3< t −N P ≤ 4
0 if 4< t −N P< 6

(20.23)
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Fig. 20.4 Fast tracking of the discontinuous step reference trajectory using the proposed
SOSMC (20.11) applied to the COMAU SMART3-S2 robot.

where N = �( t
P)�, t represents the time instant, qd(0) = (−20,0,0) (deg), P = 6 (s)

is the period, and A′′
j is the derivative amplitude, (70,40,60) (deg/s) for each joint

respectively. In practice this signal provides four different stages: a first increasing
stage, a positioning stage, a decreasing stage and finally a positioning stage, such
that it is possible to test tracking rapidity, precision and repeatability for the con-
trolled system.

In Figures 20.5 and 20.6 it can be seen that the reaching phase results relatively
short in both cases, and that the sliding phase (i.e. when the reference tracking is
accomplished) starts after a small interval of time. In Table 20.2 the Root Mean
Square tracking Errors are compared in a time interval in which the sliding manifold
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Fig. 20.5 Tracking of the sinusoidal reference trajectory using the proposed SOSMC (20.11)
applied to the COMAU SMART3-S2 robot.

has been reached. Also in this case, the second order algorithms showed very good
tracking performances, even if unpredictable frictions, especially on the third joint
are present.

20.4.3 Comparison with the Super Twisting Second Order Sliding
Mode Algorithm

In order to make a comparison with the Super Twisting second order sliding
mode control, all the presented experiments have been performed applying also the
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Fig. 20.6 Tracking of the spline reference trajectory using the proposed SOSMC (20.11)
applied to the COMAU SMART3-S2 robot.

Super Twisting second order sliding mode algorithm, showing similar results as
those obtained when the Sub-Optimal sliding mode control method is considered.
In particular, after a very fine tuning of the controller parameters, good performances
have been obtained for the spline signal, as it can be seen in Table 20.2. However,
the Sub-Optimal control strategy showed a lower audible chattering in all the exper-
iments and a easier tuning procedure.
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Fig. 20.7 The proposed fault diagnois scheme for actuator and sensor faults.

20.5 Solution to Problem 2: Fault Diagnosis for Robot
Manipulators

20.5.1 The Considered Fault Scenarios

In this chapter, the presence of faults on the inputs or on the outputs of the con-
trolled robot manipulator is considered. More precisely, the following combinations
of faults are considered:

1. The case of multiple faults, even simultaneous, occurring on the actuators of the
manipulator.

2. The case of single faults occurring on one of the actuators or on one of the sen-
sors. The case of multiple and non simultaneous sensor faults is also admissible.

20.5.2 Actuator and Sensor Faults

Consider the robot manipulator model (20.1). If actuator faults are present, the real
torque applied by the actuators is unknown. That is the actual torque vector which is
the input to the robotic system can be expressed as τ(t)= τ(t)+Δτ(t), where τ ∈R

n

is the nominal torque calculated by the robot controller, while Δτ ∈ R
n (Δτi being

its i-th component) is the input fault. In practice, this type of fault can be caused
by a damage that can occur on power supply systems, or actuator mechanisms, or
wirings (but we will not distinguish among them).

Instead, when sensor faults occur, the control system cannot determine the exact
angular displacements of the joints. Let q ∈ R

n be the true but unknown output
(i.e. the joints displacements), while Δq ∈ R

n (Δqi being its i-th component) be the
vector of the fault signals acting on it. Then, q̄∈R

n represents the measurement that
the control system receives, i.e., q̄(t) = q(t)+Δq(t).

20.5.3 The Proposed Diagnostic Scheme

The proposed diagnostic scheme, derived from [15, 17, 16], is illustrated in Fig.
20.7. It includes an Uncertain Input Observer (UIO) to deal with actuator faults,
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and a generalized observer scheme, to perform the detection and isolation (when
possible) of sensor faults.

20.5.4 Actuator Faults Detection Strategy

Suitable estimators of the input torques can be designed taking into account the
observability issues discussed in [30], [51]. We propose to detect the actuator faults
by means of an UIO of sliding mode type. The possibility of using this kind of
observers in the fault detection context has already been investigated, for instance,
in [34]. The UIO we propose is a multi-input-multi-state second order sliding mode
observer, i.e., {

˙̂χ (τ)
1 = χ̂ (τ)

2
˙̂χ (τ)

2 = f̂ (χ̂ (τ)
1 , χ̂ (τ)

2 ,τ)+ρ (τ) (20.24)

where χ̂ (τ) = [χ̂ (τ)
1 , χ̂ (τ)

2 ]T is the observer state, with χ̂ (τ)
1 ∈ R

n, χ̂ (τ)
2 ∈ R

n, and f (·)
is defined as

f̂ (·) = B−1(χ̂ (τ)
1 )[τ− Ĉ(χ̂ (τ)

1 , χ̂ (τ)
2 )χ̂ (τ)

2 − F̂vχ̂
(τ)
2 − ĝ(χ̂ (τ)

1 )] (20.25)

where ρ (τ) is the observer input law, determined according to the so-called SOSM
Sub-Optimal approach [4, 6, 7] as

⎧⎪⎪⎨
⎪⎪⎩

ρ̇ (τ)
i (t) = αiWiMAX sign

{
s(τ)

i (t)−0.5s(τ)
iMAX

}

s(τ)
i (t) = χ̃ (τ)

2i +β χ̃ (τ)
1i

χ̃ (τ)
1 = q(t)− χ̂ (τ)

1 , χ̃ (τ)
2 = ˙̃χ (τ)

1

(20.26)

where χ̃ (τ)
1 = [χ̃ (τ)

11 , . . . , χ̃
(τ)
1n ]T , χ̃ (τ)

2 = [χ̃ (τ)
21 , . . . , χ̃

(τ)
2n ]T . In (20.26), s(τ)

i (t) is the so-
called sliding variable, that is the variable to steer to zero in order to perform the
observation task, i is the index of the component of the state vector coinciding with

the actuator number, s(τ)
iMAX represents the last extremal value of the sliding variable

s(τ)
i (t), and β is a strictly positive design parameter. It can be proved that a suitable

choice of αiWiMAX exists such that the Sub-Optimal input law guarantees the expo-
nential stability of the tracking error of this observer (the proof of this claim can be
developed as in [7]).

Note that in case of actuator faults, the dynamics of the robotic system given by
(20.1) can be expressed as

q̈ = f (q, q̇,τ +Δτ) (20.27)

The exponential stability of the observation error, implies that χ̃ (τ)
1 → 0, i.e.

[
f (q, q̇,τ +Δτ)− f̂ (χ̂ (τ)

1 , χ̂ (τ)
2 ,τ)−ρ (τ)

]
→ 0 (20.28)
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By virtue of the structure of model (20.1), it is apparent that an actuator fault Δτ
can be modeled as a signal Δy acting at the acceleration level of the model, with
Δτ(t) = B(q)Δy(t), because of the existence of the matrix B−1(q), ∀q ∈ R

n. Then,
(20.28) can be rewritten as

{
B(q)−1[τ−n(q, q̇)]+Δy(t)−B−1(χ̂1)[τ− n̂(q, q̇)]−ρ (τ)

}
→ 0 (20.29)

which implies the exponential convergence of ρ (τ) to Δy(t)−B−1(q)η . Then, by
determining B(q)ρ (τ), one has B(q)Δy−η that is B(q)ρ (τ) = Δ̂τ ≈ Δτ provided
that the magnitude of η is acceptable. Since the B−1(q)η term is bounded, suit-
able thresholds can be defined in order to enable the actuator faults detection. Note
that, because of the fact that we assume that the modeling error η exists (which is
quite realistic, as confirmed by the experimental tests), only faults exceeding the
pre-specified thresholds can be detected, in contrast to the ideal case in which η is
assumed to be zero and ρ (τ) → Δy(t), i.e. B(q)ρ (τ) = Δτ , so that any fault is de-
tectable. Thresholds are selected so as to minimize misdetections and false alarms,
on the basis of experimental tests.

20.5.5 Sensor Faults Detection Strategy

To perform the detection of sensor faults, n observers are used, one for each sensor.
The resulting scheme can be regarded as a Generalized Observer Scheme (GOS)
[37]. The peculiarity of our proposal lies in the fact that the observers of the designed
GOS are of sliding mode type.

The input law of the i-th GOS observer is calculated relying on all the sensor
measurements, apart from the measurement coming from the i-th sensor (see Fig.
20.8). That is, the input law of the i-th GOS observer has the i-th component equal
to zero.

Thus, the i-th GOS observer in our proposal is defined as
{

˙̂χ (i)
1 = χ̂ (i)

2
˙̂χ (i)

2 = f̂ (χ̂ (i)
1 , χ̂ (i)

2 ,τ)+ρ (i)(t)
(20.30)

O b s e r v e r  1

O b s e r v e r  2

O b s e r v e r  n

D e c i s i o n
L o g i c

F a u l t
A l a r m

F a u l t
e s t i m

τ

q1..qn−1

q2..qn

q1,q3..qn

χ̂ (1)
1

χ̂ (2)
2

χ̂ (n)
n

ρ (1)

ρ (2)

ρ (n)

Fig. 20.8 Generalized Observer Scheme (GOS) for a n sensors system.
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where χ̂ (i)
1 ∈ R

n is the vector of the estimate of the q̄ vector made by the i-th

observer, with χ̂ (i)
1 =

[
χ̂ (i)

1,1, χ̂ (i)
1,2, . . . , χ̂ (i)

1,n

]T
, f̂ (·) has the structure indicated in

(20.25), while ρ (i) ∈ R
n is the input law of observer i. Note that the form of the

observer is analogous to that adopted in [27] in the general case of mechanical
systems.

The considered error vector signal for the i-th observer is given by

e(i) = q +Δq− χ̂ (i)
1 (20.31)

Then, also in this case, we design the observer input law ρ (i)(t) in (20.30) according
to the Sub-Optimal Algorithm [7], by posing, in addition, the i-th component of
ρ (i)(t) equal to zero, i.e.,

⎧
⎪⎨
⎪⎩

ρ̇ (i)
j = α jWjMAX sign

{
s(i)

j (t)−0.5s(i)
jMAX

}
, j 	= i

ρ (i)
i = 0

s(i)(t) = ė(i) +βe(i)

(20.32)

In (20.32), s(i)(t) is the so-called sliding variable, that is the variable to steer to zero
in order to perform the observation task, j is the index of the component of the

state vector coinciding with the sensor number, s(i)
jMAX represents the last extremal

value of the sliding variable s(i)
j (t), and β is a strictly positive design parameter. It

can be proved that a suitable choice of α jWjMAX exists such that the Sub-Optimal
input law guarantees the exponential stability of the tracking error of this observer
(the proof of this claim can be developed as in [7]). Note that, with this input law,
the observer (20.30) has the i-th component in open loop. This can imply stability
problems also in absence of faults, if the system is not open loop stable by itself.
However, this component of the i-th observer is just that useful, in case of fault on
the i-th sensor, in order to give an estimate of the fault signal. To circumvent stability
problems while avoiding to significantly alterate the detection, in the experimental
tests, a local small gain proportional feedback is closed to generate the i-th input
law component of the i-th observer (20.32). That is,

ρ (i)
i (t) = K

(
qi +Δqi− χ̂ (i)

1,i

)
, ∀i, K > 0 (20.33)

with K sufficiently small.
If f̂ (·) can be assumed to be a quite accurate estimate of f (·) in absence of noise

and faults, the GOS observers would be a perfect copy of the robot model. Thus,
each input law could be zero to allow for a null error e(i). This means that where a
component of the input law ρ (i) is different from zero, a fault is present somewhere.
Assuming that faults can occur only on sensors, a fault can be detected considering
Table 20.3. As it can be seen from this table, when a single sensor fault occurs, only
n− 1 of the n GOS observers have their input laws, i.e. ρ (i), sensitive to the fault,
since the observer j, associated with the sensor where the fault has occurred, has



20 SOSM Control and Supervision of Industrial Robots 559

the j-th component of the input law, i.e. ρ ( j)
j , always set equal to zero. During the

robot operation, one can observe the n vectors ρ (i). If the situation is that depicted
in a generic column of Table 20.3, say the j-th, then one can conclude that the fault
has occurred on sensor j. The value rq j, called residual associated with sensor j, is
set equal to 1 in that case (note that in practice, each component of ρ (i) is suitably
filtered in order to determine rq = [rq1, . . . ,rqn]T as will be mentioned in Subsection
20.5.6).

If, in contrast, f̂ (·) differs from f (·) of the bounded quantity B−1(q)η , as men-
tioned in Subsection 20.5.4, again thresholds need to be introduced to perform the
fault detection. For instance, the entries of Table 20.3 expressed as ρ (i) 	= 0 can be
replaced by the condition

if ∃ k s.t.
[
sign

{
ρ (i)

}
!ρ (i)

]
k
> T q

k (20.34)

while the entries of Table 20.3 expressed as ρ (i) = 0 become
[
sign

{
ρ (i)

}
!ρ (i)

]
k
< T q

k , ∀k = 1, ...,n (20.35)

where sign
{
ρ (i)

}
is the vector containing the sign of each component of ρ (i), the

symbol ! denotes the Schur product, [·]k denotes the k-th component of a vector,
and T q

k is a positive real number representing the selected threshold. As in the case
addressed in Subsection 20.5.4, the values of the thresholds depend on the magni-
tude of the uncertain term B−1(q)η . Obviously, now the fact that a fault has occurred
on sensor j can be inferred when (20.35) is true for i = j and (20.34) is true ∀ i 	= j.

Table 20.3 Signature table for sensor faults isolation.

Sensor 1 fault Sensor 2 fault . . . Sensor n fault
rq1 = 1 rq2 = 1 . . . rqn = 1

ρ(1) = 0 ρ(1) 	= 0 . . . ρ(1) 	= 0
ρ(2) 	= 0 ρ(2) = 0 . . . ρ(2) 	= 0

...
...

...
...

ρ(n) 	= 0 ρ(n) 	= 0 . . . ρ(n) = 0

20.5.6 Residual Generation

Fig. 20.7 shows the complete diagnostic scheme for robot manipulators. where the
residual vector rq associated with the sensors and the residual vector rτ associated
with the actuators are indicated.
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The residual vector rτ is given by

rτ i =
{

0 if |F (t)∗ρτ
i |< T τ

i
1 if |F (t)∗ρτ

i |≥ T τ
i

∀ i (20.36)

where it is assumed that, to deal with measurement noise in experiments, the fol-
lowing 5-th order low-pass filter is introduced (z is the unitary delay operator)

F (z) =
b

1−az−1−az−2−az−3−az−4−az−5 (20.37)

with a = 0.1993 and b = 1−5a.
The residual vector rq is obtained by filtering the ρ (i)

j 	=i(t) signals through the

filter (20.37) and comparing these signals with their thresholds T q
k , according to

Table 20.3. Thresholds T τ
i and T q

k take into account the presence of uncertainties
and discrete time sampling. To choose suitable thresholds, tuning experiments have
been executed.

20.5.7 Fault Isolation for Single Faults

To isolate a fault means to determine if the fault has occurred on a specific actuator
or on a specific sensor. This is a complex task which may be possible only for
single faults occurring on both actuators or sensors, or for multiple faults occurring
only on actuators. In this second case it is sufficient to check the residual rτ and
claim that the fault has occurred on the actuators corresponding to the components
of rτ equal to 1. In the first case, instead it can be useful to compare the binary
residual vector

[
rT
τ , rT

q

]T
with the the rows of the fault signature Table 20.4. The

row which coincides with the residual vector identifies the device affected by fault.
Note that, in general, an actuator fault can produce relevant residuals on all the n
sensor faults observers and a sensor fault can produce relevant residuals associated
with the actuators. However, for a small fault on sensors, i.e., for small Δq, for small
velocities and accelerations of the robot manipulator system, and in the absence of
uncertainties, the actuator residual rτ is not sensitive to a sensor fault Δq if the
magnitude of [B(q +Δq)q̈−B(q)q̈ + n(q +Δq, q̇ +Δ q̇)− n(q, q̇)]k is less than the

Table 20.4 Fault signature table, where p represents a value that can be 0 or 1.

Fault rτ1 rτ2 rτ n rq1 rq2 rq n

None 0 0 0 0 0 0
Act. 1 1 0 0 p p p
Act. 2 0 1 0 p p p
Act. n 0 0 1 p p p
Sen. 1 p p p 1 0 0
Sen. 2 p p p 0 1 0
Sen. n p p p 0 0 1
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k-th actuator fault threshold. The binary values p in Table 20.4, take into account
this fact, and, in general, a single fault cannot be exactly isolated if the fault induces
the detection of one actuator fault and one sensor fault. From a theoretical point of
view, it can be shown that, in case of exact identification of the manipulator model,
and in particular working conditions, a single fault occurring on the actuators or on
the sensors can be correctly isolated, as expressed by the following result.

Theorem 20.1. Under the assumptions of single fault, of exact knowledge of the
manipulator model (20.1) and the absence of noise on sensor measurements, a sen-
sor fault Δqi can be isolated from an actuator fault δτi if the following conditions
hold:

• the n degree of freedom manipulator belongs to a vertical plane, and each link
has a non null gravitational contribution on each actuator;

• the sensor fault signal Δqi is time invariant, i.e. Δ q̇i = Δ q̈i = 0;
• the robot manipulator represented by the model (20.1) is in static working con-

ditions, i.e. q̇ = q̈ = 0.

In particular, when a single fault occurs on a specified component of the vector q,
the former conditions assure that it is impossible to detect a non-existent single fault
Δτ j , (which represents a false alarm situation).

Observation 20.1. Note that the conditions stated in Theorem 20.1 can appear a
little restrictive, but these conditions are only sufficient. In practice, a fault can be
isolated in several situations, especially when ‖q̇‖ and ‖q̈‖ are small.

20.5.8 Experimental Results on Fault Diagnosis

In this subsection the proposed scheme is experimentally tested on the COMAU
SMART3-S2 manipulator. The faults presence is introduced in the control system
by adding a fault signal to the control variable (in case of actuator fault) or to the
sensor signal (in case of sensor fault).

Clearly, to carry on the experiments on the COMAU SMART3-S2 manipulator it
is necessary to control the robot. In this case, the COMAU SMART3-S2 manipulator
is controlled via the control scheme described in Section 20.3.

20.5.9 Experimental Test in Presence of Actuator Faults

Experiments in presence of actuator faults have been developed through the in-
troduction of abrupt faults on each joint. To show the properties of the proposed
scheme, a 10 (Nm) fault signal on the third actuator is considered. Note that this
fault is below the 20% of the maximum torque allowed by the corresponding actu-
ator. As it can be seen from Fig. 20.9, the fault is correctly detected (since | Δ̂τ3 |
exceeds the threshold T τ

3 ) and identified, since the actual shape of the fault signal is

recognizable from Δ̂τ3.
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Fig. 20.9 Experiment with fault on the third actuator (the actual fault signal Δτ3 on the left
and the fault estimate Δ̂ τ3 = [B(q)ρ(τ)]3 on the right).

20.5.10 Experimental Tests in Presence of Sensor Faults

In the experimental case, the presence of nonlinear and unmodelled effects leads
to a corruption of the signals useful for the fault analysis. The modified input law
(20.33) for the GOS has been considered in this case.

Relying on the modified structure, the following experiment is performed: an
abrupt fault of -30 (deg) on the first joint sensor measurement is introduced start-
ing from time instant 3.1 (s). In order to identify the joint on which the fault has
occurred, the proposed fault signature table (Table 20.4) is considered. Figs. 20.11,
20.12, and 20.13 show the two components different from zero of the input laws
of the three GOS observers. The fault isolation can be accomplished considering
the second and the third observer signals since only these (in particular one of their
components) exceed the thresholds. So, one can conclude that the fault has occurred
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Fig. 20.10 Experiment with fault on the first sensor (the actual fault signal Δq1 on the left
and the measurement q̄ = q1 +Δq1 on the right).
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Fig. 20.12 Sensor fault detection experiments: ρ(2)
1 and ρ(2)

3 signals in (20.30) for a fault on
sensor 1.
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Fig. 20.13 Sensor fault detection experiments: ρ(3)
1 and ρ(3)

2 signals in (20.30) for a fault on
sensor 1.

on sensor 1. In contrast to the case illustrated in Subsection 20.5.9, now the fault
identification is not allowed.

20.6 Conclusions

The possibility of applying the sliding mode design methodology also in robotics
is investigated in this chapter. The idea is to use such a methodology to design
both a control scheme to perform the robot motion control, and a diagnostic scheme
to detect and, possibly, identify and isolate actuator and sensor faults. It has been
pointed out that a second order sliding mode approach is surely more appropriate
than conventional first order sliding mode.

The proposed control scheme provides robustness versus bounded uncertainties
and disturbances and therefore it allows to compensate possible errors or impreci-
sions coming from the identification phase. Moreover, it allows to mitigate the chat-
tering problem by virtue of the design of a continuous control signal. This makes
the proposed sliding mode controller actually applicable to an industrial robot, by
virtue of the practical absence of induced vibrations.

Also fault diagnosis results in being practicable via a second order sliding mode
approach. The experimental tests performed on a COMAU SMART3-S2 robot
demonstrate that the position tracking error is actually enforced to zero, ensuring
good tracking performances of the controlled system, and that, while the robot
is controlled through the proposed scheme, an efficient fault diagnosis can be
performed.
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Note that the theoretical development presented in this chapter allows one to deal
with the following cases: faults (even multiple) occurring only on the actuators; sin-
gle faults occurring on the actuators or on the sensors (the knowledge of the type of
the device affected by the fault can be non available). Yet, in practical experiments
we have observed that the detection and isolation of multiple sensor faults is possi-
ble, provided that they are not simultaneous. The possibility of solving the problem
of fault diagnosis also in more general cases is presently under investigation.
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Chapter 21
Sliding Block Control of Electrical Machines
(Motors and Generators)

Alexander G. Loukianov, Jose M. Cañedo,
B. Castillo-Toledo, and Edgar N. Sanchez

21.1 Introduction

The dynamics of the electric motors and generators (synchronous and induction)
are highly nonlinear and content uncertainties including plant parameters variations
magnetic saturation and external disturbances (load torque). On the other hand, the
electric machine models are described by a class of nonlinear minimum phase sys-
tems which include the strict-feedback form or the nonlinear block controllable
form (NBC-form) and stable residual stable. Therefore, in this case, to design a
stabilized controller it is naturally to applied some feedback linearization (FL) tech-
nique: input-output (IO) linearization [9], backstepping (BS) [11] or block control
(BC) ( [13]- [15]). It is interesting to note that the BC approach has some advantage
comparing with the IO and BS ones. This advantige can be shown by designing of
a FL controller for the following second order triangular system:

ẋ1 = x2

ẋ2 = f2(x1,x2)+ u

Applying the IO, BS and BC algorithms, respectively,

uIO =− f2(x1,x2)− k1z1 − k2z2, z1 = x1, z2 = x2,
uBS =− f2(x1,x2)− k1(k1z1 + z2)x2 − k2z2− z1 z1 = x1, z2 = x2 + k1x1,

uBC =− f2(x1,x2)− k1(k1z1 + z2)− k2z2 z1 = x1, z2 = x2 + k1x1

the matrices of the linearized closed-loop system

ż = Aiz, i = IO, BS, BC

Alexander G. Loukianov · Jose M. Cañedo · B. Castillo-Toledo · Edgar N. Sanchez
CINVESTAV- IPN, Unidad Guadalajara
A. P. 31-438,C.P. 44550, Guadalajara, Jal., México
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are as follows

AIO =
[

0 1
−k1 −k2

]
, ABS =

[−k1 1
−1 −k2

]
, ABC =

[−k1 1
0 −k2

]
,

where z = (z1,z2)T , k1 > 0 and k2 > 0 are the controller gains. It easy to see that
only in the BC controller case the controller gains −k1 and −k2 coincide with the
eigenvalues of the closed-loop system matrix, that facilities to adjust these gains.
Moreover, the eigenvalues of the matrix ABC are real while the BS matrix ABS has
comlex eigenvalues.

However, the chief drawback of FL approaches is that, they rely on exact cancel-
lation of non-linear terms in order to get linear behavior of the closed-loop system.
Therefore, in the case of modelling errors it is useful to combine these approaches
with the sliding mode (SM) control [23] which ensures robustness in a realistic set-
ting of inexact models.

This chapter proposes the control schemes for the electric machines based on the
combination of the block FL control and SM control techniques. For this propose,
the chapter is organized as follows. In Section 21.2, the synchronous motor con-
troller design based on the complete 7-th order plant model, is presented. Section
21.3 deals with electric power system (EPS) control. First, the block integral SM
control approach is proposed for a class of nonlinear minimum phase MIMO sys-
tems presented in NBC- form with stable residual dynamics. Then, this approach
is aplied to design a controller for multi machine EPS. Section 21.4 describes the
block SM controller for an induction motor with saturation effect. Discrete time
(DT) block SM controllers for an induction motor based on approximately and ex-
actly discretized plant models are presented in Sections 21.5 and 21.6, respectively.
Finally, Section 21.7 describes a neural network block DT SM controller for an
induction motor.

21.2 Synchronous Motor SM Block Control

21.2.1 Plant Model

For the SM control, we use the complete dynamic model of a synchronous motor
given in the rotor coordinate frame, the (d,q) coordinates, with stator current com-
ponents iq, id and rotor flux ψ f d ,ψkd ,ψ1q,ψ2q as state variables [19]

ẋ1 = f1(x1,x2)+ B1u+ D1w (21.1)

ẋ2 = f2(x1,x2) (21.2)

where x = (x1,x2)T , x1 = (ωm, iq, id ,ψ f d)T , x2 = (ψkd ,ψ1q,ψ2q)T ,
u = (Vq,Vd ,Vf d)T , ωm is the angular velocity, w = TL is the load torque, iq and

id are the quadrature-axis stator and direct-axis currents; ψ f d is the field flux; Vq, Vd

and Vf d are the quadrature-axis and direct-axis stator voltages control inputs and the
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excitation voltage control input, respectively; ψkd , ψ1q and ψ2q are the direct-axis
and quadrature-axis damper windings fluxes, respectively;

f1 =

⎡
⎢⎢⎣

f1

f2

f3

f4

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

−a12iqid + a14iqψ f d + a15iqψkd + a16idψ1q + a17idψ2q

−a21ωmid −a22iq +ωm(a24ψ f d + a25ψkd)+ a26ψ1q + a27ψ2q

a31ωmid −a33id + a34ψ f d + a35ψkd +ωm(a36ψ1q + a37ψ2q)
−a41id −a44ψ f d + a45ψkd

⎤
⎥⎥⎦ ,

f2 =

⎡
⎣
−a53id −a54ψ f d −a55ψkd

−a62iq−a66ψ1q + a67ψ2q

−a72iq + a76ψ f d −a77ψ2q

⎤
⎦ , B1 =

⎡
⎢⎢⎣

0 0 0
b21 0 0
0 b32 b33

0 0 b43

⎤
⎥⎥⎦ , D1 =

⎡
⎢⎢⎣
−aL

0
0
0

⎤
⎥⎥⎦ .

The control goal is to make the motor speed ωm be equal to a reference signal ωre f .
Hence, the main control error can be defined as

εω = ωm −ωre f (t) (21.3)

with the speed reference ωre f (t). Having three control inputs Vq, Vd and Vf d , we
can choose two additional outputs to be controlled: the flux ψ f d in the winding
excitation and the current id . Thus, we define the following auxiliary control errors:

εψ = ψ f d −ψre f (21.4)

εd = id − ire f (21.5)

where ψre f and ire f are, respectively, reference signals for the flux and the current.
Because of the auxiliary control outputs ψ f d and id have relative degree be equal to
one while the main control output ωm has relative degree two, first, the flux linkage
ψ f d control loop is designed, and then the current id control loop is formulated, and,
finally, the speed ωm control loop is designed, in order to simplify the control design
and closed-loop stability analysis procedures.

21.2.2 The Flux Linkage ψ f d Control Loop

Using (21.4) and (21.1) the dynamics for εψ are derived as

ε̇ψ = f4(x1,x2)+ b43Vf d .

Now, the control strategy of the form

Vf d =−Uf d0sign(εψ ), Uf d0 > 0 (21.6)

under the condition Uf d0 >
∣∣Vf deq

∣∣ , Vf deq = −b−1
43 f4(x1,x2) ensures that the error

εψ (t) reaches zero in finite time ts1.
Note that the voltage may be supplied by a separate converter with closed loop

voltage control, thus underlining the characteristics of a low impedance voltage
source. It would of course be possible also to substitute a control loop for the field
current in order to eliminate the effect of changing field winding resistance due
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temperature. The drive would then respond faster in the field winding range, but
the damping effect by transient currents induced in the low impedance field circuit
would be reduced.

21.2.3 The Current id Control Loop

Since in the absence of d-axis stator current there is no reluctance torque and only
the q-axis reactance is involved in finding the terminal voltage, i.e. there is no direct
magnetization or demagnetization of d-axis, only the field winding acts to produce
flux in this direction, we choose the reference signal in (21.5) as ire f = 0. For this
situation, the field current in the d-axis and the stator current in the q-axis are 90◦
apart as is the case in the d.c. machine, that results in the following dynamics of εd

after the time ts1 :

ε̇d = f3(x1,x2)+ b32Vd + b33Vf deq, Vf deq =−b−1
43 f2(x1,x2). (21.7)

The following discontinuous control is selected:

Vd =−Ud0sign(εd), Ud0 > 0. (21.8)

It is known that the plant (21.1) is input-to-state stable. Therefore, during the time
period [0, ts1] the closed-loop system (21.1) with the bounded controls (21.6) and
(21.8), is stable. After this time we have (21.7). Hence, the SM stability condition
for this case can be derived of the following form:

Ud0 >
∣∣−b−1

32 [ f3(x1,x2)−b33b−1
43 f2(x1,x2)]

∣∣ .
Under this condition the current id converges to zero in finite time ts2, ts2 > ts1.

21.2.4 The Speed ωm Control Loop

After the time ts2, the SM motion occurs on the manifold εψ = 0 (21.4) and εd = 0
(21.5) yielding ψ f d = ψre f and id = 0. As result, the dynamics of εω together with
dynamics of iq fit the NBS-form consisting of two blocks:

dεω
dt

= f̄1(TL,t)+ bω(x)iq

diq
dt

= f̄2(x1,x2)+ b21Vq

where f̄1(TL,t)=aLTL−ωre f (t), bω = a14ψ f d +a15ψkd , f̄2 =−a22iq +ωm(a24ψ f d +
a25ψre f )+ a26ψ1q + a27ψ2q.

To design a speed SM controller, first, exploring the block control (BC) technique
a nonliear sliding manifold is formed as

sq = iq− i∗q = 0, i∗q = b−1
ω (x)( f̄1 − c1εω ), c1 > 0. (21.9)
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Then, the proposed discontinuous control law is designed as

Vd =−Ud0sign(εd), Ud0 > 0 (21.10)

ensures the sliding manifold sq = 0 (21.9) be attractive. A SM motion on this mani-
fold is governed by first order linear system

ε̇ω =−c1εω

with the desired eigenvalue −c1.
A crucial property of the SM control (21.6), (21.8) and (21.10) when applied to

(21.1) and (21.2) is that, it yields the invariant subspace
{
ξ = (0,0,0,0)T , x2 ∈ R3

}
where ξ = (εω ,sq,εd ,εψ )T . The dynamics of x2 on this invariant subspace are re-
ferred to as the zero dynamics. To derive these dynamics, the vector x1 in (21.2) is
changed by ξ = ϕ(x) : ẋ2 = f̄2(ξ ,x2,ωre f ,ψre f ,TL) where mapping ϕ is defined by
(21.3)-(21.5) and (21.9). Then the vector ξ is zeroed resulting in

ẋ2 = f̄2(0,x2,ωre f ,ψre f ,TL).

An equilibrium point for this system defined by ωre f , ψre f and the value of the load
torque TL is asymptotically stable providing the system 8) and() is minimum phase.

The detailed controller scheme including the rotor flux observer design and sim-
ulation results can be found in [19].

21.3 The Synchronous Generator Control

21.3.1 Plant Model

The synchronous generator (multi machine power system) state space model is
given by the following differential algebraic equation [7]:

[
ẋ1i

ẋ2i

]
=

[
f1i(xi, ii)
f2i(xi, ii)

]
+

[
b1i

0

]
υ f i +

[
g1i(xi, ii,Tmi)

0

]
(21.11)

ii = A−1
3i (x2i)[f3i(xi)+ HiVi] (21.12)

where xi= (x1i,x2i)T , x1i = (x1i,x2i,x3i)T = (δi,ωi,ψ f i)T ; x2i = (x4i,x5i,x6i)T =
(ψgi,ψkdi,ψkqi)T , ii = (iq, id)T , Vi = (Vdi,Vqi)T , δi is the relative power angle with
respect to the first generator; ωi is the angular speed; ωb is the reference speed, Tmi

is the mechanical torque; ψ f i, ψgi, ψkdi and ψkqi are the field flux, the direct-axis
and quadrature-axis damper windings fluxes, respectively; idi and iqi are the direct-
axis and quadrature-axis stator currents, respectively; υ f i is the generator excitation
voltage (control input); Vdi and Vqi are the quadrature-axis and direct-axis stator
voltages;
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f1i =

⎡
⎣

x2i−ωb

f2i,nom(xi, ii)−q2i(ii)x3i

f3i(xi, ii)

⎤
⎦ , b1i =

⎡
⎣

0
0

b4i

⎤
⎦ ,

f2i,nom(·) = a2ix4iidi + a3ix5iiqi −a4ix6iidi + a5iidiiqi, q2i(ii) = a1iiqi,
g1i(xi, ii) = (0,g2i(xi, ii,Tmi),0)T , f3i(xi, ii) =−b1ix3i + b2ix5−b3iidi,
f2i(xi, ii) = A2ix2i+d1ix3i + Diii,

A2i =

⎡
⎣

c1i 0 c2i

0 d2i 0
r2i 0 r2i

⎤
⎦ , d1i =

⎡
⎣

0
d1i

1

⎤
⎦ ,Di =

⎡
⎣

0 c3i

d3i 0
0 e3i

⎤
⎦ ,A3i =

[
h7i k6ix2i

h6ix2i k7i

]
,Hi =

[
h1i 0
0 k1i

]
, f3i =

[
h2ix3i + h3ix5i + h4ix2ix4i + h5ix2ix6i

k2ix4i + k3ix6i + k4ix2ix3i + k5ix2ix5i

]
.

The unmatched perturbation term g2i(xi, ii) includes parameters variations, and the
mechanical torque Tmi (external disturbance), i. e. g2i(·) = dmiTmi − (Δa2ix4iidi +
Δa3ix5iiqi −Δa4ix6iidi +Δa15idiiqi), a ji = a ji,nom +Δa ji, j = 2, ...,5; where a ji,nom

and Δa ji are the nominal value and variation, respectively, of the parameter a ji.
Moreover A3i is a Hurwitz matrix.

21.3.2 The Idea of Block Integral SM Controllers

In this Subsection, the method and underlying ideas are described in generic terms
to show the generality of our approach which will be applied to generator control.
Consider a class of nonlinear MIMO system presented (possibly after a nonlinear
transformation) in the nonlinear BC form consisting of r blocks subject to uncer-
tainties

ẋi = fi(x̄i)+ Bi(x̄i)xi+1 + gi(x̄i,xr+1, t), i = 1, . . . ,r−1 (21.13)

ẋr = fr(x̄r, x̄r+1)+ Br(x̄r,xr+1)u+ gr(x̄r,xr+1, t)
ẋr+1 = fr+1(x̄r,xr+1,t) (21.14)

y = x1 (21.15)

where the state vector x∈Rn is decomposed as x =(x1, . . . ,xr,xr+1)T = (x̄r,xr+1)T ,
x̄i = (x1, . . . ,xi)T , i = 1, . . . ,r ; u ∈ Rm; fi(·) and Bi(·) are known sufficiently
smooth functions of their arguments, gi(·) is an uncertain but bounded function,
and rankBi(·) = ni over the set D1× D2:

D1 =
{

x̄r ∈ Rn̄r | ‖x̄r‖2 ≤ r1, r1 > 0
}

r1 (21.16)

D2 =
{

xr+1 ∈ Rn−r | ‖x̄r+1‖2 ≤ r2, r2 > 0
}

(21.17)

n1 ≤ n2 ≤ ·· · ≤ nr = m,
r

∑
i=1

ni = n̄r, n̄r + nr+1 = n. Suppose

A1) The set
‖xr+1‖2 ≤ d0 < r2, d0 > 0 (21.18)
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is uniformly attractive with respect to the set D2 , i.e. for any solution to the system

.
xr+1 = fr+1(0,xr+1,t) (21.19)

describing zero dynamics in (21.13)-(21.15) with any initial conditions from D2

there exists T such that for all t > T we will have ‖xr+1(t)‖2 ≤ d0.
The control problem is to determine a controller such that the output y in (21.13)-

(21.15) tracks a desired reference yre f with bounded derivatives, in spite of the pres-
ence of unknown bounded perturbations. To induce quasi sliding mode in the each
block of the system (21.13)-(21.15), the continuously differentiable sigmoid func-

tion sigm
(

s
γ

)
defined as

sigm

(
s
γ

)
= tanh

(
s
γ

)
, tanh

(
s
γ

)
=

e
s
γ − e−

s
γ

e
s
γ + e−

s
γ

where 1
γ is the slope of the sigmoid function at s = 0, will be used since

lim
γ→0

sigm
(

s
γ

)
= sigm

(
s
γ

)
.

Remark 21.1. The class of nonlinear systems (21.13)-(21.15) is more general than
the considered one in ( [13]- [15]), since the perturbation term gi(·), depends also
on the state vector xr+1.

Defining the control error as

z1 = y−yre f = x1−yre f

where yre f is a reference signal. Then, designing the following BC linearized trans-
formation:

zi+1 = B̄i(x̄i)xi+1 +

[
f̃i(x̄i)− kiϕi(x̄i)−ρisigm

(
si
γi

)

0

]
≡ ϕi(x̄i+1) (21.20)

si = zi +σi

σ̇i = kizi −Eizi+1, σi(0) =−zi(0), ki > 0, i = 1, ...,r−1

and the control law

u = −ρ0B̄−1
r sign(sr)− B̄−1

r

[
f̃r(z̄r,xr+1)− krzr

]
, ρ0 > 0, kr > 0 (21.21)

sr = zr +σr

σ̇r = krzr, σr(0) =−zr(0)

the closed-loop system (21.13)-(21.14) with (21.21) becomes of the form
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żi =−kizi + Eizi+1−ρisigm
(

si

γi

)
+ g̃i(z̄i,xr+1,t) (21.22)

ṡi =−ρisigm
(

si

γi

)
+ g̃i(z̄i,xr+1,t), i = 1, . . . ,r−1 (21.23)

żr =−krzr −ρ0sign(sr)+ g̃r(z̄r,xr+1, t) (21.24)

ṡr =−ρ0sign(sr)+ g̃r(z̄r,xr+1, t) (21.25)
.
xr+1 = fr+1(z̄r,xr+1,t) (21.26)

where zi = (z1, . . . ,zr)T , z̄i = (z1, . . . ,zi)T , i = 1, . . . ,r; ki > 0, ρi > 0, γi > 0,
i = 1, . . . ,r and B̄i = B1B2 · · ·Bi.

Theorem 21.1. If assumption A1 holds then a solution of the closed-loop system
(21.22)- (21.26) under the following condition:

ρi > ‖g̃i(z̄i,xr+1t,)‖ , i = 1, . . . ,r−1

ρ0 > ‖g̃r(z̄r,xr+1,t)‖

is uniformly ultimately bounded, i.e.

limsup
t→∞

‖zi(t)‖ ≤ hi, i = 1, ...,r−1

limsup
t→∞

‖xr+1(t)‖ ≤ hr+1, i = 1, ...,r−1.

In the following we present the application of the proposed method to control the
electric power system.

21.3.3 Block Integral SM Speed Stabilizer

Note that the first part of the generator dynamic model (21.11) has the NBC-form
(21.13)-(21.15) while the second part presents the stable residual dynamics. There-
fore, to achieve the first control objective, that is, the rotor speed stability enhance-
ment, we applied the control method described in Subsection 21.3.2. Define the
control error as

z2i = x2i−ωb ≡ ϕ2i(x2i). (21.27)

Using the first subsystem in (21.11) and then (21.27), straightforward calculations
result in

ż1i = z2i (21.28)

ż2i = f2i,nom(xi, ii)−q2i(ii)x3i + g2i(xi, ii,Tmi) (21.29)

ẋ3i = f3i(x2i)+ b4iυ f i (21.30)

where z1i = x1i ≡ ϕ1i(x1i). The change of variables (21.20) takes the form
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x3i = q−1
i (ii)[ fi,nom(xi, ii,Tmi)+ k2iz2i− z3i]+ρ2isigm

(
s2i

γ2i

)
(21.31)

s2i = z2i +σ2i (21.32)

σ̇2i = −k2iz2i + z3i (21.33)

where z3 is a new variable, the term −k2iz2i presents the desired dynamics for the

control error z2, k2 > 0, and the term ρisigm
(

s2i
γ2i

)
is designed to reject the pertur-

bation g2i(xi, ii,Tmi) in (21.29); s2i is a quasi sliding variable and σ2i is an integral
variable defined by (21.33). Now, the new variable z3i can be defined from (21.31)
as

z3i = qi(ii)x3i + fi,nom(xi, ii)+ k2i(x2i −ωb) ≡ ϕ3i(xi, ii). (21.34)

Using (21.34) and (21.28) - (21.30), the dynamics for z3i are derived of the form

ż3i = f̄3i(xi, ii)−q3i(ii)υ f i + g3i(xi, ii,Tmi)

where f̄ z3i3i(·) = ∂ϕ3i
∂x1i

f1i(x1i,xi2)+
∂ϕ3i
∂x2i

f2i(x1i,x2i) is a continuous function, q3i(·) =
q2i(·)b4i, and q3i(t) is a positive function of the time. To reject the perturbation
g3i(xi, ii,Tmi) and induce the desired dynamics (−k3iz3i, k3i > 0) for z3i the excita-
tion control υ f i is chosen similar to (21.21):

υ f i = q−1
3i (ii)[ f̄3i(xi, ii)+ k3iz3i]+ρ3isign(s3i) (21.35)

s3i = z3i +σ3i (21.36)

σ̇3i = k3iz3i. (21.37)

Then, the system (21.28) - (21.30) with (21.34)-(21.37) can be represented of the
form

ż1i = z2i (21.38)

ż2i =−k2iz2i + z3i−ρ2iq2i(ii)sigm

(
s2i

γ2i

)
+ g2i(xi, ii,Tmi) (21.39)

ṡ2i =−ρ2iq2i(ii)sigm

(
s2i

γ2i

)
+ g2i(xi, ii,Tmi) (21.40)

ż3i =−k3iz3i −ρ3iq3i(ii)sign(s3i)+ g3i(xi, ii,Tmi) (21.41)

ṡ3i =−ρ3iq3i(ii)sign(s3i)+ g3i(xi, ii,Tmi). (21.42)

Under the condition

ρ3iq3i > |g3i(xi, ii,Tmi)| (21.43)

ρ2iq2i > |g2i(xi, ii,Tmi)| (21.44)

the state vector of the closed-loop system (21.38) - (21.42) converges to the set

s3i = 0, s2i = 0 (21.45)



578 A.G. Loukianov et al.

in finite time, and sliding mode starts on (21.45) from this time. The conditions
(21.43) and (21.44) defines the closed-loop system stability region and obviously
holds for all the possible values of Tmi. The sliding motion on (21.45) is described
by the unperturbed SM equation

ż1i = z2i (21.46)

ż2i =−k2iz2i + z3i (21.47)

ż3i =−k3iz3i (21.48)

ẋ2i = f2i(z1i,z2i,z3i,x2i, ii,ωb) (21.49)

with desired eigenvalues −k2i and −k3i.
Note that sliding mode dynamics (21.46)-(21.49) can be considered as particu-

lar case of the SM equation (21.22)- (21.26) while the internal dynamics (21.49)
reduce on the space

{
z1i = δssi, z2i = 0, z3i = 0, x2i ∈ R3N

}
to the asymptotically

stable zero dynamics due to the matrix A2i is Hurwitz. Hence, a solution of (21.46)-
(21.49) by Theorem 21.1 is ultimately bounded and, moreover, the control error
z2i(t) (21.27) converges exponentially to zero.

21.3.4 SM Voltage Regulator

The second control objective is to regulate the terminal voltage, Vgi, defined as

V 2
gi = V 2

di +V 2
qi. (21.50)

Using (21.12) we have

Vi =
[

Vdi

Vqi

]
= H−1

i A3i(x2i)ii + f3i(xi, ii)+ HiVi] (21.51)

Then, the dynamics for terminal voltage can be obtained from (21.50), (21.51),
(21.11) and (21.12) as

V̇gi = fvi(xi, ii)+ bvi(xi, ii)υ f i + gvi(xi, ii,Tmi) (21.52)

where fvi(xi, ii) is a continuous function while the term gvi(xi, ii,Tmi) contains pa-
rameter variations and external disturbance Tmi, bvi(t)> 0 for all t ≥ 0. Defining the
voltage regulation error as

εgi = Vgi−Vre f i (21.53)

we design the excitation control υ f i of the form

υ f i = b−1
vi (xi, ii) [ fvi(xi, ii)− kgiεgi]−ρvsign(svi), kgi > 0, ρv > 0 (21.54)

svi = εvi +σvi

σ̇vi = kgiεgi.
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Then, the closed-loop system (21.53), (21.52) with (21.54) becomes

ε̇gi = −kgiεgi −ρvbvi(xi, ii)sign(svi)+ gvi(xi, ii,Tmi)
ṡvi = −ρvbvi(xi, ii)sign(svi)+ gvi(xi, ii,Tmi).

If the condition
ρvbvi > |gvi(xi, ii,Tmi)|

holds then a SM motion occurs on the manifold svi = 0 on which we have

−ρvbvi(xi, ii)sign(svi)+ gvi(xi, ii,Tmi) = 0

resulting in the following desired SM equation:

ε̇gi =−kgiεgi, kgi > 0

which is asymptotically stable.

21.3.5 Control Switching Logic

Having just one control input υ f i in each generator for two outputs ωi and Vgi, the
control strategy is formulated finally as

υ f i =
{

q−1
3i (ii)[ f3i + k3iz3i]+ρ3isign(s3i) i f

b−1
vi (xi, ii) [ fvi(xi, ii)− kgiεgi]−ρvsign(svi) i f

|s3i|> ei

|s3i| ≤ ei

ei =
{

e1i i f
e2i i f

|svi|> e3i

|svi| ≤ e3i

with e2i < e3i. Therefore, we propose a hierarchical control action through the pro-
posed logic (56). Since the mechanical dynamics are slower than the electrical ones,
we spend the control resources, at first, to stabilize s3i. When s3i reaches the bound-
ary layer with width e1i, the control resources will be spending to stabilize svi. After
svi convergence of such that |svi| < e3i, the control action reduces the s3i boundary
layer width from e1i to e2i. Thus, the controller maintains the value of s3i within
desired accuracy |s3i| ≤ e2i and |svi| ≤ e3i.

21.4 Induction Motor with Magnetic Saturation Control

It is known that the magnetic saturation effect, allowing an induction motor to pro-
duce higher torque, can cause a bad performance of the dynamic response of the
motor, if it is not taken into account in controller design. Most of studies concern-
ing the saturation effect tried to find special models with varying parameters We
present an extended order model of the motor with constant parameters. Based on
this model, and applying the SM and BC techniques, a discontinuous observed based
control law can be derived.
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21.4.1 Mathematical Model of Induction Motor with Saturation

To include the saturation effect in the motor model, we approximate this curve with
a function f (λm)= λ 3

m. The established saturated model can be described by the
mechanical equation

dwr
dt = c1(c2(λα iβ −λβ iα)−TL)

dλα
dt =−npwrλβ − c3(λα −λmα)

dλβ
dt =−npwrλα − c3(λβ −λmβ )

diα
dt = c71wrλβ + c81λα − c81λmα − (c91− c5)iα +(c4− c61)Vα

diβ
dt =−c72wrλα + c82λβ − c82λmβ +(c92− c5)iα +(c4− c62)Vβ

dλmα
dt = Ls

(−c71wrλβ − c81λα + c81λmα − c91iα + c61Vα
)

dλmβ
dt = Ls

(
c72wrλα − c82λβ + c82λmβ − c92iα + c62Vβ

)

(21.55)

where wr is the rotor velocity, λα and λβ are the rotor magnetic fluxes; λmα and
λmβ are the magnetizing fluxes; iα and iβ are the stator currents; uα and uβ are

the stator voltages; TL is the load torque, c1 = 1
Jr
, c2 = 3npM

2Lr
, c2 = Rr

Lr
, c4 = 1

Ls
,

c5 = Rs
Ls
, c61 = M

d1L2
s
, c61 = M

d2L2
s
, c71 = npM

d1LsLs
, c72 = npM

d2LsLs
, c81 = MRr

d1L2
r Ls
, c82 = MRr

d2L2
r Ls
,

c91 = MRs
d1L2

s
, c92 = MRs

d2L2
s
, d1 = 1 + M

Ls
+ M

Lr
+ 3cλ 2

mα , d2 = 1 + M
Ls

+ M
Lr

+ 3cλ 2
mβ .

Let us define the control errors as

x1 =
[

x1

x2

]
=

[
ωr −ωre f (t)
ϕ−ϕre f (t)

]
, x2 =

[
x3

x4

]
=

[
iα
iβ

]
, x3 =

[
x5

x6

]
=

[
λmα
λmβ

]

where ϕ = (λα λβ )T (λα λβ ) is the flux square module, ωre f (t) and ϕre f (t) are
reference signals. Then the system (21.55) can be represented in quasi NBC-form
with perturbation and residual ynamics:

ẋ1 = f1(x1)+ B1(x1)
[

x2

x3

]
−d1TL−w1(t) (21.56)

[
ẋ2

ẋ3

]
=

[
f2(x)
f3(x)

]
+

[
B2

B3

]
u (21.57)

where x = (x1,x2,x3)
T , w1 = (ω̇re f (t), ϕ̇re f (t))T , u = (uα ,uβ )T , f1 =

[
f1
f2

]
=

[
0

2c3ϕ

]
,

B1 =
[−c1c2λβ c1c2λα 0 0

0 0 2c3λα 2c3λβ

]
,

f2 =
[

f3

f4

]
=

[
c71wrλβ + c81λα − c81λmα − (c91− c5)iα
−c72wrλα + c82λβ − c82λmβ +(c92− c5)iα

]
,

f3 =
[

f5

f6

]
=

[
Ls

(
c71wrλβ + c81λα − c81λmα − (c91− c5)iα

)
Ls

(−c72wrλα + c82λβ − c82λmβ +(c92− c5)iα
)
]
,

B2 =
[

(c4− c61) 0
0 (c4− c62)

]
, B3 =

[
Lsc61 0

0 Lsc62

]
.
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Then using BC algorithm the following nonsingular change of variables can be
proposed:

z1 = x1, z2 = f1(x1)+ B1(x1)
[

x2

x3

]
−d1TL −w1(t)+ k1z1, k1 > 0

where (−k1z1, k1 > 0) is the desired dynamics for the control error z1. Then the
equations (21.56) and (21.57) are represented in the new variables z1 and z2 of the
form

ż1 = −k1z1 + z2

ż2 = f2(z1,z2,η)+ B̄2(z1)u+ d2TL −w2(t)
η̇ = Aηη + Bη(z1)u+ gη (z,η)

where f2(z1,z2,η), Bη (z1) and gη(z,η) are continuos functions, B̄2 = B1

[
B2

B3

]
,

w2(t) = k1w1(t)− ẇ1(t).
The selected control

u =−U0sign(BT
2 z2),U0 > 0

under the condition U0 >
∥∥ueq

∥∥ , ueq = B̄−1
2 [f2 +d2TL−w2(t)] ensures a SM motion

will appear on the manifold z2 = 0. Then closed-loop system motion reduces on this
manifold to

ż1 = −k1z1

η̇ = Aηη + ḡη(z1,η ,t)

where ḡη(z1,η ,t) = Bηueq(z1,η ,t)+gη(z1,η). The zero dynamics governed on

subspace
{

z1 = 0, η ∈ R3
}

by η̇=Aηη + ḡη(0,η ,t) are stable since the matrix Aη
is Hurwitz and ḡη(z1,η ,t) is a continuos function bounded on a compact set. There-
fore, a solution of the closed-loop system is ultimately uniformly bounded, and the
control error z1(t) converges exponentially to zero.

The detailed stability analysis including the rotor flux observer design and simu-
lation results can be found in [14], [22], [2], [6], [7] and [8].

21.5 Induction Motor Discrete Time Control

21.5.1 Plant Model

Under the assumptions of equal mutual inductance and a linear magnetic circuit, an
induction motor model is given by
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.
θ = ω
.
ω = μITℑφ−1

J
CL (21.58)

.
φ = −αφ + pωℑφ +αLmI
.
I = αβφ − pβωℑφ− γI +

1
σ

u

where θ and ω are the rotor position and angular velocity, φ= (φα ,φβ )T is the

rotor flux vector, I= (iα , iβ )T is the stator current vector, u= (uα ,uβ )T is the control
input voltage vector, CL is the load torque, J is the rotor moment of inertia, and

ℑ=
[

0 −1
1 0

]
, α =

Rr

Lr
,β =

Lm

σLr
,γ =

L2
mRr

σL2
r

+
Rs

σ
,σ = Ls− L2

m

Lr
,μ =

3
2

Lm p
JLr

, and Ls,

Lr Lm are the stator, rotor and mutual inductance respectively, Rs and Rr are the
stator and rotor resistance respectively, and p is the number of pole pairs.

The digital control scheme here considered has a sampling period δ . In what
follows it is considered the following hypothesis, which will be instrumental for the
next developments

(H1) The load torque CL is piece-wise constant over the sampling period δ .
Hypothesis (H1) holds for all cases in which CL slowly varies with respect to

the system dynamics. As far as the reduced-model is concerned, making use of the
following globally defined change of coordinate

⎡
⎢⎢⎣
θ
ω
Y
X

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

θ
ω

e−pθℑφ
e−pθℑI

⎤
⎥⎥⎦ (21.59)

where e−pθℑ is a rotational matrix that rotate with the mechanical velocity. Consid-
ering as new input X , one obtains the following bilinear model:

.
θ = ω
.
ω = μXTℑY−1

J
CL (21.60)

.
Y = −αY +αLmX .

The advantage of considering (21.59) is that the equation regarding Y, related to the
flux φ , becomes linear and, hence easily discretized.

From here after we derive the sampling of (21.60). Considering X constant over
the sampling period δ , we integrate the third of (21.60) over [t0 = kδ , t ≤ (k+1)δ ],
then one has

Y (t) = e−α(t−kδ )Yk + Lm

(
1− e−α(t−kδ )

)
Xk (21.61)

where Yk = Y (kδ ), Xk = X(kδ ). Now, under (H1), the integration of the second of
(21.60) gives
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ω(t) = ωk + μXT
k ℑ

∫ t

kδ
Y (ξ )dξ − 1

J
CL,k

∫ t

kδ
dξ (21.62)

where ωk = ω(kδ ) and

∫ t

kδ
Y (ξ )dξ =

1
α

(
1− e−α(t−kδ )

)
Yk + Lm(t − kδ )Xk − 1

α
Lm

(
1− e−α(t−kδ )

)
Xk.

(21.63)
Replacing (21.63) in (21.62), one obtains

ω(t) = ωk +
μ
α

(
1− e−α(t−kδ )

)
XT

k ℑYk − 1
J

CLk(t − kδ ) , t ≤ (k + 1)δ . (21.64)

By integrating over [t0 = kδ , t ≤ (k + 1)δ ] the first of (21.60), one obtains

θ (t) = θk +
∫ t

kδ
ω(ξ )dξ (21.65)

where θk = θ (kδ ) and
∫ t

kδ
ω(ξ )dξ = ωk(t −kδ )+

μ
α

XT
k ℑYk

(
(t −kδ )+

1
α

(
e−αt −e−αkδ

)
eαkδ

)
(21.66)

−1
J

CL,k

(
1
2
(t −kδ )2

)
.

Using (21.66), for t = (k + 1)δ , (21.65), (21.64) and (21.61) yields

θk+1 = θk +ωkδ +
μ
α

(
δ − 1

α
(1−a)

)
XT

k ℑYk − δ 2

2J
CL,k

ωk+1 = ωk +
μ
α

(1−a)XT
k ℑYk − δ

J
CL,k (21.67)

Yk+1 = aYk +(1−a)LmXk

where a = e−αδ . In the old coordinates
[
θ ω φ

]T
equations in (21.67) are written

as

θk+1 = θk +ωkδ +
μ
α

(
δ − 1

α
(1−a)

)
IT
k ℑφk − δ 2

2J
CL,k

ωk+1 = ωk +
μ
α

(1−a)IT
k ℑφk − δ

J
CL,k (21.68)

φk+1 =
[

cos pθk+1 −sin pθk+1
sin pθk+1 cos pθk+1

][
ρ1(θk, φk, Ik)
ρ2(θk, φk, Ik)

]

where
[
ρ1(θk, φk, Ik)
ρ2(θk, φk, Ik)

]
= a

[
cos pθk sin pθk

−sin pθk cos pθk

]
φk +(1−a)Lm

[
cos pθk sin pθk

−sin pθk cos pθk

]
Ik.
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The discretization of the whole system (21.58) can be obtained considering the sta-
tor current equations in (21.58). More precisely, the equation for I can be sampled
as

Ik+1 = eδLF (I) |kδ , F = αβφ − pβωℑφ − γI +
1
σ

u

with LF the usual Lie derivative. In this expression the control u appears nonlin-
early. This clearly complicates the derivation of the control law. In order to simplify
this derivation, we will consider only terms up to δ . Clearly this approximation in-
troduced in the current dynamic equations determines, in the mechanical and flux
equations, an error of order O(δ 2). Then, using the usual notations, one has

Ik+1 = Ik + δ
(
αβφk − pβωkℑφk − γIk +

1
σ

uk

)
. (21.69)

Note that the variable X previously introduced, is constant over δ . Therefore, the
sampled model of the induction motor model is given by (21.68), (21.69)

θk+1 = θk +ωkδ +
μ
α

(
δ − 1

α
(1−a)

)
(iβ ,kφα ,k − iα ,kφβ ,k)−

δ 2

2J
CL,k

ωk+1 = ωk +
μ
α

(1−a)(iβ ,kφα ,k − iα ,kφβ ,k)−
δ
J

CL,k

φα ,k+1 = ρ1(θk, φk, Ik)cos pθk+1−ρ2(θk, φk, Ik)sin pθk+1

φβ ,k+1 = ρ1(θk, φk, Ik)sin pθk+1 +ρ2(θk, φk, Ik)cos pθk+1

iα ,k+1 = iα ,k + δ
(
αβφα ,k + pβωkφβ ,k − γiα ,k +

1
σ

uα ,k

)

iβ ,k+1 = iβ ,k + δ
(
αβφβ ,k − pβωkφα ,k − γiβ ,k +

1
σ

uβ ,k

)
.

21.5.2 Control Algorithm

Let us define the following change of coordinates:

x1,k =
(

x11,k
x12,k

)
=

(
ωk −ωr,k

φk −φr,k

)

x2,k =
(

x21,k
x22,k

)
=

(
iα ,k
iβ ,k

)
(21.70)

x3,k =
(

x31,k

x32,k

)
=

⎛
⎝ arctan

φβ ,k
φα ,k

θk

⎞
⎠

where φk = φ2
α ,k +φ2

β ,k is the squared rotor flux magnitude, ωr,k and φr,k are bounded
references signals. If the resulting control drives the state x1,k toward zero, then ωk

and φk will track exactly their respective reference signals. Clearly,
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ωk = x11,k +ωr,k

φα ,k =
√

x12,k +φr,k cosx31,k, φβ ,k =
√

x12,k +φr,k sinx31,k

iα ,k = x21,k iβ ,k = x22,k

θk = x32,k.

Due to (21.70), the motor equations can be rewritten as follows

x11,k+1 = x11,k + c1
√

x12,k +φr,k
(
x22,k cosx31,k − x21,k sinx31,k

)

−δ
J

CL,k +ωr,k−ωr,k+1

x12,k+1 = a2x12,k + c2
(
x2

21,k + x2
22,k

)

+c3
√

x12,k +φr,k
(
x21,k cosx31,k + x22,k sinx31,k

)
+ a2φr,k −φr,k+1

x21,k+1 = ϕα ,k (xk)+
δ
σ

uα ,k

x22,k+1 = ϕβ ,k (xk)+
δ
σ

uβ ,k

x31,k+1 = px32,k+1 + arctan
ρ2 (xk)
ρ1 (xk)

x32,k+1 = x32,k + x11,kδ + c4
√

x12,k +φr,k(x22,k cosx31,k − x21,k sinx31,k)

−δ 2

2J
CLk +ωr,kδ

with

c1 =
μ
α

(1−a) , c2 = (1−a)2 L2
m, c3 = 2a(1−a)Lm, c4 =

μ
α

(
δ − 1

α
(1−a)

)

ρ1 (xk) = a
√

x12,k +φr,k cos
(
x31,k − px32,k

)

+(1−a)Lm
(
x21,k cos px32,k +x22,k sin px32,k

)

ρ2 (xk) = a
√

x12,k +φr,k sin
(
x31,k − px32,k

)

+(1−a)Lm
(
x22,k cos px32,k −x21,k sin px32,k

)

ϕα ,k (xk) = (1−δγ)x21,k +δβ
√

x12,k +φr,k
(
α cosx31,k + p

(
x11,k +ωr,k

)
sinx31,k

)

ϕβ ,k (xk) = (1−δγ)x22,k +δβ
√

x12,k +φr,k
(
α sinx31,k − p

(
x11,k +ωr,k

)
cosx31,k

)

and xk =
(

xT
1,k, xT

2,k, xT
3,k

)T
. These equations are in the form

x1,k+1 = f1 (k,xk)+ B(k,xk)x2,k

x2,k+1 = f2 (k,xk)+
δ
σ

uk (21.71)

x3,k+1 = f3 (k,xk)
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where

f1 (k,xk) =

⎛
⎝ x11,k − δ

J
CL,k +ωr,k−ωr,k+1

a2x12,k + a2φr,k −φr,k+1 + c2

(
x2

21,k + x2
22,k

)
⎞
⎠

f2 (k,xk) =
(
ϕα ,k (xk)
ϕβ ,k (xk)

)
, f3 (k,xk) =

(
ψα ,k (xk)
ψβ ,k (xk)

)

B(k,xk) =
√

x12,k +φr,k

(
c1 0
0 c3

)(−sinx31,k cosx31,k
cosx31,k sin x31,k

)

with ψα ,k (xk) = px32,k+1 + arctan
ρ2 (xk)
ρ1 (xk)

and ψβ ,k (xk) = x32,k + x11,kδ +

c4
√

x12,k +φr,k(x22,k cosx31,k − x21,k sinx31,k)− δ 2

2J
CLk +ωr,kδ .

In what follows we exploit the NBC-form of the first two equations of (21.71) in
order to derive a sliding mode controller, using a block control procedure. To this
aim, note first that the matrix B(k,xk) is bounded under the hypothesis that φr,k ∈ L∞.
Moreover, B(k,xk) is invertible if φr,k 	= 0. These are conditions always verified in
practical situations. Then imposing in the first of (21.71)

x1,k+1 = f1 (k,xk)+ B(k,xk)x2,k = K1x1,k

and considering x2,k as fictitious input, one works out

x2,d,k = B−1 (k,xk)
(
K1x1,k − f1 (k,xk)

)
.

We use this signal for defining a time-varying change of coordinates

z1,k =
(

z11,k

z12,k

)
= x1,k

z2,k =
(

z21,k

z22,k

)
= x2,k −B−1 (k,xk)

(
K1x1,k − f1 (k,xk)

)

z3,k =
(

z31,k

z32,k

)
= x3,k

so that if z2,k = 0, also z1,k = 0 for K1 with eigenvalues inside the unit circle. In these
error variables the dynamics are written as follows

z1,k+1 = K1z1,k + B(k,zk)z2,k

z2,k+1 = x2,k+1−B−1 (k,xk+1)
(
K1x1,k+1− f1 (k,xk+1)

)

= f̄2 (k,zk)+
δ
σ

uk −B−1 (k,zk+1)
(
K2

1 z1,k + K1B(k,zk)z2,k − f̄1 (k,zk)
)

with f̄1 (k,zk) =
(

f̄11 (k,zk)
f̄12 (k,zk)

)
, f̄2 (k,zk) =

(
ϕ̄α ,k (zk)
ϕ̄β ,k (zk)

)
,
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f̄11 (k,zk) = z11,k + c1
√

z12,k +φr,k(x22,k cosz31,k − x21,k sinz31,k) − δ
J

CL,k −
δ
J

CL,k+1 +ωr,k −ωr,k+2, f̄12 (k,zk) = a4z12,k + a2c2

(
x2

21,k + x2
22,k

)
,

+a2c3
√

z12,k +φr,k
(
x21,k cosz31,k + x22,k sinz31,k

)
+ c2

(
x2

21,k+1 + x2
22,k+1

)
+

a4φr,k −φr,k+2,
ϕ̄α ,k (zk) = (1− γ)x21,k + δβ

√
z12,k +φr,k

(
α cosz31,k + p

(
z11,k +ωr,k

)
sinz31,k

)
,

ϕ̄β ,k (zk) = (1− γ)x22,k + δβ
√

z12,k +φr,k
(
α sinz31,k − p

(
z11,k +ωr,k

)
cosz31,k

)

B(k,zk) =
√

z12,k +φr,k

(
c1 0
0 c2

)(−sinz31,k cosz31,k
cosz31,k sinz31,k

)
.

Finally, the error dynamics reduce to

z1,k+1 = K1z1,k + B(k,zk) z2,k

z2,k+1 = f 3 (k,zk)+
δ
σ

uk (21.72)

with

f 3 (k,zk) = f̄2 (k,zk)−B−1 (k,zk+1)
(
K2

1 z1,k + K1B(k,zk) z2,k − f̄1 (k,zk)
)
.

The next step is to design the control law from the last results. The first step in
sliding mode control is to choose the surface Sk = 0, and, a smart selection is

Sk = z2,k = 0.

This surface will be zeroing as the state trajectories reach the surface, and then the
control objectives will be accomplished. The transformed system (21.72) is rede-
fined as

z1,k+1 = K1z1,k + B(k,zk)Sk (21.73)

Sk+1 = f 3 (k,zk)+
δ
σ

uk.

In order to design a control law, a discrete-time sliding mode version ( [23]), is
implemented where the equivalent ukeq is calculated from Sk+1 = 0 as

ukeq =
σ
δ

(
f 3 (k,zk)

)

and u0 is the control resources that bound the control. The stability analysis is similar
to the one presented in the above section, where the sliding mode equations are:

z1,k+1 = K1z1,k.

It is an obvious fact that the proposed control uk depends of f 3 (k,zk) in order to
eliminate old dynamics, but this function depends of control uk squared, due to
terms x2

21,k+1 + x2
22,k+1, that appears in f̄1 (k,zk), making the system in that way,
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unsolvable. To solve this problem, it is designed an observer with current measure-

ments for the new variable current modulus defined as Im,k =
√

x2
21,k + x2

22,k. It is

assumed that Im,k is constant, i.e., Im,k+1 = Im,k, then the observer is presented as the
original plant plus a tracking error

Îm,k+1 = Îm,k + geI,k

where eI,k = Im,k − Îm,k is the tracking error. Taking one step ahead

zI,k+1 = (1−g)eI,k

where 2> g> 0 for the observer error to asymptotically decay to zero, and the esti-
mation Îm,k will track the real value Im,k, avoiding in that way the control dependency
of uk squared.

The detailed stability analysis including the rotor flux observer design and simu-
lation results can be found in [5].

21.6 Induction Motor Hybrid Control

In order to obtain sampled dynamics of the system dynamics in closed form, let us
consider first the following feedback:

u = u f (t)+ epθℑvk, u f = pLσωℑ(Is +βφr) (21.74)

with u f the continuous control which makes the system finite discretizable, and vk

the new control input.

Remark 21.2. Note that u f in (21.74) and the term epθℑ must be implemented by
analog devices, while the new control vk = v(kδ ) =T , designed on the basis of the
discrete time representation of the system derived in the following, can be imple-
mented by a digital computer and a zero–order holder. The resulting controller will
be hybrid, namely it will contain discrete and continuous time terms.

With the continuous feedback (21.74) and under (H1) the following controlled dy-
namics are obtained:

.
φ = −αφ + pωℑφ +αLmIs (21.75)
.
Is = αβφ − pβωℑφ− γIs +

1
σ

u

.
ω = μIT

s ℑφ−
1
J

CL

.
θ = ω .

With the continuous feedback (21.74), considering hereinafter a change of coordi-
nates in an appropriate rotating frame,
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(
Φ = epθℑφr

I

)
=

(
epθℑφr

epθℑIs

)
, e−pθℑ =

(
cos pθ sin pθ
−sin pθ cos pθ

)

with e−pθℑ as an orthogonal matrix, under (H1) the following controlled dynamics
are now obtained:

Φ̇ = −αΦ +αLmI (21.76)
.
I = αβΦ −−γI +

1
Lσ

vk (21.77)

.
ω = μITℑΦ−1

J
CL (21.78)

.
θ = ω . (21.79)

The transformed variables Φ , I in (21.76)-(21.79) are the rotor flux and the sta-
tor current rotated according to the electrical rotor angular position pθ . Note that
equations (21.76)-(21.79) are nonlinear, but the sampled closed form is now eas-
ily obtained noting that the dynamics for Φ and I are linear, and the control vk

will be designed to be constant over the sampling period δ . Denoting Φk = Φ(kδ ),
Ik = I(kδ ), ωk =ω(kδ ) and Ck =C(kδ ), and considering as outputs to be controlled
the rotor angular velocity and the rotor flux square modulus, some calculations yield
the closed representation for the sampled dynamics of system (21.76)-(21.79)

Φk+1 = a11Φk + a12Ik + b1υk (21.80)

Ik+1 = a21Φk + a22Ik + b2υk (21.81)

ωk+1 = ωk +η1IT
k ℑΦk +(η2Φk +η3Ik)ℑυk−δ

J
Ck (21.82)

θk+1 = θk + δωk + k1IT
k ℑΦk +(k2Φk + k3Ik)ℑυk−δ 2

2J
Ck (21.83)

where a11, a12, a21, a22, b1, b2, ηi, κi, i = 1,2,3, are constants.

21.6.1 Discrete–Time Controller

The control problem is to force the rotor angular velocity ωk and the rotor flux mod-
ulus ΦT

k Φk to track some desired references ωr,k, Φr,k, ensuring at the same time
disturbance rejection. We assume that these references are bounded with bounded
increments. Moreover, also the load torque Ck is bounded by a value Cmax. Further-
more, we assume that the Ck has bounded increments. Finally, we need to ensure that
this increment vanishes when δ is zero. This can be formalized with the following
assumption.

(H2) The piece–wise load torque Ck is such that Ck+1 = Ck + ΔC(k,δ ) with, for
each integer k̄

10pt|ΔC(k̄,δ )| ≤ ΔCmaxΔ(δ ), lim
δ→0

Δ(δ ) = 0.05cm.
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The discrete time control vk in (21.74) is designed hereinafter, in order to solve the
posed control problem, following the SM approach. For, we first derive the expres-
sion of the tracking error dynamics e1,k = ωk −ωr,k, e2,k = ΦT

k Φk −Φr,k, which are
the new outputs which we want to force to zero. Using (21.80)-(21.83), the error
dynamics can be written as follows

e1,k+1 = ωk +η1IT
k ℑΦk +λT

1,kυk−δ
J

Ck −ωr,k+1 (21.84)

e2,k+1 = a2
11Φ

T
k Φk +2a11a12ΦT

k Ik +a2
12IT

k Ik +λT
2,kυk +b2

1υ
T
k υk −Φr,k+1 (21.85)

where
λ1,k =−ℑ(η2Φk +η3Ik), λ2,k = 2b1(a11Φk + a12Ik). (21.86)

It is interesting to note that λ1,k represents the vector η2Φk + η3Ik rotated π/2
clockwise.

Notice that the system (21.84)-(21.85), depends on quadratic terms of the control
signal vk since b1 > 0 for all sampling time δ > 0. This complicates the control
design procedure. In order to simplify the design of a control law, one considers as
new control

Vk =
(

Va,k

Vb,k

)
= Tkvk, Tk =

(
λ T

1,k
λ T

2,k

)
(21.87)

vk = T −1
k Vk. It can be verified that the transformation Tk is invertible for all k. With

such a control transformation, e1,k+1, e2,k+1 depend only on Va,k, Vb,k, respectively,
and equations (21.84)-(21.85) become

e1,k+1 = ωk +η1IT
k ℑΦk−δ

J
Ck −ωr,k+1 +Va,k (21.88)

e2,k+1 = akV
2

b,k + bkVb,k + ck (21.89)

where

ak =
b2

1

d2
k

λ T
1,kλ1,k ≥ 0, bk = 1− b2

1

d2
k

λ T
1,kλ2,kVa,k,

bck =
1

4b2
1

λ T
2,kλ2,k+

b2
1

d2
k

λ T
2,kλ2,kV

2
a,k −Φr,k+1.

It is worth noting that ak is zero when Φk =−η3Ik/η2.
A discrete time sliding–mode control will be designed hereinafter, to force to

zero the error dynamics. A natural choice as sliding functions are the errors e1,k,
e2,k.

Since the control objective is to design a controller for angular velocity tracking
and disturbance rejection, considering e1,k as sliding surface, one can impose that
this tracking error be zeroed in one step, namely e1,k+1 = 0. Considering (21.88),
this is achieved considering
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Va,k =−ωk −η1IT
k ℑΦk +

δ
J

Ck +ωr,k+1. (21.90)

Usually, such a control is called equivalent control, and is such that the sliding man-
ifold e1,k = 0 is rendered invariant. Analogously, we determine Vb,k in (21.89) as

Vb,k =

⎧
⎪⎪⎨
⎪⎪⎩

− bk
2ak

±
√

Δk
2ak

if ak > 0 and Δk ≥ 0

− bk
2ak

if ak > 0 and Δk < 0
− ck

2ak
if ak = 0

with Δk = b2
k −4akck,. With this choice the tracking flux error e2,k tends asymptoti-

cally to zero.
We have shown that e1,k, e2,k are forced to zero asymptotically. One should ensure

that Ik does not diverge to infinity. This aspect is correlated with the stability of what
are called the zero dynamics which, roughly speaking, are those dynamics obtained
when the output of the system is zero.

The detailed stability analysis including the rotor DT flux observer design and
simulation results can be found in [4].

21.7 Induction Motor Neural Network SM Block Control

In this section we design robust controller using discrete-time Recurrent High Order
Neural Network (RHONN) [10] and block control technique combined with DT SM
control [21].

21.7.1 Identification

To identify the motor model the following RHONN identifier is proposed:

x1,k+1 = w11,kS (ωk) (21.91)

+w12,kS (ωk)S
(
φβ ,k+1

)
iα ,k + w13S (ωk)S

(
φα ,k+1

)
iβ ,k{

x2,k+1 = w21,kS (ωk)S
(
φβ ,k

)
S
(
iα ,k

)
+ w22iβ ,k

x3,k+1 = w31,kS (ωk)S
(
φα ,k

)
S
(
iα ,k

)
+ w32iα ,k

(21.92)

{
x4,k+1 = w41,kS

(
φα ,k

)
+ w42,kS

(
φβ ,k

)
+ w43,kS

(
iα ,k

)
+ w44uα ,k

x5,k+1 = w51,kS
(
φα ,k

)
+ w52,kS

(
φβ ,k

)
+ w53,kS

(
iβ ,k

)
+ w54uβ ,k

(21.93)

where xi,k, i = 1, ...,5 is the state of the ith neuron; x1,k is the estimate of the
speed ωk; x2,k and x3,k are the estimates of the rotor fluxes φα ,k and φβ ,k, re-
spectively; x4,k and x5,k are the estimates of the stator currents iα ,k and iβ ,k, re-
spectively;; w11,k,w12,k,w13,k,w21,k,w31,k,w41,k and w51,k are the respective on-line
adapted weights. The weights w13,w22,w32,w44 and w54 are constant positive val-
ues, which are selected initially via simulations and are adjusted on real-time in
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order to reduce the identification error. These weights are called the controllability
weights [20]. Finally S(•) is defined by

S(χk) =
1

1 + exp(−βχk))
, β > 0. (21.94)

We use a neural model due to the fact that the plant parameters and external dis-
turbances (the load torque) are unknown; then, to approximate the plant complete
model with the load torque, we propose a neural identifier which reproduces the
behavior of the plant, without the identification of the plant parameters. Moreover,
we propose a neural identifier structure based on the plant model structure, and the
structure (21.91)-(21.93) uses the smallest quantity of weights needed to obtain an
adequate identification and reduces computational requirements.

For the neural identifier training we use the Extended Kalman Filtering (EKF)
algorithm described by

wi,k+1 = wi,k +ηiKi,kek, i = 1, · · · ,5 (21.95)

where
Ki,k = Pi,kHi,kMi,k (21.96)

Pi,k+1(k + 1) = Pi,k −Ki,kHT
i,kPi,k + Qi

Mi,k =
[
Ri + HT

i,kPi,kHi,k
]−1

, (21.97)

ek = (e1,k,e4,k,e5,k)T , e4,k = x1,k+1 −ωk, e5,k = x4,k+1 − iα ,k, e5,k = x5,k+1 − iβ ,k;
Pi,k ∈ R

Li×Li is the prediction error covariance matrix at step k, wi,k ∈ R
Li is the

weight (state) vector, Li is the respective number of NN weights

w1,k = (w11,k,w12,k,w13,k)T ,
w2,k = w21,k,
w3,k = w31,k,

w4,k = (w41,k,w42,k,w43,k)T ,
w4,k = (w41,k,w42,k,w43,k)T ,

ηi is a design parameter, Ki,k(k) ∈ R
Li×5 is the Kalman gain matrix, Qi ∈ R

Li×Li

is the NN associated state noise covariance matrix, Ri ∈ R
5×5 associated measure-

ment noise covariance matrix; Hi ∈ R
Li is a vector, in which each entry (Hi j) is the

derivative of one of the NN state
(
xi,k

)
, with respect to one NN weight,

(
wi j,k(k)

)
,

as follows

Hi j,k =
[
∂xi,k

∂wi j,k

]T

wi,k=ŵi,k+1

(21.98)

where i = 1, · · · ,5 and j = 1, · · ·Li. Usually Pi,k, Qi and Ri are diagonal matrices.
The matrix Pi,k has its initial value as Pi,0. It is important to remark that Hi,k, Ki,k and
Pi,k for the EFK are bounded; for a detailed explanation of this fact see [21].
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The training is performed on-line, using a series-parallel configuration. All the
NN states are initialized in a random way as well as the weights vectors. It is impor-
tant to note that the initial conditions of the NN are completely different from the
initial conditions for the plant.

21.7.2 Controller Design

The control objective is to develop speed and field amplitude tracking for the induc-
tion motor. Therefore we define the following state variables

x1
k =

[
x1,k −ωre f ,k

φk −φre f ,k

]
, x2

k =
[

xα ,k
xβ ,k

]
=

[
iα ,k
iβ ,k

]
. (21.99)

Then we have

φ1,k+1 = w2
21,kS2 (ωk)S2 (φβ ,k+1

)
+

(
w22iβ ,k

)2 +
(
w22iα ,k

)2 +
(
w32iα ,k

)2

+w2
31,kS2 (ωk)S2 (φα ,k+1

)
+ 2w21,kS (ωk)S

(
φβ ,k

)
w22iβ ,k

+2w31S (ωk)S
(
φα ,k+1

)
w32iα ,k.

Using (21.99) the system (21.91)-(21.93) can be represented as the NBC form con-
sisting of two blocks:

x1
k+1 = f1 (xk,k)+ B1

(
x1

k

)
x2,k (21.100)

x2
k+1 = f2 (xk,k)+ B2uk (21.101)

where xk=(x1
k+1,x

1
k+1), B1 ≡

[
w12,kS (ωk)S

(
φβ ,k+1

)
w13S (ωk)S

(
φα ,k+1

)
2w31w32S (ωk)S

(
φα ,k+1

)
2w21,kw22S (ωk)S

(
φβ ,k

)
]
,

B2 ≡
[

w44 0
0 w44

]
, f1 (xk,k) and f2 (xk,k) a continuos functions.

At the first step, introducing the desired dynamics for x1
k as k1x1

k , |k1| < 1, the
desired value x2

d,k for x2
k in (21.100) is chosen as

x2
d,k =

[
xαd,k

xβd,k

]
=

[
B1

(
x1

k

)]−1 [− f1 (xk,k)+ k1x1
k

]
.

At the second step, given xαd,k and xβd,k as the desired values for the stator currents
xα ,k and field xβ ,k currents, respectively, a second current error vector ε2,k is defined
as

ε2
k ≡

[
εα ,k
εβ ,k

]
=

[
xα ,k − xαd,k

xβ ,k − xβd,k

]
. (21.102)

Thus, the system (21.100)-(21.101) in the new variables x1
k , εα ,k and εα ,k is pre-

sented of the form
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{
x1

k+1 = k1x1
k + B1

(
x1

k

)
ε2(k) (21.103){

εα ,k+1 = f̃α(x1
k ,x

2
k ,k)+ w44uα ,k

εβ ,k+1 = f̃β
(
x1

k ,x
2
k ,k

)
+ w44uβ ,k(k)

(21.104)

where f̃2(·) and f̃3(·) are continuous functions of the state vector and time. Selecting
the sliding variables as s2(k) = ε2(k) and s3(k) = ε3(k), and taking into account
saturation values

∥∥uα ,k
∥∥ ≤ u0 and

∥∥uα ,k
∥∥ ≤ u0 of the voltages, respectively, the

following control is implemented:

ui,k =

{
ui,k,eq for

∥∥ui,k,eq
∥∥≤ u0

u0
ui,k,eq

‖ui,k,eq‖ for
∥∥ui,k,eq

∥∥> u0
(21.105)

with
ui,k,eq =−w−1

44 f̃i(x1
k ,x

2
k ,k), i = α,β .

The control (21.105) is able to drive the system (21.104) on the sliding manifold
ε2

k = 0 where the control errors satisfies

x1
k+1 = k1x1

k , |k1|< 1.

Thus, the control error asymptotically tends to zero.
The detailed controller scheme including stability analysis, simulation and real

time implementation results can be found in [21] and [20].
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