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Preface

The biennial ECSQARU conference is a major forum for advances in the theory
and practice of reasoning under uncertainty. Contributions are expected to come
from both researchers who are interested in advancing the technology and practi-
tioners who use uncertainty techniques in applications. The scope of ECSQARU
includes, but is not limited to, fundamental issues, representation, inference,
learning, and decision making in qualitative and numeric paradigms.

Previous ECSQARU conferences were held in Marseille (1991), Granada
(1993), Fribourg (1995), Bonn (1997), London (1999), Toulouse (2001), Aalborg
(2003), Barcelona (2005), Hammamet (2007), and Verona (2009).

The 11th European Conference on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty (ECSQARU 2011) was held in Belfast, UK, from
June 29 to July 1, 2011, with a particular focus on unifying logic and uncer-
tainty reasoning approaches for solving complex problems. ECSQARU 2011 also
featured PhD Forum Posters and the Workshop on “Uncertainty Reasoning and
Multi-agent Systems for Sensor Networks (URMASSN 2011)”.

The best paper from ECSQARU 2011, “Measuring Consistency Gain and
Information Loss in Stepwise Inconsistency Resolution” by John Grant and An-
thony Hunter, was chosen to represent ECSQARU in the Large Track of Best
Papers from Sister Conferences at IJCAI 2011.

The papers in this volume were selected from 108 submissions, after a strict
review process by the members of the Program Committee. In addition, the
volume contains three invited talks by three outstanding researchers in the field,
Didier Dubois, Dov Gabbay, and Joe Halpern.

I would like to thank all the members of the Program Committee and the
additional reviewers for their timely and valuable reviews. I would also like to
thank the members of the local Organizing Committee and the additional sup-
port team for their hard work and contribution to the success of the conference.
Finally, financial support from CSIT (Centre for Secure Information Technolo-
gies), the School of Electronics, Electrical Engineering and Computer Science at
Queen’s University Belfast, and Belfast City Council is greatly appreciated.

April 2011 Weiru Liu
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Foundations of Reasoning and Decision Making
under Uncertainty

Pseudo-polynomial Functions over Finite Distributive Lattices . . . . . . . . . 545
Miguel Couceiro and Tamás Waldhauser

A Bridge between Probability and Possibility in a Comparative
Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

Giulianella Coletti, Romano Scozzafava, and Barbara Vantaggi

Leximax Relations in Decision Making through the Dominance
Plausible Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569

Franklin Camacho and Ramón Pino Pérez
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Information Fusion and Revision
in Qualitative and Quantitative Settings

Steps Towards a Unified Framework

Didier Dubois

IRIT, CNRS and Université de Toulouse
dubois@irit.fr

Abstract. Fusion and revision are two key topics in knowledge repre-
sentation and uncertainty theories. However, various formal axiomatisa-
tions of these notions were proposed inside specific settings, like logic,
probability theory, possibility theory, kappa functions, belief functions
and imprecise probability. For instance, the revision rule in probability
theory is Jeffrey’s rule, and is characterized by two axioms. The AGM
axioms for revision are stated in the propositional logic setting. But
there is no bridge between these axiomatizations. Likewise, Dempster
rule of combination was axiomatized by Smets among others, and a log-
ical syntax-independent axiomatization for merging was independently
proposed by Koniezny and Pino-Perez, while a belief function can be
viewed as a weighted belief set. Moreover the distinction between fu-
sion and revision is not always so clear and comparing sets of postulates
for each of them can be enlightening. This paper presents a tentative
set of basic principles for revision and another set of principles for fu-
sion that could be valid regardless of whether information is represented
qualitatively or quantitatively. In short, while revision obeys a success
postulate and a minimal change principle, fusion is essentially symmet-
ric, and obeys a principle of optimism, that tries to take advantage of
all sources of information. Moreover, when two pieces of information are
consistent, revising one by the other comes down to merging them sym-
metrically. Finally, there is a principle of minimal commitment at work
in all settings, and common to the two operations.

1 Introduction

A major issue in knowledge representation and reasoning is the modeling of the
dynamics of information possessed by agents. This kind of topic has been trig-
gered by works in probability kinematics [1], and also in logic-based artificial
intelligence, starting with the AGM theory of belief revision [2], relying on pre-
vious considerations by Isaac Levi. More recently the issue of information fusion
has also received a lot of attention [3]. The history of these developments has
been somewhat shaky, with emphasis on axiomatic frameworks, but sometimes
unconvincing rationale.

In the probabilistic area, conditioning is central to model the acquisition of
new information. The prototypical revision operation in probability theory is

W. Liu (Ed.): ECSQARU 2011, LNAI 6717, pp. 1–18, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 D. Dubois

Jeffrey’s rule [4], that accepts probabilistic inputs and returns a new probability
measure. It is often viewed as an extension of conditioning.

In the logical setting, one is interested in how a set of accepted beliefs changes
when a new piece of information is received by an agent. Postulates that should
drive the evolution of a set of beliefs have been convincingly advocated. Soon
enough, it has been noticed that nothing is said in the AGM theory concerning
the way the plausibility ranking changes with the arrival of new information.
Various proposals have been made, and noticeably by Darwiche and Pearl [5] to
address this problem, thus paving the way to a study of iterated belief revision.
However, what iterated belief revision deals with and what can be a canonical
example of it are often not very clear from reading papers on this topic. More
generally the lack of prototypical scenarios for belief change has been noticed
[6,7].

A special case of belief revision is when the input information does not contra-
dict the prior information. This is called expansion in the AGM setting. Then
the change operation becomes symmetric and comes down to a fusion opera-
tion. The fusion of information is again an area where various proposals exist
independently in various settings. Moreover, it has also been extensively ad-
dressed in decision sciences where preference relations or utility functions are
aggregated, rather than epistemic states. There is an extensive and scattered
literature about fusion in probability theory [8,9], in possibility theory [10], in
the theory of evidence[11,12], in logic [3,13], etc.

There is a clear need for a general framework that could account for fusion
and revision of information, and that could cover both numerical and qualitative
frameworks, in order to better understand what these operations are relevant
for and what are the basic principles at work, beyond the particulars of the
representation settings. This paper only takes modest steps to contribute to
this research program. First, in Section 2, we question the notion of epistemic
state, insisting on the difference between singular and generic information, a
distinction that may shed light on how agents construct beliefs. Then, in Section
3, we recall the difference between combining pieces of information of the same
nature, and constructing beliefs from generic knowledge and singular evidence.
Section 4 describes general principles of information combination common to all
frameworks. Section 5 provides preliminary comments on how these principles
are at work in various settings. This paper owes much to on-going work with
Weiru Liu, Jianbing Ma and Henri Prade.

2 Epistemic States

An epistemic state is understood as the information possessed by an agent. This
term has been used in logic-based artificial intelligence to designate a simple
subset of possible worlds one of which is the true one, thus representing incom-
plete information (sometimes called an OR-set). Other authors, especially in the
belief revision camp, use this term to name a plausibility ranking of possible
worlds, or, equivalently, a deductively closed set of propositions ordered by an
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epistemic entrenchment, the latter governing AGM revision processes. We have
argued in the past [7] that the meaning of an epistemic state is not unique, and
that it is important to distinguish between two types of information:

– Generic knowledge: it collects the agent’s past experience about the world.
It consists of a confidence relation between events depicting what is likely
and what is not, based on frequency or typicality. It also often takes the form
of if-then rules tainted with exceptions (sometimes called conditional asser-
tions). The specificity of generic knowledge is that it refers to a population
of situations, as stored in the agent’s memory, not to the current world.

– Singular evidence: It collects all the information known by the agent about
the current world, that is, information on which the agent relies to make
decisions (here we do not consider the latter issue). Singular information
consists of two parts:
• Observations : This is the part of the information that comes from the

outside world, as the result of measurements, testimonies, and the like.
Of course, observations can be uncertain, or conflicting. However, such
uncertainties and conflicts must be solved prior to being exploited prop-
erly.

• Beliefs : This is the part of the information constructed by the agent him-
self, by means of generic knowledge and observations. Belief construction
proceeds by restricting the generic knowledge to the subpopulation of sit-
uations for which the current observations are valid. Beliefs are tentative
and likely to be questioned when new observations come in.

In the following, we adopt a semantic point of view in terms of possible worlds,
where a proposition is understood as an event, and represented by a subset of
possible worlds or situations. There are several reasons for this. First, it allows
for the use of all representation frameworks we consider, that is, numerical or
qualitative. Then, syntactic representations create additional problems, such as
proving that two propositions are equivalent, not related to the understanding of
the nature of belief change; syntactic representations are a matter of representa-
tion conciseness and easy computation. Moreover, most logical revision theories
are construed as syntax-independent, and it looks paradoxical to couch belief
revision axioms in a syntactic framework, while claiming syntax-independence.
Finally we claim the meaning of postulates is much clearer at the semantic level.

Let S be a set of possible situations. Propositions are denoted by capitals
A, B, ... and are subsets of S. Conjunction, disjunction and negation connectives
are denoted by set-theoretic operations, ∩,∪, (·)c. We denote by � a weak order-
ing on S representing a plausibility ranking (with � and ∼ respectively denoting
its strict and equivalence parts); it corresponds to a well-ordered partition of S,
P� = {E1, . . . Ek} [14], where Ei contains worlds that are more plausible than
those in Ej if j > i. Let Bel(�) = E1 be the proposition representing the set of
most plausible states according to �. More generally, a confidence relation is a
partial ordering > of propositions (irreflexive and transitive) in agreement with
classical deduction in the sense that [15]:
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If A ⊂ A′, B′ ⊂ B and A > B, then A′ > B′.

A > B means that A is more likely than B. An example of confidence relation
is one that stems from a plausibility ranking: A > B if and only if ∀s ∈ B, ∃s′ ∈
A, s � s′, known as a comparative possibility relation [16]. Another example is
the order induced by a probability measure.

Such orderings can be understood as generic knowledge or uncertain singular
information. In the following we consider several popular settings: propositional
logic, probability theory, possibility theory, Shafer belief functions, and imprecise
probabilities.

1. In a logical framework, S is the set of interpretations of a language. This
framework can encode observations and beliefs as propositions but cannot
account for the difference between generic knowledge and singular evidence.

2. Possibility theory [17] encompasses various possible formal settings including
Spohn’s kappa functions [14], and the representation of relative plausibility
in terms of simple weak orders on S (which is the most usual representation,
derived from the belief revision axioms in the AGM theory). Using degrees
of possibility, the generic knowledge is represented by means of a possibility
distribution π : S → L where L is a possibility scale that may range from a
finite totally ordered scale to the unit interval. In this setting, observations
usually take the form of a proposition C. Believing B in the context C is
then modelled by the fact that the most plausible worlds in C lie in B. On
the other hand, a possibility distribution can represent uncertain evidence
as well.

3. In probability theory, the generic knowledge is representing by a statistical
probability distribution on S, possibly encoded as a Bayesian network; in this
case the underlying population is usually well-defined. Observations usually
take the form of a proposition C. And the construction of beliefs comes down
to computing the conditional probability P (B|C). Uncertain observations
can be modelled attaching subjective probabilities to unique events, or simply
defining a subjective probability distribution over S. But there is no formal
difference between a subjective and a statistical probability.

4. In the theory of evidence, as presented by Shafer [11], there is no room
for statistical knowledge. The available information consists in uncertain
observations from which belief degrees are derived. Mathematically, a belief
function is defined as a random OR-set where focal sets (having positive
probability mass) stand for candidate propositions, one of which represents
the available information.

5. In the theory of imprecise probability, there are two trends. One trend con-
siders convex sets of probability functions (called credal sets) representing
ill-known generic probabilistic models. This is a mere extension of the stan-
dard probabilistic setting where the problem is to derive probability bounds
on events of interest, conditioned on the available evidence. In the subjec-
tivist view of Walley [18] lower probabilities represent degrees of belief and
more generally lower expectations of gambles represent the agent’s willing-
ness to buy them. This setting is the most general one, hence the most
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expressive. A special case is the upper and lower probability framework pro-
posed by Dempster [19], where lower probabilities coincide with Shafer’s
belief functions, but may have a statistical flavor.

It should be clear that belief functions and credal sets are a blend of set-valued
and probabilistic representations, that is, they subsume both the propositional
and the probabilistic settings. Numerical possibility measures are also a special
case of Shafer plausibility functions (the consonant random set setting).

These close links between representations of information suggest that change
operations should be studied in a broader framework than what has been studied
so far, whereby each author focuses on a favorite language.

3 Plausible Inference vs. Prioritized Combination

Being cast in a rather poorly expressive language, the AGM revision concept [2]
is arguably ambiguous. The input information consists of a single proposition
I, the prior beliefs can be represented by another proposition E; the result of
the change operation is another proposition E ∗ I. In the propositional logic
case, Katsuno and Mendelzon redefined the AGM axioms replacing belief sets
by equivalent single propositions [20]:

– R1: E ∗r I ⊆ I (Success)
– R2: If E ∩ I �= ∅ then E ∗r I = E ∩ I (Expansion)
– R3: If I �= ∅, then E ∗r I �= ∅
– R4: If E = E′ and I = I ′ then E ∗r I = E′ ∗r I ′

– R5: (E ∗r I1) ∩ I2 ⊆ E ∗r (I1 ∩ I2)
– R6: If (E ∗r I1) ∩ I2 �= ∅, then E ∗r (I1 ∩ I2) ⊆ (E ∗r I1) ∩ I2

Axiom R3 forbids to get inconsistent outcomes from consistent inputs, but we
do not consider inconsistent inputs here; and the 4th axiom is syntax-indepen-
dence, which is vacuous. The AGM axiomatic framework enforces the existence
of a confidence relation called epistemic entrenchment, that comes down to a
plausibility ranking �E on possible worlds that opaquely drives the revision
process. This ordering is determined by E and is faithful, that is, Bel(�E) = E.
Then E ∗ I gathers the most �E-plausible worlds in I. The meaning of this
procedure may depend on the way the input information and/or the plausibility
ranking is interpreted.

– Plausible inference. If �E is viewed as encoding generic knowledge, and the
input we denote by I = C collects observations on the current world, then
E ∗I = Bel(�E |C) induces the set of beliefs in the context I = C. However,
in this case, the prior belief E is the set of most plausible worlds by default,
according to the generic knowledge �E, prior to receiving I, and the latter
is a piece of singular information outlining a reference class C. In this case,
E stems from the plausibility ranking �E , and not the converse. In other
words, the notation �E is questionable. The primitive information is made
of generic knowledge � and singular observations C. What changes is the
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body of singular information, and E ∗ I depends on � and I, not on E. This
view is confirmed by Gärdenfors and Makinson[21] when they view belief
revision as another way of explaining what nonmonotonic reasoning consists
of. Note that in this operation, the plausibility ranking is left untouched,
and E ∗ I is obtained by temporarily restricting � to the current context C.

– Prioritized combination. In this case, �E is viewed as describing uncertain
evidence. The input information I is an additional piece of evidence, that is
totally sure: in other words, the agent is told that the true world does not lie
outside I, and this is taken for granted. E stands for the current set of most
plausible worlds prior to receiving I. The revision consists in changing �E

into another plausibility ranking �E∗I obtained by down-grading possible
worlds where I does not hold. The most drastic way is to let �E∗I=�E on
I, s �E∗I s′ if s ∈ I, s′ �∈ I, and s ∼E∗I s′ if s, s′ �∈ I (all non-I states become
the least plausible ones). It corresponds to conditioning in possibility theory
(see Dubois and Prade [22]).

The main difference between the two views of the AGM setting is that in the case
of plausible inference (also called prediction in statistics) the input information
and the epistemic entrenchment relation are not of the same nature. The en-
trenchment relation then does not change across plausible inference steps. Only
beliefs about the current situation are modified. In some sense, generic knowledge
is more stable than singular evidence. On the contrary in the case of prioritized
combination, the plausibility ranking and the input information are of the same
nature (here, singular1) even if the input is considered absolutely true.

In probability theory, the same ambiguity is present regarding the meaning of
conditioning. If the prior probability measure P represents generic information,
and the input I corresponds to the available singular information about the
current situation, then P (B|I) stands for the propensity of situations where I is
true to satisfy B. This conditional probability is then interpreted as the degree
of belief that B is true in the current situation, for which all that is known
is I. On the contrary suppose that P is a subjective probability representing
what is more or less probably the current world. Then the input information I
indicates that I is definitely true. So, the uncertain prior beliefs, described by
P are modified in the form of a new probability function P ′, whereby the prior
degree of belief P (B) is changed into P ′(B) = P (B|I), thus acknowledging the
fact that P ′(I) = 1.

4 Revision vs. Fusion

In the following we focus on the situation when the pieces of information to
be combined are of the same nature. In the above discussion, whether in the
Boolean or probabilistic setting, the combination process looks asymmetric. This
asymmetry is basically due to the fact that even if both are of the same nature,
the piece of information �E displays shades of uncertainty, while I is a sure fact.
1 In fact, both �E and I could be generic knowledge.
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Is such an asymmetry a basic feature? There is nothing compelling about it.
Indeed, in the AGM setting, the combination process becomes symmetric (what
is called expansion) when E and I are consistent. Viewing expansion as the
natural mode of combining two consistent pieces of information, revision is then
viewed as an asymmetric extension of the expansion to the case of inconsistent
pieces of information, whereby priority is given to the input. A more general
setting is when the input information also takes the form of a plausibility ranking
�I (or a probability measure PI). The simplest case is the following. Let �E be
the least informative plausibility ranking faithful to E, that is,

s ∼E s′, ∀s ∈ E, s′ ∈ E; s ∼E s′, ∀s ∈ Ec, s′ ∈ Ec; s �E s′, ∀s ∈ E, s′ ∈ Ec

and likewise for �I . These are the natural plausibility rankings, if nothing else
is known but I and E. When E ∩ I �= ∅, the result is the least informative
plausibility ranking faithful to I ∗ E = E ∗ I = I ∩ E due to R2. In the case of
inconsistency, E is deleted and the least informative plausibility ranking faithful
to I is kept. Namely we get the basic revision rule:

E ∗r I = I ∩E if I ∩E �= ∅ (1)
= I otherwise , (2)

Alternatively, one may consider E and I on a par, even when inconsistent. In
the latter case, the union rule is used since none of I and E is preferred. In that
case, the most elementary scheme is the basic fusion rule:

A1 ∗f A2 = A2 ∩A1 if A2 ∩A1 �= ∅ (3)
= A2 ∪A1 otherwise . (4)

denoting A1 = E, A2 = I, for the sake of symmetry.
The choice between symmetric and asymmetric extensions of expansion de-

pends on the situation we wish to model. The asymmetric combination rule
refers to the case of an agent modifying its epistemic state upon receiving new
information. There is a prior state of information and a posterior state of infor-
mation. The asymmetry is caused by the price attached by the agent to prior
beliefs he or she is not willing to give up without reason. On the other hand,
the symmetric combination of possibly inconsistent pieces of information, we
call fusion, corresponds to one agent receiving information from two (or more)
sources that play the same role, and where prior information is absent.

Revision and fusion should follow principles that remain valid across all repre-
sentation frameworks. The two principles underlying any revision operation are
Success and Minimal Change. The idea is that the input information is taken for
granted by the agent, but changes to the prior beliefs are only made insofar as
they are enforced by the input information. On the contrary, the basic principles
of the fusion operation are fairness, since both pieces of information are on a
par, and optimism in the sense that information sources should be trusted as
much as possible. This means that as many pieces of information as possible
should be retained from the sources, insofar as consistency can be maintained.
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Of course, informativeness should be immune to arbitrariness, that is, the
results of revision or fusion should be obey a minimal commitment principle
forbidding to infer more information than actually available. Likewise, we assume
only consistent pieces of information are combined (I, E �= ∅) and a consistent
result should be obtained (E ∗ I �= ∅). These requirements are not typical of
belief change, that is, they apply in general.

4.1 Elementary Revision

It is easy to formally express the above requirements in the simple setting where
all pieces of information take the form of sets. Namely, let E �= ∅ be the prior
information and I �= ∅ be the input, and ∗r stands for revision

– Success: E ∗r I ⊆ I.
– Minimal Change: E ∗r I ⊆ E if E ∩ I �= ∅.
– Minimal commitment: E ∗r I is the largest subset of possible worlds

obeying Success and Minimal Change.

Under the minimal commitment principle, it is easy to see that the revision
rule in this setting is the basic one (1). Indeed, if E ∩ I �= ∅ then Success
and Minimal Change imply E ∗r I ⊆ E ∩ I, and minimal commitment enforces
E ∗r I = E ∩ I. If E ∩ I = ∅, then Minimal Change does not apply, and then
minimal commitment enforces E ∗r I = I (there is no reason to be more specific,
for a lack of additional information). It is the AGM revision rule based on the
least informative plausibility ranking faithful to E.

It is interesting to compare the AGM axioms in the KM rendering to these
elementary revision axioms. We borrow the success postulate R1 from them.
The R2 axiom explicitly enforces expansion under consistency between E and I,
hence follows from our three axioms. The revision rule (1) satisfies the KM-AGM
axioms. Since this revision rule is enforced by our three revision axioms, we know
that our revision axioms are stronger than the KM-AGM axioms. What makes
them stronger is the minimal commitment principle, which, once omitted, leads
to revision rules that may violate R5 and R6. Since E∗r I1 ⊆ I1, (E∗r I1)∩I2 �= ∅
implies I1∩I2 �= ∅. Using a selection function, one may decide that under Success
and Minimal Change, E∗rI1 = A ⊂ I1 and E∗r(I1∩I2) = B ⊂ I1∩I2 but A∩I2 �=
B. Axioms R5-R6 just say that if a subset of the most plausible elements in I1 in
the face of the prior information E lie in I2, then this subset forms precisely the
most plausible elements in I1∩I2 in the face of the prior information E. In other
words, the selection function is based on some faithful plausibility ordering �E

attached to E. Axioms R5-R6 essentially enforce a specific uncertainty theory,
that is, possibility theory [23]. However, one may argue these two axioms are
not essential to revision.

4.2 Elementary Fusion

In the case of the fusion of pieces of information taking the form of OR-sets
A1, A2, we denote by ∗f the corresponding operator; the basic principles of sym-
metry and optimism are more conveniently expressed via the following axioms:
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– Optimism: A1∗f A2 ⊆ A1∪A2, and if A2∩A1 �= ∅, then both A1∗f A2 ⊆ A1

and A1 ∗f A2 ⊆ A2 hold.
– Fairness:

1. No Dismissal : (A1 ∗f A2) ∩A1 �= ∅, (A1 ∗f A2) ∩A2 �= ∅.
2. No Favoritism: If A2∩A1 = ∅, none of (A1 ∗f A2) ⊆ A1, (A1 ∗f A2) ⊆ A2

hold.
– Minimal commitment: A1 ∗f A2 is the largest subset of possible worlds

obeying Optimism and Fairness.

Under the minimal commitment rule it is clear that the Optimism axiom en-
forces the fusion rule (3), that neither dismisses nor favours any source. However
the two first above axioms are independent. Without the minimal commitment
principle, other results satisfy Optimism and Fairness (the result can be a single
s ∈ A2 ∩A1 if possible and any set {s2, s1} where s1 ∈ A1, s2 ∈ A2 otherwise).

Note that, under these axioms, and minimal commitment, fusion and revision
do collapse into a symmetric conjunctive combination rule (an expansion) when
the two pieces of information are consistent. The use of minimal commitment
is already at work when defining the models of a set of propositional formulas:
we consider the largest set of interpretations which satisfy all formulas. We just
continue to use it for fusion and revision in the inconsistent case.

5 Revision and Fusion across Uncertainty Theories

An important issue on this basis is to try and unify existing axiomatic frame-
works for revision and fusion of information in the various uncertainty theories.
There should be a deep consistency between revision and fusion rules, beyond the
difference in expressiveness of the various languages such as logic, probability,
possibility or belief functions. The above purely set-based framework is very ele-
mentary. In order to be expanded to more general settings, several prerequisites
are needed:

– A number of notions must be extended: we must explain what it means for
two pieces of information to be consistent (generalizing the property A1 ∩
A2 �= ∅), and what it means for a piece of information to be more informative
than another (generalizing the entailment relation ⊆). In particular, we need
to make it clear how to model vacuous information (it should be S), and to
define what is the support of a piece of information, understood as the set
of possible worlds not incompatible with it.

– We must check to what extent the basic postulates given above can be ex-
tended to other more expressive frameworks. Additional postulates may be
added to account for specific features of more complex representation set-
tings.

– In the case of the revision operation, the issue of iterated revision should be
dealt with. Note that our stance to restrict revision to pieces of information
of the same nature makes iteration possible (in contrast, we consider it makes
little sense to revise, let alone iteratively, a generic plausibility ranking by a
sequence of propositions representing singular evidence on the same case).
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– In the case of the fusion operation, the set of axioms should be extended to
n > 2 sources prior to envisaging more complex frameworks. Note that the
natural generalisation of the minimal commitment rule consists in conjunc-
tively aggregating information from maximal subsets of mutually consistent
sources, and performing the disjunction of the partial results, an idea that
dates back to Resher and Manor [24].

In the following we hint on extensions of the above framework to various theories
of uncertainty.

5.1 Revision and Fusion of Comparative Possibilities

Suppose the prior information is made of a plausibility ranking �E on S as
enforced by the AGM axioms, and the input information is likewise another
plausibility ranking �I. Let PE = {E1, . . . Ek} and PI = {I1, . . . I�} be the asso-
ciated well-ordered partitions. The iterated revision problem has been addressed
by Darwiche and Pearl [5] when the input �I reduces to a proposition, and by
Benferhat et al. [25] without this restriction.

In these approaches, plausibility orderings are not explicitly used in the pos-
tulates. Axioms basically bear on the belief sets E1 and I1 induced by abstract
epistemic states. These belief sets are considered as the visible part of the epis-
temic states. Under this assumption, the KM axioms can be reconducted as
such; but Darwiche and Pearl [5] weaken R4 using the equivalence between epis-
temic states �E=�E′ explicitly, in place of Bel(E) = Bel(E′). They complement
KM axioms with other ones dedicated to iterated revision by successive input
propositions. They then prove that the prior and posterior epistemic states can
be represented by plausibility rankings �E and �E∗rI that obey some minimal
change properties. This kind of approach may be viewed as problematic for two
reasons (apart from the questionable issue of revising a ranking by a formula):

– It uses a very weak notion of entailment between rankings: �E |= �I just
means E1 ⊆ I1. Likewise the two rankings are considered inconsistent if
they do not have have common best elements.

– Like in the AGM theory, part of the revision axioms are only used to enforce
the use of one uncertainty framework: comparative possibility theory.

One may think of more demanding notions of entailment between possibility
rankings [26]:

– Refinement: �E��I if and only if PE refines PI ;
– Specificity:�E�s�I if and only if ∀i = 1, . . . , min(k, �),∪j=1...iEj ⊆ ∪j=1...iIj

The specificity entailment is weaker than refinement but it introduces a kind of
commensurateness between the weak order relations. Likewise a more demanding
form of consistency between rankings is as follows: � is strongly consistent with
�′ if and only if �s1, s2, s1 � s2, s2 �′ s1. Then one may think of other extensions
of the basic revision framework: let �E∗rI be the posterior ranking. A strong set
of postulates is as follows:
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– Success: �E∗rI � �I.
– Minimal Change: ∀s1, s2, if s1 ∼I s2 and s1 �E s2 then s1 �E∗rI s2.
– Minimal commitment: �E∗rI is the least refined plausibility ordering sat-

isfying Success and Minimal Change.

Note that in particular, if �E and �I are strongly consistent, then the revision
rule becomes symmetric since Minimal Change enforces �E∗rI � �E as well.
Likewise, if �E is already a refinement of �I, the revision has no effect, that
is �E∗rI=�E . The above success postulate is stronger than what Darwiche &
Pearl, and others, require. Our postulates enforce a known revision rule in this
case:

– If �E and �I are strongly consistent, then s1 �E∗rI s2 if and only if s1 �E s2

or s1 �I s2, and s1 ∼E∗rI s2 otherwise.
– Else s1 �E∗rI s2 if and only if either s1 �I s2 or (s1 ∼I s2 and s1 �E s2).

It is clear that this revision rule is the lexicographic refinement of �I by �E (with
priority to the former) used by Benferhat et al. [25], hence generalizes Papini’s
drastic revision [27], and it coincides with the prioritized fusion of Maynard-Reid
and Shoham [28].

Similar considerations can be made for symmetric fusion operations. On the
one hand, most existing axiomatizations (like Konieczny and Pino-Perez [29],
Delgrande et al. [30]) in AI rely on belief sets again. On the other hand, it is
not clear how to generalize the axioms of OR-set fusion to the symmetric fusion
of plausibility rankings. Only Lehmann and Maynard-Reid [13] seem to address
this issue. Of course, so doing one has to cope with Arrow’s impossibility theorem
from voting theory [31]. However, contrary to what many authors assert, it is
not clear that the fusion of plausibility rankings is reducible to an instance of
preference aggregation, as the aim of merging knowledge looks quite different.

5.2 Revision and Fusion of Probability Measures

In probability theory, an epistemic state is a probability distribution on possible
worlds. There is a natural method for revising a prior probability PE in the
presence of new probabilistic information denoted by I = {(Ii, pi) : i = 1, ..., m},
where the Ii’s form a partition of S, and pi = PI(Ii). The coefficients pi sum
to 1 and act as constraints on the posterior probability of elements Ii of the
partition. Such an updating rule is proposed by Jeffrey in 1965 [4]. It provides
an effective means to revise a prior probability distribution PE into a posterior
PE∗rI. The input information and the prior probability are of the same nature,
with priority given to the input. This rule satisfies revision axioms as follows:

– Success: PE∗rI(Ii) = pi.
– Minimal Change: ∀Ii, ∀A, PE∗rI(A|Ii) = PE(A|Ii).

The interpretation of Minimal Change is that the revised probability measure
PE∗rI must preserve the conditional probability degree of any event A given
uncertain event Ii. Besides, according to Success, it is clear that the coefficient pi
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represents what the probability of Ii should be, and not (for instance) uncertainty
about the reliability of the input. Jeffrey’s rule of conditioning is the unique
revision method that satisfies these two properties (see, e.g.,[32]):

PE∗rI(A) =
m∑

i=1

pi ·
PE(A ∩ Ii)

PE(Ii)
. (5)

It respects the probability kinematics principle, whose objective is to minimize
change, in the sense of an informational distance between probability distribu-
tions [1]: the posterior probability PE∗rI minimizes relative entropy with respect
to the original distribution under the probabilistic constraints defined by the
input I. Note that no Minimal Commitment assumption is requested here: the
two axioms are strong enough to ensure the unicity of the rule. This is because
a probability measure conveys no incomplete information. In particular, if the
input partition contains only singletons, the revision consists of a mere substi-
tution of PE by PI. It is noticeable that the above revision axioms are clearly
numerical counterparts of the strong ones proposed in the previous section for
plausibility orderings. Moreover the lexicographic change rule laid bare is an
ordinal counterpart to Jeffrey’s revision: the posterior plausibility ranking is the
same as the input ordering on the well-ordered partition defined by the latter,
and the prior ranking is preserved inside the partition elements.

There is a large literature on the fusion of probability measures, split in two
schools. Under the Bayesian approach [9], the fusion process is in fact a combined
revision/fusion process due to the presence of a prior probability. When parallel
fusion is taken for granted (see for instance [8]), the result is often taken as a
weighted average of original probabilities. A probability distribution is arguably
the full-fledged opposite to an OR-set: it cannot represent incomplete knowl-
edge faithfully. It is understood as a weighted collection of conflicting singletons.
Contrary to the basic fusion of OR-sets that comes down to a conjunction or a
disjunction, there is no such connectives in probability theory. Only the setting
of evidence theory can shed light on what could be a conjunction or a disjunction
of probability distributions.

5.3 Revision and Fusion of Possibility Distributions

Possibility distributions π map the set S to a plausibility scale L. This scale can
be numerical or qualitative. Representations of epistemic states by possibility
distributions do not have the same expressive power. In fact we can distinguish
several representation settings according to the expressiveness of the scale used:

1. The qualitative finite setting (QUALFI for short) with possibility degrees in
a finite totally ordered scale : L = {α0 = 1 > α1 > · · · > αm−1 > 0}. This
setting is used in possibilistic logic [33].

2. The denumerable setting (DENUM for short), using a scale L = {α0 = 1 >
α1 > · · · > αi > . . . 0}, for some α ∈ (0, 1)2. This scale is quite expressive

2 As usual αi stands for the ith power of α.
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as it is equipped with semi-group operations min, max, product, and also
division. This is isomorphic to the use of integers in so-called κ-functions by
Spohn [14].

3. The dense ordinal setting (DORD for short) using L = [0, 1], seen as an
ordinal scale. In this case, the possibility distribution π is defined up to any
monotone increasing transformation f : [0, 1] → [0, 1], f(0) = 0, f(1) = 1.
This setting is also used in possibilistic logic [33].

4. The dense absolute setting (DABS for short) where L = [0, 1], seen as a
genuine numerical scale equipped with product. In this case, a possibility
measure can be viewed as special case of a Shafer [11] plausibility function,
actually a consonant plausibility function, and 1 − π a potential surprise
function in the sense of Shackle [34].

Revision rules in possibility theory look like Jeffrey’s rule, and representation
results continue to hold for the most part [35]. Two different but similar types of
conditioning, in agreement with this conditional ordering and instrumental for
revision purposes, have been defined in possibility theory. Let C be the condi-
tioning event such that Π(C) = maxs∈C π(s) > 0:

– In the ordinal setting, if s ∈ C, π(s |m C) = 1 if π(s) = Π(C) and π(s) if
π(s) < Π(C) (and of course, 0 if s �∈ C). This is the definition of minimum-
based conditioning. It can be defined in any ordinal scale especially the
QUALFI and DORD environments.

– In numerical settings such as DENUM or DABS, we can define π(s |p C) =
π(s)
Π(C) and 0 if s �∈ C. This is the definition of product-based conditioning,
which is also a special case of Dempster rule of conditioning restricted to con-
sonant belief functions [11]. In the DENUM setting, it also captures Spohn
[14] conditioning of κ-functions [36].

These two definitions of conditioning satisfy an equation of the form

Π(A ∩C) = Π(A |⊗ C)⊗Π(C),

where ⊗ is min (|⊗=|m) or the product (|⊗=|p) respectively, which is similar to
Bayesian conditioning. Besides, when Π(C) = 0, the above conditioning rules
do not really apply, and we can then decide to replace π by 1C . Note that these
conditionings extend the basic revision rule for sets : the success postulate con-
sists in noticing that the support π(· |⊗ C) lies in C, the minimal change is
absolute for the min-based conditioning (possibility degrees remain the same in-
side C, but for the largest ones) and relative for the product-based conditioning.
Moreover when Π(C) = 1 (consistency with the input), the conditioning comes
down to the fusion rule [22]: π(· |⊗ C) = min(π(·), 1C(·)).

More generally the input information can be a possibility distribution πI.
We can model it by I = {(Ii, λi) i = 1, ..., m}, where {I1, . . . , Im} is the well-
ordered partition induced by πI and λi = ΠI(Ii). So, maxi=1,...,m λi = 1, and
λ1 > · · · > λm. Therefore, revising a prior possibility distribution πE with an
input I can be achieved using the following Jeffrey-like revision [36]:

∀(Ii, λi) ∈ I, ∀s |= Ii, πE∗rI(s |⊗ I) = λi ⊗ πE(s |⊗ Ii) (6)
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where ⊗ is either min or the product, depending on whether conditioning is
based on the minimum or the product operator, respectively. When ⊗ = product
(resp. min) the possibilistic revision will be simply called product-based (resp.
minimum-based) conditioning with partial epistemic states. These two natural
ways of defining possibilistic revision based on Jeffrey’s rule naturally extend
the two forms of conditioning that exist in possibility theory. The Jeffrey-like
revision rule (6) satisfies the following properties [35] in agreement with the
elementary revision setting.

A1 (Consistency): πE∗rI should be normalized.
A2 (Priority to Input): ∀i = 1, ..., m, ΠE∗rI(Ii) = λi.
A3 (Faithfulness): ∀s1, s2 |= Ii if πE(s1) ≥ πE(s2) then πE∗rI(s1) ≥ πE∗rI(s2).
A4 (Inertia): ∀i = 1, ..., m, if Π(Ii) = λi then ∀s |= Ii : πE∗rI(s) = πE(s).

The two last axioms express minimal change. Note that like for the probabilis-
tic Jeffrey’s rule, if I = {(S, 1)} (ignorance), the revision preserves the prior
epistemic state. We retrieve expansion-like operations in specific conditions:

– When ⊗ = min we get πE∗rI(s) = min(πI(s), πE(s)) if and only if ΠI(Ii) ≥
λi, ∀i, which says that the coarsening of πE on the input partition is less
informed than the input.

– When ⊗ = ·, in the product case, we get πE∗rI(s) = πI(s) ·πE(s), if and only
if ΠE(Ii) = 1, ∀i, which says that the coarsening of πE on the input partition
is vacuous.

The axiomatisation of possibilistic fusion by means of optimism and fairness
axioms is a question under study.

5.4 Belief Functions

In belief function theory, a mass function is represented as a “random” set, that
is, a probability distribution mE on the power set 2S \ {∅}. The mass function
mE models an ill-known epistemic state, and mE(E) represents the subjective
probability that the correct epistemic state is E. The probability measure P (A)
is replaced by a pair (Cr(A), P l(A)), where Cr(A) =

∑
E⊆A mE(E) represents

the degree of certainty of A understood as the probability of proving A from
the ill-known epistemic state E; Pl(A) =

∑
E∩A 
=∅ mE(E) represents the degree

of plausibility of A understood as the probability that A is not inconsistent
with the ill-known epistemic state E. The modal duality between implication
and logical consistency is retrieved as Cr(A) = 1 − Pl(Ac). This approach en-
compasses probability and possibility measures. The latter are retrieved if the
set of focal elements forms a nested sequence. In this so-called consonant case,
the contour function Pl({s}) =

∑
s∈E mE(E) is a possibility distribution and

Pl(A) = maxs∈A Pl({s}). Another important concept in evidence theory is the
one of specialisation ordering, that generalizes inclusion and possibilistic speci-
ficity to mass functions. The s-ordering m �s m′ holds iff there exists a square
matrix Σ with general term σ(A, B) ∈ [0, 1], A, B ∈ 2S verifying
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A⊆S σ(A, B) = 1, ∀B ⊆ S, where σ(A, B) > 0 ⇒ A ⊆ B, A, B ⊆ S,

such that m(A) =
∑

B⊆S σ(A, B)m′(B), ∀A ⊆ S. The term σ(A, B) may be seen
as the proportion of the mass m′(B) that flows down to its subset A.

Expansion and fusion. The use of the mass function makes it easy to gen-
eralize basic fusion and revision rules. Suppose new information comes in the
form of another proposition I that is surely true. This is modelled by a mass
function mI such that mI(I) = 1. Conditioning reassigns each mass mE(E) to
the set E ∩ I, thus getting mE(E|uI) =

∑
B:I∩B=E mE(B). It corresponds to an

expansion, but m(∅|uI) > 0 is possible. To recover a standard mass function, a
normalisation step is done (the so-called Dempster rule of conditioning):

mE(E|I) =
∑

B:I∩B=E mE(B)
Pl(I)

so that Cr(I|I) = 1, recovering the success postulate. It is clear that when
I ∩ E �= ∅, ∀E, mE(E) > 0, then mE(·|uI) = mE(·|I) �s mE, thus generalizing
the Minimal Change axiom of the basic revision rule.

The apparent dissymmetry of mE(·|I) is due to the fact that mI is a sure fact I
while the epistemic state is uncertain. Moreover, when I∩E = ∅, ∀E, mE(E) > 0,
the conditioning is undefined. To make it coherent with the basic revision rule
one must complement it by a Success postulate mE(·|I) = mI , in this case.

The unnormalized conditioning |u symmetrically generalizes to the case of an
input mass mI as mu

E∗f I(E) =
∑

E=F∩G mE(F )mI(G). It is Smets’ conjunctive
rule, which again may leave a positive mass mu

E∗f I(∅) on the empty set. mu
E∗f I

is the result of an expansion in the sense that mu
E∗f I �s mE and mu

E∗f I �s mI
hold, but it is not the least committed one because there is a reinforcement effect
between the two mass functions, due to an independence asumption, that cannot
be expressed using pure propositional information. A unique least committed
expansion may fail to exist [37], except when both mass functions are consonant,
in which case the least committed expansion (in the sense of the inequality
between contour functions) is given by the minimum rule of possibility theory..

Dempster conditioning is extended symmetrically into an associative combi-
nation rule called Dempster rule of combination merging two mass functions m1

and m2 into m = m1 ⊕m2 such that:

∀E �= ∅, mD(E) =
∑

E=F∩G m1(F )m2(G)∑
∅
=F∩G m1(F )m2(G)

(7)

but the renormalisation term prevents it from being an expansion (neither mD �s

mE nor mD �s mI hold generally). And this scheme is undefined under total
conflict. A mass function fusion rule that directly extends the basic fusion rule
was proposed by Dubois and Prade [38] as follows: ∀E �= ∅,

mf (E) =
∑

F,G:E=F∩G

m1(F )m2(G) +
∑

F,G:E=F∪G,F∩G=∅
m1(F )m2(G) (8)
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It is the application of the basic fusion rule to each pair of focal sets, and it
coincides with Dempster’s rule of combination and the conjunctive rule if and
only if the two mass functions are strongly consistent, that is, ∀F, m1(F ) >
0, ∀G, m2(G) > 0, F ∩ G �= ∅. This fusion rule satisfies the two postulates of
optimism and fairness of the basic fusion rule (3), and the minimal commitment
axiom is here replaced by a more demanding independence condition.

Revision. Non-symmetric extensions of Dempster conditioning that also gen-
eralize Jeffrey’s rule were proposed by Ichihashi and Tanaka [39] and Smets [40].
Smets’ proposal presupposes an input mI defined on a partition of S, while the
former authors considered general inputs. The idea of this revision rule is as
follows: for each input focal subset I ∈ FI, the mass mI is shared among focal
sets E ∈ FE of the prior mE that have a non empty intersection with I, pro-
portionally to mE(E), and each such share bears on I ∩ E. This scheme does
not apply if ∃I ∈ FI such that I ∩ E = ∅, ∀E ∈ FE. This Jeffrey-like rule has
been extended to encompass the basic revision rule as a special case as well, by
allocating mass mI(I) to subset I in the posterior mass mE∗rI, when the original
rule does not apply. This asymmetric Dempster-Jeffrey revision rule, recently
studied by Ma et al. [41] in an extensive way, reads formally:

(mE∗rI)(C) =
∑

E,I:E∩I=C,PlE(I)>0

mE(E)mI(I)
PlE(I)

+ 1{PlE(C)=0}mI(C), (9)

where 1{PlE(C)=0} = 1 if PlE(C) = 0 and 0 otherwise. By construction, the above
revision rule and the fusion rule (8) and Smets conjunctive rule all coincide with
Dempster’s rule of combination when the input is strongly consistent with the
prior mass function. They reduce to a mere expansion without renormalization.
This does for the Minimal Change postulate. A restricted form of Jeffrey rule
style Minimal Change principle still holds for mE∗rI:

If I ∈ FI is such that ∀A ∈ FE, either A ⊆ I or A ⊆ Ic, and moreover
∀F �= I ∈ FI, F ∩ I = ∅, then ∀A ⊆ I, mE∗rI(A|I) = mE(A|I)

Moreover, mE∗rI �s mI (success postulate) does hold. So, revision and fusion
rules in belief function theory rely on the postulates akin to the ones in the
Boolean and probabilistic settings.

6 Conclusion

This paper is a preliminary attempt at organizing the literature on belief revi-
sion and fusion regardless of the chosen representation setting, starting from the
assumption that basic principles independently put forward in logical and nu-
merical settings on similar notions must have some relationship with one another.
It is more a program of future research than a compendium of results. It is also
very partial in its coverage, and important issues or landmark contributions have
only been mentioned, and some omitted. Nevertheless, some core principles for
revision and fusion are laid bare, assuming, like in the AGM theory, that in the
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case when pieces of information to be combined are consistent with each other,
both operations come down to expansion, a symmetric operation that increases
information content. Starting with the most elementary (set-theoretic) setting,
and provisionally doing away with syntactic issues specific to logical languages,
we have discussed existing revision and fusion rules in more elaborated repre-
sentation frameworks, especially in the ordinal case, the probabilistic setting,
possibility and evidence theories. Much work still needs to be done for sketching
a coherent map of revision and fusion rules according to their axiomatic systems
in different representation frameworks, showing their fundamental agreement
and understanding their discrepancies.
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Abstract. This paper provides equational semantics for Dung’s argumentation
networks. The network nodes get numerical values in [0,1], and are supposed
to satisfy certain equations. The solutions to these equations correspond to the
“extensions” of the network.

This approach is very general and includes the Caminada labelling as a special
case, as well as many other so-called network extensions, support systems, higher
level attacks, Boolean networks, dependence on time, etc, etc.

The equational approach has its conceptual roots in the 19th century following
the algebraic equational approach to logic by George Boole, Louis Couturat and
Ernst Schroeder.

1 Introduction

This paper is a short version of [11], which expands (as promised) on our equational
ideas introduced in pages 246–251 of [9]. The Equational approach has its conceptual
roots in the 19th century following the algebraic equational approach to logic by George
Boole [2], Louis Couturat [4] and Ernst Schroeder [13].

The equational algebraic approach was historically followed, in the first half of the
20th century by the Logical Truth (Tautologies) approach supported by giants such as
G. Frege, D. Hilbert, B. Russell and L. Wittgenstein. In the second half of the twentieth
Century the new current approach has emerged, which was to study logic through it
consequence relations, as developed by A. Tarski, G. Gentzen, D. Scott and (for non-
monotonic logic) D. Gabbay.

1.1 Aims of This Paper

We have several good reasons for writing [11], the full paper.

1. To provide a general computational framework for Dung’s argumentation networks;
a framework in which the logical aspects, computational aspects and the concep-
tual aspects involved in Dung’s original proposal can be isolated, highlighted and
analysed, and thus paving the way for orderly responsible generalisations.

The logical aspects involve the question of what is the logical content of an
argumentation network and what inferences we can draw from it, see [8]. The com-
putational aspects have to do with viewing the abstract argumentation networks

W. Liu (Ed.): ECSQARU 2011, LNAI 6717, pp. 19–35, 2011.
c� Springer-Verlag Berlin Heidelberg 2011
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as directed graphs or as finite models with binary relations on them and various
algorithms for extracting subsets of such graphs or models. See for example our
paper [12] on annotation theories. The conceptual aspect is the reason behind the
computation, involving concepts such as admissibility and a variety of extensions.

At present Dung’s networks are generalised in chaotic and incompatible ways by
many capable researchers. Unfortunately, we have no general meta-level approach
which the community can use for guidance and comparison.

2. To generalise Dung’s argumentation networks in a natural way and connect and
compare it with other networks communities, such as neural nets, Bayesian nets,
biological–ecological nets, logical labelled deductive nets and more.

These networks have a di�erent conceptual base but they look like abstract ar-
gumentation networks, i.e. they are directed graphs. We manipulate the the graphs
di�erently because they come from di�erent applications. So the question to ask is
whether we can we find common grounds (such as an equational approach to such
graphs) which will bring the applications together at least on the formal mathemat-
ical side?

3. To introduce in a natural way various meta operations on networks such as dis-
tributed networks (modal logic), time dependence and fibring which exist in other
types of networks and logics.

4. To connect with pure mathematics, numerical analysis and computational algebra.
5. To show the argumentation community the extent of our own contributions to this

area and the rationale and priority of these contributions.1

Dung’s argumentation networks (see [6]) have the form (S �RA) where S is a set of argu-
ments, which for the current purposes we assume to be finite, and RA is a binary attack
relation on S . We are interested in subsets E of S of arguments which are admissible,
that is self defending and conflict free, namely:

1. E is conflict free, namely for no x� y in E do we have that xRAy.
2. E defends each of its elements: Whenever for some x, we have xRAy and y is in E,

there is some z in E defending y, i.e. we have zRAy. (E is self-defending.)
3. E is complete if E contains all the elements it defends.

The smallest such E is called the grounded extension, a maximal E (there may be several
di�erent such maximal sets) is called a preferred extension, and if we are lucky, we may
also have a stable extension E, namely one which attacks anything not on it.

See [5; 12] for surveys.
Such extensions are preceived as indicating coherent logical positions which can

defend themselves against attacks.
We make use of the Caminada labelling functions � : S �� �in, out, undecided�. �

satisfies the following condition

1 The argumentation area has undergone phenomenal expansion, and many researchers are not
aware of the full extent of research done in the area, resulting in a poor record in crediting and
quoting each others’ work.
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(C1) If �(a) � in and aRAb then �(b) � out.
(C2) If for all x� (xRAb � �(x) � out) then �(b) � in. (Note that this includes the

case that b has no attackers.)
(C3) If �x(xRAb � �(x) � 1)] and [�y(yRAb and �(y) � undecided)] then �(b) �

undecided.

Every such � gives a complete extension E� � �x��(x) � in�, and vice versa. See [5].

1.2 Equational Examples

This subsection is intended to motivate the formal equation section, Section 2. We give
here several examples of the equational approach.

Let (S �RA) be a Dung network. So RA � S 2 is the attack relation. We are looking for
a function f : S �� [0� 1] assigning to each a 	 S a value of 0 
 f(a) 
 1 such that the
following holds.

1. (S �RA� f) satisfies the following equations for some family of functions �ha�� a 	 S :
(a) If a is not attacked (i.e. ��x(xRAa)) then f(a) � 1.
(b) If x1� � � � � xn are all the attackers of a (i.e.

�n
i�1 xiRAa��y(yRAa � �n

i�1 y � xi))
then we have that f(a) � ha(f(x1)� � � � � f(xn)).

Let us take, for example the same ha � h for all a and let

h(f(x1)� � � � � f(xn)) �
n�

i�1

(1  f(xi))

The above equation we shall call Eqinverse. We shall define other possible equations
later on.
Thus we get
Eqinverse for the function f:

f(a) �
n�

i�1

(1  f(xi))�

2. For any Caminada labelling � of (S �RA), there exists an (S �RA� f) such that

Ef �

���������������

If �(a) � in then f(a) � 1
If �(a) � out then f(a) � 0
If �(a) � undecided then don’t care what f(a) is
provided it satisfies the equations�

Condition (1) above reads �(a) � in as f(a) � 1 and �(a) � out as f(a) � 0.
Therefore the equation

f(a) �
n�

i�1

(1  f(xi))

ensures that:

If one of xi (xi are the attackers of a) is in then a is out.
If all the attackers are out then a is in.
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The question is what happens with the undecided cases. Here we have condition (2).
Any Dung extension can have a corresponding function f which agrees with the “in”

and “out”, though may be also more specific about the undecided.
So if the Dung extension says I don’t know, the function f can say whatever it wants,

provided it satisfies the equations.
Note that we can have a di�erent function h. Time to give a formal definition.

Definition 1 (Possible equational systems). Let (S �RA) be a networks and let a be a
node and let x1� � � � � xn be all of its attackers.

We list below several possible equational systems, we write Eq(f) to mean the equa-
tional system Eq applied to f:

1. Eqinverse(f)
f(a) �

�

i

(1  f(xi))

2. Eqgeometrical(f)

f(a) � [
�

i

(1  f(xi))]�[
�

i

(1  f(xi)) �
�

i

xi]�

We call this equation Eqgeometrical because it is connected to the projective geometry
Cross Ratio, see our 2005 paper [1].

3. Eqmax(f)

f(a) � 1  max(f(xi))�

4. Eqsuspect(f)

We shall see the di�erence in the examples. In fact we shall see that this new function
gives exactly the Caminada labelling.

Let us further introduce a fourth system of equations which we call Eqsuspect(f):

ha(f(x1)� � � � � f(xn)) �
�

i

(1  f(xi))� if �aRAa holds

and
ha(f(x1)� � � � � f(xn)) � f(a)

�

i

(1  f(xi))� if aRAa holds�

Example 1. Let us do an example using all four options for equations, namely
Eqgeometrical� Eqinverse� Eqmax and Eqsuspect.

Consider Figure 1. We are looking for f solving the equations. Let f(a) � �� f(b) �
�� f(c) � �.

I We use Eqinverse:

The equations are

1. � � (1  �)(1  �)
2. � � (1  �)(1  �)
3. � � 1  �
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c

a

b

Fig. 1.

There are programs like Maple which can solve the equations of this sort and give
all the solutions. We used one and got

� � 1 
�

2
2

� �
�

2  1
� � 2 

�
2

The interest in this case is that we are getting all kinds of values which shows that
these equations are sensitive to the nature of the loops involved!

II. We use Eqmax:

The equations are

1. � � 1  max(�� �)
2. � � 1  max(�� �)
3. � � 1  �

The only solution in this case is � � � � � � 1
2 .

III. We use Eqsuspect:

The equations are

1. � � �(1  �) � (1  �)
2. � � �(1  �)(1  �)
3. � � 1  �.

The solution is � � 0� � � 0� � � 1.

IV. We use Eqgeometrical.
The equations are:

1. � �
(1��)(1��)

(1��)(1��)���

2. � �
(1��)(1��)

(1��)(1��)���
3. � � 1  �.
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The only solution is � � � � � � 1
2 .:

Example 2 (Comparing Eqmax and Eqinverse). We shall show that these two equational
systems may not yield the same extensions. the network is described in Figure 2.

Extensions according to Eqmax.
Let us compute the equations according to Eqmax and their possible solutions.

The equations are (we write “x” instead of f(x)):

1. a � 1  b
2. b � 1  max(a� b)
3. c � 1  max(b� e)
4. d � 1  c
5. e � 1  d.

e

cba

d

Fig. 2.

We get two extensions

1. �a�� (a � 1� b � 0� c � d � e � 1
2 )

2. �� (a � 1
2 � b  1

2 � c � d � e � 1
2 )

Compare this result with Theorem 2 below.

We now deal with Figure 2 using Eqinverse. The equations are:

1. a � 1  b
2. b � (1  b)(1  a)
3. c � (1  b)(1  e)
4. d � 1  c
5. e � 1  d.

We can have only one extension

�a�� (a � 1� b � 0� c � d � e � 1
2 )�
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2 Formal Theory of the Equational Approach to Argumentation
Networks

In this section we formally develop our equational approach. Conceptually the nodes
and the Equations attached to them is the network and the solutions to the equations are
the complete extensions, as we have seen in the examples of Section 1.

Definition 2 (Real equational networks)

1. An argumentation base is a pair (S �RA) where S � � is a finite set and RA � S 2.
2. A real equation function in k variables �x1� � � � � xk� over the real interval [0� 1] is a

continuous function h : [0� 1]k �� [0� 1] such that
(a) h(0� � � � � 0) � 1
(b) h(x1� � � � � 1� � � � � xk) � 0
Sometimes we also have condition (c) below, as in ordinary Dung networks, but not
always.
(c) h(x1� � � � � xk) � h(y1� � � � � yk) where �y j� � �xi� are premutations of each other.

3. An equational argumentation network over [0� 1] has the form (S �RA� ha), a 	 S
where
(a) (S �RA) is a base
(b) For each a 	 S � ha is a real equation function.
(c) If ��y(yRAa) then ha � 1.

4. An extension is a function f from S into [0� 1] such that the following holds:
– f(a) � 1 if ��y(yRaa)
– If �x1� � � � � xk� are all the elements in S such that xiRAa, then ha is a k variable

function and f(a) � ha(f(x1)� � � � � f(xk)).

Theorem 1 (Existence theorem). Let (S �RA� ha)� a 	 S be a network as in Definition
2. Then there exists an extension function f satisfying (4) of Definition 2.

Proof. Let n be the number of elements of S . For each a 	 S consider ha as a continuous
function from [0� 1]S �� [0� 1]. Let h be the continuous function from [0� 1]S into [0� 1]S

defined component wise by h(�1� � � � � �n) � (ha1 (�1� � � � � �n)� � � � � han (�1� � � � � �n)).
This is a continuous function on a compact cube of n dimensional space and has

therefore, by Brouwer’s fixed point theorem, a fixed point (x1� � � � � xn) � h(x1� � � � � xn).
Let f be defined by f(ai) � xi. Then we have that for each a 	 S

f(a) � ha(f(a1)� � � � � f(ak))

where ai are all the points in S attacking a.

Remark 1. For Brouwer’s fixed point theorem see Wikipedia.2

Lemma 1. Let (S �RA) be a Dung argumentation network. Let � : S ��
�in, out, undecided� be a legitimate Caminada labelling, yielding an extension E�. Con-
sider the functions ha� a 	 S as follows:

2 See ������������
�������������
���������������������������� and Sobolev, V.
I., “Brouwer theorem”, in Hazewinkel, Michiel, “Encyclopaedia of Mathematics, Springer,
2001.

http://en.wikipedia.org/wiki/Brouwer_fixed_point_theorem
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1. ha � 0 if �(a) � out
2. ha � 1 if �(a) � in.
3. ha arbitrary real equation function, otherwise.

Then there exists, by Theorem 1 an extension function f such that for all a 	 S

f(a) � ha(f(x1)� � � � � f(xk))�

where �xi� are all the nodes attacking a.

Note that we have argued in these examples that we get a good refinement of the unde-
cided allocations.

To get exactly the Caminada labelling, we use the next theorem, Theorem 2.

Theorem 2 (Caminada labelling functions and Eqmax). Consider the function

hmax(x1� � � � � xn) � 1  max(x1� � � � � xn)�

This function is continuous in [0� 1]n �� [0� 1] and therefore falls under Definition 2.

1. Let (S �RA� hmax) be an equational network with hmax and let f be an extension, as
in item 4 of Definition 2. Define a labelling �f dependent on f as follows

�f(a) �

���������

in if f(a) � 1
out if f(a) � 0
undecided if 0 	 f(a) 	 1

Then �f is a proper Caminada extension of (S �RA).
2. Let � be a Caminada extension for (S �RA). Let f� be the real number function

defined as follows

f�(a) �

���������

1 if �(a) � in
0 if �(a) � out
1
2 if �(a) � undecided�

Then f� is a proper equational extension for (S �RA� hmax), i.e. f� solves the equa-
tions f�(a) � 1  max(f�(x1)� � � � � f�(xn)) where xi are all the attackers of a.

Proof.

1. We show that �f satisfies the Caminada conditions (C1)–(C3).
Case C1 Assume x1 attacks a and �f(x1) � in. This means that f(x1) � 1. Let
x2� � � � � xn be the other attackers of a. Then f(a) � 1  max(f(x1)� � � � � f(xn)) and
hence f(a) � 0 and hence �f(a) � out.
Caes C2 Assume a has no attackers then f(a) � 1 and �f(a) � in.
Otherwise let as before x1� � � � � xn be all the attackers of a, and assume �f(xi) � out,
for all i. This means f(xi) � 0 for all i. Hence max(f(xi)) � 0 and hence f(a) � 1
and hence �f(a) � in.
Case C3 Assume �f(xi) � out or undecided, with say �f(x1) at least is undecided.
This means that f(xi) 	 1 for all i and for at least x1 we have f(x1) 
 0. This means
that 0 	 max(f(xi) 	 1.
Hence 0 	 1  max(f(xi) 	 1. Hence 0 	 f(a) 	 1. Hence �f(a) � undecided.
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2. Let � be a proper Caminada extension. We show that f� solves the equations with
h.

(a) If a has no attackers then �(a) � in and f�(a) � 1.
(b) Let x1� � � � � xn be all attackers of a.

i. If for some i� xi � in then f�(xi) � 1.
Also in this case �(a) � 0 and so f�(a) � 0.
But max(f(xi)) � 1 and hence indeed f�(a) � 1  max(f(xi)).

ii. If all �(xi) � out then �(a) � in. So f�(a) � 1 and f�(xi) � 0. Thus
max(f�(xi)) � 0. So indeed f�(a) � 1  max(f�(xi)).

(c) If all �(xi) are either out or undecided with at least �(x1) � undecided then
�(a) � undecided and so all f�(xi) are either 0 or 1

2 with at least f�(x1) � 1
2 , and

f�(a) � 1
2 .

Hence max(f(xi)) � 1
2 and indeed f�(a) � 1  max(f�(xi)).

Remark 2 (Caminada labelling and Eqinverse). Theorem 2 does not hold for Eqinverse.
This follows from Example 2.

Summary 3 (Advantages of the Equational Approach). Time to list the advantages
of our approach, see also Remark 3 below:

First let us highlight the fact that given a traditional argumentation network with
attacks only, we use equations as a conceptual framework. We no longer talk about
concepts like defense, acceptability, admissible extensions, etc. etc., but talk instead
about solutions to the equations.

Therefore conceptually we have

– an extension is a solution to the equations and di�erent extensions (grounded, pre-
ferred, stable, semi-stable, etc.) are characterised by further equations on these
solutions functions using say Lagrange Multipliers see Section 6 below.

Within this framework we note the following:

1. To find all possible extensions we solve equations. We feed the equations into ex-
isting well known mathematical programs such as MAPLE or MATLAB or NSolve
and get the solutions.

There are many papers which calculated computational complexity of finding
various extensions, when we reduce the problem to that of solving equations in
MAPLE or MATLAB or NSolve, complexity is not reduced, it can only increase.
What do we gain then?

– A new uniform framework, not only for argumentation networks, but also for
other types, Ecological, flow, etc., etc.

– Possibility of finding di�erent heuristics for equations which will work faster
for most cases, giving an advantage over non-equational algorithms

– Ordinary people such as lawyers etc., to the extent that they use argumentation
at all and are not averse to formal logic, they may find that it is psychologically
easier to plug the problem into the computer, go and make a cup of tea and then
check the results.
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Furthermore, if we insist on certain arguments being in or out, we can experimen-
tally feed this into the equations and test the e�ect on other arguments. MATLAB
itself does not generate all the solutions automatically but requires initial input,
which is an advantage if we have a special set of arguments in mind.

For example the question of whether a set of arguments belongs to some exten-
sion (being credulous) of a certain type or whether the set belongs to all extensions
of a certain type (being sceptical) can very naturally be handled in the equational
framework.

To generate all extensions we need to keep plugging initial conditions into MAT-
LAB, i.e., plug in all possible candidates for extensions (this is exponential in the
number of nodes but we show in the full paper [11] that any Boolean set of functions
can be embedded in argumentation networks, and so the complexity is exponential
anyway).

Another possibility is to use NSolve which does generate solutions, see �������
������	
���������
�����������
����������������.

Another disadvantage of this is that we might get approximate solutions. So if
we get x � 0�999 we ask is this for real or is the solution supposed to be x � 1?

On the other hand an advantage of using such programs is that it makes it easy
to incorporate argumentations feature into other larger AI programs, as almost
anything allows for solving equations.

2. We have a framework for introducing support discussed in the full paper [11].

3 Numerical Calculations

This section deals with numerical and computational aspects of our equational models.
We begin with options for calculating extensions in ordinary Dung networks and

their comparison with Caminada labelling. Our embarkation point is a table from Cam-
inada and Gabbay [5].

See Table 1.
We now write equations whose solutions give the correct extensions. We assume a

set of equations Eq which is sound for Dung semantics, such as o�ered in Definition 1.
Our network is (S �RA).

Table 1. Argument labellings and Dung-style semantics

restriction Dung-style linked by def. and
complete labellings semantics th. of paper [5]

no restrictions complete semantics Def. 5 and Th. 1
empty ���� stable semantics Def. 8 and Th. 5
maximal �� preferred semantics Def. 10 and Th. 7

maximal �� preferred semantics Def. 10 and Th. 7
maximal ���� grounded semantics Def. 9 and Th. 6

minimal �� grounded semantics Def. 9 and Th. 6
minimal �� grounded semantics Def. 9 and Th. 6

minimal ���� semi-stable semantics Def. 11 and Th. 8

http://reference.wolfram.com/mathematica/ref/NSolve.html
http://reference.wolfram.com/mathematica/ref/NSolve.html
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Case complete extensions
Solve the equations. Any solution f is an extension.

Case stable extensions
Add a new variable y such that y � S , and write the additional equation

f(y) � hy �

�

x�S

f(x)(1  f(x))�

If the solution f to the new expanded set of equations is a stable extension, then
f(x)(1  f(x)) is 0 for all x 	 S and hence f(y) � 0. Conversely, if f(y) � 0 then f is
stable. Thus to check for stable extensions, we check f(y).

Case of semi-stable extensions
This case minimises the undecided. We do the following.

Consider the quantity

� �
�

a 	 S
x1� � � � � xn 	 S

are all
attackers of a

[a  ha(x1� � � � � xn)]2�

In � we regard all elements of S as variables. The equation � � 0 has a solution. We
regard � � 0 as a constraint and minimise the expression

� �
�

x�S

x(1  x)

subject to the constraint � � 0.
This can be done using the method of Lagrange multipliers (see Wikipedia).

Case of grounded extensions
This is like the semi-stable case except that we minimise the expression 1  �.

Case of preferred extensions
This case is dealt with in the full paper. It is a bit involved and is of exponential com-
plexity.

4 Equational Approach to Logic

We explain the general idea via some examples, and this would give the reader a better
perspective on our equational approach to argumentation networks.

Example 3 (Disjunctive inference). Consider a simple inference:

1. (p � q)
2. p � r
3. q � r
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From (1)–(3) we want to infer

4. r

We proceed as follows, assuming our logic satisfies the Deduction theorem:

E and x proves y i� E proves x � y.

5. 1. Assume p
2. Get r from (5.1) and (2) using modus ponens.

6. 1. Assume q
2. Get r from 6.1 and (3), using modus ponens

7. Get r from (1), (5-1–5.2) and (6.1–6.2) and the rule for disjunction elimination.

We now compare this with an equational approach.
Note that the above proof theoretic inference is valid in many logics, such as classical

logic, intuitionistic logic and Łukasiewicz infinite valued logic.
When we write equations for the above inference, we have to choose in which logic

we are operating. There will be di�erent equations for di�erent logics.

Definition 3 (Boolean negation disjunction network). Let (S �R��R�) be a network
with two binary relations and the following properties:

Let R � R� � R�. Then the following holds

1. xR�y � xR�y� � y � y�.
2. ��y1y2(xR�y1 � xR�y2)
3. xR�y � �!z(z � y � xR�z).
4. �xRx.

We associate the following functions wth R� and R�.

1. If xR�y then x � 1  y.
2. If xR�y1 � xR�y2 then x � [1  (1  y1)(1  y2)].

Example 4 (Equational approach to disjunctive inference in classical logic). Consider
Figure 3. This is a construction tree for the w�s involved in Example 3 from the point
of view of classical logic. In classical logic R� indicates disjunction.

Let us apply our equational definition of Definition 3 to Figure 3. We get in terms of
p� q� r the following equations

1. u � [1  (1  p)(1  q)]
2. z � [1  p(1  r)]
3. y � [1  q(1  r)]

The disjunctive inference problem of Example 3 becomes the following equational
problem

– Given that u � z � y � 1, solve for r. r �?
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z : �p � r

u : p � q

y : �q � r

�q�p

p qr

Fig. 3. F73

Let us see how to do it. We get

(*1) (1  p)(1  q) � 0
(*2) p(1  r) � 0
(*3) q(1  r) � 0

The way the proof procedure of Example 3 proceeds is to do case analysis. From (*1)
either p � 1 or q � 1 and in each case from (*2) (resp. *3) we get r � 1.

This is not equational solving but reasoning about the equations to prove that r � 1.
We want to be more direct. Let us expand the equations.

(*1) 1  p  q � pq � 0
(*2) p  pr � 0
(*3) q  qr � 0

Add up all three equations and get

(*4) 1 � pq  pr  qr � 0

or

(*5) 1 � pq � (p � q)r.

Let us now add (*2) and (*3), we get

(*6) p � q  pr  qr � 0

or

(*7) (p � q) � (p � q)r.

We need to show that p � q is not 0 so that we can divide by it.
From (*7) and (*5) we get

(*8) 1 � pq � p � q

We can also deduce from (*8) that p � q � 0 and so we divide by p � q.
So from (*7) by dividing by p � q we get
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(*9) r � 1.

Example 5 (Equational approach to disjunctive inference in Łukasiewicz many valued
logic). Łukasiewicz logic is formulated using � and �, with the following truth table:

1. atoms get values in [0� 1]
2. x � y � min(1� 1  x � y)
3. �x � 1  x
4. A w� is a tautology i� its truth value is always 1
5. Define x � y � �x � y and so we have

�x � y � min(1� x � y)

We can define therefore
x1 � � � � � xn�1

to be
�x1 � (�x2 � � � �� (�xn � xn�1) � � �)

and its table is
min(1� x1 � � � � xn�1)�

Consider now the network of Definition 3. We use new functions for the case of
xR�y1 and xR�y2, we let

x � min(y1 � y2)�

We note that in Łukasiewicz logic the disjunction x � y has the table

x � y � max(x� y)

and can be defined as
(x � y) � y�

We can define conjunction x � y but

x � y � �(�x � �y)

we have:
x � y � min(x� y)�

6. The consequence relation for Łukasiewicz logic can be defined in several ways. We
use the options which allows for the Deduction theorem, because the disjunctive
proof in Example 3 uses it.

– A1� � � � � An � B i� (A1 � � � � � An) � B is a tautology.
The above means that

	
i value(Ai) 
 value(B).

Consider now the network of Figure 4.
Note that R� in the figure indicates the connective x � y � �x � y, therefore we
have

x � y � (�x) � y�

and disjunction x � y is defined as (x � y) � y, therefore

x � y � [�(�x) � y)] � y�

We ask the following question:
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p r q

�p

z : p � r

p � q

y : q � r

u : (p � q) � q

�(p � q)

Fig. 4. F73a

– Given that min(1� u � z � y) 
 r, what values can r have?
This means that given

min(1�max(p� q) �min(1� 1  p � r) �min(1� 1  q � r)) 
 r

what can r be?
Assume without loss of generality that p � q.
We ask can r be less than 1?
Assume r 	 1 and get a contradiction.

Case 1
r 	 q 
 1.
In this case we get

(p � 1  p � r � 1  q � r) 
 r

1 � 2r  q 
 r
2 � 2r 
 r � q

Since r 	 q we get
2 � r � q 
 r � q

2 
 1

not possible.

Case 2
1 
 r � q
We get
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p � 1  p � r � 1 
 r
1 � 1 
 1

not possible.
Therefore r � 1 and so the left hand side is

[min(1� p � 1 � 1�1] 
 [r � 1]

Remark 3 (Equational reasoning). Let us put on our meta-level hat and analyse what is
happening here.

1. The logical database  � �p � q� p � r� q � r� became a set of nodes E� in the
network of Figure 3..

2. The inference problem
–  �?r

becomes the following equational question
– If the points in E� all have value 1 does r have to get value 1 too?

or more generally, let e be a function assigning values to points in E and let y � E.
We can ask

– If E gets the values indicated by the function e, what values are forced on y?
3. The equational question in (2) is meaningful for any network. Take for example an

argumentation network and take any set of nodes E0 and y � E0. We can ask
– Let E � E0 be any extension of a certain type (say E a stable extension) are we

forced to have y 	 E?
In which case we can write

– E � ystable

4. What is the analogous feature in the case of logic to the notion of extension in
argumentation networks?

We know that any set of nodes corresponds to a database. So the algorithms
generating extensions correspond to a way of generating databases.

5. The notion of “consistency” in logic corresponds to “having a solution” in an equa-
tional network.

Let e be a function associating values to the points in E. Then (e� E) is equation-
ally consistent, i� there exists a solution f to the equations such that f � E � e.

5 Conclusion

We have shown the reader some of what the equational approach can do. The full paper
(which may as well become a book) contains a lot more material, including:

1. Equations for higher level attacks (attacks from argument nodes to attack arrows of
[10])

2. Equations for logic programs
3. Connections with fuzzy logic and fuzzy argumentation
4. Translation (critical faithful embedding) of Boolean networks (also known as ab-

stract dialectical frameworks in [3]) into Dung networks
5. Time dependent networks and equations, including attacks arising from argument

decay
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6. Approximate admissible extensions (where we accept arguments whose value is
almost 1) and their relation to weighted argument systems of [7]

7. Analysis of support
8. Equational characterisation of loops
9. General meta-level considerations

10. Comparison with related literature.

Acknowledgements

I am grateful to Martin Caminada, Nachum Dershowitz, Phan Minh Dung, David
Makinson, Alex Rabinowich,and Serena Villata for helpful discussions.

References

1. Barringer, H., Gabbay, D.M., Woods, J.: Temporal dynamics of support and attack networks.
In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI),
vol. 2605, pp. 59–98. Springer, Heidelberg (2005)

2. Boole, G.: The Mathematical Analysis of Logic, Cambridge and London (1847)
3. Brewka, G., Woltran, S.: Abstract dialectical frameworks. In: Proc. KR 2010, pp. 102–111.

AAAI Press, Menlo Park (2010)
4. Couturat, L.: The Algebra of Logic. Open Court (1914)
5. Caminada, M., Gabbay, D.M.: A logical account of formal argumentation. Studia Log-

ica 93(2-3), 109–145 (2009)
6. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic rea-

soning, logic programming and n-person games. Artificial Intelligence 77, 321–357 (1995)
7. Dunne, P., Hunter, A., McBurney, P., Wooldridge, M.: Weighted argument systems. Artificial

Intelligence 175, 457–486 (2011)
8. Gabbay, D.M.: Provability foundations for argumentation networks. Studia Logica 93(2-3),

181–198 (2009)
9. Gabbay, D.M.: Fibring argumentation frames. Studia Logica 93(2-3), 231–295 (2009)

10. Gabbay, D.M.: Semantics for higher level attacks in extended argumentation frames. Part 1:
Overview. Studia Logica 93, 355–379 (2009)

11. Gabbay, D.M.: Equational approach to argumentation networks, 90pp (February 2011)
12. Gabbay, D.M., Szałas, A.: Annotation theories over finite graphs. Studia Logica 93(2-3),

147–180 (2009)
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In almost all current approaches to decision making under uncertainty, it is as-
sumed that a decision problem is described by a set of states and set of outcomes,
and the decision maker (DM) has a preference relation on a rather rich set of acts,
which are functions from states to outcomes. The standard representation theo-
rems of decision theory give conditions under which the preference relation can
be represented by a utility function on outcomes and numerical representation of
beliefs on states. For example, Savage [4] shows that if a DM’s preference order
satisfies certain axioms, then the DM’s preference relation can be represented
by a probability Pr on the state space and a utility function mapping outcomes
to the reals such that she prefers act a to act b iff the expected utility of a (with
respect to Pr) is greater than that of b. Moreover, the probability measure is
unique and the utility function is unique up to affine transformations. Similar
representations of preference can be given with respect to other representations
of uncertainty (see, for example, [2,5]).

Most interesting decision problems do not come with a state space and acts
specified as functions on these states. Instead they are typically problems of
the sort “Should I buy 100 shares of IBM or leave the money in the bank?”
or “Should I attack Iraq or continue to negotiate?”. To apply standard decision
theory, the DM must first formulate the problem in terms of states and outcomes.
But in complex decision problems, the state space and outcome space are often
difficult to formulate. For example, what is the state space and outcome space
in trying to decide whether to attack Iraq? And even if a DM could formulate
the problem in terms of states and outcome, there is no reason to believe that
someone else trying to model the problem would do it in the same way. For
example, reasonable people might disagree about what facts of the world are
relevant to the pricing of IBM stock. As is well known [3], preferences can be
quite sensitive to the exact formulation. To make matters worse, a modeler may
have access to information not available to the DM, and therefore incorrectly
construe the decision problem from the DM’s point of view.

We take a different view of acts here. The inspiration for our approach is the
observation that objects of choice in an uncertain world have some structure to
� This is a short summary of a paper written with Lawrence Blume and David Easley
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them. Individuals choose among some simple actions: “do x” or “do y”. But they
also perform various tests on the world and make choices contingent upon the
outcome of these tests: “If the stock broker says t, do x; otherwise do y.” We
formalize this view by taking the objects of choice to be (syntactic) programs
in a programming language. We then show that if the DM’s preference relation
on programs satisfies appropriate axioms, we, the modelers, can impute a state
space, an outcome space, and an interpretation of programs as functions from
states to outcomes such that the (induced) preferences on these functions have
a subjective expected utility (SEU) representation, similar in spirit to that of
Savage. Just as probability and utility are derived notions in the standard ap-
proach, and are tools that we can use to analyze and predict decisions, so too
are the state space and outcome space in our framework.

This formulation of decision problems has several advantages over more tra-
ditional formulations. First, we can theorize (if we want) about only the actual
observable choices available to the DM, without having states and outcomes,
and without needing to view acts as functions from states to outcomes. Indeed,
we can test whether a DM’s behavior is consistent with SEU despite not having
states and outcomes. The second advantage is more subtle but potentially quite
profound. Representation theorems are just that; they merely provide an alter-
native description of a preference order in terms of numerical scales. Decision
theorists make no pretense that these representations have anything to do with
the cognitive processes by which individuals make choices. But to the extent that
the programming language models the language of the DM, we have the ability
to interpret the effects of cognitive limitations having to do with the language in
terms of the representation. For instance, there may be limitations on the space
of acts because some sequence of tests is too computationally costly to verify.
We can also take into account a DM’s inability to recognize that two programs
represent the same function. Finally, the approach lets us take into account the
fact that different DMs use different languages to describe the same phenomena.
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Abstract. Argumentation can be understood as a dynamic reasoning process,
i.e. it is in particular useful to know the effects additional information causes
with respect to a certain semantics. Accordingly, one can identify the information
which does not contribute to the results no matter which changes are performed.
In other words, we are interested in so-called kernels of frameworks, where two
frameworks with the same kernel are then “immune” to all kind of newly added
information in the sense that they always produce an equal outcome. The con-
cept of strong equivalence for argumentation frameworks captures this intuition
and has been analyzed for several semantics which are all based on the concept
of admissibility. Other important semantics have been neglected so far. To close
this gap, we give strong equivalence results with respect to naive, stage and cf2
extensions, and we compare the new results with the already existing ones. Fur-
thermore, we analyze strong equivalence for symmetric frameworks and discuss
local equivalence, a certain relaxation of strong equivalence.

1 Introduction

The field of abstract argumentation became increasingly popular within the last decades
and is nowadays identified as an important tool in various applications as inconsistency
handling (see e.g. [2]) and decision support (see e.g. [1]). One of the key features ab-
stract argumentation provides is a clear separation between logical content and non-
classical reasoning (which is solely done over abstract entities, the arguments A, and a
certain relationship R between those entities; forming so-called argumentation frame-
works (AFs) of the form (A, R)). For abstract argumentation, many semantics have
been proposed to evaluate such frameworks including Dung’s famous original seman-
tics [8], but also other semantics like the cf2 semantics [4] or the stage semantics [13]
received attention lately. The aim of argumentation semantics is to select possible sub-
sets of acceptable arguments (the so-called extensions) from a given argumentation
framework. Since the relation in such frameworks indicates possible conflicts between
adjacent arguments, one basic requirement for an argumentation semantics is to yield
sets which are conflict-free, i.e., arguments which attack each other never appear jointly
in an extension. To get more adequate semantics, conflict-freeness is then augmented
by further requirements. One such requirement is admissibility (a set S of arguments
is admissible in some framework (A, R) if, S is conflict-free and, for each (b, a) ∈ R
with a ∈ S, there is a c ∈ S, such that (c, b) ∈ R) but also other requirements have
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been used (maximality, or graph properties as covers or components). Properties of and
relations between these semantics are nowadays a central research issue, see e.g. [3].

One such property is the notion of strong equivalence [12]. In a nutshell, strong
equivalence between two AFs holds iff they behave the same under any further addition
of arguments and/or attacks. In particular, this allows for identifying redundant patterns
in AFs. As an example, consider the stable semantics (a set S of arguments is called
stable in an AF F if S is conflict-free in F and each argument from F not contained
in S is attacked by some argument from S). Here an attack (a, b) is redundant when-
ever a is self-attacking. This can be seen as follows; in case b is in a stable extension,
removing (a, b) cannot change the extension (a cannot be in any stable extension due
to (a, a), thus there is no change in terms of conflict-free sets); in case b is not in some
stable extension S, then it is attacked by some c ∈ S. However, c �= a since a is self-
attacking; thus b remains attacked, even when the attack (a, b) is dropped. In fact, the AF
F = ({a, b}, {(a, a), (a, b)}) is strongly equivalent to the AF G = ({a, b}, {(a, a)}).
In general, two AFs are strongly equivalent wrt. stable semantics, if their only syntac-
tical difference is due to such redundant attacks as outlined above. More formally, this
concept can be captured via so-called kernels (as suggested in [12]): The stable kernel
of an AF F = (A, R) is given by the framework (A, R∗) where R∗ stems from R
by removing all attacks (a, b) such that a �= b and (a, a) is in R. Then, F and G are
strongly equivalent (wrt. stable semantics) iff F and G have the same such kernel.

In [12], such results have been given for several semantics, namely: stable, grounded,
complete, admissible, preferred (all these are due to Dung [8]), ideal [9], and semi-
stable [5]. Four different kernels were identified to characterize strong equivalence
between these semantics. Interestingly, it turned out that strong equivalence wrt. ad-
missible, preferred, semi-stable and ideal semantics is exactly the same concept, while
stable, complete, and grounded semantics require distinct kernels. We complement here
the picture by analyzing strong equivalence in terms of naive, stage, and cf2 semantics.

Strong equivalence not only gives an additional property to investigate the differ-
ences between argumentation semantics but also has some interesting applications.
First, suppose we have modelled a negotiation between two agents via argumentation
frameworks. Here, strong equivalence allows to characterize situations where the two
agents have an equivalent view of the world which is moreover robust to additional
information. Second, we believe that the identification of redundant attacks is impor-
tant in choosing an appropriate semantics. Caminada and Amgoud outlined in [6] that
the interplay between how a framework is built and which semantics is used to evalu-
ate the framework is crucial in order to obtain useful results when the (claims of the)
arguments selected by the chosen semantics are collected together. Knowledge about
redundant attacks (wrt. a particular semantics) might help to identify unsuitable such
combinations.

The main contributions and organization of the paper are as follows. In Section 2,
we give the necessary background. The main results are then contained in Section 3,
where characterizations for strong equivalence wrt. naive, stage, and cf2 semantics are
provided. As our results show, cf2 semantics are the most sensitive ones in the sense
that there are no redundant attacks at all (this is not the case for the other semantics
which have been considered so far). In Section 4, we relate our new results to known
results from [12] and draw a full picture how the different semantics behave in terms of
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strong equivalence. Finally, we also provide some results concerning local equivalence,
a relaxation of strong equivalence proposed in [12], and symmetric frameworks [7].

2 Background

We first introduce the concept of abstract argumentation frameworks and the semantics
we are mainly interested here.

Definition 1. An argumentation framework (AF ) is a pair F = (A, R), where A is a
finite set of arguments and R ⊆ A × A. The pair (a, b) ∈ R means that a attacks b. A
set S ⊆ A of arguments defeats b (in F ), if there is an a ∈ S, such that (a, b) ∈ R.

For an AF F = (B, S) we use A(F ) to refer to B and R(F ) to refer to S. When
clear from the context, we often write a ∈ F (instead of a ∈ A(F )) and (a, b) ∈ F
(instead of (a, b) ∈ R(F )). For two AFs F and G, we define the union F ∪ G =
(A(F ) ∪ A(G), R(F ) ∪ R(G)) and F |S = ((A(F ) ∩ S), R(F ) ∩ (S × S)) as the
sub-framework of F wrt S; furthermore, we also use F − S as a shorthand for F |A\S .

A semantics σ assigns to each AF F a collection of sets of arguments. The following
concepts underly such semantics.

Definition 2. Let F = (A, R) be an AF. A set S of arguments is

– conflict-free (in F ), i.e. S ∈ cf (F ), if S ⊆ A and there are no a, b ∈ S, such that
(a, b) ∈ R.

– maximal conflict-free (in F ), i.e. S ∈ mcf (F ), if S ∈ cf (F ) and for each T ∈
cf (F ), S �⊂ T . For the empty AF F0 = (∅, ∅), let mcf (F0) = {∅}.

– a stable extension (of F ), i.e. S ∈ stable(F ), if S ∈ cf (F ) and each a ∈ A \ S is
defeated by S in F .

– a stage extension (of F ), i.e. S ∈ stage(F ), if S ∈ cf (F ) and there is no T ∈
cf (F ) with T +

R ⊃ S+
R , where S+

R = S ∪ {b | ∃a ∈ S, such that (a, b) ∈ R}.

When talking about semantics, one uses the terms stable, and respectively, stage se-
mantics, as expected. For maximal conflict-free sets, the name naive semantics is also
common; we thus use naive(F ) instead of mcf (F ).

We note that each stable extension is also a stage extension, and in case stable(F ) �=
∅ then stable(F ) = stage(F ). This is due to the fact that for a stable extension S of
(A, R), S+

R = A holds. In general, we have the following relations for each AF F :

stable(F ) ⊆ stage(F ) ⊆ naive(F ) ⊆ cf (F ) (1)

We continue with the cf2 semantics [4] and use the characterization from [10]. We
need some further terminology. By SCCs(F ), we denote the set of strongly connected
components of an AF F = (A, R) which identify the maximal strongly connected1

subgraphs of F ; SCCs(F ) is thus a partition of A. Moreover, we define [[F ]] =⋃
C∈SCCs(F) F |C . Let B a set of arguments, and a, b ∈ A. We say that b is reach-

able in F from a modulo B, in symbols a ⇒B
F b, if there exists a path from a to b in

1 A directed graph is called strongly connected if there is a path from each vertex in the graph
to every other vertex of the graph.
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F |B , i.e. there exists a sequence c1, . . . , cn (n > 1) of arguments such that c1 = a,
cn = b, and (ci, ci+1) ∈ R ∩ (B × B), for all i with 1 ≤ i < n. Finally, for an AF
F = (A, R), D ⊆ A, and a set S of arguments, let

ΔF,S(D) = {a ∈ A | ∃b ∈ S : b �= a, (b, a) ∈ R, a �⇒A\D
F b}.

and ΔF,S be the least fixed-point of ΔF,S(∅).

Proposition 1. The cf2 extensions of an AF F can be characterized as follows:
cf2 (F ) = {S | S ∈ cf (F ) ∩mcf ([[F −ΔF,S ]])}.

Similar to relation (1), we have the following picture in terms of cf2 extensions:

stable(F ) ⊆ cf2 (F ) ⊆ naive(F ) ⊆ cf (F ) (2)

However, there is no particular relation between stage and cf2 extensions as shown by
the following example.

Example 1. Consider the following AFs F (on the left side) and G (on the right side):

Here {a, c} is the only stage extension of F (it is also stable). Concerning the cf2
semantics, note that F is built from a single SCC . Thus, the cf2 extensions are given
by the maximal conflict-free sets of F , which are {a, c} and {a, d}. Thus, we have
stage(F ) ⊂ cf2 (F ).

On the other side the framework G is such that cf2 (G) ⊂ stage(G). G consists of
two SCCs namely C1 = {a} and C2 = {b, c}. The maximal conflict-free sets of G are
E1 = {a} and E2 = {b}. In order to check whether they are also cf2 extensions of G,
we compute ΔG,E1 = {b} and indeed E1 ∈ mcf (G − {b}), whereas ΔG,E2 = ∅ and
E2 �∈ mcf (G′), where G′ = [[G − ∅]] = ({a, b, c}, {(b, c), (c, b)}). Thus, cf2 (G) =
{E1}. On the other hand, stage(G) = {E1, E2} is easily verified. ♦
Furthermore, it is easy to show that there is no particular relation between naive, stage,
stable, and cf2 semantics in terms of standard equivalence, which means that two frame-
works possess the same extensions under a semantics. For more details we refer to an
extended version [11] of this paper which contains some explanatory examples.

3 Characterizations for Strong Equivalence

In this section, we will provide characterizations for strong equivalence wrt. naive,
stage, and cf2 semantics. The definition is as follows.

Definition 3. Two AFs F and G are strongly equivalent to each other wrt. a semantics
σ, in symbols F ≡σ

s G, iff for each AF H , σ(F ∪H) = σ(G ∪H).

By definition we have that F ≡σ
s G implies σ(F ) = σ(G), but the other direction

is not true in general. This indeed reflects the nonmonotonic nature of most of the
argumentation semantics.
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Example 2. Consider the following AFs F and G.

For all semantics σ ∈ {stable, stage, cf2}, we have σ(F ) = σ(G) = {{a, b}}.
Whereas, if we add the AF H = ({a, b}, {(a, b)}), we observe stable(F ∪ H) =
stage(F ∪H) = cf2 (F ∪H) = {{a}} but stable(G ∪H) = ∅ and stage(G ∪H) =
cf2 (G ∪H) = {{a}, {b}}. As an example for the naive semantics let us have a look at
the frameworks T = ({a}, ∅) and U = ({a, b}, {(b, b)}) with naive(T ) = naive(U) =
{{a}}. By adding the AF V = ({b}, ∅) we get naive(T ∪ V ) = {{a, b}} �= {{a}} =
naive(U ∪ V ). ♦
We next provide a few technical lemmas which will be useful later.

Lemma 1. Let F and H be AFs and S be a set of arguments. Then, S ∈ cf (F ∪H) if
and only if, jointly (S ∩A(F )) ∈ cf (F ) and (S ∩A(H)) ∈ cf (H).

Proof. The only-if direction is clear. Thus suppose S /∈ cf (F ∪H). Then, there exist
a, b ∈ S, such that (a, b) ∈ F ∪ H . By our definition of “∪”, then (a, b) ∈ F or
(a, b) ∈ H . But then (S ∩A(F )) /∈ cf (F ) or (S ∩A(H)) /∈ cf (H) follows. �

Lemma 2. For any AFs F and G with A(F ) �= A(G), there exists an AF H such that
A(H) ⊆ A(F ) ∪A(G) and σ(F ∪H) �= σ(G ∪H), for σ ∈ {naive, stage, cf2 }.

Proof. In case σ(F ) �= σ(G), we just consider H = (∅, ∅) and get σ(F ∪ H) �=
σ(G ∪H). Thus assume σ(F ) = σ(G) and let wlog. a ∈ A(F ) \ A(G). Thus for all
E ∈ σ(F ), a �∈ E. Consider the framework H = ({a}, ∅). Then, for all E′ ∈ σ(G∪H),
we have a ∈ E′. On the other hand, F ∪H = F and also σ(F ∪H) = σ(F ). Hence,
a is not contained in any E ∈ σ(F ∪H), and we obtain F �≡σ

s G. �

Lemma 3. For any AFs F and G such that (a, a) ∈ R(F ) \R(G) or (a, a) ∈ R(G) \
R(F ), there exists an AF H such that A(H) ⊆ A(F ) ∪ A(G) and σ(F ∪ H) �=
σ(G ∪H), for σ ∈ {naive, stage, cf2 }.

Proof. Let (a, a) ∈ R(F ) \ R(G) and consider the AF H = (A, {(a, b), (b, b) | a �=
b ∈ A}) with A = A(F ) ∪ A(G). Then σ(G ∪ H) = {a} while σ(F ∪ H) = {∅}
for all considered semantics σ ∈ {naive, stage, cf2 }. For example, in case σ = cf2
we obtain ΔG∪H,E = {b | b ∈ A \ {a}}. Moreover, {a} is conflict-free in G ∪ H
and {a} ∈ mcf (G′), where G′ = (G ∪ H) − ΔG∪H,E = ({a}, ∅). On the other
hand, cf2 (F ∪H) = {∅} since all arguments in F ∪H are self-attacking. The case for
(a, a) ∈ R(G) \R(F ) is similar. �

3.1 Strong Equivalence wrt. Naive Semantics

We start with the naive semantics. As we will see, strong equivalence is only a marginally
more restricted concept than standard equivalence, namely in case the two compared
AFs are not given over the same arguments.

Theorem 1. The following statements are equivalent: (1) F ≡naive
s G; (2) naive(F ) =

naive(G) and A(F ) = A(G); (3) cf (F ) = cf (G) and A(F ) = A(G).
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Proof. (1) implies (2): basically by the definition of strong equivalence and Lemma 2.
(2) implies (3): Assume naive(F ) = naive(G) but cf (F ) �= cf (G). Wlog. let

S ∈ cf (F ) \ cf (G). Then, there exists a set S′ ⊇ S such that S′ ∈ naive(F ) and
by assumption then S′ ∈ naive(G). However, as S �∈ cf (G) there exists an attack
(a, b) ∈ R(G), such that a, b ∈ S. But as S ⊆ S′, we have S′ �∈ cf (G) as well; a
contradiction to S′ ∈ naive(G).

(3) implies (1): Suppose F �≡naive
s G, i.e. there exists a framework H such that

naive(F∪H) �= naive(G∪H). Wlog. let now S ∈ naive(F∪H)\naive(G∪H). From
Lemma 1 one can show that (S ∩ A(F )) ∈ naive(F ) and (S ∩ A(H)) ∈ naive(H),
as well as (S ∩ A(G) �∈ naive(G). Let us assume S′ = S ∩ A(F ) = S ∩ A(G),
otherwise we are done yielding A(F ) �= A(G). If S′ /∈ cf (G) we are also done (since
S′ ∈ cf (F ) follows from S′ ∈ naive(F )); otherwise, there exists an S′′ ⊃ S′, such that
S′′ ∈ cf (G). But S′′ /∈ cf (F ), since S′ ∈ naive(F ). Again we obtain cf (F ) �= cf (G)
which concludes the proof. �

3.2 Strong Equivalence wrt. Stage Semantics

In order to characterize strong equivalence wrt. stage semantics, we define a certain
kernel which removes attacks being redundant for the stage semantics.2

Example 3. Consider the frameworks F and G:

They only differ in the attacks outgoing from the argument a which is self-attacking
and yield the same single stage extension, namely {c}, for both frameworks. We can
now add, for instance, H = ({a, c}, {(c, a)}) and the stage extensions for F ∪H and
G ∪ H still remain the same. In fact, no matter how H looks like, stage(F ∪ H) =
stage(G ∪H) will hold. ♦
The following kernel reflects the intuition given in the previous example.

Definition 4. For an AF F = (A, R), define F sk = (A, Rsk ) where

Rsk = R \ {(a, b) | a �= b, (a, a) ∈ R}.

Theorem 2. For any AFs F and G, F ≡stage
s G iff F sk = Gsk .

Proof. Only-if: Suppose F sk �= Gsk , we show F �≡stage
s G. From Lemma 2 and

Lemma 3 we know that in case the arguments or the self-loops are not equal in both
frameworks, F ≡stage

s G does not hold. We thus assume that A = A(F ) = A(G) and
(a, a) ∈ F iff (a, a) ∈ G, for each a ∈ A. Let thus wlog. (a, b) ∈ F sk \Gsk . We can
conclude (a, b) ∈ F and (a, a) /∈ F , thus (a, a) /∈ G and (a, b) /∈ G. Let c be a fresh
argument and take

H = {A ∪ {c}, {(b, b)} ∪ {(c, d) | d ∈ A} ∪ {(a, d) | d ∈ A ∪ {c} \ {b}}).
2 As it turns out, we require here exactly the same concept of a kernel as already used in [12]

to characterize strong equivalence wrt. stable semantics. We will come back to this point in
Section 4.
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Then, {a} is a stage extension of F ∪H (it attacks all other arguments) but not of G∪H
(b is not attacked by {a});

For the if-direction, suppose F sk = Gsk . Let us first show that F sk = Gsk implies
cf (F ∪ H) = cf (G ∪ H), for each AF H . Towards a contradiction, let T ∈ cf (F ∪
H) \ cf (G∪H). Since F sk = Gsk , we know A(F ) = A(G). Thus there exist a, b ∈ T
(not necessarily a �= b) such that (a, b) ∈ G ∪H or (b, a) ∈ G ∪H . On the other hand
(a, b) /∈ F ∪H and (b, a) /∈ F ∪H hold since a, b ∈ T and T ∈ cf (F ∪H). Thus, in
particular, (a, b) /∈ F and (b, a) /∈ F as well as (a, b) /∈ H and (b, a) /∈ H ; the latter
implies (a, b) ∈ G or (b, a) ∈ G. Suppose (a, b) ∈ G (the other case is symmetric). If
(a, a) ∈ G then (a, a) ∈ Gsk , but (a, a) /∈ F sk (since a ∈ T and thus (a, a) /∈ F ). If
(a, a) /∈ G, (a, b) ∈ Gsk but (a, b) /∈ F sk (since (a, b) /∈ F ). In either case F sk �= Gsk ,
a contradiction.

We next show that F sk = Gsk implies (F ∪ H)sk = (G ∪ H)sk for any AF H .
Thus, let (a, b) ∈ (F ∪H)sk , and assume F sk = Gsk ; we show (a, b) ∈ (G ∪H)sk .
Since, (a, b) ∈ (F ∪H)sk we know that (a, a) �∈ F ∪H and therefore, (a, a) �∈ F sk ,
(a, a) �∈ Gsk and (a, a) �∈ Hsk . Hence, we have either (a, b) ∈ F sk or (a, b) ∈ Hsk . In
the latter case, (a, b) ∈ (G ∪H)sk follows because (a, a) �∈ Gsk and (a, a) �∈ Hsk . In
case (a, b) ∈ F sk , we get by the assumption F sk = Gsk , that (a, b) ∈ Gsk and since
(a, a) �∈ Hsk it follows that (a, b) ∈ (G ∪H)sk .

Finally we show that for any frameworks K and L such that Ksk = Lsk , and any
S ∈ cf (K) ∩ cf (L), S+

R(K) = S+
R(L). This follows from the fact that for each s ∈ S,

(s, s) is neither contained in K nor in L. But then each attack (s, b) ∈ K is also in
Ksk , and likewise, each attack (s, b) ∈ L is also in Lsk . Now since Ksk = Lsk ,
S+

R(K) = S+
R(L) is obvious.

We thus have shown that, given F sk = Gsk , the following relations hold for each
AF H : cf (F ∪H) = cf (G∪H); (F ∪H)sk = (G∪H)sk ; and S+

R(F∪H) = S+
R(G∪H)

holds for each S ∈ cf (F ∪H) = cf (G ∪H) (taking K = F ∪H and L = G ∪H).
Thus, stage(F ∪H) = stage(G ∪H), for each AF H . Consequently, F ≡stage

s G. �

3.3 Strong Equivalence wrt. cf2 Semantics

Finally, we turn our attention to cf2 semantics. Interestingly, it turns out that for this
semantics there are no redundant attacks at all. In fact, even in the case where an at-
tack links two self-attacking arguments, this attack might play a role by glueing two
components together. Having no redundant attacks means that strong equivalence has
to coincide with syntactic equality. We now show this result formally.

Theorem 3. For any AFs F and G, F ≡cf2
s G iff F = G.

Proof. We only have to show the only-if direction, since F = G obviously implies
F ≡cf2

s G. Thus, suppose F �= G, we show that F �≡cf2
s G.

From Lemma 2 and Lemma 3 we know that in case the arguments or the self-loops
are not equal in both frameworks, F ≡cf2

s G does not hold. We thus assume that A =
A(F ) = A(G) and (a, a) ∈ R(F ) iff (a, a) ∈ R(G), for each a ∈ A. Let us thus
suppose wlog. an attack (a, b) ∈ R(F ) \R(G) and consider the AF

H = (A ∪ {d, x, y, z},
{(a, a), (b, b), (b, x), (x, a), (a, y), (y, z), (z, a), (d, c) | c ∈ A \ {a, b}}).
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Fig. 1. F ∪ H Fig. 2. G ∪ H

Then, there exists a set E = {d, x, z}, such that E ∈ cf2 (F ∪H) but E �∈ cf2 (G∪H);
see also Figures 1 and 2 for illustration. To show that E ∈ cf2 (F ∪H), we first compute
ΔF∪H,E = {c | c ∈ A \ {a, b}}. Thus, in the instance [[(F ∪ H) − ΔF∪H,E ]] we
have two SCCs left, namely C1 = {d} and C2 = {a, b, x, y, z}. Furthermore, all
attacks between the arguments of C2 are preserved, and we obtain that E ∈ mcf ([[(F ∪
H) − ΔF∪H,E ]]), and as it is also conflict-free we have that E ∈ cf2 (F ∪ H) as
well. On the other hand, we obtain ΔG∪H,E = {a} ∪ {c | c ∈ A \ {a, b}}, and the
instance G′ = [[(G ∪ H) − ΔG∪H,E]] consists of five SCCs , namely C1 = {d},
C2 = {b}, C3 = {x}, C4 = {y} and C5 = {z}, with b being self-attacking. Thus, the
set E′ = {d, x, y, z} ⊃ E is conflict-free in G′. Therefore, we obtain E �∈ mcf (G′),
and hence, E �∈ cf2 (G ∪H). F �≡cf2

s G follows. �

In other words, the proof of Theorem 3 shows that no matter which AFs F �= G are
given, we can always construct a framework H such that cf2 (F ∪H) �= cf2 (G∪H). In
particular, we can always add new arguments and attacks such that the missing attack
in one of the original frameworks leads to different SCCs(F ) in the modified ones
and therefore to different cf2 extensions, when suitably augmenting the two AFs under
comparison.

4 Relation between Different Semantics wrt. Strong Equivalence

In this section, we first compare our new results to known ones from [12] in order to get
a complete picture about the difference between the most important semantics in terms
of strong equivalence and redundant attacks. Then, we restrict ourselves to symmetric
AFs [7]. Finally, we provide some preliminary results about local equivalence [12], a
relaxation of strong equivalence, where no new arguments are allowed to be raised.

4.1 Comparing Semantics wrt. Strong Equivalence

Together with the results from [12], we now know how to characterize strong equiv-
alence for the following semantics of abstract argumentation: admissible, preferred,
complete, grounded, stable, semi-stable, ideal, stage, naive, and cf2 . Let us briefly,
rephrase the results from [12]. First of all, it turns out the concept of the kernel we used
for stage semantics (see Definition 4) exactly matches the kernel for stable semantics in
[12]. We thus get:
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Fig. 3. Full picture of implication in terms of strong equivalence

Corollary 1. For any AFs F and G, F ≡stable
s G holds iff F ≡stage

s G holds.

Three more kernels for AFs F = (A, R) have been found in [12]:

– F ck = (A, R \ {(a, b) | a �= b, (a, a) ∈ R, (b, b) ∈ R});
– F ak = (A, R \ {(a, b) | a �= b, (a, a) ∈ R, {(b, a), (b, b)} ∩R �= ∅});
– F gk = (A, R \ {(a, b) | a �= b, (b, b) ∈ R, {(a, a), (b, a)} ∩R �= ∅}).

As in Theorem 2, these kernels characterize strong equivalence in the sense that, for in-
stance, F and G are strongly equivalent wrt. complete semantics, in symbols F ≡comp

s

G, if F ck = Gck . Similarly, strong equivalence between F and G wrt. grounded se-
mantics (F ≡ground

s G) holds, if F gk = Ggk . Moreover, F ak = Gak characterizes
not only strong equivalence wrt. admissible sets (F ≡adm

s G), but also wrt. preferred,
semi-stable, and ideal semantics.

Inspecting the respective kernels provides the following picture, for any AFs F , G:

F = G⇒ F ck = Gck ⇒ F ak = Gak ⇒ F sk = Gsk ; F ck = Gck ⇒ F gk = Ggk

and thus strong equivalence wrt. cf2 semantics implies strong equivalence wrt. com-
plete semantics, etc.

To complete the picture, we also note the following observation:

Lemma 4. If F sk = Gsk (resp. F gk = Ggk ), then cf (F ) = cf (G).

Proof. If F sk = Gsk then A = A(F ) = A(G) and for each a ∈ A, (a, a) ∈ R(F ) iff
(a, a) ∈ R(G). Let S ∈ cf (F ), i.e. for each a, b ∈ S, we have (a, b) /∈ R(F ). Then,
(a, b) /∈ R(F sk ) and by assumption (a, b) /∈ R(Gsk ). Now since a ∈ S, we know that
(a, a) /∈ R(F ) and thus (a, a) /∈ R(G). Then, (a, b) /∈ R(Gsk ) implies (a, b) /∈ R(G).
Since this is the case for any a, b ∈ S, S ∈ cf (G) follows. The converse direction as
well as showing that F gk = Ggk implies cf (F ) = cf (G) is by similar arguments. �
We thus obtain that for any AFs F and G, F ≡σ

s G implies F ≡naive
s G (for σ ∈

{stable, stage, ground}). Together with our previous observation, a complete picture
of implications in terms of strong equivalence wrt. to the different semantics can now
be drawn, see Figure 3.

We also observe the following result in case of self-loop free AFs.

Corollary 2. Strong equivalence between self-loop free AFs F and G wrt. admissi-
ble, preferred, complete, grounded, stable, semi-stable, ideal, stage, and cf2 semantics
holds, if and only if F = G.

For naive semantics, there are situations where F ≡naive
s G holds although F and G

are different self-loop free AFs. As a simple example consider F = ({a, b}, {(a, b)})
and G = ({a, b}, {(b, a)}). This is due to the fact that naive semantics do not take the
orientation of attacks into account. This motivates to compare semantics wrt. strong
equivalence for symmetric frameworks.
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4.2 Strong Equivalence and Symmetric Frameworks

Symmetric frameworks have been studied in [7] and are defined as AFs (A, R) where R
is symmetric, non-empty, and irreflexive. Let us start with a more relaxed such notion.
We call an AF (A, R) weakly symmetric if R is symmetric (but not necessarily non-
empty or irreflexive).

Strong equivalence between weakly symmetric AFs is defined analogously as in Def-
inition 3, i.e. weakly symmetric AFs F and G are strongly equivalent wrt. a semantics
σ iff σ(F ∪H) = σ(G ∪H), for any AF H . Note that we do not restrict here that H
is symmetric as well. We will come back to this issue later. When dealing with weakly
symmetric AFs, we have two main observations.

First, one can show that for any weakly symmetric AF F , it holds that F sk = F ak .
This leads to the following result.

Corollary 3. Strong equivalence between weakly symmetric AFs F and G wrt. admis-
sible, preferred, semi-stable, ideal, stable, and stage semantics coincides.

Second, we can now give a suitable realization for the concept of a kernel also in terms
of naive semantics.

Definition 5. For an AF F = (A, R), define F nk = (A, Rnk ) where

Rnk = R \ {(a, b) | a �= b, (a, a) ∈ R or (b, b) ∈ R}.

Theorem 4. For any weakly symmetric AFs F and G, F ≡naive
s G iff F nk = Gnk .

This leads to four different kernels for strong equivalence between weakly symmetric
AFs (below, we simplified the kernel F gk , which is possible in this case).

– F ck = (A, R \ {(a, b) | a �= b, (a, a) ∈ R, (b, b) ∈ R});
– F sk = (A, R \ {(a, b) | a �= b, (a, a) ∈ R});
– F gk = (A, R \ {(a, b) | a �= b, (b, b) ∈ R});
– F nk = (A, R \ {(a, b) | a �= b, (a, a) ∈ R or (b, b) ∈ R}).

We note that for the cf2 semantics, strong equivalence between weakly symmetric AFs
still requires F = G (basically, this follows from the fact that all steps in the proof of
Theorem 3 can be restricted to such frameworks).

Finally, let us consider the case where the test for strong equivalence requires that
also the augmented AF is symmetric.

Definition 6. Two AFs F and G are symmetric (strong) equivalent to each other
wrt. a semantics σ, iff for each symmetric AF H , σ(F ∪H) = σ(G ∪H).

Theorem 5. Symmetric strong equivalence between symmetric AFs F and G wrt. ad-
missible (resp., preferred, complete, grounded, stable, semi-stable, ideal, stage, naive,
and cf2 ) semantics holds, if and only if F nk = Gnk .

4.3 Local Equivalence

In [12], the following relaxation of strong equivalence has also been investigated.
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Definition 7. AFs F and G are locally (strong) equivalent wrt. a semantics σ, in
symbols F ≡σ

l G, if for each AF H with A(H) ⊆ A(F )∪A(G), σ(F∪H) = σ(G∪H).

In words, the considered augmentations of the compared frameworks must not intro-
duce new arguments. Obviously, for any AFs F and G, we have that F ≡σ

s G implies
F ≡σ

l G for all semantics σ. The other direction does not hold in general, but for naive
semantics, it is clear by Theorem 1 that F ≡naive

s G if and only if F ≡naive
l G (sim-

ilarly, Theorem 5 implies such a collapse for the other semantics in case of symmetric
AFs). For stage semantics, strong and local equivalence are different concepts.

Example 4. Consider the frameworks F and G:

By Theorem 2, F �≡stage
s G since adding H = ({a, c}, {(a, c), (c, a)}) yields stage(F∪

H) = {{a}} and stage(G ∪H) = {{a}, {c}}. However, F ≡stage
l G still holds, since

no matter which AF H over arguments {a, b} we add to F and G, F ∪H and G ∪H
have the same stage extensions, viz. {a} in case (a, a) /∈ R(H) or ∅ otherwise. ♦

As the example shows, in order to get a counterexample for strong equivalence we
require a new argument, in case all existing arguments except a are self-attacking.

Theorem 6. Let an AF F = (A, R) be called a-spoiled (a ∈ A) if for each b ∈ A
different to a, (b, b) ∈ R. We have that for any AFs F and G, F ≡stage

l G iff F ≡stage
s G

or both F and G are a-spoiled and A(F ) = A(G).

Proof. If-direction: F ≡stage
s G implies F ≡stage

l G. Thus, let F and G be a-spoiled
AFs with A(F ) = A(G). Then, for any H with A(H) ⊆ A, stage(F∪H) = stage(G∪
H) = {{a}} in case (a, a) /∈ R(H); otherwise stage(F ∪H) = stage(G∪H) = {∅}.

Only-if direction: For A(F ) �= A(G), F �≡stage
l G by Lemma 2. So suppose A =

A(F ) = A(G), F �≡stage
s G, and F and G are not both a-spoiled for some a ∈ A. Since

F �≡stage
s G, F sk �= Gsk . Thus, let (a, b) be contained in either R(F sk ) or R(Gsk ). In

case a = b, we use Lemma 3 and obtain F �≡stage
l G. Thus in what follows, we assume

(e, e) ∈ R(F ) iff (e, e) ∈ R(G), for each argument e. Suppose now a �= b and wlog.
let (a, b) ∈ R(F sk ) \ R(Gsk ). By definition (a, a) /∈ R(F ) and by above assumption
(a, a) /∈ R(G). Thus (a, b) /∈ R(G), by definition of the kernel. Since F and G are not
both a-spoiled there exists a c ∈ A (a �= c) such that (c, c) /∈ R(F ) ∩R(G). Since we
assumed that F and G possess the same self loops, we even have (c, c) /∈ R(F )∪R(G).
Now, take H = {A, {(b, b)}∪{(c, d) | d ∈ A\{a}}∪{(a, d) | d ∈ A\{b}}). This AF
is similar as the one as used in the proof of Theorem 2, but now c is not a new argument.
However, we again obtain {a} ∈ stage(F ∪H) \ stage(G ∪H). �

Interestingly, this characterization differs from the one given in [12] for local equiv-
alence wrt. stable semantics (recall that for strong equivalence, stable and stage se-
mantics yield the same characterization). AFs F = ({a, b}, {(b, b), (b, a)}) and G =
({b}, {(b, b)}) are such an example for F ≡stable

l G and F �≡stage
l G.

Local equivalence wrt. cf2 semantics is more cumbersome, and we leave a full char-
acterization for further work.
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5 Conclusion

In this work, we provided characterizations for strong equivalence wrt. stage, naive,
and cf2 semantics, completing the analyses initiated in [12]. Strong equivalence gives a
handle to identify redundant attacks. For instance, our results show that an attack (a, b)
can be removed from an AF, whenever (a, a) is present in that AF, without changing
the stage extensions (no matter how the entire AF looks like). Such redundant attacks
exist for all semantics (at least when self-loops are present), except for cf2 semantics,
which follows from our main result, that F ≡cf2

s G holds, if and only if, F = G. In
other words, each attack plays a role for the cf2 semantics. This result also strengthens
observations by Baroni et al. [4], who claim that cf2 semantics treats self-loops in a
more sensitive way than other semantics. Besides our results for strong equivalence, we
also analyzed some variants, namely local and symmetric strong equivalence. Future
work includes the investigation of other notions of strong equivalence, which are based,
for instance on the set of credulously resp. skeptically accepted arguments, see [12].

Acknowledgments. The authors want to thank the anonymous referees for their valuable
comments.
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Abstract. Two important notions within the field of classical argumentation are
undercutting defeaters and backings. The former represent an attack to an infer-
ence step, and the latter intend to provide defense against this type of attack.
Defeasible Logic Programming (DELP) is a concrete argumentation system that
allows to identify arguments whose conclusions or intermediate conclusions are
in contradiction, capturing the notion of rebutting defeater. Nevertheless, in DELP
is not possible to represent neither undercutting defeaters nor backings. The aim
of this work is to extend the formalism of DELP to allow attack and support
for defeasible rules. Thus, it will be possible to build arguments for representing
undercutting defeaters and backings.

1 Introduction

Argumentation is a form of reasoning where a claim is accepted or rejected according to
the analysis of the arguments for and against it. The way in which arguments and justifi-
cations for a claim are considered allows for an automatic reasoning mechanism where
contradictory, incomplete and uncertain information may appear. In the last decade, ar-
gumentation has evolved as an attractive paradigm for conceptualizing commonsense
reasoning [11]. As a consequence, several abstract argumentation frameworks and Rule-
Based Argumentation Systems (RBAS) were formalized (e. g. [3,4,1,10,6]). Notwith-
standing, a usual critique to some RBAS is that certain reasoning patterns studied in
areas like legal reasoning and philosophy, which constitute important contributions to
the argumentation community, were simplified or not considered in the systems formal
definition. For instance, Pollock [9] stated that reasoning operates in terms of reasons
that can be assembled to comprise arguments. He also established that defeasible rea-
sons have defeaters, and that there are two kinds of defeaters: rebutting defeaters and
undercutting defeaters. The former attack the conclusion of an inference by supporting
the opposite one, while the latter attack the connection between the premises and the
conclusion without attacking the conclusion directly. Another important contribution to
the argumentation field was proposed by Toulmin [12]. He argued that arguments had to
be analyzed using a richer format than the traditional one of formal logic. Whereas a for-
mal logic analysis uses the dichotomy of premises and conclusions, Toulmin proposed
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a model for the layout of arguments that in addition to data and claim distinguishes four
elements: warrant, backing, rebuttal and qualifier.

In this work, we aim to incorporate some of these elements into a concrete RBAS
called Defeasible Logic Programming (DELP) [4]. Briefly, DELP is a formalism that
combines argumentation and logic programming. It allows to identify arguments whose
conclusions or intermediate conclusions are in contradiction, capturing Pollock’s rebut-
ting defeaters. However, as we will show, in DELP is not possible to represent nei-
ther Pollock’s undercutting defeaters nor Toulmin’s backings. Our proposal is partly
based on [2], where a preliminary version of Extended Defeasible Logic Programing
(E-DELP) was presented. The contribution of this work is to extend the formalism of
DELP to capture undercutting defeaters and backings, allowing to build arguments that
provide reasons for or against defeasible rules.

The rest of this paper is organized as follows. In Section 2 we present an overview
of DELP and we introduce the motivation of this work. In Section 3 the extended repre-
sentational language of E-DELP is proposed, and in Section 4 the notions of defeasible
derivation, argument and defeater are introduced. Finally, in Section 5 some conclusions
and related work are commented.

2 Background and Motivation

A short explanation of DELP is included below (see [4] for full details). As in Logic
Programming, knowledge in DELP is represented using facts and rules. In addition,
DELP has the declarative capability of representing weak information in the form of
defeasible rules, and a defeasible argumentation inference mechanism for warranting
the entailed conclusions.

A defeasible logic program (de.l.p.) is a set of facts, strict rules and defeasible rules,
defined as follows. Facts are ground literals representing atomic information, or the
negation of atomic information using strong negation “∼” (e. g. ∼electricity or day).
Strict Rules represent non-defeasible information and are denoted L0 ← L1, . . . , Ln,
where L0 is a ground literal and {Li}i>0 is a set of ground literals (e. g.
∼night ← day). Defeasible Rules represent tentative information that may be used
if nothing could be posed against it and are denoted L0 —< L1, . . . , Ln, where L0 is a
ground literal and {Li}i>0 is a set of ground literals (e. g. light on —< switch on). A
defeasible rule “Head —< Body” expresses that “reasons to believe in the antecedent
Body give reasons to believe in the consequent Head”. When required, a defeasible
logic program P is denoted as (Π, Δ) distinguishing the subset Π of facts and strict
rules, and the subset Δ of defeasible rules. From a program P contradictory literals
could be derived, since strong negation is allowed in the head of rules.

For the treatment of contradictory knowledge DELP incorporates a defeasible argu-
mentation formalism. This formalism allows the identification of the pieces of knowl-
edge that are in contradiction, and a dialectical process is used for deciding which
information prevails as warranted. The dialectical process involves the construction and
evaluation of arguments that either support or interfere with the query under analysis.
Briefly, an argument for a literal h, denoted 〈A, h〉, is a minimal set A of defeasible
rules such that A∪Π is non-contradictory and there is a derivation for h from A∪Π .
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A literal h is warranted if there exists a non-defeated argument A supporting h.
To establish if 〈A, h〉 is a non-defeated argument defeaters for 〈A, h〉 are considered.
A detailed explanation of DELP’s dialectical process is not included here due to lack of
space, but it can be found in [4].

As stated before, in DELP is not possible to represent neither Pollock’s undercut-
ting defeaters nor Toulmin’s backings. To illustrate this let us consider that Toulmin’s
warrants are represented through defeasible rules. Since undercutting defeaters attack
an inference, they can be thought as reasons against using defeasible rules. Similarly,
given that Toulmin’s backings provide support for warrants, they can be regarded as
reasons for using defeasible rules.

There are different alternatives to express support or attack for a defeasible rule
r : “h —< b”. One of them consists on placing the defeasible rule r in the head of
another rule, whose body would express reasons for or against using the rule r respec-
tively; however, DELP’s language imposes the restriction that only literals can appear
in the head of a rule. Therefore, to achieve this alternative, the representational lan-
guage of DELP should be extended. Another possibility could be to associate a spe-
cial literal (label) to each defeasible rule. In that way, we could identify a defeasible
rule by a single literal, and express attack or support for the rule by attacking or sup-
porting its label respectively. Nevertheless, since DELP’s language has no consider-
ation for labels, we should find another way to represent rule labels. An attempt to
simulate a rule’s label could be achieved by placing an additional literal in the rule’s
body. For instance, for de defeasible rule r introduce above, the resulting rule would
be “h —< b, r”, where the literal “r” intends to simulate the rule’s label. Suppose now
that we want to express defeasible reasons against the use of this new rule, as well as
defeasible reasons against the literal “b”. This could be represented by two defeasi-
ble rules “∼r —< f” and “∼b —< g” respectively. However, following this representation
some problems arise.

One one hand, in DELP there is no distinction between the literals in a rule’s body.
Hence, it is not possible to distinguish the “simulated label” literal. Furthermore, with
that representation we could not distinguish an attack to an ordinary literal from an at-
tack to a rule. For instance, given the defeasible rule “h —< b, r” it would be not possible
to distinguish the attacks “∼b —< f” and “∼r —< g”. On the other hand, if labels were
associated to rules in an univocal way (i. e. no pair of rules could have the same label)
the inclusion of a simulated label in a rule’s body might obstruct DELP’s comparison
process. In particular, it will be no longer possible to use generalized specificity [4] as
the comparison criterion, since every defeasible rule would have a literal (its simulated
label) that does not appear in the body of any other defeasible rule.

The above mentioned issues show clearly that the simulation of rule labels in DELP
is not desirable. Consequently, if we wanted to provide attack and support for defea-
sible rules through any of the two proposed alternatives, we should extend DELP’s
representational language. In this work, we have chosen to apply the first alternative,
incorporating two additional types of rules into the representational language: backing
rules and undercutting rules. In that way, the proposed extension will provide the means
for representing Pollock’s undercutting defeaters and Toulmin’s backings.
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3 The Extended Representational Language

In this section we will introduce the syntax of Extended Defeasible Logic Program-
ming (E-DELP), which is an extension of the language of DELP defined in [4]. This
extended language will allow for the representation of Pollock’s undercutting defeaters
and Toulmin’s backings.

The representational language of E-DELP is defined in terms of five disjoint sets:
a set of facts, a set of strict rules, a set of defeasible rules, a set of backing rules and
a set of undercutting rules. A literal “L” is considered to be a ground atom “A” or a
negated ground atom “∼A” (where “∼” represents the strong negation), and can be
used as a fact or as an element of a rule. Facts and strict rules express non-defeasible or
indisputable information, whereas the remaining three types of rules express tentative
information that may be used if nothing could be posed against it. The representation of
facts, strict rules and defeasible rules in E-DELP is the same as in DELP. Hence, given
that defeasible rules must have a non-empty body, a defeasible rule with an empty
body will be called a presumption [7]. In our approach, a presumption “P —< ” would
expresses that “there are (defeasible) reasons to believe in P ”.

The elements incorporated into the representational language of E-DELP are the
backing and undercutting rules, which express support and attack for defeasible rules
respectively. The addition of these new types of rules will allow to argue about the
defeasible rules application, that is, to discuss whether they should be used or not.

Definition 1 (Backing Rule). A Backing Rule is an ordered pair, denoted
“[Head]←� [Body]”, where Head is a defeasible rule and Body is a finite
non-empty set of literals. A backing rule with head RHead —< RBody and body
{L1, . . . , Ln} can also be written as [RHead —< RBody]←� [L1, . . . , Ln] (n ≥ 1).

Definition 2 (Undercutting Rule). An Undercutting Rule is an ordered pair, denoted
“[Head]←� [Body]”, where Head is a defeasible rule and Body is a finite
non-empty set of literals. An undercutting rule with head RHead —< RBody and body
{L1, . . . , Ln} can also be written as [RHead —< RBody]←� [L1, . . . , Ln] (n ≥ 1).

Syntactically, the only difference between backing and undercutting rules is the use
of � and � respectively; however, these two types of rules are semantically different.
A backing rule “[Head]←� [Body]” would express that “the antecedent Body gives
reasons for using the defeasible rule Head”. On the contrary, an undercutting rule
“[Head]←� [Body]” would express that “the antecedent Body gives reasons against
using the defeasible rule Head”.

Note that definitions 1 and 2 impose a restriction on the rules appearing in the head
of backing and undercutting rules. Consequently, presumptions and strict rules are ex-
cluded from being supported or attacked. Strict rules should necessarily be excluded
since they provide an unconditional connection between its antecedent and consequent.
On the other hand, the reason to exclude presumptions is that backing and undercutting
rules respectively support and attack the connection between the antecedent and con-
sequent of a defeasible rule. If we consider a presumption as a defeasible rule with an
empty body, the antecedent of the rule is missing and therefore, there is no connection
between the antecedent and consequent of the rule.
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Definition 3 (Extended Defeasible Logic Program). An Extended Defeasible Logic
Program (e-de.l.p.) P is a set of facts, strict rules, defeasible rules, backing rules and
undercutting rules. When required, we will denote P as (Π ,Δ,Σ) distinguishing the
subset Π of facts and strict rules, the subset Δ of defeasible rules and presumptions,
and the subset Σ of backing and undercutting rules.

It is important to remark that the existence of backing and undercutting rules for a de-
feasible rule in an e-de.l.p. is not mandatory. Thus, a defeasible rule without backing
rules can be regarded as applicable, since there are not explicit requirements for its use.
To illustrate this, let us take into account the nature of Toulmin’s warrants. According to
Toulmin [12] there may be warrants of different kinds, which provide different degrees
of force on the connection between data and claim. In E-DELP, warrants that authorize
the acceptance of a claim unequivocally will be represented using strict rules. On the
contrary, warrants allowing to draw a conclusion tentatively will be expressed through
defeasible rules. For those warrants that could be challenged, backings may not always
be explicitly shown. Therefore, when a warrant’s backing is absent we will have a de-
feasible rule without backing rules. Finally, the presence or absence of undercutting
rules for a defeasible rule R depends on the existence of conditions of exception for the
application of the warrant expressed by R.

Next, we will introduce one of Toulmin’s famous examples, which discusses
whether Harry is a British subject or not. The claim that Harry is a British subject
(“british subject”) is supported by the data that Harry was born in Bermuda
(“born in bermuda”). The connection between data and claim is provided by the war-
rant that a man born in Bermuda will generally be a British subject. The warrant can be
supported by the backing that there are certain statutes and other legal provisions to that
effect (“british parliament acts”). Given that the warrant does not have total justify-
ing force, the claim that Harry is a British subject must be qualified: it follows presum-
ably. A possible rebuttal is that both Harry’s parents were aliens (“alien parents”). The
program P1=(Π1, Δ1, Σ1) depicts a possible formulation of this scenario in E-DELP.

Example 1. A possible formulation of Toulmin’s example.

Π1= {born in bermuda, british parliament acts, alien parents}
Δ1=

{
british subject —< born in bermuda

}
Σ1=

{
[british subject —< born in bermuda] ←� [british parliament acts]
[british subject —< born in bermuda] ←� [alien parents]

}
The data “born in bermuda”, the backing “british parliament acts” and the rebuttal
“alien parents” are represented as facts. The warrant is expressed by the defeasible rule
“british subject —< born in bermuda”, since reasons to believe that Harry was born in
Bermuda give reasons to believe that he is a British subject. The qualifier “presumably” is con-
sidered to be implicit in the defeasibility of the rule that represents the warrant. The backing rule
“[british subject —< born in bermuda] ←� [british parliament acts]” expresses that the
backing “british parliament acts” provides support for the warrant. Finally, the undercutting
rule “[british subject —< born in bermuda] ←� [alien parents]” expresses that the rebut-
tal “alien parents” provides a condition of exception for the warrant.
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Program rules in E-DELP are ground; however, the use of “schematic rules” with vari-
ables is allowed. Following the usual convention [5] schematic rules are instantiated
by defining the set of all their ground instances. Given a schematic rule R we will
consider Ground(R) as the set of all ground instances of R. Thus, when computing
over an e-de.l.p. P, we will consider the set Ground(P) which is the union of the sets
Ground(R) for every rule R in P.

Allowing schematic rules into E-DELP provides for a better representation of sit-
uations that could be represented without using schematic rules, as well as the rep-
resentation of new situations. To illustrate the former, recall Toulmin’s definition of
warrants as ‘general, hypothetical statements, which can act as bridges, and authorise
the sort of step to which our particular argument commits us’ [12](page 98). Therefore,
in the example about Harry, the warrant that a man born in Bermuda will generally
be a British subject should be applicable not only for Harry, but for any man born in
Bermuda. Then, the general nature of Toulmin’s warrants can be captured in E-DELP
by using schematic rules. The e-de.l.p.P2=(Π2, Δ2, Σ2) provides a new representation
for Toulmin’s example about Harry, where schematic rules are used.

Π2= {born in bermuda(harry), british parliament acts, alien parents(harry)}

Δ2=
{

british subject(X) —< born in bermuda(X)
}

Σ2=

{
[british subject(X) —< born in bermuda(X)] ←� [british parliament acts]
[british subject(X) —< born in bermuda(X)] ←� [alien parents(X)]

}

4 Arguments and Defeaters

In this section we will define the notions of defeasible derivation, argument and defeater
in E-DELP. First, the notion of defeasible derivation is extended to consider backing
rules. Second, we present different types of arguments, distinguishing arguments for
literals from arguments for and against using defeasible rules. Finally, a categorization
of defeaters is provided, considering rebutting, undercutting and undermining defeaters.

Definition 4 (Defeasible Derivation). Let P=(Π ,Δ,Σ) be an e-de.l.p. and L a literal.
A defeasible derivation of L from S ⊆ P, denoted S|∼P L, consists on a finite sequence
L1, L2, . . . , Ln = L of literals, where each literal Li is in the sequence because:

(a) Li is a fact in Π or a presumption in S,

(b) there exists a strict rule in S with head Li and body B1, . . . , Bk , and every Bt

(1 ≤ t ≤ k) is an element Lj of the sequence appearing before Li (j < i), or

(c) there exists a defeasible rule R in S with head Li and body B1, . . . , Bk , where
every Bt (1 ≤ t ≤ k) is an element Lj of the sequence appearing before Li (j < i),
and one of the following conditions holds:

i. there is no backing rule in Σ with head R, or

ii. there is a backing rule in Σ with head R and body S1, . . . , Sm , and every Sp

(1 ≤ p ≤ m) is an element Lv of the sequence appearing before Li (v < i).
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Condition (c) states that if there are explicit requirements for using a defeasible rule
R they must be satisfied. Note that the set S contains all the elements available for
obtaining the derivation; however, when looking for the existence of backing rules for
R, the set P must be taken into account to consider all the constraints for using R. Thus,
P is regarded as the context for the defeasible derivation, denoted as |∼P .

A defeasible derivation for a literal L is called a strict derivation if either L is a fact or
every rule used for obtaining the derivation sequence is a strict rule. In a valid E-DELP
program P=(Π ,Δ,Σ) the subset Π of facts and strict rules must be non-contradictory.
A set of rules S is contradictory if there exists a defeasible derivation for a pair of
complementary literals (wrt. strong negation “∼”) from S.

Example 2. Let P3=(Π3, Δ3, Σ3) be the following e-de.l.p.:

Π3= {switch on(l), night, lamp in room(l, r), electricity, broken lamp(l)}

Δ3=

⎧⎪⎪⎨⎪⎪⎩
light on(X) —< switch on(X)
illuminated room(X) —< day
∼illuminated room(X) —< night
illuminated room(X) —< night, lamp in room(Y, X), light on(Y )

⎫⎪⎪⎬⎪⎪⎭
Σ3=

⎧⎪⎪⎨⎪⎪⎩
[light on(X) —< switch on(X)] ←� [electricity]
[light on(X) —< switch on(X)] ←� [∼electricity, emergency lamp(X)]
[light on(X) —< switch on(X)] ←� [∼electricity]
[light on(X) —< switch on(X)] ←� [electricity, broken lamp(X)]

⎫⎪⎪⎬⎪⎪⎭
The sequence “electricity, switch on(l), light on(l), lamp in room(l, r), night,
illuminated room(r)” is a defeasible derivation for the literal “illuminated room(r)”,
using the following set of rules in P3: {([light on(l) —< switch on(l)] ←� [electricity]),
(light on(l) —< switch on(l)), (illuminated room(r) —< night, lamp in room(l, r),
light on(l))}.

The sequence “broken lamp(l)” is a strict derivation for the literal “broken lamp(l)”,
since the literal is a fact in P3.

Observe that undercutting rules are not used for obtaining defeasible derivations. As
will be shown next, they will only be used to build arguments against using defeasible
rules. The definition of argument is then extended to consider backing and undercutting
rules, when required. In addition, we will distinguish three different types of arguments.
The first type regards arguments for literals, while the other two deal with arguments
for or against using defeasible rules respectively.

Definition 5 (Claim Argument). Let P=(Π ,Δ,Σ) an e-de.l.p. and h a literal. 〈A, h〉
is a claim argument for the literal h, obtained from P , if the following conditions hold:

(1) A ⊆ (Δ ∪Σ),
(2) Π ∪ A |∼P h,
(3) Π ∪ A is non-contradictory, and
(4) A is minimal: there is no B ⊂ A satisfying (2) and (3).

Definition 6 (Undercutting Argument). Let P=(Π ,Δ,Σ) be an e-de.l.p. and r
defeasible rule. 〈A, r〉u is an undercutting argument for the defeasible rule r, obtained
from P, if A = {[r]←� [L1, . . . , Ln]} ∪ A′ and the following conditions hold:
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(1) A ⊆ (Δ ∪Σ),
(2) Π ∪ A′ |∼P Li (1 ≤ i ≤ n),
(3) Π ∪ A′ is non-contradictory, and
(4) A′ is minimal: there is no B ⊂ A′ satisfying (2) and (3).

Definition 7 (Backing Argument). Let P=(Π ,Δ,Σ) be an e-de.l.p. and r a
defeasible rule. 〈A, r〉b is a backing argument for the defeasible rule r, obtained from
P, if A = {[r]←� [L1, . . . , Ln]} ∪ A′ and the following conditions hold:

(1) A ⊆ (Δ ∪Σ),
(2) Π ∪ A′ |∼P Li (1 ≤ i ≤ n),
(3) Π ∪ A′ is non-contradictory, and
(4) A′ is minimal: there is no B ⊂ A′ satisfying (2) and (3).

Example 3. Let P3 be the e-de.l.p. of Example 2. Some arguments obtained from P3 follows.

The claim argument 〈A1, illuminated room(r)〉 for the literal “illuminated room(r)”,
where A1 = {(illuminated room(r) —< night, lamp in room(l, r), light on(l)),
([light on(l) —< switch on(l)] ←� [electricity]), (light on(l) —< switch on(l))}.

The undercutting argument 〈A2, light on(l) —< switch on(l)〉u for the defeasible rule
“light on(l) —< switch on(l)”,whereA2 = {[light on(l) —< switch on(l)] ←� [electricity,
broken lamp(l)]}.

The backing argument 〈A3, light on(l) —< switch on(l)〉b for the defeasible rule
“light on(l) —< switch on(l)”,whereA3={[light on(l) —< switch on(l)] ←� [electricity]}.

The claim argument 〈A4,∼illuminated room(r)〉 for the literal “∼illuminated room(r)”,
where A4 = {∼illuminated room(r) —< night}.

The three argument types are exclusive: an argument of one type is not an argument of
any other type. When convenient, we will abstract from an argument’s type, referring to
it just as an argument (i. e. omitting its type). An argument 〈B, q〉 is a sub-argument of
another argument 〈A, h〉 if B ⊆ A. In addition, given an e-de.l.p. P=(Π ,Δ,Σ) we will
say that two literals h1 and h2 disagree if the set Π ∪ {h1, h2} is contradictory. Next,
we will define the notions regarding attack and defeat among arguments.

Definition 8 (Rebutting Attack). Let 〈A1, h1〉 be a claim argument and 〈A2, h2〉 any
argument. We say that 〈A1, h1〉 rebuts 〈A2, h2〉 at the literal h if there exists a claim
sub-argument 〈A, h〉 of 〈A2, h2〉 such that the literals h1 and h disagree.

Another way of attack takes place when undercutting rules are involved. That is to say,
when an argument uses a defeasible rule that another argument states it should not.

Definition 9 (Undercutting Attack). Let 〈A1, r〉u be an undercutting argument and
〈A2, h〉 any argument. We say that 〈A1, r〉 undercuts 〈A2, h〉 at the rule r if r ∈ A2.

Arguments are built on the basis of premises. These premises are the facts and presump-
tions that constitute the starting point of an argument. In particular, when attacking a
premise, we will say that an undermining attack occurs. However, by condition (3) of
definitions 5, 6 and 7, no arguments can be built against the strict knowledge. Thus, the
only attackable premises of an argument are its presumptions.
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Definition 10 (Undermining Attack). Let 〈A1, h1〉 be a claim argument and 〈A2, h2〉
any argument. We say that 〈A1, h1〉 undermines 〈A2, h2〉 at the literal h if 〈A1, h1〉
rebuts 〈A2, h2〉 at the literal h, and h is a presumption.

Whenever an argument 〈A1, h1〉 attacks another argument 〈A2, h2〉, these two argu-
ments are compared to decide which one prevails. Briefly, if 〈A2, h2〉 is not better than
〈A1, h1〉 wrt. a comparison criterion, we will say that 〈A1, h1〉 defeats 〈A2, h2〉. Simi-
larly to [4], the comparison criterion in E-DELP is modular and thus, it can be selected
accordingly to the domain that is being represented. In the following definition we will
abstract from the comparison criterion, and we will denote it using “�”.

Definition 11 (Defeat). Let 〈A1, h1〉 and 〈A2, h2〉 be a pair of arguments. We say that
〈A1, h1〉 defeats 〈A2, h2〉 if one of the following conditions hold:

(a) 〈A1, h1〉 rebuts or undermines 〈A2, h2〉 at the literal h, and the attacked sub-
argument 〈A, h〉 of 〈A2, h2〉 is such that 〈A, h〉 ��〈A1, h1〉,

(b) 〈A1, h1〉 undercuts 〈A2, h2〉 at the rule h1, and there is no backing sub-argument
of 〈A2, h2〉 for the rule h1, or

(c) 〈A1, h1〉 undercuts 〈A2, h2〉 at the rule h1, and the backing sub-argument 〈A, h1〉
of 〈A2, h2〉 is such that 〈A, h1〉 ��〈A1, h1〉.

In particular, we can distinguish among rebutting defeat, undermining defeat and un-
dercutting defeat depending on the type of attack that results in defeat. Note that, unlike
other approaches (e. g. [14,10]), undercutting attacks in E-DELP will not always suc-
ceed as defeats due to the existence of backing arguments.

Whereas an undercutting argument provides reasons against using a defeasible rule,
a backing argument gives reasons for using a defeasible rule. Thus, in the case of an
undercutting attack we compare the undercutting argument with the corresponding
backing sub-argument of the attacked argument, when existing, to decide which one
prevails. In that way, backing arguments are intended to defend their associated war-
rants to prevent an undercutting attack resulting in defeat.

In the following examples we will use generalized specificity [4], a comparison cri-
terion that prefers more precise or more direct arguments. When comparing two argu-
ments 〈A1, h1〉 and 〈A2, h2〉 an analysis of their activation is performed. Briefly, a set
of literals S activates an argument 〈A, h〉 if the argument can be obtained from the set
Πr ∪ S ∪ A, where Πr is the set of program strict rules. Then, 〈A1, h1〉 is strictly
more specific than 〈A2, h2〉 (denoted 〈A1, h1〉�〈A2, h2〉) if every set of literals H that
non-trivially activates 〈A1, h1〉 also activates 〈A2, h2〉, and there exists a set of literals
H ′ that non-trivially activates 〈A2, h2〉 but H ′ does not activate 〈A1, h1〉.

The notion of argument activation can also be applied in E-DELP since, according
to the argument’s construction, it would require a defeasible derivation for a single lit-
eral or a set of literals, depending on the argument’s type. The activation of a claim
argument 〈A, h〉 requires a derivation for the literal h. The activation of a backing ar-
gument 〈A, r〉b with a backing rule “[r] ←� [Body]” requires a derivation for every lit-
eral Bi ∈ Body. Similarly, the activation of an undercutting argument 〈A, r〉u with an
undercutting rule “[r]←� [Body]” requires a derivation for every literal Bi ∈ Body.
Taking into account the arguments activation in E-DELP, the generalized specificity
criterion can be used to decide between conflicting arguments.
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Example 4. Given the arguments of Example 3 we have that 〈A1, illuminated room(r)〉
rebuts 〈A4,∼illuminated room(r)〉. Moreover, since 〈A1, illuminated room(r)〉 �
〈A4,∼illuminated room(r)〉, the attack results in a rebutting defeat. In addition,
〈A2, light on(l) —< switch on(l)〉u undercuts 〈A1, illuminated room(r)〉. To resolve this
attack we compare the argument 〈A2, light on(l) —< switch on(l)〉u and the backing sub-
argument 〈A3, light on(l) —< switch on(l)〉b of 〈A1, illuminated room(r)〉. Therefore,
since 〈A2, light on(l) —< switch on(l)〉u �〈A3, light on(l) —< switch on(l)〉b, the undercut-
ting attack results in an undercutting defeat.

The following example illustrates a different scenario for the e-de.l.p. of Example 2,
where an undercutting attack fails.

Example 5. Let P4=(Π4, Δ3, Σ3) be an e-de.l.p., where Π4 = {switch on(l), night,
lamp in room(l, r), ∼electricity, emergency lamp(l)}, and the sets Δ3 and Σ3 corre-
spond to the e-de.l.p. P3 of Example 2. The following arguments can be obtained from P4:

The claim argument 〈A5, illuminated room(r)〉 for the literal “illuminated room(r)”,
where A5 = {([light on(l) —< switch on(l)] ←� [∼electricity, emergency lamp(l)]),
(light on(l) —< switch on(l)), (illuminated room(r) —< night, lamp in room(l, r),
light on(l))}.

The undercutting argument 〈A6, light on(l) —< switch on(l)〉u for the defeasible rule
“light on(l) —< switch on(l)”, where

A6 = {[light on(l) —< switch on(l)] ←� [∼electricity]}
The backing argument 〈A7, light on(l) —< switch on(l)〉b for the defeasible rule
“light on(l) —< switch on(l)”, where

A7 = {[light on(l) —< switch on(l)] ←� [∼electricity, emergency lamp(l)]}
In this case, 〈A6, light on(l) —< switch on(l)〉u undercuts 〈A5, illuminated room(r)〉 at the
rule “light on(l) —< switch on(l)”; however, since 〈A7, light on(l) —< switch on(l)〉b �
〈A6, light on(l) —< switch on(l)〉u , the undercutting attack does not succeed as a defeat.

Recall that DELP uses a dialectical process to decide which information prevails as
warranted. Briefly, the process involves the construction of a dialectical tree where every
node in the tree is a defeater for its parent. Once built, the tree is marked: (1) leave
nodes are marked as undefeated and (2) an inner node is marked as undefeated if all its
children are marked as defeated; otherwise it is marked as defeated. Then, a literal h is
warranted from a de.l.p.P if there exists an argument 〈A, h〉 obtained from P such that
〈A, h〉 is the root of a marked dialectical tree and is marked as undefeated (see [4] for
full details). Since the notions of argument and defeat were introduced in E-DELP, we
can use the same dialectical process of DELP to compute the warranted literals from
a program in E-DELP. For instance, in Example 4 〈A4,∼illuminated room(r)〉 is
defeated by 〈A1, illuminated room(r)〉, but 〈A1, illuminated room(r)〉 is defeated
by 〈A2, light on(l) —< switch on(l)〉u. Therefore, 〈A4,∼illuminated room(r)〉 is
reinstated and the literal “∼illuminated room(r)” is warranted from P3.

Now that the formalism of E-DELP was introduced, we can show that an e-de.l.p.
without undercutting and backing rules is also a de.l.p..

Proposition 1. An extended defeasible logic program (e-de.l.p.) P = (Π, Δ, ∅) is a
defeasible logic program (de.l.p.) P ′ = (Π, Δ).
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5 Conclusions and Related Work

In this work an extension of DELP called Extended Defeasible Logic Programming
(E-DELP) was proposed, inspired by the work of Pollock [9] and Toulmin [12]. This
extension allows to express attack and support for defeasible rules by incorporating
undercutting and backing rules respectively. In that way, the extended language of
E-DELP enables the representation of Toulmin’s backings and Pollock’s undercutting
defeaters, two notions were absent in the formalism of DELP described in [4]. In addi-
tion, DELP programs can also be represented in E-DELP by considering an empty set
of backing and undercutting rules Finally, a categorization of attacks and defeats was
provided, distinguishing rebutting, undercutting and undermining attack and defeat.

Nute’s [8] Logic for Defeasible Reasoning (LDR) was the first formalism to provide
defeasible reasoning with a simple representational language. In LDR there are three
types of rules: strict rules, defeasible rules and defeater rules. The purpose of defeater
rules is to account for the exceptions to defeasible rules. Hence, they could be used to
simulate undercutting defeaters; however, in contrast to the other two types of rules,
defeater rules cannot be used to derive literals. One main difference between Nute’s
formalism and E-DELP is that in LDR the notion of argument is absent. Thus, the
decision between contradictory conclusions in Nute’s LDR involves the comparison of
pairs of rules with complementary consequents.

In [14] Verheij reconstructed Toulmin’s ideas using a theory of dialectical argumen-
tation called DEFLOG [13]. Briefly, its logical language has two connectives × and
∼>. The dialectical negation ×S of a statement S expresses that the statement S is
defeated. The primitive implication ∼> is a binary connective used to express that one
statement supports another, and only validates modus ponens. One difference between
DEFLOG and E-DELP is that DEFLOG is sentence-based while E-DELP is based on
logic programming. In addition, arguments in DEFLOG are sets of statements, whereas
in E-DELP arguments are sets of specific rules. In DEFLOG is possible to combine and
nest the connectives × and ∼> to obtain more complex statements, allowing to repre-
sent both Toulmin’s backings and Pollock’s undercutting defeaters. Nevertheless, since
dialectical negation indicates defeat, an argument for a statement ×S will always be
preferred to an argument for a statement S. Thus, in Verheij’s approach it is not possi-
ble to express attack without defeat. On the contrary, attacks in E-DELP do not always
succeed as defeats.

In [10] Prakken introduced ASPIC+, an abstract argumentation framework that in-
stantiates Dung’s approach [3], defining the structure of arguments and the nature of
Dung’s attack relation. Like in ASPIC+, three types of attack to arguments are dis-
tinguished in E-DELP (rebutting, undercutting and undermining attack), which lead to
three corresponding types of defeat. In addition, ASPIC+ uses an external argument or-
dering to define preferences among conflicting arguments; however, in some cases the
attacks succeed as defeats without considering the preferences defined by the argument
ordering. On the contrary, the comparison criterion of E-DELP is used to resolve all
attacks. This difference is manifested, for instance, when undercutting attacks occur. In
E-DELP an undercutting argument for a defeasible rule is compared to a backing argu-
ment for the same rule, when existing, to decide whether this attack results in a defeat
or not. On the other hand, since ASPIC+ has no account for backings, an undercutting
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attack in ASPIC+ will always succeed as a defeat. Prakken also shown that ASPIC+ sat-
isfies the rationality postulates for Rule-Based Argumentation Systems proposed in [1].
The analysis of the properties satisfied by E-DELP, including these rationality postu-
lates, was not included here due to lack of space.

Modgil [6] introduced Extended Argumentation Frameworks (EAFs), extending
Dung’s theory [3] to accommodate defeasible reasoning about as well as with pref-
erence information. In that work, he presented a new attack relation that originates
from a preference argument and attacks an attack between the arguments that are the
subject of the preference claim. Finally, Modgil defined the evaluation of the justified
arguments of EAFs under Dung’s semantics, extending the acceptability calculus so
that both arguments and attacks need to be reinstated. As stated before, an external
comparison criterion is used in E-DELP to define preferences among competing argu-
ments. Notwithstanding, the incorporation of meta-level argumentation reasoning about
preferences in the object level is an interesting aspect to take into account for further
extensions.
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Abstract. Dung’s argumentation is based on a Boolean binary defeat relation.
Recently, this framework has been extended in order to consider the strength of
the defeat relation, i.e., to quantify the degree to which an argument defeats an-
other one. In the extended framework, the defeat relation with varied strength
is abstract, i.e., its origin is not known. In this paper, we instantiate argumenta-
tion framework with varied-strength defeats by a preference-based argumentation
framework with a certainty degree in the preference relation. A potential exam-
ple of such valued preference relation is when a weight can be assigned to each
argument. In this case, we give conditions on the construction of the valued pref-
erence relation from the weight. Moreover, we show that the set of conditions in
which a defense holds with a valued preference relation is strictly included in the
set of conditions in which a defense holds with a Boolean preference relation.

1 Introduction

Argumentation is a framework for reasoning about an inconsistent knowledge. It
consists first in constructing the arguments, then identifying the acceptable ones and
finally drawing conclusions. Argumentation can be used in many fields of Artificial In-
telligence such as autonomous agents, decision making and non-monotonic reasoning.
Dung has proposed an abstract argumentation framework that is composed of a set of
arguments and a binary relation which is interpreted as a defeat between the arguments
[7]. Two basic properties are necessary to define the acceptable arguments: the conflict
freeness and the defense of an argument by a set of arguments. These two concepts de-
fine the output of an argumentation framework which is a set of sets of arguments that
can be accepted together.

Preferences play an important role to solve conflicts between arguments. Preference-
based argumentation frameworks are instantiation of Dung’s framework in which the
defeat relation is derived from an attack relation between arguments and a preference
relation over the arguments [16,1,2,4,12,10]. An attack succeeds (thus called a defeat)
if the attacked argument is not strictly preferred to the attacking one. However there are
situations in which the defense obtained from a preference relation is not discriminative
enough, so that some debatable extensions are obtained [6].
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c© Springer-Verlag Berlin Heidelberg 2011



Arguing with Valued Preference Relations 63

Dung’s argumentation framework and its various instantiations consider a Boolean
defeat relation over arguments. Recently, it has been argued that all defeats have not nec-
essarily the same strength [3,13,14,8,5]. Consequently, Dung’s argumentation frame-
work has been extended to consider a defeat relation with varied strengths. Standard
defeat (resp. preference) relations are particular cases of relations with varied strength
that can take only two values, and will be thus called Boolean defeat (resp. preference)
relations. One may compute this defeat relation in different ways. In the spirit of Dung’s
argumentation framework vs. preference-based argumentation framework, we investi-
gate the way where the defeat relation with varied-strength is computed from an attack
relation and a valued preference relation referring to the certainty/validity/intensity of
preference between arguments. More precisely the larger the preference of an argument
a over an argument b, the larger the defeat relation of a on b, if a attacks b. In this pa-
per, we extend the framework proposed in [11] with a detailed analysis. An interesting
particular case occurs when the valued preference relation is computed from weights
associated with arguments.

An important result in this paper shows that the defense obtained from a valued
preference relation is always more discriminative than that obtained from the corre-
sponding Boolean preference relation. Moreover, when the valued preference relation
is computed from weights, the discrimination gain is strict when the valued preference
relation is not Boolean, under some mild conditions on the valued preference relation.
In particular, the problem raised in [6] is solved by our framework. Finally, we give
conditions on the construction of the valued preference relation from weights of the
arguments. These conditions correspond to strengthening of the previous conditions.

The paper is organized as follows. The next section recalls Dung’s argumentation
framework, preference-based argumentation framework and argumentation framework
with varied-strength defeats. In Section 3 we instantiate argumentation framework with
varied-strength defeats by a preference-based argumentation framework where the pref-
erence relation is pervaded with intensity degrees. Section 4 compares the defense ob-
tained with Boolean and valued preference relations. In Section 5 we study different
ways to compute the intensity of a preference relation from weights associated to argu-
ments. Section 6 surveys related works. Lastly we conclude.

2 Argumentation Theory

Argumentation is a reasoning process based on constructing arguments, determining
potential conflicts between arguments and determining acceptable arguments.

2.1 Dung’s Argumentation Framework

In Dung’s framework [7], arguments are supposed to be given and conflicts between
arguments are represented by a binary defeat relation (called attack by Dung).

Definition 1. An argumentation framework (AF) is a tuple 〈A, ⇀〉 where A is a finite
set (of arguments) and ⇀ is a binary (defeat) relation defined overA×A.

The outcome of an argumentation framework is a set of sets of arguments, called exten-
sions, that are robust against attacks. A set A ⊆ A defends a if ∀b ∈ A such that b ⇀
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a, ∃c ∈ A such that c ⇀ b. A set A ⊆ A is conflict-free if there are no a, b ∈ A such
that a ⇀ b. A ⊆ A is a stable extension if and only if it is conflict-free, it defends all
elements in A, and it defeats any argument inA\A. Other semantics of extensions can
be found in the literature [7].

2.2 Preference-Based Argumentation Framework

Preference-based argumentation framework [1] is an instantiation of Dung’s framework
which is based on a binary attack relation between arguments and a preference relation
over the set of arguments.

Definition 2. A preference-based argumentation framework (PAF) is a 3-tuple 〈A, �
,�〉 where A is a set of arguments, � is a binary attack relation defined over A × A
and � is a complete or partial order overA×A.

� is called a Boolean preference relation. A PAF 〈A, �,�〉 is said to represent 〈A, ⇀〉
(⇀ is then called a defeat) iff

∀a, b ∈ A : a ⇀ b iff (a � b and ¬(b � a)). (1)

The extensions of a PAF are simply the extensions of the AF it represents.
A possible way to construct a preference relation over the set of arguments in

preference-based argumentation framework is to start from a set K of weighted propo-
sitional logic formulas [16]. An argument is a pair 〈H, h〉 where (1) h is a formula of
the language, (2) H is a consistent subset of K , (3) H entails h and (4) H is minimal
(i.e., no strict subset of H satisfies (1), (2) and (3)). One can then construct a function
w : A → [0, 1], where w(〈H, h〉) depends on the weights of formulas involved in the
support H of the argument.

Definition 3. A weighted preference-based argumentation framework (WPAF) is a 3-
tuple 〈A, �, w〉 where A is a set of arguments, � is a binary attack relation defined
overA×A and w : A → [0, 1] is a weight function over the arguments.

The WPAF 〈A, �, w〉 is said to be represented by the PAF 〈A, �,�w〉, where �w is
defined by

∀a, b ∈ A : a �w b iff w(a) > w(b). (2)

2.3 Argumentation Framework with Varied-Strength Defeats

Strengths of defeat relations have been incorporated in argumentation framework in two
ways: a qualitative relative way by means of a partial preorder [13,14] and a quantitative
way by means of a numerical function [8]. We follow the second modeling.

Definition 4. [8] An argumentation framework with varied-strength defeats (AFV) is a
3-tuple 〈A, ⇀,VDef 〉 where 〈A, ⇀〉 is a Dung’s argumentation framework and VDef
is a function defined from ⇀ to [0, 1].

For simplicity, we consider the interval [0, 1] but any bipolar linearly ordered scale
with top, bottom and neutral elements can be used as well. VDef (a, b) is the degree
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of credibility of the statement “a defeats b”. Values 0, 1
2 and 1 for VDef (a, b) mean

that the validity of the previous statement is certainly false, unknown and certainly true
respectively.

In [8] VDef is a function defined on the interval (0, 1]. In this paper we also need
to consider the value 0 for VDef (.) since VDef (.) will be computed from a valued
function in the next sections. We say that a defeats b w.r.t. 〈A, ⇀,VDef 〉 iff a ⇀ b and
VDef (a, b) > 0. Therefore the two cases where, given a, b ∈ A, ¬(a ⇀ b) and (a ⇀ b
but VDef (a, b) = 0) will be considered as equivalent.

Extensions are also defined from the conflict freeness and the notion of defense.
Intuitively, when b ⇀ a and c ⇀ b, the strength of defeats should play a role in the
definition of the defense since c is considered as a “serious” defender of a if the defeat
of c on b is at least as strong as the defeat of b on a [13]. Formally, we say that c defends
a w.r.t. 〈A, ⇀,VDef 〉 against the attack of b (i.e. b ⇀ a), if

c ⇀ b and VDef (c, b) ≥ VDef (b, a).

The defenses w.r.t. 〈A, ⇀,VDef 〉 and 〈A, ⇀〉 are similar, if VDef always equals 1.
Regarding the notion of conflict-freeness, A ⊆ A is α-conflict-free w.r.t. 〈A, ⇀,VDef 〉
if [8] ∑

a,b∈A

VDef (a, b) ≤ α.

When α = 0, this definition reduces to conflict-freeness of Dung’s framework [13].

3 Valued Preference-Based Argumentation Framework

Consider the following example borrowed from [6].

Example 1. Let 〈A, �,�〉 be a preference-based argumentation framework where
A = {a1, a2, a3, a4}, a1 � a2, a2 � a1, a1 � a4, a4 � a1, a2 � a3, a3 � a2,
a3 � a4, a4 � a3, a2 � a1 and a4 � a3. 〈A, �,�〉 represents Dung’s AF 〈A, ⇀〉
with a2 ⇀ a1, a1 ⇀ a4, a4 ⇀ a1, a2 ⇀ a3, a3 ⇀ a2, a4 ⇀ a3. There are two stable
extensions A = {a1, a3} and B = {a2, a4}. The authors of [6] have noticed that A
should not be considered as a stable extension as each argument in A is less preferred
to at least one argument in B (we have a2 � a1 and a4 � a3). Therefore B may be
considered as the only stable extension.

One may consider in this example that the defense of A is not so strong. Indeed, con-
sidering the defense of a1 ∈ A, the defeating argument a2 is strictly preferred to a1

while there is no evidence of relative strength between a3 and a2. On the contrary, the
defense of B is stronger. Indeed, considering the defense of a2 ∈ B, the defender a4

of a3 is strictly preferred to a3 and there is no evidence of relative strength between a3

and a2. It is apparent that the defense in PAF is not discriminative enough.
The idea is thus to introduce varied levels of preference between arguments, and in

particular to differentiate between strict preference and incomparability. To this end,
the Boolean preference relation � is refined as a valued preference relation (called
fuzzy preference relation in preference modeling) [9]. A valued preference relation
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on A is a function P : A × A → [0, 1]. P (a, b) is the degree of credibility of the
statement “a is strictly preferred to b”. P (a, b) = 1 means that the previous statement
is certainly validated, P (a, b) = 0 means that the previous statement is certainly non-
validated, and P (a, b) = 1

2 means that it is unknown whether the previous statement
is validated or not. The preference relation over arguments will serve to evaluate how
strong a defeat relation is in preference-based argumentation framework. We instantiate
AFV with a preference-based argumentation framework where preferences have varied
intensity [11].

Definition 5. A valued preference-based argumentation framework (VPAF) is a 3-tuple
〈A, �, P 〉 where A is the set of arguments, � is a binary attack relation defined over
A×A and P is a function defined from A×A to [0, 1].

The valued preference relation together with the attack relation will serve to compute a
varied-strength defeat relation. Intuitively, the more an argument a is preferred to an ar-
gument b, the less the strength of the defeat of b on a is. A valued preference-based argu-
mentation framework can represent an argumentation framework with varied-strength
defeats. A valued preference-based argumentation framework 〈A, �, P 〉 represents an
argumentation framework with varied-strength defeats 〈A, ⇀,VDef 〉 iff �=⇀ and

VDef (a, b) = 1− P (b, a).
Note that the Boolean condition ¬(b � a) in Equation (1) is extended into the cred-
ibility value 1 − P (b, a). The extensions of a valued preference-based argumentation
framework are the extensions of the argumentation framework with varied-strength de-
feats it represents.

Example 2. (Example 1 continued). From�, we define a valued preference relation P
as P(a, b) = 1 and P(b, a) = 0 if a � b, and P(a, b) = 1

2 otherwise. Then we
have VDef (a4, a3) = 1, VDef (a3, a2) = 1

2 , VDef (a2, a3) = 1
2 , VDef (a2, a1) = 1,

VDef (a1, a4) = 1
2 , and VDef (a4, a1) = 1

2 . The other values of VDef vanish. Now,
A = {a1, a3} is no more an admissible extension since the defeat of a2 ∈ B = {a2, a4}
on a1 ∈ A is stronger than the defense that A can give. Hence there remains only one
stable extension namely B. The problem raised by this example on the stable extension
is thus solved by the introduction of the strength of defeat relations.

It is worth noticing that an argumentation framework with varied-strength defeats rep-
resented by a valued preference-based argumentation framework is general and can also
capture Dung’s argumentation framework represented by a PAF.

Proposition 1. Let 〈A, �,�〉 be a preference-based argumentation framework and
〈A, ⇀1〉 be the Dung’s argumentation framework it represents. Let 〈A, �, P〉 be a
valued preference-based argumentation framework where P is constructed from � in
the following way: P(a, b) = 1 if a � b and P(a, b) = 0 otherwise. Let 〈A, ⇀2

,VDef 〉 be the argumentation framework with varied-strength defeats represented by
〈A, �, P〉. Let α = 0. Then,

– A ⊆ A defends a w.r.t. 〈A, ⇀2,VDef 〉 iff A defends a w.r.t. 〈A, ⇀1〉.
– A ⊆ A is α-conflict-free w.r.t. 〈A, ⇀2,VDef 〉 iff A is conflict-free w.r.t. 〈A, ⇀1〉.

The proofs are omitted due to the lack of space.
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4 Link between the Defense for Boolean and Valued Preference
Relations

In Example 1, there are two stable extensions obtained from a Boolean preference rela-
tion, and one of them is dominated by the other one and should not be a stable extension.
This drawback of PAFs comes from the fact that the concept of a defense with Boolean
preference relation is not discriminative enough. In Example 2, we also saw that the
defense occurs less often with VPAF compared to PAF. We show that, under a very
mild condition on the Boolean and valued preference relations, the defense is more dis-
criminative with VPAF compared to PAF. Then we also prove that the defense occurs
in the same situations for VPAF and PAF if and only if the valued preference relation
P is somehow Boolean. In other words, whenever there are some real graduality in P ,
there are strictly less situations of defense in VPAF compared to PAF.

4.1 General Inclusion Result between the Defense for Boolean and Valued
Preference Relations

Let 〈A, �,�〉 and 〈A, �, P 〉. We introduce a very weak assumption on the relationship
between P and � to express that P is a refinement of �. It simply says that P (a, b) is
larger when a is strictly preferred to b than when it is not the case. Formally,

∀a, b, c, d ∈ A : if a � b and ¬(c � d) then P (a, b) > P (c, d). (3)

Henceforth (3) is assumed to hold. Def. def:discri generalizes Ex. 2.

Definition 6. The defense of the VPAF 〈A, �, P 〉 is said to be more discriminative
than that of the PAF 〈A, �,�〉 if

{(A, a) | A ⊆ A, a ∈ A and A defends a w.r.t. 〈A, �, P 〉}
⊆ {(A, a) | A ⊆ A, a ∈ A and A defends a w.r.t. 〈A, �,�〉} (4)

Proposition 2. Under (3), the property (4) holds.

4.2 Case When P Derives from a Valuation on the Arguments

We show that the property (4), where the inclusion is replaced with an equality, holds
only when the valued preference relation is Boolean. We restrict ourselves in this section
to the case when P derives from a valuation w on the arguments.

Let 〈A, �, w〉 be a weighted preference-based argumentation framework and 〈A, �
,�w〉 be its associated preference-based argumentation framework according to Equa-
tion (2). Let 〈A, �, Pw〉 be a valued preference-based argumentation framework where
Pw depends on w. The simplest expression of Pw is the one that is similar to �w:

∀a, b ∈ A, Pw
bool(a, b) =

{
1 if w(a) > w(b)
0 if w(a) ≤ w(b) (5)

We will give other examples of functions Pw in Section 5.
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Given w, we compare the defense in both frameworks 〈A, �,�w〉 and 〈A, �, Pw〉.
We assume that the strict preference relation Pw can be written from w and a func-

tion p : [0, 1]2 → [0, 1] [9]. It is denoted by Pw
p . Formally, we have

∀a, b ∈ A Pw
p (a, b) = p(w(a), w(b)). (6)

We assume some monotonicity conditions on p: p is non-decreasing in the first argument
and non-increasing in the second argument. Relation (3) corresponds to a reinforcement
of the monotonicity conditions:

p(α, β) > p(δ, γ) whenever α > β and δ ≤ γ. (7)

Moreover, we have the boundary conditions:

p(0, 1) = 0 and p(1, 0) = 1. (8)

The function p shall be basically continuous in its two coordinates. However, in order
to be able to encompass the case of the Boolean case Pw

bool , p is allowed to be discon-
tinuous on the diagonal. This leads to the following assumption:

(t, v) �→ p(t, v) is continuous except at t = v. (9)

We obtain VDef w
p (a, b) = 1− p(w(b), w(a)). The situation p(t, t) for t ∈ [0, 1] corre-

sponds to two arguments a and b having the same weight t. It is worth noticing that the
degree of preference of a over b shall not depend on t. Hence, for symmetry reasons,
we assume that

∀t, v ∈ [0, 1] , p(t, t) = p(v, v). (10)

Due to the possible discontinuity on the diagonal, the previous assumption can be gen-
eralized in the following way:

∀t, v ∈ (0, 1] , p(t, t−) = p(v, v−), (11)

with the notation p(t, v−) = limε→0 , ε>0 p(t, v − ε).
Among the previous properties, we assume in this section that (6), (8), (9) and (11)

hold. The other properties (7) and (10) will be used in Section 5. Lastly, we also assume
that the function p is fixed and does not depend on A nor on w.

Proposition 3. Let 〈A, �, w〉 be a weighted preference-based argumentation frame-
work and 〈A, �,�w〉 be its associated preference-based argumentation framework
according to Equation (2). Let 〈A, �, Pw

p 〉 be a valued preference-based argumenta-
tion framework where Pw

p is computed from w. Assume that p satisfies (8), (9) and (11).
Then

{(A, a) | A ⊆ A, a ∈ A and A defends a w.r.t. 〈A, �,�w〉} (12)

= {(A, a) | A ⊆ A, a ∈ A and A defends a w.r.t. 〈A, �, Pw
p 〉}

is fulfilled iff Pw
p = Pw

bool (see (5)).
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5 From a Valuation of Arguments to a Valued Preference Relation

In this section, we study the case where the valued preference relation is computed from
weights associated with arguments. We aim to provide some properties which should
be satisfied by the valued preference relation.

Let 〈A, �, w〉 be a WPAF and 〈A, �,�w〉 be its associated PAF. Let 〈A, �, Pw〉
be a VPAF where Pw is computed from w. Let us give two examples.

∀a, b ∈ A, Pw
1 (a, b) =

{
1 if w(a) > w(b)
w(a) − w(b) + 1 if w(a) ≤ w(b)

∀a, b ∈ A, Pw
2 (a, b) =

{
0 if w(a) < w(b)
w(a) − w(b) if w(a) ≥ w(b)

Given w, we compare the defense in both frameworks 〈A, �,�w〉 and 〈A, �, Pw〉 in
order to derive the properties that Pw should satisfy.

5.1 Study of P w
1

Following Pw
1 , the strict preference between two arguments a and b is certain as soon as

w(a) > w(b). Hence we have VDef w
1 (a, b) = 1− Pw

1 (b, a) = max(w(a) − w(b), 0).
Let a, b and c be three arguments such that c � b and b � a. We are interested in

the defense provided by c in favor of a against b, in the two frameworks 〈A, �,�w〉
and 〈A, �, Pw

1 〉. Then we have the following five situations (see Table 1):

– Situation α: w(c) < w(b) < w(a). There is no defeat of b on a nor that of c on
b w.r.t. 〈A, �,�w〉 (since we have neither b ⇀w a nor c ⇀w b) and 〈A, �, Pw

1 〉
(since VDef w

1 (c, b) = VDef w
1 (b, a) = 0).

– Situation β: {w(a), w(c)} < w(b), which is a compact writing of w(a) < w(b)
and w(c) < w(b). The defense of c fails w.r.t. both 〈A, �,�w〉 (since b ⇀w a but
not(c ⇀w b)) and 〈A, �, Pw

1 〉 (since VDef w
1 (c, b) = 0 and VDef w

1 (b, a) > 0).
– Situation γ: w(b) < {w(a), w(c)}. Hence c defeats b and b does not defeat a

w.r.t. both 〈A, �,�w〉 (since not(b ⇀w a) but c ⇀w b) and 〈A, �, Pw
1 〉 (since

VDef w
1 (c, b) > 0 and VDef w

1 (b, a) = 0).
– Situation δ1: w(a) < w(b) � w(c), which means that w(b)−w(a) < w(c)−w(b).

c defends a w.r.t. both 〈A, �,�w〉 (since b ⇀w a and c ⇀w b) and 〈A, �, Pw
1 〉

(since VDef w
1 (c, b) > VDef w

1 (b, a)).
– Situation δ2: w(a) � w(b) < w(c), i.e., w(b) − w(a) > w(c) − w(b). We obtain

different conclusions: c defends a w.r.t. 〈A, �,�w〉 (since b ⇀w a and c ⇀w b)
but not w.r.t. 〈A, �, Pw

1 〉 (since VDef w
1 (c, b) < VDef w

1 (b, a)).

In sum, we get the same conclusions w.r.t. 〈A, �,�w〉 and 〈A, �, Pw
1 〉, except in

situation δ2. In the latter, the defeat of b on a is large whereas the defeat of c on b is
weak. However, the intuition of the Boolean case (�w) is valid: c is stronger than both
b and a, and, because of that, c deserves to defend a against the attack of b (even if c is
just slightly stronger than b). Consequently, we conclude that the expression Pw

1 is not
suitable.
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Table 1. The Yes/No are the answers to the question “Does c defend a against the attack of b?”,
“–” means that b does not defeat a, the symbol “	” means that the gap between the compared
values is large.

Situation Condition on w Defense w.r.t.
�w P w

2

α w(c) < w(b) < w(a) – –
β {w(a), w(c)} < w(b) No No
γ w(b) < {w(a), w(c)} – –
δ1 w(a) < w(b) 	 w(c) Yes Yes
δ2 w(a) 	 w(b) < w(c) Yes No

5.2 General Properties of P w

As in Section 4.2, we assume that the valued preference depends on a function p, and
is given by (6). It is denoted by Pw

p . We start from the assumptions (7), (8), (10) intro-
duced in Section 4.2, and the monotonicity conditions on p. Moreover, condition (9) is
strengthened. By virtue of Proposition 3, we consider a non-Boolean preference func-
tion Pw

p . Hence there shall be no discontinuity of p on the diagonal. Function p shall
thus be continuous. We assume that p is fixed and does not depend on A and w. It is
also supposed to satisfy all previous requirements.

The situation δ2 raised in the study of Pw
1 can be formalized in the following way.

Unrestricted positive defense (UPD): Let A be a set of arguments, and w
be a function from A to [0, 1]. Let 〈A, �, Pw

p 〉 be a valued preference-based
argumentation framework, where Pw

p is given by (6), representing a VPAF
〈A, ⇀,VDef w

p 〉. Let a, b, c ∈ A. If c � b, b � a and w(c) ≥ w(b) ≥ w(a)
then c defends a against b w.r.t. 〈A, ⇀,VDef w

p 〉.

Consequently, we have the following result.

Proposition 4. Under UPD, Pw
p (a, b) = 0 whenever w(a) ≤ w(b).

From Proposition 4, there is no way the statement “a is strictly preferred to b” (i.e.,
Pw

p (a, b) > 0) is validated when w(a) ≤ w(b). One is sure about the credibility of this
assertion only when w(a) is significantly larger than w(b). Therefore Pw

1 is ruled out
and Pw

2 is suitable.
Let us assume that c � b and b � a. Considering Pw

2 , VDef w
2 (a, b) = min(1 +

w(a)− w(b), 1). We distinguish between five situations (see Table 2):

– Situation α1: w(c) � w(b) < w(a), i.e., w(b) − w(c) > w(a) − w(b). We obtain
different conclusions: b does not defeat a w.r.t. 〈A, �,�w〉 (since not(b ⇀w a))
but c does not defend a w.r.t. 〈A, �, Pw

2 〉 (since VDef 2(c, b) < VDef 2(b, a)).
– Situation α2: w(c) < w(b) � w(a), i.e., w(b) − w(c) < w(a) − w(b). In fact,

b does not defeat a w.r.t. 〈A, �,�w〉 (since not(b ⇀w a)) and c defends a w.r.t.
〈A, �, Pw

2 〉 (since VDef 2(c, b) > VDef 2(b, a)).
– Situation β: {w(a), w(c)} < w(b). The defense of c fails w.r.t. both 〈A, �,�w〉

(since b ⇀w a but not(c ⇀w b)) and 〈A, �, Pw
2 〉 (since VDef 2(c, b) < 1 and

VDef 2(b, a) = 1).
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Table 2. Case of P w
2

Situation Conditions on w Defense
�w P w

2

α1 w(c) 	 w(b) < w(a) – No
α2 w(c) < w(b) 	 w(a) – Yes
β {w(a), w(c)} < w(b) No No
γ w(b) < {w(a), w(c)} – Yes
δ w(a) < w(b) < w(c) Yes Yes

– Situation γ: w(b) < {w(a), w(c)}. b does not defeat a w.r.t. 〈A, �,�w〉 (since
not(b ⇀w a)) and c defends a w.r.t. 〈A, �, Pw

2 〉 (since VDef 2(c, b) = 1 and
VDef 2(b, a) < 1).

– Situation δ: w(a) < w(b) < w(c). c defends a w.r.t. both 〈A, �,�w〉 (since b ⇀w

a and c ⇀w b) and 〈A, �, Pw
2 〉 (since VDef 2(c, b) = 1 and VDef 2(b, a) = 1).

Situation α in Table 1 (resp. δ in Table 2) is decomposed into two situations α1 and α2
in Table 2 (resp. δ1 and δ2 in Table 1). Having these correspondences in mind, we obtain
different results in the two Tables. Situation δ actually follows from UPD. In situations
α1 and α2, c is weaker than b, and b is weaker than a. Hence the defeats of c over b,
and of b over a are weak. In situation α1, w(c) � w(b) < w(a) means that c, that is
supposed to defend a, is much weaker than a and b. It is thus reasonable that the defense
of a by c fails in this case. In situation α2, condition w(c) < w(b) � w(a) means that
the weight of c is not too far from that of b compared to a. One then may admit that c
is sufficiently strong to defend a against b. Hence the results of Table 2 are natural.

6 Related Work

The extension of Dung’s argumentation framework with varied-strength defeat rela-
tions requires to define the basic notions namely admissibility (and thus defense) and
conflict-freeness in the extended framework. We distinguish two main approaches in
considering varied strengths of defeat relations. The authors of [8] model the strengths
by a numerical function where each defeat relation is associated with a non-zero posi-
tive real number representing its strength. The idea is to use the strengths of defeat re-
lations in order to define an inconsistency tolerance degree of a set of arguments. More
precisely, a set of arguments is α-conflict-free if the strengths of the defeat relations
between arguments of the set sum up to no more than α. Then the authors focus on the
complexity of computing the grounded extension in the extended framework and do not
explicitly study the incorporation of strengths in admissible extensions. Our framework
resembles that framework in the way the strengths are modeled and the conflict-freeness
notion is extended. Moreover we give a way to derive the strength of defeat relations
from a valued preference relation over the set of arguments. The second approach to
consider defeat relations with varied strengths has been proposed in [13,14]. Regarding
the extension of the defense, our approach is conceptually similar to the one proposed
in [13] but technically different leading to a different definition of admissibility. Our
framework is different in the following four points:
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1. in [13] the strength of defeat relations is modeled in a relative way by means of
a partial/complete preorder on defeat relations. Our framework is more informa-
tive since strengths are modeled by a numerical function representing how strong
a defeat relation is. The relative order between defeat relations is straightforwardly
derived from the function. Note that incomparability between defeat relations can
be modeled by a preorder but not by a numerical function; however this has no inci-
dence on the framework as incomparability does not play any role in the definition
of defense and admissibility,

2. in [13] four types of defenders have been defined. An argument a is a strong (resp.
weak, normal, unqualified) defender of c against b if the defeat of a on b is stronger
than (resp. equal to, incomparable to) the defeat of b on c. Then a set of arguments
A defends c if each defender of c in A falls in one of the above types. Lastly a set A
is admissible if it is conflict-free and defends all its elements. Then admissible ex-
tensions are compared w.r.t. to common arguments they contain. In our framework,
the defense is more restrictive as we require each defender to be stronger than or
equal to the defeater,

3. lastly, in [14] the strength of defeat relations is derived from a Boolean preference
relation over arguments. An argument a is called a proper defeater of b if a � b,
otherwise it is called blocking defeater of b. The concept of defense in this frame-
work coincides with our definition of defense when VDef is Boolean. In order to
compute the strength of a defense, the authors of [14] computes a 3-valued pref-
erence relation over arguments, denoted pref , such that pref (a, b) = 2 if a � b,
pref (a, b) = 1 if a and b have equal preference and pref (a, b) = 0 if a and b
are incomparable. This function is then used to compute defenders. Let a be de-
feated by b, which is in turn defeated by c and d. Then c and d are equivalent in
force defenders of a if pref (c, b) = pref (d, b). c is a stronger defender than d if
pref (c, b) > pref (d, b). Here again sets of conflict-free arguments (a la Dung) are
compared w.r.t. the strength of defense they provide to common arguments. In con-
trast, our framework is more general since we allow for different levels of strict
preference between arguments. Moreover the strength of α-conflict-free sets of ar-
guments is evaluated independently of other sets of arguments. Consequently the
two frameworks do not lead to the same results. In Example 1, while the above
framework returns both A and B as stable extensions, our framework returns B
only.

7 Conclusion

Dung’s argumentation framework has been extended to incorporate the strength of de-
feat relations [13,14,8]. While the notion of strengths remains abstract in these works,
i.e., their origin is not known, we can imagine different ways to derive them. In this
paper we investigated a way to capture the strength of a defeat relation from the validity
of preferences over arguments: the larger the preference between two arguments, the
larger the defeat. We have shown that the use of valued preference relations allows to
(strictly) restrict the situations of defense. When the valued preference relation is con-
structed from a weight function w defined on the set A of arguments, a natural prop-
erty, called UPD, comes up. It says that the defense of an argument a by an argument
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b against the attack of c shall hold whenever w(c) ≥ w(b) ≥ w(a). Then we showed
that, for every a, b, a is clearly not strictly preferred to b w.r.t. the valued preference
relation if w(a) ≤ w(b). The motivation for using valued preference relations instead
of Boolean ones is that the defense is not discriminative enough in the latter case.

As a future work we intend to incorporate valued preference relations in other
preference-based argumentation frameworks such as [4,15] and study their properties
in that frameworks.
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Abstract. Trust minimizes the uncertainty in the interactions among
the information sources. To express the possibly conflicting motivations
about trust and distrust, we reason about trust using argumentation
theory. First, we show how to model the sources and how to attack
untrustworthy sources. Second, we provide a focused representation of
trust about the sources in which trust concerns not only the sources but
also the information items and the relation with other information.

1 Introduction

Trust is a mechanism for managing uncertain information in decision mak-
ing, considering the information sources. In their interactions, the information
sources have to reason whether they should trust or not the other sources, and
on the extent to which they trust those other sources. This is important, for
example, in medical contexts, where doctors have to inform the patient of the
pro and con evidence concerning some treatment, or in decision support systems
where the user is not satisfied by an answer without explanations.

In this paper, a way to deal with the conflicts about trust using Dung’s ab-
stract argumentation framework is presented. A Dung argumentation frame-
work [5] can be instantiated by the arguments and attacks defined by a knowledge
base, and the knowledge base inferences are defined in terms of the claims of the
justified arguments, e.g., the ASPIC+ framework instantiates Dung frameworks
with accounts of the structure of arguments, the nature of attack and the use of
preferences [14]. In such a kind of framework, arguments are instantiated by sen-
tences of a single knowledge base, without reference to the information sources.
The following example presents an informal dialogue illustrating conflicts about
trust among the sources and the pieces of information they provide:

– Witness1: I suspect that the man killed his boss in Rome. (a)
– Witness1: But his car was broken, thus he could not reach the crime scene. (b)
– Witness2: Witness1 is a compulsive liar. (c)
– Witness3: I repaired the suspect’s car at 12pm of the crime day. (d)
– Witness4: I believe that Witness3 is not able to repair that kind of car. (e)

W. Liu (Ed.): ECSQARU 2011, LNAI 6717, pp. 74–85, 2011.
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– Witness5: The suspect has another car. (f)
– Witness6: Witness5 saw that the suspect parked 2 cars in my underground parking

garage 3 weeks ago. (g)
– Witness2: Witness5 was on holidays 3 weeks ago. (h)

To deal with the dimension of conflict in handling trust, we propose to use
argumentation theory, since it is a mechanism to reason about conflicting infor-
mation. The problem is that it is difficult to formalize the example above with
sentences from a single knowledge base only, e.g., to model it in ASPIC+ style
instantiated argumentation. We address the following research question: How
to instantiate abstract argumentation with a finite number of knowledge bases
instead of a single one, in which the pieces of information are thus indexed by
the source? This breaks down into the following subquestions:

1. How to represent the information sources and attack their trustworthiness?
2. How to represent pro and con evidence, as done in Carneades [7]?
3. How to attack the sources’ trustworthiness about single information items?

To answer the research question we propose meta-argumentation [8,11,2]. Meta-
argumentation provides a way to instantiate abstract arguments, i.e., abstract
arguments are treated as meta-arguments. It allows us not only to reason about
arguments such as sentences from a knowledge base indexed by the information
source, but also to introduce in the framework other instances like arguments
about the trustworthiness of sources. The advantage is that we do not extend
Dung’s framework in order to introduce trust but we instantiate his theory with
meta-arguments. We do not claim that argumentation is the only way to model
trust, but we underline that, when the sources argue, they are strongly influenced
by the trustworthiness relationships with the other sources.

The paper follows the research questions. After a brief introduction on meta-
argumentation, we describe our model for representing the information sources
and the focused trust relationships involving them.

2 Meta-Argumentation

A Dung-style argumentation framework AF [5] is a tuple 〈A,→〉 where A is a set
of elements called arguments and → is a binary relation called attack defined on
A×A. A Dung’s semantics consists of a set of arguments that does not contain
an argument attacking another argument in the set. For more details, see [5].

Like Baroni and Giacomin [1] we use a function E mapping an argumentation
framework 〈A,→〉 to its set of extensions, i.e., to a set of sets of arguments.
Since they do not give a name to the function E , and it maps argumentation
frameworks to the set of accepted arguments, we call E the acceptance function.

Definition 1. Let U be the universe of arguments. An acceptance function E :
2U × 2U×U → 22U

is a partial function which is defined for each argumentation
framework 〈A,→〉 with finite A ⊆ U and →⊆ A×A, and maps an argumentation
framework 〈A,→〉 to sets of subsets of A: E(〈A,→〉) ⊆ 2A.
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Fig. 1. The meta-argumentation methodology

Meta-argumentation instantiates Dung’s theory with meta-arguments, such that
Dung’s theory is used to reason about itself [3]. Meta-argumentation is a partic-
ular way to define mappings from argumentation frameworks to extended argu-
mentation frameworks: arguments are interpreted as meta-arguments, of which
some are mapped to “argument a is accepted”, acc(a), where a is an abstract
argument from the extended argumentation framework EAF . Moreover, aux-
iliary arguments are introduced to represent, for example, attacks, so that, by
being arguments themselves, they can be attacked or attack other arguments.
The meta-argumentation methodology is summarized in Figure 1.

The function f assigns to each argument a in the EAF , a meta-argument
“argument a is accepted” in the basic argumentation framework. The func-
tion f−1 instantiates an AF with an EAF . We use Dung’s acceptance func-
tions E to find functions E ′ between EAF s and the acceptable arguments AA′

they return. The accepted arguments of the meta-argumentation framework are
a function of the EAF AA′ = E ′(EAF ). The transformation function con-
sists of two parts: the function f−1, transforming an AF to an EAF , and a
function g which transforms the acceptable arguments of the AF into accept-
able arguments of the EAF . Summarizing E ′ = {(f−1(a), g(b)) | (a, b) ∈ E} and
AA′ = E ′(EAF ) = g(AA) = g(E(AF )) = g(E(f(EAF ))).

The first step of the meta-argumentation approach is to define the set of
EAF s. The second step consists of defining flattening algorithms as a function
from this set of EAF s to the set of all basic AF : f : EAF → AF . The inverse
of the flattening is the instantiation of the AF . See [2,16] for further details.
We define an EAF as a set of partial argumentation frameworks of the sources
〈A, 〈A1,→1〉, . . . , 〈An,→n〉,→〉.

Definition 2. An extended argumentation framework EAF is a tuple
〈A, 〈A1,→1〉, . . . , 〈An,→n〉,→〉 where for each source 1 ≤ i ≤ n, Ai ⊆ A ⊆ U
is a set of arguments, → is a binary attack relation on A × A, and →i is a
binary relation on Ai ×Ai. The universe of meta-arguments is MU = {acc(a) |
a ∈ U} ∪ {Xa,b, Ya,b | a, b ∈ U}, where Xa,b, Ya,b are the meta-arguments corre-
sponding to the attack a → b. The flattening function f is given by f(EAF ) =
〈MA, �−→〉, where MA is the set of meta-arguments and �−→ is the meta-attack
relation. For a set of arguments B ⊆ MU , the unflattening function g is given
by g(B) = {a | acc(a) ∈ B}, and for sets of subsets of arguments AA ⊆ 2MU , it
is given by g(AA) = {g(B) | B ∈ AA}.

Given an acceptance function E for an AF , the extensions of accepted argu-
ments of an EAF are given by E ′(EAF ) = g(E(f(EAF ))). The derived accep-
tance function E ′ of the EAF is thus E ′ = {(f−1(a), g(b)) | (a, b) ∈ E}. We say
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that the source i provides evidence in support of argument a when a ∈ Ai, and
the source supports the attack a → b when a → b ∈→i.

Note that the union of all the Ai does not produce A because A contains also
those arguments which are not supported by the sources, and are just “put on
the table”. Definition 3 presents the instantiation of a basic AF as a set of partial
argumentation frameworks of the sources using meta-argumentation.

Definition 3. Given an EAF = 〈A, 〈A1,→1〉, . . . , 〈An,→n〉〉 where for each
source 1 ≤ i ≤ n, Ai ⊆ A ⊆ U is a set of arguments, →⊆ A × A, and
→i⊆ Ai × Ai is a binary relation over Ai. MA ⊆ MU is {acc(a) | a ∈
A1 ∪ . . . ∪ An}, and �−→⊆ MA × MA is a binary relation on MA such that:
acc(a) �−→ Xa,b, Xa,b �−→ Ya,b, Ya,b �−→ acc(b) if and only if there is a source
1 ≤ i ≤ n such that a, b ∈ Ai and a → b ∈→i.

Intuitively, the Xa,b auxiliary argument means that the attack a → b is “inac-
tive”, and the Ya,b auxiliary argument means that the attack is “active”. An
argument of an EAF is acceptable iff it is acceptable in the flattened AF .

3 Modelling Trust in Meta-Argumentation

A number of authors have highlighted that the definition of trust is difficult to
pin down precisely, thus in the literature there are numerous distinct definitions.
Castelfranchi and Falcone [4] define trust as “a mental state, a complex attitude
of an agent x towards another agent y about the behaviour/action a relevant for
the goal g” while Gambetta [6] states that “trust is the subjective probability by
which an individual A expects that another individual B performs a given action
on which its welfare depends”. Common elements are a consistent degree of
uncertainty and conflicting information associated with trust. In this paper, we
do not refer to the actions of the sources, but we provide a model for representing
the conflicts the sources have to deal with trust. We follow Liau [9] where the
influence of trust on the assimilation of information into the source’s mind is
considered: “if agent i believes that agent j has told him the truth on p and he
trusts the judgement of j on p, then he will also believe p”. Extending the model
by introducing goals to model the former two definitions is left for future work.

3.1 Information Sources

The reason why abstract argumentation is not suited to model trust is that
an argument, if it is not attacked by another acceptable argument, is considered
acceptable. This prevents us from modeling the situation where, for an argument
to be acceptable, it must be related to some sources which provide the evidence
for such an argument to be accepted. Without an explicit representation of the
sources, it becomes impossible to talk about trust: the argument can only be
attacked by conflicting information, but it cannot be made unacceptable due to
the lack of trust in the source.
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Fig. 2. (a) arguments and attack without evidence, (b) multiple evidence

Thus a challenge is how to model evidence, where sources are a particular type
of evidence. Arguments needing evidence are well known in legal argumentation,
where the notion of burden of proof has been introduced [7]. Meta-argumentation
provides a means to model burden of proof in abstract argumentation without
extending argumentation. The idea is to associate to each argument a ∈ A put
on the table, which is represented by means of meta-argument acc(a), an auxil-
iary argument Wacc(a) attacking it. Being auxiliary this argument is filtered out
during the unflattening process. This means that without further information,
just as being put on the table, argument a is not acceptable since it is attacked
by the acceptable argument Wacc(a) and there is no evidence defending it against
this “default” attack, as visualized in Figure 2.a for arguments a and b. This ev-
idence is modeled by arguments which attack auxiliary argument Wacc(a), thus
reinstating meta-argument acc(a). Attacks are modeled as arguments as well.
For each auxiliary argument Ya,b, representing the activation of the attack, we
associate an auxiliary argument WYa,b

.
Each argument a in the sources’ mind is supported by means of an attack

on Wacc(a). Sources are introduced in the meta-argumentation framework under
the form of meta-arguments “source i is trustable”, trust(i), for all the sources
i. We represent the fact that one or more information sources support the same
argument by letting them attack the same Wacc(a) auxiliary argument. An ex-
ample of multiple evidence is depicted in Figure 2.b. In the figures, we represent
the information sources as boxes, and the arguments as circles where grey ar-
guments are the acceptable ones. As for arguments, an attack to become active
needs some trusted agent.

We have now to discuss which semantics we adopt for assessing the accept-
ability of the arguments and the sources. For example, suppose that two sources
claim they are each untrustworthy. What is the extension? We adopt admissi-
bility based semantics. We do not ask for completeness because if one wants
to know whether a particular argument is acceptable, the whole model is not
needed, just the part related to this particular argument is needed.

We extend the EAF proposed in Definition 2 by adding evidence provided by
information sources and second-order attacks, such as attacks from an argument
or attacks to another attack. For more details about second-order attacks in
meta-argumentation, see [11,2]. The unflattening function g and the acceptance
function E ′ are defined as above.

Definition 4. An EAF with second-order attacks is a tuple 〈A, 〈A1,→1,→2
1〉,

. . . , 〈An,→n,→2
n〉,→〉 where for each source 1 ≤ i ≤ n, Ai ⊆ A ⊆ U is a set
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of arguments, →⊆ A × A, →i is a binary relation on Ai × Ai, →2
i is a binary

relation on (Ai∪ →i)× →i.

Definition 5 presents the instantiation of an EAF with second-order attacks as
a set of partial frameworks of the sources using meta-argumentation.

Definition 5. Given an EAF = 〈A, 〈A1,→1,→2
1〉 . . . , 〈An,→n,→2

n〉,→〉, the
set of meta-arguments MA is {trust(i) | 1 ≤ i ≤ n} ∪ {acc(a) | a ∈ A1 ∪ . . . ∪
An} ∪ {Xa,b, Ya,b | a, b ∈ A1 ∪ . . . ∪ An} ∪ {Wacc(a) | a ∈ A1 ∪ . . . ∪ An} and
�−→⊆MA×MA is a binary relation on MA such that:

– acc(a) 
−→ Xa,b iff a, b ∈ Ai and a →i b, and Xa,b 
−→ Ya,b iff a, b ∈ Ai and
a →i b, and Ya,b 
−→ acc(b) iff a, b ∈ Ai and a →i b, and

– trust(i) 
−→ Wacc(a) iff a ∈ Ai, and Wacc(a) 
−→ acc(a) iff a ∈ A, and
– trust(i) 
−→ WYa,b iff a, b ∈ Ai and a →i b, and WYa,b 
−→ Ya,b iff a, b ∈ Ai and

a →i b, and
– acc(a) 
−→ Xa,b→c iff a, b, c ∈ Ai and a →2

i (b →i c), and Xa,b→c 
−→ Ya,b→c iff
a, b, c ∈ Ai and a →2

i (b →i c), and Ya,b→c 
−→ Yb,c iff a, b, c ∈ Ai and a →2
i (b →i

c), and
– Ya,b 
−→ Yc,d iff a, b, c ∈ Ai and (a →i b) →2

i (c →i d).

We say that source i is trustworthy when meta-argument trust(i) is acceptable,
and we say that i provides evidence in support of argument a (or attack a → b)
when a ∈ Ai (when a → b ∈→i), and trust(i) �−→Wacc(a) (trust(i) �−→WYa,b

).

acc(a) acc(b)Xb,aYb,a

trust(1)

W(Yb,a)W(acc(a)) W(acc(b))
a b

Witness1

flattening

f

Witness5

g

Witness6

flattening

trust(5)

acc(g)

trust(6)

acc(f)

W(acc(f))W(acc(g))

(a) (b)

Fig. 3. Introducing (a) the sources, (b) evidence for the arguments

Example 1. Consider the informal dialogue in the introduction. We represent the
sources in the argumentation framework, as shown in Figure 3.a. Witness1 pro-
poses a and b and the attack a → b. Using the flattening function of Definition 5,
we add meta-argument trust(1) for representing Witness1 in the framework and
we add meta-arguments acc(a) and acc(b) for the arguments of Witness1. Wit-
ness1 provides evidence for these arguments, and the attack b→ a by attacking
the respective auxiliary arguments W . In the remainder of the paper, we model
the other conflicts highlighted in the dialogue.

Let trust(i) be the information source i and acc(a) and Ya,b the argument ai

and the attack a →i b respectively, as defined in Definitions 2 and 3. trust(i)
can provide evidence for acc(a) and Ya,b. Sources can attack other sources as
well as their arguments and attacks. With a slight abuse of notation, we write
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a ∈ E ′(EAF ), even if the latter is a set of extensions, with the intended meaning
that a is in some of the extensions of E ′. We now provide some properties of our
model. Some of the proofs are omitted due to the lack of space.

Proposition 1. Assume admissibility based semantics, if an argument a ∈ A
is not supported by evidence, i.e., a �∈ Ai for all i, then a is not accepted, a �∈
E ′(EAF ).

Proof. We prove the contrapositive: if argument a is accepted, then argument a
is supported. Assume argument a is accepted. Then auxiliary argument Wacc(a)

is rejected due to the conflict-free principle. Meta-argument acc(a) is defended,
so Wacc(a) is attacked by an accepted argument using admissible semantics.
Auxiliary argument Wacc(a) can only be attacked by meta-argument trust(i).
We conclude that a is supported.

Proposition 1 is strengthened to Proposition 2.

Proposition 2. If an argument a is not supported, a �∈ Ai, then the extensions
E ′(EAF ) are precisely the same as the extensions of the AF = 〈A,→〉 in which
a �∈ A, and the attacks on a or from a do not exist, i.e., b → a �∈→ and
a → c �∈→.

Proposition 3. If an attack a → b is not supported, i.e., a → b �∈→i, then the
extensions E ′(EAF ) are precisely the same as the extensions of the AF = 〈A,→〉,
in which the attack does not exist, a → b �∈→.

Proposition 4. Assume EAF is a framework in which argument a is supported
by the trustworthy source i, and there is another trustworthy source j. In that
case, the extensions are the same if also j provides an evidence in support of a.

3.2 Evidence for Arguments

The evidence in favor of the arguments is evidence provided by the agents for
the arguments/attacks they propose. At the meta-level, this is modeled as an at-
tack from meta-argument trust(i) to W auxiliary arguments. However, there are
other cases in which more evidence is necessary to support the acceptability of
an argument. Consider the case of Witness1. His trustworthiness is attacked by
Witness2. What happens to the evidence provided by Witness1? Since the source
is not trustworthy then it cannot provide evidence. Meta-argument trust(1) be-
comes not acceptable and the same happens to all its arguments and attacks.
What is needed to make them acceptable again is more evidence. This evidence
can be provided under the form of another argument which reinstates the ac-
ceptability of these information items.

Definition 5 allows only the sources to directly provide evidence for the in-
formation items. As for Witness5 and Witness6 in the dialogue, sources can
provide evidence also by means of other arguments. This cannot be represented
using Definition 5, this is why we need to extend it with an evidence relation �
representing evidence provided under the form of arguments for the information
items of the other sources.
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Definition 6. An EAF with evidence TEAF 2 = 〈A, 〈A1,→1,→2
1, �1〉, . . . ,

〈An,→n,→2
n, �n〉,→〉 where �i is a binary relation on Ai × Aj and the set

of meta-arguments MA is {trust(i) | 1 ≤ i ≤ n} ∪ {acc(a) | a ∈ A1 ∪ . . . ∪
An} ∪ {Xa,b, Ya,b | a, b ∈ A1 ∪ . . . ∪ An} ∪ {Wacc(a) | a ∈ A1 ∪ . . . ∪ An} and
�−→⊆MA×MA is a binary relation on MA such that hold the conditions of Defi-
nition 5, and: acc(a) �−→Wacc(b) iff a, b ∈ Ai and a �i b, and Wacc(b) �−→ acc(b)
iff b ∈ A and a �i b. We say that a source j supports the evidence provided by
other sources to argument a when a �∈ Aj , b ∈ Aj, and acc(b) �−→Wacc(a).

The following properties hold for Definition 6.

Proposition 5. If there are multiple arguments a1 ∈ A1, . . . , an ∈ An providing
evidence for an argument b ∈ Ak (or an attack), and there are no attacks on the
arguments, c1 → a1 �∈→1, . . . , cn → an �∈→n, then b (or the attack) is accepted,
b ∈ E ′(EAF ), iff at least one of the sources is trustworthy, i.e., trust(j) ∈
E(f(EAF )) with j ∈ 1, . . . , n.

Proposition 6. Suppose two sources i and j provide evidence for the same ar-
gument a, i.e., a ∈ Ai and a ∈ Aj, then it is the same whether a source k
supports the evidence provided by i or j, i.e., b ∈ Ak and acc(b) �−→Wacc(a).

Example 2. Consider the dialogue in the introduction. Argument g by Witness6
is an evidence for argument f by Witness5. This evidence is expressed in meta-
argumentation in the same way as evidence provided by the sources, such as
an attack to Wacc(f) attacking acc(f). In this case, it is meta-argument acc(g)
which attacks Wacc(f), as visualized in Figure 3.b.

3.3 Focused Trust Relationships

In our model, trust is represented by default as the absence of an attack towards
the sources or towards the information items and as the presence of evidence in
favor of the pieces of information. On the contrary, the distrust relationship is
modeled as a lack of evidence in support of the information items or as a direct
attack towards the sources and their pieces of information.

In the informal dialogue, Witness2 attacks the trustworthiness of Witness1
as a credible witness. In this way, she is attacking each argument and attack
proposed by Witness1. Witness4, instead, is not arguing against Witness3 but
she is arguing against the attack d → b as it is proposed by Witness3. Finally, for
Witness2 the untrustworthiness of Witness6 is related only to the argument g.
We propose a focused view of trust in which the information sources may be
attacked for being untrustworthy or for being untrustworthy only concerning a
particular argument or attack. Definition 7 presents an EAF in which a new
relation DT between sources is given to represent distrust.

Definition 7. A trust-based extended argumentation framework TEAF is a tu-
ple 〈A, 〈A1,→1,→2

1, �1, DT1〉, . . . , 〈An,→n,→2
n, �n, DTn〉,→〉 where for each

source 1 ≤ i ≤ n, Ai ⊆ A ⊆ U is a set of arguments, →⊆ A×A, →i⊆ Ai × Ai



82 S. Villata et al.

is a binary relation, →2
i is a binary relation on (Ai∪ →i)× →i, �i is a bi-

nary relation on Ai × Aj and DT ⊆ Ai × ϑ is a binary relation such that
ϑ = j or ϑ ∈ Aj or ϑ ∈→j.

Definition 8 shows how to instantiate an EAF enriched with a distrust relation
with meta-arguments. In particular, the last three points model, respectively,
a distrust relationship towards an agent, towards an argument and towards an
attack. The unflattening function g and the acceptance function E ′ are defined
as above.

Definition 8. Given a TEAF = 〈A, 〈A1,→1,→2
1, �1, DT1〉, . . . ,

〈An,→n,→2
n, �n, DTn〉,→〉, see Definition 7, the set of meta-arguments MA

is {trust(i) | 1 ≤ i ≤ n} ∪ {acc(a) | a ∈ A1 ∪ . . . ∪ An} ∪ {Xa,b, Ya,b | a, b ∈
A1 ∪ . . .∪An} ∪ {Wacc(a) | a ∈ A1 ∪ . . .∪An} and �−→⊆MA×MA is a binary
relation on MA such that hold the conditions of Definitions 5 and 6, and:

– acc(a) 
−→ Xa,b iff a, b ∈ Ai and a →i b, and Xa,b 
−→ Ya,b iff a, b ∈ Ai and
a →i b, and Ya,b 
−→ acc(b) iff a, b ∈ Ai and a →i b, and

– trust(i) 
−→ Xtrust(i),Wacc(a)
iff a ∈ Ai, and Xtrust(i),Wacc(a)


−→ Ytrust(i),Wacc(a)

iff a ∈ Ai, and Ytrust(i),Wacc(a)

−→ Wacc(a) iff a ∈ Ai, and Wacc(a) 
−→ acc(a) iff

a ∈ Ai, and
– trust(i) 
−→ Xtrust(i),WYa,b

iff a, b ∈ Ai and a →i b, and Xtrust(i),WYa,b

−→

Ytrust(i),WYa,b
iff a, b ∈ Ai and a →i b, and Ytrust(i),WYa,b


−→ WYa,b iff a, b ∈ Ai

and a →i b, and WYa,b 
−→ Ya,b iff a, b ∈ Ai and a →i b, and
– trust(i) 
−→ Wacc(a) iff a ∈ Ai and aDTitrust(j), and Wacc(a) 
−→ acc(a) iff a ∈ A

and aDTitrust(j), and acc(a) 
−→ Xacc(a),trust(j) iff a ∈ Ai and aDTitrust(j), and
Xacc(a),trust(j) 
−→ Yacc(a),trust(j) iff a ∈ Ai and aDTitrust(j), and Yacc(a),trust(j) 
−→
trust(j) iff a ∈ Ai and aDTitrust(j), and

– trust(i) 
−→ Wacc(a) iff a ∈ Ai, b ∈ Aj and aDTib, and Wacc(a) 
−→ acc(a) iff a ∈
A, b ∈ Aj and aDTib, and acc(a) 
−→ Xacc(a),Ytrust(j),Wacc(b)

iff a ∈ Ai, b ∈ Aj and

aDTib, and Xacc(a),Ytrust(j),Wacc(b)

−→ Yacc(a),Ytrust(j),Wacc(b)

iff a ∈ Ai, b ∈ Aj

and aDTib, and Yacc(a),Ytrust(j),Wacc(b)

−→ Ytrust(j),Wacc(b)

iff a ∈ Ai, b ∈ Aj and

aDTib, and
– trust(i) 
−→ Wacc(a) iff a ∈ Ai, b, c ∈ Aj and aDTi(b →j c), and Wacc(a) 
−→ acc(a)

iff a ∈ A, b, c ∈ Aj and aDTi(b →j c), and acc(a) 
−→ Xacc(a),Ytrust(j),WYb,c

iff a ∈
Ai, b, c ∈ Aj and aDTi(b →j c), and Xacc(a),Ytrust(j),WYb,c


−→ Yacc(a),Ytrust(j),WYb,c

iff a ∈ Ai, b, c ∈ Aj and aDTi(b →j c), and Yacc(a),Ytrust(j),WYb,c


−→ Ytrust(j),WYb,c

iff a ∈ Ai, b, c ∈ Aj and aDTi(b →j c).

We say that a source i is untrustworthy when there is an attack from an argument
aj ∈ Aj to i, ajDTji. We say that an argument ai ∈ Ai or attack a →i b ∈→i

is untrustworthy when there is an attack from an argument aj ∈ Aj to ai or
a →i b, ajDTjai or ajDTj(a →i b).

Proposition 7. Assume that source i is the only source providing evidence for
argument a ∈ Ai and attack c → b ∈→i, and assume admissibility based seman-
tics. If the information source i is considered to be untrustworthy, then a and
c → b are not acceptable.
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Proof. We prove the contrapositive: if the arguments and attacks supported by
an information source i are acceptable then the information source i is consid-
ered to be trustworthy. Assume the source supports argument a and the attack
c → b and assume that this argument and this attack are acceptable. Then
auxiliary arguments Wacc(a) and WYc,b

are rejected due to the conflict-free prin-
ciple. Meta-arguments acc(a) and Yc,b are defended, thus Wacc(a) and WYc,b

are
attacked by an acceptable argument, using admissible semantics. We assumed
that this argument and this attack have no other evidence, so auxiliary argu-
ments Wacc(a) and WYc,b

can only be attacked by meta-argument trust(i). Since
they are attacked by an acceptable argument, we conclude that the source i is
acceptable.

Witness1

Witness2

c

e

db Witness3

Witness4

trust(1)

trust(2)

W(acc(c))acc(c)

Y(acc(c),trust(1)) X(acc(c),trust(1))

flattening

flattening

acc(b)

trust(3) trust(4)

Xd,bYd,b acc(d)

W(Yd,b)

W(acc(d))

Y(trust(3),W(Yd,b))

X(trust(3),W(Yd,b)) W(acc(e))
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(3),W(Yd,b)))

X(acc(e),Y(trust
(3),W(Yd,b)))
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g
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h
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trust(2)acc(g)

trust(6)

W(acc(g))
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Y(acc(h),Y(trust
(6),W(acc(g))))

W(acc(h))
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(b)

(c)
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focus2
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Fig. 4. Focused trust in argumentation

Example 3. Figure 4.a shows that Witness2 attacks the trustworthiness of Wit-
ness1 by means of argument c. In meta-argumentation, we have that trust(2)
provides evidence for acc(c) by attacking meta-argument Wacc(c) and, with meta-
arguments X, Y , it attacks trust(1). This means that if Witness1 is untrustwor-
thy then each of his arguments and attacks cannot be acceptable either, if there is
no more evidence. The set of acceptable arguments for the meta-argumentation
framework is E(f(focus1)) = {trust(2), acc(c), Yacc(c),trust(1)}. In Figure 4.b-c,
instead, the attack is directed against a precise information item provided by
the source. In particular, Witness4 attacks the attack d → b of Witness3. This is
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achieved in meta-argumentation by means of an attack from meta-argument
acc(e), for which trust(4) provides evidence, to the attack characterized by
auxiliary argument Yd,b. The set of acceptable arguments is E(f(focus2)) =
{trust(4), trust(3), acc(d), acc(e), acc(b), Yacc(e),Ytrust(3),WYb,d

, WYd,b
}. Witness3’s

attack d → b is evaluated as untrustworthy by Witness4 and thus it is not ac-
ceptable. Finally, Witness2 evaluates Witness6 as untrustworthy concerning ar-
gument g. In meta-argumentation, trust(2), by means of meta-argument acc(h),
attacks meta-argument acc(g) proposed by trust(6). The set of acceptable argu-
ments is E(f(focus3)) = {trust(2), trust(6), acc(h), Yacc(h),Ytrust(6),Wacc(g)

,

Wacc(g)}.

4 Related Work and Conclusions

Parsons et al. [12] highlight what are the mechanisms to investigate through
argumentation, first of all the provenance of trust. Tang et al. [15] present a
framework to introduce the sources in argumentation and to explicitly express
the degrees of trust. They connect agent-centric trust networks to argumenta-
tion networks. They do not have the possibility to attack the trustworthiness
of the agents as well as the trustworthiness of single arguments and attacks.
We do not express the degrees of trust. Matt et al. [10] propose to construct a
belief function both from statistical data and from arguments in the context of
contracts. We do not address the computation of trust by an evaluator in isola-
tion, instead all trust relationships are evaluated together. Prade [13] presents
a bipolar qualitative argumentative modeling of trust where trust and distrust
are assessed independently. We do not use observed behavior and reputation to
compute trust and we are interested in abstract arguments and not in arguments
with an abductive format.

Trust plays an important role in many research areas of artificial intelligence,
particularly in the semantic web and multiagent systems where the sources have
to deal with conflicting information from other sources. We provide a model
where the information sources can be introduced into the framework. In argu-
mentation systems as ASPIC+, arguments come from a single knowledge base
and they have the form 〈{p, p → q}, q〉. We propose to introduce the sources,
e.g., 〈{1 : p, 2 : p → q}, 2 : q〉, by instantiating abstract argumentation with
the different knowledge bases of the sources using meta-argumentation. In our
model, arguments need to be supported in order to be accepted. Furthermore,
the trustworthiness of the sources can be attacked directly, or the attack can be
focused on single arguments or attacks.

We address several issues as future research. First, there is a bidirectional link
between the source and its input: the provided data is more or less believable
on the basis of the source’s trustworthiness, but there is feedback such that the
invalidation of the data feeds back on the sources’ credibility [4]. Second, we
will investigate two dimensions of trust that have to be independently evaluated
such as the sincerity/credibility of a source and the competence of a source.
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Abstract. In this paper, we show that preferences intervene twice in argumen-
tation frameworks: i) to compute standard solutions (i.e. extensions), and ii) to
refine those solutions (i.e. to return only the preferred extensions). The two roles
are independent and obey to distinct postulates. After introducing and studying
the postulates, we provide an example of a formal framework which models the
two roles and verifies all the proposed postulates.

1 Introduction

An argumentation framework (AF) consists of a set of arguments and an attack relation
among them. Arguments are evaluated using an acceptability semantics. This amounts
to compute acceptable sets of arguments, called extensions. The attack relation is at
the heart of all existing semantics. An attacker wins unless the attacked argument is
defended by “good” arguments. Since [12], it has been argued that arguments may not
have the same strength and some of them may be stronger or preferred to others. Conse-
quently, several attempts were made in the literature for taking into account preferences
in argumentation frameworks (e.g. [2,5]). Besides, preferences play a key role in non-
monotonic reasoning [6]. They are used in order to narrow down the number of possible
belief sets of a base theory. To say it differently, from a given base theory, a first set of
standard solutions (belief sets) is computed, then a subset of those solutions (called
preferred solutions) is chosen on the basis of available preferences. Thus, preferences
refine the standard solutions.

In this paper, we show that preferences intervene twice in an argumentation frame-
work. They are mandatory for: i) computing its standard solutions, and then ii) for
narrowing the number of those solutions. The first role of preferences may not take into
account all the available preferences. It focuses only on those which conflict with the
attacks; such attacks are said critical. The idea is that an attack may fail if the attacked
argument is stronger than its attacker. Ignoring this issue may lead to counter-intuitive
standard solutions. This first role has largely been discussed in existing literature while
the second role has only been pointed out recently in [7]. However, the difference be-
tween the two roles is still obscure. In this paper, we clarify the distinction between
the two roles, and show that they are completely independent since none of them can
be modeled by the other one. We propose postulates that should be satisfied by any
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preference-based argumentation framework. Some of them concern the first role while
others concern the refinement role. Those postulates confirm again that the two roles
are different. We propose a particular framework in which both roles are modeled. The
properties of this framework are investigated.

The paper is structured as follows: We start by recalling Dung’s AF, then we discuss
informally the two roles of preferences. The two next sections propose postulates that
guide the definition of ‘approaches’ for each role. Then, we propose a particular frame-
work which considers both roles. Before concluding, we compare our contribution with
existing works. Due to lack of space, the proofs are not included in the paper.

2 Basics of Argumentation

The abstract argumentation framework proposed in [8] consists of a set of arguments
and an attack relation between them.

Definition 1. An argumentation framework (AF) is a pair F = (A,R), where A is a
set of arguments andR ⊆ A×A is an attack relation. For two arguments a and b, the
notation aRb means that a attacks b.

Different acceptability semantics for evaluating arguments were proposed in the same
paper [8]. Each semantics amounts to define sets of acceptable arguments, called exten-
sions. An extension represents a coherent position, thus it should be conflict-free and
defends its elements. Formally:

Definition 2. Let F = (A,R) be an AF, E ⊆ A and a ∈ A.

– E is conflict-free iff �a, b ∈ E s.t. aRb.
– E defends a iff ∀b ∈ A s.t. bRa, ∃c ∈ E s.t. cRb.

The following definition recalls the main semantics proposed in [8].

Definition 3. Let F = (A,R) be an AF and E ⊆ A.

– E is an admissible set iff it is conflict-free and defends all its elements.
– E is a complete extension iff it is admissible and contains all arguments it defends.
– E is a preferred extension iff it is a maximal (for set inclusion) admissible set.
– E is a grounded extension iff it is a minimal (for set inclusion) complete set.
– E is a stable extension iff it is a preferred set that attacks any element in A \ E .

Let Ext(F) be the set of extensions of F under a given semantics.

Example 1. Let us consider the AF F1 = (A1,R1) where A1 = {a, b, c, d}, aR1b,
bR1c, cR1d and dR1a. F1 has two stable extensions: {a, c} and {b, d}.

Extensions are used for defining the status of each argument as follows.

Definition 4. Let F = (A,R) be an AF and a ∈ A.
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– a is skeptically accepted iff ∀E ∈ Ext(F), a ∈ E .
– a is credulously accepted iff ∃E ∈ Ext(F) s.t. a ∈ E .
– a is rejected iff ∀E ∈ Ext(F), a /∈ E .

Let Status(a,F) be a function that returns the status of an argument a in F .

Example 1 (Cont): The four arguments a, b, c, d are credulously accepted in F1.

3 Preferences in Argumentation: Informal Discussion

In what follows, we assume that F = (A,R) is an arbitrary argumentation framework
where A is finite. Let ≥ be a binary relation that expresses preferences between argu-
ments of A. For instance, an argument may be preferred to another if it is grounded
on more certain information, or if it promotes a more important value. Throughout the
paper, the relation≥⊆ A×A is assumed to be a preorder (i.e. reflexive and transitive).
For arguments a and b, writing a ≥ b (or (a, b) ∈ ≥) means that a is at least as strong
as b. The relation > is the strict version of≥ (i.e. a > b iff a ≥ b and not (b ≥ a)).

Let us now analyze the role that preferences between arguments can play in an argu-
mentation framework. We will discuss different critical examples.

Example 1 (Cont): Assume that a > b and c > d. According to ‘Hoare’ ordering, the
stable extension {a, c} is better than {b, d} since each element of the latter is weaker
than an element of the former. Thus, F2 would have only {a, c} as extension.

Note that in Example 1, preferences refine the results obtained in the standard case.
Indeed, the set of preferred solutions is a subset of the set of the standard ones. Pref-
erences play here exactly the role described in nonmonotonic logic formalisms. Let us
now consider a different example.

Example 2. Let F2 = (A2,R2) be s.t. A2 = {a, b} and aR2b. F2 has one stable
extension: the set {a}. Now, if we assume that b > a, it is clear that the standard
solution cannot be refined and {a} is the preferred solution of the framework. What
happened here is that the preferred argument is rejected when computing the standard
solution. Thus, there is no way to apply the preference of b over a.

However, is it intuitive to still consider {a} as an extension of F2? The answer is
certainly no as illustrated next. Assume that F2 is is built over a knowledge base K =
{x} and a set of defeasible rules D = {⇒ y; y ⇒ ¬x} as in ASPIC system [1]. Let
a :⇒ y; y ⇒ ¬x and b : x. If the attack relation is the one which allows to undermine
a premise of another argument, then a undermines b in its premise x while b does not
undermine a since it has no premise. If now we assume that x is more certain than
both ⇒ y; y ⇒ ¬x, then it is natural to keep b and to reject a. To put it differently, the
preferred solution of F2 would be the extension {b}.

Contrarily to Example 1, the use of preferences in Example 2 completely modifies the
original set of extensions. Consequently, the preferred solutions of a framework are not
necessarily a subset of the standard ones. This is not surprising since preferences in
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this case are used in order to compute the standard solutions. Thus, {b} is a standard
solution. Preferred solutions refine the standard ones. In this example, {b} is the only
standard solution, thus it is also the unique preferred solution.

It is also worth mentioning that when preferences are used for computing the stan-
dard solutions of an argumentation framework, not all available preferences are
exploited. Only those which conflict with the attacks, as in Example 2, are used. Con-
sequently, the result which is returned may need to be refined as shown in the following
example.

Example 3. Let us consider the argumentation framework F3 = (A3,R3) where
A3 = {a, b, c, d, e} and R3 = {(a, b), (b, c), (c, d), (d, a), (c, e), (e, b)}. This frame-
work has one stable extension which is {a, c}. Assume now that b > c, d > a and
b > e. Note that only b > e conflicts with the attack relation since e attacks b. Thus,
only this preference is taken into account for computing the two standard solutions
{a, c} and {b, d}. Consequently, the two remaining preferences can be used in order to
refine the standard result and to prefer the extension {b, d}.

To summarize, two roles of preferences are distinguished:

1. To weaken the critical attacks (i.e. the attacks which conflict with the preferences)
in an AF, and thus to compute intuitive standard solutions.

2. To refine the standard solutions computed after considering the first role.

Example 2 shows that a refinement does not solve the problem of critical attacks while
Example 3 shows that the first role is not sufficient and its results may need to be refined
as the first role does not exploit all the available preferences.

4 Handling Critical Attacks

The aim of this section is to propose the basic postulates that any preference-based
argumentation framework (PAF) should satisfy. We focus here on the use of preferences
for computing the standard solutions, thus for modeling the first role of preferences.

Definition 5 (PAF). A preference-based argumentation framework (PAF) is a tuple
T = (A,R,≥) where A is a set of arguments,R is an attack relation and ≥ is partial
or total preorder on A.

Note that we do not show how arguments are evaluated in such a PAF. In fact, we do not
focus on a particular approach, we rather propose postulates that any approach should
satisfy. Before presenting those postulates, let us first define critical attacks.

Definition 6 (Critical attack). Let T = (A,R,≥) be a PAF. An attack (b, a) ∈ R is
critical iff a > b.

The role of preferences which consists of handling critical attacks has already been
identified in the literature, namely in [2,4,5,10]. While all these approaches agree that
a strong argument may be accepted if it is attacked by a weaker argument, they dis-
agree on whether the weak attacker should be rejected or not. Let us say it differently,
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in Example 2, the works [2,5,10] return one stable extension which contains both the
attacker and the attacked argument, that is the set {a, b}. This extension violates one of
the basic requirements of acceptability semantics, the conflict-freeness of extensions. In
[4], the authors have argued that this is undesirable since the intuition behind an exten-
sion is that it encodes a ’coherent position’. This coherence is captured by the notion
of conflict-freeness in acceptability semantics. That is why it is at the heart of all se-
mantics. The authors have then proposed an alternative solution in which the argument
a is rejected and the only stable extension of the framework F2 is {b}. In this paper,
we argue that the extensions of an argumentation framework should be conflict-free,
otherwise the whole theory of argumentation collapses. We propose four basic postu-
lates that should be satisfied by any approach for preference-based argumentation that
models the first role of preferences. The first postulate states that the extensions of a
PAF should be conflict-free.

Postulate 1 (Conflict-freeness). Let T = (A,R,≥) be a PAF and Ext(T ) it set of
extensions. Each extension E ∈ Ext(T ) should be conflict-free wrtR.

The second postulate says that when there are no critical attacks, then the output of the
PAF should coincide with that of a system without preferences. The reason is that we
suppose that a PAF is built over a well-founded basic system (i.e. the system constructed
only from a pair (A,R)).

Postulate 2 (Recovering existing semantics). Let T = (A,R,≥) be a PAF and F =
(A,R) its basic version. If there are no critical attacks in T , then Ext(T ) = Ext(F)
where Ext(F) is the set of the extensions of F under a given semantics.

The third postulate shows how to privilege a strong argument over a weak attacker.

Postulate 3 (Critical attacks). Let T = (A,R,≥) be a PAF and a, b ∈ A. Let E1, E2
be two conflict-free (wrt R) subsets of A s.t. E1 = E ∪ {a} and E2 = E ∪ {b}. If aRb
and b > a, then E1 /∈ Ext(T ).

The last postulate states that attacks should win when they are not critical.

Postulate 4 (Normal attacks). Let T = (A,R,≥) be a PAF and a, b ∈ A. Let E1, E2
be two conflict-free (wrt R) subsets of A s.t. E1 = E ∪ {a} and E2 = E ∪ {b}. If aRb
and not(bRa) and not(b > a), then E2 /∈ Ext(T ).

Works in [2,5,10], proceed by removing critical attacks from an argumentation graph
and applying Dung’s semantics on the remaining sub-graph. It is easy to show that when
there are no critical attacks, the two graphs coincide.

Property 1. Let F = (A,R) be an AF, ≥ ⊆ A × A, and F ′ = (A,Rr) be such that
Rr = R \ {aRb s.t. b > a}. If �a, b ∈ A s.t. aRb and b > a, thenR = Rr.

It can be shown that such an approach violates the conflict-freeness in some cases when
the attack relation is not symmetric, and the third postulate (for example for admissible
semantics), while it satisfies Postulates 2 and 4.
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Proposition 1. Let T = (A,R,≥) be a PAF s.t. Ext(T ) = Ext((A,Rr)) where
Rr = R \ {aRb s.t. b > a}. Then, T verifies Postulates 2 and 4.

When the attack relation is symmetric, Postulates 1 and 3 are verified.

Proposition 2. Let T = (A,R,≥) be a PAF s.t. Ext(T ) = Ext(F) where F =
(A,Rr). IfR is symmetric, then T verifies Postulates 1 and 3.

This means that when the attack relation is symmetric, all the postulates are verified.
However, the following example shows that the result may still need to be refined.

Example 4. Let A = {a, b, c, d}, R = {(a, c), (c, a), (a, d), (d, a), (b, c), (c, b), (b, d),
(d, b)} and a > c, b > d. The extensions of this PAF are {a, b} and {c, d}. However,
{a, b} is clearly preferred to {c, d}. Thus, the frameworks developed in [2,5,10] do
not take into account the second role of preferences even when the attack relation is
symmetric.

In the recent paper ([4]) an approach has been proposed which verifies all postulates.

Proposition 3. The class of PAFs defined in [4] verifies Postulates 1 - 4.

5 Refining AFs by Preferences

Until now, we have studied the first role of preferences. We have particularly shown that
“some” preferences should be taken into account for computing the standard solutions
of an argumentation framework. Examples 1 and 3 show that standard solutions may
need to be narrowed down using the remaining preferences. What is worth noticing is
that a refinement amounts to compare subsets of arguments. In Example 1, the so-called
democratic relation,�d, is used for comparing the two sets {a, c} and {b, d}:

Let E , E ′ ⊆ A. E �d E ′ iff ∀x′ ∈ E ′ \ E , ∃x ∈ E \ E ′ s.t. x > x′.

Relation �d is not unique and different relations can be used as shown next.

Example 1 (Cont): Let us consider again F1 and assume that a ≈ b and c > d. Ac-
cording to relation�d, the two extensions {a, c} and {b, d} are incomparable. However,
since a ≈ b and c > d, it is clear that one could prefer {a, c} to {b, d}.
Let us now define the basic properties that such a relation should satisfy. The first prop-
erty ensures that the refinement relation is a preorder, that is reflexive and transitive.
Note that these are the basic properties of any preference relation.

Postulate 5 (Preorder). Let A be a set of arguments. A refinement relation on P(A)
is a preorder (reflexive and transitive).

The second property ensures that the relation privileges sets that contain strong argu-
ments (wrt the preference relation ≥).

Postulate 6 (Privileging strong arguments). Let T = (A,R,≥) be a PAF, a, b ∈ A
and E1, E2 ∈ P(A). If E1 = E ∪ {a} and E2 = E ∪ {b} and a > b, then E1 � E2.

Property 2. The democratic relation verifies the two postulates 5 and 6.
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6 A Particular Rich PAF

In this section, we propose a particular framework which models both roles of prefer-
ences and verifies all the postulates introduced in this paper. The framework follows
two steps: at the first step, it computes the standard solutions by handling correctly the
available critical attacks. These solutions are then refined using an appropriate refine-
ment relation. In order to make the paper easy to read, we will call PAF the framework
which computes the standard solutions and rich PAF the one which refines the results
of the PAF.

Definition 7 (Rich PAFs). A rich PAF is a tuple T = (A,R,≥,�) where A is a set
of arguments, R ⊆ A × A is an attack relation, ≥ ⊆ A × A is a (partial or total)
preorder and � ⊆ P(A) × P(A) is a relation which verifies Postulates 5 and 6. The
extensions of T (under a given semantics) are elements of Max(S,�), where S is the
set of extensions (under the same semantics) of the PAF (A,R,≥).

In what follows, we propose a new approach that handles correctly critical attacks (i.e.
which satisfies the four postulates introduced in section 4). We exploit for that a sim-
ple result that is proved recently in [4]. In that paper, the authors have proposed a new
approach for taking into account preferences and which prevents the shortcomings of
existing ones, namely the problem of conflicting extensions. The basic idea is to in-
tegrate preferences in the definition of semantics. A refinement of stable semantics is
defined as a dominance relation which compares sets of arguments. The best sets wrt
that relation are the extensions of the PAF. In that paper, the authors have shown that
all their extensions are conflict-free and Postulates 2, 3 and 4 as satisfied as well. They
have also shown an important result for semantics that refine stable one with prefer-
ences. The result says that the extensions of their approach (i.e. the best sets wrt the
dominance relation) are exactly the stable extensions of the basic argumentation frame-
work in which each critical attack is inverted. In what follows, we show that this idea
can be generalized to any acceptability semantics.

The idea of inverting the arrows of critical attacks in an argumentation graph allows
to take into account the preference (between the two arguments involved in a critical
attack) and in the same time the conflict between the two arguments of the attack is
represented. The intuition behind this is that an attack between two arguments repre-
sents two things: i) an incoherence between the two arguments (in logic-based systems,
it captures inconsistency between the supports of the two arguments), and ii) a kind of
preference determined by the direction of the attack. Thus, in our approach, the direc-
tion of the arrow represents a real preference between arguments. Moreover, the conflict
is kept between the two arguments. Dung’s acceptability semantics are then applied on
the modified graph. In our approach, standard solutions are computed by the following
preference-based framework.

Definition 8 (Repaired PAF). A repaired PAF is a tuple T = (A,R,≥) where A is
a set of arguments, R ⊆ A × A is an attack relation and ≥ is a preorder on A.
The extensions of T under a given semantics are the extensions of the argumentation
framework (A,Rr), called repaired framework, under the same semantics with: Rr =
{(a, b)|(a, b) ∈ R and not (b > a)} ∪ {(b, a)|(a, b) ∈ R and b > a}.
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From Definition 8, it is clear that if a PAF has no critical attacks, then the repaired
framework coincides with the basic one.

Property 3. Let T = (A,R,≥) be a PAF. If T has no critical attacks, thenRr = R.

This property shows also that when a PAF has no critical attacks, then preferences do
not play any role in the evaluation process.

Our approach does not suffer from the drawback of existing ones. Indeed, it delivers
conflict-free extensions of arguments. Thus, it satisfies Postulate 1.

Proposition 4. Let T = (A,R,≥) be a PAF and E1, . . . , En its extensions under a
given semantics. For all i = 1, . . . , n, Ei is conflict-free wrt. R.

The next result confirms that our approach is well-founded in the sense that acceptable
arguments are defended by “good” arguments. Moreover, it verifies the orderings be-
tween the attack relation and the preference relation, meaning that it verifies Postulates
3 and 4.

Proposition 5. Let T = (A,R,≥) be a PAF.

– For each admissible set E of T , it holds that (∀x ∈ E) (∀x′ /∈ E)
if (x′Rx and not (x > x′)) or (xRx′ and x′ > x) then (∃y ∈ E) s.t. (yRx′ and
not (x′ > y)) or (x′Ry and y > x′).

– For each stable extension E of T , it holds that (∀x′ /∈ E) (∃x ∈ E) s.t. (xRx′ and
not (x′ > x)) or (x′Rx and x > x′).

The fact of inverting the arrows of critical attacks in an argumentation graph does not
affect the status of arguments that are not related to the arguments of those attacks. This
means that our approach has no side effects. Before presenting the formal result, let us
first give a useful definition.

Definition 9. Let F = (A,R) be an AF and a, b ∈ A. The arguments a and b are
related in F iff there is exists a finite sequence a1, . . . , an of arguments such that a1 =
a, an = b and for all i = 1, . . . , n− 1, either (ai, ai+1) ∈ R or (ai+1, ai) ∈ R.

Proposition 6. Let T = (A,R,≥) be a PAF. For all a ∈ A s.t. �b, c ∈ A s.t. (b, c) ∈ R
is a critical attack and a is related with b, it holds that:

– Status(a, (A,R)) = Status(a, (A,Rr)) (under preferred and grounded seman-
tics).

– If (A,R) and (A,Rr) both have at least one stable extension, then Status
(a, (A,R)) = Status(a, (A,Rr)) (under this semantics).

Our approach privileges the strongest arguments. Indeed, we show that these arguments
are skeptically accepted when they are not conflicting. If such a strong argument is not
skeptically accepted, then it is for sure attacked (wrt.R) by another strongest argument.
Before presenting the formal result, let us define the strongest arguments (or the top
elements) wrt. a relation ≥.

Definition 10 (Maximal elements). Let O be a set of objects and ≥⊆ O × O is a
(partial or total) preorder. The maximal elements of O wrt. ≥ are Max(O,≥) = {o ∈
O | �o′ ∈ O s.t. o′ > o}.
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Property 4. Let T = (A,R,≥) be a PAF s.t ≥ is complete1.

– If Max(A,≥) is conflict-free (wrt.R), then ∀a ∈ Max(A,≥) :
• a is skeptically accepted in T wrt. preferred and grounded semantics.
• if T has at least one stable extension, then a is skeptically accepted wrt. stable

semantics.
– If a is not skeptically accepted (under preferred or grounded semantics), or there

exists at least one stable extension and a is not skeptically accepted, then ∃b ∈
Max(A,≥) s.t. (b, a) ∈ R.

The following result shows that when the preference relation ≥ is a linear order (i.e.
reflexive, antisymmetric, transitive and complete), then the corresponding PAF has a
unique stable/preferred extension. Moreover, this extension is computed in O(n2) time
where |A| = n. It is clear that in this case, there is no need to refine the result.

Proposition 7. Let T = (A,R,≥) be a PAF s.t. R is irreflexive and ≥ is a linear
order.

– T has exactly one stable extension.
– Stable, preferred and grounded extensions of T coincide.
– If |A| = n, then this extension is computed in O(n2) time.

Let us now see what happens in case the attack relation is symmetric. The following
result shows that our approach returns the same results as the approach developed in
[2,5]. This means that inverting the arrows or removing them will lead to the same
result.

Property 5. Let T = (A,R,≥) be a PAF whereR is symmetric. Extensions of T coin-
cide with extensions of (A,R′) (under the same semantics) whereR′ = {(a, b)|(a, b) ∈
R and¬(b > a)}.

We can also show that when the attack relation is symmetric, the extensions of a PAF
are a subset of those of its basic framework. This means that preferences filter the ex-
tensions. However, the result is not optimal since it may need to be refined again as
shown in Example 4.

Proposition 8. Let T = (A,R,≥) be a PAF where R is symmetric. If E ⊆ A is
a preferred (stable) extension of system T then E is a preferred (stable) extension of
(A,R).

Recall that this result is not true in case the attack relation is not symmetric as shown in
Example 2.

The following result characterizes the extensions of (A,R) that are discarded in a
PAF whenR is symmetric. The idea is that an extension is discarded iff some argument
outside it is strictly preferred to any arguments of that extension with which it conflicts.

Property 6. Let T = (A,R,≥) be a PAF s.t.R is symmetric, and E ⊆ A. E is a stable
extension of (A,R) but not of T iff ∃x′ /∈ E s.t. ∀x ∈ E , if xRx′, then x′ > x.

1 A relation ≥ on a set A is complete iff for all a, b ∈ A, a ≥ b or b ≥ a.
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When the attack relation is symmetric and irreflexive, the corresponding PAF is co-
herent (i.e. its preferred and stable extensions coincide) and it has at least one stable
extension.

Proposition 9. Let T = (A,R,≥) be a PAF. IfR is symmetric and irreflexive, then:

– T is coherent.
– T has at least one stable extension.

Until now, we have proposed a particular framework for handling the first role of pref-
erences. From now on, we will use the democratic relation for refining the results of
this framework. Recall that this relation verifies the two postulates 5 and 6.

We will now show that when the preference relation ≥ is a linear order, then the
democratic relation does not change the output of the underlying PAF.

Property 7. Let T = (A,R,≥,�) be a rich PAF and S be the set of extensions (under
a given semantics) of the repaired framework (A,Rr). If R is irreflexive and ≥ is a
linear order, then Max(S,�) = S holds for stable, preferred, grounded and complete
semantics.

It is also easy to show that when a rich PAF has no critical attacks, then its extensions
are a subset of the extensions of its basic version (i.e. without preferences).

Property 8. Let T = (A,R,≥,�) be a rich PAF s.t.R has no critical attacks. Preferred
(stable) extensions of T are exactly the elements of Max(S,�) where S is the set of all
preferred (stable) extensions of the AF (A,R).

Example 1 (Cont): Let us use the democratic relation �d. In F1, there is no critical
attacks (Rr = R). The extensions of the rich PAF are Max({{a, c}, {b, d}},�d) =
{{a, c}}. Thus, {a, c} is the unique stable extension.

Example 2 (Cont): The repaired framework of F2 is ({a, b},Rr) where bRa. Thus,
the PAF has one stable extension {b} which is the only extension of the rich PAF:
Max({{b}},�d) = {{b}}.

Example 3 (Cont): Recall that the repaired framework ofF3 has two stable extensions:
{a, c} and {b, d}. Moreover, Max({{a, c}, {b, d}},�d) = {{a, c}}. Thus, {a, c} is the
unique stable extension of the rich PAF that uses the democratic relation.

7 Related Work

Introducing preferences in argumentation frameworks goes back to the paper by Simari
and Loui in [12]. In that work, the authors have defined an AF in which arguments are
built from a propositional knowledge base. The arguments grounded on specific infor-
mation are considered as stronger than the ones built from more general information.
This preference is used to solve dilemmas between any pair of conflicting arguments.
Thus, it is used for handling critical attacks. The idea of this paper has been gener-
alized in [2] then in [5] to any AF and to any preference relation. Unfortunately, the



96 L. Amgoud and S. Vesic

approach followed in [2,5] delivers correct results only when the attack relation is sym-
metric. When the attack relation is not symmetric, the approach suffers from two main
drawbacks: the first is that it may return conflicting extensions as shown in Example 1
since it may put two conflicting arguments in the same extension. One of these argu-
ments is clearly undesirable. The second drawback is a consequence of the first one.
Indeed, since an undesirable argument may be accepted, then all the arguments that are
defended by this argument are accepted as well to the detriment of good ones. Let us
illustrate this issue on the following example.

Example 5. Let us consider the argumentation framework F4 = (A4,R4) where
A4 = {a, b, c, d} and R4 = {(b, a), (b, c), (c, d)}. Assume that a > b. The approach
in [2,5] gets the framework F ′

4 = (A4,R′
4) where R′

4 = {(b, c), (c, d)}. Its grounded
extension is the set {a, b, d}. This result is incorrect for two reasons: The first one is
that the two arguments a and b cannot be both accepted. The second reason is that the
argument b (which should be rejected) defends d against c, leading thus to an unde-
sirable result. Indeed, d is defended by a “bad” argument! It is easy to check that our
approach returns {a, c} as the grounded extension and rejects the two other arguments:
i.e. b and c.

Our approach overcomes the limits of the one proposed in [2,5]. Moreover, it is more
general since it models even the second role of preference (i.e. the refinement).

Recently, in [3], the authors have pointed out the first limit of the approach followed
in [2,5], namely the violation of conflict-freeness. They have proposed a new approach
for handling critical attacks where preferences are introduced at a semantics level. As
shown in this paper, the approach developed in [3] satisfies the four rationality postu-
lates. However, it completely neglects the second role of preferences, i.e. refinement.
Another work which handles correctly the problem of critical attacks is that proposed in
[11]. In that paper, Prakken has proposed a logic-based instantiation of Dung’s frame-
work in which three kinds of attacks are considered: rebuttal, assumption attack and
undercut. For each relation, the author has found a way to avoid the problem of criti-
cal attack and ensured conflict-free extensions. We think that our work is more general
since we solved the problem at an abstract level. This avoid the user who wants to use
another attack relation to look for new ways to avoid conflicting extensions. Moreover,
our approach is axiomatic, meaning that it is well founded. It is also worth mentioning
that in [11], the second role of preferences is neglected. To the best of our knowledge,
the only work on refinement is that appeared in [7]. The authors have proposed a par-
ticular refinement relation in case of stable semantics. In this sense, our work is more
general since it accepts any refinement relation. Moreover, there is no restriction to par-
ticular semantics. Finally, we would like to mention the work done in [9]. In this paper,
the author made a survey of the critics presented in [3,7] against existing approaches for
PAFs. The author concluded that one should use a symmetric attack relation in order to
avoid the problem of conflicting extensions and then to refine the result with the pref-
erence relation already mentioned in [7]. The first suggestion is certainly not realistic,
especially in light of new results in the literature stating that symmetric relations should
be avoided in logic-based argumentation systems.
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8 Conclusion

This paper has studied deeply the difference between the two roles that preferences may
play in an AF. We have shown that preferences intervene both for computing what is
called standard solutions in nonmonotonic reasoning formalisms and for refining that
result, and choosing a subset of those solutions. We have shown that the two roles are
completely independent and should be taken into account in two steps. Main postulates
that any approach modeling each role have been proposed. Finally, we have developed
a particular framework that considers both roles. The framework satisfies the proposed
postulates and its properties show that it is well-founded.
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Abstract. We discuss some issues in using mixtures of polynomials
(MOPs) for inference in hybrid Bayesian networks. MOPs were proposed
by Shenoy and West for mitigating the problem of integration in infer-
ence in hybrid Bayesian networks. In defining MOP for multi-dimensional
functions, one requirement is that the pieces where the polynomials are
defined are hypercubes. In this paper, we discuss relaxing this condition
so that each piece is defined on regions called hyper-rhombuses. This re-
laxation means that MOPs are closed under transformations required for
multi-dimensional linear deterministic conditionals, such as Z = X + Y .
Also, this relaxation allows us to construct MOP approximations of
the probability density functions (PDFs) of the multi-dimensional con-
ditional linear Gaussian distributions using a MOP approximation of
the PDF of the univariate standard normal distribution. We illustrate
our method using conditional linear Gaussian PDFs in two and three
dimensions.

1 Introduction

An hybrid Bayesian network (BN) is a BN with a mix of discrete and continuous
random variables. A random variable is said to be discrete if the cardinality of
its state space is countable, and continuous otherwise. Each variable in a BN is
associated with conditional distributions for the variable, one for each state of its
parents. A conditional for a variable is said to be deterministic if the conditional
variances of its conditional distributions are all zeroes.

Marginalizing a continuous variable involves integration of the product of all
potentials that contain the variable in their domains. Often, these potentials are
not integrable in closed form. This is a major problem in making inferences in
hybrid BNs. We will call this problem the integration problem.

One solution to the integration problem is to approximate conditional PDFs
by a family of functions called mixtures of truncated exponentials (MTEs) [4].
MTE functions are piecewise functions that are defined on regions called hyper-
cubes, and the functions themselves are exponential functions of a linear function
of the variables. Such functions are easy to integrate, and the family of MTE
functions are closed under multiplication, addition, and integration, three op-
erations that are used in finding marginals using the extended Shenoy-Shafer
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architecture [7]. Cobb et al. [1] describe MTE approximations of several com-
monly used one-dimensional PDFs. Moral et al. [5] describe a mixed-tree method
for representing an MTE approximation of a 2-dimensional CLG distribution.

Another method that is similar in principle to the mixture of truncated ex-
ponentials method is the mixture of polynomials (MOP) method proposed by
Shenoy and West [8]. Instead of using piecewise exponential functions, the MOP
method uses piecewise polynomials. Although a detailed comparison of MTE and
MOP methods has yet to be done, an advantage of the MOP method is that one
can easily find MOP approximations of differentiable PDFs using the Taylor series
expansion of the PDF [8], or by using Lagrange interpolating polynomials [6].

In both the MTE and the MOP methods, the multi-dimensional piecewise func-
tions are defined on regions called hypercubes. One advantage of this restriction
is that such multi-dimensional piecewise functions are easy to integrate. However,
the hypercube restriction poses two limitations. It is difficult to find an MTE or
a MOP approximation of a multi-dimensional conditional PDF for dimensions
greater than two. The mixed-tree method proposed by Moral et al. [5] and the
Taylor series method proposed by Shenoy and West [8] do not scale up to higher di-
mensions in practice, i.e., the approximations using these methods have too many
pieces or too many terms or have too high a degree for practical use.

Another problem is the presence of deterministic conditionals for continuous
variables. For example, suppose X has PDF fX(x) and suppose Y has conditional
PDF fY |x(y), and suppose Z has a deterministic conditional given by the linear
function Z = X +Y . To find the marginal distribution of Z, we need to combine
fX(x) and fY |x(z−x) and then integrate x out of the combination. The problem
is that even if fY |x(y) was defined on hypercubes, fY |x(z−x) is no longer defined
on hypercubes. This problem applies equally to the MTE and MOP methods.

In this paper, we suggest replacing the hypercube condition with a more
general condition called hyper-rhombus. For one-dimensional functions, the two
conditions coincide. However, for dimensions two or greater, the hyper-rhombus
condition is a generalization of the hypercube condition. The hyper-rhombus
condition has several important advantages. First, it allows us to define MOP
approximations of high-dimensional CLG distributions using a MOP approxi-
mation of the one-dimensional standard normal PDF. Second, MOP functions
defined on hyper-rhombuses are closed under operations required for multi-
dimensional linear deterministic functions. This is not true for MTE functions,
i.e., if the definition of MTE functions were generalized so that the hypercube
condition was replaced by the hyper-rhombus condition, then MTE functions
would not be closed under operations required for multi-dimensional linear de-
terministic functions. For example, the sum of two independent variables with
exponential PDFs has a gamma PDF, which is not a MTE function. Third,
MOP functions that are defined on hyper-rhombuses are closed under integra-
tion. Fourth, the computational penalty incurred by having hyper-rhombus con-
dition for MOPs (compared to the hypercube condition) appears to be small.

An outline of the remainder of the paper is as follows. In Section 2, we provide
a re-definition of high-dimensional MOP functions that are defined on regions
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called hyper-rhombuses. In Section 3, we describe how we can use the MOP
approximation of the standard normal PDF to find MOP approximations of the
PDFs of two- and three-dimensional CLG distributions. Finally in Section 4, we
summarize our findings and discuss some issues for further research.

2 Mixture of Polynomials Functions

In this section, we define MOP functions. The definition we provide here is
slightly more general than the definition provided in Shenoy and West [8] for
the case of multi-dimensional functions.

2.1 MOP Functions

A one-dimensional function f : R → R is said to be a mixture of polynomials
(MOP) function if it is a piecewise function of the form:

f(x) =

{
a0i + a1ix + · · ·+ anix

n for x ∈ Ai, i = 1, . . . , k,
0 otherwise.

(1)

where A1, . . . , Ak are disjoint intervals in R that do not depend on x, and
a0i, . . . , ani are constants for all i. We will say that f is a k-piece (ignoring
the 0 piece), and n-degree (assuming ani �= 0 for some i) MOP function.

The definition given in Equation (1) is exactly the same as in Shenoy and West
[8]. The main motivation for defining MOP functions is that such functions are
easy to integrate in closed form, and that they are closed under multiplication,
integration, and addition, the main operations in making inferences in hybrid
Bayesian networks. The requirement that each piece is defined on an interval Ai

is also designed to ease the burden of integrating MOP functions.
A multivariate polynomial is a polynomial in several variables. For example,

a polynomial in two variables is as follows:

P (x1, x2) = a00 + a10x1 + a01x2 + a11x1x2 + a20x
2
1 + a02x

2
2 (2)

+a21x
2
1x2 + a12x1x

2
2 + a22x

2
1x

2
2

The degree of the polynomial in Equation (2) is 4 assuming a22 is a non-zero
constant. In general, the degree of a multivariate polynomial is the largest sum
of the exponents of the variables in the terms of the polynomial.

An m-dimensional function f : Rm → R is said to be a MOP function if

f(x1, x2, . . . , xm) ={
Pi(x1, x2, . . . , xm) for (x1, x2, . . . , xm) ∈ Ai, i = 1, . . . , k,
0 otherwise

(3)

where Pi(x1, x2, . . . , xm) are multivariate polynomials in m variables for all i,
and the regions Ai are as follows. Suppose π is a permutation of {1, ..., m}. Then
each Ai is of the form:
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l1i ≤ xπ(1) ≤ u1i, (4)
l2i(xπ(1)) ≤ xπ(2) ≤ u2i(xπ(1)),

...
lmi(xπ(1), . . . , xπ(m−1)) ≤ xπ(m) ≤ umi(xπ(1), . . . , xπ(m−1))

where l1i and u1i are constants, and lji(xπ(1), . . . , xπ(j−1)) and uji(xπ(1), . . . ,
xπ(j−1)) are linear functions of xπ(1), xπ(2), . . . , xπ(j−1) for j = 2, . . . , m, and
i = 1, . . . , k. We will refer to the nature of the region described in Equation (4)
as a hyper-rhombus. Although we have defined the hyper-rhombus as a closed
region in Equation (4), each of the 2m inequalities can be either strictly < or ≤.

The definition of a m-dimensional MOP function stated in Equation (3) is
more general than the corresponding definition stated in Shenoy and West [8],
which is as follows:

An m-dimensional function f : Rm → R is said to be a MOP function if:

f(x1, . . . , xm) = f1(x1) · f2(x2) · · · fm(xm) (5)

where each fi(xi) is a one-dimensional MOP function as defined in Equation (1).
It is easy to see that an m-dimensional function satisfying the condition in

Equation (5) will also satisfy the condition in Equation (3), but the converse is
not true. Thus, a function as follows:

f(x1, x2) =

{
x1x

2
2 + x2

1x2 for −3 ≤ x1 ≤ 3 and x1 − 3 ≤ x2 ≤ x1 + 3
0 otherwise

(6)

satisfies Equation (3) but not Equation (5) for two reasons. First, x1x
2
2 + x2

1x2

cannot be obtained by a product of two one-dimensional polynomials. Second,
the first piece is defined on the region −3 ≤ x1 ≤ 3, x1− 3 ≤ x2 ≤ x1 + 3, which
is not a hypercube, but is a hyper-rhombus.

Finally, high-dimensional MOP function defined on hyper-rhombuses remain
MOP functions after integration. Thus, the family of MOP functions are closed
under multiplication, addition, and integration. A disadvantage of the new defi-
nition is that it takes longer to integrate such functions compared to hypercubes.
An advantage is that we can more easily construct high dimensional conditional
PDFs such as the conditional linear Gaussian distributions. This is described in
Section 3.

3 Fitting MOPs to Two- and Three-Dimensional CLG
PDFs

In this section, we will find MOP approximations of the PDFs of 2- and 3-
dimensional conditional linear Gaussian (CLG) distributions based on a MOP
approximation of the 1-dimensional standard normal PDF. Our revised defini-
tion of multi-dimensional MOP functions in Equation (3) facilitates the task of
finding MOP approximations of the PDFs of CLG conditional distributions.
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3.1 Measuring Goodness of Fit of Approximations

There are several ways of measuring the goodness of fit of an approximation.
First, we can use the Kullback-Liebler (KL) divergence [2] as a measure of the
goodness of fit. If f is a PDF on the range (a, b), and g is a PDF that is an
approximation of f such that g(x) > 0 for x ∈ (a, b), then the KL divergence
between f and g, denoted by KL(f, g), is defined as

KL(f, g) =
∫ b

a

ln
(

f(x)
g(x)

)
f(x)dx. (7)

KL(f, g) ≥ 0, and KL(f, g) = 0 if and only if g(x) = f(x) for all x ∈ (a, b).
Typically, KL(f, g) ≤ .001 is considered a good approximation.

Another measure of goodness of a fit is the maximum absolute deviation. Thus,
if f is a PDF on the range (a, b), and g is a PDF that is an approximation of f ,
then the maximum absolute deviation between f and g, denoted by MAD(f, g),
is given by:

MAD(f, g) = sup{|f(x)− g(x)| : a < x < b} (8)

Finally, other measures of goodness of fit are the absolute errors in the means
and variances. Thus the absolute error of the mean, denoted by AEM(f, g) and
the absolute error of the variance, denoted by AEV (f, g) are given by:

AEM(f, g) = |E(f)− E(g)| (9)
AEV (f, g) = |V (f)− V (g)| (10)

where E(·) and V (·) denote the expected value and the variance of a PDF,
respectively.

3.2 One-Dimensional CLG Distributions

We start with a 4-piece, 3-degree MOP approximation g1 of the truncated stan-
dard normal PDF ϕ described as follows:

g1(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0.627801 + 0.503039z + 0.128574z2 + 0.0100516z3 if −3 < z ≤ −1,
0.401108− 0.00675769z− 0.240746z2− 0.0761647z3 if −1 < z ≤ 0,
0.401108 + 0.00675769z− 0.240746z2 + 0.0761647z3 if 0 < z ≤ 1,
0.627801− 0.503039z + 0.128574z2− 0.0100516z3 if 1 < z < 3
0 otherwise

(11)
This MOP approximation was found using Lagrange interpolating polynomial
with Chebyshev points [6]. A graph of g1(z) overlaid on the graph of ϕ(z) is
shown in Figure 1. The goodness of fit measures are as follows:

KL(ϕ, g1) ≈ 0.00005, MAD(ϕ, g1) ≈ 0.0024,

AEM(ϕ, g1) = 0, AEV (ϕ, g1) ≈ 0.0003.
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Fig. 1. A graph of g1(z) versus z (in red) overlaid on the graph of ϕ(z) (in blue)

To find a MOP approximation of the PDF of the general N(μ, σ2) distribution,
where μ and σ are real constants such that σ �= 0, we exploit the fact that
MOP functions are closed under linear transformations. Thus, if f(x) is a MOP
function, then given any real constants a and b, f(ax+b) is also a MOP function.
If Z ∼ N(0, 1), its PDF is approximated by a MOP function g(z), and X =
σZ + μ, then X ∼ N(μ, σ2), and a MOP approximation of the PDF of X is
given by (1/|σ|)g((x − μ)/σ). Notice that (1/|σ|)g((x − μ)/σ) remains a MOP
even if μ is a variable (and not a constant) as long as σ is a non-zero constant.

3.3 Two-Dimensional CLG Distributions

Consider the CLG conditional distribution Y |z ∼ N(z, 1) (where Z ∼ N(0, 1)).
We will find a MOP approximation of the conditional PDF of Y |z on the two-
dimensional region z − 3 < y < z + 3. In Shenoy and West [8], a 12-piece,
14-degree MOP approximation is found by covering the two-dimensional region
−3 < z < 3, z − 3 < y < z + 3 by 12 squares (hypercubes in two dimensions),
and then by using two-dimensional Taylor series approximation at the mid-point
of each square. Here, we can use the one-dimensional 4-piece, 3-degree MOP
approximation g1(z) of the standard normal distribution as follows. Let h1(z, y)
denote a MOP approximation of the conditional PDF of Y |z. Then,

h1(z, y) = g1(y − z) (12)

It follows from the remark at the end of Subsection 3.2, that h1(z, y) as de-
fined in Equation (12) represents a MOP approximation of the PDF of N(z, 1).
Since g1(z) is a PDF, it follows that h1(z, y) is a PDF, i.e., h1(z, y) ≥ 0, and∫

h1(z, y)dy = 1 for all z. Notice that the four pieces of h1(z, y) are not defined
on hypercubes, but rather on hyper-rhombuses (since we now have regions such
as −3 < y− z <= −1, etc). A 3-dimensional plot of h1(z, y) is shown in Figure 2.

Since we are using the one-dimensional MOP approximation g1(z), the good-
ness of fit of h1(z, y) is same as that of g1(z). One question is how much of a
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Fig. 2. A 3-dimensional plot of h1(z, y)

penalty do we have to pay for using hyper-rhombuses instead of hypercubes. To
answer this, we do two simple experiments.

First, we compute the marginal PDF of Y as follows. g1(z)h1(z, y) represents
a MOP approximation of the joint PDF of (Z, Y ). To find the marginal PDF of
Y , we integrate out Z. Thus, a MOP approximation of the marginal PDF of Y
is given by:

h2(y) =
∫ ∞

−∞
g1(z)h1(z, y)dz (13)

It takes Mathematica c© ≈ 14 seconds (on a laptop personal computer) to do
the multiplication and integration in Equation (13), and h2(y) is computed as a
7-degree MOP function on the domain (−6, 6). The exact joint distribution of
(Z, Y ) is bivariate normal with parameters μZ = μY = 0, σ2

Z = 1, σ2
Y = 2, and

σZY = 1. Therefore, the exact marginal distribution of Y is N(0, 2). Let fY (y)
denote the exact PDF of N(0, 2) truncated to (−6, 6). A plot of h2(y) overlaid
on the plot of fY (y) is shown in Figure 3. The goodness of fit between fY (y)
and h2(y) are as follows:

KL(fY , h2) ≈ 0.0005, MAD(fY , h2) ≈ 0.0015
AEM(fY , h2) ≈ 0.0000, AEV (fY , h2) ≈ 0.0532.

Second, consider the Bayesian network as shown in Figure 4 that includes W
with a deterministic conditional, W = Z + Y . Suppose we use g1(z) as a MOP
approximation of N(0, 1), and h1(z, y) as a MOP approximation of N(z, 1). The
marginal distribution of W is then given by the convolution formula:

h3(w) =
∫ ∞

−∞
g1(z)h1(z, w − z)dz (14)

It takes Mathematica c© ≈ 15 seconds to do the multiplication and integration in
Equation (14). h3 is computed as a 7-degree MOP function in the region (−9, 9).
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Fig. 3. A graph of h2(y) (in red) overlaid on the graph of fY (y) (in blue)

Fig. 4. A Bayesian network with a sum deterministic function

Since the exact joint distribution of (Z, Y ) is bivariate normal with parameters
μZ = μY = 0, σ2

Z = 1, σ2
Y = 2, σZY = 1, the exact marginal distribution of W is

N(0, 5). Let fW (w) denote the exact PDF of N(0, 5) truncated to (−9, 9). A plot
of h3(w) overlaid on the the plot of fW (w) is shown in Figure 5. The goodness
of fit between fW (w) and h3(w) are as follows:

KL(fW , h3) ≈ 0.0009, MAD(fW , h3) ≈ 0.0009
AEM(fW , h3) ≈ 0.0000, AEV (fW , h3) ≈ 0.1301.

3.4 Three-Dimensional CLG Distributions

Suppose Z ∼ N(0, 1), Y |z ∼ N(z, 1), and X |(z, y) ∼ N(z + y, 1). Notice that
the conditional PDF of X is in three dimensions. As in the 2-dimensional case,
we find a MOP approximation h4(z, y, x) of the PDF of N(z + y, 1) in the 3-
dimensional region z + y−3 < x < z + y +3 by using the 4-piece, 3-degree MOP
approximation g1(z) for N(0, 1) as follows:

h4(z, y, x) = g1(x− (z + y)) (15)

Notice that the 4 pieces of h4 are defined on regions −3 < x− (z + y) ≤ −1, etc.
Therefore, h4 is a MOP by our definition in Equation (3).
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Fig. 5. A graph of h3(w) (in red) overlaid on the graph of fW (w) (in blue)

As in the two-dimensional case, we will investigate how much of a time penalty
one has to pay for using hyper-rhombus condition. First, we will compute the
marginal PDF of X as follows. g1(z) denotes a MOP approximation of the
marginal PDF of Z, h1(z, y) denotes a MOP approximation of the conditional
PDF of Y |z, and h4(z, y, x) denotes a MOP approximation of the conditional
PDF of X |(y, z). Thus, g1(z)h1(z, y)h4(z, y, x) denotes a MOP approximation of
the joint PDF of (Z, Y, X). Thus, a MOP approximation of the marginal PDF
of X is given by:

h6(x) =
∫∞
−∞
∫∞
−∞ g1(z)h1(z, y)h4(z, y, x)dydz (16)

=
∫∞
−∞ g1(z)

(∫∞
−∞ h1(z, y)h4(z, y, x)dy

)
dz

The integration in Equation (16) was done in two stages in Mathematica c©.
The inner integral (with respect to y) required approximately 79 seconds (≈ 1.3
minutes), and resulted in a 2-dimensional, 7-degree, MOP. The outer integral
(with respect to z) required 118 seconds (≈ 2.0 minutes), and resulted in a
1-dimensional, 11-degree, MOP on the interval (−12, 12). Thus, the two multi-
plications and the two integrations in Equation (16) require a total of approx-
imately 197 seconds (or about 3.3 minutes) using Mathematica c© on a laptop
computer. The exact distribution of X can be shown to be N(0, 6). Let fX(x)
denote the PDF of N(0, 6) truncated to the region (−12, 12). A graph of h6(x)
overlaid on the graph of fX(x) is shown in Figure 6. The goodness of fit between
fX(x) and h6(x) are as follows:

KL(fX , h6) ≈ 0.0005 MAD(fX , h6) ≈ 0.0010
AEM(fX , h6) ≈ 0.0000 AEV (fX , h6) ≈ 0.1618

Second, consider the Bayesian network as shown in Figure 7 that includes V
with a deterministic conditional, V = Z + Y + X . Suppose we use g1(z) as a
MOP approximation of N(0, 1), h1(z, y) as a MOP approximation of N(z, 1),
and h4(z, y, x) as a MOP approximation of N(z+y, 1). The marginal distribution
of V is then given by the convolution formula:
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Fig. 6. A graph of h6(x) (in red) overlaid on the graph of fX(x) (in blue)

Fig. 7. A Bayesian network with a 3-dimensional conditional

h8(v) =
∫∞
−∞
∫∞
−∞ g1(z)h1(z, y)h4(z, y, v − z − y)dydz (17)

=
∫∞
−∞ g1(z)

(∫∞
−∞ h1(z, y)h4(z, y, v − z − y)dy

)
dz

The integration in Equation (17) was done in two stages in Mathematica c©.
The inner integral (with respect to y) required approximately 93 seconds (≈ 1.6
minutes), and resulted in a 2-dimensional, 7-degree, MOP. The outer integral
(with respect to z) required 176 seconds (≈ 2.9 minutes), and resulted in a 1-
dimensional, 11-degree, MOP on the interval (−21, 21). Thus, the two multiplica-
tions and the two integrations in Equation (17) require a total of approximately
269 seconds (or ≈ 4.5 minutes) using Mathematica c© on a laptop computer. The
exact marginal distribution of V is N(0, 21). Let fV (v) denote the exact PDF
of N(0, 21) truncated to (−21, 21). A plot of h8(w) overlaid on the the plot of
fV (v) is shown in Figure 8. The goodness of fit between fV (v) and h8(v) are as
follows:

KL(fV , h8) ≈ 0.0008, MAD(fV , h8) ≈ 0.0005
AEM(fV , h8) ≈ 0.0000, AEV (fV , h8) ≈ 0.5648

In summary, the hyper-rhombus condition enables us to easily represent CLG
conditionals in high dimensions. The computational cost of integrating a high-
dimensional MOP function with a hyper-rhombus condition does not seem high
for 2 or 3 dimensional CLG distributions, and there is no loss of precision com-
pared to one-dimensional conditionals. Shenoy [6] discusses the tradeoffs between
the hyper-rhombus and hypercube conditions in greater detail.
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Fig. 8. A graph of h8(v) (in red) overlaid on the graph of fV (v) (in blue)

4 Summary and Discussion

A major contribution of this paper is a re-definition of multi-dimensional mixture
of polynomials so that the regions where the polynomials are defined are hyper-
rhombuses instead of hypercubes. This re-definition allows us to use the MOP
approximation of a one-dimensional standard normal PDF to define MOP ap-
proximations of high-dimensional CLG PDFs. Also, the re-definition ensures that
MOP functions are closed under transformations required for multi-dimensional
linear deterministic functions, which was not true when MOP functions were
defined on regions that are hypercubes.

Shenoy [6] compares the practical implications of the hyper-rhombus condition
with the hypercube condition. He compares the time required for computation
of marginals for a couple of simple Bayesian networks, and also the accuracy of
the computed marginals.

The hyper-rhombus condition is of great use for constructing MOP approxi-
mations of multi-dimensional CLG distributions. However, it does not seem to
be of much help in constructing MOP approximations of other multi-dimensional
distributions such as the log-normal distribution. Constructing MOP approxi-
mations of the multi-dimensional log-normal distributions is of great interest in
the finance literature where log-normal distributions are used to model stock
price behavior [3]. This is a topic that needs further investigation.
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Abstract. Four cost measures s1, s2, s3, s4 were recently studied for
sorting the operations in Lazy propagation with arc reversal (LPAR),
a join tree propagation approach to Bayesian network inference. It has
been suggested to use s1 with LPAR, since there is an effectiveness rank-
ing, say s1, s2, s3, s4, when applied in isolation. In this paper, we also
suggest to use s1 with LPAR, but to use s2 to break s1 ties, s3 to break
s2 ties, and s4 to break s3 ties. Experimental results show that sometimes
there is a noticeable gain to be made.

Keywords: Bayesian networks, arc reversal, join tree propagation.

1 Introduction

Bayesian networks [6,8,9,10,18] provide a rigorous foundation for uncertainty
management by combining probability theory and graph theory. They have been
applied in practice to a number of problem domains [19], including bioinformat-
ics [16]. A Bayesian network consists of a directed acyclic graph (DAG) and a
corresponding set of conditional probability tables (CPTs). The vertices in the
DAG represent the random variables in the real-world problem, while the arcs
in the graph represent probabilistic dependencies amongst the variables. More
specifically, the probabilistic conditional independencies encoded in the DAG
define the product of the given CPTs as a joint probability distribution.

While Cooper [5] has shown that the complexity of exact inference in dis-
crete Bayesian networks is NP-hard, several approaches have been put forth
that work quite well in practice. Arc reversal (AR) [17,20] removes a variable
by reversing the arcs between the variable and its children and then building
the CPTs corresponding to the modified DAG. Another approach, called vari-
able elimination (VE) [1], eliminates a variable by multiplying together all of the
distributions involving the variable and then summing the variable out of the ob-
tained product. Join tree propagation, which Shafer [21] emphasizes is central to
the theory and practice of probabilistic expert systems, first builds a secondary
network, called a join tree, from the DAG of the Bayesian network and then per-
forms inference by propagating probabilities in the join tree [2,3,4]. Madsen and

W. Liu (Ed.): ECSQARU 2011, LNAI 6717, pp. 110–121, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Jensen [15] significantly advanced the field of join tree propagation with Lazy
Propagation (LP), which maintains a factorization of distributions allowing for
barren variables [20] and independencies induced by evidence to be exploited.
Madsen [12,13] modified LP by replacing VE as the message construction al-
gorithm with AR, giving LPAR, and conducted an empirical study of LP and
LPAR. Very recently, Madsen [14] demonstrated that the order in which arcs are
reversed in LPAR can affect the amount of computation needed. Experimental
results suggest that cpt-weight (cptw) is the best of four measures [14].

Here we advocate using all four cost measures in ranked order starting with
cptw. Our analysis in Section 4 shows that cptw seems to be the closest to
optimizing the number of arithmetic operations as it is focused on reducing the
size of the CPTs constructed. This is similar to reducing the weight of cliques
when building join trees [10]. In the event of a cptw tie, reverse the best arc
as determined by the second-best cost measure, fill-in weight (fiw). Similarly,
proceed to the third-best cost measure fill-in (fi) to break fiw ties, and to number-
of-parents (nop) to break fi ties. We illustrate in Section 4 how our approach can
save computation, since [14] will reverse the first arc tied for the best cptw
score. Our experiments in Section 5 show a small but observable computational
improvement using five real-world BNs and three randomly-generated BNs.

The remainder is organized as follows. Section 2 contains definitions. We
present our new approach in Section 3. Section 4 provides analysis. Experimental
findings are given in Section 5. Conclusions are drawn in Section 6.

2 Definitions

Results from Bayesian networks, AR, and four AR cost measures, are reviewed.

2.1 Bayesian Networks

Consider a finite set of discrete random variables U = {v1, v2, . . . , vn}. Let
dom(vi) denote the finite domain of values that each variable vi ∈ U can assume.
For a subset X ⊆ U , the Cartesian product of the domains of the individual vari-
ables in X is dom(X). An element x ∈ dom(X) is a configuration or row of X .
A potential [21] on dom(X) is a function φ such that φ(x) ≥ 0, for each config-
uration x ∈ dom(X), and at least one φ(x) is positive. For simplicity we speak
of a potential as defined on X instead of on dom(X), and we call X its domain
rather than dom(X) [21]. A joint probability distribution [21] on U , written p(U),
is a function p on U satisfying the following two conditions: (i) 0 ≤ p(u) ≤ 1,
for each configuration u ∈ dom(U); (ii)

∑
u∈dom(U) p(u) = 1. Let X and Y be

two disjoint subsets of U . A conditional probability table (CPT) [21] for Y given
X , denoted p(Y |X), is a nonnegative function on X ∪Y , satisfying the following
condition: for each configuration x ∈ dom(X),

∑
y∈dom(Y ) p(Y = y | X = x) = 1.

A discrete Bayesian network [18] on U = {v1, v2, . . . , vn} is a pair (D, C). D
is a DAG with vertex set U . C is the set of CPTs {p(vi|Pi) | i = 1, 2, . . . , n},
where Pi denotes the parents of variable vi ∈ D. For example, one Bayesian
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Fig. 1. Eliminating a in (i) by reversing arc (a, d) (ii) followed by arc (a, c) (iii)

network is the DAG in Figure 1 (i) together with CPTs p(a), p(b), p(c|a) and
p(d|a, b). Here, the parents Pi of variable vi = d are Pi = {a, b}.

The family Fi of a variable vi in a Bayesian network is the variable together
with its parents, that is, {vi} ∪ Pi. By p(X |Y ), we always mean p(X |Y − X).
We use WZ to mean W ∪ Z.

2.2 Arc Reversal

Arc reversal (AR) [17,20] eliminates a variable vi by reversing the arcs (vi, vj)
for each child vj of vi, where j = 1, 2, . . . , k. With respect to multiplication,
addition, and division, AR reverses one arc (vi, vj) as a three-step process:

p(vi, vj |PiPj) = p(vi|Pi) · p(vj |Pj), (1)

p(vj |PiPj) =
∑
vi

p(vi, vj |PiPj), (2)

p(vi|PiPjvj) =
p(vi, vj |PiPj)
p(vj |PiPj)

. (3)

Suppose the variable vi to be removed has k children. The distributions defined
in (1) - (3) are built for the first k − 1 children. For the last child vk, however,
only the distributions in (1) - (2) are built. When considering vk, there is no
need to build the final distribution for vi in (3), since vi will be removed as a
barren variable. Therefore, AR removes a variable vi with k children by building
3k − 1 distributions. However, AR only outputs the k distributions built in (2).

2.3 Four Cost Measures for AR Child Orderings

The following is taken from Madsen [14]. The elimination of variable vi by a
sequence of AR operations produces an ordering of the vi’s children. We call this
ordering a child ordering and denote it by ρ. The child ordering ρ determines the
set of induced edges, which have an impact on the performance of belief update.
Thereby, the child ordering p′ leading to the best time and space performance
should be chosen. Since it is not possible by local computations only to identify
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the sequence p′ having the best time and space cost, the focus is on identifying
the sequence ρ with minimum local cost.

Four different score functions for computing the cost of a child ordering ρ are
considered: cptw (s1), fiw (s2), fi (s3), and nop (s4).

The cost of reversing arc (vi, vj) using the cptw score s1 is:

s1(vi, vj) =
∏

vk∈FiFj

|dom(vk)|.

Thus, cptw is defined as the total state space size of vi’s CPT after reversal.
Using the fiw score s2, the cost of reversing (vi, vj) is:

s2(vi, vj) =
∑

vk∈Fj−Fi

w(vk, vi) +
∑

vl∈Pi−Pj

w(vl, vj),

where w(va, vb) = |dom(va)| · |dom(vb)|. Then, fiw cost is equal to the sum of the
edge weights of the new parents Fj − Fi of vi and Pi − Pj of vj .

The cost of reversing arc (vi, vj) using the fi score s3 is:

s3(vi, vj) = |Fj − Fi|+ |Pi − Pj |,

namely, the fi cost is equal to the number of edges induced by the new parents
Fj − Fi of vi and the new parents Pi − Pj of vj .

Using the nop score s4, the cost of reversing (vi, vj) is:

s4(vi, vj) = |Pi ∪ Fj |,

i.e., the nop cost is the cardinality of vi’s parents after reversing (vi, vj).
Experimental results suggest an effectiveness ranking of s1, s2, s3, s4 [14].

Example 1. Consider eliminating variable a in Fig. 1 (i), where a, b, d are binary
and c’s domain has four values. Compute the cptw score of arcs (a, c) and (a, d)
corresponding to the children c and d of a:

s1(a, c) =
∏

vk∈{a,c}
|dom(vk)| = 2 · 4 = 8,

s1(a, d) =
∏

vk∈{a,b,d}
|dom(vk)| = 2 · 2 · 2 = 8.

Since s1(a, c) is equal to s1(a, d), cptw does not distinguish between arcs (a, c)
and (a, d). Thus, one arc is randomly chosen, say (a, d), and reversed:

p(a, d|b) = p(a) · p(d|a, b),

p(d|b) =
∑

a

p(a, d|b),

p(a|b, d) =
p(a, d|b)
p(d|b) .
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The resulting DAG is shown in Fig. 1 (ii). The reversal of the other arc (a, c)
gives Fig. 1 (iii) by computing:

p(a, c|b, d) = p(a|b, d) · p(c|a),

p(c|b, d) =
∑

a

p(a, c|b, d).

3 AR Child Orderings Using Four Cost Measures

While Madsen’s [14] experimental results suggest that cptw may the best choice
of the four cost measures, our extension, called BreakTies and given below, is to
use cptw as our first cost measure but to rely on other cost measures to break
ties. In other words, follow the fixed order s1, s2, s3, s4 to select the next arc to
reverse, only progressing to the next cost measure to break ties.

Algorithm 1. BreakTies (vi, D)
Input: vi is the variable to be eliminated in DAG D
Output: the arc (vi, vj) in D to be reversed next.
begin
for each remaining child vj of vi

compute s1(vi, vj)
if unique lowest s1(vi, vj)

reverse arc (vi, vj)
else

for each vj tying for lowest s1(vi, vj)
compute s2(vi, vj)
if unique lowest s2(vi, vj)

reverse arc (vi, vj)
else

for each vj tying for lowest s2(vi, vj)
compute s3(vi, vj)
if unique lowest s3(vi, vj)

reverse arc (vi, vj)
else

for each vj tying for lowest s3(vi, vj)
compute s4(vi, vj)
if unique lowest s4(vi, vj)

reverse arc (vi, vj)
else

randomly pick an arc (vi, vj)
return (vi, vj)
end

Example 2. With respect to Fig. 2 (i), let us revisit Example 1 using BreakTies.
Variable a is to be eliminated and has two children c and d. As BreakTies always
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Fig. 2. Eliminating a in (i) by reversing arc (a, c) (ii) followed by arc (a, d) (iii)

starts with cptw, scores s1(a, c) and s1(a, d) are the same as before. In BreakTies,
however, given a tie, we proceed to the second fiw score s2 to decide which arc
to reverse first:

s2(a, c) = w(c, a) = 8,

s2(a, d) = w(b, a) + w(d, a) = 4 + 4 = 8.

To break fiw ties, BreakTies proceeds to the fi cost measure s3:

s3(a, c) = 1,

s3(a, d) = 2.

As s3(a, c) is the lowest, BreakTies reverses arc (a, c) first, as follows:

p(a, c) = p(a) · p(c|a),

p(c) =
∑

a

p(a, c),

p(a|c) =
p(a, c)
p(c)

.

The resulting DAG is shown in Figure 2 (ii). The reversal of (a, d) yields Figure 2
(iii) by computing

p(a, d|b, c) = p(a|c) · p(d|a, b),

p(d|b, c) =
∑

a

p(a, d|c, d).

Example 2 illustrates a couple of important points. Note that multiple cost
measures were used. First, cptw cost measures were computed and found to
be tied. Second, fiw cost measures were computed and also found to be tied.
Third, fi cost measures were computed and arc (a, c) was preferred as it had
the lowest score. If fi scores had been tied, then nop cost measures would have
been computed. Also notice how BreakTies starts with cptw, considered to be
the best, and ends with nop, considered to be the weakest measure.
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4 Analysis

In this section, we first analyze the cptw score with respect to one arc reversal.
Next, we scrutinize cptw with respect to the overall process of Bayesian network
inference using AR.

Bayesian network inference involves the elimination of a set X of variables.
To eliminate each variable vi in X , arc reversal needs to reverse the arc between
vi and each of its children vj . Consider the amount of computation needed to
reverse one arc (vi, vj). It can be seen that: (i) the number of multiplications
in the first step is equal to |dom(FiFj)|; (ii) the number of additions in the
second step is equal to |dom(vi)− 1| · |dom(FiFj − vi)|; and, (iii) the number of
divisions in the third step is equal to |dom(FiFj)|. This means that the amount
of computation needed to reverse one arc is tied directly to cptw.

Now let us turn our attention away from reversing one arc to the larger prob-
lem of eliminating a set X of variables. The next example shows that randomly
breaking cptw ties can cost more computation in the long run.

Example 3. Suppose we have to eliminate variable b after variable a has been
eliminated in our running example.

If we only use cptw and randomly break ties as shown in Example 1, variable
b needs to be eliminated from Figure 1 (iii). Since

s1(b, c) = 2 · 4 · 2 = 16,

s1(b, d) = 2 · 2 = 4,

arc (b, d) is reversed as

p(b, d) = p(b) · p(d|b),
p(d) =

∑
b

p(b, d),

p(d|b) =
p(b, d)
p(d)

.

Arc (b, c) is then reversed as

p(b, c|d) = p(b|d) · p(c|b),
p(c|d) =

∑
b

p(b, c|d).

On the other hand, if we use multiple cost measures as done in Example 2,
variable b needs to be eliminated from Figure 2 (iii). In this case, variable b only
has one child d, which allows b to be eliminated more economically as

p(b, d|c) = p(b) · p(d|b, c),
p(d|c) =

∑
b

p(b, d|c).
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Example 3 reveals that randomly breaking cptw ties can result in extra arcs
being added. For instance, in our running example, the approach in [14] can add
one more arc (b, c) in Fig. 1 (iii) than BreakTies did in Fig. 2 (iii). That is, b
only has one child using BreakTies, whereas b has two children using cptw alone.
Adding children to a variable to be subsequently removed means that the cptw
cost measure in isolation can force more computation to be performed.

5 Experimental Results

The experiments use the LPAR method in [14], namely, AR is applied to build all
messages and VE is applied to compute posterior marginals. The measure fiw is
used to determine the elimination order and to compute posteriors. Experiments
were conducted on 15 real-world networks and 30 randomly generated networks,
but we report only on five real-world networks, called Barley [11], KK [11]1,
Mildew2, OOW [7], and ship-ship [7], and three randomly generated networks,
called net100, net125, and net150 [14], which are all described in Table 1. For each
size of evidence set, ten sets of evidence are generated, with the same evidence
used in different runs. To reflect the potential time savings of breaking ties, the
best and worst arcs are reversed based on the next cost measure in BreakTies.
Figs. 3 - 6 show running times in seconds on our eight Bayesian networks.

Table 1. Description of test Bayesian networks and corresponding join tree nodes N

BN |U | |N | max |dom(N )| total size

Barley 48 36 7,257,600 17,140,796
KK 50 38 5,806,080 14,011,466
Mildew 35 29 1,249,280 3,400,464
OOW 40 29 1,644,300 4,651,788
ship-ship 50 35 4,032,000 24,258,572
net100 100 85 98,304 311,593
net125 125 109 165,888 408,889
net150 150 131 3,538,944 9,946,960

Let us look at a couple of cases. In Fig. 5 (left), for the case of six evidence
variables, the average running time of breaking ties (best) is 1.6866 seconds,
while the average running time for breaking ties (worst) is 2.0792 seconds. Hence,
breaking ties (best) can result in a time savings of 18.9%. Now consider twenty
evidence variables in Fig. 6 (right). The average running time of breaking ties
(worst) is 1.5247, which can be bettered by 29.61% to 1.0739 when breaking ties
(best). When considering thirty evidence variables in Fig. 6 (right), the results
are even more promising. Here a time savings of 42.5% can be obtained when
the running time is decreased from 1.9465 (worst) down to 1.1196 (best). While
this demonstrates that there can be on average fewer multiplication and division

1 KK is a preliminary version of Barley.
2 A network developed by Finn V. Jensen, Jørgen Olesen and Uffe Kjærulff.
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Fig. 3. Time savings of breaking ties by reversing the best and worst arcs as determined
by the next cost measure in BreakTies on Barley (left) and KK (right)
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Fig. 4. Time savings of breaking ties by reversing the best and worst arcs as determined
by the next cost measure in BreakTies on Mildew (left) and OOW (right)
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Fig. 5. Time savings of breaking ties by reversing the best and worst arcs as determined
by the next cost measure in BreakTies on ship-ship (left) and net100 (right)
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Fig. 6. Time savings of breaking ties by reversing the best and worst arcs as determined
by the next cost measure in BreakTies on net125 (left) and net150 (right)

 0

 20

 40

 60

 80

 100

 120

 0  10  20  30  40  50

A
R

 T
ie

s1

Number of instantiations (ship-ship)

Best  
Worst  

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  10  20  30  40  50

A
R

 T
ie

s2

Number of instantiations (ship-ship)

Best  
Worst  

Fig. 7. Using BreakTies on ship-ship, the average number of cptw ties (left) and cptw
and fiw ties (right)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  10  20  30  40  50

A
R

 T
ie

s3

Number of instantiations (ship-ship)

Best  
Worst  

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  10  20  30  40  50

A
R

 T
ie

s4

Number of instantiations (ship-ship)

Best  
Worst  

Fig. 8. Using BreakTies on ship-ship, the average number of cptw, fiw, and fi ties (left)
and cptw, fiw, fi, and nop ties (right)



120 C.J. Butz, A.L. Madsen, and K. Williams

 0

 50

 100

 150

 200

 250

 0  5  10  15  20  25  30  35  40  45  50

A
R

 T
ie

s1

Number of instantiations (Barley)

Best  
Worst  

 0

 10

 20

 30

 40

 50

 60

 0  5  10  15  20  25  30  35  40

A
R

 T
ie

s1

Number of instantiations (oow_solo)

Best  
Worst  

Fig. 9. The average number of cptw ties in BreakTies on Barley (left) and OOW (right)

operations when breaking ties, the average size of the largest CPT does not
change noticeably.

The average number of cptw ties for ship-ship, Barley and OOW are shown in
Figs. 7 (left) and 9, respectively. In the ship-ship Bayesian network, for instance,
the average number of fiw ties, fi ties, and nop ties are obtained by subtracting
(left) from (right) in Fig. 7, subtracting Fig. 7 (right) from Fig. 8 (left), and
subtracting (left) from (right) in Fig. 8, respectively. The most significant dif-
ferences in the average number of ties between selecting the worst and best arc
to reverse for the four heuristics are achieved between ten and thirty evidence
variables. Following the best heuristic offers a reduction in the average number of
ties. For example, in the case of six evidence variables in Fig. 7 (left), the average
number of ties was 41.3 using the best heuristic, while it was 46.3 using the worst
heuristic. Similarly, for the case of six evidence variables in Fig. 7 (right) and
Fig. 8 together, the average number of ties using the best and worst heuristics
were 23.2 was 30.3, respectively.

6 Conclusions

When using cost measure cptw to reverse arcs in LPAR, [14] will reverse the first
arc tied for the lowest score in the event of a tie. Instead, we suggest breaking ties
with other cost measures fiw, fi and nop, in this order. Example 3 illustrates how
random selection can result in more computation. The empirical experiments in
Figs. 3 - 6 have produced two important findings. First, in most cases, break-
ing ties does not yield significant gains. Second, for both randomly generated
and real-world networks, sometimes breaking ties produces a noticeable time im-
provement. The improvements are most significant for small subsets of evidence
where the cost of inference is highest. The average number of ties encountered
in BreakTies, reported in Figs. 7 - 9, illustrate that there are indeed ties to be
broken. Future work will investigate combined cost measures.
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Abstract. The noisy-OR model and its generalizations are frequently
used for alleviating the burden of probability elicitation upon building
Bayesian networks with the help of domain experts. The results from
empirical studies consistently suggest that, when compared with a fully
expert-quantified network, using the noisy-OR model will just have a
minor effect on the performance of a network. In this paper, we address
this apparent robustness and investigate its origin. Our results show that
ill-considered use of the noisy-OR model can substantially decrease a
network’s performance, yet also that the model has broader applicability
than it was originally designed for.

1 Introduction

When building a Bayesian network with the help of domain experts, eliciting
all probabilities required for its quantification is generally considered the most
daunting among the engineering tasks involved: the elicitation task is quite time
consuming in itself [1,2], and is often further impeded by the experts feeling un-
comfortable with providing concrete numbers to describe their knowledge and
experience. In order to decrease the amount of time spent on probability elici-
tation and to alleviate the burden for the experts involved, probabilistic causal
interaction models can be used. The most popular among these models are the
noisy-OR model and its generalizations [3].

The noisy-OR model can be looked upon as a parameterized conditional prob-
ability table for the effect variable of a causal mechanism with multiple cause
variables. The model needs a restricted number of parameter probabilities, from
which the values for the other probabilities in the table are readily calculated.
The formulas provided for this purpose are derived from properties of probabilis-
tic interaction which are assumed to hold among the variables of the mechanism.
Since only the parameter probabilities need to be provided, use of the noisy-OR
model implies a substantial reduction of the number of probabilities to be as-
sessed explicitly by the experts: this number is reduced from exponential to
linear in the number of possible causes of the mechanism’s effect.

Despite its clear advantages for Bayesian-network engineering, the noisy-OR
model cannot be applied just like that. Since the model’s formulas build upon
specific properties of intercausal interaction, the calculated probability values
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can only be considered approximates of the true probabilities if these properties
actually do hold in the domain of application. In practice, however, Bayesian-
network engineers are not all aware of the precise underlying properties, which
makes the noisy-OR model subject to ill-considered use.

Various empirical studies have been conducted with the noisy-OR model to
determine its effect in practical applications [4,5,6,7]. In most of these studies,
noisy-OR calculated probability tables were substituted for the original expert-
elicited probabilities of a network. The resulting networks were then compared
with the original ones using various different performance indicators. The overall
conclusion from these studies is that the networks with the noisy-OR calculated
probability tables perform comparably to the original expert-quantified ones.
In one of the studies, noisy-OR calculated probability tables were substituted
for expert-provided ones without verifying any underlying properties, to mimic
ill-considered use of the model. Even in this study did the noisy-OR quantified
network show comparable performance to the original one [4]. The consistent
results from these studies have led to the suggestion that Bayesian networks are
quite robust against the changes that are induced in their conditional probability
tables by using the noisy-OR model. The results even appear to suggest that
the model can be applied for any causal mechanism, regardless of the precise
probabilistic interaction among its variables.

In this paper, we demonstrate that ill-considered use of the noisy-OR model
can result in poorly calibrated probability values. The propagation effects of
such strongly deviating probabilities are largely unknown, yet are important for
determining when use of the noisy-OR model can harm a network’s performance.
By means of sensitivity-analysis techniques, we will study these effects. Building
upon the identified propagation effects, we then pose conditions under which use
of the noisy-OR model will not be harmful, not even when the model’s underlying
assumptions are not met in practice. These conditions show that, while the noisy-
OR model was designed originally to describe a particular type of probabilistic
interaction, its use for mere pragmatic reasons is sometimes warranted.

The paper is organized as follows. In Sect. 2, we introduce our notational con-
ventions and review the noisy-OR model; an overview of empirical studies with
the model will also be provided. In Sect. 3, we study the conditions under which
use of the noisy-OR model can be harmful to the performance of a Bayesian
network; we address our results also in view of well-known generalizations and
extensions of the noisy-OR model. The paper is concluded in Sect. 4.

2 Preliminaries

We introduce our notational conventions and review the noisy-OR model; upon
doing so, we assume that the reader is acquainted with the basic concepts of
Bayesian networks and probabilistic inference. We further review several em-
pirical studies of Bayesian networks in which the noisy-OR model is being
applied.
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2.1 The Noisy-OR Model

We consider random variables V and assume these to be binary unless explicitly
stated otherwise; each variable captures absence or presence of some concept,
written v̄ and v respectively. We further consider causal mechanisms, that is,
network fragments including n random cause variables C1, . . . , Cn, n ≥ 2, and a
single effect variable E; a graphical representation of such a mechanism is shown
in Fig. 1. For ease of exposition, we assume that the cause variables of the mech-
anism are mutually independent a priori; we will return to this assumption in
Sect. 3. For the effect variable E, a conditional probability table is specified, con-
taining the probability distributions Pr(E | C1, . . . , Cn) given all possible value
combinations for the cause variables Cj ; note that the number of distributions
specified for E is exponential in the number of cause variables involved.

The noisy-OR model in essence specifies a parameterized conditional proba-
bility table for the effect variable E of a causal mechanism. The model takes for
its parameters the conditional probabilities Pr(e | c̄1, . . . , c̄j−1, cj , c̄j+1, . . . , c̄n) of
the effect e to arise in the presence of just a single cause cj and the absence of all
other causes. The model further sets the conditional probability Pr(e | c̄1, . . . , c̄n)
to zero and defines the values of the remaining probabilities through

Pr(e | c) = 1−
∏
j∈J

(1 − Pr(e | c̄1, . . . , c̄j−1, cj , c̄j+1, . . . , c̄n))

where J is the set of indices of the cause variables Cj which are marked as being
present in the combination of causes c.

Underlying the noisy-OR model are the two properties of accountability and
exception independence. The property of accountability states that the effect e
cannot occur as long as none of its causes are present, that is Pr(e | c̄1, . . . , c̄n) =
0. The property of exception independence pertains to the exception mechanisms
that may inhibit the effect to arise in the presence of a cause. We note that
each arc Cj → E can be viewed as an essentially deterministic causal relation
which has associated an inhibitor variable Ij to describe the uncertainty involved.
Exception independence now states that these inhibitor variables Ij are mutually
independent. For further details of the noisy-OR model, we refer to [3].

As a fictitious example, Fig. 2 shows a simple causal mechanism modeling
the intake of alcohol (A) and of the GHB drug (G) as the possible causes of a
stimulating effect (S). The figure further shows the conditional probability table
which is established from applying the noisy-OR model for the effect variable
S in the mechanism. The probabilities printed in bold are the two parameter

C1 Cn

E

. . . . . .Cj

Fig. 1. Causal mechanism with n cause variables Cj and a single effect variable E
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A G

S

Alcohol (A) GHB (G) Stimulating (S)
yes no

yes yes 0.99 0.01
yes no 0.80 0.20
no yes 0.95 0.05
no no 0.00 1.00

Fig. 2. Causal mechanism describing the stimulating effect (S) of the intake of alcohol
(A) and GHB (G) (left), and the noisy-OR computed probability table for S (right)

probabilities for the model; in a real application, these probabilities would have
to be assessed by experts. The probability Pr(s | āḡ) = 0 in the table follows
from the property of accountability, and the remaining probability Pr(s | ag) =
0.99 is calculated from the two parameter probabilities. We note that for this
specific mechanism the calculated probability value does not properly reflect the
true probability Pr(s | ag). Simultaneous consumption of alcohol and GHB is
known to have a depressing effect rather than a stimulating one; the probability
Pr(s | ag) is not equal to 0.99 but will be closer to 0.05 instead.

2.2 Empirical Studies Involving the Noisy-OR Model

Several researchers investigated the effects on a network’s performance of using
the noisy-OR model for specifying its conditional probability tables. These em-
pirical studies involved the standard noisy-OR model as reviewed above, and
the more general leaky noisy-OR and noisy-MAX models. From these studies we
summarize the results that are of direct relevance to the current paper.

Onísko, Druzdzel and Wasyluk [5] conducted an empirical study of the use of
the noisy-OR model in view of the medical HEPAR II network. For estimating
the probabilities for their network, they had available a small collection of pa-
tient data. In this data set, many conditioning cases were represented by small
numbers of records. Their experiments now focused on the use of the noisy-OR
model for filling in parts of the network’s probability tables. Experts were asked
to select the causal mechanisms from the HEPAR II network for which the noisy-
OR model could be used; they were further asked to provide assessments for the
associated parameter probabilities. The authors subsequently compared the per-
formance of their original network with that of the network which resulted from
using the noisy-OR model with expert-provided parameters and with that of the
network which resulted from using the noisy-OR model with data-provided pa-
rameter probabilities. The network which had resulted from using the noisy-OR
model with expert-provided parameters was found to exhibit a poorer classifica-
tion performance than the original network; with the network which had resulted
from using the noisy-OR model with data-based parameters, better classification
performance was found than with the two other networks.

Anand and Downs [8] conducted an empirical study with the noisy-OR model
in view of a Bayesian network for asthma case finding. In their study, they com-
pared the original network which was constructed from data, with a network that
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was obtained by substituting noisy-OR calculated probabilities wherever appro-
priate. Different performance indicators were used for the comparison, such as
the area under the ROC (Receiver Operating Characteristic) curve. The authors
found that neither of the two networks was significantly better than the other.

Bolt and Van der Gaag [4] also conducted an experiment in which original
probability tables were substituted by noisy-OR calculated ones. Their study
involved a Bayesian network for the early detection of Classical Swine Fever for
which all probabilities had been assessed by domain experts. The authors sub-
stituted noisy-OR established probability tables for all variables for which this
was technically possible, using the expert-assessed probabilities for the parame-
ter probabilities of the model. These substitutions were performed regardless of
whether or not the properties of accountability and exception independence were
likely to hold in reality for the variables involved. Even with this ill-advised use
of the noisy-OR model did the authors find hardly any effects on the sensitivity
and specificity characteristics of their network.

The results from these and similar studies have led to the suggestion that
Bayesian networks are quite robust against the changes that are induced in their
conditional probability tables by the noisy-OR model. The consistency of results
throughout the various studies even appears to suggest that the noisy-OR model
can be applied in Bayesian networks for any causal mechanism, regardless of the
precise interactions among the modeled variables.

3 The Propagation Effects of the Noisy-OR Model

Several researchers investigated the effects of substituting noisy-OR established
probability tables for expert-provided ones. While the results from these studies
showed that Bayesian networks are quite robust against such substitutions, our
example from the previous section showed that probabilities calculated from the
noisy-OR model can differ significantly from the true probabilities. The prop-
agation effects of such deviating probabilities are largely unknown, yet are im-
portant for determining when using the noisy-OR model can harm a network’s
performance. In this section we study these propagation effects by means of
sensitivity-analysis techniques; upon doing so, we distinguish between propaga-
tion in the causal direction, that is, in the direction of the arcs, and propagation
in diagnostic direction, that is, against the arcs. We study the propagation effects
in Sect. 3.1 and 3.2 for a basic causal mechanism; in Sect. 3.3, we will revisit our
results in view of more involved mechanisms in larger networks.

3.1 Propagation in Causal Direction

We consider the conditional probability table Pr(C | AB) for the effect variable
C of the causal mechanism from Fig. 3 and assume that it has been specified
using the noisy-OR model: the probabilities Pr(c | āb) and Pr(c | ab̄) have been
provided by experts, Pr(c | ab) is calculated from the model’s formulas, and
Pr(c | āb̄) is set to 0. By propagating information about the cause variables to
the effect variable, we establish the (prior) probability of interest Pr(c) to be:
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A B

C

Fig. 3. Causal mechanism with the cause variables A and B and the effect variable C

Pr(c) = Pr(c | ab) ·Pr(a) ·Pr(b)+Pr(c | āb) ·Pr(ā) ·Pr(b)+Pr(c | ab̄) ·Pr(a) ·Pr(b̄)

for which we used the model’s accountability property. We now assume that
the noisy-OR calculated probability Pr(c | ab) from the conditional probability
table deviates substantially from the true probability of the effect c to arise in the
presence of the two causes a and b. The effect of this deviation on the probability
of interest can be studied by writing Pr(c) as a function of x = Pr(c | ab). From
well-established properties from sensitivity analysis of Bayesian networks [9], we
have that the result is a linear function in x; more specifically, we find that

Pr(c) = α · (Pr(c | ab) + β′) = α · (x + β′)

where

α = Pr(a) · Pr(b)

β′ =
(

Pr(c | āb)
Pr(a)

− Pr(c | āb)
)

+
(

Pr(c | ab̄)
Pr(b)

− Pr(c | ab̄)
)

The gradient α of the sensitivity function for Pr(c) determines the effect that
deviations of a noisy-OR calculated value from the true probability Pr(c | ab)
can have on the probability of interest. We observe that this gradient depends
solely on the prior probabilities of the two causes a and b: large values for α are
found only when both Pr(a) and Pr(b) have large values. The offset of the linear
function equals α · β′, in which the constant β′ also depends on the prior prob-
abilities Pr(a) and Pr(b); β′ is further dependent of the parameter probabilities
Pr(c | āb) and Pr(c | ab̄) of the noisy-OR model. We note that β′ is undefined
when at least one of the probabilities Pr(a) and Pr(b) equals 0. We further note
that the constants α and β′ in essence range over the intervals (0, 1) and (0,∞),
respectively; the offset α · β′, however, is restricted to the interval (0, 1).

Fig. 4 depicts two example sensitivity functions expressing the probability of
interest Pr(c) in terms of x = Pr(c | ab). For both functions, the two parameter
probabilities Pr(c | āb) and Pr(c | ab̄) were set to large values. For the graph
on the left, the prior probabilities Pr(a) and Pr(b) were assigned small values;
for the graph on the right, large values were chosen for these probabilities. The
graph on the left shows that in view of small values for Pr(a) and Pr(b), even a
substantial deviation of the noisy-OR calculated value from the true probability
Pr(c | ab) can have only a minor effect on the probability of interest: the gradient
α of the depicted function is 0.024. Given larger values for Pr(a) and Pr(b), the



128 S.P.D. Woudenberg and L.C. van der Gaag

Fig. 4. Effects of varying Pr(c | ab) on Pr(c), given small values (left) and large values
(right) for Pr(a) and Pr(b); effects of the noisy-OR calculated values for Pr(c | ab) are
indicated by dots

effect on Pr(c) of such a deviation will increase, as is illustrated by the graph on
the right; the gradient of this function equals 0.8372.

To summarize, the effect of a large deviation of a noisy-OR calculated value
from a true probability depends to a large extent on the prior probabilities of
the possible causes of the effect under study. The larger these prior probabilities,
the larger the gradient of the sensitivity function describing the effect will be.
And the larger this gradient, the more harm ill-considered use of the noisy-OR
model can do to the network’s performance.

3.2 Propagating in Diagnostic Direction

Having studied propagation in the causal direction, we now turn to propagation
in the diagnostic direction, that is, we address the propagation of information
between the two cause variables through the effect variable. We consider again
the basic causal mechanism from Fig. 3, and express the probability of interest
Pr(a | c) as a function of the probability x = Pr(c | ab). From Bayes’ rule and
the cause variables A and B being mutually independent, we find that

Pr(a | c) =
Pr(c | ab) · Pr(a) · Pr(b) + Pr(c | ab̄) · Pr(a) · Pr(b̄)

Pr(c)

=
Pr(c | ab) + β′′

Pr(c | ab) + β′ =
x + β′′

x + β′

where

α = Pr(a) · Pr(b)

β′ =
(

Pr(c | āb)
Pr(a)

− Pr(c | āb)
)

+
(

Pr(c | ab̄)
Pr(b)

− Pr(c | ab̄)
)

β′′ =
Pr(c | ab̄) · Pr(b̄)

Pr(b)

We note that the sensitivity function for the probability of interest Pr(a | c) is
hyperbolic in the probability under study, consistent with earlier results from
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Fig. 5. Effects of varying Pr(c | ab) on Pr(a | c), given medium-sized values (left) and
large values (right) for Pr(a) and Pr(b); effects of the noisy-OR calculated values for
Pr(c | ab) are indicated by dots

sensitivity analysis. Fig. 5 shows two example functions expressing Pr(a | c) in
x = Pr(c | ab). For both functions, the parameter probabilities Pr(c | āb) and
Pr(c | ab̄) were set to large values. For the graph on the left, the prior probabilities
Pr(a) and Pr(b) were assigned medium-sized values; for the graph on the right,
large values were chosen for these probabilities. The two graphs show that a large
deviation of the noisy-OR computed value from the true probability Pr(c | ab)
will often have a very small effect on the probability of interest; the graph on
the right shows however, that the effect may also be quite large.

In order to gain further insight in the effect on the probability of interest of a
large deviation of the noisy-OR calculated value from the true probability Pr(c |
ab), we study various properties of our sensitivity function. For this purpose,
we build upon concepts and properties from sensitivity analysis of Bayesian
networks [9,10]. A (rectangular) hyperbola f(x) has the general form

f(x) =
w1 · x + w2

w3 · x + w4
=

r

x− s
+ t

where w1, . . . , w4 are constants and

s = −w4

w3
, t =

w1

w3
, and r =

w2 · w3 − w1 · w4

w2
3

The values of the constants s, t and r determine various properties of the hyper-
bola. The constant s indicates its vertical asymptote; the horizontal asymptote is
defined by the constant t. These two constants determine the general shape of the
hyperbola. The constant r further defines the location of the hyperbola’s vertices.
The vertex of a hyperbola branch is the point where the absolute value of the
first derivative equals 1; it is located at one of the four points (s±

√
|r|, t±

√
|r|).

We now observe that the sensitivity function for our probability of interest
Pr(a | c) is a part of a single hyperbola branch: since Pr(a | c) lies within the
interval [0, 1] and is defined for any x = Pr(c | ab) ∈ [0, 1], it is restricted to a
unit window. Note that this observation is corroborated by the two graphs from
Fig. 5. We further observe that our sensitivity function has a more restricted
form than rectangular hyperbolas in general. More specifically, we have that
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s = −β′, t = 1 and r = −Pr(c | āb)
Pr(a)

+ Pr(c | āb)

The horizontal asymptote of our hyperbola branch thus equals 1. From β′ > 0
it further follows that the vertical asymptote is found to the left of the unit
window. We conclude that our hyperbola branch lies in the fourth quadrant,
which is confirmed by the two graphs from Fig. 5. Its vertex then is found at
(s +

√
|r|, t−

√
|r|). Note that the vertex may or may not be located within the

unit window which delimits the sensitivity function under study.
The location of the vertex of our sensitivity function for the probability of

interest Pr(a | c) is an important indicator for the effect of a deviation of the
noisy-OR calculated value from the true probability Pr(c | ab). Informally speak-
ing, when the vertical asymptote lies close to the unit window and the vertex
in turn is close to this asymptote, even a small deviation in Pr(c | ab) can have
a large effect on Pr(a | c). We recall that the vertical asymptote s can lie in-
finitesimally close to the unit window without reaching it. Small values |s| are
found with large values for the prior probability Pr(a). When the value of Pr(a)
decreases, the asymptote will move to the left, further away from the unit win-
dow; the graph on the left of Fig. 6 depicts this relation between s and the
prior probability Pr(a). We further recall that the x-coordinate of the vertex
equals s+

√
|r|. The distance between the asymptote and the vertex thus equals√

|r| =
√
| − Pr(c|āb)

Pr(a) + Pr(c | āb)|. We now observe that for large values of Pr(a),
the distance between the vertical asymptote and the vertex will be close to 0.
For decreasing values of Pr(a), the vertex will first move slightly to the right but
very soon the constant s becomes the dominant term in the x-coordinate of the
vertex causing it to move to the left. The distance between the vertical asymp-
tote and the vertex will then increase. The relation between the prior probability
Pr(a) and the x-coordinate of the vertex is depicted in the graph on the left of
Fig. 6.

The graph on the right of Fig. 6 shows the possible effects on the probability
of interest Pr(a | c) of a deviation of a noisy-OR calculated value from the true
probability Pr(c | ab). The effects are shown for different values of the prior
probability Pr(a); for all depicted functions, the probabilities Pr(b), Pr(c | āb)
and Pr(c | ab̄) were fixed at large values. The graph shows that with a prior
probability Pr(a) close to 1, in essence a large effect on Pr(a | c) can result from
even a small deviation from the true probability Pr(c | ab). We note however, that
the noisy-OR model will typically yield a large value for the probability Pr(c |
ab). A large effect on the probability of interest can then only arise when the
true probability is very small, that is, when the noisy-OR calculated probability
value strongly deviates from reality. We recall that the alcohol-and-GHB example
from Sect. 2 represented such a situation. When the value of the prior probability
Pr(a) is somewhat smaller, the maximum effect on the probability of interest will
also be smaller; an effect will arise over a somewhat larger range of values for the
probability Pr(c | ab), however. The graph on the right of Fig. 6 further shows
that, regardless of the value of the prior probability Pr(a), a small deviation of
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Fig. 6. The values of the vertical asymptote, the x-coordinate of the vertex and the
distance between these values (left); the effect of a decreasing probability Pr(a) (right)

the true probability Pr(c | ab) from a relatively large noisy-OR calculated value
will always have just a little effect on the probability of interest.

To summarize, upon diagnostic propagation of information through a causal
mechanism to a cause variable A, the effect of a large deviation of a noisy-OR
calculated value from the true probability Pr(c | ab) is dependent to a large
extent of the value of the prior probability Pr(a). The larger this value, the
closer the vertical asymptote of the sensitivity function expressing Pr(a | c)
lies to the unit window and the closer its vertex will be to the asymptote. A
very small true probability Pr(c | ab) for which the noisy-OR model calculates
a relatively large value can then substantially decrease the performance of the
Bayesian network. We would like to note that, while in this section we focused
on Pr(a | c), similar observations hold for the probability of interest Pr(b | c),
with the prior probability Pr(b) as the most indicative factor.

3.3 Revisiting Our Results in View of Noisy-OR Generalizations

The results from our analysis above hold for application of the noisy-OR model
for the basic causal mechanism from Fig. 3. In larger networks for real appli-
cations, however, the noisy-OR model will be applied to more involved causal
mechanisms. The results from the empirical studies reviewed in Sect. 2 appear
to support the conjecture that our results can be generalized to explain the ap-
parent robustness of Bayesian networks in general to substitution of noisy-OR
established probability tables. We underpin this conjecture informally.

For causal mechanisms involving more than two cause variables, the formulas
of the noisy-OR model will lead to additional multiplications upon calculating
the non-parameter probabilities for the probability table of the effect variable.
These additional multiplications will result in increasingly larger noisy-OR cal-
culated probabilities. Negative effects from ill-advised use of the model can then
only be expected for large deviating true probabilities. The overall effect will be
more limited than with two cause variables, however, as a result of a decreasing
joint probability of the causes involved. When the property of accountability
does not hold for the cause variables from a causal mechanism, the leaky variant
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of the noisy-OR model can be used [5,6,7]. In this model, a leak probability is de-
fined, which is the probability that the effect will occur when none of the causes
are present. The leaky noisy-OR model now in essence uses for its parameters the
probabilities that the effect e is present when a cause ci is present and all other
causes, including the ones that are not modeled explicitly, are absent. Different
views have been proposed of these parameter probabilities, yet with each of these
views the leaky noisy-OR model can be mimicked by a noisy-OR model with an
additional cause variable. From this observation, we cautiously conclude that
our observations for multiple cause variables will hold for the leaky noisy-OR
model as well. We further surmise that taking the context of a larger network
into consideration will also not substantially affect our results. We note that the
most important assumption made in our analysis is mutual independency of the
cause variables. When the cause variables are dependent, the dependency can be
either positive or negative, with a positive dependency stating that a large value
for one of the causes will induce higher values for the other cause to become
more likely. In the case of negative dependencies it becomes less likely that all
causes are present simultaneously, thereby reducing the effect of propagation in
the causal direction. We further expect that the effects of propagation in the
diagnostic direction remain to be strongly dependent of the distribution of the
marginal probabilities of the individual causes, since the general form of the
sensitivity functions under study is not likely to change.

While several researchers have conducted studies with the noisy-OR model in
real Bayesian networks, far less empirical evidence is available as to the effects of
using the noisy-MAX model in practical networks. The noisy-MAX model was
designed as an extension of the noisy-OR model to causal mechanisms involving
non-binary variables [6,7], allowing different levels of presence of a cause. The
noisy-MAX model is based upon two properties of the domains of the cause and
effect variables: each cause variable must have a designated value which models
absence, and the values of the effect variable must allow a total ordering. We note
that the assumption of a value modeling absence of a cause is also implicit in the
noisy-OR model. With the basic causal mechanism from Fig. 3, we performed
some preliminary experiments assigning different numbers of values to the cause
and effect variables involved. These experiments showed a consistently subdued
effect on the probabilities of interest of large deviations of the true probabilities
from the noisy-MAX computed ones. Further experimentation and an in-depth
analysis are required, however, before any definite conclusions can be drawn.

4 Conclusions and Future Work

When building a Bayesian network with the help of domain experts, often the
noisy-OR model is employed to ease probability elicitation. Since not all network
engineers are fully aware of the properties upon which it is built, the model is
subject to ill-considered use. The results from empirical studies moreover appear
to advocate wide-spread use by showing that using the noisy-OR model does not
harm the performance of a Bayesian network. We have demonstrated that cau-
tion is nonetheless advised. Especially when a modeled cause annihilates to some



Using the Noisy-OR Model Can Be Harmful . . . But It Often Is Not 133

extent the effect of another cause, the probability values computed by the noisy-
OR model will deviate substantially from the true probabilities. We have shown
that large prior probabilities of the causes being present can then induce strong
propagation effects which in turn can result in quite deviating posterior proba-
bilities. Although the available empirical evidence suggests that similar results
will hold for generalized variants of the noisy-OR model, further experimentation
and analysis are required before we can establish the precise conditions under
which these variants cannot harm a network’s performance. Motivated by our
results, we will also more closely investigate mechanisms embedding annihilation
of causes, with the aim of designing parameterized conditional probability tables
for this type of intercausal interaction.
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Abstract. Many real-life Bayesian networks are expected to exhibit
commonly known properties of monotonicity, in the sense that higher val-
ues for the observable variables should make higher values for the main
variable of interest more likely. Yet, violations of these properties may be
introduced into a network despite careful engineering efforts. In this pa-
per, we present a method for resolving such violations of monotonicity by
varying a single parameter probability. Our method constructs intervals
of numerical values to which a parameter can be varied to attain mono-
tonicity without introducing new violations. We argue that our method
has a high runtime, yet can be of practical value for specific domains.

1 Introduction

Many real-life Bayesian networks are expected to exhibit commonly known prop-
erties of monotonicity, in the sense that higher values for the observable variables
should make higher values for the main variable of interest more likely; if a net-
work violates any such property, it will not be easily accepted by its users, not
even if it shows high performance otherwise. Yet, during the construction of a
Bayesian network, violations of monotonicity may inadvertently be introduced
despite careful engineering efforts. To attain monotonicity for a network, all such
violations must be identified and resolved. Experience has shown, however, that
violations of monotonicity can hardly be detected by hand. Recently, moreover,
it was established that automatically verifying monotonicity is of a high compu-
tational complexity; the problem was shown to be co-NPPP-complete in general
[1]. In view of this unfavorable complexity result, Van der Gaag et al. proposed
a practical method for verifying monotonicity which proved to be feasible for
studying at least parts of a real-life network in veterinary medicine [2].

Various methods may be considered for attaining monotonicity for a Bayesian
network which does not yet exhibit the required property in its observable vari-
ables. In essence, these methods amount to changing the network’s graphical
structure, varying its parameter probabilities, or modifying both. In this paper
we investigate the problem of resolving violations of monotonicity by varying a
network’s probabilities. We note that since the problem of verifying monotonic-
ity in itself is already of a high computational complexity, we cannot expect to
find an efficient, generally applicable method for resolving violations. We note
moreover that the problem of attaining monotonicity by parameter variation is
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closely related to the problem of tuning parameters to meet some constraints
on the network’s output [3], which was shown to be NPPP-complete in general
[4]. More specifically, for parameter tuning three general types of problem have
been distinguished; these are to meet constraints on a single probability, on two
probabilities given the same evidence, and on two probabilities of the same main
variable of interest. For solving the first two types of problem, practical methods
have been devised. To the best of our knowledge, no such method is available
as yet for solving tuning problems on two probabilities of the same variable of
interest given different evidence. Yet, it is this type of tuning problem, which is
closest to our problem of attaining monotonicity.

Given the unfavorable complexity results of parameter tuning and verifying
monotonicity, we focused our investigation of the problem of attaining mono-
tonicity for Bayesian networks on the variation of single parameter probabili-
ties. We present for this purpose a method, called the intersection-of-intervals
method, which constructs a union of intervals of numerical values to which a
parameter can be varied such that there are no more violations of monotonicity
in the resulting modified network. Since resolving a single violation may cause
new violations to arise, our method studies the effect of parameter variation for
all possible combinations of evidence simultaneously rather than for only those
combinations of evidence for which the property of monotonicity is violated. If
the union of intervals constructed for a parameter probability is empty, then
this parameter cannot, upon variation, resolve the identified violations without
introducing new ones; otherwise, the parameter can be varied to any value from
the union of intervals to attain monotonicity for the network at hand.

The paper is organized as follows. In Sect. 2, we introduce our notational
conventions and review the concept of Bayesian network. In Sect. 3, we review
the concept of monotonicity for Bayesian networks and study properties of its
violations. In Sect. 4, we reduce the graphical structure of a network by eliminat-
ing variables for which parameter variation cannot serve to attain monotonicity.
In Sect. 5, we detail our intersection-of-intervals method for resolving violations
of monotonicity without introducing new ones; we also discuss the complexity
of our method and its practical applicability. Finally, in Sect. 6, we outline our
results and conclusions as well as some ideas for further study.

2 Bayesian Networks

A Bayesian network is a model of a joint probability distribution Pr over a
set of random variables V. Before briefly reviewing the concept of Bayesian
network, we introduce our notational conventions. We use (indexed) upper-case
letters Vi to denote individual variables from the set V and bold-faced upper-
case letters S to denote (sub)sets of variables. Each variable Vi has an associated
domain of possible values, denoted Ω(Vi); the possible values for Vi are denoted
vk

i , k = 1, . . . , |Ω(Vi)|, and are ordered vk
i ≤ vk+1

i . An assignment Vi = vi

for some vi ∈ Ω(Vi) will be referred to as an observation or as evidence for
Vi, alternatively. The set of all joint value assignments to a set of variables S
equals the Cartesian product of the domains of the variables involved, that is,
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Ω(S) = ×Vi∈S Ω(Vi). Elements from Ω(S) are denoted by bold-faced lower-case
letters s and are ordered by the partial ordering  induced by the total orderings
≤ of the domains of the individual variables. If ambiguity cannot occur, we will
use vk

i as a shorthand notation for Vi = vk
i ; similarly we will write s for S = s.

A Bayesian network B = (G, P ) includes a directed acyclic graph G = (V, A),
in which the set of arcs A captures the probabilistic (in)dependencies between
the random variables V. We say that two variables Vi and Vj are d-separated
by the available evidence if every chain between Vi and Vj contains either an
observed variable with at least one emanating arc, or a variable Vk with two
incoming arcs such that neither Vk itself nor any of its descendants in G have
been observed; Vi and Vj are then considered mutually independent given the
evidence. The strengths of the relationships between the variables are expressed
by means of a set P of (conditional) probability distributions, which includes
the distributions p(Vi | π(Vi)) for each variable Vi given all possible value as-
signments to its parents π(Vi) in G. The separate probabilities in P are called
the parameters of the network. The distributions specified for the variable Vi

are said to constitute Vi’s conditional probability table. The network’s graphi-
cal structure and associated parameter probabilities represent the unique joint
probability distribution Pr(V) =

∏
Vi∈V p(Vi | π(Vi)) over the variables V.

3 Monotonicity in Bayesian Networks

In most real-life applications of Bayesian networks, the represented variables have
different roles. In many applications in fact, a set of observable input variables
E and a single main variable of interest C are distinguished. The concept of
monotonicity in Bayesian networks has been introduced to describe properties
of the relationships between these variables [1]. The concept is defined as follows.

Definition 1. A Bayesian network B = (G, P ) is isotone in distribution in its
observable variables E if

e  e′ ⇒ Pr (C ≤ c | e′) ≤ Pr (C ≤ c | e)

for all c ∈ Ω(C) and e, e′ ∈ Ω(E).

The results presented in the sequel hold also for the reverse property of anti-
tonicity, which states that e  e′ implies Pr (C ≤ c | e′) ≥ Pr (C ≤ c | e) for all
c ∈ Ω(C) and e, e′ ∈ Ω(E). Without loss of generality therefore, we will use the
term monotonicity to refer to the property of isotonicity in distribution.

If a Bayesian network does not exhibit monotonicity in its observable vari-
ables, then there must be one or more pairs of joint value assignments e, e′ ∈ Ω(E)
with e  e′ for which Pr (C ≤ c | e′) > Pr (C ≤ c | e) for at least one value c ∈
Ω(C). In their work on identifying such violations of monotonicity [2], Van der
Gaag et al. showed that it suffices to consider pairs of assignments e, e′ ∈ Ω(E)
that differ in the value for just a single observable variable Ei ∈ E, that is, that
share the joint value assignment to E \ {Ei} = E−

i . In the sequel, we build upon
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this property and write e−ij to denote the jth assignment to E−
i according to some

ordering on Ω(E−
i ). Studying monotonicity in a Bayesian network now amounts

to establishing whether the property Pr
(
C ≤ c | ek+1

i , e−ij
)
≤ Pr

(
C ≤ c | ek

i , e−ij
)

holds for all Ei ∈ E and all assignments e−ij to E−
i , for all consecutive values

ek
i , ek+1

i for Ei, and all c ∈ Ω(C); we will use viol (c, ek
i , e−ij) to denote the vio-

lation of this property for a particular observable variable Ei ∈ E and specific
values c ∈ Ω(C), ek

i ∈ Ω(Ei) and e−ij ∈ Ω(E−
i ).

If domain knowledge dictates that a Bayesian network should be monotone
in its observable variables, all violations of this property must be identified and
resolved. Various methods may be considered for attaining monotonicity for a
network, based upon changing the graphical structure, varying the parameters
or modifying both. In this paper we address the problem of resolving violations
of monotonicity by varying a single parameter probability. Let p(u | π) be a
parameter probability for some variable U , where u ∈ Ω(U) and π ∈ Ω(π(U))
is a joint value assignment to the parents of U in the network’s graph. Varying
p(u | π) is said to resolve the violation viol (c, ek

i , e−ij) if there exists a numerical
value x ∈ [0, 1] for which

Pr
(
C ≤ c | ek+1

i , e−ij
) (

p(u | π) = x
)
≤ Pr

(
C ≤ c | ek

i , e−ij
) (

p(u | π) = x
)
,

where Pr(V)
(
p(u | π) = x

)
indicates the probability distribution over the vari-

ables V as established from the network after changing the numerical value of
the parameter p(u | π) to x; we thereby assume that the other parameter proba-
bilities from the distribution p(U | π) from the probability table of U are scaled
proportionally, that is p(u′ | π) := 1−x

1−p(u|π) · p(u′ | π) for all u′ ∈ Ω(U) \ {u}. A
parameter which serves to simultaneously resolve all violations of monotonicity
for a network without introducing any new ones, will be termed a resolvent pa-
rameter. We note that a Bayesian network which includes one or more violations
of monotonicity may or may not have such a resolvent parameter.

4 Reducing the Graphical Structure

Identifying the parameters that upon variation can resolve all violations of mono-
tonicity in a Bayesian network carries a considerable computational burden. To
reduce the number of computations involved, a network can be preprocessed by
eliminating variables for which we know that their parameters cannot be resol-
vent since these are algebraically independent of the probability of interest.

By simple inspection of the graphical structure of a network, some variables
with non-influential parameter probabilities can be feasibly identified without
any reference to the parameters’ numerical values. For this purpose, we exploit
the concept of sensitivity set which was introduced before in sensitivity analysis
of Bayesian networks [5]. The sensitivity set for a variable of interest C given
observed variables E is the set of all variables for which the probability of interest
is algebraically dependent of its parameter probabilities. This set is obtained as
follows. From the graph G of the Bayesian network, we construct a new graph
G∗ by adding an auxiliary parent Xi to every vertex Vi ∈ V; this parent Xi in
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essence represents the conditional probability table of Vi. The sensitivity set for
C given E, denoted Sen(C ,E), now is the set of all variables Vi ∈ V for which
Xi and C are not d-separated by E. We have that, if Xi and C are d-separated
by E, then the probability Pr (c | e) is algebraically independent of p(Vi | π(Vi))
for any c ∈ Ω(C) and e ∈ Ω(E) [5]. For any variable Vi /∈ Sen(C ,E), therefore,
varying a parameter p from its conditional probability table cannot resolve any
violation of monotonicity and thus cannot be used to attain monotonicity. For
each variable from the sensitivity set, varying one of its parameter probabilities
may serve to attain monotonicity for the network at hand, yet is not guaranteed
to do so. These parameter probabilities thus need further investigation.

Building upon the concept of sensitivity set, we now preprocess a Bayesian
network under consideration by restricting it to the part which is relevant for
studying monotonicity. For this purpose we cannot simply remove all variables
from the set V \ Sen(C ,E), since some of these variables may still be needed
to incorporate evidence into the network’s computations. We therefore retain
the variables from Sen(C ,E) ∪ E and remove all other variables along with
their incident arcs. If upon doing so the graphical structure of the network falls
apart into multiple connected components, then the network is further restricted
by removing all variables that are not included in the same component as the
variable of interest C. In the remainder of the paper, we assume that a Bayesian
network has been preprocessed as described above.

5 The Intersection-of-Intervals Method

In the previous section we showed that a Bayesian network can be restricted,
based upon graphical considerations only, to the part that is relevant for study-
ing monotonicity. For each of the remaining variables we must now determine
whether varying a parameter from its conditional probability table can result in
monotonicity for the network. For this purpose, we introduce a method which
determines whether a specific parameter can be varied to a numerical value for
which there are no more violations of monotonicity in the resulting modified net-
work. Using this method we can then decide whether there exists a parameter
that can be varied to attain monotonicity.

5.1 The Method

We consider a (restricted) Bayesian network B = (G, P ) with a variable of
interest C and a set of observable variables E. Suppose that B includes a single
violation of monotonicity viol (c, ek

i , e−ij). To resolve this violation by parameter
variation, we must change the value of some parameter p ∈ P to a numerical
value x from the unit interval [0, 1] such that Pr

(
C ≤ c | ek+1

i , e−ij
) (

p = x
)
≤

Pr
(
C ≤ c | ek

i , e−ij
) (

p = x
)
. More generally however, a network may contain

multiple violations of monotonicity. Also, resolving one such violation may cause
other, possibly new violations to arise. To attain monotonicity for the network
B, we must therefore vary some parameter p ∈ P to a numerical value x ∈ [0, 1]
such that the entire system of inequalities
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Pr
(
C ≤ c | ek+1

i , e−ij
) (

p = x
)
≤ Pr

(
C ≤ c | ek

i , e−ij
) (

p = x
)

holds for every Ei ∈ E and for all c ∈ Ω(C), ek
i ∈ Ω(Ei) and e−ij ∈ Ω(E−

i ). This
observation gives rise to the following method, called the intersection-of-intervals
method. The method determines whether the value of a specific parameter p ∈ P
can be changed to a new value such that there are no more violations of mono-
tonicity in the resulting network; it thus determines whether p is a resolvent
parameter for B. More specifically, the intersection-of-intervals method deter-
mines for each combination of assignments (c, ek

i , e−ij) separately, the union of
intervals of values x for the parameter p for which the above inequality holds;
we call this union of intervals the solution space of p for (c, ek

i , e−ij). We can
now only attain monotonicity by varying p to a value x which is included in the
intersection of the solution spaces of p for all (c, ek

i , e−ij) and every Ei ∈ E.

Method 1 (Intersection-of-intervals method). Let C, E and p be as before,
and for every i ∈ {1, 2 . . . , |E|}, let Ei and E−

i be as defined above. Let e−ij be
the jth element of an ordering of the domain Ω(E−

i ) of E−
i . Now, let I = [0, 1]

and i = 1. While i ≤ |E| and I �= ∅, repeat the following steps:

1a. Let Ii = [0, 1] and j = 1. While j ≤ |Ω(E−
i )| and Ii �= ∅, repeat the

following steps:
2a. Let Iij = [0, 1] and k = 1. While k < |Ω(Ei)| and Iij �= ∅, repeat the

following steps:
3a. Let Iijk = [0, 1] and l = 1. While l < |Ω(C)| and Iijk �= ∅, repeat

the following steps:
4a. Compute solution space Iijkl , which is the union of all intervals

of values x ∈ [0, 1] for p for which

Pr
(
C ≤ cl | ek+1

i , e−ij
) (

p = x
)
≤ Pr

(
C ≤ cl | ek

i , e−ij
) (

p = x
)
.

4b. Compute Iijk = Iijk ∩ Iijkl and l = l + 1.
3b. Compute Iij = Iij ∩ Iijk and k = k + 1.

2b. Compute Ii = Ii ∩ Iij and j = j + 1.
1b. Compute I = I ∩ Ii and i = i + 1.

When applied for a specific parameter probability p, the intersection-of-intervals
method results in a union of intervals I of values x for p for which there are no
more violations of monotonicity in the resulting network B upon variation of p
to x; we call this union of intervals I the solution space of p for all violations in
B. More specifically, we have the following property for this solution space I.

Proposition 1. Let B be a Bayesian network as before and let p be a parameter
probability in B. Let I be the union of intervals of numerical values which results
from applying the intersection-of-intervals method for p. Then, I �= ∅ if and only
if p is a resolvent parameter for B.
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Proof. We first assume that I �= ∅. Then there must be some value x ∈ I such
that x ∈ Iijkl for all i, j, k, l with 1 ≤ i ≤ |E|, 1 ≤ j ≤ |Ω(E−

i )|, 1 ≤ k < |Ω(Ei)|
and 1 ≤ l < |Ω(C)|. It follows that x is included in the solution spaces of p for
all combinations of assignments (cl, ek

i , e−ij) for all i, j, k, l. So, for every Ei ∈ E
and each combination (cl, ek

i , e−ij), the property Pr
(
C ≤ cl | ek+1

i , e−ij
) (

p = x
)
≤

Pr
(
C ≤ cl | ek

i , e−ij
) (

p = x
)

must hold. We conclude that varying the parameter
p to x resolves all violations of monotonicity without introducing any new ones,
which means that p is a resolvent parameter for B.

We now assume that p is a resolvent parameter for B. Then there must be some
value x ∈ [0, 1] for which for every Ei ∈ E and each combination (cl, ek

i , e−ij),
the property Pr

(
C ≤ cl | ek+1

i , e−ij
) (

p = x
)
≤ Pr

(
C ≤ cl | ek

i , e−ij
) (

p = x
)

holds.
Then, x ∈ Iijkl for all i, j, k, l with 1 ≤ i ≤ |E|, 1 ≤ j ≤ |Ω(E−

i )|, 1 ≤ k < |Ω(Ei)|
and 1 ≤ l < |Ω(C)|. From the intersections performed, we have that the union of
intervals I resulting from the method contains every value x′ which is contained
in all Iijkl for all i, j, k, l. We conclude that x ∈ I, and hence I �= ∅. !"

5.2 Applying the Intersection-of-Intervals Method

From a computational point of view, the most complex step in each iteration
within the intersection-of-intervals method is step 4a. This step serves to com-
pute, for a given observable variable Ei ∈ E, the solution space Iijkl of p for the
combination of value assignments (cl, ek

i , e−ij). This space consists of all intervals
of numerical values x for the parameter p under study for which there is no
violation viol (cl, ek

i , e−ij) in the network, that is, for which

Pr
(
C ≤ cl | ek+1

i , e−ij
) (

p = x
)
≤ Pr

(
C ≤ c | ek

i , e−ij
) (

p = x
)
.

To determine the solution space Iijkl we compute the endpoints of its intervals,
which amounts to computing the solutions that lie within the interval [0, 1], of
the following quadratic equation:

0 = (αx + β)(γ′x + δ′)− (α′x + β′)(γx + δ),

where α, α′, β, β′, γ, γ′, δ, δ′ are such that Pr
(
C ≤ cl | ek

i , e−ij
) (

p = x
)

= αx+β
γx+δ

and Pr
(
C ≤ cl | ek+1

i , e−ij
) (

p = x
)

= α′x+β′

γ′x+δ′ ; note that from previous research
on sensitivity analysis of Bayesian networks, we know that any probability of
interest can be written as a function of a single parameter probability which has
this hyperbolic form [5]. The intervals themselves are then found by determining
on which side of the computed endpoints the above inequality holds. We note
that for this purpose, we need to obtain the constants α, α′, β, β′, γ, γ′, δ, δ′; an
algorithm for computing these constants is readily available [8].

Example 1. We consider the small restricted Bayesian network B depicted in Fig.
1, which consists of a ternary variable of interest C, a binary observable variable
E1, a ternary observable variable E2, and two binary intermediate variables
V1 and V2. The conditional probability tables of these variables together are
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p(e11 | c1, v12) = 0.98

p(e11 | c1, v22) = 0.42

p(e11 | c2, v12) = 0.99

p(e11 | c2, v22) = 0.49

p(e11 | c3, v12) = 0.61

p(e11 | c3, v22) = 0.36

p(e12 | c1, v11) = 0.68

p(e22 | c1, v11) = 0.31

p(e12 | c1, v21) = 0.21

p(e22 | c1, v21) = 0.35

p(c1 | v12) = 0.31

p(c2 | v12) = 0.16

p(c1 | v22) = 0.74

p(c2 | v22) = 0

p(v12) = 0.49

p(v11) = 0.7V2 V1

C

E1 E2

p(e12 | c3, v11) = 0.39

p(e22 | c3, v11) = 0.43

p(e12 | c3, v21) = 0.49

p(e22 | c3, v21) = 0.13

p(e12 | c2, v11) = 0.48

p(e22 | c2, v11) = 0.26

p(e12 | c2, v21) = 0.13

p(e22 | c2, v21) = 0.22

Fig. 1. A restricted Bayesian network including three violations

made up of forty parameter probabilities; for ease of presentation we have not
included the complementary parameter probabilities in Fig. 1 as they can be
readily computed from the twenty-four presented numbers.

Suppose that we wish the network B to show monotonicity in its observable
variables. Upon computing the probabilities of interest Pr(c1 | e1

1, e
3
2) = 0.352

and Pr(c1 | e2
1, e

3
2) = 0.407 (rounded to three decimal places) however, we find

that B does not exhibit this property. In addition to the violation viol (c1, e1
1, e

3
2),

the network includes the violations viol (c1, e1
1, e

1
2) and viol (c1, e1

1, e
2
2). To attain

monotonicity, and thereby resolve these three violations without introducing any
new ones, we apply the intersection-of-intervals method to B’s parameter p(v1

2).
For E−

1 = {E2} and E−
2 = {E1} we take the predefined ordering of the domains

of E2 and E1, respectively. For E1 the method now computes the following
solution spaces of p in step 4a (Fig. 2 gives a graphical representation of the
space I1311):

I1111 = [0, 0.132]∪ [0.556, 1] I1112 = [0, 1]
I1211 = [0, 0.156]∪ [0.509, 1] I1212 = [0, 1]
I1311 = [0, 0.085]∪ [0.676, 1] I1312 = [0, 1]

Note that, although the variable of interest has three possible values, the method
computes solution spaces only for the values c1 and c2; since Pr(C ≤ c3 | e) = 1
for all e ∈ Ω(E), there can never be any violations viol (c3, ek

i , e−ij). The method
subsequently intersects the above solution spaces in step 4b over two iterations
of step 3a, which results in the following unions of intervals:

I111 = [0, 1] ∩ I1111 ∩ I1112 = [0, 0.132]∪ [0.556, 1]
I121 = [0, 1] ∩ I1211 ∩ I1212 = [0, 0.156]∪ [0.509, 1]
I131 = [0, 1] ∩ I1311 ∩ I1312 = [0, 0.085]∪ [0.676, 1]

Since E1 has only two possible values in its domain, step 3b of the method easily
computes the solution spaces I1j for all j:
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Fig. 2. Representation of the solution space I1311 of p(v1
2) = x, in which Pr(c1 | e2

1, e
3
2)

( ) is no greater than Pr(c1 | e1
1, e

3
2) ( )

I11 = [0, 1] ∩ I111 = [0, 0.132] ∪ [0.556, 1]
I12 = [0, 1] ∩ I121 = [0, 0.156] ∪ [0.509, 1]
I13 = [0, 1] ∩ I131 = [0, 0.085] ∪ [0.676, 1]

Step 2b then intersects these unions of intervals to find I1:

I1 = [0, 1] ∩ I11 ∩ I12 ∩ I13 = [0, 0.085]∪ [0.676, 1]

For E2, the intersection-of-intervals method essentially computes I2 to be

I2 =
|Ω(E−

2 )|⋂
j=1

⎛⎝|Ω(E2)|−1⋂
k=1

⎛⎝|Ω(C)|−1⋂
l=1

I2jkl

⎞⎠⎞⎠ = [0, 0.842],

where I2122 = [0, 0.842] and I2jkl = [0, 1] for all other j, k, l. Finally the method
intersects I1 and I2 to find the solution space I of p(v1

2), which equals the union of
intervals [0, 0.085]∪ [0.676, 0.842]. We conclude that we can attain monotonicity
for the Bayesian network B by varying the network parameter p(v1

2) to any
value from the solution space I = [0, 0.085] ∪ [0.676, 0.842]. If we wish to make
the smallest possible change to p(v1

2), we must vary the parameter to 0.676.
We would like to note that while monotonicity can be attained by varying the

parameter probability p(v1
2), it is not the only resolvent parameter for the exam-

ple network B. Applying the intersection-of-intervals method to all parameters
of the network, serves to reveal fourteen resolvent parameters. !"

5.3 Complexity of the Intersection-of-Intervals Method

To address the computational complexity of the intersection-of-intervals method,
we focus first on its most expensive step, which is step 4a. We observe that, given
the quadratic equation from Sect. 5.2 for a single parameter p and a single com-
bination (cl, ek

i , e−ij), the actual intervals of the solution space can be computed
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in constant time. For establishing the constants of this quadratic equation, an
algorithm is available that has a runtime complexity of O(ωq ·n2), where n = |V|,
ω = maxV ∈V{|Ω(V )|} and q is the maximum clique size in the junction tree used
for propagation [8]. Now, step 4a is performed exactly once for each iteration in
step 3a, which is performed once for each iteration in step 2a, which in turn is
performed once for each iteration in step 1a, which itself is performed once for
each iteration in the method’s main loop. Consequently, step 4a is performed at
most O(m · ωm+1) times, where m = |E|. In the worst case, therefore, the total
amount of time spent on step 4a is O(m · ωq+m+1 · n2).

Steps 1b, 2b, 3b and 4b of the intersection-of-intervals method involve the
computation of the intersection of one union of intervals with another. We ob-
serve that, in general, the intersection of a union of q1 intervals with a union
of q2 intervals can be computed in O(q1 + q2) time. At the lth iteration in step
3a, step 4b intersects at most l intervals with at most two intervals, which takes
O(l) time. As step 3a is performed at most O(m · ωm) times and itself performs
at most O(ω) iterations, in the worst case, the total amount of time spent on
step 4b is O(m · ωm+2). At the kth iteration in step 2a, step 3b intersects at
most (k − 1) · ω + 1 intervals with at most ω + 1 intervals, taking O(k · ω) time.
As step 2a is performed at most O(m · ωm−1) times and itself performs at most
O(ω) iterations, in the worst case the total amount of time spent on step 3b
is also O(m · ωm+2). Similarly, in the worst case, at most O(m · ω2m) time is
spent on step 2b, since it intersects, in O(j · ω2) time, at most (j − 1) · ω2 + 1
intervals with at most ω2 + 1 intervals at the jth iteration in step 1a, which is
itself performed at most O(m · ωm−1) times. Finally, in the worst case, at most
O(m2 · ωm+1) time is spent on step 1b, as it intersects, in O(i · ωm+1) time,
at most (i − 1) · ωm+1 + 1 intervals with at most ωm+1 + 1 intervals in the ith
iteration of the method’s main loop, which is performed at most O(m) times.

Combining the worst-case times spent on its various steps, we find that the
intersection-of-intervals method has a runtime complexity of O(m ·ωq+m+1 ·n2 +
m · ω2m) for networks in general. Practical networks, however, tend to have a
relatively small maximum clique size q and a limited maximum domain size ω.
With small sets of observable variables whose size can be considered constant
with respect to n, the algorithm can then run in O(n2) time; for sets of observable
variables of size O(n), the runtime complexity can increase to O(n2 ·ω2n). Note
that the overall runtime in general is further increased by the observation that
the number of parameters to be investigated can be exponential in n with base
ω. For practical networks, with small clique and domain sizes, however, a much
more limited number of parameters needs to be investigated; this number can
in fact be considered linear in the total number of variables involved.

The above considerations show that the intersection-of-intervals method has a
very high runtime, as was to be expected given the already unfavorable computa-
tional complexity of the problem of verifying monotonicity of Bayesian networks.
While upon practical application the runtime of the method depends to a large
extent on the graphical structure of the network under study and on the domain
sizes of its variables, it will inevitably become impractical for larger networks.
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Observing that the problem of attaining monotonicity is not addressed upon
daily problem solving but during the construction of a network only, an exten-
sive overall runtime may be acceptable. If the runtime becomes too challenging
altogether, it may be possible, as proposed by Van der Gaag et al. [7], to resolve
the violations of monotonicity that arise in a fixed context of values for some
of the observable variables. We note that doing so need not resolve all viola-
tions in the network and may in fact introduce new ones for other contexts. The
practicability of this idea thus needs further investigation.

5.4 Some Practical Considerations
When applying the intersection-of-intervals method in practice, we must choose
a single numerical value from the solution space I for a parameter p to actually
attain monotonicity for the network under study. For this purpose, we suggest
choosing the value from I which is closest to the original value of p to enforce
the smallest possible change in p; note that this choice was used in Example 1.
It is readily shown that, for a single resolvent parameter p, this choice will result
in the smallest possible Kullback-Leibler distance between the joint probability
distributions defined by the original and modified networks. When a network
has multiple resolvent parameters, the Kullback-Leibler distance can be used as
a heuristic for selecting the parameter to be varied to attain monotonicity; other
examples of heuristics for parameter tuning are described in [6].

So far, we assumed that the domains of all observable variables of a Bayesian
network allow a total ordering. In practice, however, this property may not al-
ways hold. Our intersection-of-intervals method is readily extended to accommo-
date observable variables with unordered domains. To this end, we observe that
a difference in value assignment to such a variable only, cannot cause a violation
of monotonicity. To attain monotonicity in the presence of observable variables
without ordered domains, therefore, the intersection-of-intervals method is sim-
ply applied in the context of every joint value assignment to these variables.

6 Conclusions

When a Bayesian network is employed in a real-life application, its users expect
it to exhibit commonly acknowledged properties of monotonicity. In this paper,
we studied the problem of attaining monotonicity for networks in which these
properties are violated. We restricted our investigations to the problem of find-
ing a parameter such that changing its value will result in a network that does
have the required properties. By building upon the previously known concept of
sensitivity set, we efficiently restricted a network to a part which is relevant for
studying monotonicity. We further presented the intersection-of-intervals method
for computing, for a specific parameter of the restricted network, a union of inter-
vals of numerical values to which this parameter can be varied in order to attain
monotonicity. We showed that application of our method for every parameter in
the restricted network can have a highly unfavorable runtime, yet argued that
an efficient, generally applicable method could not be expected given the al-
ready high complexity of verifying monotonicity for a network. In view of these
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complexity considerations, we are currently investigating properties of Bayesian
networks and their applications which may improve the feasibility of our method,
such as restricted network topologies, patterns of evidence, and dependencies be-
tween violations. We are also studying the violations of monotonicity, and the
possibilities of resolving them, in real-life networks.

Application of the intersection-of-intervals method to a Bayesian network can
yield one or more parameters which each individually can be varied to attain
monotonicity. Yet, the method may also uncover the impossibility of attaining
monotonicity for a network by varying a single parameter. For such networks, it
would be interesting to investigate attaining monotonicity by varying multiple
parameters. We surmise that our method can be used to obtain a sequence of
parameters which can be varied one after the other in order to attain mono-
tonicity, although the result may not be optimal. Another option would be to
vary several parameters simultaneously. We expect that for this option a fairly
different method would be required, but that the results would be promising if
such a method were to be found. Instead of attempting to attain monotonicity
by varying one or more parameter probabilities from a Bayesian network, it may
also be possible to do so by applying changes to its graphical structure. We hope
to be able in the near future to report results from our further investigations.
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Importance Sampling on Bayesian Networks with
Deterministic Causalities
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Abstract. Importance sampling is a powerful approximate inference technique
for Bayesian networks. However, the performance tends to be poor when the net-
work exhibits deterministic causalities. Deterministic causalities yield predictable
influences between statistical variables. In other words, only a strict subset of the
set of all variable states is permissible to sample. Samples inconsistent with the
permissible state space do not contribute to the sum estimate and are effectively
rejected during importance sampling. Detecting inconsistent samples is NP-hard,
since it amounts to calculating the posterior probability of a sample given some
evidence. Several methods have been proposed to cache inconsistent samples to
improve sampling efficiency. However, cache-based methods do not effectively
exploit overlap in the state patterns generated by determinism in a local network
structure to compress state information. In this paper, we propose a new algorithm
to reduce the overhead of caching by using an adaptive decision tree to efficiently
store and detect inconsistent samples. Experimental results show that the pro-
posed approach outperforms existing methods to sample Bayesian networks with
deterministic causalities.

1 Introduction

The Bayesian Network (BN) [17] formalism provides a concise graphical representation
of a joint probability distribution over a set of statistical variables and
inference methods for reasoning with uncertainty [16] in many problem domains [21].
Approximate inference by importance sampling [20] is widely used because of the de-
sirable real-time properties [12]. Examples are self importance sampling (SIS), heuris-
tic importance sampling [23], adaptive importance sampling (AIS-BN) [4], dynamic
importance sampling (DIS) [22, 15], and evidence pre-propagation importance sam-
pling (EPIS-BN) [26, 27].

The performance of importance sampling on Bayesian networks that exhibit deter-
ministic causalities tends to be poor [4, 25, 10], thereby limiting its use as a real-time
inference method under certain conditions. Deterministic causalities form predictable
influences between statistical variables in a network such that only a strict subset of
the variable states is permissible. Samples inconsistent with the permissible state space
have zero probability in the joint probability distribution. Inconsistent samples do not
contribute to the sum estimate and are effectively “rejected” by the sampling algorithm.

Detecting inconsistent samples ahead of time to eliminate the cost of rejection is
an NP-hard problem, since it requires the posterior probability of a sample given some
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evidence, which is known to be an NP-hard problem [6]. The impact of sample rejection
on performance of importance sampling has been studied extensively. Particularly in the
work on adaptive sampling schemes [4], in the context of constraint propagation [9], and
Boolean satisfiability problems [10]. Constraint propagation can be used to reduce the
rejection rate [8], but cannot eliminate rejection. Systematically searching for a nonzero
weight sample in constraint-based systems was proposed in [9] called SampleSearch
and improved in [10]. SampleSearch algorithms generate backtrack-free distributions.
SampleSearch is further generalized [11] as a sampling method for Mixed Networks [7,
14]. Sampling algorithms that use alternative formulations of Bayesian networks, such
as conjunctive normal forms [10], also suffer from sample rejection because of the
independent and identically distributed (i.i.d.) sampling requirement.

When the number of inconsistent samples is a small percentage and rejection rates
are consequently relatively low, methods such as SampleSearch [11] are effective. Sam-
pleSearch uses constraint propagation as an “oracle” to resolve inconsistencies dur-
ing sampling. In general, constraint propagation is an NP-complete problem. Thus,
the computational demands for larger networks with high degrees of determinism is
challenging. SampleSearch caches inconsistent samples as they are found during the
sampling process, effectively eliminating the regeneration of previously-generated in-
consistent samples. However, SampleSearch’s tree-structured “cache” can grow expo-
nentially in size as in the worst case the number of rejected samples is proportional to
the state space of Bayesian network variable state configurations.

Typically, only the states of strict subsets of the variables yield impossible configu-
rations. This is due to deterministic causalities between variables, i.e. the local depen-
dence structures. For example, take a BN over a set of variables V = {V1, . . . , Vn}
and suppose1 Pr(vi | vj) = 0. Then, all configurations of V with vi, vj are impossi-
ble, i.e. an exponential number of inconsistent samples with state patterns that overlap
due to localized deterministic causalities. It is clear that efficient caching of samples
suggests the exploitation of local network structure, especially for networks with high
degrees of determinism, to mitigate exponentially-growing caching requirements.

In this paper, we propose a new algorithm to reduce the overhead of caching by using
an adaptive decision tree to efficiently store and detect inconsistent samples. The tree
stores the inconsistent sample configurations in compressed form, hence we refer to
the method as Compressed Vertex Tree (CVT) search. Similar to SampleSearch, a CVT
structure stores the vertices corresponding to statistical variables that have zero prob-
ability constraints in a tree. However, by contrast to SampleSearch, CVT is adaptive
and maintained by a detecting and merging process that keeps the tree compressed, re-
quiring only a small amount of overhead to perform the modifications. Hence, the CVT
storage requirements are significantly lower and detecting inconsistent samples is more
efficient compared to other methods as is demonstrated by the results in this paper.

The remainder of this paper is organized as follows. Section 2 presents the CVT ap-
proach to optimize importance sampling. Section 3 empirically verifies our proposed
approach on two real-world Bayesian networks. Finally, Section 4 summarizes our
conclusions.

1 Throughout this paper we write Pr(vi | vj) for Pr(Vi = vi | Vj = vj) for brevity.
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2 Importance Sampling with CVT

We introduce the CVT concept to store and detect zero probability constraints to opti-
mize importance sampling on Bayesian networks with deterministic causalities.

2.1 Importance Sampling and Sample Rejection

Let g(X) be a function over m variables X = {X1, . . . , Xm} over some domain Ω ⊆
IRm, such that computing g(X) for any X is feasible. Let p be a probability density over
X. Consider the problem of estimating the integral: E[g(X)|p] =

∫
Ω

g(X)p(X) dX.
Assuming that p is a density that is easy to sample from, the integral can be approx-
imated by drawing a set of i.i.d. samples {x1, . . . ,xN}. Importance sampling uses
weights w(xi) = p(xi)

I(xi)
to estimate E[g(X)|p] by sampling (see [20]):

ĝN =
∑N

i=1 [g(xi)w(xi)] . (1)

Importance sampling is a practical and efficient approximate inference method for
Bayesian networks and has become the basis for many sampling-based algorithms to es-
timate the prior Pr(X) and posterior Pr(X | e) from a network. For example, SIS [23],
AIS-BN [4], and EPIS-BN [27] use importance sampling for Bayesian inference.

A sample xi with w(xi) = 0 is called inconsistent, because xi is an impossible
event w(xi) = 0 ⇒ p(xi) = 0. An inconsistent sample does not contribute to the sum
estimate (1) and is effectively “rejected”. The phenomenon is caused by the presence
of a deterministic influences in the network. Consider Fig. 1 with deterministic causal
influences of B and C on D. Suppose D = 0 is observed, then any sample with C = 1
will be rejected in forward sampling (from the roots) which occurs at a rate of 1,000,000
to 1 since Pr(C = 1) = 0.999999. Note that backward deterministic influences cannot
be inferred in sampling algorithms, which leads to the rejection problem. When D = 0
then C cannot be 1 and all such samples will be rejected. Hence, we refer to determin-
istic causalities (suggesting direction) as the root cause of the rejection problem.

Rejection also occurs in backward sampling, because forward sampling is part of all
backward sampling strategies. In backward sampling, a sampling ordering is selected.
Suppose B is sampled forward and C is sampled backward. Then B = 0 will be sampled
most frequently, because Pr(B = 0 | .) > 0.9999. For C = 1 or C = 0 the sample is
always inconsistent, because Pr(D = 0 | B = 0, C = 0) = 0 and Pr(D = 0 | B =
0, C = 1) = 0. This problem also occurs when sampling C forward and B backward.

B

D

C C=0 C=1
0.000001 0.999999

B=0 B=0 B=1 B=1

D=0
D=1

C=0 C=1 C=0 C=1
0 0 0.1 0
1 1 0.9 1

A A=0 A=1 A=2
0.3 0.3 0.4

A=0 A=1 A=2
B=0
B=1

1 0.99998 0.99999
0 0.00002 0.00001

Fig. 1. A Bayesian Network with Deterministic Causalities through Zeros in the CPT of D
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State-of-the-art importance sampling algorithms, e.g. AIS-BN [4], EPIS-BN [27],
and RIS [24] mitigate this problem by learning methods that adjust the probabilities in
the conditional probability tables of the network to reduce the sample rejection rate.
None of these algorithms can completely eliminate sample rejection.

2.2 The CVT Approach

Configurations of variable states can be stored as patterns in a search tree to efficiently
match zero probability constraints, e.g. those that originate from the example shown
in Fig. 1. Assume that only configurations (B = 1, C = 1) and (A = 0, C = 0) that
produce zero probability constraints are found at a certain stage of sampling example
of Fig. 1. A search tree to store these patterns can be constructed. There are many
ways to achieve this, resulting in considerable differences in tree sizes resulting from
node orderings. Consider for example the three trees shown in Fig. 2. The left tree has
the constraint (B = 1, C = 1) duplicated, due to the suboptimal top-down ordering
A→ B→ C. The ordering C→ B→ A yields an optimal tree, as shown in Fig. 2(b).

Root

A=0 A=2A=1

B=1B=0

C=0

B=1

C=1

B=1

C=1

Root

C=0 C=1

A=0 B=1

(a) Suboptimal Order (b) Optimal Order (c) A CVT with Any State Branches

Fig. 2. Possible Trees to Store Zero Probability Constraints

The problem is that the size of the resulting tree is very sensitive to the vertex or-
dering used in the top-down construction. Prior work on tree-based caching (such as
SampleSearch) do not consider optimization of the tree structure. In the worst case this
leads to a tree with redundant branches that represent identical states.

We propose two modifications of the tree-based sample search:

1. A branch can be marked “Any” to represent any state of a variable.
2. Adaptive refinement is used to dynamically optimize the tree structure by merging

tree branches to reduce the tree size.

The suboptimal CVT with order A → B → C is shown in Fig. 2c. Because of the
suboptimal order, the tree in Fig. 2c is not as efficient as the tree in Fig. 2(b). Clearly, the
tree in Fig. 2(c) is optimal compared to Fig. 2(a). The key concept of our approach is to
construct and reorder trees by way of combining parts to achieve optimized compressed
trees, which is facilitated by wildcard “Any” states and a branch merging algorithm.

We first introduce some terminology. For a BN = (G(V,A), Pr), evidence e and a
sampling order δ, ∀Vi ∈ V, T δ

e (Vi) denotes the CVT of the variable Vi and Vi is called
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the key variable of T δ
e (Vi). The family of all variables in T δ

e (Vi) is denoted as2 Fδ
e(Vi).

Furthermore, ∀Vj ∈ Fδ
e (Vi), δ(Vj) ≤ δ(Vi). In CVT T δ

e (Vi) we refer to a path from
the root node to a leaf node a walk. Furthermore, a walk is a key walk when the walk
visits the key variable Vi.

To illustrate these definitions, consider Fig. 2(c). Sampling order is A→ B→ C and
C is the key variable of T (C). So F(C) = {A, B, C}. The walk Root → A = Any →
B = 1→ C = 1 is a key walk. The walk Root → A = 0→ B = 1 is a non-key walk.

2.3 CVT Construction and Sample Matching

CVT is an adaptive decision tree to match samples for rejection decisions. CVT allows
for efficient adding, searching, and matching of zero probability constraints represented
by tree walks. The process of constructing a CVT consists of repeatedly merging over-
lapping walks into a new CVT. Alg. 1 illustrates the method to add a zero constraint
into a CVT. Lines 1 and 4 in Alg. 1 ensure that the subtree under the Any branch is
also contained in any state-valued branch. When a node has a branch for each state for
that variable, then the Any branch becomes redundant. Line 2 in Alg. 1 removes the
Any branch and line 3 in Alg. 1 prevents the creation of a new Any branch. During the
merging process, when a subtree is found to be complete, the subtree can be removed
and the root of subtree becomes a leaf by line 5 in Alg. 1.

To construct a CVT, first a set F(Vi) is selected. Any variable whose sampling or-
der is ahead of the key variable Vi can be in F(Vi). However, if all those arbitrarily-
selected variables are in F(Vi), the size of CVT will quickly grow exponentially large.
The set F(Vi) should be the smallest set satisfying ∀Vj ∈ V \ E, δ(Vj) < δ(Vi) ⇒
Pre(Vi | F(Vi) \ {Vi}, Vj) = Pre(Vi | F(Vi) \ {Vi}).

Alg. 2 is the CVT construction algorithm under the assumption that the sampling or-
der (referred to by δ) is identical to the topological order of the Bayesian network’s ver-
tices. In Alg. 2, Vδi denotes a variable whose sampling order is i and t.variables repre-
sents all the variables that show up in the walk t and whose value in t is
not Any.

When the sampling order is identical to the topological order of the network, the
Refractoring algorithm (RIS) [24] or factorization algorithm of EPIS-BN [27] can be
used to shrink F(Vi) to the minimal set. If the sampling order is not identical to the
topological order, techniques such as mini-bucket can be used to select F(Vi).

Alg. 2 at line 1 uses the refractoring algorithm [24] to select F(Vi). Since Pre(·) =
0 ⇔ Pr(·, e) = 0, those zero entries in the conditional probability table (CPT) of the
Bayesian network are critical for finding the zero constraints, thus function InitCVT
will merge them. For an evidence variable, only the zero entry which is consistent with
its observed value is merged and those entries are all non-key walks in CVT. Note that
for a CVT T (Vi), all its non-key walks are useless, because when sampling variable
Vi, if the instantiation of previous sample variables contains one non-key walk, then no
value of Vi can be sampled. Thus, non-key walks should be removed from the CVT
and merged into the CVT of the variable that is ahead of Vi (in sampling order). The
function BuildCVT is a process of backwards (in sampling order) moving non-key

2 T δ
e (Vi) and Fδ

e (Vi) will be written as T (Vi) and F(Vi) when the context of δ and e is clear.
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Procedure MergeWalk (root, p)
Input: root node of tree,p a zero constraint
Result: merge walk p into tree rooted at root
cur ← root ;
while cur 
= null do

if cur .var ∈ p then
if cur[p[cur .var]] = null then

if cur [Any] 
= null then
cur[p[cur .var]] ← CopyTree(cur [Any]);1
if ∀s ∈ Cfg(cur.var), cur[s] 
= null then2

delete cur[Any], cur[Any] ← null
end

else
cur[p[cur.var]] ← new node(cur.var)

end
end
cur ← cur[p[cur.var]];

else
if cur[Any] = null then

if ∃s ∈ Cfg(cur.var), cur[s] = null then3
cur[Any] ← new node(cur.var);
cur ← cur[Any]

else
cur ← null

end
else

cur ← cur[Any]
end
foreach s ∈ Cfg(cur.var) do
MergeWalk (cur[s],p)4

end
end
Cut complete sub-trees5

Algorithm 1. Merging a Tree Walk into a CVT

walks from one CVT to another. If the sampling order is not consistent with topological
order, then the function InitCVT should be modified according to the sampling order
and importance functions. However, as long as InitCVT ensures that F(Vi) satisfies
∀Vj ∈ V \E, δ(Vj) < δ(Vi)⇒ Pre(Vi | F(Vi) \ {Vi}, Vj) = Pre(Vi | F(Vi) \ {Vi})
and all zero entries in CPTs are merged into a CVT, the CVT can be efficiently used to
eliminate the rejection problem.

The sample matching algorithm Alg. 3 is used to match previously-recorded incon-
sistent samples for the purpose of filtering. The cur .var represents the random variable
that corresponds to the current tree node cur. In searching the CVT, if a branch corre-
sponding to the query is found, the search will follow that branch. If not, it will follow
through the Any branch.

When Alg. 3 returns MATCH, the probability of configuration v is 0. The impor-
tance function fi of variable Vi can be redefined as fi(F(Vi))×[SearchCVT(F(Vi))].
Here, [SearchCVT(F(Vi))] = 0 if SearchCVT(F(Vi)) returns MATCH, otherwise
[SearchCVT(F(Vi))] = 1. It is then straightforward to calculate the conditional prob-
ability from this new importance function. Since the branches of CVT represent zero
constraints induced by evidences, the induced probability distribution is unbiased as
long as the original importance function fi is unbiased.
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Procedure InitCVT (BN,e, δ)
Input: BN : (G(V, A), Pr), e: observed values of E, δ: the sampling order
Result: T , ∀Vi ∈ V, T (Vi) is initialized.
foreach Vi ∈ V \ E do

Use the refractoring algorithm to decide F(Vi)1
foreach c ∈ Cfg(π(Vi)), vi ∈ Cfg(Vi) do

if Pr(vi | c) = 0 then MergeWalk (T (Vi).root , (c, vi))
end

end
foreach ei ∈ e and ei is Ei’s observed value do

F(Ei) ← π(Ei) ∪ {Ei}
foreach c ∈ Cfg(π(Ei)) do

if Pr(ei | c) = 0 then MergeWalk (T (Ei).root,c)
end

end
return T

Procedure BuildCVT (BN,e, δ)
Input: Same as InitCVT
Result: T
T ← InitCVT(BN, e, δ)
foreach Ei ∈ E do

Add Ei to the end of δ and mark T (Ei)
end
for i = |δ| to 1 do

if T (Vδi
) is marked then

foreach non-key walk t in T (Vδi
) do

if ∃j, j < i ∧ t.variables ⊂ F(Vδj
) then

MergeWalk (T (Vδj
),t)

Mark T (Vδj
) and remove t from T (Vδi

)

end
end

end
end
return T

Algorithm 2. CVT Construction

Procedure SearchCVT (root, v)
Input: root node of tree, v: a configuration
cur ← root ;
while cur is not a leaf do

if cur [v[cur .var]] 
= null then
cur ← cur[v[cur .var]]

else
if cur[Any] 
= null then

cur ← cur[Any ]
else

return NOMATCH

end
end

end
return MATCH

Algorithm 3. CVT Search to Match and Filter Inconsistent Samples

3 Results

This section presents the experimental validation and performance results of CVT for
importance sampling on Pathfinder [13] and ANDES [5]. Tests were performed with an
AMD Athlon 4200 1GHz 2GB memory and 512KB L1 cache. All programs are written
in C++ and compiled with g++ 4.4.3 -O3 and run on Linux 2.6.32-27.
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Pathfinder [13] and ANDES [5] exhibit determinism studied by several authors in
this context. Both networks are reasonably large, with |V| = 109, |A| = 195 for
Pathfinder and |V| = 223, |A| = 338 for ANDES. ANDES requires many more sam-
ples to converge closer to the exact solution as compared Pathfinder.

3.1 MSE Results

We measured the effect of rejection reduction on the quality of the estimate on ANDES
and Pathfinder. That is, the samples that are filtered by CVT are not counted as a sample.
To measure the deviation from the exact solution after a number of sampling iterations,
we used the MSE (mean squared error) metric commonly used in comparative accuracy
studies. We compared the MSE of the following methods:

– RIS-AIS [24],
– AIS-BN [4] with SampleSearch (AIS-BN+SampleSearch) [10],
– EPIS-BN [26, 27], and
– RIS-AIS with CVT (RIS-AIS+CVT) presented in this paper.

We randomly generated 50 test cases, each with 20 evidence vertices set in Pathfinder
and 100 test cases, each with 25 evidence vertices that were set in ANDES to pro-
duce posterior distributions. For ANDES, we used 300,000 sampling iterations, and for
Pathfinder, we used 12,000 sampling iterations. ANDES is more complex and requires
more samples than Pathfinder. The MSE of RIS-AIS+CVT is the best and lowest of all
sampling methods as is shown in Fig. 3.

Fig. 3. Average MSE for Pathfinder (50 Test Cases and 12,000 Sampling Iterations) and ANDES
(100 Test Cases and 300,000 Sampling Iterations)

Fig. 4. MSE Results of 300,000 Sampling Iterations for 100 Test Cases (ANDES)
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Fig. 5. Number of Rejected Inconsistent Samples in 12,000 Sampling Iterations for 50 Test Cases
with RIS-AIS, AIS-BN+SampleSearch and EPIS-BN (Pathfinder)

The average MSE of EPIS-BN is close to that of RIS-AIS+CVT. To confirm the gains
of RIS-AIS+CVT versus EPIS-BN, we compared the MSE for all the 100 test cases in
Fig. 4. For all but 7 out of 100 test cases, RIS-AIS+CVT outperforms EPIS-BN, with a
4 times lower MSE in the best case.

3.2 Sample Rejection Reduction Results

To validate the sample rejection rate improvement, we evaluated the CVT algorithms for
RIS-AIS [24]. Fig. 5 compares the number of inconsistent samples generated by impor-
tance sampling with three methods on Pathfinder for 50 random test cases (each with
a different evidence configuration pattern). The results for ANDES were comparable
(not shown). Without CVT, as shown in Fig. 5, all three methods generate inconsistent
samples. With CVT to reduce rejection rates for RIS-AIS, no samples are rejected for
Pathfinder and only 0.3% are rejected for ANDES (not shown in the Figure). CVT either
eliminated or significantly reduced the rejection amount. CVT cannot always eliminate
rejection, which is not surprising because of the hardness of the rejection problem. In
our experiments we found that CVT did not work well for the BN 69 to BN 75 net-
works of the UAI competition [1]. We found that no importance sampling algorithm
can generate consistent samples in reasonable time for these extreme test cases.

3.3 CVT Compared to Related Work

SampleSearch [11] caches zero constraints in a tree structure to detect inconsistent sam-
ples to reject. To compare the conceptual difference to CVT, we present the following
example. Consider the network as defined in Fig. 1. Suppose the sampling order is A, B,
C and that D is observed as 0. With SampleSearch the constraint violation can only be
identified during sampling at vertex D. Fig. 6(a) shows the search tree of SampleSearch.

By contrast, when applying RIS (assuming arc B→ C is added by RIS), CVT can be
built up on vertex B and C respectively, as illustrated in Fig. 6(b). We need to point out
that the tree in Fig. 6(a) is built up during sampling and requires most of inconsistent
samples to be sampled once, while the tree of Fig. 6(b) is built before sampling starts.

The success of CVT is due to the exploitation of the local independent relationships
in Bayesian networks and the hidden constraints in CPTs. Because of this, CVT is gen-
erally more effective to reduce inconsistent samples in Bayesian networks sampling but
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B=0 B=1

C=1

B=0 B=1

C=1
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B=0 B=1

C=1

(a) SampleSearch Tree

Root

A=Any

B=0

B=Any

C=1

Root

CVT on Vertex B CVT on Vertex C

A=0

Root

CVT on Vertex A

(b) CVT

Fig. 6. SampleSearch Example Tree Compared to CVT

Fig. 7. Number of Tree Nodes in 12,000 Sampling Iterations for 50 Test Cases with CVT and
SampleSearch (Pathfinder)

less effective in other frameworks such as CNF formulations. To verify this analysis,
we compared the size of the trees (measured by number of nodes) for CVT and Sam-
pleSearch in Pathfinder’s 50 test cases (Fig. 7). Fig. 7 shows that CVT uses far fewer
tree nodes than SampleSearch.

In the worst case however, a CVT may still grow very large. The size of a CVT can
be limited by a threshold to avoid excessive growth, but the difficulties are in how to
choose zero constraints that are most likely to be encountered in the sampling process
and keep those in the CVT.

3.4 Measuring the CVT Overhead

Filtering invalid samples before sampling should not be too costly and not much more
costly then allowing invalid samples to be rejected. The initial construction of the CVT
can be done offline. Searching the CVT incurs overhead. We measured the overhead of
CVT on the sampling time of RIS-AIS using our testbed implementation.

The results are shown in Table 1. The timing overhead of CVT for Pathfinder is
3.6% while 21.1% of the total sampling time is saved by CVT filtering. The timing
overhead of CVT for ANDES is 6.9% while 6.3% of the total sampling time is saved
by CVT filtering. The results for Pathfinder show a significant gain in overall sampling
efficiency. For ANDES the results are mixed. Our testbed implementation is not fully
optimized for this study. We expect a better tradeoff with a memory layout of CVT
nodes that increases spatial locality for caching to reduce memory traffic.
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Table 1. Timing Overhead (Seconds) Versus Rejection Rate Savings with CVT

RIS-AIS RIS-AIS+CVT RIS-AIS Rejection Rate
Pathfinder 0.28s 0.29s 21.1%
ANDES 21.7s 23.2s 6.30 %

4 Conclusions

In this paper we presented an approach to enhance importance sampling performance
by reducing inconsistent samples. The CVT adaptive decision tree efficiently stores the
zero constraints that must be filtered from the sampling process. It ensures efficient
searching and matching of constraints. Empirical results show that Refractor Impor-
tance Sampling (RIS) with AIS-BN enhanced with CVT favorably compares to state-
of-the-art importance sampling algorithms in terms of a lower approximation error and
increased sampling speeds.

CVT and SampleSearch [11] are not the only methods to store zero constraints to
match inconsistent samples. For example, zero constrains can be compiled as “no-
goods” into Ordered Binary Decision Diagrams (OBDD) [3]. An OBDD is a global
structure. By contrast to CVT, OBDDs do not utilize the local independencies rep-
resented by a wildcard “Any” branch. Furthermore, CVT construction identifies zero
constraints, while OBDD relies on other algorithms to detect those zero constraints. On
the other hand, CVT could utilize OBDD’s Directed Acyclic Graph structure to save
space. We believe this direction deserves further investigation.

Zero constraints can also be stored in CPTs or in importance function tables of the
Bayesian networks. However, this is not deemed efficient. As was illustrated in Fig. 1,
storing zero constraints in CPTs requires expanding each CPT exponentially to meet
the in-degree requirements of additional variable influences. The positive values stored
in CPTs give little information to expedite the rejection problem. Rule based [18, 19]
storage is not a solution, because the search expense will be proportional to the number
of rules. Another solution is to use Probability Tree [2]. Similar to CPTs, a complete
probability tree also stores many positive values, which provide little information for
the purpose of rejection decisions.
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Abstract. This paper describes an Imprecise Dirichlet Model and the
maximum entropy criterion to learn Bayesian network parameters under
insufficient and incomplete data. The method is applied to two distinct
recognition problems, namely, a facial action unit recognition and an
activity recognition in video surveillance sequences. The model treats a
wide range of constraints that can be specified by experts, and deals
with incomplete data using an ad-hoc expectation-maximization pro-
cedure. It is also described how the same idea can be used to learn
dynamic Bayesian networks. With synthetic data, we show that our pro-
posal and widely used methods, such as the Bayesian maximum a pos-
teriori, achieve similar accuracy. However, when real data come in place,
our method performs better than the others, because it does not rely on
a single prior distribution, which might be far from the best one.

1 Introduction

Bayesian Networks (BNs) encode joint probability distributions using a compact
representation based on a directed acyclic graph where nodes are associated to
random variables and conditional distributions are specified for variables given
their parents in the graph. The adoption of BNs has increased in the past years.
For instance, recent research in computer vision uses BNs for representing causal
relationships in facial expression recognition, image segmentation, visual surveil-
lance, activity understanding, among others [17,21].

Accuracy of results relies on the quality of model parameters. Ideally, with
enough data, it is possible to learn parameters by standard statistical methods
like maximum likelihood (ML) or maximum a posteriori (MAP) estimations.
However, learning reliable parameters may require a large amount of training
data. In spite of that, approximate domain knowledge through constraints on
parameters is available in many real applications and can improve estimations.
We propose a framework for parameter learning that combines training data
and domain knowledge in the form of constraints, and where imprecise priors
are considered. We use the Imprecise Dirichlet Model (IDM) [18] to work with
prior distributions so that we have a set of Dirichlet distributions on which we
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apply the maximum entropy principle to obtain a final estimation. The impre-
cise priors may be viewed as a conservative choice when data are scarce to avoid
overfitting. Furthermore, the proposed idea requires less hyper-parameters to be
specified by the user (for instance, we do not need to define the prior of a max-
imum a posteriori estimation), which makes it reliable and adaptive, as shown
in the experiments with real data. In our formulation, convex programming can
be used, which quickly finds the global optimum solution. For incomplete data
sets, a variant of the Expectation–Maximization method is used, where the ex-
pectation step is done as usual and the maximization is replaced with the new
formulation. The methods are general and deal with Dynamic Bayesian Net-
works as well. Experiments with synthetic and real data from a facial action
unit recognition and a human activity recognition captured with surveillance
cameras show better results than ML and Bayesian MAP results, which are
among the most used methods to learn such networks.

Previous work has either explored constraints together with a precise crite-
rion, such as isotonic regression [10], closed-form solutions for the constrained
ML estimation with complete data [16], constrained EM method with penalties
[11], or has used an imprecise model, such as the naive and the tree-augmented
credal classifiers [6,7] or the imprecise decision trees [1]. Lukasiewicz [14] explores
maximum entropy properties, but does not discuss a parameter learning proce-
dure. de Campos and Cozman [4] work with constraints on priors and formulate
the learning problem as a constrained optimization problem, but their formula-
tion is restricted to complete data sets and uses a (somewhat slow) non-convex
optimization procedure.

The paper is divided as follows. Section 2 introduces the notation and the
problem of parameter learning. Maximum entropy and the Imprecise Dirichlet
Model are presented, as well as constraints that can be used to guide the learning.
Section 3 summaries the learning model and discusses the case of incomplete
data. Section 4 presents experimental results and Section 5 concludes the paper.

2 BNs, Dynamic BNs and Parameter Learning

A BN can be defined as a triple (G,X ,P), where G is a directed acyclic graph with
nodes associated to random variables X = {X1, . . . , Xn} (which we assume to be
categorical), and P is a collection of parameters p(xik|πij), with

∑
k p(xik|πij) =

1, where xik ∈ ΩXi is a category or state of Xi and πij ∈ ×Y ∈πiΩY a complete
instantiation of the parents πi of Xi in G (j is viewed as an index for each
parent configuration). In a BN every variable is conditionally independent of its
non-descendants given its parents. The joint distribution is obtained by p(x) =∏

i p(xik|πij), with x ∈ X and all xik and πij compatible with x.
We focus on parameter learning in a BN where the structure (i.e. the graph) is

known. Given a data set D where each element is a sample of the BN variables,
the goal is to find the most probable values for the whole parameter set P . One
way to quantify the result is by the log likelihood function log(p(D|P)). Assum-
ing that samples are drawn independently from the underlying distribution, we
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maximize log
∏

ijk p(xik|πij)nijk , where nijk indicates how many elements of D

contain both xik and πij . ML estimation has its optimum at p(xik|πij) = nijk∑
k nijk

.
Dynamic Bayesian Networks (DBNs) can be viewed as two-slice temporal

BNs, where at time zero, we have a standard BN just as described, and for
slices 1 to T a transitional BN is defined over the same variables but nodes
have parents on time t and/or time t− 1. Conditional probability distributions
for time t > 0 share the same parameters so that we can unroll the DBN to
obtain the factorization p(X1:T ) =

∏
i p0(Xi|πi)

∏T
t=1

∏
i p(Xt

i |πt
i), where T is

the number of slices, p0(·) are conditional distributions of the initial BN and
Xt

i , π
t
i represent the corresponding variables in time t. Learning parameters of

DBNs is similar to the BN case, but we deal with counts nijk for both the initial
BN and for the transitional BN. Thus counts are obtained from data sets with
time sequences. In other words, we can reduce the learning problem in a DBN to
the BN learning by carefully counting the frequencies on the data set. Therefore,
all following discussion can be applied to both BNs and DBNs. We point out
when additional care for DBNs is needed.

2.1 Constraints

When small amount of data is available, standard estimation methods may pro-
duce unreliable results. Constraints are available in many applications and may
improve results. We describe here some constraints that may be accommodated
in our learning procedure. In fact, such constraints can also be employed in
the ML and the Bayesian MAP estimations, and we fully compare our method
against these others (including their constrained versions). Constraints might be
very effective, as we show for two computer vision problems (Section 4).

Let P be a sequence of parameters, α a corresponding sequence of constant
numbers and β also a constant. A linear relationship constraint is defined as∑

p(xik|πij)∈P αijk · p(xik|πij) ≤ β, that is, any linear constraint over parameters
can be expressed. Qualitative influences and synergies [19] are simple (but im-
portant) examples of linear constraints. Without quantitative statements, they
allow us to encode that a given value for a variable makes more likely to observed
another value in another variable, encoding an approximate domain knowledge.
Other examples are sum of parameters, range, relationship, and ratio constraints
[16], other types of influences and synergies, among many others. In fact, we have
a very general assumption: constraints must define a convex parameter space,
that is, any constraint in the form h(P ) ≤ 0, where h is convex, is allowed. Such
flexibility helps us to properly describe our knowledge, while keeping the con-
vexity assumption that guarantees a fast and global optimal algorithm. We have
no restriction regarding the number of times a parameter appears in constraints
or whether constraints involve distinct conditional distributions of the BN. They
only need to be local to a node, otherwise they would violate the Markov con-
dition of the BN. Although we do not use non-linear convex constraints in the
experiments, they are also possible. To illustrate, suppose a product relation-
ship constraint defined as

∏
p(xik|πij)∈P p(xik|πij) ≥ β. Although non-convex, a

simple log transformation makes it convex.
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2.2 Imprecise Dirichlet Model

With the ML formulation, the idea is to fit parameters and data, even if the
amount of data is very small. For example, with just a couple of samples, the
estimation through ML will likely return undesired answers, as data are not rep-
resentative of the actual distribution. Constraints applied to a ML formulation
may help, but still the estimation will tend to the “incorrect” answer inside the
space defined by the constraints. So only if the constraints are tight the perfor-
mance will greatly improve. Another possible way not to obtain these unreliable
estimations is to use a Bayesian approach, such as the MAP estimation, with
a predefined prior. In this case the question is about the choice of the prior. If
we can choose a good prior, such approach will lead to good estimations. How-
ever, in most cases the prior is hard to be selected and a non-informative prior
is chosen, which may be far away from the correct distribution. The Imprecise
Dirichlet Model (IDM) [18] alleviate such situations by introducing set-valued
estimations instead of single point estimations. The idea is that parameters are
more likely to be inside these sets, and so treating the whole set of estimations
can lead to more reliable results.

In a Dirichlet model, the goal is to learn the parameters of multinomial dis-
tributions on Xi|πij using training data and a Dirichlet prior as parametric
model for Xi|πij , because of the conjugacy with the multinomial distribution
[8]. A possible parametrization is p(Xi|πij) ∝

∏
k p(xik|πij)sτijk−1 for s > 0

and
∑

k τijk = 1, where the hyper-parameter s controls dispersion and hyper-
parameters τijk control location; s is interpreted as the size of a database en-
coding the same beliefs as the Dirichlet distribution. Using the IDM, s is fixed
(usually between one and two [18]) but τijk can freely vary between zero and
one, so that our estimation lies in the interval

nijk

s +
∑

k nijk
≤ p(xik|πij) ≤

s + nijk

s +
∑

k nijk
. (1)

This roughly means that we are conservative with respect to the prior: instead
of choosing a single prior, all possible priors (for a given s) are considered. We
point out that we are using a local version of IDM, where the imprecision is
(separately) considered for each local probability distribution that defines the
Bayesian network. As mentioned, the advantage of this formulation is to avoid
choosing the prior precisely as in the MAP estimation. Less hyper-parameters,
more robust is the model and less sensitive to wrong user input choices. However,
the outcome of IDM is a set of distributions. Next section describes and justifies
maximum entropy as a way to select a single estimation from this set.

2.3 Maximum Entropy

The maximum entropy principle [12] can be used as a criterion to select a sin-
gle conservative estimation from a set of distributions [1], in the sense that it
avoids drastic conclusions. For example, a binomial distribution without con-
straints has the uniform distribution as the entropy maximizer. Furthermore,
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the distribution of maximum entropy from a set of distributions learned with
IDM agrees (in the limit) with relative frequencies [18]. So, our goal is to have
a learning model that achieves better solution for small amount of data, but
which still tends to frequencies (as it should) when enough data are available.
Note that the application of maximum entropy goes towards the opposite of
ML, so it might seem at first contradictory, since we want to fit model and data.
However, maximum entropy is employed only inside the learned IDM, which is
responsible for the fitness (but considering all possible priors), while the idea
of picking the distribution of maximum entropy (inside IDM) avoids overfit-
ting by selecting the least fitting model among the IDM distributions. Thus, a
possible objective is maxP −

∑
ijk p(xik|πij) log p(xik|πij), which is put together

with Equation (1), simplex constraints to ensure that answers are probability
distributions and convex constraints defined in Section 2.1. The set of all such
restrictions is denoted as C. This formulation is based on the local maximum
entropy criterion, that is, maximization is performed for each local conditional
probability distribution in the network. Another approach is the Sequential Max-
imum Entropy [14]. However, such more sophisticated idea cannot (at least in
a straightforward way) handle general constraints among parameters of distinct
(yet local) distributions (even simple qualitative influences [19] relate parameters
of distinct distributions). In Section 4 we present empirical results that support
the choice of local maximum entropy.

3 The Learning Algorithm

In this section we summarize our formulation to solve the learning problem.
For complete data, the idea is simple: all pieces described so far (constraints,
IDM, and maximum entropy) lead to a convex optimization program. Just as
likelihood, entropy is concave, so we have a maximization of a concave function
subject to a collection C of convex constraints on parameters and the intervals of
IDM of Equation (1). The important technical detail that is worth mentioning
is that we use some auxiliary optimization variables to deal with the following
situation: constraints of C defined by the expert can force parameters to lie
outside the interval of Equation (1) imposed by the IDM, that is, in this case the
problem would be unfeasible. However, we assume that expert’s constraints are
always correct and shall be included in the model only if the expert is completely
sure about them (e.g. physical and physiological aspects, logical rules, domain
scope, etc). Because of that, they receive more importance than Equation (1).
To quantify this importance, we adopt an approach where the IDM interval
must be satisfied as much as possible, while constraints of C must be always
satisfied. The role of Equation (1) is to bring the estimation close to frequencies
of parameters in the data set: (i) if Equation (1) and expert’s constraints are not
disjoint, then there are solutions (in the intersection if these sets) that satisfy
all of them; one of them will be selected by entropy; (ii) if IDM intervals and
expert’s constraints are disjoint, we choose to first satisfy expert’s constraints,
but preferring estimations that are as close to the IDM intervals as possible. We
leave for future analysis other ways to put together IDM and expert’s constraints.
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In this formulation, as the data set is smaller, as the result is more conserva-
tive, because of the entropy maximization and the wider intervals of Equation(1);
as the data set is larger, as the result is closer to the ML estimation, because
the interval shrinks: s+nijk

s+
∑

k nijk
− nijk

s+
∑

k nijk
= s

s+
∑

k nijk
→ 0 as the values nijk

increase (s is fixed). Hence, p(xik|πij) becomes closer to nijk∑
k nijk

. Thus, the for-
mulation is (automatically) more careful with scarce data and more aggressive
towards the ML estimation with abundant data. We will see in the experiments
with real data that this formulation provides a better trade-off than ML and
than MAP. On the computational side, we have the challenge of solving the
convex optimization. For example, we can use specialized interior point solvers
or even some general optimization ideas, because convex programming has the
attractive property that any local optimum is also a global optimum. Further-
more, such global optimum can be found in polynomial time in the size of input
[3] (almost as fast as linear programming). Note that the input size here is small,
as the problem can be solved for each node separately.

In the remaining of this section we discuss how to deal with incomplete data.
Both the log-likelihood function and our formulation become non-convex, be-
cause the counts nijk from the data set are not precisely known. A common
method to overcome this situation is the Expectation-Maximization (EM) algo-
rithm [9], which starts from some initial guess, and then iteratively takes two
types of steps (E-steps and M-steps) to get a local maximum. Particularly for
discrete nodes, E-step computes the expected counts using the parametrization
of the previous step, and M-step estimates new parameters by maximizing the
likelihood function, given the counts from E-step, just like if a complete data
set was in place. We can perform the same idea in our formulation. The E-step
computes expected counts as usual, and the M-step is replaced by our formu-
lation, with the constraints from C and from IDM. We stop when there is no
possible improvement. Because of the convexity of the parameter space and the
global optimizer, it suffices to include an extra linear constraint on C that forces
the optimizer of the M-step to pick always an improving solution in case there
is one, and thus the algorithm converges in the very same way as the EM. We
cannot guarantee that it converges towards a local optimum, as the original EM
also does not [20], but local optima are empirically verified in most situations.
About time complexity, the time spent with the new idea is dominated by the
E-step (which needs to perform queries in the network), and thus it is roughly
as fast as the original EM version (which needs to run the same E-step).

This same Expectation–Maximization idea can be straightforward applied to
DBNs. Note that the modified EM just described has a new M-step, but keeps
the E-step unchanged. DBNs require the inference procedure that evaluates the
expected counts to be adapted. As our formulation does not affect the E-step,
we can directly apply any usual inference method of DBNs. We have used the
Online Junction Tree Inference Algorithm [15] to obtain the expected counts,
and then we treat the initial and transitional parts separately as if a complete
data set was in place. This is employed in Section 4.2 for activity recognition.
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4 Experiments

We apply the idea to both synthetic and real data of distinct computer vi-
sion problems with the aim of showing its generality and applicability to other
problems. Figure 1 presents results for synthetic data of ML, Bayesian MAP
with Dirichlet prior, local maximum entropy and IDM, and a formulation using
sequential instead of local maximum entropy. The bars are average Kullback–
Leibler (KL) divergences for 20 runs of constrained ML (first bar of each series),
constrained MAP (second bar), constrained local maximum entropy and IDM
(third bar), and constrained sequential maximum entropy and IDM (last bar of
each series). The runs use random networks (random graphs with up to four
states per variable), constraints and data. The size of the networks and data are
presented in the figure’s labels. Networks have 10, 20 and 40 nodes and data
sets have 10, 100 and 500 samples. The same set of constraints and data were
applied to each method in each iteration. We use randomly generated constraints
in number equal to the number of local distributions in the network. We employ
a constrained MAP formulation that uses a prior where τ is defined uniformly.
MAP, local entropy with IDM and sequential entropy with IDM achieve simi-
lar results, and they are better than likelihood estimations with respect to KL
divergences. For complete data, in some test cases MAP is slightly better than
maximum entropy, while in others it is slightly worse. There is an advantage of
the entropy with IDM against MAP, which relates to the amount of information
the user must provide. For random networks, the choice of uniform τ as prior
is reasonable and achieves good results. On the other hand, maximum entropy
with IDM does not depend on a single prior but considers all possible priors,
so achieving similar results as MAP (which has the correct prior) is a positive
attribute, as maximum entropy with IDM requires less information as input and
is clearly more adaptive (e.g. in real data domains).

4.1 Facial Action Unit Recognition

We now consider the problem of recognizing facial action units from real image
data [13]. Based on the Facial Action Coding System, facial behaviors can be
decomposed into a set of Action Units (denoted as AUs), which are related to
contractions of specific sets of facial muscles. We work with recurrent 14 AUs.1

Some AUs happen together to show a meaningful facial expression: AU6 (cheek
raiser) tends to occur together with AU12 (lip corner puller) when someone
is smiling. On the other hand, some AUs may be mutually exclusive: AU25

(lips part) never happens simultaneously with AU24 (lip presser) since they are
activated by the same muscles but with opposite motions.

A BN with 14 hidden nodes is employed, which has already demonstrated
good performance in the literature [5,17]. Each node is associated to an AU with
1 AU1 (inner brow raiser), AU2 (outer brow raiser), AU4 (brow lowerer), AU5 (upper
lid raiser), AU6 (cheek raiser and lid compressor), AU7 (lid tightener), AU9 (nose
wrinkler), AU12 (lip corner puller), AU15 (lip corner depressor), AU17 (chin raiser),
AU23 (lip tightener), AU24 (lip presser), AU25 (lips part), and AU27 (mouth stretch).
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Fig. 1. Comparison between methods for synthetic random generated models using
the KL divergence from the correct model. ML, even with constraints, is considerably
less accurate than others. The right graph excludes constrained ML to clarify that
differences are small among the other methods.

two states: activated and deactivated. Figure 2 depicts the structure of the BN.
Note that every link between nodes has a sign, which is provided by a domain
expert. Signs indicate whether there is positive or negative qualitative influence
between AUs. For example, it is difficult to do AU2 (outer brow raiser) alone
without performing AU1 (inner brow raiser), but we can do AU1 without AU2.
The constraints are mainly based on physiological aspects, e.g. mouth stretch
increases the chance of lips apart, and it decreases the chance of cheek raiser
and lid compressor and lip presser. Cheek raiser and lid compressor increases
the chance of lip corner puller. Upper lid raiser increases the chance of inner
brow raiser and decreases the chance of nose wrinkler. Nose wrinkler increases
the chance of brow lowerer and lid tightener. Lip tightener increases the chance
of lip presser. We note that constraints are not tuned, but created by an expert.

Furthermore, 14 measurement nodes (unshaded in Figure 2, one for each AU)
represent results derived from computer vision techniques. Links between AU
and measurement nodes represent uncertainties in classifications. To obtain the
measurement for each AU, first the face and eyes are detected in the images, and
the face region is extracted and normalized based on the detected eye positions.
Then each AU is detected individually by a two-class AdaBoost classifier with
Gabor wavelet features [2]. The output is employed as the AU measurement in
the BN model. For each measurement node, a domain expert provides ranges
(usually tight) for p(Oi|AUi), which represent accuracy of classifiers.

We use 8000 images from Cohn and Kanade’s DFAT-504 [13]: 20% are sepa-
rated for testing and 80% for training (although just part of it is used at each
time). We work with two data sets: one generated from computer vision mea-
surements (used as evidence for testing) and one from human labeling (used for
training), where uncertain labels are missing (data are incomplete). In Figure 3
we consider training data with 10, 100, 200 and 500 samples, randomly selected
20 times from the training set (results are averaged; standard deviation is below
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Fig. 2. Network for the AU recognition
problem

Fig. 3. AU recognition error rate (in log
scale) on some BN parameter learning ap-
proaches

4 pp. in all cases, mostly below 2 pp.; the graph is in log-scale). We can see
that the constrained maximum entropy is superior in all cases, and that such
superiority begins to vanish as more data are used. Although our main goal is to
compare the learning procedures against each other rather than surpassing the
state-of-the-art methods, we obtain an overall recognition rate (percentage of
correctly classified cases) of about 94% using just 1000 training samples, which
is comparable to state-of-the-art results [17].

4.2 Activity Recognition

We also evaluate our approach using DBNs on a human activity recognition
data set captured with a surveillance camera at a parking lot. The data set
contains 110 sequences and we want to classify 7 possible activities: walking,
running, leaving car, entering car, bending down, throwing and looking around.
We first train DBNs for each activity and classify the activity according to the
DBN with best fit for each test case. Their structure is shown in Figure 4.2, with
three hidden nodes for position (Y ), shape (S) and speed (V ), and corresponding
observation nodes. Each hidden node has two states. Temporal links exist from
the time t to time t + 1 for each node. Furthermore, the temporal link between
V t and Y t+1 encodes the dynamic relationship between speed and position.

The measurements of the observation nodes are obtained from the motion
detection results. We first perform background subtraction to detect the motion
blob of the object. Position OY is measured as the distance to the car with
6 discrete values. Speed OV is evaluated as the change of the blob center in
pixels, which is discretized to 6 states. Shape measurements OS are clustered in
4 features based on the aspect ratio of the bounding rectangle, filling ratio (the
area of the blob with respect to the area of its bounding rectangle) and two first
order moment features [21].

Given general constraints about smoothness, dynamics and physical attributes
of the environment, we create a set of constraints on model parameters. Such
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Fig. 4. DBN structure for human
activity recognition

Fig. 5. Activity recognition results (error rate)
using many DBN parameter learning approaches

constraints are applied to transitional probabilities of all activities, as they are
general enough to be common to all activities. We note that constraints are
acquired from experts and are not tuned to this specific data. We omit specific
details about them because it would drive us far from the goal of this paper.

We randomly choose part of the activity sequences as training data and use
the rest for testing. We compare ML, maximum a posteriori (MAP), and lo-
cal maximum entropy, using both the unconstrained and constrained versions.
We point out that other learning techniques do exist, such as regularized ML.
Because we are discussing about a Dirichlet model and because ML with some
regularization produces similar results as MAP, we have chosen to work with the
latter instead. The training sets have 10, 20, 40, 60 and 80 sequences. For each
size, we perform the test 10 times and the average recognition error is presented
in Figure 4.2. It is worth noting that: (i) the use of constraints significantly de-
creases the error rate, as may be noted in Figure 4.2 by taking the curves two by
two and analyzing constrained and respective unconstrained versions; (ii) when
large amount of data is available, all methods tend to similar results. We can
see that ML and MAP are already much closer when 80 training sequences are
considered, and the same starts to happen with IDM; (iii) while results with
synthetic data are not conclusive when comparing MAP and IDM with maxi-
mum entropy (the prior applied to MAP was enough there, and MAP was even
slightly better), here constrained maximum entropy outperforms all others, for
all test cases. This is probably because all priors are considered by the IDM,
while MAP uses a single one. MAP might achieve better results, but that would
strongly depend on the quality of the prior chosen by the expert.

5 Conclusion

This paper presents a framework for parameter learning using the Imprecise
Dirichlet Model and its application to two recognition problems. Domain
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knowledge in the form of constraints is exploited to improve accuracy. To select
a single (conservative) distribution from the Imprecise Dirichlet Model, maxi-
mum entropy is used. The framework is very fast and guarantees to find the
global optimal solution for complete data. For incomplete data, we propose to
use an adapted version of the Expectation–Maximization method. Empirical
results with synthetic data support the method. Both with synthetic and real
data, we have compared the method against widely used maximum likelihood
and Bayesian maximum a posteriori estimations, with and without constraints.
We point out that the described method has the advantage of not requiring the
specification of a single prior, as it is done by the MAP estimation. MAP with
a good prior may obtain good results, but that strongly relies on the quality of
such prior. Selecting a single prior is not an easy task when dealing with real
data, and the uniform is used in most cases, which may lead to inferior results.
Using the data to select the prior might overfit the model, resulting in unreliable
results that are only applicable to the specific contexts and data.

Empirical results with real data are treated for two computer vision problems:
a facial action unit recognition problem and an activity recognition problem in
video sequences. The constraints that are used in each problem are described,
which translate the domain knowledge into a mathematical formulation. We
note that the constraints were defined by an expert once and were not tuned.
As expected, results with constraints are superior than those when constraints
are not used. Furthermore, the Imprecise Dirichlet Model shows better accuracy
in all scenarios with real data. Specifically, the single prior of MAP estimation
employed while using real data does not achieve as good results as with syn-
thetic data, and the IDM (which considers all possible priors) outperforms the
other methods. In summary, we point out that (i) constraints are very helpful
when scarce data are available, which is a common situation in computer vision
problems; (ii) widely used methods such as maximum likelihood and Bayesian
MAP estimators, which are the most common ideas to learn Bayesian network
parameters, are defeated by the IDM plus maximum entropy when dealing with
real data and constraints, even though they performed well for synthetic data.
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Abstract. Sequential approaches to automated test selection for diag-
nostic Bayesian networks include a stopping criterion for deciding in each
iteration whether or not gathering of further evidence is opportune. We
study the computational complexity of the problem of deciding when to
stop evidence gathering in general and show that it is complete for the
complexity class NPPP; we show that the problem remains NP-complete
even when it is restricted to networks of bounded treewidth. We will
argue however, that by reasonable further restrictions the problem can
be feasibly solved for many realistic applications.

1 Introduction

Among the large variety of problems in their application domains, Bayesian net-
works are being designed for use in diagnostic problem-solving contexts. Well-
known examples include the problem of troubleshooting of electrical equipment
[1], of medical diagnosis [2,3], and of the detection of outbreaks of animal disease
[4]. In many diagnostic contexts, not all relevant information for establishing a
reliable diagnosis is available just like that. In order to decrease uncertainty,
further information is then typically obtained through diagnostic testing. When
the performance of tests is costly or otherwise undesirable, appropriate tests
need to be carefully selected. Upon performing a full decision analysis to this
end, all possible sequences of diagnostic tests, along with their costs and ben-
efits, are modelled explicitly, from which the strategy that maximises expected
utility is established. Performing such a full analysis can be computationally
demanding, however, and in addition requires the elicitation of a multitude of
scenario-dependent utilities. The analysis as a consequence is often approximated
by a sequential approach in which a single diagnostic test is selected at a time.

A sequential approach to test selection includes an information measure, a
test-selection loop, and a stopping criterion. Within the test-selection loop, di-
agnostic tests are selected from a collection of possible tests, based upon the
information measure in use. The selection of tests is typically conducted in an
iterated fashion, in which a single test is selected in each step [5]. After the infor-
mation obtained from performing the selected test has been taken into consid-
eration, a new test may be selected, or it may be decided that further gathering
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of evidence is not opportune. The stopping criterion used with the test-selection
loop now specifies the conditions under which information gathering is halted.

The design of the stopping criterion to be used with automated test selection
is of major importance: on the one hand a good stopping criterion will lead
to fewer tests being performed, and on the other hand it will prevent the test-
selection loop to halt too early and thereby miss important information. Various
different stopping criteria have been proposed for use with a test-selection strat-
egy employing probabilistic information only. These criteria all build on the idea
that further gathering of information can be safely stopped if the posterior prob-
ability of the most likely diagnosis is sufficiently stable. A well-known example
criterion asks whether future test results can render another diagnosis to become
highly likely, given the already available evidence. This criterion is commonly
preferred over the simpler criterion of verifying whether or not the posterior
probability of the most likely diagnosis exceeds a pre-defined threshold value,
since the former criterion implements a notion of looking ahead; the example
criterion is also preferred over a criterion which decides to halt further gathering
of evidence based upon the expected effect of the remaining tests on the pos-
terior probability of the most likely diagnosis, because the latter criterion can
overlook test results with small probability incurring drastic changes.

In this paper, we focus on the stopping criterion outlined above for automated
test selection for Bayesian networks. We formulate the criterion more generally
and more formally as the Stop problem which asks whether there exists a joint
value assignment t to all remaining test variables of a network such that the pos-
terior probability Pr(c |e, t) of a particular joint value assignment c to the diag-
nostic variables exceeds a pre-specified probability p given the already available
evidence e. We will show that the Stop problem in general is complete for the
complexity class NPPP, and remains NP-complete when restricted to Bayesian
networks of bounded treewidth. We will argue that, despite these unfavourable
complexity results, reasonable further restrictions can render the Stop problem
feasibly solvable for many realistic applications.

Although in this paper we introduce and discuss the Stop problem in the
context of automated test selection for Bayesian networks, the problem is known
to arise in other types of application as well. As an example, we would like to
mention an application in which patients in an intensive care unit are monitored
with the help of dynamic Bayesian networks [3]. In this application, patient
information becomes available automatically and (almost) continuously. Based
upon the posterior probabilities computed from the network over time, at regular
intervals a stopping criterion needs to be evaluated which specifies the conditions
under which the patient can be safely taken off intensive care.

The paper is organised as follows. In Sect. 2, we introduce our notational
conventions and provide some preliminaries on complexity theory. In Sect. 3, we
formally define the Stop problem. In Sect. 4, we formulate and prove various
complexity results for the problem. In Sect. 5, we provide some considerations
for feasibly solving the Stop problem in practical implementations. The paper
ends with our concluding observations in Sect. 6.
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2 Preliminaries

We introduce our notational conventions and provide some preliminaries from
complexity theory.

2.1 Bayesian Networks

A Bayesian network B = (GB, Pr) is a model of a joint probability distribu-
tion Pr over a set of random variables. The network includes a directed acyclic
graph GB = (V,A), where V denotes its set of variables and A captures the
probabilistic (in)dependencies among the variables. We use upper case letters
X to denote individual variables from V and bold-faced upper case letters X
to denote sets of variables; a lower case letter x is used to indicate a value of a
variable X , and a bold-faced lower case letter x denotes a joint value assignment
to a set of variables X. In the sequel, we assume that the set of variables V
of a network is partitioned into a set C of variables of interest, a set of infor-
mation variables whose value can in essence be observed in practice, and a set
of intermediate variables whose value cannot be observed. At any time during
diagnostic reasoning, the set of information variables is partitioned into a set E
of evidence variables whose values have actually been observed and a set T of
test variables whose values are not known as yet.

To capture the strengths of the dependency relationships between the vari-
ables in its graphical structure, the Bayesian network further includes a set of
(conditional) probability distributions Pr(X | π) for each variable X given all
possible value assignments π to the set of parents π(X) of X in the graph. The
network thereby models the joint probability distribution Pr(V) =

∏
X∈V Pr(X |

π(X)) over its variables [6]. Probabilistic inference with the network amounts to
computing a posterior probability Pr(c |e) for some combination of values c for
the variables of interest, given a joint value e for the evidence variables. A com-
monly used decision variant of probabilistic inference asks whether Pr(c |e) > p
for some pre-specified (rational) probability p. Inference with Bayesian networks
of arbitrary topology is known to be PP-complete [7].

The concept of treewidth for a Bayesian network B pertains to the moral-
isation GM

B of its graph GB. This moralisation is the undirected graph that
is obtained from GB by adding arcs so as to connect all pairs of parents of
a variable, and then dropping all directions. A triangulation of the moralised
graph GM

B is any graph GT that embeds GM
B as a subgraph and in addition

does not include loops of more than three variables without any pair being ad-
jacent. A tree-decomposition of a triangulation GT now is a tree TG such that
(i) each variable Xi in TG is a bag of variables constituting a clique in GT;
and (ii) for every i, j, k, if Xj lies on the path from Xi to Xk in TG, then
Xi ∩Xk ⊆ Xj . The width of the tree-decomposition TG of a graph GT equals
maxi(|Xi|) − 1, that is, it equals the size of the largest clique in GT, minus
1. The treewidth of a Bayesian network B now is the minimum width over all
possible tree-decompositions of triangulations of its moralised graph GM

B .
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The relevance of the concept of treewidth for the current paper lies in the
computational complexity of establishing posterior probabilities Pr(c | e) from
Bayesian networks of bounded treewidth: for such networks, a probability Pr(c |
e) of the value c of a single variable C given evidence e, can be computed in
polynomial time, for example using the junction-tree propagation algorithm [6].

2.2 Complexity Theory

We now briefly review some basic constructs from computational complexity
theory; for further details, we refer to for example [8,9].

We assume that for every computational problem P , there exists an encoding
which translates arbitrary instances of P into strings such that the yes-instances
of P constitute a language; the problem’s no-instances are not included in the
language. A complexity class now is a class of such languages. We say that a
problem P is hard for a specific complexity class if every problem Q from the class
can be reduced to P by a polynomial-time reduction: a problem Q is polynomial-
time reducible to P if there exists a polynomial-time computable function f such
that x ∈ Q if and only if f(x) ∈ P . The problem P is complete for the class if
it is hard for the class and in addition is a member of the class. The problem
can then be regarded at least as hard as any other problem from the class:
since any problem Q from the class can be reduced to P in polynomial time, a
polynomial-time algorithm for P would imply a polynomial-time algorithm for
every problem in the class.

The well-known complexity class NP is the class of languages that are decid-
able in polynomial time on a non-deterministic Turing machine. The class PP is
the class of languages that are decidable in polynomial time on a probabilistic
Turing machine with an error probability smaller than 1

2 . For these two classes,
we have that NP ⊆ PP. In addition to the classes NP and PP, we will use the
complexity class NPPP in this paper. This class is an example of an oracle class,
in which a Turing machine can query an oracle. Such an oracle can be viewed as
a black box that can answer membership queries in constant time. The complex-
ity class NPPP now is the class of languages for which inclusion can be verified
in polynomial time given access to an oracle that decides languages from PP.

In this paper, we will construct reductions from the E-Majsat and Parti-
tion problems reviewed below.

E-Majsat

Instance: A Boolean formula φ(X1, . . . , Xn), n ≥ 1; a natural number 1 ≤ k ≤
n such that the set of variables X = {X1, . . . , Xn} is partitioned into the two
sets XE = {X1, . . . , Xk} and XM = {Xk+1, . . . , Xn}.

Question: Is there a truth assignment xE to XE such that the majority of the
truth assignments to XM, jointly with xE, satisfy φ ?

The E-Majsat problem is known to be complete for the complexity class NPPP

[10]. The Partition problem is NP-complete.
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Partition

Instance: A set X = {x1, . . . , xn}, n ≥ 1, of positive integers xi, i = 1, . . . , n.

Question: Is there a partition X = I ∪ J , I ∩ J = ∅, of the set X such that∑
xi∈I

xi =
∑
xj∈J

xj ?

3 The Stop Problem

We formally define the Stop problem for diagnostic Bayesian networks.

Stop

Instance: A Bayesian network B = (GB, Pr), where the set of variables V
of GB is partitioned into a non-empty set C of variables of interest, a set E of
observed variables, a non-empty set T of test variables, and a set of intermediate
variables; a joint value assignment c of interest and a joint value assignment e
of available evidence; a rational number p ∈ [0, 1].

Question: Is there a joint value assignment t to T such that Pr(c |e, t) ≥ p ?

The Stop problem is closely related to the more widely known Partial MAP
problem, at least at first sight. In the Partial MAP problem, a set M of MAP
variables is discerned as well as a set of intermediate variables and a set E of
observed variables with evidence e. The question then is if there exists a joint
value assignment m to the MAP variables such that Pr(m |e) exceeds a given
threshold probability p. The problem has been studied by several authors and has
been shown to be NPPP-complete in general [11]. The complexity of the problem
is commonly studied not in terms of the conditional probability Pr(m |e) but in
terms of the marginal probability Pr(m, e). The observation that the probability
Pr(e) of the available evidence is a constant, renders the conditional and marginal
probabilities equivalent from the problem’s point of view [11,12]. We now observe
that for the Stop problem, the conditional probability of interest cannot be
studied in terms of just a marginal probability: since the sought-for joint value
assignment t is included in the conditioning part of the posterior probability
of interest, the term Pr(e, t) in the expression Pr(c | e, t) = Pr(c, e, t)/ Pr(e, t)
cannot be considered a constant.

4 Complexity Results

We study the computational complexity of the Stop problem as introduced
in Sect. 3, and prove NPPP-completeness for the problem in general. We fur-
ther show that the problem remains NP-complete even when it is restricted to
Bayesian networks of bounded treewidth.

To prove hardness of the problem in general for the class NPPP, we will use a
reduction from the E-Majsat problem. Our reduction follows to a large extent
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the reduction used by Park and Darwiche to prove NPPP-hardness of the Par-
tial MAP problem [11]. We begin by describing the construction of a Bayesian
network Bφ that models the Boolean formula φ of an instance of the E-Majsat
problem. For each Boolean variable Xi in φ, we include a root variable Xi in the
network, with true and false for its possible values; for each such root variable,
we set a uniform prior probability distribution over its values. For each logical
operator in the formula φ, we create an additional variable in the network. The
parents of each such variable are the variables corresponding with the subformu-
las joined by the operator in φ; its conditional probability table is set to mimic
the operator’s truth table. The variable associated with the top-level operator
of φ will be denoted by Vφ. From the above construction, it is now readily seen
that, given a joint value assignment x to the root variables Xi of the network,
we have that Pr(Vφ = true |x) = 1 if and only if the truth assignment x to the
Boolean variables Xi satisfies the formula φ.

Theorem 1. Stop is NPPP-complete.

Proof. We prove membership of NPPP for the Stop-problem as follows. Given
a non-deterministically chosen joint value assignment t to the test variables T,
we can verify for any joint value assignments c and e whether Pr(c |e, t) ≥ p in
polynomial time given an oracle that decides Inference. Since Inference is
PP-complete, we conclude membership of NPPP for Stop.

To prove hardness, we reduce the E-Majsat problem to Stop. Let (φ, k)
be an instance of E-Majsat. From the Boolean formula φ we construct the
Bayesian network Bφ as described above. We now let Vφ be the variable of
interest for the Stop instance under construction, that is C = {Vφ}, and let c
be the value assignment Vφ = true. We further let the set of observed variables
E be empty, that is E = ∅, and let e =  denote universal truth. We set p to
1
2 . The constructed instance of the Stop problem thus is (Bφ, Vφ = true,, 1

2 );
note that the construction of this instance can be performed in polynomial time.

From the set of root variables X from Bφ, we now look upon X1, . . . , Xk as
constituting the test variables of our instance; the variables Xk+1, . . . , Xn are
considered intermediate. From our previous observation that Pr(c | x) = 1 for
any satisfying truth assignment x to φ, we find that

Pr(c,x) =

{
1
2n if x satisfies φ

0 otherwise

For any joint value assignment t to the test variables X1, . . . , Xk, we thus find

Pr(c, t) =
∑

Xk+1,...,Xn

Pr(t, Xk+1, . . . , Xn) =
i

2n

where i is the number of joint value assignments to the variables Xk+1, . . . , Xn

which jointly with t satisfy the Boolean formula φ. Since there are 2n−k joint
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value assignments to the variables Xk+1, . . . , Xn, we find that the majority of
these assignments satisfies the formula φ jointly with t if and only if

Pr(c, t) >
1

2k+1

We thus have that the E-Majsat instance (φ, k) is answered affirmatively if and
only if Pr(c, t) > 1

2k+1 in the constructed network Bφ.
To complete the reduction, we observe that any joint value assignment t to

the test variables T has a prior probability of Pr(t) = 1
2k . From this observation,

we find for each t that Pr(c, t) > 1
2k+1 if and only if Pr(c | t) > 1

2 . We conclude
that (φ, k) is a yes-instance of E-Majsat if and only if (Bφ, Vφ = true,, 1

2 ) is
a yes-instance of Stop. �

In view of practical applications of Bayesian networks, we are interested not just
in the computational complexity of the Stop problem in general. Since proba-
bilistic inference is feasible only with Bayesian networks of bounded treewidth,
its practical applications are restricted to networks of such limited topology. We
therefore are interested also in the computational complexity of the Stop prob-
lem for this class of Bayesian networks. We will now show that even for this class
the problem remains NP-complete.

To prove hardness for the complexity class NP of the Stop problem restricted
to Bayesian networks of bounded treewidth, we will use a reduction from the
Partition problem reviewed in Sect. 2.2. We begin again by describing the
construction of a Bayesian network B that models the set of integers {x1, . . . , xn}
of an instance of the Partition problem. For each integer xi, we include a root
variable Xi in the network, with true and false for its possible values; for each
such root variable, we assume a uniform prior probability distribution over its
values. To each variable Xi, we add two successors Ai and Bi, with arcs Xi → Ai

and Xi → Bi. We further connect the Ai variables by arcs Ai → Ai+1; the Bi

variables are similarly interconnected. For the Ai variables with i > 1, we set
the following conditional probability distributions:

Pr(ai |Ai−1, Xi) =

⎧⎨⎩
1 if Ai−1 = true
0 if Ai−1 = false and Xi = false
xi

s3 otherwise

where s =
∑

i=1,...,n xi. For the variable A1, we set Pr(a1 |X1) = 0 if X1 = false ,
and Pr(a1 | X1) = x1

s3 otherwise. For the Bi variables with i > 1, we set the
conditional probability distributions

Pr(bi |Bi−1, Xi) =

⎧⎨⎩
1 if Bi−1 = true
0 if Bi−1 = false and Xi = true
xi

s3 otherwise

For the variable B1, we set Pr(b1 |X1) = 0 if X1 = true, and Pr(b1 |X1) = x1
s3

otherwise. Note that the Ai variables on the one hand and the Bi variables on
the other hand in essence represent a two-block partition of the set of integers
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A1

X1

B1

A2

X2

B2

An

Xn

Bn

D

· · ·

· · ·

Fig. 1. The graphical structure of the Bayesian network constructed from an instance
of the Partition problem

{x1, . . . , xn} of the original Partition instance. The Bayesian network B is
now completed by the addition of a sink variable D with incoming arcs from the
variables An and Bn. The conditional probability table for the variable D is set
to mimic the logical and. The graphical structure of the thus configured network
is depicted schematically in Fig. 1.

Theorem 2. Stop restricted to Bayesian networks of bounded treewidth is NP-
complete.

Proof. We first prove membership of NP for the Stop problem for Bayesian net-
works of bounded treewidth. Given a non-deterministically chosen joint value
assignment t to the test variables T, we have to specify a polynomial-time cer-
tificate for verifying whether Pr(c |e, t) ≥ p for any joint value assignments c and
e. Let C = {C1, . . . , Cm} be the set of variables of interest. Let c =

∧
i=1,...,m c′i

be the joint value assignment of interest and let c−i =
∧

j=1,...,i−1 c′j be the
joint assignment to the variables C1, . . . , Ci−1 compatible with c. By apply-
ing the junction-tree propagation algorithm for computing each term in the
expression

Pr(c |e, t) =
∏

i=1,...,m

Pr(ci |e, t, c−i )

we can verify whether Pr(c | e, t) ≥ p in polynomial time, since the propaga-
tion algorithm takes polynomial time for the class of networks under study. We
conclude membership of NP for the Stop problem.

To prove hardness, we reduce the Partition problem to the Stop problem
for Bayesian networks of bounded treewidth. Let {x1, . . . , xn} be an instance
of Partition, and let s =

∑
i=1,...,n xi. From the set to be partitioned, we

construct a Bayesian network B as described above; it is not hard to show that
the moralisation of B has a treewidth of three. We let the variable D be the
variable of interest for the Stop instance under construction, that is C = {D},
and let c be the assignment D = true. We further let the set of observed variables
E be empty and let e =  again denote universal truth. We set p to s2 − 2

4 s6 .
The constructed instance of the Stop problem under study thus is (B, D =
true,, s2 − 2

4 s6 ); note that the instance can be constructed in polynomial time.
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We now show that there is a partition of the set of integers {x1, . . . , xn} into
two sets of equal sum if and only if there exists a joint value assignment x to
the variables X1, . . . , Xn in the network B with

Pr(D = true |x) ≥ s2 − 2
4 s6

We first consider a joint value assignment x to the root variables X in B for
which the above inequality holds. Since the conditional probability table of the
variable D mimics the logical and of the variables An and Bn, we have that
Pr(d | x) = Pr(an, bn | x). We now define the set of indices Q ⊆ {1, . . . , n} by
i ∈ Q if and only if the variable Xi is set to true in x; we use R to denote the
complementary set {1, . . . , n} \ Q. Note that the sets Q and R can be viewed
as representing a two-block partition of the set of integers {x1, . . . , xn}. By
induction to i, it is readily shown that

Pr(ai |x) ≤
∑

j∈Q,j≤i

xj

s3
and Pr(bi |x) ≤

∑
j∈R,j≤i

xj

s3

Since the variables An and Bn are mutually independent given x, we find that

Pr(d |x) = Pr(an |x) · Pr(bn |x) ≤

⎛⎝∑
i∈Q

xi

s3

⎞⎠ ·(∑
i∈R

xi

s3

)

Now suppose that
∑

i∈Q xi �= s
2 , that is, we suppose that the sets Q and R do

not represent an equal-sum partition of the set of integers {x1, . . . , xn}. Then,⎛⎝∑
i∈Q

xi

⎞⎠ ·(∑
i∈R

xi

)
≤ s2

4
− 1

from which we have that Pr(d | x) ≤ s2 − 4
4 s6 , which contradicts our assumption

that Pr(d | x) ≥ s2 − 2
4 s6 . We conclude that

∑
i∈Q xi = s

2 and, hence,
∑

i∈R xi = s
2 ,

from which we have that there exists an equal-sum partition of {x1, . . . , xn}.
We now assume that the set of integers {x1, . . . , xn} is partitioned into two

sets of equal sum; we let Q and R be the sets of indices for the two blocks of
the partition, that is,

∑
i∈Q xi =

∑
i∈R xi = s

2 . Now let xQ be the joint value
assignment to the variables X1, . . . , Xn of the constructed network B that sets
each variable Xi, i = 1, . . . , n, to true if and only if i ∈ Q. Using the observation
that Pr(ai |x) ≤ 1

s2 and Pr(bi |x) ≤ 1
s2 , we can show by induction that

Pr(ai |x) ≥
(

1− 1
s2

)
·

⎛⎝ ∑
j∈Q,j≤i

xj

s3

⎞⎠
and

Pr(bi |x) ≥
(

1− 1
s2

)
·

⎛⎝ ∑
j∈R,j≤i

xj

s3

⎞⎠
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We now recall that
∑

i∈Q xi = s
2 and

∑
i∈R xi = s

2 . Using mutual independence
of the variables An and Bn given x, we then find that

Pr(d |x) = Pr(an |x) · Pr(bn |x) ≥
(

1− 1
s2

)2

·
( s

2 s3

)2

≥ s2 − 2
4 s6

From a two-block equal-sum partition of the set of integers {x1, . . . , xn} it thus
follows that there exists a joint value assignment x to the variables X1, . . . , Xn

of the network B with Pr(d | x) ≥ s2 − 2
4 s6 , which concludes our proof. �

5 Practical Considerations

Practical implementations of automated test selection for Bayesian networks
typically take a sequential approach in which diagnostic tests are selected in an
iterative fashion. Current implementations in fact take a myopic approach to
evidence gathering, in which test variables are selected on a one-by-one basis
[5]. With these implementations also a single diagnostic variable C of interest
is assumed, rather than a set of such variables. In the basic test-selection loop,
the expected effect on the posterior probability distribution Pr(C |e) given the
already available evidence e is computed for each yet unobserved test variable
Ti. Using some information measure, the test variable with the largest expected
effect then is selected and the user is prompted for its value. For computing the
expected effect of obtaining an observation for a test variable Ti on the posterior
probability distribution Pr(C |e), the following property can be exploited:

Pr(C |Ti, e) =
Pr(Ti |C, e) · Pr(C |e)

Pr(Ti |e)

By retaining intermediate results from the computations involved, the number of
propagations required from the junction-tree propagation algorithm in a single
iteration of the test-selection loop is proportional with the number of values
of the main diagnostic variable. Assuming that evaluation of the information
measure used does not take exponential time, the computations involved in the
selection of a single test variable thus require polynomial time.

From the complexity results from the previous section, we now know that,
while the selection of a test variable takes polynomial time, the stopping crite-
rion cannot be evaluated efficiently. We observe, however, that the computational
burden of evaluating the stopping criterion under study lies in the look-ahead
strategy employed, since any criterion which builds directly upon the posterior
probability distribution Pr(C |e) computed in each step of the test-selection loop,
can be evaluated in a time which is linear in the number of values of the diag-
nostic variable C. The property stated above now allows efficient evaluation of
a stopping criterion employing a restricted look-ahead strategy. Such a stopping
criterion asks whether there exists a value ti of a yet unobserved test variable Ti

such that Pr(c | ti, e) exceeds some threshold probability p given the currently
available evidence e. Note that employing such a one-step look-ahead strategy
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with the stopping criterion is in line with the one-step look-ahead selection of
test variables used in the main test-selection loop.

In many practical applications of Bayesian networks, a non-myopic approach
in which test variables are selected groupwise might outperform any myopic
method for selective evidence gathering. When developing a network for the stag-
ing of oesophageal cancer, for example, we found that the information-gathering
strategy induced by a myopic approach to test selection would present a gross
oversimplification of our experts’ problem-solving practice [13]. We found that in
their daily test-selection routines, our experts ordered diagnostic tests in pack-
ages so as to reduce the length in time of the diagnostic phase of a patient’s
management. Also, upon performing a single physical test, values would become
available for various test variables in the network simultaneously.

From the complexity results presented in the previous section, we know that
evaluating the stopping criterion in a non-myopic approach to test selection
would just by itself already pose serious computational problems which cannot
be overcome in general. In view of these results, we have designed for our medical
diagnostic application a procedure for automated test selection which involves
some degree of non-myopia [14,15]. The procedure is guided by a sequence of
diagnostic subgoals, for which purpose it is provided with additional input. Each
diagnostic subgoal is associated with a set of test variables which can provide
information about that particular goal. For the selection of appropriate diagnos-
tic tests, the procedure is further provided with a clustering of the test variables
by the physical tests from which they get their values. The actual selection of
tests now pertains to these clusters of test variables; the stopping criterion also
considers clusters of variables, using a restricted look-ahead as described above.
In general, this approach to automated test selection would rapidly become in-
feasible for larger clusters of variables. For our application in oncology, however,
the clusters of test variables were found to be quite small. With these small clus-
ters of test variables and through the use of subgoals for diagnostic reasoning,
good results were obtained from initial experiments with our procedure [15].

6 Conclusions

In the context of sequential approaches to automated test selection for diagnos-
tic Bayesian networks, we have studied the problem of deciding whether or not
further gathering of evidence is opportune. More specifically, we have studied
the computational complexity of the Stop problem and have shown that it is
NPPP-complete in general; we have also proven that the problem remains NP-
complete even when it is restricted to networks of bounded treewidth. We have
argued that the unfavourable computational complexity of the Stop problem can
be attributed to its look-ahead strategy and provided some considerations by
which automated test selection can be feasibly employed in practical
implementations.
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Abstract. Learning Causal Bayesian Networks (CBNs) is a new line
of research in the machine learning field. Within the existing works in
this direction [8,12,13], few of them have taken into account the gain
that can be expected when integrating additional knowledge during the
learning process. In this paper, we present a new serendipitous strategy
for learning CBNs using prior knowledge extracted from ontologies. The
integration of such domain’s semantic information can be very useful to
reveal new causal relations and provide the necessary knowledge to antic-
ipate the optimal choice of experimentations. Our strategy also supports
the evolving character of the semantic background by reusing the causal
discoveries in order to enrich the domain ontologies.

1 Introduction

Bayesian networks (BNs), first introduced by Pearl [14], are compact graphical
probabilistic models able to efficiently model uncertainty in real world problems.

One of the important properties relative to BNs is the Markov equivalence
property which can be illustrated by the fact that the two networks X → Y
and X ← Y are equivalent (i.e. encode the same joint probability distribution).
Nevertheless, only one of them is a correct from causal point of view. In fact,
in the first network X causes Y , then, manipulating the value of X affects the
value of Y contrary to the second one where Y is a cause of X meaning that
manipulating X will not affect Y . Thus a BN cannot be considered as a proper
causal network but the contrary is always true. This means that given a Causal
Bayesian Network (CBN) one can use it even to determine how the observation
of specific values (evidence) affects the probabilities of query variable(s) or to
predict the effect of an intervention on the remaining variables [15].

Contrary to the non-Gaussian learning methods (also called LiNGAM) which
use pure observational data (Dobs), the causal discovery in CBNs often requires

W. Liu (Ed.): ECSQARU 2011, LNAI 6717, pp. 182–193, 2011.
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interventional data (Dint). In this work, we don’t make use of LiNGAM methods
since no suitable parametrization of the joint distribution can be established
when working under the non-gaussianity assumption. This is the key reason for
restricting our approach to only CBNs.

This paper provides a substantially extended version of our previous work
[1] in which we introduce the preliminary findings for integrating a semantic
distance calculus to choose the appropriate interventions. Further developments
along this direction have been made in order to deploy more efficient strategies
to integrate the semantic prior knowledge, improve the causal discovery process
and reuse the new discovered information.

The remainder of this paper is arranged as follows: Section 2 gives the neces-
sary background for both CBNs and ontologies and discusses some related works
that combine the two formalisms. Section 3 sets out how to use the ontologi-
cal knowledge to enhance the causal discovery and vice versa. In Section 4, we
show simulation results to evaluate the performances of the proposed algorithm.
Concluding remarks and future works are given in Section 5.

2 Basic Concepts and Background

2.1 Causal Bayesian Networks

A Causal Bayesian Network (CBN) is a Directed Acyclic Graph (DAG) where
the set of nodes V represents discrete random variables X={X1, X2,.., Xn} and
the set of edges E represents causal dependencies over V. We use Di to denote
the finite domain associated with each variable Xi and xi to denote any instance
of Xi. We denote by Pa(Xi) the set of parents nodes for Xi and Nei(Xi) the
set of its neighboring variables.

In addition to the usual conditional independence interpretation, the CBN is
also given a causal interpretation since each directed edge is traduced as that
the source node is the direct cause of the target node. For this reason, CBNs are
considered as proper bayesian networks (BNs) but the reverse is not necessarily
true.

The main difference between the two formalisms lies in the nature of the
data needed to learn the structure. In fact, contrary to BNs, when using only
observational data, we may not have enough information to discover the true
structure of the graph and the causal model will be restricted to the Completed
Partially Directed Acyclic Graph (CPDAG). Thus we have to collect further in-
formation on causality via interventions (i.e. actions tentatively adopted without
being sure of the outcome). Here, we should note that intervening on a system
may be very expensive, time-consuming or even impossible to perform. For this
reason, the choice of variables to experiment on can be vital when the number
of interventions is restricted.

All those distinguishing features have motivated many researchers to develop
a variety of techniques and algorithms to learn such models [8,12,13].
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2.2 Ontologies

There are different definitions in the literature of what should be an ontology.
The most notorious was given by Tom Gruber [7], stipulating that an ontology
is an explicit specification of a conceptualization. The ”conceptualization”, here,
refers to an abstract model of some phenomenon having real by identifying its
relevant concepts. The word ”explicit” means that all concepts used and the
constraints on their use are explicitly defined.

In the simplest case, an ontology describes a hierarchy of concepts (i.e. classes)
related by taxonomic relationships (is-a, part-of). In more sophisticated cases,
an ontology describes domain classes, properties (or attributes) for each class,
class instances (or individuals) and also the relationships that hold between class
instances. It is also possible to add some logical axioms to constrain concept
interpretation and express complex relationships between concepts.

Hence, more formally, an ontology can be defined as a set of labeled classes
C={C1, ..., Cn}, hierarchically ordered by the subclass relations (i.e. is-a, part-of
relations). For each concept Ci we identify k meaningful properties pj , where
j ∈ [1, k]. We use Hi to denote the finite domain of instance (i.e. concretizing
the ontology concepts by setting their properties values) candidates with each
concept Ci and ci to denote any instance of Ci. We also use R to represent the
set of semantical (i.e non-hierarchical) relations between concepts and Rc to rep-
resent the subset of causal ones. Finally, formal axioms or structural assertions
<ci, cj , s> can be included, where s ∈ S is a constraint-relationship like ”must,
must not, should, should not, etc”.

Practically speaking, the ontologies are often a very large and complex struc-
ture, requiring a great deal of effort and expertise to maintain and upgrade the
existing knowledge. Such proposals can take several different forms such as a
change in the domain, the diffusion of new discoveries or just an information
received by some external source [6].

There are many ways to change the ontology in response to the fast-changing
environment. One possible direction is the ontology evolution which consists in
taking the ontology from one consistent state to another by updating (adding
or modifying) the concepts, their properties and the associated relations [10].

The ontology evolution can be of two types [10]:

– Ontology population: When new concept instances are added, the ontology
is said to be populated.

– Ontology enrichment: Which consists in updating (adding or modifying)
concepts, properties and relations in a given ontology.

In order to establish the context in which the ontology evolution takes place,
the principle of ontology continuity should be fulfilled [17]. It supposes that the
ontology evolution should not make false an axiom that was previously true.
When changes do not fulfill the requirement of ontological continuity, it is not
any more an evolution, it is rather an ontology revolution.
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2.3 Related Work

Recent studies have investigated some ways to combine both ontologies and BNs.
The first line of research focused on how to integrate the power of BNs to enhance
the potential of ontologies by supplementing it with the principle means of mod-
eling uncertainty in ontologies. In this way, [18] have proposed the OntoBayes
approach, an ontology-driven Bayesian model for uncertain knowledge represen-
tation, to extend ontologies to probability-annotated OWL in decision making
systems. [5] also proposed an approach when they augment the OWL language
to allow additional probabilistic markups so that probability values can be at-
tached to individual concepts and properties. One of the main advantage of this
probabilistic-extended ontology is that it can support common ontology-related
reasoning tasks as probabilistic inferences.

On the other hand, other solutions were proposed in order to enhance the BN
construction by integrating ontologies. For example, [9] developed a
semi-automatic BN construction system based on e-health ontologies. Their
framework enables probabilistic inferencing capability for various E-health appli-
cations and contributes to reduce the complexity of BN construction. A similar
approach for BN construction using ontologies was proposed in [4]. Nevertheless,
it presents an automatic solution, implemented in the context of an adaptive,
self-configuring network management system in the telecommunication domain.

To our knowledge, we are the first to propose a real cooperation in both ways
between ontologies and CBNs. Our previous work [1] focused on only one facet
of the CBN-ontology combination by integrating the ontological knowledge to
learn CBNs. Taking a further step in the same research direction, this work
consists on designing a strategy that addresses issues to incorporate the second
combination facet via reusing the causal discoveries to enrich the ontologies.

3 SemCaDo: A Serendipitous Causal Discovery
Algorithm for Ontology Evolution

Generally, in the research area, scientific discoveries represent a payoff for years
of well-planned works with clear objectives. This affirmation did not exclude
the case of other important discoveries that are made while researchers were
conducting their works in totally unrelated fields and the examples are abundant
from Nobel’s flash of inspiration while testing the effect of dynamite to Pasteur
brainstorm when he accidentally discovered the role of attenuated microbes in
immunization. In this way, we propose a new causal discovery algorithm which
stimulates serendipitous discoveries when performing the experimentations using
the following CBN-Ontology correspondences.

3.1 CBNs vs. Ontologies

One of the main motivations when realizing this work is the similarities between
CBNs and ontologies. This is particularly true when comparing the structure of
the two models as shown in the following correspondences:
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1. Nodes (Vi) ↔ Concepts (Ci): The ontology concepts, which are relevant to
the considered domain are traduced by the nodes of the CBN.

2. Random variables (Xi) ↔ Concept attributes (Ci.pj): All random variables
in the CBN are represented as specific concept attributes in the ontology.

3. Causal dependencies (E) ↔ Semantic causal relations (Rc): The correspon-
dence between the two models in term of causality will be as follows:
– A causal relation between two concepts in the ontology will be traduced

by a directed link between the corresponding CBN nodes. It is read as
cY .pj is the direct consequence of cX .pj , where pj is the concept attribute
used to make the correspondence.

– A causal dependency represented by a directed link in the CBN will be
traduced by a specific causal relation between the appropriate concepts
in the ontology.

4. Observational or experimental data (Dobs,int)↔ Concept-attribute instances
(ci.pj): We make a correspondence between the observational (resp. interven-
tional) data at our disposal and the instances of the domain ontology. Each
observation (resp. intervention) can be viewed, in the ontological context, as
a state instantiation of a given concept attribute.

3.2 SemCaDo Sketch

Our approach relies on extending the MyCaDo algorithm [12] in order to in-
corporate available knowledge from domain ontologies. The original character of
the SemCaDo (Semantic Causal Discovery) algorithm is essentially its ability to
make impressive discoveries and reuse the capitalized knowledge in CBNs.

The correspondences between CBNs and ontologies in SemCaDo must respect
the following constraints:

– Only a single ontology should be specified for each causal discovery task.
– Each causal graph node must be modeled by a corresponding concept in the

domain ontology. The concepts which are candidates to be a member of such
correspondence have to share the same studied attribute pj .

– The causal discoveries concern concepts sharing the same semantic type
(e.g. direct transcriptional regulation between genes). This means that all
concepts Ci modeled in the CBN must belong to the same super-concept
SC and the causal relationship under study Rc should be defined for any
element of SC to any other one.

– The ontology evolution should be realized without introducing inconsisten-
cies or admitting axiom violations.

In this way, we will adopt the same basic scenario as in MyCaDo and describe
the possible interactions with the domain ontology.

The general overview of the SemCaDo algorithm is given in Figure 1. As
inputs, SemCaDo needs an observational dataset and a corresponding domain
ontology. Then it will proceed through three main phases:
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Fig. 1. SemCaDo: Extending MyCaDo to allow CBN-Ontology interactions

1) Learning the initial structure using causal prior knowledge: The ontology in
input may contain some causal relations in addition to hierarchical and semantic
relations. Those causal relations should be integrated from the beginning in the
structure learning process in order to reduce the task complexity and better the
final output. Therefore, such direct cause to effect relations will be incorporated
as constraints when using structure learning algorithms. Our main objective is
to narrow the corresponding search space by introducing some restrictions that
all elements in this space must satisfy.

In our context, the only constraint that will be defined is edge existence.
But we could also imagine in future work that some axioms in the ontology
also give us some information about forbidden edges. All these edge constraints
can easily be incorporated in usual BN structure learning algorithm [3]. Under
some condition of consistency, these existence restrictions shall be fulfilled, in
the sense that they are assumed to be true for the CBN representing the domain
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knowledge, and therefore all potential Partially Directed Acyclic Graph (PDAG)
must necessarily satisfy them.

Definition 1. Given a domain ontology O, let G=(C, Rc) be the DAG where
Rc: Ci × Cj represents the subset of semantic causal relations extracted from O.
This subset included both direct and logically derivable semantic causal relations.
Let H=(X, Eh) be a PDAG, where X is the set of the corresponding random
variables and Eh corresponds to the causal dependencies between them. H is
consistent with the existence restrictions in G if and only if:
∀ Ci, Cj ∈ C, if Ci→Cj ∈ Rc then Xi→Xj ∈ Eh.

When we are specifying the set of existence restrictions to be used, it is necessary
to make sure that these restrictions can indeed be satisfied. In fact, such causal
integration may lead to possible conflicts between the two models. When this
occurs, we have to maintain the initial causal information in the PDAG since we
are supposed to use perfect observational data. On the other hand, we should
ensure the consistency of the existence restrictions in such a way that no directed
cycles are created in G.
2) Causal discovery process: Before delving into the details of our approach,
we first review the principal idea of the causal discovery process in MyCaDo
algorithm [12].

When performing an experimentation on Xi, MyCaDo measure all neighbor-
ing variables and accordingly to the result direct all edges connecting Xi and
Nei(Xi). This edge orientation represents one instantiation (inst(AXi)) among
all possible instantiations. It is then possible to continue the edge orientation by
using the Meek rules [11] to infer new causal relations.

Let inferred(inst(AXi)) be the number of inferred edges based on inst(AXi).
MyCaDo proposes that the utility of an experiment is related to the num-
ber of edges directly oriented or inferred, weighted by the cost of experiment
(cost(AXi )) and measurement (cost(MXi)):

U(Xi) =
Card(Nei(Xi)) + Card(inferred(inst(AXi )))

αcost(AXi ) + βcost(MXi)
(1)

where measures of importance α and β ∈ [0,1] and Card(M) represents the
cardinality of any set M.

It seems obvious that the gained information of such utility function is es-
sentially the node connectivity ( i.e. the number of undirected edges and those
susceptible to be inferred) which serves to orient the maximal number of edges
but not necessary the most informative ones.

To cope with this limitation, the strategy we propose in our approach makes
use of a semantic distance calculus (e.g. Rada distance [16]) provided by the
ontology structure. So, for each node in the graph, SemCaDo gives a general-
ization of the node connectivity by introducing the semantic inertia, denoted by
SemIn(Xi) and expressed as follows:
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SemIn(Xi) =

∑
Xj∈Nei(Xi)∪Xi

distRada(mscs(Nei(Xi) ∪Xi), Xj)

Card(Nei(Xi) ∪Xi)
(2)

where:

– mscs(Ci, Cj): the most specific common subsumer of the two concepts Ci

and Cj , where i �= j.
– distRada(Ci, Cj): the shortest path between Ci and Cj , where i �= j,

Moreover, the semantic inertia presents three major properties:

– When the experimented variable and all its neighbors lie at the same level
in the concept hierarchy, the semantic inertia will be equal to the number of
hierarchical levels needed to reach the mscs.

– If the corresponding concepts belong to the same super-class then SemIn
will be proportional to Card(Nei(.)).

– It essentially depends on semantic distance between the studied concepts.
This means that the more this distance is important, the more the SemIn
will be maximized.

By this way, we will accentuate the serendipitous aspect of the proposed
strategy and investigate new and unexpected causal relations on the graph.

Further to these, we also integrate a semantic cumulus relative to the inferred
edges denoted by Inferred Gain in our utility function. For this purpose, we use
I(Xi) to denote the set of nodes attached by inferred edges after performing an
experimentation on Xi. So, the Inferred Gain formula is expressed as follows:

Inferred Gain(Xi) =

∑
Xj∈I(Xi)

distRada(mscs(I(Xi)), Xj)

Card(I(Xi))
(3)

Inferred Gain also represents a generalization of Card(inferred(inst(.)) and
depends on the semantic distance between the studied concepts. Note that we
don’t use here all the information provided by the ontology. We should also con-
sider the axioms to check if any new relation could be inferred from the semantic
point of view. Better interacting with the axioms is one of our perspectives for
future work.

When using the two proposed terms, our utility function will be as follows:

U(Xi) =
SemIn(Xi) + Inferred Gain(Xi)

αcost(AXi ) + βcost(MXi)
(4)

where measures of importance α, β ∈ [0,1].

This utility function will be of great importance to highlight the serendipitous
character of SemCaDo algorithm by guiding the causal discovery process to
investigate unexplored areas and conduct more informative experiments.
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3) Edge orientation & ontology evolution: Once the specified intervention per-
formed, we follow the same edge orientation strategy as in MyCaDo [12]. So if
there are still some non-directed edges in the PDAG , we re-iterate over the
second phase and so on, until no more causal discoveries can be made. Since
certain experimentation can not be performed, either because of ethical reasons
or simply because it is impossible to do it, the final causal graph can be either
a CBN or a partially causal graph.

In both cases, the causal knowledge will be extracted and interpreted for an
eventual ontology evolution. In this way, the causal relations will be traduced as
semantic causal relations between the corresponding ontology concepts.

We note that, because of the priority given to the ontology axioms, only causal
relations guaranteeing the consistency will be retained for the ontology evolution
process.

3.3 Toy Example

In the following example, we briefly illustrate the various steps we followed to
construct a CBN when using SemCaDo algorithm. As noted above, we assume
that all random variables under study are modeled in the corresponding ontology
(See Figure 2) as distinctly blue-colored concepts. We note that in order to
simplify the semantic analysis, we restricted the ontology to only taxonomic
relations and causal ones.

Fig. 2. An example of ontology: blue nodes denote the concepts under study, red rela-
tionships denote causal prior knowledge and black relationships are taxonomic relations

As first step, we use the graph in Figure 3 (a) to specify the existence restric-
tions to be satisfied. In our case, three causal relations (i.e. A42→B87, A40→A15
and D53→C65) extracted from the ontology in Figure 2 have to be modeled as
directed arrows before learning the initial structure. Using this prior knowledge,
Figure 3 (b) shows the resulting partially directed graph after performing a
structure learning algorithm and applying the Meek rules [11] to infer edges.

When running the SemCaDo causal discovery process, the first best node
to experiment on will be E71. This choice is strongly supported by the high
semantic distance between E71 and its neighboring variables (i.e. E76 and A42)
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Fig. 3. (a) Existence restriction graph extracted from the ontology in Figure 2, (b)
PDAG obtained after structure learning phase using previous restriction graph, (c)
the CBN obtained after performing experiments on (E71, B80 and A42) and (d) the
enriched ontology.

as well as the additional semantic cumulus relative to the edges susceptible to
be inferred (i.e. E76-A40, A42-E76, A40-A42 and A40-E78). Thanks to this
experimentation, we can investigate different causal relations between the more
distant concepts in the ontology, in which we have not enough prior causal
information (See Figure 2).

After finishing all the causal discovery step and learning the completed di-
rected graph as shown in Figure 3 (c), the supplementary causal knowledge will
be interpreted and reused in the corresponding ontology. The dashed lines in Fig-
ure 3 (d) indicate the ontology evolution (i.e. ontology enrichment) in response
to SemCaDo discoveries.

4 Experimental Study

In the experimental evaluation, we will compare SemCaDo to MyCaDo algorithm
[12] since both of them share the same assumptions and use the same input data.

For this purpose, we randomly create a set of syntectic 50 and 200 node
graphs and apply a DAG-to-CPDAG algorithm [2] on those CBNs in order to
simulate the result of a structure learning algorithm working with a perfect

Fig. 4. The semantic gain given the number of experiments using MyCaDo and Sem-
CaDo on relatively small graphs (a) and bigger ones (b)
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infinite dataset. For each simulated graph, we automatically generate a corre-
sponding concept hierarchy in which we integrate a varying percentage (10%
to 40%) of the initial causal relations. As we do not dispose of a real system
to intervene upon, we decide to simulate the experimentations directly in the
previously generated CBNs as in [12].

Another point to consider in our experimental study concerns the calculation
of the semantic gain. In fact, after each SemCaDo (resp. MyCaDo) iteration,
we measure the sum of semantic distances (Rada’s [16] in these experiments)
relative to the new directed edges in the graph and update a semantic cumulus.
In both strategies, the two corresponding curves are increasing in, meaning that
the higher is the number of experimented variables, the higher is the value of
the semantic gain. Nevertheless the more the curve is increasing faster, the more
the approach is converging to the best and most impressive experiments.

Figure 4 shows that, during the experimentation process, our approach com-
fortably outperforms the MyCaDo algorithm in term of semantic gain. This is
essentially due to the initial causal knowledge integration and the causal discov-
ery strategy when performing the experimentations. But if the two curves reach
the same maxima when obtaining a fully directed graph, where is the evolu-
tionary contribution of SemCaDo? Let us remember that we are approaching a
decision problem which is subject to the experimentation costs and the budget
allocation. Taking into account this constraint, the domination of SemCaDo will
be extremely beneficial when the number of experiments is limited.

All these experimental results show how the SemCaDo algorithm can adopt
a serendipitous attitude with the minimum expected cost and effort. This is
indeed a new avenue of causal investigation, moving far away from traditional
techniques.

5 Conclusions and Future Works

In this paper, we outlined our serendipitous and cyclic approach which aims to
i) integrate the causal prior knowledge contained in the corresponding ontology
when learning the initial structure from observational data, ii) use a semantic
distance calculus to guide the iterative causal discovery process to the more
surprising relationships and iii) capture the required causal discoveries to be
applied to ontology evolution. The SemCaDo algorithm is an initial attempt
towards a more ambitious framework exploiting the power of BNs and ontologies.
Future works will be devoted to ontology revolution through better interactions
with the axioms during the causal discovery process.
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Abstract. Greedy Equivalence Search (GES) is nowadays the state of
the art algorithm for learning Bayesian networks (BNs) from complete
data. However, from a practical point of view, this algorithm may not be
fast enough to work in high dimensionality domains. This paper proposes
some variants of GES aimed to increase its efficiency. Under faithfulness
assumption, the modified algorithms preserve the same theoretical prop-
erties as the original one, that is, they recover a perfect map of the
target distribution in the large sample limit. Moreover, experimental re-
sults confirm that, although they carry out much less computations, BNs
learnt by those algorithms have the same quality as those learnt by GES.

1 Introduction

Bayesian network (BN) learning [8] has received a growing attention from re-
searchers in the area of Data Mining. Although many approaches and methods
have been proposed so far, there is still great interest on this topic. This is due
to the fact that BN learning is a complex and highly time-consuming task, and
existing algorithms usually do not scale well when dealing with many (hundreds
of) variables. Thus, new algorithms, as well as improvements to existing ones,
are being proposed in order to work with bigger datasets.

In the case of score+search methods defined over the space of Directed Acyclic
Graphs (D-space), such improvements are usually based on the use of local search
algorithms [10,5], since they allow avoiding a huge amount of computations. How-
ever, despite the fact that these methods speed up the learning process, they do
not reach the results, in terms of score, of the networks obtained by more com-
plex algorithms, as those defined over the space of Equivalence Classes (E-space)
[7,3]. The most representative of these, GES (Greedy Equivalence Search) [3],
is considered nowadays as the reference in BN learning since, under faithfulness
conditions, it asymptotically obtains a perfect map of the target distribution.

As its name indicates, GES is also a local (greedy) algorithm. In a first stage,
GES takes the equivalence class with no dependences as starting point, and adds
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dependences until no edge can be added; then, it tries to progressively delete
edges in a second stage. Despite considering only local changes in both phases,
the algorithm has several drawbacks which limit its scalability. Thus, the cost of
the algorithm is exponential in the size of the biggest clique in the network, since
an exhaustive search must be carried out in order to find the best subset of head-
to-head nodes with the tested edges in the constructive phase. Therefore, GES is
very inefficient when dealing with structures where a node has a large number of
adjacents. In order to alleviate this problem, it is common to restrict the number
of parents. However, this decision is arbitrary, and an incorrect setting of that
parameter may degrade the performance of the algorithm.

Since most computational effort of GES is carried out in the first stage, it
would be of interest relaxing the search of these head-to-head subsets for each
node in such a phase. In order to do that, we propose changing a exhaustive
search, whose complexity is exponential in the number of adjacencies for a node,
by a greedy one, which is linear.

Furthermore, it is possible to improve upon the scalability of GES by methods
successfully used in the D-space [10,5,6], which basically consist in restricting
the search space. Thus, computations carried out at each search step of the
constructive phase of GES, allow detecting edges which should not be considered
from then on. This way the search space is pruned progressively as the search
advances.

As we show in this paper, the modifications of GES incorporating both changes
exhibit the same theoretical properties as the original one. Moreover, exper-
iments confirm that they are faster than the unconstrained/classical version,
whereas they are able to learn BNs with the same score.

This paper is structured as follows. Section 2 shows an introduction to BN
learning and a description of GES. Afterwards, our proposals to scale up GES
are shown in 3, and an experimental analysis is carried out in Section 4. Lastly,
Section 5 presents some conclusions.

2 Learning Bayesian Networks by Using Greedy
Equivalence Search

Bayesian Networks (BNs) [9] efficiently represent n-dimensional probability dis-
tributions by means of a directed acyclic graph (DAG), G = (V ,E), and a set of
numerical parameters (Θ), usually conditional probability distributions drawn
from the graph structure.

Let Xi ∈ V , and let PaG(Xi) be the parent set of Xi in G. The joint proba-
bility distribution over V is obtained as:

P (X1, X2, . . . , Xn) =
n∏

i=1

P (Xi|PaG(Xi))

where P (Xi|PaG(Xi)) is the conditional probability distribution of Xi given
PaG(Xi).
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We denote that variables in X are conditionally independent (through d-
separation) of variables in Y given the set Z, in a DAG G by 〈X,Y|Z〉G . The same
affirmation, but related to a probability distribution p, is denoted by Ip(X,Y|Z).
From these conditions, two definitions arise:

A DAGG is an I-map of a probability distribution p if 〈X,Y|Z〉G ⇒ Ip(X,Y|Z).
And it is minimal if there is no arc such that, when removed, the resulting graph
G′ is still an I-map. G is a D-map of p if 〈X,Y|Z〉G ⇐= Ip(X,Y|Z). When a DAG
G is both an I-map and a D-map of p, it is said that G and p are isomorphic models
(that is G is a perfect-map of p). Furthermore, a distribution p is faithful if there
exists a graph, G, to which it is faithful.

The problem of learning the structure of a Bayesian network can be stated as
follows: Given a training dataset D = {v1, . . . ,vm} of instances (configurations
of values) of V , find a DAG G∗ such that

G∗ = arg max
G∈Gn

f(G : D),

where f(G : D) is a scoring metric (or scoring criterion) which evaluates the
merit of any candidate DAG G with respect to the dataset D, and Gn is the set
containing all the DAGs with n nodes.

Although there are many methods to look for G∗, the most used in practice
are those based on local search algorithms [2]. Efficient evaluation of neighbors
of DAGs in this local search algorithms is based on an important property of
scoring metrics: decomposability in the presence of full data. In the case of BNs,
decomposable metrics evaluate a given DAG as the sum of the scores of the sub-
graphs formed by each node and its parents in G. Formally, if f is decomposable,
then:

f(G : D) =
n∑

i=1

fD(Xi, PaG(Xi))

If a decomposable metric is used, graphs resulting of changing one arc can
be efficiently evaluated. Thus, this kind of (local) methods reuse the computa-
tions carried out at previous stages, and only the statistics corresponding to the
variables whose parents have been modified need to be recomputed.

Another important properties of scoring metrics are global consistency and
local consistency. The first one indicates that the metrics prefer DAGs containing
p (or closer to), and if there are two (or more) DAGs containing p, it prefers
those with fewer parameters. Finally the second property can be stated as, let
G be any DAG, and G′ the DAG obtained by adding edge Xi → Xj to G. A
scoring metric is locally consistent if in the limit as data grows large the following
conditions hold: 1) If ¬Ip(Xi, Xj |PaG(Xj)), then f(G : D) < f(G′ : D); 2) If
Ip(Xi, Xj |PaG(Xj)), then f(G : D) > f(G′ : D). Commonly used metrics, such
as BDE, MDL and BIC, are decomposable, locally and globally consistent [3].

2.1 The E-Space

A partially DAG (PDAG) (Fig. 1 (b)) is a graph that contains both directed and
undirected edges. In a PDAG, a pair of nodes X and Y are neighbors if the are
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Fig. 1. DAG, PDAG and CPDAD or Essential Graph

connected by an undirected edge, and they are adjacent if they are connected
by either an undirected edge or a directed edge.

A v-structure in a PDAG P is a subgraph of three nodes (X, Y, Z) where Z
has two incoming edges (X → Z and Y → Z) and X and Y are not adjacent,
(In fig. 1 (a) the subgraph (B → D ← C). The skeleton of a PDAG P is the
graph resulting of converting the directed edges of P into undirected edges.

Let P denote an arbitrary PDAG. We define the equivalence class of DAGs
ε(P) corresponding to P as follows: G ∈ ε(P) if and only if G and P have the
same skeleton and the same set of v-structures.

Completed PDAGs (CPDAGs) or Essential Graphs are used to represent
equivalence classes of DAGs, i.e. the set of DAGs that encode the same set
of conditionals (in)dependences. In a CPDAG directed edges are call compelled
and they represent an edge that has the same orientation for every member of
the equivalence class. Undirected edges represent reversible edges, i.e. edges that
are not compelled. Given an equivalence class of DAGs, the CPDAG represen-
tation is unique. Thus, CPDAGs are used to represent the space of equivalence
classes (the E-space). Fig. 1 (c) shows a CPDAG representing an equivalence
class ε and Fig. 1 (a) shows a DAG that belongs to ε.

2.2 Greedy Equivalent Search (GES)

GES algorithm [3] can be described as follows. It first initializes the state of the
search to be the equivalence class ε corresponding to the (unique) DAG with no
edges and then, it runs a local search that consists in two phases. In the first
phase, a greedy search is performed over equivalence classes using a particular
neighborhood. Once a local maximum is reached, a second phase proceeds from
the previous local maximum using a second neighborhood. When the second
phase reaches a local maximum, that equivalence class is returned as the solution.

The pseudocode of the algorithm is shown in Algorithm 1. ε+(ε) denotes the
neighbors of state ε during the first phase of GES (lines 2-3). An equivalence
class ε′ is in ε+(ε) if and only if there is some DAG G ∈ ε to which we can
add a single edge that results in a DAG G′ ∈ ε′. ε−(ε) denotes the neighbors of
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Algorithm 1. GES
1: ε ← Empty network
2: Compute ε+(ε)
3: Let ε′ the highest scored member of ε+(ε). If ε′ has higher score than ε then ε = ε′

and go to line 2.
4: Compute ε−(ε)
5: Let ε′ the highest scored member of ε−(ε). If ε′ has higher score than ε then ε = ε′

and go to line 4.

Algorithm 2. Generation of ε+(ε) in GES (line 2 of Algorithm 1)
1: for all X ∈ V do
2: for all Y ∈ V | Y �= X ∧ Y is not adjacent to X do
3: for all T ⊆ T0 do
4: Test validity conditions and compute Insert(X, Y,T)
5: end for
6: end for
7: end for

state ε during the second phase of GES (lines 4-5). Its definition is completely
analogous to that of ε+(ε), and contains the equivalence classes obtained by
deleting a single edge from DAGs in ε.

Lemmas 9 and 10 in [3] show that the equivalence class that results at the end
of the first phase of GES is, asymptotically, an I-map of p. And the equivalence
class that results at the end of GES is, asymptotically, a perfect map of p.

Next, we focus on the first phase of GES. From a practical point of view,
working directly with the definition of ε+(ε) over DAGs is not efficient. In [3]
efficient operators to transverse the E-space are defined. In the ascendent phase,
for a given state of the search (a CPDAG), we can move to other state by
applying an operator Insert(X, Y,T) and then transforming the obtained PDAG
into a CPDAG.

Definition 1. Insert(X, Y,T) ([3], Definition 12) For non-adjacent nodes X
and Y in PC, and for any subset T ⊆ T0 of the neighbors of Y that are not
adjacent to X, the Insert(X, Y,T) operator modifies PC by (1) inserting the
directed edge X → Y , and (2) for each T ∈ T, directing the previously undirected
edge between T and Y as T → Y .

Theorem 15 and Corollary 16 [3] show the conditions when the Insert operator
can be applied in order to be valid and the way to score a new structure when
one of this operator is applied.

Finally, when working with CPDAGs, the set ε+(ε) can be generated by
running Algorithm 2, V being the set containing all variables and T0 the set of
all neighbours of Y that are not adjacent to X .

From Algorithm 2, it follows that the number of operations is exponential in
the size of the set T0. In a real domain, this number could be high. For exam-
ple, Fig. 2a shows the structure of the HailFinder network [1] around variable
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a) Partial HAILFINDER DAG b) Step i of GES
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Fig. 2. a) Partial HAILFINDER DAG. The graph was obtained by removing from the
complete network variables not in the Markov blanket of variable Scenario. b) Example
of possible partial CPDAG obtained in the step i of GES.

Scenario. Fig. 2b shows the equivalence class ε of the network found in the step
i of GES. Now, the algorithm has to compute the set ε+(ε). Thus, it has to
compute the operation Insert(Date, Scenario, T) for each T in T0 being T0 the
set of children of variable Scenario in the real network. As the set T0 has 16
variables, it has to compute 216 different operations.

3 Scaling Up GES

In this section we propose some variants of the original GES algorithm. The idea
behind these algorithms is to modify the first phase of GES in order to reduce
the number of operations computed. The second phase is not modified.

3.1 GESG

As shown above, GES tests the operation Insert(X, Y,T) for all T ⊆ T0. For a
set T0 of size k, it is needed to compute 2k operations. In practice, to overcome
this issue, a maximum number of parents (maximum size of T) is set a priori.
However, this parameter is difficult to manage in general and its use may degrade
the theoretical properties of the algorithm.

Our proposal is to reduce the candidate neighbors by, instead of performing
an exhaustive search over all possible subsets of T0, performing a greedy search
in order to find a reasonable good subset of T0. The algorithm, GESG, uses a
restricted subset of ε+(ε), denoted as ε+

G(ε), where the members are computed
using a greedy procedure.

Algorithm 3 shows the procedure used to generate ε+
G(ε). For each pair of

variables X and Y if first initializes T1 = ∅ and it checks and computes the
score of the operation Insert(X, Y,T1). If this operation increases the score of the
previous network, it checks and score the operations Insert(X, Y,T2 = T1∪{T })
(∀T ∈ T0 \ T1). The algorithm iteratively replaces T1 with the best T2 and
repeats this last step until no such replacement increases the score or when
T1 = T0.
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Algorithm 3. Generation of ε+
G(ε) in GESG

1: for all X ∈ V do
2: for all Y ∈ V | Y �= X ∧ Y is not adjacent to X do
3: T1 ← ∅.
4: Test validity conditions and compute Insert(X, Y,T1)
5: If the network obtained in line 4 is better than ε then ok ← true. Else,

ok ← false
6: while ok do
7: for all T ∈ T0 \ T1 do
8: Test validity conditions and compute Insert(X, Y,T2 = T1 ∪ T )
9: end for
10: Let T∗

2 the best subset found in the previous bucle. If the network
obtained by applying Insert(X, Y,T∗

2) is better than the obtained by applying
Insert(X, Y,T1) then T1 ← T∗

2 and ok ← true. Else, ok ← false
11: end while
12: end for
13: end for

Proposition 1. Let ε denote the equivalence class that results at the end of the
first phase of GESG and p the generative probability distribution faithful to a
DAG. Then, asymptotically ε contains p.

Proof. Let us suppose the contrary, i.e., ε not contains p.. Then there is at
least variables Xi and Xj such that 〈Xi, Xj |Paε(Xi)〉ε and ¬Ip(Xi, Xj|Paε(Xi)).
Thus, ε cannot be a local optimum because the addition of the arc Xj → Xi has
a positive difference.

3.2 GESiC

In this second proposal, denoted as GESC , we apply a similar approach to the
progressive restriction of the neighborhood used in [6]. The idea behind the algo-
rithm is to reduce the number of operations, by restricting the pair of variables
X and Y for which the Insert(X, Y,T) operations are tested.

The core idea is to have a set of forbidden parents for each variable Xi (denoted
as FP (Xi)). The difference between this algorithm and the GES algorithm is
that the definition of ε+(ε) is slightly modified to be ε+

C(ε) (see Algorithm 4).
ε+

C(ε) is obtained from ε by computing for all variables X and all its non-adjacent
variables Y such that Y /∈ FP (X), the operations Insert(X, Y,T).

A variable X is added to the list of forbidden parents of another variable Y if
the evaluation of every operation Insert(X, Y,T) (∀T ⊆ T0) results in a network
worse than the previous one. In this situation, according to the definition of local
consistency, X and Y are independent.

Unfortunately, we cannot assure that the result of this first phase of this
algorithm is an I-map. In order to solve that problem, we also propose an iterated
version of this algorithm that we denote it as GESiC . GESiC can be described
as follows. First, it runs GESC . Then, it iteratively resets the sets of forbidden
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Algorithm 4. Generation of ε+
C(ε) in GESC

1: for all X ∈ V do
2: for all Y ∈ V | Y �= X ∧ Y /∈ FP (X) ∧ Y is not adjacent to X do
3: for all T ⊆ T0 do
4: Test validity conditions and compute Insert(X, Y,T)
5: end for
6: If all the neighbors generated in the previous bucle are worse scored than ε

then FP (Y ) → FP (Y ) ∪ X.
7: end for
8: end for

parents and runs GESC using as initial solution the final solution found by the
previous iteration, until no improvement is achieved.

Proposition 2. Let ε denote the equivalence class that results at the end of the
first phase of GESiC and p the generative probability distribution faithful to a
DAG. Then, asymptotically ε contains p.

Proof. In the last iteration of the GESiC algorithm, all the sets of forbidden
parents are empty. In this situation, the behavior of the algorithm would be the
same as the behavior of GES.

3.3 GESiCG

The two last algorithms proposed are denoted as GESCG and GESiCG. The
first one, GESCG, uses both the greedy and the constrained approach, i.e. , it
performs a greedy search over the space of candidate neighbors as GESC does,
but it also uses a list of forbidden parents to constrain the search as GESC does.
A variable X is added to the list of forbidden parents of another variable Y if the
operation Insert(X, Y, ∅) decreases the score of the network. Finally, GESiCG is
the iterated version of GESCG.

Proposition 3. Let ε denote the equivalence class that results at the end of the
first phase of GESiCG and p the generative probability distribution faithful to a
DAG. Then, asymptotically ε contains p.

Proof. In the last iteration of the GESiCG algorithm, all the sets of forbidden
parents are empty. In this situation, the behavior of the algorithm would be the
same as the behavior of GESG.

Corollary 1. Let p the generative probability distribution faithful to a DAG.
The equivalence class that results at the end of GESG, GESiC and GESiCG is
asymptotically a perfect map of p.

4 Experimental Evaluation

In this section we compare GES algorithm against the variants proposed in this
paper.
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Table 1. BNs used in the experiments

# of # of max. max. max. neigbors
Name vars edges parents childrens (CPDAG)

ALARM 37 46 4 5 1
BARLEY 48 84 4 5 3
CHILD 20 25 2 7 2
HAILFINDER 56 66 4 16 17
INSURANCE 27 52 3 7 8
MILDEW 35 46 3 3 0
PIGS 441 592 2 39 0

The algorithms are coded in Java and are based on the open implementation
included in Tetrad 4.3.91. The implementation of the algorithms includes the
optimizations suggested in [3]. However, the maximum number of parents is
not limited. The score metric used in the algorithms is the Bayesian Dirichlet
equivalent in their uniform prior version BDeu [7]. The equivalent sample size
(N ′) used in the experiments is 10 and the network priors are calculated as in
[4] where the kappa parameter is k = 1/(N ′ + 1).

We have selected a subset of the networks available in the Bayesian Network
Repository2. The characteristics of these networks are shown in Table 1. For each
one of the networks we obtained five datasets (each one with 5000 instances) by
sampling from the networks.

4.1 Empirical Results

In order to compare the algorithms described in the previous section, we consid-
ered two kinds of factors as performance indicators: the quality of the network
obtained by the algorithm, given by the value of the score metric (BDeu); and
the complexity of each algorithm, given by the learning time and the number of
computations of the score metric.

Table 2 shows the results regarding the performance of the algorithms. When
the score of the resulting networks is equal than that obtained by GES, it is
marked in bold. Otherwise, we also report the Structural Hamming Distance
(SHD) of such network with respect to the one obtained by GES. The SHD is
defined in CPDAGs and is computed as the number of the following operators
required to make the CPDAGs match: add or delete an undirected edge, and
add, remove, or reverse the orientation of an edge.

The reported results are the average of the results obtained using the five
datasets sampled from each network. In our experiments, we have checked that
when two algorithms had obtained the same result in one of the datasets, they
also had obtained the same result in the other four datasets. For this reason,
we can assume that the differences in the results depend on the structure of the
networks.
1 http://www.phil.cmu.edu/projects/tetrad/
2 http://www.cs.huji.ac.il/labs/compbio/Repository/

http://www.phil.cmu.edu/projects/tetrad/
http://www.cs.huji.ac.il/labs/compbio/Repository/
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Table 2. BDeu score of the networks obtained by the proposed algorithms

Network GES GESG GESC GESiC GESCG GESiCG

ALARM -49535 -49535 -49568 (1.6) -49535 -49568 (1.6) -49535
BARLEY -286062 -286062 -287657 (1.0) -286062 -287657 (1.0) -286062
CHILD -69415 -69415 -69415 -69415 -69415 -69415
HAILFINDER - -253708 - - -253711 -253708
INSURANCE -68580 -68614 (2.4) -68617 (1.0) -68580 -68652 (3.4) -68614 (2.4)
MILDEW -260536 -260536 -260536 -260536 -260536 -260536
PIGS -1684625 -1684625 -1684625 -1684625 -1684625 -1684625

Table 3. Learning time of the proposed algorithms

Relative to GES

Network GES GESG GESC GESiC GESCG GESiCG

ALARM 10.60 0.72 0.48 0.61 0.45 0.53
BARLEY 276.82 0.64 0.53 0.84 0.51 0.73
CHILD 0.10 0.84 0.89 1.25 0.79 1.43
HAILFINDER - ∗43.2 - - ∗29.3 ∗38.4
INSURANCE 6.64 0.67 0.60 0.77 0.47 0.52
MILDEW 209.56 0.20 0.81 0.81 0.08 0.12
PIGS 16762.8 0.61 0.06 0.07 0.06 0.08

Mean 5924.5 0.52 0.48 0.62 0.34 0.49
∗ Absolute results since GES was not able to finish.

Another fact to take into account is that only the algorithms that made a
greedy search over the space of candidate neighbors are able to recover the
HAILFINDER network. This is due to the fact that, when transforming it into
its corresponding CPDAG, one of the variables has 17 neighbors. Hence, the
exhaustive search cannot be carried out, as explained at the end of Section 2.2.

We can reach some important conclusions by taking a simple look to the
performance results. Apart from the issues regarding the HAILFINDER network,
the differences between the GES algorithm and the proposed algorithms are, in
general, minimal. For instance, GESiC obtains the same results as GES and
GESG and GESiCG obtain the same results as GES in 5 networks of a total of
6. From these results we can conclude that our algorithms GESiC , GESG and
GESiCG are comparable to GES in terms of accuracy.

With respect to the complexity of the algorithms, the results are shown in
Table 3 and Table 4. We show the number of score computations obtained on
average for the five datasets and the execution time. The results of our proposed
algorithms are reported relative to the ones obtained by GES. From this last
results, we can conclude that our algorithms perform less computations and are
therefore faster than GES. Thus, GESG only needs to carry out, on average, 52%
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Table 4. Number of score computations performed by the proposed algorithms

Relative to GES

Network GES GESG GESC GESiC GESCG GESiCG

ALARM 5562 0.57 0.56 0.67 0.41 0.52
BARLEY 8757 0.48 0.38 0.49 0.33 0.45
CHILD 407 0.98 0.98 0.98 0.98 0.98
HAILFINDER - ∗5943 - - ∗3889 ∗5718
INSURANCE 3287 0.55 0.52 0.63 0.42 0.53
MILDEW 3561 0.59 0.49 0.65 0.42 0.58
PIGS 549143 0.68 0.41 0.63 0.41 0.63

Mean 81531.2 0.64 0.56 0.68 0.50 0.61
∗ Absolute results since GES was not able to finish.

of the computations required by GES, whereas GESiC needs 62% and GESiCG

only 49%. In terms of time, GESG takes, on average, 64% of the time taken by
GES to learn the networks, whereas GESiC takes 68% of that time and GESiCG

takes only 61% , being the biggest improvements achieved in the most complex
datasets. It is also worth pointing out that, although results obtained by GESC

and GESCG are a bit worse than GES in terms of score, reductions obtained in
terms of number of computations and execution time are very significant.

5 Conclusions

In this paper we have presented three main variants of the original GES algo-
rithm. The first one, GESG, performs a greedy search in the space of candidate
neighbors avoiding the need of carrying out an exhaustive search. The second
one, GESC , and its iterative version, GESiC , are able to reduce the search space
by constraining it during its execution. Finally, GESCG and GESiCG algorithms
take the advantages of both approaches.

Moreover, apart from the definition of the algorithms, we also have proved
that, under the faithfulness assumption, GESG, GESiC and GESiCG are asymp-
totically optimal.

The experimental evaluation of our algorithms has been carried out by mea-
suring the accuracy and the efficiency of the algorithms. In terms of accuracy,
GESG, GESiC and GESiCG are comparable to the results obtained with GES.
However, regarding efficiency, our algorithms are faster and perform less com-
putations of the score metric than GES.

Finally, it is important to remark on the fact that algorithms performing a
greedy search (GESG, GESCG and GESiCG) are able to work with networks that
the other algorithms are unable.
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Abstract. In decision-theoretic troubleshooting [5,2], we try to find
a cost efficient repair strategy for a malfunctioning device described by
a formal model. The need to schedule repair actions under uncertainty
has required the researchers to use an appropriate knowledge represen-
tation formalism, often a probabilistic one.

The troubleshooting problem has received considerable attention over
the past two decades. Efficient solution algorithms have been found for
some variants of the problem, whereas other variants have been proven
NP-hard [5,2,4,17,16].

We show that two troubleshooting scenarios — Troubleshooting with
Postponed System Test [9] and Troubleshooting with Cost Clusters with-
out Inside Information [7] — are NP-hard. Also, we define a troubleshoot-
ing scenario with precedence restrictions on the repair actions. We show
that it is NP-hard in general, but polynomial under some restrictions
placed on the structure of the precedence relation. In the proofs, we use
results originally achieved in the field of Scheduling. Such a connection
has not been made in the Troubleshooting literature so far.

Keywords: Computational Complexity, Dynamic Programming,
Decision-Theoretic Troubleshooting, Scheduling.

1 Introduction

Suppose a man-made device failed to work – the exact cause of the failure is un-
known, and the possible steps to fix it are costly and not 100% reliable. Any
attempt to resolve the problem may fail, but the incurred cost has to be paid
in any case. Solving problems such as this one has lead to development of the field
of decision-theoretic troubleshooting [5,2]. The need to decide under uncertainty
has necessitated the use of an appropriate formalism. Bayesian networks have
been adopted for their clear semantics and computational tractability. The trou-
bleshooting problem is known to be polynomial in few special cases and NP-hard
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in others [5,2,4,17,16]. Decision-theoretic troubleshooting has been successfully
applied in the area of printer diagnosis and maintenance [2,13].

In this paper, we build on earlier work published in [4,7,9] and provide new
results on computational complexity of the problems studied in the cited pa-
pers. In the first part – Section 2 – we give an overview of the troubleshooting
scenarios studied in earlier literature. Specifically, Section 2.1 describes a very
basic troubleshooting scenario taken from [5,2,4]. In the same Section, we define
a novel scenario by adding a precedence relation on the troubleshooting actions.
In Section 2.2, we review a generalization of basic troubleshooting — Trou-
bleshooting with Postponed System Test – studied recently in [9], and describe
a novel Dynamic Programming solution. In Section 2.3 we introduce a more gen-
eral scenario of Troubleshooting with Cost Clusters without Inside Information,
originally defined in paper [7].

The main results of the paper are found in Section 3. In Section 3.2, we show
that troubleshooting with a postponed system test is NP-hard. As a corollary,
troubleshooting with cost clusters without inside information is shown to be
NP-hard in the same Section. In Section 3.3, we turn to troubleshooting with
precedence constraints and show that it is NP-hard, but solvable in polynomial
time when the precedence relation has a structure of series parallel directed graph
[6,15]. In the NP-hardness proofs, we use results achieved originally in the field
of Scheduling. We consider this to be one of the contributions of the paper,
since such a connection has not been made in the Troubleshooting literature so
far. In Section 4, we sum up the results and conclude the paper by suggesting
directions for future research.

2 Troubleshooting Scenarios

Before proceeding with the formal definitions, we will illustrate the troubleshoot-
ing scenarios on a simple example inspired by [7,17].

Imagine you are printing a report but the colors come out very light. You have
several options to choose from: restart the printer, change the print settings, re-
seat the toner cartridge or get a new cartridge altogether. These actions differ
both in their difficulty and in the likelihood of fixing the print problem. You
need to decide how to sequence the available repair actions so that the “expected
difficulty level” of the repair is as low as possible. This kind of problem is solved
in the basic troubleshooting scenario, described in Section 2.1.

Continuing with our print example, imagine that the printing itself is very
expensive – you have to think twice before performing a test print to check that
the repair actions have actually helped. Troubleshooting problems such as this
one are defined in Section 2.2.

To make the example yet more complicated, assume that you are troubleshoot-
ing a complex industrial printer and some of the repair actions are only available
after disassembling parts of the machine – and different actions may require dif-
ferent parts to be disassembled. To perform a test print, the machine has to be
reassembled. Section 2.3 covers problems of this kind.
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2.1 Basic Troubleshooting

The Basic Troubleshooting problem is given by

– a set F = {F1, . . . , Fm} of possible faults,
– a set A = {A1, . . . , An}, n ≥ m, of available repair steps,
– a probabilistic model P (F ∪A) describing interactions between the elements

of A and F .

Each action Ai bears a constant cost c(Ai) and can either fail (Ai = 0) or fix
the fault (Ai = 1). The following assumptions are made:

– There is exactly one fault present in the modeled system.
– Each action addresses exactly one fault.
– The model P (F∪A) satisfies conditional independence assumptions encoded

by the Bayesian network shown in Figure 1. Specifically, the actions are
conditionally independent given the faults.

F1 F2 Fm

A1 A2 An

F

Fig. 1. Bayesian network encoding conditional independence of actions given faults.
F is the fault variable with possible values f1, . . . , fm. Variables F1, . . . , Fm are Boolean
indicators with P (Fi = 1|F = fi) = 1. Variables A1, . . . , An are also Boolean. Each Aj

has exactly one parent in the graph.

We assume that no new faults are introduced during the troubleshooting session,
and the result of any action stays the same during a session. These two last
assumptions are only implicit in most of the papers on troubleshooting. They
are explicitly stated only in more recent papers, such as [9].

Let π = {π(1), . . . , π(n)} denote a permutation of indices 1, . . . , n; then
the troubleshooting strategy is a sequence Aπ(1), . . . , Aπ(n) of actions performed
until the fault is fixed or all actions are exhausted. Thus, the action Aπ(i)

will be performed only if all the preceding actions fail, that is, Aj = 0 for
j = π(1), . . . , π(i − 1). To solve the troubleshooting problem, we have to find
a repair strategy with the lowest Expected Cost of Repair:

ECR(Aπ(1), · · · , Aπ(n)) =
n∑

i=1

c(Aπ(i)) · P
(∧

j<i

{Aπ(j) = 0}
)
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The following proposition describes an easy method of finding the optimal trou-
bleshooting sequence and computing its ECR.

Proposition 1 (Jensen et al., 2001 [4]). Under the assumptions of

– single fault,
– each action addressing exactly one fault,
– conditional independence of actions given the faults,

the optimal troubleshooting sequence is found in O(n · log n) time by ordering
the actions so that ratio values P (Aj = 1)/c(Aj) are decreasing where

P (Aj = 1) =
∑

i

P (Aj = 1|F = fi) · P (F = fi).

Further, the ECR can be computed as

ECR(Aπ(1), · · · , Aπ(n)) =
n∑

i=1

c(Aπ(i)) ·
(
1−
∑
j<i

P (Aπ(j) = 1)
)
.

Proof. See Proposition 1, Proposition 2 and Theorem 1 in [4]. The O(n · log n)
time requirement is given by the complexity of sorting (see, e.g., [11]). ��

The assumptions of Proposition 1 are quite restrictive; however, weakening them
often yields an NP-hard scenario as shown in papers [17,16].

The single fault assumption is relaxed in paper [14], where multiple faults
are considered. However, it is assumed that the faults as well as actions are
independent. The optimal sequence is found by ordering the actions so that the
ratio values

P (Aj = 1)
c(Aj) · (1 − P (Aj = 1))

are decreasing.

Troubleshooting with Precedence Constraints. In some applications, there
may be restrictions imposed on the order of troubleshooting actions – some
of the actions become available only after performing some other actions. A re-
striction on the order of actions does not typically correspond to the probabilistic
dependence of actions. For an example of such an application, see Section 4.1 in
paper [4].

Formally, we assume that there is a precedence relation described by an acyclic
directed graph G with vertices labeled by the actions from A. A troubleshooting
sequence Aπ(1), · · · , Aπ(n) is valid only if Aπ(j) is not a predecessor of Aπ(i)

in G for all i < j. We will show in Section 3.3 that Basic Troubleshooting with
Precedence Constraints is NP-hard for a general acyclic directed graph G, but
is solvable in polynomial time for a wide class of series parallel graphs.
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2.2 Troubleshooting with Postponed System Test

Following [9], we add the assumption that, after performing a troubleshoot-
ing action, we do not know whether the action has solved the problem. We
have to perform a system test, requiring additional cost cD, to find out whether
the problem has been fixed. The need to schedule system tests complicates con-
struction of the optimal sequence – when the system test is postponed too much,
we risk performing needless repair actions; when we perform the test too early
to check the system state, we risk missing a necessary repair action.

To solve the troubleshooting problem, we construct an ordered partition A1,
. . . ,Ak of the set A.1 Actions of the sets A1,A2, . . . are performed sequentially.
After performing all the actions of the set Aj (j = 1, 2, . . .), we perform the sys-
tem test to check whether the actions contained in Aj have fixed the problem.
The cost of Aj including the system test is

c(Aj) = cD +
∑

A∈Aj

c(A).

We seek an ordered partition minimimizing the ECR:

ECR(A1, . . . ,Ak) =
k∑

i=1

c(Ai) · P
( ∧
j<i,A∈Aj

{A = 0}
)
. (1)

We shall write P (Aj = 1) as an abbreviation for P
(∨

A∈Aj
{A = 1}

)
. The fol-

lowing proposition simplifies computation of the ECR.

Proposition 2 (Ottosen and Jensen, 2010 [4]). Under the assumptions of
Proposition 1, the ECR can be computed as

ECR(A1, . . . ,Ak) =
k∑

i=1

c(Ai) ·
(
1−
∑
j<i

P (Aj = 1)
)
,

where P (Aj = 1) =
∑

A∈Aj
P (A = 1).

Dynamic Programming. In [9], the authors give Θ(n3) heuristics for Trou-
bleshooting with Postponed System Test and an Θ(n3 · n!) exhaustive search
algorithm. In this paragraph, we will show that by using Dynamic Program-
ming, the time requirements of the exhaustive search can be traded for memory
requirements.2 We will use a recursive version of the definition of ECR, equiv-
alent to the one given by Equation 1.

Definition 1 (Conditional ECR). Let A be the set of available atomic actions
and let A1, . . . ,Ak be an ordered partition of A. For 1 ≤ i ≤ k, denote

εi =
∨

j≤i,A∈Aj

{A = 0},

1 That is, A =
⋃k

j=1 Aj , and ∀i�=jAi ∩ Ai = ∅.
2 Dynamic Programming has already been used for troubleshooting in [17].
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and put ε0 = ∅. For 1 ≤ i ≤ k, define Conditional Expected Cost of Repair as

ECR(Ai, ...,Ak|εi−1) = c(Ai) + P (Ai = 0|εi−1) ·ECR(Ai+1, ...,Ak|εi).

and put ECR(∅|εk) = 0.

Proposition 3 (Bellman Principle). Ordered partition A1, . . . ,Ak is optimal
if and only if each subsequence Ai, . . . ,Ak, 1 ≤ i ≤ k, is optimal with respect
to εi−1, i.e., there is no other ordered partition s defined on ∪k

j=iAj such that

ECR(s|εi−1) < ECR(Ai, . . . ,Ak|εi−1).

However trivial, we include proof of the “if” direction.

Proof. Assume that A1, . . . ,Ak has a subsequence Ai, . . . ,Ak which is not opti-
mal with respect to εi−1. In that case there exists another sequence s, defined on⋃k

j=i Aj , optimal with respect to εi−1. Concatenated sequence A1, . . . ,Ai−1, s
has lower ECR than the original ordered partition. ��
The Dynamic Programming algorithm works in a bottom-up fashion, construct-
ing candidate ordered partitions from the last subset. In each round, candi-
date subsequences that are not conditionally optimal are pruned. Correctness
of the Dynamic Programming algorithm follows from Proposition 3. At the i-th
round of the algorithm, 2n−i+1 candidates are generated, the time requirements
are therefore Θ(2n + 2n−1 + 2n−2 + . . .) = Θ(2n+1). The space requirements are
dominated by the requirements of the first round, that is Θ(2n).

2.3 Troubleshooting with Cost Clusters without Inside Information

The problem of Troubleshooting with Postponed System Test is a special case
of Troubleshooting with Cost Clusters without Inside Information [7]. In the latter
scenario, we assume the set A of atomic actions is partitioned into a family
of ‘cost clusters’ {Cl}. To access an action within the cost cluster, additional cost
has to be paid for ‘opening’ the cluster. After opening the cluster, say C1, all
the actions A ∈ C1 are available and actions from other clusters are not available.
To access an action in a different cluster, C1 has to be closed and its actions are
not available anymore. Furthermore, it is assumed that when any cluster is open,
information about the system state is not available – the cluster has to be closed
to see whether the actions taken have fixed the fault.

Solving the troubleshooting problem requires construction of an ordered parti-
tion A1, . . . ,Ak of A, where each Aj is a subset of some C ∈ {Cl}. For Aj ⊆ Cl,
denote by cC(Aj) the cost of opening the cluster Cl. The cost of Aj including
the cluster cost is

c(Aj) = cC(Aj) +
∑

A∈Aj

c(A).

The ECR of troubleshooting sequence is computed as in Proposition 2.
The authors of [7] provide a heuristic algorithm for finding a suboptimal trou-

bleshooting sequence. A related scenario, solvable in polynomial time, is studied
in [8].
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3 Complexity Results

We shall prove NP-hardness of the troubleshooting scenarios introduced in Sec-
tion 2 by reducing suitable scheduling problems3. Moreover, we will see that
the scheduling problems are equivalent to the troubleshooting scenarios in the
sense that the polynomial-time reductions work both ways. Therefore, algorithms
developed for the scheduling problems can be used for the troubleshooting prob-
lems without a loss of efficiency.

3.1 Reduction

We will use variants of Single Machine Scheduling with Weighted Completion
Time. The problem is formulated as follows. There are n jobs Ji to be processed
on a single machine. Each job is given with a processing time pi > 0 and weight
wi ≥ 0. We assume that processing starts at time 0 and there is no idle time
between consecutive jobs. Since the processing times pi are known and fixed,
the completion time Ci of each job Ji is well determined for any given job
sequence. The objective is to find a feasible sequence minimizing the weighted
completion time

∑
i wi · Ci.

Single Machine Scheduling with Weighted Completion Time can easily be re-
duced to Basic Troubleshooting. Identify jobs Ji with actions Ai and put

– pi −→ c(Ai),
– wi/

∑
i wi −→ P (Ai = 1).

The scheduling objective function can be written
n∑

i=1

wi · Ci =
n∑

i=1

wi ·
∑
j≤i

pi

=
n∑

i=1

pi ·
∑
j≥i

wj . (2)

Consider the troubleshooting problem. Assuming P
(
∨A∈A {A = 1}

)
= 1 under

the conditions of Proposition 1, we use Proposition 1 and rewrite the definition
of ECR:

ECR(A1, . . . , An) =
n∑

i=1

c(Ai) ·
(
1−
∑
j<i

P (Aj = 1)
)

=
n∑

i=1

c(Ai) ·
∑
j≥i

P (Aj = 1). (3)

It is clear that Equation 3 is minimized whenever Equation 2 is minimized. ��
In analogy to Proposition 1, the Single Machine Scheduling with Weighted

Completion Time problem can be solved by sequencing the jobs in non-increasing
order of the ratios wi/pi. This result can be traced back to a 1950’s paper by
Smith [12].
3 See [3] for an overview of the field.
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3.2 Troubleshooting with Cost Clusters without Inside Information

We reduce Single machine s-batching with weighted completion time [1,3]. As
above, there are n jobs given with processing time pi and weight wi. The jobs
are scheduled in batches on a single machine. A batch is a set of jobs which are
processed jointly. Processing time of a batch equals the sum of processing times
of its jobs plus a batch setup time s. Completion time Ci of a job coincides with
the completion time of the last scheduled job in its batch (completion times
of all jobs in a batch are therefore equal). The task is to find a sequence of jobs
and partition it into batches such that we minimize

∑n
i=1 wi · Ci. We sum up

properties of the batching problem in a proposition.

Proposition 4 (Albers and Brucker, 1993 [1]). Single machine s-batching
with weighted completion time is NP-hard. Given a fixed sequence of jobs, the split
into batches can be done in O(n) time. When wi = 1 or pi = p for all i, the prob-
lem becomes solvable in O(n log n) time.

Proposition 5. Troubleshooting with Postponed System Test is NP-hard, even
under the assumptions of Proposition 1.

Proof. We will use a description of solutions of the batching problem taken
from [3]. Consider a fixed but arbitrary job sequence J1, . . . , Jn. Denote the batch
setups by S. Then the solution takes on the form

S, Jλ(1), . . . Jλ(2)−1, S, Jλ(2), . . . , Jλ(k)−1, S, Jλ(k), . . . , Jn

where k is the number of batches, λ(j) is the starting index of the j-th batch,
and

1 = λ(1) < λ(2) < . . . < λ(k) ≤ n

The processing time of the j-th batch is

Pj = s +
λ(j+1)−1∑

�=λ(j)

p�.

The objective function can now be written as

n∑
i=1

wi · Ci =
k∑

j=1

Pj ·
n∑

�=λ(j)

w� (4)

We proceed with the reduction as in the beginning of Section 3.1. Using Propo-
sition 2 and assuming P

(∨
A∈A{A = 1}

)
= 1, we rewrite

ECR(A1, . . . ,Ak) =
k∑

j=1

c(Ai) ·
∑
�≥i

P (A� = 1). (5)

The correspondence of Equations 5 and 4 is obvious. ��
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We can also easily perform the reduction in the opposite direction. Therefore,
Proposition 4 applies to Troubleshooting with Postponed System Test (under
the assumptions of single fault, and actions conditionally independent given
faults). In particular, the O(n) bound on partitioning a fixed sequence of actions
is an improvement over Θ(n3) given in [9].

Corollary 1 (of Proposition 5). Troubleshooting with Cost Clusters without
Inside Information is NP-hard, even under the assumptions of Proposition 1.

Proof. Consider a troubleshooting problem where all the actions belong to a sin-
gle cost cluster C1 with the cost of opening C1 being cD. This problem is equiv-
alent to Troubleshooting with Postponed System Test. ��

Remark 1. The decision variants of all the troubleshooting scenarios studied in
this paper clearly belong to NP – a nondeterministic procedure can guess a
troubleshooting sequence and then check in polynomial time whether the ECR
is lower than a predefined constant. Therefore, by Proposition 5 and Corollar-
ies 1 and 2, the decision variants of the respective troubleshooting scenarios are
NP-complete.

3.3 Troubleshooting with Precedence Constraints

We now introduce Single Machine Scheduling with Weighted Completion Time
and Precedence Constraints [6]. The problem is the same as Single Machine
Scheduling with Weighted Completion Time, with an additional requirement that
the sequencing of the jobs has to be consistent with precedence constraints im-
posed by a given acyclic directed graph G = (V, E). Each vertex i ∈ V is
identified with a job. Job Ji is to precede job Jj if there is a directed path from
i to j in G.

Proposition 6 (Lawler, 1978 [6]). Single Machine Scheduling with Weighted
Completion Time and Precedence Constraints is NP-complete, even if all wi = 1
or all pi = 1.

Corollary 2. Basic Troubleshooting with Precedence Constraints is NP-hard,
even under the assumptions of Proposition 1.

Proof. Use the reduction from Section 3.1. ��

Next, we define a class of series parallel directed graphs for which Single Machine
Scheduling with Weighted Completion Time and Precedence Constraints is known
to be polynomial. This class subsumes chains and rooted trees. As such, it is quite
useful for applications.

Definition 2 (MSP – Minimal Series Parallel Graph, [15]). The graph
consisting of a single vertex and no edges is MSP.

If directed graphs G1 = (V1, E1) and G2 = (V2, E2) are MSPs, so is either of
the directed graphs constructed by the following operations:
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– Parallel composition: G = (V1 ∪ V2, E1 ∪ E2).
– Series composition: G = (V1 ∪ V2, E1 ∪ E2 ∪ N1 × R2). Here N1 is the set

of sinks of G1 (i.e., vertices without successors), and R2 is the set of sources
of G2 (i.e., vertices without predecessors).

Recall the concept of transitive closure – given a directed graph G = (V, E),
its transitive closure GT = (V, ET ) is obtained by adding a directed edge (u, v)
for all u and v such that there is a path from u to v in G and (u, v) /∈ E.
A transitive reduction of G = (V, E) is a minimal graph GR defined on V such
that the transitive closures of G and GR are the same.

Definition 3 (GSP – General Series Parallel Graph, [15]). A directed
graph is GSP if its transitive reduction is an MSP.

Proposition 7 (Lawler, 1978 [6]). Single Machine Scheduling with Weighted
Completion Time and Precedence Constraints is solvable in O(n · log n) time
when the precedence graph G is a GSP.

Reversing the reduction, we get the following easy consequence.

Corollary 3. Basic Troubleshooting with Precedence Constraints is solvable in
O(n · log n) time under the following conditions:

– all the assumptions of Proposition 1 are satisfied,
– P

(
∨A∈A {A = 1}

)
= 1,

– the precedence graph is a GSP.

4 Conclusions and Future Research

We have established a link to the well developed field of Scheduling, open-
ing the possibility of applying results of decades of research in Scheduling to
Troubleshooting. We have reduced scheduling problems to derive proofs of NP-
hardness for three troubleshooting scenarios. The scenario of Basic Troubleshoot-
ing with Precedence Constraints is novel. We believe this scenario is useful in
practice. Moreover, it is polynomial for a wide class of graphs encoding the
precedence relation.

An interesting problem for future research is that of approximability [10]
of troubleshooting problems: for some special cases there might exist approx-
imation algorithms with performance guarantees, whereas for others, finding
such an approximation would amount to proving P = NP.

Since most realistic troubleshooting scenarios are NP-hard, it is worthwhile
to study heuristic solution algorithms [17,7,9] and identify worst-case conditions,
under which they perform badly. To benchmark the heuristic algorithms, we can
use Dynamic Programming introduced in Section 2.2.

Acknowledgments. I would like to thank Thorsten J. Ottosen and Jǐŕı Vomlel
for valuable discussions over the subject matter of the paper. I also thank the
anonymous reviewers for their comments.
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Abstract. The marginal likelihood of the data computed using Bayesian
score metrics is at the core of score+search methods when learning
Bayesian networks from data. However, common formulations of those
Bayesian score metrics depend of free parameters which are hard to asses.
Recent theoretical and experimental works have also shown as the com-
monly employed BDeu score metric is strongly biased by the particular
assignments of its free parameter known as the equivalent sample size
and, also, as an optimal selection of this parameter depends of the un-
derlying distribution. This sensibility causes that wrong choices of this
parameter lead to inferred models which do not properly represent the
distribution generating the data even with large sample sizes. To over-
come this issue we introduce here an approach which tries to marginalize
this free parameter with a simple averaging method. As experimentally
shown, this approach robustly performs as well as an optimum selection
of this parameter while it prevents from the choice of wrong settings for
this widely applied Bayesian score metric.

1 Introduction

The so-called Bayesian scoring metrics are based on the computation of the
marginal likelihood of the data given the graph structure of a Bayesian net-
work (BN) [6]. They are one of the most used scoring functions when learning
BNs from data [2,4]. To compute this marginal likelihood for multinomial data,
it is assumed a Dirichlet prior over the parameters of the BN. In the case of
the widely applied BDeu metric [4], these Dirichlet priors depends of a meta-
parameter known as the equivalent sample size (ESS). Roughly speaking, this
meta-parameter captures the strength of our prior belief in the uniformity of the
distribution of the parameters of the network.

In an empirical evaluation on 20 UCI data sets, a recent work [8] has shown
that the chosen ESS value of the BDeu score strongly affects the selection of the
maximum a posteriori (MAP) model . They found as high (low) ESS values used
to retrieve very dense(sparse) BN models (in some data sets, the number of edges
monotonically increased from an empty network to a fully connected BN model).
This same sensitivity was also found in simple independence assessments between
two binary variables [5,1]. These works showed as Type I and Type II errors of
the hypothesis tests made by Bayesian metrics are affected when changing the
value of the ESS.

W. Liu (Ed.): ECSQARU 2011, LNAI 6717, pp. 217–228, 2011.
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This sensitivity of the BDeu metric to the ESS has been theoretically an-
alyzed for very large or very small values of this parameter in several works
[10,9,11]. They found that BDeu score has an intrinsic tendency to favor ei-
ther the presence or the absence of an edge between two variables depending
of the particular ESS value. Even more, for large ESS values, this tendency
was found to be independent of the particular probabilistic dependency between
the variables. Specifically, Steck [9] showed as BDeu can predict dependency
among two independent random variables if they have very skewed marginals.
A major consequence of this sensitivity of Bayesian scores is that if they are
employed in knowledge discovery tasks, they can provide very little reliable
inferences. Let us imagine which is the confident in the inferred knowledge
if we find that the different conditional independencies which are discovered
in the data strongly depends of a free parameter which, although it is sup-
posed to represent our prior beliefs, is extremely complex to assess in practical
settings.

A possible solution, firstly suggested in [8], for the sensitivity of BDeu metric
to this parameter is to use a Bayesian approach: assume a prior distribution on
the ESS parameter and to marginalize it out in the score value. As no closed
form solution is known to compute the integral required to perform the marginal-
ization, a uniform over the ESS parameter was assumed and the integral was
approximated by a simple averaging operation. However, in that work, there was
not given any evidence about if this integrating approach retrieve an optimal ap-
proximation either in terms of prediction capacity of unseen data or in terms
of correct inference of the underlying structure generating the data. The only
showed as this integration approach retrieves the same BN model than the one
inferred using some single ESS values.

This paper is devoted to analyze the performance of these score metrics in
which the ESS parameter is marginalized. We justify that the averaging ap-
proach pursed in [8] is not an optimal strategy to eliminate the effect of this
parameter in Bayesian metrics. In that way, we introduce a novel approach to
marginalize this free parameter which is more powerful and, in consequence,
able to make better inferences when the parameter space of the model gen-
erating the data is quite complex. In a experimental evaluation, we show as
this strategy is quite robust and able to remove the sensitivity of this Bayesian
metric to this free parameter. In that way, this approach prevents
the elicitation of spurious conditional independencies relationships due to wrong
assessments of the ESS and can help to make the score+search methods for learn-
ing BN from data more robust and usable approaches for knowledge discovery
tasks.

The paper is organized as follows. In Section 2 we introduce the formulation of
a Bayesian score metric to learn the graph structure from a data set. In Section
3 it is motivated and detailed our new proposal of locally averaged Bayesian
metrics. The experimental evaluation of these proposals is depicted in Section
4. And finally, Section 5 contains the main conclusions and future works.
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2 Bayesian Score Metrics

Let us assume we are given a vector of n random variables X = (X1, ..., Xn)
each of which taking values in some finite domain V al(Xi). A BN is defined by a
directed acyclic graph, denote as G, which represents the dependency structure
among the variables in the BN. More precisely, this graph G is specified by
means of a vector with the parents sets, Πi ⊂ X (those variables with an edge
pointing to Xi), of each variable: G = (Π1, ..., Πn). The definition of a BN
model is complete with a numerical vector, denoted as Φ, which contains the
parameters of the conditional probability distributions encoded in this graph G:
φij is a vector of length |V al(Xi)| (| · | is the cardinality operator) associated to
the conditional multinomial distribution of P (Xi|Πi = j), where Πi = j denotes
the jth value combination of the variables in Πi. We also denote as |V al(Πi)| to
the number of all these possible combinations.

Let us also assume we are given a fully observed multinomial data set D. To
compute the marginal likelihood of the data given the graph structure, P (D|G) =∫

P (D|G, Φ)P (Φ|G)dΦ, the most common settings [4] defines a prior Dirichlet
distribution for each parameter φij with parameter vector α, φij ∼ Dir(α). They
also assume a set of parameter independence assumptions in order to factorize
the joint probabilities and make feasible the computation of the multidimensional
integral.

In that way, the marginal likelihood of data given a graph structure and
a vector of Dirichlet parameters, α, has the following well-known close-form
equation:

P (D|G) =
n∏
i

|V al(Πi)|∏
j=1

Γ (αij)
Γ (αij + Nij)

|V al(Xi)|∏
k=1

Γ (αijk + Nijk)
Γ (αijk)

(1)

where Nijk are the number of data instances in D consistent with j-th assignment
of Πi and Xi = k, while Nij =

∑
k Nijk and αij =

∑
k αijk . In the case of

the Bayesian Dirichlet equivalent metric or BDeu metric these αijk are set to
αijk = S

|V al(Πi)||V al(Xi)| , where S is the aforementioned equivalent sample size.
The relevancy of these settings relies on the following property of this Bayesian
metric known as likelihood equivalence: if two different BN models encode the
same conditional independencies, the score metric assigns them the same score
value.

Finally, with the definition of a modular prior distribution for the graph struc-
tures, P (G) =

∏
i P (Πi), we fully specify the Bayesian score metric of a graph

as a product of local score functions as follows:

P (G|D) ∝
∏

i

score(Xi, Πi|D) (2)

where score(Xi, Πi|D) accounts for the product of the prior P (G) and the
marginal likelihood, Equation (1), corresponding to the variable Xi (usually
the logarithm of this value is computed). This formulation satisfies the local de-
composition property which is very useful in the score+search learning methods
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[4] because local changes (i.e. adding/removing an edge) can be evaluated just
recomputing the local score, score(Xi, Πi|D), of the involved variables.

In order to account for the problem of “multiplicity correction” [7] (i.e. if the
number of candidate parents for a variable Xi grows, the probability of edge
inclusion should be decreased in order to control the number of false positive
edges) we employ the following prior distribution P (Πi) ∝

(
i

|Πi|
)−1

.

3 Averaged Bayesian Dirichlet Metrics

3.1 Motivation

As previously detailed, BDeu metric assumes a Dirichlet priors where the αijk

values are made exponentially small either with the size of the parent set or with
the cardinality of the involved variables. When small αijk values are used, it is
assumed that φij will be located in the borders of the |V al(Xi)|-simplex. That
is to say, the vector φij will contain very asymmetrical or extreme probabilities.
The problem is that the smaller the αijk values, the stronger this prior belief.
Then, if S is not very high and we are dealing with random variables with a
high number of values or a high number of parents, it will be implicitly assumed
that the conditional probability distributions for this variable are very skewed.
But if this is not the case, the BDeu metric will not support these probabilistic
relationships and will over-regularize the model leaving many edges unrecovered,
as it has been theoretically and experimentally shown [10,9].

In those cases it could be worth to choose higher S values in order to avoid that
problem, but we also have to be very careful because high S values can make
BDeu metric to recover spurious edges between unconditionally independent
variables if they have very skewed marginal distributions, as pointed out in [9].
The following example illustrates this trade-off and shows as the selection of an
optimal S is unpractical in many learning situations.

Example 1. Let us assume we have a BN model with three multinomial variables:
X (ternary); Y (binary) and Z (binary); only one edge, Z → X ; and the following
(un)conditional probabilities: P (Z = 0) = 0.95, P (Y = 0) = 0.95, P (X |Z =
0) = (0.4, 0.4, 0.2) and P (X |Z = 1) = (0.2, 0.4, 0.4). As can be seen, the marginal
distributions of Z and Y are very skewed while the conditional P (X |Z) are close
to the uniform distribution. We then generate by means of logic sampling one
thousands data samples from this BN model and we evaluate what the BDeu
metric says about the presence/absence of the edges Z → X and Z → Y using
different S values. For that purpose, we just compare the scores of the models
with and without any of these two edges and we select the model with the highest
score. The results are shown in Table 1.

As can be seen, only for three S values (7, 8 and 9) BDeu metric induces
the correct BN. If lower S values are chosen, then the edge Z → X is not
selected: the prior belief implied by a Dirichlet distribution with small alpha
values is contradictory with the empirical conditional distributions which are
close to the uniform. Only when S is higher and, then, the α values are close to
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Table 1.

S Z → X Z → Y

...
1.0 non-selected non-selected
2.0 non-selected non-selected
3.0 non-selected non-selected

...
7.0 selected non-selected
8.0 selected non-selected
9.0 selected non-selected
10.0 selected selected

...

1 (αijk = 7
2·3 ) and matches with the empirical conditional distribution, the BDeu

metric recovers the edge Z → X . However if the S value is too high (S ≥ 10),
BDeu metric incorrectly infers the edge Z → Y , as theoretically analyzed in [9].

3.2 Locally and Globally Averaged Bayesian Dirichlet Metrics

As commented in the introduction, the marginalization of the equivalent sam-
ple size parameter was firstly studied in [8] as a Bayesian solution to alleviate
the sensibility of the BDeu metric to this parameter and to prevent from wrong
assignments which leads to erroneous inferences of conditional independencies
relationships. In that way, we will not be forced to choose a particular prior
distribution saying if the parameters are uniform (αijk > 1), strongly uniform
(αijk >> 1), skewed (αijk < 1) or strongly skewed (αijk << 1). More precisely,
they pursued what we call here a global marginalization approach, as the opera-
tion is carried on the whole graph: P (D|G) =

∫
P (D|G, s)P (s|G)ds. Although it

maintains the likelihood equivalence property, one of problems of this approach
is the loss of the local decomposability property (it can not be computed as a
product of independent terms as in Equation (2)) which makes its employment
in score+search methods much more involved. For example, in the BN model of
Example 1 the evaluation of the addition of the edge Z → X (i.e. an increment
in the score of the model) may be affected by the presence/absence of the edge
Z → Y (in opposite with locally decomposable scores).

But, under our point of view, the main problem of this approach is the par-
ticular assumptions we make about the distributions of the parameters of the
model. In this case we are assuming that all the parameter vectors, φij , are
drawn from a common Dirichlet distribution with the same parameter S. This
implies that if S is chosen to be very high (low), we will be assuming that all
the parameters are strongly uniform (skewed). We found that this assumption
do not properly represents the wide variety of parameter configurations that
can be found at the same time in a real model (BN models where some of the
parameters are very close to the uniform distribution and others very skewed).

In order to alleviate the previous problems of the assumption of a global
distribution which generates the different parameter vectors, we introduce a
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local marginalization method which assumes that each parameter vector φij is
drawn from a different Dirichlet distribution with a different parameter S which
is independent of the others. The immediate consequence of this assumption
is that the marginalized score of a graph can be expressed as a product of
local scores where the marginalization of parameter S is locally carried out:
P (D|G) =

∏
i

∏
j

∫
score(X, Πi = j|D, s)P (s|Πi = j)ds.

The main advantage of this local approach is that we do not need to assume
the same prior for all the parameters of the BN as in the global counterpart.
This will allow us to model much more complex parameters distributions which
are often present in many real models. As we will see in the experimental sec-
tion, this means that with this much more flexible assumptions we can recover
more complex models than with the global approach. In addition to this, these
assumptions generate a Bayesian metric which is locally decomposable although
it loses the likelihood equivalence property. However, under out point of view,
although this is a very well established and desirable property, it is accompa-
nied by very hard assumptions about the distribution of the parameters of the
model that, in many real problems, are far from reality and generates unstable
inferences as shown in Example 1.

In any case, to implement any of the marginalization approaches we need to
compute the respective integrals. Firstly, as pointed out in [8], it is not clear
which kind of prior depending of the graph structures could be chosen in both
cases, P (S|G) and P (S|Πi = j); and, secondly, even choosing a uniform prior
for S, no closed-form solution is known to compute the integration and the
application of a numerical integration technique could be too costly to be used
by score+search methods. Similarly to [8], we took an straightforward approach:
to assume a simple prior and to approximate the integration by an averaging on
a finite set of S values, denoted as SL. As we will see in the experimental section,
this simple approach is quite robust and retrieves results which are always as
good, and sometimes better, as an optimally chosen S value and it only adds
a constant term (i.e., |SL|) to the time complexity of the scores (the sufficient
statistics Nijk only have to be computed once).

To select a finite set of S values to perform this averaging, we decided to
choose values higher and lower than 1, because in that ways we average using
a wide range of different priors: uniform (S > 1), strongly uniform (S >> 1),
skewed (S < 1) or strongly skewed (S << 1). More precisely, we chose different
power of two values: SL = {2−L, 2−L+1, ..., 2L−1, 2L}. So, the locally averaged
Bayesian metric is computed as follows:

score(Xi, Πi|D) =
|V al(Πi)|∏

j=1

∑
s∈SL

Γ (αij)
Γ (αs

ij + Nij)

|V al(Xi)|∏
k=1

Γ (αs
ijk + Nijk)
Γ (αs

ijk)
(3)

The next example tries to shed light on the differences between the local and
the global approach.

Example 2. If we take the data set generated in Example 1 and we employ
the locally and the globally averaged Bayesian metrics using different sets SL
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Fig. 1. Number of errors and KL distance of BDeu metric with different S values

(L = 1, ..., 10) in order to select the BN model with the highest score, we will
find the following results: the global approach always selects the empty network;
while the local method selects the right model when L > 5.

As we saw in Example 1, when the prior is far from the real parameters, the
BDeu metric fails to recover the right model. The local averaging avoids this
problem because it evaluates the presence/absence of the edges averaging over
very different priors: from strongly skewed to strongly uniform distributions. But
when this averaging is not made locally but globally it does not work in this case.
The reason is that in the global approach we jointly evaluate two very different
parameter sets: one very uniform, P (X |Z), and other very skewed, P (Z) and
P (Y ), with the same prior (either assuming uniformity or assuming skewness).
As can be seen, the locally averaged metric is able to adapt to more complex
situations than the globally averaged version.

4 Experiments

4.1 Experimental Settings

We evaluate the locally and globally averaged Bayesian metrics in artificially
generated data sets from 5 standard BNs (Alarm, boblo, boerlage92,hailfinder
and insurance). We do not employ other kind of data sets, as in [8], because, in
that way, we know the true model generating the data and we can measure how
well the different metrics are able to recover the true model. More precisely, we
assume that we are given the topological order of the variables in the BN which
generates the data set and we employ the different Bayesian metrics to learn the
set of parents of each variable by means of a simple greedy search procedure: it
starts with an empty set of parents; at each step, given a set of parents Πi, it
computes all the scores {score(Xi, Πi ∪ {Y }|D) | Y ∈ Pred(Xi) − Πi} (scores
adding links) and {score(Xi, Πi − {Y }|D) | Y ∈ Πi} (scores of deleting links)
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Fig. 2. Number of missing and extra links of BDeu metric with different S values

where Pred(Xi) is the set of variables preceding Xi in the given topological order;
and, finally, it updates the set of parents to the one with highest score between
these two sets of scores and repeats the process until no improvement is found.
In the case of the locally averaged metric, the computation of these scores is
straightforward as it is a locally decomposable metric. For the globally averaged
metric, we also applied the same search procedure. But now the independence
among the parent sets of the variables does not held because the metric is not
locally decomposable. To deal with this problem we keep in memory all the
scores that are being averaged, which are each of them decomposable. So, in
each step we make a local computation of these scores averaging the results.
However, another problem remains: the set of parents of a node can depend of
the computed set of parents of the other nodes in the graph. To solve this problem
we followed a simple procedure: we computed the set of parents following the
topological ordering of the nodes; when considering a node Xi, the parents of
the preceding nodes where taking into account to compute the global scores of
the graph; and it was assumed that the set of parents of the subsequent nodes
is empty.

As the composition property [6] is verified in this problem, this greedy algo-
rithm is able to find the correct set of parents if the decision of the Bayesian
scores are correct: score(G∪{Y → Xi}|D)− score(G|D) ≤ 0 if and only if Xi is
conditionally independent of Y given Πi for any Y ∈ Pred(Xi). So, under these
settings, the number of errors (missing+extra links) of the inferred model will
only depend of the ability of the different Bayesian metrics to rightly detect the
different conditional independencies.

For these experiments, we randomly generate data samples by means of logic
sampling from each one of the 5 BNs with different sample sizes: 100, 500 and
1000 cases. All the experiments were conducted with each of these data samples
and were repeated 10 times. In order to simplify the exposition of the results
we only show results with 1000 cases because quite similar conclusions can be
thrown from the other sample sizes.
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Fig. 3. Number of errors and KL distance of locally averaged Bayesian Dirichlet metric
with different L values

BDeu Metric

In Figure 1, we depict the number of errors (missing plus extra links wrt the
true BN model), plotted in the Y-axis, of the inferred models using the BDeu
metric with different S values (the logarithm of the S values are plotted in the
X-axis). As can be seen, in the 5 BNs the number of errors is slowly improved as
the S parameter changes for very small values to higher values but it reaches the
minimum at different S values depending of the particular BN model. Following
a similar trend, but also at different S values, the number of errors suddenly
increases and quickly move away from this minimum in the five BN models. The
same can be said about the behavior of Kullback-Leibler (KL) distance wrt the
true BN.

This highlight the sensitivity of the BDeu metric to the particular S value as
previously shown in [8] with other different experimental settings. If we indepen-
dently look at the evolution of the number of missing and extra links, depicted in
Figure 2, we can observe the previously commented trend of the BDeu metric to
over-regularized with lower S values and to recover a higher number of spurious
links with high S values. The problem is that these anomalous behavior happens
at different intervals of the parameter S and with a different intensity depending
of the particular model which generates the data. Let us look, for example, how
the number of extra links is suddenly soared when S increases in the Alarm and
the Boblo models.

That shows how the selection of an optimal S value is quite hard not to say
that it is impossible because, in practical settings, we do not know which is
the true model. We will only observe as increasing (decreasing) S new edges
are recovered (removed). Only if we are able to elicit expert/domain knowledge
about the distribution of the different parameters we can be sure of avoiding the
wrong assessment of a S value, but this is not a common situation at all.
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Fig. 4. Number of errors and KL distance of globally averaged Bayesian Dirichlet
metric with different L values

Averaged Bayesian Dirichlet Metrics

We now look to the quality of the retrieved models using the locally averaged
Bayesian Dirichlet metric. In Figure 3, we display the number of missing+extra
links and KL distance wrt true BN using different set SL of S values (see Section
3.2). As can be seen, the higher the set of averaged S values, the better the
inferred model, specially for Hailfinder and Insurance model. But the main point
is to see how the averaging over higher set of S values produce stable results, in
opposite to the employment of single S values.

The behavior of globally averaged Bayesian Dirichlet metric, as shown in
Figure 4, is not exactly the same than its local counterpart. On the one hand,
it is even more stable and since L > 5 there is any change in the number of
missing+extra links and the KL distance. But, on the other hand, it does not
get further improvements when increasing the set of averaged S values when
applied to the Hailfinder and Insurance models.

A direct comparison between the global and local approach is given in Figure
5 (a). In this figure, we plot the difference between the number of missing+extra
links of the globally and locally averaged Bayesian metrics. So, positive differ-
ences implies that the local method finds better models than the global approach.
As can be seen, for the Alarm, Boblo and Boerlage models the difference between
the local and global versions are negligible (a 0.5 difference in the worst case).
However, for the Hailfinder and Insurance model the locally averaged metric
gets better results. This positive difference follows from the ability of the locally
averaged metric to fit more complex parameter sets as shown in Example 2.

The main question is finally answered in Figure 5 (b). There, we plot the differ-
ence between the number of missing+extra links of the locally averaged Bayesian
Dirichlet metric and the BDeu metric with the best possible single S value across
different SL values. That is to say, for each L we take the best inferred model
using the BDeu metric with any S value in the set {2−L, 2−L+1, . . . , 2L}. Again,



Locally Averaged Bayesian Dirichlet Metrics 227

0
1

2
3

L Values

M
is

si
ng

+
E

xt
ra

 D
iff

er
en

ce

Alarm
Boblo
Boerlage
Hailfinder
Insurance

1 2 3 4 5 6 7 8 9 10

−
1

0
1

2

L Values

M
is

si
ng

+
E

xt
ra

 D
iff

er
en

ce

Alarm
Boblo
Boerlage
Hailfinder
Insurance

1 2 3 4 5 6 7 8 9 10

Globally averaged metric BDeu metric
versus Locally averaged metric versus Locally averaged metric
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positive differences imply that the local method finds better models than the
BDeu metric with any S value. As can be seen, when the number of averaged S
values is bigger, for some of models (Alarm, Boblo and Boerlage) the differences
remains stable: in the worst case, using the best possible S value we have a nega-
tive difference of 0.5 links. And for the other two BN (Hailfinder and Insurance),
the locally averaged metric infers even better models when averaging over a big
set of S values.

In that way, we can see as the averaged Bayesian metrics prevent from the need
to assess a particular S value, which as shown in the above analysis can lead to
wrong and unstable model inferences. In fact, this simple averaging approach is
able to retrieve models which are as good as an optimal selection of S value. In
addition to this, when using the locally averaged we are able to fit more complex
parameter spaces than the BDeu metric using a single S value and infer more ac-
curate BNs.

5 Conclusions and Future Works

In this paper we have introduced a novel strategy based on a simple local av-
eraging approach to overcome the problem of assessing the free parameters of
one of the most widely employed Bayesian score metrics. This new formulation
is efficient (only adds a constant factor to the time complexity) and satisfies the
local decomposition property, so it perfectly works with score+search methods
to learn BN from data.

In the experimental evaluation it has been shown as this averaged Bayesian
metric robustly infers models with the same number of structural errors than
the BDeu metric with an optimal ESS. This result is remarkable as the SL is
not selected with any procedure based on the data, while the ESS was selected
as the one given best results, once the experiments were carried out. The locally
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averaged version even produces better results when the parameter space of the
model is complex (there is a mixture of uniform and skewed distributions).

In that way, we think that it worth to use averaged Bayesian metrics when
employing score+search methods to learn BNs from data in knowledge discovery
tasks. Because, in that way, we avoid the need to set a free parameter which is
quite hard to assess and which can provoke the inference of wrong probabilistic
relationships among the involved domain variables, while we get the results of
an optimal selection of this parameter.

As future works, we plan to extend this method to other Bayesian metrics
different from the BDeu (such as the K2 metric [3]) and, also, to produce robust
parameter estimates which do not depend of similar free parameters.
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Abstract. The recent explosion of high dimensionality in datasets for
several domains has posed a serious challenge to existing Bayesian net-
work structure learning algorithms. Local search methods represent a
solution in such spaces but suffer with small datasets. MMHC (Max-
Min Hill-Climbing) is one of these local search algorithms where a first
phase aims at identifying a possible skeleton by using some statistical
association measurements and a second phase performs a greedy search
restricted by this skeleton. We propose to replace the first phase, im-
precise when the number of data remains relatively very small, by an
application of ”Perturb and Combine” framework we have already stud-
ied in density estimation by using mixtures of bagged trees.

Keywords: Bayesian networks, mixture of trees, bootstrap, structure
learning.

1 Introduction

Bayesian networks are probabilistic graphical models that encode a joint distri-
bution over a set of variables by a product of conditional probability distribu-
tions, one for each variable conditionally to its parents in the directed graph.
These models may be learned from data and used to perform probabilistic infer-
ences over the encoded distribution [15]. However, learning the graphical struc-
ture of such models from data is NP-hard [7]. In general, there are two main
approaches for learning Bayesian network structure from data. The search-and-
score approach, with algorithms such as K2 [10] or GS [8], attempts to identify
the network that maximizes a given scoring function used to indicate how well the
network fits the data. The second approach, constraint-based, with algorithms
such as IC [16] or PC [18], attempts to estimate conditional independences be-
tween variables using statistical independence tests.

The recent explosion of high dimensionality in datasets for several domains
such as the biomedical domain with hundreds or thousands of variables, has
posed a serious challenge to existing Bayesian network structure learning algo-
rithms. These algorithms are not scalable to high dimensional spaces because
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of their excessive computational complexity [5]. The local search methods, hy-
brid between constraint-based and score-based ones, are the most appropriate
solution in such spaces.

Moreover, in the context of high dimensional space, the datasets are generally
very small comparatively to the space dimension. Structure learning algorithms
are known to be unstable in such context : small changes in training data can
cause large changes in the learned structures. So, learning a single model from
small dataset will not produce a good estimation. Several works demonstrated
that in such conditions, the use of the ”Perturb and Combine” principle such
as bagging (model averaging and bootstrap replicas) improves considerably the
results. In this direction, [6] applied the bagging principle to the greedy hill-
climbing algorithm with randomized restarts.

In this paper, we propose to apply the ”Perturb and Combine” idea to develop
a new methodology for bayesian network structure learning in the context of high
dimensional space and small datasets. We propose to first learn a mixture of trees
on a set of bootstrap replicas of the original dataset, and then use this mixture
to guide a local search algorithm.

The rest of this paper is organized as follows. Section 2 recalls Bayesian net-
work structure learning framework in high dimension. Section 3 presents how
can we apply the Bagging principle to learn a mixture of trees from data and
Section 4 describes our proposition. Section 5 presents our experimental proto-
col and collects our simulation results. Section 6 concludes and highlights some
directions for further research.

2 Bayesian Network Structure Learning in High
Dimension

2.1 Introduction

Bayesian network structure learning is NP-hard and existing algorithms are not
scalable to very high dimensional spaces. Some approaches have been proposed
to provide scalable algorithms, such as the Sparse Candidate algorithm [11] that
constrains the search of a score-based algorithm by limiting the set of possi-
ble parents of each variable to contain at most k candidate parents. The other
scalable structure learning approaches, local search methods, can be seen as a
generalization of the sparse candidate principle. This kind of methods consists
in, first, applying statistical tests to identify local structures around a target
variable (e.g. a Markov Blanket (MB) or a set of candidate parents and chil-
dren (CPC)), and then in using another heuristic to learn the full structure by
considering the previous local results. Many heuristics have been proposed for
local structure identification, IAMB [19] and MBOR [13] for Markov blanket
and MMPC (Max-Min Parent Children) [20] for set of Parents and Children.

2.2 MMHC Algorithm

The Max-Min Hill-Climbing (MMHC) algorithm [21] briefly described in Algo-
rithm 1 is one of these local search structure learning algorithm. Its first phase
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Algorithm 1. MMHC algorithm

Require: data D
Ensure: a DAG structure

% Restrict
for every variable X ∈ V do

PC(X) = MMPC(X, D)
end for
% Search
Starting from an empty graph perform Greedy Hill-Climbing with operators add-
edge, delete-edge, reverse-edge. Only try operator add-edge(Y → X) if Y ∈ PC(X)

return the highest scoring DAG found

consists in identifying the set of CPC for each variable by using the MMPC
algorithm. The second phase consists in using a score-based algorithm (Hill-
climbing) by constraining the classical AddEdge operator to edges discovered by
MMPC in the first phase.

MMHC is scalable to high dimensional spaces with hundreds of variables and
can identify a structure with higher score in less time than the Sparse Candidate
algorithm.

MMPC is used in order to reconstruct a possible skeleton of the Bayesian
network. This phase relies on statistical tests on training data to detect con-
ditionally independence between variables. In the context of high dimensional
space (thousands of variables) and small data sets (few hundreds samples), de-
tecting conditionally independence between variables from data can both require
an excessive computational complexity and, more damaging, return very impre-
cise results.

3 Mixture of Bayesian Networks Structured Trees

Let X = {X1, . . . , Xn} be a finite set of discrete random variables, and D =
(x1, · · · , xN ) be a sample (dataset) of joint observations xi = {xi

1, · · · , xi
n} in-

dependently drawn from some data-generating density PG(X1, . . . , Xn).
A mixture distribution PT̂ (X1, . . . , Xn) induced by a multiset T̂ ={T1, . . . , Tm}

of m Markov trees is defined as a convex combination of elementary Markov tree
densities, i.e.

PT̂ (X) =
m∑

i=1

μiPTi(X),

where μi ∈ [0, 1],
∑m

i=1 μi = 1, and PTi(X) is the probability density over X
encoded by the graphical model composed of the Markov tree structure Si and
its parameter set θ̃i :

PTi(X) = PSi,θ̃i
(X) =

n∏
p=1

Pθ̃i
(Xp|PaSi(Xp)),
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Algorithm 2. Markov tree Mixture learning algorithm (MtM)

Require: dataset D, mixture size m

for i = 1, · · · , m do
Di = BootstrapReplica(D)
Ti = BuildMarkovTreeStructure(Di)
θ̃i = LearnPars(Ti, D)

end for
(μ)mi=1 = CompWeights((Ti, θ̃i)

m
i=1, D)

return
(
μi, Ti, θ̃i

)m

i=1

where PaSi(Xp) is the parent variable of Xp in the tree structure Si.
Several versions of Markov tree mixture learning algorithm described in Algo-

rithm 2 were proposed in [2,4] as an alternative to classical methods for density
estimation in the context of high-dimensional space and small datasets : mix-
tures of tree structures generated in a totally randomized fashion and ensembles
of optimal trees derived from bootstrap replicas of the dataset by the Chow
and Liu algorithm [9] (i.e. bagging of Markov trees). In [4,3], we also proposed
three sub-quadratic heuristics to approximate the optimal tree and then to con-
struct mixture of trees in a sub-quadratic way. Our best heuristic (Inertial search
heuristic) complexity is n log(n) log(n log(n)). These works have fruitful results
for density estimation in terms of scalability and efficiency. But result of these
methods, described by a mixture of several models, cannot directly identify a
single model that can be graphically visualized and interpreted.

4 MtMHC Algorithm

4.1 MtMHC Principle

On the one hand, scalable structure learning algorithms like MMHC can give
very unstable results with small datasets. On the other hand, scalability and
robustness of Markov tree mixtures for density estimation in the context of high
dimensional space and small datasets make this approach attractive in such
context.

For these reasons, we propose in this work to exploit the advantages of both
methods with the MtMHC algorithm described in Algorithm 3. This algorithm is
very similar to MMHC algorithm, but our idea is using mixtures of Markov trees
in order to identify a set of candidate parents and children instead of MMPC
algorithm. This new CPC identification algorithm, named MtMPC, is described
in the next section.

4.2 MtMPC Algorithm

Algorithm 4 describes the use of mixtures of Markov trees in order to identify a
set of candidate parents and children. Given a dataset D, we first use our MTM
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Algorithm 3. MtMHC algorithm

Require: dataset D, mixture size m
Ensure: a DAG structure

% Restrict
{PC(X)}X∈V = MtMPC(D, m)
% Search
Starting from an empty graph perform Greedy Hill-Climbing with operators add-
edge, delete-edge, reverse-edge. Only try operator add-edge(Y → X) if Y ∈ PC(X)

return the highest scoring DAG found

Algorithm 4. MtMPC algorithm

Require: dataset D, mixture size m

{Ti} = MtM(D, m)
for every variable X in V do

MtMPC(X) = ∅
for i = 1...m do

MtMPC(X) = MtMPC(X) ∪ NeTi(X)
end for

end for

return MtMPC(X)X∈V

algorithm described in Algorithm 2 to construct a set of m Markov models. We
make here the hypothesis that the union of the Markov tree models can be a
good approximation of the CPC set. We then define the CPC set of a given
variable A as the union of the neighbors of this variable in each tree of the
mixture NeTi(A).

Using bootstrap replicas in our mixture allows to deal with small datasets.
Another related solution would have been to consider more robust conditional
independence tests in MMPC algorithm such as permutation tests as proposed
in [17,22].

Note that we are only working with the Markov tree skeletons without tak-
ing into account their corresponding weights μi. We have demonstrated in our
previous work that using uniform weights in the mixture provides the best re-
sults with small datasets, so these weights are non informative for our MtMPC
algorithm.

Figure 1 illustrates an example of this algorithm. An undirected skeleton G
summarizing the set of all CPC is built from the ten trees of the mixture. As an
illustration, the set of CPC(A) appears in blue.

4.3 MtMHC Optimization

Because of the variability induced by boostraping data during the mixture learn-
ing, some edges only appear in a few models in the mixture. Moreover, the
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Fig. 1. Example of execution of the MtMPC algorithm
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Fig. 2. Example of execution of the MtMPC algorithm with pruning phase

complexity of the second step of MtMHC algorithm (hill climbing) is directly
related to the size of the PC set returned by MtMPC.

We propose one possible optimization of our MtMHC algorithm by pruning
the edges non frequent in the set of Markov tree. This pruning phase is usual
when we want to describe a set of graphs, as proposed in [14].
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Figure 2 describes an example of CPC refinement when using this pruning
optimization. When we construct the graph G from the different mixture trees,
we use for each connexion in G a weight given by the number of occurence of the
corresponding edge in the mixture. Then, after constructing the graph G, these
weights are divised by the mixture size. So, connexions with low weight (under
a given percentage) will be deleted. Figure 2 shows that connexions in G with a
weight under 0.2 (threshold = 20%) (A− E and B − F ) are pruned.

5 Empirical Simulations and Results

5.1 Experimental Protocol

In order to evaluate the results of our proposition, we carried out repetitive ex-
periments for different structures, by proceeding in the following way. All our
experiments were carried out with models for a set of n = 100 binary random
variables. To choose a target density, we first decide whether it will factorize
according to a general directed acyclic graph structure. Then we use the appro-
priate random structure [12] and parameter generation algorithm (described in
[1]) to draw a structure and their parameters.

For each target density and dataset size, we generated 10 different datasets by
sampling values of the random variables using the Monte-Carlo method with the
target structure and parameter values. We carried out simulations with dataset
sizes of N = 50 and 200 elements. Given the total number of 2n possible data
configurations of our n random variables, we thus look at rather small datasets
in such context.

For the tree mixture learning, we tested different sizes : m = 50, 100, 150 and
300 trees in order to observe the potential influence of the mixture size on the
quality of the result.

For this preliminary work, we concentrate our study to MtMPC results with
or without pruning. Pruning threshold is set to 10% in order to illustrate the
interest of the pruning optimisation.

We measure the quality of the obtained CPC sets by estimating the percent-
age of true positive (TP) edges with respect to the number of correct edges
in the true model (edges present in the target structure and truly discovered
by the algorithm) and false positive (FP) edges with respect to the number of
edges absent in the true model (edges absent in the target structure and falsely
discovered).

We also provide results obtained in the same conditions by MMPC algorithm
using an usual statistical test (the χ2 test with a parameter α = 5%), even if we
know that these tests are not well appropriate for small datasets. Using more
sophisticated test is part of our future work.

5.2 Results

Table 1 contains MtMPC and MMPC results for a very small dataset (N = 50
samples) without and with pruning. Tables 2 contains similar results for small
dataset (N = 200).
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Table 1. Results obtained with MtMPC algorithm (n = 100, N = 50)

TP FP TP FP

no pruning phase with pruning phase

MtMPC (m=50) 35.29 % 12.78 % 29.11 % 0.31 %

MtMPC (m=100) 39.21 % 18.58 % 28.92 % 0.27 %

MtMPC (m=150) 40.19 % 21.52 % 28.92 % 0.25 %

MtMPC (m=300) 45.09 % 23.95 % 28.82 % 0.24 %

MMPC 1.96 % 0.69 %

Table 2. Results obtained with MtMPC algorithm (n = 100, N = 200)

TP FP TP FP

no pruning phase with pruning phase

BTM-PC (m=50) 43.13 % 11.84 % 30.39 % 0.38 %

BTM-PC (m=100) 43.17 % 17.46 % 30.30 % 0.35 %

BTM-PC (m=150) 43.13 % 19.87 % 30.29 % 0.33 %

MMPC 5.88 % 1.63 %

Previous work demonstrates that increasing the mixture size gives us a better
estimation of the target joint distribution. This property is illustrated by the
fact that the percentage of good edges (TP) discovered by our algorithm also
increases in the left part of table 1 and table 2. We can also observe that it also
increases the variability of the obtained trees and the number of false positives
(FP).

In both tables, we can discover about 45% of the right edges in very extrem
context (small datasets, N = 50 and 200).

The right parts of tables 1 and 2 illustrate the influence of the pruning phase.
FP highly decreases to less than 0.4%, to the detriment of FP which also de-
creases from 45% to 30%.

As we want to plug our MtMPC results into a constraint Hill Climbing algo-
rithm, the behavior of this pruning optimization is no so interesting. Even if we
want to control the complexity of the greedy search by decreasing the number of
edges of the CPC generated by MtMPC, we would like that the pruning proce-
dure mainly affect the FP . Pruning interesting edges is dangerous because the
Hill Climbing procedure will not be able to add them again.

6 Summary and Future Works

We proposed in this work to apply the ”Perturb and Combine” idea to develop a
new methodology for bayesian network structure learning in the context of high
dimensional space and small datasets. We proposed a new approach MtMHC,
based on mixture of trees that have fruitful results for density estimation in such
space, to guide a local search structure learning.



Mixture of Markov Trees for Structure Learning 237

Our proposed algorithm for estimating the set of candidate parents and chil-
dren, MtMPC, quasi-linear with respect to the number of variables, provides
interesting results with very small datasets. We also proposed a potential opti-
mization for our algorithm, but first results indicate that this optimization could
be counterproductive.

As further work, we have to develop the experimentation part in several di-
rections, by working in higher spaces, by examining the final results of MtMHC
instead of the intermediate one given by MtMPC, by comparing our algorithm
to specific algorithm designed for handling small datasets inspired from [17,22].
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Abstract. The representation problem of independence models is stud-
ied by focusing on acyclic directed graph (DAG). We present the algo-
rithm PC∗ in order to look for a perfect map. However, when a perfect
map does not exist, so that PC∗ fails, it is interesting to find a minimal
I–map, which represents as many triples as possible in J∗. Therefore we
describe an algorithm which finds such a map by means of a backtracking
procedure.

Keywords: Independence models, DAG, Perfect map, Independence
map.

1 Introduction

Graphical models [7,10,13,17] play a fundamental role in order to represent condi-
tional independence models. Given an independence model J , a relevant problem
is to find all the independence statements θ which are implied by J , i.e. which
hold under every probability distribution agreeing with J . This problem, known
as implication problem, has not been solved yet and perhaps is undecidable.
However, it is possible to study its syntactical counterpart, i.e. to find whether θ
can be derived from J by using some axiomatic system. For this aim, the closure
J̄ of a given set J of independencies, with respect to (semi)graphoid properties,
would be useful. Since it can be exponentially larger than J , a suitable subset J∗
(“fast closure”) of J̄ , gathering the same information as J̄ , has been introduced
[16,2].

Another relevant problem is to represent a set J of conditional independence
relations by means of an acyclic directed graph (DAG), called perfect map (P–
map). A graphical representation of conditional independencies is important
because a graph provides a human readable form of encoding these information.
Graphs are simple to understand and d–separation gives a fast way of finding
new conditional independencies.

However it is known that there are independence models, which admit no
perfect map. This problem has been faced by providing necessary conditions
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[12] or a complete solution [14], however these methods require to solve a large
number of implication/deduction problems.

In [5] we consider graphoid structures (related to independence models in-
duced by strictly positive probability) and we give a necessary and sufficient
condition for the existence of a P–map. This condition characterizes the order-
ings on the random variables which generate a perfect map by means of the fast
closure set J∗. Starting from this result, we introduced an algorithm based on a
backtracking procedure, that is able to check whether a set J of independencies
is representable through a P–map.

In this paper we deal with the same problem and we provide a new algorithm
(called PC∗), which adapt the technique of Pearl and Verma’s algorithm [14]
to the fast closure. This algorithm looks for a perfect map whether it exists;
otherwise PC∗ fails and in this case it is important to find a minimal I–map
G, which represents as many triples as possible in the fast closure J∗. Such a
graph G can be considered as one of the “best possible I–map” for J∗ and so
it can be seen as a sort of “lower approximation” of a P–map, for those sets of
independencies which do not have a P–map. For this aim, a simple algorithm
which finds the graph which represents the maximum number of triples in J∗ is
described.

2 Graphoids and Fast Closure

Let S̃ = {Y1, . . . , Yn} be a finite not empty set of variables and S = {1, . . . , n}
the set of indices associated to S̃. Given a probability P on S̃, a conditional
independence statement YA⊥⊥YB|YC , compatible with P , is simply denoted by
the ordered triple (A, B, C), where A, B, C are disjoint subsets of S. Then, in
the following we do not distinguish S̃ from S.

Let S(3) denote the set of all (ordered) triples (A, B, C) of disjoint subsets of
S, such that A and B are not empty. A conditional independence model I is
therefore a subset of S(3). In particular, we refer to a graphoid structure, which
is a couple (S, I), where I is a ternary relation on S satisfying the following
properties :

G1 if (A, B, C) ∈ I, then (B, A, C) ∈ I (Symmetry);
G2 if (A, B ∪ C, D) ∈ I, then (A, B, D) ∈ I (Decomposition);
G3 if (A, B ∪ C, D) ∈ I, then (A, B, C ∪D) ∈ I (Weak Union);
G4 if (A, B, C∪D) ∈ I and (A, C, D) ∈ I, then (A, B∪C, D) ∈ I (Contraction);
G5 if (A, B, C ∪D) ∈ I and (A, C, B ∪D) ∈ I, then (A, B ∪ C, D) ∈ I (Inter-

section);

where A, B, C, D are pairwise disjoint subsets of S.
Given a set J of conditional independence statements, compatible with a

probability, a relevant problem is to find the closure of J with respect to graphoid
rules G1–G5

J̄ = {θ ∈ S(3) : θ is obtained from J by G1–G5}.
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A related problem, called deduction, concerns to establish whether a triple θ ∈
S(3) can be derived from J , see [6,19]. It is clear that the deduction problem can
be easily solved once the closure has been computed. But, the computation of J̄
is infeasible because its size can be exponentially larger than the size of J .

In order to deal with this problem, we need to recall some definitions. Given
θ = (A, B, C), we denote by θT the triple (B, A, C) obtained from θ through
G1. Given a pair of triples θ1, θ2 ∈ S(3), we say that θ1 is generalized–included
in θ2 (briefly g–included and in symbol θ1 � θ2) if θ1 can be obtained from θ2

by a finite number of applications of the unary rules G1, G2 and G3.
A triple θ ∈ J is said to be maximal in J if there exists no triple θ′ ∈ J ,

different from θ and θT , such that θ � θ′.
The � relation can be easily extended to sets. Indeed given two sets J, K ⊆

S(3), J � K if for each θ ∈ J , there exists a triple τ ∈ K such that θ � τ .
By using the relation �, it is possible to define a set J∗ which is in general

much smaller than J̄ , but having the same information as J̄ . This set is called
fast closure of J and is defined as

J∗ = {τ ∈ J̄ : τ is maximal in J̄}.

In [2] we show that J∗ can be computed by a fast procedure (FC2), based on
two inference rules G4∗ and G5∗, which generalize G4 and G5. Another method
for computing J∗, introduced in the same paper, is the procedure FC1 based
on a unique inference rule U . FC1 has been shown to be an effective way for
computing the fast closure through an extensive empirical evaluations, given in
[1,3,2], and outperforms FC2 in computation time.

In the rest of the paper, we use m for |J∗|, i.e. the cardinality of the fast
closure for a generic set J .

3 Graph Representation

In this section we recall some notions about graphs and the representation of
an independence model by an acyclic directed graph (DAG) [12]. We denote by
G = (U , E) a graph with a set U of nodes and a set E of directed arcs. For any
u ∈ U , as usual, we denote with pa(u) the parents of u, ch(u) the children of u,
ds(u) the sets of descendants and an(u) the set of ancestors.

Definition 1. If A, B and C are three disjoint subsets of nodes of U given DAG
G = (U , E), then C is said to d–separate A from B (in symbol (A, B, C)G) if for
each non–directed path between a node in A and a node in B, there exists a node
x in the path which satisfies one of these two conditions

1. x is a collider (i.e. both edges point to x), x �∈ C and ds(x) ∩ C = ∅;
2. x is not a collider and x ∈ C.

In order to study the representation of an independence model, we need to
distinguish between dependence maps and independence maps, since there are
models that cannot be completely represented by a DAG (see e.g. [10,12,17]).



242 M. Baioletti, G. Busanello, and B. Vantaggi

Definition 2. Let J be a set of conditional independence relations on S. A
DAG G = (S, E) is a dependence map (briefly a D–map) for J̄ if for each triple
(A, B, C) ∈ S(3)

(A, B, C) ∈ J̄ ⇒ (A, B, C)G.

Moreover, G = (S, E) is an independence map (briefly an I–map) for J̄ if for
each triple (A, B, C) ∈ S(3)

(A, B, C)G ⇒ (A, B, C) ∈ J̄ .

G is a minimal I–map for J̄ if deleting any arc, G is no more an I–map.
Finally, G is said to be a perfect map (briefly a P–map) for J̄ if it is both a

I–map and a D–map.

A P–map for J̄ needs not be unique. The skeleton of a DAG G is an undirected
graph which is obtained from G by removing direction in each edge. A triple
(i, j, k) of vertices in a DAG G is called a v–structure ([14,11]) if the edge (i, j)
and (k, j) appears in G, but there is no edge between i and k.

Definition 3. Two DAGs G1 = (S, E1) and G2 = (S, E2) with the same vertices
are equivalent if they have the same skeleton and the same set of v–structures.

Then, it is known from [12] that

Proposition 1. If G1 = (S, E1) and G2 = (S, E2) are both P–map, then they
are equivalent. On the other hand, if G1 is a P–map for J̄ and G2 is equivalent
to G1, then G2 is also a P–map for J̄ .

3.1 The BN–Draw Procedure

Given an ordering π on S, it is possible to find a minimal I–map Gπ for J̄ ,
starting from J∗, as shown in [5].

The function which accomplishes this task is called BN–DRAW and uses the
following operation: for each θ = (A, B, C) ∈ S(3), for any x ∈ S and T ⊆ S,
define

Π(θ, T, x) =

⎧⎨⎩
T ∩ (A ∪ C) if C ⊆ T ⊆ A ∪B ∪ C and x ∈ A;
T ∩ (B ∪ C) if C ⊆ T ⊆ A ∪B ∪ C and x ∈ B;
T otherwise.

For a given x ∈ S, we denote by S(x) the set of all the elements of S which
precede x with respect to π. Thus, among all the sets Π(θ, S(x), x), for each
θ ∈ J∗, there exists a minimal one with respect to inclusion (see [5,12]). Such a
minimal set is computed by the function PARENTS.

Hence, BN–DRAW simply calls PARENTS for each node (following the or-
dering π) and draws the graph.
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function BN–DRAW(n, π, J∗)
T ← ∅
G← a graph with S as vertex set and no edges
for i← 2 to n

T ← T ∪ {πi−1}
pa← PARENTS(πi, T, J∗)
draw an arc in G from each index in pa to πi

end for
return G

end function

The overall cost of BN–DRAW is O(mn), since the function PARENTS is called
n times and each call uses O(m) steps.

3.2 The DAG–Representability Theorem

In [5] we have given a necessary and sufficient condition for the existence of a
P–map for a given set J of conditional independencies. This result is based on
the fast closure of J , so it allows to identify all the possible orderings for which
BN–DRAW returns a P–map.

We have also described an algorithm to check whether J̄ admits a P–map
and, in the affirmative case, to find one of them.

Unfortunately, the worst case complexity of the related procedure is exponen-
tial with respect to the number n of variables, while it is linear with respect to the
cardinality m of J∗. Anyway, some empirical evaluations presented in [4,5] show
that it is possible to handle sets of some hundreds of conditional independencies
and tens of variables in a reasonable amount of time.

4 The Algorithm PC∗

In this section we describe a new algorithm which finds, if any, a perfect map
for a set of conditional independencies J which uses the fast closure J∗. The
algorithm, divided in 6 phases, takes inspiration from PC algorithm [14] and its
variants [9], thus it is called PC∗. The input is J∗ and the output is a P–map
for J∗ or a failure when J∗ is not representable with a P–map.

Preprocessing phase
For each unordered couple i, j ∈ S, with i �= j, compute the sets

Cij = {A∪B∪C \{i, j} : (A,B, C) ∈ J∗ s.t. (i ∈ A and j ∈ B) or (i ∈ B and j ∈ A)}

and Wij =
⋃

K∈Cij

K.

This phase requires O(m) step, in which at most n sets among Cij and Wij

are updated. The sets Wij are called “witnesses” in other works (see for instance
[11]).
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Computing the skeleton
Create the undirected graph Gu = (S, Eu) by taking

Eu = {{i, j} : i, j ∈ S, i �= j, Wij = ∅}.

The graph Gu contains the skeleton of every potential P–map for J̄ , but
without a direction.

Proposition 2. If G is a P–map for J̄ , then there is no edge between i and j
in G if and only if the triple (i, j, C) is g–included in J∗, for some C ⊆ S.

Proof. In [4] we prove that J̄ � J∗ and J∗ ⊆ J̄ , that is for any triple θ ∈ J̄ there
is a triple θ′ ∈ J∗ such that θ � θ′ and any θ′ ∈ J∗ belongs to J̄ .

Therefore, if a DAG G is a P–map for J̄ and {i, j} is a pair of nodes such
that between them there is no edge in G, then there exists a set C of nodes
(possibly empty), with i, j �∈ C, such that by d–separation ({i}, {j}, C)G. Now,
by Definition 2 it follows that ({i}, {j}, C)G ⇔ ({i}, {j}, C) ∈ J̄ and so if and
only if there is triple θ′ ∈ J∗ which g-includes ({i}, {j}, C).

It is simple to see that this phase requires at most O(n2) steps. Let SKELETON
be the function which accomplishes these two first phases.

Directing the v–structures
The third phase defines the direction of some edges, by creating the v–structure,
taking into account of the witnesses. Let i, j, k be three nodes such that there
is an undirected edge between i and j and an undirected edge between k and j,
but there is no edge between i and k (this configuration is called immorality),
we make a v–structure i→ j ← k if and only if j �∈Wik.

Hence, this step computes

E′
d = {(i, j), (k, j) : for i, j, k ∈ S, {i, j} ∈ Eu, {k, j} ∈ Eu, {i, k} �∈ Eu, j �∈Wik}

and E′
u, which is composed by all the other edges in Eu.

At the end of this phase, which needs O(n3) steps to be executed, we obtain
a partially directed graph Gp = (S, E′

d ∪E′
u). The main property of Gp is that

Proposition 3. If G is a P–map for J̄ , then there is a v-structure i → j ← k
in G if and only if no triple (i, k, C), for any set C containing j, is g–included
in J∗.

Proof. Since J̄ � J∗ and J∗ ⊆ J̄ (see [4]) the proof trivially follows from Defini-
tion 1 and Proposition 2.

Therefore, if J̄ is representable with a P–map, then Gp contains all the edges
(even if some edges in Gp can be still undirected) and all the v–structures of any
P–map for J̄ .

This phase, one through the function V–STRUCTURES, requires at most
O(n3) steps, because it must check all the possible triples of vertices and even-
tually select the directions of two edges per step.



Finding P–Maps and I–Maps to Represent Conditional Independencies 245

Creating the DAG
Now, let us choose the direction to all the remaining undirected edges, by avoid-
ing to create loops or new v–structures. The step, called PROPAGATE, consists
in forming a (partial) directed acyclic graph Gd, where E′′

d are the directed edges
and E′′

u the undirected edges. Initially Gd is equal to Gu. PROPAGATE repeat-
edly selects directions for edges by means of the following propagation rules

R1 if (i, j) ∈ E′′
d , {j, k} ∈ E′′

u , and {i, k} �∈ E′′
u then add (j, k) to E′′

d and remove
{j, k} from E′′

u ;
R2 if (i, k) ∈ E′′

d , (k, j) ∈ E′′
d , and {i, j} ∈ E′′

u then add (i, j) to E′′
d and remove

{i, j} from E′′
u ;

R3 if (i, k) ∈ E′′
d , (k, j) ∈ E′′

d , (i, l) ∈ E′′
d , (l, j) ∈ E′′

d , and {i, j} ∈ E′′
u then add

(i, j) to E′′
d and remove {i, j} from E′′

u .

If this phase is compelled to create loops or new v–structures, then the entire
procedure fails, because it can be proved that no P–map exists.

On the other hand, if Gd still contains undirected edges, the procedure PROP-
AGATE should be executed again, after having selected an undirected edge and
chosen any direction for it, until all the edges are directed.

This phase ends either with a failure or with a DAG Gd extending Gp.
Since R1–R3 do not introduce loops or new v–structure, it follows that

Proposition 4. The set J∗ is representable with a P–map if and only if Gd is
a P–map for J∗.

Proof. If G is a P–map for J̄ (and also for J∗), then it is equivalent to Gd. In
fact, G has the same skeleton of Gd by Proposition 2 and the same v-structure
by Proposition 3. Therefore, by Proposition 1 Gd is a P–map.

Vice versa, if Gd is not a P–map for J∗, then from Proposition 1, Proposition
2 and Proposition 3 it follows that J∗ is not representable.

The cost of this phase is polynomial with respect to n, indeed each edge can
receive one direction and there are O(n2) edges and to check R1–R3, O(n3) el-
ementary steps are necessary.

Check if Gd is a I–map
First, Gd is tested to be an I–map. This can be done by first finding a topological
order ≺ on S, such that there is an edge from (i, j) only if i ≺ j. Then, for each
i ∈ S, we must check if (i, S(i) \pa(i), pa(i)) is g–included in J∗, where, as in the
previous section, S(i) is the set of all variables j such that j ≺ i.

This phase, realized by the function CHECK–I–MAP, requires O(mn) steps,
because each triple (i, S(i) \ pa(i), pa(i)) must be searched in J∗.

Obviously, the failure of this phase leads to the failure of the entire procedure
PC∗.

Check if Gd is a D–map
The last phase is to check whether Gd is a D–map. In the affirmative case, J̄ is
representable with Gd. Moreover, it is possible to find the maximal partial DAG
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which represents J̄ , i.e. the partial DAG which “contains” all the P–map for J̄ ,
by storing the result of the first call of PROPAGATE.

To perform this step, it is necessary to check whether A is d–separated from
B by C, for each (A, B, C) ∈ J and this is done by means of function CHECK–
D–MAP. One of the best method is the algorithm 3.1 of [9] which has a linear
time complexity with respect to the graph size.

The overall procedure
The algorithm is then summarized in the function PC∗, whose computation time
is linear in m and polynomial in n.

function PC∗(J∗)
if SKELETON(J∗) fails then return FAILURE
if V–STRUCTURES(J∗) fails then return FAILURE
let G the graph produced so far
while G has an undirected edge

select an undirected edge and choose a direction
if PROPAGATE(G) fails then return FAILURE

end while
if not CHECK–I–MAP(G) then return FAILURE
if not CHECK–D–MAP(G) then return FAILURE
return G

end function

5 Finding an I–Map

When a perfect map for an independence model does not exist, it is however
possible to find several I–maps and to determine for each of them the number
of relations which are representable. Therefore, an interesting problem is to find
a minimal I–map which represents the largest possible number of re-
lations. In this context, we focus only on maximal triples (those in J∗) and the
corresponding map is denoted by G(J∗).

Theorem 1. Let J be a set of independence relations, consider its closure J̄
and its fast closure J∗. Then, there is an I–map representing J1 ⊆ J̄ if there
exists an ordering π on the variables such that for each τ ∈ J1 there exists a
triple θ = (A, B, C) ∈ J∗ such that τ � θ and satisfying the following conditions

C1 for each c ∈ C such that S(c) ∩A �= ∅ and S(c) ∩B �= ∅, there exists a triple
θc ∈ J∗ such that Π(θc, S(c), c) ∩A = ∅ or Π(θc, S(c), c) ∩B = ∅;

C2 for each a ∈ A such that S(a) ∩ B �= ∅ or S(a) ∩ (S \ X ) �= ∅ there exists a
triple θa ∈ J∗ such that Π(θa, S(a), a) ∩ [B ∪ (S \ X )] = ∅;

C3 for each b ∈ B such that S(b) ∩ A �= ∅ or S(b) ∩ (S \ X ) �= ∅ there exists a
triple θb ∈ J∗ such that Π(θb, S(b), b) ∩ [A ∪ (S \ X )] = ∅;

C4 for each c ∈ C such that S(c)∩ (S \X ) �= ∅, there exists a triple θ′c ∈ J∗ such
that Π(θ′c, S(c), c) ∩ (S \ X ) = ∅.
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Proof. The proof goes along the same line of the proof of Theorem related to
condition C1–C4 given in [5].

Note that Theorem 1 assures that the triples in J1 are representable, but no
conclusion can be drawn on those belonging to J2 = J̄ \ J1. In fact there could
be some non maximal triple in J2 which is representable, even if it is not g–
included on some not representable maximal triple.

Example 1. Let

J = {({3}, {2}, {1}), ({4}, {1}, {2, 3}), ({5}, {1, 2, 4}, {3})}

be a set of triples, then the related fast closure is

J∗ = {({5}, {1, 2, 4}, {3}), ({2}, {3, 5}, {1}), ({4}, {1, 5}, {2, 3}), ({1}, {4, 5}, {2, 3})}.

Given the ordering π =< 2, 3, 4, 1, 5 > the associated DAG Gπ represents the
set

J1 = {({5}, {1, 2, 4}, {3}), ({4}, {1, 5}, {2, 3}), ({1}, {4, 5}, {2, 3})}

but not J2 = {({2}, {3, 5}, {1})}.
Moreover, Gπ represents ({2}, {5}, {1, 3})� ({2}, {3, 5}, {1}).

Note that there exists a P–map representing the set J∗ of the previous example:
it is enough to consider the ordering π′ =< 1, 2, 3, 4, 5 >.

Then, we propose to compute the number of the maximal represented triples
and to compare the I–maps according to this criterion. This comparison allows
to have a computational cost that is less than usual one based on the number of
the represented triples in J̄ .

5.1 An Algorithm to Find G(J∗)

In this section we describe an algorithm to find G(J∗) starting from the fast
closure J∗ of a set of conditional independencies.

The algorithm is based on a backtracking search process, which is executed
by function SEARCH described below. The search space is the set of all the
sequences π of indices in S without duplicates. A sequence represents a partial
ordering on S: πi = x means that x is the i–th variable in the ordering. The
sequence π is filled starting from the left, i.e. from the first variable in the
ordering, and adding a variable at a time in the leftmost empty position in π. A
total ordering corresponds to a complete sequence of indices, i.e. a permutation
of S.

In the following, given a set K of conditional independencies, we refer to a
partition of K composed by the three subsets K+, K− and K?, which contain,
respectively, the triples represented, the non representable triples and the triples
whose state is unknown. When the ordering is complete, K? = ∅.

When SEARCH chooses x as i–th element of π, the partition K must be
updated by finding
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– all the triples in θ ∈ K? which cannot be represented, this happens when x
appears in θ and some of conditions C1–C4 is violated;

– all the triples in θ ∈ K? which are fully represented, this happens when all
the conditions C1–C4 are satisfied and all the variables appearing in θ are
placed in π.

The function UPDATE performs this task is then

function UPDATE (π, i, K)
T ← π[1, . . . , i− 1]
Q← PARENTS(πi, T, K)
for each θ = (A, B, C) ∈ K?

if [(πi ∈ A) ∧ (A ∩Q �= ∅)]∨
[(πi ∈ B) ∧ (B ∩Q �= ∅)]∨
[(πi ∈ C) ∧ (A ∩Q �= ∅) ∧ (B ∩Q �= ∅)] then

K− ← K− ∪ {θ}
K? ← K? \ {θ}

else if A ∪B ∪ C ⊆ T ∪ {x} then
K+ ← K+ ∪ {θ}
K? ← K? \ {θ}

end for
return K

end function

The function SEARCH performs a backtracking search in which, at i–th step, it
tries all the possible variables to be placed at the i–th place in π. The variables
πbest and Kbest, which contain the best found ordering and its corresponding
partition, are global variables. The search process is pruned when |K+ ∪K?| ≤
|Kbest

+ |, i.e. when the number of representable triples cannot be greater than
the number of triples represented in the best ordering found so far. In this
way, it is not necessary to find all the completions of π, thus avoiding useless
computational efforts, because each of these completions would provide an I–map
which cannot be better than that induced by πbest.

function SEARCH (π, i, V, K)
if V = ∅ then

if |K+| > |Kbest
+ | then (πbest, Kbest)← (π, K)

return
end if
if |K+ ∪K?| ≤ |Kbest

+ | then return
for each x ∈ V

πi ← x
K ′ ← UPDATE(π, i, K)
SEARCH(π, i + 1, V \ {x}, K ′)

end for
end function
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Finally, the main function is MAX–I–MAP, which calls SEARCH with an initial
empty sequence.

function MAX–I–MAP(J∗)
Kbest ←< ∅, ∅, J∗ >
SEARCH(∅, 1, S, < ∅, ∅, J∗ >)
return BN–DRAW(πbest, Kbest)

end function

6 Conclusions

We show how to apply the technique used in the well known PC algorithm
[14,15] in the context of fast closure, by defining an algorithm which finds, if
any, a P–map for a set J in a time which is polynomial in both n and m (the
size of the fast closure). This is an enhancement with respect to Verma and
Pearl’s algorithm [14,13] and successive versions [11,15], in which it is necessary
to perform a huge number of queries to the independence model, since it is
impossible to have an explicit representation in memory of the complete closure
J̄ . This is an improvement also with respect to the procedure in [4,5], which uses
a backtracking search method through the space of orderings and which is, in
the worst case, exponential with respect to n.

Another relevant result is related to find a “best possible graph” for J̄ when
no P–map does exist. This concept is important because it allows to have a
graphical incomplete representation for any set of conditional independencies. A
major point of future works is to find a different mathematical characterization
of G(J∗) which allows to define faster algorithms.

It would be worth to investigate the application of the PC∗ approach to the
problem of learning the structure of a Bayesian networks from data (as done
e.g. in [18]). Hence, an interesting point is to establish whether there exists a
way of testing only “maximal” conditional independencies, thus reducing the
number of tests to be performed. Moreover, it would be interesting to study
how to extract G(J∗) from data and to compare it with the DAGs found by
the usual algorithms, mainly when data are generated from a non decomposable
distribution.
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Abstract. It is known that solving an exact inference problem on a
discrete Bayesian network with many deterministic nodes can be far
cheaper than what would be expected based on its treewidth. In this
article, we introduce a novel technique for this: to the operations of
factor multiplication and factor summation that form the basis of many
inference algorithms, we add factor indexing. We integrate this operation
into variable elimination, and extend the minweight heuristic accordingly.
A preliminary empirical evaluation gives promising results.

Keywords: Bayesian networks, exact inference, factor algebra, deter-
ministic variables.

1 Introduction

In general, exact inference on a Bayesian network with discrete variables is known
to take O(dw) time, where d is the domain size (assuming it is the same for each
variable) and w is the treewidth of the network’s moral graph[4]. In the canonical
technique for exact inference, variable elimination[11], this constraint manifests
itself as the minimal size of the largest factor that is created during the execution
of the algorithm; implemented as a multidimensional array, it has w dimensions
and d entries per dimension.

When a network contains deterministic nodes, inference can be much faster.
One example where this can be seen is the approach of Chavira and Darwiche[1],
in which a Bayesian network is transformed into a logical theory, and inference
is performed by counting the models of this theory. These models should be
consistent with the constraints imposed by the deterministic nodes. A good
model counting algorithm can use these constraints effectively to prune the
model search space. This approach, however, is quite remote from other infer-
ence algorithms in that it does not compute per-variable probabilities ‘in bulk’
by multiplication and summation of factors.

An approach by Larkin and Dechter[8] does use these factor operations. Here,
a factor is implemented not as an array (with an entry for each possible variable
assignment), but as a list of variable assignments that are nonzero (sometimes
called a sparse array). The length of this list can be much smaller than the size
of the array, but the overhead for multiplying and marginalizing factors is larger,
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because the list has to be searched for values (possibly using a hash table). With
this alternative implementation of factors, ordinary variable elimination can be
performed.

The inference approach presented in this article is also based on the familiar
factor operations. Firstly, we use a cheap representation of factors for determin-
istic variables. More importantly, we introduce a new marginalization method
for these variables, which requires no summation and can therefore be much
faster. We apply this method in a variable elimination algorithm, and propose
an extended minweight heuristic informed by this method. However, because the
marginalization method is formulated as a rewrite rule for factor expressions, its
potential use is not limited to variable elimination, but can be extended to all
inference algorithms that use factor operations.

The remainder of the article has the following outline. Sect. 2 summarizes the
formal preliminaries for inference on Bayesian networks. In Sect. 3, we review
variable elimination, with an emphasis on the use of factor algebra. Our main
contribution, factor indexing, is presented in Sect. 4, followed by an empirical
evaluation in Sect. 5. In Sect. 6, we conclude and propose future work.

2 Formal Preliminaries

We consider Bayesian networks over a set V = {V1, . . . , Vn} of n discrete vari-
ables; each Vi has a finite domain dom(Vi). Formally, an instantiation v =
{V1=v1, . . . , Vn=vn} of these variables is a function that maps each Vi to a value
vi ∈ dom(Vi), often also called a state. With a little abuse of notation, we write
v∈V to let a variable v range over the possible instantiations of V, e.g. in a
summation. We follow the convention of using upper case for variables, lower
case for instantiations/values and boldface for sets.

A factor f over variables V is a function that maps every instantiation v∈V to
a number f(v) (often a probability). It is similar to an ordinary mathematical
function with multiple arguments, only it refers to them by name instead of
position. For example, where for ordinary functions in general f(x, y) �= f(y, x),
for factors it is the case that f(X=x, Y =y) = f(Y =y, X=x); formally, the factor
f is applied to the set {X=x, Y =y}, but we omit the braces to reduce clutter.

In inference implementations, factors are stored as multidimensional arrays.
Where for ordinary functions these dimensions would be numbered conforming
to the function arguments, for factors they are named after variables, hence it
seems natural to define f ’s dimensionality as the whole set: dim(f) def= V. The
weight of a factor equals the size of the array needed to store all its values:
weight(f) def=

∏
Vj∈dim(f)|dom(Vj)|.

Factor algebra provides the tools for manipulating factors:

– Application f(v): Applying a factor f to an instantiation v with v∈dim(f) is
simply function application, and results in a single value. However, a factor
can also be partially applied, i.e. to an instantiation w ∈W ⊂ dim(f). The
result of this operation is a factor f ′ = f(w) with dim(f ′) = dim(f) \W.
Superfluous variables (/∈ dim(f)) are simply ignored: f(v, Vn+1=x) = f(v).
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(f(w))(u)
def
= f(u,w)

(f ⊗ g)(v)
def
= f(v) · g(v)

(ΣWf)(u)
def
=
∑

w∈W

f(u,w)

f [V =d](u)
def
= f(u, V =d(u))

�V =d(V =v,u)
def
=

{
1 if v = d(u)

0 if v �= d(u)

Fig. 1. Factor algebra. First, the
commonly found operations ap-
plication, multiplication and sum-
mation; next, our new operations
indexing and concretization.

f ⊗ � = f (1)

f ⊗ g = g ⊗ f (2)

f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h =
⊗

{f, g, h} (3)

ΣV ΣW f = ΣW ΣV f = ΣV,W f (4)

ΣV (f ⊗ g) = ΣV f ⊗ g if V ∈ dim(f),

V /∈ dim(g)

(5)

ΣV (f ⊗ g) = f ⊗ ΣV g if V /∈ dim(f),

V ∈ dim(g)

(6)

(
f ⊗ g

)
(e) = f(e)⊗ g(e) (7)(

ΣV f
)
(e) = ΣV f(e) if e does not

instantiate V
(8)

Fig. 2. Laws of factor algebra

– Multiplication f ⊗ g: Multiplication of factors is lifted value multiplica-
tion. The result of this operation is a factor h = f ⊗ g with dim(h) =
dim(f) ∪ dim(g). Multiplication is associative and commutative; we write⊗

1≤j≤n fj = f1 ⊗ f2 ⊗ . . .⊗ fn for n-way multiplication, and � for its unit
element.

– Summation ΣWf : Summation over variables W removes the W variables
from the dimensionality of a factor by summing up all the values of instan-
tiations that differ only at W variables.

Formal definitions of these operations are listed in Fig. 1 (top). They obey several
equality laws (Fig. 2) which we will use to prove correctness of inference.

As our work is expressed in factor algebra, we go as far as to define Bayesian
networks in terms of factor algebra, in order to keep notation as coherent as
possible. A Bayesian network is a triple (V, par, cpd), where V consists of n
discrete variables as above; the function par maps each variable Vj to a set of
parents Vpar(j) ⊂ V in such a way that there are no cycles; the set cpd =
{cpd1, . . . , cpdn} contains, for each Vj , a factor cpd j over {Vj} ∪ Vpar(j) with
(ΣVjcpd j)(vpar(j)) = 1 for each vpar(j)∈Vpar(j). Each Bayesian network defines
a factor jpd known as its joint probability distribution: jpd def=

⊗
1≤j≤n cpd j . It

can be proven that ΣVjpd = 1. An example (fragment) of a Bayesian network
with V = {X, Y, Z, A, M, . . .} is shown in Fig. 3, and applying the ⊗ and Σ
operations to its cpd factors is demonstrated in Fig. 4.

An inference query is defined as the joint distribution over a set of query
variables Q ⊆ V and an instantiation e of evidence variables E ⊆ V:

infQ,e
def= (ΣRjpd) (e) where R = V \ (Q ∪E)

An inference procedure is an algorithm that, given an arbitrary Bayesian net-
work, query variables Q and evidence e, calculates the value of infQ,e.
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v︷ ︸︸ ︷
X=Y =A= cpdA(v)

x0 y0 a0 1

x0 y0 a1 0
...

...

v︷ ︸︸ ︷
A=Z= cpdZ(v)

a0 z0 0.3

a0 z1 0.7
...

...

A
X Z

Y M

v︷ ︸︸ ︷
Y =A=M= cpdM (v)

y0 a0 m0 0

y0 a0 m1 1
...

...

Fig. 3. Example fragment of a
Bayesian network, in which the cpd
factors for variables A, Z and M are
partially given. An array implemen-
tation of the factors would store the
values in typewriter font.

v︷ ︸︸ ︷
X=Y =Z=A=M= (cpdA ⊗ cpdZ ⊗ cpdM )(v)

x0 y0 z0 a0 m0 1 · 0.3 · 0 = 0

x0 y0 z0 a0 m1 1 · 0.3 · 1 = 0.3
x0 y0 z0 a1 m0 0 · . . . = 0

...
...

v︷ ︸︸ ︷
X=Y =Z=M= (ΣA(cpdA ⊗ cpdZ ⊗ cpdM ))(v)

x0 y0 z0 m0 0

x0 y0 z0 m1 0.3
...

...

Fig. 4. Examples of applying the factor al-
gebra operators ⊗ and ΣA to the factors
from the Bayesian network. Note: as X=x0

and Y =y0 together determine that A=a0,
the first two values in the bottom factor
equal those in the top factor.

Relation to the conventional definition. The jpd factor corresponds to the joint
probability distribution in the conventional definition: P(v) = jpd(v), and it is
easily shown that the conditional probability distributions P(vj |vpar(j)) derived
from this joint distribution equal the cpd j factors. The reason that we avoid
the P notation is that it often clashes with factor application. For example, for
W ⊂ V, P(W) denotes a distribution over W while jpd(w) is a factor over the
complement V \W. The two notations are related as follows: for a marginal
distribution, P(W) = ΣV\Wjpd, and for partial evidence, P(e) = (ΣV\Ejpd)(e).

3 Variable Elimination as Factor Rewriting

In this section, we review the inference procedure of variable elimination[11].
More precisely, variable elimination is a family of inference procedures param-
eterized by a variable elimination order which mostly determines its efficiency.
The order we use is the minweight heuristic, known in practice to outperform
other heuristics when variables have different domain sizes[7].

The algorithm, its correctness proof and the rationale for the heuristic pre-
sented here serve as a basis for our extended version, which will be introduced
in Sec. 4 and exploits deterministic variables.
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Algorithm 1. Minweight variable elimination.

Input: – Bayesian network (V, par, {cpd1, . . . , cpdn})
– query variables Q ⊆ V; evidence e (instantiation of E ⊆ V)

Output: result, a factor over Q equal to infQ,e

W := V \ (Q ∪ E)
foreach cpd j do fj := cpd j(e)

while W is not empty do
choose Vi ∈ W for which the cost of eliminate(Vi) is smallest
eliminate(Vi)
W := W \ {Vi}

result :=
⊗

{all remaining fj}
procedure eliminate(Vi)

p := �

foreach fj s.t. Vi ∈ dim(fj) do
p := p ⊗ fj

delete fj

fi := ΣVip

Variable elimination (Alg. 1) roughly proceeds as follows: it starts out from
the collection of cpd j factors and directly applies the evidence e; then it repeat-
edly selects a variable Vi from R, removes the factors containing Vi from the
collection and replaces them by their product, with Vi summed out. These steps
are repeated until all variables from R have been eliminated. Note that at any
time, the remaining factors are stored in the fj variables (where the j indices
are in general not contiguous, as these variables are progressively deleted); this
scheme is chosen for the sake of extension into Alg. 2.

Postponing the question of the variable elimination order (i.e. selecting the
smallest cost) for a while, we first set out to prove that Alg. 1 produces the
correct result: a factor algebra expression that is equal to infQ,e.

Proof. Specifically, the invariant infQ,e = ΣW

⊗
{all remaining fj} holds at

the start of each loop iteration. At the first iteration,

ΣW

⊗
{all remaining fj} = ΣR

⊗
1≤i≤n cpd i(e) =

(
ΣR

⊗
1≤i≤n cpd i

)
(e)

with the last equality due to laws (7) and (8). This equals infQ,e by definition.
Next, by law (6):

ΣW

⎛⎝ ⊗
Vi /∈dim(fj)

fj ⊗
⊗

Vi∈dim(fj)

fj

⎞⎠ = ΣW\Vi

⎛⎝ ⊗
Vi /∈dim(fj)

fj ⊗ ΣVi

⊗
Vi∈dim(fj)

fj

⎞⎠
Assume that the invariant holds at the start of the loop, so infQ,e equals the
left expression (in which we have divided up ‘all remaining fj ’ for convenience
into those that do and do not contain Vi). Now, at the end of the loop, W
will be set to W \ {Vi}, and the fj factors with Vi ∈ dim(fj) will be replaced
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with fi := ΣVi

⊗
Vi∈dim(fj) fj. Thus, the expression at the right is equal to

ΣW

⊗
{all remaining fj} for the values of W and fj at the start of the next

loop, and the invariant holds again. After the last loop, W is empty, so infQ,e =⊗
{all remaining fj} = result. ��

Having established that the algorithm produces a correct result, let us examine
what this result actually consists of. Although Alg. 1 can certainly be read to
perform array operations at factor assignments such as p := p⊗fj and fi := ΣVip,
and return an array with the correct values at the end, it does not have to perform
any array operations at all. Instead, we prefer the reading where it performs a
symbolic construction of a new factor algebra expression at these points. In that
case, the result of the algorithm is not an array, but a large symbolic expression
which, as we have just proven, is a rewriting of infQ,e. It can be evaluated at a
later stage to produce said array. Thus, the inference procedure is divided into
a rewrite phase and an evaluation phase.

The purpose of rewriting infQ,e is that the resulting expression is somehow
‘more efficient’, i.e. needs less time or space to execute. For this statement to
make any sense, we need to ascribe an operational semantics to factor algebra
expressions (as opposed to the denotational semantics of Fig. 1, in which both
expressions are equivalent, as they have the same value). This is easily done (e.g.
to perform f⊗g, first perform f and store its resulting array somewhere, then do
the same for g, and finally construct the result array by multiplying the stored
values); we do not elaborate any further on this. With an operational semantics
in place, one can define a cost function in terms of space or time needed.

The order in which Alg. 1 picks variables can now be explained in terms of
this cost function: at each iteration, it greedily picks the one which is cheapest to
eliminate (paying no attention to the effect that this might have on eliminating
other variables later on). To model the cost of an elimination step, we use the
size of the largest array constructed in that step, i.e. weight(p) for the final
value of p in eliminate(Vi). We define the cost like this in order to simulate the
existing minweight heuristic; it might pay off to consider other cost functions.
Note that, as weight(p) can be determined from the symbolic expression p, the
cost of eliminate(Vi) can be calculated without actually executing p.

This evokes an interesting parallel to query optimization in database man-
agement systems, in which it is common practice to construct and optimize a
query plan before executing it. Drawing on this parallel, it has already been
shown that variable elimination plans can be further optimized using database
techniques[2].

4 Factor Indexing

This section presents the main contribution of this article: factor indexing, and
its integration in variable elimination. We propose a rewrite rule for marginal-
ization without summation, and express it in factor algebra by introducing a
new indexing operation. Then, we extend Alg. 1 into Alg. 2, which uses this rule
to eliminate deterministic variables.
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v︷ ︸︸ ︷
X=Y = dA(v)

x0 y0 a0
...

...

v︷ ︸︸ ︷
A=Z= cpdZ(v)

a0 z0 0.3

a0 z1 0.7
...

...

A
X Z

Y M

dA

dM

v︷ ︸︸ ︷
Y =A= dM (v)

y0 a0 m1
...

...

Fig. 5. Same fragment as Fig. 3,
with explicit deterministic vari-
ables A,M . Their deterministic
factors store states of A,M instead
of probabilities.

v︷ ︸︸ ︷
X=Y =Z= cpdZ [A=dA](v)

x0 y0 z0 0.3

x0 y0 z1 0.7
...

...

v︷ ︸︸ ︷
X=Y = dM [A=dA](v)

x0 y0 m1
...

...

v︷ ︸︸ ︷
X=Y =Z=M= (cpdZ [A=dA]⊗ �dM [A=dA])(v)

x0 y0 z0 m0 0

x0 y0 z0 m1 0.3
...

...

Fig. 6. Applying the factor indexing operation
to the cpdZ and dM factors from the Bayesian
network. Their product equals the summed fac-
tor in Fig. 4.

A variable Y ∈ V is called deterministic if its value is functionally determined
by the value of its parents (here X ⊂ V). This means that its conditional
probability distribution has the following form:

cpdY (Y =y,x) =

{
1 if y = dY (x)
0 if y �= dY (x)

where dY is a factor over X with values in dom(Y ), which we call Y ’s determinis-
tic factor. To make deterministic variables explicit, we now extend the definition
of a Bayesian network to (V, par, cpd,d): the set cpd still contains the factors
for non-deterministic variables V1, . . . , Vm, and the new set d contains the deter-
ministic factors for deterministic variables Vm+1, . . . , Vn. So, factor dj must be a
factor over par(Vj) with values in dom(Vj) (unlike a cpd j factor, Vj /∈ dim(dj)).
An example is shown in Fig. 5; it is the same Bayesian network fragment as in
Fig. 3, but now with explicit deterministic variables.

To emphasize the simplicity and generality of our rewrite rule, we first present
it in conventional notation for our running example. We show the marginalization
without summation of deterministic variable A:∑

a∈A

P(a|x, y)P(z |a)P(m|a, y) = P(z |A=dA(x, y))P(m|A=dA(x, y), y)

It relies on the following observation: given a certain x and y, the summation
contains only one nonzero term, because there is only one value for a that makes
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P(a|x, y) nonzero. So, instead of summing, we can just substitute this value
dA(x, y) for every a.

Note that the left-hand side of the formula corresponds to the calculations
made by Alg. 1 when eliminating A: first the product cpdA ⊗ cpdZ ⊗ cpdM is
created (a factor over 5 variables), which is subsequently reduced by summing.
The deterministic variable elimination that we will define corresponds to the
right-hand side; to eliminate A, all we need to do is construct the two factors
over variables XY Z and MXY . Their multiplication can be postponed.

To use the above substitution in factor algebra, we introduce new operations:

– Indexing f [V =d]: Factor f is indexed in dimension V ∈ dim(f) by another
factor d, which has values in dom(V ). The resulting factor f ′ = f [V =d] has
dim(f ′) = (dim(f) \ {V }) ∪ dim(d). Contrary to conventional indexing, the
dimensionality of f ′ can be larger than that of f .

– Concretization �V =d: Deterministic factor d is turned into a ‘probabilistic’
factor over the variables {V } ∪ dim(d), whose value is 1 wherever the value
of variable V matches d’s function value.

Formal definitions can be found in Fig. 1 (bottom), and examples in Fig. 6.
Note that the definition of concretization corresponds to the factor containing
the conditional probability distribution of a deterministic variable. So, translat-
ing a network with explicit deterministic variables into a conventional one is done
by setting cpd j = �Vj=dj for all m < j ≤ n. We include the concretization oper-
ation because, in general, not every deterministic variable is eliminated by factor
indexing in our algorithm: sometimes it is necessary to treat its deterministic
factor as a conventional one.

With these definitions in place, we can express the above (example) rewrite
rule in factor algebra:

ΣA(�A=dA ⊗ �M=dM ⊗ cpdZ) = �M=dM [A=dA] ⊗ cpdZ [A=dA]

This formulation merits some clarification. As we cannot directly multiply de-
terministic and probabilistic factors with each other, the equality is stated at a
‘probabilistic’ level, i.e. with all deterministic factors concretized. An additional
complication is that A is not the only deterministic variable involved: M is deter-
ministic as well. We can choose to ignore this fact, i.e. treat M as probabilistic
and just index its concretization, which results in the factor �M=dM [A=dA].
However, this turns out to equal �M=dM [A=dA], in which the deterministic fac-
tor dM is indexed by another deterministic factor dA. Unlike with multiplication,
this is no problem; see also Fig. 6. Consequently, we do not have to concretize
the dM factor when eliminating A in our elimination algorithm.

As we mentioned, the above rewrite rule can be generalized to any determin-
istic variable. The elimination of deterministic variable Vi from a product of
factors fj and deterministic factors dj can be rewritten without ΣVi summation:

ΣVi

⎛⎝�Vi=di ⊗
⊗

Vj∈dim(fj)

fj ⊗
⊗

Vj∈dim(dj)

�Vj=dj

⎞⎠ =
⊗

Vj∈dim(fj)

fj[Vi=di] ⊗
⊗

Vj∈dim(dj)

�Vj=dj [Vi=di]
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This rewrite rule can be seen as an addition to the laws in Fig. 2. It provides
more possibilities for rewriting an inference query, and can as such be used in
any inference procedure that makes use of factor operations. Here, we apply it in
a variable elimination algorithm with factor indexing (Alg. 2). It has the same
structure as Alg. 1, but is extended as follows:

– For a deterministic variable Vi, we store di instead of �Vi=di .
– To eliminate a deterministic variable Vi, we use the rewrite rule: we index

all currently existing fj and dj factors over Vi by Vi=di, and delete di itself.
– Not all deterministic variables are eliminated like this: during the elimina-

tion of a non-deterministic variable Vi, all deterministic factors over Vi have
to be concretized. Also, for a deterministic evidence variable, its factor is
concretized during initialization.

The proposed elimination heuristic is again the cost of the next elimination step.
However, we update the definition of this cost to reflect the size of the factors
produced in this step. If Vi has no deterministic factor dj associated with it, the
cost is still weight(p). If it does, we define the cost to be∑

Vi∈dim(fj)

weight(fj [Vi=di]) +
∑

Vi∈dim(dj)

weight(dj [Vi=di])

For Alg. 2, a correctness proof is similar to the one above can be given. Its
invariant is:

infQ,e = ΣW

((⊗
{all remaining fj}

)
⊗
⊗{

�Vj=dj all remaining dj

})
5 Empirical Evaluation

We have implemented the factor algebra described above in Python, using the
package NumPy which provides an n-dimensional array and executes array oper-
ations using fast C loops (not unlike MATLAB). The ⊗ operator directly trans-
lates to NumPy’s array multiplication, which can handle the situation where
the operands have different dimensions. Indexing an array with another array is
supported in NumPy as well.

We perform inference on 4 networks with deterministic nodes known from the
Bayesian network literature (the students network is from the UAI’08 evaluation
track). We also investigated 6 generated networks of 100 nodes, with 30 root
nodes and 70 nodes with 2 parents (randomly chosen from earlier generated
nodes). Each node has randomly generated probabilities; each of the 70 non-root
nodes has a chance of being deterministic, in which case we randomly generate
a deterministic function. Each variable has the same domain; between networks,
we vary the domain size (2 or 4). Also, we vary the fraction of deterministic
nodes (30%, 60%, 90% of the non-root nodes).
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Algorithm 2. Minweight variable elimination with factor indexing.

Input: – Bayesian network w/det. vars (V, par, {cpd1, . . . , cpdm}, {dm+1, . . . , dn})
– query variables Q ⊆ V; evidence e (instantiation of E ⊆ V)

Output: result, a factor over Q equal to infQ,e

W := V \ (Q ∪ E)
foreach cpd j do fj := cpd j(e)

foreach dj do
if Vj ∈ E then

fj := �Vj=dj (e)

else
dj := dj(e)

while W is not empty do
choose Vi ∈ W for which the cost of eliminate(Vi) is smallest
eliminate(Vi)
W := W \ {Vi}

result := (
⊗

{all remaining fj})⊗
⊗{

�Vj=dj all remaining dj

}
procedure eliminate(Vi)

if di exists then
foreach dj s.t. Vi ∈ dim(dj) do dj := dj [Vi = di]
foreach fj s.t. Vi ∈ dim(fj) do fj := fj [Vi = di]
delete di

else
p := �

foreach dj s.t. Vi ∈ dim(dj) do
p := p ⊗ �Vj=dj

delete dj

foreach fj s.t. Vi ∈ dim(fj) do
p := p ⊗ fj

delete fj

fi := ΣVip

For each network, we take medians over 10 runs; in each run, we instantiate 10
randomly chosen1 evidence variables e and choose one random query variable Q.
Then we use algorithms Alg. 1 and Alg. 2 to generate a symbolic expression (a
plan) for infQ,e, i.e. we execute them as a rewrite phase as discussed in Sect. 3.
As it is completely implemented in Python (without regard for speed), we do
not time this phase; its performance would severely distort the overall timing
results.

We record the cost of the generated plans, i.e. the summed weight of all the
intermediate factors. In the second phase, we evaluate the plans and record the
(wall clock) duration. The experiments were performed on a machine with a
3GHz Intel Core2Duo processor and 2GB RAM.

Results are shown in Table 1: the factor indexing technique provides speedups
ranging up to 16×. Expectations are confirmed that it works best with a high

1 However, for students, we took the 9 easiest evidence files from the UAI’08 evaluation.
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Table 1. Experimental results. Numbers are median values over 10 random queries.

network # vars plan cost cost impr. eval. time (s) speedup
(det.) Alg. 1 Alg. 2 Alg. 1/Alg. 2 Alg. 1 Alg. 2 Alg. 1/Alg. 2

munin-1 189 (65) 278M 260M 1.00 6.94 7.91 0.935
munin-4 1041 (411) 23.3M 19.2M 1.22 0.481 0.382 1.25
diabetes 413 (24) 13.2M 13.1M 1.00 0.148 0.151 0.994
students 376 (304) 4.32M 14.7K 293 0.205 0.053 4.13

random-2-30 100 (±21) 16.3K 3.85K 2.91 0.0120 0.0106 1.15
random-2-60 100 (±42) 19.6K 2.47K 5.82 0.0121 0.0088 1.35
random-2-90 100 (±63) 14.6K 0.711K 15.0 0.0117 0.0064 1.90
random-4-30 100 (±21) 6.28M 2.38M 9.23 0.122 0.0536 5.38
random-4-60 100 (±42) 2.27M 49.0K 55.1 0.0504 0.0098 5.39
random-4-90 100 (±63) 4.41M 14.7K 257 0.0908 0.0065 16.3

fraction of deterministic nodes and/or larger domain sizes. However, we noticed
that the variance in performance between runs can be high: we suspect that
the current heuristic can easily guide the algorithm in the wrong way, and will
investigate more robust heuristics in the future.

6 Conclusions and Future Work

We propose a new variable elimination technique for exact inference on Bayesian
networks, in which deterministic variables are eliminated not by summation
but by a factor indexing operation. We emphasize the role of factor algebra,
which enables (a) a concise definition of the algorithm, (b) a straightforward
correctness proof, and (c) a model for defining an elimination order heuristic in
terms of the cost of array operations. Indeed, our updated minweight heuristic
has little to do with the network’s graph structure anymore; this is in line with
common knowledge that treewidth is not so important for highly deterministic
networks.

A preliminary empirical evaluation shows that the technique performs de-
cently on real-world networks (small speedups) and good on randomly generated
networks (speedups of 1–16). We expect much room for improvement here: first,
by developing heuristics that take into account the actual cost of performing the
different array operations instead of the size of the resulting array; second, by
exploiting low-level machine knowledge to decrease these actual costs (building
on the connection between inference optimization and database research which
we have pointed out). For example, current CPUs and GPUs often feature vec-
torized processing modes, which we expect can be exploited for the bulk array
operations of probabilistic inference. When used properly, this might outper-
form inference techniques for determinism that cannot be expressed as array
operations, e.g. [1,8].
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Furthermore, we argue that our technique has much potential for combination
with other inference algorithms that use factor operations, e.g. junction tree
propagation[9], recursive conditioning[3] and factor decomposition techniques
[5,6,10].
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Abstract. When using lower probabilities to model uncertainty about the value
assumed by a variable, 2-monotonicity is an interesting property to satisfy, as it
greatly facilitates further treatments (such as the computation of lower/upper ex-
pectation bounds). In this paper, we show that multivariate joint models induced
from marginal ones by strong independence, epistemic independence or epis-
temic irrelevance do not usually preserve such a property, even if it is satisfied by
all marginal models. We then propose a joint model outer-approximating those
induced by strong and epistemic independence and study some of its properties.

Keywords: factorisation properties, credal sets, propagation, lower previsions.

1 Introduction

In imprecise probability theories where uncertainty is represented by so-called credal
sets (i.e., convex sets of probabilities), or equivalently by lower expectation bounds
(called coherent lower previsions by Walley), independence modeling and tractability
are two important issues.

Indeed, the notion of independence plays an essential role in uncertainty theories
when dealing with multivariate spaces, its associated factorization properties allowing
to decompose a complex problem into simpler ones, or to easily build joint models from
marginal ones. When probabilities or expectations are made imprecise, the notion of
stochastic independence used in probability theory can be extended in several ways, and
such extensions have been proposed and compared by many authors (see, for example,
Walley [1] and Couso et al. [2]).

On the other hand, tractability is essential in many applications, and although using
general uncertainty models is certainly attractive from a theoretical point of view, their
complexity often makes them difficult to handle computationally. In practice, tractabil-
ity can be improved by restricting oneself to classes of uncertainty models that presents
a good trade-off between generality and computational convenience. 2-monotone lower
probabilities, that encompass many useful uncertainty models (e.g., p-boxes [3], possi-
bility distributions [4], belief functions [5], probability intervals [6]), correspond to such
a class, as satisfying the property of 2-monotonicity greatly facilitates the handling of
uncertainty in information treatments (e.g., to compute lower and upper expectation
bounds). This is why researchers have devoted a lot of attention to such models [7,8].

In this paper, we consider the problem of whether the property of 2-monotonicity is
preserved when building a joint representation induced from marginal representations
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and a strong independence, an epistemic irrelevance or an epistemic independence as-
sumption. After introducing notations and required preliminaries in Section 2, we show
in Section 3 that 2-monotonicity is not preserved under none of the assumptions of
strong independence, epistemic independence or epistemic irrelevance. In order to solve
this issue, we propose in Section 4 an outer approximation by extending the notion of
random set independence to 2-monotone lower probabilities. We also study some prop-
erties of this approximation, concluding that, while this approximation may be useful
in some cases, its usefulness within Walley’s theory of imprecise probabilities may be
limited. In order to simplify our exposure, we will limit ourselves to the case of two
variables, however most presented results readily extend to any number of dimensions.

2 Preliminaries

This section recalls basic notions and introduces main notations used in the rest of
the paper. Although we deal with marginal uncertainty models defined by 2-monotone
lower probabilities, we will start from lower expectations, as they are needed to express
the joint models resulting from different independence assumptions.

2.1 Lower Expectations and Credal Sets

Consider a variable X whose value lies in a finite space X . We assume here that the
uncertainty on X is described by a lower expectation (or coherent lower prevision in
Walley’s terms) P : L (X )→R defined over the set L (X ) of all real-valued functions
over X . The lower probability of an event A ⊆X corresponds to the value P(1A ),
where 1A is the indicator function of A. Here, it will be denoted by P(A) when no
confusion is possible. From a lower expectation, one can consider the dual notion of
upper expectation P, linked to lower expectation by the relation P( f ) = −P(− f ). In
the specific case of lower probabilities, the dual notion of upper probability is such
that P(A) = 1−P(A), with A the complement of A. A classical expectation operator
will be denoted P : L (X )→ R, the corresponding mass function p being defined as
p(x) := P(1x ),x ∈X with P( f ) = ∑x∈X p(x) f (x).

A lower expectation P induces a corresponding closed convex set M (P) of domi-
nating probability distributions, here called credal set, such that

M (P) = {p ∈ PX |P( f )≥ P( f ) ∀ f ∈L (X )},

where PX is the set of all probability masses over X . One can show that there is a
one-to-one correspondence between lower expectations and credal sets (that is, each
credal set correspond to one and only one lower expectation, and vice-versa).

In practice, the information contained in P can often be restricted to, or is given for,
a finite subset K of L (X ), and the induced credal set is then

M (P) = {p ∈ PX |P( f )≥ P( f ) ∀ f ∈K }.

In such a case, the lower expectation, or natural extension1 induced by P on any func-
tion g ∈ L (X ) is given by P(g) = min{P(g)|p ∈M (P)}. This natural extension

1 Note that here, we use the same notation for P and its natural extension, as we only deal with
so-called coherent lower previsions.
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represents the most conservative inference one can make when all the information we
have about X is represented by the initial lower prevision.

The evaluation of this natural extension, which plays an essential role in further in-
ferences, may represent a heavy computational burden, especially when the space X is
large (as happens in the multivariate case). An important case where this computational
burden can be reduced is when P can be restricted to events (i.e., is a lower probabil-
ity) and satisfy the property of 2-monotonicity. This property is satisfied if, for any pair
A,B⊆X of events, the following inequality holds:

P(A)+ P(B)≤ P(A∪B)+ P(A∩B).

Such a property ensures, for instance, that extreme points of M (P) can be easily de-
termined [9], or that natural extension over any function can be computed thanks to a
Choquet integral. Also, 2-monotonicity is a sufficient condition for P to be coherent.

2.2 2-Monotone Lower Probability and Möbius Inverse

Let P be a lower probability on X . Its Möbius inverse m : ℘(X )→ R is defined as a
mapping from the power set of X to the real space such that, for every subset E ⊆X ,

m(E) = ∑
A⊆E

(−1)|E\A|P(A), (1)

with |E \A| the cardinality of E \A. Note that for any lower probability, ∑E⊆X m(E) =
1, m( /0) = 0 and m({x}) ≥ 0 for any x ∈X . From the Möbius inverse m, the lower
probability P(A) of an event A can be found back through the formula

P(A) = ∑
E⊆A

m(E). (2)

Chateauneuf and Jaffray [9] (among other things) have proved the following relation
between 2-monotone lower probabilities and their Möbius inverse:

Proposition 1. P is a 2-monotone lower probability if and only if its Möbius inverse m
is such that, for any A⊆X and all {x1,x2} ∈ A, x1 �= x2,

∑
{x1,x2}⊆B⊆A

m(B)≥ 0

This proposition have the following corollary.

Corollary 1. If P is a 2-monotone lower probability, then m(E)≥ 0 for all E such that
|E| ≤ 2.

However, the inverse is not true, i.e., any mapping m with ∑E⊆X m(E) = 1 and m(E)≥
0 for all E such that |E| ≤ 2 will not induce a 2-monotone lower probability, as shows
the next example:

Example 1. Consider a 3 element space X = {x1,x2,x3} with the mass function m
such that

m({x1}) = 0.1, m({x2}) = 0.2, m({x3}) = 0.5, m({x1,x2}) = 0,

m({x1,x3}) = 0.2, m({x2,x3}) = 0.3, m(X ) =−0.3.
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Using Eq (2), we get P({x1}) = 0.1 and P({x2,x3}) = 1, a non-coherent lower proba-
bility which therefore cannot be 2-monotone (another means to see it is to consider the
pair of events A = {x1,x3} and B = {x2,x3}).

Chateauneuf and Jaffray have also shown that, in the case of 2-monotone lower proba-
bilities, natural extension can be computed using the Möbius inverse.

Proposition 2. Let P be a 2-monotone lower probability and m its Möbius inverse.
Then, its natural extension to any function f ∈L (X ) is given by

P( f ) = ∑
E⊆X

m(E) inf
x∈E

f (x). (3)

These results will be instrumental in the rest of the paper.

3 2-Monotonicity Preservation Under Independence Assumptions

We now assume that the uncertainty about two variables X and Y taking their values on
finite spaces X and Y , respectively, are modeled by the 2-monotone lower probabili-
ties PX and PY , respectively. In order to make inferences on the whole space X ×Y ,
one needs to build a joint uncertainty model P : L (X ×Y )→ R over it that respects
the marginal information given by PX and PY .

As recalled in the introduction, independence assumptions allow one to easily build
such a joint uncertainty model from marginal ones. In probability theory, this is done
by using the notion of stochastic independence. When considering lower expectations
as a model of uncertainty, there exist many ways in which stochastic independence can
be extended [2]. Also, one may require, when building the joint uncertainty model, that
this joint model remains 2-monotone, if only for computational convenience.

We will show in this section, by the means of simple counter-examples, that the joint
models obtained from the marginals PX , PY and the various assumptions of strong in-
dependence, epistemic irrelevance or epistemic independence (each of them briefly re-
called in the corresponding subsection) are not, in general, 2-monotone lower
probabilities.

3.1 Strong Independence

The concept of strong independence directly extends the concept of stochastic inde-
pendence to sets of probabilities, in the sense that it corresponds to take the stochastic
product of every probability mass function inside M (PX ) and M (PY ). The joint lower
expectation obtained by such an assumption, denoted by PSI , is then such that for any
f ∈L (X ×Y ),

PSI( f ) = inf{P12( f )|P12 = P1⊗P2,P1 ∈M (PX ),P2 ∈M (PY )},

where ⊗ is the classical stochastic product. Let us now show that 2-monotonicity is, in
general, not preserved by an assumption of strong independence.
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Example 2. Consider two binary spaces X = {x1,x2} and Y = {y1,y2}. Recall that
any lower expectation on such spaces can be restricted to their values on singletons.
Hence they are lower probabilities, which happens to always be 2-monotone. Consider
then the following marginal lower probabilities:

PX ({x1}) = 0.3,PX ({x2}) = 0.5 and PY ({y1}) = 0.4,PY ({y2}) = 0.4

Now, consider the two events A = {X ×y1} and B = {(x1×y2)∪(x2×y1)} on X ×Y .
Under an assumption of strong independence, we have

PSI(A) = PY ({y1}) = 0.4,

PSI(B) > 0.4,

where the second inequality follows from the fact that all probability masses p which
dominate PSI must satisfy p(y1|x2)≥ PY ({y1}) = 0.4 and p(y2|x1) ≥ PY ({y2}) = 0.4,
whence

P(B) = p(y1|x2)p(x2)+ p(y2|x1)p(x1)≥ 0.4(p(x2)+ p(x1)) = 0.4

for all probabilities P which dominate PSI . The actual value is 0.46, obtained by choos-
ing probability masses p(x1) = 0.3 and p(y1) = 0.4. Then, using the factorization prop-
erties of PSI over events, we have

PSI(A∩B) = P(x2× y1) = P(x2)P(y2) = 0.2,

PSI(A∪B) = P(x2× y2) = 1−P(x2)P(y2) = 0.58,

hence, PSI violates 2-monotonicity,as

PSI(A)+ PSI(B)≥ 0.8≥ PSI(A∪B)+ PSI(A∩B) = 0.78.

3.2 Epistemic Irrelevance

The concept of epistemic irrelevance [10] corresponds to an asymmetric concept, ex-
pressing the idea that learning the value of a variable does not modify the uncertainty
(or the knowledge) about the value of another variable (not excluding the possibility
that learning the value of the latter may modify our uncertainty about the former).
Here, we consider the statement that X is epistemically irrelevant to Y and denote it
by X �→ Y . The corresponding joint lower expectation, denoted by PX �→Y , is such that,
for any f ∈L (X ×Y ),

PX �→Y ( f ) = PX(PY ( f (X , ·))), (4)

where PY ( f (X , ·)) is a function on X assuming the value PY ( f (x, ·)) for every x∈X .
Note that, when X is epistemically irrelevant to Y , we have that the sets

{P(·|x)|P ∈M (PX �→Y )} = M (PY )

coincide for every x ∈ X , with P(·|x) the conditional expectation of P. Recall that,
given a joint probability mass p over X ×Y , the conditional expectation P( f |x) of a
function f : Y →R is the expectation of f w.r.t. the conditional probability mass p(·|x).
This links epistemic irrelevance with credal sets.
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Example 3. Consider the same model as in Example 2. The same arguments than for
strong independence (factorization and bounds on conditional dominated probabilities)
still hold, hence epistemic independence still violates 2-monotonicity. Note that, in this
case, the value PX �→Y (B) = 0.4 is exact and can be computed by linear programming.

3.3 Epistemic Independence

The concept of epistemic independence [11] is the symmetric counterpart of epistemic
irrelevance. It corresponds to the statements that X and Y are epistemically irrelevant of
each others, denoted by X �↔ Y . The corresponding joint lower expectation, denoted by
PX �↔Y , is such that, for any f ∈L (X ×Y ),

PX �↔Y ( f ) = inf{P( f )|P ∈
(
M (PX �→Y )∩M (PY �→X )

)
}.

Similarly to epistemic irrelevance, we have that the sets

{P(·|x)|P ∈M (PX �↔Y )}= M (PY ) and {P(·|y)|P ∈M (PX �↔Y )} = M (PX )

coincide for every x ∈X and y ∈ Y .

Example 4. Consider the same model as in Example 2. The same arguments than for
strong independence (factorization and bounds on conditional dominated probabilities)
still hold, hence epistemic independence still violates 2-monotonicity. Note that, in
this case, the value PX �↔Y (B) = 0.4 is again exact and can be computed by linear
programming.

4 A 2-Monotone Outer-Approximation

In this section, we propose and study a notion that allows one to easily build, from
marginals, a joint lower probability that is still 2-monotone and outer-approximates the
joint uncertainty models obtained by independence assumptions of Section 3.

4.1 Definition and Basic Properties

We start by defining how the uncertainty joint model is built, and call the associated
notion Möbius inverse independence (MI).

Definition 1 (Möbius inverse independence). Consider two lower probabilities PX ,
PY defined on finite spaces X ,Y and their respective Möbius inverse mX ,mY . The
Möbius inverse mMI obtained under an assumption of Möbius inverse independence is
defined as the mapping mMI : X ×Y →R such that, for every A×B⊆X ×Y ,

mMI(A×B) = mX(A)mY (B) (5)

This notion of independence is symmetrical. The joint lower probability PMI induced
by mMI over X ×Y is then defined for every event E ⊆X ×Y as
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PMI(E) = ∑
(A×B)⊆E

mMI(A×B).

The MI notion can simply be seen as an extension of the notion of random set inde-
pendence [2]. Random set independence notion applies to specific kinds of 2-monotone
lower probabilities, i.e., belief functions. Recall that a belief function Pbel : X → [0,1]
is a lower probability such that, for any collection of events {A1, . . . ,An} ⊆ X , the
following inequality

Pbel(
⋃

i=1n

Ai)≥ ∑
I⊆{1,...,n}

(−1)|I +1|P(
⋂

i∈I

Ai)

holds. Belief functions are also characterised by the fact that their Möbius inverse are
non-negative. Given this similarity, we can expect the resulting joint uncertainty model
PMI to share some properties fo the joint model obtained under an assumption of ran-
dom set independence (i.e. preservation of n-monotonicity and outer-approximating
other joint models studied in Section 3). It should be noted that the Möbius inverse and
the corresponding independence notion are here used as a mathematically and com-
putationally convenient tool, and that no semantic is associated to it. Indeed, how to
interpret non-positive weights on subsets is still an open problem.

Proposition 3. Let PX , PY be 2-monotone lower probabilities, then PMI is a 2-monotone
lower probability.

Proof. In order to show that PMI is 2-monotone, we have to show that mMI has the
following properties:

1. mMI( /0) = 0
2. ∑A×B⊆X ×Y mMI(A×B) = 1
3. For any A×B⊆X and all {x1×y1,x2×y2}∈A×B, ∑{x1×y1,x2×y2}⊆C⊆A×B m(C)≥

0 holds (using Prop. 1).

The first property is easily shown, as mX ( /0) = mY ( /0) = 0. The second property follows
from

∑
A×B⊆X×Y

mMI(A×B) = ∑
A⊆X

∑
B⊆Y

mX (A)mY (B) = ∑
A⊆X

mX(A) ∑
B⊆Y

mY (B) = 1.

Now, let us show the third property. We have

∑
{x1×y1,x2×y2}⊆C⊆A×B

m(C) = ∑
{x1×y1,x2×y2}⊆A′×B′⊆A×B

m(A′)m(B′)

= ∑
{x1,x2}⊆A′⊆A

m(A′) ∑
{y1,y2}⊆B′⊆A

m(B′)≥ 0,

where the last inequality comes from the fact that the two sums are positive (according
to Prop. 1). �

Let us now show that the joint lower probability PMI outer-approximates the joint un-
certainty models obtained by other independence notions.
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Proposition 4. Let PX , PY be 2-monotone lower probabilities, then the joint uncer-
tainty model PMI outer-approximates the joint uncertainty models PX �→Y ,PY �→X ,PX �↔Y ,
PSI, in the sense that for any f ∈L (X ×Y ),

PMI( f ) ≤min{PX �→Y ( f ),PY �→X ( f ),PX �↔Y ( f ),PSI( f )}.

Proof. First, recall that joint models obtained by independence assumptions are related
in the following way:

max{PX �→Y ,PY �→X} ≤ PX �↔Y ≤ PSI

where the joint uncertainty models are obtained from the same marginals PX ,PY . Hence,
it is sufficient to show that PMI ≤ PX �→Y to prove that PMI outer-approximates the other
joint uncertainty models.

Consider a function f ∈ L (X ×Y ). Using the fact that PX , PY are 2-monotone
lower probabilities and combining Eq. (3) with Eq. (4), we obtain that PX �→Y ( f ) can be
reformulated as follows:

PX �→Y ( f ) = ∑
A⊆X

mX (A) inf
x∈A

(
∑

B⊆Y

mY (B) inf
y∈B

f (x,y)

)
.

Similarly, since we have shown that PMI is 2-monotone, we can use Eq. (3) and obtain

PMI( f ) = ∑
A×B⊆X ×Y

mMI(A×B) inf
x,y∈A×B

f (x,y)

= ∑
A⊆X

∑
B⊆Y

mX(A)mY (B) inf
x∈A

inf
y∈B

f (x,y)

= ∑
A⊆X

mX(A) ∑
B⊆Y

mY (B) inf
x∈A

inf
y∈B

f (x,y).

This shows that PMI( f )≤ PX �→Y ( f ), since

∑
B⊆Y

mY (B) inf
x∈A

inf
y∈B

f (x,y) ≤ inf
x∈A

(
∑

B⊆Y

mY (B) inf
y∈B

f (x,y)

)
. ��

Next section discusses the interest of the proposed approximation for various
applications.

4.2 Discussion about Practical Interest

To simplify notations, we identify in this section a function g defined on space X
with its cylindrical extension to the cartesian product X ×Y (defined, for every x ∈
X and all y ∈ Y , as g(x,y) = g(x)), and we identify similarly functions defined on
space Y . Within the theory of lower prevision, recent works [12,13] have focused at
characterising interesting factorisation properties of joint models. One of the weakest
properties developed in these works is the one of productivity, defined as follows in the
case of two variables:
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Definition 2 (Productivity). Consider a joint lower expectation P on L (X ×Y ).
This lower expectation is called productive if for all g ∈L (X ) (resp. all g ∈L (Y ))
and all non-negative f ∈L (Y ) (resp. all f ∈L (X )), P( f [g−P(g)])≥ 0.

Unfortunately, the next example shows that the joint uncertainty model PMI obtained
under an MI assumption does not satisfy this property.

Example 5. Let X = {x1,x2} and Y = {y1,y2} be two binary spaces. Consider two 2-
monotone lower probabilities PY and PX defined on this space and their Möbius inverses
mX and mY (note that they are positive), such that

mX({x1}) = α1,mX ({x2}) = α2 and mX (X ) = 1−α1−α2;

mY ({y1}) = β1,mY ({y2}) = β2 and mY (Y ) = 1−β1−β2;

Now consider two functions g∈L (X ) and f ∈L (Y ) such that g(x1)= a < g(x2)= b
and 0 < f (y1) = c < f (y2) = d. Consider now PMI as a joint uncertainty model, and let
us calculate PMI( f [g−PMI(g)]). Let us first consider PMI(g). As g ∈L (X ), we have
that

PMI(g) = α2b +(1−α2)a,

and the function h = f [g−P(g)] on X ×Y is summarised in Table 1 below.

Table 1. Function f [g−P(g)] of Example 5

h = f [g−PMI(g)] x1 x2

y1 cα2(a−b) < c(1−α2)(b−a)

<

<

y2 dα2(a−b) < d(1−α2)(b−a)

The inequalities in Table 1 are due to the two inequalities a ≤ b and 0 ≤ c ≤ d and
to the fact that (a−b)≤ 0, (1−α2) ≥ 0. Note that the four values are totally ordered.
Using Eq. (3) and Definition 1, we have that

PMI(h) = (1−α2)(1−β1)h(x1,y2)+β1(1−α2)h(x1,y1)+α2(1−β2)h(x2,y1)+α2β2h(x2,y2)

= (1−α2)((1−β1)h(x1,y2)+β1h(x1,y1))+α2((1−β2)h(x2,y1)+β2h(x2,y2))

= ((1−α2)α2(a−b)(d−β1d +β1c))+(α2(1−α2)(b−a)(c−β2c+β2d))

= (1−α2)α2(b−a)(c−d)(1−β2 −β1) = (1−α2)α2(b−a)(c−d)β3

If we assume that 0 < α2 < 1, then this value is negative (as b−a > 0 and c−d < 0),
unless β3 = 0, that is unless PY is a precise probability. If we extend these conclusions
to all possible f and g satisfying Def. 2, this means that PMI( f [g−PMI(g)]) ≥ 0 only
in degenerated cases (that is, when PX and PY are either both precise probabilities or
vacuous models).
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This example shows that we cannot expect the notion of Möbius inverse independence
(and also of random set independence) to satisfy productivity as well as other stronger
factorization properties that imply productivity. In the framework of lower previsions,
such factorisation properties allows to easily derive laws of large numbers, or are instru-
mental in the construction of generalisation of Bayesian networks. However, it should
be noted that random set independence (of which Möbius inverse independence is a
direct extension) has been used in graphical models [14], hence not satisfying produc-
tivity does not mean that this independence notion cannot be useful in such models.

Also, the computational convenience of this approximation may be useful in some
practical applications involving the computation of natural extension. One such appli-
cation, illustrated by the following (simple) example, may be multi-criteria decision-
making under uncertainty.

Example 6. Assume that some decision maker (DM) wants to build a new airport in a
region, and has retained some sites to do so. After selecting sites whose building costs
are roughly equivalent, the DM decides to base his/her decision on some additional
criteria: the easiness of access to main roads (variable X defined on X ), the generated
pollution impact on nearby lands (variable Y defined on Y ) and the public opinion
(variable Z defined on Z ). Each criterion is evaluated on a utility scale ranging from 1
to 4, 1 being the worst case, 4 the best. Criteria values are then aggregated according
to a weighted average f = wX X + wYY + wZZ to obtain the global utility of a given
alternative, where wX = 0.2,wY = 0.4,wZ = 0.4 are the importance weights given to
each criterion.

Now, consider an alternative where the utility of each criterion is uncertainly known.
The uncertainty concerning variable X is given by the following probability intervals
(i.e. upper and lower probabilities over singletons):

P({1}) = 0.1, P({2}) = 0.2, P({3}) = 0.6, P({4}) = 0.7

P({1}) = 0, P({2}) = 0, P({3}) = 0.3, P({4}) = 0.3

This uncertainty can correspond to the fact that a major road is likely to be built in the
future in the region, but that this fact is not fully certain. Uncertainty can come, for
example, from an expert. These probability intervals are 2-monotone (we refer to [6]
for details on probability intervals) and their Möbius inverse is such that

mX({3}) = mX({4}) = 0.3, mX ({3,4}) = mX({1,2,4}) = mX({1,3,4}) = 0.1,

mX ({2,3,4}) = 0.2, mX (X ) =−0.1.

Concerning variable Y , risk analysis shows that pollution impact may be high, and
the related uncertainty is modeled by the possibility distribution (recall that possibility
distributions have Möbius inverses which are positive and are such that non-null masses
are given to nested sets)

mY ({1}) = 0.3, mY ({1,2}) = 0.7.

Finally, public opinion has been gathered by a survey where answers could be im-
precise (hence, frequencies are given to set of values). The results are such that

mZ({2}) = 0.3, mZ({4}) = 0.2, mZ({1,2}) = 0.2, mZ(Z ) = 0.3.
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The weighted average (or any other aggregation functions) is a mapping f : X ×
Y ×Z → R, and as it seems reasonable to assume that each criterion is independent
of the other, we can use mMI as a joint model over X ×Y ×Z to compute lower and
upper expectations outer approximating results given by other (more complex) joint
models. Using mX ,mY ,mZ as uncertainty models, the results are (for lower and upper
expectations)

PMI( f ) = 1.936 ; PMI( f ) =−PMI(− f ) = 2.62.

Note that, in the above example, f can be replaced by any mapping or by any indi-
cator function on the resulting output of f , thus allowing one to perform uncertainty
propagation through f .

Finally, let us make two remarks concerning complexity related issues:

– storing information in terms of the Möbius inverse means storing at most 2|X |

values, as for lower probabilities on every events. This can be compared to the
maximum number of extreme points of a credal set induced by a 2-monotone lower
probability [9], which is |X |! (i.e., the number of permutations among elements of
X );

– when working in a multivariate space, computing the lower expectation PMI( f )
has a complexity that increases exponentially with the number of variables. This is
comparable to the complexity associated to the computations under an assumption
of forward irrelevance [10]. Also, if an important number of Möbius inverses are
positive (i.e., if marginal probabilities often correspond to belief functions), then
exact computations could be combined with efficient simulation techniques [15].

5 Conclusions

Independence notions play a central role in many applications of uncertainty reasoning.
We have shown that the joint models obtained by independence notions proposed in
the theory of imprecise probabilities, in which uncertainty is modeled by the means of
credal sets or lower previsions, do not preserve the 2-monotonicity property of marginal
uncertainty models (when these latter models satisfy it).

This is a practical downside of these independence notions, as satisfying 2-
monotonicity increases the computational tractability of imprecise probabilistic mod-
els. To solve this issue, we have proposed a 2-monotone outer-approximation by simply
extending the notion of random set independence to 2-monotone lower probabilities.

This approximation does not satisfy the weak property of productivity, which is
implied by many other factorization properties of joint models. This means that this
approximation cannot benefit from results associated to such properties. Still, there re-
mains applications where this approximation may be useful, such as the one involv-
ing uncertainty propagation or expectation bound computations. Especially, since this
approximation is an extension of the random set independence, it may benefits from
algorithms and methods originating from random set and evidence theory.
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Abstract. The Dempster-Shafer theory (DST) is particularly interest-
ing to deal with imprecise information. However, it is known for its high
computational cost, as dealing with a frame of discernment Ω involves
the manipulation of up to 2|Ω| elements. Hence, classification problems
where the number of classes is too large cannot be considered. In this
paper, we propose to take advantage of a context of ensemble classifica-
tion to construct a frame of discernment where only a subset of classes is
considered. We apply this method to script recognition problems, which
by nature involve a tremendous number of classes.

Keywords: Dempster-Shafer theory, Dynamic frames of discernment,
Data fusion.

1 Introduction

The Dempster-Shafer theory (DST) [1, 2] is a particularly interesting theory to
deal with imprecise, conflictive or partial sources of information. The counterpart
of this efficiency is its high computational complexity. One of the main reasons
for this complexity is related to the state-space (or frame of discernment): When
the actual value ω0 taken by a variable W is only known to belong to a set
Ω = {ω1, . . . , ω|Ω|} of possible values, the distributions encoding some knowledge
on W are defined over 2|Ω| focal elements (the element of the power set of Ω,
noted P(Ω)), leading to an exponential number of elements to deal with. To
balance that, several methods exist. The most natural idea is to try to reduce
the number of such focal elements, by forcing some mass assignments to 0,
so that the remaining ones display a particular structure which is supposed
to be relevant with respect to the knowledge encoded (for instance, Bayesian
[3], consonant [4], and k-additive mass functions [5]). Another natural idea is
to reduce the size of Ω with various low-cost processings, so that the refined
modeling of DST is left only to the most interesting possible values for W .
In [6], mass functions are defined directly on Ω rather than P(Ω), but it is
only possible if Ω is fitted with a partially ordered structure. Finally, in [7],
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the authors propose to consider coarsened frames, to reduce the computational
cost of the following Dempster’s rule. On the contrary, many works consider a
problem dual of ours, i.e. constructing an exhaustive frame thanks to multiple
evidences based on partial frames, such as in [8] or [9].

In this paper, we consider classification problems (i.e. the variableW is a class
variable) where the number of classes involved (i.e. |Ω|) is very large, such as
in handwriting word recognition, where a dictionary may contain up to 100, 000
words. To face the corresponding computational issue, we propose to reduce the
size of Ω. To do so, we propose to take advantage of a context of ensemble
classification to construct a frame of discernment where only a subset of classes
is considered. These classes are dynamically selected according to the diversity
of the classifiers involved. We propose and compare different strategies to build
such a dynamic frame. We show that the proposed strategies considerably reduce
the complexity of a DST approach to ensemble classification, while providing
a statistically significant improvement of the classification performances with
respect to classical probabilistic combination methods.

The paper is structured as follows: In Section 2, we recall the basis of hand-
writing recognition, and we recall some results on ensemble classification in the
context of DST. In Section 3, we present four different strategies to define dy-
namic frames of discernment. Finally, we compare them in Section 4 on Latin
and Arabic handwriting datasets, and we discuss the results.

2 Handwriting Word Recognition

2.1 Background

One of the most popular technique for automatic handwriting recognition is to
use generative classifiers based on Hidden Markov Models (or HMM) [10]. For
each word ωi of a lexicon Ωlex = {ω1, ..., ωV } of V words, a HMM λi, i ≤ V
is defined, so that λi best fits a training set made of several different instances
of words (these instances are called example words). Practically, this training
phase is conducted by using the Viterbi EM or the Baum-Welch algorithm [10].

Then, when a new unknown word ω is considered (a test word from a testing
set), the likelihoods P(ω|λi), ∀i ≤ V are approximated by the likelihoods pro-
vided by the Viterbi decoding algorithm (noted L(ωi), ∀i), and ω is recognized
as ωj for which L(ωj) ≥ L(ωi), ∀i ≤ V . Generally, in the evaluation step, the
classifier does not provide only the “best” class, but an ordered list of the TOP
N best classes. Then, for each value of n ≤ N , a recognition rate can be com-
puted as the percentage of words for which the ground truth class is proposed
in the first n elements of the TOP N list.

This complete set-up is called an HMM classifier. In order to improve recog-
nition accuracy, it is classical to define several HMM classifiers, each working
on different features (then, the likelihood of the q-th classifier for ωi is noted
Lq(ωi)), and to combine them [11,12,13,14]. It has been established in [15], that
using a set of three classifiers working respectively on the upper contour of the
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pen mark, the lower contour, and the ink density, provides accurate results both
on Latin and Arabic datasets.

There are several ways to combine these classifiers. The most classical way
is to consider the product of the Q likelihoods for each class. It corresponds to
the assumptions that the features used by the classifiers are independent, and
that the product of the likelihoods1 is the likelihood of the resulting ensemble
classification. In the sequel, we refer to this method as the reference probabilistic
method (RPM). On the other hand, we have demonstrated in [16,17] the superi-
ority of several evidential combination methods to several classical probabilistic
combination strategies, including the RPM (which appears to be the best non
evidential method).

2.2 DST Combination of HMM Classifiers

We assume that the reader is familiar with the basic elements of the Dempster-
Shafer theory. Unfamiliar readers should refer to [1, 2], where the following no-
tions are presented: power set, mass function, focal element, vacuous/categoric/
consonant/Bayesian mass functions, conjunctive (or Dempster’s rule of-) com-
bination, pignistic transform and discounting. The combination of several prob-
abilistic classifiers in the DST is a widely studied topic [11, 18, 19, 20, 21, 22, 23,
24, 25], that we have already reviewed in previous works of ours [17, 26].

Here, to combine the results of several HMM classifiers, we use the following
procedure inspired from previous works of ours [17]: First, for each of the Q
classifiers, we normalize the likelihoods so that they sum up to one over the
whole set of classes. Second, a mass function is derived from each of the Q
classifiers. Third, the accuracy rates of the classifiers (derived from a cross-
validation procedure) are used to weight each mass function according to the
reliability of each classifier. Fourth, the Q mass functions are combined together.
Finally, a probabilistic transform is applied, and the so-derived probability values
are sorted decreasingly to provide the TOP N list.

Concerning the first and second steps, several methods may be used. We
have compared several of them in [16, 17], and finally, we consider the use of
a sigmoid function for the normalization, and the use of the inverse pignistic
transform [4] for the conversion onto a mass function. The inverse pignistic
transform converts an initial probability distribution p into a consonant mass
assignment. The resulting consonant mass assignment, denoted by p̂, is built
as follows: The elements of Ω are ranked by decreasing probabilities such that
p(ω1) ≥ . . . ≥ p(ω|Ω|), and we have

p̂
({

ω1, ω2, . . . , ω|Ω|
})

= p̂ (Ω) = |Ω| × p(ω|Ω|) (1)
p̂ ({ω1, ω2, . . . , ωi}) = i× [p(ωi)− p(ωi+1)] ∀ i < |Ω|

p̂ (.) = 0 otherwise.

1 These likelihoods are possibly weighted by the TOP 1 accuracy rate of each classifier,
if the information is available after a cross-validation procedure.
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The reason for this choice is manifold: First, it corresponds to the best trade-off
between computational complexity and performances. Second, it has no param-
eter to tune. Third, it provides a consonant mass function, which is interesting
for computational as well as epistemological reasons. As a matter of fact, the
result of a classifier is an ordered list, the natural representation of which in
the DST is a consonant mass function [26]. Then, the probability distribution
provided by each classifier can be seen as the pignistic transform of a particular
consonant mass function, that is recovered via the inverse pignistic transform.

Concerning the third step, it is either possible to use all the TOP N accuracy
rates ∀N ≤ |Ωlex|, in a manner similar to that of [17] (which generalizes the
method of [11]), or to simply use the TOP 1 accuracy rates, by the application of
a classical discounting. In spite of involving less information, we have chosen the
second option. The reason is that exactly the same information (only the TOP 1
accuracy rates) can be used to weight the classifiers in the RPM (by multiplying
each probability value given by a classifier, by its TOP 1 accuracy rate). On
the other hand, the method described in [17] (involving all the TOP N accuracy
rates) has no counterpart in the RPM. Hence, by choosing the second option, we
guarantee that the probabilistic and DST-based methods remain comparable.

In the fourth step, we consider by default a conjunctive combination. The
reasons for such a default choice are those which are detailed in [27]. It is also
possible to perform differently, as detailed in [28], where different combination
are considered depending on the pairwise conflict among the classifiers. Despite
its real interest from a performance point of view, the conditions required to
make a choice among the different combinations are not adapted to handwriting
recognition problems, and the framework proposed in [27] better corresponds to
our situation.

Finally, the probability transform we use is the pignistic transform, which
sounds natural, to remain coherent with respect to the processings of step 2.
Hence, if . is is the pignistic transform, and if pq is the probability provided by
the qth classifier, then, we consider the following classification procedure:

ω∗ = arg max
i

m(ωi) where m = ∩©Q
q=1 [p̂q]

2.3 Computational Issues

In handwritten word recognition, the set of classes is of a very high size with
respect to the cardinality of the state space in classical DST problems (up to
100, 000 words). When dealing with a lexicon set of V words, the mass functions
involved are defined on 2V values. Moreover, the conjunctive combination of two
mass functions involves up to 22V

multiplications and 2V additions. Thus, the
computational cost is exponential with respect to the size of the lexicon, and
100, 000 worlds are not directly tractable.

To remain efficient, even for large vocabularies, it is mandatory either to
reduce the complexity, or to reduce the size of the lexicon involved. To do so,
as noted in the previous section, consonant mass functions (with only V focal
elements) may be considered. In addition, it is also possible to reduce the size of
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the lexicon by eliminating all the word classes which are obviously not adapted to
the test word under consideration. Hence, we consider only the few word classes
among which a mistake is possible because of the difficulty of discrimination.
Consequently, instead of working on Ωlex = {ω1, ..., ωV }, we use another frame
ΩW , defined according to each particular test word W we aim at classifying.
That is why we say that such a frame is dynamically defined.

This strategy is rather intuitive and simple. On the other hand, to our knowl-
edge, no work has been published on a comparison of the different strategies
which can be used to define such frames. This is achieved in this paper. The
next section presents several strategies that will be compared in the sequel.

3 Dynamic Frames of Discernment

In this section, we describe several strategies to derive a frame ΩW of reduced
size from Ωlex, the latter being too large. Note that, depending on the test word
W , the number of classes among which the discrimination remains difficult may
vary. Hence, naturally, the size of ΩW may vary accordingly. On the other hand,
it is possible to force the frames to be of the same cardinality whatever the test
word (by truncating or extending it with useless classes). Hence, there are two
options: A fix or a variable cardinality of the frames ΩW , ∀W . In this paper, we
have chosen the second option. It does not improve the results, but it helps to
have a more standard basis for the comparison of the different strategies, as a
poor strategy to select the classes to built ΩW will not be balanced by looser
constraints on the acceptance/rejection of the classes.

Let us consider Q classifiers. Each classifier q provides an ordered list lq =
{ωq

1 , ..., ω
q
N} of the TOP N best classes and their corresponding likelihoods noted

L(ωq
i ), ∀i < N . The different strategies described below take as input the lists

lq ∀q ≤ Q and construct a dynamic frame with a controlled size M ≤ N ≤ |Ωlex|.

3.1 Strategy 1: Intersection

Here, the frame ΩW is made of all the words which are common to the output
lists lq, ∀q < Q. Obviously, |ΩW | depends on the lists: If the Q classifiers globally
concur, their respective lists are similar and an important proportion of their
N words are likely to be found in their intersection. On the contrary, if the Q
classifiers mostly disagree, very few words belong to the intersection of the lists.

Here, we expect |ΩW | to remain constant. Hence, the lists of all the Q classi-
fiers are considered for increasing values of N , until the intersection of the lists
is made of exactly M words (draws are randomly sorted). As the algorithm on
which the classifiers are based requires having all the probability values of each of
the Ωlex words, the lists with N = |Ωlex| are directly available and this iterative
strategy has no influence from a computational point of view.

Intuitively, the motivation for this strategy is to use the intersection scheme
to reduce the number of potential classes for the test word. The idea behind it is
that the conjunctive combination is also based on intersections of sets, and that,
by discarding all the empty intersections before its computation, unnecessary
computations are suppressed while keeping the important ones.
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3.2 Strategy 2: Union

This strategy is exactly similar to the previous one, but the frame of discernment
is made of the union of lists rather than on the intersection. Contrary to previous
strategie, if the Q classifiers globally concur, their respective lists are similar
and very few words belong to the union of the lists. On the contrary, if the Q
classifiers mostly disagree, an important proportion of their N words are likely
to be found in their union. Hence, we adjust the value of N to control the size
of the powerset, in practice a powerset size between 15 and 20 is used. The idea
motivating this strategy is the following: If a single classifier fails and provides
too bad a rank to the real class, the other classifiers will not balance the mistake
when considering the intersection strategy. Then, the union may be preferable.

3.3 Strategy 3: Borda Count

A major problem with the two previous strategies, is that, the rank in each list
is not involved in the creation of ΩW . Hence, we propose to use a Borda Count
procedure: Each class receives a number of votes corresponding to the sum of
its ranks in the Q lists. Then, the M word classes with the smallest number of
votes are selected to compose ΩW . From a computational cost point of view,
this preprocessing is rather light, as it involves Q × |Ωlex| additions and a call
to a sorting function. In practice a powerset size of 15 classes is used.

3.4 Strategy 4: Probabilistic Pre-processing

In spite of its lack of accuracy, the RPM is interesting: First, it is rather cheap
from a computational point of view. Second, whatever the value δ, it is possible
to achieve an accuracy of 100− δ% at TOP N if N is great enough. Trivially, if
N = |Ωlex|, then, the TOP N accuracy rates is 100%, but most of the time, an
accuracy rate of 100% is achieved for smaller values of N .

Then, the idea is simply to select for ΩW the M best classes according to the
RPM, (among which the real class is likely to belong to), i.e. the M classes for
which the product of the likelihood is the greatest, and to use the DST ensemble
classification as a tool to refine the decision. Thus, the RPM is used to discard
all the classes but M (even if it corresponds to a great number of classes, this
is the simple step involving less computation), and afterward, the DST based
method is used to discard the remaining M−1 classes (this discrimination being
more complex, more computational resources are allowed to it), so that a single
class (hopefully, the right one) remains. In practice a powerset size of 15 classes
is used.

The four proposed strategies built a dynamic powerset with a fixed size in
order to reduce the computational cost. In practice, a powerset size of maximum
20 classes is used. This represents a good compromise between complexity and
performance. Note that it is practically impossible to deal with powerset size of
100 due to the high the computational cost.
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4 Experiments and Results

4.1 Datasets and HMM Classifiers

Experiments have been conducted on two publicly available databases: IFN/
ENIT benchmark database of arabic words and RIMES database for latin words.
The IFN/ENIT [29] contains a total of 32,492 handwritten words (Arabic script)
of 946 Tunisian town/village names written by 411 different writers. Four differ-
ent sets (a, b, c, d) are predefined in the database for training and one set (e)
for testing. The RIMES database [30] is composed of isolated handwritten word
snippets extracted from handwritten letters (Latin script). In our experiments,
36,000 snippets of words are used to train the different HMM classifiers and
3,000 words are used in the test. The dictionary is composed of 1,612 words.
Even if the number of words is rather small with respect to a real size lexicon
(up to 100, 000), they are far too numerous, as a frame of discernment of more
than 20 classes is not tractable from a computational point of view.

Three classifiers are defined, each working on different feature sets: upper
contour, lower contour and density, such as described in [15] (see Fig. 1). The
TOP 1 and TOP 2 accuracy rates of each of these classifiers is derived from
a 10-fold cross-validation on the training sets, which are given in Table 1.
This table clearly shows that the two data sets are of heterogeneous difficulty.
Moreover, the lower contour is always the less informative feature. Practically,
in these experiments, we only use the TOP 1 accuracy rate to weight the
different classifiers during their combination, either in the RPM or in DST-
based methods. More precisely, the DST-based method is derived according
to the four strategies described above: Intersection (S1), Union (S2), Borda
Count (S3) and Probabilistic Pre-Processing, or PPP for short (S4). Practi-
cally, we consider for each word, a dynamic frame made of 15 words, in or-
der to have a great enough set, while keeping a reasonable computational
complexity.

Fig. 1. DST combination of HMM classifiers
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Table 1. Individual performances of the HMM classifiers

IFN/ENIT RIMES
Top 1 Top 2 Top 1 Top 2

HMM 1: Upper contour 73.60 79.77 54.10 66.40

HMM 2: Lower contour 65.90 74.03 38.93 51.57

HMM 3: Density 72.97 79.73 53.23 65.83

4.2 Results and Discussion

Table 2 displays the results provided by the four strategies including the RPM.
First of all, it appears that the worst results are given by the RPM, and that, the
DST-based methods are always more efficient. Second, S1 provides the poorest
results among the DST-based methods, and the results are rather similar to
that of the RPM, whereas all the other strategies provide similar results which
are far better to that of the RPM. To us, the most appealing aspect of DST-
based methods with respect to probabilistic ones, lies in the possibility that the
various sources of information remain imprecise. In other words, with them, it
is possible that the first choice of the classifier is not the good one. Hence, the
intersection strategy, by preventing any mistake of a classifier to be balanced
by the output of the other classifiers, prevents the combination of the sources
to behave as with DST principles. Thus, to us, it seems understandable that
S1 has a behavior similar to that of the RPM, rather than to that of the other
DST-based strategies. Thus, the various methods/strategies can be divided into
two groups: Group 1 is made S2, S3, S4 and group 2 is made of S1 and RPM.
More precisely, among group 1, it can be seen that (1) on RIMES, S4 is the
best one and S3 is slightly better than S2, (2) on IFN/ENIT, S2 is slightly
better than S4, which is in turn better than S3. This would lead us to promote
the fourth strategy, based on a probabilistic pre-processing. Nonetheless, this
assertion should be motivated.

Thus, the next point is to check whether the pairwise differences in the ac-
curacy rates are significant or not. If a difference is significant, it means that
the first method is clearly better than the second one. On the contrary, if the
difference is not statistically significant, then, the difference of performance is
too small to decide the superiority of one method over another (as the results

Table 2. Accuracy rates of the various strategies on the two datasets

IFN/ENIT RIMES
Top 1 Top 2 Top 1 Top 2

S1: Intersection 80.30 83.90 65.50 74.90

S2: Union 82.00 86.53 68.30 79.80

S3: Borda Count 81.17 85.73 68.67 80.13

S4: PPP 81.83 86.53 69.47 80.23

RPM 80.07 83.23 64.80 73.10
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Table 3. The p-values of MacNemar’s test for all the pairwise comparisons on the
IFN/ENIT dataset

S1 S2 S3 S4 RPM

S1: Intersection 6.0× 10−10 6.6× 10−7 0.0124 4.0× 10−5 0.5050

S2: Union . 5.6× 10−3 0.6400 7.2× 10−8

S3: Borda Count . . 0.0336 2.8× 10−3

S4: PPP . . . 6.5× 10−6

RPM . . . .

Table 4. The p-values of MacNemar’s test for all the pairwise comparisons on the
RIMES dataset

S1 S2 S3 S4 RPM

S1: Intersection 6.0× 10−10 6.0× 10−10 8.8× 10−2 7.1× 10−14 0.2175

S2: Union . 0.4363 1.3× 10−2 7.6× 10−10

S3: Borda Count . . 9.1× 10−2 6.6× 10−13

S4: PPP . . . 4.8× 10−16

RPM . . . .

would be slightly different with other training/testing sets). Test of significance
is a particular type of statistical hypothesis testing. In our case, the null hypoth-
esis is the equivalence of the methods. Practically, we use MacNemar’s test [31],
which is a χ2 test adapted to the comparison of proportions. In Tables 3 and
4, we consider all the pairwise comparisons between two methods, and for each,
we compute the p-value, i.e. the probability that the null hypothesis is true. The
smaller the p-value, the more the difference of accuracy is likely to be significant.

First off all, the p-values confirm our qualitative interpretations of the accu-
racy rates: On the two datasets S1 and RPM behave similarly, as the probabilities
that the differences between the proportions is not significant are rather high
(50.50% on IFN/ENIT, and 21.75% on RIMES).

Moreover, let us put the methods in decreasing order of performance (S2, S4,
S3, S1, RPM for IFN/ENIT and S4, S3, S2, S1, RPM for RIMES), and let us
consider the p-values associated to the comparisons of two consecutive methods
according to the previous orders (0.6400, 0.0336, 0.0124, 0.5050 for IFN/ENIT
and 9.1 × 10−2, 0.4663, 6.0 × 10−10, 0.2175 for RIMES). In this setting, we
compare each strategy to the 1 or 2 closest other strategies. It can be noted that
whatever the dataset, the smallest p-value (i.e. the most significant difference)
corresponds to the comparison of the worst strategy of group 1 (S2, S3 and S4)
and the best strategy of group 2 (S1 and RPM), which stresses the relevance of
these two groups.

Amongst group 1, on the two datasets, the strategies are not sorted in the
same order with respect to the accuracy rates, and the p-values are rather high,
indicating that these methods are roughly equivalent. Nonetheless, S4 appears to
be slightly more efficient, and, from our experiments, the latter strategy (Prob-
abilistic Pre-Processing) should be preferred, even if this choice relies on rather
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weak assumptions, as the similarity of the different methods involved requires
further experiments for a strong statistical discrimination.

Finally, let us point out that the p-value associated to the comparison of S4
and the RPM is so small, that it is almost immaterial. Hence, it proves that,
regarding the kind of data involved, the choice of the combination method is no
longer questionable, as the DST-based method is definitely more efficient.

5 Conclusion

In this article, we have considered a problem of classifier combinations in the
framework of the Dempster-Shafer theory. More precisely, we have considered
problems where the set of classes is too large to be considered as a frame of dis-
cernment, such as in handwriting word recognition, where a lexicon may contain
up to 100,000 words. Thus, we propose to select for each test word, a reduced
number of words (those among which the discrimination is the most difficult
according to the test word) in the lexicon to build the frame. This frame is
dedicated to a particular test word, which led us to call it dynamic. Then, we
propose several procedures to select the words of the lexicon to build the dy-
namic frame. We compare them on 2 different datasets corresponding to Latin
and Arabic words, containing respectively 1,612 and 946 word classes each. From
our results, the DST provides significantly more accurate results than the ref-
erence probabilistic method, in spite of the approximation due to the use of a
dynamic frame which does not contain all the words. Thus, our method provides
more accurate results while keeping the computational complexity under control.
Moreover, among the various strategies to build this dynamic frame, the most ef-
ficient one corresponds to the selection of the M words which are ranked the best
according to the probabilistic reference method. As a conclusion, probabilistic
ensemble classification seems to be an interesting pre-processing to a DST-based
ensemble classification on a dynamic frame, when the number of classes in the
problem is too great. Further works will include an exhaustive comparison of
the various means to take into account information from cross-validation (using
various types of discounting, or the method from [17]), and the use of multiple
hypothesis testing to make a choice amongst the various strategies described in
this article.
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Abstract. In this paper we study the class of consistent belief functions,
as counterparts of consistent knowledge bases in classical logic. We prove
that such class can be defined univocally no matter our definition of
proposition implied by a belief function. As consistency can be desirable
in decision making, the problem of mapping an arbitrary belief function
to a consistent one arises, and can be posed in a geometric setup. We
analyze here all the consistent transformations induced by minimizing
Lp distances between belief functions, represented by the vectors of their
basic probabilities.

1 Introduction

Belief functions (b.f.s) [1,2] are complex objects, in which different and sometimes
contradictory bodies of evidence may coexist, as they mathematically describe
the fusion of possibly conflicting expert opinions and/or imprecise/ corrupted
measurements, et caetera. Indeed, conflict and combinability play a central role
in the theory of evidence [3,4,5], and have been recently subject to novel analyses
[6,7,8]. As a consequence, making decisions based on such objects can be mis-
leading. This is a well known problem in classical logics, where the application
of inference rules to inconsistent sets of assumptions or “knowledge bases” may
lead to incompatible conclusions, depending on the set of assumptions we start
reasoning from [9]. A set of formulas Φ is said consistent iff there does not exist
another formula φ such that Φ implies both φ and ¬φ.

As each formula φ can be put in correspondence with the set A(φ) of inter-
pretations under which it holds, a straightforward extension of classical logic
consists on assigning a probability value to such sets of interpretations, i.e, to
each formula. If all possible interpretations are collected in a frame of discern-
ment, we can easily define a belief function on such a frame, and attribute to
each formula φ a belief value b(φ) = b(A(φ)) through the associated set of inter-
pretations A(φ). A belief function can therefore be seen, in this context, as the
generalization of a knowledge base [10].

A variety of approaches have been proposed in the context of classical logics
to solve the problem of inconsistent knowledge bases, such as fragmenting the
latter into maximally consistent subsets, limiting the power of the formalism, or
adopting non-classical semantics [11,12]. Even when a knowledge base is formally
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inconsistent, though, it may contain potentially useful information. Paris [9], for
instance, tackles the problem by not assuming each proposition in the knowledge
base as a fact, but by attributing to it a certain degree of belief in a probabilistic
logic approach. This leads to something similar to a belief function.

To identify the counterparts of consistent knowledge bases in the theory of
evidence we need to specify the notion of a belief function “implying” a certain
proposition A(φ). As we show in this paper, under two different sensible defini-
tions of such implication, the class of belief functions which generalize consistent
knowledge bases is uniquely determined as the set of BFs whose non-zero mass
“focal elements” have non-empty intersection. We are therefore allowed to call
them consistent belief functions (cs.b.f.s).

Analogously to consistent knowledge bases, consistent b.f.s are characterized
by null internal conflict. It may therefore be desirable to transform a generic be-
lief function into a consistent one prior to making a decision, or picking a course
of action. A similar transformation problem has been widely studied in both the
probabilistic [13,14] and possibilistic [15] case. A sensible approach, in particular,
consists on studying the geometry [16,17] of the class of b.f.s of interest and project
the original belief function onto the corresponding geometric locus.

In [18] the author has indeed investigated the consistent transformation prob-
lem in the space of belief functions, represented by the vectors of their belief
values. This paper further extends this line of research. Its goals are two-fold: 1.
to formalize the notion of consistent belief functions as counterparts of consistent
knowledge bases in belief calculus, and 2. to study the consistent transformation
problem in the mass space of the basis probability vectors. We therefore intro-
duce in Section 2 the notion of consistent belief function and prove that they
generalize consistent knowledge bases under two distinct definitions of implica-
tion. Section 3 illustrates the consistent transformation problem in geometric
terms. Finally, in Section 4 we solve the approximation problem in the mass
space, using the classical L1 (4.1), L∞ (4.2) and L2 (4.3) norms to measure
distances between mass vectors. The results are interpreted and compared with
those obtained in the belief space.

2 Semantics of Consistent Belief Functions

A basic probability assignment on a finite set (frame of discernment [1]) Θ is a
function mb : 2Θ → [0, 1] on 2Θ .= {A ⊆ Θ} s.t. mb(∅) = 0,

∑
A⊆Θ mb(A) = 1,

mb(A) ≥ 0 for all A ⊆ Θ. Subsets of Θ associated with non-zero values of mb

are called focal elements, and their intersection core: Cb
.=
⋂

A⊆Θ:mb(A) 
=0 A.
The belief function b : 2Θ → [0, 1] associated with a basic probability as-

signment mb on Θ is defined as: b(A) =
∑

B⊆A mb(B). A dual mathematical
representation of the evidence encoded by a belief function b is the plausibil-
ity function (pl.f.) plb : 2Θ → [0, 1], A !→ plb(A) where the plausibility value
plb(A) of an event A is given by plb(A) .= 1 − b(Ac) = 1 −

∑
B⊆Ac mb(B) =∑

B∩A 
=∅ mb(B) ≥ b(A) and expresses the amount of evidence not against A.
Belief logic interpretation. Generalizations of classical logic in which propo-

sitions are assigned probability, rather than truth, values have been proposed
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in the past. As belief functions naturally generalize probability measures, it is
quite natural to define non-classical logic frameworks in which propositions are
assigned belief values instead. This approach has been brought forward in par-
ticular by Saffiotti [19], Haenni [10], and others.

In propositional logic, propositions or formulas are either true or false, i.e., their
truth value is either 0 or 1 [20]. Formally, an interpretation or model of a formula
φ is a valuation function mapping φ to the truth value “true” (1). Each formula
can therefore be associated with the set of interpretations or models under which
its truth value is 1. If we define the frame of discernment of all the possible inter-
pretations, each formula φ is associated with the subset A(φ) of this frame which
collects all its interpretations. If the available evidence allows to define a belief
function on this frame of possible interpretations, to each formula A(φ) ⊆ Θ it is
then naturally assigned a degree of belief b(A(φ)) between 0 and 1 [19,10], mea-
suring the total amount of evidence supporting the proposition “φ is true”.

Consistent belief functions generalize consistent knowledge bases.
In classical logic, a set Φ of formulas or “knowledge base” is said consistent if
and only if there does not exist another formula φ such that the knowledge base
implies both such formula and its negation: Φ " φ, Φ " ¬φ. In other words, it is
impossible to derive incompatible conclusions from the set of propositions that
form a consistent knowledge base. This is obviously crucial if we want to derive
univocal, non-contradictory conclusions from a given body of evidence.

A knowledge base in propositional logic Φ = {φ : T (φ) = 1} corresponds
in a belief logic framework [19] to a belief function, i.e., a set of propositions
together with their non-zero belief values: b = {A ⊆ Θ : b(A) �= 0}. Therefore,
to determine what consistency amounts to in such a framework, we need to
formalize the notion of proposition implied by a belief function. One option is
to decide that b " B ⊆ Θ if B is implied by all the propositions supported by b:

b " B ⇔ A ⊆ B ∀A : b(A) �= 0. (1)

Alternatively, we could require the proposition B itself to receive non-zero sup-
port by the belief function b:

b " B ⇔ b(B) �= 0. (2)

In both cases we can define the class of consistent belief functions as the set of
b.f.s which cannot imply contradictory propositions.

Definition 1. A belief function b is consistent if there exists no proposition A
such that both A and its negation Ac are implied by b.

When adopting the implication relation (1), it is easy to see that A ⊆ B ∀A :
b(A) �= 0 is equivalent to

⋂
b(A) 
=0 A ⊆ B. Furthermore, as each proposition with

non-zero belief value must by definition contain a focal element C s.t. mb(C) �= 0,
the intersection of all non-zero belief propositions reduces to that of all focal
elements of b, i.e., the core of b:

⋂
b(A) 
=0

A =
⋂

∃C⊆A:mb(C) 
=0

A =
⋂

mb(C) 
=0

C = Cb.

Indeed, regardless the chosen definition of implication, the class of consistent
belief functions corresponds to the set of b.f.s whose core is not empty.
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Definition 2. A belief function is said to be consistent if its core is non-empty.

We can prove that, under either definition (1) or definition (2) of the implication
b " B, Definitions 1 and 2 are equivalent.

Theorem 1. A belief function b : 2Θ → [0, 1] has non-empty core if and only
if there do not exist two complementary propositions A, Ac ⊆ Θ which are both
implied by b in the sense (1).

Proof. We have seen above that a proposition A is implied (1) by b iff Cb ⊆ A.
Accordingly, in order for both A and Ac to be implied by b we would need Cb = ∅.

Theorem 2. A b.f. b : 2Θ → [0, 1] has non-empty core if and only if there do
not exist two complementary propositions A, Ac ⊆ Θ which both enjoy non-zero
support from b, b(A) �= 0, b(Ac) �= 0 (i.e., they are implied by b in the sense (2)).

Proof. By Definition 1, in order for a subset (or proposition, in a propositional
logic interpretation) A ⊆ Θ to have non-zero belief value it has to contain the
core of b: A ⊇ Cb. In order to have both b(A) �= 0, b(Ac) �= 0 we need both to
contain the core, but in that case A∩Ac ⊇ Cb �= ∅ which is absurd as A∩Ac = ∅.

It is worth noticing, however, that other authors have introduced a slightly
different notion of consistency, by requiring simply that the mass of the empty
set be null mb(∅) = 0, or equivalently that the core of probabilities dominating
b be non-empty [21,22].

3 The Lp Consistent Approximation Problem

The amount of internal conflict of a b.f. is typically defined as c(b) .= 1 −
maxx∈Θ plb(x) or, alternatively, c(b) .=

∑
A,B⊆Θ:A∩B=∅ mb(A)mb(B). In both

cases a belief function b is consistent if and only if its internal conflict is zero,
c(b) = 0. As cs.b.f.s are the belief logic equivalent of consistent knowledge bases,
it can be considered desirable to transform a generic belief function to a consis-
tent one prior to drawing conclusions on the phenomenon at hand.

Consistent transformation. Consistent transformations can be built by
solving a minimization problem of the form

cs[b] = arg min
cs∈CS

dist(b, cs). (3)

where dist is some distance measure between belief functions, and CS denotes
the collection of all consistent b.f.s. We call (3) the consistent approximation
problem. Plugging in different distance functions in (3) we get different consis-
tent transformations. In [18] we have studied transformations induced by norms
of vectors of belief values b in the belief space B. Similarly, we can measure dis-
tances between b.f.s via geometric norms between vectors of mass values. Here
we focus in particular on what happens when using Lp norms in the space of
basic probability assignments. This is supported by the fact that the contour
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function plb(x) of a consistent belief function is a possibility distribution, which
is in turn related to the Lp norm via Pos(A) = maxx∈A Pos(x). Note, however,
that the plausibility measure of a b.f. is a necessity measure iff b is consonant,
i.e., its focal elements are nested.

Mass space representation. To solve the consistent approximation problem
(3) we need to understand the structure of the space in which consistent belief
functions live. Each belief function is uniquely associated with the related set of
mass values {m(A), ∅ � A ⊆ Θ} and can therefore be seen as a point of RN−2,
N = |2Θ|, the vector m of its N − 1 mass components minus the mass of Θ
which is univocally determined by the normalization constraint:

m =
∑

∅�B�Θ

mb(B)mB, (4)

where mB is the vector of mass values associated with the (“categorical”) mass
function mA assigning all the mass to a single event A: mA(A) = 1, mA(B) = 0
∀B �= A. The collection M of points of RN−2 which are valid basic probability

Fig. 1. The mass space M for a binary frame is a triangle of R2 whose vertices are the
mass vectors associated with the categorical b.f.s focused on {x}, {y} and Θ. Consistent
b.f.s live in the union of the two segments CSx = Cl(mΘ, mx) and CSy = Cl(mΘ, my).

assignments is a “simplex” (in rough words a higher-dimensional triangle), which
we call mass space. M is the convex closure1 M = Cl(mA, ∅ � A ⊆ Θ).

Binary case. As an example let us consider a frame of discernment formed
by just two elements, Θ2 = {x, y}. In this very simple case each belief function
b : 2Θ2 → [0, 1] is completely determined by its mass values mb(x), mb(y) as
mb(Θ) = 1−mb(x)−mb(y), mb(∅) = 0 ∀b. We can then represent each b.f. b as
the vector of its basic probabilities (masses) m = [mb(x), mb(y)]′ of RN−2 = R2

(since N = 22 = 4). Since mb(x) ≥ 0, mb(y) ≥ 0, mb(x) + mb(y) ≤ 1 the set

1 Here Cl denotes the convex closure operator: Cl(m1, ..., mk) = {m ∈ M : m =
α1m1 + · · ·+ αkmk,

∑
i αi = 1, αi ≥ 0 ∀i}.
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M2 of all the possible belief functions on Θ2 is the triangle of Figure 1, whose
vertices are the points mΘ = [0, 0]′, mx = [1, 0]′, my = [0, 1]′ which correspond
respectively to the vacuous belief function bΘ (mbΘ (Θ) = 1), the Bayesian b.f.
bx with mbx(x) = 1, and the Bayesian b.f. by such that mby(y) = 1.

In the binary case consistent belief functions can have as list of focal elements
either {{x}, Θ2} or {{y}, Θ2}. Therefore the space of cs.b.f.s CS2 is the union of
two line segments: CS2 = CSx ∪ CSy = Cl(mΘ, mx) ∪ Cl(mΘ, my).

The consistent complex. In the general case the geometry of consistent
belief functions can be described by resorting to the notion of simplicial complex
[23]. A simplicial complex is a collection Σ of simplices of arbitrary dimensions
possessing the following properties: 1. if a simplex belongs to Σ, then all its faces
of any dimension belong to Σ; 2. the intersection of any two simplices is a face of
both the intersecting simplices. It has been proven that [24,18] the region CS of
consistent belief functions in the belief space is a simplicial complex, the union
CSB =

⋃
x∈Θ Cl(bA, A $ x). It is not difficult to see that the same holds in the

mass space, where the consistent complex is the union CS =
⋃

x∈Θ

Cl(mA, A $ x)

of maximal simplices Cl(mA, A $ x) formed by the mass vectors associated with
all the belief functions with core containing a particular element x of Θ.

Why use Lp norms. A close relation exists between consistent belief func-
tions and Lp norms, in particular the L∞ one. As the plausibility of all the
elements in their core is 1 (plb(x) =

∑
A⊇{x} mb(A) = 1 ∀x ∈ Cb), the region of

consistent b.f.s can be expressed as CS =
{
b : max

x∈Θ
plb(x) = 1

}
=
{
b : ‖p̄lb‖L∞ =

1
}
, i.e., the set of b.f.s for which the L∞ norm of the plausibility distribution

p̄lb(x) = plb({x}) is equal to 1. This argument is strengthened by the observation
that cs.b.f.s relate to possibility distributions, and possibility measures Pos are
inherently related to L∞ as Pos(A) = maxx∈A Pos(x). It makes therefore sense
to conjecture that a consistent transformation obtained by picking as distance
function in the approximation problem (3) one of the classical Lp norms

‖m−m′‖L1 =
∑
A⊆Θ

|mb(A)−m′
b(A)|, ‖m−m′‖L2 =

√∑
A⊆Θ

(mb(A)−m′
b(A))2,

‖m−m′‖L∞ = maxA⊆Θ{|mb(A)−m′
b(A)|}

(5)
would be meaningful. In the probabilistic case, p[b] = argminp∈P dist(b, p), the
use of Lp norms leads indeed to quite interesting results. On one side, the L2

approximation induces the so-called “orthogonal projection” of b onto P [14].
On the other, the set of L1/L∞ probabilistic approximations of b (in the belief
space) coincides with the set of probabilities dominating b: {p : p(A) ≥ b(A)}
(at least in the binary case).

Distance of a point from a simplicial complex. As the consistent com-
plex CS is a collection of linear spaces (better, simplices which generate a linear
space) solving the problem (3) involves finding a number of partial solutions:
csx

Lp
[b] = argmincs∈CSx ‖m− cs‖Lp (see Figure 2). Afterwards, the distance of

b from all such partial solutions has to be assessed in order to select a global
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Fig. 2. To minimize the distance of a point from a simplicial complex, we need to find
all the partial solutions on all the maximal simplices in the complex (empty circles),
and compare these partial solutions to select a global optimum (black circle).

optimal approximation. We will apply here this scheme to the approximation
problems associated with the L1, L2, and L∞ norms in the mass space.

4 Consistent Approximation in M
Using the notation cs =

∑
B⊇{x},B 
=Θ mcs(B)mB , m =

∑
B�Θ mb(B)mB (as

in RN−2 mb(Θ) is not included by normalization) the difference vector is

m− cs =
∑

B⊇{x},B 
=Θ

(mb(B)−mcs(B))mB +
∑

B 
⊃{x}
mb(B)mB (6)

so that its classical Lp norms read as

‖m− cs‖M1 =
∑

B⊇{x},B 
=Θ

|mb(B)−mcs(B)|+
∑

B 
⊃{x}
|mb(B)|,

‖m− cs‖M2 =
√ ∑

B⊇{x},B 
=Θ

|mb(B)−mcs(B)|2 +
∑

B 
⊃{x}
|mb(B)|2,

‖m− cs‖M∞ = max
{

max
B⊇{x},B 
=Θ

|mb(B)−mcs(B)|, max
B 
⊃{x}

|mb(B)|
}

.

(7)

4.1 L1 Approximation

Let us tackle first the L1 case. After introducing the auxiliary variables β(B) .=
mb(B)−mcs(B) we can write the L1 norm of the difference vector as

‖m− cs‖M1 =
∑

B⊇{x},B 
=Θ

|β(B)|+
∑

B 
⊃{x}
|mb(B)|, (8)

which is obviously minimized by β(B) = 0, for all B ⊇ {x}, B �= Θ. Therefore:
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Theorem 3. Given an arbitrary belief function b : 2Θ → [0, 1] and an element
x ∈ Θ of the frame, its unique L1 consistent approximation csx

L1,M[b] inM with
core containing x is the consistent b.f. whose mass distribution coincides with
that of b on all the subsets containing x:

mcsx
L1,M[b](B) =

{
mb(B) ∀B ⊇ {x}, B �= Θ
mb(Θ) + b({x}c) B = Θ.

(9)

The mass value for B = Θ comes from normalization.
The mass of all the subsets not in the desired “principal ultrafilter” {B ⊇ {x}}

is simply re-assigned to Θ. A similarity emerges with the case of L1 conditional
belief functions [25], when we recall that the set of L1 conditional belief func-
tions bL1,M(.|A) with respect to A in M is the simplex whose vertices are each
associated with a subset ∅ � B ⊆ A of the conditional event A, and have b.p.a.:

m′(B) = mb(B) + 1− b(A), m′(X) = mb(X) ∀∅ � X � A, X �= B.

In the L1 conditional case, each vertex of the set of solutions is obtained by
re-assigning the mass not in the conditional event A to a single subset of A, just
as in L1 consistent approximation all the mass not in the principal ultrafilter
{B ⊇ {x}} is re-assigned to the top of the ultrafilter, Θ.

Global approximation. The global L1 consistent approximation inM is the
partial approximation (9) at minimal distance from the original b.p.a. m. By (8)
the partial approximation focussed on x has distance b({x}c) =

∑
B 
⊃{x} mb(B)

from m. The global L1 approximation mcsL1,M[b] is therefore the partial approx-
imation associated with the maximal plausibility singleton: x̂ = arg minx b(xc) =
argmaxx plb(x).

4.2 L∞ Approximation

In the L∞ case ‖m− cs‖M∞ = max
{

maxB⊇{x},B 
=Θ |β(B)|, maxB 
⊃{x} mb(B)
}

.
The L∞ norm of the difference vector is obviously minimized by {β(B)} such
that: |β(B)| ≤ maxB 
⊃{x} mb(B) for all B ⊇ {x}, B �= Θ, i.e., − max

B 
⊃{x}
mb(B) ≤

mb(B)−mc(B) ≤ max
B 
⊃{x}

mb(B) ∀ B ⊇ {x}, B �= Θ.

Theorem 4. Given an arbitrary belief function b : 2Θ → [0, 1] and an element
x ∈ Θ of the frame, its L∞ consistent approximations csx

L∞,M[b] with core con-
taining x inM are those whose mass values on all the subsets containing x differ
from the original ones by the maximum mass of the subsets not in the ultrafilter:
for all B ⊃ {x}, B �= Θ

mb(B)− max
C 
⊃{x}

mb(C) ≤ mcsx
L∞,M[b](B) ≤ mb(B) + max

C 
⊃{x}
mb(C). (10)

Clearly this set of solutions can include pseudo belief functions, i.e., b.f.s whose
mass function is not necessarily non-negative.
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Global approximation. Once again, the global L∞ consistent approxima-
tion in M coincides with the partial approximation (10) at minimal distance
from the original b.p.a. m. The partial approximation focussed on x has dis-
tance maxB 
⊃{x} mb(B) from m. The global L∞ approximation mcsL∞,M[b] is
therefore the partial approximation associated with the singleton such that:
x̂ = arg minx maxB 
⊃{x} mb(B).

4.3 L2 Approximation

To find the L2 consistent approximation in M we need to minimize the L2

norm of the difference vector ‖m− cs‖M2 , or, equivalently, impose a condition
of orthogonality between the difference vector itself m−cs and the vector space
associated with consistent mass functions focused on {x}. Clearly the generators
of such linear space are the vectors in M: mB −m{x}, for all B � {x}. The
desired orthogonality condition reads therefore as 〈m − cs, mB −m{x}〉 = 0
where m − cs is given by Equation (6), while mB −m{x}(C) = 1 if C = B,
= −1 if C = {x}, 0 elsewhere. Therefore, using once again the variables {β(B)},
the condition simplifies as follows:

〈m− cs, mB −m{x}〉 =
{

β(B)− β({x}) = 0 ∀B � {x}, B �= Θ;
−β(x) = 0 B = Θ.

(11)

Notice that, when using vectors m of RN−1 (including B = Θ) to represent b.f.s,
the orthogonality condition reads instead as:

〈m− cs, mB −m{x}〉 = β(B) − β({x}) = 0 ∀ B � {x}. (12)

Theorem 5. Given an arbitrary belief function b : 2Θ → [0, 1] and an element
x ∈ Θ of the frame, its unique L2 partial consistent approximation csx

L2,M[b] with
core containing x in M coincides with its partial L1 approximation csx

L1,M[b].
However, when using the mass representation in RN−1, the partial L2 approx-
imation is obtained by equally redistributing to each element of the ultrafilter
{B ⊇ {x}} an equal fraction of the mass of focal elements not in it:

mcsx
L2,M[mb](B) = mb(B) +

b({x}c)
2|Θ|−1

∀B ⊇ {x}. (13)

Proof. In the N−2 representation, by (11) we have that β(B) = 0, i.e., mcs(B) =
mb(B) ∀B ⊇ {x}, B �= Θ. By normalization we get mcs(Θ) = mb(Θ) + mb(xc):
but this is exactly the L1 approximation (9).

In the N−1 representation, by (12) we have that mcs(B) = mcs(x)+mb(B)−
mb(x) for all B � {x}. By normalizing we get

∑
{x}⊆B⊆Θ mcs(B) = mcs(x) +∑

{x}�B⊆Θ mcs(B) = 2|Θ|−1mcs(x) + plb(x) − 2|Θ|−1mb(x) = 1, i.e., mcs(x) =
mb(x)+(1−plb(x))/2|Θ|−1, as there are 2|Θ|−1 subsets in the ultrafilter containing
x. By replacing the value of mcs(x) into the first equation we get (13). The partial
L2 approximation in RN−1 redistributes the mass equally to all the elements of
the ultrafilter.
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Global approximation. The global L2 consistent approximation in M is
again given by the partial approximation (13) at minimal L2 distance from mb.
In the N − 2 representation, by definition of L2 norm in M (7), the partial ap-
proximation focussed on x has distance from mb: (b(xc))2 +

∑
B 
⊃{x}(mb(B))2 =(∑

B 
⊃{x} mb(B)
)2 +

∑
B 
⊃{x}(mb(B))2. The latter is minimized by the ele-

ment(s) x̂ ∈ Θ such that x̂ = argmin
x

∑
B 
⊃{x}

(mb(B))2, which in turn determines

the global L2 approximation(s). In the N − 1-dimensional case, instead, we get∑
B⊇{x},B 
=Θ

[
mb(B)−

(
mb(B) +

b(xc)
2|Θ|−1

)]2
+
∑

B 
⊃{x}
(mb(B))2 =

∑
B⊇{x},B 
=Θ

( b(xc)
2|Θ|−1

)2

+
∑

B 
⊃{x}
(mb(B))2 =

(
∑

B 
⊃{x} mb(B))2

2|Θ|−1
+
∑

B 
⊃{x}
(mb(B))2

which is minimized by the same singleton(s). In any case, even though (in the
N −2 representation) the partial L1 and L2 approximations coincide, the global
approximations in general may fall on different components of the complex.

5 Comparison with Approximation in the Belief Space

It is interesting to compare the above results with those obtained in the belief
space [18]. The partial L1/L2 consistent approximations of b (in the belief space
B) focused on a given element x coincide, and have b.p.a.:

mcsx
L1

(A) = mcsx
L2

(A) = mb(A) + mb(A \ {x}) (14)

for all events A such that {x} ⊆ A � Θ. To get a consistent b.f. focused on a
singleton x, the mass contribution of all the events B such that B ∪ {x} = A
coincide is assigned indeed to A. They coincide with Dubois and Prade’s “focused
consistent transformations” [15].

It can be useful to illustrate the different approximations in the toy case of
a ternary frame, Θ = {x, y, z}. Assuming we want the consistent approximation
to focus on x, by (14) the partial L1/L2 approximations in B are given by (using
the simplified notation m′(A)): m′(x) = mb(x), m′(x, y) = mb(y) + mb(x, y),
m′(x, z) = mb(z) + mb(x, z) m′(Θ) = 1 − b(x, y). The partial approximations
induced by Lp norms in M can be computed via (9), (13) and (10). Fig-
ure 3 illustrates the different partial consistent approximations in the simplex
Cl(mx, mx,y, mx,z, mΘ) of consistent belief functions focussed on x in a ternary
frame, for the belief function with masses mb(x) = 0.2, mb(y) = 0.1, mb(z) =
0, mb(x, y) = 0.4, mb(x, z) = 0, mb(y, z) = 0.3. This is a tetrahedron with four
vertices, delimited by dark solid edges.

The set of partial L∞ approximations inM is depicted in Figure 3 as a green
cube. As expected, it does not entirely fall inside the tetrahedron of admissible
consistent belief functions. Its barycenter (the green star) coincides with the



On Consistent Approximations of Belief Functions in the Mass Space 297

Fig. 3. The simplex (solid black tetrahedron) Cl(mx, mx,y, mx,z, mΘ) of consistent
belief functions focussed on x in Θ = {x, y, z}, and the related Lp partial consistent
approximations of the b.f. with mass assignment (14).

L1 partial consistent approximation in M. The LN−2
2 approximation does also

coincide, as expected, with the L1 approximation. It remains to be seen if this
holds for general frames of discernment as well. Regardless, there seems to exist a
strong case for the latter transformation, which possesses a natural interpretation
in terms of mass assignment: all the mass outside the ultrafilter is reassigned to
Θ, increasing the overall uncertainty of the belief state.

The L2 partial approximation in the N − 1 representation (blue star) is dis-
tinct from the previous ones, but still falls inside the polytope of L∞ partial
approximations and is admissible, as it falls in the interior of the simplicial com-
ponent Cl(mx, mx,y, mx,z, mΘ). Its interpretation is rather compelling, as it
splits the mass not in the ultrafilter focused on x equally among all the subsets
in the ultrafilter. Finally, the unique L1/L2 partial approximation in B is shown
(red square). It has something in common with the LN−2,M

2 = LM
1 = L∞

M

approximation (green star), as they both fall exactly on the border of admissible
consistent b.f.s (the face highlighted in yellow): they assign zero mass to {x, z},
which fails to be supported by any focal element of the original belief function.

6 Conclusions

In this paper we proved that consistent belief functions are the counterparts
of consistent knowledge bases in belief calculus, analyzed consistent transforma-
tions induced by Lp norms in the mass space, and compared them with analogous
transformations obtained in the belief space. The open-world scenario in which
the current frame of discernment does not necessarily cover all possible alterna-
tives, represented by the assumption mb(∅) was not covered in this paper, but
will be explored in the near future.
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Generalized Information Theory Based on the

Theory of Hints

Marc Pouly
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University of Luxembourg

Abstract. The aggregate uncertainty is the only known functional for
Dempster-Shafer theory that generalizes the Shannon and Hartley mea-
sures and satisfies all classical requirements for uncertainty measures,
including subadditivity. Although being posed several times in the liter-
ature, it is still an open problem whether the aggregate uncertainty is
unique under these properties. This paper derives an uncertainty measure
based on the theory of hints and shows its equivalence to the pignistic
entropy. It does not satisfy subadditivity, but the viewpoint of hints un-
covers a weaker version of subadditivity. On the other hand, the pignistic
entropy has some crucial advantages over the aggregate uncertainty. i.e.
explicitness of the formula and sensitivity to changes in evidence. We
observe that neither of the two measures captures the full uncertainty of
hints and propose an extension of the pignistic entropy called hints en-
tropy that satisfies all axiomatic requirements, including subadditivity,
while preserving the above advantages over the aggregate uncertainty.

Keywords: Generalized Information Theory, Theory of Hints, Dempster-
Shafer Theory, Pignistic Entropy, Hints Entropy.

1 Introduction

Generalizing the Shannon entropy from probability theory to the various no-
tions of imprecise probabilities, in particular to the Dempster-Shafer theory of
evidence [2,19], has been a long discussed issue in the literature. The challenge
is to come up with a functional that satisfies all properties one would expect
from an uncertainty measure and also reduces to the well-established Shannon
and Hartley measures on special cases. Since the early 1980s, various functionals
have been proposed for this task, but they were all shown under closer inspection
to violate some of the essential properties of uncertainty. In most cases, this was
the property of subadditivity. We refer to [10] for a historical survey of these
unsuccessful attempts. Ultimately, several groups of researchers independently
proposed a functional called aggregate uncertainty [6,1,15] that satisfies all basic
properties and also generalizes the Shannon and Hartley measures. To this day
and to the best knowledge of the author, no other functional with the same prop-
erties was found. It is further a well-known fact in information theory that the
Hartley and Shannon measures are both unique under specific sets of properties.

W. Liu (Ed.): ECSQARU 2011, LNAI 6717, pp. 299–313, 2011.
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This naturally raises the question whether the aggregate uncertainty is also fully
characterized. Although being posed several times in the literature, for example
in [5,10], uniqueness of the aggregate uncertainty remains an open problem. In-
stead, it was only shown that the aggregate uncertainty satisfies an additional
property called monotone dispensability [4], from which it follows that the mea-
sure is smallest among all functionals that satisfy the classical requirements and
monotone dispensability, provided that such functionals exist of course.

A promising candidate for disproving uniqueness of the aggregate uncertainty
was the pignistic entropy proposed in [9]. This functional operates on mass func-
tions and was claimed to satisfy all classical properties, but a technical mistake
in the proof of subadditivity was later found by [11]. Nonetheless, the pignistic
entropy has some advantages over the aggregate uncertainty. The practical util-
ity of the latter has often been criticised, because it is defined in terms of the
solution to a nonlinear optimisation problem. Although an algorithm for this
problem exists [7], it nevertheless prevents us from calculating even very simple
examples by hand. The pignistic entropy is expressed by an explicit formula and
therefore does not suffer from such a defect. Also, it was observed that the aggre-
gate uncertainty is highly insensitive to changes in evidence [10], which lead to
the study of composed functionals to overcome this practical shortcoming [21].
Again, there is no indication for a similar weakness of the pignistic entropy.

This paper analyses the pignistic entropy from the perspective of the the-
ory of hints [13,16,14,17], which is a particular approach to Dempster-Shafer
theory. Hints are defined as multi-valued mappings between a probability space
and the usual frame of discernment. The relationship to mass functions is then
established by an equivalence relation between hints that only considers the in-
formation with respect to the frame of discernment. Compared to mass functions,
hints therefore express more fine-grained information. It will be shown in this
paper that the pignistic entropy derives very naturally from this basic model of
a hint. Moreover, the additional structure of hints enables a more differentiated
view on the lack of subadditivity of the pignistic entropy, and it turns out that
the defective argument in [9] can be corrected to prove a weaker version of sub-
additivity for hints. Also, we show that the pignistic entropy does not satisfy
monotone dispensability, but it will be argued that from the viewpoint of hints
it has little justification as an axiomatic requirement for uncertainty measures.
If we consider the aggregate uncertainty and the pignistic entropy as uncertainty
measures in the theory of hints, we notice that both functionals quantify uncer-
tainty with respect to the frame of discernment, ignoring the information on the
probability space. We therefore extend the pignistic entropy to take the complete
uncertainty of hints into consideration. This leads to a new uncertainty measure
called hints entropy that also generalizes the Shannon and Hartley measures
and further satisfies all classical requirements, including the strong version of
subadditivity, while preserving the advantages of the pignistic entropy over the
aggregate uncertainty.

The outline of this paper is as follows: Section 2 introduces the theory of hints
and establishes the connection to mass functions. Section 3 derives the pignistic
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entropy, whose properties are analysed in Section 4. Based on the observation
that the pignistic entropy does not capture the full uncertainty, this measure is
extended to the hints entropy in Section 5. We verify all classical properties for
the hints entropy and contrast it with the aggregate uncertainty in Section 6.

2 The Theory of Hints

Let r be a countable set of variables. Each variable X ∈ r has a finite set ΘX of
possible values. A configuration θ over a finite set of variables s ⊆ r associates a
value from ΘX with each variable X ∈ s. We write Θs for the set of all possible
configurations over s. A hint H with domain s refers to a question whose true
but unknown answer is contained in the set Θs called frame of discernment. We
further assume a finite set Ω of possible interpretations. Each interpretation re-
stricts the possible answers within Θs. If ω ∈ Ω is the correct interpretation, then
the correct answer must belong to some non-empty subset Γ (ω) ⊆ Θs, where Γ
is a multi-valued mapping from interpretations Ω to the powerset P(Θs). The
set Γ (ω) is called the focal set of the interpretation ω ∈ Ω. However, not all
interpretations are equally likely. We therefore assume a probability distribution
p that assigns a probability p(ω) > 0 to each interpretation ω ∈ Ω. A hint H
with domain d(H) = s is thus defined as a quadruple H = (Θs, Ω, p, Γ ). Subse-
quently, we simply write Θ for the frame of discernment of a hint, if the domain
of the latter is not significant. Also, we refer to (Ω, p) as the probability space
with σ-algebra P(Ω), over which the hint H is defined.

From a hint H = (Θ, Ω, p, Γ ) we derive a mapping m : P(Θ)→ [0, 1] by

m(A) =
∑

ω∈Ω:Γ (ω)=A

p(ω) (1)

for all A ⊆ Θ. Since m(∅) = 0 and
∑

A⊆Θs
m(A) = 1 this mapping defines a

mass function or basic probability assignment [19]. The support of m is defined
as supp(m) = {A ⊆ Θ : m(A) > 0}. Observe that several hints can produce
the same mass function due to the sum in (1). Given two hints H1 and H2,
we write H1 ≡ H2 if, and only if, they induce the same mass function. This
defines an equivalence relation on the universe of hints Φ with equivalence classes
[H] = {H̃ ∈ Φ : H ≡ H̃}. Note also that equivalent hints have the same domain.
Given a mass function m : P(Θ)→ [0, 1], we can always find a canonical hint Hc

in the equivalence class of all hints that induce m. If supp(m) = {A1, . . . , An}
the canonical hint associated with m isHc = (Θ, Ω, p, Γ ) with Ω = {ω1, . . . , ωn},
Γ (ωi) = Ai and p(ωi) = m(Ai).

We distinguish some important classes of hints. A hint H = (Θ, Ω, p, Γ ) ex-
presses vacuous information about Θ, if for all ω ∈ Ω we have Γ (ω) = Θ. This
represents total ignorance with respect to the question that is represented by the
possible answers in Θ. The induced mass function is m(Θ) = 1 and m(A) = 0
for all A ⊂ Θ. If all focal sets are singletons, then the hint is called precise. In
this case Γ represents a random variable and there is full contradiction between



302 M. Pouly

interpretations pointing to different singletons. Hence, all discrete random vari-
ables can be seen as precise hints. If the focal sets of a hint are disjoint, i.e. if
ω1 �= ω2 implies Γ (ω1)∩Γ (ω2) = ∅ for all ω1, ω2 ∈ Ω, the hint is called Bayesian.

Consider two hints H1 = (Θ, Ω1, p1, Γ1) and H2 = (Θ, Ω2, p2, Γ2) on the
same frame of discernment Θ. The combined hint H = H1 ⊗ H2 is defined
for interpretations (ω1, ω2) with ω1 ∈ Ω1 and ω2 ∈ Ω2. Then, Γ (ω1, ω2) =
Γ1(ω1) ∩ Γ2(ω2) is the set of possible answers from Θ, if both interpretations
ω1 and ω2 hold. However, certain interpretations (ω1, ω2) may be contradictory,
i.e. Γ1(ω1) ∩ Γ2(ω2) = ∅. We therefore define the combined interpretation set
Ω as the set of all contradiction-free pairs of interpretations, Ω = {(ω1, ω2) :
ω1 ∈ Ω1, ω2 ∈ Ω2 and Γ1(ω1) ∩ Γ2(ω2) �= ∅}. A general rule for computing the
probabilities of interpretations in Ω can be given, if the probability distributions
p1 and p2 of the two hints are independent. We then also say that the two hints
are independent. The probability that two interpretations from independent hints
are contradictory is

K =
∑

(ω1,ω2)∈Ω1×Ω2:Γ (ω1,ω2)=∅
p(ω1) · p(ω2).

We condition the probability on contradiction-free interpretations and obtain

p(ω1, ω2) =
p1(ω1) · p2(ω2)

1−K

for (ω1, ω2) ∈ Ω. If the two hints are fully contradictory, i.e. if all intersections
of focal sets are empty, then K = 1 and the combination is undefined, see [13].
The hint H = H1⊗H2, obtained from combining two independent hints H1 and
H2, is given by H = (Θ, Ω, p, Γ ). This procedure is called Dempster’s rule of
combination [2]. Further, the combination rule is generalized to dependent hints
by replacing the product probability on Ω by a probability measure that reflects
the stochastic dependencies between the interpretations of the two hints. As
an important special case of dependent hints, we assume two non-contradictory
hints H1 = (Θ, Ω, p, Γ1) and H2 = (Θ, Ω, p, Γ2) over the same probability space.
Their combination simply yields H1⊗H2 = (Θ, Ω, p, Γ1∩Γ2). Finally, it is shown
in [13] that hints H1 and H2 on different domains d(H1) �= d(H2) can always be
brought to the common domain d(H1) ∪ d(H2) by an operation called vacuous
extension. This enables the application of the above procedure for combination.

Suppose that H1 and H2 are two independent hints with domains d(H1) = s
and d(H2) = t inducing the mass functions m1 and m2, respectively. We can
obtain the mass function of the combined hint H1 ⊗ H2 by combining the two
mass functions m1 and m2. Following [13] and using the notation of natural join,
this combination rule is defined as m1 ⊗m2(∅) = 0 and

m1 ⊗m2(A) =
1

1−K

∑
B⊆Θs,C⊆Θt:B�C=A

m1(B) ·m2(C) (2)

for all other sets ∅ ⊂ A ⊆ Θs∪t with
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K =
∑

B⊆Θs,C⊆Θt:B�C=∅
m1(B) ·m2(C).

Moreover, the combination rule (2) for mass functions becomes particularly sim-
ple, if the mass functions are derived from independent hints with disjoint do-
mains s∩ t = ∅. Such hints and their associated mass functions are subsequently
called non-interactive. The proof of the following lemma is given in [10].

Lemma 1. It holds that

m1 ⊗m2(A) =

{
m1(B) ·m2(C) if B × C = A

0 otherwise,

if, and only if, m1 and m2 are non-interactive mass functions.

3 The Pignistic Entropy

We now derive an entropy notion for hints based on Shannon’s entropy. Given
a hint H = (Θ, Ω, p, Γ ), we know that under the interpretation ω ∈ Ω, the true
answer belongs to the set Γ (ω) ⊆ Θ, but there is no more precise information
about which element in Γ (ω). Hence, under the interpretation ω ∈ Ω the remain-
ing uncertainty about the true answer is most naturally expressed by Hartley’s
measure, i.e. H(H|ω) = log |Γ (ω)|1. Likewise, we can see Hartley’s measure as
a special case of the Shannon entropy applied to a uniform probability distri-
bution. The above claim is therefore equivalent to assuming p(θ|ω) = 1/|Γ (ω)|
for all θ ∈ Γ (ω) and evaluating Shannon’s entropy. Hence, the joint probabil-
ity p(θ, ω) for all ω ∈ Ω and θ ∈ Θ is p(θ, ω) = p(ω)/|Γ (ω)| if θ ∈ Γ (ω) and
p(θ, ω) = 0 otherwise. From this we derive the marginal distribution

p(θ) =
∑

ω∈Ω:θ∈Γ (ω)

p(θ, ω) =
∑

ω∈Ω:θ∈Γ (ω)

p(ω)
|Γ (ω)| , (3)

which is called the pignistic probability distribution [3,20] associated with H.
Hence, we define the entropy of a hint H with respect to the elements of its frame
of discernment Θ as Shannon’s entropy applied to the pignistic distribution.

Definition 1. Let H be a hint with pignistic probabilities p(θ) for all θ ∈ Θ as
defined in (3). The pignistic entropy HH(Θ) of H is defined as

HH(Θ) = −
∑
θ∈Θ

p(θ) log p(θ). (4)

The next lemma expresses pignistic distributions in terms of mass functions.

1 We always take logarithms to the base 2.
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Lemma 2. If the hints H induces the mass function m, we have for all θ ∈ Θ

p(θ) =
∑

A⊆Θ:θ∈A

m(A)
|A| . (5)

Proof. It follows from equation (1) that

∑
A⊆Θ:θ∈A

m(A)
|A| =

∑
A⊆Θ:θ∈A

∑
ω∈Ω:Γ (ω)=A

p(ω)
|A| =

∑
ω∈Ω:θ∈Γ (ω)

p(ω)
|Γ (ω)| = p(θ).

��
In the previous section we called two hints equivalent if they induce the same
mass function. It follows from Lemma 2 that equivalent hints share the same
pignistic probability distribution and therefore have the same pignistic entropy,
i.e. H1 ≡ H2 implies HH1(Θ) = HH2(Θ). This property allows us to apply the
pignistic entropy to mass function. We define Hm(Θ) of a mass function m by the
pignistic entropy HHc(Θ) of its canonical hint Hc. It follows that the pignistic
entropy coincides with the ambiguity measure given in [9].

A meaningful measure for uncertainty in Dempster-Shafer theory must satisfy
some basic properties. Such a set of requirements is given in [4,10]. We will next
discuss these properties for the pignistic entropy of Definition 1. Since this func-
tional corresponds to the Shannon measure applied to a particular probability
distribution, we may directly transfer some properties of the Shannon measure to
the pignistic entropy. First, we observe that the pignistic distribution of a mass
function m : P(Θ)→ [0, 1] has exactly |Θ| values. From the corresponding range
property of the Shannon measure follows that 0 ≤ Hm(Θ) ≤ log |Θ|. Likewise,
we know that the Shannon measure is continuous in its arguments. According
to Lemma 2, each value of the pignistic distribution is given as a finite sum of
values from the mass function. Since the limit distributes over finite sums we
conclude that the pignistic entropy is also continuous in the values of the mass
function. Next, the pignistic entropy must reproduce the Shannon measure on
probabilistic evidence. Indeed, a mass function m defines a probability distribu-
tion if all focal sets are singletons. The pignistic probability distribution then
satisfies p(θ) = m({θ}) for all θ ∈ Θ which proves the following lemma.

Lemma 3 (Probability Consistency). If a mass function m defines a prob-
ability distribution, then the pignistic entropy is equal to Shannon’s entropy

Hm(Θ) = −
∑
θ∈Θ

m({θ}) log m({θ}).

This has been observed in [9]. Moreover, it is shown there that the pignistic
entropy reproduces Hartley’s measure if all mass is given to a single focal set.

Lemma 4 (Set Consistency). If a mass function m has a single focal set
A ⊆ Θ, the pignistic entropy is equal to Hartley’s measure Hm(Θ) = log |A|.
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Proof. If m has a single focal set A ⊆ Θ, we obtain the canonical hint Ω = {ω},
Γ (ω) = A and p(ω) = 1. This induces the pignistic distribution p(θ) = 1/|A|, if
θ ∈ A, and p(θ) = 0 otherwise. Then the statement follows immediately. ��

If a mass function m has a single focal set with exactly two elements, then
Hm(Θ) = 1 due to Lemma 4. This shows that the functional is normalized. Also,
the pignistic entropy is extensible, i.e. if a new element θ is added to the frame
of discernment and no mass is given to this element, its pignistic probability is
p(θ) = 0 and the pignistic entropy does not change. It is further proved in [9]
that the pignistic entropy is additive only for non-interactive mass functions.

Lemma 5 (Additivity). Assume two hints H1 and H2 with domain d(H1) = s
and d(H2) = t. It holds that HH1⊗H2(Θs∪t) = HH1(Θs) + HH2(Θt) if, and only
if, the two hints are non-interactive.

The last and most profound property for an uncertainty measure in Dempster-
Shafer theory is subadditivity. We start the discussion by first proving a weaker
version of the definition given in [4]. The proof is based on Gibbs’ theorem: If
(p1, . . . , pn) and (q1, . . . , qn) are two probability distributions, then

−
n∑

i=1

pi log pi ≤ −
n∑

i=1

pi log qi. (6)

Theorem 1 (Weak Subadditivity). If H1 and H2 are hints with disjoint
domains d(H1)∩d(H2) = ∅ it holds that HH1⊗H2(Θs∪t) ≤ HH1(Θs)+HH2(Θt).

Proof. Let H1 = (Θs, Ω1, p1, Γ1) and H2 = (Θt, Ω2, p2, Γ2) be two hints with
disjoint domains s ∩ t = ∅ and H1 ⊗ H2 = (Θs∪t, Ω, p, Γ ) with Ω = Ω1 × Ω2

their combination as defined in Section 2. Since the domains are disjoint we have
Γ (ω1, ω2) = Γ1(ω1)×Γ2(ω2) for all (ω1, ω2) ∈ Ω1×Ω2. We further write p̃1 and
p̃2 for the pignistic distributions ofH1 andH2 and p̃ for the pignistic distribution
of H1 ⊗H2. Since p is the joint probability distribution over Ω1 ×Ω2, it has p1

and p2 as marginal distributions. The pignistic probability p̃1 of H1 can thus be
written for all θ1 ∈ Θs as

p̃1(θ1) =
∑

ω1∈Ω1:θ1∈Γ1(ω1)

p1(ω1)
|Γ1(ω1)|

=
∑

ω1∈Ω1:
θ1∈Γ1(ω1)

∑
ω2∈Ω2

p(ω1, ω2)
|Γ1(ω1)|

=
∑

(ω1,ω2)∈Ω:
θ1∈Γ1(ω1)

p(ω1, ω2)
|Γ1(ω1)|

=
∑

(ω1,ω2)∈Ω:
θ1∈Γ1(ω1)

p(ω1, ω2)
|Γ1(ω1)|

∑
θ2∈Θt:

θ2∈Γ2(ω2)

1
|Γ2(ω2)|

=
∑

θ2∈Θt

∑
ω1∈Ω1:

θ1∈Γ1(ω1)

∑
ω2∈Ω2:

θ2∈Γ2(ω2)

p(ω1, ω2)
|Γ1(ω1)||Γ2(ω2)|

=
∑

θ2∈Θt

∑
(ω1,ω2)∈Ω:

(θ1,θ2)∈Γ (ω1,ω2)

p(ω1, ω2)
|Γ (ω1, ω2)|

=
∑

θ2∈Θt

p̃(θ1, θ2).
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A similar argument shows that p̃2 is the marginal distribution of p̃ for t. It then
follows from Gibbs’ theorem (6) that

HH1⊗H2(Θs∪t) = −
∑

(θ1,θ2)∈Θs∪t

p̃(θ1, θ2) log p̃(θ1, θ2)

≤ −
∑

(θ1,θ2)∈Θs∪t

p̃(θ1, θ2) log
[
p̃1(θ1)p̃2(θ2)

]
= −

∑
(θ1,θ2)∈Θs∪t

p̃(θ1, θ2) log p̃1(θ1)−
∑

(θ1,θ2)∈Θs∪t

p̃(θ1, θ2) log p̃2(θ2)

= −
∑

θ2∈Θt

∑
θ1∈Θs

p̃(θ1, θ2) log p̃1(θ1)−
∑

θ1∈Θs

∑
θ2∈Θt

p̃(θ1, θ2) log p̃2(θ2)

= −
∑

θ1∈Θs

p̃1(θ1) log p̃1(θ1)−
∑

θ2∈Θt

p̃2(θ2) log p̃2(θ2)

= HH1(Θs) + HH2(Θt).

This proof simplifies considerably if both hints are on the same probability
space. ��

The stronger version of subadditivity [4] is based on the projection operator for
hints. Given a hint H = (Θs, Ω, p, Γ ) with domain d(H) = s, the projection of
H to t ⊆ s is defined as H↓t = (Θt, Ω, p, Γ ↓t) with Γ ↓t(ω) = {θ↓t : θ ∈ Γ (ω)}.

Definition 2 (Strong Subadditivity). An uncertainty measure H : Φ→ R≥0

for hints satisfies strong subadditivity, if for all H ∈ Φ and d(H) = s ∪ t with
s ∩ t = ∅ we have H(H) ≤ H(H↓s) + H(H↓t).

Weak subadditivity states that the uncertainty of a combined hint is not larger
than the sum of the uncertainties of the two individual hints. This setting corre-
sponds to additivity in Lemma 5 without the additional assumption of indepen-
dence. In contrast, strong subadditivity assumes a single hint and requires that
its uncertainty is not larger than the sum of the uncertainties of its projections
to disjoint subdomains. Indeed, from weak subadditivity only follows

HH↓s⊗H↓t(Θs∪t) ≤ HH↓s(Θs) + HH↓t(Θt), (7)

but not that HH(Θs∪t) ≤ HH↓s⊗H↓t(Θs∪t). Moreover, [11] gave a simple counter-
example for strong subadditivity of the pignistic entropy.

Lemma 6. The pignistic entropy does not satisfy strong subadditivity.

The proof of weak subadditivity for the pignistic entropy exploits that the
marginals of the pignistic distribution of H1 ⊗ H2 correspond to the pignistic
distributions of H1 and H2. According to (7) this holds also between H↓s ⊗H↓t

and its factors, but generally not between H and its projections H↓s and H↓t

as shown by the counter-example in [11]. This crucial observation lead to the
wrong proof of strong subadditivity for the pignistic entropy in [9].
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4 Pignistic Entropy and Aggregate Uncertainty

It is well-known in Dempster-Shafer theory that to every mass function we can
associate a belief function via the so-called Moebius transform. This mapping
from mass functions to belief functions is bijective [19,12]. The aggregate un-
certainty AU measures the uncertainty of a mass function m in terms of its
associated belief function bel,

AU(bel) = max
Pbel

[
−
∑
θ∈Θ

p(θ) log p(θ)

]
. (8)

Here, the maximum is taken over all probability distributions that dominate the
belief function bel. It is shown in [6,10] that the aggregate uncertainty satisfies the
properties of probability and set consistency, range, subadditivity and additivity.
The question, whether the aggregate uncertainty is the only mapping from mass
functions to real numbers that satisfies these properties, is posed as an open
problem in [5,10]. Since equivalent hints induce the same mass function, the
aggregate uncertainty can as well be considered as an uncertainty measure for
hints with respect to the elements in Θ. It was shown in Section 3 how the
viewpoint of hints gives rise to another uncertainty measure in a very natural
way. But this measure, called pignistic entropy, suffers from the clear defect that
it does not satisfy strong subadditivity. On the other hand, it has been observed
in [10] that the aggregate uncertainty is sometimes too insensitive with respect
to changes in evidence, which is a severe practical shortcoming.

Example 1. Let Θ = {θ1, θ2} and assume a mass function m defined as m({θ1}) =
α, m({θ2}) = β and m(Θ) = 1 − α − β with α, β ≥ 0 and α + β ≤ 1. Example
6.14 in [10] gives the associated belief function bel({θ1}) = α, bel({θ2}) = β and
bel(Θ) = 1 and finally obtains AU(bel) = 1 for 0 ≤ α, β ≤ 0.5. The aggregate
uncertainty is therefore insensitive to changes of α and β in the interval [0, 0.5].

There is no indication that the pignistic entropy suffers from a similar lack
of insensitivity [9,11]. Indeed, the following example shows that we obtain a
different pignistic distribution for different values of α and β in Example 1.

Example 2. The canonical hint Hc = (Θ, Ω, p, Γ ) for the mass function of Ex-
ample 1 has Ω = {ω1, ω2, ω3}, Γ (ω1) = {θ1}, Γ (ω2) = {θ2} and Γ (ω3) = Θ with
p(ω1) = α, p(ω2) = β and p(ω3) = 1 − α − β. We then obtain for the pignistic
probability distribution p(θ1) = α+0.5(1−α−β) and p(θ2) = β+0.5(1−α−β).
This gives a pignistic entropy of H(m) = H(Hc) = 1 if, and only if, α = β.

To overcome the insensitivity problem of the aggregate uncertainty, another mea-
sure GS is proposed in [21,10], defined as the difference between the aggregate
uncertainty and the generalized Hartley measure [8] GH

GS(bel) = AU(bel)−GH(m), where GH(m) =
∑
A⊆Ω

m(A) log |A|. (9)
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It is shown in [10] that for Bayesian mass functions m we have

GS(bel) = −
∑
A⊆Θ

m(A) log m(A), (10)

and it then follows from equation (9) that

AU(bel) = −
∑
A⊆Θ

m(A) log
[
m(A)
|A|

]
. (11)

The pignistic entropy and the aggregate uncertainty are clearly different, since
they disagree on strong subadditivity. On the other hand, both measures satisfy
set and probability consistency and therefore give equal results for mass functions
with a single focal set and hints that define a probability distribution. Moreover,
the following lemma shows that the same holds for Bayesian hints.

Lemma 7. If H denotes a Bayesian hint, m its induced mass function and bel
the associated belief function, we have HH(Θ) = AU(bel).

Proof. Since focal sets are disjoint we have p(ω) = m(A) if Γ (ω) = A. Every
θ ∈ Θ is contained in exactly one focal set, which implies that p(θ) = p(ω)/|Γ (ω)|
for ω ∈ Ω with θ ∈ Γ (ω). Moreover, if θ1 and θ2 are contained in the same focal
set Γ (ω) for some ω ∈ Ω then p(θ1) = p(θ2) and therefore

HH(Θ) = −
∑
θ∈Θ

p(θ) log p(θ) = −
∑
ω∈Ω

|Γ (ω)| · p(ω)
|Γ (ω)| log

p(ω)
|Γ (ω)|

= −
∑
ω∈Ω

p(ω) log
p(ω)
|Γ (ω)| = −

∑
A⊆Θ

m(A) log
[
m(A)
|A|

]
= AU(bel).

��
Another disadvantage of the aggregate uncertainty is that its evaluation requires
the solution to a nonlinear optimization problem, see (8). Although an algorithm
exists for this task, the lack of a closed form is nonetheless inconvenient. In
contrast, the pignistic entropy only requires to compute the pignistic probability
distribution, which essentially corresponds to the evaluation of a probability tree.

If we compare the aggregate uncertainty and the pignistic entropy, we observe
that both functionals apply the Shannon entropy to a particular probability
distribution, i.e. the dominating distribution in case of the aggregate uncertainty
and the pignistic distribution in case of the pignistic entropy. Let us consider
this commonality in more detail. If Θ denotes a frame of discernment, we write
P for the set of all probability distributions over Θ and Ψ for the set of all mass
functions over Θ. Next, assume a functional h : Ψ → [0, log |Θ|] that satisfies
the property of (range and) probability consistency. Since P is a convex set
and the Shannon entropy S : P → [0, log |Θ|] is continuous, it follows from
the generalized intermediate value theorem that for every mass function m ∈ Ψ
there exists a probability distribution p ∈ P such that h(m) = S(p). On the other
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hand, a probability distribution p ∈ P can always be considered as a precise mass
function mp and probability consistency ensures that h(mp) = S(p). Hence, it
follows that for every mass function m ∈ Ψ there exists a precise mass function
mp such that h(m) = h(mp) = S(p). This proves that the observed property
does not only hold for the aggregate uncertainty and the pignistic entropy but
for all functionals h : Ψ → [0, log |Θ|] that satisfy probability consistency.

Lemma 8. If h : Ψ → [0, log |Θ|] satisfies probability consistency, it holds for
all m ∈ Ψ that h(m) = S(π(m)) for some mapping π : Ψ → P .

Finally, [4] proves that the aggregate uncertainty satisfies a property called
monotone dispensability, which says that the uncertainty should not decrease
after transferring part of a focal set’s mass to a superset.

Lemma 9. Let m : P(Θ) → [0, 1] be a mass function and A ⊆ Θ a focal
set. For a superset B ⊇ A and 0 ≤ α ≤ 1 we derive a mass function m′ by
m′(A) = αm(A), m′(B) = m(B) + (1 − α)m(A) and m′(C) = m(C) for all
C ⊆ Θ with C �= A and C �= B. If bel and bel′ denote the associated belief
functions, we have AU(bel) ≤ AU(bel′).

This property is not satisfied by the pignistic entropy:

Example 3. Let Θ = {θ1, θ2} and assume a mass function m defined as m({θ1}) =
m({θ2}) = 0.5. We obtain for the pignistic distribution p(θ1) = p(θ2) = 0.5.
Next, choose A = {θ1}, B = {θ1, θ2} and α = 0.5. We obtain m′({θ1}) = 0.25,
m′({θ2}) = 0.5 and m′({θ1, θ2}) = 0.25. This gives a pignistic distribution of
p(θ1) = 3/8, p(θ2) = 5/8 and therefore Hm(Θ) > Hm′(Θ).

The Shannon entropy is maximal only for uniform distributions. Lemma 2 shows
that the pignistic probability distribution strongly depends on the values of the
mass function such that every modification of the latter in Example 3 will lead
to a different pignistic distribution and therefore to a smaller pignistic entropy.
This contradicts the statement of monotone dispensability. Likewise, it is equally
simple to come up with an example for Hm(Θ) < Hm′(Θ). Take for instance
m({θ1}) = 0.1 and m({θ2}) = 0.9 in Example 3. This non-monotonic behaviour
is semantically well-justified. If mass is moved from the focal set A = {θ1} to
a superset B = Θ, it decreases the value for p(θ1) and increases the value for
p(θ2). But the difference |p(θ1) − p(θ2)| can either increase or decrease, which
must affect uncertainty in different ways. Accordingly, the Shannon entropy is
small if the difference is large and large if the difference is small. In other words,
the absence of this property in case of the pignistic entropy again alludes to the
sensitivity of this functional with respect to changes in evidence. For particular
applications monotone dispensability may be a desirable property but we refrain
from considering it as an axiomatic requirement for uncertainty measures.

5 The Hints Entropy

The foregoing section showed that the pignistic entropy satisfies all required
properties for an uncertainty measure in Dempster-Shafer theory except strong
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subadditivity. However, given a hint H = (Θ, Ω, p, Γ ) the pignistic entropy mea-
sures uncertainty with respect to Θ, but the hint H clearly contains information
on both sets Ω and Θ. We therefore consider the join entropy of H given as

HH(Ω, Θ) = −
∑
ω∈Ω

∑
θ∈Θ

p(ω, θ) log p(ω, θ) = −
∑
ω∈Ω

∑
θ∈Γ (ω)

p(ω)
|Γ (ω)| log

p(ω)
|Γ (ω)|

= −
∑
ω∈Ω

p(ω) log p(ω) +
∑
ω∈Ω

p(ω) log |Γ (ω)|.

Observe that the second summand, which is also the conditional Shannon en-
tropy of Θ given Ω, corresponds the generalized Hartley measure of equation
(9). Indeed, it follows from equation (1) that

GH(H) =
∑
ω∈Ω

p(ω) log |Γ (ω)| =
∑
A⊆Ω

m(A) log |A|. (12)

Definition 3. The hints entropy of H = (Θ, Ω, p, Γ ) is defined as

HH(Ω, Θ) = HH(Ω) + GH(H). (13)

Due to equation (12) the generalized Hartley measure is completely determined
by the mass function. The value of the generalized Hartley measure is there-
fore the same for equivalent hints, i.e. H1 ≡ H2 implies GH(H1) = GH(H2).
However, equivalent hints may differ in the probabilities assigned to interpre-
tations, which thus leads to different values of HH1(Ω1) and HH2(Ω2). It thus
follows from (13) that equivalent hints do not necessarily share the same hints
entropy, naturally because the equivalence relations was defined with respect to
the frame of discernment only. This again confirms that hints contain more in-
formation than their associated mass functions. We next investigate uncertainty
related properties of the hints entropy. First, we observe that the generalized
Hartley measure is zero if all focal sets are singletons. This proves the following
statement.

Lemma 10 (Probability Consistency). If a hint defines a probability distri-
bution, then the hints entropy is equal to Shannon’s entropy HH(Ω, Θ) = HH(Ω).

Conversely, if Ω is a singleton, we have HH(Ω) = 0 and GH(H) = log |Γ (ω)|.
This proves the following more restrictive version of set consistency.

Lemma 11 (Set Consistency). If a hint has a single interpretation Ω = {ω}
the hints entropy is equal to Hartley’s measure HH(Ω, Θ) = log |Γ (ω)|.

Lemma 12 (Additivity). Given two hints H1 = (Θs, Ω1, p1, Γ1) and H2 =
(Θt, Ω2, p2, Γ2) it holds that HH1⊗H2(Ω, Θs×Θt) = HH1(Ω1, Θs)+HH2(Ω2, Θt)
if, and only if, the two hints are non-interactive.

Proof. According to [10] the generalized Hartley measure is additive only for non-
interactive hints. Likewise, the Shannon entropy is additive only for independent
distributions. This proves additivity of the hints entropy. ��
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Theorem 2 (Strong Subadditivity). For H = (Θs∪t, Ω, p, Γ ) with s ∩ t = ∅
we have HH(Ω, Θs∪t) ≤ HH↓s(Ω, Θs) + HH↓t(Ω, Θt).

Proof. According to [10] the generalized Hartley measure is subadditive, hence

HH(Ω, Θs∪t) ≤ 2HH(Ω) + GH(H) ≤ 2HH(Ω) + HH↓s(Ω, Θs) + HH↓t(Ω, Θt)
= HH↓s(Ω, Θs) + HH↓t(Ω, Θt).

It then follows from the theory of valuation algebras [12] and strong subadditivity
that the hints entropy satisfies weak subadditivity as well.

6 Hints Entropy and Aggregate Uncertainty

If we compare the aggregate uncertainty, as an uncertainty measure for hints,
and the hints entropy of Definition 3, we observe that both measures satisfy the
properties of probability and set consistency, additivity and strong subadditivity.
However, we refrain from saying that the hints entropy completely disproves
the uniqueness claim for the aggregate uncertainty, because the two measures
differ in their range property, i.e. the hints entropy measures uncertainty with
respect to Ω and Θ, whereas the aggregate uncertainty only focusses on Θ.
This observation leads to a very interesting insight. The pignistic probability
distribution was derived in equation (3) as the marginal distribution of the joint
probability over Ω and Θ. It therefore holds that

HH(Ω, Θ) = HH(Θ) + HH(Ω|Θ), (14)

where HH(Ω|Θ) denotes the conditional entropy of Ω given Θ. In the hint model,
interpretations ω ∈ Ω give information with respect to the elements in Θ by
restricting the set of possible answers to a subset Γ (ω) ⊆ Θ. Conversely, also the
elements θ ∈ Θ give information about the correct interpretation in Ω via the
inverse mapping. Given θ ∈ Θ, the remaining uncertainty about the elements in
Ω is measured by the conditional entropy HH(Ω|θ) with HH(Ω|Θ) as expected
value. The transformation from hints to mass functions looses this information,
see equation (1), which also prevents the uncertainty measures for mass functions
to take this information into account. This is confirmed by equation (14), showing
that the hints and pignistic entropy differ in exactly HH(Ω|Θ). Moreover, we
observed that strong subadditivity only holds for the hints entropy HH(Ω, Θ) but
not for the pignistic entropy HH(Θ). We may therefore conclude that ignoring
the additional information brought by the inverse mapping destroys the property
of strong subadditivity. Bayesian hints have disjoint focal sets, which intuitively
means that the same information is contained in Γ and its inverse. Indeed, this
is confirmed by the following theorem extending Lemma 7.

Theorem 3. If H denotes a Bayesian hint and bel the associated belief function
we have HH(Ω, Θ) = HH(Θ) = AU(bel).
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Proof. It remains to show that HH(Ω, Θ) = AU(bel) for Bayesian hints. Since
focal sets are disjoint we have p(ω) = m(A) if Γ (ω) = A. Using (11) we obtain

HH(Ω, Θ) = HH(Ω)+GH(H) = −
∑
A⊆Θ

m(A) log
[
m(A)
|A|

]
= AU(bel). ��

Finally, an equally simple counter-example as in Example 3 shows that the hints
entropy does not satisfy monotone dispensability.

7 Conclusion

This paper derives the pignistic entropy for Dempster-Shafer theory based on the
theory of hints and proves its equivalence to the known measure for ambiguity.
The functional agrees with the Shannon and Hartley measure on corresponding
cases and satisfies all classical requirements, which are generally imposed on an
uncertainty measure, except subadditivity. But the viewpoint of hints allows us
to prove a weaker form of subadditivity. In contrast, the aggregate uncertainty
is the only known functional that satisfies all properties including subadditivity,
and uniqueness of this measure under the classical properties is stated as an
open problem in the literature. Despite the lack of strong subadditivity, the pig-
nistic entropy has some crucial advantages over the aggregate uncertainty, most
notably explicitness of the formula and sensitivity with respect to changes in
evidence. However, we observed that both uncertainty measures do not capture
all information contained in the hint model and therefore extend the pignistic
entropy to the hints entropy that takes the total information of a hint into ac-
count. This new measure still generalizes the Shannon and Hartley measures and
further satisfies all classical requirements, including strong subadditivity, while
preserving the advantages of the pignistic entropy over the aggregate uncertainty.
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Abstract. In the framework of belief functions, information fusion is
based on the construction of a unique belief function resulting from the
combination of available belief functions induced from several informa-
tion sources. When sources are reliable and distinct, Smets’ conjunc-
tive rule, which is equivalent to Dempster’s rule of combination without
the normalization process, can be considered. This rule offers interest-
ing properties, but in return the empty set is an absorbing element: a
series of conjunctive combinations tends to bring a mass equal to 1 to
the empty set, making impossible the distinction between a real prob-
lem and an effect due to this absorbing effect of the empty set. Then
a formalism allowing the preservation of the conflict which reflects the
opposition between sources, is introduced in this paper. Based on the nor-
malization process and on distance measures between belief functions, it
is tested and compared with classic conjunctive operators on synthetic
belief functions.

1 Introduction

Since more than about twenty years, the scientific community has been showing
an increasing interest in information fusion [5,16,39]. Generally based on confi-
dence measures including probability measure, fuzzy sets, possibility and belief
measures, information fusion allows the consideration of the redundancy and the
complementarity of different available pieces of information to improve the global
quality of these inputs, and consequently reach a better decision-making. In the
framework of belief functions [33], information fusion has been used in several
fields such as multi-sensor fusion [1,4], classification [17,27], diagnosis [6,31] or
multi-object tracking [2,29]. It is based on the application of an operator al-
lowing the combination of belief functions representing different propositions or
hypotheses relative to a given problem.

One classical rule is the conjunctive rule of combination. Introduced by Smets
[34,37], it is equivalent to Dempster’s rule of combination [12,33] without the

W. Liu (Ed.): ECSQARU 2011, LNAI 6717, pp. 314–325, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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normalization process. Its properties are well established as well as the hypothe-
ses the sources must verify to be combined by the use of this rule [36, Section
3.2.2].

In a nutshell, sources must be distinct, reliable and must refer to the same
object. As a consequence, this rule provides an orthogonal behaviour which is
very valuable when a rapid and clear convergence on a solution is required, but
in return the empty set is an absorbing element.

Smets [36, Section 6.1] supports the existence of this mass on the empty set
to play an alarm role. Indeed, this conflict should not be hidden as it expresses
important pieces of information which can be gathered together into two main
categories:

– prerequisites for the application of the conjunctive rule are not fulfilled:
two sources may not be distinct, one of the sources at least is not reliable
(maybe a sensor is broken or ineffective in some unknown condition, etc), or
the sources do not deal with the same object.

– the model itself suffers from a bad adequacy to the reality: the frame of
discernment is not exhaustive (it is not composed of all the possible values the
variable of interest can take), the choice of the frame(s) is not appropriate,
etc.

On account of its absorbing effect, a series of conjunctive combinations tends then
to bring a mass equal to 1 to the empty set, making impossible the distinction
between a real problem and an effect due to the absorbing power of the empty
set [24][36, Section 7].

Let us note that other works have been undertaken to complete this defini-
tion of the conflict. In [24], a definition of the conflict between belief functions
is proposed. It is based on quantitative measures of both the mass on the empty
set after a conjunctive combination of these belief functions and the distance
between betting commitments of these same belief functions, the mass on the
empty set being then no more sufficient to define the conflict. This behaviour
is also described by Osswald et al. [25,30] who defined the auto-conflict as the
amount of intrinsic conflict of a belief function.

In this paper, the opposition between belief functions is quantified by a dis-
similarity measure between these functions. This approach, called Combination
With Adapted Conflict (CWAC), allows the mass on the empty set to keep its
initial role of alarm signal.

This paper is organized as follows. A rapid overview of the basic concepts
needed on belief functions is exposed in Section 2, details can be found in [33,37].
In Section 3, the classical combinations of information in the belief function
framework are detailed. The postulates and principles of our contribution are
explained in Section 4. Then, tests on synthetic belief functions are presented in
Section 5 showing the efficiency of the introduced formalism. Finally, Section 6
sums up our contributions and advances possible future work.
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2 Belief Function Theory: Basic Concepts

2.1 Representing Information

Let Ω = {ω1, . . . , ωK}, named the frame of discernment, be a finite non empty
set including all the elementary hypotheses related to a given problem. These
hypotheses are assumed to be exhaustive and mutually exclusive.

To represent the impact of a piece of evidence on the subsets of hypotheses of
the frame of discernment Ω, the so-called basic belief assignment (bba) is defined
as a function m : 2Ω → [0, 1] satisfying:∑

A⊆Ω

m(A) = 1. (1)

The quantity m(A), called a basic belief mass (bbm) or a mass for short, repre-
sents the part of belief which is exactly committed to the subset A of Ω.

Shafer [33] has initially proposed a normality condition expressed by: m(∅) =
0. As previously exposed in the introduction of this paper, Smets proposes to
keep the value m(∅) and to consider it as the amount of conflict between the
pieces of evidence, which is also considered in this paper.

All the subsets A of Ω such that m(A) is strictly positive, are called the focal
elements of m.

2.2 Discounting Information

A doubt on the reliability of a bba m is sometimes possible. The discounting
operation [33] of m by α ∈ [0, 1], named discount rate, allows one to take into
account this meta knowledge on the information m. This correction operation of
m is defined by: {

mα(A) = (1− α)m(A), ∀A ⊂ Ω,
mα(Ω) = (1− α)m(Ω) + α.

(2)

The coefficient β = (1 − α) represents the reliability degree of the source. If
the source is not reliable, this degree β is equal to 0, the discount rate α is equal
to 1, and mα is equal to the vacuous bba mΩ. On the contrary, if the source is
reliable, the discounting rate α is null, and m will not be discounted.

2.3 Pignistic Transformation

To make a decision, Smets proposes to transform beliefs to a probability measure.
This latter, denoted BetP [37], is called pignistic probability and is defined by:

BetP (ω) =
∑

A⊆Ω,ω∈A

1
|A|

m(A)
1−m(∅) , (3)

where |A| is the cardinality of subset A. BetP can be extended as a function
on 2Ω as BetP (A) =

∑
ω∈A

BetP (ω). Beyond the pignistic, lots of probability

transforms of belief functions have been proposed [7,8,10].
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2.4 Distance between Two Belief Functions

Many distance measures between two bbas have been developed (e.g. [21,22,38]).
Tessem’s distance is among those based on the pignistic transformation

[3,18,38], it is used in several applications [3,24]. Let m1 and m2 be two bbas
and, respectively BetPm1 and BetPm2 their pignistic transformations. Tessem’s
distance is then defined as follows:

dT (m1, m2) = max
A⊆Ω

(|BetPm1(A)−BetPm2(A)|) (4)

In [24], this measure is called the distance between betting commitments of m1

and m2.
Jousselme et al.’s distance is one of the most used in the framework of belief

functions and satisfies useful properties such as non-negativity, non-degeneracy
and symmetry. It is defined as follows:

dJ (m1, m2) =

√
1
2
(m1 −m2)tD(m1 −m2) (5)

where D is the Jaccard index defined by:

D(A, B) =

{
0 if A = B = ∅

|A∩B|
|A∪B| ∀A, B ∈ 2Ω.

(6)

3 Combining Different Pieces of Information

The objective of the combination is to synthesize a set of belief functions into a
unique belief function. Two main approaches may be distinguished: conjunctive
and disjunctive rules.

3.1 Conjunctive Rules of Combination

When sources are considered as distinct and reliable (note that they can have
been adjusted according to their reliability, this adjustment being possibly re-
alized through a discounting operation (see equation (2)) from additional in-
formation [18,28] or by comparing the belief functions to combine with each
others [23,25,32] by means of a distance), the combination of Demspter [12] can
be classically used. This combination is noted ⊕ and defined, m1 and m2 being
two bbas, by:

m⊕(A) =
1

1−m ∩©(∅)m ∩©(A) ∀A �= ∅ and m⊕(∅) = 0 (7)

with:
m ∩©(A) =

∑
B∩C=A

m1(B)m2(C) ∀A ⊆ Ω. (8)
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Combination m ∩© is called the conjunctive rule of combination [37]. The value
m(∅) is called conflict because it represents the disagreement between sources
involved in the fusion. Let us note that the cautious conjunctive rule of combi-
nation developed by Denœux [13] has also a conjunctive behaviour, and it can
be applied when sources are not distinct.

3.2 Disjunctive Rule of Combination

When one source is not reliable, and we do not know which one and an ad-
justment is not possible, the conjunctive combination cannot be used directly.
Several combinations were then proposed like the disjunctive rule of combina-
tion [14] defined by:

m ∪©(A) =
∑

B∪C=A

m1(B)m2(C) ∀A ⊆ Ω. (9)

This rule represents the dual rule of the conjunctive combination. It is dis-
cussed within the framework of the Generalized Bayes Theorem by Smets [35].
The universe Ω is the absorbing element of this rule. In the same spirit as the
cautious rule, Denoeux [13] has proposed the bold disjunctive rule of combina-
tion, when belief functions to combine are provided by sources which are neither
distinct nor reliable.

Other combination rules having intermediate behaviour between the conjunc-
tive and the disjunctive combination have been proposed. For instance, the fol-
lowing rules may be mentionned: the combination of Dubois and Prade [15], the
one of Delmotte et al. [11], Martin et al.’s mixed rules [26] or more recently the
robust rule of combination of Florea et al. [20]. For other combination rules, it is
a question of distributing the partial conflict [19,26]. Objectives of all these rules
is to distribute the conflict which arises during the fusion. This redistribution
may be seen as a loss of information about a possible dysfunction.

4 Combination with Adapted Conflict (CWAC)

In this paper, sources are assumed to be distinct and reliable. In this context,
the conflict m(∅) obtained during a conjunctive combination allows the decision
maker to turn his attention to a possible problem related to a bad modelling, an
unreliable source, etc.

However, when applying the conjunctive combination on a large number of
belief functions, the conflict can take important proportions without reflecting
a problem. This phenomenon is due to the absorbing effect of the empty set.
On the other hand, most of the combination propositions found in the literature
(see Section 3) try to redistribute this conflict and not to use it as an indicator.

Based on this analysis, we wish to develop a method which allows us to trans-
form the value of the conflict and to adapt it in order to be a real indicator
of problems, even if the number of sources to combine is important. This rule
is called Combination With Adapted Conflict (CWAC). Considering that there
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is a serious problem when sources produce strongly different belief functions,
the conflict should be kept during the fusion. On the contrary, in the case of
the combination of information sources for which the bbas are equivalent, the
conflict does not have to exist. To define the CWAC, a measure allowing one to
distinguish similarities between bbas is necessary.

4.1 With Two Belief Functions

First, the case of only two bbas m1 and m2 is studied. The notion of dissimilarity
is obtained through a distance measure. This distance can be obtained by one
of both measures presented in Section 2.4 and is noted d(m1, m2)1. The borders
of d are:

– d(m1, m2) = 0: m1 and m2 are similar (and are thus in agreement) and their
combination should not generate a conflict. In this case, the conflict will be
redistributed in the same way as Dempster’s rule of combination.

– d(m1, m2) = 1: m1 and m2 are antinomic (i.e. m1({ωj}) = 1 and m2({ωi}) =
1 with ωi �= ωj). Their combination will produce a conflictual mass express-
ing this opposition. The conflict will be kept in the same manner as the
conjunctive rule.

The CWAC is defined by an adaptive weighting between the conjunctive and
Dempster’s rules, making the rule acting like a conjunctive rule when the belief
functions are antinomic and like Dempster’s rule when belief functions are sim-
ilar. Between these two extremes, a gradual evolution can be considered. The
following combination rule noted ↔© is then proposed, it is defined by:

m↔©(A) = γ1m ∩©(A) + γ2m⊕(A) ∀A ⊆ Ω (10)

with:

m⊕(A) = (m1 ⊕m2)(A) ∀A ⊆ Ω (11)
m ∩©(A) = (m1 ∩©m2)(A) ∀A ⊆ Ω (12)

and with γ1 and γ2 are functions of the distance d(m1, m2). These functions
should satisfy the following constraints:

γ1 = f1(d(m1, m2)) with f1(0) = 0 and f1(1) = 1 (13)
γ2 = f2(d(m1, m2)) with f2(0) = 1 and f2(1) = 0 (14)

with γ1 + γ2 = 1. Although other functions are possible, we can take, at first,
linear functions such that:

γ1 = d(m1, m2) (15)
γ2 = 1− d(m1, m2). (16)

1 However, other measures of dissimilarity could be used [7,9]. Details on distance
measure can be found in [22]. The aim of this article is not to compare these measures
but to quantify the opposition between belief functions.
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Hence, the combination can be written ∀A ⊆ Ω and m ∩©(∅) �= 1:

m↔©(A) = m1 ↔©m2(A) = d(m1, m2)m ∩©(A) + (1− d(m1, m2)) m⊕(A). (17)

When m ∩©(∅) = 1, then we get m↔©(∅) = 1.

4.2 General Case

The question of the generalization of this approach is natural when we have
more than two information sources to fuse. Indeed, the problem settles be-
cause the distance measure used here, is defined between only two bbas. Let
m1, . . . , mi . . . , mN be N bbas which have to be combined. The measure of dis-
similarity between these functions, which is necessary for our proposed combina-
tion rule, may be a synthesis of the distances between these bbas. The objective
is to identify if at least one of the sources is in disagreement with the others.
This synthesis can be obtained by taking, for example, the maximal value of all
the distances. So, the value of D can be defined as D = max

i,j
[d(mi, mj)] with

i ∈ [1, N ] and j ∈ [1, N ]. The combination rule becomes then ∀A ⊆ Ω and
m ∩©(∅) �= 1:

m↔©(A) =
(

↔©
i

mi

)
(A) = Dm ∩©(A) + (1 −D)m⊕(A) (18)

and
m↔©(∅) = 1 when m ∩©(∅) = 1 (19)

with:

m ∩©(A) =
(

∩©
i

mi

)
(A) and m⊕(A) =

(
+©
i

mi

)
(A) ∀i ∈ [1, N ]. (20)

4.3 Properties

– Commutativity: The combination of two mass functions m1 and m2 using
the CWAC is commutative. Since the two basic rules composing the CWAC
(the conjunctive rule and Dempster’s rule) are commutative and since the
CWAC is a weighted sum of these rules based on distance which is also
commutative, the CWAC is commutative.

– Associativity: The CWAC operator is not associative. It is however possible
to find operators that produce associative rules or quasi-associative.

– Neutral element: The neutral element of the CWAC is Ω. When com-
bining a piece of evidence m1 with m(Ω) = 1, we have m1 ⊕m = m1 and
m1 ∩©m = m1. The CWAC can be written: m↔©(A) = d(m1, m)m1(A)+ (1−
d(m1, m))m1(A) = m1(A). Thus, the CWAC preserves the neutral impact
of the m(Ω) = 1.

– Absorbing element: From equation (19), the absorbing element of the
CWAC is ∅.

– Idempotent: As both Dempster’s rule and the conjunctive rule of combi-
nation, the CWAC operator is not idempotent.
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5 Results

In this Section, the CWAC operator is compared on synthetic data with the
conjunctive rule. The CWAC operator is used with two dissimilarity measures:
Tessem’s distance and Jousselme et al.’s distance presented in Section 2.4.

5.1 Example 1

In this first example, two sources are considered as being in agreement: they
have a similar distribution of masses. These distributions and the combinations
results by the operators ⊕, ∩© and ↔© are given in Table 1. Bba mJ

↔© is obtained
by the CWAC operator with Jousselme et al.’s distance and mT

↔© is obtained
by the CWAC operator with Tessem’s distance. The conflict induced by the
conjunctive combination is relatively important which is not the case for the
proposed combination (0.363 against 0.004). Now these two bbas are considered

Table 1. Results of the fusion between
two sources in agreement

m1 m2 m⊕ m ∩© mJ
↔© mT

↔©
{ω1} 0.60 0.59 0.742 0.473 0.74 0.74
{ω2} 0.30 0.31 0.242 0.154 0.24 0.24
Ω 0.10 0.10 0.016 0.01 0.016 0.016
∅ 0 0 0 0.363 0.004 0.004

Table 2. Results of the fusion between
two sources in disagreement

m1 m2 m⊕ m ∩© mJ
↔© mT

↔©
{ω1} 0.60 0.31 0.501 0.277 0.436 0.436
{ω2} 0.30 0.59 0.481 0.266 0.419 0.419
Ω 0.1 0.1 0.018 0.01 0.015 0.015
∅ 0 0 0 0.447 0.13 0.13

in disagreement (Table 2). If we compare these results to those obtained in the
previous test, we observe that there is only 23 % of increase of the conflict
for the conjunctive combination (while the distribution of masses are radically
different). Regarding our rule, the increase of the conflict is of the order of 3150%
which reflects well the difference between the first test and the second one.

5.2 Example 2

In this second example, a number N of sources is considered with N varying
from 2 to 25. All the bbas are firstly chosen in agreement and are defined, with
Ω = {ω1, ω2, ω3}, as follows with ε a random value between [−0.1; 0.1]:

m({ω1}) = 0.6 + ε m({ω1, ω2}) = 0.15 − ε m({ω3}) = 0.15 m(Ω) = 0.1.

Conflict evolution for operators ∩© and ↔© according to the number of sources N
to combine is presented in Figure 1. The absorbing effect of the empty set can
be observed: even if the bbas are in agreement the value of the conflict increases
with the number of combinations. In a second time, one bba is now chosen as
being in contradiction with the others. It is defined in the following way:

m({ω1}) = 0.15+ε m({ω1, ω2}) = 0.15−ε m({ω3}) = 0.6 m(Ω) = 0.1
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Fig. 1. Conflict evolution of the combination of N not contradictory bbas

0 5 10 15 20 25
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of combined sources

Conflict 

Conjunctive rule

CWAC Jousselme

CWAC Tessem

m(∅)

Fig. 2. Conflict evolution of the combination of N − 1 not contradictory bbas and one
in conflict

Figure 2 illustrates the evolution of the conflict in this configuration, the latter
being compared with the previous in Figure 3.

In this last figure 3, it can be observed that after more that 20 belief func-
tions to combine, the value of the conflict obtained by the conjunctive combi-
nation does not allow any more the identification of a possible contradiction
between bbas while it is not the case for the CWAC operator. The behaviour
of the CWAC operator is equivalent with both dissimilarity measures. However,
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Fig. 3. Comparison between the combination of N similar functions and the combina-
tion of N − 1 similar functions and of a contradictory function

Tessem’s distance allows one to have a difference between the two simulations
more important. So, Tessem’s distance is a better measure than Jousselme et
al.’s distance for judging how contradict the two beliefs are [24].

6 Conclusion and Future Work

In this paper, we have proposed a combination rule with adapted conflict having
the objective to better handle the conflict induced from the fusion of several bbas.
Our proposed CWAC rule makes an adaptive weighting between conjunctive
and Dempster’s rules using Tessem’s and Jousseleme et al.’s distances in order
to reduce the absorbing power of the conflict and to more strengthen its initial
role of alarm signal. As future work, more attention will be given to obtain the
similarity measure between all belief functions involved in the combination. For
each similarity measure, different properties of CWAC will be defined. Moreover,
it will be interesting to study the behaviour of this operator when Jousselme et
al.’s distance (or others) is approximately equal to 0.5.
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Abstract. A new online clustering method, called E2GK (Evidential
Evolving Gustafson-Kessel) is introduced in the theoretical framework
of belief functions. The algorithm enables an online partitioning of data
streams based on two existing and efficient algorithms: Evidantial c-
Means (ECM) and Evolving Gustafson-Kessel (EGK). E2GK uses the
concept of credal partition of ECM and adapts EGK, offering a better
interpretation of the data structure. Experiments with synthetic data
sets show good performances of the proposed algorithm compared to the
original online procedure.

1 Introduction

Given a set of N data points, clustering refers to a wide variety of algorithms
that aim at discovering c groups (clusters) ω1, ..., ωc whose members are similar
in some way. The purpose is to summarize the data or to verify an existing
structure of the data. In most cases, a cluster is defined as a subset of data for
which the similarity between data within this subset is larger than the similarity
with the data in other subsets. In many cases, the Euclidean distance between
data is used as a dissimilarity measure.

A wide variety of clustering methods has been developed. The most com-
monly used methods are divided into two main categories: hierarchical and non-
hierarchical methods. Among the latter, the K-means algorithm [4] is the most
commonly used. The idea of K-means algorithm is to randomly create K clusters
and to assign each data point to the closest one in an iterative way, reallocating
points until a convergence criterion is satisfied.

Using hard partitioning methods, data are grouped in an exclusive way, i.e.,
data can’t belong to two (or more) different clusters. In fuzzy partitioning, each
data can belong to more than one cluster with different membership degrees.
The most popular fuzzy partitioning method is Bezdek’s Fuzzy C-means (FCM)
algorithm [3]. One can also mention the Gustafson-Kessel fuzzy clustering algo-
rithm [10] that is capable of detecting hyper-ellipsoidal clusters of different sizes
and orientations by adjusting the covariance matrix of data.

Another concept of partition, introduced in [7], is the credal partition based
on belief functions theory. A credal partition extends the existing concepts of
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hard, fuzzy (probabilistic) and possibilistic partition by allocating, for each data,
a mass of belief, not only to single clusters, but also to any subset of Ω =
{ω1, ..., ωc}. This particular representation allows coding all the situations, from
certainty to total ignorance of membership to clusters. In the Evidential c-Means
(ECM) algorithm [13], the credal partition is in particular exploited for outliers
detection.

Online clustering is an important problem that frequently arises in many
fields, such as pattern recognition and machine learning [8]. Numerous techniques
have been developed for clustering data in a static environment [4]. However,
in many real-life applications, non-stationary data (i.e., with time-varying pa-
rameters) are commonly encountered. The task of online clustering is to group
incoming data into clusters in a temporal sequence. Also called incremental clus-
tering in machine learning [11], online clustering, is generally unsupervised and
has to manage recursive training in order to incorporate new information grad-
ually and to take into account model evolutions over time.

In this paper, we propose the Evidential Evolving Gustafson Kessel algorithm
(E2GK) which permits to adapt a credal partition matrix as data gradually ar-
rive. This clustering algorithm is introduced in the theoretical framework of belief
functions, and more precisely of Smets’ Transferable Belief Model (TBM, [14]).
E2GK is composed of two main steps, both performed online:

1. Determination of clusters’ prototypes (also called centers), either by moving
existing prototypes or by creating new ones. To do so, we use some results
from the Evolving Gustafson-Kessel algorithm (EGK) proposed in [9].

2. Allocation of the belief masses to the different subsets of classes. This step
is based on some results of the Evidential c-means algorithm (ECM) [13].

E2GK benefits from two efficient algorithms: EGK and ECM, by dealing with
- in an online manner - doubt between clusters and outliers. Doubt is generally
encountered in data transition and can be useful to limit the number of clusters
in the final partition. Moreover, outliers are well managed using the conflict
degree explicitly emphasized in the TBM framework.

In Section 2, we present GK and ECM algorithms as well as some tools of
the theory of belief functions giving the necessary background for Section 3 in
which we introduce E2GK. Some results are finally presented in Section 4.

2 Background

Let the data be in the form of a collection {x1, . . . , xk, . . . , xN} of feature vectors
xk ∈ �q, and c the number of clusters, each of them characterized by a prototype
(or a center) vi ∈ �q.

2.1 Gustafson-Kessel Algorithm

Clustering algorithms based on an optimization process aim at minimizing a
suitable fuction J that represents the fitting error of the clusters regarding the
data:
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J(V, U) =
c∑

i=1

N∑
k=1

(uik)βd2
ik , (1)

where

– uik is the membership degree of point k to the i-th prototype (cluster center),
– U = [uij ] is the resulting partition matrix with dimension c × N ,
– V = [vi] is the c × q matrix of prototypes,
– dik is the distance between the k-th data point xk and the i-th prototype,
– Paramater β > 1 is a weighting exponent that controls the fuzziness of the

partition (it determines how much clusters may overlap).

The distance dik used in the GK algorithm is a squared inner-product distance
norm (Mahalanobis) that depends on a positive definite symmetric matrix Ai

defined by:
d2

ik = ‖xk − vi‖2
Ai

= (xk − vi)Ai(xk − vi)T . (2)

This adaptive distance norm is unique for each cluster as the norm inducing
matrix Ai, i = 1...c, is calculated by estimates of the data covariance

Ai = [ρidet(Fi)]
1/q F−1

i , (3)

where ρi is the cluster volume of the i-th cluster and Fi is the fuzzy covariance
matrix calculated as follows:

Fi =
∑N

k=1(uik)β(xk − vi)T (xk − vi)∑N
k=1(uik)β

. (4)

The objective function is minimized using an iterative algorithm, which alterna-
tively optimizes the cluster centers and the membership degrees:

vi =
∑N

k=1(uik)βxk∑N
k=1(uik)β

, i = 1 · · · c, k = 1 · · ·N , (5)

and
uik =

1∑c
j=1(dik/djk)2/β−1

, i = 1 · · · c, k = 1 · · ·N . (6)

The GK algorithm has the great advantage to adapt the clusters according to
their real shape.

2.2 Belief Functions and Credal Partition

Dempster-Shafer theory of evidence, also called belief functions theory, is a the-
oretical framework for reasoning with partial and unreliable information. It was
first introduced by A. P. Dempster (1968), then developed by G. Shafer (1976).
Later, Ph. Smets proposed a general framework, the Transferable Belief Model
(TBM) [14], for uncertainty representation and combination of various pieces of
information without additional priors.
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Considering a variable ω taking values in a finite set called the frame of
discernment Ω, the belief of an agent in subsets of Ω can be represented by a
basic belief assignment (BBA), also called belief mass assignment :

m : 2Ω → [0, 1]
A �→ m(A) ,

(7)

with
∑

A⊆Ω m(A) = 1. A belief mass can not only be assigned to a singleton
(|A| = 1), but also to a subset (|A| > 1) of variables without any assumption
concerning additivity. This property permits the explicit modeling of doubt and
conflict, and constitutes a fundamental difference with probability theory. The
subsets A of Ω such that m(A) > 0, are called the focal elements of m. Each
focal element A is a set of possible values of ω. The quantity m(A) represents a
fraction of a unit mass of belief allocated to A. Complete ignorance corresponds
to m(Ω) = 1, whereas perfect knowledge of the value of ω is represented by the
allocation of the whole mass of belief to a unique singleton of Ω, and m is then
said to be certain. In the case of all focal elements being singletons, m boils
down to a probability function and is said to be bayesian.

A positive value of m(∅) is considered if one accepts the open-world assumption
stating that the set Ω might not be complete, and thus ω might take its values
outside Ω. This value represents the degree of conflict and is then interpreted
as a mass of belief given to the hypothesis that ω might not lie in Ω. This
interpretation is useful in clustering for outliers detection [13].

Belief functions theory is largely used in clustering and classification prob-
lems [6,12]. Recently (2003) was proposed the use of belief functions for cluster
analysis. Similar to the concept of fuzzy partition but more general, the concept
of Credal Partition was introduced. It particularly permits a better interpreta-
tion of the data structure. A credal partition is constructed by assigning a BBA
to each possible subset of clusters. Partial knowledge regarding the membership
of a datum i to a class j is represented by a BBA mij on the set Ω = {ω1, . . . , ωc}.
This particular representation makes it possible to code all situations, from cer-
tainty to total ignorance.

Example 1. Considering N = 4 data and c = 3 classes, Tab. 1 gives an example
of a credal partition. BBAs for each datum in Tab. 1 illustrate various situations:
datum 1 certainly belongs to class 1, whereas the class of datum 2 is completely
unknown. Partial knowledge is represented for datum 3. As m4(∅) = 1, datum
4 is considered as an outlier, i.e., its class does not lie in Ω.

Table 1. Example of a credal partition

A ∅ ω1 ω2 {ω1, ω2} ω3 {ω1, ω3} {ω2, ω3} {ω1, ω2, ω3}
m1(A) 0 1 0 0 0 0 0 0
m2(A) 0 0 0 0 0 0 0 1
m3(A) 0 0 0 0 0.2 0.5 0 0.3
m4(A) 1 0 0 0 0 0 0 0
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2.3 ECM: Evidential C-Means Algorithm

Our approach for developing E2GK (Evidential Evolving GK algorithm) is based
on the concept of credal partition as described in ECM [13] where the objective
function was defined as:

JECM (M, V ) =
N∑

k=1

∑
{i/Ai 
=∅,Ai⊆Ω}

|Ai|α mβ
kid

2
ki +

N∑
k=1

δ2mk(∅)β , (8)

subject to ∑
{i/Ai 
=∅,Ai⊆Ω}

mki + mk(∅) = 1 ∀k = 1, . . . , N , (9)

where:

– α is used to penalize the subsets of Ω with high cardinality,
– β > 1 is a weighting exponent that controls the fuzziness of the partition,
– dki denotes the Euclidean distance between datum k and prototype vi,
– δ controls the amount of data considered as outliers.

The N × 2c partition matrix M is derived by determining, for each datum k,
the BBAs mki = mk(Ai) , Ai ⊆ Ω such that mki is low (resp. high) when the
distance dki between datum k and focal element Ai is high (resp. low). The
matrix M is computed by the minimization of criterion (8) and was shown to
be [13], ∀k = 1 . . .N , ∀i/Ai ⊆ Ω, Ai 
= ∅:

mki =
|Ai|−α/(β−1) d

−2/(β−1)
ki∑

Al 
=∅
|Al|−α/(β−1)

d
−2/(β−1)
kl + δ−2/(β−1)

, (10)

and mk(∅) = 1−
∑

Ai 
=∅ mki. The distance between a datum and any non empty
subset Ai ⊆ Ω is then defined by computing the center of each subset Ai.
The latter is the barycenter vi of the clusters’ centers (obtained by minimizing
criterion (8)) composing Ai.

3 Deriving E2GK

GK algorithm [10] has the great advantage to adapt the clusters according to
their real shape. The resulting clusters are hyper-ellipsoids with arbitrary orien-
tation and are well suited for a variety of practical problems. However, GK is not
able to deal with streams of data (relies on an iterative optimization scheme).
Moreover, it assumes that the number of clusters is known in advance.

In [9], an online version of GK clustering algorithm (EGK) was developed to
enable online partitioning of data streams based on a similar principle to the
one used in the initial GK algorithm [10]. In particular, online updating of the
fuzzy partition matrix relies on the same formula (6). Rules were then proposed
to decide whether a new cluster has to be created or existing prototypes should
evolve.
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3.1 E2GK: Evidential Evolving Gustafsson-Kessel Algorithm

The adaptation of the EGK algorithm to belief functions is introduced in this
section. The E2GK algorithm is presented in Tab. 2. It relies on some parts
developed in [9] and the proposed adaptations are emphasized in bold characters.

Step 1 – Initialization: At least one cluster’s center should be provided.
Otherwise, the first point is chosen as the first prototype. If more than one
prototype is assumed in the initial data, GK or ECM algorithm can be applied
to identify an initial partition matrix. The result of the initialization phase is a
set of c prototypes vi and a covariance matrix1 Fi.

Step 2 – Decision making: The boundary of each cluster is defined by the
cluster radius ri, defined as the medium distance between the cluster center vi

and the points belonging to this cluster with membership degrees larger or equal
to a given threshold uh:

ri = median
∀xj∈ i-th cluster and Pji>uh

‖vi − xj‖Ai
. (11)

where Pij is the confidence degree that point j belongs to ωi ∈ Ω and can be
obtained by three main processes: either by using the belief mass mj(ωi), or the
pignistic transformation [14] that converts a BBA into a probability distribution,
or by using the plausibility transform [5]. We propose here to choose the pignistic
transformation. The median value is used (instead of the maximum rule in EGK)
to reduce the sensitivity to extreme values. Moreover, the minimum membership
degree uh - initially introduced in [9] and requiring to decide whether a data
point belongs or not to a cluster - can be difficult to assess. It may depend on
the density of the data as well as on the level of cluster overlapping. We rather
set uh automatically to 1/c in order to reduce the number of parameters while
ensuring a natural choice for its value.

Step 3 – Computing the partition matrix: Starting from the resulting set
of clusters at a given iteration, we build the partition matrix M (10) using the
Mahalanobis distance (2)(3). We assumed that each cluster volume ρi = 1 as in
standard GK algorithm.

Step 4 – Adapting the structure: Given a new data point xk, two cases are
considered:

Case 1: xk belongs to an existing cluster, thus a clusters’ update has to be
performed. Data point xk is assigned to the closest cluster p if dpk ≤ rp. Then,
the p-th cluster is updated:

vp,new = vp,old + θ · (xk − vp,old) , (12)

and
Fp,new = Fp,old + θ ·

(
(xk − vp,old)

T (xk − vp,old) − Fp,old

)
, (13)

1 To obtain a covariance matrix from ECM, one can also use the Mahalanobis distance
as proposed in [1].
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where θ is a learning rate, vp,new and vp,old denote respectively the new and old
values of the center, and Fp,new and Fp,old denote respectively the new and old
values of the covariance matrix.

Case 2: xk is not within the boundary of any existing cluster (i.e. dpk > rp),
thus a new cluster may be defined and a clusters’ update has to be performed.
The number of clusters is thus incremented: c = c + 1. Then, the incoming data
xk is accepted as the center vnew of the new cluster and its covariance matrix
Fnew is initialized with the covariance matrix of the closest cluster Fp,old.

In the initial EGK algorithm [9], a parameter Pi was introduced to assess
the number of points belonging to the i-th cluster. The authors suggested a
threshold parameter Ptol to guarantee the validity of the covariance matrices and
to improve the robustness. This (context-determined) parameter corresponds to
the desired minimal amount of points falling within the boundary of each cluster.
The new created cluster is then rejected if it contains less than Ptol data points.

After creating a new cluster, the data structure evolves. However, the new
cluster may contain data points previously assigned to another cluster. Thus,
the number of data points in previous clusters could change. We propose an
additional step to verify, after the creation of a new cluster, that all clusters have
at least the required minimum amount of data points (Ptol or more). If not, the
cluster with the lowest number of points is deleted. Therefore, compared to the
initial EGK algorithm, in which the number of clusters only increases, E2GK is
more flexible because the structure can change either by increasing or decreasing
the number of clusters.

The overall algorithm is presented in Tab. 2 where the proposed adaptation
appears in bold.

4 Application of E2GK

To illustrate the ability of the proposed algorithm, let consider the following
synthetic data randomly generated from five different bivariate gaussian distri-
butions with parameters as given in Tab. 3.

Initial clusters (Fig. 1) of N = 15 data points each, of type G1 and G2, were
identified by batch GK procedure with uh = 0.5, Ptol = 20 and θ = 0.1. To test
the updating procedure, we gradually (one point at a time) added the following
data points (in this given order): 1) 15 data points of type G1, 2) 15 data points
of type G2, 3) 15 data points of type G3, 4) 30 data points of type G4, 5) 15
data points of type G3, 6) 90 data points of type “noise”, 7) 6 data points at the
following positions: [10.1 3.2], [10.1 −3.2], [−4.1 −3.1], [−2.3 8.3], [8.6 −3.1]
and [6.2 9.2]. E2GK parameters were set to: Ptol = 20, θ = 0.1, δ = 10, α = 1
and β = 2.

Each new incoming data point leads to a new credal partition. Figure 2 shows
the final resulting partition. The center of gravity of each cluster is marked by a
big star (the notation ωij stands for {ωi, ωj}). A data point falling in a subset ωij

means that this point could either belong to ω1 or ω2. The points represented in
circles are those with the highest mass given to the empty set and considered as
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Table 2. E2GK algorithm

Initialization 1. Take the first point as a center or apply the off-line
GK or ECM algorithm to get the initial number of clusters c and
the corresponding centers V and covariances Fi, i = 1 · · · c
2. Calculate vj , the barycenter of the clusters’ centers
composing Aj ⊆ Ω
3. Calculate the credal partition M , using (10)

Updating Repeat for each new data point xk

4. Find the closest cluster p
5. Decision-making: Calculate the radius rp of the closest cluster
using (11) with the median value
If dpk ≤ rp

6. Update the center vp (12)
7. Update the covariance matrix Fp (13)

else
8. Create a new cluster: vc+1 := xk; Fc+1 := Fp

end
9. Recalculate the credal partition M using (10)
10. Check the new structure: remove the cluster with
the minimum number of data points if less than Ptol

Table 3. Parameters of the synthetic data

type μ σ

G1 [0 5] 0.3
G2 [0 0] 0.3
G3 [6 6] 0.6
G4 [6 0] 0.6
noise [2.5 2.5] 2
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Fig. 1. Initialization of E2GK algorithm using some data from two clusters. Centers
are represented by stars.
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Fig. 2. Credal partition with δ = 10, α = 1, β = 2, θ = 0.1, Ptol = 20. Big stars
represent centers. We also displayed the centers corresponding to subsets, e.g. ω123,
and atypical data (dots) are well detected.
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Fig. 3. Structure adaptation: a datum arrives at each instant (x-axis) and is assigned
to one of all possible subsets (y-axis). The set of possible subsets also evolves with the
number of clusters.

outliers. It can be seen that a meaningful partition is recovered and that outliers
are correctly detected.

The online adaptation of the clusters is illustrated in Figure 3. One can see
how E2GK assigns each new data point to the desired cluster or subset. The
figure depicts the evolution of the partition regarding the order of arrival of the
data (like mentionned before). The first 30 points are used to initialize clusters
ω1 and ω2. Then, from t = 31 to 45 points are assigned by E2GK to cluster ω2.
The next 15 points are assigned to ω1 then to ω4, ω3 (30 points) and to ω4. The
next points correspond to noise and are mainly assigned to subsets, for example
point 160 to ω134.
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Fig. 4. Structure evolution: the number of clusters at each instant varies as data arrive
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Fig. 5. Decision on clusters for each point based on the pignistic probabilities obtained
from the credal partition (Fig. 2) using E2GK algorithm. Also are displayed the coor-
dinates of the centers found by E2GK.

Figure 4 also depicts the structure evolution, that is the number of clusters
at each instant. The scenario given at the begining of this section is recovered:
at t = 76 data from group G3 arrive but still, not enough data are available to
create clustrs while a cluster is created at t = 93 and t = 110 for group G4 and
G3 respectively. “Noise” and atypical points arriving from t = 181 to t = 211
do not affect the structure. This figure does not illustrate clusters’ removing
because this operation is made within the algorithm.

Figure 5 describes the dataset partitioning after decision making by applying
the pignistic transformation [14] on the final credal partition matrix. Datatips
provide the center coordinates, which are close to the real parameters (Tab 3). In
comparison, we also provide in Figure 6 the centers obtained by EGK algorithm
with parameters Ptol = 20, uh=1/c and θ = 0.1 (the same as in E2GK).
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Fig. 6. Decision on clusters for each point based on the maximum degree of membership
from the fuzzy partition using GK algorithm. Also are displayed the coordinates of the
centers found by EGK. The parameter uh was set to 1/c and the other parameters are
the same as in E2GK (θ = 0.1 and Ptol = 20).

5 Conclusion

To our knowledge, only one incremental approach to clustering using belief func-
tions has been proposed [2]. However, in this approach the number of clusters
is known in advance so this is not adapted for online applications. Moreover,
data are described by a given number of attributes, each labeled by a mass of
belief provided by an expert. This prior information is generally not available in
pattern recognition problems.

E2GK algorithm, described in this paper, is an evolving clustering algorithm
using belief functions theory, which relies on the credal partition concept. This
type of partition allows a finer representation of datasets by emphasizing doubt
between clusters as well as outliers. Doubt is important for data streams analysis
from real systems because it offers a suitable representation of gradual changes
in the stream. E2GK relies on some parts of EGK algorithm [9], initially based
on a fuzzy partition, to which we bring some modifications:

– using the median operator to calculate cluster radius (vs. max. for EGK),
– using the credal partitioning (vs. fuzzy for EGK),
– changing the partitionning structure by adding or removing clusters (vs.

adding only in EGK).

Simulation results show that E2GK discovers relatively well the changes in the
data structure. A thorough analysis of parameters’ sensitivity (Ptol and θ) is
now required to properly and automatically set them.
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Abstract. This paper proposes a new model, the EMDP (Evidential Markov
Decision Process). It is a MDP (Markov Decision Process) for belief functions
in which rewards are defined for each state transition, like in a classical MDP,
whereas the transitions are modeled as in an EMC (Evidential Markov Chain),
i.e. they are sets transitions instead of states transitions. The EMDP can fit to
more applications than a MDPST (MDP with Set-valued Transitions). Generaliz-
ing to belief functions allows us to cope with applications with high uncertainty
(imprecise or lacking data) where probabilistic approaches fail. Implementation
results are shown on a search-and-rescue unmanned rotorcraft benchmark.

1 Introduction

The problem we address in this paper is decision-making when there is high uncer-
tainty (incomplete, imprecise or unreliable data) and however it is necessary to make a
decision rapidly. This is the case for example in crisis management applications. The
ongoing situation is one state of a system, and there are several possible actions to move
to another state. When the e�ects of the actions are probabilistic, determining which one
must be chosen for each system state is the problem of planning under uncertainty [4].
The Markov Decision Process (MDP) is one classical model to solve this problem. But
in our context one must take into account additional uncertainties at two levels: the cur-
rent system state, and the probabilities of the possible e�ects of the actions. In crisis
management-type applications there is no time to learn the model, and the available
data are poor, so the probabilities are unknown; this is why probabilistic methods are
no longer suÆcient to identify the system; we need to involve theories that are more
general than the probability theory. There exist several candidate theories generalizing
probabilities, such as Imprecise Probabilities [25]. In this work, we focus on the theory
of belief functions (also called Dempster-Shafer theory of Evidence) [16], because it
o�ers a powerful mathematical framework, it can perform combination and aggrega-
tion of belief masses, and it allows us to compute decision criteria with algorithms of
low complexity.

In this paper, we shall remind some existing generalizations of MDPs, then we
will introduce our proposed EMDP (Evidential Markov Decision Process). A solving
method will be given, and finally we will give some results on a search-and-rescue
unmanned rotorcraft benchmark of the IPC-6 (International Planning Competition1).

1 �����������
�����������������

W. Liu (Ed.): ECSQARU 2011, LNAI 6717, pp. 338–349, 2011.
c� Springer-Verlag Berlin Heidelberg 2011
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2 Existing Extensions of the MDP Model

After a reminder about the classical MDP model, this section o�ers an overview of
generalizations that have been proposed in the field of uncertainty theories. Let us
consider a system. � will denote the space of all the possible states s in which this
system can be. In all this work, � is supposed to be finite. Remind that a Markov
chain is the triple (�� Q� P0) where Q is a state transition matrix whose elements are
qi j � Pr(s� � xi�s � x j) (i.e. the probabilty of transition from state s to state s�), and P0

is the initial probability vector.

2.1 The Classical MDP Model

As we will propose a generalization of MDPs to belief functions, it is necessary to
describe the classical (or probabilistic, or exact) MDP model. A Markov Decision Pro-
cess (MDP) [11] is a planning problem where actions do not always have necessarily
one unique deterministic e�ect. There may be several e�ects, with given probabilities
which depend on the previous state, the action, and the following state. It is a sequen-
tial decision-making process, i.e. a system where an action must be performed at each
time step t. Each action has two e�ects: it influences the following system state, and it
provides a gain called reward. The MDP is modeled by a tuple (�� A� Q�R� P0) where A
is the space of all possible actions a. The applications Q and R:

Q : � � A � � � [0� 1] with Q(s� a� s�) � Pr(s��a� s)
R : � � A � � � �

are respectively the transition probability and the reward obtained when moving from
state s at time t to state s� at the following time t � 1 on action a. P0 is the vector of the
initial probabilities for each possible state.

Let (�� A� Q�R� P0) be a MDP. A policy is a function: � : � � A defining which
action a � �(s) is to be done for each state s of the system. Solving a MDP is finding
out the optimal policy, i.e. which action is optimal for each state. Note that a MDP in
which a given policy is applied behaves as a Markov chain. The criterion to be optimized
is the value function V which is the total expected cumulated future reward. For each
state s, with a given policy, the value V(s) satisfies the Bellman equation [11]. We will
consider the infinite-horizon Bellman equation:

V(s) �
�

s���

Q(s� �(s)� s�)
�
R(s� �(s)� s�) � �V(s�)

�
(1)

where the s� are the possible following states, Q(s� �(s)� s�) and R(s� �(s)� s�) are respec-
tively the probability and the reward obtained in transition from state s to state s� on
action �(s), and � is a discounting factor. This expression can be written with matrix
products:

V � � � �QT V

where � is the vector of expected immediate reward for each state. Its coordinates are
�s �

�
s��� Q(s� �(s)� s�)R(s� �(s)� s�).
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When there are several possible actions a to do, the optimal policy �(s) provides for
each state s an action a to do such that �(s) � Argmaxa�AV(s). One classical dynamic
programming algorithm to solve the infinite-horizon Bellman equation is the policy it-
eration method. It consists in initializing �0 (arbitrarily) and setting �n�1(s) is the action
a which maximizes

V(s� a) �
�

s�

Q(s� a� s�)
�
R(s� a� s�) � �Vn(s�)

�
�

and this maximal value V�n�1(s)(s) is denoted as Vn�1(s). It has been shown that this
algorithm converges [11].

2.2 The EMC Model

Introduced by Pieczynski [3,7,10], the Evidential Markov Chain (EMC) is not a MDP
but a genralization of the Markov chain model to belief functions. It will be the basis
for the new EMDP we will propose in this paper. Before introducing it, we shall remind
some basic concepts of the theory of belief functions [16].

� will be considered as a so-called frame of discernment (space of all hypotheses).
A mass function is a mapping m : 2� � [0; 1] such that

�
A�� m(A) � 1. A subset of �

which mass is non zero is called a focal set.
The random variable representing the possible states of a Markov chain-modeled sys-

tem is replaced by a random (focal) set in the EMC model. It is a 4-uple (��� � Q� M0)
where � is a set of focal sets of � and (� � Q� M0) is a Markov chain. (Thus, M0 is the
vector of the initial masses of the focal sets). (Note that if � is the set of the singletons
of �, the EMC coincides with a classical Markov chain.)

2.3 Existing Generalizations of the MDP

The purpose of this paper is to generalize MDPs to belief functions. But some works al-
ready exist for more general theories like imprecise probabilities and capacity
theory [6,24]. In summary, these are the MDPIP (MDP with Imprecise transition Prob-
abilities) [14] and the BMDP (Bounded-parameter MDP) [5], in which the transition
probabilities and the rewards are replaced by intervals; the AMDP (Algebraic MDP) [8],
which is concerned with extensions of probabilities that can be written in an algebraic
form (this is not the case of the belief functions); a possibilistic model has been pro-
posed for qualitative MDPs [13], in which the observations and the preferences of the
decision-maker are both modeled with the possibility theory; but the only generaliza-
tion for belief functions is the MDPST (MDP with Set-valued Transitions) [23], which
manipulates random sets (thus belief functions):

A MDPST is modeled by a tuple (�� A� F�R� P0) where the parameters are defined as
for a MDP except that the transition function F is set-valued, as follows:

F : � � A � 2� with F(s� a) � S � � �

with a probability m(S ��s� a) defined on (� � A � 2�). One has for any (s� a):�
S ��2� m(S ��s� a) � 1 and the reward R : � � A � �.
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In conclusion, the MDPST is the only existing model devoted to belief functions. But
its reward is restricted because it depends only on two parameters (s� a) and not on the
three parameters (s� a� s�). This simplifies the solving method (no need to do an average
to know the immediate reward term in the Bellman equation) but it does not fit to all
the practical problems. This is why we shall propose hereafter a more general model.

3 The Proposed Approach

In this section we introduce our new EMDP model, which is based on the EMC. A
solving method will be proposed.

3.1 The New EMDP Model

The proposed Evidential Markov Decision Process (EMDP) model consists in replacing
the probabilities of transitions of a MDP by transitions between focal sets as in an EMC.
But the rewards are still defined as in a MDP. The model is the following:

An EMDP is a tuple (��� � A� Q�R� M0) where �, A and R are the set of states, the
set of actions and the reward matrix defined on � � A � � (as for a MDP); � � 2�

is a set of (focal) sets; and for each action a � A, Q is the transition matrix defined on
� � A � � (as for an EMC for a given a). M0 is the initial mass vector. (Note that the
reward matrix is defined more precisely than the transition matrix. This is because in
the physical system the reward has a value for each state transition.)

3.2 Link with the MDPST Model

The transition function of a MDPST assigns a focal (random) set so a state, whereas
in the EMDP tre transitions are characterized from one focal set to another. Thus, the
MDPST is defined when the state of the system itself is observed, but in the EMDP
what is observed is a set. This is why the resulting policy is defined on the states for the
MDPST, and on the focal sets for the EMDP.

The other minor di�erence between the two models is that the reward does not de-
pend on the following state in the MDPST. In fact the reward models can become equiv-
alent with a redefinition of the state space.

3.3 Solving Method for EMDPs

In an EMDP the current state of the system is not known completely. The observed
measure at each time t is a random (focal) set. It is possible to provide a policy as a
function of the observed focal set. For that, we will propose a generalization of this
Bellman equation (1) and a method to solve it.

Bellman equation expression for an EMDP. The Bellman equation is a sum of terms
which are immediate expected rewards. At each time step t, for each current state s and
for each possible action a, the immediate reward R(s� a� s�) is a function of the next state
s�. We need to compute its expectation on all s�, but it is not possible since in an EMDP
we do not know the exact probability of s�. Anyway we know its mass function.
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It is known [18,2,15,17] that for any real variable R with a mass m(S �) given for each
focal set S �, the expectation is bounded by the Choquet integrals of the cumulated belief
function and the cumulated plausibility function, which have the following expressions:

�

S ���

m(S �)min(S �) � � [R] �
�

S ���

m(S �)max(S �)

Now, we are in an EMDP, so we have a current focal set S (instead of a single state
s� as in a classical MDP). So the above min(S �) and max(S �) are replaced by:

R(S � a� S �) � mins�s�

�
R(s� a� s�)�s � S � s� � S �

�

and
R(S � a� S �) � maxs�s�

�
R(s� a� s�)�s � S � s� � S �

�

In the Bellman equation, then, the value � (expected immediate reward) will be
replaced by an interval whose bounds are calculated as follows:

�(S ) �
�

S ���

Q(S � a� S �)R(S � a� S �) and �(S ) �
�

S ���

Q(S � a� S �)R(S � a� S �)

We obtain the following bounds for V , extending the infinite-horizon Bellman equa-
tion:

V(S ) � �(S )��
�

S ���

Q(S � a� S �)V(S �) and V(S ) ��(S )��
�

S ���

Q(S � a� S �)V(S �) (2)

V is the so-called value function that is to be maximized in all Bellman equations (it is
in fact the total expected cumulated reward). V is updated by the expected immediate
reward� with the discounting factor �. Note that the value function is characterized for
each focal set S � � ; thus the policy that will be determined from it is also a function
of S .

The proposed solving method. For determining an optimal policy, one can choose
between maximizing the lower bound of the value function or maximizing its upper
bound. The corresponding algorithms will be named the maxmin and the maxmax, as
for the MDPIP [14]). To do that, we propose to use the policy iteration method. It was
described in Section 2.1 for a MDP. To generalize it to an EMDP, here is the proposed
method:

– at step 0, the initial policy �0 can be initialized arbitrarily such that �0(S ) � A, and
the value V(S ) (or V(S )) is initialized as zero, for all S � � ;

– at step n, we have the policy �n and the value function is Vn(S ) (for the maxmin)
or Vn(S ) (for the maxmax) for each S � � ;

– for the maxmin algorithm, �n�1(S ) will be the action a which maximizes

Va(S ) �
�

S ���

Q(S � a� S �)
�
R(S � a� S �) � �Vn(S �)

�
�
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– for the maxmax algorithm, �n�1(S ) will be the action a which maximizes

Va(S ) �
�

S ���

Q(S � a� S �)
�
R(S � a� S �) � �Vn(S �)

�
�

– for the maxmin (resp. maxmax), this maximal value V
�n�1(S )(S ) (resp. V�n�1(S )(S ))

is denoted as Vn�1(S ) (resp. Vn�1(S )).
– more generally, one can choose a linear combination between the minimum and the

maximum value; �n�1(S ) will be the action a which maximizes �Va(S ) � �Va(S ).

The algorithm is described in Table 1.

Table 1. Policy iteration algorithm so solve an EMDP. For example, � � 1 and � � 0 is the
maximin; � � 0 and � � 1 is the maximax.

Policy iteration algorithm for solving an EMDP

for all (S � a� S �) � � � A � � do
R(S � a� S �) � �R(S � a� S �) � �R(S � a� S �)

n � 0
initialize �0 (arbitrarily)
initialize V0(S ) � 0 foa all S � �

repeat
for all S � � do

v(S � a) �
�

S ��� Q(S � a� S �) (R(S �a� S �) � �Vn(S ))
�n�1(S ) � argmaxa�Av(S � a)
Vn�1(S ) � v(S � �n�1(S ))

n � n � 1
until � Vn�1 � Vn �� �

Proposition 1. The policy iteration algorithm proposed in Table 1 for solving EMDPs
converges towards an optimal policy.

Proof. This is true because we constructed a new reward R(S � a� S �) � �R(S � a� S �) �

�R(S � a� S �) wich is defined on � � A � � . So we defined a classical MDP on the new
space � instead of the initial state space �. Solving the EMDP is thus equivalent to
solving this new classical MDP. It is known [11] that the policy iteration algorithm
converges towards an optimal policy in classical MDPs. �

Note that there are two other classical methods to solve classical MDPs: first, the value
iteration method, which is another dynamic programming algorithm (and which must
converge in the case of the EMDP for the same reason as the policy iteration). And
there is also the linear programming method; its generalization can raise problems of
convergence because of dynamical inconsistency [9].
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4 Illustrative Example

This section provides an example of a planning problem, the search-and-rescue (SAR)
benchmark. It was proposed at The Sixth International Planning Competition organized
by the International Conference on Automated Planning and Scheduling in 2008. It
consists of an unmanned rotorcraft which has to land near somebody to be rescued, as
described by Teichteil [21], who has proposed algorithms to solve this type of prob-
lem [19,20,12,22]. It is a purely probabilistic MDP problem that we will modify to
build an EMDP. This is why we did not do the competition.

4.1 Context of the Application Example

A search-and-rescue unmanned rotorcraft has to check a wounded person and to bring
him back to its base. At the beginning of the mission, one knows that there is a survivor
in a given area. The rotorcraft performs a first flight at high altitude on the overall area
in order to locate, thanks to its imaging sensors, the zones where it could possibly try
to land [21].

Then, the rotorcraft will perform its mission: it starts from its base, it flies towards
one zone, and it explores it in order to know whether it is landable or not. Then it can
fly towards another zone or land (if it is landable). When it is on ground, the survivor
has to climb into the rotorcraft by himself, but he will not succeed systematically. If he
fails, the rotorcraft can try another zone. At each stage, the survivor has a probability
to die. If the survivor is on-board, or if he is dead, the mission ends and the rotorcraft
goes back to its base. Figure 1 shows the overview of the area, the rotorcraft, the base
and the zones.

Fig. 1. Overview of the area for a search-and-rescue unmanned rotorcraft which must check a
survivor. Three zones where it could possibly land are displayed.

As any PDDL2 benchmark, the model is split in two parts: on one hand the appli-
cation domain description which includes all possible generic actions (state transitions
functions) and on the other hand a problem scenario which specify an init state and a

2 Planning Domain Description Language.
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set of goals to reach. For the competition, the domain came with 20 instance scenarios
with a varying number of zones. This number multiplies the combinations, the objective
being to test the scaling up of the candidate planner.

Description of the model. We describe here the model obtained after a preprocess-
ing of the IPC benchmark. It consist in some simplifications, which consist of merg-
ing states, lead to a reduced number of states and combined actions; for example, we
merged the states corresponding to the action land and the action take o� because after
landing there is no other possible action.

The exhaustive list of all the possible resulting states is described in Table 2. We
choose Nz � 2 zones, so there are 23 states. We denote as (i� x1� x2) the state where the
rotorcraft is located at zone i � 	1� 2
 and the status of each zone j � 	1� 2
 is x j.

The initial model is a classical MDP. We have modified it to obtain an EMDP. So,
the system behavior will be slightly di�erent. Here the focal sets have been defined as
a function of the answer to the questions: ”is the rotorcraft located to a landable place?
Or to an unexplored place?”. We obtain the following Na � 8 actions:

– take o�, goto unexplored
– explore
– land, take o�
– goto unexplored
– goto landable
– goto unlandable
– goto base, land
– end-mission

With this reasoning, we obtain Nf � 14 focal sets. They are listed with the resulting
policy in Table 3. It is important to notice that their interpretation can be independent
from the number of zones. The focal sets transition matrix Q appears also in this Table.
The reward matrix is extracted directly from the benchmark data.

Table 2. The system states in the SAR domain

STATE DESCRIPTION

A0 At base, on ground
human alive, but not on-board

(i� x1� x2) with cases: at zone i with:
xj � 0 zone j not explored
xj � 1 zone j nlandable
xj � 2 zone j nnot landable

human alive but not on board
B not at base, human alive and on-board
C not at base, human dead
S at base, success (human rescued)
F at base, failure (human dead)
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Table 3. Policy obtained with the maxmin algorithm on the EMDP derived from the SAR model

Current Action Next Probability

( A0 ) take o�, goto unexplored ( ( 1, 0, 0 ) ( 2, 0, 0 ) ) 1.00
( ( 1, 0, 0 ) ( 2, 0, 0 ) ) explore ( ( 1, 1, 0 ) ( 2, 0, 1 ) ) 0.70

( ( 1, 2, 0 ) ( 2, 0, 2 ) ) 0.30
( ( 1, 1, 0 ) ( 2, 0, 1 ) ) land, take o� ( ( 1, 2, 0 ) ( 2, 0, 2 ) ) 0.16

( B ) 0.64
( C ) 0.20

( ( 1, 2, 0 ) ( 2, 0, 2 ) ) explore ( ( 1, 1, 0 ) ( 2, 0, 1 ) ) 0.70
( ( 1, 2, 0 ) ( 2, 0, 2 ) ) 0.30

( B ) goto base, land ( S ) 0.76
( F ) 0.24

( C ) goto base, land ( F ) 1.00
( S ) end-mission ( S ) 1.00
( F ) end-mission ( F ) 1.00

4.2 Obtained Results

With the maxmin algorithm we obtained the policy in Table 3. There are some focal
sets that are never reached. They correspond to the case where the rotorcraft is at one
zone and the other one is not unexplored (so it has already been to it).

Note that in this policy, the rotorcraft never goes to the other zone (except at the
beginning). The action ”goto” is not used between the zones.

With the maxmax algorithm we obtained a policy which is di�erent from the policy
provided by the maxmin algorithm. But after removing all the focal sets that are never
reached, the final result becomes identical (in this example; but this was not always true
for other examples we tested).

Conclusion about the results. The number of states Nx increases exponentially with
the number of zones Nz since it is:

Nx � 5 � Nz � 3Nz

The policy we obtained shows that it is more interesting to explore again the place
where we are than to move to another place. One could guess this result since moving
to another place and exploring, are actions which provide no reward but they are time
consuming, so they decrease the value of the Bellman equation because of the � factor.

Extension to a large number of zones. As it was explained above, the focal sets of
the proposed EMDP models have an interpretation which is mostly independent of the
number of zones. So, for any number of zones Nz, one can propose the following focal
sets:
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– the 5 singletons containing A0, B, C, S an F, as listed in Table 3;
– all the sets defined by 3 parameters: a status with 3 possibilities: (0) the rotorcraft is

at an unexplored zone, or (1) it is at a landable zone, or (2) at an unlandable zone;
the number Nu of unexplored zones; the number Nl of landable zones.

One has the condition Nu � Nl � Nz. The number of unlandable zones is Nz � Nu � Nl.
So, the total number of sets is

5 � 3 �
Nz(Nz � 1)

2
� 3

This is proportional to the complexity of the corresponding EMDP. It grows with Nz

in a polynomial way. So, even if the implementation results have been tested only for
Nz � 2 in this work, we know that it is theoretically possible to reach a large number
of zones without excessive complexity. We can even guess that the conclusion of the
obtained policy is that, in this particular SAR example, the rotorcraft will still have
better interest in exploring again the zone where it is rather than going to another zone.

In these results, the algorithm was usually implemented with the discounting factor
� � 0�8. Trials with a smaller value for � showed that the solution never converges
towards the goal (e.g. the search-and-rescue rotorcraft turns and turns but never tries
to rescue the survivor). This is because the memory depth is not suÆcient in this case.
Generally, when � is too small, the rewards provided by the possible future states are
penalized by their delay since they receive a coeÆcient �n where n is the number of
time steps of delay.

5 Conclusion

We proposed the EMDP model which generalizes the MDP to the belief functions, in a
more general sense than MDPSTs. In the EMDP model the rewards are defined for the
states themselves but the transition matrix is defined for sets of states. With this new
model we introduced, we proposed an algorithm and a formalism to solve it. It uses the
policy iteration method in which we adapted the infinite-horizon Bellman equation by
calculating two bounds. The solving method has been tested. The obtained results on an
EMDP model constructed from a search-and-rescue problem correspond to the common
sense, so they show the feasibility of the EMDP model. A complementary work have
been proposed [1] for the search-and-rescue application to translate the inaccuracies
about the survivor location into belief functions. This approach can be associated to an
EMDP.

We showed that our EMDP solving method converges since it corresponds to an
equivalent MDP in the space of the focal sets; anyway the EMDP brings an operational
interest, in comparison to the classical MDP, which is to get the benefits of the belief
functions: it allows us to cope with imprecise data, particularly if they are extracted
from textual observations. The EMDP model is more inaccurate than a MDP, so it
should be more robust and also the learning of the model should be faster. In fact when
we construct an EMDP model by modifying a MDP we obtain a di�erent behavioi (e.g.
actions may become possible, or impossible, for some states); one could study in further
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work how to find good criteria for the comparison between the MDP and EMDP model.
One other interesting property is that it allows us to handle large subsets of states that
have similar properties; this allows us to reduce considerably the complexity in some
planning problems. For example, in the search-and-rescue application, the number of
handled focal sets is independent of the actual number of possible landing zones.

For further work, one could study the finite-horizon case. And of course, there re-
mains also an interesting topic of research this paper did not tackle with: how to perform
the learning of an EMDP model. Since reinforcement learning techniques are proba-
bilistic, it will be interesting to study their generalization to belief functions.
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19. Teichteil-Konigsbuch, F., Fabiani, P.: An hybrid probabilistic model for autonomous explo-
ration. In: Proc. of 20th RFIA (2004)

20. Teichteil-Konigsbuch, F., Fabiani, P.: Symbolic heuristic policy iteration algorithms for struc-
tured decision-theoretic exploration problems. In: Proc. of Workshop WS6 of ICAPS 2005,
Monterye, CA, June 6-10 (2005)

21. Teichteil-Konigsbuch, F., Fabiani, P.: A multi-thread decisional architecture for real-time
planning under uncertaint. In: Proc. of 3rd Workshop on Planning and Plan Execution for
Real-World Syst., September 22 (2007)

22. Teichteil-Konigsbuch, F., Infantes, G.: MDP hybrides sans intégration analytique en utilisant
régression, échantillonnage et mises-à-jour locales. In: Proc. of JFPDA (April 2009)

23. Trevizan, F.W., Cozman, F.G., de Barros, L.N.: Planning under risk and Knightian uncer-
tainty. In: Proc. of 20th IJCAI, Hyderabad, India, January 6-12, pp. 2023–2028 (2007)

24. Trevizan, F.W., Cozman, F.G., de Barros, L.N.: Mixed probabilistic and nondeterministic fac-
tored planning through Markov decision processes with set-valued transitions. In: Proc. of
18th Int. Conf. on Automated Planning and Scheduling (ICAPS), Sydney, Australia, Septem-
ber 14-18 (2008)

25. Walley, P.: Statistical Reasoning With Imprecise Probabilities. Chapman & Hall, New York
(1991)



Continuous Belief Functions to Qualify Sensors
Performances

Pierre-Emmanuel Doré1, Christophe Osswald1, Arnaud Martin2,
Anne-Laure Jousselme3, and Patrick Maupin3

1 E3I2, ENSTA Bretagne, 2 rue François Verny 29806 Brest Cedex 9, France
{pierre-emmanuel.dore,christophe.osswald}@ensta-bretagne.fr

2 IRISA, Université de Rennes 1, Lannion, France
arnaud.martin@univ-rennes1.fr

3 R & D Defence Canada - Valcartier, Decision Support Systems for Command and
Control (DSS-C2) section, 2459 Pie XI North, Quebec, QC, G3J 1X5, Canada

{Anne-Laure.Jousselme,Patrick.Maupin}@drdc-rddc.gc.ca

Abstract. In this paper, we deal with the problem of sensor perfor-
mance estimation. As we assume that the sensor is described with only
few data, we decide to use the theory of belief functions to represent the
inherent uncertainty of our information. Hence, we introduce the belief
functions framework, especially in the continuous approach. We describe
the model of sensor adopted in our study. Knowing the experimental
setting, we suggest an approach to model the sources of information de-
scribing our sensor. Finally, we combine these sources in order to estimate
sensor performances.

Keywords: Sensor performances, Continuous belief function, Paramet-
ric model, Inference, Fusion.

1 Introduction

The theory of belief functions has been introduced by the famous works of
A. Dempster about upper and lower probabilities [3,4] and those of G. Shafer [13]
on the theory of evidence. The work of Ph. Smets [14] contributed to spread it in
the scientific community. Recently, thanks to new breakthroughs [18,12,15,16,2],
the application of belief functions on continuous framework has gained some
interest. Hence, we apply these results to describe sensor performances.

Wireless sensors networks are more and more used in monitoring applications
[11,9]. One crucial issue in this domain is the sensors placement. Indeed, the aim
is to place the sensors in order to maximize the chance to detect an intrusion.
To fulfil this objective, we have to characterize the performances of a sensor
as a detector. To estimate the performance of a sensor, we adopt a parametric
approach. As we only have a small amount of measures to define it, we decide to
use the belief function framework to take into account the lack of information.

In a first part (section 2), we present the theory of belief function within
a continuous frame of discernement. Then, we introduce a parametric model

W. Liu (Ed.): ECSQARU 2011, LNAI 6717, pp. 350–361, 2011.
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describing sensor performances (section 3). As we have few data, we present
some results obtained by A. Dempster and we suggest an approach funded on
the maximum necessity and likelihood principles to the estimate the parame-
ters describing the sensor performances (section 4). Hence, considering that the
experimental settings provide us three cognitive independant sources of infor-
mations (we take measures in three different places), we merge their respective
beliefs about the value of the sensor parameters (section 5). Finally, we analyse
our results in section 6. Thanks to these operations, we are able to characterize
more accurately the sensor performances.

2 Belief Function Framework

The theory of belief functions is a tool used to represent the imperfection of a
source of information. There are many kinds of imperfection a belief function
can describe such as ignorant, vagueness, uncertainty, ... The purpose of this
section is to recall some useful parts of this theory.

2.1 Belief on Real Numbers

In [15], Ph. Smets describes an approach of belief functions on real number. He
suggests to assign mass on the intervals of R � R � ���,��. There is a lot of
advantage to procede in this way. Indeed, we can easily associate a basic belief
density on R to a probability density function on R

2
. However, this framework is

quite restrictive and we cannot use it to describe belief function with basic belief
assignement on unconnected sets. In a previous work [6], we suggest to scan the
set of focal elements (the subset of R whose the basic belief assignement is not
null), F , using an index function f and a specific index space I.

f I : I �� F
y 	�� f I
y�

(1)

With this index function,we consider a positivemeasure1 μΩ such as
�

I

dμΩ
y� � 1.

Hence, to define a belief function, we have to consider the pair
�
f I , μΩ

�
. In order

to compute belief functions, we need to define for all A inP 
Ω� (a family of subset
of Ω):

F�A � �y  I�f I
y� � A� (2)

F�A � �y  I�
�
f I
y� �A

�
� �� (3)

F�A � �y  I�A � f I
y�� (4)
Once these subsets are defined, we can compute the following belief functions:

– The belief function:
belΩ
A� �

�
F�A

dμΩ
y� (5)

1 For the sake of simplicity, it happens we considers that dμΩ�y� � mΩ�fI�y��.
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– The plausibility function:

plΩ
A� �

�
F�A

dμΩ
y� (6)

– The communality function:

qΩ
A� �

�
F�A

dμΩ
y� (7)

In this framework, we define some basic tools. One of them is the conjunctive rule
of combination which allow us to merge sources of information. Let

�
f I
1 , μΩ

1

�
and�

f I
2 , μΩ

2

�
two belief functions. The conjunctive rule of combination [17] brings

the belief function
�
f I
1 �© 2, μ

Ω
1 �© 2

�
[6] such that:

qΩ
1 �© 2
A� � qΩ

1 
A� � q
Ω
2 
A� (8)

Within this framework, we will study a particular type of belief functions, the
consonant ones.

A consonant belief function is a belief function whose the focal sets are
nested. This allows us to create a total ordering on F linked to the � re-
lation. Hence, we can define an index function f from R� , to F such as

y � x� �� 
f 
y� � f 
x�� [15]. To generate consonant sets, we can use g, a
continuous function from Rn to I � �0, αmax� � R�. The α-cuts of g are the set
such as:

f I
cs
α� � �x  Rn�g 
x� � α� (9)

We have the property that F cs
�A is an element of Borel algebra. Indeed:

F cs
�A � � � �αinf � inf

�
α  I�f I

cs
α� �A � �
�

� F cs
�A � �αinf , αmax�

(10)

Using a similar argument, we can prove that F cs
�A and F cs

�A are elements of Borel
algebra. Hence, we can define the index function:

f I
cs : I � �0, αmax� ��

�
f I

cs
α� �α  I
�

α 	�� f I
cs
α�

(11)

If we consider a probability measure μRn

on I, the brace
�
f I

cs, μ
Rn�

refers to a
belief function.

2.2 Maximum of Necessity

When we work with an “objective” source of information, we can apply the
principle of maximum of necessity. This principle comes from the theory of pos-
sibility [7,8,10]. The theory of possibility is a particular case of the theory of
belief functions (focal elements are always nested). In this situation, the plausi-
bility corresponds to possibility distribution and we consider the necessity which
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Fig. 1. How to build belief functions from a probability density function Betf

corresponds to the belief function. The idea is to work with the most informative
distribution of possibility (for the necessity ordering) which fulfils the following
assumptions. The first one is that the possibility dominates the probability, i.e.
for all A measurable Π 
A� � P 
A�. The second one is that the ordering must
be kept, i.e. P 
A� � P 
A�� � Π 
A� � Π 
A��.

These conditions can be transposed in the framework of belief functions [10].
Finding a belief function which verifies these properties is equivalent to find
a nested focal sets family such as for all A belonging to this family, A is the
smallest set (for the inclusion ordering) such as P 
A� � β. This sets family
corresponds to the confidence sets in theory of probability. If we have as input a
continuous probability density function Betf , the focal set

�
f I

cs
α
�

is the α-cuts
of Betf . We obtain a belief function defined by

�
f I

cs, μ
B 
R�

�
such as if we adapt

the result of [10], we obtain [6] (cf. figure 1):

plB 
R� 
x� � 1�BetP
�
f I

cs
Betf 
x��
�

(12)

i.e.2:
dμR 
α� � αdV 
α� with V 
�α, αmax�� � λ

�
f I

cs
α�
�

(13)

Within this framework, we can build belief functions on real number with
complex focal sets. In most of the cases, the information given by a sensor is
represented with a probability distribution. However, it happens we do not have
enough information to precizely define a distribution of probability. A belief
function can be useful to take this phenomenom into account.

3 Model of Sensor

We consider in this paper that a sensor is a detector. Each detector is defined
using two caracteristic measures, the probability of true positive (Pt) and the
2 λ refers to the Lebegue’s measure.
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probability of false positive (Pf ). The probability of true positive is the proba-
bility that we detect an object when there is actually something. The probability
of false positive is the probability we decide there is something when there is
nothing. In the litterature, the probability of true positive has been defined as
a function of the distance between the sensor and the object we want to detect.
In our study case, to model the sensor, we make the following assumptions:

1. The sensor is passive. Hence, the probability of false positive is not a func-
tion of the distance between the sensor and the object. When the distance
between the sensor and the object is growing, the value of Pt tends to Pf .

2. If the distance between the sensor and the object is smaller than α, the
detection is guaranteed.

3. Beyond this point, the probability of true positive decreases such as the
inverse of a geometric law of parameter λ. This type of behaviour has been
observed on seismic and magnetic sensor or microphone.

Hence, the following equation describes the probability of detection according a
distance d between the sensor and the target, the parameters α, λ and Pf :

Pt
d� �

�
1 if d � α

αλ �
1� Pf

dλ
� Pf otherwise

(14)

This is a trade off between the Elfe’s model [9] and the geometric model of
sensors [11]. The shape of the sensor coverage (the probability of true positive
according the distance) described in equation (14) is represented in figure 2.

We will estimate the coverage of a sensor, using our parametric model, when
we dispose of only a small amount of measures.

Fig. 2. Probability of detection on a grid. The sensor position defines the origin of our
coordinates (α � 4, λ � 0.5, Pf � 0.15).

4 Belief Functions Induced by Sampling

The size of the sample set is not large enough to define precizely a distribution
of probability. As measure prospecting is an expensive process, we have to find
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a way to describe imprecise knowlegde on true and false positive probabilities
using a small sample set. We will apply our work to the estimation of the sensor
performances.

4.1 Experimental Settings

In order to illustrate our work, we assume we monitor vehicles moving on three
roads at different distances of the sensor ( cf. figure 3). In each case, we have

Fig. 3. The experimental setting

obtained a different empirical value of the probability of detection according the
distance. The generic values used in our work are described in table 1.

Table 1. Generic values

Distance sensor/vehicule d number of test n number of detection k

5 m 20 18

10 m 20 14

20 m 20 10

As we work on a small amount of data, the estimates of probabilities of true
positive are imprecise. In fact, a family of probability distibutions can fit with
the data we obtain. The theory of belief functions is an efficient framework to
represent a family of probability distributions. Hence, we present some methods
to model information induced by a small learning set in the belief functions
framework.

4.2 The Dempster’s Approach

The first motive of Dempster [5] when he developped the theory of upper and
lower probabilities was to propose a mathematical framework to model statis-
tical inference. One of his main results in this domain concerns the binomial
sampling. When we have a small amount of samples following a binomial law,
it is impossible to precizely define the parameter p of this law. Hence we define
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a set of distributions of probability using belief functions theory. Let P be the
interval �0, 1� which describes the parameter p of a binomial law. Let n be the
size of the sample set and k be the number of samples belonging to one of the
two classes of the binomial sampling. We obtain a conditional belief function
mP on the value of p over P knowing n and k [5] :

mP �n, k� 
�u, v�� � n!
�k�1�!�n�k�1�!u

k�1
1� v�n�k�1 0 � k � n

mP �n, k� 
�0, v�� � n
1� v�n�1 k � 0
mP �n, k� 
�u, 1�� � nun�1 k � n

(15)

where �u, v� � P�0, 1� are the focal elements of these belief functions. We notice
that

	
	0,1
 m

P �n, k� 
�u, v��dudv � 1. This kind of belief function can model our
problem and be used to define our probabilities. Unfortunately, they are difficult
to handle and we cannot use on them the max or the min operators. Indeed,
generally, these operators do not induce belief functions (cf. example in table 2).
Hence, we have to find another way to characterize our information. There are
methods using confidence regions or least commitment principle [1]. However, in
this paper we focus on the maximum of necessity principle as it will sum up the
information contained by all the confidence regions in an unique function.

Table 2. The max operator does not induce a belief function

focal elements � a b c ab ac bc abc
m1 0 0.25 0.11 0.03 0.06 0.10 0.15 0.3

m2 0 0.22 0.07 0.04 0.09 0.10 0.13 0.35

pl1 0 0.68 0.59 0.94 0.61 0.89 0.75 1

pl2 0 0.71 0.59 0.91 0.67 0.93 0.78 1

plmax � max �pl1, pl2� 0 0.71 0.59 0.94 0.67 0.93 0.78 1

mmax 0 0.415 0.1723 0.0040 0.1446 0.0923 0.2003 �0.0285

4.3 Likelihood and Maximum of Necessity Principles

As we cannot apply max operator on the belief function defined in equation
(15), we decide to use the maximum likelihood principle [14] to define a belief
function associated to a binomial sampling. This principle can be resumed as
following:

Assuming a likelihood function l, the likelihood of a parameter θ knowing that
x is true is equal to the likelihood of x knowing that θ is true.

l�x� 
θ� � l�θ� 
x� (16)

The likelihood function l must satisfy several properties. One of them is that the
likelihood of a set of hypothesis is higher than the likelihood of its subsets:
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l 
Θ� � l 
θ� , θ � Θ (17)

Another one is that the likelihood function must be a sub-additive function:

l 
θA � θB� � l 
θA� � l 
θB� (18)

Indeed, two disjoint sets of hypothesis can have a likehood equals to 1. Hence,
we can use the plausibility as a likelihood function. In our study, according the
likelihood principle, we obtain for π subset of P and k in ��0, n�� an equation
similar to equation (16):

pl �n, k� 
π� � pl �n, π� 
k� (19)

Hence we have to define pl �n, π� 
k�. The distribution of probability P describing
a binomial law of parameter p is equal to :

P �n, p� 
k� �



n
k

�
pk 
1� p�

n�k
, 0 � k � n (20)

Applying the maximum of necessity principle to this distribution of probability
[8], we define a consonant continuous belief function pl �n, p�. This one is entirely
described by his contour function computed using algorithm 1. In parametric
models, data are highly dependant, hence we prefer not to use a conjunctive rule
to merge source of information but a disjunctive one:

pl �n, k� 
π� � pl �n, π� 
k� � max
p�π


pl �n, p� 
k�� (21)

Result: Plausibility of p for a given pair �n, k�.
tmp � 0;

M �

�
n
k

�
pk �1� p�

n�k;

for i � �0, n� do

P �n, p� �i� �

�
n
i

�
pi �1� p�

n�i;

if P �n, p� �i� 	 M then
tmp � tmp
 P �n, p� �i�;

end
end
pl �n, p� �k� � tmp; // maximum of necessity principle.
pl �n, k� �p� � pl �n, p� �k�; // likelihood principle.

Algorithm 1. How to compute plausibility of p knowing �n, k�
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5 Combination of Information

We have previously defined belief functions to describe the plausibility of Pt and
Pf for given values of d. As we want to define these probabilities on the whole
space, we have, using the model of sensor described by equation (14), to infer
the plausibility of the 3-tuplet 
α, k, Pf �.

5.1 Independant Sources of Information

Using table 1 and algorithm 1, we can define plPd 
Pt�. Thanks to the sensor
model (cf. equation (14)), we can associate for each distance d of measure a 3-
tuplet 
α, k, Pf � to a given probability of true positive Pt. Let T be the parameter
framework. If we assume that the plausibility of the 3-tuplet is equal to the one
of Pt, we can do the following operation which corresponds to a mass transfert:

plTd 
α, λ, Pf � � plPd 
Pt� (22)

The experiments which lead us to define Pt for given distances d are cognitively
independent. Hence we can merge these different sources of information using
the conjective rule of combination[17]. As we use consonant belief functions, this
operation can be written:

plT 
α, λ, Pf � �
�

d��5,10,20

plTd 
α, λ, Pf � (23)

Hence, we assume that all the sources of information are relevant and reliable.

5.2 Inference Using the Max

For a given distance d and probability of true positive 
Pt�, there is, according the
sensor model described in equation (14), a set D of 3-tuples 
α, λ, Pf � matching.
As we know the plausibility of each 3-tuples in D, we should be able to compute
the plausibility of Pt. However, if we use the likelihood principle and set:

plPd 
Pt� � plT 
D� (24)

we obtain an inextricable equation. Indeed, after combination, the plausibility
function described in equation (23) is not consonant anymore. Then, we cannot
derive the plausibility function from the contour function. Hence, we decide to
define a consonant plausibility function such that its contour function fulfil this
condition:

plPd 
Pt� � max
�α,λ,Pf ��D

plT 
α, λ, Pf � (25)

In this case, this belief function is more specific than the one we would obtain
using equation (24). However, as the plausibility of each 3-tuple is built using a
singleton Pt of P , it can be considered like a good trade-off.

The algorithm 2 sums up all the results obtained in section 5 and helps us to
compute the plausibity to detect an object at a given distance of the sensor.
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Data: cf. table 1
Result: Plausibility function of Pt for a given distance d
initialization;
for Ci � �α, λ, Pf� � �0 : h : 1� � �0 : h : 1� � �0 : h : 1� do

for dj � �5, 10, 20	 do
Pt�i,dj� � function�Ci, dj�; // cf. equation (14)
plPdj

�
Pt�i,dj�

�
� function�ndj , kdj , Pt�i,dj��; // cf. algorithm 1

plTdj�Ci� � plPdj
�
Pt�i,dj�

�
;

end
plT �Ci� �

�

j

plTdj�Ci�;

Pt�i,d� � function�Ci, d�;
end
D �

�
Ci
abs

�
Pt�i,d� � Pt

�
� h

�
;

plPd �Pt� � max
CiinD

plT �Ci�

Algorithm 2. How to compute plausibility

Fig. 4. Plausibilities of Pt for different distances
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6 Results

The results of this work appear in figure 4. The curve d � 5m (respectively
d � 10m and d � 20m), represents the plausibility that the probability of
true positive of the sensor is equal to Pf at the distance d � 5m (respectively
d � 10m and d � 20m). To build this curve, we have only used data given by the
table 1 and the reasoning described in the section 4. To plot the other curves,
we have used the sensor model described in the section 3 and the combination
and inference process suggest in section 5.

We remark three things. Firstly, the plausibility function of Pt when d � 10000
could be linked to the one of Pf as Pt tends to Pf when d increases. Indeed,
we have assumed that we use a passive sensor. Secondly, the closer the sensor
is of our points of measure, the smaller is the peak of the plausibility function
of Pt. Hence in this case the estimate of the probability of detection is more
accurate. Thirdly, the plausibility functions look like step-wise functions. It is
normal as we found the construction of a plausibility function on the binomial
law (B
n, k�) which is discrete.

7 Conclusion

This study has proposed a way to deal with small amount of data in order to
estimate the performance of a sensor. Continuous belief fonctions have been used
in two contexts, the first has been to represent an uncertain knowledge about
the distribution of probability describing an phenomenon. The second has been
to infer information within a parametric model. In this kind of situation, we
are often faced inextricable situation and we have to make our approach more
simple to find a solution.

This work is a step to define the coverage a sensor networks. Now we have
to study the question a the fusion of the information coming from the different
sensors in order to have a better estimation of the global network performance.
We have also to include some consideration about the reliability of a sensor to
improve the study.
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Abstract. Inconsistency is a usually undesirable feature of many kinds of data
and knowledge. But altering the information in order to make it less inconsistent
may result in the loss of information. In this paper we analyze this trade-off. We
review some existing proposals and make new proposals for measures of incon-
sistency and information. We prove that in both cases the various measures are
all pairwise incompatible. Then we introduce the concept of stepwise inconsis-
tency resolution and show what happens in case an inconsistency resolution step
applies a deletion, a weakening, or a splitting operation.

1 Introduction

Inconsistency, and deciding how to deal with it, is a well-recognized problem in many
areas of computer science including data and knowledge engineering, software engi-
neering, robotics, and natural language. Often it is not possible to determine with high
confidence which items of data or knowledge are incorrect. It might be that to find this
out would cost more than the information is actually worth. Or it might be that it is just
not possible to acquire this information. In these situations, it may however be useful to
delete or update items of information that are involved in inconsistencies based on the
nature of those inconsistencies. But since it is often unclear which items of information
should be changed, the process of inconsistency resolution can result in a gain in the
degree of consistency, but at the price of a loss of information.

In this paper, we propose the use of inconsistency and information measures to take
account of this trade-off. We start by investigating what are essential properties of in-
consistency and information measures. We propose three requirements in both cases
and consider various definitions, mostly ones previously proposed. Each proposal has
some rationale, so it is worthwhile to investigate their compatibility with one another.
We will show that in a well-defined sense each measure is incompatible with every
other measure, and this goes both for inconsistency measures and information measures.
These results suggest that there does not exist a single inconsistency measure or infor-
mation measure that coincides with intuition in general. Nonetheless, the framework
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for inconsistency and information measures is potentially useful for choosing measures
according to specific applications.

To illustrate some of the key issues in stepwise inconsistency resolution, we consider
the following example. Let K = {a,¬a∧¬b∧¬c, b, d}. K has two minimal inconsistent
subsets: M1 = {a,¬a ∧ ¬b ∧ ¬c} and M2 = {¬a ∧ ¬b ∧ ¬c, b}; and two maximal
consistent subsets N1 = {a, b, d} and N2 = {¬a ∧ ¬b ∧ ¬c, d}. As we want to show
how to reduce the inconsistency of K in a stepwise fashion, one formula at a time, we
will apply three inconsistency resolution functions: delete a formula, weaken a formula,
and split a formula.

– Deletion. We delete a formula that is in a minimal inconsistent subset. Thus we can
delete either ¬a ∧¬b∧¬c or a or b. In the first case, since ¬a∧¬b∧ ¬c is in both
minimal inconsistent subsets, the result is consistent. This is the most drastic of the
three options because this operation loses the most information.

– Weakening. We change a formula to another formula logically implied by it. Typ-
ically, we add a disjunct or change a conjunction to a disjunction. For instance, we
can weaken ¬a ∧ ¬b ∧ ¬c to (¬a ∨ ¬b) ∧ ¬c or ¬a ∨ ¬b ∨ ¬c. We can weaken a
to a ∨ b or even a ∨ ¬a, and so on. While this operation may reduce the number of
minimal inconsistent subsets, the size of the minimal inconsistent subsets may rise,
as seen here, where the first weakening results in one minimal inconsistent subset
{a, (¬a ∨ ¬b) ∧ ¬c, b}.

– Splitting. We split a formula into its conjuncts. This may isolate the really prob-
lematic conjuncts. For instance, we can split ¬a ∧ ¬b ∧ ¬c into ¬a, ¬b, and ¬c.
In this case, we get a new knowledgebase {a,¬a, b,¬b,¬c, d} that is still incon-
sistent, though by some inconsistency measures it is less inconsistent. Also, this
allows us at a later step to delete just the portion of the conjunction involved in the
inconsistency.

In an inconsistent knowledgebase, any formula involved in an inconsistency can be
selected for one of the resolution operations (of deletion, weakening or splitting). So
there is a question of how to choose a formula and which operation to apply. In general,
inconsistency and information measures offer possible answers to this question. Our
guiding principle is to minimize information loss while reducing inconsistency as we
resolve an inconsistent knowledgebase by stepwise resolution.

2 Preliminary Definitions

We assume a propositional language L of formulae composed from a set of atoms A
and the logical connectives ∧, ∨, ¬. We use φ and ψ for arbitrary formulae and α
and β for atoms. All formulae are assumed to be in conjunctive normal form. Hence
every formula φ has the form ψ1 ∧ . . . ∧ ψn, where each ψi, 1 ≤ i ≤ n, has the form
βi1 ∨ . . . ∨ βim, where each βik, 1 ≤ k ≤ m is a literal (an atom or negated atom). A
knowledgebase K is a finite set of formulae. We let � denote the classical consequence
relation, and write K � ⊥ to denote that K is inconsistent. Logical equivalence is
defined in the usual way: K ≡ K ′ iff K � K ′ and K ′ � K . We find it useful to
define also a stronger notion of equivalence we call b(ijection)-equivalence as follows.
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α T T T B B B F F F
β T B F T B F T B F

α ∨ β T T T T B B T B F
α ∧ β T B F B B F F F F
¬α F F F B B B T T T

Fig. 1. Truth table for three valued logic (3VL). This semantics extends the classical semantics
with a third truth value, B, denoting “contradictory”. Columns 1, 3, 7, and 9, give the classical
semantics, and the other columns give the extended semantics.

Knowledgebase K is b(ijection)-equivalent to knowledgebase K ′, denoted K ≡b K ′

iff there is a bijection f : K → K ′ such that for all φ ∈ K , φ is logically equivalent
to f(φ). For example, {a, b} is logically equivalent but not b(ijection)-equivalent to
{a ∧ b}. We write R≥0 for the set of nonnegative real numbers and K for the set of all
knowledgebases (in some presumed language L).

For a knowledgebase K , MI(K) is the set of minimal inconsistent subsets of K, and
MC(K) is the set of maximal consistent subsets of K. Also, if MI(K) = {M1, ..., Mn}
then Problematic(K) = M1 ∪ ... ∪ Mn, and Free(K) = K \ Problematic(K). So
Free(K) contains the formulae in K that are not involved in any inconsistency and
Problematic(K) contains the formulae in K that are involved in at least one incon-
sistency. The set of formulae in K that are individually inconsistent is given by the
function Selfcontradictions(K) = {φ ∈ K | {φ} � ⊥}). In the next section we will
use these functions in definitions for syntactic measures of inconsistency.

The corresponding semantics uses Priest’s three valued logic (3VL) [11] with the
classical two valued semantics augmented by a third truth value denoting inconsistency.
The truth values for the connectives are defined in Figure 1. An interpretation i is a
function that assigns to each atom that appears in K one of three truth values: i :
Atoms(K) → {F, B, T}. For an interpretation i it is convenient to separate the atoms
into two groups, namely the ones that are assigned a classical truth value and the ones
that are assigned B.

Binarybase(i) = {α | i(α) = T or i(α) = F}

Conflictbase(i) = {α | i(α) = B}

For a knowledgebase K we define the models as the set of interpretations where no
formula in K is assigned the truth value F : Models(K) = {i | for all φ ∈ K, i(φ) =
T or i(φ) = B} Then, as a measure of inconsistency for K we define

Contension(K) = Min{|Conflictbase(i)| | i ∈ Models(K)}

So the contension gives the minimal number of atoms that need to be assigned B in
order to get a 3VL model of K .

Example 1. For K = {a,¬a, a ∨ b,¬b}, there are two models of K , i1 and i2, where
i1(a) = B, i1(b) = B, i2(a) = B, and i2(b) = F . Therefore, Conflictbase(i1) = 2
and Conflictbase(i2) = 1. Hence, Contension(K) = 1.
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Finally, we consider some useful definitions based on the notion of implicants. A consis-
tent set of literals X is an implicant for a knowledgebase K iff for each φ ∈ K , X � φ.
A minimal implicant is called a prime implicant. For example, for K = {a,¬b ∨ c},
the prime implicants are X1 = {a,¬b} and X2 = {a, c}. A proxy for K is a set of
literals X such that X is a prime implicant of a maximal consistent subset of K . Let
the set of proxies for K (denoted Proxies(K)) be defined as follows.

Proxies(K) = {X | X is a prime implicant of K ′ ∈ MC(K)}

For example, for K = {a,¬a, b∨ c}, Proxies(K) = {{a, b}, {¬a, b}, {a, c}, {¬a, c}}.
We see that each proxy represents an “interpretation” of the possible literals that

hold, and so the number of proxies rises by increasing the number of disjuncts in any
formula, and by increasing the number of conflicting formulae. The cardinality of each
proxy rises with the amount of information in each alternative, and so adding conjuncts
to a formula will increase the size of one or more proxies (as long as the conjunction is
consistent).

3 Inconsistency and Information Measures

In this section, we study inconsistency and information measures. We consider both ex-
isting and new proposals. Our main result is that for both inconsistency measures and
information measures, the various measures are incompatible with one another. This
result strongly implies that unlike some other intuitive concepts, such as the concept
of effective computability, where different definitions using recursion, λ-calculus, and
Turing machines are equivalent, both inconsistency measure and information measure
are too elusive to be captured by a single definition. Additionally, for information mea-
sures we also consider various plausible constraints and investigate which measures
satisfy them.

3.1 Inconsistency Measures for Knowledgebases

An inconsistency measure assigns a nonnegative real value to every knowledgebase. We
make three requirements for inconsistency measures. The constraints ensure that all and
only consistent knowledgebases get measure 0, the measure is monotonic for subsets,
and the removal of a formula that does not participate in an inconsistency leaves the
measure unchanged.

Definition 1. An inconsistency measure I : K → R≥0 is a function such that the
following three conditions hold:

1. I(K) = 0 iff K is consistent.
2. If K ⊆ K ′, then I(K) ≤ I(K ′).
3. For all α ∈ Free(K), (I(K) = I(K\{α}).

The above requirements are taken from [3] where (1) is called consistency, (2) is called
monotony, and (3) is called free formula independence.

Next we introduce five inconsistency measures: the rationale for each is given below.
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Definition 2. For a knowledgebase K , the inconsistency measures IC , IP , IB , IS , and
IR are s.t.

– IC(K) = |MI(K)|
– IM (K) = (|MC(K)| + |Selfcontradictions(K)|) − 1
– IP (K) = |Problematic(K)|
– IB(K) = Contension(K)

– IQ(K) =
{

0 if K is consistent∑
X∈MI(K)

1
|X| otherwise

We explain the measures as follows: IC(K) counts the number of minimal inconsistent
subsets of K; IM (K) counts the sum of the number of maximal consistent subsets
together with the number of contradictory formulae but 1 must be subtracted to make
I(K) = 0 when K is consistent; IP (K) counts the number of formulae in minimal
inconsistent subsets of K; IB(K) counts the minimum number of atoms that need to
be assigned B amongst the 3VL models of K; and IQ computes the weighted sum of
the minimal inconsistent subsets of K , where the weight is the inverse of the size of
the minimal inconsistent subset (and hence smaller minimal inconsistent subsets are
regarded as more inconsistent than larger ones). Each of these measures satisfies the
definition of being an inconsistency measure (i.e. Definition 1).

There is a rationale for each inconsistency measure. We cannot require these differ-
ently defined measures to give identical numerical values but it would be reasonable
to assume that at least some of them place the knowledgebases in the same order with
respect to inconsistency. Define Ix and Iy to be order-compatible if for all knowledge-
bases K1 and K2, Ix(K1) < Ix(K2) iff Iy(K1) < Iy(K2) and order-incompatible
otherwise. The next theorem shows that order-compatibility doesn’t hold for any pair
of the inconsistency measures we have defined, leading us to think that inconsistency is
too elusive a concept to be captured in a single measure.

Theorem 1. 1 IC , IM , IP , IB , and IQ are pairwise order-incompatible.

Although the five inconsistency measures are quite different, four of them give identical
results on bijection-equivalent knowledge bases.

Proposition 1. If K ≡b K ′ then IZ(K) = IZ(K ′) for Z ∈ {C, M, P, Q}.

Interestingly, b-equivalence does not guarantee equality for IB . The problem is with
self-contradictions. For instance, if K = {a ∧ ¬a} and K ′ = {a ∧ ¬a ∧ b ∧ ¬b}, then
K ≡b K ′, but IB(K) = 1 �= IB(K ′) = 2.

The use of minimal inconsistent subsets, such as IC , IP , and IQ, and the use of
maximal consistent subsets such as IM , have been proposed previously for measures of
inconsistency [2,4]. The idea of a measure that is sensitive to the number of formulae
to produce an inconsistency eminates from Knight [8] in which the more formulae
needed to produce the inconsistency, the less inconsistent the set. As explored in [4],
this sensitivity is obtained with IQ. Another approach involves looking at the proportion

1 All proofs and additional references are given in a technical report available at
www.cs.ucl.ac.uk/staff/a.hunter/papers/stepwise.pdf

www.cs.ucl.ac.uk/staff/a.hunter/papers/stepwise.pdf
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of the language that is touched by the inconsistency such as IB . Whilst model-based
techniques have been proposed before for measures of inconsistency, IB is a novel
proposal since it is based on three-valued logic, and as such, is simpler than the ones
based on four-valued logic (e.g. [5]).

3.2 Information Measures for Knowledgebases

Another dimension to analysing inconsistency is to ascertain the amount of information
in a knowledgebase. The following novel proposal for an information measure assigns a
nonnegative real number to every knowledgebase. The constraints ensure that the empty
set has measure 0, the measure is subset monotonic for consistent knowledgebases, and
a consistent knowledgebase that does not contain only tautologies has nonzero measure.

Definition 3. An information measure J : K → R≥0 is a function such that the
following three conditions hold:

1. If K = ∅ then J(K) = 0.
2. If K ′ ⊆ K , and K is consistent, then J(K ′) ≤ J(K).
3. If K is consistent and ∃φ ∈ K such that φ is not a tautology, then J(K) > 0.

The above definition is a general definition that allows for a range of possible measures
to be defined. Next we introduce seven information measures; the rationale for each
is given below. We note here that in the definition of JB we will use the concept of
Models as previously defined for 3VL. However, in the case of JL we will need a
model concept using classical 2-valued interpretations. We write 2VModels(K) = {i|
is a 2-valued interpretation and for all φ ∈ K, i(φ) = T }.

Definition 4. For a knowledgebase K, the information measures JA, JS , JF , JC , JB ,
JP , and JL are such that

– JA(K) = |Atoms(K)|
– JS(K) = |K|
– JF (K) = |Free(K)|
– JC(K) = Max{ |M | | M ∈ MC(K)}
– JB(K) = Max{ |Binarybase(i)| | i ∈ Models(K)}
– JP (K) = Max{ |X | | X ∈ Proxies(K)}
– JL(K) = log2

2n

|
⋃
{2VModels(K′)|K′∈MC(K)}| where n = |Atoms(K)| if n ≥ 1, else

JL(K) = 0.

The first two measures do not actually deal with inconsistency at all: JA counts the
number of atoms and JS counts the number of formulae. For the other four measures:
JF counts the number of free formulae; JC finds the size of the largest maximal con-
sistent subset; JB finds the maximum number of atoms that need not be assigned B
in the 3VL models; JP finds the size of the largest proxy; and JL uses an information-
theoretic approach that is discussed further at the end of this section. All seven measures
are information measures according to Definition 3.

In analogy to inconsistency measures, we can define order-compatibility and order-
incompatibility for information measures. Similarly, we find that order-compatibility
does not hold for any pair of information measures, leading us to think that information
is also too elusive a concept to be captured in a single measure.



368 J. Grant and A. Hunter

Theorem 2. JA, JS , JF , JC , JB , JP , and JL are pairwise order-incompatible.

Next we prove some results concerning information measures followed by some that
relate information measures with inconsistency measures.

Proposition 2. If K is consistent, then JS(K) = JF (K) = JC(K).

Proposition 3. If K is a set of literals, then JA(K) = JC(K) = JP (K).

Proposition 4. For any knowledgebase K , JS(K) − JF (K) = IP (K).

Proposition 5. For any knowledgebase K , JA(K) − JB(K) = IB(K).

Proposition 6. No information measure is also an inconsistency measure.

Since our definition of information measure (i.e. Definition 3) is rather weak we con-
sider additional constraints that can be useful for comparing information measures. For
an information measure J , and for any knowledgebases K, K ′ ⊆ L, we call J :

– (Monotonic) If K ⊆ K ′, then J(K) ≤ J(K ′).
– (Clarity) For all φ ∈ K , J(K) ≥ J(K ∪ {ψ}), where ψ is the cnf of ¬φ.
– (Equivalence) If K is consistent and K ≡ K ′, then J(K) = J(K ′).
– (Bijection-Equivalence) If K ≡b K ′, then J(K) = J(K ′).
– (Closed) If K is consistent, and K � φ, then J(K) = J(K ∪ {φ}).
– (Cumulative) If K ∪ {φ} is consistent, and K �� φ, then J(K) < J(K ∪ {φ}).

A monotonic measure is monotonic even for inconsistent knowledgebases. A clarity
measure does not increase when the negation of a formula in the knowledgebase is
added. An equivalence measure assigns the same value to logically equivalent consis-
tent knowledgebases. A bijection-equivalence measure (which was first proposed in
[8]) has the same value for a pair of knowledgebases when the formulae are pairwise
equivalent. A closed measure (which was first proposed in [9]) does not have increased
information for a consistent knowledgebase when entailed formulae are added. A cu-
mulative measure (which was first proposed in [9]) has increased information for a
consistent knowledgebase when a non-entailed formula is added that is consistent with
it. We note that if an information measure has the equivalence property then it is closed
because if K � φ then K ≡ K ∪ {φ}.

Theorem 3. Figure 2 indicates the constraints that hold for each of the information
measures JA, JS , JF , JC , JB , JP , and JL.

Depending on which constraints one considers important, one may choose from those
measures that satisfy them. In particular, JP satisfies all seven constraints.

The JA, JS , JF , and JC measures are simple syntactic measures that have been
considered in some form before (see for example [2] for a discussion)). However, the
JB and JP are novel proposals for information measures. There have also been pro-
posals for measures of information for propositional logic based on Shannon’s infor-
mation theory (see for example [6]). Essentially, these measures consider the number
of models of the set of formulae (the less models, the more informative the set), and
in case the set of formulae is consistent, the result is intuitive. However, when the set
is inconsistent, the set is regarded as having null information content. To address the
need to consider inconsistent information, Lozinskii proposed a generalization of the
information-theoretic approach to measuring information [9] that we called JL earlier.
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JA JS JF JC JB JP JL

Monotonic × × × ×
Clarity × × × × ×

Equivalence × ×
B-Equivalence × × × × ×

Closed × ×
Cumulative × × × × ×

Fig. 2. Summary of constraints that hold (indicated by ×) for particular information measures

4 Stepwise Inconsistency Resolution

Generally, when a knowledgebase is inconsistent, we would like to reduce its inconsis-
tency value, preferably to 0. The problem is that a reduction in inconsistency may lead
to a corresponding reduction in information. Consider, for instance, JS . This measure
counts the number of formulae in the knowledgebase. Hence any deletion reduces it.
Our goal is to reduce inconsistency with as little information loss as possible, a task
that depends on the choice of both the inconsistency measure and the information mea-
sure.

We start by formally defining the three functions that we allow in the process of in-
consistency resolution. They appear to be representative of all options. These operations
will be applied to inconsistent knowledgebases.

Definition 5. An inconsistency resolution function irf, is one of the following three
functions d(φ) or w(φ, ψ) or s(φ) where φ ∈ K:

– (Deletion) d(φ) = K \ {φ}.
– (Weakening) w(φ, ψ) = (K \ {φ}) ∪ {ψ} where φ � ψ.
– (Splitting) s(φ) = (K \ {φ}) ∪ {φ1, . . . , φn} where φ1, . . . , φn are the conjuncts

in φ.

Then irf(K) is the knowledgebase obtained by applying irf to K . Also irf(K) = K in
case φ �∈ K .

In the stepwise inconsistency resolution process we will usually have multiple ap-
plications of such functions. A stepwise resolution function sequence (abbr. function
sequence) F = 〈irf1, . . . , irfn〉 is a sequence of such functions. A stepwise incon-
sistency resolution knowledgebase sequence (abbr. knowledgebase sequence) KF =
〈K0, . . . , Kn〉 is a sequence of knowledgebases obtained by using F such that K0 is the
initial knowledgebase and irfi(Ki−1) = Ki for 1 ≤ i ≤ n. We also write F(K0) = Kn

and observe that Kn = irfn(. . . irf1(K0) . . .).
The goal of stepwise inconsistency resolution is to reduce the inconsistency of the

knowledgebase. Next we define a simple way to measure the reduction . We will be
interested in applying this definition to the case where F(K) = K ′ for some function
sequence F .
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α
a ¬a ∧ b ¬b ∨ c ¬c c ∨ d ¬d

RIC (K, K \ {α}) 1 2 1 2 1 1
RIM (K, K \ {α}) 1 3 0 4 3 3
RIP (K, K \ {α}) 1 3 1 4 2 2
RIB (K, K \ {α}) 1 1 0 1 0 0
RIQ(K, K \ {α}) 3/6 5/6 2/6 4/6 2/6 2/6

Fig. 3. Illustration of resolution measures applied to knowledgebases obtained by deleting a
formula from the knowledgebase K = {a,¬a ∧ b,¬b ∨ c,¬c, c ∨ d,¬d}. Here we see that
according to IP , ¬c is the optimal choice for deletion, while for IQ, it is ¬a ∧ b.

Definition 6. Given an inconsistency measure I , an inconsistency resolution measure
RI : K ×K → R is defined as follows:

RI(K, K ′) = I(K) − I(K ′)

For illustration we give two examples. The example given in Figure 3 corresponds to
deletion, and Example 2 corresponds to splitting a formula.

Example 2. Let K = {a,¬a ∧ ¬b, b}. Splitting K by applying s(¬a ∧ ¬b) we obtain
K ′ = {a,¬a, b,¬b}. Here we see that splitting does not reduce inconsistency according
to any of the five inconsistency measures. Indeed, for several measures it causes an
increase in inconsistency .

RIC (K, (K \ {¬a ∧ ¬b}) ∪ {¬a,¬b}) = 0
RIM (K, (K \ {¬a ∧ ¬b}) ∪ {¬a,¬b}) = −2
RIP (K, (K \ {¬a ∧ ¬b}) ∪ {¬a,¬b}) = −1
RIB (K, (K \ {¬a ∧ ¬b}) ∪ {¬a,¬b}) = 0
RIQ(K, (K \ {¬a ∧ ¬b}) ∪ {¬a,¬b}) = 0

Some simple observations concerning the RI measure are the following: (1) If φ �∈
K , then RI(K, K \ {φ}) = 0 and (2) If φ ∈ Free(K) then RI(K, K \ {φ}) = 0.

In the stepwise resolution process we try to minimize the loss of information as well.
For this reason we now define a way to measure the loss of information.

Definition 7. Given an information measure J , an information loss measure RJ : K×
K → R is defined as follows.

RJ(K, K ′) = J(K) − J(K ′)

Our general goal is to simultaneously maximize RI and minimize RJ . In the following
subsections we consider some of the issues for each of the options we have (i.e. for
deletion, for weakening, and for splitting).

4.1 Inconsistency Resolution by Deletion

Deletion is the simplest, and yet most drastic, of the options we have for dealing with
inconsistency. In terms of deciding of how to proceed, if deletion is the only function
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used, it is just a matter of choosing a formula to delete at each step. The following result
describes the possibilities for both RI and RJ when K ′ is obtained from K by a single
deletion.

Theorem 4. Let K ′ be obtained from an inconsistent K by deleting a single formula.
(a) For all 5 inconsistency measures RI(K, K ′) ≥ 0.
(b) For the information measures JF , JB and JL, RJ(K, K ′) may be negative; in the
other cases RJ (K, K ′) is a nonnegative integer.

The following result follows immediately from the second constraint of an information
measure and will be useful in narrowing the knowledgebases that need to be considered
for minimal information loss when inconsistency resolution is done by deletions.

Proposition 7. If K is consistent then RJ(K, K \ {φ}) ≥ 0.

This result shows that once we delete enough formulae from an inconsistent knowl-
edgebase to make it consistent (and thereby make any inconsistency measure 0), we
might as well stop because additional deletions may only cause information loss. This
gives the following result.

Corollary 1. Suppose that stepwise inconsistency resolution is done by deletions only.
To find a consistent knowledgebase with minimal information loss (i. e. where RJ(K, K ′)
is minimal) it suffices to consider only those function sequences F where F(K) ∈
MC(K).

4.2 Inconsistency Resolution by Weakening

In this subsection we investigate the case where the inconsistency of a knowledgebase is
resolved by using weakenings only. Thus we start with an inconsistent knowledgebase
K and by applying one or more weakenings we obtain a consistent K ′. Our concern
here is what happens to the information measure during this process. In order to analyze
this situation we will exclude the case where a formula is weakened by using an atom
not in K such as by applying a disjunction with such an atom. We do this because
it does not seem reasonable to change the language of the knowledgebase when our
purpose is to weaken it for consistency. Also, by excluding this case we make sure that
the information measure cannot become arbitrarily large by simply taking bigger and
bigger disjuncts with new atoms.

Our result is summarized in the following theorem.

Theorem 5. Let K be an inconsistent knowledgebase that is transformed to a consis-
tent knowledgebase K ′ by one or more weakenings without introducing any atom not
already in K . Then

1. JA(K ′) ≤ JA(K).
2. JS(K ′) ≤ JS(K).
3. JF (K ′) ≥ JF (K).
4. JC(K ′) ≥ JC(K).
5. No inequality holds between JB(K ′) and JB(K).
6. JP (K ′) ≤ JP (K).
7. JL(K ′) ≥ JL(K).
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4.3 Inconsistency Resolution Using Splitting

Here we consider what happens when splitting is applied. First we note that unlike dele-
tion and weakening, splitting by itself cannot resolve inconsistencies. Hence splitting
must be used in conjunction with deletion or weakening. We start by considering what
happens when just splitting is applied. Just as in the case of deletions and weakenings,
we split only formulae in Problematic(K).

Theorem 6. Let K ′ be obtained from an inconsistent knowledgebase K by splitting a
single formula in Problematic(K). Then

(a) 1. IC(K ′) ≥ IC(K),
2. IM (K ′) ≥ IM (K),
3. IP (K ′) ≥ IP (K),
4. IB(K ′) = IB(K),
5. No inequality holds between IQ(K ′) and IQ(K).

(b) 1. JA(K ′) = JA(K),
2. JS(K ′) > JS(K),
3. JF (K ′) ≥ JF (K),
4. JC(K ′) ≥ JC(K),
5. JB(K ′) = JB(K),
6. JP (K ′) = JP (K)
7. No inequality holds between JL(K ′) and JL(K).

This theorem shows that splitting decreases neither inconsistency nor information (ex-
cept possibly for IQ and JL), and for some measures it increases both. Anyway, as
pointed out earlier, splitting must be combined with another operation to eliminate in-
consistency.

5 Discussion

In general, inconsistency resolution should be guided by the aim of decreasing incon-
sistency without excessive loss of information. However, there is a trade-off between
the amount to which inconsistency is decreased and the amount of information loss that
can be accepted. Futhermore, there can be numerous choices over what resolution steps
to take at any state of the knowledgebase.

A common criterion is that some or all operations are not permitted on some formu-
lae. Alternatively, there may be a preference ordering over the formulae such that the
less preferred formulae should be considered for being subject to a resolution operation
before the more preferred formulae. However, in situations, where two or more formu-
lae can be subjected to a resolution operation, the use of inconsistency and information
measures may help in making a choice.

Turning to the question of which measures to use, this depends on the application
and the users involved. If they all agree to use specific measures in advance, then that
could be their prerogative. However, in general, when agents discuss specific options for
stepwise resolution, they may also need to discuss on a stepwise basis which measures
to take into account and why.
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In this paper, we have clarified the space of inconsistency and information measures
and then shown how a wide variety of proposals conform to these general definitions.
It is surprising that all different measures are incompatible with one another. We have
also shown how inconsistency and information measures can be used to direct stepwise
resolution of inconsistency so that inconsistency can be decreased whilst minimising
information loss.

References

1. Grant, J.: Classifications for inconsistent theories. Notre Dame Journal of Formal Logic 19,
435–444 (1978)

2. Hunter, A., Konieczny, S.: Approaches to measuring inconsistent information. In: Bertossi,
L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS, vol. 3300, pp. 189–234.
Springer, Heidelberg (2005)

3. Hunter, A., Konieczny, S.: Shapley inconsistency values. In: Proceedings of KR 2006, pp.
249–259. AAAI Press, Menlo Park (2006)

4. Hunter, A., Konieczny, S.: Measuring inconsistency through minimal inconsistent sets. In:
Proceedings of KR 2008, pp. 358–366. AAAI Press, Menlo Park (2008)

5. Hunter, A.: Measuring inconsistency in knowledge via quasi-classical models. In: Proc of
AAAI 2002, pp. 68–73. MIT Press, Cambridge (2002)

6. Kemeny, J.: A logical measure function. J. of Symbolic Logic 18, 289–308 (1953)
7. Konieczny, S., Lang, J., Marquis, P.: Quantifying information and contradiction in proposi-

tional logic through epistemic actions. In: Proceedings of the 18th International Joint Con-
ference on Artificial Intelligence (IJCAI 2003), pp. 106–111 (2003)

8. Knight, K.: Measuring inconsistency. J. of Philosophical Logic 31, 77–98 (2001)
9. Lozinskii, E.: Resolving contradictions: A plausible semantics for inconsistent systems. Jour-

nal of Automated Reasoning 12, 1–31 (1994)
10. Mu, K., Jin, Z., Lu, R., Liu, W.: Measuring inconsistency in requirements engineering. In:

Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 440–451. Springer, Heidel-
berg (2005)

11. Priest, G.: Logic of paradox. Journal of Philosophical Logic 8, 219–241 (1979)



Relating Truth, Knowledge and Belief in
Epistemic States

Costas D. Koutras1 and Yorgos Zikos2,�

1 Department of Computer Science and Technology,
University of Peloponnese,

end of Karaiskaki Street, 22 100 Tripolis, Greece
ckoutras@uop.gr

2 Graduate Programme in Logic, Algorithms and Computation (MPLA),
Department of Mathematics, University of Athens,

Panepistimioupolis, 157 84 Ilissia, Greece
zikos@sch.gr

Abstract. We define and investigate a structure incorporating what is true, what
is known and what is believed by a rational agent in models of the S4.2 logic
of knowledge. The notion of KBR-structures introduced, provides a fine-grained
modal analysis of an agent’s epistemic state, actually one that differentiates knowl-
edge from belief and accounts for an agent without full introspective power (con-
cerning her knowledge sets). Many epistemic properties of this structure are
proved and it is shown that belief collapses in the form of a Stalnaker stable set
(while knowledge does not). Finally, a representation theorem is proved, which
exactly matches KBR-structures to S4.2 models of the world.

Keywords: Knowledge Representation, modal epistemic logic, epistemic states.

1 Introduction

Epistemic Logic [10,15] has been concerned with the rigorous analysis of the proposi-
tional attitudes ‘A knows ϕ’ and ‘A believes that ϕ’. It has grown as an area of Philo-
sophical Logic but it has been given a fresh, new perspective in Computer Science;
examples of applications abound: distributed systems [5], multi-agent systems [19] and
many others. In its current form, Epistemic Logic has been greatly benefited by the
development of Modal Logic and, in particular, by the advent of ‘possible-world’ (or
Kripke) semantics. Nowadays, many rich epistemic languages have been introduced
and applied in various fields of computing; see [1] for a short presentation and many
pointers to the literature, and also [4] for a compilation of various concrete paradigms
on the logics of knowledge and change.

Artificial Intelligence has provided a new, ‘introspective’ perspective on modal epis-
temic reasoning. In Knowledge Representation, the issue of a ‘good’ representation of
a rational agent’s (typically acting in a domain of interest and holding partial, incom-
plete information about the world) epistemic state is very important. A simple, yet very
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successful and influential notion is Stalnaker’s definition of a stable belief set ([18],
[16]), which has played a significant role in the development of modal Non-Monotonic
Reasoning (NMR). Succint and expressive logical definitions of an agent’s epistemic
state are of interest to other branches of Knowledge Representation too, such as belief
revision and reasoning about actions.

In this paper we proceed to work on a detailed analysis of the epistemic and doxastic
theories held by a rational agent, operating in a complex possible-worlds environment,
under the realistic condition that the information acquired by the agent allows him to
distinguish (at least) some of the possible worlds in the picture. This is definitely differ-
ent from the S5 picture of the Stalnaker stable sets, worked around the universal model
paradigm, where no possible world is distinguishable from the others. Here, we actu-
ally place the (important for KR) question of the formal representation of an agent’s
knowledge and belief, under the lens of classical modal epistemic reasoning and revisit
the notion of epistemic state(s) under a new, semantic perspective. Our objective is to
describe the epistemic and doxastic status of a rational agent without full introspec-
tion (which has been strongly criticized in epistemic logic [15, p.35][7, p.117]), taking
a modal approach, which differentiates knowledge from belief. We introduce a no-
tion of KBR-structures, intending to capture the interplay between truth, knowledge
and belief held by an agent operating in a domain modelled as a set of possible-worlds.
We examine several proof-theoretic properties of KBR-structures and provide a rep-
resentation theorem for these structures, which proves an exact correspondence to the
models of S4.2, the logic advocated by W. Lenzen as the ‘correct’ logic of knowl-
edge [15]. It is hardly surprising that the initial motivation of this research has been the
ambition to define simple variants of Stalnaker’s stable sets inspired from interesting,
existing models, such as the models of S4.2. Due to space limitations, this Confer-
ence version contains no proofs; however, all technical details and proofs are readily
accessible over the web, in the full technical report [13].

2 Notation and Terminology

In this section we gather the necessary background material and results: for the ba-
sics of Modal Logic and modal Non-Monotonic Reasoning the reader is referred to the
books [2,3,11,16]. We assume a modal propositional language L�, endowed with an
epistemic operator �ϕ, read as ‘it is known that ϕ holds’. Sentence symbols include �
(for truth) and ⊥ (for falsity). Some of the important axioms in epistemic/doxastic logic
are: K. (�ϕ ∧ �(ϕ ⊃ ψ)) ⊃ �ψ, T. �ϕ ⊃ ϕ (the axiom of true, justified knowledge),
4. �ϕ ⊃ ��ϕ (the axiom of positive introspection), 5.¬�ϕ ⊃ �¬�ϕ (the axiom of
negative introspection), G.¬�¬�ϕ ⊃ �¬�¬ϕ.

The epistemic interpretation of G will be made clear below. Modal logics are sets
of modal formulas containing classical propositional logic (i.e. containing all tautolo-
gies in the augmented language L�) and closed under rule MPϕ,ϕ⊃ψ

ψ . The small-
est modal logic is denoted as PC (propositional calculus in the augmented language).
Those modal logics, which contain all instances of axiom K and are closed under rule
RN ϕ

�ϕ , are called normal. By KA1 . . .An we denote the smallest normal modal logic
containing the axiom schemata A1 to An. Among others, some well-known epistemic
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logics are KT45 (S5) (a strong logic of knowledge) and S4.2, which is an entrenched
name for KT4G. We assume that the reader of this extended abstract is acquainted
with the notion of strong provability from premises in modal logic (as in [16]) and the
related notions of consistency and maximal consistent sets. We will not provide defini-
tions here, as there are no proofs of the results; the reader is referred to the full technical
report [13] for details. Just two remarks on notation: given a logic Λ and a consistent
with Λ theory I , mIcΛ denotes a maximal I-consistent with Λ set, and CnΛ(I) denotes
the set of all formulas proved from I in Λ.

Normal modal logics are interpreted over Kripke models: a Kripke model M =
〈W, R, V 〉 consists of a set of possible worlds (states, situations) W and a binary acces-
sibility relation between them R ⊆ W ×W : whenever wRv, we say that world w ‘sees’
world v, or that v is an alternative to w. The valuation V determines which propositional
variables are true inside each possible world. Within a world w, the propositional con-
nectives (¬, ⊃, ∧, ∨) are interpreted classically, while �ϕ is true at w iff it is true in
every world ‘seen’ by w (notation: M, w � �ϕ). The pair F = 〈W, R〉 is called the
frame underlying M. A logic Λ is determined by a class of frames iff it is sound and
complete with respect to this class; it is known that S5 is determined by the class of
frames with a universal accessibility relation, while S4.2 is determined by the class of
frames with a reflexive, transitive and directed1 accessibility relation [8].

Regarding epistemic logic, our perspective is very much influenced by W. Lenzen’s
work in [15], where many interesting formulations of knowledge and belief are dis-
cussed. The language assumed is monomodal with an epistemic operator �; a be-
lief operator is defined by ¬�¬�ϕ. Given this, the interpretation of G becomes: ‘if
someone believes that φ, then she does not disbelieve it’. It is a principle of consis-
tent belief. We subsequently refer to some of the properties mentioned in [15], namely
¬�¬�ϕ ⊃ ¬�¬��ϕ (property B2.1) and ¬�¬�ϕ ⊃ �¬�¬�ϕ (properties B2.3
and B2.4). In order to work with models of transitive logics, a cluster-based analysis
is usually employed [8, Chap.8][17]. We provide the necessary definitions and results
below, with a bit of personal flavour in terminology.

Some useful facts. We will restrict ourselves to possible-worlds frames with a reflexive,
transitive and directed relation (henceforth called rtd-relation), keeping in mind that in
the class of reflexive and transitive frames, directedness is equivalent to weak direct-
edness2 [8, p. 30]. The following definition for these relations, captures the notion of a
cluster, as a maximal subset of states, inside which the (restriction of the) accessibility
relation is universal. The frames we consider need not be finite; it suffices that they
‘collapse’ to a finite number of clusters. Following this definition, we gather some
properties of clusters inside rtd-relations.

Definition 1. Let R ⊆ W × W be any (binary) rtd-relation on W , and ∅ �= C ⊆ W .
C is a cluster of R iff (∀s, t ∈ C)sRt and (∀u ∈ W \ C)(∃v ∈ C)(¬uRv or
¬vRu). It is called a final cluster iff in addition (∀u ∈ W \ C)(∃v ∈ C) uRv.

Fact 1. (i) (∀s ∈ W )(∃C : cluster) s ∈ C, (ii) (∀ clusters C, C′ ⊆ W ) C ∩ C′ = ∅,
(iii) (∀ clusters C, C′ ⊆ W )(∀s ∈ C, s′ ∈ C′)(sRs′ =⇒ (∀t ∈ C, t′ ∈ C′) tRt′),

1 i.e. (∀w, v ∈ W )(∃u ∈ W )(wRu & vRu).
2 i.e. (∀w, v, u ∈ W )

(
(wRv & wRu) ⇒ (∃t ∈ W )(vRt & uRt)

)
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(iv) (∀ clusters C, C′ ⊆ W )(∀s ∈ C, s′ ∈ C′)
(
(C �= C′ & sRs′) =⇒ (∀t ∈ C, t′ ∈

C′) ¬t′Rt
)
, (v) There exists a final cluster, which is unique.

As we will prove, there is no loss of generality in further ‘collapsing’ the clusters
by defining a relation on the clusters’ indices (the indices will be members of D =
{0, . . . , n}). The lemma following the definition makes clear that the relation con-
structed inherits properties from its ‘generator’ R.

Definition 2. Let R be an rtd-relation on W . Then, a pattern-relation Rp ⊆ D × D of
R is any relation on D s.t. (∀i, j ∈ D)

iRpj ⇐⇒ (∃s ∈ Ci, t ∈ Cj) sRt

where C0, . . . , Cn ⊆ W is an enumeration of the clusters of R.

Lemma 1. Let R be an rtd-relation on W and Rp a pattern-relation of R (for clusters
C0, . . . , Cn ⊆ W ). Then,

(i) (∀i, j ∈ D)
(
iRpj ⇐⇒ (∀s ∈ Ci, t ∈ Cj) sRt

)
(ii) Rp is also an rtd-relation.
(iii) All clusters of Rp are singletons.

The property (iii) entails another one (property (Gd) in lemma 2), which is important
for our next results, so we will focus on rtd-relations endowed with (iii). These relations
deserve a name. Lemma 2 and Corollary 1 follow immediately.

Definition 3. Every binary relation which is reflexive, transitive, directed and has only
singleton clusters is called a simple rtd-relation (s-rtd).

Lemma 2. Let R be an s-rtd-relation on W . Then, there is an f ∈ W s.t.

(Gd) (∀i ∈ W )
(
iRf & (i �= f ⇒ ¬fRi)

)
Corollary 1. Let R be an rtd-relation on W and Rp a pattern relation of R (for clusters
C0, . . . , Cn ⊆ W ). Then, Rp is an s-rtd-relation and satisfies (Gd), where W = D.

3 KBR-Structures

3.1 Motivation

Suppose we have an agent inside a possible-worlds model. Obviously, in every world
(or situation) of this model, some propositional variables are true, some others are not.
According to the information available to the agent, she might not know exactly which
variables are true in a situation i and which are true in another situation j. So, in her
eyes, i and j could be two alternatives of the true state of the world, i.e. i and j could
be indistinguishable for her. In this case, and supposed that she is in i, we relate i
with j using the relation R of the model. In such an interpretation of R, it is natural
to think that the agent knows ϕ iff in all alternative situations (i.e. indistinguishable
situations from there) ϕ holds. In the standard concept of an epistemic model, the re-
lation R is considered to be symmetric, i.e. that all R-arrows are bidirectional. This
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is a consequence of the standard approach’s assumption, that information is uniformly
distributed, and hence, if an agent being in i can not distinguish situation j from there,
then, since she would have exactly the same information in j, she wouldn’t be able to
distinguish i from j either. But this assumption is not always true in real situations (see
the full report for examples [13, p.6,20]). Furthermore, the standard assumption about
the symmetry of the epistemic models, has another drawback: it acknowledges that the
agent has negative introspection capabilities. Let us see why. Since (as we will explain
later) all epistemic models must be considered reflexive and transitive, symmetry equips
R with following property: if situation i is related to j and k, then k is related to j. Now,
suppose that an agent, being in a situation i, does not know ϕ. Then, there must be an
indistinguishable from i situation j, where ¬ϕ holds. Since every other indistinguish-
able from i situation k sees j, it will also in k be true that our agent does not know ϕ
(a witness for that is j). Hence, our agent does know in i that she doesn’t know ϕ. So,
within every situation, it does hold that, if the agent does not know something, then she
is aware of her ignorance about that.

In our approach, trying to find a remedy for these drawbacks, we will assume that
information is not uniformly distributed all over the situations. We intend to establish a
formal representation of knowledge sets, which will not necessarily be the same glob-
ally, but different for each situation (in fact, we will describe the properties of those sets,
not necessarily for each situation, but for ‘blocks’ of indistinguishable situations). So,
assuming that there are n different situations, we denote for any situation i ∈ {0, . . . , n}
the agent’s knowledge set as Γi (the exact role and content of each Γi will be made
clear below). To be able to define those sets, we have to consider sets Ti, which will
contain all true formulas in situation i. Our agent does not necessarily know every
formula in Ti; and anything believed by her, might not be true. Furthermore, being in
a situation i the agent might distinguish between her current situation and another, be-
cause she has some information, which allows her to do so. But she also might not
distinguish between her current situation i and another j. As explained previously, if
j is an alternative situation for i, then it is not necessarily true that i is an alternative
situation for j, since being in j, our agent might be provided with extra information,
which might allow her to distinguish between j and i.

A very fundamental idea in epistemic reasoning with possible-worlds semantics, is
that the agent does not know in which situation she is located. If we know that the agent
is in situation i and that, say, j, k and l are alternative situations for i (i.e. indistinguish-
able from i), she might not know that she is in i. She rather knows that i, j, k and l
are all indistinguishable situations. Speaking about indistinguishable situations from i
means that we do know that if our agent were in i, she would consider these situations
(including i) as alternative variations of her present, unknown to her! Furthermore, we
could know – since we enjoy the “eagle’s view” – that if our agent were in situation
j, she would have the information to distinguish between her situation and, say, k, but
this is something that she does not know. Only if she actually were in j she would know
that. Now, assume that in the previous example our agent is aware of the fact that in all
alternative situations (included the unknown to her, current situation i) a formula ϕ is
true (i.e. ϕ ∈ Ti ∩ Tj ∩ Tk ∩ Tl). Then, it is natural to say that she is sure about ϕ, that
she knows ϕ. Therefore, given a relation R ⊆ {0, . . . , n}, representing all couples of
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indistinguishable situations (i.e. iRj means that j is an alternative situation for i), we
will define in the next section, Γi as

⋂
iRj Tj .

As mentioned previously, in our modal language L� the modality denotes knowl-
edge. Hence, we have two ways of denoting knowledge of ϕ: using formula �ϕ, and
saying that ϕ ∈ Γi. To be consistent with our intuitions, we have to demand that

if ϕ ∈ Γi, then �ϕ ∈ Ti (1)

(i.e. if our agent knows ϕ, then, obviously, it is true that she does know it!), and

if ϕ /∈ Γi, then ¬�ϕ ∈ Ti (2)

One might wonder why don’t we simply demand ϕ ∈ Γi iff �ϕ ∈ Ti. Then, ϕ /∈ Γi

would simply entail �ϕ /∈ Ti, which seams to be natural, since “it is not true that I know
ϕ” looks equivalent to “it is true that I do not know ϕ”! This equivalence is obviously
true, if we see each situation i as a unique state of affairs, as we did hitherto. But in
a more general case, we could consider bunches of situations (possibly, infinite many
situations in a bunch), where all situations of the same bunch are indistinguishable to
each other, i.e. for every situation s of a bunch, any other of the same bunch, is an
alternative one for s. From now on we will call those bunches, clusters and we will
denote them as i, j, k etc. The situations itself will be denoted as s, t, u etc. We intend
to define those clusters in a such way, that if some situation s of a cluster i considers
situation t of any other cluster as an alternative one, then every other situation of i will
consider t as an alternative one. And if we say that ϕ is true in cluster i, obviously, we
would like to mean that ϕ is true in every situation of i, i.e. that Ti contains all formulas
valid in i. Hence, �ϕ /∈ Ti does not necessarily entail that ¬�ϕ ∈ Ti. But the inverse is
true. That’s why we chose the stronger property: ϕ /∈ Γi ⇒ ¬�ϕ ∈ Ti. Note also that
now, R does not anymore relate situations, rather than clusters, in the sense that iRj
means that our agent, being in any situation s of i considers as indistinguishable from s
any situation of j.

We will also adopt the option of defining belief through knowledge. To do so, we
will follow the idea introduced by W. Lenzen [15], who argued that the following def-
inition of belief is acceptable even by the ‘most scrupulous epistemologist’: an agent
believes that ϕ iff she does not know that she doesn’t know ϕ (i.e. ¬�¬�ϕ defines
‘believing in ϕ’). Now, our agent knows that she doesn’t know ϕ iff ϕ /∈ Γj for every
alternative situation j for i, hence, she would believe that ϕ iff ϕ ∈ Γj for some alter-
native situation j for i. Therefore – assuming that the belief sets, containing everything
believed by our agent in any situation of i, will be denoted as Δi – it is consistent with
Lenzen’s definition to identify Δi as

⋃
iRj Γj . As noted above, there exists a direct way

to speak about “believing” in ϕ: ¬�¬�ϕ. So, to be consistent with our intuitions, we
have to define the theories Ti and Δi in such a way, that they will satisfy the following
conditions:

if ϕ ∈ Δi, then ¬�¬�ϕ ∈ Ti (3)

(i.e. if our agent believes that ϕ, then, it is true that she does not know that she doesn’t
know it), and

if ϕ /∈ Δi, then �¬�ϕ ∈ Ti (4)
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3.2 Definition of KBR-Structures

Let us have in mind that D = {0, . . . , n} contains the (indices of the) clusters of the
epistemic situations considered, and that T0, . . . , Tn are the corresponding theories,
containing exactly all formulas, valid there. Firstly, we describe all those properties,
which these theories should satisfy, and we give the overall structure a name.

Definition 4. Let R ⊆ D × D be an s-rtd-relation on D and T0, . . . , Tn ⊆ L� be
consistent theories s.t. (∀i ∈ D)
(PCi) PCL�

⊆ Ti and Ti is closed under MP

(Pi) (∀ϕ ∈ L�)(ϕ ∈
⋂

iRj Tj ⇒ �ϕ ∈ Ti)

(Ni) (∀ϕ ∈ L�)(ϕ /∈ Ti ⇒ ¬�ϕ ∈
⋂

jRi Tj)

Furthermore, for any i ∈ D, we define Γi and Δi as

Γi =
⋂
iRj

Tj and Δi =
⋃
iRj

Γj

Then, the ordered triple 〈(Ti), (Γi), (Δi)〉Ri∈D is called a KBR-structure. In fact, it is
a triple consisting of three (n + 1)-tuples of theories.

The following simple example demonstrates that Stalnaker stable sets correspond to a
trivial case of our setting, i.e. one that originates from a simple cluster.

Example 1. Consider D = {0}, a consistent theory T0 ⊆ L�, and the corresponding
KB{(0,0)}-structure 〈T0, Γ0, Δ0〉{(0,0)} (for the trivial s-rtd-relation over D, {(0, 0)}).
Then, by Def.4, T0 satisfies: (∀ϕ ∈ L�)
(PC0) PCL�

⊆ T0 and T0 is closed under MP

(P0) ϕ ∈ T0 ⇒ �ϕ ∈ T0

(N0) ϕ /∈ T0 ⇒ ¬�ϕ ∈ T0

T0 is a stable set according to Stalnaker’s definition. Furthermore, Γ0 = Δ0 = T0.

Example 2. Let us consider now the s-rtd-relation R = {(0, 0), (1, 1), (1, 0)} and
the corresponding KBR-structure 〈(Ti), (Γi), (Δi)〉Ri∈D . Then, Def.4 says that T0 and
T1 are meant to be consistent and to satisfy all conditions listed below: (∀ϕ ∈ L�),
(PC0,1): PCL�

⊆ T0, T1 and T0, T1 are closed under MP, (P0): ϕ ∈ T0 ⇒ �ϕ ∈
T0, (N0): ϕ /∈ T0 ⇒ ¬�ϕ ∈ T0 & ¬�ϕ ∈ T1, (P1): ϕ ∈ T0 & ϕ ∈ T1 ⇒ �ϕ ∈ T1,
(N1): ϕ /∈ T1 ⇒ ¬�ϕ ∈ T1. Furthermore, Γ0 = T0, Γ1 = T0 ∩ T1, Δ0 = T0 and
Δ1 = T0 ∪ (T0 ∩ T1) = T0. The fact that Δ0 = Δ1 = T0 is not a coincidence, but
a result of some properties, which are satisfied by R, and which will be proved below
(Fact 3). The next Fact shows that everything in Def.4 is consistent with what we said
in section 3.1.

Fact 2. (∀i ∈ D)
(
(Pi) ⇐⇒ (1) & (Ni) ⇐⇒ (2)

)
. Definition 4 entails properties

(3), (4) and (∀i ∈ D)(∀ϕ ∈ L�)

ϕ ∈ Γi ⇐⇒ �ϕ ∈ Ti and ϕ ∈ Δi ⇐⇒ ¬�¬�ϕ ∈ Ti (5)
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3.3 Epistemic Properties of KBR-Structures

Even without any restrictions to R, Definition 4 would endow all theories appearing
there with axiom K, as the first lemma verifies. Further on our discussion in the moti-
vation section, it would be desirable that the properties of R would lead to the incorpo-
ration of some intuitively acceptable properties of knowledge and belief in Γi and Δi.
The lemmata which follow, state that reflexivity leads to two desirable properties: the
entailment thesis (knowledge implies belief) and the property requiring that knowl-
edge implies certainty.

Lemma 3. Let 〈(Ti), (Γi), (Δi)〉Ri∈D be any KBR-structure. Then,

(∀i ∈ D)(∀ϕ, ψ ∈ L�) K ∈ Ti

Lemma 4. Let 〈(Ti), (Γi), (Δi)〉Ri∈D be any KBR-structure. Then, (∀i ∈ D)
Γi ⊆ Ti ∩ Δi (i.e. everything our agent knows is true, and she believes it).

Lemma 5. Let 〈(Ti), (Γi), (Δi)〉Ri∈D be any KBR-structure. Then,

(∀i ∈ D)(∀ϕ ∈ L�) T ∈ Ti

Not really surprisingly, transitivity entails positive introspection concerning knowl-
edge. Next, Lemma 6 along with the definition of Δi entail Lemma 7.

Lemma 6. Let 〈(Ti), (Γi), (Δi)〉Ri∈D be any KBR-structure. Then, (∀i ∈ D)

(PIi) (∀ϕ ∈ L�)(ϕ ∈ Γi ⇒ �ϕ ∈ Γi)

Lemma 7. Let 〈(Ti), (Γi), (Δi)〉Ri∈D be any KBR-structure. Then,

(∀i ∈ D)(∀ϕ ∈ L�)(ϕ ∈ Δi ⇒ �ϕ ∈ Δi)

Note that Lemma 7, in light of (5) (see section 3.1), shows that if our agent believes
something, then she believes that she knows it (which is similar to Lenzen’s property
(B2.1) [15]). Transitivity of R is embedded in every theory of Def.4 through axiom 4.
Finally, Lemma 9 is technically useful in the next section.

Lemma 8. Let 〈(Ti), (Γi), (Δi)〉Ri∈D be any KBR-structure. Then,

(∀i ∈ D)(∀ϕ ∈ L�) 4 ∈ Ti

Lemma 9. Let 〈(Ti), (Γi), (Δi)〉Ri∈D be any KBR-structure. Then, (∀i, j ∈ D)

iRj ⇒ Γi ⊆ Γj

Finally, directedness of R leads to properties, similar to Lenzen’s (B2.3) and (B2.4)
[15, p.43-44]. The former one, which should be acceptable by a “realistic epistemol-
ogist”, says that if an agent believes something, then she can not believe that she
doesn’t know it. The latter property, which should be acceptable – according to Lenzen
– by a “simplifier”, states that if an agent believes something, then she knows that
she believes it.
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Lemma 10. Let 〈(Ti), (Γi), (Δi)〉Ri∈D be any KBR-structure. Then,
(∀i ∈ D)(∀ϕ ∈ L�)

(B2.3) ϕ ∈ Δi ⇒ ¬�ϕ /∈ Δi and (B2.4) ϕ ∈ Δi ⇒ ¬�¬�ϕ ∈ Γi

Now, let us focus on the last presumption for R: being a simple rtd-relation. Then, by
Lemma 2, property (Gd) is true for R. Without loss of generality, we will tacitly assume
that the ‘final’ element of R is 0, i.e. that (Gd) appears in the following form:

(Gd) (∀i ∈ D) (iR0 & (i > 0 ⇒ ¬0Ri))

This property endows every theory of Def.4 with axiom G and leads to the next two
results.

Lemma 11. Let 〈(Ti), (Γi), (Δi)〉Ri∈D be any KBR-structure. Then,

(∀i ∈ D)(∀ϕ ∈ L�) G ∈ Ti

Fact 3. Let 〈(Ti), (Γi), (Δi)〉Ri∈D be any KBR-structure. Then, (∀i ∈ D)
(i) Δi = Γ0 = T0

(ii) Δi is a stable theory according to Stalnaker’s definition

Now, it is immediate that our belief sets follow the principle of consistency of belief,
i.e. that if an agent believes that ϕ, she can not believe that ¬ϕ.

Lemma 12. Let 〈(Ti), (Γi), (Δi)〉Ri∈D be any KBR-structure. Then, (∀i ∈ D)(∀ϕ ∈
L�)

ϕ ∈ Δi ⇒ ¬ϕ /∈ Δi

All previous lemmata seem to justify the choice of the KBR notion in Def.4: KBR-
structures contain K(nowledge) theories (the Γi’s), and B(elief) theories (the Δi’s). Ac-
cording to Fact 3, one of the Γi’s coincides with everything believed in any situation.
Without loss of generality, it is assumed that this one is Γ0. In following section we will
present a model-theoretic characterization of KBR-structures. To do so, we need the
next important result, in which we employ a notion of strong provability.

Lemma 13. If 〈(Ti), (Γi), (Δi)〉Ri∈D is any KBR-structure, then, (∀i ∈ D)
(i) Γi is closed under strong S4.2 provability, i.e. CnS4.2(Γi) = Γi.
(ii) Γi is a consistent with S4.2 theory (cS4.2-theory).

4 S4.2 Representation of KBR-Structures

Definition 5. Assume any Kripke model M = 〈W, R, V 〉 and any C ⊆ W . Then,
ThM(C) =def {ϕ ∈ L� | (∀w ∈ C) M, w � ϕ} , KM(C) =def {ϕ ∈ L� | (∀w ∈
C) M, w � �ϕ} , BM(C) =def {ϕ ∈ L� | (∀w ∈ C) M, w � ¬�¬�ϕ}.

Intuitively, ThM(C) is the theory containing formulas, which are true in every situation
of C, KM(C) is everything our agent knows in every situation of C, and BM(C) is
everything she believes, in every situation of C. Our first result states that in the case of
an epistemic S4.2-model, everything she knows and everything she believes, can be
captured syntactically by the notion of KBR-structures. Furthermore, everything
she believes, is the same in all clusters, and coincides with everything she knows in
the final cluster.
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Theorem 4. Let M = 〈W, R, V 〉 be any S4.2-model with clusters Ci ⊆ W (i ∈
D), where C0 is the final cluster. Then, there is a relation P ⊆ D × D such that
〈(ThM(Ci)), (KM(Ci)), (BM(Ci))〉Pi∈D is a KBP -structure and BM(Ci) = KM(C0).

Similarly to parts (a), (b) and (c) of the proof of Theorem 4 (see [13]) one can prove
that, having fixed modal-free, consistent and closed under propositional consequence
theories S0, . . . , Sn and an s-rtd-relation P , we can find a KBP -structure 〈(Ti), (Γi),
(Δi)〉Pi∈D such that the non-modal part of the theories T0, . . . , Tn, is exactly S0, . . . , Sn

respectively.

Proposition 1. Let S0, . . . , Sn ⊆ L be modal-free, consistent and closed under propo-
sitional consequence theories, and P ⊆ D × D an s-rtd-relation. Then, there exists a
KBP -structure 〈(Ti), (Γi), (Δi)〉Pi∈D s.t. Ti ∩ L = Si (i ∈ D).

As an application of Proposition 1, let us consider again s-rtd-relation R of Example 2.
Furthermore, consider p ∈ Φ, S0 = CnPCL({p}) and S1 = CnPCL(∅). It is easy
to see that S0 = CnPCL(S0) and S1 = CnPCL(S1). Clearly, both are satisfiable,
hence, by the soundness theorem for propositional logic, they are consistent. So, by
Proposition 1, there is a KBR-structure 〈(T0, T1), (Γ0, Γ1), (Δ0, Δ1)〉R s.t. T0∩L = S0

and T1 ∩L = S1. Hence, p ∈ T0 and p /∈ T1 (for otherwise, p ∈ S1, so �PCL p, hence
p would be a tautology, which is absurd). Then, since p /∈ T1, by definition of Γ1,
p /∈ Γ1. But, p ∈ T0, hence, by (P0), �p ∈ T0, and since T0 is consistent, ¬�p /∈ T0,
so, ¬�p /∈ Γ1. Therefore, p /∈ Γ1 � ¬�p ∈ Γ1. This counterexample verifies the next
lemma, which is most welcomed.

Lemma 14. There are KBR-structures, whose knowledge-part (some Γi’s) does not
satisfy the negative introspection property concerning knowledge.

Our next goal is to prove the converse of Theorem 4, i.e. for a given KBR-structure,
there is an epistemic S4.2-model, in which everything an agent knows and believes,
is described by the KBR-structure given, and furthermore, everything she believes, is
described by one of the knowledge-theories in structure KBR. The model, which we
are searching for, will be a construction similar to the well known canonical model for
a modal logic, and it will be based on the normal modal logic S4.2, which we will
denote as Λ. The proof employs standard techniques related to the canonical model
construction, every technical detail appears in [13].

Definition 6. Let 〈(Ti), (Γi), (Δi)〉Ri∈D be any KBR-structure. The canonical model
for it, is Kripke model Mc = 〈W c, Rc, V c〉, where
(i) W c =

⋃
i∈D W c

i , where W c
i = {(i, Θ) ∈ D × P(L�) | Θ : mΓicΛ} (i ∈ D)

(ii)
(
∀(i, Θ), (j, Z) ∈ W c

)(
(i, Θ)Rc(j, Z) ⇐⇒
(iRj & (∀ϕ ∈ L�)(�ϕ ∈ Θ ⇒ ϕ ∈ Z))

)
(iii) (∀p ∈ Φ)(V c(p) = {(i, Θ) ∈ W c | p ∈ Θ})

Remark 1. Firstly, notice that W c is the disjoint union of all mΓicΛ theories with
indexes in D. Furthermore, by Lemma 13(ii), every Γi (i ∈ D) is cΛ, hence, to refer
to mΓicΛ-theories is meaningful, and Γi �Λ ⊥, so, {�} is ΓicΛ, and by Lindenbaum’s
Lemma, there exists a mΓicΛ-theory (which, by the way, contains {�}), therefore,
every W c

i �= ∅ (i ∈ D).
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Lemma 15 (Truth Lemma). (∀ϕ ∈ L�)(∀(i, Θ) ∈ W c)(Mc, (i, Θ) � ϕ ⇔ ϕ ∈ Θ).

Lemma 16. Let 〈(Ti), (Γi), (Δi)〉Ri∈D be any KBR-structure, and Mc its canonical
model. Then, (∀i ∈ D)(∀ϕ ∈ L�)

Γi �Λ ϕ ⇐⇒ (∀(i, Θ) ∈ W c
i ) Mc, (i, Θ) � �ϕ

Now, we are ready to prove a representation theorem for KBR-structures.

Theorem 5. Let 〈(Ti), (Γi), (Δi)〉Ri∈D be any KBR-structure. Then, there exists an
S4.2-model M = 〈W, R, V 〉 and Ci ⊆ W s.t. (∀i ∈ D)

Γi = KM(Ci) Δi = BM(Ci) = Γ0

5 Related Work - Further Research

The identification of logical theories, which capture the epistemic content of a ratio-
nal agent’s view of the world, is a very important topic in Knowledge Representa-
tion. A very important notion has been the notion of a stable belief set, introduced
by R.Stalnaker [18] and further investigated in modal non-monotonic reasoning [16].
The original motivation of this paper (rather distinctly far from the final result) has
been the idea to derive logically interesting notions of stable epistemic states out of
a model-theoretic starting point, and prove that they possess intuitive syntactic char-
acterizations. This seems natural to do: stable belief sets can be represented as S5
theories or sets of beliefs held inside a KD45 situation [9,16]. In a previous paper
[14] we obtained interesting syntactic variations of epistemic states and proved repre-
sentation theorems, in terms of possible-world models for non-normal modal logics. It
(still) seems natural to investigate the other way around: to define epistemic theories in
terms of possible-worlds models for interesting epistemic logics (such as S4.2,S4.4),
and then syntactically characterize these theories with simple context-rules, such as the
ones encountered in Stalnaker’s stable belief sets. On the way, it became clear to us
that, from a purely epistemological viewpoint that takes into account the information
available to the agent inside each situation, the S5-like analysis of epistemic reasoning
is too simple to furnish a realistic view (although there exists a compensation, in terms
of various handy technical properties). Thus, we took a step back to start from the very
beginning: the notion of accessibility between possible worlds, its epistemic content
and its logical interpretations. This led us to the semantic analysis discussed in section
3.1 and to the origination of KBR-structures.

The KBR-structures introduced here represent a somewhat complex, yet interest-
ing, description of the epistemic status of a rational (but not fully introspective) agent,
allowing a differentiation of knowledge from belief. It would be interesting to embed
them in core KR techniques, such as default reasoning or belief revision; actually it is
a very challenging (albeit complex) task to define reasoning procedures that will take
into account the subtle differences between knowledge and belief. Such a task is bound
to be complex but it will be necessarily useful to deviate from the currently dominating
model of a logically omniscient, fully introspective agent. As a more short-term goal,
it is definitely interesting to identify the computational cost of reasoning with KBR-
structures.



Relating Truth, Knowledge and Belief in Epistemic States 385

Acknowledgements. We wish to thank the anonymous referees for many valuable com-
ments which led to a simplification of definitions and improvement of the presentation
(both in this, as well as in the full version of this paper).

References

1. van Benthem, J.: Modal Logic for Open Minds. CSLI Publications, Stanford (2010)
2. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical

Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)
3. Chellas, B.F.: Modal Logic, an Introduction. Cambridge University Press, Cambridge (1980)
4. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer, Heidel-

berg (2007)
5. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT Press,

Cambridge (2003)
6. Gabbay, D.M., Woods, J. (eds.): Logic and the Modalities in the Twentieth Century. Hand-

book of the History of Logic, vol. 7. North-Holland, Amsterdam (2006)
7. Gochet, P., Gribomont, P.: Epistemic logic. In: Gabbay, Woods (eds.) [6], vol. 7, pp. 99–195

(2006)
8. Goldblatt, R.: Logics of Time and Computation, 2nd edn. CSLI Lecture Notes, vol. 7. Center

for the Study of Language and Information, Stanford University (1992)
9. Halpern, J.: A theory of knowledge and ignorance for many agents. Journal of Logic and

Computation 7(1), 79–108 (1997)
10. Hintikka, J.: Knowledge and Belief: an Introduction to the Logic of the two notions. Cornell

University Press, Ithaca (1962)
11. Hughes, G.E., Cresswell, M.J.: A New Introduction to Modal Logic. Routledge, New York

(1996)
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Abstract. This paper1 aims at studying how an agent can believe a
new piece of information when it is reported through different sources,
each of them citing another one. Two models are presented, the first
one in modal logic and the other one in the Theory of Evidence. They
both consider important two properties of the information sources: their
validity i.e their ability of reporting true information and their invalidity,
i.e their ability of reporting false information.

Keywords: Beliefs, Validity, Invalidity, Logic, Theory of Evidence.

1 Motivation

Before making a decision, a rational agent has to update or revise [1], [10],
[8] its own belief base with new information it considers sufficiently supported.
Thus one important question for the agent is to estimate how a new piece of
information is supported i.e, how strong it can believe it.

Obviously, the agent may believe a new piece of information if it trusts the
information source for delivering true information or equivalently, if it trusts
the information source for not delivering false information. Thus, knowing if the
source is truthful or if it lies will help the agent to have an epistemic position
towards the new information.

For instance, assume that in order to know if it will rain this afternoon, I
look at Météo-France web site and read that indeed it will rain. If I trust Météo-
France for delivering correct forecast, then I can believe what Météo-France is
reporting i.e I can believe it will rain. At the opposite, assume that I open my
newspaper and read that it will rain. If I know that the forecast provided in
this newspaper is always false, then I can believe that what my newspaper is
reporting is false i.e I can believe that it will not rain.

One work which influenced our study is Demolombe’s work, mainly [6] which,
in particular, studies the relations which exist between a piece of information,
its truth and the mental attitudes of the agent which produces this piece of
1 This work has been granted by ANR (Agence Nationale de Recherche) under project
CAHORS.

W. Liu (Ed.): ECSQARU 2011, LNAI 6717, pp. 386–397, 2011.
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information. The operators of the modal logic used in this paper are : Bi (Bip
means “agent i believes that p”), Ij

i (Ij
i p means “agent i informs agent j that

p”). Operator Bi obeys KD system which is quite usual for beliefs and operator
Ij
i only obeys rule of equivalence substitutivity [2] . The author first defines

several properties agents can have, called epistemic properties, among which the
following are worth noting.

Sincerity: Agent i is sincere with regard to agent j for information p iff, if
i informs j that p, then i believes p. I.e. a sincere agent believes what it says.
Thus sincere(i, j, p) ≡ Ij

i p → Bip.
Competence: Agent i is competent about p iff, if i believes p then p is true.

I.e. the beliefs of a competent agent are true. Thus competent(i, p) ≡ Bip → p.
Validity: Agent i is valid with regard to j for p iff, if i informs j about p, then

p is true. I.e. a valid agent tells the truth. Thus valid(i, j, p) ≡ Ij
i p → p.

Notice that in Demolombe’s model, for any i,j and p, it is the case that
sincere(i, j, p) ∧ competent(i, p) → valid(i, j, p).

These notions can then be used to derive the beliefs of an agent who receives
a piece of information. For instance, BiI

i
jp ∧Bivalid(j, i, p) → Bip is a theorem

or equivalently BiI
i
jp → (Bivalid(j, i, p) → Bip) is a theorem. It shows that

an agent’s belief about the validity of the agent who emits the new information
influences its own belief about this information. An instance of this theorem
is: BiI

i
MF rain → (Bivalid(MF, i, rain) → Birain) which means that if I am

aware that Météo-France is reporting that it will rain then, if I believe that
Météo-France is valid with regard to the forecast then I believe that it will rain.

This work is interesting because it shows that our belief in the validity of an
agent positively influences our own belief in what it reports. However, we think
that we could consider another kind of beliefs. More precisely, we think that our
belief in the fact that an agent is a lier also influences, but negatively, our belief
in what it reports.

Recently, [7] addresses very close questions by using Dempster-Shafer’s The-
ory [9]. This work proposes a mechanism for computing the plausibility of a piece
of information which is emitted by an agent i given our uncertain belief about
i’s reliability. For the authors, the reliability of an agent is defined by its rel-
evance and its truthfulness so that (1) information provided by a non-relevant
information source is ignored i.e a non-relevant source brings no information;
(2) we can believe the piece of information provided by a relevant and truthful
source; (3) we can believe the negation of the piece of information provided by
a relevant but non-truthful source. Notice that “being relevant and truthful” is
very close to “being valid” as introduced by Demolombe; “being relevant and
non truthful” is close to “being invalid” as we introduced it [5]. Notice however
that the notion of relevance and the impact of non relevant information is rather
new.

In this present work, our aim is to adress a more general case and study how to
estimate our belief in a new piece of information when it is reported information
i.e when a source reports that another source has reported that very information
(this process can even be longer). This is the case for instance when I am informed
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by my neighbour that, according to Météo-France web site, it will rain. Here, my
neighbour does not tell me that it will rain but he reports that Météo-France
reported it will rain. Consequently, trusting my neighbour for delivering true
forecast is not useful here. However, trusting my neighbour for telling me the
truth regarding what it read on Météo-France web site (i.e, it is indeed true that
Météo-France reports that it will rain) and trusting Météo-France for delivering
true forecast, will allow me to believe that it will rain.

Acquiring reported information can even be more complex when, for instance,
my meighbour tells me that his newspaper writes that Météo-France reports that
it will rain. Here, the very information which interests me is reported through
three different agents, each of them citing the previous one: my neighbour, the
newspaper, Météo-France.

The question of estimating how strong an agent can believe a reported piece
of information is the object of our current research. In this paper, we present
two models. The first one is defined in modal logic and can be considered as
an extension of [6]. It emphasizes the importance of validity i.e the ability of
reporting true facts and introduces a dual property called invalidity as the ability
of reporting false facts. This model is presented in section 2. In order to be
more general and to deal with uncertainty, we propose to use Dempster-Shafer’s
Theory to define the second model. It is presented in section 3. We show that
it generalizes some results obtained in the first model regarding to what can
believe an agent when it gets reported information. Finally, section 4 is devoted
to a discussion.

2 A Model of Reported Information in Modal Logic

The modal logic we consider is inspired from [6]. It is based on a family of modal
operators Ri, where i are agents. Riφ means that agent i reports φ. These
operators satify the following axiom:

Ri(α ∧ β) ↔ Riα ∧ Riβ

and obey the following inference rule:

A ↔ B

RiA ↔ RiB

Besides, there are operators Bi (BiA means “agent i believes that A”) which
obey KD axioms:

Bi¬A → ¬BiA

BiA ∧ Bi(A → B) → BiB

and necessitation as well:

A

BiA
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We successively examine the case of a single level of nesting, then the case of
two levels then finally the general case.

2.1 First Case: One Level of Nesting

In this case, an agent i thinks that another agent j reports a piece of information
φ. I.e, we have: BiRjφ. The question we ask is: how can i believe φ ? In order to
answer this question, we come back to the notion of validity introduced in [6],
we simplify it and we add a dual notion we call invalidity.

Definition 1. Agent i is valid for information φ as soon as we can deduce that
φ is true when i reports φ. It is denoted:

valid(i, φ) ≡ Riφ → φ

Definition 2. Agent i is invalid towards for information φ as soon as we can
deduce that φ is false when i reports φ. It is denoted:

invalid(i, φ) ≡ Riφ → ¬φ

Notice that invalid(i, φ) ↔ ¬valid(i, φ) is not a theorem.
But Riφ → (invalid(i, φ) ↔ ¬valid(i, φ)) is.

Proposition 1. For any agents i, j :

BiRjφ ∧ Bivalid(j, φ) → Biφ

BiRjφ ∧ Biinvalid(j, φ) → Bi¬φ

Thus if agent i believes that j is valid (resp invalid) for information φ and if it
believes that j reported φ, then it believes that φ is true (resp, false).

2.2 Second Case: Two Levels of Nesting

In this case, a first agent i thinks that a second agent j reported that a third
agent k reports a piece of information φ. I.e, we have: BiRjRkφ. The question
is now: how can i believe φ ?

Proposition 2. For any agents i, j, k:

BiRjRkφ ∧ Bivalid(j, Rkφ) ∧ Bivalid(k, φ) → Biφ

BiRjRkφ ∧ Bivalid(j, Rkφ) ∧ Biinvalid(k, φ) → Bi¬φ

BiRjRkφ ∧ Biinvalid(j, Rkφ) �→ Biφ

BiRjRkφ ∧ Biinvalid(j, Rkφ) �→ Bi¬φ
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Thus in this model, if agent i believes that j is valid in its reporting Rkφ and if
i believes that k is valid (resp invalid) in its reporting φ, then we can conclude
that i believes φ (resp ¬φ). However, if i believes that j is invalid in its reporting
Rkφ, then we cannot infer that i believes φ nor believes ¬φ. More precisely, the
only belief we can infer that i believes that k did not report φ.

Example 1. Let us illustrate this on the example given in introduction. Consider
that my neighbour tells me that his newpaper wrote it will rain. Notice that here,
agents i, j and k are respectively myself, my neighbour and his newpaper.

– If I consider that my neighbour is valid (his newspaper really wrote it will
rain) and if I consider his newspaper valid (the forecast is always true in this
newspaper) l then, I can conclude that indeed, it will rain.

– If I consider that my neighbour is valid and if I consider his newspaper invalid
(the forecast is always false in this newspaper) then I can conclude that it
will not rain

– But If I consider that my neighbour is invalid (i.e, his newspaper did not
write that it will rain because for instance the newspaper were not distributed
today) then I cannot conclude it will rain nor conclude it will not rain.

2.3 General Case

The previous result can easily been extended. Here we assume that BiRj1 ...Rjnφ.

Proposition 3

BiRj1 ...Rjn φ ∧ Bi(
∧

m=1...(n−1)

valid(jm, Rjm+1 ...Rjn φ)) ∧ Bivalid(jn, φ) → Biφ

BiRj1 ...Rjn φ ∧ Bi(
∧

m=1...(n−1)

valid(jm, Rjm+1 ...Rjnφ)) ∧ Biinvalid(jn, φ) → Bi¬φ

BiRj1 ...Rjn φ∧Bi(
∧

m=1...(m0−1)

valid(jm, Rjm+1...Rjnφ))∧Biinvalid(jm0 , Rjm0+1 ...Rjn φ) �→

Biφ

BiRj1 ...Rjn φ∧Bi(
∧

m=1...(m0−1)

valid(jm, Rjm+1 ...Rjn φ))∧Biinvalid(jm0 , Rjm0+1 ...Rjn φ) �→

Bi¬φ

Example 2. For instance, assume that my neighbour tells me that his colleague
told him that the newspaper wrote that it will rain.

If I consider that my neighbour is valid (it is true that his colleague told him
that the newspaper wrote that it will rain) but if consider that his colleague is
invalid then I can have no idea about the weather. The only conclusion I can
draw is that the newspaper did not write it will rain.
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3 A Model of Reported Information in the Theory of
Evidence

The previous model allows an agent to reason with its beliefs about the validity or
invality of the entwined sources in a binary way. No uncertainty can be managed
and the reason is the use of a modal logic. This is why, we looked at another
kind of formalism dedicated to uncertainty management, the Theory of Evidence
or Dempster-Shafer’s Theory. Two models have been already presented [4] [5].
Here, we improve the last one by emphasing the Belief Function instead of the
Plausibility Function. We also show that, regarding to what can believe an agent
when it gets reported information, it is more general than the logical model
presented in section 2.

3.1 First Case: One Agent

We suppose agent j reports a piece of information φ to agent i. The question we
ask is still: how can i believe φ ?

In order to answer this question in an uncertainty setting, we take into account
the degrees at which i thinks that the source j is valid and the degree at which
i thinks that j is invalid. These degrees intend to model the uncertainty of i as
regard to the validity and invalidity of j.

We consider a classical propositional language the two letters of which are:
φ and Rjφ, representing respectively the facts “information φ is true” and
“agent j reported information φ”. The four interpretations of this language2

are {w1, w2, w3, w4} so that: w1, denoted w1 = {Rjφ, φ}, represents the situ-
ation in which j has reported information φ and φ is true; w2 = {Rjφ,¬φ}
represents the situation in which j has reported information φ and φ is false;
w3 = {¬Rjφ, φ} represents the situation in which j did not report information
φ and φ is true; w4 = {¬Rjφ,¬φ} represents the situation in which j did not
report information φ and φ is false.

We consider the discernment Θ = {w1, w2, w3, w4}.
Definition 3. Consider two agents i and j and a piece of information φ. Let
dj ∈ [0, 1] and d′j ∈ [0, 1] two real numbers3 such that 0 ≤ dj + d′j ≤ 1. dj is the
degree at which i thinks that j is valid for φ and d′j is the degree at which i thinks
that j is invalid for φ (written V I(i, j, φ, dj , d

′
j)) iff i’s beliefs can be modelled by

the mass assignment m(i,j,φ,dj ,d′
j) defined by:

m(i,j,φ,dj,d′
j)(w1 ∨ w3 ∨ w4) = dj

m(i,j,φ,dj,d′
j)(w2 ∨ w3 ∨ w4) = d′j

m(i,j,φ,dj,d′
j)(w1 ∨ w2 ∨ w3 ∨ w4) = 1 − (dj + d′j)

2 Notice that this language is not a modal language. In particular, here, φ is a letter
and not a formula and Rjφ is a propositional letter and not a modal formula. This
implies that the language of the model we are defining here is less expressive than the
language of the logic introduced before, and we some deduction power. For instance,
the same letter will denote any equivalent formula.

3 These degrees should be indexed by i but index i is omitted for readibility.
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Let us recall that assigning a mass on a disjunction of wk is equivalent to as-
signing this mass on any propositional formula satisfied by all the wk in the
disjunction ([3]). Consequently, the mass assignment defined in the previous def-
inition can be reformulated by:

m(i,j,φ,dj,d′
j)(Rjφ → φ) = dj

m(i,j,φ,dj,d′
j)(Rjφ → ¬φ) = d′j

m(i,j,φ,dj,d′
j)(True) = 1 − (dj + d′j)

Thus, according to this definition, if i believes at degree dj that j is valid for φ
and believes at degree d′j that j is invalid then its belief degree in the fact “if j
reports φ then φ is true” is dj ; its belief degree in the fact “if j reports φ then
φ is false” is d′j ; and its total ignorance degree is 1 − (dj + d′j).

The following particular cases are worth detailing:

– (dj = 1) and (d′j = 0) i.e, V I(i, j, φ, 1, 0). In this case, m(i,j,φ,1,0)(Rjφ →
φ) = 1. I.e, i is certain that if j reports φ then φ is true, i.e, i is certain that
j is valid for φ.

– (dj = 0) and (d′j = 1) i.e, V I(i, j, φ, 0, 1). In this case, m(i,j,φ,0,1)(Rjφ →
¬φ) = 1. I.e. i is certain that if j reports φ then φ is false, i.e, i is certain
that j is invalid for φ.

Definition 4. mi,Rjφ is the mass assignment defined by: mi,Rjφ(Rjφ) = 1 or
equivalently, mi,Rjφ(w1 ∨ w2) = 1.

mi,Rjφ represents the fact that, agent i is certain that j has reported information
φ.

Definition 5. Consider two agents i and j such that V I(i, j, φ, dj , d
′
j). If i is

certain that j reports φ, then i’s beliefs can be modelled by the mass assignment
m obtained by Dempster’s combination of m(i,j,φ,dj,d′

j) and mi,Rjφ. I.e.,

m = m(i,j,φ,dj ,d′
j) ⊕ mi,Rjφ

This assigment represents i’s beliefs when i is certain that j has reported φ given
that dj is the degree at which i thinks that j is valid for φ and d′j is the degree
at which i thinks that j is invalid for φ,

Proposition 4
m(Rjφ ∧ φ) = dj

m(Rjφ ∧ ¬φ) = d′j

m(Rjφ) = 1 − (dj + d′j)

Proposition 5. Let Bel be the belief function associated with assignment m.

Bel(φ) = dj

Bel(¬φ) = d′j
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Consequently, when i thinks that Riφ and when V I(i, j, φ, dj , d
′
j) then i believes

φ more than ¬φ if and only if dj > d′j i.e, its belief degree in j’s validity is greater
that its belief degree in j’s invalidity. This is quite obvious.

The following proposition details two interesting cases.

Proposition 6
If V I(i, j, φ, 1, 0), then Bel(φ) = 1 and Bel(¬φ) = 0 i.e, i believes φ and does

not believe ¬φ;
If V I(i, j, φ, 0, 1), then Bel(φ) = 0 and Bel(¬φ) = 1 i.e, i does not believe ¬φ

and believes φ.

This comes to proposition 1.

3.2 Second Case: Two Agents

Here, agent i thinks that agent j reports that agent k has reported φ. The
question is still: how can i believe φ is ?

We consider a propositional language the letters of which are: φ, Rkφ, and
RjRkφ. This language has got 8 interpretations w1 = {RjRkφ, Rkφ, φ};
w2 = {RjRkφ, Rkφ,¬φ}; w3 = {RjRkφ,¬Rkφ, φ}; w4 = {RjRkφ,¬Rkφ,¬φ};
w5 = {¬RjRkφ, Rkφ, φ}; w6 = {¬RjRkφ, Rkφ,¬φ}; w7 = {¬RjRkφ,¬Rkφ, φ};
w8 = {¬RjRkφ,¬Rkφ,¬φ}; The of discernment is the set Θ = {w1, ...w8}.

As before, we will assign mass on formulas and not on disjunctions of wi.

Definition 6. Assume that i thinks that RjRkφ and that V I(i, k, φ, dk, d′k) and
V I(i, j, Rkφ, dj , d

′
j). Then, i’s beliefs are defined by the mass assignment denoted

m defined by4:

m = m(i,k,φ,dk,d′
k) ⊕ m(i,j,Rkφ,dj,d′

j) ⊕ mRjRkφ

This assigment represents i’s beliefs when i is certain that RjRiφ, given that
dk (resp d′k) is the degree at which i thinks that k is valid (resp, invalid) for φ
and dj (resp d′j) is the degree at which i thinks that j is valid (resp invalid) for
Rkφ.

Proposition 7.
m(RjRkφ ∧ Rkφ ∧ φ) = dk.dj

m(RjRkφ ∧ Rkφ ∧ ¬φ) = d′kdj

m(RjRkφ ∧ Rkφ) = (1 − (dk + d′k)).dj

m(RjRkφ ∧ ¬Rkφ ∧ (Rkφ → φ)) = dk.d′j

m(RjRkφ ∧ ¬Rkφ ∧ (Rkφ → ¬φ)) = d′k.d′j

m(RjRkφ ∧ ¬Rkφ) = (1 − (dk + d′k)).d′j
m(RjRkφ ∧ (Rkφ → φ)) = dk.(1 − (dj + dj))

m(RjRkφ ∧ (Rkφ → ¬φ)) = d′k.(1 − (dj + d′j))

m(RjRkφ) = (1 − (dk + d′k)).(1 − (dj + d′j))

4 Again, index i is omitted.
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Proposition 8. Let Bel be the belief function associated with m. Then

Bel(φ) = dk.dj

Bel(¬φ) = d′k.dj

Proposition 9.

Bel(φ) > bel(¬φ) ⇐⇒ dj �= 0 and dk > d′k

I.e. i believes φ more than ¬φ iff according to i j can be valid and the degree
at which i thinks that k is valid is greater than the degree at which i thinks that
k is invalid.

The following proposition shows that even in this two-agent case, this model
provides the same result than the logical model presented in section 2.

Proposition 10.
If V I(i, j, Rkφ, 1, 0) and V I(i, k, φ, 1, 0) then Bel(φ) = 1 and Bel(¬φ) = 0,

i.e, i believes φ and does not believe ¬φ;
If V I(i, j, Rkφ, 1, 0) and V I(i, k, φ, 0, 1) then Bel(φ) = 0 and Bel(¬φ) = 1,

i.e, i believes ¬φ more than φ;
If V I(i, j, Rkφ, 0, 1) then Bel(φ) = 0 and Bel(¬φ) = 0, i.e, i does not believe

φ nor ¬φ.

This comes to proposition 2.

3.3 General Case

The previous result can easily been extended. Assume that agent i believes that
Rj1 ...Rjnφ. How can i believe φ ?

We consider a propositional language the n + 1 letters of which are φ, Rjnφ,
Rjn−1Rjnφ, ..., Rj1 ...Rjnφ. This language has got 2n+1 interpretations which
form the discernment frame we consider but we do not detail them. As before,
we assign masses to formulas.

Definition 7. Consider that i thinks that Rj1 ...Rjnφ so that V I(i, jn, φ, djn , d′jn
)

,.., V I(i, j1, Rj2 ...Rjnφ, dj1 , d
′
j1

). Then, i’s beliefs are defined by the following
mass assignment5:

m = m(i,jn,φ,djn ,d′
jn

) ⊕ ... ⊕ m(i,j1,Rj2 ...Rjn φ,dj1 ,d′
j1

) ⊕ mRj1 ...Rjn φ

This assigment represents i’s beliefs when i is certain that Rj1 ...Rjnφ, given
that djm (resp d′jm

) is the degree at which i thinks that jm is valid (resp, invalid)
for Rjdm+1...Rjnφ and djn (resp d′jn

) is the degree at which i thinks that jn is
valid (resp, invalid) for φ.

5 Again, index i is omitted.
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Proposition 11. Let Bel be the belief function associated with m. Then

Bel(φ) = dj1 ...djn−1 .djn

Bel(¬φ) = dj1 ...djn−1 .d
′
jn

Proposition 12

Bel(φ) > Bel(¬φ) ⇐⇒ ∀k = j1...jn−1 dk �= 0 and djn > d′jn

Thus, i believes φ more than ¬φ iff according to i, j1...jn−1 can be valid and
the degree at which i thinks that jn is valid is stricty greater that the degree at
which it thinks that jn is invalid.

Proposition 13
If ∀k = j1...jn dk = 1 then Bel(φ) = 1 and Bel(¬φ) = 0 i.e i believes φ and

does not believe ¬φ;
If ∀k = j1...jn−1 dk = 1 and djn = 0 then Bel(φ) = 0 and Bel(¬φ) = 1 i.e i

believes ¬φ and does not believe φ;
If ∀k = j1...jm0−1 dk = 1 and djm0

= 0 then Bel(φ) = 0 and Bel(¬φ) = 0
i.e i does not believe φ nor ¬φ.

This comes to proposition 3 and shows that in the general case, this model in the
Theory of Evidence provides the same result than the logical model described
in section 2 as for the conclusion agent i can draw concerning information φ.

4 Discussion

The question of estimating how an agent can belief information when it is re-
ported by several entwined sources each one citing the previous one, is a question
which has received few attention. The reason is maybe because this question can
be confused with the question of estimating how an agent can believe a piece of
information when it is passed from a source to another one so that each source
can pass it correctly or can lie. As the example given in the introduction showed,
these two questions must not be confused. Indeed, when my neigbour tells me
that according to Météo-France it will rain, the information my neighbour re-
ports is not that it will rain.

We have shown that the agent’s beliefs depend on its beliefs in the abilities of
the sources for reporting true information (what is called validity) and abilities of
reporting false information (called invalidity). A logical model has been defined
which helps to clarify the notions. But it cannot manage uncertainty.

This is why we have studied another model, in the Theory of Evidence, and
showed that it extends the logical one regarding to the conclusion that the agent
who receives reported information can draw. This model requires that this agent
has degrees of beliefs in the validity and invalidity of sources concerning what
they report.



396 L. Cholvy

It assumes that for any sources and any information these degrees are unique.
i.e here, it is assumed that the degrees do not depend on the current environment
in which the validity and the invalidity of the source are evaluated. This is
questionnable and obviously simplistic. However, it is complex enough because
a hard question is to evaluate these degrees. Under this simple hypothesis we can
imagine to estimate theses degrees with some knowledge on the sources obtained
by past experience.

Another question which can be discussed is the choice of the combination
rule for defining the mass assigment which characterizes the beliefs of an agent
given its beliefs degrees in the validity and invalidity. We have naturally used
the classical Demspter’s combination rule but studying the impact of choosing
another rule should be done.

Furthermore, let us notice that here, for estimating how the agent trust the
new piece of information, it does not take into account its current belief base.
It estimates it only from its own beliefs about the validity and invalidity of the
sources.

Also, the potential revision of the agent’s current belief base has not been
studied here but the present work offers a prerequisite to do it.

Finally, let us note that the logic defined in section 2, even if it does not
manage uncertainty, offers the possibility to make not only deductive reasoning
but also abductive reasoning with epistemic properties of the agents. For instance
given that BiRjRkφ and Bivalid(j, Rkφ) we can abductively find the epistemic
properties of the agents that are required to explain Biφ. Here, one of this
plausible assumption is Bivalid(k, φ). This is one of the greatest interest of
logic to offer these kinds of reasoning. And studying this abductive reasoning
in a graph of communicating agents constitutes an interesting extension of this
present work.
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Abstract. In this work we extend the framework of logic-based fusion
by Konieczny and Pino Pérez [8,9,10,11] to complex epistemic states. We
present some postulates given in terms of the finite propositional logic
which define merging operators of complex epistemic states. We state
some representation theorems for these operators. When we consider
concrete spaces, namely those where the epistemic states are total pre-
orders over valuations, we obtain strong representation theorems. This
new framework allows us to generalize, in a natural way, the revision
operators presented by Benferhat et ál. [2]. As an application of our
representation theorems, we define some merging operators over complex
epistemic states and show some examples of these operators at work.

Introduction

Knowledge fusion studies the methods leading to extract a coherent piece of
information from many sources, which may be mutually contradictory. The ap-
plications in this domain go from decision making, passing by medical diagnosis,
policy planning, to automatic integration of data. Understanding the theoretical
models is important to develop future applications. We work in this direction.

In this work we extend the framework of logic-based fusion of epistemic states
presented by Konieczny and Pino Pérez (KP) [8,9,10,11]. In those works the
epistemic states considered are defined by sets of propositional sentences. It is
important to notice that the KP framework generalizes the seminal belief revi-
sion operators presented by Alchourrón, Gardenfors and Makinson [1,6,7]. Ac-
tually the KP framework generalizes the Katsuno-Mendelzon finite presentation
of AGM in which an epistemic state is represented by a a set of propositional
sentences or equivalently a formula.

However, the necessity of considering more complex representations of epis-
temic states has been stated in the work of Darwiche and Pearl [3,4]. Thus, Meyer
[13,14] gave a merging model of more complex epistemic states. In Meyer’s work
the epistemic states were defined by ranking functions over valuations. However,
in this context, Meyer did not establish semantic representation theorems for his
operators even if he gives a list of postulates and examines which of them are
satisfied by some of his concrete operators.

W. Liu (Ed.): ECSQARU 2011, LNAI 6717, pp. 398–409, 2011.
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In the current work, we present some postulates given in terms of the finite
propositional logic which define merging operators of complex epistemic states.
We state some representation theorems for these operators. When we consider
concrete spaces, namely those where the epistemic states are total pre-orders
over valuations, we obtain strong representation theorems. This new framework
allows us to generalize, in a natural way, the revision operators presented by
Benferhat et ál. [2].

As an application of our representation theorems, we define some merging op-
erators over complex epistemic states and show some examples of these operators
at work.

We omit the proofs of our results for space reasons. All the proofs can be find in
[12]. The reader who knows the technique of proof of the representation theorems
of Darwiche and Pearl [3,4] and the representation theorems of Konieczny and
Pino Pérez [10] should be able to reconstruct most of the proofs.

This work is organized as follows: Section 1 is devoted to define the concepts
used throughout the paper. Section 2 is devoted to give the syntactical postu-
lates and the semantical counterparts. In Section 3 we study a concrete class
of epistemic states and give a strong representation theorem. In section 4 we
build an operator using the results of previous sections. Finally we make some
concluding remarks in Section 5.

1 Preliminaries

Let L be the set of propositional formulas built over a finite set P of atomic
propositions. L∗ will denote the set of non contradictory formulas. Let W be the
set of valuations. If ϕ is a formula, we denote by [[ϕ]] the set of models of ϕ, i.e.
[[ϕ]] = {w ∈ W : w |= ϕ}. If I is a nonempty set of valuations, we denote by ϕI

a formula such that [[ϕI ]] = I.
In this work a belief base will be represented1 by a formula in L. It encodes

the set of propositions believed by an agent. Most of the time we refer to a belief
base as the beliefs (of an agent). The intuitive meaning of a (complex) epistemic
state is to have in addition to a belief base, other information, possibly null.
Many concrete representations of epistemic states have been proposed. The first
one is, of course, that of the AGM framework [1,6], where an Epistemic State
is a logical theory. Darwiche and Pearl [3,4] represent Epistemic States by total
preorders over W . Spohn [16] uses Ordinal Conditional Functions. Probability
and possibility measures have been used to represent epistemic states [5]. An
abstract model to represent Epistemic States was presented by Benferhat et ál.
[2]. We will adopt this through this paper except when we study the concrete
representation of total preorders over valuations.

1 Usually a belief base is a set of propositional formulas. Here, by simplicity and due
to the fact we work in the finite case, we identify this set with a formula having the
same models.
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Definition 1 (Epistemic space). A triple (E , B,L) is called an epistemic
space if E is a nonempty set, L is the set of formulas and B is a function
from E into L, such that the image of B is all the set L∗.

The elements of E are called Epistemic States; B is called belief function; for
any E, B(E) is called the belief base of E (it represents the most entrenchment
beliefs of E). Notice that if I is a nonempty set of valuations, there exists E,
such that B(E) = ϕI .

A profile Φ is a finite multiset of Epistemic States. Thus, if E1, E2, . . . , En are
Epistemic States, not necessarily different, Φ = {E1, E2, . . . , En} is a profile.

The set of profiles will be denoted M(E). The profile Φ = {E}, most of the
time, will be denoted simply E.

Let A be a set. A binary relation � over A is a total preorder if it is total2
(therefore reflexive) and transitive. Let � be a total preorder over A. We define
the strict relation ≺ and the indifference � associated to � as follows: a ≺
b if and only if a � b and b �� a; a � b if and only if a � b and b � a.

It is clear that any linear order is a total preorder. For instance, the lexico-
graphical order �ln over vectors of real numbers of length n is a linear order and
then a total preorder. Another important example is the lexicographical combi-
nation of two total preorders defined below. Let A be a nonempty set and let �1

and �2 be two total preorders over A. We define lex(�1,�2) over A, denoted
�lex, by putting:

a �lex b ⇔
{

a ≺1 b, or
a �1 b & a �2 b

It is not hard to see that �lex is a total preorder over A.
Let � be a total preorder over A. Let C be a subset of A. We say that c is a

minimal element of C with respect to � if c ∈ C and for all x ∈ C, x �≺ c. The
set of minimal elements of C will be denoted min(C,�). The minimal elements
of the whole set A in which the total preorder is defined will be denoted min(�).

2 Epistemic States Fusion Operators

2.1 Rationality Postulates

We fix an Epistemic space (E , B,L). A function of the form ∇ : M(E)×E −→ E
will be called an epistemic state combination operator, for short, an ES combi-
nation operator. ∇(Φ, E) represents the result of combining the epistemic states
in Φ under the integrity constraint E. The idea to have a full epistemic state
as an integrity constraint is to force the result of the combination to satisfy as
much as possible the integrity constraint. This is stated in postulate (ESF1)
only at level of beliefs. However, in specific representations, we could establish
more precisely this satisfaction or adequation.

2 That is, ∀x, y ∈ A, x � y ∨ y � x. Some authors say connected instead of total.
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Now we establish the rationality postulates of fusion in the setting of Epis-
temic States. Most of them are adapted from IC merging postulates proposed
by Konieczny and Pino Pérez [9,10,11]. Some of the postulates are new.

Notice that the only known part of Epistemic States, with a well known logical
structure, are the beliefs. Thus, it is a very natural issue to express the rationality
postulates for our operators in logical terms at level of beliefs.

(ESF0) If B(E) is consistent, then B
(
∇(Φ, E)

)
is consistent.

(ESF1) B
(
∇(Φ, E)

)
� B(E).

(ESF2) If B(E1) ≡ B(E2) then B
(
∇(Φ, E1)

)
≡ B

(
∇(Φ, E2)

)
(ESF3) If B(E) ≡ B(E1) ∧ B(E2) then B

(
∇(Φ, E1)

)
∧ B(E2) � B

(
∇(Φ, E)

)
.

(ESF4) If B(E) ≡ B(E1) ∧ B(E2) and B
(
∇(Φ, E1)

)
∧ B(E2) �� ⊥, then

B
(
∇(Φ, E)

)
� B
(
∇(Φ, E1)

)
∧ B(E2).

(ESF5) If E1 �= E2, then there exists E such that B
(
∇(E1, E)

)
�≡ B

(
∇(E2, E)

)
.

(ESF6) If
∧

E′∈ΦB(E′)∧B(E) �� ⊥, then B
(
∇(Φ, E)

)
≡
∧

E′∈ΦB(E′)∧B(E).
(ESF7) B

(
∇(Φ1, E)

)
∧ B
(
∇(Φ2, E)

)
� B
(
∇(Φ1 � Φ2, E)

)
(ESF8) B

(
∇(Φ1 � Φ2, E)

)
� B

(
∇(Φ1, E)

)
∧ B

(
∇(Φ2, E)

)
if B

(
∇(Φ1, E)

)
∧

B
(
∇(Φ2, E)

)
�� ⊥.

(ESF0) says that the beliefs of the resulting Epistemic State have to be
consistent whenever the beliefs of the constraint are consistent. Because of the
definition of epistemic space, for every Epistemic State E′, B(E′) is consis-
tent and, therefore, the postulate is trivially satisfied for the ES combination
operators.

(ESF1) says that the belief of the result has to be logically at least as strong
as the belief of the constraint.

(ESF2) is the syntax irrelevance property at the level of beliefs for the in-
tegrity constraints.

(ESF3) and (ESF4) together determine one important property in which the
beliefs are chosen. They correspond to postulates IC7 and IC8 of IC merging.

(ESF5) is a new postulate. It says that given two different Epistemic States
there is a constraint E that leads to different results at level of belief, i.e. the
beliefs of the result of the operator applied to each Epistemic State with the
constraint E, will not be equivalent. This is a minimal rational requirement in
order to avoid trivial operators like constant operators.

(ESF6) expresses that if all the agents of the profile agree at the level of
belief with the constraint, this agreement will coincide with the belief resulting
after application of the operator.

(ESF7) tells us that for any partition of a group into two subgroups, the
conjunction of belief of the result of applying the operator to each subgroup will
be logically stronger than the beliefs resulting of the application of the operator
to the whole group.

(ESF8) expresses that if we can divide a group into two subgroups such
that the application of the operator to each subgroup leads to beliefs which
are mutually consistent, then the conjunction of these beliefs will be the beliefs
resulting from applying the operator to the whole group.
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A weaker property than (ESF8) is the following one:

(ESF8W) If B
(
∇(Φ1, E)

)
∧ B
(
∇(Φ2, E)

)
�� ⊥, then

B
(
∇(Φ1 � Φ2, E)

)
� B
(
∇(Φ1, E)

)
∨ B
(
∇(Φ2, E)

)
.

This property tells us that if a group is divided into two subgroups and after
application of the operator the beliefs of the subgroups are consistent, then the
beliefs of the whole group after application of the operator have to entail the
disjunction of the beliefs of each subgroup.

There is another interesting property, called iteration postulate, which con-
cerns the behavior under iteration of integrity constraints: the beliefs, after two
iterations, are the beliefs obtained as the result when the integrity constraint is
the epistemic state resulting of the combination of the two integrity constraints.
More precisely:

(ESF-It) B
(
∇
(
Φ,∇(E1, E2)

))
≡ B

(
∇
(
∇(Φ, E1), E2

))
The rationale behind this postulate, is that at level of beliefs, iterating the oper-
ator with respect a sequence of integrity constraints is the same that performing
one application of the operator respect to an integrity constraint obtained by
application of the operator to the sequence of integrity constraints. This sort of
associativity of the operator, at level of integrity constraints, is very natural.

Assuming very few postulates, the last postulate entails (ESF3) and (ESF4).
More precisely:

Proposition 1. Let ∇ be an ES combination operator satisfying (ESF1),
(ESF2) and (ESF6). Then, if ∇ satisfies (ESF-it), ∇ satisfies (ESF3) and
(ESF4).

In general, the converse of this result is not true. However, in some particular
situations the postulates (ESF3) and (ESF4)entail (ESF-it). More precisely:

Proposition 2. Let ∇ be an ES combination operator satisfying (ESF1),(ESF2)
and (ESF6). Suppose ∇ satisfies (ESF3) and (ESF4). Then, for all profiles
Φ and all Epistemic States E1 and E2 such that B

(
∇(Φ, E1)

)
is consistent with

B(E2), we havee

B
(
∇
(
Φ,∇(E1, E2)

))
≡ B

(
∇
(
∇(Φ, E1), E2

))
.

Now we proceed to make a classification of ES combination operators accord-
ing to which postulates are satisfied.

Definition 2 (Epistemic state basic fusion operators). Let ∇ be an ES
combination operator. ∇ is said to be an epistemic state basic fusion operator (ES
basic fusion operator for short) if it satisfies the postulates (ESF1)–(ESF4).

Definition 3 (Epistemic state fusion operators). Let ∇ be an ES combi-
nation operator. ∇ is said to be an epistemic state fusion operator (ES fusion
operator for short) if it satisfies the postulates (ESF1)–(ESF8).



Logic-Based Fusion of Complex Epistemic States 403

Definition 4 (Epistemic state quasi-fusion operators). Let ∇ be an ES
combination operator. ∇ is said to be an epistemic state quasi-fusion operator
(ES quasi-fusion operator for short) if it satisfies the postulates (ESF1)–(ESF7)
and (ESF8W).

Definition 5 (Iterable epistemic state fusion operators). Let ∇ be an ES
combination operator. ∇ is said to be an iterable epistemic state fusion opera-
tor (iterable ES fusion operator for short) if it satisfies the postulates (ESF1),
(ESF2), (ESF5)–(ESF8) and (ESF-it).

Definition 6 (Iterable epistemic state quasi-fusion operators). Let ∇ be
an ES combination operator. ∇ is said to be an iterable epistemic state quasi-
fusion operator (iterable ES quasi-fusion operator for short) if it satisfies the
postulates (ESF1), (ESF2), (ESF5)–(ESF7), (ESF8W)and (ESF-it).

Notice that, by virtue of Proposition 1, every iterable ES (quasi) fusion operator,
is an ES (quasi) fusion operator.

2.2 Faithful Assignments

Definition 7 (Assignment). An assignment is a map Φ  →�Φ mapping every
profile Φ into a total preorder over valuations.

We consider the following properties for assignments:

1. If E1 �= E2, then �E1 �=�E2

2. If Φ = {E1, . . . , En} and ∀i ≤ n, w, w′ |= B(Ei), then w �Φ w′

3. If Φ = {E1, . . . , En}, for all i ≤ n, w |= B(Ei) and there exists j ≤ n such
that w′ �|= B(Ej), then w ≺Φ w′

4. If w �Φ1 w′ and w �Φ2 w′ then w �Φ1�Φ2 w′

5. If w �Φ1 w′ and w ≺Φ2 w′ then w ≺Φ1�Φ2 w′

Property 1 imposes that different Epistemic States lead to different total pre-
orders (injectivity of the assignment restricted to profiles of size one).

Properties 2 and 3 together tells that, if there are models of the conjunction
of the beliefs of the Epistemic States of the profile, they are exactly the minimal
models of the total preorder associated to the profile.

Property 4 expresses that if one model w1 is preferred to w2 for one group,
and the same occurs for a second group, then for the group resulting of the union
of these groups, w1 will be preferred to w2.

Property 5 is similar to the previous one, except that if there is one strict
preference for one of subgroups, this will be the case for the whole group.

We say that the belief function B satisfies the minimality condition with
respect to the assignment Φ  →�Φ if, for every Epistemic State E, [[B(E)]] =
min(�E).

It is easy to see that if an assignment satisfies Properties 2 and 3, then B
satisfies the minimality condition.

Despite the apparent independence of properties 2, 3, 4 and 5, in some situ-
ations they are very related. Actually we have the following result:
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Proposition 3. Let Φ  →�Φ be an assignment. Suppose B satisfies the mini-
mality condition. Then the following statements hold:

(i) Property 4 entails Property 2.
(ii) Property 4 plus Property 5 entail Property 3.

The following property is a weakenig of Property 5: if for two groups w is strictly
preferred over w′, the same occurs for the group resulting from joining the two
groups. More precisely:

5’. If w ≺Φ1 w′ and w ≺Φ2 w′ then w ≺Φ1�Φ2 w′

It is clear that Property 5 entails 5’. But the converse is not true.
Now we introduce a property which depends upon an ES combination

operator ∇:

6. �∇(Φ,E)= lex(�E ,�Φ)

This strong property determines the way in which the assignment acts over the
results of an ES combination operator. However, it is important to notice that
this property operator does not define the operator unless epistemic states are
total preorders and we have the property of structuring preserving (see Section
3), that is E =�E for all epistemic state E.

In case of revision operators, that is when the profile is a singleton (a total pre-
order in some concrete representations) and the integrity constraint is a preorder
of two levels (a formula) the previous property determines the lexicographical
revision operators studied by Nayak et al. [15].

Now we classify the assignments according to the properties they satisfy.

Definition 8 (Faithful assignment). An assignment Φ  →�Φ is said to be a
faithful assignment if it satisfies Properties 1–5.

Definition 9 (quasi-faithful assignment). An assignment Φ  →�Φ is said to
be a quasi-faithful assignment if it satisfies Properties 1–4 and 5’.

Definition 10 (Lexi-faithful assignment). Let ∇ be an ES combination op-
erator. An assignment Φ  →�Φ is said to be a lexi-faithful assignment if it satis-
fies Properties 1–6.

The assignment is said to be a lexi-quasi-faithful assignment if it is a quasi-
faithful assignment satisfying 6.

2.3 Representation Theorems

We present some results which help to understand the behavior of the operators
defined previously. This allows us to describe the operators, at least partially, in
a semantical form. Thus, we call these results weak representation by opposition
to some true results of representation in concrete structures that we will see
below.
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Theorem 1 (Weak representation for ES basic fusion operators). An
ES combination operator ∇ is an ES basic fusion operator if and only if there
exists a unique assignment Φ  →�Φ such that:

[[B
(
∇(Φ, E)

)
]] = min

(
[[B(E)]],�Φ

)
(B-Rep)

This result allows us to obtain very tight relations between the (syntactical)
postulates for fusion and the properties of the assignments. More precisely, we
have the following result:

Proposition 4. Let ∇ be an ES basic fusion operator. Let Φ  →�Φ the assign-
ment given by Theorem 1. Then the following conditions hold:

(i) ∇ satisfies (ESF5) ⇔ the assignment satisfies 1.
(ii) ∇ satisfies (ESF6) ⇔ the assignment satisfies Properties 2 and 3.
(iii) ∇ satisfies (ESF7) ⇔ the assignment satisfies 4.
(iv) ∇ satisfies (ESF8) ⇔ the assignment satisfies 5.
(v) ∇ satisfies (ESF8W) ⇔ the assignment satisfies 5’.
(vi) ∇ satisfies (ESF-it) ⇔ the assignment satisfies 6.

The following results are corollaries of Proposition 4.

Theorem 2 (Weak representation for ES fusion operators). An ES com-
bination operator ∇ is an ES fusion operator if and only if there exists a unique
faithful assignment Φ  →�Φ satisfying (B-Rep).

Theorem 3 (Weak representation for ES quasi-fusion operators). An
ES combination operator ∇ is an ES quasi-fusion operator if and only if there
exists a unique quasi-faithful assignment Φ  →�Φ satisfying (B-Rep).

Theorem 4 (Weak representation for iterable ES quasi-fusion opera-
tors). An ES combination operator ∇ is an iterable ES (quasi) fusion operator
if and only if there exists a unique lexi-faithful (lexi-quasi-faithful) assignment
Φ  →�Φ satisfying (B-Rep).

Unlike the representation theorem for IC merging operators, the previous theo-
rems don’t allow us to construct ∇ from the assignment. However, they allow us
to represent the beliefs of the result via the total preorders of the assignment.

3 Fusion in a Concrete Representation of Epistemic
States

The weak representations obtained so far describe only the beliefs of the epis-
temic state resulting after application of the operator, but we lose the general
structure of the Epistemic State. We show in this section that in the case of the
epistemic state which are total preorders over the valuations, the representation
is complete.

From now on E will be the set of total preorders over the valuations W . We
consider the following properties for assignments:
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(PI) If Φ = {�1, . . . ,�n} and ∀i ≤ n, w �i w′, then w �Φ w′.
(PF) If Φ = {�1, . . . ,�n}, ∀i ≤ n, w �i w′ and ∃j ≤ n such that w ≺j w′,

then w ≺Φ w′.
(PU) If Φ = {�1, . . . ,�n} and ∀i ≤ n, w ≺i w′, then w ≺Φ w′.

These properties are very natural in aggregation of preferences in Social Choice
Theory. They correspond to Pareto indifference (PI), Strong Pareto (PF) and
Pareto unanimity (PU). They express rational behavior at the moment of merg-
ing the preferences of a group of agents.

Property (PI) establishes that if two options are equally plausible for all the
members of a group, they are equally plausible with respect to the plausibility
of the group.

Property (PF) tells us that if all the members of a group prefer an alternative
w over w′ and there is a member of the group preferring strictly w over w′, then
w will be strictly preferred over w′ for the group.

Property (PU) expresses the fact that if all the members of a group prefer
strictly an alternative w over w′, this will be the case for the group. Notice that
every assignation satisfying Property (PF), will satisfy property (PU).

A very natural property for the assignments, in this setting, is the preserva-
tion of the structure of Epistemic States. More precisely, we have the following
definition:

Definition 11. We say that an assignment Φ  →≺Φ is structure preserving if
and only if for every Epistemic State E, �E= E.

We have to notice that one can construct without major difficulty assignments
which are not structure preserving and in despite of this having good properties
[12].

This property, together with other properties already mentioned, allows us to
prove the properties (PI),(PF) and (PU). More precisely we have the following
proposition:

Proposition 5. Let Φ  →�Φ be a structure preserving assignment, then:

(i) If the assignment satisfies 4 then it satisfies (PI).
(ii) If the assignment satisfies 4 and 5 then it satisfies (PF).
(iii) If the assignment satisfies 5’then it satisfies (PU).

The properties (PI), (PF) and (PU) entail the structure preserving property.
More precisely, we have the following result:

Proposition 6. Let Φ  →�Φ be an assignment. Then the following conditions
hold

(i) If the assignment satisfies (PI) and (PU), then it is structure preserving.
(ii) If the assignment satisfies (PI) and (PU), then it satisfies Property 1.
(iii) If the assignment satisfies (PI) and (PF), and the minimality condition is

satisfied, then the assignment satisfies Properties 2 and 3.
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Now we consider more syntactical postulates about ES combination operators:
Let Φ = {E1, E2, . . . , En} be a profile and let E be an Epistemic State.

(ESF-PI) ∀i ≤ n, B(∇(Ei, E)) ≡ B(E) ⇒ B
(
∇(Φ, E)

)
≡ B(E).

(ESF-PF)
n∧

i=1

B(∇(Ei, E)) �� ⊥ ⇒ B
(
∇(Φ, E)

)
�

n∧
i=1

B(∇(Ei, E)).

(ESF-PU) ∀i, j ≤ n, B(∇(Ei, E)) ≡ B(∇(Ej , E)) ⇒ ∀i ≤ n, B
(
∇(Φ, E)

)
�

B(∇(Ei, E))

Postulate (ESF-PI) says that if the beliefs of each agent coincides with the
beliefs of the constraint, the belief of the group will be the belief of the constraint.

Postulate (ESF-PF) expresses that if when we revise each agent by the con-
straint there is a global agreement, then the belief of the group has to satisfy
this agreement.

Postulate (ESF-PU) expresses the fact that if each agent obtains the same
beliefs after revision by the constraint, the global belief has to entail these com-
mon beliefs. Notice that the Postulate (ESF-PU) is weaker than the Postulate
(ESF-PF).

Proposition 7. Let ∇ be an ES basic fusion operator. If the assignment asso-
ciated to the operator is structure preserving, the following conditions hold:

(i) ∇ satisfies (ESF-PI) if and only if the assignment satisfies (PI).
(ii) ∇ satisfies (ESF-PF) if and only if the assignment satisfies (PF).
(iii) ∇ satisfies (ESF-PU) if and only if the assignment satisfies (PU).

Theorem 5 (Representation theorem). Let ∇ an ES basic fusion operator.
Suppose that the assignment Φ  →�Φ, representing ∇ is structure preserving.
Then, ∇ satisfies (ESF7), (ESF8)and (ESF-it) if and only if the assignment
Φ  →�Φ, representing ∇, satisfies Properties 4, 5, 6, and the following equation
is satisfied:

∇(Φ, E) = lex(E,�Φ). (Rep)

Moreover, if B satisfies the minimality condition, then ∇ is an iterable ES fusion
operator.

4 A Concrete Example

It is easy to see that every total preorder over W can be represented by a function
r : W −→ N such that the image is an initial segment of the natural numbers,
i.e. the set is of the form {0, 1, 2, . . . , n}, and w � w′ iff r(w) ≤ r(w′). We
call r(w) the rank (or level) of w in the total preorder �. A natural way for
aggregating total preorders is using the sum of the ranks. If Φ = {�1, . . . ,�k}
we define �Φ in the following way:

w �Φ w′ ⇔
k∑

i=1

ri(w) ≤
k∑

i=1

ri(w′)
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It is easy to check that the assignment defined in this manner is a faithful
assignment. Thus, if the beliefs are given by the minimal models of the preorders
representing the Epistemic State, we have the minimality condition. Then we can
define ∇ like in Theorem 5, that is to say ∇(Φ, E) = lex(E,�Φ). In this way we
have an iterable ES fusion operator. The reader can verify that if Φ = {E1, E2}
and E are given graphically by the three total preorders below

�100
�010
�001

�000 �011 �101 �110 �111

E1

�001
�010 �100

�000 �011 �101 �110 �111

E2

�001 �010 �100
�000 �011 �101 �110 �111

E

we get as a result the following total preorder:

�
100

�001 �010

�000 �011 �101 �110 �111

∇(Φ, E)

This kind of construction can be generalized to other aggregation functions
different from the addition. For instance, if we take the max aggregation function
instead of the addition we obtain an iterable ES quasi-fusion operator.

5 Conclusion

Adapting the postulates of Konieczny and Pino Pérez [9,10,11], we have suc-
ceded in giving syntactical postulates for the fusion operators of complex epis-
temic states. All the language we need is finite propositional logic. Our operators
generalize the revision operators introduced by Benferhat et ál. [2] and the IC
merging operators defined by Konieczny and Pino Pérez.

Under these postulates, we obtain a weak representation in semantical form.
However, we obtain a strong representation when we consider concrete epistemic
states, namely the structure of total preorders over valuations.

The main contribution of this work lies in the fact of having found the right
axioms, both the syntactical ones and the semantical ones, and the relations
between them.

We have to notice the strong utilization in our central result (Theorem 5)
of the structure preserving property. We don’t know for the moment about a
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syntactical counterpart for this property. In spite of the fact that this property
is quite natural and rational, to find its syntactical counterpart seems a difficult
task. We continue making efforts for finding the syntactical counterpart of the
structure preserving property.
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Abstract. We propose a novel generative model for classification called
latent tree classifier (LTC). An LTC represents each class-conditional dis-
tribution of attributes using a latent tree model, and uses Bayes rule to
make prediction. Latent tree models can capture complex relationship
among attributes. Therefore, LTC can approximate the true distribu-
tion behind data well and thus achieve good classification accuracy. We
present an algorithm for learning LTC and empirically evaluate it on 37
UCI data sets. The results show that LTC compares favorably to the
state-of-the-art. We also demonstrate that LTC can reveal underlying
concepts and discover interesting subgroups within each class.

Keywords: Bayesian network classifier, latent variable model.

1 Introduction

Classification is one of the most active areas in machine learning research. The
task is to predict the class label of an instance based on a set of attributes that
describe the instance. Approaches to this problem divide into two categories:
Generative and discriminative [19]. Let C be the class variable and X be the
set of attributes. Generative approaches build models for the joint distribution
P (C,X), compute the posterior distribution P (C|X) using Bayes rule, and as-
sign an instance to the most likely class. In contrast, discriminative approaches
directly model P (C|X). In this paper, we focus on generative approaches and
assume categorical attributes.

The simplest generative model is the naive Bayes (NB) classifier [8]. It assumes
that attributes are mutually independent given the class label. All dependencies
among attributes are ignored. Despite its simplicity, NB has been shown to be
surprisingly effective in a number of domains [7].
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C = 2

X 1 X 4 X 2 X 3

Y 1 Y 2

C = 3

X 1 X 3 X 2 X 4

Y 1 Y 2

C

C = 1

X 1 X 2 X 3 X 4

Y 1

Fig. 1. An example latent tree classifier. C is the class variable with 3 classes, X1–X4

are four attributes. Each rectangle contains a latent tree model for a specific class, in
which Y1 and Y2 are latent variables.

The conditional independence assumption underlying NB is rarely true in
practice. Violating this assumption could lead to poor prediction. The past
decade has seen a large body of work on relaxing this unrealistic assumption.
To mention two successful instances, tree augmented naive Bayes (TAN) [10]
builds a Chow-Liu tree [5] to model the attribute dependencies, while averaged
one-dependence estimators (AODE) [21] constructs a set of tree models over the
attributes and averages them to make prediction.

In this paper, we propose a novel approach to model the relationship among
attributes. Our approach is based on latent tree models. A latent tree model
(LTM) [23] is a tree-structured Bayesian network in which variables at leaf nodes
are observed and called manifest variables, whereas variables at internal nodes
are hidden and called latent variables. The model represents a set of complex
relationship among the manifest variables in a compact way. To see this point,
consider eliminating all the latent variables from the model. This will result in
a fully connected Bayesian network over all the manifest variables.

In our approach, we treat attributes as manifest variables and build LTMs to
model the relationship among them. The relationship could be different across
classes. Therefore, we build an LTM for each class. We refer to the collection
of LTMs plus the prior class distribution as a latent tree classifier (LTC). An
example is shown in Fig. 1. Each rectangle in the figure contains the LTM for
a class. Since the LTMs can model complex relationship among attributes, we
expect LTC to approximate the true distribution behind data well and thus to
achieve good classification accuracy. We empirically verify this hypothesis in the
experiments.

In addition to good classification performance, building LTCs on the basis
of LTMs also makes it possible to discover latent structures behind data. In
particular, we will demonstrate that the latent variables introduced during the
learning process can reveal concepts embedded in data as well as interesting
subgroups within each class. This merit can boost user confidence in LTCs.

The rest of this paper is structured as follows. We formally define LTC in
Sect. 2 and present an algorithm for learning LTC in Sect. 3. In Sect. 4, we
empirically evaluate LTC on 37 UCI data sets, and compare it with a spectrum
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of generative classifiers as well as C4.5 [18]. In Sect. 5, we demonstrate that LTC
can discover appealing latent structures using an example. We discuss some
related work in Sect. 6 and finally conclude this paper in Sect. 7.

2 Latent Tree Classifier

We start by briefly reviewing latent tree models (LTMs). An LTM is a pair
M = (m, θ). The first component m denotes the rooted tree and the set of car-
dinalities of the latent variables. The second component θ denotes the collection
of parameters in M. It contains a conditional probability table (CPT) for each
node given its parent.

Let X and Y be the set of manifest variables and the set of latent variables in
M, respectively. We use P (X,Y|M) to denote the joint distribution represented
by M. Two LTMs M and M′ are marginally equivalent if they share the same
set of manifest variables X and P (X|M) = P (X|M′).

Let |Z| denote the cardinality of variable Z. For a node Z in M, we denote
the set of its neighbors by nb(Z). An LTM is regular if for any latent node

Y , |Y |≤
∏

Z∈nb(Y )|Z|
maxZ∈nb(Y )|Z| , and the inequality strictly holds when Y has only two

neighbors. As shown by [23], an irregular model M is over-complicated and can
be reduced to a regular model M′ which is marginally equivalent but contains
fewer parameters than M. Henceforth, we consider only regular models.

We consider the classification problem where each instance is described using
n attributes X = {X1, X2, . . . , Xn}, and belongs to one of the r classes C =
1, 2, . . . , r. A latent tree classifier (LTC) consists of a prior distribution P (C) on
C and a collection of r LTMs over the attributes X. We denote the c-th LTM by
Mc = (mc, θc) and the set of latent variables in Mc by Yc. The LTC represents
a joint distribution over C and X, ∀c = 1, 2, . . . , r,

P (C = c,X) = P (C = c)P (X|Mc)

= P (C = c)
∑
Yc

P (X,Yc|Mc) . (1)

Given an LTC, we classify an instance X = x to the class c�, where

c� = argmax
C

P (C|X = x)

= argmax
C

P (C,X = x) . (2)

Note that, according to (1), this requires us to sum out all the latent variables
Yc for each class c. Thanks to the tree structures of LTMs, the summation could
be done in linear time in the number of attributes, as formalized below.

Proposition 1. The time complexity of classifying an unlabeled instance with
an LTC is O(rnv2), where r is the number of classes, n is the number of at-
tributes, and v is the maximum cardinality of variables in the LTC.
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Proof. The time complexity of summing out all the latent variables Yc from the
c-th LTM Mc is O

(
(|Yc|+n)v2

c

)
[17], where vc denotes the maximum cardinality

of the variables in Mc. It is know that a regular LTM contains less than n latent
variables [23]. Therefore, the overall time complexity for classifying an instance
is O(rnv2). ��

3 A Learning Algorithm

Given a labeled training set D, we consider how to learn a good LTC from D.
This amounts to learning the prior distribution P (C) and a good LTM Mc for
each class c = 1, 2, . . . , r.

The prior P (C) can be easily estimated from D by counting the number
of instances belonging to each class. In the following, we focus on the more
challenging task of learning the LTMs.

3.1 Model Selection

We first partition D by class label and obtain r data sets {Dc|c = 1, 2, . . . , r}.
Each Dc contains only the attributes X. We then learn an LTM Mc from each
Dc independently.

The LTM is of high quality if it is close to the true distribution underlying
Dc. Nonetheless, the true distribution is unknown. Therefore, we use AIC score
[1] for model selection,

AIC(mc|Dc) = −2 logP (Dc|mc, θ
�
c) + 2d(mc) , (3)

where θ�
c is the maximum likelihood estimate to the parameters θc, and d(mc) is

the number of free parameters in model mc. The AIC score is an approximation
to the expected KL divergence of Mc from the true distribution. The lower the
score, the smaller the difference between Mc and the true distribution, and the
better the LTM.

In literatures, BIC score is used more often for learning Bayesian network
classifiers [10]. However, BIC score over-penalizes complex models and can lead
to poor approximation to the true distribution. In a preliminary study [20], we
empirically compared AIC with BIC for learning LTCs. We observed that AIC
produces LTMs that better fit unseen data. The LTCs learned using AIC also
achieve better classification accuracy than those learned using BIC.

3.2 Model Search

We adopt a recently developed hill-climbing algorithm called EAST [3] to search
for high scoring LTMs. EAST explores the model space using five search opera-
tors. They are node introduction (NI), node deletion (ND), node relocation (NR),
state introduction (SI), and state deletion (SD). Given an LTM, NI applies to a
latent variable and two of its neighbors. It adds a new latent variable to mediate
the latent variable and the two neighbors, and sets its cardinality to the same
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Fig. 2. Illustration of NI, ND, and NR operators

as the existing latent variable. Figure 2 shows such an example. The model m2

is obtained from m1 by introducing a new latent variable Y3. ND is the reverse
of NI. It applies to two neighboring latent variables, removes one of them and
links its neighbors to the other. In Fig. 2, by deleting Y3 one goes from m2 back
to m1. NR operator adjusts the connections in an LTM. It considers two latent
variables, disconnects a neighbor from the first latent variable, and links it to
the second latent variable. In Fig. 2, one relocates X3 in m2 from Y1 to Y3 and
obtains m3. The last two operators modify domains of latent variables. SI adds
a new state to a latent variable. SD does the reverse.

Given a data set, EAST starts with the simplest LTM, i.e., the LTM that
contains only one latent variable whose cardinality equals to 1, and greedily
improves the model. In each search step, it applies some operators to the current
model, obtains a collection of candidate models, evaluates them using the AIC
score, and picks the best one to seed the next search step. The process repeats
itself until the model score ceases to increase. Note that, if EAST never improves
the initial model, the final LTC reduces to NB.

In each search step, one could apply all the five operators to the current
model. This could, however, produce a large number of candidate models. Eval-
uating them could take a long time. Therefore, the search procedure in EAST is
structured into three phases: Expansion, simplification, and adjustment. In each
phase, we consider only one or two operators and thus obtain much fewer candi-
date models. In the expansion phase, we only apply NI and SI. Both operators
make the current model more expressive and thus improve the first term in AIC
score. In the simplification phase, we consider only ND and SD. Both operators
simplify the current model and thus improve the second term in AIC score. In
the adjustment phase, we apply NR to adjust the structure of the current model.
It helps avoid local maxima. EAST iteratively goes through these three phases
and alternatively improves the two terms in AIC score.

To evaluate a candidate model, one needs to run the EM algorithm [6] to
compute the MLE θ�. EM is known to be expensive. To speed up the evalua-
tion process, we run local EM instead. The key observations are that (1) the
parameters of the current model have already been optimized, and (2) a can-
didate model only differs from the current model in a small part. Therefore,
in local EM, we fix the parameters of the unaltered part, and optimize only
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the parameters that are foreign to the current model. Consider the model m2 in
Fig. 2 that is obtained from m1 using NI. In local EM, we only optimize the CPTs
of Y3, X1, and X2. In our implementation, we run local EM for a predetermined
number of iterations. It might not converge, but the obtained estimation is ac-
curate enough for ranking candidate models. After we obtain the best candidate
model, we optimize its parameters using full EM before comparing it with the
current model.

4 Empirical Evaluation

In this section, we empirically compare LTC with a spectrum of generative clas-
sifiers, ranging from the simplest NB, to more advanced TAN and AODE, and
to the most general Bayesian network augmented naive Bayes (BAN) [10]. We
also include C4.5 decision tree [18] in the comparison as a reference.

4.1 Experimental Settings

We used the 37 UCI data sets [2] that are recommended by WEKA [22] in our
experiments. The learning algorithms of TAN and AODE proposed by [10] and
[21] do not handle missing values. Thus, we removed incomplete instances from
the data sets. TAN, AODE, BAN, and LTC require discrete attributes. There-
fore, we discretized the data sets using the supervised discretization method pro-
posed by [9]. Table 1 summarizes the characteristics of the data sets obtained
after preprocessing.

We implemented LTC in Java. The detailed settings are as follows. We ran 40
iterations of local EM to evaluate each candidate model. For the best candidate
model, we ran full EM to optimize its parameters. The EM was terminated if
the improvement in loglikelihoods is smaller than 0.01, or the number of itera-
tions reaches 500. For both local and full EM, we adopted the pyramid strategy
proposed by [4] to avoid local maxima. The number of starting points was set
at 16 and 64, respectively.

We used the WEKA implementations of the other classification algorithms in
our experiments. Some details are given below:

– AODE: We set the frequency limit on super parents at 30 as suggested by
[21].

– BAN: We set the initial models to be naive Bayes and used hill-climbing to
search for good BANs with high AIC scores. The Markov blanket correction
built in WEKA was conducted on the final models to ensure every attribute
is in the Markov blanket of the class variable.

Following the common practice in machine learning, we smoothed the param-
eters for all the trained generative classifiers using Laplace correction. We set
the smoothing factor α = 1. Preliminary experimental results show that the
parameter smoothing leads to significant improvement in classification accuracy
[20].
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Table 1. The 37 data sets used in the experiments, their characteristics (columns 2-4),
and the classification accuracy of various algorithms (columns 5-10). For each data set,
the best accuracy is highlighted in boldface.

Domain Attr. Class Size LTC NB TAN AODE BAN C4.5

anneal 38 6 898 97.78±1.96 96.10±2.54 98.66±1.15 98.33±1.59 97.99±1.47 98.77±0.98
australian 14 2 690 85.36±4.29 85.51±2.65 85.22±5.33 86.09±3.50 85.51±4.10 85.65±4.07

autos 25 7 159 85.50±8.44 72.88±10.12 79.25±8.84 81.08±7.39 77.29±6.40 78.58±8.54
balance-scale 4 3 625 70.24±3.10 70.71±4.08 71.03±3.51 69.59±4.01 70.24±4.44 69.59±4.27
breast-cancer 9 2 277 72.87±9.31 75.41±6.44 71.11±5.14 76.49±7.96 71.42±6.54 74.39±7.34

breast-w 9 2 683 97.51±1.54 97.51±2.19 96.63±2.08 97.36±2.04 97.07±1.95 95.76±2.61
corral 6 2 128 100.00±0.00 85.96±7.05 99.23±2.43 89.10±8.98 97.69±3.72 94.62±8.92

credit-a 15 2 653 86.38±4.38 87.29±3.53 86.84±3.02 87.59±3.51 85.31±3.44 86.99±4.48
credit-g 20 2 1000 73.20±3.97 75.80±4.32 74.00±4.40 77.10±4.38 74.90±3.54 72.10±4.46
diabetes 8 2 768 76.44±2.44 77.87±3.50 78.77±3.32 78.52±4.11 78.91±3.62 78.26±3.97

flare 10 2 1066 83.21±2.77 80.30±3.42 82.84±2.27 82.46±2.31 82.93±2.33 82.09±1.80
glass 9 7 214 76.19±7.41 74.37±8.97 76.19±9.88 76.19±7.41 74.46±11.28 73.94±9.76
glass2 9 2 163 85.18±9.44 83.97±8.99 85.18±9.89 83.97±9.91 85.18±9.89 84.01±7.32
heart-c 13 5 296 82.46±4.66 84.11±7.85 82.80±5.74 83.10±7.17 83.10±6.99 74.66±6.49

heart-statlog 13 2 270 81.85±9.63 83.33±6.36 82.22±6.94 81.85±6.86 80.00±7.65 81.85±5.91
hepatitis 19 2 80 88.75±12.43 85.00±15.37 88.75±13.76 85.00±12.91 87.50±11.79 90.00±14.19

ionosphere 34 2 351 94.31±2.99 90.60±3.83 93.17±3.60 92.31±2.34 93.17±4.07 89.17±5.35
iris 4 3 150 94.00±5.84 94.00±5.84 94.67±5.26 93.33±5.44 94.00±5.84 94.00±4.92

kr-vs-kp 36 2 3196 96.62±1.19 87.89±1.81 92.21±2.30 91.18±0.83 97.06±0.92 99.44±0.48
letter 16 26 20000 92.71±0.47 74.04±1.04 85.61±0.63 88.91±0.50 85.01±0.84 78.63±0.62
lymph 18 4 148 89.14±6.65 83.67±6.91 85.10±7.01 85.62±8.66 87.05±9.99 78.33±10.44

mofn-3-7-10 10 2 1324 94.48±2.48 85.35±1.53 91.16±1.79 89.05±2.53 100.00±0.00 100.00±0.00
mushroom 22 2 5644 100.00±0.00 97.41±0.72 99.81±0.26 100.00±0.00 99.95±0.09 100.00±0.00

pima 8 2 768 77.35±3.92 78.13±4.24 78.65±4.62 78.65±3.81 77.87±4.53 78.38±2.90
primary-tumor 17 22 132 45.60±11.04 47.14±11.59 41.04±12.56 46.37±10.12 45.60±8.64 43.24±10.55

satimage 36 6 6435 89.57±1.24 82.42±1.51 88.50±0.89 89.26±0.59 87.91±1.01 84.37±1.34
segment 19 7 2310 95.67±1.47 91.52±1.60 95.32±1.74 95.63±1.23 95.06±1.80 95.32±1.63

shuttle-small 9 7 5800 99.88±0.14 99.34±0.27 99.81±0.15 99.84±0.13 99.86±0.11 99.59±0.19
sonar 60 2 208 82.31±9.19 85.62±5.41 86.60±7.72 87.07±6.31 80.29±8.85 79.81±8.14

soybean 35 19 562 93.78±2.52 91.64±4.44 93.41±3.38 91.99±4.22 92.17±4.70 91.82±3.75
splice 61 3 3190 94.51±2.07 95.36±1.00 95.30±1.41 96.21±1.07 94.48±1.40 94.36±1.58
vehicle 18 4 846 74.94±4.29 62.65±4.15 73.99±4.44 73.06±4.65 72.94±5.00 71.99±3.45
vote 16 2 232 95.86±3.38 89.91±4.45 94.03±4.72 94.03±4.07 93.81±4.93 95.18±4.48
vowel 13 11 990 80.30±3.02 67.07±6.14 87.37±2.94 81.92±4.11 82.22±3.96 80.91±2.31

waveform-21 21 3 5000 86.02±1.99 81.76±1.49 83.10±1.46 86.60±1.26 83.10±1.25 75.44±2.10
waveform-5000 40 3 5000 86.06±1.39 80.74±1.38 82.02±1.26 86.36±1.65 82.44±1.21 76.48±1.47

zoo 17 7 101 94.18±6.60 93.18±7.93 95.18±8.15 95.09±5.18 96.09±5.05 92.18±8.94

Mean 86.49±4.26 83.12±4.72 85.80±4.43 85.85±4.40 85.66±4.41 84.32±4.59
# Wins 15 3 4 11 3 5

4.2 Classification Accuracy

We estimated the classification accuracy of an algorithm using stratified 10-fold
cross validation [12]. All the algorithms were run on the same training/test splits.
The mean and the standard deviation of accuracy are shown in Table 1. For each
data set, the best accuracy is highlighted in boldface. For each algorithm, Table
1 also reports its average accuracy over all the data sets and the number of wins,
i.e., the number of data sets on which it achieves the best accuracy.

From Table 1, we can see that LTC achieves the best overall accuracy, followed
by AODE, TAN, BAN, C4.5, and NB, in that order. In terms of the number of
wins, LTC is also the best (15 wins), with AODE (11 wins) and C4.5 (5 wins)
being the two runners-up.
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Table 2. The number of times that LTC significantly wins, ties with, and loses to the
other algorithms

NB TAN AODE BAN C4.5

# Wins 17 8 5 5 11
# Ties 19 27 29 29 24
# Loses 1 2 3 3 2

(a) Mt (b) Mf

Fig. 3. The structures of the LTMs for corral data. The numbers in the parentheses
denote the cardinalities of the latent variables. The width of an edge denote the mutual
information between the incident nodes.

To compare LTC with the other algorithms, we also conducted two-tailed
paired t-test with p = 0.05. The number of significant wins, ties, and loses is
given in Table 2. It shows that LTC significantly outperforms NB (17 wins/1
loses) and C4.5 (11/2). LTC is also better than TAN (8/2), AODE (5/3), and
BAN (5/3).

5 Discovery of Latent Structures

One advantage of LTC is that it can capture concepts underlying domains and
automatically discover interesting subgroups within each class. In this section,
the readers will see one such example. More examples will be given in an extended
version of this paper.

The example is involved with the corral data [11]. It contains two classes
true and false, and six boolean attributes A0, A1, B0, B1, Irrelevant, and
Correlated. The target concept is (A0 ∧ A1) ∨ (B0 ∧ B1). Irrelevant is an ir-
relevant random attribute, and Correlated matches the class label 75% of the
time.

We learned an LTC from the corral data and obtained two LTMs, one for
each class. We denote the LTMs by Mt and Mf , respectively. Their structures
are shown in Fig. 3. Mt contains one latent variable Yt, and Mf contains two
latent variables Yf1 and Yf2. All the latent variables are binary.

5.1 Main Findings

We first observe that in both models, the four attributes A0, A1, B0, and B1 are
closely correlated to their latent parents. In contrast, Irrelevant and Correlated
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are almost independent of their parents (notice the difference in edge widths
in Fig. 3). This is interesting as both models correctly pick the four relevant
attributes to the target concept.

We further studied the meanings of the latent variables and obtained more
appealing findings. The latent variable Yt in Mt takes two values. Therefore, Yt

represents a soft partition over the samples in the true class into two groups,
each group corresponding to one value of Yt. We refer to those groups as latent
groups, and denote them by the corresponding values of Yt. The latent variables
Yf1 and Yf2 in Mf also take two values. Similarly, each latent variable represents
a peculiar soft partition over the samples in the false class into two latent groups.

Our analysis in the next subsection will show that:

1. The latent groups Yt = 1 and Yt = 2 correspond to the two components of
the concept, A0 ∧ A1 and B0 ∧ B1, respectively;

2. The latent groups Yf1 = 1 and Yf1 = 2 correspond to ¬A0 and ¬A1, while
the latent groups Yf2 = 1 and Yf2 = 2 correspond to ¬B0 and ¬B1;

3. The latent variables Yf1 and Yf2 jointly enumerate the four cases when the
target concept (A0 ∧ A1) ∨ (B0 ∧ B1) does not satisfy.

Before diving into the details, we would like to point out that LTC successfully
discovering the underlying concept and intra-class subgroups gives rise to its
perfect classification result on the corral data (see Table 1). We argue that the
capability of discovering such latent patterns is one reason why LTC achieves
good classification accuracy.

5.2 Detailed Analysis

To understand the characteristics of each latent group, we examine the condi-
tional distribution of each attribute, i.e., P (X |Y = 1) and P (X |Y = 2) for all
X ∈ {A0, A1, B0, B1} and Y ∈ {Yt, Yf1, Yf2}. Those distributions are plotted in
Fig. 4. The height of a bar indicates the corresponding probability value.

We start by the latent groups associated with Yt. In latent group Yt = 1, A0

and A1 always take value true, while B0 and B1 emerge at random. Clearly, this
group of instances belong to class true because they satisfy A0∧A1. In contrast,
in latent group Yt = 2, B0 and B1 always take value true, while A0 and A1

emerge at random. Clearly, this group corresponds to the concept B0 ∧ B1.
We next examine the two latent variables in Mf . It is clear that A0 never

occurs in latent group Yf1 = 1, while A1 never occurs in latent group Yf1 = 2.
Therefore, the two latent groups correspond to ¬A0 and ¬A1, respectively. Yf1

thus reveals the two cases when A0∧A1 does not satisfy. Similarly, we find that B0

never occurs in latent group Yf2 = 1, while B1 never occurs in latent group Yf2 =
2. Therefore, the two latent groups correspond to ¬B0 and ¬B1, respectively. Yf2

thus reveals the two cases when B0 ∧B1 does not satisfy. Consequently, Yf1 and
Yf2 jointly represent the four cases when the target concept (A0∧A1)∨(B0∧B1)
does not satisfy.
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(f) Yf2 = 2: ¬B1

Fig. 4. The attribute distributions in each latent group and the corresponding concept

6 Related Work

There are a large body of literatures that attempt to improve classification ac-
curacy by exploiting attribute dependencies. They mainly divide into two cate-
gories: Those that directly model relationship among attributes, and those that
capture such relationship using latent variables. TAN, AODE, and BAN fall into
the first category. Another representative from this category is Bayesian multi-
net [10]. It learns a Bayesian network for each class and uses them jointly to
make prediction. Our method is based on the similar idea, but we learn an LTM
to represent the joint distribution of each class.

Our method falls into the second category. In this category, various latent
variable models have been tested for continuous data. To give two examples,
[16] combine finite mixture model with naive Bayes classifier. [13] propose latent
classification model. It uses a mixture of factor analyzers to represent attribute
dependencies.

In contrast, we are aware of much less work on categorical data. The one
that is the most closely related to ours is the hierarchical naive Bayes model
(HNB) [24,14]. HNB also exploits LTM to model the relationship among at-
tributes. However, it differs from LTC in two aspects. First, attributes in HNB
are usually partitioned into disjoint subsets, while each subset is modeled using a
separate LTM. The root (latent) nodes of those LTMs can be treated as features
extracted from different subsets of attributes, and are put together with the class
variable to form a naive Bayes model for classification. In contrast, LTC builds
one single LTM to connect all attributes for each class. The LTM as a whole
gives a generative model for that class, which is used in the prediction phase to
compute the likelihood of new data points.

Second, HNB assumes homogeneous latent structure, i.e., the LTMs in HNB
are identical throughout all classes. This assumption could be unrealistic in
real world applications. See, for example, the corral data presented in Sect. 5.
Violating this assumption could lead to degenerated classification performance
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and failure in latent structure discovery. In contrast, LTC describes different
classes using different LTMs. Therefore, it can accommodate the variance across
different classes.

We did not include HNB in our empirical comparison. The learning algorithm
proposed by [24] can only deal with several attributes and does not scale up to
most data sets used in our experiments. [14] developed a more efficient learning
algorithm but we have not been able to gain access to their implementation.

Recently, [15] extend the latent classification model to discrete domain. The
proposed model only handles binary attributes. Its generalization to multi-valued
categorical attributes is non-trivial.

7 Conclusions

We propose a novel generative classifier, namely, latent tree classifier. It builds
upon the powerful yet compact representation of latent tree models, and respects
the inter-class heterogeneity of the relationships among attributes. We empiri-
cally show that LTC compares favorably to NB, TAN, AODE, BAN, and C4.5
in classification accuracy. We also demonstrate that the learned LTC can reveal
underlying concepts and discover interesting subgroups within each class. As far
as we know, the second feature is unique to our method. We argue that the
capability of discovering such latent patterns is one reason why LTC achieves
good classification performance.

We used a hill-climbing algorithm, EAST, to learn LTC. For most of the
data sets used in the experiments, the training finished within a few seconds
to a few hours. For the 5 large data sets, kr-vs-kp, letter, mushroom, satimage,
and splice, the training took up to a few days. Thus, LTC is currently most
suitable for applications which allow a long offline training phase but demand
good online classification performance. On the other hand, we believe that the
promising results presented in this paper warrant future research on fast learning
algorithms for LTCs.
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Abstract. Naive Bayesian classifiers are used in a large range of appli-
cation domains. These models generally show good performance despite
their strong underlying assumptions. In this paper, we demonstrate how-
ever, by means of an example probability distribution, that a data set of
instances can give rise to a classifier with counterintuitive behaviour. We
will argue that such behaviour can be attributed to the learning algo-
rithm having constructed incorrect directions of monotonicity for some of
the feature variables involved. We will further show that conditions can
be derived for the learning algorithm to retrieve the correct directions.

1 Introduction

Nowadays a multitude of methods, algorithms and associated software are avail-
able for learning stochastic models from a collection of gathered data. Among
these are methods for constructing Bayesian network classifiers [1]. These models
include a designated variable of interest, called the class variable, and multiple
feature variables, each of which is related directly to the class variable. Of the
Bayesian network classifiers, especially naive Bayesian classifiers have become
quite popular for classification purposes. These classifiers build upon the as-
sumption that all feature variables are mutually independent whenever a value
for the class variable is known. Naive Bayesian classifiers are quite easy to con-
struct from a collection of data and, despite their strong underlying assumptions
of independency, show a tendency to outperform more complex models [2].

In general, a data set of instances from which a naive Bayesian classifier is
to be constructed, may not exhibit the independency properties assumed by the
classifier’s learning algorithm, that is, the data set may embed dependencies
among the recorded feature variables in view of a particular value of the class
variable. Yet, good classification performance is generally observed also for such
data sets, even in the presence of quite strong conditional dependencies among
the feature variables. In view of this finding, researchers have investigated the
effects of the presence of particular types of dependency on a classifier’s perfor-
mance. Several researchers have studied, for example, the effects of dependencies
that originate from redundancy among the feature variables. Insights from these
studies have resulted in methods for feature selection [3,4,5], which aim at re-
moving redundancies from the classifier and thereby enhancing its classification

W. Liu (Ed.): ECSQARU 2011, LNAI 6717, pp. 422–433, 2011.
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performance. In general however, the dependencies among the feature variables
embedded in a data set may not all be attributable to information redundancy.
The effects of the removal of non-redundant dependencies on the classification
performance of a naive Bayesian classifier are largely unexplored as yet.

From previous research, it is well known that dependencies which are embed-
ded in a true probability distribution among the feature variables, can affect the
strengths of the direct influences that are included in a naive Bayesian classi-
fier. In this paper, we will demonstrate that such embedded dependencies do
not affect just the strengths of the influences of the feature variables on the
class variable, but can also change the monotonicity directions of these influ-
ences. We say that a conditional probability distribution over the class variable
is monotonically increasing (decreasing) in a designated feature variable if a
higher value for this feature variable makes a higher value for the class variable
more (less) likely, regardless of the joint value assignment to the other feature
variables. Learning a naive Bayesian classifier from a data set of instances now
does not necessarily preserve the directions of the embedded monotonicities. We
will address the conditions under which the learning algorithm will retrieve the
correct monotonicity directions. We will further show, by means of an example
distribution, that an incorrect monotonicity direction in a classifier can result
in quite unexpected behaviour. As argued before by Van der Gaag et al. [6],
counterintuitive reasoning behaviour is likely to result in reduced acceptance of
the model in daily practice, even if it shows good performance otherwise.

The paper is structured as follows. In Sect. 2, we introduce our notational con-
ventions and review the concepts used in our analyses. In Sect. 3, we introduce
an example probability distribution and demonstrate counterintuitive behaviour
of the naive Bayesian classifier constructed from the distribution. In Sect. 4, we
analyse the example in depth and attribute the classifier’s counterintuitive be-
haviour to an incorrect direction of monotonicity for one of the feature variables
involved. We compare our result with those from earlier research on retrieving
monotonicity directions in Sect. 5. The paper ends in Sect. 6 with our concluding
remarks and suggestions for further research.

2 Preliminaries

We briefly review Bayesian networks and naive Bayesian classifiers to introduce
our notational conventions. We further present the qualitative concepts of prob-
ability which will be used for the analyses in the remainder of the paper, and
discuss the notion of monotonicity for Bayesian networks in general.

2.1 Bayesian Networks and Classifiers

We consider a set of random variables V. We assume all variables from V to be
binary, that is, each variable Vi ∈ V adopts one of the values true and false; the
value assignment Vi = true will be denoted as vi, and Vi = false will be written
as v̄i. Joint value assignments to a subset of variables U ⊆ V will be denoted by
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bold-faced letters u. A Bayesian network now is a model of a joint probability
distribution over the set of variables V. It includes a directed acyclic graph in
which each node captures a random variable and where the set of arcs models
the probabilistic (in)dependencies between the variables through the well-known
d-separation criterion. The strengths of the dependency relationships between
the variables are expressed by means of (conditional) probability distributions.
For each variable Vi, the distributions Pr(Vi | π(Vi)) are specified, where π(Vi)
is the set of parents of Vi in the network’s graph; together these distributions
constitute the conditional probability table for the variable Vi. The network now
represents the joint probability distribution Pr over the variables V, with

Pr(V) =
∏

Vi∈V

Pr(Vi | π(Vi))

In essence, a Bayesian network allows the computation of any probability of
interest over its variables. Efficient algorithms are available, more specifically,
for computing (conditional) marginal distributions over single variables [7].

Naive Bayesian classifiers are Bayesian networks of restricted topological struc-
ture. A naive Bayesian classifier partitions its set of random variables into a
designated class variable C and a set F of feature variables Fi, i = 1, . . . , n,
n ≥ 1. A joint value assignment to all feature variables is termed a case; a joint
value assignment to all variables involved is called an instance. The graphical
structure of the classifier is a directed tree in which the class variable C is the
unique root and each feature variable Fi has C for its only parent; it thereby
captures dependency of the class variable on each feature variable separately
and independency of any two feature variables given this class variable. The
classifier specifies a prior probability distribution Pr(C) over its class variable
and conditional probability distributions Pr(Fi | C) for each feature variable
separately. The classifier represents the joint probability distribution Pr(F, C)
over its variables factorised according to:

Pr(F, C) = Pr(C) ·
n∏

i=1

Pr(Fi | C)

A naive Bayesian classifier is commonly used for establishing the posterior prob-
ability distribution Pr(C | f) over the class variable for a case f . Associated
with the classifier is a decision rule which serves to assign the presented case
to a single class based upon the computed posterior distribution [1,2]. Since the
exact rule used is not relevant for this paper, we refrain from further discussion.

Learning a naive Bayesian classifier from a data set of instances amounts to
first configuring the variables involved in the simple graphical structure outlined
above. Subsequently, maximum-likelihood estimates for all required probabilities
are extracted from the available data as proportions over (sub)sets of instances.

2.2 Qualitative Concepts of Probability

A Bayesian network models the (in)dependencies among its variables by means of
arcs in its graphical structure. An arc A → B expresses that the variable A exerts
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Table 1. The ⊗- and ⊕-operators for combining signs

⊗ + − 0 ? ⊕ + − 0 ?

+ + − 0 ? + + ? + ?
− − + 0 ? − ? − − ?
0 0 0 0 0 0 + − 0 ?
? ? ? 0 ? ? ? ? ? ?

a direct probabilistic influence on the variable B, in the sense that observing a
value for A occasions a shift in the probability distribution for B. The direction
of this shift can be positive, negative or ambiguous. More formally, a positive
influence of the variable A on the variable B along the arc A → B expresses that
observing the value true for A makes the value true for B more likely, regardless
of any other direct influences on B, that is, Pr(b | a,x) − Pr(b | ā,x) ≥ 0 for
any combination of values x for the set X = π(B) \ {A} of parents of B other
than A; the influence is denoted S+(A, B), where ‘+’ is termed the sign of the
influence. A negative influence, denoted by S−, and a zero influence, denoted
by S0, are defined analogously, replacing ≥ in the above formula by ≤ and =,
respectively. For a positive, negative or zero influence of A on B, the difference
Pr(b | a,x) − Pr(b | ā,x) has the same sign for all combinations of values x
for the set X. These influences thus describe a monotone effect of a shift in
A’s probability distribution on the distribution for B. If the influence of A on
B is positive given one particular combination of values for X and negative
given another combination, the influence of A and B is non-monotone, and is
associated with the sign ‘?’ to indicate that its effect is unknown apriori.

The signs of all influences of a Bayesian network exhibit various important
composition properties that can be used for establishing the sign of a compound
influence between any two variables [8]. The property of symmetry, for example,
states that if a network includes the direct influence Sδ(A, B) for some δ ∈
{+,−, 0, ?}, then also the influence Sδ(B, A) holds, for the same value of δ. The
transitivity property asserts that the influences along a chain that specifies at
most one incoming arc for each variable, combine into a net influence whose sign
is defined by the ⊗-operator from Table 1. The property of composition asserts
that multiple influences between two variables along parallel chains combine into
a net influence whose sign is defined by the ⊕-operator. From the definition of
the ⊕-operator in Table 1, we observe that the composition of two influences
with opposite signs along parallel chains will give rise to an unknown result,
which is captured by the sign ‘?’.

2.3 Monotonicity of Bayesian Networks

For addressing the conditions under which correct monotonicity directions are
learned for a naive Bayesian classifier, we review the notion of monotonicity
for probability distributions is general. We say that a conditional probability
distribution Pr(C | F) over a class variable C is monotonically increasing in the
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feature variable Fi if Pr(c | fi, f−i ) ≥ Pr(c | f̄i, f−i ) for all joint value assignments
f−i to the feature variables other than Fi; decreasing monotonicity is defined
analogously. The direction of the monotonicity of the relation between the feature
variable Fi and the class variable C will be denoted by a sign di, where di = + is
used to indicate an increasing monotonicity and di = − a decreasing one. Note
that for probability distributions which are defined by a Bayesian network of
general topology, a monotonicity direction di may or may not coincide with the
qualitative sign of a specific arc.

Learning a naive Bayesian classifier will result in a graphical structure in
which the arcs model dependencies of the separate feature variables on the class
variable. Each arc C → Fi then captures a direct probabilistic influence, as
reviewed above, and has associated a qualitative sign δCFi . From the mutual
independency of any two feature variables given the class variable, we have that
if the qualitative sign δCFi of the probabilistic influence of C on Fi is +, then the
conditional probability distribution Pr(C | F) modelled by the classifier will be
monotonically increasing in Fi, and vice versa; a similar observation holds for a
negative influence. For the probability distribution defined by a naive Bayesian
classifier therefore, we have that a monotonicity direction di does coincide with
the qualitative sign δCFi of a specific arc for all feature variables Fi.

3 An Example of Counterintuitive Behaviour

Upon learning a naive Bayesian classifier from a data set of instances, the learn-
ing algorithm will identify and model the dependencies of each feature variable on
the class variable involved. We will show by means of an example that upon doing
so the algorithm will not always be able to recover the monotonicity properties
embedded in the data. Our example will demonstrate in fact, that a resulting
classifier can show quite counterintuitive classification behaviour.

Our example pertains to the weather in the Netherlands and to how it is
perceived by the Dutch. The Netherlands have a moderate maritime climate
with cool summers and mild winters. The Dutch like to talk about their weather,
and to complain about it. Our fictitious network, depicted on the left in Fig. 1,

F1 F2

C

Pr(c) = 0.64

Pr(f2 | c) = 0.86
Pr(f2 | c̄) = 0.63

Pr(f1 | c) = 0.12
Pr(f1 | c̄) = 0.21

F1 F2

C

Pr(f1) = 0.15 Pr(f2 | f1) = 0.10
Pr(f2 | f̄1) = 0.90

Pr(c | f1, f2) = 0.95
Pr(c | f̄1, f2) = 0.70
Pr(c | f1, f̄2) = 0.45
Pr(c | f̄1, f̄2) = 0.30

Fig. 1. The example Bayesian network (left) and the constructed classifier (right),
together with their (conditional) probability tables
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includes some weather aspects about which the Dutch tend to mope. The variable
C captures whether or not the weather feels damp; the value true denotes a
sense of humidity. The variable F1 models temperature; the value true denotes
a temperature of 18◦C or more, which is relatively warm by Dutch standards.
The variable F2 captures cloudiness, with the value true indicating an overcast
sky. The graphical structure of the network reflects the dependencies among the
three variables. The network’s conditional probability tables express for example,
that the Dutch have a warm day with a probability of 0.15; such days are not
very likely to be cloudy. The probability table for the variable C further shows
that the Dutch are likely to perceive the weather as moist whenever the sky is
overcast, and especially so on a warm day; on bright days the weather is less
likely to give rise to dampness. Now suppose that we are interested in predicting
the Dutch’ sense of humidity of their weather. From the network, the prior
probability of a sense of humidity is computed to be Pr(c) = 0.64. For a warm
day with an overcast sky, the probability of the weather being perceived as
damp is found to increase from 0.64 to Pr(c | f1, f2) = 0.95. Note that an
increase of this probability would indeed be expected from the available domain
knowledge.

We constructed a naive Bayesian classifier for the same prediction problem. To
supplement the classifier’s graphical structure, we computed all required prob-
abilities directly from the probability distribution represented by the original
model, and not from artificially generated data; by doing so we are guaran-
teed that any observed effect cannot have originated from chance properties of
a necessarily finite data set. We computed from the original model the prior
probability distribution over the class variable C and the conditional probability
distributions for the feature variables F1 and F2, respectively, given C. The thus
constructed classifier is shown on the right in Fig. 1. From the classifier, we now
compute the same probabilities of interest as from the original model. The prior
probability of a sense of dampness again is found to be Pr(c) = 0.64. For a warm
day with an overcast sky, we find a posterior probability of Pr(c | f1, f2) = 0.58.
So, while according to the true distribution we should find an increased probabil-
ity of a sense of dampness, the constructed classifier actually returns a decrease !
Dependent upon the decision rule used with the classifier, the weather condition
could in fact even be assigned to a different class.

4 Incorrect Monotonicity Directions

The example from the previous section served to show that learning a naive
Bayesian classifier from a data set of instances from a joint probability distribu-
tion can result in quite unexpected classification behaviour. In this section, we
investigate the exhibited behaviour and attribute its counterintuitive character
to an incorrect monotonicity direction for one of the feature variables in the
classifier. We further identify the conditions under which the learning algorithm
will extract the correct directions of monotonicity from the true distribution.
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F2F1

CF1 F2

C

+

−

+
− +

Fig. 2. The signs of the direct influences in the true network (left) and in the con-
structed classifier (right)

4.1 Investigating the Example

We study the behaviour of the example Bayesian network and of the constructed
classifier from Sect. 3 respectively, in terms of the signs of their direct influences.
From the probability distributions specified for the class variable C in the true
model, we find that the direct influence of the variable F1 on C is positive:

Pr(c | f1, f2) − Pr(c | f̄1, f2) = 0.95 − 0.7 = 0.25 ≥ 0, and
Pr(c | f1, f̄2) − Pr(c | f̄1, f̄2) = 0.45 − 0.3 = 0.15 ≥ 0

Using the notation t to indicate influences in the true model, we thus have that
δt
F1C = +. Similarly, we find that δt

F2C = +. The true model in addition includes
a direct qualitative influence of F1 on F2, which is found to be negative:

Pr(f2 | f1) − Pr(f2 | f̄1) = 0.10 − 0.90 = −0.80 ≤ 0

that is, δt
F1F2

= −. The monotonicity directions dt
i for the two feature variables

are now found by investigating the true probability distributions Pr(C | F1, F2).
Since the probability table of the class variable C specifies these distributions, it
is readily established that Pr(C | F1, F2) is monotonically increasing in both F1

and F2, that is, we find that dt
1 = + and dt

2 = +. Note that these monotonicity
directions match the signs of the direct influences of F1 and F2 on C, respectively.

From the probability distributions specified for the feature variable F2 in the
constructed classifier, we find the qualitative influence of C on F2 to be positive:

Pr(f2 | c) − Pr(f2 | c̄) = 0.86 − 0.63 = 0.23 ≥ 0

Using the notation c to indicate influences in the classifier, we thus have that
δc
CF2

= +. Similarly, we find the probabilistic influence of C on F1 to be negative:

Pr(f1 | c) − Pr(f1 | c̄) = 0.12 − 0.21 = −0.09 ≤ 0

that is, δc
CF1

= −. From our observations in Sect. 2.3, we conclude that dc
1 =

δc
CF1

= − and dc
2 = δc

CF2
= +. Fig. 2 again depicts the true model and its

corresponding naive Bayesian classifier respectively, now supplemented with the
signs of their direct qualitative influences.

From our investigation of the monotonicity directions in the true distribution
and in the corresponding classifier, it is readily seen that dt

1 	= dc
1. The observed
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discrepancy originates from how the learning algorithm computes the direct
influences for the naive Bayesian classifier from the true probability distribution.
For the direct influence of C on F1 for the classifier, the learning algorithm
establishes from the true distribution the compound influence composed of the
direct influence of F1 on C and the indirect influence of F1 on C via F2. The
sign of this compound influence is computed to be δt

F1C ⊕ (δt
F2C ⊗ δt

F1F2
) = ?,

that is, the sign cannot be determined by qualitative considerations only and
is dependent on the strengths of the direct and indirect influences in the true
model. With the specified probability distributions, the compound influence is
computed to be negative, which gives rise to an incorrect sign for the influence
of C on F1 in the classifier, and hence to an incorrect monotonicity direction for
the feature variable F1. It is this incorrect monotonicity direction from which
the classifier’s counterintuitive behaviour originates.

4.2 Deriving Correct Monotonicity Directions

Having studied the behaviour of our concrete example Bayesian network and
classifier, we now abstract from the precise numbers involved and address the
conditions under which the learning algorithm will find the correct monotonicity
directions for the probability distribution represented by the naive Bayesian
classifier. Upon doing so, we will use the sign notations for the various direct
influences involved as shown in Fig. 3.

We have argued above that for establishing the direct influence of the class
variable C on the feature variable F1 for the naive Bayesian classifier, the learn-
ing algorithm combines the direct and indirect influences of C on F1 from the
true distribution; a similar observation holds for the direct influence of C on
the feature variable F2. More specifically, the learning algorithm establishes the
following signs for the direct influences in the constructed classifier:

δc
CFi

= δt
CFi

⊕ (δt
FiFj

⊗ δt
CFj

)

where i, j = 1, 2, i 	= j. The learning algorithm thus computes the sign δc
CFi

to
be

δc
CFi

=

⎧⎨⎩
δt
CFi

if δt
CFi

= + and δt
FiFj

= δt
CFj

δt
CFi

if δt
CFi

= − and δt
FiFj

	= δt
CFj

? otherwise

Note that in the last case the sign of the computed influence is dependent on
the concrete probabilities in the true distribution.

The correct monotonicity directions for the two feature variables are estab-
lished from the true model by investigating the conditional probability distri-
butions Pr(C | F1, F2). We find that the monotonicity direction for the feature
variable F1 equals d1 = δt

CF1
; for the variable F2, the correct direction of mono-

tonicity is d2 = δt
CF2. We conclude that the learning algorithm finds the correct

monotonicity directions for the classifier whenever δt
CFi

= δc
CFi

, that is, when-
ever the true model includes three positive direct influences or when it includes
two negative influences and a single positive one. Note that these conditions
indeed are not met by the true network from our running example.
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F2F1

CF1 F2

C

δtF1C

δtF1F2

δtF2C

δcCF1
δcCF2

F2F1

C

δtCF1
δtCF2

δtF1F2

Fig. 3. Notations for the direct influences in the true network (left), the constructed
classifier (middle) and in a network equivalent to the true network (right)

We would like to note that similar analyses apply to all equivalent true net-
works with different arc orientations. From the network shown in Fig. 3 on the
right, for example, the direct influence of C on F1 is computed for the classifier
to have the sign δc

CF1
= δt

CF1
; the sign for the direct influence of C on F2 for the

classifier is computed as δc
CF2

= δt
CF2

⊕ (δt
CF1

⊗δt
F1F2

). The correct monotonicity
directions now are d1 = δt

CF1
⊕ δt

CF1|F2
and d2 = δt

CF2
, where δt

CF1|F2
denotes

the qualitative sign of the intercausal influence induced by the observation for
F2; for further information on induced intercausal influences, we refer to [9].

4.3 Classification Behaviour

We return to the original example network and associated classifier from Fig. 1,
and address the counterintuitive behaviour of the classifier in view of the incor-
rectly identified monotonicity direction for the feature variable F1.

The true Bayesian network specifies a prior probability Prt(c) for the class
variable C. From the monotonicity directions d1 = + and d2 = + represented by
the network, we know that entering the evidence f1, f2 will result in a posterior
probability Prt(c | f1, f2) larger than the prior probability Prt(c). Similarly, upon
entering f̄1, f̄2, we will find a probability Prt(c | f̄1, f̄2) smaller than Prt(c). We
thus see the following relation between these prior and posterior probabilities:

Prt(c | f1, f2) ≥ Prt(c) ≥ Prt(c | f̄1, f̄2)

We have not included the posterior probabilities Prt(c | f̄1, f2) and Prt(c | f1, f̄2)
in this relation, since we have no strong expectation about the relation between
the prior and posterior probabilities when one feature variable is observed to be
true and the other has adopted the value false.

Especially if the monotonicity directions exhibited by the true model are com-
mon knowledge, a user will expect the same behaviour from the constructed naive
Bayesian classifier, that is, he expects to find that

Prc(c | f1, f2) ≥ Prc(c) ≥ Prc(c | f̄1, f̄2)

When computing the probabilities involved from the classifier, however, the fol-
lowing unexpected result is found:

Prc(c | f1, f2) = 0.58 < Prc(c) = 0.64
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Note that as a result of the incorrect sign δc
CF1

= − of the qualitative influence
of the feature variable F1 on the class variable C, we cannot establish, apriori,
an ordering of the posterior probabilities Prc(c | f1, f2) and Prc(c | f̄1, f̄2) with
respect to the prior probability Prc(c) from the classifier.

Incorrect monotonicity directions in a naive Bayesian classifier will not always
result in such obvious counterintuitive behaviour. We consider again the true
network from Fig. 1. When we alter the probability distribution for the variable
F1 from Pr(f1) = 0.15 to Pr(f1) = 0.45, for example, we still find that δc

CF1
=

− and δc
CF2

= +. The relation between the prior and posterior probabilities
computed from the learnt classifier now has become as expected by the user:

Prc(c | f1, f2) = 0.64 > Prc(c) = 0.59 > Prc(c | f̄1, f̄2) = 0.51

We note that this does not mean that the classifier establishes the correct or-
dering relation between the posterior probabilities Pr(c | F1, F2) for all value
assignments to the feature variables F1 and F2, however. For example, while
we have Prt(c | f1, f2) ≥ Prt(c | f̄1, f2) from the true network, we find that
Prc(c | f̄1, f2) ≥ Prc(c | f1, f2) from the constructed classifier. Although this
finding also is counterintuitive in itself, we feel that it is less likely to be noticed
by a user in a more involved real-life application than a violation of an expected
relation between a posterior probability and the prior probability Pr(c).

5 Related Work

Several researchers have investigated the problem of enforcing given monotonic-
ity constraints in learning algorithms for Bayesian networks [10,11]. Little re-
search however, has focused on the problem of learning correct monotonicity
directions from data. A notable exception is the work of Magdon-Ismail and Sill
[12]. They have investigated whether a linear model approximating the mono-
tone function g will produce the correct monotonicity directions, given that the
linear model minimizes expected squared error

E(w0,w) =
∫

(w0 + wtf − g(f))2 Pr(f)df

Here, w denotes the set of weights (w1, . . . , wn)t. They prove that the following
conditions are both sufficient for producing the correct monotonicity directions:

1. The feature variables Fi are independent, that is,

Pr(F) =
n∏

i=1

Pr(Fi)

2. The probability distribution Pr(F) belongs to the class of Mahalanobis den-
sities, which includes normal densities as an important subclass.

If we take g(f) = Pr(c | f), then the relation with the problem considered in
the current paper is clear. The assumption that Pr(c | f) is a linear function of
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f is quite unusual in view of binary classification, however, because a linear fit
could result in values outside the interval [0, 1]. The log-odds function ln{Pr(c |
f)/ Pr(c̄ | f)} is monotone given that the function Pr(c | f) is monotone. The
assumption that the log-odds

ln
{

Pr(c | f)
Pr(c̄ | f)

}
= w0 + wtf

is a linear function of f is quite common; it is the central assumption of logistic
regression, for example. It is also well known that for naive Bayesian classifiers,
the log-odds is a linear function of the features, where weights w for a naive
Bayesian classifier with binary variables are determined by

wi = ln cpr(C, Fi) = ln
{

Pr(c, fi) Pr(c̄, f̄i)
Pr(c, f̄i) Pr(c̄, fi)

}
where cpr(C, Fi) is the so-called cross-product ratio between C and Fi, which
is a well-known measure of association between two binary random variables. If
the cross-product ratio is larger than one, there is a positive association between
C and Fi, that is, δc

CFi
= +. Similarly, if cpr(C, Fi) < 1, then δc

CFi
= −.

Unfortunately, since we are considering binary random variables, they evidently
do not follow a normal (or other Mahalanobis) distribution. Hence, we cannot
invoke the second sufficient condition of Magdon-Ismail and Sill. In addition, we
do not minimise expected squared error, but the Kullback-Leibler divergence∑

c,f

Prt(c, f) ln
{

Prt(c, f)
Prc(c, f)

}
instead. These observations lead to the conclusion that, given our true prob-
ability distribution and the accompanying naive Bayesian classifier, we cannot
assume that a linear model approximating the true distribution will retrieve the
correct monotonicity directions.

6 Conclusions and Further Research

Naive Bayesian classifiers are quite popular stochastic classification models, es-
pecially since they are easy to construct from a collection of data and are known
to perform well, even when compared to more complex models. Naive Bayesian
classifiers build however, on the rather strong assumption of mutual indepen-
dence of their feature variables given the class variable. This observation has
induced researchers to investigate the effects of several different types of depen-
dency between the feature variables on the performance of a constructed naive
Bayesian classifier. In this paper, we have contributed to this line of research
by showing that dependencies embedded in a true probability distribution can
cause incorrect monotonicity directions to be learned for the influences of the
feature variables on the class variable in a classifier. We have further demon-
strated that incorrect monotonicity directions in a classifier have the potential
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of giving rise to unexpected classification behaviour. For a limited type of prob-
ability distribution, we have established the conditions under which the learning
algorithm will retrieve the correct monotonicity directions. Although our distri-
bution under study is quite simple, it is evident that similar effects can arise from
more realistic distributions as well. Our future investigations will be directed to
a study of the conditions under which correct monotonicity directions will be
learned from more involved probability distributions.
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2 IRIT, UPS-CNRS, 118 route de Narbonne, 31062 Toulouse Cedex-France

Myriam Bounhas@yahoo.fr, {prade,serrurie}@irit.fr,
Khaled.Mellouli@topnet.tn

Abstract. In many real-world problems, input data may be pervaded
with uncertainty. Naive possibilistic classifiers have been proposed as a
counterpart to Bayesian classifiers to deal with classification tasks in
presence of uncertainty. Following this line here, we extend possibilistic
classifiers, which have been recently adapted to numerical data, in order
to cope with uncertainty in data representation. We consider two types
of uncertainty: i) the uncertainty associated with the class in the train-
ing set, which is modeled by a possibility distribution over class labels,
and ii) the imprecision pervading attribute values in the testing set rep-
resented under the form of intervals for continuous data. We first adapt
the possibilistic classification model, previously proposed for the cer-
tain case, in order to accommodate the uncertainty about class labels.
Then, we propose an extension principle-based algorithm to deal with
imprecise attribute values. The experiments reported show the interest
of possibilistic classifiers for handling uncertainty in data. In particular,
the probability-to-possibility transform-based classifier shows a robust
behavior when dealing with imperfect data.

Keywords: Possibility Theory, Classification, Numerical Data,
Uncertainty.

1 Introduction

Possibility theory [7] [6] has been recently proposed as a counterpart of probabil-
ity theory to deal with classification tasks in presence of uncertainty. There are
only few works that treat possibilistic classification and most of existing näıve
possibilistic classifiers deal only with categorical attributes. In this paper, we
study possibilistic classifiers applied to imperfect numerical data. Given a new
piece of data to classify, these classifiers seeks to estimate the plausibility of each
class with respect to its description (built from the training set of examples),
and assigns the class having the highest plausibility value. The objective of this
work is to extend the possibilistic classifiers proposed in [17] in order to cope
with uncertainty in data sets (in the training and testing sets).

The paper is structured as follows. Section 2 reviews some related works.
Section 3 briefly restates the basis of possibilistic classification. In Section 4, we
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consider two forms of uncertainty, and in Section 5 we extend possibilistic clas-
sifiers to the handling of imperfect data: the first type concerns the processing of
uncertain classes in the training set, whereas the second one deals with uncertain
attribute values in the testing set. Uncertainty on attribute values is modeled by
intervals. The experimentation results are given in Section 6. The experiments
reported show the interest of possibilistic classifiers to deal with imperfect data.
Finally, Section 7 concludes and suggests some directions for future research.

2 Related Works

Some approaches have already proposed the use of a possibilistic data repre-
sentation in classification methods based on decision trees, or on Bayesian-like
or case-based approaches. A discussion about the appropriateness of fuzzy set
methods in machine learning has been proposed in [10].

Ben Amor et al. [19] developed a qualitative approach based on the decision
tree technique and used it to classify examples having possibilistic uncertain at-
tribute values. This work aims at searching the most plausible class labeling a
vector, knowing its possibility distribution on attribute values given by an ex-
pert. In [13], possibilistic decision trees are induced from instances associated
with categorical attributes and vaguely specified classes. Uncertainty, modeled
through possibility theory, concerns only class attribute whereas other predictive
attributes are supposed to be certain. A Naive Bayes Style Possibilistic Classifier
(NBSPC) is proposed by Borgelt et al. [4] to deal with imprecise training sets.
For this classifier, imprecision concerns only attribute values of instances (the
class attribute and the testing set are supposed to be perfect). Given the class
attribute, possibility distributions for attributes are estimated from the compu-
tation of the maximum-based projection [5] over the set S of precise instances
(S is included in the extended dataset) which contains both the target value of
the considered attribute with the class.

A naive possibilistic network classifier, proposed by Haouari et al. [1], presents
a building procedure that deals with imperfect dataset attributes and classes,
and a classification procedure used to classify unseen examples which may have
imperfect attribute values. This imperfection is modeled through a possibility
distribution given by an expert who expresses his partial ignorance, due to a lack
of a priori knowledge. Benferhat and Tabia [21] propose an efficient algorithm for
revising, using Jeffrey’s rule, possibilistic knowledge encoded by a naive product-
based possibilistic network classifier on the basis of uncertain inputs. The main
advantage of the proposed algorithm is its capability to process the classification
task in polynomial time with respected to the number of attributes.

Most of previously cited works [19,1,13,4,21] deal only with discrete attribute
values and are not appropriate for continuous attribute values. These approaches
require a preliminary discretization phase for the continuous attribute values. In
[20], the authors propose a new Bayesian classifier for uncertain categorical or
continuous data by integrating uncertainty in the Bayesian theorem and pro-
pose a new parameter estimation method. An attempt to treat uncertainty in
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continuous data is proposed in [2], where authors developed a classification algo-
rithm able to generate rules from uncertain continuous data. For the two works
[2] [20], uncertainty over continuous attribute values is represented by intervals.
This imprecision is handled by a regular probabilistic process.

Some case-based classification techniques, which make use of possibility theory
and fuzzy sets, are also proposed in the literature. In [11], the authors propose
a possibilistic version of the classical instance-based learning paradigm using a
similarity measure and model uncertainty in order to support incomplete infor-
mation. In a more recent work [3], the authors develop a bipolar possibilistic
method for case-based learning and prediction.

3 Possibilistic Classification

As in the case of Bayesian classification, possibilistic classification is based on the
possibilistic version of the Bayes theorem. Given a vector X = {x1, x2, ..., xM}
of n observed variables and the set of classes C = {c1, c2, ..., cC}, the classifica-
tion problem consists in estimating a possibility distribution on classes and in
choosing the class with the highest possibility for the vector X, i.e.:

π(cj |x1, x2, ..., xM ) =
π(cj) ∗ π(x1, x2, ..., xM |cj)

π(x1, x2, ..., xM )
(1)

where * stands for product in quantitative possibility settings. Assuming the
independence between variables xi in the context of classes [18], this possibility
distribution can easily be specified by the product (or the minimum) of the
conditional possibilities π(xi|cj) for all variables xi. Each conditional possibility
represents the possibility of xi knowing cj . Note that the term π(x1, x2, ..., xM )
is a normalization factor and it is the same over all class labels.

In this paper, considering an unknown test instance Its with attribute values
(a1, ..., aM ), the classification task amounts to calculating values of possibilities
for each class: Π(cj |Its). Assuming attribute independence, the plausibility of
each class for a given instance is computed as:

Π(cj |Its) = π(cj) ∗
M∏
i=1

Π(ai|cj) (2)

where conditional possibilities Π(ai|cj) in formula (2) represent to what extent
ai is a possible value for the attribute Ai in the presence of the class cj . Π(cj)
is the possibility of the class cj . In a product-based setting, a given instance is
assigned to the most plausible class c*:

c∗ = arg max
cj

(π(cj) ∗
M∏
i=1

Π(ai|cj)) (3)

Using the min-based setting, the classification is based on selecting the class
having the highest minimum:
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c∗ = arg max
cj

(π(cj) ∗
M

min
i=1

Π(ai|cj)) (4)

4 Possibilistic Distributions for Imperfect Numerical
Data

In this paper, we extend the possibilistic classifiers proposed in [17] in order to
handle uncertainty in the data representation. Uncertainty pervades attribute
valuess in the testing instances and classes in the training instances. All uncer-
tain possibilistic classifiers, proposed in this paper, are based on the following
hypotheses:

- All training instances are assumed to have perfect (certain and precise)
attribute values as in “classical” possibilistic classifiers [17].

- All testing instances have imprecise attribute values modeled by intervals.
- The class of any training instances is represented through a possibility dis-

tribution over the class values thus reflecting uncertainty on the classification.

4.1 Processing of Uncertain Classes in the Training Set

Let Tr be a training set composed of N instances involving M numerical at-
tributes. Instead of an exact class label, for each instance we assign a possibility
distribution on the different possible labels. Our problem is to estimate a possi-
bility distribution for each attribute ai given the class cj which can be the most
specific representation for uncertain numerical data:

π(ai|cj) =
π(ai, cj)
π(cj)

(5)

To combine possibility distributions over the training instances belonging to
a specific class, one can exploit the mean operator (equation 6) as in the perfect
case. It is proved in [1] and then in [17] that the arithmetic mean is consistent
in this estimation problem and it provides a faithful representation of the data.

π(ai, cj) =
1
N

N∑
k=1

π(ai, cjk) =
1
N

N∑
k=1

π(ai|cjk) ∗ π(cjk) (6)

The max operator may also be used in this case:

π(ai, cj) =
N

max
k=1

π(ai, cjk) =
N

max
k=1

π(ai|cjk) ∗ π(cjk) (7)

π(cjk) represents the individual possibility of the class cj for each training
instance k. To compute π(cj), in equation 5, we may also use the mean or
the maximum operator applied to π(cjk). We note that the proposed model,
supporting uncertainty in the class labels, also includes the certain case where
π(cjk) is 1 for the the true label and 0 otherwise.
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4.2 Processing of Imprecise Attributes in the Testing Set

Each testing instance may include perfect or imperfect attribute values. Since
we are only interested in continuous data in this framework, the proposed model
allows an expert to express his/her uncertain knowledge (imperfect attributes)
through an interval restricting the attribute value. For each imprecise attribute,
the observed value is in the form of Ii = [Li, Ui] where Li and Ui are respectively
the lower and the upper bounds for the the true attribute value ai such that
Li < ai < Ui.

In the following we propose an algorithm for handling imprecision in attribute
values in the testing set. Let us consider a function F which estimates conditional
possibilities for attribute values in the perfect case. For each observed attribute
value xi, this function estimates π(ai|cj)(xi). Knowing that the observed value of
an attribute is no longer a fixed value in the domain of the attribute but rather
an interval, the problem returns the estimate π(ai|cj)(Ii).

In order to handle the evaluation of interval possibilities, we use the extension
principle [22]. Let F be a real function such that F : X → R, R being the set
of real numbers. Let F (x) = u and let πF (u) be the possibility for u. Using the
extension principle, the possibility distribution for u is:

πF (u) = sup{π(x)|F (x) = u}. (8)

Assume I1, ..., In are uncertain observations for attributes a1, ..., an. To estimate
the possibility distribution for an interval Ii, the equation (8) becomes:

π(Ii|cj) = sup{π(ai|cj), ai ∈ Ii} (9)

To define conditional possibilities for each uncertain observation Ii of the testing
instance, we consider the following algorithm:

1) Search for all attribute values ai in the training set such that ai ∈ Ii,
2) Compute the possibility of attribute values ai given the class cj by eq. 5
3) Consider the highest possibility to estimate the possibility of Ii

5 Individual Possibility Distribution

In this section, we describe individual possibility distributions for attributes over
training instances. As in the classical certain possibilistic classifiers, we inves-
tigate two kinds of approaches, either based on probability-possibility transfor-
mation [9,12], or on a direct interpretation of data taking advantage of the idea
of proximity. We give here only the general principle of these two classification
methods (see [17] for more details and for a comparative study).

5.1 Probability to Possibility Transformation-Based Classifiers

We apply the probability to possibility transformation method proposed by [9,12]
to the case of Naive Bayesian classifiers (NBC), where the distribution is assumed
to be normal, and then to its flexible extension FNPC (using a combination of
normal distributions).
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Let us consider a Gaussian distribution gij = g(ai, μij , σij) that corresponds
to the conditional probability of ai knowing cj , where μij is the mean of the
attribute ai for the class cj and σij is its standard deviation for the same class.
If Iai is the confidence interval centered at μij , its probability P (Iai |cj) can be
estimated by: 2∗G(ai, μij , σij)−1, where G is a Gaussian cumulative distribution
easily evaluated using the table of the Standard Normal Distribution. π(ai|cj)
is estimated by 1 − P (Iai |cj) using the following formula:

π(ai|cj) = 1 − (2 ∗ G(ai, μij , σij) − 1) = 2 ∗ (1 − G(ai, μij , σij)). (10)

The FNPC is exactly the same as the NPC in all respects, the only difference
between the two classifiers is the method used for density estimation on contin-
uous attributes. Although using a single Gaussian to estimate each continuous
attribute, we choose to investigate kernel density estimation as in the FNBC.
Kernel estimation with Gaussian kernels looks much the same except that the
estimated density is averaged over a large set of kernels. For the FNPC we adapt
the equation (10) as follows:

π(ai|cjk) = 2 ∗ (1 − G(ai, μik, σ)). (11)

where k ranges over the Nj instances of the training set in class cj and μik = aik.
For all distributions, the standard deviation is estimated by: σ = 1√

N
.

In this approach and for all the rest of this work, all attribute values ai’s are
normalized using: ain = ai−min(ai)

max(ai)−min(ai)
.

5.2 Proximity Based Classifiers

In [17] we also proposed two other methods for building a possibility distribution
without computing a Gaussian probability distribution first. These approaches
take into account the similarity between attribute values and observed values of
the same attribute in the training set. The two suggested classification methods
use an approximate equality relation between numerical values. Let d be the
distance between the two values, this fuzzy relation, namely μE(d(ai, aik)) es-
timates to what extent the attribute value ai is close to other attributes aik in
each training instance k as follows:

π(ai|cjk) = μE(d(ai, aik)) = max(0, min(1,
α + β − d(ai, aik)

β
)), α ≥ 0; β > 0.

(12)
This relation is parameterized by α and β. In the first algorithm named Fuzzy

Histogram Classifier (FuHC), we use the approximate equality function to build a
fuzzy histogram for attribute ai given a class cj using equation (6). In the second
algorithm, named Nearest Neighbor-based Possibilistic Classifier (NNPC), we
apply the maximum operator as in equation (7) to the approximate equality
relation to estimate proximities between the attribute values aik belonging to
each instance k labeled with class cj without counting them.
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6 Experiments and Discussion

This section provides experimental results of the proposed uncertain possibilitic
classifiers. The experimental study is based on several datasets taken from the
U.C.I. repository of machine learning databases [16]. A brief description of these
datasets is given in Table 1. Since we have chosen to deal only with numerical
attributes in this study, all these datasets have numerical attribute values. For
each dataset, we used a ten-fold cross validation to evaluate the generalization
accuracy of classifiers.

Table 1. Description of datasets

Database Data Attributes Classes

Iris 150 4 3
W. B. Cancer 699 8 2
Wine 178 13 3
Diabetes 768 7 2
Magic gamma telescope 1074 10 2
Transfusion 748 4 2
Satellite Image 1090 37 6
Segment 1500 20 7
Yeast 1484 9 10
Ecoli 336 8 8
Glass 214 10 7

6.1 Generation of Imperfect Data
Data sets described in Table 1 are initially perfect with certain and precise at-
tributes and classes. In order to evaluate possibilistic classifiers in the imperfect
case, we have artificially introduced imperfection in these data sets by trans-
forming the original precise and certain instances into imperfect ones.

Uncertainty on the training set is created by replacing the certain class label
of each instance by a possibility distribution over class labels. To generate a
possibility distribution, we suppose that we have two independent experts and
that they are, to some extent, unable to classify each training instance in a certain
manner. So we ask each expert to give a possibility distribution over class labels
reflecting his/her knowledge about this uncertain situation. Then we apply an
information fusion procedure [8] to produce the final possibility distribution for
each instance. Each expert may simply be a possibilistic classifier trained on the
perfect (certain and precise) data set. In this experiment we have used the certain
FNPC and the FuHC classifiers, as presented in Section 5, to simulate experts.
For information fusion, we apply a disjunctive operator [8] to create the final
possibility distribution πItr : ∀ω ∈ Ω, π∨(ω) = ⊕i=1..nπi(ω) = maxn

i=1 πi(ω). We
prefer the disjunctive operator to the conjunctive one since the two classifiers may
disagree and we cannot be sure which one is more reliable. Moreover, possibilistic
distributions generated with this operator cover the imprecise case where more
than one class may have a possibility degree equal to 1. We create uncertain
training set by the following:
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1- Train the FNPC and the FuHC using the original crisp training set.
2- Use the obtained possibilistic classifiers to predict the class labels.
3- For each training instance Itr , fuse the two possibility distributions obtained

from each classifier using a disjunctive operator.
4- Keep the attribute values of each instance in the training set unchanged

and replace the crisp class label by πItr .

Attributes in the testing set are made uncertain in the following way. In each
testing instance, we convert each attribute value into an uncertain interval. For
each attribute, we scan all of its value in the database and get its minimum value
Xmin and its maximum value Xmax. Then we replace each attribute value by
a generated interval I = [L, U] in order to create imprecision on this attribute.
If x is the perfect value of the current attribute, its lower bound L(Resp. upper
bound U) is calculated as follows: L = x − (x − Xmin) ∗ rand1 (resp. U =
x + (Xmax − x) ∗ rand2), where rand1 and rand2 denote two random numbers
reflecting the uncertainty level AttrL on this attribute. AttrL is a level which
describes the larger of the interval and takes values in {0.25, 0.5, 0.75 or 1)}.
For each level AttrL, we generate an uncertain dataset UAttrL where rand1 and
rand2 range between 0 and AttrL. Hence, for each perfect testing set, we create
four uncertain datasets U0.25, U0.5, U0.75 and U1.

6.2 Classification Results

To measure the accuracy of possibilistic classifiers, we use two evaluation criteria:
- The percentage of Most Plausible Correct Classification (MPcc) which counts

the percentage of instances whose all most plausible classes, predicted by the
possibilistic classifier, are exactly the same as their initial most plausible classes
given by the possibility distribution labeling each testing instance.

MPcc =
Number of exactly well classified instances

Total nbr classified instances
∗ 100 (13)

- The Information Affinity-based Criterion [14] is a degree of affinity between
the predicted and the real possibility distribution labeling the testing instances

InfoAffC =
∑n

i=1 Aff(πreal
i , πpred

i )
Total nbr classified instances

(14)

Aff(π1, π2) = 1 − d(π1, π2) + Inc(π1, π2)
2

(15)

where d(π1, π2) is the Manhattan distance between π1 and π2 and Inc(π1, π2) =
Inc(π1 ∧ π2) is the degree of inconsistency between π1 and π2 calculated as
follows: Inc(π) = 1 − maxω∈Ω{π(ω)}. InfoAffC ranges in [0,1].

The experimental study is divided in two parts. First, we evaluate the un-
certain possibilistic classifiers to handle uncertainty only in class attribute and
we keep attributes in the testing set perfect. Second, we test the accuracy of
the proposed classifiers when attributes in the testing set are uncertain whereas
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Table 2. Experimental results for uncertain classes given as the mean and the standard
deviation of 10 cross-validations

FNPC FuHC NNPC

MPcc AffC MPcc AffC MPcc AffC

Iris 94.0±7.0 0.94±0.01 93.33±6.7 0.95±0.0 88.67±7.3 0.88±0.01

Cancer 96.19±2.0 0.99±0.0 95.31±2.0 0.99±0.01 42.05±13.4 0.79±0.01

Wine 91.6±5.7 0.94±0.01 92.08±5.2 0.95±0.0 87.08±8.6 0.8±0.01

Diabetes 77.08±3.9 0.96±0.01 54.41±6.7 0.95±0.0 58.6±5.7 0.95±0.0

Magic 74.11±5.6 0.93±0.0 61.27±10.0 0.94±0.01 66.2±4.7 0.92±0.01

Transfusion 83.99±5.7 0.98±0.0 62.46±6.4 0.98±0.0 51.89±5.3 0.98±0.0

SatImage 90.18±3.5 0.97±0.01 90.37±3.3 0.98±0.01 89.18±3.3 0.7±0.01

Segment 70.93±4.1 0.92±0.01 63.13±4.4 0.95±0.0 79.6±3.3 0.8±0.01

Yeast 58.36±3.9 0.96±0.0 20.15±3.8 0.93±0.01 22.1±2.8 0.9±0.0

Ecoli 80.35±2.9 0.93±0.01 65.1±13.8 0.91±0.01 78.0±6.4 0.88±0.01

Glass 51.43±15.8 0.92±0.01 35.99±13.0 0.9±0.08 44.46±14.6 0.83±0.02

training set is kept perfect. We choose to test each uncertainty type indepen-
dently in order to check the efficiency of possibilistic classifiers to deal with each
situation. Note that we have only consider normalized attribute values in this
paper. For the FuHC and NNPC, in order to guarantee in (12) a significant
value of the approximate equality function (0 < μE(d(x, y) < 1), α and β are
respectively fixed to 0 and 1, once d is normalized in [0, 1], for all attributes.

Table 2 shows the classification performance (MPcc and InfoAffC criterion)
obtained with the FNPC, FuHC and NNPC for the eleven uncertain data sets.

In this study, we have used a rigid MPcc criteria which considers an instance
as incorrectly classified if the difference between predicted and real full plausible
classes is at least equal to 1. Although this rigid criteria and even for 100%
uncertainty level (all training instances are uncertain), the FNPC and FuHC
classifiers shows a high ability to deal with imperfect instances almost as good
as with perfect ones (See [17]).

If we analyze results in Table 2, we note that:

• For the FNPC, 3 of the 11 report an increase in accuracy if compared to the
perfect case, 7 of the 11 data sets report a decrease in accuracy but in 6 of the 7
the decrease is less than 5% and the highest decrease is for the segment which is
about 20% but the MPcc remains > 70%. For the FuHC and NNPC the decrease
in accuracy is more considerable and the highest one is reported for the Yeast
and Cancer which is respectively about 30% (FuHc) and 50% (NNPC).
• To compare the three classifiers in terms of MPcc, we use the Wilcoxon
Matched-Pairs Signed-Ranks Test as proposed by Demsar [15]. It is a non-
parametric alternative to the paired t-test that enables us to compare two classi-
fiers over multiple data sets. Comparison results given in Table 3 show that the
FNPC is always significantly better (p−value < 0.05) than the two other classi-
fiers for all data sets whereas the two proximity based classifiers have competitive
performance. This result is not surprising since, as reported in the perfect case,
the FNPC shows a high ability to detect the most plausible classes.
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Table 3. Results for the Wilcoxon Matched-Pairs Signed-Ranks Test

FNPC Vs FuHC FNPC Vs NNPC FuHC Vs NNPC

p ≤ 0, 005859 p ≤ 0.01855 p ≤ 0.8311

• By analyzing the InfoAffC criteria we can see that the values are high for the
different classifiers and for almost all data sets. For all data sets, the InfoAffC
is > 0.9 for the FNPC, the FuHc and > 0.7 for the NNPC. From these results,
we can conclude that the possibilistic classifiers are able to predict possibility
distributions highly consistent with the initial uncertain distributions.
• For the majority of data sets, the InfoAffC criteria confirms the results reported
by the MPcc. However we can see a significant divergence between the values of
InfoAffC and MPcc for some data sets and mainly for the NNPC (for example, for
the Yeast the MPcc value is 22.1% and the AffC is 0.9). This divergence means
that for many testing instances, the possibilistic classifier provides possibility
degrees too close to the initial possibility distribution (high InfoAffC) but the
predicted and real full plausible classes are not exactly the same (weak MPcc).
So we can say that the bad results for the NNPC for the Cancer (42.05%) and
Yeast (22.01%) data s ets (if compared to the perfect case respectively 93.4% and
43.06%) can be explained by the following: Indeed the NNPC, by using the max-
imum operator in formula (7), looks only for one nearest neighbor which makes
conditionals possibilities on classes to tend to 1 for more than one particular
class. That’s why the NNPC confuses much between near classes. Furthermore,
the rigid nature of the MPcc criteria causes a 0 classification percentage for
many instances in the data set where the classifier provides more than one fully
plausible class whereas in the real distribution only one class is fully plausible.
• The results of the NNPC could be improved if we consider a more relaxed
MPcc criterion for which we allow to an instance to be classified with a particular
percentage p ∈ [0, 1], for example p = 1/2 if only one full plausible class is in the
initial distribution among two full plausible classes detected by the classifier. By
applying this relaxed criterion, the MPcc for the Cancer in the case of NNPC
becomes 69.34% (instead of 42.05%).

Table 4 shows the MPcc and the InfoAffC results obtained with the three
classifiers for each imprecision level on attributes and for the eleven mentioned
data sets. C1, C2 and C3 in Table 4 are respectively the FNPC, the FuHC and the
NNPC. By comparing the classification performance we see that the accuracies of
the three algorithms decrease when the imprecision level of attributes increases
(when intervals are broader). Despite this decrease we note that:
• The FNPC and FuHC have reported relatively high performance if compared
to the perfect case. We can also note that the decrease in accuracy for the FNPC
is relatively stable and not acute.
• Despite the decrease in accuracy, we note that the ratio remains high in average
mainly for the FNPC and FuHc. For instance, if we analyze the results relative
to the FNPC, we remark that the MPcc remains higher than 60% for the highest
uncertainty level (U1)(the worst case) and this for all data sets except the Yeast
and Glass where the value is respectively about 32% and 43%. The low results
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Table 4. Experimental results for uncertain attributes given as the mean and the
standard deviation of 10 cross-validations

U0.25 U0.5 U0.75 U1

MPcc AffC MPcc AffC MPcc AffC MPcc AffC

Iris C1 94.67±5.0 0.96±0.04 93.33±8.9 0.94±0.05 88.66±9.0 0.92±0.05 80.67±8.7 0.88±0.04
C2 92.0±8.8 0.87±0.03 86.67±9.9 0.85±0.04 79.33±17.0 0.83±0.05 66.0±17.8 0.77±0.08
C3 88.0±5.8 0.77±0.01 82.0±10.3 0.77±0.01 77.33±11.6 0.76±0.01 62.67±10.4 0.73±0.03

Cancer C1 97.36±1.3 0.97±0.02 95.9±1.3 0.96±0.01 94.73±1.6 0.95±0.01 94.15±2.3 0.94±0.02
C2 96.05±2.1 0.97±0.02 95.9±1.8 0.97±0.01 94.73±3.3 0.95±0.02 92.84±3.6 0.93±0.02
C3 31.19±4.7 0.78±0.01 29.43±5.8 0.77±0.0 25.63±5.1 0.76±0.0 23.14±5.4 0.76±0.0

Wine C1 96.04±3.6 0.97±0.02 95.42±4.4 0.96±0.03 92.15±5.6 0.95±0.03 90.0±6.5 0.92±0.04
C2 93.05±8.0 0.9±0.02 90.9±6.9 0.88±0.02 86.18±11.0 0.84±0.05 71.74±24.0 0.77±0.11
C3 91.67±6.2 0.74±0.01 75.42±9.2 0.72±0.01 62.43±7.9 0.7±0.01 47.71±9.7 0.68±0.03

Diabetes C1 73.82±3.2 0.76±0.02 69.66±3.9 0.75±0.02 67.07±4.2 0.74±0.03 64.45±2.8 0.72±0.02
C2 72.39±5.6 0.76±0.01 71.35±5.4 0.76±0.01 66.92±6.0 0.75±0.01 59.13±5.6 0.73±0.01
C3 39.47±6.4 0.75±0.0 39.88±9.1 0.75±0.0 37.68±8.9 0.75±0.0 35.86±8.1 0.75±0.0

Magic C1 71.78±6.3 0.77±0.04 71.41±4.7 0.78±0.03 72.99±3.8 0.78±0.02 71.41±3.8 0.76±0.02
C2 67.14±6.2 0.75±0.02 66.3±5.7 0.74±0.02 65.2±7.5 0.73±0.03 60.91±6.2 0.71±0.02
C2 64.81±7.2 0.75±0.0 60.81±7.7 0.75±0.0 59.69±7.8 0.75±0.0 58.21±7.2 0.75±0.0

Transf. C1 63.27±7.9 0.72±0.04 64.47±7.1 0.73±0.04 63.13±6.8 0.72±0.04 58.45±5.0 0.72±0.02
C2 61.94±7.5 0.75±0.01 57.78±7.2 0.74±0.01 53.49±5.1 0.74±0.01 46.11±5.9 0.73±0.01
C3 6.86±5.5 0.75±0.0 9.26±5.1 0.75±0.0 6.72±5.1 0.75±0.0 6.32±5.8 0.75±0.0

S.Image C1 89.54±1.6 0.93±0.01 86.88±2.3 0.91±0.02 85.41±3.9 0.91±0.02 84.5±2.1 0.91±0.01
C2 87.25±2.9 0.93±0.02 83.21±5.4 0.9±0.03 75.78±8.6 0.85±0.06 60.28±10.0 0.75±0.07
C3 91.1±2.0 0.68±0.0 87.25±3.1 0.67±0.01 80.55±2.4 0.66±0.01 75.23±3.1 0.66±0.0

Segment C1 87.0±2.2 0.93±0.01 82.33±2.6 0.9±0.01 77.33±3.1 0.88±0.02 75.2±3.7 0.87±0.02
C2 77.33±2.6 0.88±0.01 73.0±3.9 0.86±0.01 65.4±5.0 0.83±0.02 51.2±2.9 0.75±0.02
C3 79.67±2.8 0.72±0.01 68.67±4.2 0.7±0.0 59.73±4.2 0.69±0.01 38.2±2.8 0.64±0.0

Yeast C1 54.52±3.7 0.79±0.01 47.7±3.9 0.76±0.01 39.76±2.7 0.73±0.01 32.68±2.6 0.7±0.01
C2 49.94±3.3 0.69±0.01 41.23±4.3 0.68±0.01 37.93±3.8 0.67±0.01 35.98±5.4 0.67±0.01
C3 8.49±2.5 0.63±0.0 6.74±1.7 0.62±0.01 4.92±1.4 0.62±0.0 3.78±1.6 0.62±0.0

Ecoli C1 80.94±7.3 0.91±0.03 79.81±6.7 0.89±0.03 69.31±8.0 0.86±0.04 60.92±8.7 0.84±0.04
C2 77.45±8.2 0.82±0.02 69.14±7.3 0.79±0.01 61.0±7.9 0.77±0.01 53.82±7.2 0.75±0.02
C3 71.63±6.8 0.73±0.01 64.78±8.1 0.72±0.01 61.68±10.5 0.72±0.01 55.98±9.6 0.71±0.01

Glass C1 48.66±11.0 0.77±0.05 46.24±4.9 0.77±0.04 38.33±10.2 0.76±0.04 43.51±11.4 0.75±0.06
C2 34.2±9.5 0.71±0.02 31.84±13.2 0.7±0.02 29.96±10.6 0.68±0.02 27.12±13.7 0.67±0.03
C3 52.81±11.6 0.64±0.02 50.43±7.5 0.64±0.01 45.26±9.0 0.64±0.02 47.62±13.5 0.63±0.02

reported for the these data sets are not related to the FNPC since the MPcc
reported for the original certain version of these data sets is about 52% for the
Yeast and 58% for the Glass for the certain FNPC.
• However the NNPC seems to find difficulties when classifying instances with
imprecise attributes mainly for data sets ”Cancer”, ”Transfusion”, ”Diabetes”
and ”Yeast”. As reported in the uncertain case (Tab.2), low accuracies are related
to the max operator, used in NNPC, combined with the rigid MPcc criterion.
• As in the uncertain case (Table 2), the accuracy of the FNPC is always (even
slightly) better than other classifiers for all uncertainty levels expect the case of
”Glass” database, in which this classifier performs worse than the NNPC.
• The values of the InfoAffC criterion reported for the different classifiers and
for the different data sets are relatively high. For 8 of the 11 data sets, this value
remains higher than 0.7, for all uncertainty levels and for the three classifiers
and it is higher than 0.6 for the remaining data sets. So, we can say that the
predicted and initial possibility distributions are relatively consistent.
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From results given in Tables 2 and 4, we can see that FNPC is more accurate
that the two others and can be considered as a good classifier which is suitable
for dealing with perfect or imperfect continuous data and all types of databases.
However results of the proximity based classifiers could be improved if i)we use
a more appropriate MPcc criterion and ii) we refine theses approaches by using
a Nearest-Neighbor heuristic to separate indistinguishable classes.

7 Conclusion

In this paper, we extend the possibilistic classifiers previously proposed in [17] to
handle uncertainty and imprecision in input data sets. Two types of uncertainty
are considered: i) uncertainty related to class attribute in the training set and
ii) uncertainty related to attribute values in the testing set. To test possibilistic
classifiers in the uncertain case, we have artificially introduced imperfection in
data sets from the UCI machine learning repository [16]. While the FNPC shows
a high ability to detect the full plausible class labels with possibility distributions
very consistent with initial distributions, possibilistic classifiers exploiting prox-
imity are competitive with the FNPC. Besides, the NNPC has some difficulties
to distinguish between near classes, which decreases its performance although
predicted possibilities distributions are valuable. However, the way possibility
distributions are obtained and the choice of the aggregation operator essentially
rely on an empirical basis. In the future, the promising results reported have to
be confirmed on a more theoretical basis.
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3. Hüllermeier, E., Beringer, J.: Case-based learning in a bipolar possibilistic frame-
work. Inter. J. of Intelligent Systems, 1119–1134 (2008)
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Abstract. This paper presents and compares approaches for reasoning with re-
lational probabilistic conditionals, i. e. probabilistic conditionals in a restricted
first-order environment. It is well-known that conditionals play a crucial role for
default reasoning, however, most formalisms are based on propositional condi-
tionals, which restricts their expressivity. The formalisms discussed in this paper
are relational extensions of a propositional conditional logic based on the prin-
ciple of maximum entropy. We show how this powerful principle can be used
in different ways to realize model-based inference relations for first-order proba-
bilistic knowledge bases. We illustrate and compare the different approaches by
applying them to several benchmark examples, and we evaluate each approach
with respect to properties adopted from default reasoning. We also compare our
approach to Bayesian logic programs (BLPs) from the field of statistical rela-
tional learning which focuses on the combination of probabilistic reasoning and
relational knowledge representation as well.

1 Introduction

Conditional logic [9] is a popular choice for the representation of common sense knowl-
edge and rules. A conditional (B |A) expresses the relation “If A then usually (mostly,
likely, probably) B” between two formulas A and B of some underlying logic. In con-
trast to classical implication A ⇒ B a conditional models defeasible belief and as such
models of conditionals do not have to strictly obey these relations. Conditionals can be
quantified yielding a probabilistic conditional logic. A quantified conditional (B |A)[α]
can be interpreted as a constraint for probability distributions via P |= (B |A)[α] iff
P (B |A) = α. Usually, the underlying logic for representing A and B is propositional
and as such the expressive power of probabilistic conditional logic is limited. In the
past ten years the area of statistical relational learning (or probabilistic inductive logic
programming) developed many approaches to extend traditional probabilistic models
for reasoning like Bayes and Markov Networks [10] to relational (first-order) repre-
sentations of knowledge. Among these are Bayesian Logic Programs [7], and Markov
Logic Networks [11], to name only a few. Most of these approaches employ a ground-
ing of relational probabilistic problems to propositional ones in order to benefit from
reasoning techniques developed for propositional probabilistic reasoning. In this paper,
we discuss relational extensions of probabilistic conditional logic.

Example 1 (Common Cold). Assume we want to model uncertain knowledge pertain-
ing to the possible causes resp. the probability of catching a common cold. A simple
representation using uncertain if -then-rules can be given via

W. Liu (Ed.): ECSQARU 2011, LNAI 6717, pp. 447–458, 2011.
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R1 : cold(U) [0.01]
R2 : if susceptible(U) then cold(U) [0.1]
R3 : if contact(U, V ) and cold(V ) then cold(U) [0.6]

(1)

The uncertain rule R1 states that one normally does not have a common cold, i. e. only
with a diminutive probability of 0.01. Rule R2 denotes that a person catches a common
cold with probability 0.1 if this person is susceptible to it, and rule R3 represents the
knowledge that person U , which is in contact with another person V which has the
common cold, also gets a common cold with probability 0.6.

In contrast to the weights of formulas in Markov Logic Networks [11] the values of
probabilistic conditionals have a probabilistic interpretation and as such exhibit a more
intuitive way of representing uncertain knowledge. However, assigning probabilities to
conditionals that contain variables may be ambiguous and their interpretation may be
subjective or statistical [1]. This paper aims at investigating formal semantics and rea-
soning techniques for relational probabilistic logic. We built on approaches of previous
works [6,2] that rely on the principle of maximum entropy, a popular choice for model-
based reasoning in propositional probabilistic conditional logic [3,4]. By selecting the
unique model of a set of probabilistic conditionals that maximizes entropy and as such
represents the given knowledge in the most unbiased way, we obtain inference mech-
anisms that are optimal from an information-theoretical point of view, cf. [4]. In this
paper, we investigate the performance of these approaches with respect to the system
P properties for default reasoning [8]. Furthermore, we compare the behavior of our
inference mechanims and illustrate that approaches for statistical relational learning are
not apt for relational probabilistic default reasoning.

The rest of this paper is organized as follows. We continue by giving the syntax for
our relational extension of probabilistic conditional logic and providing a brief introduc-
tion to Bayesian Logic Programs in Sec. 2. Afterwards in Sec. 3 we discuss common
sense properties that should be fulfilled by reasonable inference relations. In Sec. 4 we
propose and discuss three different approaches for defining semantics to relational prob-
abilistic conditional logic and apply these for probabilistic reasoning in Sec. 5. Finally,
we review related work in Sec. 6 and conclude in Sec. 7.

2 Relational Probabilistic Knowledge Representation

Let L be a propositional relational language, i. e. the fragment of a first-order language
over a signature Σ containing only predicates and constants. An atom is a predicate
together with a list of terms, which may be constants or variables or a mixture of these.
Formulas are built with atoms using the usual connectives disjunction, conjunction, and
negation but without any quantifiers. If appropriate we abbreviate conjunctions A ∧ B
by AB. We denote variables with a beginning uppercase, constants with a beginning
lowercase letter, and vectors of these with X resp. a. A ground formula, i. e. a formula
that does not contain any variables, is called a sentence. A possible world semantics
is provided by Herbrand interpretations over the Herbrand universe H that contains
all constants in Σ. Herbrand interpretations correspond to complete conjunctions of
ground literals from the Herbrand base. Let Ω be the set of all such possible worlds
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ω. A possible world ω satisfies a ground atom A, denoted by ω |= A, iff A ∈ ω.
Satisfaction of arbitrary sentences is defined in the usual way.

The conditional relational language (L|L) consists of all (qualitative) conditionals
of the form (B(cB, X)|A(cA, X)) with A(cA, X), B(cB , X) being formulas from
Lrel. In this a bit sloppy notation, the vectors cA, cB contain all constants occurring
in A and B, and without loss of generality, we assume X to cover exactly all vari-
ables occurring both in A and in B. For any φ = (B(cB , X)|A(cA, X)) ∈ (L|L), let
Hφ be the set of all constant vectors a used for the proper groundings of the variables
X occurring in φ from the Herbrand universe H. The language (L|L)p consists of all
probabilistic conditionals of the form φ[μ] with φ ∈ (L|L) and μ ∈ [0, 1]. Conditionals
can not be nested, but L should be considered as a fragment of (L|L) by identifying
relational propositional formulas A(cA, X) with conditionals (A(cA, X)|�) with tau-
tological antecedent. Conditionals that contain variables are called open conditionals
while conditionals that contain no variables are called ground conditionals.

Example 2. We represent Ex. 1 using (L|L)p. Let Rcold = {r1, r2, r3, r4, r5} be de-
fined as

r1 = (cold(X))[0.01] r2 = (cold(X) | susc(X))[0.1]
r3 = (cold(X) | contact(X, Y ), cold(Y ))[0.6] r4 = (contact(X, X))[0]
r5 = (contact(X, Y ) | contact(Y, X))[1]

Conditionals r4 resp. r5 ensure that the relation induced by literals of the predicate
contact are irreflexive resp. symmetric.

Let Intprob(Σ) consist of all probability functions P on Ω, which assign to each possi-
ble world a (subjective) probability of it being the real world. Let |=# be a semantic en-
tailment relation between probability functions and probabilistic relational conditionals,
specifying when P ∈ Intprob(Σ) is a #-model of φ[μ] ∈ (L|L)p: P ∈ Mod#(φ[μ]) iff
P |=# φ[μ]. We will present several ways of instantiating the parametrical superscript
# below. As usual, |=# can be lifted to a classical (monotonic) entailment relation
between formulas: R|=# φ[μ] iff Mod#(R) ⊆ Mod#(φ[μ]) for R ⊆ (L|L)p and
φ[μ] ∈ (L|L)p. If S ⊆ (L|L)p is another set of probabilistic relational conditionals,
then R|=# S iff R|=# φ[μ] for all φ[μ] ∈ S, and R≡# S iff Mod#(R) = Mod#(S).

We will compare our formalisms with a specific approach for statistical relational
learning. Although these approaches were not developed for default reasoning cur-
rent research on combining probability theory and relational knowledge representation
focuses on this area. For example, Bayesian logic programming combines logic pro-
gramming and Bayesian networks [7]. Due to space restriction and matters of presen-
tation we only give a simplified definition for BLPs in the following. The basic struc-
ture for knowledge representation in Bayesian logic programs are Bayesian clauses
which model probabilistic dependencies between atoms. Let B denote the set Boolean
truth values B = {true, false}. A Bayesian clause c is an expression (H |B1, . . . , Bn)
with atoms H, B1, . . . , Bn. To each such clause, a conditional probability distribution
cpdc : Bn+1 → [0, 1] is associated such that

cpdc(true, x1, . . . , xn) + cpdc(false, x1, . . . , xn) = 1 for all (x1, . . . , xn) ∈ Bn .
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A function cpdc for a Bayesian clause c expresses the conditional probability distribu-
tion P (head(c) | body(c)) and thus partially describes an underlying probability distri-
bution P .

In order to aggregate probabilities that arise from applications of different Bayesian
clauses with the same head BLPs make use of combining rules. A combining rule crp
for a predicate p/n is a function crp that assigns to the conditional probability distri-
butions of a set of Bayesian clauses a new conditional probability distribution that rep-
resents the joint probability distribution obtained from aggregating the given clauses.
For example, given clauses c1 = (b(X) | a1(X)) and c2 = (b(X) | a2(X)) the re-
sult f = crb({cpdc1

, cpdc2
}) of the combining rule crb is a function f : B3 → [0, 1]

for the combined clause (b(X) | a1(X), a2(X)). Appropriate choices for such func-
tions are average or noisy-or, cf. [7]. For example, noisy-or is defined as no(p1, p2) =
1 − (1 − p1)(1 − p2).

A Bayesian logic program B is a tuple B = (C, D, R) with a (finite) set of Bayesian
clauses C = {c1, . . . , cn}, a set of conditional probability distributions (one for each
clause in C) D = {cpdc1

, . . . , cpdcn
}, and a set of combining functions (one for each

Bayesian predicate appearing in C) R = {crp1 , . . . , crpm}. Semantics are given to
Bayesian logic programs via transformation into propositional forms, i. e. into Bayesian
networks [10]. Given a specific (finite) universe U a Bayesian network BN can be con-
structed by introducing a node for every ground Bayesian atom in B and computing the
corresponding (joint) conditional probability distributions. For a more detailed descrip-
tion of Bayesian Logic Programs we refer to [7].

3 Default Reasoning Properties – System P prob

The classical probabilistic entailment relation |=# specified in Sec. 2 will usually be
quite weak, as is the case for propositional probabilistic logic. In this paper, we will fo-
cus on investigating non-monotonic inference relations |∼# by which relational prob-
abilistic conditionals can be inferred plausibly from knowledge bases.

So, let |∼# describe a relation R|∼# φ[μ] with R ⊆ (L|L)p and φ[μ] ∈ (L|L)p. We
will present three different approaches for realizing |∼# in the following section, being
based on different probabilistic entailment relations |=# and the principle of maximum
entropy, respectively. In order to be able to evaluate and compare these approaches,
we will first set up a set of postulates applicable to such inference relations which
are inspired by the system P properties from default reasoning ([8], see also [1]). Let
R,R1,R2 ⊆ (L|L)p and φ[μ], ψ[ν] ∈ (L|L)p.

(Reflexivity) For all φ[μ] ∈ R, it holds that R|∼# φ[μ].
(Left Logical Equivalence) If R1 ≡# R2, then R1 |∼# φ[μ] iff R2 |∼# φ[μ].
(Right Weakening) If R|∼# φ[μ] and φ[μ] |=# ψ[ν], then R|∼# ψ[ν].
(Cumulativity) If R|∼# φ[μ], then R|∼# ψ[ν] iff R∪ {φ[μ]} |∼# ψ[ν].

Note that cumulativity subsumes both cautious monotony and cut [8].
Besides the common cold example (Ex. 2), we will illustrate the properties of our

different semantical approaches using another benchmark example taken from [1].
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Example 3 (From [1]). Consider the knowledge base Rchirps = {r1, r2, r3, r4} with

r1 = (chirps(X ) | bird(X ))[0.9] r2 = (chirps(X ) |magpie(X ),moody(X ))[0.2]
r3 = (bird(X ) |magpie(X ))[1] r4 = (magpie(tweety))[1]

The knowledge represented in Rchirps concerns the default probabilities that a bird
chirps (r1) and that a moody magpie chirps (r2). Knowing that every magpie is a bird
(r3) and given an actual magpie Tweety (r4) the question at hand is to which probability
Tweety chirps. As we have no knowledge whether Tweety is moody or not we cannot
commit to any specific “reference class”.

4 Semantics for Relational Probabilistic Conditional Logic

In this section we investigate different possibilities to define the semantic entailment
relation |=# and the nonmonotonic inference relation |∼# . In difference to the propo-
sitional case, assigning semantics to relational probabilistic conditionals is not straight-
forward. Nonetheless, we want to get some compatibility to the propositional case.
Let (B|A)[μ] be a ground conditional, i. e. (B|A)[μ] contains no variables and there-
fore is of the form (B(cB , X)|A(cA, X))[μ] with X being the empty vector. Then
a probability distribution P ∈ Intprob(Σ) should be a #-model of (B|A)[μ] iff it is
a probabilistic model in the classical propositional sense: P ∈ Mod#((B|A)[μ]) iff
P |=# (B|A)[μ]. As P is defined on Herbrand interpretations the above is well-defined
given that P (A) =

∑
ω∈Ω,ω|=A P (ω) and P (B|A) = P (AB)/P (A) for any sen-

tences A and B. But if a conditional (B(cB, X)|A(cA, X))[μ] contains variables, the
expression ω |= A(cA, X) for a possible world ω ∈ Ω is not well-defined given
our underlying Herbrand semantics and so is the relation |=# . In order to extend
the semantical satisfaction of conditionals (see above) to conditionals that may con-
tain variables, we investigate different strategies in the following subsections. More-
over, in order to obtain a non-monotonic inference relation |∼# from |=# we employ
for each of the approaches the principle of maximum entropy [3,4] to the correspond-
ing set of #-models. The entropy H(P ) of a probability distribution P is defined as
H(P ) = −

∑
ω∈Ω P (ω) log P (ω). Given a set of conditionals R and a concrete se-

mantical entailment relation |=# we define the (usually, unique) probability distribu-
tion ME#(R) with maximum entropy as follows

ME#(R) = argmax
P |=# R

H(P ). (2)

Using ME#(R) we define an inference relation |∼#
ME as

R|∼#
ME φ[μ] iff ME#(R) |=# φ[μ], (3)

for any conditional φ[μ] ∈ (L|L)p.

4.1 Grounding Semantics with Constraints

The first formalism uses a grounding semantics for relational probabilistic condition-
als [2], similar to formalisms for statistical relational learning, see e. g. Markov Logic
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Networks [11]. Within this formalism, any relational probabilistic conditional φ[μ] =
(B(cB, X)|A(cA, X))[μ] ∈ (L|L)p induces a set gnd(φ[μ]) of ground instances,
which are obtained by substituting the free variables X by all combinations of constants
in Σ. However, straightforward substitution easily yields inconsistent ground condition-
als. Assume we are given the probabilistic relational conditional (p(U, V )|p(V, U))[μ].
If both variables are substituted with the same constant, e. g. c, there exists no proba-
bility distribution P satisfying P (p(c, c)|p(c, c)) = μ, except if μ = 1.0. To avoid such
inconsistencies, the grounding semantics approach supplements conditionals with con-
straint formulas, which restrict the set of admissible combinations of constants when
grounding. An atomic constraint formula is a term equation t1 = t2, with terms t1, t2,
and predicate symbol =, denoting equality. A negated term equation is called a term
disequation and is written as t1 �= t2. Complex equational formulas are built using
the usual logical connectives conjunction, disjunction and negation, but without quanti-
fiers. Constraint formulas are interpreted by ground substitutions. A ground substitution
σ satisfies an equality constraint t1 = t2 iff σ(t1) and σ(t2) evaluate to the same con-
stant. This satisfaction relation is canonically extended to complex constraint formulas.

For any 〈φ[μ], C〉 = 〈(B(cB , X)|A(cA, X))[μ], C〉, i. e. a probabilistic relational
conditional 〈φ[μ], C〉 with an associated constraint formula C, we assume that the vari-
ables occurring in C are a subset of X . Interpreting the (possible) elements of Hφ as
ground substitutions, C restricts the set of ground instances of φ[μ] by requiring that
a ∈ Hφ satisfies C:

gnd(〈(B(cB , X)|A(cA, X))[μ], C〉)

:=
{

(B(cB, a)|A(cA, a))[μ]
∣∣∣∣a ∈ H〈(B(cB,X)|A(cA,X)),C〉,

a satisfies C

}
.

We can now define the semantic entailment relation |=gnd between a probability distri-
bution P ∈ Intprob(Σ) and a probabilistic relational conditional 〈φ[μ], C〉:

P |=gnd 〈φ[μ], C〉 iff ∀φgnd[μ] ∈ gnd(〈φ[μ], C〉) : P (φgnd) = μ.

That is, P is a model of the probabilistic relational conditional 〈φ[μ], C〉 iff it is a
model of all admissible ground instances of 〈φ[μ], C〉. As an additional condition, we
require that all Herbrand interpretations which contain a ground atom that is not part
of any ground instance of 〈φ[μ], C〉 have probability 0.0. This is because the grounding
semantics actually restricts the Herbrand universe to only contain ground atoms which
are part of at least one ground instance of 〈φ[μ], C〉. Hence possible worlds containing
ground atoms which are not part of any ground instance are considered impossible.

4.2 Averaging Semantics

While the previous approach relies on expressing relational conditionals in proposi-
tional terms and thus interprets open relational conditionals in a classical sense, in
this and the next subsection we develop semantics using a non-classical interpretation.
Both semantics have been previously introduced in [6]. Our first approach gives se-
mantics to probabilistic conditionals by averaging conditional probabilities. The mo-
tivation for this semantics stems from the intuition that probabilistic rules such as
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(B(cB, X)|A(cA, X))[α], given an adequately large universe, should describe an ex-
pected value on the probability of (B(cB, dB)|A(cA, dA))[α] for some randomly cho-
sen dB, dA. Thus, given the actual probabilities of (B(cB, dB)|A(cA, dA)) for each
possible instantiation we expect the average of these probabilities should match α.
Hence, let |=∅ be the semantic entailment relation on probabilistic conditionals de-
fined as P |=∅ (B(cB, X)|A(cA, X))[α] iff∑

a∈H(B(cB ,X)|A(cA,X)) P ((B(cB , a)|A(cA, a))[α])
|H(B(cB ,X)|A(cA,X))| = α (4)

Intuitively spoken, a probability distribution P ∅-satisfies a conditional φ[μ] if the aver-
age of the individual instantiations of φ[μ] is α. As one can see, for a ground conditional
(B|A)[α] the relation |=∅ coincides with the propositional case.

4.3 Aggregating Semantics

Our third semantical approach is inspired by statistical approaches. However, instead
of counting objects, or tuples of objects, respectively, that make a formula true, we
sum up the probabilities of the correspondingly instantiated formulas. In this way, both
population-based and subjective belief aspects of probabilities can be combined. More
precisely, we propose a mean value of subjective probabilities to interpret probabilistic
rules.

To make the key idea of the approach clear, consider the relational probabilistic con-
ditional (B(cB , X)|A(cA, X))[α]. If some first-order interpretation ω with a fixed
domain is given, its statistical interpretation is provided by the relative frequency

|{a | ω |= A(cA, a)B(cB, a)}|
|{a | ω |= A(cA, a)}| = α,

i. e. the number of tuples of individuals a is counted that satisfy the premise and the
antecedent, in relation to the number of tuples that satisfy only the premise. Aggregating
the information coming from all models of A(cA, a)B(cB, a), resp. A(cA, a), for
each a, gives rise to a subjective, population-based probability:∑

a P (A(cA, a)B(cB, a))∑
a P (A(cA, a))

= α,

If we allow P to represent (subjective) beliefs, then the above equation expresses the
average subjective belief that in any situation in which we observe individuals a satis-
fying A(cA, a), we expect them to satisfy B(cB, a) as well with probability α. This
switches the view from a frequentistic perspective to a possible worlds semantics.

So, the entailment relation |=� between functions from Intprob(Σ) and relational
probabilistic conditionals is defined by P |=� (B(cB, X) |A(cA, X))[α] iff∑

a∈H(B(cB ,X)|A(cA,X))

P (A(cA, a)B(cB, a))∑
a∈H(B(cB ,X)|A(cA,X))

P (A(cA, a))
= α . (5)

As for |=∅ , for a ground conditional, the operator |=� coincides with the usual propo-
sitional interpretation using conditional probabilities.
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5 Relational Probabilistic Conditional Reasoning

In the following, we discuss the inference operators |∼gnd
ME , |∼∅

ME , and |∼�
ME that derive

from the application of the different semantics |=gnd , |=∅ , and |=� , respectively. All
three formalisms implement a model-based probabilistic inference, using the maximum
entropy model of a knowledge base as its most appropriate model. This ensures that all
inference relations defined in the previous sections comply with all basic demands for
relational probabilistic reasoning, as the next proposition shows.

Proposition 1. Let |=# be any of the semantical entailment relations defined above.
Then the inference relation |∼#

ME satisfies (Reflexivity), (Left Logical Equivalence),
(Right Weakening), and (Cumulativity).

Proof. We only show satisfaction of (Cumulativity). The proofs of the other properties
are similar.

(Cumulativity). It holds Mod#(R∪{φ[μ]}) ⊆ Mod#(R) and ME(R) ∈ Mod#(R∪
{φ[μ]}) as R|∼#

ME φ[μ]. Suppose ME(R ∪ {φ[μ]}) �= ME(R), then H(ME(R ∪
{φ[μ]})) > H(ME(R)) and ME(R ∪ {φ[μ]}) should be the ME-model of R as
well because ME(R ∪ {φ[μ]}) ∈ Mod#(R). Hence, ME(R ∪ {φ[μ]}) = ME(R)
and therefore R|∼#

ME ψ[ν] iff R∪ {φ[μ]} |∼#
ME ψ[ν] for any ψ[ν]. $�

It is obvious that the satisfaction of the common sense properties discussed in Sec. 3
is mainly due to the principle of maximum entropy and independent of the actual
used semantical entailment relation. This is not surprising as ME-inference is an op-
timal, model-based inference operation, and the semantical entailment relation is used
in defining the properties themselves.

As for BLPs (dis-)satisfaction of these default reasoning properties is not so easy to
see as the formalism of BLPs is much less based on classical logic. Consider again the
postulate.

(Cumulativity). If R|∼# φ[μ], then R|∼# ψ[ν] iff R∪ {φ[μ]} |∼# ψ[ν].

Let B be a Bayesian Logic Program, c a Bayesian clause, and cpdc a conditional prob-
ability distribution for c. BLPs allow only to determine probabilities for some ground
atom given some set of ground atoms as evidence. So the expression B |∼ (c, cpdc) is
not well-defined for a clause c that contains variables, cf. [13]. However, if c contains no
variables the probability of the head of c for every truth assignment of the body atoms
can be computed. But even for ground clauses (Cumulativity) is not satisfied for BLPs.
Consider the following example.

Example 4. Let B be a BLP consisting of the single clause c = (B(X) | A(X)) with
cpdc(true, true) = cpdc(true, false) = cpdc(false, true) = cpdc(false, false) = 0.5.
Let noisy-or be the combining rule for B. For some constant a it follows clearly that
for c′ = (B(a) | A(a)) with cpdc′ = cpdc is holds that B |∼ (c′, cpdc′). However,
when determining the probability of c′ in B∪{(c′, cpdc′)} different results arise due to
aggregating via noisy-or, e. g. the probability of B(a) given that A(a) holds computes
to 1 − (1 − 0.5)(1 − 0.5) = 0.75.
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Similar problems arise when translating the other default reasoning postulates to the
BLP framework. For example, (Reflexivity) is trivially dissatisfied if a BLP contains at
least one clause with variables. These categorical problems are not surprising as BLPs
were not developed for default reasoning per se. Further discussions on this topic can
be found in [13].

In order to comprehend the differences between the individual approaches we go on
by investigating their behavior in the benchmark examples introduced above.

Example 5. We investigate Ex. 2 that has also been discussed in the introduction. In
order to investigate this example for the grounding semantics, we have to modify the
rules slightly. This is because rule r3 : (cold(X) | contact(X, Y ), cold(Y ))[0.6] yields
inconsistencies if the variables X and Y are substituted with the same constant, even if
rule r4 is part of the knowledge base. Hence we must complement this conditional with
the constraint formula X �= Y , thereby forbidding these substitutions:

r′3 : 〈(cold(X) | contact(X, Y ), cold(Y ))[0.6], X �= Y 〉.
One thing to notice in the formalization of the knowledge base in Ex. 2 is that we have
not represented any specific knowledge on particular individuals. Due to this representa-
tion the inferences drawn from Rcold using any of the proposed semantics |∼gnd

ME , |∼∅
ME ,

and |∼�
ME are identical and as follows (assuming that the given signature contains three

constants {a, b, c}):

Rcold |∼# (cold(a))[0.01]
Rcold |∼# (cold(b) | susc(b))[0.1]
Rcold |∼# (cold(c) | contact(c, a) ∧ cold(a))[0.6]
Rcold |∼# (cold(c) | contact(c, a) ∧ cold(a) ∧ cold(b))[0.9]

where |∼# is one of { |∼gnd
ME , |∼∅

ME , |∼�
ME }. In order to understand why the inferences

are identical consider the conditional (cold(X) | susc(X))[0.1]. For grounding seman-
tics this conditional yields the ground instance (cold(a) | susc(a))[0.1] (among others).
Now consider the averaging semantics which basically demands that the average prob-
ability of (cold(F ) | susc(F )) for F ∈ {a, b, c} is 0.1. As Rcold does not say anything
about different conditions for {a, b, c} the most rational thing to do is to treat all instan-
tiations equally. This is also pursued by the maximum entropy inference procedure be-
cause any deviation from this uniform assignment would yield a higher entropy. Hence,
in order to have an average probability of 0.1 for all three instances the inference pro-
cedure exactly assigns a probability of 0.1 to all three instances. A similar explanation
applies to aggregating semantics.

If we add probabilistic facts like (contact(a, b))[1] or (cold(c))[1] to Rcold the situ-
ation changes and now different inferences can be drawn from the different semantics.

The scenario above cannot easily be modeled with BLPs. As BLPs rely on Bayesian
networks one important requirement is acyclicity of the represented knowledge. In the
above example, the probability of some a catching a cold may depend on the probability
of b catching a cold which itself may depend again on the probability of a catching a
cold. In order to represent the example properly with a BLP these cycles have to be
broken, e. g. by assuming some order on the individuals and by inhibiting contact to
be symmetric. However, these changes would alter the modeled knowledge drastically.
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Note that our approach does not forbid cyclic dependencies as the status of conditionals
is validated in a global way, taking every dependency into account.

Example 6. We now come to Ex. 3 and assume that our given signature contains three
constants {tweety, huey , dewey} which are also all assumed to be birds. We obtain the
following inferences1:

Rchirps |∼gnd
ME (chirps(tweety))[0.90] Rchirps |∼gnd

ME (chirps(huey))[0.90]
Rchirps |∼∅

ME (chirps(tweety))[0.86] Rchirps |∼∅
ME (chirps(huey))[0.92]

Rchirps |∼�
ME (chirps(tweety))[0.86] Rchirps |∼�

ME (chirps(huey))[0.92]

Here, the grounding semantics yields the same probabilities for Tweety and Huey re-
garding chirps . As there is no knowledge on whether Tweety is moody conditional r1

is responsible for yielding a probability of 0.9 for chirps(tweety). As for both the av-
eraging and aggregating semantics we obtain identical results in this example. For both
averaging and aggregating semantics Tweety is assumed to chirp, with a slightly lower
probability than Huey. This complies with our intuition, as Tweety is known to be a
magpie, and in case it is moody, its probability to chirp would decrease considerably.
For Huey’s probability of chirping, we observe some compensating effect caused by the
situation of Tweety being moody which is rarely the case (0.12 for both averaging and
aggregating semantics).

Example 3 can be represented as a BLP B as it contains no cyclic dependencies. For
example, conditional r1 can be represented as a Bayesian clause c1 = (chirps(X ) |
bird(X )) with cpdc(true, true) = 0.9, cpdc(false, true) = 0.9, cpdc(true, false) = 0.5,
and cpdc(false, false) = 0.5, the latter two probabilities being some default assumptions
for the case when X is no bird. However, inference in B depends crucially on the
combining rule chosen for chirps . If Tweety is moody both clauses deriving from the
conditionals r1 and r2 are applicable and the resulting probabilities 0.9 and 0.2 have to
be combined. In this scenario, the combining rule noisy-and defined via na(p1, p2) =
p1p2 would be an appropriate choice yielding a combined probability of 0.18. If noisy-
or would be chosen this results in a probability of 0.92 which shows that combining
rule have to be chosen very carefully. Another problem with the BLP representation is
that B is not able to compute any probability for chirps(huey) as there is no evidence
on whether huey is a magpie or even a bird.

6 Related Work

There are several other approaches to defining a probabilistic semantics for a fragment
of first-order logic, some of which also make use of the principle of maximum entropy.
The research presented in [1,3] aims at combining subjective and statistical probabilis-
tic knowledge by deriving subjective probabilistic beliefs about a specific individual
from statistical knowledge about sets of individuals, considering approximative prob-
abilities and limits. Although this approach gives the same results as the principle of
maximum entropy, the authors argue that the principle of maximum entropy cannot be

1 All probabilities are rounded off to two decimal places.
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applied on knowledge bases containing n-ary predicates, n > 1. Approaches allowing
the representation of statistical probabilities suffer from these problems arising from the
fact that the size of the universe constraints the representable probabilities. This is not
the case for the semantics presented in this work, as they have no underlying frequen-
tistic interpretation. Moreover, the application of the principle of maximum entropy to
knowledge bases with arbitrary predicates seems to be unproblematic, but this has to be
investigated more thoroughly in further work.

The grounding semantics in particular is similar to the probabilistic logic program
semantics with entailment under maximum-entropy and the closed-world assumption
as introduced in [5]. However, the maximum entropy inference relation |∼gnd

ME , which
is defined for |=gnd via Equations (2) and (3), is independent of the query. That is,
the maximum entropy model defined for a given set R via the grounding semantics is
independent of the query, whereas the maximum entropy model defined via entailment
under maximum-entropy and the closed-world assumption depends on the given query.

7 Conclusions and Discussion

We have introduced and evaluated three different semantics for relational probabilistic
conditionals that differ with respect to their approaches to dealing with the conflicts
and inconsistencies arising from the quantification of conditionals with precise prob-
abilities. The aggregating as well as the averaging semantics try to deal with these
conflicts by allowing some “exceptional” individuals to deviate from the overall behav-
ior of a given population, while the grounding semantics utilizes constraints to restrict
the set of individuals which may be used for generating the ground instances of the
probabilistic conditionals.

We have shown that all semantics satisfy common sense properties inspired by sim-
ilar properties for default reasoning and we have compared them on several example
knowledge bases. We have also shown that approaches to statistical relational learning
are inadequate for probabilistic default reasoning in relational settings. It turned out
that all proposed semantics coincide on knowledge bases that do not model knowledge
on exceptional individuals. In the presence of specific knowledge on individuals, how-
ever, the inferences drawn from the different approaches may vary significantly. While
the grounding semantics seems to yield the most robust and predictable inferences it
suffers from the additional demand to specify constraint formulas to inhibit an incon-
sistent grounding of the knowledge base. Nonetheless, inference based on grounding
semantics benefits from research on propositional inference using maximum entropy
and thus can be solved quite efficiently [12]. Both the averaging and aggregating se-
mantics do not need constraint formulas but require a universe of sufficient size in
order to compensate for exceptions explicitly represented. Furthermore, they allow for
a smoother interpretation of conditionals and consider the interactions between the rep-
resented knowledge more deeply. While the averaging and aggregating semantics may
differ only slightly, from a computational point of view, inference based on aggregating
semantics is easier as Equation (5) describes a linear constraint whereas Equation (4)
describes a non-linear constraint. From the point of view of modeling, the grounding
semantics is most adequate for a population with well-defined homogeneous subpop-
ulations whereas the average semantics provides probabilities that are means of the
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corresponding subjective probabilities, expressing that on the average, e.g., individuals
show a certain behavior with the respective probability. Hence, they compute a statistics
of subjective (conditional) probabilities. Finally, the aggregating semantics mimics the
form of statistical probabilities but replaces frequencies by subjective estimations and
allows for even more compensation effects. In particular, by assigning low probabili-
ties to formulas involving abnormal individuals, the influence of such individuals on
probabilities of general statements can be weakened.

Further work will comprise a more thorough evaluation of the formalisms presented
here, as well as the development of appropriate (with respect to the underlying seman-
tics) methods for learning probabilistic relational conditionals from data and efficient
methods for inference.
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Abstract. The paper offers a probabilistic characterizations of deter-
minacy preservation, fragmented disjunction and conditional excluding
middle for preferential relations. The paper also presents a preferential
relation that is above Disjunctive rationality and strictly below Rational
monotonicity. This so called ε, μ-relation is constructed using a positive
infinitesimal ε and a finitely additive hyperreal valued probability mea-
sure μ on the set of propositional formulas.

1 Introduction

The notion of default rule is one of the main notions of non-monotonic reason-
ing. Roughly speaking, defaults are rules with exceptions, which allow inferring
defeasible conclusions from available, but incomplete information. In [10], Gab-
bay suggested that the study of default reasoning should be focused on the
corresponding consequence relations. Soon after, Kraus, Lehmann and Magi-
dor proposed in [11] a set of properties, named System P (P stands for pref-
erential), that every non-monotonic consequence relation should satisfy. Those
properties are widely accepted as the core of non-monotonic reasoning (see, for
example, [9]).

It is shown in [11] that each preferential relation is generated by some prefer-
ential structure. In the paper [12] of Lehmann and Magidor, the additional rule
of Rational monotonicity is considered and both preferential and nonstandard
probabilistic semantics are given.

After the work of Kraus, Lehmann and Magidor, many researchers studied
the subclasses of preferential relations obtained by adding a number of rules to
System P, see [3,4,7,8,16,21]. The preferential semantics for some preferential
consequence relations that are obtained by adding certain rules stronger than
Rational monotonicity is presented in [4]. Similarly, the addition of rules weaker
than Rational monotonicity had led to new subclasses of preferential relations;
the corresponding preferential semantics is developed in [20,21]. On the other
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hand, to the best of our knowledge, there are no probabilistic characterizations
of those relations.

Our aim is to provide probabilistic representations for various preferential
relations. In the case of determinacy preservation, fragmenteddisjunction and con-
ditional excluding middle, we have identified the corresponding subclasses of hy-
perreal valuedfinitely additive probabilitymeasures that induces them, andproved
the corresponding representation theorems. It is not difficult to see that probabilis-
tic semantics proposed by Lehmann and Magidor could not be used for preferential
relations that are not rational. For each infinitesimal ε > 0 and each finitely addi-
tive hyperreal probability measure μ on formulas, we have introduced a new con-
sequence relation |∼ε,μ (ε, μ-relation) and proved that it is a preferential relation
that is strictly below Rational monotonicity and above Disjunctive rationality.

The rest of the paper is organized as follows: Section 2 contains necessary
definitions and facts; in Section 3 we provide probabilistic representation of con-
ditional excluding middle, determinacy preservation and fragmented disjunction;
in Section 4 we introduce |∼ε,μ relation, prove that |∼ε,μ satisfies P+DR for all ε
and μ, and construct counterexamples for WD and WRM; concluding remarks
are in the final section.

2 Preliminaries

2.1 Hyperreal Numbers

A hyperreal number is an element of some fixed ω1-saturated elementary exten-
sion R∗ of the ordered field of reals R. By [0, 1]∗ we will denote the unit hyperreal
interval, i.e. the set of all a ∈ R∗ such that 0 � a � 1. An infinitesimal is any
element of R∗ that is strictly lesser than every positive real number, and strictly
greater than every negative real number.

The expression a ≈ b means that a−b is an infinitesimal. A hyperreal number
a ∈ R∗ is a proper infinitesimal if a ≈ 0 and a �= 0 (ω1-saturatedness provides
existence of proper infinitesimals); a ∈ R∗ is finite if there is b ∈ R such that
a ≈ b. The standard part of the finite a ∈ R∗ is the unique b ∈ R such that a ≈ b.
The standard part of a will be denoted as usual by st(a). For more information
about nonstandard analysis we refer the reader to [17].

Let a, b ∈ R∗, a � 0, b > 0. We say that a is of strictly lesser order than
b (denoted a & b), if a/b is an infinitesimal. The important properties of the
relation & are:

a �& b and a �& c imply a �& b + c; a & c and b & c imply a + b & c.

2.2 Nonstandard Probability Measures

Let P be an at most countable set of propositional letters and let ForP be the
corresponding set of propositional formulas. A nonstandard (finitely additive)
probability measure on ForP is a function μ : ForP −→ [0, 1]∗ which satisfies
1. μ(α) = 1, whenever α is a tautology,
2. μ(α ∨ β) = μ(α) + μ(β), whenever α ∧ β is a contradiction.
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It is easy to show that any probability measure μ satisfies the following:

– μ(¬α) = 1 − μ(α),
– μ(α ∨ β) = μ(α) + μ(β) − μ(α ∧ β),
– μ(α) = μ(β), whenever α ↔ β is a tautology.

A probability measure μ is neat if μ(α) = 0 implies that α is a contradiction.
Conditional probabilities are defined as usual: for μ(α) �= 0, μ(β|α) = μ(α∧β)

μ(α) .

2.3 Preferential Relations

A preferential relation [11] is a binary relation |∼ on ForP which satisfies the
following properties of so called System P (REF–Reflexivity, LLE–Left logical
equivalence, RW–Right weakening, CM–Cautious monotonicity):

REF :
α|∼α

; LLE :
� α ↔ β, α|∼γ

β|∼γ
;

RW :
� α → β, γ|∼α

γ|∼β
; AND :

α|∼β, α|∼γ

α|∼β ∧ γ
;

OR :
α|∼γ, β|∼γ

α ∨ β|∼γ
; CM :

α|∼β, α|∼γ

α ∧ β|∼γ
.

A relation is non-monotonic in the sense that it doesn’t satisfy Monotonicity
rule:

M :
α |∼ γ

α ∧ β |∼ γ
.

A preferential relation |∼ is said to be rational if it satisfies a restricted form
of Monotonicity, so called Rational monotonicity:

RM :
α |∼ γ, α |�∼ ¬β

α ∧ β |∼ γ
.

Let μ be a finitely additive nonstandard probability measure on ForP . A
binary relation |∼μ on B defined by

α |∼μ β iff μ(β|α) ≈ 1 or μ(α) = 0

is a rational relation, [12].
Lehmann and Magidor have proved in [12] that each rational relation is gen-

erated by some neat finitely additive probability measure, i.e. for each rational
relation |∼ there is a neat finitely additive hyeprreal valued probability measure
μ on ForP such that |∼=|∼μ.

2.4 Hierarchy of Preferential Relations

[7,8] introduced Negation rationality and Disjunction rationality-rules:

NR :
α|∼β, α ∧ γ|�∼β

α ∧ ¬γ|∼β
DR :

α ∨ β|∼γ, α|�∼γ

β|∼γ
.
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It is known that NR is strictly weaker than DR and that DR is strictly weaker
than RM (we assume, as in the rest of this section, the presence of System P).
Another inference rule, so called Weak rational monotonicity, that is strictly
weaker than RM and incomparable with both NR and DR, is introduced in [21]
as follows:

WRM :
α |∼ γ, α ∧ β |�∼ γ, α |�∼ ¬β

� |∼ ¬α

The Determinacy preservation rule

DP :
α |∼ β, α ∧ γ |�∼ ¬β

α ∧ γ |∼ β
,

introduced by Makinson in [13], lies between RM and M.
Rational contraposition and Weak determinacy

RC :
α|∼β, ¬β|�∼α

¬β|∼¬α
; WD :

�|∼¬α, α|�∼β

α|∼¬β
.

are weaker that DP and incomparable with RM, see [4,3]. It is known that RC
implies WD and that DP=WD+RM.

Fragmented disjunction and conditional excluding middle

FD :
α|∼β ∨ γ, α|�∼β, α|�∼γ

¬β|∼γ
; CEM :

α|�∼β

α|∼¬β
.

are incomparable with M and strictly above DP, see [4,16]. Furthermore, CEM
is strictly above FD.

From now on, we will call a preferential relation which satisfy some of the
additional rules by that rule (for example, a DP-relation is a preferential rela-
tion which satisfy the rule Determinacy preservation). The following diagram
summarizes the relationships between the mentioned rules, explained above:

M CEM

FD

DP

RM RC

WRM NR WD

DR
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3 Probabilistic Representations of Inference Relations

As we have announced in the introduction, this rather technical section con-
tains a probabilistic representation of Conditional excluding middle, Determi-
nacy preservation and Fragmented disjunction. The structure of presentation is
same for all three classes of preferential relations: first we define a class of non-
standard probability measures that is a probabilistic counterpart of the under-
lying class, then we prove the corresponding equivalence theorem, and conclude
with the proof of the representation theorem. We say that a neat nonstandard
probability measure μ induces a rational relation |∼ iff

α |∼ β iff μ(β|α) ≈ 1 or μ(α) = 0.

3.1 Conditional Excluding Middle

Definition 1. A finitely additive probability measure μ : ForP −→ [0, 1]∗ is a
CEM-measure iff

μ(α)
μ(β)

≈ 0 or
μ(β)
μ(α)

≈ 0

for all α, β ∈ ForP such that � ¬(α ∧ β), and μ(α) �= 0 or μ(β) �= 0.

Theorem 1. Let |∼ be a rational relation. Then the following are equivalent:

1. |∼ is a CEM-relation;
2. Every measure μ that induces |∼ is a CEM-measure.

Proof. 2 ⇒ 1 : Suppose that |∼ is a rational relation which does not satisfy
CEM, i.e. there are α and β so that α |�∼ β and α |�∼ ¬β. Let μ be any measure
that induces |∼. Then,

μ(α ∧ β)
μ(α)

�≈ 1 and
μ(α ∧ ¬β)

μ(α)
�≈ 1. (1)

Since μ(α∧β)
μ(α) + μ(α∧¬β)

μ(α) = 1, it follows from (1) that

μ(α ∧ β)
μ(α)

�≈ 0 and
μ(α ∧ ¬β)

μ(α)
�≈ 0.

Consequently,

μ(α ∧ β)
μ(α ∧ ¬β)

�≈ 0 and
μ(α ∧ ¬β)
μ(α ∧ β)

�≈ 0.

In addition, α∧β and α∧¬β are disjoint formulas, so μ is not a CEM-measure.
1 ⇒ 2: Suppose that μ induces |∼ and that there are disjoint formulas β and

γ so that μ(β)
μ(γ) �≈ 0 and μ(γ)

μ(β) = k �≈ 0. Then, st(k) > 0. If α is the formula
β ∨ γ, then

μ(β|α) =
μ(β)

μ(β) + μ(γ)
=

1
k + 1

�≈ 1.

Similarly, μ(¬β|α) = k
k+1 �≈ 1. In other words, α |�∼ β and α |�∼ ¬β, so |∼ is not

a CEM-relation. �
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Theorem 2 (Representation of CEM). A preferential relation |∼ satisfies
CEM if and only if there is a CEM-measure μ that induces |∼.

Proof. ⇒: Suppose that a preferential relation |∼ satisfies CEM. In the presence
of the system P, CEM implies RM. By the representation theorem of Lehmann
and Magidor for rational relations, there is a neat nonstandard finitely additive
probability measure μ on formulas such that

α |∼ β iff μ(β|α) ≈ 1 or α = ⊥

for all α, β ∈ ForP . By Theorem 1, μ is a CEM-measure.
⇐: Suppose that μ is a CEM-measure that induces |∼. Again by Theorem 1,

|∼ satisfies CEM. �

3.2 Determinacy Preservation

Definition 2. A finitely additive probability measure μ : ForP −→ [0, 1]∗ is a
DP-measure iff

μ(α)
μ(β)

≈ 0 or
μ(β)
μ(α)

≈ 0

for all α, β ∈ ForP such that � ¬(α ∧ β), μ(α) �= 0 or μ(β) �= 0, and μ(α) ≈ 0
and μ(β) ≈ 0.

Theorem 3. Let |∼ be a rational relation. Then the following are equivalent:

1. |∼ is a DP-relation;
2. Every measure μ that induces |∼ is a DP-measure.

Proof. In the proof we will use the fact that a preferential relation is DP-relation
iff it satisfies RM and WD.

2 ⇒ 1 : Suppose that rational relation |∼ does not satisfy DP and let μ be
any measure that induces |∼. Then there are α and β so that

μ(α) ≈ 0,
μ(α ∧ β)

μ(α)
�≈ 1 and

μ(α ∧ ¬β)
μ(α)

�≈ 1. (2)

We can prove, as in the proof of Theorem 1, that

μ(α ∧ β)
μ(α ∧ ¬β)

�≈ 0 and
μ(α ∧ ¬β)
μ(α ∧ β)

�≈ 0.

Since μ(α ∧ β), μ(α ∧ ¬β) � μ(α) ≈ 0, μ is not a DP-measure.
1 ⇒ 2: Similarly as in the proof of 1 ⇒ 2 in Theorem 1, provided additional

condition μ(β) ≈ 0 and μ(γ) ≈ 0. �

Theorem 4 (Representation of DP). A preferential relation |∼ satisfies DP
if and only if there is a DP-measure μ that induces |∼.

Proof. Similar as the proof of Theorem 2. �
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3.3 Fragmented Disjunction

Definition 3. A finitely additive probability measure μ : ForP −→ [0, 1]∗ is an
FD-measure iff μ is a DP-measure such that μ(α) ≈ 0 or μ(β) ≈ 0 or μ(γ) ≈ 0
whenever α, β and γ are pairwise disjoint.

Theorem 5. Let |∼ be a rational relation. Then the following are equivalent:

1. |∼ is a FD-relation;
2. Every measure μ that induces |∼ is an FD-measure.

Proof. 2 ⇒ 1: Suppose that μ is an FD-measure that induces |∼. Let α |∼ β ∨ γ,
α |�∼ β and α |�∼ γ. Furthermore, let

a = μ(α ∧ ¬β ∧ ¬γ), b = μ(α ∧ β ∧ ¬γ),
c = μ(α ∧ ¬β ∧ γ), d = μ(α ∧ β ∧ γ).

Then,

(1) μ(β|α) = b+d
a+b+c+d �≈ 1

(2) μ(γ|α) = c+d
a+b+c+d �≈ 1

(3) μ(β ∨ γ|α) = b+c+d
a+b+c+d ≈ 1.

From (3) directly follows that a ≈ 0. Note that μ(α) = a + b + c + d.

Claim 1. μ(α) �≈ 0.
Indeed, if the alternative μ(α) ≈ 0 is true, then & is a total order on {a, b, c, d}

since μ is a DP-measure as well. From (1) follows that neither b nor d are
maximal elements of 〈{a, b, c, d},&〉; similarly, c is not maximal by (2), so a is
the maximum. On the other hand, maximality of a with respect to & implies
that μ(β ∨ γ|α) ≈ 0, which contradicts (3).

Claim 2. b �≈ 0 and c �≈ 0.
Indeed, if b ≈ 0, then c+d

a+b+c+d ≈ c+d
c+d = 1 (a is an infinitesimal) which

contradicts (2). Notice that b + c + d �≈ 0 by Claim 1. Similarly, the assumption
c ≈ 0 contradicts (1).

Claim 3. μ(¬α) ≈ 0.
This is an immediate consequence of the previous claim and the facts that

¬α, α ∧ β ∧ ¬γ and α ∧ β ∧ ¬γ are pairwise disjoint formulas and that μ is an
FD-measure.

Finally, using previous claims, we obtain

μ(¬γ|¬β) =
μ(¬(β ∨ γ))

μ(¬β)
� μ(¬α) + μ(α ∧ ¬β ∧ ¬γ)

μ(α ∧ ¬β ∧ γ)

=
μ(¬α) + a

c
≈ 0,

or, in other words, ¬β |∼ γ.



466 D. Doder, A. Perović, and Z. Ognjanović

1 ⇒ 2: We will use the counter-position argument. On the one hand, suppose
that μ induces |∼ and that μ is not a DP-measure. By Theorem 3, |∼ is not a
DP -relation, so it cannot be an FD-relation. On the other hand, suppose that μ
induces |∼, μ is a DP-measure and that there are pairwise disjoint formulas β,
γ and δ so that μ(β) �≈ 0, μ(γ) �≈ 0 and μ(δ) �≈ 0. Let α be the formula β ∨ γ. It
is easy to see that α |∼ β ∨ γ, α �|∼ β and α |�∼ γ, but

μ(¬γ|¬β) =
μ(¬(β ∨ γ))

μ(¬β)
� μ(δ)

μ(¬β)
�≈ 0,

so ¬β |�∼ γ. Consequently, |∼ is not an FD-relation. �

Theorem 6 (Representation of FD). A preferential relation |∼ satisfies FD
if and only if there is an FD-measure μ that induces |∼.

Proof. Similar as the proof of Theorem 2. �

4 The ε, μ Preferential Relation

We believe that any natural probabilistic representation of consequence relations
should involve conditional probabilities. As we have mentioned in the introduc-
tion, μ(α|β) ≈ 1 could not be used for the representation of relations weaker
than RM. The |∼ε,μ relation, which is the topic of this section, is connected with
our study of inconsistent set of formulas presented in [5], where we have showed
that various relations of the form

α |∼ β iff μ(β|α) � 1 − a,

where a ∈ (0, 1)∗, fail to be a preferential relation. The current definition of
|∼ε,μ is actually a modification of the condition μ(β|α) � 1 − ε (ε > 0 is an
infinitesimal).

Through this section ε will be a fixed positive infinitesimal and μ : ForP −→
[0, 1]∗ a fixed finitely additive probability measure. The ε, μ relation |∼ε,μ on
ForP is defined by

α |∼ε,μ β iff ε �& μ(¬β|α) or μ(α) = 0.

For the sake of simplicity, we will also assume that μ is a neat measure. Notice
that ⊥ |∼ε,μ α for all α.

Theorem 7. |∼ε,μ is a preferential relation.

Proof. In the verification of REF–CM we will only consider nontrivial cases, i.e.
cases in which neither ⊥ nor � have no occurrence.

Since μ(α|α) = 1 and μ is a finitely additive probability measure, we have
that μ(¬α|α) = 0, so ε �& μ(¬α|α), i.e. α |∼ε,μ α. Hence, Reflexivity is verified.
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Right weakening. Suppose that γ |∼ε,μ α and that α implies β. Then, ¬β
implies ¬α, so ¬β ∧ γ implies ¬α ∧ γ. Now we have that

μ(¬β|γ) =
μ(¬β ∧ γ)

μ(γ)
� μ(¬α ∧ γ)

μ(γ)
= μ(¬α|γ),

so ε �& μ(¬β|γ), i.e. γ |∼ε,μ β.
Left logical equivalence. Suppose that α and α′ are equivalent and α |∼ε,μ β.

Then, α ∧ β and α′ ∧ β are equivalent as well; consequently, μ(α) = μ(α′) and
μ(α ∧ β) = μ(α′ ∧ β), so μ(β|α) = μ(β|α′). Furthermore, using

μ(¬γ1|γ2) + μ(γ1|γ2) = 1,

it is easy to see that μ(¬β|α) = μ(¬β|α′). By definition of |∼ε,μ, from the above
we can derive that α′ |∼ε,μ β, which concludes the verification of LLE.

And. Suppose that α |∼ε,μ β and α |∼ε,μ γ. Then, ε �& μ(¬β|α) and ε �&
μ(¬γ|α), so

ε �& μ(¬β|α) + μ(¬γ|α).

In addition,

μ(¬(β ∧ γ)|α) = μ(¬β ∨ ¬γ|α) � μ(¬β|α) + μ(¬γ|α),

so ε �& μ(¬(β ∧ γ)|α), i.e. α |∼ε,μ β ∧ γ.
Or. Suppose that α |∼ε,μ γ and β |∼ε,μ γ. Then, by the definition of |∼ε,μ, there

are positive r, s ∈ R∗ such that r �≈ 0, s �≈ 0, ε/μ(¬γ|α) = r and ε/μ(¬γ|β) = s.
From this we can derive

μ(¬γ ∧ α) =
ε

r
μ(α) and μ(¬γ ∧ β) =

ε

s
μ(β).

Since

1
2

(μ(α1) + μ(α2)) � μ(α1 ∨ α2) � μ(α1) + μ(α2) (3)

for any α1, α2 ∈ ForP , we have that

μ(¬γ|α ∨ β) =
μ((¬γ ∧ α) ∨ (¬γ ∧ β))

μ(α ∨ β)

� μ(¬γ ∧ α) + μ(¬γ ∧ β)
1
2 (μ(α) + μ(β))

=
2ε
r μ(α) + 2ε

s μ(β)
μ(α) + μ(β)

� 2ε

min(r, s)
,

which implies that
ε

μ(¬γ|α ∨ β)
� min(r, s)

2
,
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i.e. ε �& μ(¬γ|α∨β), which is by the definition of |∼ε,μ equivalent to α∨β |∼ε,μ γ.
Cautious monotonicity. Suppose that α |∼ε,μ β and α |∼ε,μ γ. From ε �&

μ(¬β|α) follows that μ(¬β|α) ≈ 0, so μ(β|α) ≈ 1. Furthermore,

μ(¬γ|α ∧ β) =
μ(α ∧ β ∧ ¬γ)

μ(α ∧ β)
=

μ(α ∧ β ∧ ¬γ)/μ(α)
μ(α ∧ β)/μ(α)

=
μ(β ∧ ¬γ|α)

μ(β|α)
,

so

ε

μ(¬γ|α ∧ β)
=

ε · μ(β|α)
μ(β ∧ ¬γ|α)

� ε · μ(β|α)
μ(¬γ|α)

�≈ 0,

since ε
μ(¬γ|α) �≈ 0 and μ(β|α) ≈ 1. Finally, by definition of |∼ε,μ, α ∧ β |∼ε,μ γ.

�

Theorem 8. |∼ε,μ satisfies DR and NR.

Proof. Suppose that ε & μ(¬γ|α) and ε & μ(¬γ|β). Then, there are positive
infinitesimals δ and η such that ε

μ(¬γ|α) = δ and ε
μ(¬γ|β) = η, which is equivalent

to μ(¬γ ∧ α) = ε
δ μ(α) and μ(¬γ ∧ β) = ε

η μ(β). Furthermore, by (3),

ε

μ(¬γ|α ∨ β)
=

εμ(α ∨ β)
μ((¬γ ∧ α) ∨ (¬γ ∧ β))

� 2ε(μ(α) + μ(β))
μ(¬γ ∧ α) + μ(¬γ ∧ β)

=
2ε(μ(α) + μ(β))
ε
δ μ(α) + ε

η μ(β)

� 2ε(μ(α) + μ(β))
ε

max(δ,η) (μ(α) + μ(β))

= 2 max(δ, η)
≈ 0,

thus α ∨ β |�∼ε,μ γ. Since DR implies NR, we have our claim. �

Theorem 9. Weak determinacy, Rational contraposition, Determinacy preser-
vation, Fragmented disjunction, Conditional excluding middle, Monotonicity,
Rational monotonicity and Weak rational monotonicity need not to be satis-
fied by |∼ε,μ.

Proof. According to the diagram in Subsection 2.4, it is sufficient to show that
Weak determinacy and Weak rational monotonicity fail for |∼ε,μ. For the proof
of the existence of the measures constructed bellow, we refer the reader to [14].

Let us construct a counterexample for WD. Suppose that μ is any neat
measure such that μ(p0) = 2μ(p0 ∧ p1) = 1 − ε. Then:

ε

μ(¬p0|�)
=

ε

1 − μ(p0)
=

ε

1 − (1 − ε)
= 1;
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ε

μ(¬p1|p0)
=

ε

1 − μ(p1|p0)
=

εμ(p0)
μ(p0) − μ(p0 ∧ p1)

=
ε(1 − ε)
1
2 (1 − ε)

= 2ε;

ε

μ(p1|p0)
=

εμ(p0)
μ(p0 ∧ p1)

=
ε(1 − ε)
1
2 (1 − ε)

= 2ε.

Therefore, � |∼ε,μ ¬p0, p0 |�∼ε,μ p1 and p0 |�∼ε,μ ¬p1, so WD fails.
Let us construct a counterexample for WRM. Let κ and λ be infinitesimals

so that ε & κ and ε & λ. Furthermore, let α, β and γ be any formulas so
that α ∧ ¬γ implies α ∧ β (consequently, α ∧ ¬γ ∧ β is equivalent with α ∧ ¬γ),
μ(α) = κ, μ(α ∧ ¬γ) = εκ and μ(α ∧ β) = λκ. Since α ∧ ¬γ ∧ β is equivalent
with α ∧ ¬γ, we have that μ(α ∧ ¬γ ∧ β) = μ(α ∧ ¬γ) = εκ.

– α |∼ε,μ γ:
ε

μ(α|�)
=

ε

κ
≈ 0;

– α∧β |�∼ε,μ γ:
ε

μ(¬γ|α ∧ β)
=

εμ(α ∧ β)
μ(α ∧ ¬γ ∧ β)

=
εμ(α ∧ β)

μ(α ∧ ¬γ ∧ β)
=

ελκ

εκ
= λ ≈

0;

– α |�∼ε,μ ¬β:
ε

μ(β|α)
=

εμ(α)
μ(α ∧ β)

=
εκ

λκ
=

ε

λ
≈ 0;

– � |�∼ε,μ ¬α:
ε

μ(α|�)
=

ε

κ
≈ 0.

Hence, WRM fails. �

5 Concluding Remarks

The main novelty of this work is the development of probabilistic semantics
for some nonmonotonic consequence relations, which may be seen as a natural
extension of the research of Lehmann and Magidor presented in [12]. Although
characterizations of nonmonotonic inference relations in terms of probability
measures have been already studied [1,2,6,5,12,15,18,19], we are not aware of
any probabilistic representation of the relations considered in this paper.

Probabilistic semantics for rational relations is a nice bridge between the
general study of consequence relations and probability logics. For instance, in
[15], a Hilbert style probability logic AxLPP S was introduced to axiomatize
reasoning about conditional probabilities whose range is the unit interval of the
Hardy field Q(ε). Due to the representation theorem of Lehmann and Magidor,
any rational relation |∼ can be formally represented by an AxLPP S -theory. We
leave for further research to develop probability logics expressible enough to
represent CEM, DP, FD and |∼ε,μ relations.

The immediate consequence of results presented in Section 4 is the fact that
|∼ε,μ is above disjunctive rationality and strictly below rational monotonicity.
The exact relation between DR and |∼ε,μ (i.e., whether DR can be represented
by |∼ε,μ, or some new rules should be added in order to obtain the corresponding
representation theorem) is an open question.
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Abstract. Knowledge Representation is an important issue in reinforce-
ment learning. In this paper, we bridge the gap between reinforcement
learning and knowledge representation, by providing a rich knowledge
representation framework, based on normal logic programs with answer
set semantics, that is capable of solving model-free reinforcement learn-
ing problems for more complex domains and exploits the domain-specific
knowledge. We prove the correctness of our approach. We show that the
complexity of finding an offline and online policy for a model-free rein-
forcement learning problem in our approach is NP-complete. Moreover,
we show that any model-free reinforcement learning problem in an MDP
environment can be encoded as a SAT problem. The importance of that
is model-free reinforcement learning problems can be now solved as SAT
problems.

1 Introduction

Reinforcement learning is the problem of learning to act by trial and error inter-
action in dynamic environments. Under the assumption that a complete model
of the environment is known, a reinforcement learning problem is modeled as
a Markov Decision Process (MDP), in which an optimal policy can be learned.
Operation research methods, in particular dynamic programming by value iter-
ation, have been extensively used to learn the optimal policy for a reinforcement
learning problem in MDP environment. However, an agent may not know the
model of the environment. In addition, an agent may not be able to consider all
possibilities and use its knowledge to plan ahead, because of the agent’s limited
computational abilities to consider all states systematically [30]. Therefore, Q-
learning [30] and SARSA [20] are proposed as model-free reinforcement learning
algorithms that learn optimal policies without the need for the agent to know
the model of the environment.

Q-learning and SARSA are incremental dynamic programming algorithms,
that learns optimal policy from actual experience from interaction with the en-
vironment, where to guarantee convergence the following assumptions must hold;
the action-value function is represented as a look-up table; the environment is

W. Liu (Ed.): ECSQARU 2011, LNAI 6717, pp. 472–484, 2011.
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a deterministic MDP; for each starting state and action, there are an infinite
number of episodes; and the learning rate is decreased appropriately over time.
However, these assumptions imply that all actions are tried in every possible
state and every state must be visited infinitely many times, which leads to a
slow convergence, although, it is sufficient for the agent to try all possible ac-
tions in every possible state only once to learn about the reinforcements result-
ing from executing actions in states and finding optimal policies. In addition,
in some situations it is not possible for the agent to visit a state more than
once. Consider a deer that eats in an area where a cheetah appears and the deer
flees and survived. If the deer revisits this area again it will be eaten and does
not learn anymore. This is unavoidable in Q-learning and SARSA because of
the iterative dynamic programming approach they adopt and their convergence
assumptions. Moreover, dynamic programming methods use primitive represen-
tation of states and actions and do not exploit domain-specific knowledge of the
problem domain, in addition they solve MDP with relatively small domain sizes
[19]. However, using richer knowledge representation frameworks for MDP allow
to efficiently find optimal policies in more complex and larger domains.

A logical framework to model-based reinforcement learning has been proposed
in [25] that overcomes the representational limitations of dynamic programming
methods and capable of representing domain specific knowledge. The framework
in [25] is based on the integration of model-based reinforcement learning in MDP
environment with normal hybrid probabilistic logic programs with probabilistic
answer set semantics [22] that allows representing and reasoning about a variety
of fundamental probabilistic reasoning problems including probabilistic planning
[23], contingent probabilistic planning [24], the most probable explanation in
belief networks, and the most likely trajectory [26].

In this paper we integrate model-free reinforcement learning with normal
logic programs with answer set semantics and SAT, providing a logical frame-
work to model-free reinforcement learning using Q-learning and SARSA up-
date rules to learn the optimal off- and on-policy respectively. This framework
is considered a model-free extension to the model-based reinforcement learn-
ing framework of [25]. The importance of the proposed framework is twofold.
First, the proposed framework overcomes the representational limitations of dy-
namic programming methods to model-free reinforcement learning and capable
of representing domain-specific knowledge, and hence bridges the gap between
reinforcement learning and knowledge representation. Second, it eliminates the
requirement of visiting every state infinitely many times which is required for
the convergence of the Q-learning and SARSA.

This is achieved by encoding the representation of a model-free reinforcement
learning problem in a new high level action language we develop called, BQ, into
normal logic program with answer set semantics, where all actions are tried in
every state only once. We show the correctness of the translation. We prove that
the complexity of finding an off- and on-policy in our approach is NP-complete.
In addition, we show that any model-free reinforcement learning problem in
MDP environment can be encoded as SAT problem.
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2 Preliminaries

As in the underlying assumptions of the original Q-learning and SARSA, the
subsequent results in the rest of this paper assume that the considered MDPs
are deterministic. Normal logic programs [7] and Q-learning [30] and SARSA
[20] are reviewed in this section.

2.1 Normal Logic Programs

Let L be a first-order language with finitely many predicate symbols, function
symbols, constants, and infinitely many variables. The Herbrand base of L is
denoted by B. A Herbrand interpretation is a subset of the Herbrand base B. A
normal logic program is a finite set of rules of the form

a← a1, . . . , an, not b1, . . . , not bm

where a, a1, . . . , an, b1, . . . , bm are atoms and not is the negation-as-failure. A
normal logic program is ground if no variables appear in any of its rules. Let Π
be a ground normal logic program and S be a Herbrand interpretation, then, we
say that the above rule is satisfied by S iff a ∈ S, whenever {a1, . . . , an} ⊆ S
and {b1, . . . , bm} ∩ S = ∅, or for some i ∈ {1, . . . , n}, j ∈ {1, . . . , m}, ai /∈ S or
bj ∈ S.

A Herbrand model of Π is a Herbrand interpretation that satisfies every rule
in Π . A Herbrand interpretation S of a normal logic program Π is an answer
set of Π if S is the minimal Herbrand model (with respect to the set inclusion)
of the reduct, denoted by ΠS , of Π w.r.t. S, where {b1, . . . , bm} ∩ S = ∅ and

a← a1, . . . , an ∈ ΠS iff
a← a1, . . . , an, not b1, . . . , not bm ∈ Π

2.2 Q-Learning and SARSA

Q-learning learns the optimal Q-function, Q∗, from the agent’s experience (set
of episodes) by repeatedly estimating the optimal Q-value for every state-action
pair Q∗(s, a). The Q-value, Q(s, a), given a policy (a mapping from states to
actions), is defined as the expected sum of discounted rewards resulting from
executing the action a in a state s and then following the policy thereafter.
Given Q∗, an optimal policy, π∗, can be determined by identifying the optimal
action in every state, where a is optimal in a state s, i.e., π∗(s) = a, if π∗(s) =
argmaxa′ Q∗(s, a′) = a and a′ is executable in s. An episode is an exploration
of the environment which is a sequence of state-action-reward-state of the form
e ≡ s0, a0, r1, s1, a1, r2, . . . , sn−1, an−1, rn, sn, where for each (0 ≤ t ≤ n − 1),
st, at, rt+1, st+1 means that an agent executed action at in state st and rests in
state st+1 where it received reward rt+1. s0 denotes an initial state and sn is a
terminal (goal) state. Given that the agent sufficiently explored the environment,
the optimal Q-values are repeatedly estimated by the following algorithm:
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∀(s, a) initialize Q(s, a) arbitrary
Repeat forever for each episode

Select the initial state st of an episode
Repeat

Choose an action at for the current state st

Execute the action at in st

Observe the subsequent state st+1

Receive an immediate reward R(st, at, st+1)
Q(st, at)← (1− α)Q(st, at) + α[R(st, at, st+1) + γ maxa Q(st+1, a)]
Set st ← st+1

Until st is the end of an episode

where α is the learning rate, γ is the discount factor, and R(st, at, st+1) is the
reward received in st+1 from executing at in st. Q-learning is an offline algorithm
that learns the optimal Q-function while executing another policy. Under the
same convergence assumptions as in Q-learning, SARSA [20] has been developed
as an online model-free reinforcement learning algorithm, that learns optimal Q-
function while exploring the environment. Similar to Q-learning, SARSA is an
iterative dynamic programming algorithm whose update rule is given by:

Q(st, at) ← (1 − α)Q(st, at) + α[R(st, at, st+1) + Q(st+1, at+1)]

In addition, SARSA converges slowly to Q∗, since it requires every state to be
visited infinitely many times with all actions are tried, although, it is sufficient
for an agent to try all possible actions in every possible state only once to
learn about the reinforcements resulting from executing every possible action in
every possible state. This assumption could not be eliminated in Q-learning and
SARSA, since both are iterative dynamic programming algorithms. However,
under the assumption that the environment is finite-horizon Markov decision
process with finite length episodes, estimating the optimal Q-function, Q∗, for
Q-learning, can be simply computed recursively as:

Q∗(st, at) = R(st, at, st+1) + γ max
a

Q∗(st+1, a)

= max
a

(R(st, at, st+1) + γ Q∗(st+1, a)) = max
e∈E

[
n−1∑
i=t

γiR(si, ai, si+1)

]
(1)

Similarly, the estimate of the optimal Q-function for SARSA can be described
as:

Q∗(st, at) = R(st, at, st+1) + γQ∗(st+1, at+1) =
n−1∑
i=t

γiR(si, ai, si+1) (2)

where E is the set of all episodes, R(si, ai, si+1) = ri+1 for (t ≤ i ≤ n − 1),
and e ≡ st, at, rt+1, st+1, at+1, . . . , sn−1, an−1, rn, sn ∈ E. Equations (1) and
(2) show that it is sufficient to consider the rewards collected from the set of
all episodes, E, only once to calculate estimate of the optimal Q-function, Q∗,
which eliminates the need to visit every possible state infinitely many times.
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Unlike Q-learning, our estimate of Q∗, can be computed online as well as
offline. It can be computed online by accumulating estimate of Q∗ during the
exploration of the environment. On the other hand, it can be computed offline
by first exploring the environment and collecting the set of all possible episodes,
then computing estimate of Q∗.

3 Action Language BQ
This section develops the action language, BQ, that represents model-free rein-
forcement learning problems and extends the action language B [8].

3.1 Language Syntax

A fluent is a predicate, which may contain variables, that describes a property
of the environment. Let F be a set of fluents and A be a set of action names
that can contain variables. A fluent literal is either a fluent f ∈ F or ¬ f , the
negation of f . Conjunctive fluent formula is a conjunction of fluent literals of
the form l1 ∧ . . .∧ ln, where l1, . . . , ln are fluent literals. Sometimes we abuse the
notation and refer to a conjunctive fluent formula as a set of fluent literals (∅
denotes true). An action theory, T, in BQ is a tuple of the form T = 〈S0,D, γ〉,
where S0 is a proposition of the form (3), D is a set of propositions from (4-6),
and 0 ≤ γ < 1 is a discount factor as follows:

initially{ψi| 1 ≤ i ≤ n} (3)
executable a if ψ (4)

l if ψ (5)
a causes φ : r if ψ (6)

where l is a fluent literal, φ, ψ, ψ1, . . . , ψn are conjunctive fluent formulas, a ∈ A
is an action, and r is a real number in R. Proposition (3) represents the set of
possible initial states. Proposition (4) states that an action a is executable in any
state in which ψ holds, where each variable that appears in a also appears in ψ.
Indirect effect of action is described by proposition (5), which says that l holds
in every state in which ψ also holds. A proposition of the form (6) represents
the conditional effects of an action a along with the rewards received in a state
resulting from executing a. All variables that appear in φ also appear in a and
ψ. Proposition (6) says that a causes φ to hold with reward r is received in a
successor state to a state in which a is executed and ψ holds. An action theory
is ground if it does not contain any variables.

Example 1. Consider an elevator of n-story building domain adapted from [4]
that is represented by an action theory, T = 〈S0,D, γ〉, in BQ, where S0 is
described by (7) (j is a particular value in {1, . . . , n} and 1 ≤ i ≤ k for k ≤ n)
and D is represented by (8)-(14).
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initially{{on(i),¬opened, current(j)}} (7)
up(N) causes current(N),¬on(N), opened : r if on(N),¬opened (8)

down(N) causes current(N),¬on(N), opened : r if on(N),¬opened (9)
close causes ¬opened : r′ if opened (10)
current(N) if ¬current(M), N �= M (11)

executable up(N) if current(M), M < N (12)
executable down(N) if current(M), M > N (13)

executable close if {} (14)

The actions in the elevator domain are up(N) for move up to floor N , down(N)
for move down to floor N , and close for closing the elevator door. In addition, r
and r′ are any suitable rewards. The predicates current(N), on(N), and opened
are fluents represent respectively that the elevator current floor is N , light of
floor N is on, and elevator door is opened. The target is to get all floors serviced
and ¬on(N) is true for all N .

3.2 Semantics

We say a set of ground literals φ is consistent if it does not contain a pair of
complementary literals. If a literal l ∈ φ, then we say l holds in φ, and l does not
hold in φ if ¬ l ∈ φ. A set of literals σ holds in φ if σ is contained in φ, otherwise,
σ does not hold in φ. We say that a set of literals φ satisfies an indirect effect
of action of the form (5), if l belongs to φ whenever ψ is contained in φ or ψ is
not contained in φ. Let T be an action theory in BQ and φ be a set of literals.
Then CT(φ) is the smallest set of literals that contains φ and satisfies all indirect
effects of actions propositions in T. A state s is a complete and consistent set of
literals that satisfies all the indirect effects of actions propositions in T.

Definition 1. Let T = 〈S0,D, γ〉 be a ground action theory in BQ, s be a state,
a causes φ : r if ψ be a proposition in D. Then, s′ = CT(Φ(a, s)) is the state
resulting from executing a in s, given that a is executable in s, where Φ(a, s) is
defined as:

• l ∈ Φ(a, s) and ¬ l /∈ Φ(a, s) if l ∈ φ and ψ ⊆ s.
• ¬ l ∈ Φ(a, s) and l /∈ Φ(a, s) if ¬ l ∈ φ and ψ ⊆ s.
• Otherwise, l ∈ Φ(a, s) iff l ∈ s and ¬ l ∈ Φ(a, s) iff ¬ l ∈ s.

where the reward received in s′ is R(s, a, s′) = r.

An episode in T = 〈S0,D, γ〉 is an expression of the form e ≡ s0, a0, r1, s1, a1, . . . ,
sn−1, an−1, rn, sn, where for each (0 ≤ t ≤ n − 1), st+1 = CT(Φ(at, st)) and
R(st, at, st+1) = rt+1.

Definition 2. Let T = 〈S0,D, γ〉 be a ground action theory and E be the set of
all episodes in T. Then, for (0 ≤ t ≤ n− 1), where Q∗(sn, an) = 0, the optimal
Q-function, Q∗, for Q-learning and SARSA are respectively estimated by
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Q∗(st, at) = maxe∈E

∑n−1
i=t γiR(si, ai, si+1)

Q∗(st, at) =
∑n−1

i=t γiR(si, ai, si+1)

Considering SARSA, the optimal Q-function can be computed incrementally as
follows. For any episode in E, the optimal Q-value for the initial state-action
pair is estimated by Q∗(s0, a0) =

∑n−1
t=0 γtR(st, at, st+1) that is calculated on-

line during the exploration of the environment. Then, for any state-action pair,
(st, at), in the episode, Q∗(st, at), is calculated from Q∗(s0, a0) by

Q∗(st, at) =
Q∗(s0, a0)−

∑t
i=1 γi−1R(si−1, ai−1, si)

γt
(15)

However, for Q-learning, Q∗ can be computed incrementally as well by first
computing Q∗ incrementally using (15), then (16) is used as an update rule only
once, where for 0 ≤ t ≤ n− 1,

Q∗(st, at) = R(st, at, st+1) + γ max
a

Q∗(st+1, a) (16)

Notice that, unlike [30], by using (15) and (16), Q-learning can be computed
online during the exploration of the environment as well as offline.

4 Off- and On-Policy Model-Free Reinforcement Learning
Using Answer Set Programming

We provide a translation from any action theory T = 〈S0,D, γ〉, a representation
of a model-free reinforcement learning problem into a normal logic program with
answer set semantics ΠT, where the rules in ΠT encode (1) the set of possible
initial states S0, (2) the transition function Φ, (3) the set of propositions in D,
(4) and the discount factor γ. The answer sets of ΠT correspond to episodes
in T, with associated estimated optimal Q-values. This translation follows some
related translations described in [29,23,25].

We assume the environment is a finite-horizon Markov decision process, where
the length of each episode is known and finite. We use the predicates; holds(L, T )
to represent a literal L holds at time moment T ; occ(A, T ) for action A executes
at time T ; reward(r, a, T ) for reward received at time T after executing a is r;
Q(V, A, T ) says the estimate of the optimal Q-value of the initial state-action
pair, in a given episode, T steps from the initial state is V ; and factor(γ) for
the discount factor. We use lower case letters to represent constants and upper
case letters to represent variables.

Let ΠT be the normal logic program translation of T = 〈S0,D, γ〉 that con-
tains a set of rules described as follows. To simplify the presentation, given p
is a predicate and ψ = {l1, . . . , ln} be a set of literals, we use p(ψ) to denote
p(l1), . . . , p(ln).

– For each action a ∈ A, ΠT includes the set of facts

action(a)← (17)
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– Literals describe states of the world are encoded by

literal(A)← atom(A) (18)
literal(¬A)← atom(A) (19)

where atom(A) is a set of facts that describe the properties of the world. To
specify that A and ¬A are contrary literals the following rules are added to
ΠT.

contrary(A,¬A) ← atom(A) (20)
contrary(¬A, A) ← atom(A) (21)

– The set of initial states, initially{ψi, 1 ≤ i ≤ n}, is encoded as follows.
Let s1, s2, . . . , sn be the set of initial states, where for 1 ≤ i ≤ n, si =
{li1, . . . , lim}. Moreover, let s = s1 ∪ s2 ∪ . . . ∪ sn, s′ = s1 ∩ s2 ∩ . . . ∩ sn,
ŝ = s − s′, and s′′ = { l | l ∈ ŝ ∨ ¬l ∈ ŝ}. Intuitively, for any literal l in ŝ,
if l or ¬l belongs to ŝ, then s′′ contains only l. For each literal l ∈ s′, ΠT

includes
holds(l, 0)← (22)

which says l holds at time 0. Literals in s′ belong to every initial state. For
each l ∈ s′′, ΠT includes

holds(l, 0)← not holds(¬l, 0) (23)
holds(¬l, 0)← not holds(l, 0) (24)

which says that l (similarly ¬l) holds at time 0, if ¬l (similarly l) does not
hold at the time 0.

– Each proposition of the form (4) is encoded in ΠT as

exec(a, T )← holds(ψ, T ) (25)

– Each a causes φ : r if ψ in D is encoded as

holds(li, T + 1) ← occ(a, T ), exec(a, T ), holds(ψ, T ) (26)

∀ li ∈ φ and φ = {l1, . . . , lm}, which says that if a occurs at time T and ψ
holds at the same time moment, then li holds at time T + 1.

– The reward r received at time T + 1 after executing a at time T given that
a is executable is encoded by

reward(r, a, T + 1)← occ(a, T ), exec(a, T ) (27)

– Estimate of the optimal Q-value of an initial state-action pair, in a given
episode, T + 1 steps away from the initial state, is equal to the estimate of
the optimal Q-value of the same initial state-action pair, in the same episode,
T steps away from the initial state added to the discounted reward (by γT )
received at time T + 1, where V ∈ R and 0 ≤ γ < 1.

Q(V + r ∗ γT , a, T + 1)← Q(V, a′, T ), factor(γ), reward(r, a, T + 1),
occ(a, T ), exec(a, T ), holds(ψ, T ), holds(φ, T + 1)(28)
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– The following rule says that L holds at the time moment T + 1 if it holds
at the time moment T and its contrary does not hold at the time moment
T + 1.

holds(L, T + 1)← holds(L, T ), not holds(L′, T + 1), contrary(L, L′) (29)

– A literal L and its negation ¬L cannot hold at the same time is encoded in
ΠT by

← holds(L, T ), holds(¬L, T ) (30)

– Rules that generate actions occurrences once at a time are encoded by

occ(ACi, T )← action(ACi), not abocc(ACi, T )(31)
abocc(ACi, T )← action(ACi), action(ACj), occ(ACj , T ), ACi �= ACj(32)

Let G = g1 ∧ . . . ∧ gm be a goal expression, then G is encoded in ΠT as

goal← holds(g1, T ), . . . , holds(gm, T ) (33)

Estimates of the optimal Q-value of initial state-action pair, Q∗(s0, a0), is rep-
resented in ΠT by Q(V, A, T ), for 0 ≤ T ≤ n, where Q(V, A, n) represents
the estimate of Q∗(s0, a0) at the end of episode of length n. These Q-values,
Q(V, A, T ), can be computed online during the exploration of the environment
as well as offline after the exploration of the environment. Moreover, the ac-
tion generation rules (31) and (32) in our translation, choose actions greedily at
random. However, other action selection strategies can be encoded instead.

Example 2. The normal logic program encoding, ΠT, of the elevator domain
described in Example 1 is given as follows, where ΠT consists of the following
rules, along with the rules (18), (19), (20), (21), (29), (30), (31), (32):

action(open(N))← action(down(N))← action(close)←

for 1 ≤ N ≤ n. The atoms on(.), current(.), and opened describe properties of
the world that for 1 ≤ N ≤ n are encoded as:

atom(on(N))← atom(current(N))← atom(opened)←

The initial state is encoded as follows, where 1 ≤ X ≤ k, for k ≤ n and for some
j in {1, . . . , n}.

holds(on(X), 0)← holds(current(j), 0)← holds(¬opened, 0)←

The executability conditions of actions, for 1 ≤ N, M ≤ n, are encoded as

exec(up(N), T ) ← holds(current(M), T ), M < N
exec(down(N), T )← holds(current(M), T ), M > N
exec(close, T ) ←
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Effects, rewards, and the Q-value of the initial state-action pair resulting after
executing the actions up(N) and down(N), for 1 ≤ N ≤ n, are given by

holds(current(N), T + 1)← occ(AC, T ), exec(AC, T ), holds(on(N), T ),
holds(¬opened, T )

holds(¬on(N), T + 1)← occ(AC, T ), exec(AC, T ), holds(on(N), T ),
holds(¬opened, T )

holds(opened, T + 1)← occ(AC, T ), exec(AC, T ), holds(on(N), T ),
holds(¬opened, T )

reward(r, AC, T + 1)← occ(AC, T ), exec(AC, T )
Q(V + r ∗ γT , AC, T + 1)← Q(V, A, T ), factor(γ), reward(r, AC, T + 1),

occ(AC, T ), exec(AC, T ), holds(ψ, T ), holds(φ, T + 1)

where AC = {up(N), down(N)}, Q(0, AC, 0) is a fact, ψ = {on(N),¬opened},
and φ = {current(N),¬on(N), opened}. Effects of the close action is given by

holds(¬opened, T + 1)← occ(close, T ), exec(close, T ),
holds(opened, T )

The reward received after executing close is given by

reward(r′, close, T + 1)← occ(close, T ), exec(close, T )

Q-value of the initial state-action pair is given by the following rule, where
Q(0, close, 0) is a fact.

Q(V + r′ ∗ γT , close, T + 1)← Q(V, A, T ), factor(γ), reward(r′, close, T + 1),
occ(close, T ), exec(close, T ), holds(opened, T ), holds(¬opened, T + 1)

The goal is encoded by the following rule for some k ≤ n

goal← holds(¬on(1), T ), . . . , holds(¬on(k), T )

5 Correctness

This section shows the correctness of our translation. We prove that the answer
sets of the normal logic program translation of an action theory, T in BQ, cor-
respond to episodes in T = 〈S0,D, γ〉, associated with estimates of the optimal
Q-values. Moreover, we show that the complexity of finding a policy for T in our
approach is NP-complete. Let the domain of T be {0, . . . , n}. Let Φ be a transi-
tion function associated with T, s0 is an initial state, and a0, . . . , an−1 be a set of
actions in A. An episode in T is state-action-reward-state sequence of the form
e ≡ s0, a0, r1, s1, a1, r2, . . . , sn−1, an−1, rn, sn, such that ∀(0 ≤ i ≤ n−1), si, si+1

are states, ai is an action, si+1 = CT(Φ(ai, si)), and R(si, ai, si+1) = ri+1.

Theorem 1. Let T be an action theory representing a model-free reinforce-
ment learning problem in BQ. Then, s0, a0, r1, s1, a1, r2, . . . , sn−1, an−1, rn, sn

is an episode in T iff occ(a0, 0), reward(r1 , a0, 1), . . . , occ(an−1, n − 1), reward
(rn, an−1, n) is true in an answer set of ΠT.
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Theorem 1 says that an action theory, T, in BQ, can be translated into a normal
logic program, ΠT, such that an answer set of ΠT is equivalent to an episode in T.

Theorem 2. Let T be an action theory in BQ, S be an answer set of ΠT, and E
be the set of all episodes in T. Let OCC be a set such that s0, a0, r1, s1, a1, r2, . . . ,
sn−1, an−1, rn, sn ∈ E iff occ(a0, 0), reward(r1, a0, 1), . . . , occ(an−1, n − 1), reward
(rn, an−1, n) ≡ o ∈ OCC. Then, the estimate of Q∗(s0, a0) is given for Q-learning
and SARSA respectively by

Q∗(s0, a0) = max
S|=Q(v,an−1,n)∧S|=o∈OCC

v

Q∗(s0, a0) = v, for some S |= Q(v, an−1, n) ∧ S |= o ∈ OCC

Theorem 2 asserts that, given an action theory T and by considering Q-learning
update rule, the expected sum of discounted rewards resulting after executing an
action a0 in a state s0 and following the optimal policy thereafter, Q∗(s0, a0), is
equal to the maximum over v, appearing in Q(v, an−1, n) which is satisfied by ev-
ery answer set S of ΠT for which o ≡ occ(a0, 0), reward(r1, a0, 1), . . . , occ(an−1,
n − 1), reward(rn , an−1, n) is also satisfied. However, by considering the up-
date rule of SARSA, Q∗(s0, a0) is equal to v in Q(v, an−1, n) that is satisfied
by some answer set of ΠT for which o is also satisfied. For any at and st in
SARSA, Q∗(st, at) is calculated from Q∗(s0, a0) by (15), where Q∗(sn, an) = 0
and R(si−1, ai−1, si) = ri. But, for Q-learning, for any at and st, Q∗(st, at) is
calculated from Q∗(s0, a0) by (15), then (16) is used as an update rule only once.

In addition, we show that any model-free reinforcement learning problem in
MDP environment can be encoded as SAT problem. Hence, state-of-the-art SAT
solvers can be used to solve model-free reinforcement learning problems. Any
normal logic program, Π , can be translated into a SAT problem, S, where the
models of S are equivalent to the answer sets of Π [16]. Hence, the normal
logic program encoding of a model-free reinforcement learning problem T can
be translated into an equivalent SAT problem, where the models of S correspond
to episodes in T.

Theorem 3. Let T be an action theory in BQ and ΠT be the normal logic pro-
gram encoding of T. Then, the models of the SAT encoding of ΠT are equivalent
to valid episodes in T.

Normal logic programs with answer set semantics find optimal policies for model-
free reinforcement learning in finite horizon MDP environments using the flat
representation of the problem domains. Hence, Theorem 5 follows directly from
Theorem 4 [17].

Theorem 4. The stationary policy existence problem for finite-horizon MDP in
the flat representation is NP-complete.

Theorem 5. The policy existence problem for a model-free reinforcement learn-
ing problem in MDP environment using normal logic programs with answer set
semantics and SAT is NP-complete.
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6 Conclusions and Related Work

The translation from an action theory in BQ into a normal logic program builds
on similar translations described in [29,23,25]. The literature is rich with action
languages that are capable of representing and reasoning about MDPs and ac-
tions with probabilistic effects, which include [1,2,5,11,15]. The main difference
between these languages and BQ is that BQ allows the factored characterization
of MDP for model-free reinforcement learning.

A logic based approach for solving MDP, for probabilistic planning, has been
presented in [18]. The approach of [18] converts MDP specification of a proba-
bilistic planing problem into a stochastic satisfiability problem and solving the
stochastic satisfiability problem instead. First-order logic representation of MDP
for model-based reinforcement learning has been described in [14] based on first-
order logic programs without nonmonotonic negations. Similar to the first-order
representation of MDP in [14], BQ allows objects and relations. However, un-
like BQ, [14] finds policies in the abstract level. A more expressive first-order
representation of MDP than [14] has been presented in [3,28] that is a proba-
bilistic extension to Reiter’s situation calculus. Although more expressive, it is
more complex than [14]. Unlike the logical model-based reinforcement learning
framework of [25] that uses normal hybrid probabilistic logic programs to encode
model-based reinforcement learning problems, normal logic program with answer
set semantics is used to encode model-free reinforcement learning problems.
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Abstract. Possibility theory offers a qualitative framework for mod-
eling decision under uncertainty. In this setting, pessimistic and opti-
mistic decision criteria have been formally justified. The computation
by means of possibilistic logic inference of optimal decisions according
to such criteria has been proposed. This paper presents an Answer Set
Programming (ASP)-based methodology for modeling decision problems
and computing optimal decisions in the sense of the possibilistic criteria.
This is achieved by applying both a classic and a possibilistic ASP-based
methodology in order to handle both a knowledge base pervaded with
uncertainty and a prioritized preference base.

1 Introduction

Existing Answer Set Programming (ASP)-based methodologies for handling de-
cision making problems [2,14] amount to compile a decision problem as a logic
program able to generate the space of possible decision solutions and to spec-
ify an order between them by means of an ordered disjunction connective [4].
Although such approaches are enough to cover decisions in completely certain
environment, they become less effective when the knowledge is pervaded with
uncertainty. Moreover the existing methods consider empirical decision rules.

The decision under uncertainty problem with qualitative preferences and un-
certainty has been studied in the setting of possibility theory assuming a com-
mensurateness hypothesis between the level of certainty and the preferences
priority. As in classical utility theory, pessimistic and optimistic criteria have
been proposed and justified on the basis of postulates [12]. This approach has
been adapted in the setting of possibilistic propositional logic where the avail-
able knowledge is described by formulas which are more or less certainly true,
and the goals are described in a separate prioritized propositional base.

W. Liu (Ed.): ECSQARU 2011, LNAI 6717, pp. 485–496, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



486 R. Confalonieri and H. Prade

This paper intends to propose a counterpart of the possibilistic logic-based
decision setting within two ASP-based frameworks: Logic Programs with Or-
dered Disjunction (LPODs) [4] and its possibilistic extension, Logic Programs
with Possibilistic Ordered Disjunction (LPPODs) [6]. The motivation behind this
work is twofold. First, it is interesting to bridge ASP with qualitative decision
making under uncertainty, since to the best of our knowledge any proposal has
been made in this respect. Secondly, the use of ASP allows to compute optimal
decision in a practical way. Hence, although we do not address implementation
issues here, our approach can be implemented on top of two existing ASP-based
solvers, psmodels1 and posPsmodels2 which provide a computation of the LPODs
and LPPODs semantics.

The paper is structured as follows. After presenting some background concepts
about qualitative decision in the possibilistic setting (Section 2), we address the
decision problem in ASP by means of LPODs when there is no uncertainty and no
priority between the goals (Section 3). Then, we extend this result to the general
case with uncertainty and prioritized preferences using LPPODs (Section 4). We
compare the proposed approach to previous works in Section 5. Finally, Section
6 concludes the paper.

2 Qualitative Decision in Stratified Propositional Bases

The logical view of a decision problem can be stated in the following way. Let K
be the knowledge base describing what is known about the world, D be the set of
decision literals, and P another base describing goals delimiting preferred states
of the world. Then, a decision, defined as a conjunction d of decision literals
such that K ∧ d � P (with K ∧ d consistent) is for sure a good decision (if it
exists) since it makes certain that all the goals are satisfied. Looking only for
such a decision corresponds to a cautious, pessimistic, attitude. A much more
optimistic attitude would correspond to consider also potential decisions d such
that K ∧ d ∧ P �= ⊥ (which expresses that the possibility of satisfying all the
goals remains open).

These two points of view can be extended to the case where K and P are
possibilistic logic bases [8], i.e. when uncertainty and preferences are matters
of degrees. Then K is a set of more or less certain pieces of knowledge and P
is a set of goals with associated levels of priority. The certainty and priority
levels are supposed to belong to the same linearly ordered scale S made of
n + 1 levels α1 = 1 > α2 > . . . > αn > αn+1 = 0. Two sets of postulates for
qualitative decision have been proposed that turn to be respectively equivalent to
the maximization of a pessimistic criterion and of an optimistic one [12,11]. These
two criteria are respectively estimating the necessity and the possibility that a
sufficiently satisfactory state is reached (in the sense of qualitative possibility
theory). The exact counterpart of these two criteria, when the knowledge and
the preferences are expressed under the form of two possibilistic knowledge bases,
1 http://www.tcs.hut.fi/Software/smodels/priority/
2 https://github.com/rconfalonieri/posPsmodels

http://www.tcs.hut.fi/Software/smodels/priority/
https://github.com/rconfalonieri/posPsmodels
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have been defined in [13,10]. Given n as an order reversing map of scale S such
that n(αi) = αn+2−i (1 ≤ i ≤ n + 1), Kα as the set of formulas in K having
certainty at least equal to α without their certainty levels, and Pβ as the set of
goals having a priority strictly greater than β without their priority levels, the
following criteria are defined [13,10]:

Definition 1. The pessimistic utility u∗(d) of a decision d is the maximal value
of α ∈ [0, 1] such that Kα ∧ d � Pn(α).

The optimistic utility u∗(d) of a decision d is the maximal value of n(α) ∈ [0, 1]
such that Kα ∧ d ∧ Pα �= ⊥.

with the convention max ∅ = 0. The intuition below u∗(d) is that we are inter-
ested in finding a decision d (if it exists) such that Kα ∧ d � Pβ with α high
and β low, i.e. such that the decision d together with the most certain part
of K entails the satisfaction of the goals, even those with low priority. Taking
β = n(α) requires that the certainty and priority scales be commensurate. The
optimistic utility can be understood in a similar way.

The computation of pessimistic and optimistic decisions has been explored in
[13], in the context of possibilistic logic, and later on in [10] by proposing an
Assumption Truth Maintenance System (ATMS)-based computation procedure.

An alternative way to compute the pessimistic criteria is to apply possibilistic
logic resolution rule. In fact, it has been proved that:

Lemma 1. [8] Let K = {(φi, αi) | 1 ≤ i ≤ n} be a possibilistic knowledge base,
Kα = {φi ∈ K | αi ≥ α}, (p, β) be a possibilistic formula, and d a literal. Then
Kα ∧ d �c p if and only if ∃α s.t. K ∧ (d, 1) �p (p, α) and α ≥ β, where �c and
�p are the classical and possibilistic logic inference respectively.

The aim of this paper is to characterize the qualitative decision making problem
under uncertainty in the setting of ASP. Along the paper we will use a running
example taking from [13] to exemplify our approach.

Example 1. An agent is supposed i) to know that if I have an umbrella then I
will be not wet; if it rains and I do not have an umbrella, then I will be wet; and
typically if it is cloudy it will rain (this rule is uncertain) ii) it is known that
the sky is cloudy, and iii) being not wet is more important than not carrying an
umbrella. The problem then is to decide whether or not to take an umbrella.

3 Making Decision in ASP

In this section we translate a decision problem into a problem tractable by
an ASP-based computation. Since the similarity between decision making and
abduction is striking [16], it is natural to encode a decision problem by means
of LPODs [4] which have been used by Brewka to model abduction [3].
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3.1 LPODs and Abduction

In this section we recall the basic notions underlying LPODs [4], and its use in
modeling an abduction problem [3]. In the following we assume that the reader
has some knowledge about answer set semantics (for details see [1]).

Let us consider a propositional language L, with atomic symbols called atoms.
A literal is an atom or a negated atom (by classical negation ¬). LPODs are sets
of rules using ordered disjunction × in the head of rules to express preferences
among literals in the head. An LPOD P is a finite set of ordered disjunction
rules of the form c1 × . . . × ck ← B+ ∧ not B−, where B+ = {b1, . . . , bm} and
B− = {bm+1, . . . , bm+n}, and the ci’s (1 ≤ i ≤ k) and bj ’s (1 ≤ j ≤ m + n)
are literals. An ordered disjunction rule (rule for short) r says that if body is
satisfied then some ci must be in the answer set, most preferably c1, or c2 if c1

is impossible, etc. If ∀r ∈ P , k = 1, then P is an extended normal program (i.e.
×-free); if k = 1 and n = 0, then P is an extended definite logic program (i.e.
×- and not-free). Rules with empty bodies are also known as facts (as usual we
omit ←) and rules with empty heads are special rules also called constraints.

An answer set of an LPOD P is defined as any consistent set of literals M (a
and ¬a do not belong to the same set) such that M is a minimal model of the
reduced program PM

× and that satisfies each rule of P (with PM
× =

⋃
r∈P rM

×
where rM

× = {ci ← B+ | ci ∈ M ∧M ∩ ({c1, . . . , ci−1} ∪ B−) = ∅}). An answer
set M can satisfy rules like r to different degrees, where smaller degrees are
better. Intuitively, if the body of r is satisfied, then the satisfaction degree is
the smallest index i such that ci ∈M (where ci is in the head of r). Otherwise,
the rule is irrelevant and it does not count. Thus, based on the satisfaction
degrees of single rules a global preference ordering on answer sets is defined. The
comparison criterion between two answer sets M1 and M2 is Pareto-based: M1

is preferred to M2 (M1 �M2) if and only if there is a rule satisfied better in M1

than in M2, and no rule is satisfied better in M2 than in M1.

Example 2. Let an LPOD P consist of rules {r1 = a× b ← not c, r2 = b × c ←
not d}. Then P has three answer sets M1 = {a, b}, M2 = {c}, M3 = {b} with
M1 �M2, M1 �M3, while M2 � M3 and M3 � M2.

Abduction is the process of generating explanations for a set of observations.
An abduction problem usually consists of a set of formulas H of possible expla-
nations, a set of formulas K representing background knowledge, and a set of
formulas O describing the observations to be explained. Then, an explanation
is a minimal subset H ′ of H such that H ′ ∪K is consistent and H ′ ∪K |= O.
Brewka [3] has proposed an encoding for the abduction based on LPODs and
the credulous inference relation |=c under answer set semantics.

Definition 2. Given an LPOD P and a set of literals S, P |=c S holds, if
∃M ∈ SEMLPOD(P ) such that S ⊆ M , where SEMLPOD(P ) is the mapping
which assigns to P the set of all answer sets of P .

Example 3. Let P be the LPOD in Example 2. Therefore the following conse-
quences are valid P |=c {a}, P |=c {b}, P |=c {a, b}, P |=c {c}.
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3.2 Fully Certain Knowledge and All-or-Nothing Preferences

We propose to translate a decision problem into a problem encoded by an LPOD.
In the following we restrict preferences to literals for space reason, even if |=c

could be extended to any propositional formula [5].

Definition 3. A decision making problem DM is represented as a tuple 〈K, D,
Pref〉 where K is an extended definite logic program3, D = {d1, . . . , dm} is a
set of decision literals, and Pref = {p1, . . . , pn} is a set of preference literals.

Example 4. Let us consider the decision problem in Example 1 without any
uncertainty and keeping all the goals as equally important. Then, K = {r1 =
¬w ← u, r2 = w ← r ∧ ¬u, r3 = r ← c, r4 = c}, D = {u,¬u}, and Pref =
{¬w,¬u}.4

As in the case of the logical view of the decision problem, we can define opti-
mal decisions according to the pessimistic criteria (the optimistic case could be
handled in a similar way). When K expresses completely certain knowledge and
Pref are all-or-nothing, optimal decisions, according to a pessimistic point of
view, are decisions that, in conjunction with the knowledge, lead to the satisfac-
tion of all the preferences:

Definition 4. Given a DM = 〈K, D, Pref〉, an optimal pessimistic decision is
a minimal set of decision literals Δ ⊆ D such that K ∪Δ |=c Pref . This set is
called the label of Pref and it is denoted by labelK(Pref).

3.3 Computation of Optimal Pessimistic Decisions

The computation of an optimal pessimistic decision is shown in Algorithm 1.
The basic DM translation is performed according to Definition 5 where the
main construction is borrowed from [3].

Definition 5. Given a DM = 〈K, D, Pref〉, a decision Δ for DM is computed
by an LPOD Pdm(〈K, D, Pref〉) = PK ∪ {← not p | p ∈ Pref} ∪ {¬ass(d) ×
ass(d) | d ∈ D} ∪ {d← ass(d) | d ∈ D}, where ass(d) reads d is assumed.

The generated LPOD Pdm can be explained as follows: the use of ordered dis-
junction rules generates all the possible combinations of decisions, while the
use of constraints eliminates the answer sets where preferences are not satis-
fied. As such, once the answer sets of Pdm are computed (SEMLPOD(Pdm)),
the optimal set of decisions (getDecisionLiterals(D,M)) which are minimal
(labelK(Pref)) belongs to the most preferred answer set only (maxPreferredAS
(SEMLPOD(Pdm))).
3 In the following we assume that rules in K are strict rules. In the case of default

rules, rules’ exceptions have to be properly handled. For this purpose the rewriting
procedure proposed in [7] can be employed.

4 We leave ¬ negated atoms explicit, although in ASP it is common to replace them
with new atoms symbols not belonging to the signature of the program [1].
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Algorithm 1. computePessimisticDecisions(DM) : 〈labelK(Pref), u∗〉
Input:

{
A DM = 〈K, D, Pref〉

Output:

{
labelK(Pref) : optimal decisions

u∗ : pessimistic utility

labelK(Pref) ← ∅; u∗ ← 0;
Pdm ← decisionMakingToLPOD(DM)
if (SEMLPOD(Pdm) 
= ∅) then

M ← maxPreferredAS(SEMLPOD(Pdm))
labelK(Pref) ← getDecisionLiterals(D,M)
u∗ ← 1

end if
return 〈labelK(Pref), u∗〉

Proposition 1. Let DM = 〈K, D, Pref〉 be a decision making problem and let
Pdm be the LPOD generated by Algorithm 1. Then, Δ ∈ labelK(Pref) is an
optimal pessimistic decision iff there is a consistent maximally preferred answer
set M of Pdm such that Δ = {d ∈ D | ass(d) ∈M}.

Example 5. Let us consider the DM in Example 4 and its computation with
Algorithm 1. LPOD Pdm = {r1 = ¬w ← u, r2 = w ← r ∧ ¬u, r3 = r ← c, r4 =
c, r5 = ¬ass(u)× ass(u), r6 = ¬ass(¬u)× ass(¬u), r7 = u← ass(u), r8 = ¬u←
ass(¬u), r9 =← not ¬w, r10 =← not ¬u}. By LPOD semantics, in this case,
there is not any answer set which can satisfy all the preferences. As such, the
set of best decisions is empty and u∗ = 0.

Similarly to what happens in possibilistic logic, this criterion can be extended to
the case where K is a possibilistic logic program and Pref is a set of possibilistic
literals, i.e. when uncertainty and preferences are matters of degrees.

4 Making Decision Under Uncertainty in ASP

To be able to capture uncertain knowledge and graded preferences we first in-
troduce LPPODs [6], the possibilistic extension of LPODs.

4.1 Basic Definitions of LPPODs

LPPODs are a recently defined logic programming framework based on LPODs
and possibilistic logic [6]. An LPPOD is a finite set of possibilistic ordered dis-
junction rules of the form r = α : c1 × . . . × ck ← B+∧ not B−, where α ∈ S
and c1 × . . . × ck ← B+∧ not B− is an ordered disjunction rule as defined in
Section 3.1. N(r) = α is the necessity degree representing the certainty level of
the information described by r. A possibilistic definite program is defined in a
similar way as in Section 3.1. Rules with empty bodies are known as possibilistic
facts and rules with empty heads are called possibilistic constraints.
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A possibilistic literal is a pair p = (l, β) ∈ L×S where L is a set of literals and
S a linearly ordered scale. N(p) = β, while the projection ∗ for a possibilistic
literal p is defined as p∗ = l. Given a set of possibilistic literals M , the projection
of ∗ over M is defined as M∗ = {p∗ | p ∈M}. The projection ∗ for a possibilistic
ordered disjunction rule r, is r∗ = c1×. . .×ck ← B+∧ not B− and the projection
of ∗ over P is defined as P ∗ = {r∗ | r ∈ P}. Notice that P ∗ is an LPOD.

The LPPODs semantics is defined in terms of a possibilistic counterpart of
the program reduction PM∗

× (which reduces an LPPOD to a possibilistic defi-
nite program, see [6]) and of a possibilistic consequence operator ΠTP (which
characterizes the possibilistic stable semantics for possibilistic definite programs
in terms of a possibilistic minimal model ΠCn, see [15]). Due to lack of space,
the complete definitions of PM∗

× and ΠTP are omitted and we refer to [6,15].
However, it is worthy to point out that the ΠTP captures the possibilistic modus
ponens of possibilistic logic [8]. In [6] it is also shown how LPPODs are a proper
generalization of LPODs, thus rule satisfaction degrees and the Pareto-based
comparison criterion between possibilistic answer sets are properly generalized
as well. As such, this criterion can be used to compare possibilistic answer sets.

Definition 6. [6] Let P be an LPPOD, M be a set of possibilistic literals such
that M∗ is an answer set of P ∗. M is a possibilistic answer set of P if and only
if M = ΠCn(PM∗

× ). SEMLPPOD(P ) is the mapping which assigns to P the set
of all possibilistic answer sets of P .

Example 6. Let an LPPOD P consist of rules {r1 = 1 : a× b ← c, r2 = α : c},
where 0 < α < 1. P has two possibilistic answer sets M1 = {(a, α), (c, α)},
M2 = {(b, α), (c, α)} with M1 �M2.

Based on the above definitions we generalize the notion of |=c to deal with sets
of possibilistic literals as:

Definition 7. Given an LPPOD P and a set of possibilistic literals S, P |=p S
holds, if ∃M ∈ SEMLPPOD(P ) such that S � M where the relation between
sets of possibilistic literals � is defined as:
S �M ⇐⇒ S∗ ⊆M∗ ∧ ∀ϕ, α, β, (ϕ, α) ∈ S ∧ (ϕ, β) ∈M then α ≤ β.

4.2 Uncertain Knowledge and Prioritized Preferences

Definitions in Section 3.2 are extended in the following way.

Definition 8. A decision making problem under uncertainty DMU is repre-
sented as a tuple 〈K, D, Pref〉 where, K is a possibilistic definite logic program,
D is a set of decision literals, and Pref = {((p1, β1) . . . , (pn, βn)} is a set of
possibilistic literals, where βi ∈ S is the priority of preference pi.

Let Kα denote the α-cut of K as Kα = {r∗ ∈ K | N(r) ≥ α}, and let Prefβ

be the β-cut of Pref as Prefβ = {(pi, βi)∗ ∈ Pref | βi ≥ β}. We also use the
notations Kα and Prefβ (with α < 1 and β < 1, 1 being the top element of the
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scale) for denoting the set of rules and the set of preferences with certainty and
priority strictly greater than α and β respectively. In particular K0 = K∗ and
P0 = Pref∗ (0 being the bottom element of the scale) where K∗ and Pref∗

denote the set of rules K and the set of preferences Pref without their certainty
and priority levels respectively.

Example 7. Let us consider the decision problem in Example 1 with uncertainty
levels and prioritized goals. Then, K = {r1 = 1 : ¬w ← u, r2 = 1 : w ←
r ∧ ¬u, r3 = λ : r ← c, r4 = 1 : c}, D = {u,¬u}, and Pref = {(¬w,1), (¬u, δ)},
where 0 < λ < 1 and 0 < δ < 1.

Definition 9. Given a DMU = 〈K, D, Pref〉, an optimal pessimistic deci-
sion is a set of decision literals Δ ⊆ D that maximizes α such that Kα ∪
Δ |=c Prefn(α). This set is called the label of Prefn(α) and it is denoted by
labelKα(Prefn(α)).

The above definition expresses the fact that an optimal pessimistic decision
belongs to an answer set computed with the most certain part of K and that
selected preferences, even those with low priority, are satisfied.

4.3 Classical ASP-Based Computation

We are now able to describe an algorithm for the pessimistic case. The algorithm
is based on successive computations of labels of formulas of Pref which can be
computed on the basis of Algorithm 1.

The behavior of Algorithm 2 can be described as follows. First, only the entire
knowledge base and highest labelled preferences are considered. If such label
is not empty, then we increase our expectations trying to prove less preferred
preferences by means of less knowledge. The procedure stops when a set of
preferences cannot be proved.

Example 8. As seen in Example 7, K and Pref contain two layers (both scales
are commensurate). First of all, according to function Inc(α), α is incremented to
the lowest non-nul value, i.e. α = min{λ, n(δ)}. Whatever the relative positions
of λ and δ, Kα = K∗. However, we have the following cases: (i) if λ > n(δ) then
α = n(δ) and we have to compute labelK∗(Prefδ). This means that Prefδ =
{¬w}, and Algorithm 1 will return the decision {u} as label for this preference.
As a next step, α = λ, but the computation of labelK∗(Pref∗) is found to be
empty. Therefore the set of best pessimistic decisions is in this case D = {u}
with utility u∗ = n(δ). (ii) If λ < n(δ) then α = λ and we have to compute
labelK∗(Prefn(λ)). As n(λ) > δ, Prefn(λ) = {¬w}, and labelK∗(¬w) = {u}. A
next step is performed where α = n(δ) and labelKn(δ)(Prefδ) = {u}. We then
have to perform a last step, where α = 1, but the computation of labelK1(Pref∗)
is equal to ∅. Therefore, the set of optimal decisions is in this case D = {u} with
utility u∗ = n(δ). (iii) If λ = n(δ) then α = λ = n(δ) and we have to compute
labelK∗(Prefδ) which is equal to the computation of labelK∗(¬w) which returns
{u}. Then a next step is performed where α = 1 but labelK1(Pref∗) = ∅.
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Algorithm 2. computePessimisticDecisionsUU(DMU) : 〈D, u∗〉
Input:

{
A DMU = 〈K, D, Pref〉

Output:

{
D : the set of best pessimistic decisions

u∗ : the utility of the best pessimistic decisions

α, u∗ ← 0; D ← ∅; finish ← false;
while (not finish) do

α ← Inc(α) // Inc(α) increases value of α into the immediately above value
if (α = 1) then

finish ← true
end if
labelKα(Prefn(α)) ← computePessimisticDecisions(〈Kα, D, Prefn(α)〉)
if (labelKα(Prefn(α)) = ∅) then

finish ← true
else

u∗ ← α
D ← labelKα(Prefn(α))

end if
end while
return 〈D, u∗〉

Thus the best pessimistic solution of the running example is always to take
an umbrella with utility n(δ). Notice that here optimal pessimistic decisions
does not depend on the exact value of λ and δ, and even not on their relative
positions. However, in the general case, only the positions of the priority and
certainty levels matter.

Proposition 2. Let DMU = 〈K, D, Pref〉 be a decision making problem un-
der uncertainty and let Pdm be the LPOD generated by Algorithm 1. Then,
Δ ∈ labelKα(Prefn(α)) such that Δ ⊆ D is an optimal pessimistic decision
maximizing α iff there is a consistent maximally preferred answer set M of Pdm

such that Δ = {d ∈ D | ass(d) ∈M}.

4.4 Possibilistic ASP-Based Computation

In the previous section we have provided a method for computing pessimistic
decisions reducing the problem to a successive computation of preference labels.
In general, the computation of pessimistic decisions (and pessimistic utility) can
also be realized by means of an approach closer to possibilistic logic inference,
based on the LPPODs semantics. This view is motivated by the possibilistic
logic property expressed in Lemma 1.

Algorithm 3 describes an LPPOD-based procedure to compute the set of pes-
simistic decisions. Pdm is constructed by a method decisionMakingToLPPOD
(DMU) which generalizes Definition 5. To each rule of Pdm it associates the corre-
sponding necessity values. However, preference constraints are not added, since
the preference satisfaction is checked by means of |=p.
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Algorithm 3. computePessimisticDecisionsUU(DMU) : 〈D, u∗〉
Input:

{
A DMU = 〈Pk, D, Pref〉

Output:

{
D : the set of best pessimistic decisions

u∗ : the utility of the best pessimistic decisions

D ← ∅; finish ← false
u∗ ← 0; γ∗ ← 1; β ← 1
Pdm ← decisionMakingToLPPOD(DMU)
while (γ∗ ≥ n(β)) and (not finish) do

if (Pdm |=p (pβ, ββ)) then
D ← getDecisionLiterals(SEMLPPOD(Pdm), pβ)
γ∗ ← getNecessityV aluesMin(SEMLPPOD(Pdm), pβ)
Dec(β)

else
finish ← true

end if
end while
u∗ ← min{γ∗, n(β)}
return 〈D, u∗〉

Example 9. Given the DMU in Example 7, the corresponding LPPOD Pdm is
{r1 = 1 : ¬w ← u, r2 = 1 : w ← r,¬u, r3 = λ : r ← c, r4 = 1 : c, r5 = 1 :
¬ass(u) × ass(u), r6 = 1 : ¬ass(¬u) × ass(¬u), r7 = 1 : u ← ass(u), r8 = 1 :
¬u← ass(¬u)}.

Returning to the description of the algorithm, γ∗ is the certainty value according
to which preferences belonging to a stratum n(β) of the preference base have
been satisfied. In fact, according to Definition 7 a preference literal is satisfied
if and only if its certainty value in a maximally preferred possibilistic answer
set of Pdm is greater than its priority. While this condition is satisfied, we keep
on iterating on the preferences in order to minimize β as much as possible.
getDecisionLiterals returns the sets of decision literals on the basis of the
maximally preferred possibilistic answer sets of Pdm which satisfy pβ . In case
there is more than one possibilistic answer set satisfying pβ, the smallest certainty
value by which pβ has been proved is retrieved by getNecessityValuesMin.

Example 10. At the beginning γ∗ = 1 and β = 1, i.e. we try to satisfy higher
prioritized preferences with the most certain part of Pk. By applying the LPPOD
semantics to Pdm in Example 9 two maximally preferred possibilistic answer sets
are obtained: M1 = {(¬u, 1), (ass(¬u), 1), (c, 1), (r, λ), (w, λ), (¬ass(u), 1)} and
M2 = {(u, 1), (ass(u), 1), (c, 1), (r, λ), (¬w, 1), (¬ass(¬u), 1)}. Pdm |=p (¬w, 1)
since (¬w, 1) 	 M2. Thus, D = M∗

2 ∩ D = {u} and γ∗ = N(¬w) = 1. The
next level of β to be considered is δ. Since γ∗ ≥ δ whatever δ value is, we try to
satisfy (¬u, δ). It is easy to see how (¬u, δ) �	 M1 and (¬u, δ) �	 M2. Thus, we
are finished. Then the set of best pessimistic decisions is D = {u} with an utility
u∗ = min{1, n(δ)}, i.e. u∗ = n(δ). This agrees, as expected, with the label-based
computation presented in the previous section.
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Proposition 3. Let DMU = 〈K, D, Pref〉 be a decision making problem un-
der uncertainty, let Pdm be the LPPOD built using Algorithm 3. Then, Δ ∈
labelKα(Prefn(α)) s.t. Δ ⊆ D is an optimal pessimistic decision maximizing α iff
there exists a consistent possibilistic answer set M of Pdmα

= {r ∈ Pdm | N(r) ≥
α} s.t. {(pi, βi) ∈ Pref | βi > n(α)} �M and Δ = {d ∈ D | ass(d) ∈M∗}.

5 Related Work

To the best of our knowledge there are only few works in the literature about
modeling qualitative decision problems in ASP [2,14]. These two approaches
use the ordered disjunction connective × introduced in [4] to represent prefer-
ences to rank-order different possible states of the world represented as different
answer sets. However, they differ on the way uncertainty is handled. In [2] uncer-
tainty is not explicitly represented, since the method is based on the assumption
that states of the world which are not normal are disregarded, while taken-into-
account states are considered plausible. As such, states can be either negligible or
plausible. But, in the latter case, no distinction between the degrees of plausibil-
ity of the states can be made, and no further distinctions between the generated
answer sets are possible. Grabos in [14] proposed to use × not only for modeling
preferences but also for modeling the plausibility degrees of states. Depending
whether a commensurability assumption between the two degrees of plausibility
and of preferences is made (or not), decision rules give more importance (or
not) to one of the degree in order to select the best answer set according to
the attitude of the decision maker w.r.t. the risk. Although this method offers a
way to represent uncertainty, decision rules are empirical and are not based on
postulates like the possibilistic criteria. Moreover, although our commensurabil-
ity assumption is a strong assumption, it has been noticed in [9] that working
without it leads to an ineffective decision method.

6 Concluding Remarks

In this paper we have presented an ASP-based methodology to compute decision
making problems under uncertainty by considering two knowledge bases whose
degrees of certainty and priority are commensurate. We have first shown how to
encode fully certain knowledge and all-or-nothing preferences, and then, on top
of that, how to compute optimal pessimistic decisions.

The reader may be concerned why we have chosen not to take into account
ASP optimization techniques (via objective functions) and to compute prefer-
ences at meta-level rather than inside LPODs and LPPODs. Our design choice
can be motivated by the need of handling two separate knowledge bases and
of having a formal handling of uncertainty (in terms of possibilistic logic). In
this way we have been able to provide a possibilistic ASP-based methodology
which computes the same decisions of the label-based computation. This result
agrees both with the classical and the possibilistic resolution views for computing
optimal decisions in possibilistic logic.
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As general improvements, the decision method used is not able to identify
decisions that may satisfy all the goals from the highest level to the lowest one,
except one goal at some level β. In fact the algorithm stops at the first unsatisfied
preference and does not proceed with preferences at lower strata. The algorithm
can be modified accordingly to deal with this case. We also plan to extend the
definition of |=c and |=p to handle more complex preferences expressions.
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4. Brewka, G., Niemelä, I., Syrjänen, T.: Logic Programs with Ordered Disjunction.
Computational Intelligence 20(2), 333–357 (2004)
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Abstract. We study in the setting of probabilistic default reasoning
under coherence the quasi conjunction, which is a basic notion for defin-
ing consistency of conditional knowledge bases, and the Goodman &
Nguyen inclusion relation for conditional events. We deepen two results
given in a previous paper: the first result concerns p-entailment from a
finite family F of conditional events to the quasi conjunction C(S), for
each nonempty subset S of F ; the second result analyzes the equiva-
lence between p-entailment from F and p-entailment from C(S), where
S is some nonempty subset of F . We also characterize p-entailment by
some alternative theorems. Finally, we deepen the connections between
p-entailment and inclusion relation, by introducing for a pair (F , E|H)
the class of the subsets S of F such that C(S) implies E|H . This class is
additive and has a greatest element which can be determined by applying
a suitable algorithm.

Keywords: Coherence, probabilistic default reasoning, quasi conjunc-
tion, Goodman & Nguyen inclusion relation, QAND rule, p-entailment.

1 Introduction

Nonmonotonic reasoning typically concerns situations of partial knowledge where
conclusions, which are reached from a set of premises, may be retracted when
some premises are added. This topic is especially important in the field of artifi-
cial intelligence and has been studied by many authors, by using symbolic and/or
numerical formalisms (see, e.g. [2,3,4,9]). Among the numerical formalisms con-
nected with nonmonotonic reasoning, a remarkable theory is represented by the
Adams probabilistic logic of conditionals ([1]). The approach of Adams can be
developed with full generality by exploiting a coherence-based probabilistic rea-
soning; as is well known, in the setting of coherence, conditional probabilities
can be directly assigned to conditional assertions, without assuming that condi-
tioning events have a positive probability ([5]). In Adams work a basic notion
is the quasi conjunction of conditionals, which has a strict relationship with the
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property of consistency of conditional knowledge bases. Quasi conjunction also
plays a relevant role in the work of Dubois and Prade on conditional objects
([4]), where a suitable QAND rule is introduced to characterize entailment from
a conditional knowledge base. Recently ([7]), we have studied some probabilis-
tic aspects related with the QAND rule and with the conditional probabilistic
logic of Adams. In this paper, among other things, we continue the study of the
quasi conjunction and the Goodman & Nguyen inclusion relation, by examining
aspects especially related with results obtained in [2].

The paper is organized as follows: In Section 2 we first recall some notions
and results on coherence; then, we recall basic notions in probabilistic default
reasoning; finally, we recall the operation of quasi conjunction and the inclusion
relation for conditional events. In Section 3 we first define, for two finite families
of conditional events F and Γ , the p-entailment of Γ fromF ; then, we deepen two
results, given in [7], connected with the probabilistic semantics of QAND rule;
the first result concerns p-entailment from a family of conditional events F to
the quasi conjunction C(F); the second result analyzes many aspects connected
with the equivalence between p-entailment from F and p-entailment from C(S),
where S is some nonempty subset of F ; then, we characterize p-entailment by
some alternative theorems. In Section 4, among other things, we introduce for
a pair (F , E|H) the class K of the subsets S of F such that C(S) implies E|H ,
by showing that K is additive and has a greatest element (if any) which can be
determined by a suitable algorithm. In Section 5 we give some conclusions.

2 Some Preliminary Notions

In this section we recall some basic notions and results.

Basic notions on coherence. Given any events A and B, we simply write A ⊆ B
to denote that A logically implies B. Moreover, we denote by AB (resp., A∨B)
the logical intersection, or conjunction (resp., logical union, or disjunction). The
conditional event B|A, with A �= ∅, is looked at as a three-valued logical entity
which is true, or false, or indeterminate, according to whether AB is true, or ABc

is true, or Ac is true. We use the same symbols for events and their indicators.
Given a real function P : F → R, where F is an arbitrary family of conditional
events, let us consider a subfamily Fn = {E1|H1, . . . , En|Hn} ⊆ F , and the
vector Pn = (p1, . . . , pn), where pi = P (Ei|Hi) , i = 1, . . . , n. We denote by Hn

the disjunction H1∨· · ·∨Hn. Notice that, as EiHi∨Ec
i Hi∨Hc

i = Ω , i = 1, . . . , n,
where Ω is the sure event, by expanding the expression

∧n
i=1(EiHi∨Ec

i Hi∨Hc
i ),

we can represent Ω as the disjunction of 3n logical conjunctions, some of which
may be impossible. The remaining ones are the constituents generated by the
family Fn. We denote by C1, . . . , Cm the constituents contained in Hn and (if
Hn �= Ω) by C0 the further constituent Hc

n = Hc
1 · · ·Hc

n, so that

Hn = C1 ∨ · · · ∨ Cm , Ω = Hc
n ∨Hn = C0 ∨C1 ∨ · · · ∨Cm , m + 1 ≤ 3n .

With the pair (Fn,Pn) we associate the random gain G =
∑n

i=1 siHi(Ei − pi),
where s1, . . . , sn are n arbitrary real numbers. Let gh be the value of G when
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Ch is true; of course g0 = 0. Denoting by G|Hn the restriction of G to Hn, it is
G|Hn ∈ {g1, . . . , gm}. Then, we have

Definition 1. The function P defined on F is said coherent if and only if, for
every integer n, for every finite sub-family Fn ⊆ F and for every s1, . . . , sn, one
has: min G|Hn ≤ 0 ≤ max G|Hn.

With each Ch contained in Hn we associate a point Qh = (qh1, . . . , qhn), where
qhj = 1, or 0, or pj , according to whether Ch ⊆ EjHj , or Ch ⊆ Ec

jHj , or
Ch ⊆ Hc

j . Denoting by I the convex hull of the points Q1, . . . , Qm, based on the
penalty criterion, the following result can be proved

Theorem 1. The function P is coherent if and only if, for every finite subfamily
Fn ⊆ F , one has Pn ∈ I.

The condition Pn ∈ I amounts to solvability of the following system Σ in the
unknowns λ1, . . . , λm

(Σ)
{∑m

h=1 qhjλh = pj , j = 1, . . . , n ;∑m
h=1 λh = 1 , λh ≥ 0 , h = 1, . . . , m.

Checking coherence of the assessment Pn on Fn. Let S be the set of solutions
Λ = (λ1, . . . , λm) of the system Σ. Then, define

Φj(Λ) = Φj(λ1, . . . , λm) =
∑

r:Cr⊆Hj
λr , j = 1, . . . , n ;

Mj = maxΛ∈S Φj(Λ) , j = 1, . . . , n ; I0 = {j : Mj = 0} .

Notice that I0 ⊂ {1, . . . , n}. We denote by (F0,P0) the pair associated with I0.
Given the pair (Fn,Pn) and a subset J ⊂ {1, . . . , n}, we denote by (FJ ,PJ) the
pair associated with J and by ΣJ the corresponding system. We observe that
ΣJ is solvable if and only if PJ ∈ IJ , where IJ is the convex hull associated
with the pair (FJ ,PJ). Then, we have

Theorem 2. Given a probability assessment Pn on the family Fn, if the system
Σ associated with (Fn,Pn) is solvable, then for every J ⊂ {1, . . . , n}, such that
J \ I0 �= ∅, the system ΣJ associated with (FJ ,PJ) is solvable too.

By the previous results, we obtain

Theorem 3. The assessment Pn on Fn is coherent if and only if the following
conditions are satisfied: (i) Pn ∈ I; (ii) if I0 �= ∅, then P0 is coherent.

Then, we can check coherence by the following procedure:

Algorithm 1. Let the pair (Fn,Pn ) be given.

1. Construct the system Σ and check its solvability.
2. If the system Σ is not solvable then Pn is not coherent and the procedure

stops, otherwise compute the set I0.
3. If I0 =∅ then Pn is coherent and the procedure stops; otherwise set (Fn,Pn)=

(F0,P0) and repeat steps 1-3.
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Basic notions on probabilistic default reasoning. We now give the notions of
p-consistency and p-entailment of Adams ([1]), as defined in the setting of co-
herence in ([5,6]). Given a conditional knowledge base KBn = {Hi|∼ Ei , i =
1, . . . , n}, we denote by Fn = {Ei|Hi , i = 1, . . . , n} the associated family of
conditional events.

Definition 2. The knowledge base KBn = {Hi|∼ Ei , i = 1, . . . , n} is
p-consistent if and only if, for every set of lower bounds {αi, i = 1, . . . , n},
with αi ∈ [0, 1), there exists a coherent probability assessment {pi, i = 1, . . . , n}
on Fn, with pi = P (Ei|Hi), such that pi ≥ αi, i = 1, . . . , n.

We say that Fn is p-consistent when the associated knowledge base KBn is
p-consistent.

Remark 1. We point out that p-consistency of Fn is equivalent to coherence of
the assessment (p1, p2, . . . , pn) = (1, 1, . . . , 1) on Fn (strict p-consistency, [5]).

Definition 3. A p-consistent knowledge base KBn = {Hi|∼ Ei , i = 1, . . . , n}
p-entails the conditional A|∼ B, denoted KBn ⇒p A|∼ B, if and only if there
exists a nonempty subset Γ ⊆ {1, . . . , n} such that, for every α ∈ [0, 1), there
exists a set of lower bounds {αi, i ∈ Γ}, with αi ∈ [0, 1), such that for all
coherent probability assessments {z, pi, i ∈ Γ} defined on {B|A, Ei|Hi , i ∈ Γ},
with z = P (B|A) and pi = P (Ei|Hi), if pi ≥ αi for every i ∈ Γ , then z ≥ α.

Remark 2. We say that a family of conditional events Fn p-entails a conditional
event B|A when the associated knowledge base KBn p-entails the conditional
A|∼ B. Therefore, p-entailment of B|A from Fn amounts to the existence of a
nonempty subset S = {Ei|Hi, i ∈ Γ} of Fn such that, defining P (Ei|Hi) =
pi, P (B|A) = z, for every α ∈ [0, 1), there exist lower bounds αi, i ∈ Γ , with
αi ∈ [0, 1), such that pi ≥ αi, i ∈ Γ, implies z ≥ α.

Quasi conjunction and inclusion relation. We recall below the notion of quasi
conjunction of conditional events.

Definition 4. Given any events A, H , B, K, with H �= ∅, K �= ∅, the quasi
conjunction of the conditional events A|H and B|K, as defined in [1], is the
conditional event C(A|H, B|K) = (AH ∨ Hc) ∧ (BK ∨ Kc)|(H ∨ K). More in
general, given a family of n conditional events Fn = {Ei|Hi, i = 1, . . . , n}, it is
C(Fn) = C(E1|H1, . . . , En|Hn) =

∧n
i=1(EiHi ∨Hc

i )
∣∣(∨n

i=1 Hi).

Quasi conjunction is associative; that is, for every subset J ⊂ {1, . . . , n}, defining
Γ = {1, . . . , n} \ J , it holds that C(Fn) = C(FJ ∪ FΓ ) = C[C(FJ), C(FΓ )].

Assuming A, H, B, K logically independent, we have ([6]): (i) the probabil-
ity assessment (x, y) on {A|H, B|K} is coherent for every (x, y) ∈ [0, 1]2; (ii)
given a coherent assessment (x, y) on {A|H, B|K}, the probability assessment
P = (x, y, z) on F = {A|H, B|K, C(A|H, B|K)}, with z = P [C(A|H, B|K)], is a
coherent extension of (x, y) if and only if

max(x + y − 1, 0) = l ≤ z ≤ u =
{ x+y−2xy

1−xy , (x, y) �= (1, 1),
1, (x, y) = (1, 1).



Quasi Conjunction and Inclusion Relation in Probabilistic Default Reasoning 501

A more general analysis for quasi conjunction, concerning the lower and upper
bounds and some related aspects, has been given in [7].

The notion of logical inclusion among events has been generalized to conditional
events by Goodman & Nguyen in [8]. We recall below this generalized notion.

Definition 5. Given two conditional events A|H and B|K, we say that A|H
implies B|K, denoted by A|H ⊆ B|K, if and only if AH true implies BK true
and BcK true implies AcH true; i.e., if and only if AH ⊆ BK and BcK ⊆ AcH .

3 Probabilistic Entailment and Quasi Conjunction

We recall that in [4], based on a three-valued calculus of conditional objects, a
logic for nonmonotonic reasoning has been proposed. Conditional objects can
be seen as the counterpart of the conditional assertions and, for what concerns
logical operations, we can look at them as conditional events. Given a set of con-
ditional objects KB, we denote by C(KB) the quasi conjunction of the conditional
objects in KB. The inclusion relation ⊆ among conditional events corresponds
to the logical entailment |= among conditional objects in [4], where the following
definition has been given.

Definition 6. KB entails a conditional object q|p if and only if there exists a
nonempty subset S of KB such that C(S) |= q|p, or p |= q.

Moreover, in [4] the following inference rule has been introduced:

(QAND) KB ⇒ C(KB) .

Definition 3 can be generalized to p-entailment of a family (of conditional events)
Γ from another family F in the following way.

Definition 7. Given two p-consistent finite families of conditional events F and
Γ , we say that F p-entails Γ if F p-entails E|H , for every E|H ∈ Γ .

We remark that, from Definition 3, we trivially have that F p-entails E|H , for
every E|H ∈ F ; then, by Definition 7, it immediately follows

F ⇒p S , ∀S ⊆ F . (1)

The next result, related to Adams work, generalizes Theorem 6 given in [7] and
deepens in the framework of coherence the probabilistic semantics of the QAND
rule introduced by Dubois and Prade in their paper on conditional objects ([4]).

Theorem 4. Given a p-consistent family of conditional events Fn, for every
nonempty subfamily S = {Ei|Hi, i = 1, . . . , s} ⊆ Fn, we have

Fn ⇒p C(S) . (2)

Proof. Based on Definition 7 and formula (1), in order to prove (2) it is enough
to show that S p-entails C(S). This amounts to show that, for every ε ∈ (0, 1]
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there exist δ1 ∈ (0, 1], . . . , δs ∈ (0, 1] such that, for every coherent assessment
(p1, . . . , ps, z) on S ∪ {C(S)}, where pi = P (Ei|Hi), z = P (C(S)), if p1 ≥ 1 −
δ1, . . . , ps ≥ 1− δs, then z ≥ 1− ε.

We distinguish two cases: (i) the events Ei, Hi, i = 1, . . . , s, are logically in-
dependent; (ii) the events Ei, Hi, i = 1, . . . , s, are logically dependent.

(i) The case s = 2, with F = {A|H, B|K}, has been already examined in
[6], by observing that, given any coherent assessment (x, y, z) on the family
{A|H, B|K, C(A|H, B|K)} and any number γ ∈ [0, 1), for every α1 ∈ [γ, 1),
α2 ∈ [γ, 1), with α1 + α2 ≥ γ + 1, one has

(x, y) ∈ [α1, 1]× [α2, 1] =⇒ z ≥ α1 + α2 − 1 ≥ γ . (3)

We observe that, for γ = 1− ε, α1 = 1− δ1, α2 = 1− δ2, with α1 + α2 ≥ γ + 1,
i.e. δ1 + δ2 ≤ ε, formula (3) becomes

x ≥ 1− δ1, y ≥ 1− δ2 =⇒ z ≥ 1− δ1 + 1− δ2 − 1 ≥ 1− ε .

More in general, denoting by Lγ the set of the coherent assessments (p1, . . . , ps)
on S such that, for each (p1, . . . , ps) ∈ Lγ , one has P [C(S)] ≥ γ, it can be proved
(see [7], Theorem 4) that

Lγ = {(p1, . . . , ps) ∈ [0, 1]s : p1 + · · ·+ ps ≥ γ + s− 1} .

In particular, given any ε > 0, it is

L1−ε = {(p1, . . . , ps) ∈ [0, 1]s : p1 + · · ·+ ps ≥ s− ε} .

Then, given any positive vector (δ1, . . . , δs) in the set

Δε = {(δ1, . . . , δs) : δ1 + · · ·+ δs ≤ ε} ,

if (p1, . . . , ps, z) is a coherent assessment on S∪{C(S)} such that p1 ≥ 1−δ1, . . .,
ps ≥ 1−δs, it follows p1 + · · ·+ps ≥ s−ε, so that (p1, . . . , ps) ∈ L1−ε, and hence
z = P [C(S)] ≥ 1− ε. Therefore S ⇒p C(S) and hence Fn ⇒p C(S), ∀S ⊆ Fn.
(ii) Since the events Ei, Hi, i = 1, . . . , s are logically dependent, it is

L1−ε ⊆ {(p1, . . . , ps) ∈ [0, 1]s : p1 + · · ·+ ps ≥ s− ε} ,

with L1−ε �= ∅ by p-consistency of Fs. Then, by the same reasoning as in case
(i), we still obtain S ⇒p C(S), and hence Fn ⇒p C(S), for every S ⊆ Fn.

The next result characterizes in the setting of coherence Adams’ notion of
p-entailment of a conditional event E|H from a family Fn. It generalizes Theorem
7 given in [7] and provides a probabilistic semantics to the notion of entailment
given in Definition 6 for conditional objects.

Theorem 5. Let be given a p-consistent family Fn = {E1|H1, . . . , En|Hn} and
a conditional event E|H . The following assertions are equivalent:
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1. Fn p-entails E|H ;
2. The assessment P = (1, . . . , 1, z) on F = Fn ∪ {E|H}, where P (Ei|Hi) = 1,
i = 1, . . . , n, P (E|H) = z, is coherent if and only if z = 1;
3. The assessment P = (1, . . . , 1, 0) on F = Fn ∪ {E|H}, where P (Ei|Hi) = 1,
i = 1, . . . , n, P (E|H) = z, is not coherent;
4. Either there exists a nonempty S ⊆ Fn such that C(S) implies E|H , or H ⊆ E.
5. There exists a nonempty S ⊆ Fn such that C(S) p-entails E|H .

Proof. We will prove that 1.⇒ 2.⇒ 3.⇒ 4.⇒ 5.⇒ 1.
(1.⇒ 2.) Assuming that Fn p-entails E|H , then EH �= ∅, so that the assessment
z = 1 on E|H is coherent; moreover, the assessment (1, . . . , 1, z) on Fn∪{E|H},
where z = P (E|H), is coherent if and only if z = 1. In fact, if by absurd the
assessment (1, . . . , 1, z) were coherent for some z < 1, then given any ε, such
that 1− ε > z, the condition

P (Ei|Hi) = 1 , i = 1, . . . , n =⇒ P (E|H) > 1− ε ,

which is necessary for p-entailment of E|H from Fn, would be not satisfied.
(2.⇒ 3.) It immediately follows by the previous point, when z = 0.
(3.⇒ 4.) As the assessment P = (1, . . . , 1, 0) on F = Fn∪{E|H} is not coherent,
by applying Algorithm 1 to the pair (F ,P), at a certain iteration, say the k-th
one, the initial system Σk will be not solvable and the algorithm will stop. The
system Σk will be associated with a pair, say (Fk,Pk), where Fk = Sk ∪{E|H},
with Sk ⊆ Fn, and where Pk = (1, . . . , 1, 0) is the sub-vector of P associated
with Fk. We distinguish two cases: (i) Sk �= ∅; (ii) Sk = ∅.
(i) For the sake of simplicity, we set Sk = {E1|H1, . . . , Es|Hs}, with s ≤ n; then,
we denote by C1, . . . , Cm the constituents generated by the family Sk ∪ {E|H}
and contained in H1 ∨ · · · ∨Hs ∨H . Now, we will prove that C(Sk) ⊆ E|H .

We have C(Sk) = (E1H1 ∨Hc
1) ∧ · · · ∧ (EsHs ∨Hc

s) | (H1 ∨ · · · ∨Hs) and, if
it were C(Sk) 
 E|H , then there would exist at least a constituent, say C1, of
the following kind:
(a) C1 = B1A1 · · ·BrArA

c
r+1 · · ·Ac

sE
cH , 1 ≤ r ≤ s, or

(b) C1 = Hc
1H

c
2 · · ·Hc

sEcH , or
(c) C1 = B1A1 · · ·BrArA

c
r+1 · · ·Ac

sH
c, 1 ≤ r ≤ s,

where Bi|Ai = Eji |Hji , i = 1, . . . , s, for a suitable permutation (j1, . . . , js) of
(1, . . . , s).
For each one of the three cases, (a), (b), (c), the vector (λ1, λ2, . . . , λm) =
(1, 0, . . . , 0), associated with the constituents C1, C2, . . . , Cm, would be a solu-
tion of the system Σk; then, Σk would be solvable, which would be a contradic-
tion; hence, it cannot exist any constituent of kind (a), or (b), or (c); therefore,
C(Sk) ⊆ E|H . Hence the assertion 4 is true for S = Sk.

(ii) If Sk = ∅, then Fk = {E|H} and the algorithm stops as the assessment
P (E|H) = 0 is not coherent; hence EcH = ∅ which amounts to H ⊆ E.
(4. ⇒ 5.) If C(S) ⊆ E|H for some nonempty S ⊆ Fn, then, observing that
by p-consistency of Fn the assessment P [C(S)] = 1 is coherent, C(S) p-entails
E|H . Otherwise, if H ⊆ E, then the unique coherent assessment on E|H is
P (E|H) = 1 and trivially C(S) p-entails E|H for every nonempty S ⊆ Fn.
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(5. ⇒ 1.) Assuming that C(S) p-entails E|H for some nonempty S ⊆ Fn, by
Theorem 4 we have Fn ⇒p S ⇒p C(S) ⇒p E|H . Therefore Fn ⇒p E|H .

The result below, which immediately follows by Theorem 5, illustrates the rela-
tion between p-entailment and the inclusion relation among conditional events.

Corollary 1. Given two conditional events A|B, E|H , with AB �= ∅, we have

A|B ⇒p E|H ⇐⇒ A|B ⊆ E|H or H ⊆ E .

Proof. Since AB �= ∅, the family {A|B} is p-consistent. Then, the proof imme-
diately follows by applying Theorem 5 with n = 1, F1 = {A|B}.

We observe that p-consistency of Fn ∪ {E|H} is not sufficient for the
p-entailment of E|H from Fn. More precisely, we have

Theorem 6. Given a family of n conditional events Fn = {E1|H1, . . . , En|Hn}
and a conditional event E|H , assume that Fn ∪ {E|H} is p-consistent. Then,
exactly one of the following alternatives holds:
(i) Fn p-entails E|H ;
(ii) the assessment P = (1, . . . , 1, z) on Fn ∪ {E|H}, where P (Ei|Hi) = 1, i =
1, . . . , n, P (E|H) = z, is coherent for every z ∈ [0, 1].

Proof. If statement (i) holds, by Theorem 5 the assessment P0 = (1, . . . , 1, 0) on
F = Fn ∪ {E|H} is not coherent; hence, statement (ii) does not hold.
Conversely, if (i) doesn’t hold, by Theorem 5 the assessment P0 = (1, . . . , 1, 0)
on Fn ∪ {E|H} is coherent. Moreover, by p-consistency of Fn ∪ {E|H} the
assessment P1 = (1, . . . , 1, 1) on Fn ∪ {E|H} is coherent. Hence, the assessment
P = (1, . . . , 1, z) on Fn ∪ {E|H} is coherent for every z ∈ [0, 1]; in other words,
statement (ii) holds.

When Fn ∪{E|H} is not p-consistent, both statements (i) and (ii), in Theorem
6, do not hold. Concerning this aspect, we have

Theorem 7. Given a p-consistent family of n conditional events Fn and a fur-
ther conditional event E|H , let P = (1, . . . , 1, z) be a probability assessment on
Fn ∪ {E|H}, where P (Ei|Hi) = 1, i = 1, . . . , n, P (E|H) = z. Then, exactly one
of the following statements is true:
(a) P is coherent if and only if z = 1;
(b) P is coherent for every z ∈ [0, 1];
(c) P is coherent if and only if z = 0.

Proof. We distinguish two cases: 1) Fn ∪ {E|H} p-consistent; 2) Fn ∪ {E|H}
not p-consistent. In case 1 statements (a) and (b) coincide with statements (i)
and (ii) in Theorem 6; then, exactly one of them holds.

In case 2 the assessment (1, . . . , 1, 1) on Fn ∪ {E|H} is not coherent; that is,
the assessment (1, . . . , 1, 0) on Fn ∪ {Ec|H} is not coherent and, by Theorem 5,
Fn p-entails Ec|H . Then, the assessment (1, . . . , 1, p) on Fn∪{Ec|H} is coherent
if and only if p = 1, which amounts to say that the assessment (1, . . . , 1, z) on
Fn ∪ {E|H} is coherent if and only if z = 0; hence, statement (c) holds.
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4 Further Results on Quasi Conjunction and Inclusion
Relation

In this section we deepen the analysis of the quasi conjunction and the Goodman
& Nguyen inclusion relation, by examining aspects which are especially related
with results obtained in [2]. Given a family of n conditional events Fn and a
further conditional event E|H , we give some results on the subsets S of Fn such
that C(S) ⊆ E|H . We start by showing that the relation C(S) ⊆ E|H amounts
to unsolvability of a suitable system Σ.

Theorem 8. Given a p-consistent family of s conditional events S = {E1|H1,
. . . , Es|Hs}, with s ≥ 1, and a further conditional event E|H , let P = (1, . . . , 1, 0)
be a probability assessment on F = S ∪ {E|H}. Moreover, let Σ be the starting
system associated with the pair (F ,P) when applying Algorithm 1. We have

Σ unsolvable ⇐⇒ C(S) ⊆ E|H . (4)

Proof. (⇒) If Σ is unsolvable, then P = (1, . . . , 1, 0) is not coherent and, by
applying the part (3 ⇒ 4) of Theorem 5 with Fn = S, Algorithm 1 stops at
Σk = Σ,Sk = S. Then, we have C(Sk) = C(S) ⊆ E|H .

(⇐) Assume that C(S) ⊆ E|H and, by absurd, that Σ is solvable. This
means that the point P belongs to the convex hull I of the points Qh associated
with the pair (F ,P); that is, P is a linear convex combination of the points
Qh. Then, as P is a vertex of the unitary hypercube [0, 1]s+1, which contains I,
the condition P ∈ I is satisfied if and only if there exists a point Qh, say Q1,
which coincides with P . Then, there exists at least a constituent C1 of the kind
(a), or (b), or (c), as defined in the proof of Theorem 5, and this implies that
C(S) 
 E|H , which contradicts the hypothesis.

Given a family Fn and a further conditional event E|H , let K(Fn, E|H) be the
class of all nonempty subsets S of Fn such that C(S) ⊆ E|H . As the family Fn

is finite, the class K(Fn, E|H) is finite too. For the sake of simplicity, we simply
denote K(Fn, E|H) by K. In the next result we show that K is additive.

Theorem 9. Given two nonempty subsets S′ and S′′ of Fn and a conditional
event E|H , assume that S′ ∈ K, S′′ ∈ K. Then, S′ ∪ S′′ ∈ K.

Proof. By the associative property, it is C(S′ ∪ S′′) = C(C(S′) , C(S′′)); then:
(i) C(S′ ∪ S′′) true implies C(S′) true, or C(S′′) true; hence, E|H is true;
(ii) E|H false implies that C(S′) and C(S′′) are both false; hence, C(S′ ∪ S′′) is
false. Therefore: C(S′ ∪ S′′) ⊆ E|H . Hence S′ ∪ S′′ ∈ K; that is K is additive.

It immediately follows

Corollary 2. Given two subsets S and U of Fn, assume that S ⊂ U , with
C(S) ⊆ E|H, C(U) 
 E|H . Then: C(U \ S) 
 E|H .

Proof. The proof immediately follows by Theorem 9 by observing that, if
C(U \ S) ⊆ E|H , then C[S ∪ (U \ S)] = C(U) ⊆ E|H , which contradicts the
hypothesis.
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We observe that A|H ⊆ B|K amounts to HcBcK = AHBcK = AHKc = ∅;
then C(A|H, B|K) = (AH ∨HcBK) | (H ∨K) and, as we can verify, it is

A|H ⊆ C(A|H, B|K) ⊆ B|K . (5)

Theorem 10. Let Fn be a family of n conditional events, with n ≥ 2, and
E|H be a further conditional event. Moreover, let S and Γ be two nonempty
subfamilies of Fn such that C(S) ⊆ C(Γ ) and C(S ∪ Γ ) ⊆ E|H . Then, we have
C(S) ⊆ E|H .

Proof. By the associative property of quasi conjunction we have C(C(S), C(Γ )) =
C(S ∪ Γ ); then, by applying (5), with A|H = C(S) and B|K = C(Γ ), we obtain
C(S) ⊆ C(S ∪ Γ ) ⊆ C(Γ ). As C(S ∪ Γ ) ⊆ E|H , it follows C(S) ⊆ E|H .

We observe that, in case H ⊆ E, trivially Fn p-entails E|H and at the same
time the class K could be empty. We have

Theorem 11. Given a family of n conditional events Fn and a further condi-
tional event E|H , with H 
 E, assume that Fn p-entails E|H . Then, the class
K is not empty and has a greatest element S∗. Moreover, for every nonempty
subset S of Fn, it holds that S p-entails E|H if and only if S ∈ K.

Proof. Since Fn p-entails E|H , by assertion 4 in Theorem 5, K is not empty;
moreover, by recalling Theorem 9, K is additive. Then, denoting by S∗ the union
of all elements of K, it holds that S∗ ∈ K. Of course, S∗ is the greatest element
of K; that is, S ⊆ S∗, for every S ∈ K.

We observe that, assuming H 
 E, by Theorem 5 we have that Fn p-entails
E|H if and only if there exists a nonempty subset Sk of Fn such that, when
applying Algorithm 1 to the assessment P = (1, . . . , 1, 0) on F = Fn ∪ {E|H},
the system Σk, associated with the family Sk ∪ {E|H}, is not solvable and the
algorithm will stop. We have

Theorem 12. Let P = (1, . . . , 1, 0) be a probability assessment on the family
F = Fn ∪ {E|H}, where Fn p-entails E|H , with H 
 E. Then, by applying
Algorithm 1 to the pair (F ,P), the nonempty subset Sk, associated with the
iteration where Algorithm 1 stops, coincides with the greatest element S∗ of K.

Proof. By Theorem 5 it is C(Sk) ⊆ E|H , so that Sk ∈ K and hence Sk ⊆ S∗.
In order to prove that Sk = S∗, we will show that Sk ⊂ S∗ gives a contradic-
tion. If Sk = Fn, then Sk = S∗. Assume that Sk ⊂ Fn and, by absurd, that
Sk ⊂ S∗. By applying Algorithm 1 to the pair (F ,P) we obtain a partition
Γ (1), Γ (2), . . . , Γ (k), with k > 1, such that is

Fn ∪ {E|H} = Γ (1) ∪ Γ (2) ∪ · · · ∪ Γ (k); Γ (i) ∩ Γ (j) = ∅, if i �= j ,

where Γ (k) = Fk = Sk ∪ {E|H}. Then S∗ ∩ Γ (k) = Sk. Now, by the hypothesis
Sk ⊂ S∗ it follows S∗∩Γ (j) �= ∅ for at least an index j < k. Let r be the minimum
index such that S∗∩Γ (r) �= ∅ and set F (j) = Γ (j)∪· · ·∪Γ (k), j = r, r+1. Hence
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S∗ ⊆ F (r) , S∗ \ F (r+1) �= ∅; moreover, the system Σ(r) associated with the
pair (F (r),P(r)) is solvable. We set J = {j : Ej |Hj ∈ S∗}, FJ = S∗ ∪ {E|H};
moreover, we denote by PJ the sub-vector of P associated with FJ . Then, by
Theorem 2 it follows that the system ΣJ associated with the pair (FJ ,PJ) is
solvable and by Theorem 8 we have C(S∗) 
 E|H , which is absurd as S∗ ∈ K.
Therefore Sk = S∗.

Based on Remark 1 and Theorem 12, we give below a suitably modified ver-
sion of Algorithm 1, which allows to examine the following aspects: (i) check-
ing for p-consistency of Fn; (ii) checking for p-entailment of E|H from Fn;
(iii) computation of the greatest element S∗.
Algorithm 2. Let be given the pair (Fn, E|H), with Fn = {E1|H1, . . . , En|Hn}
and H 
 E.

1. Set Pn = (1, 1, . . . , 1), where P (Ei|Hi) = 1, i = 1, . . . , n. Check the co-
herence of Pn on Fn by Algorithm 1. If Pn on Fn is coherent then Fn is
p-consistent, set F = Fn ∪ {E|H}, P = (Pn, 0) and go to step 2; otherwise
Fn is not p-consistent and procedure stops.

2. Construct the system Σ associated with (F ,P) and check its solvability.
3. If the system Σ is not solvable then Fn p-entails E|H , S∗ = F \ {E|H} and

the procedure stops; otherwise compute the set I0.
4. If I0 = ∅ then Fn does not p-entail E|H and the procedure stops; otherwise

set (F ,P) = (F0,P0) and repeat steps 2-4.

We didn’t make any comparison with other algorithms existing in literature for
checking p-consistency and p-entailment; we just note, as a further aspect, that
Algorithm 2 determines the greatest element (if any), S∗.
The example below illustrates Theorems 5 and 10.

Example 1. Given four logically independent events A, B, C, D, consider the
family F5 = {C|B, B|A, A|(A∨B), B|(A∨B), D|Ac} and the further conditional
event C|A. It can be proved that the assessment P5 = (1, 1, 1, 1, 1) on F5 is co-
herent; hence F5 is p-consistent. We have C(F5) = (ABC ∨ AcBcD)|Ω 
 C|A.
Moreover, defining

S1 = F5 \ {D|Ac} = {C|B, B|A, A|(A ∨B), B|(A ∨B)},

we have C(S1) = ABC|(A ∨ B) ⊂ C|A; hence, by Theorem 5, F5 p-entails C|A
and then it is S∗ = S1. We observe that, defining

S2 = S1 \ {B|(A ∨B)} = {C|B, B|A, A|(A ∨B)} ,

it is: C(S2) = ABC|(A∨B) ⊂ B|(A∨B); hence, by Theorem 10, C(S2) ⊂ C|A,
that is S2 ∈ K. We also observe that, defining

S3 = S1 \ {B|A} = {C|B, A|(A ∨B), B|(A ∨B)} ,

it is: C(S3) = ABC|(A ∨B) ⊂ B|A; hence, by Theorem 10, C(S3) ⊂ C|A, that
is S3 ∈ K. Finally, it can be proved that K = {S1,S2,S3}.
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5 Conclusions

We obtained some results on quasi conjunction and Goodman & Nguyen inclu-
sion relation for conditional events, in the setting of probabilistic default rea-
soning under coherence. We deepened two results given in a recent paper ([7]);
the first one concerns the probabilistic semantics of QAND rule; the second one
concerns the equivalence between p-entailment from Fn and p-entailment from
C(S), for some nonempty subset S of Fn. We also characterized p-entailment
by some alternative theorems. Finally, we introduced for a pair (Fn, E|H) the
class K of the subsets S of Fn such that C(S) implies E|H , by showing that K
is additive and its greatest element S∗ can be determined by Algorithm 2.

Acknowledgments. The authors thank the Referees for their very useful com-
ments and suggestions.
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Abstract. Default rules, i.e. statements of the form normally a’s are b’s,
are usually handled in Answer Set Programming by means of negation as
failure which provides a way to capture exceptions to normal situations.
In this paper we propose another approach which offers an operational
counterpart to negation as failure, and which may be thought as a corre-
sponding dual attitude. The approach amounts to an explicit rewriting
of exceptions in default rules, together with the addition of completion
rules that are consistent with current knowledge. It is shown that the
approach can be applied to restore the consistency of inconsistent pro-
grams that implicitly involve specificity ordering between the rules. The
approach is compared to previous works aiming at providing support to
the rewriting of default rules. It is also shown how the proposed approach
agrees with the results obtained in the classical way.

1 Introduction

Nonmonotonic reasoning is one of the distinctive features of Answer Set Pro-
gramming (ASP) when addressing knowledge representation problems with in-
heritance hierarchies [1]. Default rules, i.e. normative statements of the form
normally p’s are q’s, are usually modeled by normal rules q ← p, not ab, or
by extended normal rules q ← p, not ab, not¬q (when factual knowledge with
strong negation is allowed) which contain abnormality atoms (ab) preceded by
negation as failure (not). Modeling exceptions by means of negated-as-failure
atoms amounts, from a semantics point of view, to check whether a strong ex-
ception, i.e. ab, or a weak exception, i.e. ¬q can be proved. In such case, more
specific information is preferred to that which is more general, in accordance to
the inheritance reasoning principle [16].

According to this classical ASP approach, exceptions have to be made explicit
for capturing abnormal situations and blocking the applicability of conflicting
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default rules in the reasoning process [1]. Writing exceptions explicitly is not
always the easiest way to go. For instance, when different nodes of knowledge
encoded by default rules are integrated, the knowledge produced can be incon-
sistent and can contain different levels of specificity. In such a case, an automatic
handling of rules exceptions based on specificity can prevent the knowledge en-
gineer from a manual and time-consuming exceptions specification.

Specificity is a well-known notion in nonmonotonic reasoning [14,11]. For in-
stance, System Z [14] provides a good example of a system that implicitly prefers
more specific information. But what about if we want to rewrite exceptions to
default rules in an automatic way? Approaches such as [3,6] have shown that
generating exceptions based on the notion of specificity is appealing in nonmono-
tonic logics such as default logic.

More recently, some approaches to exception rewriting based on specificity
have been proposed in the context of ASP [8,9]. Garcia et al. in [9] have recently
adapted the work in [6] to propose a methodology for representing default rules
with exceptions by automatically generating negated-by-failure exceptions from
a compact representation of the information. However, sometimes it can be in-
teresting to model exceptions in a way closer to classical logic. For instance, in a
recently proposed methodology for modeling qualitative decision making in ASP
[4], knowledge about the world is encoded by means of extended definite logic
programs, i.e. negation-as-failure free. When such knowledge contains default
rules, exceptions must be properly handled.

In this paper we propose a novel approach which offers an operational coun-
terpart to negation as failure. Our approach amounts to an explicit rewriting of
exceptions in terms of strong negated atoms in extended definite rules, together
with the addition of completion rules that are consistent with current knowl-
edge. Thus, it may be viewed as a dual attitude w.r.t. classical methods that
rely on negation as failure. In fact, in ASP, rules with negation as failure remain
intrinsically default rules, while in our approach the default rules become strict
rules after a proper rewriting, as suggested in the following example.

Example 1. Let us consider a set of default rules Δ representing the typical
birds and penguins knowledge representation problem: birds normally fly, birds
normally have legs, penguins normally are birds, and penguins normally do not
fly. From Δ = {r1 = f ← b, r2 = l ← b, r3 = b ← p, r4 = f ′ ← p} we want
to obtain a set of strict rules S = {r1 = f ← b ∧ p′, r2 = l ← b, r3 = b ← p,
r4 = f ′ ← p} and the set of completion rules CR = {cr1 = p′ ← b}.1

The proposed method, described in this paper, turns to be simple to process
and to have several noticeable features: it defines a rewriting of default rules
into strict ones and it is able to restore the consistency of inconsistent programs
that implicitly involve specificity ordering between the rules. It allows to face
the blocking inheritance problem (a weakness of the Z-ordering) and to infer
floating information (as in the Nixon diamond example). It takes its inspiration
from a proposal made in the setting of possibilistic logic [15].
1 Atoms with the prime denote strong negated atoms as we will discuss in Section 2.
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The article is organized as follows. After introducing some background and
the notation we use throughout the paper (Section 2), in Section 3 we describe
the algorithm which allows to handle default knowledge without negation as
failure. Section 4 relates our approach to the classical handling of exceptions in
ASP. Finally, Section 5 points out some future work and concludes the paper.

2 Background and Notation

In this paper we will consider logic programs which contain only one type of
negation, in particular the so called strong negation in ASP community denoted
by ¬. Following Gelfond and Lifschitz’ notation [10], a literal is a formula of the
form a or ¬a, where a is an atom. Hence, an extended definite rule r is of the
form r = l0 ← l1 ∧ . . . ∧ lm, where li’s (0 ≤ i ≤ m) are literals. In a slight abuse
of notation we sometimes write a rule r as l ← B where head(r) = l is a literal
called the head and B = {l1, . . . , lm} is a literal set called the body (also denoted
by body(r)). If body(r) = ∅ then r = l ← � is known as a fact and we write it as
l. Then, an extended definite logic program P is a finite set of extended definite
rules. By LP , we denote the set of atoms in the language of P .

In our logic programs we will manage strong negation (¬) as it is done in ASP
[1]. Basically, each extended atom ¬a is replaced by a new atom symbol a′ which
does not appear in the language of the program LP . Then the new language of
the program is L′P . More precisely we define:

Definition 1. Let ϕ be a mapping function s.t. ϕ(x) =

{
x′ : if x ∈ LP

x : if x ∈ L′P \ LP

Please notice that an extended definite rule r with the ¬ replacement above is
a definite rule. As a consequence, we are basically dealing with definite logic
programs in this paper. Given a rule r and an atom set A, we say that r is
applicable in A if body(r) ⊆ A. An atom set A is closed under a program P if and
only if for each rule r in P , if body(r) ⊆ A then head(r) ∈ A. Given a set of rules
R, we define a consequence operator TR which maps a set of atoms to another one
as TR(A) = Head(App(R, A)), where App(R, A) is a set R′ ⊆ R such that R′ is
applicable w.r.t. A and Head(R′) = {head(r) | r ∈ R′}. TR(A) computes the set
of atoms deducible from A by means of R. TR(A) allows to define the sequence
T 0

R = TR(∅), T k+1
R = TR(T k

R), ∀k ≥ 0. The operator is monotonic and it always
reaches a fix-point which contains all the atoms which can be produced by a set
of rules. The consequence operator provides an operational way to characterize
the minimal model of a definite logic program P . Indeed, Cn(P ) =

⋃
k≥0 T k

P

contains all the consequences of P and denotes its unique minimal model (that
always exists, see [13]).

We say that a set of atoms A is inconsistent if there exists a such that
{a, a′} ⊂ A, otherwise it is consistent. By cons(A) (resp., incons(A)), we de-
note two Boolean functions which return true (resp., false) if the set of atoms
A is consistent (resp., inconsistent). A definite logic program P is inconsistent
when its minimal model is inconsistent, and consistent otherwise.
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In this paper we will assume that a program P consists with different sets of
definite rules. In particular, we define:

Definition 2. A definite logic program P〈Δ,S,FC,CR〉 is a tuple 〈Δ, S, FC, CR〉,
such that Δ is a finite set of definite rules we call default rules, S is a finite set
of definite rules we call strict rules, FC is a finite set of facts we call factual
context, and CR is a finite set of definite rules we call completion rules.

Intuitively, Δ is the set of rules which can admit exceptions, S is the set of
rewritten rules from Δ where exceptions have been made explicit, FC is the
set of contextual knowledge, and CR is the set of additional rules needed to
cope with incomplete information. By convention we omit the subindex in the
writing of P〈Δ,S,FC,CR〉 whenever the corresponding set of rules is empty, e.g.
P〈S,FC,CR〉 when Δ = ∅, P〈S,FC〉 when Δ = ∅ and CR = ∅. For representation
issues throughout the paper we denote rules belonging to Δ by rΔ = lΔ ← BΔ

and rules belonging to S by rs = ls ← Bs.

Example 2. Let us consider the set of default rules Δ in Example 1. It can be
checked that the program P〈Δ,FC〉 where FC = {p} is the factual context about
a penguin p, is inconsistent since Cn(P ) = {p, b, l, f, f ′} is inconsistent.

3 Handling Default Reasoning

In [15] Dupin de Saint-Cyr and Prade have made a proposal for handling un-
certain default rules in the possibilistic logic setting. Indeed possibility theory
provides a framework both for modeling qualitative uncertainty and for model-
ing default rules of the form if p then generally q by means of constraints stating
that having p ∧ q true is strictly more possible than having p ∧ ¬q true. The
exploitation of such constraints induces a priority ordering between defaults ac-
cording to their specificity [2]. This ordering has been proved to be the same as
the one given by System Z [14]. Since uncertain default rules are associated with
both an uncertainty level and a priority level, there was a need for rewriting de-
faults as ordinary possibilistic logic formulas associated only with an uncertainty
level. It is this kind of rewriting idea that we introduce in the ASP setting.

The algorithm we are proposing allows to mirror nonmonotonic reasoning in
logic programming without negation as failure by making exceptions explicit in
rules while adding completion rules for coping with incomplete information. The
method consists in four general steps (Algorithm 1) we briefly summarize before
discussing them in details in the next subsections.

First, program rules which have not the same specificity have to be localized;
this is done by using the notion of tolerance of a rule of system Z [14] adapted to
ASP programs (line 3). Secondly, default rules which are exceptional w.r.t. other
more specific rules are rewritten in order to make the condition part more ex-
plicit. At the same time, completion rules aiming at completing the encountered
exceptional situations are added; this is done by the rewriting algorithm (line
4). When factual context is added to the rewritten program, a consistency check
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Algorithm 1. General Algorithm

Input:

{
Δ : a set of default rules

FC : factual context

Output:
{

M : the minimal model of P〈S,F C,CR〉
1: S = ∅; // the set of strict rules
2: CR = ∅; // the set of completion rules
3: 〈Δ0, . . . , Δn〉 ← Z − ordering(Δ)
4: 〈S, CR〉 ← writeExceptions(〈Δ0, . . . , Δn)
5: P〈S,F C,CR〉 ← testConsistency(S,FC, CR)
6: M ← Cn(P〈S,F C,CR〉)
7: return 〈M〉

is made between the context, the completion rules, and the relevant rewritten
rules (line 5). Finally, factual context and consistent completion rules are added
to the rewritten program, and the minimal model is computed (line 6).

3.1 Ordering Rules by Specificity

Pearl [14] provides an algorithm which gives a stratification of a set of default
rules in a way that reflects the specificity of the rules. Roughly speaking, the
first stratum contains the most specific rules, i.e. which do not admit exceptions
(at least, expressed in the considered default base), the second stratum has
exceptions only in the first stratum and so on. Thus, in System Z, a set of rules
R is stratified into subsets R0, . . . , Rn where the resulting partitioning is called
a Z-ordering. Although there can be several orderings compatible with a set
of default rules, the minimal specificity ordering is unique [14]. We assume this
unique ordering for the sake of this paper.

As we are dealing with set of atoms rather than interpretations, we have to
adapt the notion of tolerance of a rule to ASP. For this reason we have reused
the definition of rule tolerance introduced in [9].

Definition 3. A rule rΔ is said to be tolerated by a set of default rules Δ iff
there is an atom set A, closed under Δ and consistent, which verifies rΔ. A
verifies rΔ if BΔ ⊆ A ∧ lΔ ∈ A.

The tolerance of the rule characterizes the fact that its application does not
generate any contradiction. From this notion of tolerance, it is possible to obtain
a stratification of the program which allows us to stratify Δ into (Δ0, Δ1, . . . , Δn)
such that: Δ0 contains the set of rules of Δ tolerated by Δ; Δ1 contains the set
of rules of Δ\Δ0 tolerated by Δ\Δ0; Δ2 contains the set of rules of Δ\(Δ0∪Δ1)
tolerated by Δ\(Δ0 ∪Δ1) etc.

Example 3. Let us consider the set of rules in Example 1 Δ = {r1 = f ← b,
r2 = l ← b, r3 = b ← p, r4 = f ′ ← p}. A = {b, f, l} verifies r1, is closed
under Δ and it is consistent. So r1 is tolerated in Δ, and r1 ∈ Δ0. Similarly r2

belongs to Δ0. The only set which verifies r3 and is closed w.r.t. r1, r2, and r4
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is A′ = {b, p, l, f, f ′}, but it is inconsistent. So r3 ∈ Δ1. In the same way, we
obtain r4 ∈ Δ1. Thus, the Z-ordering associated to Δ is Δ0 = {r1 = f ← b,
r2 = l ← b}, Δ1 = {r3 = b← p, r4 = f ′ ← p}.

3.2 Rules Rewriting

The general idea of the rewriting is to generate automatically from Δ a set of
rules in which the condition parts explicitly state that we are not in an excep-
tional context to which other default rules refer. In practice, this amounts to
transform the set of default rules Δ into a set of strict rules S with explicit
exceptions and a set of completion rules CR.

In order to make exceptions explicit, the proposed rewriting considers rules
specificity. At the beginning rules in the last stratum of the Z-ordering are
accepted as strict rules (since they are the most specific ones). Then, lower
strata are processed in order to identify the set of exceptions of less specific
default rules (if any) w.r.t. the strict rules. Default rules are rewritten into strict
ones where exceptions are made explicit. In case of exceptions, completion rules
aiming at completing contextual knowledge are added. The procedure keeps on
fixing lower strata based on the computed strict rules until all strata have been
considered. In order to define the algorithm in a more precise way we need several
definitions.

Definition 4 (Exceptional Set). Let S = {rsi = lsi ← Bsi | 1 ≤ i ≤ n}
be a set of strict rules. For any given default rule rΔ = lΔ ← BΔ we define
the exceptional set in rsi to the rule rΔ as Ei(rΔ, rsi) = Bsi s.t. lsi ← Bsi ∈
S ∧ cons(BΔ ∪Bsi) ∧ incons({lΔ}∪ {lsi}). Then, the set of exceptional sets in
S to a rule rΔ is defined as E(rΔ, S) = {Ei(rΔ, rsi) | rsi ∈ S}.

The above definition collects all the exceptional sets in all strict rules to a given
default rule rΔ. For instance for a default rule r′Δ = f ← b and strict rules
S = {rs1 = f ′ ← a ∧ c, rs2 = f ′ ← p}, then E(rΔ, S) = {{a, c}, {p}}. This
distinction is crucial for handling the case where the body of a strict rule is not
a singleton. Once all the exception of a default rule w.r.t. a set of strict rules
have been identified, the default rule can be rewritten in the following way.

Definition 5 (Default Rule Rewriting). Let rΔ = lΔ ← BΔ be a default
rule, S = {rsi = lsi ← Bsi | 1 ≤ i ≤ n} be a set of strict rules, and E(rΔ, S)
be the set of exceptional sets in S to the rule rΔ. Then, for each Ei(rΔ, rsi),
rΔ is rewritten into a new strict rule rs by setting: rs = lΔ ← BΔ ∪ {ϕ(x)|x ∈
Ei(rΔ, rsi)}.

The rewritten rule is added to the set S. Please notice that when the exceptional
set is not a singleton, then a default rule is rewritten into more than one strict
rule. For instance, following with the above remark, r′Δ is rewritten into f ←
b ∧ a′, f ← b ∧ c′, f ← b ∧ p′ and counterintuitive rewritings are avoided.

Special (strict) rules called completion rules stating that we are not in an
exceptional situation are added to a new set denoted by CR. The use of these
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Algorithm 2. writeExceptions(〈Δ0, . . . , Δn〉): 〈S, CR〉
Input:

{
〈Δ0, . . . , Δn〉 : the stratification given by the Z-ordering

Output:

{
S : the set of strict rules obtained by rewriting default rules

CR : the set of completion rules

k ← n − 1; CR ← ∅; S = {rsi = lsi ← Bsi | rΔni
∈ Δn} //initialization

while k � 0 do
Sk ← ∅
for all rΔk = lΔk ← BΔk s.t. rΔk ∈ Δk do

E(rΔ, S) ← ∅ //Set of exceptional sets of a default rule rΔ w.r.t. S
for all rsi ∈ S s.t. cons(BΔk ∪ Bs) ∧ incons({lΔk} ∪ {ls}) do

CR ← CR ∪ {ϕ(x) ← BΔk |x ∈ Bsi}
Ei(rΔk , rsi) ← Bsi //Exceptional set of a default rule rΔk w.r.t. rsi

E(rΔ, S) ← E(rΔ, S) ∪ Ei(rΔk , rsi)
end for
if E(rΔ, S) 
= ∅ then

for all Ei(rΔk , rsi) ∈ E(rΔ, S) do
Sk ← Sk ∪ {lΔk ← BΔk ∪ {ϕ(x) | x ∈ Ei(rΔ, rsi)}}

end for
else

Sk ← Sk ∪ {lΔk ← BΔk}
end if

end for
S ← S ∪ Sk

k ← k − 1
end while
return 〈S, CR〉

completion rules is motivated by the need of reasoning in presence of incomplete
information. In fact completion rules allow to apply strict rules which now have
a more precise condition part.

Definition 6 (Completion Rule). Let rΔ = lΔ ← BΔ be a default rule, and
rs = ls ← Bs be a strict rule such that E(rΔ, rs) = Bs. Then, a completion rule
related with rΔ is defined as ϕ(x)← BΔ where x ∈ E(rΔ, rs).

Based on the above definitions we can proceed with the description of
Algorithm 2. Note that the rules of the last stratum Δn do not admit exceptions
w.r.t. Δ since they are the most specific ones and they are directly copied into S.
Thus, the algorithm begins with the rules of the stratum n−1. The stratum n−1
contains rules that admit exceptions only because of rules in the last stratum.
More generally, a stratum k contains rules that admit exceptions only because
of rules in strata with rank greater or equal to k + 1. More precisely for each
rule in a given stratum, all its exceptions (coming from strata with a greater
rank) are computed in order to rewrite this rule by explicitly stating that the
exceptional situations are excluded in its condition part. Moreover, completion
rules are added for each exceptional case found. A completion rule is used only
if it is consistent with the current context and the relevant rewritten rules.
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Algorithm 3. testConsistency(S,FC,CR): P〈S,FC,CR〉

Input:

⎧⎪⎨⎪⎩
S : the set of strict rules

FC : factual context

CR : the set of completion rules

Output:
{

P〈S,F C,CR〉 : the definite program

AppCR = Apl(CR, FC,S)
RelCR = Rel(AppCR, S)
if incons(Cn(FC ∪ AppCR ∪ RelCR)) then

AppCR ← ∅
end if
P〈S,F C,CR〉 ← S ∪ FC ∪ AppCR

return P〈S,F C,CR〉

Example 4. Let us apply the algorithm to rewrite the rules in Example 3 by
describing explicitly their exceptions starting from the last stratum of the Z-
ordering. It can be checked that the algorithm gives the following set of strict
rules S = {r1 = f ← b ∧ p′, r2 = l ← b, r3 = b ← p, r4 = f ′ ← p} and one
completion rule CR = {cr1 = p′ ← b}.

3.3 Consistency Test

As said before, completion rules in CR are useful to state in what respect the
current context is not exceptional and they are used to apply the rewritten rules
which now have a more precise condition part. However, completion rules can
only be used if they are consistent with the context described by FC and the
set of rewritten rules S. Hence, a consistency test is required (Algorithm 3). To
retrieve all the applicable completion rules w.r.t. the factual context and the set
of strict rules we provide the following definitions.

Definition 7. Let S be a set of strict rules obtained by Δ. Let CR be the set of
completion rules and FC the factual context to be added to S. Then we define:

– Apl(CR, FC, S) = {cr ∈ CR | body(cr) ⊆ Cn(S ∪ FC)}
– Rel(Apl(CR, FC, S), S) = {rs ∈ S | rs is associated with Apl(CR, FC, S)}2

The consistency test amounts to check whether the set of atoms produced by
the operator T k

R applied to the set of rules obtained by merging the factual con-
text FC, the set of the completion rules which are applicable w.r.t. the current
context (AppCR), and the set of strict rules associated to the completion rules
(RelCR), is consistent. Depending on this consistency check, a new program
P〈S,FC,CR〉 is returned which contains the applicable completion rules (if any).
It is worthy to point out that, once the default rules have been rewritten, this
consistency test is performed only when the context FC is changed.
2 Informally, associated is a mapping between a rewritten rule rs and its completion

rules produced in the rewriting.
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Example 5. Let us consider the set of strict rules S, the set of completion rules
CR in Example 4 and the following contexts: FC1 = {b}, FC2 = {p}, and
FC3 = {b, f ′}. The completion rule {cr1 = p′ ← b} is consistent w.r.t. the
context FC1 = {b} and the strict rule r1. Thus the program P〈S,FC1,CR〉 is
built. In FC2 = {p}, CR is not consistent w.r.t. the factual knowledge and
hence it cannot be taken into account. Finally, FC3 = {b, f ′} illustrates the case
in which CR is consistent w.r.t. the context, but it is not consistent with the
rewritten rule r1. Also in this case, the completion rule cannot be considered.

3.4 Minimal Model Computation

Since the program obtained by the consistency test is a definite logic program,
we can apply directly the minimal model computation (Cn(P )).

Example 6. Let us continue with Example 5. Different minimal models are re-
trieved for each of the programs obtained after the consistency test. Hence,
Cn(P〈S,FC1,CR〉) = {b, l, f, p′}, Cn(P〈S,FC2〉) = {b, p, l, f ′}, and Cn(P〈S,FC3〉) =
{b, f ′, l}.

All these results agree with the intuition behind the birds and penguins knowl-
edge representation problem. In particular the proposed method refines the Z-
ordering since it can deal with the blocking inheritance problem. Our method
also handles floating information as shown in the next example.

Example 7. Let Δ be a set of default rules representing the Nixon Diamond ex-
ample: Quakers normally are pacifists, Quakers normally are Americans, Ameri-
cans normally like base-ball, Quakers generally do not like base-ball and Republi-
cans are generally not pacifists. Thus Δ = {r1 = p← q, r2 = a← q, r3 = b← a,
r4 = b′ ← q, r5 = p′ ← r}. The rewriting produces S = {r1 = p← q, r2 = a← q,
r3 = b ← a ∧ q′, r4 = b′ ← q, r5 = p′ ← r ∧ q′} and CR = {cr1 = q′ ← a,
cr2 = q′ ← r}. In context FC = {q, r}, CR is inconsistent w.r.t. FC and
Cn(P〈S,FC〉) = {p, a, b′}. An intuitive interpretation of the fact that pacifist is
obtained is that the context Quaker is more specific than Republican in Δ, since
Republican is compatible with all the rules which is not the case for Quaker.

We can observe that there are some interesting properties of our algorithm.

Proposition 1. Algorithm 1 terminates.

Moreover, our approach offers a straightforward methodology to restore the con-
sistency of inconsistent definite programs which implicitly involve some speci-
ficity order between the rules.

Proposition 2. The program P〈S,FC,CR〉 returned by Algorithm 1 is consistent.

It is natural now to wonder how our method behaves w.r.t. the classical handling
of nonmonotonic reasoning in ASP.



518 R. Confalonieri, H. Prade, and J.C. Nieves

4 Related Work

Although several proposals have been made for handling exceptions and speci-
ficity in logic programming [12,5,8,7], the closest work to ours is the recent work
of Garcia et al. in [9] where a rewriting procedure for exceptions is proposed.

Although the automatic generation of exceptions in [9] may look similar to
ours at first glance, it is intrinsically different in spirit since exceptions are cap-
tured by means of negation as failure. Thus, it is interesting to compare our
approach to nonmonotonicity, based on rules rewriting and completion rules, to
the standard nonmonotonic reasoning characterized in terms of not. For doing
this, let us consider the following example taken from [9].

Example 8. From the set of default rules Δ in Example 1 using the algorithm
in [9] the following extended normal logic program is obtained P ′

s = {r1 = f ←
b∧ not f ′ ∧ not p, r2 = l ← b, r3 = b← p, r4 = f ′ ← p ∧ not f}. Let us consider
the contexts FC1 = {b}, FC2 = {p}, and FC3 = {p, f}. The answer sets of P ′

s

are M ′
1 = {l, b, f}, M ′

2 = {l, p, b, f ′}, and M ′
3 = {p, f, b, l} respectively.

Comparing our generated program (Example 4) with P ′
s above, it can be no-

ticed that a model in our approach generally contains more knowledge than the
corresponding model of P ′

s (e.g. Cn(P〈S,FC1,CR〉) = {l, b, f, p′} is also telling
that a bird that flies is not a penguin). This extra knowledge can be justified
by the corresponding dual attitude w.r.t. negation as failure played by the com-
pletion rules. In fact, the intuitive meaning of a rule with default negation like
f ← b ∧ not p is that if it can be proved that we are in the bird context b and
nothing proves that we are in a penguin context p, then we can conclude f . In
order to use the default rule about birds, we should not derive p. Alternatively, in
our approach, the role of the completion rule (p′ ← b) is to complete the factual
knowledge triggering the applicability of the rule f ← b ∧ p′ whose condition
part now is more specific. In a way the completion rule is playing the dual part
of strong exception rules used in the classical handling of exceptional situations
in ASP. On a closer inspection, when the completion rule is inconsistent w.r.t.
the rewritten rule and it is not added to the program (see Example 5), it also
serves as weak exception rule, preventing the rewritten rule to be used.

Since our approach only rewrites exceptions which are implicit inherited by
the specificity order among the set of default rules, any (weak) exception related
to the rules in the last stratum of the Z-ordering is ignored (e.g. the exception
captured in f ′ ← p, not f in P ′

s). In this case the two approaches can lead to
different solutions (e.g. in context {p, f}). To recover the same results we add a
pair of additional rules to define an abstract specificity level in order to introduce
an exceptional situation w.r.t. the class of the last stratum.

Definition 8 (Abstract Specificity Level). Let {c1, . . . , ck} be a set of atoms
representing classes with a hierarchy relation (c1 ⊃ c2 ⊃ . . . ⊃ ck), encoded
by rules ci ← ci+1 (with 1 ≤ i ≤ k − 1). Let {p1, . . . , pk′} be a set of atoms
representing class properties, encoded by rules pj ← ci (with 1 ≤ j ≤ k′ and
1 ≤ i ≤ k). Then, an abstract specificity level ck+1 with property pk′+1 is
captured by two additional rules ck ← ck+1 and pk′+1 ← ck+1 s.t. pk′+1 = ϕ(pk′ ).
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Thanks to the additional rules our approach can agree with the results obtained
in [9]. Moreover, in some cases it leads to larger models due to effect of completion
rules which can contribute to add more factual knowledge. We illustrate this idea
by means of the following example.

Example 9. Let us consider Δ in Example 1 with an abstract specificity level
introduced by adding the rules super-penguins are penguins (r5) and super-
penguins normally fly (r6). Then Δ = {r1 = f ← b, r2 = l ← b, r3 = b ← p,
r4 = f ′ ← p, r5 = p ← sp, r6 = f ← sp}. The Z-ordering induced by
rules specificity is Δ0 = {r1 = f ← b, r2 = l ← b}, Δ1 = {r3 = b ← p,
r4 = f ′ ← p}, Δ2 = {r5 = p ← sp, r6 = f ← sp}. Intuitively, r6 belongs to a
higher stratum w.r.t. r4 as it encodes more specific information. Applying Al-
gorithm 1 (in context FC = {p, f}), Δ is rewritten into S = {r1 = f ← b ∧ p′,
r2 = f ← b ∧ sp, r3 = l ← b, r4 = b ← p, r5 = f ′ ← p ∧ sp′, r6 = p ← sp,
r7 = f ← sp} and CR = {cr1 = p′ ← b, cr2 = sp ← b, cr3 = sp′ ← p}. Then,
Cn(P〈S,FC,CR2〉) = {p, f, b, sp, l}.

Since the initial set of default rules contains an implicit inheritance relation, the
generated normal program in [9] is a stratified logic program. Stratified logic
programs have an important property: they have a unique answer set [1]. Based
on this observation, we can establish the following relation.

Proposition 3. Let Δ be a set of default rules with an implicit inheritance rela-
tion, FC be a factual context, and AR be a pair of rules according to Definition
8. Let P ′ be the extended normal logic program obtained by the algorithm in [9].
Let Δ′ = Δ ∪ AR, and P〈S,FC,CR〉 be the program obtained by Algorithm 1. If
M is answer set of P ′ ∪ FC and M ′ = Cn(P〈S,FC,CR〉) then M ⊆M ′.

Therefore, our approach can offer an operational counterpart to negation-as-
failure in knowledge representation problems which consist of default rules with
an implicit specificity order between them.

5 Concluding Remarks

In this paper we have proposed a new algorithm that rewrites default rules into
strict rules where exceptions are made explicit and completion rules are added
for coping with incomplete information. We have shown how the method can be
used to restore the consistency of logic programs encoding knowledge representa-
tion problems with inheritance hierarchies. The methods refines the Z-ordering
and it faces the blocking inheritance problem. We have also discussed the non-
monotonicity in our approach w.r.t. the classical ASP nonmonotonicity. We have
established that, under certain conditions, we can recover the results obtained
by the method proposed in [9]. This result is significative since it suggests how
negation as failure can be captured by an operational approach which provides
a dual view to nonmonotonic reasoning in logic programs.

The described method can be applied in a recent proposed methodology for
qualitative decision making in ASP [4] in which the knowledge base can consist
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of a set of default rules. In such a case, the rewriting algorithm presented in this
paper can be used to rewrite default rules into strict ones, before proceeding to
the computation of an optimal decision.

As future work we aim to identify the main features characterizing the logic
programs obtained by the rewriting algorithm and to discuss its complexity
which can intuitively be bound to the complexity of the Z-ordering computation.
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Abstract. We define an extension of stit logic that encompasses subjective prob-
abilities representing beliefs about simultaneous choice exertion of other agents.
This semantics enables us to express that an agent sees to it that a condition ob-
tains under a minimal chance of success. We first define the fragment of XSTIT
where choice exertion is not collective. Then we add effect probability lower
bounds to the stit syntax, and define the semantics in terms of subjective prob-
abilities concerning choice exertion of other agents. We show how the resulting
probabilistic stit logic faithfully generalizes the non-probabilistic XSTIT
fragment.

1 Introduction

A predominant formal theory of agency in philosophy is stit theory [2]. Stit theory
gives an elegant and thoroughly elaborated view on the question of how agents exercise
control over the courses of events that constitute our dynamic world. Also stit theory
provides a view on the fundamentals of cooperation and the limits and possibilities of
acting together and / or in interaction. Recently, stit theory attracted the attention of
computer scientist who are interested in deontic logic and logic for the specification of
multi-agent systems [4,5,1].

One shortcoming of stit theory is that its central notion of choice exertion is one that
assumes that a choice is always successful. But it is highly unrealistic for formalisms
aimed at modeling (group) choice of intelligent agents to assume that action can never
fail. This problem cannot be solved by making the connection with dynamic logic or
the situation calculus, since these formalisms also lack a theory about how actions can
be unsuccessful.

This paper assumes we measure success of action against an agent’s beliefs about
the outcome of its choice. So, the perspective is an internal, subjective one, and the
criterion of success is formed by an agent’s beliefs about its action. To represent these
beliefs we choose here to use probabilities. In particular, we will represent beliefs about
simultaneous choice exertion of other agents in a system as subjective probabilities.
Several choices have to be made. We will pose that an agent can never be mistaken
about its own choice, but that it can be mistaken about choices of others. The actual
action performed results from a simultaneous choice exertion of all agents in the system.
Then, if an agent can be mistaken about the choices of other agents (including possibly
an agent with special properties called ‘nature’), the action can be unsuccessful. As a
very basic example, consider the opening of a door. An agent exercises its choice to
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open the door. It cannot be mistaken about that: it knows what it chooses to do. It does
this under the belief that there is no other agent on the other side exercising its choice to
keep the door closed. So it assigns a low probability to such a choice of any other agent.
However, here the agent can be mistaken. And here comes in the notion of unsuccessful
action modeled in this paper: as it turns out, in the situation described there actually is
an agent at the other side of the door choosing to keep it closed and the agent’s opening
effort is unsuccessful.

To model this, we endow stit theory with probabilities in the object language, en-
abling us to say that an agent exercises a choice for which it believes to have a chance
higher than c to see to it that ϕ results in the next state.

As far as we know, our proposal is the first combining stit logic and probability.
Possibly unsuccessful actions have been considered in the context of Markov Decision
Processes, temporal logic and ATL [8]. Two differences with the present work are that
here we start from the richer stit theory and that we focus on fundamental properties of
the resulting logic in stead of on issues related to planning, policy generation or model
checking. An independent motivation for considering action with a chance of success
comes from the relation between stit theory and game theory. Kooi and Tamminga [9]
investigate how to characterize pure strategy equilibria as stit formulas. An extension of
stit logic with probabilistic effects would enable us to also characterize mixed strategy
equilibria.

2 The Base Logic: XSTITp

In this section we define the base logic, which is a variant of the logic XSTIT that we
call XSTITp. The difference with XSTIT is embodied by an axiom schema concerning
modality-free propositions p, which explains the name. Another difference with XSTIT
is that we do not define the semantics in terms of relations, but in terms of functions.
We introduce h-relative effectivity functions, which specialize the notion of effectiv-
ity function from Coalition Logic [10] by defining choices relative to histories. The
function-based semantics explains the formalism better than XSTIT’s earlier semantics
in terms of relations.

Definition 1. Given a countable set of propositions P and p ∈ P , and given a finite set
Ags of agent names, and ag ∈ Ags, the formal language LXSTITp is:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | �ϕ | [{ag} xstit]ϕ | Xϕ

Besides the usual propositional connectives, the syntax of XSTITp comprises three
modal operators. The operator �ϕ expresses ‘historical necessity’, and plays the same
role as the well-known path quantifiers in logics such as CTL and CTL∗ [7]. Another
way of talking about this operator is to say that it expresses that ϕ is ‘settled’. We ab-
breviate ¬�¬ϕ by ♦ϕ. The operator [A xstit]ϕ stands for ‘agents A jointly see to it
that ϕ in the next state’. We abbreviate ¬[A xstit]¬ϕ by 〈A xstit〉ϕ. The third modality
is the next operator Xϕ. It has a standard interpretation as the transition to a next state.
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Definition 2. A function-based XSTITp-frame is a tuple 〈S, H, E〉 such that1:

1. S is a non-empty set of static states. Elements of S are denoted s, s′, etc.
2. H is a non-empty set of possible system histories of the form . . . s−2, s−1, s0, s1,

s2, . . . with sx ∈ S for x ∈ Z. Elements of H are denoted h, h′, etc. We denote
that s′ succeeds s on the history h by s′ = succ(s, h) and by s = prec(s′, h).
Furthermore:

a. if s ∈ h and s ∈ h′ then prec(s, h) = prec(s, h′)

3. E : S×H ×Ags �→ 2S is an h-effectivity function yielding for an agent ag the set
of next static states allowed by the actions taken by the agent relative to a history

a. if s �∈ h then E(s, h, ag) = ∅
b. succ(s, h) ∈ E(s, h, ag)
c. if s′ ∈ E(s, h, ag) then ∃h′ : s′ = succ(s, h′)
d. if s′ = succ(s, h) and s′ ∈ h′ then s′ ∈ E(s, h′, ag)
e. E(s, h, ag1) ∩E(s, h′, ag2) �= ∅ for ag1 �= ag2

In definition 2 above, we refer to the states s as ‘static states’. This is to distinguish
them from ‘dynamic states’, which are combinations 〈s, h〉 of static states and histories.
Dynamic states function as the elementary units of evaluation of the logic. This means
that the basic notion of ‘truth’ in the semantics of this logic is about dynamic conditions
concerning choice exertions. This distinguishes stit from logics like Dynamic Logic
and Coalition Logic whose central notion of truth concerns static conditions holding
for static states.

The name ‘h-effectivity functions’ for the functions defined in item 3 above is short
for ‘h-relative effectivity functions’. This name is inspired by similar terminology in
Coalition Logic whose semantics is in terms of ‘effectivity functions’. Condition 3.a
above states that h-effectivity is empty for history-state combinations that do not form a
dynamic state. Condition 3.b states that the static state next of some other static state on
a history is always in the effectivity set relative to that history state pair for any group
of agents. Condition 3.c ensures that next state effectivity as seen from a current state
s does not contain states s′ that are not reachable from the current state through some
history. Condition 3.d expresses the well-known stit condition of ‘no choice between
undivided histories’. Condition 3.e above states that simultaneous choices of different
agents never have an empty intersection. This is the central condition of ‘independence
of agency’. It reflects that a choice exertion of one agent can never have as a conse-
quence that some other agent is limited in the choices it can exercise simultaneously.

The conditions on the frames are not as tight as the conditions in the classical stit
formalisms of Belnap, Perloff and Horty [2]. Appart from the crucial difference con-
cerning the effect of actions (in XSTITp actions take effect in next states), the classical
stit formalisms assumes a condition that in our meta-language can be represented as:

h. E(s, h, ag) �= E(s, h′, ag) implies E(s, h, ag) ∩ E(s, h′, ag) = ∅
1 In the meta-language we use the same symbols both as constant names and as variable names,

and we assume universal quantification of unbound meta-variables.
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Fig. 1. visualization of a partial two agent XSTITp frame

Condition h. says that the choices of an agent ag are mutually disjoint. Since they result
in much tidier pictures, in the example visualization of a frames we consider below,
we assume this condition. However, we do not include it in the formal definition of the
frames, because it is not modally expressible (e.g., in modal logic we can give axioms
characterizing that an intersection is non-empty, but we cannot characterize that an
intersection is empty). This means that they will not have an effect on our modal logic
of agency whose semantics we will define in terms of the above frames.

Figure 1 visualizes a frame of the type defined by definition 2. The columns in the
games forms linked to each state are the choices of agent ag1 and the rows are the
choices of agent ag2. Independence of choices is reflected by the fact that the game
forms contain no ‘holes’ in them. Choice exertion in this ‘bundled’ semantics is thought
of as the separation of two bundles of histories: one bundle ensured by the choice exer-
cised and one bundle excluded by that choice.

We now define models by adding a valuation of propositional atoms to the frames of
definition 2. We impose that all dynamic state relative to a static state evaluate atomic
propositions to the same value. This reflects the intuition that atoms, and modality-free
formulas in general do not represent dynamic information. Their truth value should thus
not depend on a history but only on the static state. This choice does however make the
situation non-standard. It is a constraint on the models, and not on the frames.

Definition 3. A frame F = 〈S, H, E〉 is extended to a model M = 〈S, H, E, π〉 by
adding a valuation π of atomic propositions:

– π is a valuation function π : P −→ 2S assigning to each atomic proposition the
set of static states relative to which they are true.

We evaluate truth with respect to dynamic states built from a dimension of histories and
a dimension of static states.
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Definition 4. Relative to a modelM = 〈S, H, E, π〉, truth 〈s, h〉 |= ϕ of a formula ϕ
in a dynamic state 〈s, h〉, with s ∈ h, is defined as:

〈s, h〉 |= p ⇔ s ∈ π(p)
〈s, h〉 |= ¬ϕ ⇔ not 〈s, h〉 |= ϕ
〈s, h〉 |= ϕ ∧ ψ ⇔ 〈s, h〉 |= ϕ and 〈s, h〉 |= ψ
〈s, h〉 |= �ϕ ⇔ ∀h′ : if s ∈ h′ then 〈s, h′〉 |= ϕ
〈s, h〉 |= Xϕ ⇔ if s′ = succ(s, h) then 〈s′, h〉 |= ϕ
〈s, h〉 |= [{ag} xstit]ϕ⇔ ∀s′, h′ : if s′ ∈ E(s, h, {ag}) and

s′ ∈ h′ then 〈s′, h′〉 |= ϕ

Satisfiability, validity on a frame and general validity are defined as usual.

Note that the historical necessity operator quantifies over one dimension, and the next
operator over the other. The stit modality combines both dimensions. Now we proceed
with the axiomatization of the base logic.

Definition 5. The following axiom schemas, in combination with a standard axiomati-
zation for propositional logic, and the standard rules (like necessitation) for the normal
modal operators, define a Hilbert system for XSTITp:

(p) p→ �p for p modality free
S5 for �

(D) ¬[{ag} xstit]⊥
(Lin) ¬X¬ϕ↔ Xϕ
(Sett) �Xϕ→ [{ag} xstit]ϕ
(XSett) [{ag} xstit]ϕ→ X�ϕ
(Agg) [{ag} xstit]ϕ ∧ [{ag} xstit]ψ → [{ag} xstit](ϕ ∧ ψ)
(Mon) [{ag} xstit](ϕ ∧ ψ)→ [{ag} xstit]ϕ
(Ind) ♦[{ag1} xstit]ϕ ∧ ♦[{ag2} xstit]ψ → ♦([{ag1} xstit]ϕ ∧ [{ag2} xstit]ψ)

Theorem 1. The Hilbert system of definition 5 is complete with respect to the semantics
of definition 4.

The proof strategy is as follows. First we establish completeness of the system without
the axiom p → �p, relative to the frames of definition 2. All remaining axioms are in
the Sahlqvist class. This means that all the axioms are expressible as first-order condi-
tions on frames and that together they are complete with respect to the frame classes
thus defined, cf. [3]. It is easy to find the first-order conditions corresponding to the
axioms, for instance, by using the on-line SQEMA system [6]. So, now we know that
every formula consistent in the slightly reduced Hilbert system has a model based on
an abstract frame. Left to show is that we can associate such an abstract model to a con-
crete model based on an XSTITp frame as given in definition 2. This takes some effort,
since we have to associate worlds in the abstract model to dynamic states in the frames
of definition 2 and check all the conditions of definition 2 against the conditions in the
abstract model (3.b corresponds with the D axiom, 3.c corresponds to (Sett), 3.d to
(XSett), 3.e to (Ind)). Once we have done this, we have established completeness of the
axioms relative to the conditions on the frames. Now the second step is to add the axiom
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p→ �p. This axiom does not have a corresponding frame condition. Indeed, the axiom
expresses a condition on the models. But then, to show completeness, we only have to
show that we can always find a model obtained by the construction just described that
satisfies the axiom p → �p. But this is straightforward. From all the possible models
resulting from the first step, we select the ones where propositional atoms in dynamic
states based on the same static state have identical valuations. Since consistent formulas
also have to be consistent with the axiom p→ �p for any non-modal formula p, we can
always do that. This means that a satisfying model for a consistent formula is always
obtainable in this way and that completeness is preserved.

The independence axiom given here is simpler than Xu’s independence axiom in
his axiomatization for instantaneous deliberative stit (see the chapter in [2]). In Xu’s
axiomatization, a set of independence axioms of the form ♦[{ag1} dstit]ϕ ∧ . . . ∧
♦[{agn} dstit]ψ → ♦([{ag1} dstit]ϕ ∧ . . . ∧ [{agn} dstit]ψ) is given. A set of axioms
of this form is not needed here, because [{ag} xstit]ϕ is a normal modality, while
[{ag} dstit]ϕ is not normal (it is a weak, monotonic modal operator). This will be
different however if we add probability to the stit operator, as we will see in the next
section.

3 Choice with a Bounded Chance of Success

We introduce operators [{ag} xstit≥c]ϕ with the intended meaning that agent ag exer-
cises a choice for which it believes to have a chance of at least c of bringing about ϕ.
Roughly, the semantics for this new operator is as follows. We start with the multi-agent
stit-setting of the previous section. Now to the semantic structures we add functions
such that in the little game-forms, as visualized by figure 1, for each choice of an agent
ag we have available the subjective probabilities applying to the choices of the other
agents in the system. For agent ag the sum of these probabilities over the choices of
each particular other agent in the system add up to one. So, the probabilities represent
agent ag’s beliefs concerning what choices are exerted simultaneously by other agents.
In terms of the subjective probability function we define for each choice the sum of
the probabilities for each of the choices of all other agents in the system leading to a
situation obeying ϕ.

For the definition of the probabilistic frames, we first define an augmentation func-
tion returning the choices a group of agent has in a given state.

Definition 6. The range function Range : S ×Ags �→ 22S\∅ \ ∅ yielding for a state s
and an agent ag, the choices this agent has in s is defined as:
Range(s, ag) = {Ch | ∃h : s ∈ h and Ch = E(s, h, ag)}

A range function is similar to what in Coalition Logic is called an ‘effectivity function’.
Now we are ready to define the probabilistic stit frames.

Definition 7. A probabilistic XSTITp-frame is a tuple 〈S, H, E, B〉 such that:
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1. 〈S, H, E〉 is a function based XSTITp-frame
2. B : S × Ags × Ags × 2S �→ [0, 1] is a subjective probability function such that

B(s, ag1, ag2, Ch) expresses agent 1’s believe that in static state s agent 2 per-
forms a choice resulting in one of the static states in Ch. We apply the following
constraints.

a. B(s, ag, ag′, Ch) = 0 if ag �= ag′ and Ch �∈ Range(s, ag′)
b. B(s, ag, ag′, Ch) > 0 if ag �= ag′ and Ch ∈ Range(s, ag′)
c.

∑
Ch∈Range(s,ag′)

B(s, ag, ag′, Ch) = 1 if ag �= ag′

d. B(s, ag, ag, Ch) = 1

Condition 2.a says that agents only assign non-zero subjective probabilities to choices
other agents objectively have. Condition 2.b says these probabilities are strictly larger
than zero. Condition 2.c says that the sum of the subjective probabilities over the
possible choices of other agents add up to 1. Condition 2.d says that agents always
know what choice they exercise themselves. Note that this is not the same as claim-
ing that agents always know what action they perform (which is not the case in our
conceptualization). We already explained this difference between choice and action in
section 2.

In the sequel we will need an augmentation function yielding for an agent and an
arbitrary next static state the chance an agent ascribes to the occurrence of this state
(given its belief, i.e., subjective probabilities about simultaneous choice exertion of
other agents). For this, we first need the following proposition. To guarantee that the
proposition is true, we need the condition h. as one of the conditions posed on the
frames in definition 2. As we argued, assuming this condition h. does not change the
logic.

Proposition 1. For any pair of static states s and s′ for which there is an h such that
s′ = succ(s, h) there is a unique ‘choice profile’ determining for each agent ag in the
system a unique choice Ch = E(s, h, ag) relative to s and s′.

Now we can define the subjective probabilities agents assign to possible system out-
comes. Because of the idea of independence of agency, we can multiply the chances for
the choices of the individual agents relative to the system outcome (the resulting static
state). Note that this gives a new and extra dimension to the notion of independence that
is not available in standard stit theories.

Definition 8. BX : S×Ags×S �→ [0, 1] is a subjective probability function concern-
ing possible next static states, defined by

BX(s, ag, s′) =
∏

ag′∈Ags

B(s, ag, ag′, E(s, h, ag′)) for some h such that s′ =

succ(s, h)

Note that BX(s, ag, s′) expresses agent ag’s belief in state s that its choice ends up
in s′ modulo the assumption that ag actually chooses such as to make s′ a possible
outcome; if ag chooses such that s′ is excluded by its choice, the chance for s′ is of
course 0.
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Now before we can define the notion of ‘seeing to it under a minimal probability of
success’ formally as a truth condition on the frames of definition 7 we need to do more
preparations. First we assume that the intersection of the h-effectivity functions of all
agents together yields a unique static state. We can safely assume this, because, again,
this condition is not modally expressible. In general we can express uniqueness of next
states in terms of a D axiom. But note that here the units of evaluation are dynamic
states. With a unique next static state corresponds a set of next dynamic states: all the
dynamic states that can be built with the static state. We can not characterize uniqueness
of this set using a D axiom. This justifies definition 10 below, that establishes a function
characterizing the static states next of a given state that satisfy a formula ϕ relative to
the current choice of an agent.

But, first we define an additional range function for choices resulting from several
agents choosing simultaneously (which is not the same as choosing together or in a
coalition). Due to independence of agency for any combination of choices (that is, for
any choice profile), there is a non-empty set of static static states in the intersection of
the choices in the profile.

Definition 9. The range function RangeG : S × 2Ags �→ 22S

yielding for a state
s and a group of agents A, the sets of possible next static states resulting from the
simultaneous choices in the group is defined as:
RangeG(s, A) = {Ch |

⋂
ag∈A

E(s, h, ag) for some h such that s ∈ h}

Definition 10. The ‘possible next static ϕ-states’ function PosX : S×H×Ags×L �→
2S which for a state s, a history h, an agent ag and a formula ϕ gives the possible next
static states obeying ϕ given the agent’s current choice determined by h, is defined by:
PosX(s, h, ag, ϕ) = {s′ | E(s, h, ag) ∩ Ch = {s′} for Ch ∈ RangeG(s, Ags \
{ag}) and 〈s′, h′〉 |= ϕ for all h′ with s′ ∈ h′}.

Now we can formulate the central ‘chance of success’ (CoS) function that will be used
in the truth condition for the new operator. The chance of success relative to a formula
ϕ is the sum of the chances the agent assigns to possible next static states validating ϕ.

Definition 11. The chance of success function CoS : S×H×Ags×L �→ [0, 1] which
for a state s and a history h an agent ag and a formula ϕ gives the chance the agent’s
choice relative to h is an action resulting in ϕ is defined by: CoS(s, h, ag, ϕ) = 0 if
PosX(s, h, ag, ϕ) = ∅ or else CoS(s, h, ag, ϕ) =

∑
s′∈PosX(s,h,ag,ϕ)

BX(s, ag, s′).

Extending the probabilistic frames of definition 7 to models in the usual way, the truth
condition of the new operator is defined as follows.

Definition 12. Relative to a modelM=〈S, H, E, B, π〉, truth 〈s, h〉 |= [{ag} xstit≥c]ϕ
of a formula [{ag} xstit≥c]ϕ in a dynamic state 〈s, h〉, with s ∈ h, is defined as:

〈s, h〉 |= [{ag} xstit≥c]ϕ⇔ CoS(s, h, ag, ϕ) ≥ c

We now formulate the result that the logic following from definitions 4 and 12 naturally
extends the base stit logic.
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Theorem 2. Consider a trivial translation T of probabilistic stit formulas to xstit for-
mulas determined by the mapping: [{ag} xstit]ϕ = [{ag} xstit≥1]ϕ. Other formulas
are mapped to their identical twin. Now, a formula ϕ is satisfiable in an xstit model
according to semantics of definition 4 if and only if T (ϕ) is satisfiable in a probabilistic
stit model according to the semantics of definition 12.

The proof of this theorem follows by careful examination of the the probabilistic seman-
tics. If the chance of success must be one, than an agent’s beliefs about choice exertion
by other agents is irrelevant. The only way in which the agent can be sure is be ensur-
ing ϕ holds irrespective of what other agents chose. This condition brings the standard
xstit semantics back in the probabilistic setting. If we would combine both modalities
in one language, we would get the axiom [{ag} xstit]ϕ↔ [{ag} xstit≥1]ϕ. This shows
that the probabilistic stit operator we gave in definition 12 faithfully generalizes the stit
operator of our base XSTITp system: the objective stit operator [{ag} xstit]ϕ discussed
in section 2 comes out as the probabilistic stit operator assigning a probability 1 to es-
tablishing the effect ϕ. This is very natural. Where in the standard stit setting we can
talk about ‘ensuring’ a condition, in the probabilistic setting we can only talk about
establishing an effect with a certain lower bound on the probability of succeeding.

We now define a Hiblert system for the probabilistic stit logic. The system is para-
metric is probabilistic variables c and k. This means that the system encodes infinitely
many axioms, since there can be infinitely many values for c and k. To obtain a standard
Hilbert system we can pose a prior limit to the possible values of probabilities.

Definition 13. Relative to the semantics following from definitions 4 and 12 we define
the following Hilbert system. We assume all the standard derivation rules for the normal
modalities X and �. Furthermore, we assume the standard derivation rules for the
weak modality [{ag} xstit≥c]ϕ, like closure under logical equivalence.

(p) p → �p for p modality free
S5 for �

(D) ¬[{ag} xstit≥c]⊥ for c > 0

(Triv) [{ag} xstit≥0]ϕ
(Lin) ¬X¬ϕ ↔ Xϕ

(Sett) �Xϕ → [{ag} xstit≥c]ϕ

(XSett) [{ag} xstit≥1]ϕ → X�ϕ

(Min) [{ag} xstit≥c]ϕ → [{ag} xstit≥k]ϕ for c ≥ k

(Add) [{ag} xstit≥c]ϕ ∧ [{ag} xstit≥k]ψ → [{ag} xstit≥c+k−1](ϕ ∧ ψ) for c + k > 1

(Mon) [{ag} xstit≥c](ϕ ∧ ψ) → [{ag} xstit≥c]ϕ

(Ind) ♦[{ag1} xstit≥c]ϕ ∧ . . . ∧ ♦[{agn} xstit≥k]ψ →
♦([{ag1} xstit≥c]ϕ ∧ . . . ∧ [{agn} xstit≥k]ψ) for Ags = {{ag1}, . . . , {agn}}

Proposition 2. The Hilbert system is sound relative to the semantics.

This proposition follows by careful inspection of the semantics.

Proposition 3. The Hilbert system reduces to the complete Hilbert system for xstit after
substitution of 1 for the parameter c.
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Note that the set of independence axioms given here generalized the single indepen-
dence axiom given for xstit. This is because the operator [{ag} xstit≥c]ϕ is not a nor-
mal modal operator (for c < 1), but a monotonic modal operator, which prevents us
from agglomerating the conjunction within the scope of the diamond. Also note that
all axioms for xstit have a natural generalization in the above Hilbert system. The most
interesting one is agglomeration that generalizes from the standard normal modal logic
axiom (Agg) to the set of weak modal scheme’s (Add).

Conjecture 1. The Hilbert system is complete relative to the semantics.

To prove the conjecture we might consider a standard neighborhood semantics for the
modality [{ag} xstit≥c]ϕ. The completeness of the logic relative to a neighborhood
semantics can be obtained using standard techniques for this type of semantics. The
second step would than be to show the relation between the probabilistic models given
here and the neighborhood semantics.

From the system we can derive several intuitive properties.

Proposition 4. Derivable properties are the following.

a. [{ag} xstit≥c]ϕ→ [{ag} xstit≥c](ϕ ∨ ψ)
b. [{ag} xstit≥c](ϕ ∨ ψ) ∧ [{ag} xstit≥1]¬ϕ→ [{ag} xstit≥c]ψ
c. [{ag} xstit≥c]ϕ ∧ [{ag} xstit≥1]ψ → [{ag} xstit≥c](ϕ ∧ ψ)
d. ¬([{ag} xstit≥c]ϕ ∧ [{ag} xstit≥k]¬ϕ) for c + k > 1
e. [{ag} xstit≥c]ϕ→ 〈{ag} xstit≥c〉ϕ

For instance, property d. tells us that it is not possible, by means of one choice, to have
at the same time a chance of c for ϕ and a chance of k for ¬ϕ if c + k > 1.

4 Conclusion and Discussion

This paper starts out by defining a base stit logic, which is a variant on XSTIT. However,
we define the semantics in terms of h-effectivity functions, which does more justice to
the nature of the structures interpreting the language. We show completeness relative
to this semantics. Then we proceed by generalizing the central stit operator of the base
language to a probabilistic variant. The original operator comes out as the probabilistic
operator assigning a chance 1 to success of a choice.

There are several opportunities for future work. The first objective is to prove com-
pleteness of the axiomatization for the probabilistic stit operator. We already briefly
sketched the proof direction we have in mind.

An interesting route for investigation is the generalization of the theory in this paper
to group choices of agents. If a group makes a choice, we may assume all kinds of
conditions on the pooling of information within the group. This means that the chances
that agents assign to choices made by agents within the group are generally different
than the chances they assign to choices by agents outside the group. How this pooling of
information takes form in a setting where beliefs are modeled as subjective probabilities
is still an open question to us.
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Abstract. This paper is concerned with intelligent agents that are able to perform
nonmonotonic reasoning, not only with, but also about general rules with excep-
tions. More precisely, the focus is on enriching a knowledge base Γ with a general
rule that is subsumed by another rule already there. Such a problem is important
because evolving knowledge needs not follow logic as it is well-known from e.g.
the belief revision paradigm. However, belief revision is mainly concerned with
the case that the extra information logically conflicts with Γ . Otherwise, the extra
knowledge is simply doomed to extend Γ with no change altogether. The prob-
lem here is different and may require a change in Γ even though no inconsistency
arises. The idea is that when a rule is to be added, it might need to override any
rule that subsumes it: preemption must take place. A formalism dedicated to rea-
soning with and about rules with exceptions is introduced. An approach to dealing
with preemption over such rules is then developed.

Keywords: Dynamics of knowledge, Logic, Default reasoning.

1 Introduction

Assume a knowledge base Γ contains the rule If the switch is on then the light is on.
When If the switch is on and the lamp bulb is ok then the light is on needs to be intro-
duced inside Γ , it seems natural to require this new rule to preempt the older rule: it is
no longer enough to know that the switch is on to be able to conclude that the light is
on, it must additionally be the case that Γ yields the information that the lamp bulb is
ok. First, let us observe that a monotonic logic cannot capture such dynamics of reason-
ing by simply adding the new rule. According to monotonicity, any conclusion drawn
from a given set of premises can still be inferred whatever additional premises happen
to supplement this set. In such a logic, the statement the light is on (concluded from the
former rule and the statement the switch is on) is still concluded even though the second
rule is added, and, worse yet, regardless of any information stating that the lamp bulb is
broken. Also, the usual approaches to belief revision [AGM85] fail to address this issue
because they make the new information to be set-theoretically unioned with Γ in case
no inconsistency arises. Let us stress that moving to a nonmonotonic formalism where
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c© Springer-Verlag Berlin Heidelberg 2011



Overriding Subsuming Rules 533

exception to rules depends on consistency checks like adding If the switch is on and if
it can be consistently assumed that the lamp bulb is ok, then the light is on does not
change the problem.

Technically, the problem can be described as follows. Given a set Γ of formulas
and a rule R, what changes should Γ undergo so as to infer R but not to infer any R′

subsuming R? In symbols, where Γ � stands for Γ after these changes have taken place,

Γ � |∼ R and Γ � �|∼ R′

Clearly, the problem first requires several matters to be settled. First, the syntax for
rules (in which R, R′, . . . are expressed) is to be defined. Second, an inference relation
(denoted |∼) allowing rules to be handled needs to be settled. Third, a concept of impli-
cant for rules expressing what does R′ subsuming R mean needs to be proposed, before
an approach to solve the above preemption issue can be defined.

Accordingly, the paper is organized as follows. In the next Section, a general formal-
ism for representing rules with exceptions is introduced with the aim of encompass-
ing various logic-based approaches allowing such rules, including default reasoning.
Section 3 introduces useful inference tools to reason about such rules, while Section
4 connects the tools with default logic. In Section 5, a useful X-derivation concept is
proposed, allowing both plain formulas and rules to be inferred under the possible as-
sumption of additional formulas or other rules with exceptions. Section 6 investigates
a concept of implicant for rules with exceptions. The approach to the preemption is-
sue is then developed in Section 7, based on the X-derivation and the latter implicant
concepts. Finally, some avenues for future research are provided in the conclusion.

Throughout the paper, the following notations are used: ¬, ∨, ∧ and ⊃ denote the
classical negation, disjunction, conjunction and material implication connectives, re-
spectively. When Ω is a set of formulas, Cn(Ω) denotes the deductive closure of Ω
under a given logic, of which ‖− denotes the consequence relationship,⊥ denotes ab-
surdity, and � denotes any tautology.

2 Rules with Exceptions

2.1 Defaults

In the Artificial Intelligence research community, some of the most popular tools to
handle forms of defeasible reasoning remain rules with exceptions, e.g., in the form
of defaults [Rei80]. They permit an inference system to jump to default conclusions
and to withdraw them when new information shows that these conclusions now lead to
inconsistency. Usually, such a rule is based on logical formulas, that is, expressions of a
formal language upon which an inference system (no matter how poor or rich) models
some kind of reasoning.

For instance, in default logic [Rei80], a default is of the form:

α : β

γ

where α, β, γ are formulas of classical logic.
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Intuitively, such a default is intended to allow the reasoning “Provided that α is
inferred and provided that β is consistent w.r.t. what is inferred, infer γ”.

Importantly, the inference notion alluded to is based on a logic (Reiter made it to be
classical logic but it is possible to have another logic instead: see paraconsistent default
logic [PB91] for example).

2.2 PEC Rules

Let us first concentrate on rules with exceptions under consistency tests. Our leading
example is then expressed as If the switch is on and if it can be consistently assumed
that the lamp bulb is ok, then the light is on and consists of three parts: its premises, its
exceptions, and its conclusions. E.g., it could be represented by the default

switch on : lamp bulb ok

light on

We aim at representing such rules in a uniform way within a unified setting that is,
among other things, meant to be general enough as to encompass default logic while
allowing us to instantiate it to other logical formalisms. It should also allow the repre-
sentation of both monotonic knowledge and rules involving consistency checks.

Given a logical language, a PEC rule (for Premises-Exceptions-Conclusions) is a
triple consisting of three sets of formulas. First, the premises, which are the necessary
conditions for this rule to apply. Then, the exceptions, which are based on consistency
tests. Finally, the conclusions, which list the claims that can be made whenever the rule
applies.

Definition 1. A PEC rule is a triple R = (P , E , C) where P = {ρ1, . . . , ρk} and
C = {ς1, . . . , ςn} are consistent sets of formulas and E = {ε1, . . . , εm} is a set of
non-tautological formulas.

Importantly, we impose no constraint on the language: there may, or may not, be con-
nectives such as negation, conjunction, disjunction and the like. There may even be
no connective at all. However, an underlying inference relation ‖− must be available.
Of course, this means that the logical formalism used must have a form of tautology
(please note the subtlety here: this does not mean that the logical formalism used must
have tautologies!).

A PEC rule can be interpreted in different ways, depending on how its set of premises
and its set of conclusions are captured logically (presumably, conjunctively or disjun-
tively). In the sequel, we consider only unary PEC rules, that is, PEC rules whose sets
of premises and sets of conclusions are singletons. Abusing the notation in order to
improve readability, we often omit curly brackets for these singletons.

Definition 2. A PEC rule R = (P , E , C) is unary iff P and C are singleton sets.

Example 1. The PEC rule (switch on, {¬lamp bulb ok}, light on) is an encoding of
the rule with exception If the switch is on and, consistently assuming that the lamp bulb
is ok, then the light is on.
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Example 2. The PEC rule ({switch on, lamp bulb ok}, ∅, light on) is an encoding
of a similar rule where the impossibility to derive e.g. lamp bulb ok can block the
inference of light on. In this respect, ¬lamp bulb ok would be an exception to the
rule, which is however not to be included in the set of exceptions of the PEC rule, since
it is not a consistency-based exception.

Example 3. The PEC rule (�, ∅, light on) is an encoding of the fact the light is on.

Example 4. The PEC rules (switch on, ∅, light on), (switch on ⊃ light on, ∅, ∅)
and (∅, ∅, switch on ⊃ light on) are various encodings of the exception-free rule If
the switch is on then the light is on.

As can be seen in the examples, exceptions to a rule that are supposed to be derived
in the monotonic fragment of the logic (vs. consistency checks) are not included in the
set of exceptions in the PEC rule, which is devoted to exceptions based on consistency
checks. As regards exception-free statements, we represent them as PEC rules whose
sets of exceptions are empty; regarding the premises, various choices are possible (e.g.,
the set of premises being a tautological singleton). In this respect, it follows that ‖−
is assumed to admit � to represent effectively some formula. The various possible en-
codings of knowledge between premises and conclusions is similar to the well-known
difference in default logic between defaults with prerequisites and the corresponding
prerequisite-free defaults (cf [Bra93]).

3 Reasoning with and about PEC Rules

Let us define a concept of a derivation for the very general language of PEC rules.
Interestingly, it will not only allow us to handle both monotonic and defeasible rules in
the same setting, but it will also allow us to derive both of them.

A word of warning: In the following, � does not represent an inference relation. � α
(resp. �� α) means that α has (resp. does not) the status “inferred” within the derivation.
Also, “not inferred within the derivation” does not mean “whose negated form cannot
be inferred using the inferred formulas occurring in the derivation” (which is a weaker
and less interesting notion). A word of terminology: � α and �� α are said to be signed
formulas. Most naturally, � γ (resp. �� γ) is said to be positive (resp. negative).

Definition 3. Let Γ be a set of unary PEC rules andℵ be a PEC rule (ρ, {ε1, . . . , εn}, ς).
A derivation of ℵ from Γ is a tree T whose nodes are signed formulas such that

1. for each leaf of the form � α, either (α1, ∅, α2) ∈ Γ and α = α1 ⊃ α2, or α = ρ,
2. for each leaf of the form �� β,

β �∈ Cn({γ1 ⊃ γ2 | (γ1, ∅, γ2) ∈ Γ} ∪ {α | � α is a node of T }),
3. if �� β is a node then it is a leaf,
4. each node, if not a leaf, has a tuple (� α1, . . . ,� αk, �� β1, . . . , �� βm) as its parents

(k > 1 only if m = 0),1

1 This restriction is due to considering only unary rules in our presentation, it is lifted in the
general case.
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5. if � α is a node whose parents are a tuple (� α1, . . . ,� αk) then α ∈ Cn({α1,
. . . , αk}),

6. if � α is a node whose parents are a tuple (� α1, �� β1, . . . , �� βm) then
(α1, {β1, . . . , βm}, α) ∈ Γ ,

7. ρ ∈ {α | � α is a leaf of T } ∪ {�}, and {ε1, . . . , εn} = {β | �� β is a node of T },
and � ς is the root of T .

We write Γ |∼{ε1,...,εn} ℵ and, whenever {ε1, . . . , εn} is empty, Γ |∼ ℵ.

Let us provide some intuitions and examples. Let us start with the simple case of clas-
sical logic: items 2, 3, and 6 are ineffective because there are no negative nodes, while
items 4 and 7 gets simpler for the same reason. In fact, the derivation then is a classi-
cal proof: it contains only positive nodes and merely displays classical deductive steps.
Thus, the conclusion is a PEC rule ℵ = (ρ, ∅, ς) where ς is the root of the derivation
tree and ρ either is � or is a formula from a rule of Γ representing a fact (cf � ⊃ a in
Example 5) or is an extra formula that plays the rôle of an additional hypothesis (cf. a
in Example 6, a ⊃ b in Example 7, ¬a in Example 8). Still in the case that no exception
is mentioned, classical trivialization from inconsistency threatens (cf Example 8).

Example 5. Let Γ = {(a, ∅, b), (�, ∅, a), (b, ∅, c)}.The tree 3.1 is a derivation of (� ⊃
a, ∅, c) and (a ⊃ b, ∅, c) from Γ . The tree 3.1 is also a derivation of (�, ∅, c) from Γ
(please note that the first part of item 7 is satisfied by ρ ∈ {�}).

Example 6. Let Γ = {(a, ∅, b), (b, ∅, c)}.The tree 3.2 is a derivation of (a, ∅, c) from
Γ (please note that a plays the rôle of an additional hypothesis). The tree 3.2 is also a
derivation of (a, ∅, c) from Γ ∪ {(�, ∅, a)}. Please compare with the tree 3.1 being a
derivation of (� ⊃ a, ∅, c) from Γ ∪ {(�, ∅, a)}.

Example 7. Let Γ = {(�, ∅, a), (b, ∅, c)}.The tree 3.1 is a derivation of (a ⊃ b, ∅, c)
from Γ .

Example 8. Let Γ = {(�, ∅, a)}. The tree 3.3 is a derivation of (¬a, ∅, c) from Γ .

� � ⊃ a
� a � a ⊃ b

� b � b ⊃ c
� c

� a � a ⊃ b
� b � b ⊃ c

� c
� ¬a

� � ⊃ a
� a

� c
(3.1) (3.2) (3.3)

If some PEC rules in Γ have a non-empty set of exceptions, derivation trees may cap-
ture reasoning under some proviso(s) (meaning that there are possible exceptions) as
can be seen in Example 9. Item 2 guarantees reasoning to be consistent in the sense that
exception-free information from Γ (that may, or may not, occur as positive nodes) does
not yield exceptions whose absence is required for the reasoning developed to be ac-
ceptable (cf Example 10 with Cn being classical logic and Example 11 with Cn being
an arbitrary logic). This needs not prevent trivialization (in which case only derivations
with no negative node may exist). Item 3 indicates that consistency statements occur
as hypotheses, they are not inferred. Item 4 makes sure that each node, if not a leaf, is
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inferred from exception-free information and/or consistency hypotheses. As to items 5
and 6, they state that only inference steps from Cn and rules (with exceptions) in Γ
may apply. Lastly, item 7 specifies what components the PEC rule derived consists of:

– Its conclusion is the root of the derivation tree.
– Its exceptions exhaust all consistency hypotheses occurring in the derivation tree

(cf Example 9).
– Its premise, if not �, either amounts to some exception-free statement represented

by a rule from Γ , or it is an extra formula that plays the rôle of an additional
hypothesis in the reasoning (cf Example 9).

Example 9. Let Γ = {(a ∧ b, {d, e}, f), (f, ∅, c)}.The tree 3.4 is a derivation of (a ∧
b, {d, e}, c) from Γ (please note that ρ is a ∧ b that plays the rôle of an additional hy-
pothesis and that {d, e} exhausts all negative nodes of the derivation tree). The tree 3.4
is not a derivation of (a∧ b, {d, e, g}, c) from Γ (item 7 in the definition of a derivation
fails because g is listed as an exception of the PEC rule derived but �� g is not a node of
the derivation tree). The tree 3.4 is not a derivation of (a, {d, e}, c) from Γ (here, item 7
is failed for a different reason: the purported ρ is a but � a is not a leaf of the derivation
tree).

Example 10. Let Γ = {(a ∧ b, {d, e}, f), (f, ∅, c), (�, ∅,¬f)}.
If Cn is taken to be classical logic, the tree 3.4 is not a derivation of (a∧ b, {d, e}, c)

from Γ . The reason is that item 2 in the definition of a derivation fails as follows. First,
� f is a node of the derivation tree hence f ∈ {α | � α is a node of T }. Second,
(�, ∅,¬f) belongs to Γ hence � ⊃ ¬f ∈ {γ1 ⊃ γ2 | (�, ∅, γ1 ⊃ γ2) ∈ Γ}. Third,
item 2 then becomes β �∈ Cn({f, . . . ,� ⊃ ¬f}) that must be checked for β being d
and e. However, as Cn is classical logic, Cn({f, . . . ,� ⊃ ¬f}) contains all formulas
of the language, among them are d and e.

Example 11. Let Γ = {(a ∧ b, {d, e}, f), (f, ∅, d), (d, {¬c}, c)}. The tree 3.5 is not
a derivation of (a ∧ b, {d, e,¬c}, c) from Γ because item 2 is failed. First, � d is a
node of the derivation tree hence d ∈ {α | � α is a node of T }. As �� d is a leaf,
β �∈ Cn({α | � α is a node of T }) must be checked for β being d and failure is clear.

� a ∧ b �� d �� e

� f � f ⊃ c

� c

� a ∧ b �� d �� e

� f � f ⊃ d

� d �� ¬c
� c

(3.4) (3.5)

4 A Versatile Approach

It must be clear that the present work is not the definition of a new nonmonotonic logic
and its proof theory. Instead, it is the definition of a framework expressive enough to
capture an approach to the problem of overriding subsumed rules, and general enough
to be instantiated by a number of logical formalisms. Importantly, the concept of a
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derivation is only a tool towards this aim which can be tailored to the proof theory of
various logics.

For instance, and importantly, the above concept of a derivation does not match in-
ference in default logic. To start with, there is no notion of an extension. Moreover,
there is no counterpart to the requirement that a default must apply whenever it can.
Also, it happens that derivations exist although there is no extension (cf Example 12).

Example 12. Let Γ = (Δ, Σ) be a default theory with Δ = {�:a
¬a , b:d,e

c } and Σ = {b}.
Let us represent Γ by the PEC rules Γ ′ = {(�, {¬a},¬a), (b, {¬d,¬e}, c), (�, ∅, b)}.
Γ has no extension because Δ contains the default �:a

¬a , yet there exists a derivation of
the PEC rule (�, {¬d,¬e}, c) from Γ ′, as can be seen from the tree 4.1.

Similarly, Example 13 shows that it may happen that a formula is in no extension al-
though there exists a derivation for it.

Example 13. Let Γ = (Δ, Σ) be a default theory with Δ = {�:a
b , a:¬b

c } and Σ = {a}.
Let us represent Γ by the set of PEC rules Γ ′ = {(�, {¬a}, b), (a, {b}, c), (�, ∅, a)}.
Γ has a single extension, i.e., E = Cn({a, b}). Although the formula c is not in E,
there exists a derivation of the PEC rule (�, {b}, c) from Γ ′ as shown by the tree 4.2.

� ⊃ b
� b �� ¬d �� ¬e

� c

� � ⊃ a
� a �� b

� c
(4.1) (4.2)

Still, the concept of a derivation is powerful enough to capture credulous reasoning as
modeled by default logic. More precisely, if ϕ is a formula that belongs to an extension
of a default theory Γ then there exists a derivation of � ϕ from the set of PEC rules
encoding Γ , which amounts to Γ |∼{ε1,...,εn}(�, {ε1, . . . , εn}, ϕ).

5 X-Derivations

We are now to extend the concept of a derivation by taking into account an additional
hypothesis, which, in full generality, can be a PEC rule (with or without exceptions).
This full-fledged account is called an X-derivation, the details of which are explained
and more generally discussed after the formal definition below.

Definition 4. Let Γ be a set of PEC rules. Let X be a PEC rule. An X-derivation of
ℵ = (ρ, {ε1, . . . , εn}, ς) from Γ is a tree T whose nodes are signed formulas such that

1. for each leaf of the form � α, either (α1, ∅, α2) ∈ Γ ∪ {X} and α = α1 ⊃ α2, or
α = ρ,

2. for each leaf of the form �� β,
β �∈ Cn({γ1 ⊃ γ2 | (γ1, ∅, γ2) ∈ Γ} ∪ {α | � α is a node of T }),

3. if �� β is a node then it is a leaf,
4. each node,if not a leaf, has a tuple (� α1, . . . ,� αk, �� β1, . . . , �� βm) as its parents

(k > 1 only if m = 0),
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5. if � α is a node whose parents are a tuple (� α1, . . . ,� αk) then α ∈ Cn({α1,
. . . , αk}),

6. if � α is a node whose parents are a tuple (� α1, �� β1, . . . , �� βm) then
(α1, {β1, . . . , βm}, α) ∈ Γ ∪ {X},

7. ρ ∈ {α | � α is a leaf of T } ∪ {�}, and {ε1, . . . , εn} = {β | �� β is a node of T },
and � ς is the root of T .

We write Γ |∼{ε1,...,εn}
X ℵ and, should {ε1, . . . , εn} be empty, Γ |∼X ℵ.

The extra hypothesis X mainly comes into play through items 1 and 6. This means
that the PEC rule X is actually regarded as supplementing the set of PEC rules Γ .
Accordingly, if X = (�, ∅,�), then an X-derivation of ℵ from Γ happens to be a
derivation of ℵ from Γ (cf Example 14). The rôle of each of the three components of
the derived rule ℵ is detailed by item 7. Importantly, item 1 expresses that if a positive
leaf (tautologies aside) is not some exception-free information encoded as a PEC rule
from Γ then it is the premise of ℵ. Similarly to Definition 3, conditional reasoning
can be conducted using exception-free information as an extra hypothesis, turning it
into a positive leaf. However, the conditional piece can now be the X rule itself (more
exactly, an equivalent form) when X represents a formula of classical logic for instance
(cf Example 16). When X is a PEC rule (�, {ξ1, . . . , ξh}, ν) that does have exceptions,
if its premise � stands as a positive leaf (i.e., � �) not issued from a rule in Γ (that is,
there exists no (κ, ∅, ζ) in Γ such that κ ⊃ ζ be �), then � turns out to be the premise
of ℵ (cf Example 18).

When X is used in the derivation and that the premise � of X is not a leaf, then �
comes from a subproof in the tree (cf Example 19).

In all cases, when X is used in the derivation, its premise occurs (as an hypothesis
or an intermediate conclusion) higher in the tree. Therefore, not only is X introduced
as an extra hypothesis, but when it is mentioned in the tree, if its premise � does not
come from a subproof then � � occurs as a leaf (and is regarded as established); hence
� enters the set of premises of ℵ (where ℵ is the PEC rule which is the conclusion of
the derivation).

More generally, an X-derivation encompasses conditional reasoning in various forms
because it involves consistency hypotheses, it can include an extra rule X , and assumes
the premise of ℵ (the PEC rule to be inferred).

Example 14. Let us return to Example 9, i.e., Γ = {(a ∧ b, {d, e}, f), (f, ∅, c)}.
The tree below, reproduced from Example 9, is both a derivation and a (�, ∅,�)-

derivation of (a ∧ b, {d, e}, c) from Γ .

� a ∧ b �� d �� e

� f � f ⊃ c

� c

(3.4)

Example 15. Again, Γ = {(a ∧ b, {d, e}, f), (f, ∅, c)} as in Example 9.
The tree (3.4) above, reproduced from Example 9, is a (�, ∅, a ∧ b)-derivation of

(a∧b, {d, e}, c) from Γ , although in a rather vacuous way because the extra hypothesis
X = (�, ∅, a ∧ b) is left unused.
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The tree (3.4) is not a (�, ∅, a ∧ b)-derivation of (�, {d, e}, c) from Γ . The reason
is that item 1 in the definition of an X-derivation is not satisfied because a ∧ b is not of
the form α1 ⊃ α2 while ρ = �.

In contrast, the tree in the next example is a (�, ∅, a∧ b)-derivation of (�, {d, e}, c)
from Γ .

Example 16. Let us still consider Γ = {(a∧ b, {d, e}, f), (f, ∅, c)}. The following tree
is a (�, ∅, a∧ b)-derivation of (�, {d, e}, c) from Γ (informally meaning that assuming
a ∧ b allows us to conclude c, unless d or e be the case).

� � ⊃ a ∧ b
� a ∧ b �� d �� e

� f � f ⊃ c

� c

(5.1)

Example 17. Once more, Γ = {(a ∧ b, {d, e}, f), (f, ∅, c)}.
The tree (3.4) reproduced above in Example 14 is a (a ∧ b, {d, e}, f)-derivation of

(a∧b, {d, e}, c) from Γ although in a rather vacuous way because X = (a∧b, {d, e}, f)
is in Γ .

Indeed, the tree (3.4) is also a (a ∧ b, {d, e}, f)-derivation of (a ∧ b, {d, e}, c) from
Γ ′ where Γ ′ is taken to be Γ \ {(a ∧ b, {d, e}, f)}.

Example 18. Let Γ = {(f, {e}, c)}. The following tree is a (a ∧ b, {d}, f)-derivation
of (a ∧ b, {d, e}, c) from Γ .

� a ∧ b �� d

� f �� e

� c

(5.2)

Please observe that the premise of X , namely a ∧ b, is not issued from Γ hence is also
the premise of ℵ (here, X is (a ∧ b, {d}, f) and ℵ is (a ∧ b, {d, e}, c)).

Example 19. Let Γ = {(a∧b, {d, e}, f)}. The following tree is a (f, {g}, c)-derivation
of (a ∧ b, {d, e, g}, c) from Γ .

� a ∧ b �� d �� e

� f �� g

� c

(5.3)

Importantly, X-derivations are not meant to be optimal proofs: There is no endeavour
as to avoid detours or to impose shortcuts.

Lastly, a concept of consistency can be introduced into the PEC framework.

Definition 5. Γ is consistent iff Γ �|∼ ⊥.

As usual, a notion of consistency opens up a choice of negations. Whatever such a
choice of a negation ∼ for PEC rules, it is likely to be such that both Γ |∼ R and
Γ |∼ ∼R while Γ �|∼R & ∼R (where & stands for some conjunction of PEC rules, again
whatever choice is made there) is possible. Purposedly, we have left out any notion of
inferential closure and similarly any subgrouping of consequences, e.g. in forms of
extensions à la default logic.
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6 PEC-Implicants

Definition 6. Let Γ be a set of unary PEC rules and R = (ρ, {ε1, . . . , εm}, ς) be a
unary PEC rule. A unary PEC rule R′ is a PEC-implicant of R modulo Γ iff there
exists an R′-derivation D of (ρ, E∗, ς) from Γ such that

1. ∀e′ ∈ E∗, ∃e ∈ {ε1, . . . , εm} s.t. e ∈ Cn({e′}),
2. ∀e′′ ∈ {ε1, . . . , εm} \ E∗, e′′ �∈ Cn{α | � α is a node of D}.

Definition 7. Let Γ be a set of unary PEC rules. Let R and R′ be two unary PEC rules.
R′ is a strict PEC-implicant of R modulo Γ iff R′ is a PEC-implicant of R and R is not
a PEC-implicant of R′.

To simplify matters, Cn stands for classical logic in all of the following examples.

Example 20. Let Γ be empty. Let R = (a ∧ b, {¬d,¬e}, c) and R′ = (a, {¬d}, c).
R′ is a PEC-implicant of R modulo Γ . Indeed, the tree 6.1 below is an R′-derivation

of (a ∧ b, {¬d}, c) from Γ , ¬d is in the set of exceptions of R (taking care of item 1),
and ¬e does not follow from {a, a ∧ b, c} (taking care of item 2).

Example 21. Let Γ = {(�, ∅, a ⊃ ¬e), (�, ∅,¬e ⊃ f)}. Let R = (a ∧ b, {¬d,¬e}, c)
and let R′ = (f, {¬d}, c).

Considering the following tree 6.2, R′ is not a PEC-implicant of R modulo Γ . Al-
though this tree is an R′-derivation of (a∧b, {¬d}, c) from Γ , item 2 from the definition
of a PEC-implicant is not satisfied: � ¬e is a node of the tree although ¬e is an excep-
tion of R. Informally, R′ then fails to subsume R because the way R′ is applied when
attempting to infer this “neighbouring” version of R involves a case that happens to be
an exception to R.

� a ∧ b
� a �� ¬d
� c

� a ∧ b
� a � a ⊃ ¬e

� ¬e � ¬e ⊃ f

� f �� ¬d
� c

� a ∧ b
� a �� h

� g �� ¬d
� c

(6.1) (6.2) (6.3)

� ⊃ (a ⊃ b)
� a ⊃ b � a

� b

� a �� ¬d ∧ ¬f
� c

(6.4) (6.5)

Example 22. Let Γ = {(a, {h}, g)}. Let R = (a ∧ b, {¬d,¬h}, c) and let R′ =
(g, {¬d}, c).

Considering the tree 6.3., R′ is not a PEC-implicant of R modulo Γ . Although the
tree 6.3 is an R′-derivation of (a ∧ b, {¬d, h}, c) from Γ , item 1 in the definition of
a PEC-implicant is failed because h is a formula in E∗ from which no formula in
{¬d,¬h} (i.e., {ε1, . . . , εm}) can be inferred. Informally, R′ then fails to subsume R
because the way R′ is applied when attempting to infer this “neighbouring” version of
R introduces a new exception.
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Example 23. Let Γ be empty. Let R = (a, {¬b}, b) and let R′ = (�, ∅, a ⊃ b).
R′ is a PEC-implicant of R modulo Γ . Witness, the tree 6.4 is an R′-derivation of

(a, ∅, b) from Γ , item 1 is trivially satisfied as E∗ is empty, and, as regards item 2, ¬b
cannot be deduced from {a, b,� ⊃ (a ⊃ b)} (i.e., the formulas in the positive nodes of
the tree). This example shows that the context is taken into when it comes to assessing
whether a rule subsumes another one, in the sense of being a PEC-implicant. Indeed,
the implicant and the implicate need not have the same premise.

Example 24. Let Γ be empty. Let R = (a, {¬d,¬e}, c) and let R′ = (a, {¬d∧¬f}, c).
R′ is a PEC-implicant of R modulo Γ . Firstly, the tree 6.5 is an R′-derivation of

(a, {¬d ∧ ¬f}, c) from Γ . As to item 1, ¬d ∧ ¬f (namely, the only member of E∗)
entails ¬d (a member of {ε1, . . . , εm}). As to item 2, neither ¬d nor ¬e (the members
of {ε1, . . . , εm}) are entailed by {a, c} (the formulas in the positive nodes of the tree).

Fairly weak requirements about Cn are enough to show that being a PEC-implicant
defines a pre-order. Of special interest then is the case that two PEC rules are PEC-
implicants of each other: They surely are equivalent in a strong sense closely related to
Cn-equivalence of exceptions. It is possible to obtain such a result, as follows.

Given two unary PEC rules R = (ρ, {ε1, . . . , εm}, ς) and R′ = (ρ′, {ε′1, . . . , ε′n}, ς ′),
if R is a PEC-implicant of R′ modulo Γ , and R′ is a PEC-implicant of R modulo Γ
where Γ = ∅ then:

1. ρ‖−ρ′ and ρ′‖−ρ,
2. ∀εi ∈ {ε1, . . . , εm}, ∃εj, ε

′
k where εj ∈ {ε1, .., εm} and ε′k ∈ {ε′1, .., ε′n}, s.t. εj‖−εi

et εj‖−ε′k and ε′k‖−εj .

In particular, item 2 means that exceptions in R and R′ are the same, up to logical
equivalence (by subsumption, there can be more exceptions in R or in R′, though).

7 Overriding Subsuming Rules

We are now ready to introduce our approach to override subsuming rules.
To override the subsuming rules of a PEC rule R and make R preempt, it is pre-

sumably not sufficient to “withdraw” all strict PEC-implicants of R and insert R (or
”revise” by R in case of inconsistency). Indeed, there may remain in the resulting Γ
some information of a self-conflicting change, e.g. so that whenever R is derivable, one
of its strict PEC-implicants is also derivable. Accordingly, the process will be a little
more elaborate.

In the sequel, we assume two operators ⊕ and \ to be available in the PEC frame-
work with the following features. Intuitively, \ is a kind of contraction operator which
applies to a set of PEC rules and to a pair of PEC rules: Γ \ (R, R′) is intended to
contract Γ of R′ in the presence of R. Intuitively, ⊕ is some revision operator in the
PEC framework that restores consistency while enforcing means to derive a given PEC
rule. More formally, the following properties are required upon these two operators:

– Γ \ (R, R′) �|∼ε
R R′

– Γ \ (R, R′) |∼ε R′′ ⇒ Γ |∼ε R′′
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– Γ \ (R, R′) = Cn(Γ \ (R, R′))
– Γ ⊕R is consistent
– Γ ⊕R |∼ε R

whenever R, R′, R′′ are PEC rules and Γ is a set of PEC rules that does not need to be
consistent.

Definition 8. Let R′ be a strict PEC-implicant of R modulo Γ .
Γ ⊕〉R′〈 R =def Γ \ (R, R′) ∪ {R}.

Theorem 1. Let R′ be a strict PEC-implicant of R modulo Γ .

Γ ⊕〉R′〈 R �|∼ε R′.

Γ ⊕〉R′〈 R |∼ε R.

The next step consists in iterating the above process on all strict implicants of X . As-
suming that the \ operator is extended so that it applies to all the elements of its second
argument which is now a set of PEC rules, we only need one more definition.

Let Y be the finite set of strict PEC-implicants of R modulo Γ .

Definition 9. Γ ⊕〉Y〈 R =def Γ \ (R,Y) ∪ {R}.

Theorem 2. Γ ⊕〉Y〈 R �|∼ R′ for all R′ that is a strict PEC-implicant of R modulo Γ .
Also, Γ ⊕〉Y〈 R |∼ R.

8 Conclusions and Future Work

The contribution of this paper is at least twofold. First, a unified framework has been
presented that allows both monotonic knowledge and defeasible rules to be represented
and reasoned about in a uniform way. Derivation tools have been defined allowing to
reason and infer both kinds of knowledge indifferently. The next step will be to address
algorithmic aspects of X-derivations and associated inference, within the propositional
setting. Also, the X-derivation concept implements the possibility to state defeasible
rules as extra assumptions, which are coming in addition to the defeasible character
of rules with exceptions. We believe that this two-levels form of hypothetical reason-
ing could be further explored and refined. Also, a whole family of forms of implicants
could be devised for defeasible rules, depending on the actual form of reasoning that is
modelled and on the intended actual epistemological rôles of the involved exceptions,
premises and conclusion. Second, this framework has been exploited to solve a spe-
cific problem in knowledge representation and reasoning that has not received much
attention so far. Namely, how could new information override the relevant subsuming
available one? We claim that such an issue should not be taken for granted. Indeed,
in real life we do often get information that is logically weaker but that appears more
precise than the previously recorded one, and should therefore be preferred.
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Abstract. In this paper we extend the authors’ previous works [6,7] by
considering an aggregation model f : X1 × · · · × Xn → Y for arbitrary
sets X1, . . . , Xn and a finite distributive lattice Y , factorizable as

f(x1, . . . , xn) = p(ϕ1(x1), . . . , ϕn(xn)),

where p is an n-variable lattice polynomial function over Y , and each
ϕk is a map from Xk to Y . Following the terminology of [6,7], these are
referred to as pseudo-polynomial functions.

We present an axiomatization for this class of pseudo-polynomial func-
tions which differs from the previous ones both in flavour and nature,
and develop general tools which are then used to obtain all possible such
factorizations of a given pseudo-polynomial function.

Keywords: Sugeno integral, Sugeno utility function, pseudo-polynomial
function, factorization, distributive lattice.

1 Introduction and Motivation

The Sugeno integral (introduced by Sugeno [14,15]) remains as one of the most
noteworthy aggregation functions, and this is partially due to the fact that it
provides a meaningful way to fuse or merge values within universes where es-
sentially no structure, other than an order, is assumed. Even though primarily
defined over real intervals, this concept of Sugeno integral can be extended to
wider domains, namely, distributive lattices, via the notion of lattice polynomial
function (i.e., a combination of variables and constants using the lattice opera-
tions ∧ and ∨). As it turned out (see e.g. [5,13]), idempotent lattice polynomial
functions coincide with (discrete) Sugeno integrals.

Recently, the Sugeno integral has been generalized via the notion of quasi-
polynomial function (see [3]) originally defined as a mapping f : Xn → X on a
bounded chain X and which can be factorized as

f(x1, . . . , xn) = p(ϕ(x1), . . . , ϕ(xn)), (1)

W. Liu (Ed.): ECSQARU 2011, LNAI 6717, pp. 545–556, 2011.
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where p : Xn → X is a polynomial function and ϕ : X → X is an order-preserving
map. This notion was later extended in two ways.

In [4], the input and output universes were allowed to be arbitrary, possibly
different, bounded distributive lattices X and Y so that f : Xn → Y is fac-
torizable as in (1), where now p : Y n → Y and ϕ : X → Y . These functions
appear naturally within the scope of decision making under uncertainty since
they subsume overall preference functionals associated with Sugeno integrals
whose variables are transformed by the utility function ϕ. Several axiomatiza-
tions for this function class were proposed, as well as all possible factorizations
described.

In [6] and [7] a different extension was considered, now appearing within the
realm of multicriteria decision making. Essentially, the aggregation model was
based on functions f : X1 × · · · ×Xn → Y for bounded chains X1, . . . , Xn and
Y , which can be factorized as compositions

f(x1, . . . , xn) = p(ϕ1(x1), . . . , ϕn(xn)), (2)

where p : Y n → Y is a Sugeno integral, and each ϕk : Xk → Y is an order-
preserving map. Such functions were referred to as Sugeno utility functions in
[6]. Pseudo-polynomial functions were defined as functions of the form (2), where
p is an arbitrary (possibly non-idempotent) lattice polynomial function, and
each ϕk satisfies a certain boundary condition (which is weaker than order-
preservation). Note that every quasi-polynomial function (1) can be regarded as
a pseudo-polynomial function, where X1 = · · · = Xn = X and ϕ1 = · · ·ϕn = ϕ.
Moreover, pseudo-polynomial functions naturally subsume Sugeno utility func-
tions, and several axiomatizations were established for this function class in [6].
The question of factorizing a given Sugeno utility function into a composition
(2) was addressed in [7], where a method for producing such a factorization was
presented.

In the current paper we extend the previous results by letting X1, . . . , Xn to
be arbitrary sets and Y to be an arbitrary finite distributive lattice, thus sub-
suming the frameworks in [4,6,7]. Moreover, we develop general tools which allow
us to produce all possible factorizations of a given pseudo-polynomial function
into compositions (2) of a lattice polynomial function p : Y n → Y with maps
ϕk : Xk → Y .

The structure of the paper is as follows. In Sect. 2 we introduce the basic
notions and terminology needed throughout the paper, and recall some prelim-
inary results. For further background on aggregation functions and their use in
decision making, we refer the reader to [2,11]; for basics in the theory of lattices,
see [9,12]. In Sect. 3 we develop a general framework used to derive an axiomati-
zation of pseudo-polynomial functions of somewhat different nature than those
proposed in [4,6,7], and which will provide tools for determining all possible
factorizations of given pseudo-polynomial functions. These results are then illus-
trated in Sect. 4 by means of a concrete example, and in Sect. 5 we show how
our new procedure can be applied to derive the algorithm provided in [7,8].
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2 Preliminaries

Throughout this paper, Y is assumed to be a finite distributive lattice with meet
and join operations denoted by ∧ and ∨, respectively. Being finite, Y has a least
element and a greatest element, denoted by 0 and 1, respectively. By Birkhoff’s
Representation Theorem [1], Y can be embedded into P (U), the power set of
a set U . Identifying Y with its image under this embedding, we will consider
Y as being a sublattice of P (U) with 0 = ∅, 1 = U . The complement of a set
S ∈ P (U) will be denoted by S. Since Y is closed under intersections, it induces
a closure operator cl on U , and since Y is closed under unions, it also induces a
dual closure operator int (also known as interior operator):

cl (S) :=
∧

y∈Y
y≥S

y, int (S) :=
∨

y∈Y
y≤S

y.

It is easy to verify that these two operators satisfy the following identities for
any Si ∈ P (U) (i ∈ I) :

cl
(∨
i∈I

Si

)
=
∨
i∈I

cl (Si) , int
(∧
i∈I

Si

)
=
∧
i∈I

int (Si) .

A function p : Y n → Y is a polynomial function if it can be obtained as a
composition of the lattice operations ∧ and ∨ with variables and constants. As
observed in [13], Sugeno integrals coincide exactly with those lattice polynomial
functions p which are idempotent, i.e., satisfy the identity p (y, . . . , y) = y. An
important lattice polynomial function (in fact, a Sugeno integral) is the median
function med: Y 3 → Y defined by

med (y1, y2, y3) = (y1 ∧ y2) ∨ (y2 ∧ y3) ∨ (y3 ∧ y1)
= (y1 ∨ y2) ∧ (y2 ∨ y3) ∧ (y3 ∨ y1) .

Polynomial functions over bounded distributive lattices have very neat rep-
resentations, for instance, in disjunctive normal form [10]. To describe this dis-
junctive normal form, let us define 1I to be the characteristic vector of I ⊆
[n] := {1, . . . , n}, i.e., the n-tuple in Y n whose i-th component is 1 if i ∈ I, and
0 otherwise.

Theorem 1 (Goodstein [10]). A function p : Y n → Y is a polynomial func-
tion if and only if

p(y1, . . . , yn) =
∨

I⊆[n]

(
p(1I) ∧

∧
i∈I

yi

)
. (3)

Furthermore, the function given by (3) is a Sugeno integral if and only if p(0) = 0
and p(1) = 1.

Let X1, . . . , Xn be arbitrary sets with at least two elements, and for each k ∈ [n]
let us fix two distinct elements 0Xk

, 1Xk
of Xk . With no danger of ambiguity,
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we simply write 0 and 1 instead of 0Xk
and 1Xk

. We shall say that a mapping
ϕk : Xk → Y satisfies the boundary condition if for every xk ∈ Xk,

ϕk(0) ≤ ϕk(xk) ≤ ϕk(1). (4)

Observe that if Xk is a partially ordered set with least element 0 and greatest
element 1, and if ϕk is order-preserving, then it satisfies the boundary condition.

A function f :
∏

i∈[n] Xi → Y is said to be a pseudo-polynomial function,
if there is a polynomial function p : Y n → Y and there are unary functions
ϕk : Xk → Y (k ∈ [n]), satisfying the boundary conditions, such that

f(x) = p (ϕ (x)) = p(ϕ1(x1), . . . , ϕn(xn)) (5)

holds for all x = (x1, . . . , xn) ∈
∏

i∈[n] Xi. If p is a Sugeno integral, then we
say that f is a pseudo-Sugeno integral. As it turns out, the notions of pseudo-
polynomial function and pseudo-Sugeno integral are equivalent.

Proposition 2. A function f :
∏

i∈[n] Xi → Y is a pseudo-polynomial function
if and only if it is a pseudo-Sugeno integral.

Clearly, if f is a pseudo-polynomial function, then it satisfies the following
n-variable analogue of the boundary condition (4):

f
(
x0

k

)
≤ f (x) ≤ f

(
x1

k

)
for all k ∈ [n] ,x ∈

∏
i∈[n]

Xi, (6)

where xa
k ∈
∏

i∈[n] Xi denotes the n-tuple which coincides with x in all but the
k-th component, whose value is a.

Next we define a property that can be used to characterize pseudo-polynomial
functions. We say that f :

∏
i∈[n] Xi → Y is pseudo-median decomposable, if for

each k ∈ [n] there is a unary function ϕk : Xk → Y satisfying (4), such that

f(x) = med
(
f(x0

k), ϕk(xk), f(x1
k)
)

(7)

for every x ∈
∏

i∈[n] Xi. Note that if f is pseudo-median decomposable w.r.t.
unary functions ϕk : Xk → Y (k ∈ [n]) satisfying (4), then (6) holds.

Theorem 3. Let f :
∏

i∈[n] Xi → Y be a function. Then f is a pseudo-polynomial
function if and only if f is pseudo-median decomposable.

The following theorem provides a disjunctive normal form of a polynomial func-
tion p0 which can be used to factorize a given pseudo-median decomposable
function f . Here 1̂I denotes the characteristic vector of I ⊆ [n] in

∏
i∈[n] Xi, i.e.,

the n-tuple in
∏

i∈[n] Xi whose i-th component is 1Xi if i ∈ I, and 0Xi otherwise.

Theorem 4. If f :
∏

i∈[n] Xi → Y is pseudo-median decomposable w.r.t. unary
functions ϕk : Xk → Y (k ∈ [n]), then f (x) = p0(ϕ (x)), where p0 is given by

p0 (y1, . . . , yn) =
∨

I⊆[n]

(
f
(
1̂I

)
∧
∧
i∈I

yi

)
. (8)
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Remark 5. Proposition 2 and Theorems 3 and 4 were proved in [6,7,8] for com-
plete chains, but the proofs presented there do not make use of the fact that the
underlying sets are totally ordered (only that they are distributive lattices), and
thus the proofs apply verbatim to finite distributive lattices.

3 Characterization and Factorization of
Pseudo-polynomial Functions

Let f :
∏

i∈[n] Xi → Y be function satisfying (6), and for each k ∈ [n] let us
define two auxiliary functions Φ−

k , Φ+
k : Xk → Y as follows:

Φ−
k (ak) :=

∨
xk=ak

cl
(
f (x) ∧ f (x0

k)
)

and Φ+
k (ak) :=

∧
xk=ak

int
(
f (x) ∨ f (x1

k)
)
.

Note that from (6) it follows that Φ−
k and Φ+

k satisfy the boundary condition (4).
With the help of these functions, we will give a necessary and sufficient condition
for f to be a pseudo-polynomial function. The following lemma formulates a
simple observation that allows us to solve equation (7) for ϕk(xk).

Lemma 6. For any u ≤ m ≤ w, v ∈ Y the following two conditions are equiva-
lent:

1. med (u, v, w) = m;
2. m ∧ u ≤ v ≤ m ∨w.

Let us suppose that f (x) = p (ϕ (x)) is a pseudo-polynomial function. Then (7)
holds by Theorem 3, and applying Lemma 6 with u = f

(
x0

k

)
, m = f (x) , w =

f
(
x1

k

)
and v = ϕk (xk), we see that f (x) ∧ f (x0

k) ≤ ϕk (xk) ≤ f (x) ∨ f (x1
k).

Moreover, since ϕk (xk) ∈ Y , we have

cl
(
f (x) ∧ f (x0

k)
)
≤ ϕk (xk) ≤ int

(
f (x) ∨ f (x1

k)
)
.

Considering these inequalities for all x ∈
∏

i∈[n] Xi with a fixed k-th component
xk = ak, it follows that Φ−

k (ak) ≤ ϕk (ak) ≤ Φ+
k (ak) for all k ∈ [n] , ak ∈ Xk.

Thus we obtain the following necessary condition for f to be a pseudo-polynomial
function.

Proposition 7. If f :
∏

i∈[n] Xi → Y is a pseudo-polynomial function, then it
satisfies (6) and

Φ−
k ≤ Φ+

k , for all k ∈ [n] . (9)

In order to prove that the necessary condition presented in the above proposi-
tion is also sufficient, we verify that (6) and (9) imply that f is pseudo-median
decomposable with respect to Φ−

1 , . . . , Φ−
n and also with respect to Φ+

1 , . . . , Φ+
n .

Proposition 8. Suppose that f :
∏

i∈[n] Xi → Y satisfies (6) and (9). Then for
all x ∈

∏
i∈[n] Xi and k ∈ [n], we have

f(x) = med
(
f(x0

k), Φ−
k (xk), f(x1

k)
)

= med
(
f(x0

k), Φ+
k (xk), f(x1

k)
)
.
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Propositions 7 and 8 together with Theorem 3 yield the following characteriza-
tion of pseudo-polynomial functions.

Theorem 9. A function f :
∏

i∈[n] Xi → Y is a pseudo-polynomial function if
and only if it satisfies conditions (6) and (9).

Let us suppose that f :
∏

i∈[n] Xi → Y satisfies (6) and (9). According to the
above theorem, f is a pseudo-polynomial function, i.e., it has a factorization
of the form f (x) = p (ϕ (x)), where p : Y n → Y is a polynomial function and
each ϕk : Xk → Y (k ∈ [n]) is a unary map satisfying (4). We now show how to
construct such a factorization; in fact, we will find all possible factorizations.

If Φ−
k ≤ ϕk ≤ Φ+

k holds for all k ∈ [n], then

f (x) = med
(
f(x0

k), Φ−
k (xk), f(x1

k)
)

≤ med
(
f(x0

k), ϕk(xk), f(x1
k)
)

≤ med
(
f(x0

k), Φ+
k (xk), f(x1

k)
)

= f (x)

by Proposition 8, therefore f is pseudo-median decomposable with respect to
ϕ1, . . . , ϕn. Hence, by Theorem 4 we have f (x) = p0 (ϕ (x)). This observation
together with Theorem 9 yields the following result.

Theorem 10. For any function f :
∏

i∈[n] Xi → Y satisfying (6) and unary
maps ϕk : Xk → Y (k ∈ [n]) satisfying (4), the following three conditions are
equivalent:

(i) Φ−
k ≤ ϕk ≤ Φ+

k holds for all k ∈ [n];
(ii) there exists a polynomial function p : Y n → Y such that f (x) = p (ϕ (x));
(iii) f (x) = p0 (ϕ (x)).

Theorem 10 describes all those unary maps ϕ1, . . . , ϕn that can occur in a fac-
torization of f , but it does not provide all possible polynomial functions p. (We
know that p0 can be used in any factorization, but there may be others as well.)
To find all factorizations (5) of f , let us fix unary functions ϕk : Xk → Y (k ∈ [n])
satisfying (4), such that Φ−

k ≤ ϕk ≤ Φ+
k for each k ∈ [n]. To simplify notation,

let ak = ϕk (0Xk
) , bk = ϕk (1Xk

), and for each I ⊆ [n] let eI ∈ Y n be the n-tuple
whose i-th component is ai if i /∈ I and bi if i ∈ I. Clearly, if p : Y n → Y is a
polynomial function such that f (x) = p (ϕ (x)), then

p (eI) = f
(
1̂I

)
for all I ⊆ [n] . (10)

In fact, one can verify that (10) is actually equivalent to f (x) = p (ϕ (x)). For
a given f and given ak, bk ∈ Y , (10) gives rise to a polynomial interpolation
problem over Y : the values of the unknown polynomial function p are prescribed
at certain (2n many) points in Y n. It can be shown that the least solution of
this interpolation problem is

p− (y) =
∨

I⊆[n]

(
c−I ∧

∧
i∈I

yi

)
, where c−I = cl

(
f
(
1̂I

)
∧
∧
i/∈I

ai

)
,
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whereas the greatest solution is

p+ (y) =
∨

I⊆[n]

(
c+
I ∧

∧
i∈I

yi

)
, where c+

I = int
(
f
(
1̂I

)
∨
∨
i∈I

bi

)
.

In other words, a polynomial function p is a solution of (10) if and only if
p− ≤ p ≤ p+. Since, by Theorem 1, p is uniquely determined by its values on
the tuples 1I (I ⊆ [n]), this is equivalent to

c−I = p− (1I) ≤ p (1I) ≤ p+ (1I) = c+
I for all I ⊆ [n] .

Thus we obtain the following description of all possible factorizations of a given
pseudo-polynomial function f .

Theorem 11. Let f :
∏

i∈[n] Xi → Y be a function satisfying (6), for each
k ∈ [n] let ϕk : Xk → Y be a given function satisfying (4), and let p : Y n → Y
be a polynomial function. Then f (x) = p (ϕ (x)) if and only if Φ−

k ≤ ϕk ≤ Φ+
k

for each k ∈ [n], and we have p− ≤ p ≤ p+.

Remark 12. Clearly, c−I ≤ f
(
1̂I

)
≤ c+

I holds independently of ak, bk, hence the
polynomial function p0 can be used in any factorization of f , as it was already
shown in Theorem 4.

Remark 13. If Xk is a partially ordered set for each k ∈ [n] and f is order-
preserving, then Φ−

k and Φ+
k are also order-preserving. This shows that every

order-preserving pseudo-polynomial function has a factorization where each ϕk

is order-preserving. Consequently, order-preserving pseudo-Sugeno integrals co-
incide with Sugeno utility functions (cf. Corollary 4.2 in [8]).

4 An Example

We illustrate the results of the previous section with a simple example. A univer-
sity plans to hire a professor to teach in its bachelor’s, master’s and/or doctoral
program in mathematics. The candidates are evaluated with respect to their
academic qualifications and language skills. Let x1 = EF, E, F or N if the can-
didate speaks both English and French, only English, only French, or none of
these two languages, respectively. Let x2 = C or M corresponding to whether
the candidate’s area of expertise is computer science or mathematics. Finally,
let x3 = MSc or PhD corresponding to the degree that the candidate holds in
his/her area of expertise. Thus the scales X1, X2, X3 are the following:

X1 := {N, E, F, EF} with 0X1 = N, 1X1 = EF,

X2 := {C, M} with 0X2 = C, 1X2 = M,

X3 := {MSc, PhD} with 0X3 = MSc, 1X3 = PhD.

Let f (x1, x2, x3) describe which mathematics courses a candidate with profile
(x1, x2, x3) is qualified to teach, according to the university’s policies: B (only
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∅

B M

BM

BMD

Fig. 1. The lattice Y

bachelor’s), M (only master’s), BM (bachelor’s and master’s), BMD (bachelor’s,
master’s and doctoral), ∅ (none). This yields a function f : X1 ×X2 ×X3 → Y
(see Table 1(a)), where Y is the lattice shown on Fig. 1.

Hereinafter, we write a subset of U = {B, M, D} as the juxtaposition of its
elements, e.g., BM stands for {B, M}, etc. It is easy to verify that Y is a sublat-
tice of P (U). Clearly, for y ∈ Y we have cl (y) = int (y) = y. For the three sets
D, BD and MD that belong to P (U) but not to Y , the closures and interiors
are the following :

cl (D) = BMD, cl (BD) = BMD, cl (MD) = BMD,
int (D) = ∅, int (BD) = B, int (MD) = M.

Table 1(b) shows the auxiliary functions Φ−
k , Φ+

k corresponding to the function
f . We give the details of the computation of Φ+

1 (E), the other values can be
calculated similarly:

Φ+
1 (E) =

∧
x2∈X2
x3∈X3

int
(
f (E, x2, x3) ∨ f (EF, x2, x3)

)
= int

(
f (E, C, MSc) ∨ f (EF, C, MSc)

)
∧ int

(
f (E, C, PhD) ∨ f (EF, C, PhD)

)
∧ int

(
f (E, M, MSc) ∨ f (EF, M, MSc)

)
∧ int

(
f (E, M, PhD) ∨ f (EF, M, PhD)

)
= int

(
∅ ∨ B

)
∧ int

(
M ∨BM

)
∧ int

(
∅ ∨B

)
∧ int

(
M ∨ BMD

)
= int (MD) ∧ int (MD) ∧ int (MD) ∧ int (M)
= M ∧M ∧M ∧M = M.

We can see that Φ−
k ≤ Φ+

k for k = 1, 2, 3, therefore f is a pseudo-polynomial
function by Theorem 9. From Theorem 10 we can infer that in any factorization
f (x1, x2, x3) = p (ϕ1 (x1) , ϕ2 (x2) , ϕ3 (x3)) of f , we must have ϕ1 = Φ−

1 = Φ+
1 ,

while we have 4 possibilities for ϕ2 (as ϕ2 (C) can be chosen to be ∅, B, M or
BM, and ϕ2 (M) must be BMD), and we have 2 possibilities for ϕ3 (as ϕ3 (MSc)
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Table 1. The university example

(a) The function f

x1 x2 x3 f (x1, x2, x3)

N C MSc ∅
N C PhD ∅
N M MSc ∅
N M PhD ∅
E C MSc ∅
E C PhD M

E M MSc ∅
E M PhD M

F C MSc B

F C PhD B

F M MSc B

F M PhD B

EF C MSc B

EF C PhD BM

EF M MSc B

EF M PhD BMD

(b) The functions Φ−
k , Φ+

k

x1 Φ−
1 (x1) Φ+

1 (x1)

N ∅ ∅
E M M

F B B

EF BMD BMD

x2 Φ−
2 (x2) Φ+

2 (x2)

C ∅ BM

M BMD BMD

x3 Φ−
3 (x3) Φ+

3 (x3)

MSc ∅ B

PhD BMD BMD

can be chosen to be ∅ or B, and ϕ3 (PhD) must be BMD). Thus there are 8
triples of functions (ϕ1, ϕ2, ϕ3) that allow us to factorize f . Theorem 10 also
shows that in all of these 8 cases one can use the polynomial function

p0 (y1, y2, y3) = (B ∧ y1) ∨ (B ∧ y1 ∧ y2) ∨ (BM ∧ y1 ∧ y3) ∨ (BMD ∧ y1 ∧ y2 ∧ y3)
= (B ∧ y1) ∨ (BM ∧ y1 ∧ y3) ∨ (y1 ∧ y2 ∧ y3) .

Computing the coefficients c−I , c+
I for

(
Φ−

1 , Φ−
2 , Φ−

3

)
, one can see that in this

case p− = p0 = p+, i.e., p = p0 is the only polynomial function such that
f (x1, x2, x3) = p

(
Φ−

1 (x1) , Φ−
2 (x2) , Φ−

3 (x3)
)
. On the other hand, choosing

(ϕ1, ϕ2, ϕ3) =
(
Φ+

1 , Φ+
2 , Φ+

3

)
, we obtain p− = y1 ∧ y2 ∧ y3 and p+ = p0, thus

in this case there are 11 polynomial functions p such that f (x1, x2, x3) =
p
(
Φ+

1 (x1) , Φ+
2 (x2) , Φ+

3 (x3)
)
. Probably the most natural choice is p = p−, which

gives the following very simple factorization:

f (x1, x2, x3) = Φ+
1 (x1) ∧ Φ+

2 (x2) ∧ Φ+
3 (x3) .

From this latter factorization we can draw the following conclusions. The bach-
elor’s courses are taught in French, while the master’s courses are taught in
English.1 In order to teach in the bachelor’s program, the professor must have
1 As it is the case, e.g., at the University of Luxembourg.
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at least an MSc, and in order to teach in the master’s program, the profes-
sor must have a PhD (in either computer science or mathematics). Moreover, a
member of the doctoral program must have a PhD in mathematics, and must
speak both English and French.

5 Pseudo-polynomial Functions over Chains

In this section we consider the case when Y is a finite chain. As we will see, in this
case the results of Sect. 3 lead to a generalization of Algorithm SUFF presented
in [8]. As before, we will suppose that Y is a sublattice of P (U) for some set
U , with least element ∅ and greatest element U . We may assume without loss
of generality that U = [m] = {1, 2, . . . , m}, and Y = {[0] , [1] , . . . , [m]}, where
[0] = ∅. The closure of a set S ⊆ U is the smallest set of the form [k] that contains
S, while the interior of S is the largest set of the form [k] that is contained in S
(see Fig. 2). Formally, we have

cl (S) = [maxS] , int (S) =
[
min S − 1

]
.

Let us assume that f :
∏

i∈[n] Xi → Y satisfies (6). Then f
(
x0

k

)
= [u] , f (x) =

[v] , f
(
x1

k

)
= [w] with u ≤ v ≤ w, hence we have

f (x) ∧ f (x0
k) = {u + 1, . . . , v} ,

f (x) ∨ f (x1
k) = {1, . . . , v, w + 1, . . . , m} .

Therefore the terms in the definition of Φ−
k and Φ+

k can be determined as follows:

cl
(
f (x) ∧ f (x0

k)
)

=
{

f (x) , if f
(
x0

k

)
< f (x) ;

∅, if f
(
x0

k

)
= f (x) ; (11)

int
(
f (x) ∨ f (x1

k)
)

=
{

f (x) , if f
(
x1

k

)
> f (x) ;

U, if f
(
x1

k

)
= f (x) .

(12)

S cl (S) int (S)

Fig. 2. The closure and interior of a subset of a chain
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Let us now define the following three sets for any k ∈ [n] , ak ∈ Xk, as in [8]:

Wf
ak

=
{
f (x) : xk = ak and f

(
x0

k

)
< f (x) < f

(
x1

k

)}
,

Lf
ak

=
{
f (x) : xk = ak and f

(
x0

k

)
< f (x) = f

(
x1

k

)}
,

Uf
ak

=
{
f (x) : xk = ak and f

(
x0

k

)
= f (x) < f

(
x1

k

)}
.

From (11) and (12) it follows that Φ−
k (ak) =

∨
Lf

ak
∨
∨
Wf

ak
and Φ+

k (ak) =∧
Uf

ak
∧
∧
Wf

ak
, hence the condition Φ−

k ≤ ϕk ≤ Φ+
k in Theorem 10 can be

reformulated as follows:

(a) either Wf
ak

= {ϕk (ak)} or Wf
ak

= ∅;
(b) ϕk (ak) ≥

∨
Lf

ak
;

(c) ϕk (ak) ≤
∧
Uf

ak
.

Thus by Theorem 10, f is a pseudo-polynomial function if and only if there are
functions ϕk satisfying the above three conditions. If each Xk is a bounded chain
and f is an order-preserving function depending on all of its variables, then Al-
gorithm SUFF of [8] does not return the value false if and only if (a),(b),(c) hold
(cf. equation (4.5) in [8]). Therefore, in the finite case, Theorem 4.1 of [8] follows
as a special case of Theorem 10. Moreover, the results of Sect. 3 not only gen-
eralize Algorithm SUFF to arbitrary finite distributive lattices (instead of finite
chains) and to pseudo-polynomial functions (instead of Sugeno utility functions),
but they provide all possible factorizations of a given pseudo-polynomial function
f (whereas Algorithm SUFF constructs only one factorization).
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Abstract. The paper studies the connection between comparative prob-
ability and comparative plausibility, with a particular emphasis on com-
parative possibility. We consider a comparative probability on an algebra
and extend it to a different algebra. We prove that, in general, the upper
extension of the given comparative probability is a comparative plausi-
bility. By considering a suitable condition of weak logical independence
between the two partitions related to the atoms of the two algebras, we
prove that the upper ordinal relation is a comparative possibility. These
results hold for comparative probability not necessarily representable by
a numerical probability.

Keywords: Ordinal relations, Probability, Possibility, Comparative
probability.

1 Introduction

A decision maker or a field expert may have on hand only information concerning
events different from those of interest. So it is necessary to make inference,
i.e. to gather information on the latter. More precisely, given an assessment
consisting of a suitable degree of belief in a specific framework (singled out by
an uncertainty measure), making inference means extending the given assessment
to new events. To deal with the inferential problem, we start from a probability
assessment by following the lines of de Finetti approach. Then, the inferential
process with respect to each new event is ruled by coherence and it does not
necessarily lead to a unique value.

In the extension processes, for purely syntactical reasons the lower and up-
per envelopes of the enlargements can lead to uncertainty measures which are
different from the initial ones. For instance (see e.g. [13], [20], [6]), if we start
from a probability P on an algebra, and consider any other algebra B, then the
lower [upper] envelope of the class of probabilities extending P to B is a belief
[plausibility] function.

In [7] we proved that under suitable logical conditions (weak logical inde-
pendence) between the two algebras, the upper envelope (i.e. plausibility) is a
possibility and the lower envelope is a necessity. Nevertheless the decision maker

W. Liu (Ed.): ECSQARU 2011, LNAI 6717, pp. 557–568, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



558 G. Coletti, R. Scozzafava, and B. Vantaggi

may have at hand (or is able to give) only a binary relation expressing degrees of
belief on a family of events different from that of interest. So he needs to make
inference starting from this information.

The aim of this paper is in fact to deal with the above inferential problem in
a comparative setting.

Clearly, we could obtain an ordinal relation representable by a plausibility
(comparative plausibility) starting from an ordinal relation representable by a
probability. Actually, we consider comparative probability, satisfying only de
Finetti-Koopman qualitative additive axiom ([9], [21]) (only necessary for the
representability by a probability, see [22]), and we prove that the upper envelope
is a comparative plausibility.

Moreover, we obtain a comparative possibility if the two algebras are weakly
logically independent.

These results contribute to the deepening of hybrid models involving prob-
ability, plausibility and possibility, which have been studied in many papers,
e.g. [12,15,17,18,19,24]: our approach is essentially syntactic and emphasizes an
inferential point of view in a comparative setting.

2 Preliminaries

Here we recall some definitions and results concerning the problem of extending
a probability assessment. In particular, we focus on the properties of lower and
upper envelopes of the class of probabilities extending the given probability.

2.1 Coherent Extensions

In probability theory it is well known the concept of coherence introduced by de
Finetti [9] through a betting scheme, or its dual version consisting on the solv-
ability of a linear system. In the coherent probability theory the most important
result (known as fundamental theorem of probability) assures that, given a co-
herent assessment pi = P (Ei) (with i = 1, 2, ..., n) on an arbitrary finite family
E = {E1, ..., En} of events, it can be extended (possibly not in a unique way) to
any set E ′ ; moreover, for each event E ∈ E ′ there exist two events E∗ and E∗ in
the algebra spanned by E (possibly E∗ = ∅ and E∗ = Ω) that are, respectively,
the “maximum” and the “minimum” union of atoms Ar (generated by the initial
family E) such that

E∗ ⊆ E ⊆ E∗ .

If E is logical dependent on E , then E∗ = E = E∗.
Then, given the set {P̃} of all possible extensions of P , coherent assessments

of P̃ (E) are all real numbers of a closed interval [p∗, p∗], with

p∗ = p∗(E) = inf P̃ (E∗) = inf
∑

r
Ar⊆E∗

P̃ (Ar) ,

p∗ = p∗(E) = sup P̃ (E∗) = sup
∑

r
Ar⊆E∗

P̃ (Ar) .
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The values p∗ and p∗ can actually be computed by a linear programming
problem [11,1,5].

If E ′ is an algebra, then p∗(·) and p∗(·) are, respectively, a lower and an
upper probability on E ′. In particular, if also E is an algebra (or a partition),
then p∗(·) and p∗(·) are, respectively, a belief and a plausibility (see [13]). When
the algebras E and E ′ satisfy suitable logical conditions (see below), belief and
plausibility reduce to necessity and possibility.

2.2 Weakly Logically Independent Partitions

We recall that two partitions L,L′ of Ω are logically independent if for every
Ei ∈ L and E′

j ∈ L′ one has Ei ∧ E′
j �= ∅. Equivalently, L,L′ are logically

independent if for every E′
j ∈ L′, one has

Ω =
∨

Ei∧E′
j �=∅

Ei .

In [7] a “weak” form of logical independence (Definition 1 below) has been
introduced. Let L,L′ be two partitions of Ω. For any E′

j ∈ L′, we denote by
Aj the minimal (with respect to the inclusion) event logically dependent on L
containing E′

j , that is

Aj =
∨

Ei∧E′
j �=∅

Ei .

Obviously, Aj is an element of the algebra B spanned by L.
Given two partitions L,L′ of Ω, for any E′

j ∈ L′, we consider the correspond-
ing Aj ∈ B.

Definition 1. L′ is weakly logically independent of L (in symbols, L′⊥⊥wL) if,
for any given E′

i ∈ L′, every other E′
k ∈ L′ (k �= i) satisfies al leat one of the

following conditions
- E′

k ⊆ Ai

- E′
k ∧ Ej �= ∅ for any Ej ⊆ Ai.

Clearly, if L,L′ are logically independent (i.e. every event of L is logically inde-
pendent of all events of L′), then L′⊥⊥wL (but the vice versa does not hold, see
Example 1). For the intuitive meaning of weak logical independence, see [7]. Here
we note that it requires that at least an event of L′ has non empty intersection
with all the events of L (i.e. it is logically independent of them). Moreover, no
more than one event of L may include an event of L′.

Example 1. Let us consider a set of incompatible and exhaustive symptoms L =
{S1, ..., S5} and a set of incompatible and exhaustive diseases L′ = {D1, ..., D4}
and consider the following logical constraints: disease D1 is compatible only
with the symptom S1, disease D4 is compatible with all the symptoms, and
it is implied by symptoms S4 or S5 . Moreover for i = 2, 3 disease Di implies
S1 ∨ ... ∨ Si, and is incompatible with Sj for j > i.

The two partitions are not logically independent, but they are weakly logical
independent.
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As proved in [7], the notion of weakly logically independent partitions (i.e.
L′⊥⊥wL =⇒ L⊥⊥wL′) is symmetric even if the definition is given in a nonsym-
metric way.

We recall now some properties and a characterization of weakly logically in-
dependent partitions.

Proposition 1. Let L,L′ be two partitions of Ω. If L′⊥⊥wL, then the following
statements hold:

1. for every E′
i, E

′
j ∈ L′ either Aj ⊆ Ai or Ai ⊂ Aj ;

2. there exists E′
i ∈ L′ such that E′

i ∧Ej �= ∅ for any Ej ∈ L;
3. if there exist E′

i ∈ L′ and Ej ∈ L such that E′
i ⊆ Ej, then, for every E′

r ∈ L′,
we have E′

r ∧Ej �= ∅ .
4. there exists at most one Ek ∈ L such that E′

i ⊆ Ek for some E′
i ∈ L′.

The previous proposition easily implies that if L is a refinement of L′, then
L′ �⊥⊥wL.

Theorem 1. Let L = {E1, ..., Ei, ..., En} and L′ = {E′
1, ..., E

′
j , ..., E

′
m} be two

partitions of Ω. The following two conditions are equivalent:

1. L′⊥⊥wL;
2. there exists a permutation of {1, ..., m} such that the order induced by the

inclusion on the corresponding events Ai1 , ..., Aim is complete.

2.3 Possibility Measures as Enlargement of a Coherent Probability

In [6] it has been proved that if L,L′ are two partitions of Ω and B′ the algebra
spanned by L′, then if we assign a probability distribution on L and consider the
family P of probabilities Pi extending P restricted to L∪B′, the lower bound of
P on B′ is a belief function (and the upper bound a plausibility function). Vice
versa for any belief function Bel on an algebra B′ there exists a partition of Ω
and a relevant probability distribution such that the lower bound of the class
of probability extending P on B′ coincides with Bel (similarly for a plausibility
function).

These results are independent of any logical relation between the partition L
and that constituted by the atoms of B′. Obviously, the logical constraints rule
the numerical values of the belief (or plausibility) function.

In [7] we proved that if two partitions are weakly logically independent, then
the plausibility obtained as upper envelope of the class P is a possibility:

Theorem 2. Let L,L′ be two partitions of Ω and B′ the algebra spanned by L′.
Let P be a probability distribution on L and P the upper envelope of the class
P = {P ′} of all the probabilities extending P onto L ∪ B′.

If L′⊥⊥wL, then P is a possibility measure on B′.

As shown in [7], we can obtain a possibility also in the case that L′ � ⊥⊥wL,
nevertheless the next result proves that this is not possible if the probability
distribution is strictly positive.
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Theorem 3. Let L,L′ be two partitions of Ω and B′ the algebra spanned by
L′. Let P be a strictly positive probability distribution on L and P the upper
envelope of the class P = {P ′} of all the probabilities extending P onto L ∪ B′.
If the restriction of P on B′ is a possibility measure, then L′⊥⊥wL.

The next theorem (given in [7]) shows how weakly logically independent par-
titions not only rule the transition from probability to possibility but also the
other way round.

Theorem 4. Consider a possibility measure Π on an algebra B and let L be the
set of atoms of B. Then there exists an algebra B′ generated by a partition L′

and a probability on B′ such that:

1. L′⊥⊥wL,
2. the upper envelope P of the class P = {P ′} of all the coherent probability

assessments, extending P on B′∪B coincide on B with the possibility measure
Π.

This result is strictly related to that given in [16] concerning the connections
between upper probability and possibility, where a characteristic property for
a set of probabilities is given in order to its induced upper probability be a
possibility measure (the upper probability induced by a set of lower bounds on
events A1, ..., An is a possibility if the set A1, ..., An is nested, i.e. A1 ⊆ ... ⊆ An).

Remark 1. In [7] we proved that, given two logically independent partitions L
and L′, the upper envelope of the extensions on L ∪ B′ of a probability P on L
is a possibility on B′ and, for any A ∈ B′ \ ∅, P (A) = 1.

It follows that if the partitions L and L′ are logically independent, then the
necessity N obtained as dual of the possibility Π (i.e., as lower probability of
the class of probabilities extending any given probability distribution P on L)
is such that for any A ∈ B′ \Ω

N(A) = 1−Π(Ac) = 0.

Thus, we get in this case the non informative necessity independently of the
initial probability distribution.

3 Comparative Degree of Belief

Let � be a binary relation on an arbitrary set of events F = {Ei, Fi}i∈I express-
ing the intuitive idea of being “no more believable than”. The symbols ∼ and ≺
represent, respectively, the symmetric and asymmetric parts of �: E ∼ F means
(roughly speaking) that E is judged “equally believable” to F , while E ≺ F
means that F is “more believed” than E.

The relation � expresses a qualitative judgement and it is necessary to set up
a system of rules assuring the consistency of the relation with some numerical
model. More precisely, given a numerical framework of reference (singled-out by



562 G. Coletti, R. Scozzafava, and B. Vantaggi

a numerical measure of uncertainty), it is necessary to find conditions which are
necessary and sufficient for the existence of a numerical assessment on the events
representing a given ordinal relation.

We recall that a function f from F to [0, 1] represents (or agrees with) the
relation � iff

E � F =⇒ f(E) ≤ f(F ),

E ≺ F =⇒ f(E) < f(F ).

If we focus on the relations representable (or induced) by a capacity (i.e. a
function monotone with respect to inclusion ⊆), it is necessary that there is an
extension of � on the algebra B spanned by F satisfying the following conditions:

(c1) � is a total preorder (reflexive, transitive, holding for all pairs E, F ∈ B);
(c2) ∅ � E for every E ∈ B, and ∅ ≺ Ω;
(c3) for every E, F ∈ B, E ⊆ F =⇒ E � F .

In the following we call comparative degree of belief a binary relation on an
algebra B satisfying (c1), (c2), (c3).

When we specialize the numerical function f (probability, belief, lower proba-
bility, and so on) agreeing with a relation �, then we need to require that there
exists an extension of � satisfying a further characteristic condition.

The most known among these conditions is the “qualitative additivity” axiom
(introduced by de Finetti [9] and Koopman [21]), which is a necessary (but not
sufficient) condition for the the representability of � by a probability (as proved
in [22]):

(p) for every E, F, H ∈ B, with (E ∨ F ) ∧H = ∅, the following conditions hold:

E � F =⇒ E ∨H � F ∨H (1)

E ≺ F =⇒ E ∨H ≺ F ∨H. (2)

Axiom (p) characterizes the comparative degree of belief representable by a
weak ⊕-decomposable measure, with ⊕ strictly increasing (see [4]).

We need this result in the following, so we recall the definition of weak
⊕-decomposable measure.

Definition 2. Given a function ϕ : B → [0, 1] and a commutative binary opera-
tion ⊕ on {ϕ(Ai)}Ai∈B with ϕ(∅) neutral element, ϕ is a weakly ⊕-decomposable
measure if the restriction of ⊕ to the pairs {ϕ(Ai), ϕ(Aj)}, with Ai ∧Aj = ∅ is
associative and increasing and moreover

ϕ(Ai ∨Aj) = ϕ(Ai)⊕ ϕ(Aj) .

The necessary and sufficient condition for the representability by a probability
of a relation �, defined on any finite set F of events, is the following (cp) condi-
tion (see [2]), which is the comparative version of de Finetti coherence condition
and is equivalent, if F is an algebra, to those given in [22], [23]:
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(cp) for any Ai, Bi ∈ F there exists λi ≥ 0 , i = 1, ..., n such that Ai � Bi

sup
n∑

i=1

λi(|Bi| − |Ai|) ≤ 0 implies Ai ∼ Bi

where |E| is the truth value of the event E and the supremum is taken over the
set of atoms generated by Ai, Bi for i = 1, ..., n.

The next weaker qualitative additivity axioms have been introduced in [25,8]:
the first one characterizes relations representable by a belief function and the
second one relations representable by plausibility:

(b) if E, F, H ∈ B , with E ⊆ F and F ∧H = ∅ , then

E ≺ F ⇒ (E ∨H) ≺ (F ∨H)

(pl) if E, F, H ∈ B , with E ⊆ F and F ∧H = ∅ , then

E ∼ F ⇒ (E ∨H) ∼ (F ∨H)

Further conditions (PO), (NEC) introduced in [14], characterize relations rep-
resentable by a possibility and a necessity respectively:

(PO) for every A, G, H ∈ B

A � G ⇒ (A ∨H) � (G ∨H)

(NEC) for every A, B, C ∈ B

A � B =⇒ (A ∧ C) � (B ∧ C).

4 Extending Comparative Probabilities

We study the problem of extending a comparative degree of belief and we look
for all the possible extensions. In particular, this problem has been treated for
relations representable by a probability: it is known the following theorem [2].

Theorem 5. Let D be a family of events and � an ordinal relation on D; if �
is an ordinal relation satisfying (cp), then there exists a (possibly not unique)
extension �∗ of � to an arbitrary family D′ of events , with D′ ⊇ D.

In particular, if D′ = D ∪ {K}, there exist (uniquely defined) suitable sub-
families C1, C2, C3, C4 such that any coherent extension of � necessarily fulfils the
following conditions H ′ ≺ K for every H ′ ∈ C1; K ≺ H ′′ for every H ′′ ∈ C2;
H∗ � K for every H∗ ∈ C3; finally K � H∗∗ for every H∗∗ ∈ C4 (any relation
between K and H for H ∈ (D \ ∪4

i=1Ci)).

The above result singles out for any new event K the events which must be
no more probable than K, those no less probable than K in order to maintain
condition (cp). Moreover, there is a set D\∪4

i=1Ci of events where the extension,
mantaining (cp) is not univocally defined.

Now, we consider a comparative probability � (that is an ordinal relation
satisfying (c1), (c2) and (p)) in the case that � is given on an algebra B and we
need to extend it to an algebra B′.
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Theorem 6. Let B be a finite algebra of events and � a comparative probability
on B. Then there exists a (possibly not unique) extension �∗ of � to an algebra
B′ of events , with B′ ⊇ B, which is a comparative probability on B′.

In particular, for any K ∈ D′ \ D, there exist (uniquely defined) suitable
subfamilies CK

1 , CK
2 , CK

3 , CK
4 such that any extension of � necessarily fulfils the

following conditions H ′ ≺ K for every H ′ ∈ C1; K ≺ H ′′ for every H ′′ ∈ CK
2 ;

H∗ � K for every H∗ ∈ CK
3 ; finally K � H∗∗ for every H∗∗ ∈ CK

4 (any relation
between K and H for any H ∈ CK

5 = D \ ∪4
i=1CK

i ).

Proof. From the results in [8] a comparative probability on a finite arbitrary
set of events D (and in particular in the algebra B) is represented by weakly
⊕-decomposable assessment on B [4]. Moreover, in the same paper it has been
proved that an ⊕-decomposable assessment on an algebra B can be extended
on any algebra B′ ⊃ B. Any relation �′ induced by such an extension is a
comparative probability (see [8]) and its restriction to B coincides with � .

Let us consider now the following sets:
– CK

1 is the set of events H ′ of B such that there exists F ∈ B with H ′ ≺ F and
F ⊆ K.

– CK
2 is the set of events H ′′ ∈ B such that there exist F ∈ B, with F ≺ H ′′ and

K ⊆ F .

– Let CK
3 and CK

4 be the sets defined as CK
1 and CK

2 respectively, with the
conditions H ′ � F and F � H ′′.

We need to prove that for every H ′ ∈ CK
1 , H ′′ ∈ CK

2 , H∗ ∈ CK
3 and H∗∗ ∈ CK

4

we have H ′ � H∗ � H∗∗ ≺ H ′′.
We give a proof for the inequality H ′ ≺ H ′′, the the proof of the other ones are

similar. By definition of CK
1 and CK

2 there are F1, F2 ∈ B with H ′ ≺ F1, F2 ≺ H ′′

and F1 ⊆ K ⊆ F2. So (by monotonicity od � with respect to inclusion) F1 � F2

and then H ′ ≺ H ′′.

Notice that, due to the existence of CK
5 , the extension of � to K is not unique.

The above result gives a method for extending a comparative probability to a
set of events, and this can be done step–by–step. In particular, if we would extend
� to the events {K1, ..., Kn}, in a way that the extended � satisfies condition
(p), then, for every event Ki, we must choose one of the possible extensions
satisfying (p). Obviously the global extension strictly depends on the order of
the events to which we extend �; in fact every choice on CKi

5 affects CKi+1
i and

in particular makes a restriction on CKi+1
5 .

Nevertheless there is a different way to look at the extensions, consisting in
computing CKi

j , (j = 1, ..., 5), independently for every Ki, and then consider
the lower bound �∗ and the upper bound �∗ of the extensions.

Obviously �∗ and �∗ in general do not satisfy condition (p).
Note that, since any extension � ′ of � is a comparative probability, by mono-

tonicity with respect to inclusion, it follows that for any H ∈ B′, the following
relation holds

H∗ � ′ H � ′ H∗
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where H∗ (and H∗) is the maximal (minimal) event in B contained in (contain-
ing) H .

Then, we have the following results for the lower and upper extensions:

Theorem 7. Let � be a comparative probability on the algebra B. Given an
algebra B′, let Γ = {�′} be the set of comparative probability extensions of � on
B′ and let �∗ and �∗ be the lower and upper envelopes of Γ , respectively. Then
for any H, K ∈ B∗, one has

H �∗ K ⇐⇒ H∗ � K∗ (3)

H �∗ K ⇐⇒ H∗ � K∗ . (4)

Proof. To prove relation (3) it is enough, for any H ∈ B′, to look for a compar-
ative probability �′, extending � on the algebra A generated by B ∪ {H}, such
that H ∼ ′ H∗. Note that A is given by the events H ∧B and Hc∧B for B ∈ B.

Define �′ on A as follows, for any B ∈ B′:

– if H ∧B �= ∅, then H ∧B ∼ ′ B;
– if Hc ∧B �= B, then Hc ∧B ∼ ′ ∅.

Obviously, if H ∧B = ∅, then H∧B ∼ ′ ∅ and if Hc∧B = B, then Hc∧B ∼ ′ B.
It is easy to check that � ′ is a comparative probability, which extends �, so

the thesis follows.
The proof for the relation (4) goes along the same lines.

Theorem 8. Let � be a comparative probability on an algebra B. The lower
[upper] envelope �∗ [�∗] of the extensions of � on the algebra B′ is a comparative
belief [plausibility] on B′.

Proof. We prove the result for �∗, the proof for �∗ is similar.
Consider any A, B, C ∈ B′ such that A ⊆ B and C ∧ B = ∅. Since A ⊆ B,

it follows A∗ ⊆ B∗, and by Theorem 7 one has A ≺∗ B if and only if A∗ ≺ B∗.
Moreover, since C ∧B = ∅, one has B∗ ∧C∗ = ∅ = A∗ ∧C∗ and so, by condition
(p), the inequality A∗ ≺ B∗ implies A∗ ∨ C∗ ≺ B∗ ∨C∗.

Now, note that A∗ ∨ C∗ could be properly included in (A ∨ C)∗, since there
could be some element Ai of the partition of B which is included in (A∨C)∗ but
not in A∗∨C∗. This means that Ai∧A �= ∅ �= Ai∧C and Ai ⊆ A∨C. Analogously,
for B∗ ∨C∗ we obtain Ai ∧B �= ∅ �= Ai ∧C and Ai ⊆ B ∨C. Obviously, if there
is an element A1

i �⊆ A in the partition of B such that A1
i ∧A �= ∅ �= A1

i ∧ C and
A1

i ⊆ A ∨ C, then A1
i ∧ B �= ∅ �= A1

i ∧ C (so A1
i �⊆ B) and A1

i ⊆ B ∨ C. Such
elements of the partition of B are denoted by AA. On the other hand there could
be A2

i �⊆ B in the partition of B such that A2
i ∧B �= ∅ �= A2

i ∧C and A2
i ⊆ B∨C,

but A2
i �⊆ A ∨ C. Such elements of the partition of B are denoted by AA

B .
Note that if A ⊆ B then, for any C with C ∧ B = ∅, AA ⊆ AB and AB =

AA

⋃
AA

B . Then, from A∗ ∨ C∗ ≺ B∗ ∨ C∗ it follows, by axiom (p)

A∗ ∨ C∗ ∨D ≺ B∗ ∨ C∗ ∨D � B∗ ∨C∗ ∨D ∨ E
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where D =
∨

A1
i∈AA

A1
i and E =

∨
A2

i∈AA
B

A2
i (possibly D = ∅ or E = ∅). Finally,

since (A∨C)∗ = A∗ ∨C∗ ∨D and (B ∨C)∗ = A∗ ∨C∗ ∨D ∨E, by relation (4),
A ≺∗ B implies A ∨ C ≺∗ B ∨ C.

Thus �∗ satisfies axiom (b), and so it is a comparative belief.

Theorem 9. Let � be a comparative probability on an a finite algebra B and let
B′ be any finite algebra such that its set of atoms is weakly logically independent
of that of B. The lower [upper] envelope �∗ [�∗] of the extensions of � on the
algebra B′ is a comparative necessity [possibility] on B′.

Proof. We prove the result for �∗, the proof for �∗ goes along the same line.
We need to prove that, for A, B, C ∈ B′, A �∗ B implies A ∨ C �∗ B ∨ C.
Since the partition E of B is weakly logically independent of the partition E ′

of B′, then from Theorem 1, for any pair A, B of events in B′, one has either
A∗ ⊆ B∗ or B∗ ⊆ A∗.

From relation (3), A �∗ B if and only if A∗ �∗ B∗. Thus, if A∗ �∗ B∗, from
the above considerations A∗ ⊆ B∗.

Now, by considering any C ∈ B′, for the corresponding event C∗ ∈ B, again
from Theorem 1, one of the following situations occurs:

1. C∗ ⊆ A∗;

2. A∗ ⊆ C∗ ⊆ B∗;

3. B∗ ⊆ C∗.

Note that, for any D ∈ B′ one has

(D ∨C)∗ =
∨

Ei∧(D∨C) �=∅
Ei =

∨
Ei∧D �=∅

Ei ∨
∨

Ei∧C �=∅
Ei = D∗ ∨ C∗ .

If C∗ ⊆ A∗, then (A ∨ C)∗ ⊆ A∗ ⊆ B∗ and so (by the monotonicity of a
comparative probability) (A∨C)∗ � B∗ � (B∨C)∗ and again from relation (3),
it follows A ∨ C �∗ B ∨ C.

If A∗ ⊆ C∗ ⊆ B∗, then (A ∨ C)∗ = C∗ ⊆ B∗ and so

(A ∨ C)∗ ∼ C∗ � B∗ � (B ∨C)∗

and so (3) implies A ∨C �∗ B ∨ C.
If B∗ ⊆ C∗, then (A∨C)∗ = C∗ ⊆ B∗ ⊆ C∗ and so (A∨C)∗ ∼ C∗ � (B∨C)∗

and again from relation (3), A ∨ C �∗ B ∨C.

Note that even if an ordinal relation satisfying (p) on an algebra B is not nec-
essarily representable by a probability, its upper ordinal relation �∗ on B′ is
representable by a plausibility and, moreover, if B⊥⊥wB′, then �∗ on B′ is rep-
resentable by a possibility.

Now we prove also the reverse result of Theorem 9, actually we prove it for
comparative possibility:
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Theorem 10. Let � be a comparative possibility [necessity] on an algebra B
and let L be the corresponding set of atoms. Then there is an algebra B′ with
set of atoms L′ such that L′ is weakly logically independent of L, and there is a
comparative probability �′ on B′ such that its upper [lower] envelope �∗ [�∗] of
the extensions of �′ on the algebra B′ coincides with the comparative possibility
[necessity] �.

Proof. If � is a comparative possibility, then it is representable by a possibility
Π on B. From Theorem 4 there is a partition L′ of Ω (and the spanned algebra
B′) weakly logically independent of L and there is a probability P on B′ such
that its upper extension on B coincides with Π . This probability P induces a
comparative probability �′ on B′. From Theorem 9 the upper envelope �∗ of
the extensions of �′ on B is a comparative possibility since L is weakly logically
independent of L′. We need to prove that �∗ coincides with �. From Theorem
7, �∗ is such that A �∗ B =⇒ A∗ �′ B∗. Since �′ is induced by a probability
P , it follows P (A∗) ≤ P (B∗), so from Theorem 2 we have Π(A) ≤ Π(B) and
then A � B.

5 Conclusion

The paper studies the connections between possibilistic and probabilistic frame-
works from a comparative point of view. We show that starting with a compara-
tive probability (that is a relation not necessarily representable by a probability)
the upper envelope of its extensions on another algebra is a comparative plau-
sibility. Moreover, when the two sets of atoms are weakly logically independent,
the upper envelope of the extensions is a comparative possibility.

An open problem is to establish which is the upper envelope of a comparative
relation satisfying conditions weaker than (p), for instance preorders which are
only monotone with respect to inclusion.
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Abstract. In qualitative decision theory, a very natural way of defining
preference relations � over the policies (acts) is by using the so called
Dominance Plausible Rule. To do that, we need a relation > over the
consequences and a relation � over the events. Very interesting axiomatic
characterizations, à la Savage, have been established for these decision
relations [6,7]. Namely, when the relation � is a possibilistic relation.
Unfortunately, this kind of decision relation is not discriminant enough.
We have searched for decision rules that discriminate more than those
defined through a possibilistic relation. In particular, in this work, we
study decision relations defined by the Dominance Plausible Rule using
a leximax relation �. We give an axiomatic characterization of these
decision relations.

Introduction

Given a set of states S and a set of consequences X , a policy (act) is a function
f : S −→ X . We denote by XS the set of policies. One of the most important
problems in Decision Theory is to know which is the best policy. In order to
decide which is the best policy when one has a probability over the events (sets
of states) and a utility function u : X −→ R, one can classify the policies via
the expected value of the functions u ◦ f where f is a policy. The best policies
are those maximizing the expected value. Thus, given a utility function u over
X and a probability function p over S, we can define the expected utility of f
as EU(f) =

∑
s∈S p(s)u(f(s)) (that is, the expected value of u ◦ f). Then, we

classify the policies in the following way f � g ⇔ EU(f) ≥ EU(g) (∗).
Savage [12] proved that if the relation between the policies � satisfies some

axioms, then there is a probability function p over S and also a utility function
u over X such that the equivalence (∗) holds, i.e. the decision relation � over
the policies can be defined via the expected utility when that relation obeys
certain rationality criteria. Savage’s framework makes sense for an infinite set
of states. Now, when we consider a finite set of states, the archimedean axiom
does not hold. Moreover, the expected utility is sensitive to small variations. For
� Thanks to the CDCHT-ULA for the financial support through the research project

N◦ C-1451-07-05-A.
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instance, suppose we have three states s1, s2 and s3 where the states s1 and
s2 are equally plausible and, in turn, more plausible than s3. We must decide
which policy between f1 and f2 is the best, and our decision will be done using
the utility expected model. Suppose that S = {s1, s2, s3}, X = {x1, . . . , x6}, the
policies f1, f2, the probabilities p1 and p2 over S and the utility function u for
the consequences are defined as follows:

s1 s2 s3

f1 x1 x3 x2

f2 x5 x6 x4

s1 s2 s3

p1
2
5

2
5

1
5

p2
9
20

9
20

1
10

x1 x2 x3 x4 x5 x6

u 10 60 36 50 20 30

If we classify the policies f1 and f2 using the expected utility with the probability
p1 and the utility function u, we have EU(f1) = 30.4 and EU(f2) = 30; thus
EU(f1) > EU(f2) and therefore f1 � f2. But if we calculate the expected utility
using the probability p2 and the utility function u, we have EU(f1) = 26.7 and
EU(f2) = 27.5; thus EU(f1) < EU(f2) and therefore f1 ≺ f2.

The previous example shows that the quantitative framework is very sensitive
to small variations in the inputs. This is one reason to look for pure qualitative
frameworks which are more robust and more appropriate for the finite case. In
this direction some recent works have been developed, for instance Dubois et al.
[6,7].

One of the main contributions of the work of Dubois et al. is the axiomatic
characterization à la Savage for the relations defined by the Dominance Plausible
Rule (DPR) steaming from a preference relation over the consequences and a
possibilistic relation over the events, a kind of plausibility relation (and more
generally a relation over the events obtained as the intersection of a family of
possibilistic relations).

More precisely, we have a relation > over X and a relation � over P(S). Then
we define � as follows: f � g ⇔ [f > g] � [g > f ] (∗∗), where [f > g]
denotes the set {s ∈ S : f(s) > g(s)}. Usually > is a modular1 relation and � is
a total pre-order2.

The definition given by (∗∗) tries to capture, in the finite case, the definition
given by (∗). The intended meaning of definition (∗∗) is the following one: an
agent should always choose action f over action g if she considers the event that
f leads to a strictly preferable outcome than g more likely than the event that
g leads to a strictly preferable outcome than f .

The definition given by (∗∗) is quite natural and, in some cases (for instance
when the relation � is the intersection of a family of possibilistic relations) there
is an axiomatic characterization which is very similar to that of Savage’s (see
[6,7]).

However, this kind of preference relations � over the policies, when the rela-
tion � is the intersection of a family of possibilistic relations, is not

1 Sometimes in the literature these relations are called weak orders (see for instance
[10]). A relation R over X is modular iff R is transitive and if xRy and ¬(yRz) and
¬(zRy) then xRz.

2 A total pre-order is a transitive and total relation.
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discriminant enough. In order to see that, let’s take the states S and the con-
sequences X as in the previous example. We take a relation ≥

X
which is a

total preorder over X (representing the utility) and a total preorder ≥s over
S that we use to define a possibilistic relation �Π (the possibilistic lifting of
≥s) over P(S) in the following way: A �Π B ⇔ ∀x ∈ B ∃y ∈ A y ≥s x.
Suppose ≥X and ≥s are defined by x2 >X x4 >X x3 >X x6 >X x5 >X x1

and s1 ∼s s2 >s s3 Let f1 and f2 be the policies defined by the previous table.
Then it is easy to see that [f1 >

X
f2] = {s : f1(s) >p f2(s)} = {s2, s3} and

[f2 >p f1] = {s : f2(s) >p f1(s)} = {s1}. Now, if we consider � defined by
the Dominance Plausible Rule with the possibilistic relation �Π and the rela-
tion ≥

X
, i.e., f � g if and only if [f >

X
g] �Π [g >

X
f ], we get easily that

{s2, s3} �Π {s1} and {s1} �Π {s2, s3}. Thus, f1 � f2 and f2 � f1, i.e., f1 and
f2 are indifferent for the relation �.

However, in several natural contexts (extending the preferences ≥s over S to
events) the event {s2, s3} is strictly more plausible than the event {s1}. This will
be the case, when the the relation � considered is the leximax relation associated
to ≥s (see section 1 for a precise definition of leximax relation3). Thus, in the
particular previous example, if we put � the leximax relation associated to ≥s

we would have [f1 >
X

f2] 
 [f2 >
X

f1] and then f1 � f2, that is, the policy f1

has to be preferred over the policy f .
Our main concern will be to characterize the decision relations defined by

DPR using a leximax relation. In order to do that, we need to have a good
characterization of the leximax relations. Actually, Barberà et al. [2] give a char-
acterisation of the leximax relation associated to ≥s when this last relation is a
linear order. Our characterizations are different. We don’t suppose that ≥s is a
linear order. We only suppose that ≥s is a total preorder.

This work is organized as follows: Section 1 is devoted to define very pre-
cisely the concepts used throughout the paper. Section 2 is devoted to give
three characterizations of the leximax relation. In Section 3 we give the axioms
characterizing the decision relations defined by DPR via a leximax relation and
establish our main representation theorem. Finally we make some concluding
remarks in Section 4.

1 Preliminaries

Let W be a set and let R ⊂ W × W be a binary relation over W , generally
interpreted like a preference relation between the objects in W . Thus, (x, y) ∈ R
means “x is at least as good as y”. As usual we write xRy instead of (x, y) ∈ R.
The strict preference relation P and the indifference relation I associated to R
are defined by putting for any x, y ∈W , xPy if and only if xRy and ¬(yRx); xIy
if and only if xRy and yRx. Remember that R is reflexive if and only if xRx for
all x ∈ W . R is total (or complete) if and only if for any x, y ∈ W , xRy or yRx.
Notice that every total relation is a reflexive relation. R is transitive if and only
if for any x, y, z ∈ W , if xRy and yRz then xRz. R is antisymmetrical if and
3 This leximax relation was defined in [5] but our definition is slightly different.
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only if for any x, y ∈W , if xIy then x = y. A total preorder is a relation which is
transitive and total. A linear order is a total preorder which is antisymmetrical.
R is symmetrical if and only if for any x, y ∈ W , (xRy ⇔ yRx). R is said to be
an equivalence relation if it is reflexive, transitive and symmetrical.

Let S be a finite set interpreted as a set of states (the states of the world). We
denote by ≥s a preference relation over S. The relations >s and ∼s will denote
the strict preference and the indifference relation respectively associated to ≥s.
Most of the time, we assume that ≥s is a total preorder over S. The elements
of the set P(S) will be called events. If A is an event, the complementary event,
S \A, will be denoted Ac. The preference relations over the set of events will be
generally denoted by � (with subindices when necessary). Most of the the times
these relations will be called plausibility relations. The symbols 
 and � will
denote the strict preference relation and the indifference relation associated to
� respectively. Let X be a finite set interpreted as a set of consequences. The
set of functions from S to X will be denoted XS and its elements will be called
policies (or acts). The preference relation over XS will be denoted by the symbol
�. Its strict preference relation will be denoted � and its indifference relation
will be denoted �.

Let f, g be policies in XS let A an event in P(S). We denote by fAg the
function taking the value f(s) if s ∈ A and g(s) if s ∈ Ac. The policy taking a
constant value x will be denoted fx. Sometimes, if the context is non ambiguous,
fx will be denoted simply x. For instance, fxAfy will be denoted simply xAy.

Let ≥
X

a preference relation over X with >
X

and ∼
X

the strict preference
relation and the indifference relation associated respectively. If there exist x, y ∈
X such that x >X y, the relation ≥X is called non trivial. We define [f >X g] =
{s ∈ S : f(s) >

X
g(s)}. Notice that the sets [f >

X
g], [g >

X
f ] and [f ∼

X
g]

are mutually disjoint and [f ≥
X

g] = [g >
X

f ]c.

Definition 1. Let ≥
X

be a total pre-order over X and let � be a relation over
P(S). The relation � over XS is said to be defined by the Dominance Plausible
Rule (DPR) with (≥X ,�) when the following equivalence holds:

f � g ⇔ [f >
X

g] � [g >
X

f ]

It is easy to see that if � is a total pre-order over P(S), and if � is defined
by DPR with (≥

X
,�) then f � g ⇔ [f >

X
g] 
 [g >

X
f and f � g ⇔ [f >

X

g] � [g >X f ].
When A is a set we denote by |A| the cardinality of A (that is, the number

of element of A when this set is finite). If a is a vector we denote by |a| the
number of entries in the vector. Suppose |S| = n and consider V ↓ the set of all
vectors of size less or equal to n, the inputs of which are elements of S, there are
not repetitions of the inputs and, finally, they are ordered in decreasing manner
by ≥s. That is, given k ≤ n, a = (a1, · · · , ak) ∈ V ↓ iff, for all i, j such that
1 ≤ i, j ≤ k with i �= j, ai �= aj and for all i such that 1 ≤ i ≤ k − 1 ai ≥s ai+1.
Now, given a, a′ ∈ V ↓ of length m with m ≤ n, we define the following relation:
a ≡ a′ if and only if ai ∼s a′

i for all i = 1, · · · , m. The relation≡ is an equivalence
relation over V ↓. For each element a ∈ V ↓ we denote by [a] its equivalence
class.
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Next we define �lex
max over V ↓:

a �lex
max b ⇔

⎧⎨⎩
a ≡ b or
∃k ∈ {1, · · · , min{|a|, |b|}}, such that ∀i < k ai ∼s bi and ak >s bk or
|a| > |b| and ∀i ∈ {1, · · · , |b|}, ai ∼s bi.

Notice that the third clause in previous definition is lacking in Definition 9 of
leximax given in [4]. Notice also that a ∼lex

max b⇔ a ≡ b.
It is easy to see that the relation �lex

max is congruent with respect to the
equivalent relation previously defined, i.e. if a ≡ a′and b ≡ b′ then a �lex

max b ⇔
a′ �lex

max b′. It is also quite easy to see that �lex
max is a total preorder over V ↓.

Let A ∈ P(S) and suppose that |A| = k. The set of vectors in V ↓ of length
k with inputs in A will be denoted by R(A), that is R(A) = {a ∈ V ↓: |a| =
k and the inputs of a are in A}. For instance, if A = {a1, a2, a3, a4} with a1 >s

a2 ∼s a3 >s a4 then R(A) = {(a1, a2, a3, a4), (a1, a3, a2, a4)}. If there are no
indifferent elements in A, it is clear that R(A) is a singleton.

Now we are ready to define the leximax relation4 �lex
max over P(S):

Definition 2. Let ≥s be a total preorder over S. We define the relation �lex
max

over P(S) as follows: A �lex
max B ⇔ ∀b ∈ R(B) ∃a ∈ R(A) a �lex

max b.

Notice that, by the previous definition, for every nonempty set A, we have
A �lex

max ∅ and ∅ ��lex
max A. That is, A 
lex

max ∅ for all A.
The relations over events having the previous property are called non dogmatic

in the literature (see [6]). More precisely a relation � over P(S) is said to be
non dogmatic if and only if A 
 ∅ for all A ∈ P(S) \ {∅}.

It is also interesting to notice the following

Remark 1. For all A, B ∈ P(S) A �lex
max B ⇔ ∀a ∈ R(A) and ∀b ∈ R(B),

a �lex
max b and when A and B are nonempty sets A �lex

max B ⇔ ∃a ∈
R(A) and ∃b ∈ R(B), a �lex

max b.

These observations are very useful in order to prove the following proposition:

Proposition 1. The relation �lex
max is a total preorder on P(S).

Now with the precise definition of �lex
max, let us come back to the example given

in the Introduction. In this example we have to compare the events [f1 >X f2] =
{s2, s3} and [f2 >p f1] = {s1} using the leximax relation �lex

max associated to
the following total preorder over S: s1 ∼s s2 >s s3. Since (s2, s3) �lex

max (s1), we
have [f1 >X f2] 
lex

max [f2 >p f1] and then f1 � f2.

2 Three Characterizations of Leximax

In this section we give three characterizations for the leximax relation. The first
and the third characterization are purely ordinal, i.e., the axioms characterizing
the leximax relation are given in terms of postulates concerning the relations �
4 This kind of relations were defined in [11].



574 F. Camacho and R. Pino Pérez

over events. The second characterization is probabilistic, in a sense we will make
precise below.

We begin with the most elementary of characterizations. In some way, it
is very close to the definition of leximax relation. The main interest of this
characterization is that it allows an easy intermediary representation to establish
the other two characterizations.

The five axioms for our first characterization are Extensionality, Monotony
and three axioms of Left Independence stated as follows:

Ext ∀a, b ∈ S [a ≥s b ⇔ {a} � {b}]
Mon ∀A ∈ P(S) ∀x ∈ S \A A ∪ {x} 
 A

Left Independence: ∀A, B ∈ P(S) ∀x, y ∈ S such that ∀w ∈ A x ≥s w and
∀z ∈ B y ≥s z we have:
LI1 x >s y ⇒ A ∪ {x} 
 B ∪ {y}
LI2 [x, y /∈ (A ∪B), x ∼s y, A ∼ B]⇒ A ∪ {x} � B ∪ {y}
LI3 [x, y /∈ (A ∪B), x ∼s y, A 
 B]⇒ A ∪ {x} 
 B ∪ {y}

Theorem 1. Let ≥s be a total pre-order over S and let � be a total pre-order
over P(S). The relation � satisfies the axioms Ext, Mon, LI1, LI2 and LI3
if only if �=�lex

max.

Proof: By Definition 2, it is easy to verify that the relation �lex
max satisfies

the axioms Ext, Mon, LI1, LI2 and LI3.
For the converse, suppose that � is a total preorder satisfying Ext, Mon,

LI1, LI2 and LI3. We must show that A �lex
max B ⇔ A � B. In order to

do that it is enough to prove the following claim: A 
lex
max B ⇒ A 
 B and

A ∼lex
max B ⇒ A � B. The claim, of course, entails A �lex

max B ⇒ A � B.
For the converse implication, we reason by reductio. Suppose that A � B and
¬(A �lex

max B). Since �lex
max is a total preorder, we have B 
lex

max A. Thus by the
claim we have B 
 A which together with A � B is a contradiction.

Now we sketch the proof of the claim. Actually, we show how to prove the first
part of the claim, that is A 
lex

max B ⇒ A 
 B; the other part is quite similar.
Suppose that A 
lex

max B. Note that this assumption entails A �= ∅. When B =
∅, we can obtain easily A 
 B by applying iteratively the postulate Mon. Thus,
we may assume A and B nonempty sets. By Remark 1, ∃a ∈ R(A), ∃b ∈ R(B)
such that a �lex

max b. We can take a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bm)
such that [∀i, ∀j(j > i, ai ∼s bi &, ai ∼s bj ⇒ ai �= bj & bi �= aj ]5. Now the
proof proceeds by analyzing the cases in which a �lex

max b. For space reasons, we
illustrate only the following case: There is k ∈ {1, · · · , min{n, m}} such that
ak >s bk and ∀j < k, aj ∼s bj . Since ak >s bk and ∀j[j > k ⇒ ak ≥s aj & bk ≥s

bj], by LI1, {ak, ak+1, · · · , an} 
 {bk, bk+1 · · · , bm}. By our choice of a and b we
have ak−1, bk−1 /∈ ({ak, · · · , an} ∪ {bk · · · , bm}) and by hypothesis ak−1 ∼s bk−1,
then by LI3, {ak−1, ak, · · · , an} 
 {bk−1, bk · · · , bm}. Applying this procedure
iteratively, we have A = {a1, · · · , an} 
 {b1, · · · , bm} = B.

5 This is a technical fact, not very hard to see, which means we can choose the vectors
a and b with the biggest number of common entries in the same position.
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Now, we give the probabilistic representation. We begin by defining when a
probability p over S represents a total preorder ≥s over S and a total preorder
� over P(S).

Definition 3. Let ≥s, � and p be a relation over S, a relation over P(S) and
a probability over events of S respectively. We say that p represents ≥s if and
only if for all x, y ∈ S, (x ≥s y ⇔ p({x}) ≥ p({y})). We say that p represents
� if and only if for all A, B ∈ P(S), (A � B ⇔ p(A) ≥ p(A)).

There is a kind of probability very well adapted to represent the leximax relations
as we will see in the sequel. We call these probabilities, big step probabilities6 .
These probabilities are defined as follows:

Definition 4. A probability p over events of S is said to be a big step probability
if and only if ∀x, ∀A (∀y ∈ A (p({x}) > p({y}))⇒ p({x}) > p(A)).

The following result, which is quite easy to establish, is basic for the sequel.

Lemma 1. Let ≥s be a total preorder over S. Then there is a big step probability
p over S which represents ≥s.

Let p be a probability over P(S). As usual, we define a plausibility relation �p

associated to p over P(S) by putting A �p B ⇔ p(A) ≥ p(B). Now we can
establish the following proposition:

Proposition 2. Let ≥s and p be a total preorder over S and a big step proba-
bility representing ≥s respectively. Then �lex

max =�p.

Proof: (Sketch) It is clear that �p is a total preorder. Thus, by Theorem 1, it
is enough to see that �p satisfies Ext, Mon, LI1, LI2 and LI3. This is a quite
straightforward verification.
Actually, if a probability represents a leximax relation, it has to be a big step
probability. More precisely we have the following

Proposition 3. Let ≥s and p be a total preorder over S and a probability over
P(S) respectively. If �lex

max =�p then p is a big step probability which represents
≥s.

Proof: (Sketch) That p represents≥s follows directly from the hypothesis�lex
max

=�p. Now suppose, towards a contradiction, that p is not a big step probability.
Then there is x ∈ S and A ∈ P(S) such that for all a ∈ A, p(x) > p(a) but
p(A) ≥ p({x}). Then A �p {x}, and therefore A �lex

max {x}. Notice that A �= ∅,
so |A| = n ≥ 1. Thus, by Definition 2, there exists a = (a1, · · · , an) ∈ R(A) such
that (a1, · · · , an) �lex

max (x), that is a1 ≥s x, by the definition of �lex
max. Then

p(a1) ≥ p(x), a contradiction, because a1 ∈ A.

6 In [1] we find very similar probabilities called non-linear big-stepped probabilities
which are very useful for extracting default rules in Knowledge Representation. Ac-
tually, our class imposes the same probability to states living in the same stratum
and coincides with Definition 7 (of big-stepped probabilities) in [4].
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From Proposition 2 and Lemma 1 follows the probabilistic representation for the
leximax relations. More precisely we have the following theorem:

Theorem 2. Let ≥s be a total preorder over S. The relation � over P(S) can
be represented by a big step probability that represents ≥s if and only if �=�lex

max.

Notice that this theorem is not new it appears in [4] without proof.
Using the previous representations we give now a very compact axiomatization

for the leximax relations. This axiomatization will be very useful in order to give
our main representation theorem for the decision relations defined through DPR
via a leximax relation: Theorem 5.

The axioms to consider are the following ones:

(Lex1) A � B, C � D and A ∩C = ∅ ⇒ A ∪ C � B ∪D
(Lex2) A 
 B, C � D and A ∩C = ∅ ⇒ A ∪ C 
 B ∪D
(Lex3) {x} 
 A, {x} 
 B and x �∈ (A ∪B) ⇒ {x} 
 A ∪B

When � is a total preorder over P(S) we say that this relation is a leximax
relation if and only if it is the leximax relation associated to the relation ≥s

obtained as the projection of � over the singletons of P(S). That is, a ≥s b if
and only if {a} � {b}

Theorem 3. Let � be a total preorder over P(S) which is non dogmatic. Then
� is a leximax relation if and only if � satisfies the postulates Lex1, Lex2 and
Lex3.

Proof: Suppose � is the leximax relation associated with ≥s, the projection of
� over the singletons. By Theorem 2, the relation � can be represented by a big
step probability p. From this, the axioms Lex1, Lex2 and Lex3 are deduced
easily. For the converse, suppose that the relation � satisfies the axioms Lex1,
Lex2 and Lex3. By Theorem 2, it is enough to check that the relation� satisfies
the axioms Ext, Mon, LI1, LI2 and LI3. The axiom Ext is satisfied by the
definition of ≥s. In order to prove Mon, suppose that x �∈ A. Since we have
{x} 
 ∅ because � is non dogmatic, A � A, by reflexivity (� is a total preorder)
and {x} ∩A = ∅, we can apply Lex2 to conclude {x} ∪A 
 A.

Now we check the axiom LI1 (the proof for the axioms LI2 and LI3 is sim-
ilar). Let A, B be elements of P(S) and let x, y be elements of S such that
∀a ∈ A, x ≥s a, and ∀b ∈ B, y ≥s b. Suppose x >s y. We want to see that
A ∪ {x} 
 B ∪ {y}. Since x >s y and ∀b ∈ B, y ≥s b, we have {x} 
 {b}
for all b ∈ B; moreover x /∈ B ∪ {y}. Thus applying Lex3 iteratively, we can
conclude {x} 
 B ∪ {y}. We have also A \ {x} � ∅ and {x} � {x}, then by
Lex1, (A \ {x})∪ {x} � {x}. But (A \ {x})∪ {x} = A ∪ {x}, so by transitivity,
A ∪ {x} 
 B ∪ {y}.

Notice that preadditivity (see section 3) plus Lex3 does not imply Lex1 plus
Lex2, because one can construct a relation satisfying preadditivity plus Lex3
which is not a leximax relation.
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3 Characterization for the Relations � Defined by DPR
Using a Leximax

It is well known that Savage’s axioms capturing exactly the expected utility
model are not adequate to deal with the finite structures (see [7] for an excellent
discussion). For finite structures it is quite natural adopting the model of the
Dominance Plausible Rule (DPR) which we have described in the introduction.
This model has essentially two parameters: the relation ≥

X
modelling the prefer-

ences over X (in some sense the utility) and the plausibility relation � modelling
preferences over P(S), the events. The aim of this section is to study the behav-
ior of the decision relations � defined via DPR using a plausibility relation �
which is a leximax relation. We begin by recalling the first five axioms of Savage
(those more relevant for the finite case) and a result of Dubois et al. [7], very
important in order to obtain our main result.

We begin with some basic notions needed to establish Savage’s Axioms:
Let � be a relation over XS . An event A is said to be null if and only if ∀f, g, h ∈
XS, fAh ∼ gAh. The preference conditioned to an event A is defined by putting
(f � g)A if and only if ∀h ∈ XS , fAh � gAh. We denote by ≥p the relation
over X obtained as the projection of � over the constant policies, that is x ≥p y
if and only if fx � fy.

Now we can establish the first five axioms of Savage:

P1 The decision relation � over XS is a total preorder.
P2 ∀A ∈ P(S), ∀f, g, h, h′ ∈ XS(fAh � gAh ⇔ fAh′ � gAh′)
P3 ∀A ∈ P(S), [A not null ⇒ [(fx � fy)A ⇔ fx � fy]].
P4 ∀A,B∈P(S), ∀x, y, x′, y′∈X, x>p y & x′>p y′⇒(xAy�xBy⇔x′Ay′�x′By′).
P5 ∃x, y ∈ X such that fx � fy.

The most problematic of these axioms in the setting of the DPR model is P1.
To ask of the relation � to be transitive is a very strong requirement. We will
discuss this below. The totality requirement for � will not be a problem.

In order to define the postulate OI, presented by Dubois et al. [6,7] for
capturing the essence of the RDP model, we need the following definition of
pairs of policies ordinally equivalent: two pairs of policies (f, g) and (f ′, g′)
are said to be ordinally equivalent7, denoted (f, g) ≡ (f ′, g′), if and only if
[f >p g] = [f ′ >p g′] and [g >p f ] = [g′ >p f ′]. Now we can define the
postulate of ordinal invariance OI as follows:

OI (f, g) ≡ (f ′, g′) ⇒ (f � g ⇔ f ′ � g′)

It is quite straightforward to verify that the decision relations defined by the
DPR satisfy the postulate OI.

The monotonicity postulates (left monotonicity LM and right monotonicity
RM, also proposed by Dubois et al. [7]) for the decision relation � are defined
as follows:
7 This definition is not the definition of pairs ordinally equivalent which appears in

[6,7]. It is the fixed definition which appears in [8] and originally in [9].
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LM If ∀s ∈ A, f ′(s) >p f(s) then f � g ⇒ f ′Af � g
RM If ∀s ∈ A, g(s) >p g′(s) then f � g ⇒ f � g′Ag

Let’s recall two more concepts of [7]. The relation � over P(S) is preadditive if
and only if for all A, B, C ∈ P(S), if A∩(B∪C) = ∅ then B � C iff A∪B � A∪C.
And the relation � is a monotonic confidence relation if and only if it is reflexive,
S � ∅ (non-triviality), for any A ∈ P(S), S � A (consistency) and the following
two properties of monotony: for any A, B, C ∈ P(S), if A � B then A ∪ C � B
and if A � B ∪ C then A � B.

Now we can recall the following theorem of [7]:

Theorem 4 (Dubois et al. [7]). � is a complete relation over constant acts,
reflexive and it satisfies the postulates P5, OI, LM and RM if and only if there
exists a non trivial and complete relation ≥X over X and a preadditive and
monotonic confidence relation � over P(S) such that � is the relation defined
by the DPR via ≥

X
and �.

Now we consider the following new postulates for all x, y ∈ X such that x >p y
and all a ∈ S:

D1 If xAy � xBy, xCy � xDy and A ∩C = ∅ then x(A ∪ C)y � x(B ∪D)y
D2 If xAy � xBy, xCy � xDy and A ∩C = ∅ then x(A ∪ C)y � x(B ∪D)y
D3 If x{a}y � xAy, x{a}y � xBy and a �∈ (A ∪B) then x{a}y � x(A ∪B)y

We are ready to establish the main representation theorem of this work:

Theorem 5. The relation � is a complete relation which is a total preorder
over constant policies and � satisfies the postulates P5, OI, LM, RM, D1,
D2 and D3 if and only if there exists a non trivial and total preorder ≥

X
over

X and a leximax relation � over P(S) such that � is the relation defined by the
DPR via ≥X and �, i.e., for any f, g ∈ XS, f � g ⇔ [f >X g] � [g >X f ].

Sketch of proof: Our proof is based in our characterization theorems for lexi-
max, Theorem 2 and Theorem 3, and Theorem 4 of Dubois et al.

In order to prove the if part, suppose that � is defined by DPR via a leximax
relation � over P(S) and a total preorder ≥

X
over X . Since a leximax relation �

has a probabilistic representation, Theorem 2, � satisfies preadditivity and the
properties of a monotonic confidence relation. So, by Theorem 4, the relation �
defined by DPR via a leximax relation � over P(S) and a total preorder ≥

X
over

X , satisfies P5, OI, LM and RM. Moreover if the relation � is complete, nec-
essarily the relation � is complete. This is enough to see that ≥p=≥X , therefore
≥p is transitive. Thus � is a total preorder over the constant policies.

For this part, it remains to see that the postulates D1, D2 and D3 hold. This
follows using the monotony of the relation � and the properties Lex1, Lex2
and Lex3 characterizing � after Theorem 3.

Now we outline the proof of the only if part. Thus, we suppose the relation
� is a complete relation which is a total preorder over constant policies and,
moreover, that the postulates P5, OI, LM, RM, D1, D2 and D3 hold. Again,
by Theorem 4, there is a relation≥X (actually the projection of� on the constant
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policies) over X and a relation � over P(S) (defined by A � B if and only if
xAy � xBy with x, y such that x >p y) which is preadditive and a monotonic
confidence relation such that they define � via DPR. The fact that ≥

X
is a total

preorder follows from the equality ≥
X

=≥p and the hypothesis that � is a total
preorder over constant policies. It is important to notice that Theorem 3 tells us
that � is a leximax relation if two conditions hold: the first of them is that the
relation � has to be a total preorder. The second one is that the axioms Lex1,
Lex2 and Lex3 have to be satisfied. We begin with the proof of the fact that �
is a total preorder. We know, by hypothesis, that � is total, therefore � is also
total. So, it remains to prove the transitivity. By definition of �, the transitivity
for this relation is equivalent to the transitivity of � restrained to the policies
with values in the set {x, y}. We claim that this last affirmation is true. We use
the following fact, the proof of which is easy using Theorem 4:

Fact 1. ∀A, B ∈ P(S), xAy � xBy ⇔ x(A \ (A ∩ B))y � x(B \ (A ∩ B))y.
Now we prove the claim that � restrained to the policies with values in the set
{x, y} is transitive. More precisely:

Claim 1. ∀A, B, C ∈ P(S), xAy � xBy & xBy � xCy ⇒ xAy � xCy. To
prove the claim assume xAy � xBy & xBy � xCy and, towards a contradiction,
xAy �� xCy. By completeness of �, we have xCy � xAy. Then, by Fact 1, we
have x(A \ (A∩B))y � x(B \ (A∩B))y and x(C \ (A∩C))y � x(A \ (A∩C))y.
Notice that A\ (A∩B) and C \ (A∩C) are disjoint sets, then, by D2, we obtain
x[(A \ (A ∩B)) ∪ (C \ (A ∩ C))]y � x[(B \ (A ∩B)) ∪ (A \ (A ∩ C))]y

From this expression, using Fact 1, we obtain
x[(C \ (A ∪B)) ∪ ((A ∩ C) \B)]y � x[(B \ (A ∪ C)) ∪ ((A ∩B) \ C)]y
and, using Fact 1 again, we obtain from the last expression xCy � xBy con-
tradicting our initial assumption xBy � xCy. This concludes Claim 1’s proof.
Therefore the relation � is transitive. It remains to prove the postulates Lex1,
Lex2 and Lex3. This is quite straightforward using the definition of � and the
postulates D1, D2 and D3.

Once established the previous theorem, we can say which among Savage’s axioms
are satisfied by a decision relation � defined by DPR with the pair ≥

X
,�, where

� is a leximax plausibility relation and ≥
X

is a non trivial total preorder over
X . Actually, by results in [7], such a decision relation � satisfies P2, P3, P4
and P5. The transitivity of � is not in general guaranteed. One can construct a
counterexample or use a result in [3] characterizing the properties the relations
� have to satisfy in order to have the relation � defined by DPR with the pair
≥

X
,� be transitive. One of these properties is the property T stated as follows:
T: A � B & C � D & A∩B = ∅& C ∩D = ∅ ⇒ (A∪C) \ (B ∪D) � (B ∪D).

It is easy to construct leximax relations which do not satisfy property T. Even
the strict relation associated to the leximax relation doesn’t satisfy T. Thus, the
relation � associated to this leximax relation via DPR will not be transitive and
even more, the relation � is not transitive.

Actually, for a non dogmatic relation �, satisfying T is enough to have the
transitivity of � defined by DPR with the pair (≥

X
,�). Thus, the relation �

associated to a non dogmatic possibilistic relation � via DPR, will be transitive
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because 
 satisfies T. But in general the possibilistic relations don’t satisfy T.
They do when the projection over S is a linear order. The same phenomena
occurs for a leximax relation �: when its projection over S is a linear order,
then the relation � associated via DPR will be transitive.

4 Conclusion

The use of the Dominance Plausible Rule is very natural because in most cases
the only information available is very rough: a preference relation over S and a
preference relation over X . We can first lift the relation over S to a plausibility
relation over P(S) and then we can combine the last two pieces of information
via the DPR in order to have a mechanism for classifying policies.

The three characterizations of leximax relations we have established have been
very useful in order to prove our main representation result: Theorem 5.

Let’s say a word concerning a comparison between properties of � when it is
defined by DPR with a possibilistic relation or a leximax relation both obtained
by lifting a simply total preorder ≥s over S. We have seen that the decision
relations defined with the leximax relation discriminate more than the decision
relations defined with the possibilistic relation. The relation � defined with the
possibilistic is transitive but in general � is not transitive when it is defined
through a leximax relation.

Finally, when � is the leximax relation generated by a linear order ≥s over
S, we have the transitivity of the relation � defined via DPR using �.
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2. Barberà, S., Bossert, W., Pattanaik, P.K.: Ranking sets of objects. In: Barberà, S.,
Hammond, P.J., Seidl, C. (eds.) Handbook of Utility Theory. Kluwer Publisher,
Dordrecht (2004)
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Abstract. This paper presents a parameterized reasoning approach
with uncertainty based on a lattice-valued logic system. In this uncertain
reasoning approach, some parameters are used to represent uncertainty
arising from different sources, which is a common phenomenon in rule-
based systems. In our system, reasoning with different parameter values
means reasoning with different levels of belief and consistency. Some
methods are presented for selecting appropriate parameter values during
the uncertain reasoning process which allow us to find suitable parameter
values to meet the diverse practical and theoretical requirements.

Keywords: Parameterized reasoning, uncertainty, lattice-valued logic,
rule-based systems.

1 Introduction

Rules are one of the most common forms for representing knowledge. Rule-
based systems (or knowledge-based systems) using IF-THEN rules to represent
knowledge and to reason with it, have been applied successfully in many areas
[10]. A crucial issue in rule-based systems is to utilize all observations available
and expert knowledge expressed by the rules to analyze the current situation,
and infer the consequences which will lead to corresponding actions. Often, this
is a process of uncertain reasoning, i.e., inferring conclusions based on rules and
new information under uncertainty.

Uncertainty may arise from different sources. For example, suppose that you
are evaluating some cars to decide which one to buy from 4 aspects: price, safety,
comfort and fuel economy, which will be discussed in more detail as an illustrative
example in the paper. Uncertainty may arise from subjective judgment about a
car, e.g., “this car is quite safe”, where “quite” depicts the truth degree of the
judgment or evaluation about the safety of the car. There is also uncertainty
on the belief degree of the experts on the rule, e.g., “the rule is highly true”.
Uncertainty may also exist in the reasoning process from the observations of a
car to the overall evaluation due to the subjective and ambiguous situations,
such as, you think that it is “very” believable to get the overall evaluation of
a car from the current observations and rules. Another source of uncertainty
is inconsistency of observations or opinions about different aspects of a car.

W. Liu (Ed.): ECSQARU 2011, LNAI 6717, pp. 582–593, 2011.
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Therefore it is necessary to consider all sources of uncertainty, represent them
appropriately and aggregate them rationally by using uncertain reasoning to
make sound decisions.

From the viewpoint of symbolism, the confidence and rationality of uncertain
reasoning relies on non-classical logics [11], which are extensions of the classical
logic. Zadeh [19] developed a theory of uncertain reasoning based on the notion of
linguistic variable and fuzzy logic, which then inspired interests in the research of
uncertain reasoning with strict logical foundation. Pavelka [9] and Novak [8] then
laid the foundation for uncertain reasoning based on strict logic systems. Many
researchers have made many important progress in this area [4], [5], [6], [15].
There is work in the literature that is related to reasoning with uncertainty from
different sources. Larsen and Yager [7] presented a method for crisis recognition
under uncertainty in the framework of possibility logic by using belief measure to
reflect the type of uncertainty in the observations and knowledge base. Benferhat
and Sossai [1] proposed a method for reasoning with multiple-source information
by merging uncertain knowledge bases, provided by different sources, into a new
possibilistic knowledge base in the framework of possibilistic logic. Zhou et.al.
[20] gave a graded reasoning method in the framework of n-valued R0-logic L∗

n.
Sottara et.al. [12] introduced an architecture based on a number of configuration
parameters which could be set by the user, individually or as a whole for the
entire rule base.

In this paper, we consider different sources of uncertainty, and propose to rep-
resent them by parameters in a unified uncertain reasoning framework based on
lattice-valued logic [15], which is a type of non-classical logic. This parameter-
ized uncertain reasoning method will have the advantage of direct reasoning with
observed information, without the underlying numerical approximation needed
by fuzzy set based methods.

The paper is organized as follows. First some related concepts and results
about lattice-valued logic and lattice implication algebra are recalled and revised.
Then, a review of the uncertain reasoning approach based on lattice-valued logic
is given, followed by the introduction of methods for parameter selection when
applying the uncertain reasoning approach in a specified lattice-valued logic
system, L2nf . Finally, an example is given to illustrate the proposed method.

2 Lattice-Valued First-Order Logic

Lattice implication algebra [15] is a kind of lattice-valued logical algebra, which
is the truth-value field of lattice-valued logic. It has been shown in [15], [18]
that lattice implication algebra defines a residuated lattice [9], which possesses
the common features in various fuzzy logical systems based on the different
particular algebraic structures [13].

Definition 1. [15] Let (L,∨,∧, O, I) be a bounded lattice with an order-reversing
involution ′, I and O the greatest and the smallest element of L respectively, and
→: L×L → L be a mapping. (L,∨,∧, O, I) is called a lattice implication algebra
(LIA) if the following conditions hold for any x, y, z ∈ L:
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(I1) x → (y → z) = y → (x → z); (1)
(I2) x → x = I; (2)
(I3) x → y = y′ → x′; (3)
(I4) x → y = y → x = I implies x = y; (4)
(I5) (x → y)→ y = (y → x)→ x; (5)
(l1) (x ∨ y)→ z = (x → z) ∧ (y → z); (6)
(l2) (x ∧ y)→ z = (x → z) ∨ (y → z). (7)

In the following, we denote L as a lattice implication algebra (LIA) and Lvfl

as the lattice-valued first-order logic based on L. The generalized quantifiers in
Lvfl are denoted as Qu, where u ∈ U , U is an index set, which can be seen as
the generalization of ∀ and ∃, such as “a few”, “most”. The set of all well-formed
formulas (wffs), such as ϕ∨ψ, ϕ∧ψ, ϕ→ ψ, (Qux)ϕ, in Lvfl is denoted as Ff . A
well-formed formula is called a formula for short. In the car evaluation example,
formulas ϕ, ψ will be used to represent the attributes of cars. For example, ϕi(x)
represents the i-th attribute, say comfort of car x. Let ϕ, ψ ∈ Ff , we also denote
ϕ↔ ψ = (ϕ → ψ) ∧ (ψ → ϕ), and ϕ⊗ ψ = (ϕ → ψ′)′.

An interpretation of wffs in Lvfl is a mapping DFf
: Ff −→ L, which is to

assign wffs truth degrees, e.g., assign truth degrees to the attributes of cars in
the car evaluation problem. The set of interpretations of wffs is denoted as

Ih ⊆ IH � {DFf
|DFf

is an interpretation of wffs}.

In the following, we also call I ⊆ FL(Ff ) as the set of interpretations of wffs,
where FL(Ff ) is the set of all L-type fuzzy subsets on Ff .

Definition 2. [15] Let Dn ⊆ Fn
f . A mapping rn : Dn −→ Ff is called an n-ary

partial operation of Ff , where Dn is the domain of rn, also denoted by Dn(rn).

Definition 3. [15] A mapping tn : Ln −→ L is said to be an n-ary truth-valued
operation on L, if
(1). α → tn(α1, · · · , αn) ≥ tn(α → α1, · · · , α → αn) holds for any α ∈ L and
(α1, · · · , αn) ∈ Ln.
(2). tn is isotone in each argument.

We denote Rn⊆ {rn | rn is an n-ary partial operation of Ff},

Tn⊆ {tn | tn is an n-ary truth-valued operation on L},

Rn ⊆ Rn × Tn, R ⊆
+∞⋃
n=0

Rn.

If (r, t) ∈ Rn, then (r, t) is called an n-ary rule of inference in Lvfl.
It can be seen that there are two parts for an inference rule in Lvfl, r is for

the formal deduction of formulas, and t is for the transformation of truth values
of these formulas. For car evaluation example, r is to describe the process from
the attributes of a car to get the final evaluation, while t gives the truth degree
transmission along with the process.
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Definition 4. [15] Let X∈FL(Ff ), (r, t)∈Rn, α∈L. If

X ◦ r ⊇ α⊗ (t ◦
n∏

X) (8)

holds, then X is said to be α-I type closed w.r.t. (r, t). If

X ◦ r ⊇ t ◦
n∏

(α⊗X) (9)

holds, then X is said to be α-II type closed w.r.t. (r, t), where ◦ means the
composition of functions, and

∏
is Cartesian product.

If for any (r, t) ∈ R, X is α-i type closed w.r.t. (r, t), then X is said to be α-i
type closed w.r.t. R, i =I, II.

Definition 5. [15] Let α ∈ L, R is said to be α-i type sound w.r.t. I, if T is
α-i type closed w.r.t. R holds for any T ∈ I, i =I, II.

Here, α can be thought of as the level of soundness of the inference rule in
lattice-valued logic, which can be interpreted as the belief degree of the decision
rule in the rule base for car evaluation problem.

Definition 6. [15] Let X, Y ∈ FL(Ff ), ϕ ∈ Ff , α, β ∈ L, i=I, II.
(1).

CI : FL(Ff ) −→ FL(Ff ),

CX
I (ϕ) �

∧
T∈I

(
∧

ψ∈Ff

(X(ψ)→ T (ψ))→ T (ϕ)), (10)

(2).
Cβ

(C∅
I ,R(α−i))

: FL(Ff ) −→ FL(Ff ),

Cβ,X

(C∅
I ,R(α−i))

(ϕ) �
∧
{ Y (ϕ) | Y ⊇ β ⊗ (C∅

I ∪X),

Y is α-i type closed w.r.t. R }.
(11)

CI is a semantic closure operator reflecting the transformation of truth values
from X to CX

I under interpretation set I, which will be used to get the uncertain
reasoning consequence. In the car evaluation problem, CX

I gives the degree to
which the evaluation X of a specified car can be included in or can reflect (that
is what “→” means) a general evaluation I of cars. β means the degree to which
can we get the evaluation result from the observations of a car and established
rules.

Definition 7. [15] Let X ∈ FL(Ff ), ϕ ∈ Ff , θ, α, β ∈ L. (P i, (n), X, (ϕ, θ) −
(α, β)) is said to be an (α, β)-i type proof of ϕ from X with the truth-valued
degree θ (shortly, θ-(α, β)-i type proof of ϕ from X), if the mapping

P i : (n) −→ Ff × L, (n) = {1, 2, · · · , n}
j %−→ (ϕj , θj),
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satisfies:
(1). (ϕn, θn) = (ϕ, θ) and
(2). θj = β ⊗ C∅

I(ϕj), or
(3). θj = β ⊗X(ϕj), or
(4). there exist j1, · · · , jk < j, and (r, t) ∈ Rk, such that

(ϕj , θj)=(r(ϕj1 , · · · , ϕjk
), α⊗ t(θj1 , · · · , θjk

)), i = I,
(ϕj , θj)=(r(ϕj1 , · · · , ϕjk

), t(α⊗ θj1 , · · · , α⊗ θjk
)), i = II,

where n is said to be the length of θ-(α, β)-i type proof of ϕ from X under P i,
and is denoted by l(P i), i =I, II.

Definition 8. [15] Let X ∈ FL(Ff ), τ ∈ L, i=I, II. If∨
{Cβ,X

(C∅
I ,R(α−i))

(ϕ)⊗Cβ,X

(C∅
I ,R(α−i))

(ϕ′)|ϕ ∈ Ff} ≤ τ, (12)

then X is said to be τ ′-i type consistent w.r.t. (α, β, I).

τ ′ represents the level of consistency of X which can be antecedent or consequent
in the inference rule. For example, there may be some conflicting observations of
a car or conflicting rules in the rule-base, and τ ′ is used to represent the degree
to which they are not conflicting, i.e., consistent.

Theorem 9. [15] Let X ∈ FL(Ff ), α, β ∈ L, and the truth-valued operations
in R satisfy the finite semicontinuity. Then for any ϕ ∈ Ff , i =I, II,

Cβ,X

(C∅
I ,R(α−i))

(ϕ)=
∨
{ θ | ∃(P i, (n), X, (ϕ, θ) − (α, β))}, (13)

where (P i, (n), X, (ϕ, θ) − (α, β)) is an (α, β)-i type proof of ϕ from X with the
truth-valued degree θ.

Theorem 10. [15] Let α, β ∈ L, and for any X ∈ FL(Ff ), R is α-i type sound
w.r.t. I, and Cβ,X

(C∅
I ,R(α−i))

∈ I. Then for i =I, II,

Cβ,X

(C∅
I ,R(α−i))

= Cβ⊗X
I . (14)

Theorems 9 and 10 state the soundness and completeness of lattice-valued logic
to some degree, i.e., the compatibility between syntax and semantics in lattice-
valued logic.

3 Uncertain Reasoning Approach Based on Lattice-
Valued Logic Lvfl

We take the typical uncertain reasoning model to explain the uncertain reasoning
approach based on lattice-valued logic Lvfl.

Rule : If X, then Y,

Fact : X̃,

Conclusion : Ỹ ,
(15)

where X , Y , X̃ , Ỹ ∈ FL(Ff ).
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The inference rule shown in (15) is Modus Ponens when X̃ = X , and Ỹ = Y ,
and is always called Fuzzy Modus Ponens (FMP) when X̃ does not exactly equal
X . The task of uncertain reasoning is to find an appropriate output Ỹ .

An uncertain reasoning approach has been proposed in [2] based on the above
model, and the corresponding uncertain reasoning consequence is expressed as:

Ỹ = Cβ⊗X̃
I , (16)

where CI is defined in Definition 6. Here, we need the uncertain reasoning
model (15) to be (α, β, τ, I)-i type regular [14], [2], i.e., there exist α, β, τ ∈ L,
I ⊆ FL(Ff ) and R such that X , Y , X̃ is τ ′-i type consistent w.r.t. (α, β, I),
and CX

I ⊇ τ ′ ⊗ Y . Furthermore, if the above selected α, β, τ , I and R make

Cβ,X̃

(C∅
I ,R(α−i))

∈ I, then from Theorems 9 and 10, the uncertain reasoning con-
sequence can also be obtained by a strict formal deduction in Lvfl, i.e., the
uncertain reasoning consequence is not only semantically sound, but also syn-
tactically provable to some degree.

It should be noticed that the above conditions for parameters are always
satisfiable. For example, equation (12) always holds for τ = I, i.e., any X is
consistent at O level, this is of course useless. So, what we need to do is to
choose reasonable values, according to practical and logical requirements, for
these parameters under certain situations.

In [2], we have chosen a set of inference rules R∗, including three special rules
and five classes of rules, which can cover rules used frequently in most cases.

R∗ = {(r0
2 , t

∗
2), (r

∗
2 , t∗2), (r


2 , t∗2)} ∪ {(rθ0

1 , tθ0
1 ) |θ0 ∈ L}

∪{(ru
1 , t1) | u ∈ U} ∪ {(ru

2 , t1) | u ∈ U}
∪{(ru

3 , t1) | u ∈ U} ∪ {(ru
4 , t1) | u ∈ U}

⊆ R,

(17)

where

r0
2(ϕ, ϕ → ψ) = ψ, t∗2(θ, β) = θ ∧ β,

r∗2(ϕ → γ, ϕ→ ψ) = ϕ→ (γ ∧ ψ),

r2 (ϕ → ψ, ψ → γ) = ϕ→ γ,

rθ0
1 (ϕ) = θ0 → ϕ, tθ0

1 (α) = θ0 → α,

ru
1 (ϕ) = (Qux)ϕ, t1(θ) = θ,

ru
2 (ϕ → ψ) = ϕ → (Qux)ψ, x is not free in ϕ,

ru
3 (ϕ → ψ) = (Qux)ϕ → ψ, x is not free in ψ,

ru
4 (Qux)(ϕ ⊗ ψ) = (Qux)ϕ ⊗ ψ, x is not free in ψ.

In the following, we use the set of inference rules R∗ and the set of interpretations
Ii for uncertain reasoning, where

Ii = {T | T ∈ FL(Ff ), T is α-i type closed w.r.t. R∗}, i = I, II.
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The following theorem shows that such selected R∗ and Ii can guarantee the
soundness and completeness of lattice-valued logic according to Theorem 10.

Theorem 11. [2] Given R and α. If

I = {T | T ∈ FL(Ff ), T is α-i type closed w.r.t. R},

then Cβ,X̃

(C∅
I ,R(α−i))

∈ I, i=I, II.

As for the truth-value field L, it should be selected according to real require-
ments. In this paper, in order to provide some ideas for dealing with qualitative
information which are widely used in real-life evaluation problems, we take the al-
gebraic structure for modeling linguistic terms, linguistic truth-valued lattice im-
plication algebra (L-LIA) [16], [17], as the truth-value field. L-LIA is constructed
from the product of two finite �Lukasiewicz chain. One is a �Lukasiewicz chain with
two elements which are meta truth values, “true” and “false”, and the other chain
is the set of some modifiers, also know as linguistic hedges [19] such as “very,”
“less,” “possibly,” and so on. The number of modifiers is always odd [16], [3], such
3, 5 or 9. For more information about L-LIA, please refer to [16].

So, suppose that there are two finite �Lukasiewicz chain, L2 = {b1, b2} and
Ln = {a1, a2, · · · , an}, where n ∈ N+, an odd natural number. The product
LIA produced by them is denoted as L2n = Ln × L2, and the lattice-valued
first-order logic whose truth-value field is L2n is denoted as L2nf .

Then, there are three parameters, α, β and τ , whose values remain to be de-
termined. From the properties of Lvfl, α ≤

∧
θ∈L(θ∨θ′) can generally guarantee

that R∗ is α-i type sound w.r.t. Ii. So, in the following, we pay more attention
to the selection of the values of parameters β and τ .

4 Parameter Selection

Because of the importance of
∧

θ∈L(θ ∨ θ′) as a threshold for the soundness of
inference rule, we firstly find its concrete value in L2n.

Lemma 12. In the product LIA L2n,∧
θ∈L2n

(θ ∨ θ′) =
{

(an+1
2

, b2), n is odd,
(an

2 +1, b2), n is even.

Proof. In fact, ∧
θ∈L2n

(θ ∨ θ′) =
∧

(ai,bj)∈L2n

((ai, bj) ∨ (a′
i, b

′
j))

=
∧

(ai,bj)∈L2n

((ai ∨ a′
i), (bj ∨ b′j))

= (
∧

ai∈Ln

(ai ∨ a′
i),
∧

bj∈L2

(bj ∨ b′j))

=
{

(an+1
2

, b2), n is odd,
(an

2 +1, b2), n is even.
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In the following, we determine the values of parameters β and τ by applying the
uncertain reasoning process to some typical conditions.

Theorem 13. For any X ∈ FL(Ff ), assume that

X(ϕ) =
{

ϕ, ϕ ∈ L2n,
O, otherwise,

where ϕ ∈ Ff . Then for any β ∈ L2n, X is I-i (i.e., τ = 0) type consistent w.r.t.
(α, β, Ii), where α ≤

∧
θ∈L2n

(θ ∨ θ′), i = I, II.

Proof. If α ≤
∧

θ∈L2n
(θ ∨ θ′), then it follows from the properties of Lvfl that

IH ⊆ Ii. So there exists T0 ∈ IH , such that

Cβ⊗X
Ii

(ψ) =
∧

T∈Ii

[(
∧

ϕ∈Ff

(β ⊗X(ϕ)→ T (ϕ))) → T (ψ)]

=
∧

T∈Ii

[(
∧

(ai,bj)∈L

(β ⊗ (ai, bj) → T ((ai, bj)))) → T (ψ)]

≤ [
∧

(ai,bj)∈L

(β ⊗ (ai, bj) → T0((ai, bj)))] → T0(ψ) = T0(ψ).

Therefore, Cβ⊗X
Ii

(ψ)⊗ Cβ⊗X
Ii

(ψ′) ≤ T0(ψ)⊗ T0(ψ′) = O = I ′.
Hence, X is I-i type consistent w.r.t. (α, β, Ii), i = I, II.

Theorem 14. For any X ∈ FL(Ff ), assume that

X(ϕ) =
{

ϕ, ϕ ∈ L2n,
ξ, otherwise,

where ϕ ∈ Ff , ξ ∈ L2n. Then we can select β = ξ′, such that X is I-i type
consistent w.r.t. (α, β, Ii), where α ≤

∧
θ∈L2n

(θ ∨ θ′), i = I, II.

Proof. Because α ≤
∧

θ∈L2n
(θ ∨ θ′), then IH ⊆ Ii. There exists T0 ∈ IH , such

that

Cβ⊗X
Ii

(ψ) =
∧

T∈Ii

[(
∧

ϕ∈Ff

(ξ′ ⊗X(ϕ)→ T (ϕ))) → T (ψ)]

=
∧

T∈Ii

[(
∧
μ�ξ

(ξ′ ⊗ μ→ T (μ)))→ T (ψ)]

≤ T0(ψ).

Therefore,

Cβ⊗X
Ii

(ψ) ⊗ Cβ⊗X
Ii

(ψ′) ≤ T0(ψ)⊗ T0(ψ′) = O = I ′.

Hence, X is I-i type consistent w.r.t. (α, β, Ii), i = I, II.
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If Y and X̃ take the same forms as X in the above theorem, then we can get
the following theorem.

Theorem 15. Assume that in the uncertain reasoning model (15), X, Y , X̃
are given in the following forms:

X(ϕ) =
{

ϕ, ϕ ∈ L2n,
ξ1, otherwise,

Y (ϕ) =
{

ϕ, ϕ ∈ L2n,
ξ2, otherwise,

X̃(ϕ) =
{

ϕ, ϕ ∈ L2n,
ξ3, otherwise,

where ϕ ∈ Ff , ξ1, ξ3, ξ3 ∈ L2n. Let β = ξ′1∧ξ′2∧ξ′3, τ =
∧
{η ∈ L2n | η′⊗ξ2 ≤ ξ1},

then the uncertain reasoning model (15) is (α, β, τ, Ii)-i type regular, where α ≤∧
θ∈L2n

(θ ∨ θ′), i = I, II. Then the uncertain reasoning consequence Ỹ = Cβ⊗X̃
Ii

,
which can also be obtained by a strict formal deduction in L2nf .

Furthermore, we can get the following theorem if X , Y , X̃ take more general
forms.

Theorem 16. Assume that in the uncertain reasoning model (15), X, Y , X̃
are given as:

X(ϕ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c1, ϕ = ϕ1,
...
cm, ϕ = ϕm,
O, otherwise,

Y (ψ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d1, ψ = ψ1,
...
dl, ψ = ψl,
O, otherwise,

X̃(γ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e1, γ = γ1,
...
es, γ = γs,
O, otherwise,

where m, l, s ∈ N+, ϕ, ϕi, ψ, ψj , γ, γk ∈ Ff , ci, dj, ek ∈ L2n, i = 1, · · · , m,
j = 1, · · · , l, k = 1, · · · , s. Then we can choose βX = c′1 ∧ · · · ∧ c′m, βY =
d′1 ∧ · · · ∧ d′l, βX̃ = e′1 ∧ · · · ∧ e′s, and β = βX ∧ βY ∧ βX̃ . If there exists τ ∈ L2n,
such that CX

I ⊇ τ ′⊗Y , then the uncertain reasoning model (15) is (α, β, τ, Ii)-i
type regular, where α ≤

∧
θ∈L2n

(θ ∨ θ′), i = I, II. Then the uncertain reasoning

consequence Ỹ = Cβ⊗X̃
Ii

, which can also be obtained by a strict formal deduction
in L2nf .

5 An Illustrative Example

In this section, we will give a simple example of evaluation of cars to show how the
proposed reasoning approach can be used in decision making with uncertainty.

Suppose that we are evaluating three kinds of cars: Benz (x1), Toyota (x2)
and Ford (x3), and there are four criteria or attributes: price (ϕ1), safety (ϕ2),
comfort (ϕ3) and fuel economy (ϕ4). The truth-value field for modeling linguistic
judgments is chosen as the L-LIA L9×2 in [16] with nine modifiers: slightly (a1),
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Table 1. Evaluation matrix of cars

ϕ1 ϕ2 ϕ3 ϕ4

x1 (a6, b1) (a7, b2) (a7, b2) (a3, b1)
x2 (a3, b2) (a2, b1) (a3, b2) (a7, b2)
x3 (a2, b2) (a2, b2) (a2, b2) (a2, b2)

somewhat (a2), rather (a3), almost (a4), exactly (a5), quite (a6), very (a7),
highly (a8) and absolutely (a9), and two prime terms: bad (b1) and good (b2).
The judgment of each criterion for each kind of car is given in Table 1, by taking
a simple standardization of these natural expressed evaluations. For example,
the value of ϕ1(x1) in Table 1 gives the evaluation “the price of Benz is quite
bad”, which really means “Benz is quite expensive”.

The evaluation values in Table 1 for car x1, x2, and x3 are expressed as X̃1,
X̃2, X̃3 respectively, for example, that for x1 is

X̃1(ϕ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(a6, b1), ϕ = ϕ1(x1),
(a7, b2), ϕ = ϕ2(x1),
(a7, b2), ϕ = ϕ3(x1),
(a3, b1), ϕ = ϕ4(x1),
O, otherwise,

The decision rule is from our daily experience: “If the car is rather cheap, very
safe, very comfortable and with quite good fuel economy, then the car is highly
good”, with a belief degree α = (a5, b2). Then the decision rule can be expressed
as

If X then Y,

where

X(ϕ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(a7, b2), ϕ = (∀x)ϕ1(x),
(a7, b2), ϕ = (∀x)ϕ2(x),
(a7, b2), ϕ = (∀x)ϕ3(x),
(a7, b2), ϕ = (∀x)ϕ4(x),
O, otherwise,

Y (ψ) =
{

(a8, b2), ψ = (∀x)ψ1(x),
O, otherwise.

The consistency levels of X , Y , and X̃i (i = 1, 2, 3) are all τ ′ = (a7, b2), and the
belief degree of the reasoning process is chosen to be β = (a7, b2). By applying
Theorem 16, we can get the overall evaluation result for car x1,

Ỹ1(ψ(x1)) = Cβ⊗X̃
Ii

= (a3, b1).

Similarly, we can get the overall evaluation results Ỹ2(ψ(x2)) = (a3, b2),
Ỹ3(ψ(x3)) = (a2, b2), for x2 and x3.
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These results can be retransformed into natural language: car x1 is “rather
bad”, car x2 is “rather good”, car x3 is “somewhat good”. It can be seen that
the “rather good” one, car x2, i.e., Toyota, is the best choice among the three
cars according to the provided criteria and observations.

6 Conclusions

This paper proposed a parameterized uncertain reasoning approach with param-
eters representing uncertainty from different sources, which is a common phe-
nomenon in many intelligent systems, based on a lattice-valued logic L2nf . We
discussed some methods for selecting appropriate parameters during the uncer-
tain reasoning process. Reasoning with different parameter values means reason-
ing with different degrees of belief and consistency. This proposed parameterized
uncertain reasoning approach takes the advantage of direct reasoning with ob-
served information, without the underlying numerical approximation needed by
some other methods. An example for car evaluation was given to illustrate how
the proposed uncertain reasoning approach works.

Acknowledgments. This paper has been partially supported by the research
projects TIN2009-08286, P08-TIC-3548 and Feder Funds.
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Abstract. This is a first approach to the study of the connection be-
tween fuzzy preference relations and fuzzy choice functions. In particular
we depart from a fuzzy preference relation and we study the conditions
it must satisfy in order to get a fuzzy choice function from it. We are
particulary interested in one function: G-rationalization. We discuss the
relevance of the completeness condition on the departing preference re-
lation. We prove that not every non-complete fuzzy preference relation
leads to a choice function.

Keywords: fuzzy preference relation, G-rational choice function, com-
plete fuzzy relation.

1 Introduction

Life is a continuous choice and some of those choices are crucial. Given their
relevance, choice problems have been studied since many years ago. They ap-
pear in very different disciplines such as economics or psychology. Basically, a
choice problem involves a set of alternatives and an agent that has to make a
choice among them. How to make such a choice in a rational way is a recurrent
topic. Intuitively, choice processes are closely related to preferences and order-
ings. And the connection between both concepts, choice functions and preference
relations, has been widely studied in the context of crisp preferences (see among
others [1,7,9,10,11,12,13,14,15]).

In the crisp setting it is known that given a choice function, a preference
relation among the alternatives, called revealed preference ([10]), can be defined.
Conversely, when a preference relation is defined over the set of alternatives, it
is possible to build a choice function.

In this contribution we focus on the second case. We depart from a preference
relation and we handle an important function, related to the set of the greatest
elements, defined from the preference relation. We intend to know for what
preference relations this function is a choice function. However, we do not work
with classical relations, but with fuzzy ones: those relations that allow the agent
to express his/her preference by a value in an interval. Since [2] many authors
have considered fuzzy sets to model choice functions (see for example [4,16]). A
recent summary on the topic can be found in [17].
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The contribution is organized in four sections. After this introduction, in Sec-
tion 2 we recall basic notions related to choice functions and preference relations.
Results from both crisp and fuzzy contexts are recalled. Section 3 contains the
main results and in Section 4 we address some conclusions and several open
problems we find interesting.

2 Preliminaries

In this section we introduce the basic definitions, results and notations neces-
sary to follow the contribution. We first provide a brief summary of the theory
developed in the context of crisp relations. We finish the subsection with the
result that inspires this contribution. In the second subsection we recall the gen-
eralization of the main definitions to the context in which intermediate degrees
of preferences are allowed. The notations fixed in this subsection will be used
along the paper.

2.1 Crisp Relations

We first recall the classical theory of choice functions based on {0, 1}-relations
also known as crisp or classical relations.

Let X be a finite set of alternatives {x1, x2, . . . , xn}. An available set, usually
denoted by S is any non-empty subset of X . It can also be identified with a
mapping S : X → {0, 1} such that S(x) = 1, if x ∈ S and S(x) = 0, otherwise.

Let P(X) be the set of subsets of X . A choice space is any pair (X, B) such
that B ⊆ P(X) \ {∅}.
Definition 1. Given a choice space (X, B), a choice function C is a mapping
C : B → P(X) such that for any S ∈ B, C(S) verifies:

– C(S) �= ∅
– C(S) ⊆ S.

The first one of the previous conditions means that at least one alternative must
be chosen in any subset S. The second one establishes that we cannot choose
from one subset S an element that is not in the subset.

A classical or crisp binary relation Q can be identified with a subset of X×X :
Q = {(x, y) ∈ X ×X | xQy}. Also with a mapping Q : X ×X → {0, 1}, such
that Q(x, y) = 1 expresses that x is connected to y by Q, while Q(x, y) = 0
means that Q does not connect x to y. A classical relation is reflexive if xQx for
every x in X , that is if it connects every alternative with itself. It is complete if
for every pair of elements of X , x and y, at least xQy or yQx. It is transitive if
for any three elements in X , x, y, z it holds that (xQy ∧ yQz)⇒ xQz.

A preference relation is a reflexive binary relation [8]. It is usually denoted
R and it is understood as follows:

aRb if and only if “a is at least as good as b”

Associated to any preference relation on a set of alternatives X , three binary
relations are usually defined in the context of preference modelling (see among
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many others [3,6,8]): the indifference relation, denoted I and defined as I =
{(x, y) | R(x, y)∧R(y, x)}; the strict preference relation, denoted P and defined
as P = {(x, y) | R(x, y) ∧ R(y, x)} and the incomparability relation, denoted J
and defined as J = {(x, y) | R(x, y) ∧ R(y, x)}, where Q is the complementary
relation of the relation Q: Q(x, y) = 1 − Q(x, y). Because of the existence of
a stronger preference relation, P , the preference relation R is sometimes called
weak preference relation (see for example [3]).

In the setting of classical or crisp relations, every preference relation defined
on a set of alternatives allows to build choice functions on the same set of alter-
natives. One classical choice function defined from a preference relation is based
on the idea of optimality with respect to the preference relation R. An element
x ∈ S is said to be an R-greatest element of S, if for all y ∈ S, alternative x is
at least as good as alternative y, according to the preference relation R.

Definition 2. Given a set of alternatives X, a preference relation R on X and
an available set S in X, the set of the R-greatest elements of S is denoted
G(S, R) and defined as

G(S, R) = {x ∈ S | (x, y) ∈ R, ∀ y ∈ S}.

Based on a preference relation R and on the idea of greatest elements in a set,
a function on the choice space (X, B) is defined:

GR : B → P(X)
S ↪→ G(S, R)

The set G(S, R) is, by definition, a subsets of S. Then it only remains to ensure
that it is a non-empty set for every available set S, to prove that GR is actually
a choice function. However, this last condition does not hold in general. Sen [11]
provided a sufficient condition in order to ensure that GR is a choice function.

Proposition 3. [11] Let (X,P(X) \ {∅}) be a finite choice space. If R is a
transitive and complete preference relation on X, then GR is a choice function
on (X, B).

In the following section we discuss the generalization of this result to the case
in which degrees of preferences are allowed.

2.2 Fuzzy Relations

Crisp relations only allow to determine if there is or not a connection between two
alternatives. However, in many real life contexts, alternatives can be connected
but the relation is not crisp or completely clear. In order to model in an accurate
way those situations, fuzzy sets and fuzzy relations appeared.

The definitions given in the previous subsection in the context of crisp rela-
tions, can be extended to the more general context of fuzzy relations.

Let X be a finite set of alternatives {x1, x2, . . . , xn}. A fuzzy subset S of X
is a mapping S : X → [0, 1] that assigns to each element of X a membership
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degree S(x) ∈ [0, 1]. An available fuzzy subset S of X is a fuzzy subset that
verifies S �= ∅, i.e., that assigns positive value S(x) to at least one x ∈ X . The
value S(x) represents the degree up to which alternative x is available when the
subset S of X is considered. The family of fuzzy subsets of X will be denoted by
F(X). The pair (X,B), where B ⊆ F(X) \ {∅}, is called fuzzy choice space.

Definition 4. A fuzzy choice function on (X,B) is a function C : B →
F(X), such that for every S ∈ B,

– C(S) is an available fuzzy subset of X,
– C(S)(x) ≤ S(x), for every x ∈ X.

The outcome of C(S)(x) for an element x ∈ X represents the degree up to which
this alternative is chosen when S is available, while the condition C(S)(x) ≤ S(x)
simply means that an element cannot be more eligible than available.

It is important to remark that C is a fuzzy choice function if and only if, for
every S ∈ B, there exists at least one point x ∈ X , such that C(S)(x) > 0.

Example 5. Let us consider an agency that organizes different kinds of activities
for groups of people on holidays. The available activities make up the finite set
of alternatives. Most of those activities are developed outdoors so depending on
the weather, some of them are more appropriate than others. Thus, for a ”windy
day” the set of available options can be modeled by an available fuzzy set Sw
that assigns to each activity a value between 0 (not recomendable at all) and
1 (perfectly practicable). The available fuzzy sets are fixed by an expert in the
agency. A fuzzy choice function assigns to each day (to each available fuzzy set)
one or several activities (among the practicable ones).

A fuzzy binary relation on X is a relation Q : X × X → [0, 1], such that the
value of Q(x, y) represents the degree up to which the alternative x is connected
to y by Q. If Q(x, y) = 0 then x is definitively not connected to y by Q, if
Q(x, y) = 1, then x is absolutely connected to y by Q, while intermediate values
of Q(x, y) represent mild degrees of connection between x and y.

A fuzzy relation Q is said reflexive if Q(x, x) = 1 for all x ∈ X . As in
the crisp sets context, a fuzzy relation Q is called preference relation if it is
reflexive. We will denote it by R, as in the crisp case.

Example 6. In the previous example, the preference relation is established by
the client who assigns a value between 0 and 1 to each pair of activities (a, b).
This value indicates the degree of truth of the statement “I consider activity a
at least as good as activity b”.

The completeness property can be generalized too, but there is not a unique
way. Different proposals can be found in the literature: a fuzzy relation Q is said
complete if for all x and y in X , at least Q(x, y) > 0 or Q(y, x) > 0. It is
said weakly complete if for all x and y in X , Q(x, y) + Q(y, x) ≥ 1. It is said
strongly complete if max(Q(x, y), Q(y, x)) = 1 for all x and y in X . Obviously,
strong completeness is a stronger condition than weak completeness. And this
one is a stronger condition than the first definition.
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We can also generalize the notion of transitivity. The usual way of extending
this property to fuzzy relations is by means of a triangular norms.

Definition 7. A triangular norm ∗ (t-norm for short) is a binary operator ∗ :
[0, 1] × [0, 1] → [0, 1] such that, for any a, b, c ∈ [0, 1], the following axioms are
verified:

– a ∗ 1 = a.
– a ∗ b = b ∗ a;
– a ∗ (b ∗ c) = (a ∗ b) ∗ c;
– If a ≤ b then a ∗ c ≤ b ∗ c;

Among the most used t-norms, we can mention three examples:

– The minimum or Gödel t-norm that we will denote ∗M ,

a ∗M b = min(a, b) = a ∧ b;

– The product t-norm that we will denote ∗P ,

a ∗P b = a · b;

– The �Lukasiewicz t-norm that we will denote ∗L,

a ∗L b = max(a + b − 1, 0);

A t-norm ∗ is said to be continuous if it is continuous as a function on the unit
interval. The three previous examples are continuous t-norms.

A value x ∈ (0, 1) is said a zero-divisor of a t-norm ∗ if there exists another
value y ∈ (0, 1) such that x ∗ y = 0. In that case the t-norm ∗ is said to admit
or to have zero-divisors. If for a t-norm there is no x ∈ (0, 1) such that it is a
zero-divisor of ∗, then ∗ is said a t-norm without zero-divisors.
Among the examples given above, the minimum and the product are t-norms
without zero-divisors, while the �Lukasiewicz operator does admit zero-divisors.
An exhaustive study of these operators can be found in [5].

A fuzzy relation Q is ∗-transitive if Q(x, y)∗Q(y, z) ≤ Q(x, z) for any x, y, z ∈
X .

Associated to any continuous t-norm we can define an implication operator
(or residuum).

Definition 8. Let ∗ be a continuous t-norm. Then the implication operator as-
sociated to ∗ is a binary operator defined as →: [0, 1]× [0, 1] → [0, 1] and such
that:

a → b = sup(c ∈ [0, 1]|a ∗ c ≤ b).

Among the most used implication operators we find those ones that are asso-
ciated to the most common t-norms:
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– if the t-norm is the minimum operator, then a →M b =
{

1 if a ≤ b
b if a > b

;

– if the t-norm is the product operator, then a →P b =
{

1 if a ≤ b
b/a if a > b

;

– if the t-norm is the �Lukasiewicz operator, then a →L b = min(1, 1− a + b).

Some properties of the implication operator are presented next:

Proposition 9. Let ∗ be a continuous t-norm and → its associated implication
operator. Then, for all a, b, c in [0, 1] it holds that:

1. a ∗ b ≤ c ⇔ a ≤ b → c;
2. a ∗ (a → b) = min(a, b);
3. a ≤ b⇔ a → b = 1;
4. a → 1 = 1;
5. 1 → a = a;
6. a → a = 1;
7. b ≤ a → b;
8. if a → b = 0, then b = 0,
9. → is non-increasing in its first argument and non-decreasing in the second

one.

Once we have recalled t-norms and implicators, we can generalize the idea of
R-greatest elements and the corresponding set.

Given an available set S and a fuzzy preference relation R, the following subset
of S is defined:

G(S, R)(x) = S(x) ∗
∧

y∈X

[S(y)→ R(x, y)] . (1)

And, based on it, a function is defined on the fuzzy choice space (X,B):

GR : B → F(X)
S ↪→ G(S, R)

In general, GR is not a choice function, since it can lead to the empty set for
some available set S, but when it is actually a fuzzy choice function, it is called
G-rationalization of R.

It is interesting to prove if, under suitable conditions on R, it can be ensured
that GR is a fuzzy choice function. And this is the purpose of the next section.

3 From Complete Preference Relations to Fuzzy Choice
Functions

In this section we discuss the conditions that the fuzzy preference relation must
satisfy to ensure that the operator GR defined above is a fuzzy choice function.
As we will see, the completeness condition plays a key role.

The following proposition establishes a set of conditions on the preference
relation R, in order to ensure that the generated GR is a fuzzy choice function.
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Proposition 10. Let ∗ be a continuous t-norm without zero-divisors. Let R be
a complete and ∗-transitive fuzzy preference relation on a finite set X and (X,B)
a fuzzy choice space. Then GR is a fuzzy choice function on (X,B).

Let us note that the result holds in particular for two of the most employed
t-norms: the Gödel and the product t-norms.

For the particular case of the Gödel t-norm, Georgescu [4] seems to have
presented a more general result.

Proposition 11. [4] Let ∗ be the Gödel t-norm, i.e. the minimum operator.
Let R be a ∗-transitive fuzzy preference relation on a finite set X and (X,B) a
fuzzy choice space. Then GR is a fuzzy choice function on (X,B).

This result concerning the particular case of the Gödel t-norm is more gen-
eral than the one we have just presented. We can only assure the result under
completeness. Georgescu’s result does not impose such a condition. We have
compared both results, we have studied whether completeness can be removed
or not from the hypothesis and we have obtained the following counterexample
that proves that the result in [4] is not true in general.

Remark 12. It is not difficult to provide a non-complete preference relation R
such that GR is not a fuzzy choice function. Consider for example the preference
relation R0 defined on the set of alternatives X = {a, b, c}:

R0 a b c
a 1 0 0
b 0 1 0
c 0 0 1

It is clearly ∗-transitive with respect to any t-norm ∗, so, in particular, with
respect to the Gödel t-norm. However, we can prove that the associated GR0

function is not a fuzzy choice function. Without loss of generality, we can consider
the family of available sets B composed by the power set of the set of alternatives
X = {a, b, c} excluding the empty set. It only contains crisp non-empty subsets
of X . Using Eq. 1, we construct the set G(S, R0) for every S. If we consider
G(X, R0), we get:

G(X, R0)(a) = min(X(a), miny∈{a,b,c}(X(y)→M R0(a, y))) = min(1, 1, 0, 0) = 0
G(X, R0)(b) = min(X(b), miny∈{a,b,c}(X(y)→M R0(b, y))) = min(1, 0, 1, 0) = 0
G(X, R0)(c) = min(X(c), miny∈{a,b,c}(X(y)→M R0(c, y))) = min(1, 0, 0, 1) = 0

so the function GR0 is not a fuzzy choice function.
We have just proven that the completeness condition is not a trivial impo-

sition. If we consider a non complete preference relation, as R0, the associated
function GR0 is not a fuzzy choice function. It is interesting to remark that the
preference relation considered in this counterexample R0 is a crisp preference
relation.
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Next we prove that the other condition considered in Proposition 10 is not
superfluous either. It does not hold that for every complete fuzzy preference
relation which is ∗-transitive with respect to a t-norm with zero-divisors, the
associated GR function is a fuzzy choice function.

Remark 13. Let us consider the fuzzy binary relation defined on a set of three
alternatives X = {a, b, c} as follows

R a b c
a 1 0 0.1
b 0.9 1 0
c 0 0.1 1

This relation is reflexive, therefore it is a preference relation. It is also complete
and ∗-transitive w.r.t. the �Lukasiewicz t-norm. Consider now the available set
S0 = X and construct the operator G as illustrated in Eq. 1. Taking into account
that ∗ is the �Lukasiewicz t-norm:

G(S0, R)(x) = S0(x) ∗L

∧
y∈X (S0(y) →L R(x, y))

= max
(
S0(x) +

∧
y∈X (S0(y)→L R(x, y))− 1, 0

)
Since S0 is the set of alternatives {a, b, c}, for any x ∈ X , S0(x) = 1. It follows

from here that S0(y) →L R(x, y) = 1 →L R(x, y) = R(x, y) for all x, y ∈ X .
Then

G(S0, R)(x) = max
(
1 +
∧

y∈X R(x, y)− 1, 0
)

=
∧

y∈X R(x, y)

It is immediate to see that GR is not a choice function, since it assigns mem-
bership function 0 to all points, when applied to the available set S0, as we show
below:

G(S0, R)(a) =
∧

y∈X R(a, y) = min(1, 0, 0.1) = 0.

G(S0, R)(b) =
∧

y∈X R(b, y) = min(0.9, 1, 0) = 0.

G(S0, R)(c) =
∧

y∈X R(c, y) = min(0, 0.1, 1) = 0.

With this example we have proven that for a fuzzy preference relation ∗-
transitive w.r.t. a t-norm with zero-divisors, it cannot be ensured that its G-
rationalization is a choice function. The result presented in Proposition 10, can-
not be automatically generalized to t-norms with zero-divisors.

However, we can also provide an example where we show that the fact that the
t-norm has no zero-divisors is not a necessary condition in general.

Remark 14. There exist preference relations R such that they are complete (in
the weakest sense) and ∗-transitive w.r.t. some t-norms with zero-divisors, as



602 D. Martinetti, I. Montes, and S. Dı́az

for example the �Lukasiewicz t-norm, but not with respect to any t-norm with-
out zero-divisors, which G-rationalization GR is a choice function. Consider for
example the preference relation

R a b c
a 1 0.1 0
b 0 1 0.1
c 0.1 0.1 1

Clearly it is complete. It is easy to prove that it is ∗-transitive w.r.t. the
�Lukasiewicz t-norm, but not ∗-transitive w.r.t. any t-norm without zero-divisors,
since

R(a, b) ∗R(b, c) = 0.1 ∗ 0.1 ≤ R(a, c) = 0 ⇔ 0.1 is a zero-divisor.

Now, by reductio ad absurdum, suppose that the G-rationalization of R is not
a choice function, i.e. there exists a set S ∈ B, such that G(S, R)(x) = 0, for all
x ∈ {a, b, c}. This means that for the available set S, it holds that:

G(S, R)(a) = max(S(a) +
∧

y∈X

(min(1 − S(y) + R(a, y), 1))− 1, 0) = 0

G(S, R)(b) = max(S(b) +
∧

y∈X

(min(1− S(y) + R(b, y), 1))− 1, 0) = 0

G(S, R)(c) = max(S(c) +
∧

y∈X

(min(1 − S(y) + R(c, y), 1))− 1, 0) = 0

or equivalently

G(S, R)(a) = 0 ⇔ S(a) +
∧

y∈X

(min(1− S(y) + R(a, y), 1)) ≤ 1

G(S, R)(b) = 0 ⇔ S(b) +
∧

y∈X

(min(1 − S(y) + R(b, y), 1)) ≤ 1

G(S, R)(c) = 0 ⇔ S(c) +
∧

y∈X

(min(1− S(y) + R(c, y), 1)) ≤ 1.

After some easy computations, the preceding conditions can be written as

If S(a) > 0 then min(S(a)− S(b) + 0.1, S(a)− S(c)) ≤ 0 (2)
If S(b) > 0 then min(S(b)− S(a), S(b)− S(c) + 0.1) ≤ 0 (3)
If S(c) > 0 then min(S(c)− S(a) + 0.1, S(c)− S(b) + 0.1) ≤ 0. (4)

For every S ∈ B, the triplet (S(a), S(b), S(c)) can assume seven different forms:

1. If (S(a) > 0, S(b) = 0, S(c) = 0), then min(S(a) + 0.1, S(a)) > 0, that
contradicts Condition 2;

2. If (S(a) = 0, S(b) > 0, S(c) = 0), then min(S(b), S(b) + 0.1) > 0, that
contradicts Condition 3;
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3. If (S(a) = 0, S(b) = 0, S(c) > 0), then min(S(c) + 0.1, S(c) + 0.1) > 0, that
contradicts Condition 4;

4. If (S(a) > 0, S(b) > 0, S(c) = 0), then Conditions 2 and 3 become{
S(a) + 0.1− S(b) ≤ 0
S(b)− S(a) ≤ 0 ⇒

{
S(a) ≤ S(b)− 0.1
S(b) ≤ S(a)

hence S(b) ≤ S(a) ≤ S(b)− 0.1 that is clearly impossible;
5. If (S(a) > 0, S(b) = 0, S(c) > 0), then Conditions 2 and 4 become{

S(a) ≤ S(c)
S(c) ≤ S(a)− 0.1

hence S(a) ≤ S(c) ≤ S(a)− 0.1 that is clearly impossible;
6. If (S(a) = 0, S(b) > 0, S(c) > 0), then Conditions 3 and 4 become{

S(b) ≤ S(c)− 0.1
S(b) ≤ S(c) + 0.1

hence S(c) + 0.1 ≤ S(b) ≤ S(c)− 0.1 that is clearly impossible.
7. Let us analyze the last case separately, i.e. when (S(a) > 0, S(b) > 0, S(c) >

0). In this case, Conditions 2,3 and 4 are simultaneously verified, so:

min(S(a)− S(b) + 0.1, S(a)− S(c)) ≤ 0 (5)
min(S(b)− S(a), S(b)− S(c) + 0.1) ≤ 0 (6)

min(S(c)− S(a) + 0.1, S(c)− S(b) + 0.1) ≤ 0. (7)

Consider Condition 5:
– If S(a) − S(b) + 0.1 ≤ 0, then it follows from Condition 6 that S(c) ≥

S(b) + 0.1 and according to Condition 7, S(b) + 0.1 ≤ S(a). This is
equivalent to

S(c) + 0.1 ≤ S(a) ≤ S(c)− 0.2

that is clearly impossible;
– If S(a) ≤ S(c), then it follows from Condition 7, S(c) ≤ S(b)− 0.1 and

so in Condition 6, S(b) ≤ S(a). This is equivalent to

S(b) ≤ S(a) ≤ S(c) ≤ S(b)− 0.1

that is impossible.

We have finally proved that G(S, R)(x) cannot assign 0 to every x ∈ X without
incurring into a contradiction and hence GR is a choice function.

So it is clear that we can consider t-norms with zero-divisors and still obtain
fuzzy choice functions. But it is also clear that in this case other properties must
be imposed to the fuzzy preference relation to ensure a positive result. What
other conditions are those? This is an interesting question for us that we will try
to study in close future.

The following result is another possible generalization of the classical result
of Sen [11]. A different version of Proposition 10.
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Proposition 15. Let R be a strongly complete and ∗-transitive preference rela-
tion on a finite set X. Let (X,B) be a fuzzy choice space. Then GR is a fuzzy
choice function on (X,B).

In this last case we can assure that GR is a fuzzy choice function for any t-norm
we consider. In order to get the result extended to any t-norm, we have to impose
the strongest completeness condition.

4 Conclusions

This work is the departing point of an interesting topic for us: the connection
between fuzzy preference relations and fuzzy choice functions. In this first work
we have studied a classical function that can be defined from a given fuzzy weak
preference relation and we have obtained sufficient conditions to ensure that the
associated function is a fuzzy choice function. We have not dealt only with the
classical operator considered in the literature, the Gödel t-norm, but we have
provided results for other important t-norms. Contrary to what can be found in
the literature, the completeness of the weak preference relation appears as a key
condition.

Given its relevance, one of the first open problems we want to tackle is the
study of other definitions of completeness for fuzzy relations. We also consider
interesting to handle other operators, apart from the classical minimum t-norm.
In addition to this, we are interested in studying in depth a set of similar re-
sults to define a choice function from preference relations, inspired on another
technique based on the concept of maximality.
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Abstract. The paper deals with fuzzy relational inequations and equa-
tions connected with closed fuzzy sets under a fixed fuzzy relation over
the same domain. Such formulas arise in the framework of control prob-
lems. We show that fuzzy sets being solutions of these inequations and
corresponding equations form a descending sequence with particular
lower bounds which are also analyzed. Our approach is based on complete
lattices as structures of membership values, which makes this investiga-
tion more general then the classical, real-interval valued approach.

Keywords: fuzzy sets closed under fuzzy relations, fuzzy control.

1 Introduction

Fuzzy relations are known to have many applications in various fields like e.g.,
artificial intelligence, data bases, approximate reasoning, fuzzy automata and
formal languages, fuzzy formal concept analysis and others. Many of these ap-
plications are presented in the book of Belohlavek ([1]), in papers by Bodenhofer,
De Cock, Kerre ([2,3]), De Baets, Dı́az, Montes ([4]), Fuentes-González ([5]), Ign-
jatović, Ćirić, Bogdanović ([7]), there are many others.

It is well known that fuzzy controllers are rule-based. They act on fuzzy input
data and create the corresponding fuzzy output data, according to special rules.
The Mamdani approach to fuzzy controllers starts from a fuzzy relation which is
deduced from actual control process, and which from an input value creates an
output value using a particular compositional rule of inference. In this context
IF-THEN rules appear. In practical problems, it happens that output values are
determined in advance by input value, and the problem is to find a fuzzy relation
which performs such a transition.

What we consider here are some of the problems connected with fuzzy control
that could be analyzed, investigated and successfully solved within the frame-
work of fuzzy sets closed under fuzzy relations, with membership values in the
complete lattice.

Namely, we deal with the problem of finding an input fuzzy set μ, which will
be closed under composition of a fuzzy relation, i.e., which satisfy the following
property, for any y ∈ X .

W. Liu (Ed.): ECSQARU 2011, LNAI 6717, pp. 606–615, 2011.
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x∈X

(μ(x) ∧R(x, y)) ≤ μ(y).

Using the properties of lattices, this is equivalent with the property that μ is
closed under relation R, i.e., that for every x, y ∈ X ,

μ(x) ∧R(x, y) ≤ μ(y).

This problem is closely related to the problem of finding appropriate solutions
of the equation: ∨

x∈X

(μ(x) ∧R(x, y)) = μ(y)

which has important role in stability problems in fuzzy control systems.
This problem is also analyzed and partially solved here.

2 Preliminaries

Some basic notions and notations concerning fuzzy sets and binary relations that
we use throughout the paper are as follows.

Let X be a non-empty set, A ⊆ X its nonempty subset and R ⊆ X2 a binary
relation on X .

A subset A is closed with respect to the relation R, if from x ∈ A and
(x, y) ∈ R it follows that y ∈ A.

A poset is an ordered pair (X,≤) where X is a nonempty set and ≤ an
ordering (reflexive, antisymmetric and transitive) relation on X . A sub-poset
of a poset (X,≤) is a poset (Y,≤) where Y is a nonempty subset of X and ≤ on
Y is a set-intersection of Y 2 and ≤ on X . A complete lattice is a poset (L,≤)
in which for every subset M there exist the greatest lower bound, infimum, meet,
denoted by

∧
M , and the least upper bound, supremum, join, denoted by

∨
M .

In a complete lattice there is always the least element, bottom or zero, 0, and
the greatest element, top, 1. Meet and join for a two-element set are binary
operations on L, hence a complete lattice under the order ≤ can be denoted as
an algebraic structure by (L,∧,∨, 0, 1).

A fuzzy set here is a mapping μ : X → L from a nonempty set X into a
complete lattice (L,∧,∨, 0, 1). L is the set of membership values of μ. If X
and L are fixed, then by F(X) we denote the collection of all fuzzy sets on X
with membership values in L:

F(X) := {μ | μ : X → L}.

It is known that the poset (F(X),⊆) is a complete lattice under fuzzy in-
clusion i.e., under a binary relation defined componentwise with respect to the
lattice order ≤: for any μ, ν : X → L

μ ⊆ ν if and only if for every x ∈ X, μ(x) ≤ ν(x).



608 J. Jiménez et al.

3 Closedness of Fuzzy Sets Under a Fuzzy Relation

If (L,∧,∨, 0, 1) is a complete lattice, then R : X2 → L is a fuzzy relation on
X . A fuzzy relation on X is a fuzzy set on X2.

The following definition is formulated in [3], it is a fuzzified version of the
above property:

Let μ : X → L be a fuzzy set and R : X2 → L a fuzzy relation. Then μ is
said to be closed with respect to R if for every x, y ∈ X

μ(x) ∧R(x, y) ≤ μ(y).

The next result is implicitly proven in Bodenhofer [3], but we here provide a
direct proof.

Theorem 1. The collection of all fuzzy sets closed with respect to a fuzzy re-
lation R on a set X is a complete lattice under inclusion of fuzzy sets.

Proof. Fuzzy set ι : X → L, defined by ι(x) = 1 for every x ∈ X is a fuzzy set
closed with respect to any fuzzy relation R on X .

Let {μi | i ∈ I} be a family of fuzzy sets closed with respect to R.
This means that for every i ∈ I, μi(x) ∧R(x, y) ≤ μi(y).
Now, consider the fuzzy set μ : X → R, defined by μ =

⋂
i∈I μi. μ is the

intersection of an arbitrary family of fuzzy sets closed under R, and we prove
that it is closed under R as well. Indeed, for all x, y ∈ X ,

μ(x) ∧R(x, y) = (
∧
i∈I

μi(x)) ∧R(x, y) =

∧
i∈I

(μi(x) ∧R(x, y)) ≤
∧
i∈I

μi(y) = μ(y).

Hence, the collection of all fuzzy sets closed under R is closed under set in-
tersection and contains the greatest element. Therefore, it is a complete lattice. �

In the following we denote by SR the collection of all fuzzy sets closed under
a fuzzy relation R on a universe X :

SR = {μ ∈ F(X) | μ(x) ∧R(x, y) ≤ μ(y) for any x, y ∈ X}.

By Theorem 1 the poset (SR,⊆) is a complete lattice.
In a similar way we can prove that a collection of fuzzy sets satisfying the

equation (2) is closed under intersections, but the fuzzy set ι : X → L, defined
by ι(x) = 1 does not satisfy this equation in general.

4 Closedness and Relational Inequations

Based on a control problem, we are interested in the identification of solutions
μ of the inequation ∨

x∈X

(μ(x) ∧R(x, y)) ≤ μ(y) (1)
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and of the equation ∨
x∈X

(μ(x) ∧R(x, y)) = μ(y), (2)

where R is a given fuzzy binary relation on a universe X . The inequation and
the equation are supposed to be fulfilled for any y ∈ X , and μ represents a fuzzy
subset of X , that is, an element of F(X).

The empty fuzzy set is a trivial solution of both (the inequation and the
equation) and the set X represented by its characteristic function, i.e, the fuzzy
set having all values equal to 1 is always a solution of the inequation only (as
we show by Theorem 1).

The inequation (1) is equivalent with the requirement that μ ∈ F(X) fulfils
the inequation

μ(x) ∧R(x, y) ≤ μ(y) (3)

for all x, y ∈ X .
Indeed, if we suppose that (1) is satisfied for μ ∈ F(X), then for every x ∈ X ,

μ(x) ∧R(x, y) ≤
∨

x∈X

(μ(x) ∧R(x, y)) ≤ μ(y).

On the other hand if we suppose that for a y ∈ X , (3) is true for every x ∈ X ,
then by taking the supremum over x, we obtain (1).

It is straightforward to conclude that the set of solutions of the inequation
(1) is precisely the set of all the fuzzy subsets in F(X) which are closed with
respect to R. This set is in Section 3 denoted by SR. Therefore, we have

SR = {μ ∈ F(X) | μ(x) ∧R(x, y) ≤ μ(y) for any x, y ∈ X}.

As it is known, the poset (F(X),⊆) is a complete lattice and by Theorem 1 the
same holds for the poset (SR,⊆).

Proposition 1. Given a fuzzy binary relation R on X and μ ∈ SR, define a
new fuzzy subset μ1 on X by

μ1(x) =
∨

z∈X

(μ(z) ∧R(z, x)).

Then, (i) μ1 ⊆ μ and (ii) μ1 ∈ SR.

Proof. To prove (i), observe that for any x ∈ X

μ1(x) =
∨

z∈X

(μ(z) ∧R(z, x)) ≤ μ(x),

since μ ∈ SR. Thus, μ1 ⊆ μ.
Next, for any x, y ∈ X we have that

μ1(x) ∧R(x, y) ∧R(x, y) ≤ μ(x) ∧R(x, y) ≤
∨

z∈X

(μ(z) ∧R(z, y)) = μ1(y).

which proves (ii). &'
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Remark 1. By induction, it is straightforward to prove that given a solution μ
of inequation (1), that is, given an element μ ∈ SR, we have a chain of solutions
of the same inequation:

μ ⊇ μ1 ⊇ μ2 ⊇ . . . ⊇ μn−1 ⊇ μn ⊇ . . .

where μn ∈ SR for every n, and μn(x) =
∨

z∈X(μn−1(z) ∧ R(z, x)) for every
x ∈ X . If two members of this chain are equal, i.e., if for some n, μn−1 = μn,
then μn is a solution of the equation:∨

x∈X

(μn(x) ∧R(x, y)) = μn(y).

This solves the stability problem in case when the domain of the fuzzy set and
the co-domain lattice are finite, which is formulated in the following proposition.

Proposition 2. Let R : X2 → L be a fuzzy binary relation R on a finite set
X and let the lattice L be also finite. Then, there is a solution in F(X) of the
equation: ∨

x∈X

(μ(x) ∧R(x, y)) = μ(y). &'

Next we present a simple example illustrating introduced notions and properties.
Example 1. Let X = {a, b} and let the lattice L be as in Figure 1.

�

�� �

�

�
�

�

�
�
�
�

�
�

�
�
�

p q r

1

0

Fig. 1.

Further, let R be a fuzzy relation on X defined as follows.

R =
[
p q
q q

]
,

where we suppose that the upper left place in matrix is R(a, a).
Let μ be a fuzzy set given by

μ =
(

a b
1 p

)
.

We can easily check that μ does not satisfy the inequation (1), since (by
symbolically represented computation in a lattice)
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[
1 p
]
∧
[
p q
q q

]
=
[
p q
]
.

For y = b the inequation is not satisfied.
We can see that neither the fuzzy set

μ1 =
(

a b
1 0

)
nor

μ2 =
(

a b
p q

)
satisfy the inequation.

We know that the set X = {a, b}, i.e., the fuzzy set(
a b
1 1

)
is always (for any R) a solution of the inequation.

If we would like to find a solution of equation (2), then we start from this
fuzzy set (X) and since both, domain and the lattice are finite, we obtain the
solution in a finite number of steps.

[
1 1
]
∧
[
p q
q q

]
=
[
1 q
]
.

[
1 q
]
∧
[

p q
q q

]
=
[
1 q
]
.

Hence, a solution of equation (2) is the fuzzy set(
a b
1 q

)
.

Since we know that there is always a trivial solution, the empty fuzzy set, our
aim is to find a non-trivial solution, that we really obtain in this case. &'
A detailed analysis about necessary and sufficient conditions for existence of
a non-trivial solution is out of scope of this article. Let us mention that one
sufficient condition is that there is y ∈ X such that ∨x∈XR(x, y) = 1.

In the following proposition another possible solution of the equation is de-
scribed; the proof is technical.

Proposition 3. Let R be a fuzzy binary relation on X and ν the fuzzy subset
on X defined by

ν(x) = R(x, x).

Then, ν is a solution of the inequation (1) if and only if it is a solution of the
equation (2).
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Proposition 4. Let μ be an element in SR and let Sμ
R be the subset of SR

defined by

Sμ
R := {μn ∈ F(X) | n ∈ N and

for all x ∈ X, μn(x) =
∨

z∈X

(μn−1(z) ∧R(z, x)), with μ0 = μ}.

Then the fuzzy subset μ̄ ∈ F(X) defined by

μ̄(x) = μ(x) ∧R(x, x) for every x ∈ X

is a lower bound of Sμ
R in the poset (F(X),⊆).

Proof. For every i ∈ N, we define the fuzzy subset μ̄i of X by

μ̄i(x) = μi(x) ∧R(x, x), for every x ∈ X.

It is straightforward that for every x ∈ X , μ̄(x) ≤ μ(x).
Further, we have that

μ̄(x) = μ(x) ∧R(x, x) ≤
∨

z∈X

(μ(z) ∧R(z, x)) = μ1(x),

that is, μ̄ ⊆ μ1. Analogously, we prove that for every i, μ̄i ⊆ μi+1.
On the other hand,

μ̄(x) = μ(x) ∧R(x, x) = μ(x) ∧R(x, x) ∧R(x, x) ≤(∨
z∈X

μ(z) ∧R(z, x)

)
∧R(x, x) = μ1(x) ∧R(x, x) = μ̄1(x),

and therefore μ̄ = μ̄0 ⊆ μ̄1. Analogously, one can prove that for every i, μ̄i ⊆
μ̄i+1.

Thus, for every i we have that

μ̄ = μ̄0 ⊆ μ̄i−1 ⊆ μi,

and therefore μ̄ is a lower bound of Sμ
R. &'

As commented above, the poset (SR,⊆) is a complete lattice. As shown in [3],
the set X represented by its characteristic function is closed under R, hence
X ∈ SR.

Proposition 5. Let R be a fuzzy binary relation on X and ν the fuzzy subset
on X defined by

ν(x) = R(x, x).

Then, for any μ ∈ SR, μ̄ belongs to SR if and only if ν ∈ SR.
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Proof. Suppose that for any μ ∈ SR, μ̄ belongs to SR. As mentioned above,
X ∈ SR. Then by the present assumption, X̄ ∈ SR. But for every x ∈ X

X̄(x) = X(x) ∧R(x, x) = R(x, x) = ν(x).

Thus, for any x, y ∈ X we have that

X̄(x) ∧R(x, y) ≤ X̄(y)

or, which is equivalent,
ν(x) ∧R(x, y) ≤ ν(y).

Therefore, ν ∈ SR.
Conversely, let us suppose that ν ∈ SR. For any μ ∈ SR and any x, y ∈ X , we

have that

μ̄(x) ∧R(x, y) = μ(x) ∧R(x, x) ∧R(x, y) = μ(x) ∧ ν(x) ∧R(x, y).

As ν ∈ SR, this is lower than or equal to

μ(x) ∧ ν(y) = μ(x) ∧R(y, y).

Thus, we have proven that

μ̄(x) ∧R(x, y) ≤ μ(x) ∧R(y, y).

Then,

μ̄(x) ∧R(x, y) = μ̄(x) ∧R(x, y) ∧R(x, y) ≤ μ(x) ∧R(x, y) ∧R(y, y).

But μ ∈ SR and therefore,

μ(x) ∧R(x, y) ∧R(y, y) ≤ μ(y) ∧R(y, y) = μ̄(y).

Thus, for any x, y ∈ X we have that

μ̄(x) ∧R(x, y) ≤ μ̄(y),

and therefore μ̄ ∈ SR. &'

Corollary 1. Let R be a fuzzy binary relation on X . For any μ ∈ SR, we have
that

μ̄ ∈ SR if and only if X̄ ∈ SR.

Proof. Indeed, by the proof of Proposition 5, X̄ = ν. &'

Corollary 2. Let R be a fuzzy binary relation on X . For any μ ∈ SR, we have
that

μ̄ ∈ SR if and only if for all x, y ∈ X, R(x, x) ∧R(x, y) ≤ R(y, y).
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Proof. Straightforward by Proposition 5, since R(x, x)∧R(x, y) ≤ R(y, y) for
all x, y ∈ X is equivalent to require that ν ∈ SR. &'
We are now able to describe some solutions of our inequations, which belong to
the set of described lower bounds.

Corollary 3. Let R be a fuzzy binary relation on X fulfilling the following
weak-reflexivity condition:

For all x, y ∈ X, R(x, y) ≤ R(y, y).

Then, for any μ ∈ SR, the lower bound μ̄ of Sμ
R belongs to SR.

Proof. By weak-reflexivity R fulfils the condition imposed in Corollary 2. &'
Remark 2. Weak-reflexivity of R is a sufficient condition under which the lower
bound μ̄ of Sμ

R belongs to SR, but it is not necessary. Thus, for instance, the
crisp binary relation

R =
(

0 1
1 0

)
is not weakly reflexive, but for μ ∈ SR, we have that for every x ∈ X μ̄(x) = 0
and therefore it belongs to SR.

Obviously, if R is reflexive, then it is weakly reflexive as well. Thus, reflexivity
of R is another sufficient, but still not necessary condition under which μ̄ ∈ SR

for any μ ∈ SR.
Moreover, in this case for every x ∈ X , μ̄(x) = μ(x) ∧R(x, x) = μ(x). Thus,

μ̄ = · · · = μn = μn−1 = · · · = μ2 = μ1 = μ, that is, Sμ
R = {μ}.

To sum up, we have shown that, dealing with inequation (1) and equation
(2), we were able to find their solutions and a converging sequence of solutions,
to prove existence of a solution in a finite case, and to connect solutions of
both, equation and inequation. In addition, we have shown that there is an
algorithm for the construction of a solution for the equality, and also we have
given conditions under which some easy constructed bounds are solutions of the
inequality in which the relation fulfils weak reflexivity.

It is possible to use our approach not only to deal with inequations, but also
to find solutions of the equation (2) but this investigation is out of scope of this
paper.

If we now switch to fuzzy controllers, then considering input and output values
we get the following compositional rule of inference, which is obtained by the
Mamdani approach:

μA◦R(y) =
∨

x∈X

(μ(x) ∧R(x, y)). (4)

Here the input values are represented by the fuzzy set μ, and the fuzzy relation
R is deduced from the actual control process.

By our approach presented above, we can deal with this fuzzy control, by
solving the inequations and equations appearing in this process. Obviously, ev-
ery connected problem dealing with IF -THEN rules can be analyzed by our
approach.
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5 Conclusion

The paper deals with problems of solving particular inequations and equations, in
the framework of fuzzy sets closed under a fuzzy relation on the same domain.
This problem is closely connected with fuzzy control process. In this context,
stability problems require further investigations of the solutions of relational
equations we deal with. This is our task in the future.

Finally, using our approach we can deal with eigen fuzzy sets in the lattice
valued framework (see, e.g., Sanches [11]). Applications of these are known in
e.g., image analysis ([10]), which is also worth investigating by lattice-theoretic
methods.
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1. Bělohlávek, R.: Fuzzy Relational Systems. Kluwer Academic Publishers, Dordrecht
(2002)

2. Bodenhofer, U.: A unified framework of opening and closure operators with respect
to arbitrary fuzzy relations. Soft Computing 7, 220–227 (2003)

3. Bodenhofer, U., De Cock, M., Kerre, E.E.: Openings and closures of fuzzy pre-
orderings: theoretical basics and applications to fuzzy rule-based systems. Int. J.
General Systems. 32, 343–360 (2003)

4. Dı́az, S., Montes, S., De Baets, B.: Transitive decomposition of fuzzy preference
relations,: the case of nilpotent minimum. Kybernetika 40, 71–88 (2004)
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Abstract. Autoepistemic logic is one of the principal formalisms for
nonmonotonic reasoning. It extends propositional logic by offering the
ability to reason about an agent’s (lack of) knowledge or beliefs. More-
over, it is well known to generalize the stable model semantics of answer
set programming. Fuzzy logics on the other hand are multi-valued logics,
which allow to model the intensity with which a property is satisfied. We
combine these ideas to a fuzzy autoepistemic logic which can be used
to reason about one’s knowledge about the degrees to which proporties
are satisfied. In this paper we show that many properties from classical
autoepistemic logic remain valid under this generalization and that the
important relation between autoepistemic logic and answer set program-
ming is preserved in the sense that fuzzy autoepistemic logic generalizes
fuzzy answer set programming.

1 Introduction

Autoepistemic logic was introduced by Moore [16] as a way to reason about one’s
own beliefs. Later on (e.g. [15]), it was also seen as a tool to reflect about one’s
(lack of) knowledge. Consider for example my reason for believing that my sister
smokes. If she smoked, I would have smelled it on her breath and I would believe
she smoked: “smoke → breath” and “breath → B(smoke)”, where B means “I
believe”. Now suppose I have never smelled anything, thus I do not believe that
she smokes, then I can conclude that she does not smoke.

Since its introduction in the 1980s, autoepistemic logic has been one of the
principal formalisms for nonmonotonic reasoning. It has also found important
applications in logic programming. For example, Gelfond and Lifschitz [7] showed
a connection between answer sets of logic programs and expansions of autoepis-
temic theories.

Fuzzy logics (e.g. [8]) are a class of logics, whose semantics are based on truth
degrees that are taken from the unit interval [0, 1]. By admitting intermediary
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truth values between 0 and 1, the intensity with which some property holds can
be encoded. From a practical point of view, fuzzy logics are thus useful to model
knowledge of continuous domains in a logical way. For example, instead of saying
that my sister smokes or not, a value between 0 and 1 can be given to specify
how much she smokes. Reconsider the rule “smoke→ breath”, but in the setting
of fuzzy logics. Then we may interpret this rule as “If she smoked a lot, her
breath would smell often.”

In this paper we combine the ideas of autoepistemic logic and fuzzy logics,
which to the best of our knowledge, has not previously been considered. The
resulting fuzzy autoepistemic logic is useful to reflect on one’s beliefs (or knowl-
edge) about the degrees to which some properties are satisfied. Consider for
example my reason for not believing that my sister smokes a lot. If she smoked
a lot, her breath would smell often. Since I do not smell it often, I do not believe
she smokes a lot. Intuitively, if the truth value of Bϕ is equal to c, this means
that we only know that ϕ is true at least to degree c. Note in particular that the
degrees of belief which we consider do not reflect strength of belief, but rather
a Boolean form of belief in graded properties. Furthermore, note how this view
generalizes the notion of belief from classical autoepistemic logic, in the sense
that having Bϕ false corresponds to having ϕ true to at least degree 0 and having
Bϕ true corresponds to having ϕ true at least to degree 1.

In this paper we show that many important proporties from classical au-
toepistemic logic remain valid when generalizing to fuzzy autoepistemic logic.
We also prove that the relation between autoepistemic logic and answer set pro-
gramming is preserved. In particular we show that the answer sets of a fuzzy
answer set program correspond to the stable expansions of an associated fuzzy
autoepistemic logic theory. The fact that this important relationship is preserved
provides further insight into the nature of fuzzy answer set programming, and
at the same time serves as a justification for the particular fuzzy autoepistemic
logic we introduce in this paper.

The paper is structured as follows. In Section 2 the necessary background on
autoepistemic logic and fuzzy logic is given. In Section 3 fuzzy autoepistemic
logic is introduced, its properties are investigated and a motivating example is
given. In Section 4, we briefly recall the basic notions of a fuzzy version of answer
set programming which was recently proposed and we analyze the relation with
fuzzy autoepistemic logic. We finish the paper by discussing related work and
our conclusions in Sections 5 and 6.

2 Background

2.1 Autoepistemic Logic

The formulas of autoepistemic logic are built from a set of propositional atoms A
using the usual propositional connectives and a modal operator B, interpreted as
“is believed” (or “is known”). For example, if ϕ is a formula, then Bϕ indicates
that ϕ is believed. Also, B(¬ϕ) indicates that ¬ϕ is believed and ¬(Bϕ) that ϕ
is not believed. We write L for the language of all propositional formulas over
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A, and LB for the extension of L with the modal operator B. As done in the
literature (e.g. [13]), formulas from L are called objective and formulas from
LB are called unimodal. An autoepistemic theory is a set of unimodal formulas.
We define A′ = A ∪ {Bϕ | ϕ ∈ LB}, which is an infinite set, even if A is finite.
For technical reasons, we sometimes treat A′ as a set of atoms, and consider
interpretations I ′ ∈ P(A′), where P(X) = {Y | Y ⊆ X} for a set X . This trick
allows us to deal with autoepistemic theories in a purely propositional fashion.
For clarity, we will refer to the corresponding propositional language as L′.

The following definition was introduced by Moore [16] and is in line with
Stalnaker’s [20]1 view on the beliefs of a rational agent. For an arbitrary au-
toepistemic theory T , we can look for maximally conservative extensions which
make it stable, in the sense that no more conclusions can be drawn from a stable
theory than what is explicitly contained in it. Such extensions are called stable
expansions of T .

Definition 1. Suppose E and T are autoepistemic theories, then E is a stable
expansion of T iff

E = Cn(T ∪ {Bϕ | ϕ ∈ E} ∪ {¬Bϕ | ϕ /∈ E}),

where Cn(X) denotes the set of propositional consequences of X w.r.t. the lan-
guage L′.

Remark that Definition 1 says that a formula α is in E iff for each interpretation
I ′ ∈ P(A′) such that I ′ |= T ∪ {Bϕ | ϕ ∈ E} ∪ {¬Bϕ | ϕ /∈ E} we have that
I ′ |= α. Moreover, the set of models of T ∪ {Bϕ | ϕ ∈ E} ∪ {¬Bϕ | ϕ /∈ E} is
exactly the set of models of E. By using Definition 1, the following proposition
can be proved.

Proposition 1. [14] Suppose T is a consistent autoepistemic theory. If all for-
mulas in T are objective, then T has exactly one stable expansion.

Autoepistemic logic can also be described in terms of models, more like a possible
worlds semantics [17]. The relationship between this semantics and the one used
in Definition 1 will become clear in Proposition 2. Suppose I ∈ P(A) is an inter-
pretation on A and S ⊆ P(A) a set of interpretations on A. The corresponding
satisfaction relation for unimodal formulas is defined inductively:

– For an atom p, (I, S) |= p iff p ∈ I.
– For a unimodal formula ϕ, (I, S) |= Bϕ iff for every J ∈ S, (J, S) |= ϕ.
– For unimodal formulas ϕ and ψ, the propositional connectives are handled

in the usual way:
• (I, S) |= (ϕ ∧ ψ) iff (I, S) |= ϕ and (I, S) |= ψ
• (I, S) |= (ϕ ∨ ψ) iff (I, S) |= ϕ or (I, S) |= ψ
• (I, S) |= (¬ϕ) iff (I, S) � ϕ
• (I, S) |= (ϕ → ψ) iff (I, S) � ϕ or (I, S) |= ψ
• (I, S) |= (ϕ ↔ ψ) iff (I, S) |= (ϕ → ψ) and (I, S) |= (ψ → ϕ)

1 Article based on the unpublished manuscript (1980) to which Moore referred.
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Intuitively, a unimodal formula ϕ is believed to be true, if it is true in every
interpretation which is considered possible.

Definition 2. Suppose T is an autoepistemic theory and S is a set of interpre-
tations on A, then S is an autoepistemic model of T iff

S = {I | I ∈ P(A), ∀ϕ ∈ T : (I, S) |= ϕ} .

In other words, an autoepistemic model is a set of interpretations which model
all formulas of T .

Definition 3. Suppose S is a set of interpretations on A and T is an autoepis-
temic theory, then T is called the (autoepistemic) theory of S iff

T = {ϕ | ϕ ∈ LB, ∀I ∈ S : (I, S) |= ϕ} ,

We will write Th(S) to denote this set of formulas.

The set Th(S) contains all formulas that are true in every interpretation in S.
The following proposition describes the relation between stable expansions and
autoepistemic models.

Proposition 2. [17] Suppose T is an autoepistemic theory, then an autoepis-
temic theory E is a stable expansion of T iff E = Th(S) for some autoepistemic
model S of T .

We will now discuss the relationship between answer set programming [7] and
autoepistemic logic. A brief refresher on answer set programming is provided
in Appendix A. Gelfond and Lifschitz [7] proposed the following transforma-
tion from a program P to an autoepistemic theory λ(P ). For each rule s ←
a1, . . . , am, not b1, . . . , not bn in P , the unimodal formula a1 ∧ . . .∧ am ∧¬Bb1 ∧
. . . ∧ ¬Bbn → s is added to λ(P ). The following result clarifies the relationship
between the answer sets of P and the stable expansions of λ(P ).

Theorem 1. [6],[7] A logic program P has an answer set2 M iff λ(P ) has a
stable expansion E such that M = E ∩ BP .

2.2 Fuzzy Logics

Fuzzy logics [8] are based on an infinite number of truth degrees, taken from
the unit interval [0, 1]. We will consider fuzzy logics whose formulas are built
from a set of atoms A, the truth constants in [0, 1] ∩ Q and arbitrary n-ary
connectives for each n ∈ N. In particular, the semantics of logical conjunc-
tion can be generalized to [0, 1] by a class of functions called triangular norms
(short t-norms). These are mappings T : [0, 1]2 → [0, 1] which are symmet-
ric, associative and increasing and which satisfy T (1, x) = x for all x ∈ [0, 1].
2 We refer to Appendix A for definitions and notations regarding answer set program-

ming.
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Given a t-norm T , logical implication can be generalized by the residuation of
T , x →T y = sup {λ | λ ∈ [0, 1] and T (x, λ) ≤ y}. If T is a left-continuous t-
norm we have the important property x →T y = 1 iff x ≤ y. By using the
residuation it is possible to define a generalization of the logical equivalence
x ↔T y = min {x→T y, y →T x}. Negation can be generalized by a decreasing
map ∼: [0, 1] → [0, 1] satisfying ∼ 1 = 0 and ∼ 0 = 1. In what follows we will
only use residual implicators based on left-continuous t-norms and if there is no
confusion possible we will write x→ y and x ↔ y.

An interpretation is a mapping I : A → [0, 1], which is also called a fuzzy set
on A. We can extend this interpretation as follows. Consider for each n ∈ N a
finite set of n-ary connectives Fn and let F = ∪Fn. Each f ∈ Fn is interpreted
by a function f : [0, 1]n → [0, 1]. We define [f(α1, . . . , αn)]I = f([α1]I , . . . , [αn]I)
for formulas αi (1 ≤ i ≤ n). For c ∈ [0, 1] we have [c]I = c. If T is a set of
formulas we say that I is a model of T iff [α]I = 1 for all α ∈ T ; we write this
as I |= T .

In examples we will consider the connectives from �Lukasiewicz logic, however
all theorems can be proved for connectives f ∈ F . In the case of �Lukasiewicz
logic, the conjunction is defined as x ⊗ y = max(x + y − 1, 0), which is a left-
continuous t-norm. The disjunction is generalized by x⊕ y = min(x + y, 1). The
implicator induced by the �Lukasiewicz t-norm is x→l y = min(1, 1− x + y) and
for the negation we have ¬x = 1− x.

3 Fuzzy Autoepistemic Logic

In this section, we combine the ideas of autoepistemic logic and fuzzy logics.
This will provide us a tool to reason about one’s beliefs about the degrees to
which one or more properties are satisfied. Let us consider an example, for which
we will use �Lukasiewicz logic. Note that the main results in this section are valid
for arbitrary connectives in F .

Example 1. Suppose we want to host a party for three persons. Since we do not
know how much each guest will eat, it is not easy to determine how much food
we need to order. Let us denote this latter amount by a variable a that ranges
between ordering no food at all and ordering the maximum amount of food.
Obviously, the correct value for a depends on the amount of food ai (i = 1, 2, 3)
that we need to order for each individual guest. The variable ai represents the
proposition that person i eats a full portion. For an interpretation I, I(ai) de-
notes which percentage of a full portion person i eats. By appropriately rescaling
the food quantities we can assume, without lack of generality, that I(ai) ∈ [0, 1

3 ]
for each graded interpretation I, such that it holds that I |= a1 ⊕ a2 ⊕ a3 ↔l a
iff I(a1) + I(a2) + I(a3) = I(a). We thus consider the following formulas.

ai →l
1
3

(1)

a1 ⊕ a2 ⊕ a3 ↔l a. (2)
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If no further information about the values ai is known, it is best to make sure
that everybody has enough food by ordering the maximum amount. By encoding
additional beliefs we will try to refine this upper bound. Suppose we believe that
everyone will eat at least a certain amount of food. We express this as

Ba1 ↔l 0.1, Ba2 ↔l 0.1, Ba3 ↔l 0.05. (3)

As in classical autoepistemic logic, we can treat formulas Bϕ as atoms. For each
interpretation I, we then have that I |= Bai ↔l ci iff [Bai]I = ci. Later on, it
will become more clear why including a formula such as Bai ↔l ci expresses a
lower bound for the truth value of ai. For each model I we have that [Bai]I = ci

implies I(ai) ≥ ci.
Furthermore, we assume that if someone would eat an exceptional amount of

food, we would have some information about this. For example, this could be
the case if our friend brings her new boyfriend. If he would have an extreme
appetite, we believe that she would have warned us. Insisting that we would
know exactly how much each person would eat, i.e. ai →l Bai, would be too
strong. We may consider the following weaker variant however, which expresses
that no guest will eat more than three times the amount mentioned in (3). We
represent this meta-knowledge as follows:

ai →l Bai ⊕ Bai ⊕ Bai. (4)

Indeed, I |= ai →l Bai⊕Bai⊕Bai iff I(ai) ≤ 3[Bai]I . In addition, we may be able
to further decrease the amount of food that needs to be ordered if we know that
some of the guests are on a diet. We will represent this by a variable di which
represents the proposition that person i is on an extreme diet. If I(di) = 0,
person i eats like he/she normally eats and if I(di) = 1, he/she will eat the
amount mentioned in (3). Suppose we have information on d2 and d3, but no
knowledge on d1:

Bd2 ↔l 0.95, Bd3 ↔l 0.95. (5)

If the lower bound for di increases, the upper bound for ai should decrease.
Consider for instance the meta-knowledge

Bdi →l (ai →l Bai). (6)

Remark that this expression is equivalent to ai →l (Bdi →l Bai), thus I |=
Bdi →l (ai →l Bai) iff I(ai) ≤ 1 + [Bai]I − [Bdi]I .

In example 4, we will use fuzzy autoepistemic logic to determine an upper
bound for I(a) for a model I.

The formulas in fuzzy autoepistemic logic are built from a set A (atoms and con-
stants in [0, 1]∩Q), the set of connectives F with their corresponding functions
f : [0, 1]n → [0, 1] (n ∈ N) and a modal operator B, interpreted as “is believed”.
We will denote this language as LB. Again, we will make the distinction between
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objective and unimodal formulas. An autoepistemic theory in LB is a set of for-
mulas in LB. As before, we define A′ = A ∪

{
Bϕ | ϕ ∈ LB

}
. We write F(A′) for

the set of all fuzzy sets on A′, i.e. the set of all graded interpretations I ′ over
A′. We define a generalization of stable expansions (Definition 1).

Definition 4. Suppose T is an autoepistemic theory in LB and E is a fuzzy set
on LB. E is a fuzzy stable expansion of T iff for each α ∈ LB

E(α) = inf
{
[α]I′ | I ′ |= T ∪

{
Bϕ↔ E(ϕ) | ϕ ∈ LB

}
, I ′ ∈ F(A′)

}
In Definition 1, for each I ′ ∈ P(A′) such that I ′ |= T∪{Bϕ | ϕ ∈ E}∪{¬Bϕ | ϕ /∈ E}
we had that Bϕ ∈ I ′ iff ϕ ∈ E. To see the relation between Definitions 1 and 4,
note that I ′ is a model of Bϕ↔ E(ϕ) iff [Bϕ]I′ = E(ϕ).

Remark that for a fuzzy stable expansion E of T and I ′, J ′ ∈ {I ′ | I ′ |= T∪
{Bϕ ↔ E(ϕ) | ϕ ∈ LB} , I ′ ∈ F(A′)} we have that [Bα]I′ = E(α) ≤ [α]J′ . Hence,
[Bα]I′ = 0.1 intuively means that α is true to at least degree 0.1, instead of be-
lieving that α is true to exactly degree 0.1.

We can also generalize Definitions 2 and 3. First, we need to define another
type of evaluation for unimodal formulas. Suppose I ∈ F(A) is an interpretation
and S ⊆ F(A) is a set of interpretations.

– For an atom or a constant p: [p]I,S = I(p).
– For a unimodal formula α: [Bα]I,S = infJ∈S [α]J,S .
– For unimodal formulas αi (1 ≤ i ≤ n) and f ∈ Fn:

[f(α1, . . . , αn)]I,S = f([α1]I,S , . . . , [αn]I,S).

Definition 5. Suppose T is an autoepistemic theory in LB and S ⊆ F(A) is a
set of interpretations. S is a fuzzy autoepistemic model of T iff

S = {I | I ∈ F(A), ∀ϕ ∈ T : [ϕ]I,S = 1} .

Example 2. Suppose T = {¬(Ba)→l b,¬(Bb)→l a}. We try to find a fuzzy
autoepistemic model S of T . For the first formula of T we have for S ⊆ F(A) and
I ∈ S that [¬(Ba) →l b]I,S = 1 ⇔ 1 − [Ba]I,S ≤ I(b) ⇔ 1− I(b) ≤ infJ∈S J(a).
By symmetry we have [¬(Bb)→l a]I,S = 1 ⇔ 1− I(a) ≤ infJ∈S J(b).

Hence, a set of interpretations S is a fuzzy autoepistemic model of T iff
S = {I | I ∈ F(A), 1 − I(b) ≤ infJ∈S J(a) and 1− I(a) ≤ infJ∈S J(b)}. More-
over, we can show that the fuzzy autoepistemic models of T are all sets of
the form Sx = {I | I ∈ F(A), I(a) ≥ x and I(b) ≥ 1− x}, with x ∈ [0, 1].

Definition 6. Suppose S ⊆ F(A) is a set of interpretations. The fuzzy au-
toepistemic theory of S is the fuzzy set Th(S) on LB such that for each unimodal
formula ϕ

Th(S)(ϕ) = inf
I∈S

[ϕ]I,S .

We can prove the following generalizations of Propositions 1 and 2.

Proposition 3. Suppose T is an autoepistemic theory in LB. A fuzzy set E on
LB is a fuzzy stable expansion of T iff E = Th(S) with S a fuzzy autoepistemic
model of T .
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Example 3. Reconsider the theory T from Example 2 and recall that all fuzzy au-
toepistemic models are of the form Sx = {I | I(a) ≥ x and I(b) ≥ 1− x}. Hence,
for each x ∈ [0, 1] we have a fuzzy stable expansion Ex defined by Ex(a) =
Th(Sx)(a) = infI∈Sx I(a) = x and Ex(b) = Th(Sx)(b) = infI∈Sx I(b) = 1− x.

Proposition 4. Suppose T is a consistent set of objective formulas in LB, then
there is exactly one fuzzy set E on LB that is a fuzzy stable expansion of T .

Example 4. Reconsider Example 1. Based on the formulas (2)-(6), an upper
bound for I(a) (I a model) can be derived. This is accomplished by determining
the fuzzy autoepistemic models of the corresponding autoepistemic theory T .
Suppose S ⊆ F(A), then we determine which conditions need to be satisfied for
I ∈ S such that S is a fuzzy autoepistemic model of T :

I(ai) ≤ 1
3

I(a1) + I(a2) + I(a3) = I(a)
[Ba1]I,S = 0.1, [Ba2]I,S = 0.1, [Ba3]I,S = 0.05

I(ai) ≤ 3[Bai]I,S

[Bd2]I,S = 0.95, [Bd3]I,S = 0.95
[Bdi]I,S ≤ 1− I(ai) + [Bai]I,S

For example, let us compute the upper bound for I(a2). Without the knowledge
about the diet, we know that I(a2) ≤ 0.3. If we include our beliefs about d2, we
get a much lower upper bound 0.15.

One can easily verify that there is exactly one fuzzy autoepistemic model

S = {I | 0.1 ≤ I(a1) ≤ 0.3, 0.1 ≤ I(a2) ≤ 0.15, 0.05 ≤ I(a3) ≤ 0.10,

I(d1) ≥ 0, I(d2) ≥ 0.95, I(d3) ≥ 0.95, 0.25 ≤ I(a) ≤ 0.55} .

We thus believe that the amount of food that will be needed is between 0.25 and
0.55. Hence we will order 55% of the maximal order. Note that this means that
we can express the lower bound on a as E(Ba) = 0.25 and the upper bound as
E(¬B(¬a)) = 0.55, where E = Th(S) is the unique stable expansion of T .

4 Relation between Fuzzy Answer Set Programming and
Fuzzy Autoepistemic Logic

Let us briefly recall the basic notion of a fuzzy version of answer set program-
ming, which was recently proposed [10]. Consider a set of atoms A. Here, a literal
is either an atom a ∈ A or an expression of the form not a, where a ∈ A and not
is the negation-as-failure operator. A rule over [0, 1] is an expression of the form
r : a ← f(b1, . . . , bn) where a ∈ A, bi (1 ≤ i ≤ n) are literals, ← corresponds to
a residual implicator and f ∈ Fn. To assure the existence of a unique answer set
we need to restrict to connectives f such that f is increasing in each argument.
Typically f corresponds to the application of conjunctions and disjunctions in a
given fuzzy logic. We will refer to the rule by its label r. The atom a is called
the head of r and f(b1, . . . , bn) is the body. A FASP program over [0, 1] is a set
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of rules over [0, 1]. We denote the set of atoms occurring in a FASP program as
BP . An interpretation I of a FASP program P is a mapping I : BP → [0, 1]. We
can extend this mapping as follows:

– [c]I = c for c ∈ [0, 1],
– [not a]I =∼ ([a]I) for atoms a and a negator ∼,
– [f(b1, . . . bn)]I = f([b1]I , . . . [bn]I) for bodies of rules,
– [r]I = ([rb]I → I(rh)), for a rule r : rh ← rb.

For interpretations I1 and I2 we say that I1 ≤ I2 iff I1(a) ≤ I2(a) for all a ∈ BP .
An interpretation I is called a model of P iff [r]I = 1 for all r ∈ P . Finally we
say that a FASP program is simple if it contains no literals of the form not a.
For such programs there exists a unique minimal model.

Definition 7. [10] Consider a simple FASP program P . An interpretation I of
P is called the answer set of P iff it is the minimal model of P .

For programs which are not simple, answer sets are defined using a generalization
of the Gelfond-Lifschitz reduct (see Appendix A). Specifically, let P be a FASP
program and I an interpretation of P . The reduct of a literal l w.r.t. I is defined
as follows. If l is an atom then lI = l, if l = not a then lI = [l]I . The reduct of a
rule in P , r : a ← f(b1, . . . , bn) is defined as rI : aI ← f(bI

1, . . . , b
I
n). The reduct

of the program P is the set of rules P I =
{
rI | r ∈ P

}
.

Definition 8. [10] Consider a FASP program P . An interpretation I of P is
called an answer set of P iff I is the answer set of P I .

In this section we will show a correspondence between answer sets of a FASP
program P and fuzzy stable expansions of an associated autoepistemic theory in
LB. From Theorem 1, we already know that such a correspondence exists between
classical ASP and autoepistemic logic. Here we use a similar transformation.
Suppose we have a FASP program P with rules of the form

r : a ← f(b1, . . . , bn, not c1, . . . , not cm),

where a, bi and cj are atoms (1 ≤ i ≤ n),(1 ≤ j ≤ m) and f ∈ Fn+m. We define a
set of implications in fuzzy autoepistemic logic. Specifically, for rule r we define
the associated fuzzy autoepistemic formula λ(r) as

f(b1, . . . , bn,∼1 Bc1, . . . ,∼m Bcm)→ a.

We choose ∼i as the negator which is assumed for not ci, thus for I ∈ F(BP ), we
have [not ci]I =∼i (I(ci)). The resulting autoepistemic theory in LB is λ(P ) =
{λ(r) | r ∈ P}.

First, we provide a lemma that characterizes the relationship between stable
expansions of λ(P ) and stable expansions of the autoepistemic theory corre-
sponding to a specific reduct of the program P . Note that we use the notation
E|BP

for the restriction of the fuzzy set E on LB to BP .
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Lemma 1. Consider a FASP program P and a fuzzy set E on LB. Then E is
a fuzzy stable expansion of λ(P ) iff E is a stable expansion of λ(P Ē), where
Ē = E|BP

.

Theorem 2. Consider a FASP program P . M is an answer set of P iff λ(P )
has a fuzzy stable expansion E such that E|BP

= M .

Example 5. Consider the logic program P = {b ←l not a, a←l not b}. We will
compute the answer sets by using the characterization from Theorem 2. We
look for fuzzy stable expansions of λ(P ) = {¬Ba →l b,¬Bb→l a}. Remark
that this is the theory T we studied in Examples 2 and 3. Hence we know
that for each x ∈ [0, 1] there is a fuzzy stable expansion Th(Sx), with Sx =
{I | I(a) ≥ x and I(b) ≥ 1− x}. Hence for each x ∈ [0, 1] there is an answer set
Mx such that Mx(a) = Th(S)(a) = infI∈Sx I(a) = x and Mx(b) = Th(S)(b) =
infI∈Sx I(b) = 1− x.

5 Related Work

Epistemic logic, the logic of epistemic notions such as knowledge and belief,
is a major area of research in artifical intelligence. Von Wright’s seminal work
[22] is widely recognized as having initiated the formal study of epistemic logic
as we know it today. Since then, various axiomatizations have been proposed,
mainly in terms of possible-worlds semantics. An overview is given in [19]. Note
that in general, epistemic logics may allow to model the beliefs of several agents,
whereas autoepistemic logic is restricted to one’s own beliefs. Autoepistemic logic
has been important as an epistemic foundation for answer set set programming,
which has also been studied from the angle of possibilistic logic [2], [4].

In recent years a variety of approaches to fuzzy answer set programming have
been proposed, e.g. [3], [10], [21]. In [18] a fuzzy equilibrium logic was introduced,
and a correspondence between fuzzy equilibrium logic models and answer sets of
FASP programs was shown. Apart from this exception and our paper, it appears
that little work has been done on nonmonotonic fuzzy logics nor about their
relationship with fuzzy answer set programming.

We remark that fuzzy autoepistemic logic is also related to some work on fuzzy
modal logics, see e.g. [9]. Another relevant paper is [1], where an epistemic modal
logic is defined which is inspired by possibilistic logic. In this logic, interpreta-
tions are also sets of classical interpretations. Finally, there has also work been
done on (finite) many-valued modal logics [11] and (finite) many-valued reflexive
autoepistemic logic [12]. Instead of [0, 1], finite Heyting algebras are used for the
space of truth values. Finitely-valued Gödel logic (truth values

{
0, 1

n , 2
n , . . . 1

}
)

is a particular case of such algebras.

6 Conclusions

In this paper we have introduced a fuzzy version of autoepistemic logic, which
can be used to reason about one’s beliefs about the degrees to which properties



626 M. Blondeel et al.

are satisfied. We have shown that important properties of classical autoepistemic
logic are preserved and that the relation between answer set programming and
autoepistemic logic remains valid when generalizing to fuzzy logics. These results
lead to a better comprehension of how to interpret fuzzy answer sets.

In future work, it would be interesting to see whether the implementation
of classical autoepistemic logic by using quantified boolean formulas [5] can be
extended to fuzzy logics using multi-level linear programming. If this is indeed
the case, it could be used as a basis to implement fuzzy autoepistemic logic
reasoners, as well as fuzzy answer set programming solvers. The general theory
of fuzzy autoepistemic logic is also useful for abductive reasoning about theories
with gradual propositions.
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A Answer Set Programming (ASP)

We define a literal as either an atom or an atom preceded by not, the negation-
as-failure operator. Intuitively, we say that not a is true if there is no proof to
support atom a. If X is a set of atoms, we define not (X) = {not a | a ∈ X}. A
normal rule is an expression of the form a ← (α∪ not (β)), with a an atom and
α and β sets of atoms. The atom a is called the head of the rule and α∪not (β)
(interpreted as conjunction) is the body.

A normal program P is a finite set of normal rules. The Herbrand base BP of
P is the set of atoms occuring in P . An interpretation I of P is any set of atoms
I ⊆ BP . A simple rule is a normal rule without negation-as-failure. A simple
program is a finite set of simple rules. If an interpretation I is the minimal model
of P (i.e. the minimal interpretation such that [r]I = 1 for each r ∈ P ), then we
say that I is the answer set of P . Thus, the answer set of a simple program P is
the maximal set of atoms that can be deduced from P . For programs that are not
simple, answer sets are defined using the Gelfond-Lifschitz reduct. Suppose P is
a normal program, the Gelfond-Lifschitz reduct [7] of P w.r.t. the interpretation
I is the set P I = {a ← α | (a ← (α ∪ not (β)) ∈ P, β ∩ I = ∅}, which is a simple
program. We then say that I is an answer set of P iff I is the answer set of P I .

Note that simple programs have exactly one answer set, while normal pro-
grams can have 0, 1 or more answer sets.
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Abstract. Recently Kroupa has proposed a generalization of belief func-
tions on MV-algebras, the latter being the chosen algebraic setting for
fuzzy (or many-valued) events. However, Kroupa’s belief functions eval-
uate the degree of belief in the occurrence of fuzzy events by taking into
account (weighted) evidence on classical subsets. In other words, the fo-
cal elements, used in determining the degree of belief, are classical sets.
Within the MV-algebraic setting, the aim of the present work is to in-
troduce a generalization of Kroupa belief functions that allows to deal
with fuzzy events supported by evidence on fuzzy subsets.

1 Introduction

Classical belief functions [18,20] are measures of uncertainty that represent our
degree of confidence in the occurrence of some (classical) event taking into ac-
count the bodies of evidence that support our belief [18]. Such evidence plays a
pivotal role in determining our belief. Indeed, the degree of belief is determined
by those weights assigned to the different bodies of evidence. In Dempster-Shafer
theory, such evidence is encoded by the focal elements, and their weight is given
by a mass function (a probability distribution over the focal elements).

In the literature several attempts to extend belief functions on fuzzy events
can be found. The first extension of Dempster-Shafer theory to the general frame-
work of fuzzy set theory was proposed by Zadeh in the context of information
granularity and possibility theory [24] in the form of an expected conditional
necessity. After Zadeh, several further generalizations were proposed depending
on the way a measure of inclusion among fuzzy sets is used to define the belief
functions of fuzzy events based on fuzzy evidence. Indeed, given a mass assign-
ment m for the bodies of evidence {A1, A2, . . .}, and a measure I(A ⊆ B) of
inclusion among fuzzy sets, the belief of a fuzzy set B can be defined in general
by the value: Bel(B) =

∑
Ai

I(Ai ⊆ B)·m(Ai). We refer the reader to [13,21] for
exhaustive surveys, and [1] for another approach through fuzzy subsethood. Dif-
ferent definitions were also introduced by Dubois and Prade [7] and by Denœux
[4,5] to deal with belief functions ranging over intervals or fuzzy numbers.

W. Liu (Ed.): ECSQARU 2011, LNAI 6717, pp. 628–639, 2011.
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More recently Kroupa [15] has proposed to define belief functions on semisim-
ple MV-algebras [3], the latter being the chosen algebraic setting for fuzzy (or
many-valued) events. However, Kroupa’s belief functions evaluate the degree of
belief in the occurrence of fuzzy events by taking into account (weighted) evi-
dence on classical subsets. In other words, the focal elements used in determining
the degree of belief are still classical sets.

In this work, we want to keep the MV-algebraic setting and generalize Kroupa
belief functions to deal with fuzzy events with the support of evidence repre-
sented by fuzzy subsets. We rely on MV-algebras, because such structures are
the equivalent algebraic semantics for the infinite valued �Lukasiewicz logic, and
hence, studying belief functions in this setting will be useful to develop a logical
approach to extend and generalize that one proposed in [11].

This paper is organized as follows. In the next section, we provide basic back-
ground information on belief functions and MV-algebras. In Section 3, we in-
troduce our generalized notion of a belief function and compare it to Kroupa’s
definition. In Section 4, we give an integral representation of belief functions in
terms of both Choquet and Sugeno integrals, and in Section 5, we briefly deal
with the combination of two belief functions. We end with some final remarks.

2 Preliminary Notions

2.1 Belief Functions on Boolean Algebras

Consider a finite set X whose elements can be regarded as mutually exclusive
(and exhaustive) propositions of interest, and whose powerset P(X) represents
all such propositions. The set X is usually called the frame of discernment, and
every element x ∈ X represents the lowest level of discernible information we
can deal with.

Take now a frame of discernment X . A map m : P(X) → [0, 1] is said to
be a basic belief assignment, or a mass assignment whenever m(∅) = 0 and∑

A∈P(X) m(A) = 1. Given a set X and a mass assignment m on P(X), for
every A ∈ P(X), the belief of A is defined as

bm(A) =
∑

B⊆A m(B).

Every mass assignment m on P(X) is in fact a probability distribution on P(X)
that naturally induces a probability measure Pm on P(P(X)). Consequently, the
belief function bm defined from m can be equivalently described as follows: for
every A ∈ P(X), bm(A) = Pm({B ∈ P(X) : B ⊆ A}). Therefore, identifying
the set {B ∈ P(X) : B ⊆ A} with its characteristic function on P(P(X)) defined
by

βA : B ∈ P(X) %→
{

1 if B ⊆ A
0 otherwise, (1)

it is easy to see that, for every A ∈ P(X), and for every mass assignment
m : P(X)→ [0, 1], we have bm(A) = Pm(βA). This easy characterization will be
important when we discuss the extensions of belief functions on MV-algebras.
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The following is a trivial observation about the map βA that can be useful to
understand our generalization: for every A ∈ P(A), βA can be regarded as a
map evaluating the (strict) inclusion of B into A, for every subset B of X .

A subset A of X such that m(A) > 0 is said to be a focal element. Every belief
function is characterized by the value that m takes over its focal elements, and,
therefore, the focal elements of a belief function bm contain the pieces of evidence
that characterize bm itself. For every set X and for every mass assignment m,
call Fm the set of focal elements of P(X) with respect to m. It is well known that
several subclasses of belief functions can be characterized just by the structure
of their focal elements. In particular, when Fm ⊆ {{x} : x ∈ X}, it is clear
that bm is a probability measure. Moreover, if the focal elements are nested
subsets of X , i.e. Fm is a chain with respect to the inclusion relation between
sets, then bm is a necessity measure [7,18]; this means e.g. that in that case
bm(A1 ∩A2) = min{bm(A1),bm(A2)}.

2.2 MV-Algebras and States

An MV-algebra is a structure M = (M,⊕,¬, 0) of type (2, 1, 0) where M is
a non-empty set, the reduct (M,⊕, 0) is an abelian monoid, and the following
equations are satisfied: ¬¬x = x, x⊕ ¬0 = ¬0, ¬(¬x⊕ y) = ¬(¬y ⊕ x).

The class of MV-algebras forms a variety that we denote by MV. In every
MV-algebra M , we define, as usual, the following operations: for all x, y ∈ M ,
x) y = ¬(¬x⊕¬y), x⇒ y = ¬x⊕ y, x∨ y = (x ⇒ y)⇒ y, x∧ y = ¬(¬x∨¬y),
and 1 = ¬0.

For every x, y ∈ M , x ≤ y if and only if x ⇒ y = 1. As a matter of fact, ≤
is a partial order on M , and M is said to be linearly ordered (or an MV-chain)
whenever ≤ is a linear order.

Example 1. (1) Every Boolean algebra A is an MV-algebra and in every MV-
algebra M the set B(M) = {x : x ⊕ x = x} of its idempotent elements is the
domain of the largest Boolean subalgebra of M , called the Boolean skeleton of
M .

(2) Take the following operations defined over [0, 1]: x ⊕ y = min{1, x + y}
and ¬x = 1−x. Then, the structure [0, 1]MV = ([0, 1],⊕,¬, 0) is an MV-algebra
called the standard MV-algebra. In this algebra x ) y = max(0, x + y − 1),
x ⇒ y = min(1, 1 − x + y), x ∧ y = min(x, y) and x ∨ y = max(x, y). Chang
Theorem (cf. [3]) shows that the algebra [0, 1]MV generates MV.

For every finite set X , consider the MV-algebra [0, 1]X of all functions from X
into [0, 1], whose operations are defined by a pointwise application of those of
[0, 1]MV . These MV-algebras are the algebraic framework over which we will
define belief functions. Adopting the same notation of [10], we call such algebras
finite domain MV-clans. Notice that finite domain MV-clans are described, in
algebraic terms, as those MV-algebras which are finite direct product of the
standard MV-algebra [0, 1]MV .

From now on, we will assume that, in any structure M = [0, 1]X , the set X
is finite, if not otherwise specified.
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By a state [17] on an MV-algebra M , we mean a map s : M → [0, 1] satisfying
the following properties:

(i) s(1) = 1,
(ii) whenever x) y = 0, s(x⊕ y) = s(x) + s(y).

Mundici proved in [17] that every state s satisfies s(x∨y) = s(x)+s(y)−s(x∧y).
It is worth noticing that the restriction of every state s on M , to its Boolean

skeleton B(M), is a finitely additive probability. Moreover the following holds:

Theorem 1 ([14]). Let be X be a non-empty (possibly infinite) set. For every
state s on the MV-algebra of functions M = [0, 1]X there exists a finitely additive
probability measure μ on P(X) such that for each a ∈M ,

s(a) =
�

X

a dμ.

3 Belief Functions on Finite Domain MV-Clans

In [15], Kroupa provides a generalization of belief functions that are defined on
finite domain MV-clans as follows. Let M = [0, 1]X be a finite domain MV-clan,
denote by P(X) the powerset of X , and consider, for every a : X → [0, 1] the
map ρ̂a : P(X)→ [0, 1] defined as follows: for every B ⊆ A,

ρ̂a(B) = min{a(x) : x ∈ B}. (2)

Remark 1. Notice that ρ̂a generalizes βA in the following sense: whenever A ∈
B(M) = P(X), then ρ̂A = βA. Namely, for every A ∈ B(M), ρ̂A(B) = 1 if
B ⊆ A, and ρ̂A(B) = 0 otherwise.

Definition 1. We call a map b̂ : M → [0, 1] a Kroupa belief function whenever
there exists a state ŝ : [0, 1]P(X) → [0, 1] such that for every a ∈M , b̂(a) = ŝ(ρ̂a).

The state ŝ needed in the definition of b̂ is called the state assignment in [15].
Although b̂ has been directly introduced as a combination of ρ̂ with the state
assignment ŝ, a notion of mass assignment can be introduced even for this gen-
eralized case. Indeed, since X is finite, it turns out that one can equivalently
write

b̂(a) =
∑

B⊆X ρ̂a(B) · ŝ(B).

In particular, since 1 = b̂(X) =
∑

B⊆X ŝ(B), the restriction of the state ŝ to
P(X) (call it m̂) is a classical mass assignment. Now, we are allowed to speak
about focal elements of b̂ as those elements in P(X) that the mass assignment
m̂ maps into a non-zero value.



632 T. Flaminio, L. Godo, and E. Marchioni

Notice that, although the arguments in Kroupa’s definition of belief function
are fuzzy sets, the mass assignments that characterize each of these belief func-
tions are defined on crisp (i.e. Boolean) sets, and, therefore, the focal elements
associated to every Kroupa belief function are crisp sets. In other words, every
b̂ is defined over crisp, and not fuzzy, pieces of evidence.

Kroupa’s definition of belief function makes use (with the necessary modifica-
tion in using a state instead of a probability measure as additive map to define
b̂), for every a ∈M , of the map ρ̂a which evaluates the degree of inclusion ρ̂a(B)
of a classical (i.e. crisp, Boolean) subset B of X , into the fuzzy set a. The defini-
tion that we introduce below generalizes Kroupa’s definition by introducing, for
every a ∈ M , a map ρa assigning to every fuzzy set b ∈M its degree of inclusion
into a, cf. [1]. To be more precise, let M = [0, 1]X be a finite domain MV-clan,
and consider, for every a ∈M a map ρa : M → [0, 1] defined as follows: for every
b ∈M ,

ρa(b) = min{b(x)⇒ a(x) : x ∈ X}. (3)

where ⇒ denotes the �Lukasiewicz implication function (x ⇒ y = min(1, 1− x +
y))1.

Remark 2. In a sense, for every a ∈ M , ρa can be identified as the membership
function of the fuzzy set of elements of M (and hence the fuzzy subsets of X)
that are included in a. In particular one has ρa(b) = 1 whenever b ≤ a (for each
point). Also notice that the Boolean skeleton B(M) of any finite domain MV-
clan M = [0, 1]X coincides with P(X) and hence, as also shown by the following
result, for every a ∈M the map ρa extends ρ̂a in the domain.

Proposition 1. (i) For all a, a′ ∈ M , ρa∧a′ = min{ρa, ρa′}, and ρa∨a′ ≥
max{ρa, ρa′}.

(ii) For every a ∈M , the restriction of ρa to B(M) coincides with the trans-
formation ρ̂a of equation (2).

(iii) For every A ∈ B(M), the restriction of ρA to B(M) coincides with the
transformation βA of equation (1)

Proof. (i) In every MV-chain, and in particular in the standard chain [0, 1]MV

the equation ¬γ ⊕ (α ∧ β) = (¬γ ⊕ α) ∧ (¬γ ⊕ β) holds:, i.e. (γ ⇒ (α ∧ β)) =
(γ ⇒ α) ∧ (γ ⇒ β). Therefore, for every a, a′, b ∈M ,

ρa∧a′(b) = min{b(x) ⇒ (a ∧ a′)(x) : x ∈ X} = min{b(x) ⇒ (a(x) ∧ a′(x)) :
x ∈ X} = min{(b(x)⇒ a(x)) ∧ (b(x) ⇒ a′(x)) : x ∈ X} = min{ρa(b), ρa′(b)}.

An easy computation shows that ρa∨a′ ≥ max{ρa, ρa′}.
(ii) For every B ∈ B(M), ρa(B) = min{B(x) ⇒ a(x) : x ∈ X}. Whenever

x �∈ B, B(x) = 0, and hence B(x) ⇒ a(x) = 1 for all those x �∈ B. On the other
hand for all x ∈ B, B(x) = 1, and so B(x) ⇒ a(x) = 1 ⇒ a(x) = a(x) for all
x ∈ B. Consequently, ρa(B) = min{a(x) : x ∈ B}.

(iii) It trivially follows from (ii) and Remark 1. �
1 Here the choice of ⇒ is due to the MV-algebraic setting, but other choices could be

made in other settings, see e.g. [1].



Belief Functions on MV-Algebras of Fuzzy Events 633

Definition 2. Let M = [0, 1]X be a finite domain MV-clan. A map b : M →
[0, 1] is called a belief function if there exists a state s : [0, 1]M → [0, 1] such that
for every a ∈M ,

b(a) = s(ρa). (4)

We denote the class of all belief functions over M by Bel(M).

It is worth noticing that, in general, ρ⊥ does not coincide with the bottom
element of M [0,1]. In fact, if, for instance, a ∈ M is a function such that for
no x ∈ X , a(x) = 1, then it immediately follows that ρ⊥(a) > 0. Therefore,
b(⊥) = 0 does not hold in general.

It is clear from the definition that Bel(M) is a convex set, since states are
closed by convex combinations. Moreover, due to Theorem 1, for each belief
function b : M → [0, 1] there exists a finitely additive probability measure μ on
P(M) such that

b(a) =
�

M

ρa dμ.

Proposition 2. For every finite domain MV-clan M , and for every b ∈ Bel(M),
b is totally monotone, i.e. b is monotone, and it satisfies: for all a1, . . . , an ∈ M ,

b

(
n∨

i=1

ai

)
≥

n∑
j=1

(−1)j+1 · b
(

j∧
k=1

ai

)
.

Proof. Since for every a ∈M , ρa is monotone, and every state s is monotone, b
is monotone as well. Moreover, for every n and for every a1, . . . , an ∈ M , from
(4) and Proposition 1 (i):

b (
∨n

i=1 ai) = s(ρa1∨...∨an)
≥ s(ρa1 ∨ . . . ∨ ρan)
=
∑n

j=1(−1)j+1 · s
(∧j

k=1 ρai

)
=
∑n

j=1(−1)j+1 · s
(
ρa1∧...∧aj

)
=
∑n

j=1(−1)j+1 · b
(∧j

k=1 ai

)
. &'

On Boolean algebras, total monotonicity is a property that characterizes belief
functions. It is not known whether the same holds for MV-algebras.

For every belief function b : M → [0, 1] given by a state s on [0, 1]M , whenever
Supp(s) = {a ∈M : s({a}) > 0} is countable, we can introduce a notion of mass
assignment that fully characterizes b. Indeed define m : M → [0, 1] such that, for
every a ∈ M , m(a) = s({a}). Then we can define Supp(m) = Supp(s) without
danger of confusion. Notice that

∑
a∈Supp(m) m(a) = 1. It is well known that

m defined as above characterizes s as follows: for every f ∈ [0, 1]M , s(f) =∑
a∈Supp(s) f(a) ·m(a). In this case we get, for every a ∈M ,

b(a) =
∑

b∈Supp(s)

ρa(b) ·m(b).
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Let us call countably supported those belief functions b given by a state s for
which Supp(s) is countable. In particular, whenever X is finite (as it is in our
case), every Kroupa belief function is countably supported.

The focal elements in our definition of a countably supported belief function
are elements of the MV-algebra M = [0, 1]X , and, hence, are not crisp sets in
general. This supports the interpretation that the belief functions defined as in
(4) differ from Kroupa definition by offering a more general setting for evidence
theory. Indeed, the evidence that in our approach can be represented is not just
limited to crisp subsets, but we can now deal with imprecise evidence within this
framework.

Example 2. Let us revisit Smets’ well-known story of the murder of Mrs. Jones
[20]. There are 3 suspects of being her murderer: Peter, Paul and Mary. Consider
the information provided by the janitor of the building where Mrs. Jones lives.
He heard the victim yelling and saw a small man running. It turns out that
Paul and Mary are not tall while Peter is taller ((Paul is 1.65 m. tall, Mary is
1.60 m tall and Peter is 1.85 m.). So, actually, the subset of small suspects of
X = {Peter, Paul, Mary} can be considered as a fuzzy set, with membership
function, say,

μsmall(Peter) = 0, μsmall(Paul) = 0.7, μsmall(Mary) = 0.9.

On the other hand, Mary has short hair, so she may be mistaken as a man at
first sight, and hence, the subset of suspects looking like a man can be considered
fuzzy as well, with membership function:

μman-like(Peter) = 1, μman-like(Paul) = 1, μman-like(Mary) = 0.5.

The evidence supplied by the janitor may be represented by a mass assignment
m : [0, 1]X → [0, 1] such that m(small ∧man-like) = α > 0, m(X) = 1 − α and
m(f) = 0 for any other f ∈ [0, 1]X . Here we interpret ∧ by the min operator, so
we have

μsmall∧man-like(Peter) = 0, μsmall∧man-like(Paul) = 0.7, μsmall∧man-like(Mary) = 0.5

Suppose we are interested in computing the belief that the suspect is Paul. We
then need to compute

ρ{Paul}(small ∧man-like) = min
x∈X

μsmall∧man-like(x) ⇒ μPaul(x)

= min{0⇒ 0, 1⇒ 1, 0.5⇒ 0}
= min{1, 0.5} = 0.5

and ρ{Paul}(X) = 0. Finally, we have

b({Paul}) =
∑

f∈Supp(m)

ρ{Paul}(f) ·m({f})

= ρ{Paul}(small ∧man-like) ·m(small ∧man-like)
= 0.5 · α > 0
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Hence, we get a positive belief degree on Paul being the murderer. This is in
contrast with the results we would obtain with both the classical and Kroupa’s
models, where focal elements are only allowed to be classical subsets of X , in
case we assume Mary can be mistaken as a man. Indeed, in that case, we would
be forced to take as focal element, besides X itself, the set small ∧man-like =
{Paul, Mary}, and since there would be no focal element included in {Paul},
we would get b({Paul}) = 0.

4 Belief Functions and Their Integral Representations

In [15], Kroupa belief functions are represented in terms of Choquet integrals:
for any Kroupa belief function b on M = [0, 1]X there exists a (classical) belief
function β on 2X such that b(f) = C

�
f dβ, for every f ∈M , where the Choquet

integral is defined as C
�

a dβ =
� 1

0
β(f−1([t, 1])) dt.

However for the generalized belief functions specified in Definition 2, we
have weaker integral representations that derive from the fact that the map
ρc : M → [0, 1] defined in (3) can be represented in two ways as an integral.
This representation, in turn, allows us to offer two integral descriptions of belief
functions on MV-algebras. In this section, we are going to address this issue.

Let us start recalling that, given a set X , a map π : X → [0, 1] is called a pos-
sibility distribution, and π is said to be normalized if there is an x ∈ X such that
π(x) = 1. Given a possibility distribution π, the Sugeno integral of a function
a : X → [0, 1] with respect to π is defined as the value maxx∈X(min(π(x), a(x))).
When we replace the min operation by the �Lukasiewicz t-norm (or even more in
general by an arbitrary t-norm T ), we obtain the so called quasi Sugeno integral
[22,12]: for every a : X → [0, 1], S

�
X a dπ = maxx∈X(π(x) ) a(x)). The dual of

the quasi Sugeno integral is defined as follows: for all a : X → [0, 1],

S
� ∗

X

a dπ = 1− S
�

X

(1− a) dπ = min
x∈X

(π(x) ⇒ a(x)). (5)

Following [15], consider a function a ∈M = [0, 1]X , and a monotone set function
β : P(X) → [0, 1] such that β(∅) = 0 and β(X) = 1 (also called capacity).
Since we are only concerned with finite domain MV-clans, for every a ∈ M , the
Choquet integral of a with respect to β, C

�
a dβ =

� 1

0 β(a−1([t, 1])) dt, exists and
admits the following expression: letting X = {x1, . . . , xn} indexed in a way that
y1 ≥ y2 ≥ . . . ≥ yn where yi = a(xi) for i = 1, . . . , n and yn+1 = 0, and letting ,
Si = {x1, . . . , xi}, we have that

C
�

a dβ =
n∑

i=1

(yi − yi+1)β(Si).

Theorem 2. For every finite domain MV-clan M = [0, 1]X, and for every b ∈
Bel(M), there exists a finitely additive probability measure μ on P(M) such that
for every c ∈M :
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1.

b(c) =
�

M

(
S
� ∗

X

(1− a) dπc

)
dμ(a),

where the possibility distribution πc is defined as πc(x) = 1− c(x).
2.

b(c) =
�

M

(
C
�

a ⇒ c dχX

)
dμ(a),

where χX is the characteristic function of X over P(X).

For the case of countably supported belief functions, the above integral repre-
sentations can be simplified as follows.

Corollary 1. For every M = [0, 1]X, and every countably supported belief func-
tion b on M , there exists a mass assignment m : M → [0, 1] such that, for every
c ∈M , the following hold:

1. b(c) =
∑

a∈Supp(s) (minx∈X(a(xi)⇒ c(xi))) ·m(a);
2. b(c) =

∑
a∈Supp(s) (

∑n
i=1(yi − yi+1) · χX(Si)) ·m(a),

where X = {x1, . . . , xn} such that yi = a(xi) ⇒ c(xi), yn+1 = 0, with
y1 ≥ . . . ≥ yn, and Si = {x1, . . . , xi} for all i = 1, . . . , n.

In [21], Yen proposed a way to reduce belief functions over fuzzy focal elements
to belief functions over crisp focal elements by considering α-cuts of fuzzy sets.
A similar idea can be used to reduce a countably supported belief function b to
an infimum of Kroupa belief functions. Indeed, for every b ∈ [0, 1]X , and every
α ∈ [0, 1], define bα = {x ∈ X | b(x) = α}. Then, ρa(b) = infx b(x) ⇒ a(x) =
infα>0 infx∈bα α⇒ a(x) = infα>0 ρ̂α⇒a(bα). Therefore:

b(a) =
∑

b∈Supp(s)

ρa(b)·m({b}) = inf
α>0

∑
b∈Supp(s)

ρ̂α⇒a(bα)·m({b}) = inf
α

b̂α(α ⇒ a),

where b̂α is the Kroupa belief function whose focal elements are the α-slices of
those of b, and its corresponding mass mα is defined as mα({bα}) = m({b}).

Therefore, a countably supported belief function in our sense can be repre-
sented as well as an infimum of Choquet integrals.

5 Combining Belief Functions

In this section we present a natural way to generalize the well-known Dempster
rule to combine the information carried by two belief functions b1,b2 ∈ Bel(M),
into a third b1,2 ∈ Bel(M). First of all let us introduce an easy result about the
definition of states in a product space.

Proposition 3. For every MV-algebra M = [0, 1]X, and for every pair of states
s1, s2 : M → [0, 1], there exists a state s1,2 : M ×M → [0, 1] such that for every
(b, c) ∈M ×M , s1,2(b, c) = s1(b) · s2(c).
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Let s1, s2 be two states on [0, 1]M such that b1(a) = s1(ρa) and b2(a) = s2(ρa)
for all a ∈M . Furthermore, let μ1, μ2 : P(M)→ [0, 1] be two probabilities such
that for i = 1, 2, si(f) =

�
M f dμi as ensured by Theorem 1.

Take the mapping μ1,2 : P(M ×M) → [0, 1] to be, as in the proof of Propo-
sition 3, the product measure on the product space generated by M ×M such
that μ1,2(b, c) = μ1(b) · μ2(c) for all (b, c) ∈ M ×M . Then call s1,2 that unique
state on [0, 1]M×M defined by integrating on μ1,2. Since every f ∈ [0, 1]M×M

is measurable in the product space generated by M × M with measure μ1,2,
s1,2 exists, and moreover notice that, if there exist g, h : M → [0, 1] such that
f : (x, y) %→ g(x) · h(y), then by Proposition 3, s1,2(f) = s1(g) · s2(h).

Finally, for every a ∈ M , consider the map ρ∧a : M ×M → [0, 1] defined by
ρ∧a (b, c) = ρa(b ∧ c). Then we are ready to define the following combination of
belief functions.

Definition 3. (Generalized Dempster rule) Given b1,b2 ∈ Bel(M) as above,
define its min-conjunctive combination b1,2 : M → [0, 1] as follows: for all
a ∈M ,

b1,2(a) = s1,2(ρ∧a ). (6)

From (6) we then obtain: for all a ∈M ,

b1,2(a) =
�

M×M ρ∧a dμ1,2 =
�

M×M ρa(b ∧ c) dμ1(b) dμ2(c)

and in the case of countable support belief functions, this yields

b1,2(a) =
∑

b,c∈M ρa(b ∧ c) · μ1({b}) · μ2({c}).

Notice that the above expression reduces to b1,2(a) =
∑

d∈M

∑
b,c∈M,b∧c=d ρa(d)·

(μ1({b})·μ2({c})) =
∑

d∈M ρa(d)·μ∗({d}), where μ∗({d}) =
∑

b,c∈M,b∧c=d μ1({b})·
μ2({c}) is indeed a mass assignment and hence b1,2 ∈ Bel(M).

It is easy to check this combination of belief functions is well behaved.

Proposition 4. The above defined operation of combination of belief functions
with countable support satisfies the following properties:

1. is commutative, and associative;
2. the belief function bX defined by the mass assignment μ(X) = 1, and μ(Y ) =

0, for every Y �= X, is its neutral element.

Actually, the above min-conjunctive combination can be easily extended to well-
known MV-operations on fuzzy sets, like e.g. the max-disjunction ∨, strong con-
junction ) and strong disjunction ⊕, by defining (b1  b2)(a) = s1,2(ρ�

a ), for 
being one of these operations, and defining ρ�

a (b, c) = ρa(b c). This generalizes
classical conjuntive and disjunctive combination rules [8].

6 Conclusion and Future Work

In this paper we have introduced a generalization of belief functions on MV-
algebras of fuzzy sets that further extends Kroupa definition (cf. [15]) by al-
lowing focal elements to be fuzzy sets, and not just classical sets. Indeed focal
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elements play a central role in the (classical) theory of belief functions because
they can be interpreted as those basic pieces of information that are probabilis-
tically evaluated by the mass assignment to define the belief function we are
considering. More than the foundational aspects, another important role of focal
elements regards the fact that several particular belief functions (like probability
measures, necessity and possibility measures) can be characterized by the fact
that their focal elements satisfy a certain structural property.

In our future work we plan to investigate which further properties should
a nested class of focal elements satisfy in order to characterize necessity and
possibility measures on MV-algebras. Following the line of [16], we also plan
to deepen the study on belief functions on more general MV-algebras than the
ones considered in this paper where the notion of state is well developed and
enjoy particularly nice properties (like the class of semi-simple MV-algebras,
that can be represented as a certain class of continuous real-valued functions),
as well as investigating their algebraic and geometrical properties, and axiomatic
characterization. Moreover, following the line of [11], we also plan to introduce
a multi-modal expansion of �Lukasiewicz logic that could allow to treat both our
as well as Kroupa definition of belief function on finite MV-algebras. Indeed,
as a belief function on an MV-algebra is defined by combining a state s with
the map ρ : f ∈ [0, 1]X %→ ρf ∈ [0, 1][0,1]X (in our case, and the map ρ̂ : f ∈
[0, 1]X %→ [0, 1]P(X) in the case of Kroupa definition) that behaves like a necessity
measure on [0, 1]X , we argue that a belief function on a finite MV-algebra can be
axiomatized by combining the axioms of a state (cf. [9]) with the axioms for the
two possible extensions of the modal logic K on finite MV-algebras as provided
in [2] (i.e. the one relative to those Kripke frames with many-valued accessibility
relation, and the one that is complete with respect to those particular frames
whose accessibility relation is two-valued) to respectively characterize ρ and ρ̂.
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Abstract. We study a special kind of fuzzy relations capable of model-
ing that two elements in the universe of discourse are similar to the ex-
tend that they are close to each other with respect to a given scale. These
relations are reflexive and symmetric but not necessarily T-transitive. We
study the requirements to construct such relations from a large class of
fuzzy partitions that obey some useful but not severely constraining re-
quirements. We give some formal results, including a lower bound (in
terms of fuzzy sets inclusion) on the relations from this class that can be
derived from the general class of fuzzy partitions.

Keywords: similarity relations, fuzzy partitions.

1 Introduction

Similarity relations were first defined as a generalization of equivalence relations
in classical set theory. Lotfi Zadeh defined them as mappings R : Ω×Ω → [0, 1]
that are reflexive, symmetric and transitive, with transitivity defined by means
of the min operator (see [19]). Nowadays, transitivity in the fuzzy framework
is usually given by T-transitivity, defined with the use of any T-norm operator
and not just the min (see e.g. [17]). More recently, weaker forms of similarity
relations have been considered, in which reflexivity and symmetry are required,
but not necessarily T-transitivity [8][15]1.

Similarity relations and finite collections of fuzzy sets can both be used to
describe some concepts in a given domain, e.g., the sweetness of cups of coffee
[10]. Let us suppose we have a set of cups of coffee, ordered by the quantity of
sugar poured into them, and that we are interested in grading their similarity
according to their sweetness. One solution is to directly assign a number to each
pair of cups that models the similarity between them. Another possibility is to
derive parts of this relation from a previous classification of the cups of coffee
(either in a crisp or fuzzy manner), as, say, “too-bitter”,“good” or “too-sweet”.
We know, for instance, that cups that fall in the same class of sweetness should
be considered somewhat related, whereas cups from disjoint classes less so. Also,
the closer a cup of coffee is to the most representative cup of the class, the
1 Some authors call tolerance relations to fuzzy relations that are symmetric and that

obey a weaker reflexivity property (see e.g. [3]).

W. Liu (Ed.): ECSQARU 2011, LNAI 6717, pp. 640–650, 2011.
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more similar it is to that representative. Moreover, the similarity between a cup
of coffee with one spoon of sugar and another with three spoons is certainly
smaller than the similarity between either a cup with one spoon of sugar and
another with two spoons or between a cup with two spoons of sugar and another
with three spoons.

In classical set theory, a partition determines a unique equivalence relation
and vice-versa. However, the problem of obtaining conversions between a fuzzy
similarity relation and collections of fuzzy sets is not trivial, even though the
two formalisms are closely related to each other. This problem has been very
much addressed in what regards T-transitive similarity relations (see e.g. [17],
[18] [4]) but not in what concerns similarity relations in which transitivity does
not play a role, as in the coffee example.

Similarity relations that do not necessarily obey T-transitivity have been used
in several applications, such as fuzzy control [5], molecular biology [16] and case-
base reasoning [11] [7]. In these applications, the similarity relations in the real
scale obey an extra property: two numbers are similar to the extend that they
are close to each other with respect to the Euclidean distance [6] (see also [13]).
Here we focus in this kind of relations but considering any total order, which we
will call order compatible fuzzy relations (OCFR).

Several means can be devised to elicit order compatible fuzzy relations for an
application. If the set of useful values in the application is discrete, the user can
enter the similarity relation directly. In problems involving continuous domains,
one way to obtain order compatible fuzzy relations is to select a family of param-
eterized similarity relations and then either learn the parameters from data or
specify them directly. Here we are interested in yet another possibility: to derive
the fuzzy similarity relation from a finite collection of fuzzy sets. Using fuzzy sets
partitions, we are neither constrained to any fixed family of similarity relations,
nor obliged to construct the relation as a look-up table, something impossible
to do for continuous domains. Last but not least, the similarity relations can be
learnt from samples, going through the intermediary step of learning a fuzzy sets
partition.

In this work we study OCFRs and propose some reasonable requirements
that should be obeyed by methods that transform partitions into relations in
our context. Rather than proposing transformations between the two formalims,
the goal of this paper is to lay a formal basis for such transformations. We
address a large class of fuzzy partitions that can be used to derive the OCFRs
but focus particularly in the so-called Ruspini partitions.

This paper is organized as follows. In the following section we give some basic
definitions. In Section 3 we formally define a general class of fuzzy partitions
and in Section 4 we define order gradual fuzzy relations. In Section 5 we propose
properties to be obeyed when converting general fuzzy partitions into order
gradual fuzzy relations and give a lower bound for these relations in the sense
of fuzzy set inclusion. Finally, in Section 6 we conclude with some guidelines for
future work.
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2 Basic Definitions

A fuzzy set B on a domain Ω is a mapping B : Ω → [0, 1]. It is said to be
normalized when ∃x0 ∈ Ω such that B(x0) = 1. The core and support of a fuzzy
set Ai are defined as core(B) = {x | x ∈ Ω ∧B(x) = 1} and supp(B) = {x | x ∈
Ω ∧ B(x) > 0}), respectively. The height of a fuzzy set B is given by h(B) =
supx∈Ω B(x). The α-level cut from B is defined as [B]α = {x ∈ Ω | B(x) ≥ α}.

A fuzzy relation is a mapping from a multidimensional domain Ω1× ...×Ωn to
[0, 1]. Its normalization is defined as for fuzzy sets in one-dimensional domains.
A binary fuzzy relation S : Ω ×Ω → [0, 1] is a similarity relation on Ω when S
is reflexive (∀x ∈ Ω, S(x, x) = 1) and symmetric (∀x, y ∈ Ω, S(x, y) = S(y, x)).
Note that for some authors, similarity relations also have to obey T-transitivity:
*(S(x, y), S(y, z)) ≤ S(x, z) for all x, y, z ∈ Ω, where * : [0, 1]2 → [0, 1], called
a T-norm operator, is commutative, associative, monotonic and has 1 as neutral
element. Given two similarity relations S and S′, we say that S is finer than S′

if ∀x, y ∈ Ω, S(x, y) ≤ S′(x, y).

3 General Fuzzy Partitions

We introduce here the notion of a general fuzzy partition with respect to a total
order (GFP) as a finite collection of normalized fuzzy sets that covers a given
domain and is such that the cores of any pair of fuzzy sets in the partition are
disjoint. Let (Ω,�) be a total order and let A = {A1, ..., An} be a collection of
fuzzy sets in Ω. Formally, A is a GFP with respect to � if it obeys the following
properties:

1. ∀Ai ∈ A, ∃x ∈ Ω, Ai(x) = 1 (normalization of fuzzy sets)
2. ∀x, y, z ∈ Ω, ∀Ai ∈ A, if x � y � z then
∃α ∈ [0, 1], Ai(y) ≥ αAi(x) + (1− α)Ai(z) (convexity)

3. ∀x ∈ Ω, ∃Ai ∈ A, Ai(x) > 0 (domain covering)
4. ∀Ai, Aj ∈ A, if i �= j then core(Ai) ∩ core(Aj) = ∅

(non-core intersection)

Note that every GFP obeys the non-inclusion property:

∀Ai, Aj ∈ A, if (∀x ∈ Ω, Ai(x) ≤ Aj(x)) then i = j (non-inclusion).

Let GFP (Ω,�) denote the set of all general fuzzy partitions that can be
derived considering total order (Ω,�). We say that A is a n-general fuzzy par-
tition (n-GFP) if it belongs to GFP (Ω,�) and each element in Ω has non-null
membership to at most n fuzzy sets in A (n ≥ 2).

Some interesting properties that are worth of being considered for GFPs are:

– ∀x ∈ Ω,
∑

i Ai(x) = 1 (additivity)
–
⋂

Ai∈A supp(Ai) = Ω (unique support)
–
⋃

Ai∈A core(Ai) = Ω (core covering)
– ∀Ai, Aj ∈ A, if i �= j then (�α ∈ [0, 1], [Ai]α ⊆ [Aj ]α)

(non-level-cut-inclusion)
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The unique support property means that all fuzzy sets in a partition A on Ω
share the same support, the universe of discourse itself; as a consequence, any
element of domain Ω has positive membership to every fuzzy set in A.

The most noteworthy fuzzy partitions are strong partitions [14], also known as
Ruspini partitions, in which additivity also holds. Throughout this work, Ruspini
partitions that are 2-GFP will be called 2-Ruspini. The fuzzy sets in Ruspini
partitions are not always normalized, what makes sense in some applications.
For instance, let us suppose we want to classify the pixels in a given image,
where the classes are described by fuzzy sets in partition C= {C1, ..., Cn}, where
Ci : Ω → [0, 1] and Ω is a set of gray levels. It is natural to expect the Cis to
be normalized when they are furnished by an expert. But that does not usually
happen when the partitions are learnt from data; for example, when fuzzy C-
means clustering techniques are used [1], the clusters form Ruspini partitions
whose fuzzy sets are usually non-normalized. GFPs could be used to model the
first type of fuzzy partition but not the latter one.

An interesting kind of GFP is what we call a crown partition, which obeys
the unique support and non-core-intersection properties. This kind of partition
is useful to avoid inconsistencies in fuzzy rule bases that use residual implication
operators (see e.g. [9]).

Another example of GFP, here called core partition, is defined using the core-
covering and non-core-intersection properties. Together, these properties ensure
that every element of the universe of discourse Ω has membership equal to 1 to
exactly one fuzzy set in the partition; consequently, the cores of the fuzzy sets
themselves form a crisp partition on Ω. A core partition where an element of the
domain has positive membership to at most two fuzzy sets in A is a T-partition
(see e.g. [4]) and will be called a 2-core partition throughout the text.

Ruspini and core partitions are such that no level cut of one fuzzy set is
included in any of those of another fuzzy set in the same partition, described by
the non-level-cut-inclusion property above. This property is much stronger than
non-core-intersection and is not obeyed by crown partitions, for instance. Figure
1 illustrates a 2-Ruspini, a 2-core and a crown partition with three fuzzy sets
(the central fuzzy set in each partition is highlighted).

Other GFPs are not so well-behaved (see Figure 2). The interest of these
partitions is that, being less restricted than the more well-behaved GFPs, they
can be closer to data, in case the partitions is learnt by clustering the samples
in a given experiment.

a) b) c)

Fig. 1. Examples of 2-Ruspini (a), 2-core (b) and crown (c) triangular partitions
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a) b) c)

Fig. 2. Examples of triangular general fuzzy partitions

4 Orderly Gradual Fuzzy Relations

We introduce here the notion of an order compatible fuzzy relation (OCFR) as a
similarity relation that is compatible with a given total order. Let S : Ω2 → [0, 1]
be a fuzzy binary relation and (Ω,�) be a total order. Formally, S is an OCFR
with respect to �, denoted OCFR�, if it obeys the following properties:

– reflexivity and symmetry (see Section 2),
– If a � b � c, then min(S(a, b), S(b, c)) ≥ S(a, c), ∀a, b, c ∈ Ω (compatibility

with total order �).

The second property was proposed in [6] for Ω = +, called compatibility with
the Euclidean distance. It grasps the meaning of something being similar to
something else as opposed of being distant, in the usual (Euclidean) sense (see
also [13] for the same property in reciprocal preference relations context).

The T-transitivity and compatibility with total order properties are not mu-
tually exclusive; for instance S(x, y) = 1− | x−y | on + is both T-transitive and
compatible with total order ≤. Table 1 brings three fuzzy relations on Ω2, where
Ω = {a, b, c, d} and (Ω,�) is a total order, with a ≺ b ≺ c ≺ d. Relation S1

is an OCFR� and S2 is compatible with � but is not an OCFR� (it is neither
reflexive nor symmetric). S3 is T-transitive and is not an OCFR� since it obeys
neither compatibility with � nor symmetry.

Let * be a T-norm and let weak anti-T-transitivity be defined as ∀x, y, z ∈ Ω,
S(x, z) < *(S(x, y), S(y, z)). It is easy to prove that when (Ω,�) is a total
order, weak anti-T-transitivity implies compatibility with total order, since for
any T-norm * we have *(x, y) ≤ min(x, y). The converse is however not true:
any relation S such that ∃ x, y, z ∈ Ω, S(x, y) = S(y, z) is not weak anti-T-
transitive. S2 is an example of a relation that is compatible with total order but
not weak anti-T-transitive.

Table 1. Examples of fuzzy relations

S1 a b c d

a 1 .5 .5 .1
b .5 1 .7 .3
c .5 .7 1 .8
d .1 .3 .8 1

S2 a b c d

a .9 .5 .5 0
b .3 1 .7 .3
c .2 .4 1 .8
d .1 .2 .3 1

S3 a b c d

a 1 .2 .1 .7
b .2 1 .2 .2
c 1 .2 1 .6
d .8 .2 ..6 1



Order Compatible Fuzzy Relations and Their Elicitation 645

Note that although relation S2 is not reflexive, it obeys a weak kind of re-
flexivity: ∀x, y ∈ Ω, S(x, x) > 0 and S(x, y) ≤ S(x, x) (see [3]). Weak reflexivity
does not imply compatibility with total order, but the converse holds when
∀x, S(x, x) > 0.

5 Generating OCFRs from GFPs

Transformations (called standard) were proposed in [18], between unrestricted
collections of fuzzy sets and unrestricted fuzzy relations (called fuzzy partitions)
on a finite domain Ω. The transformation from partitions to relations are given
as follows.

– Let A={A1, ...Ak}, k ≤| Ω |, be a partition on Ω. A relation S∗ is obtained
from A as

S∗(x, y) = sup
i

min(Ai(x), Ai(y)).

Relation S∗ can also be stated in terms of level cuts:

[S∗]α(x, y) =
{

1, if ∃Ai ∈ A, ∃α ∈]0, 1], such that x, y ∈ [Ai]α
0, otherwise

S∗(x, y) = supα∈[0,1][S
∗]α(x, y)

Here we are only interested in obtaining an orderly general similarity rela-
tion from a general fuzzy partition, and the transformation above will serve as
the basis for our transformations. But before moving further, let us verify an
important property of S∗.

Proposition 1. Let (Ω,�) be a total order. Let A be a GFP wrt to � (i.e. the
Ai’s are convex wrt to �). Then S∗ : Ω ×Ω → [0, 1] defined as

S∗(a, b) = sup
i

min(Ai(a), Aj(b))

is compatible with �, i.e., if a � b � c, then min(S∗(a, b), S∗(b, c)) ≥ S∗(a, c).

Proof. It is enough to check that, for each i, we have both min(Ai(a), Ai(b)) ≥
min(Ai(a), Ai(c)) and min(Ai(b), Ai(c)) ≥ min(Ai(a), Ai(c)). Indeed, since the
Ai’s are convex fuzzy sets, one has to only consider the following cases regarding
the possible orderings among Ai(a), Ai(b) and Ai(c):

1. Ai(a) ≤ Ai(b) ≤ Ai(c)
2. Ai(a) ≤ Ai(b), Ai(b) ≥ Ai(c)
3. Ai(a) ≥ Ai(b) ≥ Ai(c)

It is very easy now to check that in each of these cases the required conditions
hold.
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Let S be a generic reflexive and symmetric relation on Ω, A be a fuzzy parti-
tion on Ω and S∗(a, b) = supi min(Ai(a), Ai(b)). Let us examine the following
properties:

– ∀Ai ∈ A, ∀c ∈ core(Ai), ∀x ∈ Ω, S(c, x) = S(x, c) = Ai(x)
(core compatibility);

– ∀a, b ∈ Ω, S(a, b) ≥ S∗(a, b) = supi min(Ai(a), Ai(b))
(support compatibility).

Core compatibility ensures that the “slice” from S, corresponding to an element
at the core of a set Ai, is exactly the same as Ai. Support compatibility ensures
that any two elements of Ω that belong to level cut [Ai]α of a fuzzy set Ai in A
will also belong to level cut [S]α of relation S.

We say that a fuzzy relation S is core-support compatible with a fuzzy partition
A defined in the same domain Ω, if S is core compatible and support compatible
with A. The following transformation is an example of a transformation that is
support compatible but not core compatible:

Ssupp(a, b) =
{

1, if ∃Ai ∈ A, a ∈ core(Ai)
S∗(a, b), otherwise

Let (Ω,�) be a total order and A = {A1, ..., An} be a 2-Ruspini partition.
Moreover, let

– Sid(a, b) =
{

1, if a = b
0, otherwise

– Si(a, c) = Si(c, a) =
{

Ai(a), if ∃Ai ∈ A, c ∈ core(Ai)
0, otherwise

– Sp(a, b) =
⋃

i Si(a, b), ∀a, b ∈ Ω
– Sf = Sid

⋃
Sp.

It is easy to prove that the finest reflexive and symmetric fuzzy relation that is
core compatible with GFP� A is given by Sf . This relation is not an OCFR�
because it is not compatible with total order �. Figure 3.b illustrates Sf for A =
{A1, A2, A3, A4, A5}, shown in Figure 3.a, with A1 = (0, 0, 2), A2 = (0, 2, 3),
A3 = (2, 3, 4), A4 = (3, 4, 6), A5 = (4, 6, 6). We can see that this fuzzy relation
is not support compatible with A; for instance, we have min(A1(4.5), A1(5)) > 0
but Sf (4.5, 5) = 0. It is also not a OCFR≤, because min(Sf (4.5, 5), Sf(5, 6)) = 0
but Sf (4.5, 6) > 0.

Proposition 2. Let (Ω,�) be a total order. The finest OCFR� core-support
compatible with a GFP A on Ω is given by S∗

id = S∗ ∪ Sid.

Proof. By definition, S∗ is obviously the finest symmetric fuzzy relation that
is core-support compatible with A. Its reflexive closure S∗

id = S∗ ∪ Sid is an
OCFR� and therefore it is the finest core-support compatible one with A.

Proposition 2 gives a lower bound on the core-support compatible OCFRs that
can be derived from a GFP A, considering a total order (Ω,�). In particular,
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a)

b) c)

Fig. 3. Example of a GFP A and its corresponding Sf and S∗ relations

the support of any relation S that is core and support compatible with A must
include the support of S∗, i.e., supp(S∗) ⊆ supp(S).

Proposition 3. Given a 2-Ruspini partition A on Ω, let S be any fuzzy binary
relation that is core and support compatible with partition A. Then supp(S) =
supp(S∗).

Proof. Since S∗ is finer than S, i.e. S ≥ S∗, we obviously have supp(S∗) ⊆
supp(S). To show the other inclusion, suppose x, y are such that S∗(x, y) = 0.
Since A covers Ω, there exists Ai ∈ A such that Ai(x) > 0. But by definition
of S∗, if Ai(x) > 0 then Ai(y) = 0. Since A is a 2-Ruspini partition, Ai(x) = 1.
Therefore, S(x, y) = Ai(y) = 0.

Proposition 3 gives an upper bound for the support of a fuzzy relation S derived
from a 2-Ruspini partition.

Figure 3.c depicts relation S∗ derived from the Ruspini 2-GFP A shown in
Figure 3.a. The projection of relation S∗

id for the same partition is shown in
Figure 4.a; the thin solid lines represent the level cut at α = .5, the dashed lines
represent the support and the broad diagonal line represents the core. It is easy
to see that, contrary to S∗

id, S∗ is weak-reflexive but not reflexive.
In Figure 4.a, the upper right and lower left regions represent the complement

of the support of both S∗ and S∗
id. We can see that we obtain the original

partition A, when we take a “slice” of the relation at the core of each fuzzy
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a) b)

Fig. 4. Projection of S∗
id and illustration of of core compatibility

set. Moreover, we can see that any pair of elements of the domain that belong
to the same α-level cut of a fuzzy set will also belong to the α-level cut in the
derived relation. Figure 4.b illustrates the boundaries for any 2-Ruspini relation
S′ that is core-compatible with A from Figure 3.a: the dashed and solid lines
indicate areas where necessarily S′(x, y) = 0 and S′(x, y) > 0, respectively. The
regions marked with “Supp*” constitute the support of S∗. The regions marked
with “Z” are between dashed lines which in fact constitute “zero” barriers for
the core-compatibility property.

6 Conclusion

We proposed here some properties that we find reasonable for a type of fuzzy
similarity relations, called order compatible fuzzy relations (OCFR), that are
useful when any two elements in the universe of discourse are considered to
be the more similar the closer they are with respect to a given total order.
We also introduced a general class of collections of fuzzy sets, called general
fuzzy partitions (GFP), and then proposed some compatibility properties that
we consider reasonable when generating OCFRs from them. We gave some formal
results; in particular, we calculated a lower bound on OCFRs that can be derived
from a GFP, in the sense of fuzzy set inclusion.

As future work, we intend to extend our study to other specific classes of
fuzzy partitions, such as crown partitions and core partitions. Also, we intend
to investigate generators of OCFRs from GFPs. Several methods may be in-
vestigated, such as those involving min-max operations and/or interpolation
schemes. One possible interpolation scheme consists in creating a fuzzy set
Aa and Ab for each pair of elements (a, b) of the domain Ω and then making
S(a, b) = min(Ab(a), Aa(b)). Another one consists in creating a fuzzy set Az for
each element z ∈ [a, b] and then making S(a, b) = supz∈[a,b] min(Az(a), Az(b)).
Note that even though these methods appear costly at first sight, it is possible
that they can be efficiently computed parting from a small set of relevant points
in a partition A, e.g., those given by the support and core of the fuzzy sets in A.
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In what regards which interpolation method to employ, there exists a plethora
of choices in the literature, many of them addressed in [2] and [12]. The appli-
cation of different pairs (interpolation method, approach) will certainly produce
different results but it is also likely that for some specific types of OCFRs (e.g.
Ruspini partitions), the results will be the same.
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Abstract. A web-service is a remote computational facility which is
made available for general use by means of the internet. An orchestration
is a multi-threaded computation which invokes remote services. In this
paper game theory is used to analyse the behaviour of orchestration eval-
uations when underlying web-services are unreliable. Uncertainty profiles
are proposed as a means of defining bounds on the number of service
failures that can be expected during an orchestration evaluation. An
uncertainty profile describes a strategic situation that can be analyzed
using a zero-sum angel-daemon game with two competing players: an
angel a whose objective is to minimize damage to an orchestration and
a daemon d who acts in a destructive fashion. An uncertainty profile is
assessed using the value of its angel daemon game. It is shown that un-
certainty profiles form a partial order which is monotonic with respect
to assessment.

Keywords: Web orchestrations, zero-sum games, angel-daemon games,
web incerta spiriti, uncertainty profile, assessment, partial order.

1 Introduction

Consider the behaviour of a set of services which have been made available
for general use on a wide-area network. Demand for a particular service s can
fluctuate – if the cost and quality of service (QoS) of s are attractive then s
is likely to acquire additional users. If demand is excessive then s may fail to
deliver its QoS (in an extreme situation s may fail).

Conventionally, probability is used to assess risk [5,6,7,14]. However, it is prob-
lematic to apply probabilistic techniques to the treatment of unreliable services
due to the complexity of the interactions within a web environment. In [1] the
term uncertainty refers to situations in which there are no objective standards
upon which to construct a probabilistic theory. In this paper we treat the uncer-
tainty associated with web-services by means of angel daemon games – the goal
is to formulate a way of analysing the performance of service-based computations
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in a way that lies between over-optimism (all services behave as specified by their
QoS specifications) and over-pessimism (all services are degraded, perhaps even
broken). This angel-daemon approach can be applied to both single and multi-
user web-service scenarios; in the former case a set of services are orchestrated to
deliver a specified outcome while in the later a number of users compete for re-
sources supplied by services [4]. In this paper the simpler orchestration scenario
is used to derive basic properties of uncertainity profiles.

2 Orc and Uncertainty Profiles

An orchestration is a user-defined program that utilises web services. Typical
examples of services might be: an eigensolver, a search engine or a database. A
service accepts an argument and publishes a result value1. For example, a call to
a search engine, find(s), may publish the set of sites which currently offer service
s. A service is said to be silent if it does not publish a result when called. Service
calls may induce side effects. A service call can publish at most one response. A
service s may fail to respond when it is called in an unreliable environment. The
orchestration language Orc [8] contains a number of inbuilt services: 0 is always
silent whereas 1 (x ) always publishes x. The service RTimer(t) returns a signal
after t units of time – RTimer is often used to program time-outs. if (b) publishes
a signal if b is true and remains silent otherwise. An orchestration which composes
a number of service calls into a complex computation can be represented by an
Orc expression. The simplest kind of Orc expression is a service call. Two Orc
expressions P and Q can be combined using the following operators:

– Sequence P > x > Q(x): The orchestration P is evaluated: for each output
v, published by P , an instance Q(v) is invoked. If P publishes the stream of
values, v1, v2, . . . vn, then P > x > Q(x) publishes some interleaving of the
set {Q(v1), Q(v2), . . . , Q(vn)}. The abbreviation P , Q is used in situations
where Q does not depend on x.

– Symmetric Parallelism P | Q: The independent orchestrations P and Q are ex-
ecuted in parallel; P | Q publishes some interleaving of the values published
by P and Q.

– Asymmetric parallelism P (x) < x < Q: The dependent orchestrations P and
Q are evaluated in parallel; P may become blocked by a dependency on x.
The first result published by Q is bound to x, the remainder of Q’s evaluation
is terminated and evaluation of the blocked residue of P is resumed. The
abbreviation P - Q is used in situations where P does not depend on x.

Example 1. Consider orchestrationswhich distribute digital newspapers by email.

Two Each = (CNN | BBC ) > x > (EmailAlice(x) | EmailBob(x))
One Each = ((CNN > x > EmailAlice(x)) | (BBC > x > EmailBob(x)))

Two Each delivers digital newspapers from both CNN and BBC to Alice and
Bob. In One Each only the CNN paper is delivered to Alice while only the BBC
paper is delivered to Bob. &'
1 The words “publishes”,“returns” and “outputs” are used interchangeably.
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Web environments are unreliable. Sites evolve and a user has little (or no) control
over the execution environment. When a complex orchestration E is evaluated
it is unrealistic to assume that all necessary services will be working.

Reliability assumption. Service performance is variable and services can
fail. A failed service remains silent when called. The behaviour of working
service is always consistent with its specification.

Let E be an orchestration and α(E) be the set of sites that are called in E with
α+(E) = α(E)\{0}. Let F denote a set a sites that are currently non-responsive.
The effect of evaluating an orchestration E in such an environment is found by
replacing all occurrences of services s, where s ∈ F , by 0. An orchestration
with multiple threads (and built-in redundancy) may still return partial results
even if some services fail. Let failF (E) denote the effect of evaluating E in an
environment where services in F fail.

Definition 1 (resilience measure). The behaviour of E in a failure environ-
ment F is denoted by failF (E). The resilience of failF (E) is out(failF(E)), the
number of outputs, out, published by E. Thus, 0 ≤ out(failF (E)) ≤ out(E).

Definition 2 (non-blocking service). A service s is non-blocking if the call
s(v1, . . . , vn) publishes a result for all well-defined arguments v1, . . . , vn; other-
wise s is potentially blocking.

For example, Rtimer(t) is non-blocking while if is potentially blocking. The
following Lemma is adapted from [3].

Lemma 1. Given a non-blocking, well formed expression E and a failure set
F ⊆ α+(E), the values out(E) and out(failF(F )) can be computed in polynomial
time with respect to the length of the expression E.

Proof. By definition out(0) = 0, out(1) = 1. For a non-blocking service s it
follows that out(s(v1, . . . , vk)) = 1 if all parameters are defined otherwise is
similar site 0. Let E1, E2 be non-blocking well formed Orc expressions,

out(E1|E2) = out(E1) + out(E2), out(E1 > z > E2(z)) = out(E1) ∗ out(E2(z))

Finally out(E1(z) < z < E2) = out(E1(z)) when out(E2) > 0, when out(E2) = 0
we have out(E1(z) < z < E2) = out(E1(⊥)) otherwise. Here E(⊥) denotes
the behaviour of E when z is undefined; E(⊥) is found by replacing all service
calls with a z-dependency by 0. Therefore, given a non-blocking well formed Orc
expression E, out(E), can be computed in polynomial time with respect to the
length of the expression E. &'

Example 2. If no failures arise in Example 1 then out(Two Each) = 4 and
out(One Each) = 2. If F = {CNN } then out(failF (Two Each)) = 2. If F =
{CNN ,EmailAlice} then out(failF(Two Each)) = 1. &'

From Lemma 1 it follows that
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Lemma 2 (monotonicity). Given a non-blocking, well formed expression E
and F ,F ′ in α+(E) such that F ⊆ F ′, it holds out(failF ′(E)) ≤ out(failF(E)).

The analysis of orchestration resilience is now extended from environments where
the identity of potentially failing services is fixed a priori to untrusted envi-
ronments where the identities of failing services are not specified in advance.
The proposed approach models service failure in a way that lies between over-
optimism (the only services that fail are those that do not adversely effect the
evaluation of E) and over-pessimism (all critical services fail). In α+(E) we con-
sider two disjoint sets A (angelic services) and D (daemonic services) such that
A∪D ⊆ α+(E). Sites in α+(E)\{A∪D} are trusted. Resilience is analysed by as-
suming that service failures in A cause the least amount of damage to E whereas
service failures in D maximise damage to the application. The notion of uncer-
tainty profile is introduced to model the perception of orchestration resilience.
A uncertainty profile defines A, D together with the number of service failures
that can be expected to occur within both A and D (fA, and fD, respectively):

Definition 3 (uncertainty profile). U = 〈E,A,D, fA, fD〉 is an uncertainty
profile for orchestration E where A ∪ D ⊆ α+(E), A ∩ D = ∅, fA ≤ #A and
fD ≤ #D.

The set of all uncertainty profiles for E is:

U(E) = {〈E,A,D, fA, fD〉 | A ∪ D ⊆ α+(E),A ∩D = ∅, fA ≤ #A, fD ≤ #D}

An orchestration E can be analysed using a number of different profiles selected
from U(E). For example, if t denotes the expected number of site failures that
occur during the evaluation of E then the performance of E could be anal-
ysed using the profiles Ubest = 〈E, α(E), {}, t, 0〉, Uworst = 〈E, {}, α(E), 0, t〉 and
Umixed = 〈E,A,D, p, q〉 where A ∪D ⊆ α(E) and p + q = t. In practice, mixed
case analysis could be carried out using several profiles, for different choices of
A and D. One option may be to indentify the set A with sites whose behaviours
are consistent with their SLAs and the set D with sites which are identified with
more chaotic behaviour.

A more restrictive version of uncertainty profile (called a risk profile [3]) sat-
isfies the stronger condition A ∪ D = α+(E). By relaxing this condition to
A ∪D ⊆ α+(E) it is possible to develop a partial order for profiles.

3 Angels and Daemons as Web Incerta Spiriti

Uncertainty profiles can be analysed using zero-sum games [11,12], as developed
by John von Neumann and Oskar Morgenstern [10]. Here a class of zero-sum
games called angel-daemon games [3] is used to provide a mixed analysis of
uncertainty, lying between over-optimism and over-pessimism.

Definition 4 (angel-daemon game). The profile U = 〈E,A,D, fA, fD〉 has
an associated zero-sum angel-daemon game Γ (U) = 〈{a, d}, Aa, Ad, ua, ud〉: the
players, a and d have the following sets of actions,
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– The angel a selects fA distinct failing services from A. Calls to remaining
services in A \ a are successful. The actions are Aa = {a ⊆ A | #a = fA}.

– The daemon d selects fD distinct failing services from D. Calls to remaining
services in D \ d are successful. The actions are Ad = {d ⊆ D | #d = fD}.

Sites which are not in either A or D are assumed to be working. A strategy
profile s = (a, d) defines a set of failing sites a∪d. The resilience of E under s is
measured by the angel’s utility ua(s) = out(faila∪d(E)). As the game is zero-sum:
ud(s) = −ua(s).

Here a and d model “ambiguity or uncertainty” and represent Web Incerta Spir-
iti [1]. Angel-daemon games are zero sum because ua(a, d) + ud(a, d) = 0. As
usual (in zero-sum games) all Nash equilibria (pure or mixed) are assessed using
player 1’s utility [10] (i.e. a’s utility). The value of this utility ν(Γ ) is called the
value of Γ . A player’s choice of action can be defined probabilistically. A mixed
strategy for player a is a probability distribution α : Aa → [0, 1] and, similarly,
a mixed strategy for d is a probability distribution β : Ad → [0, 1]. A mixed
strategy profile is a tuple (α, β) and ua(α, β) =

∑
(a,d)∈Aa×Ad

α(a)β(d)ua(a, d).
Let Δa and Δd denote the set of mixed strategies for a and d, respectively. It is
well known [10] that there is always a mixed saddle point (α, β) satisfying

ν(Γ ) = ua(α, β) = max
α′∈Δa

min
β′∈Δd

ua(α′, β′) = min
β′∈Δd

max
α′∈Δa

ua(α′, β′)

The set of saddle points (pure or mixed) coincides with the set of Nash equilibria
(pure or mixed). The following property is adapted from Proposition 116.2 in
[12]. A mixed strategy profile (α, β) is a mixed Nash equilibrium iff:

– for any a ∈ Aa such such that α(a) > 0 it holds ua(a, β) = ua(α, β),
– for any d ∈ Ad such such that β(d) > 0 it holds ud(α, d) = ua(α, β),
– for any a ∈ Aa such such that α(a) = 0 it holds ua(a, β) ≤ ua(α, β),
– and, for any d ∈ Ad such such that β(a) = 0 it holds ua(β, d) ≤ ua(α, β).

Definition 5 (assessment). The assessment ν(U) of an uncertainty profile U
is defined to be the value of its associated angel-daemon Γ (U) (i.e. ν(Γ (U))).

Example 3. Let E = A | B | ((C1 | C2 | · · · | Ck) - (D | F )), k ≥ 1. Consider
the uncertainly profile U1 = 〈E, {A}, {B, D}, 1, 1〉. In Γ (U1), the utilitites are
u1({A}, {B}) = out((0 | 0 | (C1 | C2 | · · · | Ck)- (D | F ))) = k. Using the usual
game representation Γ (U1) is :

a

d
{B} {D}

{A} k k + 1

Γ (U1)

a

d
{B} {D}

{A} k k + 1
{F} k + 1 2

Γ (U2)

and ν(U1) = k. Given U2 = 〈E, {A, F}, {B, D}, 1, 1〉, the game Γ (U2) has no
pne. Consider a mixed Nash equilibrium (α, β) such that α = (p, 1−p) and β =
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(q, 1− q) with 0 < p, q < 1. As p > 0 and 1− p > 0 it follows that ua({A}, β) =
ua({F}, β) = ua(α, β). As ua({A}, β) = k + 1 − q and ua({F}, β) = qk + 2 − q
we obtain q = (k−1)/k. Therefore ua({A}, β) = ua({F}, β) = k +1− (k−1)/k.

As q > 0 and 1−q > 0 it also follows that ua(α, {B}) = ua(α, {D}) = ua(α, β).
As ua(α, {B}) = k + 1− p and ua(α, β) = pk− p + 2 we get p = (k− 1)/k. Thus
Γ (U2) = ua(α, β) = k + 1− (k − 1)/k (> k). &'

Lemma 3. If U = 〈E,A,D, p, q〉 is an uncertainty profile then 0 ≤ ν(U) ≤
out(E). If A ∪ D = α+(E) and p + q = #α+(E) then ν(U) = 0. If p + q = 0
then ν(U) = out(E).

Proof. Let (α, β) a Nash equilibrium such that ua(α, β) = ν(U). For any (a, d)
it holds that out(faila∪d)(E) ≤ out(E) by Lemma 2 we have:

ua(α, β) =
∑

(a,d)∈Aa×Ad

α(a)β(d)ua(a, d) =
∑

(a,d)∈Aa×Ad

α(a)β(d)out(faila∪d)(E)

≤
∑

(a,d)∈Aa×Ad

α(a)β(d)out(E) = out(E)
∑

(a,d)∈Aa×Ad

α(a)β(d) = out(E)

Case ν(U) ≥ 0 is similar. When A ∪ D = α+(E) and p + q = #α+(E) it holds
outa∪d(E) = outα+(E)(E) = 0. When p + q = 0 as p = 0 and q = 0 it holds
outa∪d(E) = out∅(E) = out(E). &'

4 Partial Order Sets

Given U = 〈E,A,D, p, q〉 and U ′ = 〈E,A′,D′, p′, q′〉, U ′ is said to be less risky
than U (written as U 0 U ′) if all of the following conditions hold:

– the number of failures does not increase: p ≥ p′ and q ≥ q′.
– the angel has greater (or equal) freedom in U ′ compared to U : i.e. A ⊆ A′.
– the daemon has reduced (or equal) freedom in U ′ compared to U :: D′ ⊆ D.

Ordering profiles in this way gives rise to a partial order 0 (see Theorem 1, see
[2] for information about partial orders).

Definition 6. Given U = 〈E,A,D, p, q〉, U ′ = 〈E,A′,D′, p′, q′〉, we say U 0 U ′

if A ⊆ A′, D′ ⊆ D and p′ ≤ p, q′ ≤ q.

Theorem 1. Given E the set U(E) and the relation 0 form a partial order. The
top is *E = 〈E, α+(E), ∅, 0, 0〉 and ν(*E) = out(E). Given U = 〈E,A,D, p, q〉
and U ′ = 〈E,A′,D′, p′, q′〉 the lub (least upper bound) is

U ' U ′ = 〈E,A ∪A′,D ∩ D′, min{p, p′}, min{q, q′, #(D ∩ D′}〉

An element U is minimal iff for any U ′ such that U ′ 0 U it holds U ′ = U . The
set of minimal elements is min(E) = {〈E,A,D, #A, #D〉 | A∪D = α+(E)} and
the assessement of any U ∈ min(E) verifies ν(U) = 0.
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Proof. It is straightforward to prove that 0 is a partial order. Consider top. For
any U ∈ U(E) it holds U 0 *E because A ⊆ α+(E) and p ≥ 0, moreover ∅ ⊆ D
and q ≥ 0. Direct application of Lemma 3 gives the asessement of top. Consider
lub. To prove that U ' U ′ ∈ U(E) we check

(A ∪A′) ∩ (D ∩ D′) = (A ∩ (D ∩ D′)) ∪ (A′ ∩ (D ∩D′)) = ∅

Notice that U 0 U ' U ′ because A ⊆ A ∪ A′, min{p, p′} ≤ p, D ∩ D′ ⊆ D and
min{q, q′, #(D ∩D′)} ≤ q, similarly U ′ 0 U 'U ′. Finally, we prove that, for any
P = 〈E,AP ,DP , pP , qP , 〉 such that U 0 P and U ′ 0 P it holds U ' U ′ 0 P . As
A ⊆ AP and A′ ⊆ AP it holds A ∪ A′ ⊆ AP . As pP ≤ p and pP ≤ p′ it holds
pP ≤ min{p, p′}. As DP ⊆ D and DP ⊆ D′ it holds DP ⊆ D∩D′. As qP ≤ q and
qP ≤ q′ and from definition or uncertainty profile qP ≤ #DP ≤ #(D ∩ D′) it
holds qP ≤ min{q, q′, #(D ∩D′)}. We conclude U ' U ′ 0 P . Let us consider the
minimal elements. Let U = 〈E,A,D, p, q〉 be a profile such that U ∈ min(E). It
holds p = #A otherwise p < #A and it is possible to factor A as A = A′ ∪ A′′

such that #A′ = p and 〈E,A′,D, p, q〉 � U (the inclusion is strict) and U
is not minimal. Given a mininal element of the form U = 〈E,A,D, #A, q〉 it
holds #D = q otherwise #D > q and 〈E,A,D, #A, q + 1〉 � U . Finally given
U = 〈E,A,D, #A, #D〉 we need A ∪ D = α+(E), otherwise A ∪ D is strictly
included in α+(E), exists s ∈ α+(E)\(A∪D) and 〈E,A,D∪{s}, #A, #D〉 � U .
Let us prove the reverse. Let U = 〈E,A,D, #A, #D〉, A ∪ D = α+(E) and
P = 〈E,AP ,DP , pP , qP〉 be profiles such that P 0 U . As constraints AP ⊆ A
and pP ≥ #A go in opposite directions we get AP = A, pP = #A and P =
〈E,A,DP , #A, qP 〉. As restrictions D ⊆ DP , q ≤ qP go in the same direction we
could, in principle, add D′ elements to D get DP = D ∪D′ and mark in DP , qD
failures. However it is impossible because D ∪ A = α+(E) and there are “free”
elements to enlarge D. Lemma 3 gives ν(U) = 0 for U ∈ min(E). &'
From Theorem 1 we infer there is no glb (greather lower bound), Example 4
emphatizes that.

Example 4 (glb counterexample). Consider U1 = 〈E, {CNN }, ∅, 1, 0〉 and U2 =
〈E, ∅, {CNN}, 0, 1〉. Let us try to find U = 〈E,A,D, p, q〉 such that U 0 U1 and
U 0 U2. As the angelic sites increases in 0 we have A ⊆ {CNN } and A ⊆ ∅. This
forces A = ∅. As A = ∅ we have p = 0 and U = 〈E, ∅,D, 0, q〉. As the number
of angelic failures decreases with 0 we need pU1 ≤ p. We have a contradiction
because pU1 = 1 and p = 0. If there is no lower bound there is glb. &'
The intuitive notion of improvement described by the partial order (U 0 U ′)
should match the notion of assessement given in Definition 5 (i.e. when the
situation becomes less risky its the asessement should improve). Formally U 0
U ′ =⇒ ν(U) ≤ ν(U ′). This section establishes this property (see Theorem 2).

Definition 7 (split strategy). Given A, A′ such that A ⊆ A′, f ′
A ≤ fA and

α ∈ Δa, the mapping split(α) : A′
a → [0, 1] is:

split(α)(a′) =
1(

fA
f ′
A

) ∑
{a∈Aa|a′⊆a}

α(a)



658 J. Gabarro, M. Serna, and A. Stewart

Observe that #{a′ | a′ ⊆ a} =
(
fA
f ′
A

)
.

Example 5. Consider the case A = {1, 2, 3, 4} and A′ = A∪{5, 6, 7} with f ′
A = 2

and fA = 3. The set of actions in both cases are:

Aa = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}
A′

a = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {1, 7}, {2, 3}, . . .}

As {a ∈ Aa | {1, 2} ⊆ a} = {{1, 2, 3}, {1, 2, 4}}, {a ∈ Aa | {1, 5} ⊆ a} = ∅
and

(
fA
f ′
A

)
= 3 we have split(α)({1, 2}) = 1/3(α({1, 2, 3}) + α({1, 2, 4})) and

split(α)({1, 5}) = 0. &'

Lemma 4. Consider U = 〈E,A,D, fA, fD〉 and U ′ = 〈E,A′,D, f ′
A, fD〉 such

that A ⊆ A′ and f ′
A ≤ fA. For any α ∈ Δa it holds split(α) ∈ Δ′

a and
u′

a(split(α), β) ≥ ua(α, β). The assessments of U and U ′ satisfy ν(U ′) ≤ ν(U).

Proof. Following we note fA = p and f ′
A, then p′ ≤ p. First we prove that

split(α) ∈ Δ′
a. Observe that 0 ≤ split(α)(a′) ≤ 1, as α is a mixed strategy. Thus,∑

a′∈A′
a

split(α)(a′) =
∑

a′∈A′
a

1(
p
p′
) ∑

{a∈Aa|a′⊆a}
α(a) =

1(
p
p′
) ∑

{(a,a′)∈Aa×A′
a | a′⊆a}

α(a)

=
1(
p
p′
) ∑

a∈Aa

∑
{a′∈A′

a|a′⊆a}
α(a) =

∑
a∈Aa

α(a)
( 1(

p
p′
) ∑

{a′∈A′
a|a′⊆a}

1
)

=
∑

a∈Aa

α(a) = 1

For any a′ ∈ A′
a, a′ ⊆ a, and d ∈ Ad it follows that ua(a, d) ≤ u′

a(a
′, d) (since

out(faila∪d(E)) ≤ out(faila′∪d(E))). Applying this inequality to each a′, where
a′ ⊆ a, we get

ua(a, d) ≤ 1(
p
p′
) ∑

{a′ | a′⊆a}
u′

a(a
′, d).

The inequality between ua and u′
a is derived as follows:

ua(α, β) =
∑

a∈Aa

∑
d∈Ad

α(a)ua(a, d)β(d)

≤
∑

a∈Aa

∑
d∈Ad

1(
p
p′
) ∑

{a′∈A′
a | a′⊆a}

α(a)u′
a(a

′, d)β(d)

=
∑

a′∈A′
a

∑
d∈Ad

(
1(
p
p′
) ∑

{a∈Aa | a′⊆a}
α(a)

)
u′

a(a
′, d)β(d)

=
∑

a′∈A′
a

∑
d∈Ad

split(α)(a′)u′
a(a

′, d)β(d) = u′
a(split(α), β)

Finally, the zero-sum game characterizations

ν(U ′) = max
α′∈Δ′

a

min
β∈Δd

u′
a(α

′, β), ν(U) = min
β∈Δd

max
α∈Δa

ua(α, β)
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are used to establish that ν(U ′) ≤ ν(U): As ua(α, β) ≤ ua′(split(α), β) for
any α and β, choose a mixed strategy β∗(α) so that u′

a(split(α), β∗(α)) =
minβ u′

a(split(α), β). As minβ u′
a(split(α), β) ≤ maxα minβ u′

a(α, β) = ν(U ′) it
follows that ua(α, β∗(α)) ≤ u′

a(split(α), β∗(α)) ≤ ν(U ′). Given the following set
{(α, β∗(α)) | α ∈ Δa}, choose α∗ such that ua(α∗, β∗(α∗)) = maxα ua(α, β∗(α)).
As ν(U) = minβ maxα ua(α, β) ≤ maxα ua(α, β∗(α)) it follows that ν(U) ≤
ua(α∗, β∗(α∗)) and ν(U) ≤ ν(U ′). &'

Example 6. Reconsider Example 3 where U1 = 〈E, {A}, {B, D}, 1, 1〉, U2 =
〈E, {A, F}, {B, D}, 1, 1〉 and U1 0 U2. Thus, from Lemma 4, ν(U1) ≤ ν(U2).
The previous analysis showed that ν(U1) = k, ν(U2) = k + 1 − (k − 1)/k. As
k ≥ 1, 1− (k − 1)/k ≥ 0 it follows that ν(U1) ≤ ν(U2). &'

Definition 8 (joint strategy). Given D, D′ such that D′ ⊆ D, f ′
D ≤ fD and

β′ ∈ Δ′
d, the mapping joint(β′) : Ad → [0, 1] is:

joint(β′)(d) =
1(#D−f ′

D
fD−f ′

D

) ∑
{d′∈A′

d|d′⊆d}
β′(d′)

Example 7. Consider the caseD′ = {1, 2, 3, 4} andD = D′∪{5, 6, 7}with f ′
D = 2

and fD = 3. The set of actions in both cases are:

A′
d = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

Ad = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, . . . , {5, 6, 7}}

As {d′ ∈ A′
d | d′ ⊆ {1, 2, 3}} = {{1, 2}, {1, 3}, {2, 3}}, {d′ ∈ A′

d | d′ ⊆ {1, 2, 5}} =
{{1, 2}}, {d′ ∈ A′

d | d′ ⊆ {5, 6, 7}} = ∅ and
(
#D−fD′
fD−fD′

)
= 5 we have the following

joint(β′)({1, 2, 3}) = 1/5(β′({1, 2})+β′({1, 3})+β′({2, 3})), joint(β′)({1, 2, 5}) =
1
5β′({1, 2}) and joint(β′)({5, 6, 7}) = 0. &'

Using a similar approach to the proof of Lemma 4 together with the inequality

u′
d(a, d′) ≥ 1(

#D−fD′
fD−fD′

) ∑
{d∈Ad|d′⊆d}

ud(a, d)

we obtain the following lemma.

Lemma 5. Consider U = 〈E,A,D, fA, fD〉 and U ′ = 〈E,A,D′, fA, f ′
D〉 such

that D′ ⊆ D and f ′
D ≤ fD. For any β′ ∈ Δ′

d it holds joint(β′) ∈ Δd and
u′

d(α, β′) ≥ ud(α, joint(β′)). The assessements verify ν(U) ≤ ν(U ′).

Theorem 2. U 0 U ′ implies ν(U) ≤ ν(U ′).

Proof. Suppose U = 〈E,A,D, fA, fD〉 and U ′ = 〈E,A′,D′, f ′
A, f ′

D〉. As U 0 U ′ it
holds A ⊆ A′, D′ ⊆ D and f ′

A ≤ fA, f ′
D ≤ fD. The profile P = 〈E,A,D′, fA, f ′

D〉
verifies U 0 P , moreover by Lemma 5 we have ν(U) ≤ ν(P). The profile P also
verifies P 0 U ′, moreover by Lemma 4 we have ν(P) ≤ ν(U ′). By transitivity of
the partial order we get the result. &'



660 J. Gabarro, M. Serna, and A. Stewart

Fig. 1. Example of a contingency plan C = C(P, Q,R, S). Either P or Q execute the
first part of the job and either R or S execute the second part. The diagram is a
schematic representation of possible evaluation paths of C(P, Q, R, S).

5 Uncertainty and Risk

A risk-driven approach to software analysis associates every atomic service S
with two costs [7]: a user U making a successful call to S pays amount c(S)
(to S); in the case of unsuccessful call, S pays amount cdf (S) to U . Let p(S)
denote the probability of S failing to respond when called. In [7] risk is defined
quantitatively as r(S) = p(S)cdf (S).

Contingency plans (variant forms of orchestration) are used to compare the
risk-based and game theoretic approaches to analysing the effects of service
failure. A contingency plan specifies sub-computations to be launched in the
case of failure. For example the plan C = C(P, Q, R, S) is schematized in Figure
1 where the associated tree models the various execution paths, depending on the
reliability of the underlying services2. Plan C(P, Q, R, S) calls P first; if the call
succeeds then R is called – otherwise the default service Q is invoked before R
is called. Plan C(P, Q, R, S) can also be associated with costs c(C) and Cdf (C).
Here we assume a quid-pro-quo approach to failure by letting c(S) = cdf (S) and
c(C) = cdf (C).

The game theoretic approach to service-based computation can be adjusted
by modifying the utilities to measure cost (rather than reliability). C(P, Q, R, S)
can be analysed using an uncertainty profile U where α(C) denotes the atomic

2 Plan C(P, Q,R, S) is different from E = 1(y) < y < ((R(x)|S(x)) < x < (P |Q))
which calls P and Q in parallel.
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services appearing in C and Γ (U) denotes a game which takes account of the
execution cost of C:

Example 8. Consider plan C(P, Q, R, S) (Figure 1). Assume that the probability
of a service responding successfully is p (and that q = 1−p is the probability of a
service defaulting). All atomic services are assumed to have cost c and c(C) = βc.
The risk3 r(C) and the expected cost of the plan E(C) are:

r(C) = c(pq2(1− β) + pq3(2− β) + q2(2− β))
E(C) = r(C) + c(p2(β − 2) + 2p2q(β − 1) + p2q2β)

The path “P succeeds”; “R fails” and “S fails” has probability pq2 and cost −c
(payment to P ) + 2c (payments from R and S) −βc (cost of overall failure).
The risk of this path is thus pq2c(1 − β). If all services are operational then C
just calls P and then R with overall cost c(−2+β). Assigning β = 3 means that
the overall cost of this successful path is c. Then r(C) = c(−2pq2 − pq3 − q2)
and E(C) = r(C) + c(p2 + 4p2q + 3p2q2). When p = q = 1/2, r(C) = −9c/16,
E(C) = −3c/8.

Consider the uncertainty profile U = 〈C, {P, Q}, {R, S}, 1, 1〉 for the contin-
gency plan. The utility ca({P}, {R}) involves P defaulting (P pays C an amount
c), Q being called successfully (C pays Q an amount c), R defaulting and S being
called successfully. The overall cost is: ca({P}, {R}) = c(1 − 1 + 1 − 1 + β) =
βc = 3c. The game is assessed by:

a

d
{R} {S}

{P} βc = 3c (β − 1)c = 2c
{Q} (β − 1)c = 2c (β − 2)c = c

In Γ (U1), the strategy profile ({P}, {S}) is the only pure Nash equilibrium and
the assessment is ν(U) = 2c. &'

6 Conclusions

In this paper we have presented a means of analysing the behaviour of service-
based computations by means of game theory. Orchestrations such as P > Q >
R > S are susceptible to service failure. The assessment of this orchestration,
using any profile with a single service failure, is 0 (as expected). On the other
hand highly robust orchestrations, such as 1(x) < x < (Q|R|S), are assessed to
give an output provided that at most two failures occur in the services {Q, R, S}.
Complex orchestrations can be analysed using either best case behaviour (the
daemon set is empty) for an expected number of service failures, worst case
behaviour or even mixed behaviour (when the set of participating sites is parti-
tioned over A and D). In order to avoid contention about the service partition
3 Risk can be defined as the expected cost of failing to deliver a service. In plan

C(P, Q, R, S) the risk can be found by following each failure path and multiplying
the associated probability of the path by the cost of such a failure.



662 J. Gabarro, M. Serna, and A. Stewart

two (or more) different profiles could be used for mixed case analysis: the second
profile could simply reverse the angel and daemon characteristics of the first. It
has been shown that uncertainty profiles have expected monotonicity properties
– indeed it is these properties that give confidence to the use of game theory
as a means of analysing service-based computations. Finally, although we main-
tain that it is problematic to assign probabilities to service failures (due the the
complexity of interactions in a web-environment), a comparison of a risk-driven
approach to the proposed game-theoretic approach is given.
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3 CRIL-CNRS 8188, Université d’Artois, Rue Jean Souvraz SP 18,
62307 Lens Cedex France
hue@cril.univ-artois.fr

This paper presents the results of the VENUS european project aimed at providing

scientific methodologies and technological tools for the virtual exploration of deep wa-

ter archaeological sites. We focused on underwater archaeological 3D surveys validation

problem. This paper shows how the validation problem has been tackled within the Re-

moved Sets framework, according to Removed Sets Fusion (RSF) and to the Partially

Preordered Removed Sets Inconsistency Handling (PPRSIH). Both approaches have

been implemented thanks to ASP and the good behaviour of the Removed Sets oper-

ations is presented through an experimental study on two underwater archaeological

sites.

1 Introduction

The VENUS European Project (Virtual ExploratioN of Underwater Sites, IST-
034924)1 aimed at providing scientific methodologies and technological tools for
the virtual exploration of deep underwater archaeology sites. In this context,
digital photogrammetry is used for data acquisition. The knowledge about the
studied objects is provided by both archaeology and photogrammetry. One task
of the project was to investigate how artificial intelligence tools could be used
to perform reasoning with underwater archaeological 3D surveys. More specif-
ically, this task focused on the validation problem of underwater artefacts 3D
surveys. Within this project two different conceptual descriptions of the surveyed
artefacts have been proposed leading to two different solutions both developed
within the Removed Sets framework. This syntactic approach is more suitable
than a semantic one, in order to pinpoint the errors that cause inconsistency.
The present paper provides a synthesis of these two solutions. The first solu-
tion stems from the Entity Conceptual Model for modeling generic knowledge
and uses instanciated predicate logic as representation formalism and Removed
Sets Fusion (RSF) with Sum strategy for reasoning [9]. The second one is based
on an application ontology for modeling generic knowledge and the belief base
is represented in instanciated predicate logic equipped with a partial preorder

1 http://www.venus-project.eu

W. Liu (Ed.): ECSQARU 2011, LNAI 6717, pp. 663–674, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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and Partially Preordered Removed Sets Inconsistency Handling (PPRSIH) for
reasoning [17]. The paper is organized as follows. After describing in Section 2
the validation problem in the context of the VENUS project, Section 3 gives
a brief synthetic presentation of the Removed Sets framework. Section 4 shows
how the validation problem is expressed as a RSF problem while Section 5 shows
that how the validation problem can be reduced to a PPRSIH problem. Finally,
Section 6 discusses the results of the experimental study before concluding.

2 The Validation Problem in VENUS

In the context of the VENUS project, digital photogrammetry is used for data
acquisition. Usual commercial photogrammetric tools only focus on geometric
features and do not deal with the knowledge concerning the surveyed objects.
The general goal is the integration of knowledge about surveyed objects into the
photogrammetric tool ARPENTEUR [5] in order to provide more “intelligent”
3D surveys. In this project, we investigated how Artificial Intelligence tools can
be used for representing and reasoning with 3D surveys information.

Within the context of underwater archaeological surveys, we deal with infor-
mation of different nature. Archaeologists provide expert knowledge about arte-
facts, in most of the cases amphorae. Archaeological knowledge takes the form of
a characterization of amphorae thanks to a typology hierarchically structured.
For each type corresponds a set of features or attributes which we assign an
interval representing the expected values for an amphora of this type.

The data acquisition process provides measures coming from the photogram-
metric restitution of surveyed amphorae pictures on the underwater site (see ➀
in figure 1). These observations usually are uncertain, inaccurate or imprecise
since the pictures are taken “in situ”, their quality could not be optimal, be-
cause of the hostile environment: weather conditions, visibility, water muddying,
site not cleaned, . . . Moreover, errors could occur during the restitution step.
For all these reasons, the archaeological knowledge (see ➁ in figure 1) and the
data coming from the photogrammetric acquisition process could conflict. This
special case of inconsistency handling is a validation problem because the mea-
sured values of attributes of a surveyed amphora “in situ”, an instance, may not
fit with the characterization of the amphorae type it is assumed to belong to.
The VENUS project does not use image recognition. The generic knowledge is
inserted in the system by the experts. There is no automatic image recognition
since the experts recognise the objects in the image during the measuring step
thanks to their a priori knowledge.

Example 1. We illustrate the validation problem with the Pianosa island site
[12]. There are 8 types of amphorae: Dressel20, Beltran2B, Gauloise 3, . . . and
each type of amphorae is characterized by 9 attributes, totalHeight, totalWidth,
totalLength, bellyDiameter, internalDiameter, . . . [14]. However, the only measur-
able attributes are totalHeight, totalLength2. Default values for these attributes

2 For amphorae the attributes totalWidth and totalLength have the same value since
there are revolution objects.
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take the form of a range of values [v − v.t%, v + v.t%] centered around a typi-
cal value v (expressed in m.) where t is a tolerance threshold. For example, the
default values for the attributes totalHeight and totalLength for the Dressel20
type are [0.5328, 0.7992] and [0.368, 0.552], while for a Beltran2B type they
are [0.9008, 1.3512] and [0.3224, 0.4836]. Suppose, during the photogrammetric
restitution process, the expert focuses on a given amphora, he recognizes as a
Beltran2B. When the survey provides the values 1.13 as totalHeight and 0.27 as
totalLength, the question is do these values fit with the characterization of the
Beltran2B? When the values do not fit, the most probable reason is that the
measures are incorrect due to bad conditions of acquisition.

In order to provide a qualitative representation of this validation problem, a con-
ceptual description of archaeological knowledge is required (see ➁ in figure 1).
Several conceptual descriptions have been used within the VENUS project. At
the beginning of the project, we used a object oriented conceptual description,
restricted form of the Entity Model approach [16]. The restricted Entity Model
is denoted by E = {C, Vd, CI} where C is a concept (or a class), Vd is the set
of default values for the attributes, CI is a set of constraints on attributes. The
concepts are the types of amphorae surveyed on the archaeological site. For each
concept, that is each type of amphorae, we represent the measurable attributes.
The default values for these attributes take the form of a range of values and Vd is
a set of intervals, each interval corresponding to the possible values of attributes
for a given type of amphorae. The set of constraints on the attributes CI consists
in integrity contraints, domain constraints and conditional constraints which ex-
press the compatibility of the measured values of attributes with the default values
of attributes for a given type. The belief profile consists of the generic knowledge
according to the restricted Entity Model provided by the typology.xml file and
of the instances of amphorae provided by the amphora.xml file.

During the project, we constructed an application ontology [13] from a do-
main ontology which describes the vocabulary on the amphorae (the studied
artefacts) and from a task ontology describing the data acquisition process. This
ontology consists of a set of concepts, relations, attributes and constraints like
domain constraints. The belief base contains the application and ontology, con-
straints and observations. The ontology represents the generic knowlegde which
is preferred to observations. Due to the lack of space, we only consider a small
part of the ontology (Figure 2).

3 The Removed Sets Framework

The Removed Sets framework provides a syntactic belief change approach for
revision and fusion. When dealing with belief change operations since we deal
with uncertain, incomplete, dynamic information, inconsistency can result. In
order to provide a consistent result of the change operation, the Removed Sets
approach focuses on the minimal set of formulae to remove, called Removed sets,
in order to restore consistency. The Removed Sets operations have been proved to
be equivalent to the ones based on maximal consistent subsets [15,4,1]. However,
in the context of applications where few inconsistencies may occur, the Removed
Sets approach seems to be more efficient when implementing large belief bases.
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Fig. 1. General scheme

Initially, the Removed Sets approach has been proposed for revising proposi-
tional formulae in CNF (RSR [11,18]). It has then been generalized to arbitary
propositional formulae for revision and fusion (RSF [9]). The Removed Sets ap-
proach has been extended to totally preordered belief bases (PRSR [2]), (PRSF
[8]) and more recently to partially preordered belief bases for revision (PPRSR
[17]). A central notion is the one of potential Removed Set3 which are sets of
formulas whose removal restores consistency into the union of belief bases.

Definition 1. Let E = {K1, . . . , Kn} be a belief profile such that K1, . . . , Kn

are propotional belief bases and K1' . . .'Kn is inconsistent (' denotes set union
with accounting for repetitions). X ⊆ K1 ' . . . ' Kn is a potential Removed
Set of E if and only if (K1 ' . . . ' Kn)\X is consistent.

The collection of potential Removed Sets of E is denoted by PR(E). Since the
number of potential Removed Sets of E is exponential w.r.t. the number of for-
mulae, we only consider the minimal potential Removed Sets w.r.t. set inclusion.
Moreover belief change operations or belief change strategies are formalized in
terms of total preorders or partial preorders on potential Removed Sets minimal
w.r.t. set inclusion.

3.1 Removed Sets Fusion

For Removed Sets Fusion, the fusion strategies (Card, Sum, Max, GMax) are
formalized thanks to a total preorder over PR(E). Let X and Y be two potential

3 We give the definitions in the general setting of fusion where revision is a special
case.
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Removed Sets, for each strategy P a total preorder≤P over the potential Removed
Sets is defined. X ≤P Y means that X is preferred to Y according to the strategy
P . We define <P as the strict total preorder associated to ≤P (i.e. X <P Y if and
only if X ≤P Y and Y �≤P X).

Definition 2. Let E = {K1, . . . , Kn} be a belief profile such that K1 ' . . . 'Kn

is inconsistent. X ⊆ K1 ' . . . ' Kn is a Removed Set of E according to the
strategy P if and only if i) X is a potential Removed Set of E; ii) �X ′ ∈ PR(E)
such that X ′ ⊂ X; iii) �X ′ ∈ PR(E) such that X ′ <P X.

The collection of Removed Sets of E according to the strategy P is denoted by
RP (E). The Removed Sets Fusion operation is defined by:

Definition 3. Let E = {K1, . . . , Kn} such that K1 ' . . . ' Kn is inconsistent.
The merging operation is defined by: ΔRSF

P (E) =
⋃

X∈RP (E){(K1'. . .'Kn)\X}.

3.2 Partially Preordered Removed Sets Inconsistency Handling

Let K be a finite set of arbitrary formulae and �K be a partial preorder on
K. Restoring the consistency of a partially preordered belief bases involves the
definition of a partial preorder on subsets of formulae, called comparators [3,19].
Several ways have been proposed for defining a preference relation on subsets
of formulae of K, from a partial preorder �K . In the VENUS project, we focus
on the lexicographic preference [19] which extends the lexicographic preorder
initially defined for totally preordered belief bases to partially preordered belief
bases. The belief base K is partitionned such that K = E1 ' . . . ' En (n ≥ 1)
where each subset Ei represents an equivalence class of K with respect to =K

which is an equivalence relation. A preference relation between the equivalence
classes Ei’s, denoted by ≺s is defined by Ei ≺s Ej iff ∃ϕ ∈ Ei, ∃ϕ′ ∈ Ej

such that ϕ ≺K ϕ′. This partition can be viewed as a generalization of the
idea of stratification defined for totally preordered belief bases. We rephrase the
lexicographic preference defined in [19] as follows:

Definition 4. Let �K be a partial preorder on K, Y ⊆ K and X ⊆ K. Y is said
to be lexicographically preferred to X, denoted by Y �� X, iff ∀i, 1 ≤ i ≤ n:
if |Ei ∩ Y | > |Ei ∩ X | then ∃j, 1 ≤ j ≤ n such that |Ej ∩ X | > |Ej ∩ Y | and
Ej ≺s Ei.

Let PR(K) be the set of potential removed sets. Among them, we want to prefer
the potential removed sets which allow us to remove the formulae that are not
preferred according to �K . Therefore we generalize the notion of Removed Sets
to subsets of partially preordered formulae. We denote by R�(K) the set of
removed sets of K.

Definition 5. Let K be an inconsistent belief base equipped with a partial pre-
order �K. R ⊆ K is a removed set of K iff i) R is a potential removed set; ii)
�R′ ∈ R�(K) such that R′ ⊂ R; iii) �R′ ∈ R�(K) such that R′ �� R.

Definition 6. Let K be an inconsistent belief base equipped with a partial per-
order �K . Restoring the consistency leads to a consistent belief base K ′ such
that K ′ =

⋃
X∈R�(K){K\X}.
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3.3 ASP Implementation

In order to implement belief change operations within the Removed sets frame-
work, we translate the belief change problem into a logic program with answer
set semantics. This method proceeds in two stages. The first stage consists in the
translation of E into a logic program ΠE and we have shown that the answer
sets of ΠE correspond to the potential removed sets of E [9].

Let E be a belief profile4. Each propositional variable a occuring in E is
represented by an ASP atom a ∈ A in ΠE . The set of all positive, (resp. negative)
literals of ΠE is denoted by V +, (resp. V −). The set of rule atoms representing
formulae is defined by R+ = {rf | f ∈ E} and FO(rf ) represents the formula of
E corresponding to rf in ΠE , namely ∀rf ∈ R+, FO(rf ) = f . This translation
requires the introduction of intermediary atoms representing subformulae. We
denote by ρj

f the intermediary atom representing f j which is a subformula of
f ∈ E. The first part of the construction has two steps:

1. We introduce rules in order to build a one-to-one correspondence between
answer sets of ΠE and interpretations of V +. For each atom, a ∈ V + two
rules are introduced: a ← not a′ and a′ ← not a where a′ ∈ V − is the
negative atom corresponding to a.

2. We introduce rules in order to exclude the answer sets S corresponding
to interpretations which are not models of (E\F ) with F = {f | rf ∈ S}.
According to the syntax of f , the following rules are introduced: (i) If f =def

a then rf ← not a is introduced; (ii) If f =def ¬f1 then rf ← not ρf1 is
introduced; (iii) If f =def f1∨. . .∨fm then rf ← ρf1 , . . . , ρfm is introduced;
(iv) If f =def f1 ∧ . . . ∧ fm then it is necessary to introduce several rules:
∀1 ≤ j ≤ m, rf ← ρfj .

This stage is common to any belief change operation while the next one depends
on the chosen belief change operation.

In case of fusion the second stage provides, according to selected strategy P ,
another set of rules that leads to the program ΠP

E and we have shown [9] that
the answer sets of ΠP

E correspond to the removed sets of E for a strategy P .
In the validation problem since we have to minimize the number of formulae to
remove, therefore the number of formulae occuring in a removed set, we select
the Sum strategy. This strategy is expressed by the minimize{} statement and
the new logic progam ΠSum

E = ΠE ∪minimize{rf | rf ∈ R+} is such that the
answer sets of ΠSum

E which are provided by the CLASP solver [7] correspond to
the removed sets of ΔRSF

Sum(E) [9].
In case of partially Preordered Removed Sets Inconsistency Handling the

CLASP solver [7] gives the answer sets of ΠE . We then construct a partial
preorder between them using the lexicographic comparator ��. We have shown
in [17] that the preferred answer sets according to �� correspond to the removed
sets of E. We used a java program to partially preorder the answer sets to ob-
tain the preferred answer sets. Since the lexicographic comparator satisfies the
monotony property [19], it is sufficient to compare the answer sets which are
minimal according to the inclusion. Moreover, the determination of the minimal
4 In case of inconsistency handling the profile E is reduced to a belief base K.
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answer sets according to this partial preorder does not increase the computa-
tionnal cost, since this cost is insignificant compared to the cost of answer sets
computation by CLASP.

4 The Validation Problem within RSF

In order to represent the validation problem within the RSF framework and to
implement it with ASP, we represented this problem with instanciated predicate
logic. The belief profile consists of two belief bases. The first one stems from
the restricted Entity Model conceptual description and represents the generic
knowledge. We introduce the predicates type(x, y) and cmp(z, y, x) where x is
an amphora, y is a type of amphorae and z is an attribute. type(x, y) expresses
that an amphora x belongs to a type y and cmp(z, y, x) expresses that an at-
tribute z of an amphora x of type y has a value compatible with the possible
values for the type y, as specified in 2. The domain constraints specify that an
amphora must have one and only one type. For n types of amphorae, for each
amphora there is one disjunction type(x, y1) ∨ . . . ∨ type(x, yn) and n(n − 1)/
2 mutual exclusion formulae ¬type(x, yi) ∨ ¬type(x, yj). The conditional con-
straints specify the compatibility of the attributes values with respect to the
type. For each amphora x, for each attribute z and for each type y, there is a
formula type(x, y) → cmp(z, y, x). Let m be the number of attributes, the in-
compatibility of type specifies that for each amphora and each type there is a
formula ¬cmp(z1, y, x) ∧ . . . ∧ ¬cmp(zm, y, x) → ¬type(x, y). The second belief
base represents the instances of amphorae: the type the observed amphora be-
longs to (namely type(x, y)) and the compatible attributes with the type (namely
cmp(z, y, x)). We illustrate the RSF approach with the example 1.

Example 2. We limit ourselves to only two types of amphorae Beltran2B and
Dressel20, respectively denoted by B2B and D20 thereafter, and to the sur-
vey of one observed amphora (denoted by 4 hereafter). Two attributes are
used: totalHeight (denoted by tH) and totalLength (denoted by tL). The
first belief base is automatically generated from the typology.xml file and
K1 = {¬type(4,B2B) ∨ ¬type(4,D20), type(4,B2B) ∨ type(4,D20), type(4,D20) →
cmp(tH,D20, 4), type(4, D20) → cmp(tL,D20, 4), type(4,B2B) → cmp(tH, B2B, 4),

type(4,B2B) → cmp(tL, B2B, 4), ¬cmp(tH,B2B, 4) ∧ ¬cmp(tL, B2B, 4) → ¬type(4,

B2B), ¬cmp(tH,D20, 4) ∧ ¬cmp(tL, D20, 4) → ¬type(4,D20) }. The second belief
base corresponding to the observed amphora is automatically generated from
typology.xml and amphora.xml files and K2 = {type(4,B2B), cmp(tH,B2B, 4)}.
The operation ΔRSF

Sum,�(E) where E = {K1, K2} is translated into ΠSum
E as

follows:

cmp(tH,B2B, 4). 1 {type(4, d20), type(4,B2B)} 1.
r(x0) ← not type(4,B2B). n type(4,B2B) ← r(x0).
r(x5) ← type(4, d20), not cmp(tH, d20, 4),

not cmp(tL, d20, 4).
← n type(4, d20), type(4, d20).

r(x1) ← type(4, d20), not cmp(tH,d20, 4). n cmp(tH,d20, 4) ← r(x1).
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r(x2) ← type(4, d20), not cmp(tL, d20, 4). n cmp(tL, d2, 4) ← r(x2).
r(x6) ← type(4,B2B), not cmp(tH,B2B, 4),

not cmp(tL, B2B, 4).
← n type(4,B2B), type(4,B2B).

r(x3) ← type(4,B2B), not cmp(tH,B2B, 4). n cmp(tH,B2B, 4) ← r(x3).
r(x4) ← type(4,B2B), not cmp(tL,B2B, 4). n cmp(tL, B2B, 4) ← r(x4).

minimize {r(x0), r(x1), r(x2), r(x3), r(x4)r(x5), r(x6)} .

Note that the ASP translation uses some shortcuts compared to the translation
scheme depicted in section 3.3. Thanks to the cardinality literals by recent ASP
solvers, the unique type constraint is reduced to a single rule 1 {type(4, d20),
type(4, B2B)} 1. Also, the generation of the rule corresponding to type(4, B2B)
and the mutual exclusion between this atom and its classical negation are com-
pacted into a single rule.

The only answer set of the above program is {cmp(tH, B2B, 4),
type(4, B2B), r(x4), n cmp(tL, B2B, 4)} which corresponds to the removed set
{type(4, B2B) → cmp(tL, B2B, 4)} that pinpoints a bad measure for the total
length attribute under the hypothesis of an amphora of type Beltran2B.

5 The Validation Problem within PPRSIH

The conceptual description in this approach is represented in terms of an appli-
cation ontology and an extract is illustrated in Figure 2.

Fig. 2. Extract of the application ontology

The belief base consists of the application ontology, the constraints and the
instances of amphorae represented in predicate logic. The introduced predicates
are shown in an instanciated version in Table 1. The formulae corresponding to
the extract of the ontology are given below where amph, amph it, arch it, meas it,

metro, has metro, tL, tH , type denote amphora, amphora item, archaeological item,

measurable item, metrology , has metrology, totalLenght, total Height, typology re-
spectively: ∀x arch it(x) → meas it(x), ∀x amph it(x) → arch it(x), ∀x amph(x) →
amph it(x), ∀x meas it(x) → ∃z has metro(x, z), ∀x∀z has metro(x, z) → metro(z),

∀z metro(z) → ∃l tL(z, l)∧∃h tH(z, h), ∀x amph(x) → amph it(x)∧(type(x,y1)∨· · ·∨
type(x, yn)). The set of constraints consists in integrity constraints which specify
that the value of attributes do not exceed a given value, domain constraints are
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specified by cardinality constraints within the application ontology and condi-
tional constraints express the compatibility of the attribute values with respect
to the type. The domain constraints are expressed like in Section 4 by one dis-
junction ∀x type(x, y1)∨· · ·∨ type(x, yn) and n(n−1)/2 mutual exclusion formulae
¬type(x, yi)∨¬type(x, yj). The integrity constraints are expressed by the formulae:
∀x meas it(x) → ∃z∃h(tH(z, h) ∧ cmpMItH(h,x)), ∀x meas it(x) → ∃z∃l(tL(z, l)∧
cmpMItL(l, x)), ∀x arch it(x) → ∃z∃h(tH(z,h)∧ cmpARItH(h,x)), ∀x arch it(x) →
∃z ∃l (tL(z, l) ∧ cmpARItL(l, x)), ∀x amph it(x) → ∃z∃h(tH(z,h)∧ cmpAItH(h,x)),

∀x amph it(x) → ∃z∃l(tL(z, l)∧ cmpAItL(l, x)). The conditional constraints are ex-
pressed by the formulae: ∀x type(x, yi) → ∃z∃h(tH(z, h)∧cmptH(h, yi)) ∀x, type(x, yi)

→ ∃z∃l(tL(z, l) ∧ cmptL(l, yi)). The formulae corresponding to the instances of
amphorae are amph(x), type(x, y), metro(z), meas it(x), arch it(x), amph it(x),

has metro(x, z), tL(z, l) ∧ cmpMItL(l, x) ∧ cmpARItL(l, x) ∧ cmpAItL(l, x) ∧
¬cmptL(l, yi) and tH(z, h) ∧ cmpMItH(h,x) ∧ cmpARItH(h,x) ∧ cmpAItH(h,x) ∧
¬cmptH(h, yi). The belief base is equipped with a partial preorder which reflects
the hierarchy of concepts in the ontology. Moreover constraints are preferred
to the ontology which is preferred to the instances. We illustrate the PPRSIH
approach thanks to example 1.

a = b
↓
ai

INSTANCE ↓
ari m =
↓ l ∧ cMIl

∧ cARIl
∧ cAIl

∧ ¬clb
=

mi = hm h ∧ cMIh
∧ cARIh

∧ cAIh
∧ chb

↓
a → ai ∧ b

↓
ai → ari ↓

ontology ↓
ari → mi

↓
GENERIC mi → hm = hm → m m → l ∧ h

KNOWLEDGE ↘ ↙
(d ∨ b) ∧ (¬b ∨ ¬d) =

d → l ∧ cld
= d → h ∧ chd

= b → l ∧ clb
= b → h ∧ chb

↓
constraints ai → h ∧ cAIh

= ai → l ∧ cAIl
↓

ari → h ∧ cARIh
= ari → l ∧ cARIl
↓

mi → h ∧ cMIh
= mi → l ∧ cMIl

Fig. 3. Partial preorder on formulae of the belief base

Example 3. We limit ourselves to the amphorae types Beltran2B and Dressel20
and to the survey of the observed amphora denoted by 4. Table 1 presents the
instanciated predicates and Figure 3 illustrates the partially preordered belief
base.

The validation problem is translated into a logic progam ΠE in the same
spirit than the one presented in section 3.3. CLASP provides 1834 answer sets.
However, if only focusing on the minimal answer sets with respect to inclusion
we have to partially preorder 320 answer sets. According to the lexicographic
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Table 1. Instanciated predicates and their corresponding proposition p

predicate p predicate p predicate p

meas it(4) mi arch it(4) ari amph it(4) ai

amph(4) a metro(m) m type(4,Dressel20) d
type(4,Beltran2B) b has metro(4,m) hm tL(m, l) l

tH(m,h) h cmpMItL(l, 4) cMIl cmpARItL(l,4) cARIl

cmpAItL(l, 4) cAIl cmpMItH(h,4) cMIh cmpARItH(h,4) cARIh

cmpAItH(h,4) cAIh cmptL(l, Dressel20) cld cmptH(h,Dressel20) chd

cmptL(l, Beltran2B) clb cmptH(h,Beltran2B) chb
amph(4) a

type(4,Beltran2B) b metro(am) am

comparator ��, we obtain two uncomparable preferred answer sets S1 and S2

such that FO(S1∩R+) = {a, b} and FO(S2∩R+) = {l∧cARIl
∧cAIl

∧cMIl
∧¬clb}.

Therefore, there are two removed sets R1 = {a, b} and R2 = {l∧ cARIl
∧ cARIl

∧
cMIl

∧ ¬clb}. The removed set R1 pinpoints the typology while R2 pinpoints
that the value of TotalLength attribute may be wrong. This approach provides
2 removed sets while the RSF one only provides one removed set. The reason is
that in PPRSIH approach the typology is only suspected if the value of one of
the attributes is incompatible while in RSF approach the typology is suspected
if the values of more than one attributes are incompatible.

6 Concluding Discussion

We now present the results of the experimental study, first on the full Pianosa
survey which contains 40 amphorae then on the Port-Miou survey which con-
tains 500 amphorae. We used 4 different tolerance thresholds t around the typical
values of each type: 20%, 10%, 5% and 1% and N denotes the number of inconsis-
tent amphorae. The CPU times T 1, T 2, T 3 and T correspond to the translation
from the XML files to the logic program, the ASP implementation of RSF, the
translation from ASP to an XML file and the total time T 1 + T 2 + T 3 respec-
tively. The tests were conducted on a Centrino Duo cadenced at 1.73GHz and
equipped with 2GB of RAM. The results are summarized in Table 2.

Table 2. CPU times (s) for RSF and PPRSIH on two surveys

(a) Pianosa survey (40 amphorae)

RSF PPRSIH

t N T1 T2 T3 T T1 T2 T3 T

20 5 0.05 0.62 0.95 1.62 0.24 1.12 0 1.36
10 26 0.05 0.60 0.64 1.29 0.27 5.13 0 5.40
5 30 0.05 0.61 0.45 1.11 0.29 5.87 0 6.16
1 36 0.05 0.60 0.33 0.98 0.31 6.91 0 7.22

(b) Port Miou survey (500 amphorae)

RSF PPRSIH

N T1 T2 T3 T T1 T2 T3 T

44 0.43 5.26 0.14 5.83 0.68 9.38 0 10.06
65 0.43 5.06 0.04 5.53 0.75 13.69 0 14.44
72 0.43 4.99 0 5.42 0.81 15.03 0 15.84
81 0.43 5.06 0 5.49 0.88 16.80 0 17.68



Underwater Archaeological 3D Surveys Validation 673

Concerning the knowledge representation aspect the RSF approach stems from
the Entity Model conceptual description and uses instanciated predicate logic. It
creates a flat knowledge base, with numerous formulae, where all the objects are
at the same level. In the full Pianosa survey involving 40 amphorae, the traduction
of the problem requires 8462 formulae and 4160 atoms and in the full Port Miou
involving 500 amphorae, the traduction of the problem requires 105775 formulae
and 52000 atoms. Moreover, it only considers the intrinsic constraints between ob-
jects. However, the lack of expressivity and the high number of formulae are com-
pensated by the good computational behaviour of the reasoning tasks expressed
in this language. The PPRSIH approach stems from the application ontology and
uses instanciated predicate logic equipped with a partial preorder. It creates a
more structured belief base, involving less formulae than the first approach. In
the full Pianosa survey involving 40 amphorae, the traduction of the problem re-
quires 1080 formulae and 840 atoms and in the full Port-Miou survey involving
500 amphorae and the traduction requires 6021 formulae and 4683 atoms. It al-
lows for representing the intrinsic constraints as well as the taxonomic relations
between objects, and relations between objects. The partial preorder defined on
the finite set of formulae expresses more structure than the first solution. This
approach takes advantage of the good computational behaviour of instanciated
predicate logic while expressing, in the same time, a more structured belief base.

Concerning the reasoning aspect, both implementations rely on CLASP which
is one of the most efficient current ASP solver. The results obtained on Pianosa as
well as on Port Miou survey given in Table 2 clearly show that both approaches
deal with the full survey with a very good time. However, the first solution gives
the best running times. Moreover, reducing the tolerance intervals increases the
number of inconsistencies as illustrated in table 2 and the first solution seems to
be not sensitive to this increasing while the running time of the second solution
grows with the number of inconsistencies. The consuming task comes from the
reading of the answer sets before partially ordering them in order to only select
the preferred ones. In order to improve this approach we have to investigate how
to directly encode the partial preorder on answer sets within the logic program.
Another direction to follow in order to reach a trade-off between representation
and reasoning could be to represent the validation problem in Description Logic,
since the generic knowledge in expressed in terms of ontology. However, we have
to study which low complexity Description Logic could be suitable. Moreover, we
have to study to which extent the approach combining Description logic and ASP
[6] could be used for implementation as well as the extended ASP solver to first
order logic[10].
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17. Sérayet, M., Drap, P., Papini, O.: Extending removed sets revision to partially
preordered belief bases. International Journal of Approximate Reasoning 52(1),
110–126 (2011)

18. Würbel, E., Papini, O., Jeansoulin, R.: Revision: an application in the framework
of gis. In: Proc. of KR 2000, Breckenridge, Colorado, USA, pp. 505–516 (2000)
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Abstract. In a human-computer dialogue system, the dialogue strategy can range
from very restrictive to highly flexible. Each specific dialogue style has its pros
and cons and a dialogue system needs to select the most appropriate style for a
given user. During the course of interaction, the dialogue style can change based
on a user’s response and the system observation of the user. This allows a di-
alogue system to understand a user better and provide a more suitable way of
communication. Since measures of the quality of the user’s interaction with the
system can be incomplete and uncertain, frameworks for reasoning with uncer-
tain and incomplete information can help the system make better decisions when
it chooses a dialogue strategy. In this paper, we investigate how to select a di-
alogue strategy based on aggregating the factors detected during the interaction
with the user. For this purpose, we use probabilistic logic programming (PLP)
to model probabilistic knowledge about how these factors will affect the degree
of freedom of a dialogue. When a dialogue system needs to know which strat-
egy is more suitable, an appropriate query can be executed against the PLP and
a probabilistic solution with a degree of satisfaction is returned. The degree of
satisfaction reveals how much the system can trust the probability attached to the
solution.

1 Introduction

There are many different ways in which a computer can talk to people. Often dialogue
strategies can be categorized as finite-state or frame-based. Additionally, for very fluid,
discursive dialogues, a free-form dialogue strategy is appropriate: this may be cou-
pled to techniques for topic recognition as well as mechanisms for transferring to more
structured or constrained dialogue once a known transaction context has been identified
e.g., [PR03, OHSG].

This paper describes work undertaken by Queen’s University Belfast as part of a 3-
month collaborative research project commissioned by AUDI AG, Ingolstadt, Germany.
While a business-strength solution would entail a functionally richer application and an
extensive evaluation programme, the exploratory dialogue system that resulted from this
short collaboration served to illustrate how a probabilistic logic program (PLP) might be
used to drive a dialogue strategy selection mechanism based on uncertain observations
and inputs.

W. Liu (Ed.): ECSQARU 2011, LNAI 6717, pp. 675–687, 2011.
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In particular, we were interested in investigating how probabilistic logic program-
ming might be able to draw together, into one decision-making process, dialogue-
influencing inputs of quite disparate natures and modalities. A dialogue system capable
of replicating a good human listener’s sensitivity towards the needs and expectations of
a dialogue partner, as well as replicating a human listener’s awareness of her/his own
limitations, might have to take into account a number of influencing factors. The re-
search programme was not concerned in the first instance with how these factors might
be measured or quantified, rather it is on how together these factors influence the selec-
tion of a dialogue strategy. The eight core dialogue factors, and the values they could
take, are shown below.

Table 1. Dialogue-influencing factors

Factor Values Explanations
Experience (Proficiency) high (2), med (1), low (0) How effectively does the user

interact with the system?
Recognition confidence high (2), med (1), low (0) How confident is the system that it

has recognised what the user said?
Key values multiple (2), one (1), none (0) How many usable values does

the user provide per turn?
Affect good (2), ok (1), bad (0) Is the user in a good or bad mood?
Response Type good (3), talkative (2), What is the relationship between speech

thinking (1), wondering (0) and silence in the user’s utterances?
Productivity t0 yes (0), no (1) A turn is productive if a keyword

is provided incontext.
Productivity t−1 yes (0), no (1) A turn is productive if a keyword

is provided incontext.
Productivity t−2 yes (0), no (1) A turn is productive if a keyword

is provided incontext.

Productivity t0 , Productivity t−1 , and Productivity t−2 , indicate whether or not
usable keywords were identified by the system in the current dialogue turn (t0), and in
the two preceding turns (t−1 and t−2). In the experiment, non-productivity (a failure in
dialogue development) was regarded as more significant than productivity (normal dia-
logue flow). Non-productivity was therefore represented by ‘1’, rather than the default
assignment ‘0’.

For each of the factors indicated above, developers were able to suggest whether a
high or low value would be a positive or negative influence on (i.e. should increase or
decrease) the degree of dialogue freedom in the exchanges between system and user.
A freer dialogue would be characterised by system turns that included minimal system
prompts, similar to a frame-based dialogue (i.e. just ask the user for the information
required, without setting out specific options), while a less-free dialogue would entail
a high level of system guidance - to the extent of asking the user for a yes/no response
to a very specific question. The role of the PLP was to calculate an overall degree
of dialogue freedom based on these disparate input factors (which may be uncertain)
and their supposed individual influences on the dialogue strategy. In turn the degree of
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freedom was used to determine the basic dialogue strategy. Braking factors were added
to the degree of freedom calculation, so as to prevent too fast a transition from one
dialogue strategy to another. In addition, a manner of system delivery (the particular
form of words used to realize the dialogue strategy) was influenced by the user’s own
dialogue manner, perceived affective state, and the frequency with which they used the
system. These additional influences on the precise form of the system utterance are
not considered in this paper. Later, however, taking some simplified examples, we will
examine the techniques used to calculate the degree of freedom itself.

Since these factors affecting the selection of a dialogue strategy can be modelled
using conditional formulae with probabilistic intervals, our research and development
is concerned with the appropriateness of using a PLP to help select a dialogue strategy.

Conditional probabilistic logic programming is a framework to represent and reason
with imprecise (conditional) probabilistic knowledge. An agent’s knowledge is repre-
sented by a probabilistic logic program (PLP) which is a set of (conditional) logical
formulae with probability intervals. The impreciseness of the agent’s knowledge is ex-
plicitly represented by assigning a probability interval to every logical formula (repre-
senting a conditional event) indicating that the probability of a formula will be in the
given interval.

To intuitively explain how PLP can be used to model probabilistic knowledge, we
take the common knowledge typically Birds fly, magpies and penguins are birds, but
penguins do not fly as an example to illustrate the meanings of notations. Assume that
based on common knowledge, we know that over 98% of birds can fly (so not all birds
can fly), and we also know that every magpie is a bird. Then this knowledge can be
modelled using a PLP as

{(fly(X)|bird(X))[0.98, 1], (bird(X)|magpie(X))[1, 1]}
which can be used to answer queries like Can a magpie fly? (e.g., ?(fly(t)|magpie(t))).

Similarly, within the context of dialogue systems, the relationship between a factor
and a dialogue strategy can be modelled using conditional probabilistic logical formulae
too. For instance,

(dss(t1, free)|exp(t0, high), recog(t0, high))[0.85, 1]

states that when both a user’s experience and the systems’s recognition confidence are
high, then the degree of dialogue freedom suggests that a free dialogue strategy should
be chosen with a probability in the interval [0.85, 1].

The main contributions of this paper are as follows. First, we designed a Dialogue
Manager for an in-car dialogue system that choose a dialogue strategy dynamically
considering factors observed during interaction with the user. With a freer dialogue, the
user can provide ’over-informative answers’ in response to a single question: however,
with a more restricted dialogue, the user needs to answer the question directly. Second,
since there is an exponentially large number of combinations of correlated properties
in a dialogue, our system allows experts to use PLPs to state probabilistically how each
individual property will affect the selection of the dialogue strategy. Third, our PLP
ignorance analysis tool provides a mechanism that allows experts to judge the quality
of the knowledge on which the choice of dialogue strategy is based. Finally, with the



678 I. O’Neill et al.

assistance of the degree of satisfaction, the user can easily configure this system to be
freer or more restricted at any time.

This paper is organized as follows. After a brief review of probabilistic logic pro-
gramming in Section 2, we discuss the role PLPs can play dialogue systems in
Section 3. The experiment and simulated evaluations are discussed in Section 4. We
compare our work with related research and conclude the paper in Section 5.

2 Preliminaries

We briefly review conditional probabilistic logic programming here [Luk98, Luk01,
KIL04].

Let Φ be a finite set of predicate symbols and constant symbols, and V be a set of
variables. An event or logic formula can be defined from Φ ∪ V using none or any
connectives ¬,∧,∨ as usually done in first-order logics. We use φ, ψ, ϕ for events. For
instance, let Peter be a person’s name, then man(Peter) is a logical formula saying
that Peter is a man or let X be a variable, then man(X) states that predicate man is
applied to variable X . When reasoning, the variable can be bound to a constant. For
instance, man(Peter) can be considered as the result of assigning Peter to X .

Given a PLP and a query against the PLP, traditionally, either a probability interval
or a maximum entropy based probability (denoted as MEP below) is returned as the
answer. An interval implies that the true probability of the query shall be within the
given interval. However, when this interval is too wide, it provides no useful informa-
tion. On the other hand, when the knowledge in a PLP is very imprecise, providing a
single probability as the solution to a query can be misleading. In [YLH08, YLH10],
we developed a new approach which can measure the degree of satisfaction of a single
probability solution w.r.t the knowledge provided in a PLP.

A probability distribution Pr satisfies probabilistic formula (ψ|φ)[l, u] iff Pr(ψ|φ)
∈ [l, u]. We say that a probabilistic formula (ψ|φ)[l, u] is a consequence of a PLP P , de-
noted as P |= (ψ|φ)[l, u], iff every probability distribution Pr that satisfies P also satis-
fies the probabilistic formula. A probabilistic formula (ψ|φ)[l, u] is a tight consequence
of P , denoted as P |=tight (ψ|φ)[l, u], iff P |= (ψ|φ)[l, u] and for all [l′, u′] ⊂ [l, u],
P �|= (ψ|φ)[l, u]. For simplicity, if P |= (φ|*)[0, 0], we denote P |=tight (ψ|φ)[1, 0].

We use me[P ] to denote the probability distribution with maximum entropy among
those that satisfy P . Let P be a PLP, we say that (ψ|φ)[l, u] is a me-consequence of P ,
denoted as P |=me (ψ|φ)[l, u], iff P is unsatisfiable or me[P ] |= (ψ|φ)[l, u]. We say
that (ψ|φ)[l, u] is a tight me-consequence of P , denoted as P |=me

tight (ψ|φ)[l, u], iff one
of the following conditions holds:

– P |= (φ|*)[0, 0], l = 1, u = 0,
– me[P ](φ) > 0 and me[P ](ψ|φ) = l = u.

Example 1. Let PLP P be defined as follows:

P =

⎧⎨⎩
(fly(X)|bird(X))[0.98, 1]
(bird(X)|penguin(X))[1, 1]
(penguin(X)|bird(X))[0.1, 1]

⎫⎬⎭
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Based on this knowledge base, a user can query the likelihood that a penguin can fly,
e.g, ?(fly(t)|penguin(t)).

The results of using our prediction tool based on this knowledge base is
P |=tight (fly(t)|penguin(t))[0, 1], and P |=me

tight (fly(t)|penguin(t))[0.98, 0.98].

In [KIL04, Luk98, Luk01], approaches were provided to calculate the probability inter-
val and probability with maximum entropy for any query. In [YLH08,YLH10], a formal
method was provided to analyze the PLP and the maximum entropy principle as well as
to calculate the degree of ignorance and degree of sastisfaction reviewed in this section.

First, an ignorance value is provided to evaluate the extent to which the answer given
under maximum entropy is reliable. Second, a measure of the degree of satisfaction is
provided to evaluate how reliable an interval is to serve as the answer of the query.

Definition 1 (Ignorance). Let PL be the set of all PLPs and E be a set of conditional
events. Function IG : PL × E %→ [0, 1] is called the measure1of ignorance, iff for any
PLP P and conditional event (ψ|φ) it satisfies the following postulates

[Bounded] IG(P, ψ|φ) ∈ [0, 1].
[Preciseness] IG(P, ψ|φ) = 0 iff P |=tight (ψ|φ)[u, u] or P |= φ → ⊥.
[Totally Ignorance] IG(∅, ψ|φ) = 1, if �|= φ→ ψ and �|= φ → ¬ψ.
[Sound] If IG(P, ψ|φ) = 1 then P |= (ψ|φ)[0, 1].
[Irrelevance] If P and another PLP P ′ do not contain common syntaxes,

i.e.Φ ∩ Φ′ = ∅, then IG(P, ψ|φ) = IG(P ∪ P ′, ψ|φ).

If P = ∅, only tautologies can be inferred from P . Therefore, from any PLP P ,
IGP (ψ|φ) ≤ IG∅(ψ|φ), which means that an empty PLP has the biggest ignorance
value for any conditional event. When IGP (ψ|φ) = 0, event (ψ|φ) can be inferred
precisely from P , since a single precise probability for (ψ|φ) can be obtained from p.
The ignorance measurement focuses on the knowledge about (ψ|φ) contained in P ,
which means that irrelevant knowledge does not provide a better understanding of this
conditional event.

Definition 2 (Degree of Satisfaction). LetPL be the set of all PLPs andF be a set of
probabilistic formulae. Function SAT : PL×F %→ [0, 1] is called the measure of degree
of satisfaction iff for any PLP P and ground probabilistic formula μ = (ψ|φ)[l, u], it
satisfies the following postulates:

[Reflexive] SAT(P, μ) = 1, iff P |= μ.
[Rational] SAT(P, μ) = 0 if P ∪ {μ} is unsatisfiable.
[Monotonicity]

SAT(P, μ) ≥ SAT(P, (ψ|φ)[l′, u′]), if [l′, u′] ⊆ [l, u].
SAT(P, μ) > SAT(P, (ψ|φ)[l′, u′]), if [l′, u′] ⊂ [l, u]
and SAT(P, (ψ|φ)[l′, u′]) < 1.

1 In mathematical analysis, a measure m is a function, such that m : 2S �→ [0,∞] and
1. m(E1) ≥ 0 for any E ⊆ S;
2. m(∅) = 0;
3. If E1, E2, . . . is a countable sequence of pairwise disjoint subsets of S, the measure of
the union of Ei’s is equal to the sum of the measures of each Ei, that is, m(

⋃∞
i=1 Ei) =∑∞

i=1 m(Ei).
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[Cautious Monotonicity] Let P ′ = P ∪ {(ψ|φ)[l′, u′]}, where P |=me (ψ|φ)[l′, u′]
If 1 ≥ SAT(P, μ) ≥ 0 then SAT(P ′, μ) ≥ SAT(P, μ),

The reflexive property says that every consequence is totally satisfied. The rational prop-
erty says that 0 is given as the degree of satisfaction of an unsatisfiable probabilistic
formula.

Monotonicity says that if we expect a more precise interval for a query, then the
chance that the exact probability of the query is not in the interval is getting bigger.
Cautious monotonicity says that, if P and P ′ are equivalent except for the bound of
(ψ|φ), and if P ′ contains more knowledge about (ψ|φ), then the degree of satisfaction
of μ under P ′ should be bigger than that of μ under P .

Example 2. Let P and query ?Q be the same as in Example 1. Then, the degree of
satisfaction for the query answer [0.7, 1] is 0.8.

If we require that the degree of satisfaction of a query answer must be above a threshold
γ, then the PLP reasoning system can produce a tightest interval for which its degree
of satisfaction is not less than γ. When γ = 0.5, the returned interval is [MEP, 1] (the
upper bound is set to 1 in our system), so we obtain both an interval and the MEP
value. This kind of consequence relation is an extension to |=tight. Details about the
calculation of degree of satisfaction are available in [YLH08, YLH10].

3 Dialogue Systems

A fully implemented spoken dialogue system requires a delicately balanced interaction
between a number of main components. These typically include a speech recogniser, a
semantic parser, a dialogue manager, a natural language generator, a speech synthesiser
and an underlying database. More recently, components intended to capture and synthe-
sise non-verbal interaction - affect recognisers, embodied conversational agents, and so
on - may also feature in the configuration. In the experiment described here, we focus
on the behaviour manifested by the Dialogue Manager, which takes a co-ordinating and
decision-making role, determining how the system should ask the user questions and
respond to the user’s answers.

We were particularly interested in the degree of freedom that the Dialogue Manager
should offer the user as they conducted their conversation. Thus the Dialogue Manager
had at its disposal a number of dialogue strategies, ranging from several flavours of
tightly system-led ’finite state’ approaches, which required that the user choose just one
of the options presented on a particular dialogue turn, to freer ’frame-based ’solutions,
where, without being explicitly told the available options, the user could supply the
system with one or more values needed to populate ’slots’ in a notional enquiry frame.

3.1 Using Probabilistic Logic Programs to Represent Imprecise Data

The permutations of all dialogue-influencing factors are exponentially large in number
and far exceed the experts’ power to define a strategy for each of them. Developers can
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however provide PLP representations of the typical effect on dialogue style of key indi-
vidual dialogue-influencing factors and of key combinations of these factors. Using this
information the system can calculate degrees of dialogue freedom for all combinations
of dialogue-influencing factors.

One problem in using traditional probabilistic logic programming [CPQC03,Luk01]
is that, only a loose and uninformative interval or an unreliable single probability value
can be extracted as the answer. However, by using PLP to model the domain knowledge
and by then applying our reasoning method, we obtain more reliable intervals and single
values in response to a query.

3.2 Observation vs. a Priori Facts

In PLPs, we use ground formulae to state a priori facts from statistics, i.e., something
that must be true (statistically) is regarded as a fact. These facts are treated differently
from observations about individuals. Observing an event (such as the total number of
recognized keywords by a user) does not infer that the event would happen for sure. So,
observations cannot be represented as formulae of the form (ψ(a)|*)[1, 1] in a PLP:
doing so implies that we know ψ(a) to be true even before it is observed. In other
words, taking ψ(a) as a probabilistic event, we cannot predict if ψ(a) is true or false
before we observe it. In dialogue systems, observations are very important for choosing
dialogue strategies. In our framework, all observations are stored in a database (named
OBS) that is separate from a PLP containing statistical knowledge. When querying
(ψ|φ)[l, u] on PLP P , this observation database OBS is automatically called, with the
effect that querying (ψ|φ)[l, u] is equivalent to querying (ψ|φ ∧

∧
OBS)[l, u] on P .

4 The Experiment and Evaluation of Our Framework

4.1 Conducting the Experiment and Constructing a PLP

For each possible permutation of the values of the eight factors, the Dialogue Manager
would use the answer to the query as its degree of dialogue freedom and would select
its dialogue strategy accordingly. We interpret the answer to a query as: With a given
degree of satisfaction, what is the best estimation of the probability that a free dialogue
strategy would be appropriate in these circumstances? With a 0.5 degree of satisfaction,
the result equals the Maximum Entropy Probability.

However, rather than have the Dialogue Manager generate degrees of dialogue free-
dom live (a computationally very intensive process), it acquired the answers for the
queries from a look-up table, generated beforehand by the PLP Reasoner and Ana-
lyzer [YLH08, YLH10]. and covering all possible permutations of the values of the
eight dialogue-influencing factors.

Thus, values generated off-line by our Reasoning Engine would subsequently be
used live by the Dialogue Manager, as it selected its dialogue strategy. In the following
example we concentrate on just a handful of dialogue-influencing factors, the PLP used
by the Reasoning Engine, and the output generated by the Reasoning Engine. In the
PLP, predicates exp, recog, and key are used to state respectively the user’s experience
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Table 2. Probability intervals for a free dialogue strategy given a selection of dialogue-influencing
factors

Factor: User Experience
Level High Medium Low

Factor: High [0.85, 1] [0.80, 0.95] [0.75, 0.85]
ProbabilityRecognition Medium [0.65, 0.85] [0.6, 0.8] [0.55, 0.75]

Confidence Low [0.45, 0.65] [0.4, 0.6] [0.35, 0.55]
IntervalFactor: Multiple [0.95, 1] [0.90, 0.95] [0.80, 0.95]

Number of Single [0.90, 1] [0.85, 1] [0.60, 0.90]
Recognized Keywords None [0.80, 1] [0.70, 0.90] [0.20, 0.70]

(strictly speaking, the user’s proficiency: elsewhere we have used the term experience
in a simpler sense to represent the number of times the user has interacted with the
system); the system’s recognition confidence; and the number of keywords recognized
from the user’s response. The sample probabilistic formulae below reflect these con-
ventions. These formulae represent the effect of combinations of dialogue-influencing
factors, and similar formulae are used to represent the typical effect on dialogue free-
dom of individual dialogue-influencing factors:

If the recognition confidence is high and user experience is high too, then the prob-
ability that a free dialogue strategy is appropriate is in the interval [0.8,1]. A PLP cap-
turing this probabilistic knowledge can be created as follows.

(dss(t1, free)|exp(t0, high), recog(t0, high)) [0.85, 1]
(dss(t1, free)|exp(t0, high), recog(t0, med)) [0.65, 0.85]
(dss(t1, free)|exp(t0, high), recog(t0, low)) [0.45, 0.65]
(dss(t1, free)|exp(t0, med), recog(t0, high)) [0.80, 0.95]
(dss(t1, free)|exp(t0, med), recog(t0, med)) [0.60, 0.80]
(dss(t1, free)|exp(t0, med), recog(t0, low)) [0.40, 0.60]
(dss(t1, free)|exp(t0, low), recog(t0, high)) [0.75, 0.85]
(dss(t1, free)|exp(t0, low), recog(t0, med)) [0.55, 0.75]
(dss(t1, free)|exp(t0, low), recog(t0, low)) [0.35, 0.55]
(dss(t1, free)|exp(t0, high), key(t0, multiple)) [0.95, 1.00]
(dss(t1, free)|exp(t0, high), key(t0, single)) [0.90, 1.00]
(dss(t1, free)|exp(t0, high), key(t0, none)) [0.80, 1.00]
(dss(t1, free)|exp(t0, med), key(t0, multiple)) [0.90, 0.95]
(dss(t1, free)|exp(t0, med), key(t0, single)) [0.85, 1.00]
(dss(t1, free)|exp(t0, med), key(t0, none)) [0.70, 0.90]
(dss(t1, free)|exp(t0, low), key(t0, multiple)) [0.80, 0.95]
(dss(t1, free)|exp(t0, low), key(t0, single)) [0.60, 0.90]
(dss(t1, free)|exp(t0, low), key(t0, none)) [0.20, 0.70]

The probability of dss(t1, free) stands for the degree of freedom of the dialogue strat-
egy at the next time point t1, while, for our initial trial, the values [min,max] represent
the range within which developers believe dialogue freedom should lie, given the cur-
rent level (high, medium, low, etc.) of the dialogue-influencing factor under considera-
tion in the formula.
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In order to facilitate reasoning, we need to include some background knowledge in
this PLP for example, that the system’s recognition confidence cannot be both high and
medium simultaneously. This background knowledge is represented as the following
additional probabilistic formulae:

recog(t0, high), recog(t0, med)[0, 0]
recog(t0, low), recog(t0, med)[0, 0]
recog(t0, high), recog(t0, low)[0, 0]
exp(t0, high), exp(t0, med)[0, 0]
exp(t0, low), exp(t0, med)[0, 0]
exp(t0, high), exp(t0, low)[0, 0]
key(t0, multiple), key(t0, single)[0, 0]
key(t0, multiple), key(t0, none)[0, 0]
key(t0, single), key(t0, none)[0, 0]

Now assume that we have a user, A, whose experience is medium at time point t0,
assume also that keywords recognition is multiple, and recognition confidence is low.
To determine which dialogue strategy is most suitable, we query

Q =?(dss(t1, free)|exp(t0, med), key(t0, multiple), recog(t0, low))

This can be executed against the PLP constructed above. For simplicity, let E be the
conditional event in this query (i.e., Q =?E). For this query, we find P |=tight E[0, 1]
and P |=me

tight E[0.8667, 0.8667]. That is, we get a non-informative interval [0, 1] and a
precise probability 0.8667 as two possible answers to this query.

Note that the statistical (or, in the test system, heuristic) knowledge in the PLP states
that for a user of medium experience, if the system’s recognition confidence is low, then
the next round of dialogue freedom should be relatively low ([0.40, 0.60]). However, if
multiple keywords are recognized by the system then the freedom of the next round
should be relatively high ([0.80, 0.95]). These two rules state two possible degrees of
freedom for the next round, but how these two factors should be integrated, in order to
determine the degree of freedom of next turn, remains unclear. The value 0.8667 given
by the maximum entropy principle, suggests a degree of compromise.

Now, we examine the degree of satisfaction and ignorance of ?E[l, u]. When l = u =
0.8667, the ignorance of this query is bigger than 0. Thus the value 0.8667 is possibly
not a very accurate degree of dialogue freedom. To find a probabilistic interval within
which the true probability might lie and to quantify our satisfaction with this interval, we
assign different values to l and u and calculate the degree of satisfaction and ignorance
for each pair l and u. Details of the calculation are given in Table 3. From this table,
the system can choose a dialogue strategy based on these degrees of satisfaction. For
instance, we have p(Pr(E) ∈ [0.4, 1] = 0.8034, which means the probability (that a
degree of dialogue freedom of 0.4 in the next dialogue turn will be appropriate to this
user) is 0.8034. From another perspective, it may be the case that there is a very high
probability that the system has clearly recognised the user’s response. If this is so, a
strategy with freedom 0.4 may be too restrictive. Therefore, a dialogue system should
choose a strategy that balances both the degree of satisfaction and the level of freedom
that it affords the user. For a user who prefers a less restricted dialogue, the threshold of
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Table 3. Probability interval for ?E and the degree of satisfaction of Pr(E) ∈ [l, u]

Probability interval Degree of satisfaction Probability interval Degree of satisfaction
[0.1, 1] 0.9586 [0.2, 1] 0.9138
[0.3, 1] 0.8621 [0.4, 1] 0.8034
[0.5, 1] 0.7310 [0.6, 1] 0.6552
[0.7, 1] 0.5759 [0.8, 1] 0.5142
[0.81, 1] 0.5104 [0.82, 1] 0.5072
[0.83, 1] 0.5045 [0.84, 1] 0.5024
[0.85, 1] 0.5010 [0.86, 1] 0.5002

the degree of satisfaction can be low and for a user who prefers a system-led dialogue,
the threshold can be higher.

4.2 Evaluating the Results

However, in our initial experiment we accepted the figure for MEP at face value and
used it to help us select our dialogue strategy. We were particularly interested in the
manner in which the precise probability, the MEP, changed according to the dialogue
influencing factors that were input. Since we (and the system) take this precise value as
answering the question How probable is it that a free dialogue strategy would be appro-
priate in these circumstances?, then, if the value turned out to be 1 (entirely probable),
the Dialogue Manager would, if unchecked by any braking factor, chose the freest strat-
egy; if the value were 0 (entirely improbable), it would choose the most restrictive strat-
egy; and if somewhere between 0 and 1, it would choose a restrictive or non-restrictive
strategy corresponding to the band within which the freedom value fell. In reality this
raw freedom value was generally modified by a braking factor, which varied according
to user proficiency, in order, as we have mentioned, to avoid jarringly rapid shifts be-
tween quite different dialogue strategies: thus a raw freedom value was converted by
means of the appropriate braking factor, to a current freedom value and it was this that
was used to select the dialogue strategy for the next turn. In future the braking factor
might be replaced by an additional dialogue-influencing factor to be considered by the
PLP Reasoner and Analyzer.

To judge the correctness of the raw system behaviour, we monitored the manner in
which the unmodified MEP rose or fell depending on the combinations of dialogue in-
fluencing factors that were input. In the PLP for the experiment, some individual factors
and some combinations of factors had been identified as placing raw dialogue freedom
within particular ranges (probability intervals). In this way the PLP represented the de-
velopers’, and by extension the Dialogue Manager’s, basic decision-making heuristics
or rules of thumb.

Table 4 illustrates the system’s raw behaviour in one typical sequence of eight dia-
logue moves. Input to the system is shown for each move in the form of an eight-element
feature vector. In each feature vector the input elements are ordered and have values as
described previously in Table 1. Each feature vector is followed by the corresponding
raw output MEP.
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Table 4 represents eight moves in a dialogue with a proficient user. In user turns U1,
U2 and U3 the dialogue is progressing well (raw freedom value 1). In user turns U4
and U5 there is no dialogue product (i.e. no usable user input) and the user’s affec-
tive state worsens (the freedom value falls). In user turn U6 there is product and the
user’s affective state improves (the freedom value rises). In user turns U7 and U8 the
user’s affective state worsens again, and other dialogue factors are also sub-optimal (the
freedom value falls again).

Table 4. The effect on MEP of different levels of dialogue-influencing factor across eight user-
turns

Dialogue-Influencing Factors
User Turn 1 2 3 4 5 6 7 8 0.5 (MEP)

U1 2 2 2 2 3 0 1 1 1.00000
U2 2 2 2 2 3 0 0 1 1.00000
U3 2 2 2 2 3 0 0 0 1.00000
U4 2 0 0 2 3 1 0 0 0.82560
U5 2 0 0 1 3 1 1 0 0.62300
U6 2 1 1 2 3 0 1 1 0.83770
U7 2 0 0 1 1 1 0 1 0.70000
U8 2 1 1 0 0 0 1 0 0.64080

Level

This scenario and others like it indicate that the degree of raw dialogue freedom, as
represented by the generated MEP, is indeed a reasonable interpretation of the develop-
ers’ rules of thumb for determining when freer dialogue strategies should be allowed,
and when more restrictive system-led dialogue strategies should be considered.

5 Related Work and Conclusion

Related work: Logic programming is now a well established knowledge representation
and reasoning formalism in artificial intelligence and deductive databases. The need for
representing uncertainty in the logic programming framework is already reported by a
great number of publications [Luk98, BGR04, BH07, RKT07, Fuh00], [DD04] etc.

Our PLP analytical and reasoning system [YLH08] is based on conditional proba-
bilistic logic programming [CPQC03, Luk01], in which knowledge is represented by
interval restrictions for probabilities on conditional events in the form of (ψ|φ)[l, u].
In traditional probabilistic logic programming, the answer for a query is either a very
uninformative wide interval or an unreliable probability value. In contrast, our method
can provide an ignorance degree to evaluate how useful a PLP is to answer a query, and
furthermore provide a reasoning method to give a more informative (narrower) interval
as the answer that is acceptable to a user.

A few IT systems have been implemented that model and query probabilistic knowl-
edge, for example, SPIRIT [RRK06] and PIT [SF97].

In order to manage imprecise probabilistic reasoning, an expert system shell, SPIRIT,
was implemented which uses the principle of maximum entropy to avoid the request



686 I. O’Neill et al.

of precise probability distributions. Knowledge acquisition is performed by specifying
probabilistic facts and rules on discrete variables in an extended propositional logic
syntax. The shell generates the unique probability distribution which respects all facts
and rules and maximizes entropy. After creating this distribution the shell is ready for
answering simple and complex queries. System PIT (Probability Induction Tool) was
implemented based on propositional logic, the probability calculus and the concept of
model-quantification. The task of PIT is to deliver decisions under incomplete knowl-
edge but to keep the necessary additional assumptions as minimal as possible.

In contrast, our system deploys a reasoning mechanism in conditional probabilistic
logic programming, which is based on first order logic, rather than propositional logic.

From a dialogue perspective, the need to give a dialogue system the correct amount
of user-led and system-led interaction is important. An experienced user will become
frustrated, if in ideal conditions he or she is unduly restricted by the system, but so will
an inexperienced user, if, in adverse conditions, the system does not curtail dialogue
freedom (the paths along which the dialogue might progress) by providing assistance
and guiding the dialogue more closely to a successful conclusion.

Conclusion: For the authors this has been a useful first exploration of the issues
involved in PLP-based natural language dialogue management. Some advantages, and
potential challenges, for live system development have emerged.

From a dialogue modelling perspective, the decision-making engine, the PLP, can
be regarded as a black box. In other words, for those concerned with implementing a
naturalistic dialogue, one which can at least pass as a reasonable sequence of spoken
exchanges between system and user in pursuance of some task, it is immaterial how
the figure representing the level of dialogue freedom is derived, so long as it might
reasonably be regarded (by an external observer) as a sensible compromise between
factors that individually pull towards greater dialogue restriction or push towards greater
dialogue flexibility.

However in the longer term, logic programmers and dialogue modelers will have to
embark on a demanding dialogue of their own, as they attempt to understand each others
capabilities as knowledge engineers and meet each others requirements as providers of
usable software systems.

Besides furthering this inter-disciplinary dialogue, future work will entail using more
realistic, live inputs to represent the various factors that influence the human-computer
dialogue. It will also involve attempting to assess how satisfied different categories of
actual user are with the variety of dialogue styles that the system adopts in varied and
evolving circumstances.
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Abstract. The most often applied non-numerical uncertainty degrees
are those taking their values in complete lattices, but also their weakened
versions may be of interest. In what follows, we introduce and analyze
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1 Introduction

As soon as two years after publication of the Zadeh’s pioneering paper on real-
valued fuzzy sets [16], J. A. Goguen applied the basic ideas of fuzziness to par-
tially ordered sets with non-numerical values, so arriving at complete lattices as
the most often used support set for non-numerically valued fuzziness degrees [8].
As excellent theoretical survey of complete lattice-valued fuzzy sets can be found
in [2]. The reader is supposed to be familiar with the basic ideas and results of
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the papers [3] and [14] and with the most elementary stones of the formalized
constructions from [11].

Shifting the fuzziness degrees from the real numbers in [0, 1] to elements of
a complete lattice we make these degrees much more freely defined and much
more vaguely relating these degrees to corresponding non-numerical structures.
But, at the same time, the space with this weakened assumptions becomes much
more open for applications than that with the real-valued fuzziness degrees.

In this paper, we will go on with this paradigma when still more weakening
the conditions imposed on the structure from which fuzziness takes its degrees,
namely, instead complete lattice we will define that structure by an upper semi-
lattice. Let us recall that a partially ordered set T = 〈T,≤T 〉 defines an upper
semilattice, if for each finite set A ⊂ T the supremum

∨T A (w.r.to ≤T ) is de-
fined. If T = 〈T,≤T 〉 were a complete lattice (e.g., the standard unit interval
〈[0, 1],≤〉), then each mapping π : Ω → T defined on a nonempty set Ω for
each ω ∈ Ω, defines a total set function Π : P(Ω) → T. In other terms, the
mapping π may be taken as a fuzzy or possibilistic distribution on the space
Ω, implying uniquely the total fuzzy or possibilitic measure (set function) Π

ascribing to each A ⊂ Ω the value
∨T

ω∈A π(ω) ∈ T. When replacing real-valued
or complete lattice-valued structure T by upper semilattice T = 〈T,≤T 〉, the
set function Π will be defined only for finite (or π-finite, if elements ω ∈ Ω
with identical values π(ω) are also taken as identical) subsets of Ω, hence, if Ω
is infinite, Π : P(Ω) → T will be a partial mapping. So, when A ⊂ Ω is an
infinite set and

∨
ω∈A π(ω) is not defined, we would like to find a finite sequence

ω1, ω2, . . . , ωN of elements of A such that the finite (hence, defined) supremum∨N
i=1 π(ωi) would replace or approximate, in a reasonable sense, the undefined

value Π(A). However, such approximations are offered and reasonably founded
and processed by probability theory and mathematical statistics, taking finite
random samples of elements from A.

A similar situation arises for great finite Ω, when processing of all elements of
Ω is expensive or time consuming in real applications, or when some of elements
of Ω are not accessible for processing.

The values π(ω) ascribed to elements of the space Ω may be seen from two
points of view: as the degrees of fuzziness or possibility degrees defined on the
support set Ω of a fuzzy set or possibilistic distribution π, but also as a T -
valued function π : Ω → T. Supposing that Ω is completed to a probability
space 〈Ω,A, P 〉, π may be taken as T -valued random variable. So, the value∨T

ω∈A π(ω) may be approximated (if it is defined) or extended (if not defined)
by the value approximating or extending the expected value Π(A) of a proba-
bility density defined on A (cf. Section 2). Such a model enables to define the
notions like statistical estimations related to the probability density, namely,
statistical estimations which may be, within the framework of T -valued possi-
bilistic distributions, taken as reasonable approximations and completions of the
values related to T -distributions.

Let us introduce a motivation example before focusing to a precise formal
theoretical presentation. (For simplicity, we will use great finite Ω.)
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Example 1. Consider an urn schema with a great finite number of ballots num-
bered by positive integers. This enumeration is very general, some numbers may
not be applied, on the other hand, more than one ballots may share the same
numbers. Nevertheless, the supremum (the maximum, in this finite case) of the
values ascribed to particular ballots is uniquely defined and our goal is to obtain
or at least to approximate this maximum value.

However, our tools to reach the answer are rather poor and weak. We have at
our disposal a sequence of statistically independent and identically distributed
(i.i.d. sequence) random samples and we keep in mind the maximum value ob-
served on the ballots sampled till now. Taking the next sample we compare the
sampled value with the contemporary supremum and proceed as follows: if the
newly sampled value is greater than the contemporary supremum, this last value
is taken as the new contemporary supremum, otherwise the value of the contem-
porary supremum is not changed. Consider the most simple i.i.d. sequence with
the same probability of sampling for each ballot at each sample, i.e., with the
probalility equal to 1/|S| where |S| is the number of ballots in the urn. Intu-
itively felt, the number of samples needed to arrive at a new actualization of
the value of the contemporary supremum increases with the number of samples
increasing. Hence, we take the step charged by the risk of error – if the number
of samples taken without the change of the contemporary supremum exceeds
some treshold value, we stop our searching and declare the last contemporary
supremum as the (approximation) of the supremum over the whole urn schema.

The mathematical model explained in this paper enables to quantify explicitly
the probability of error connected with this statistical decision algorithm and the
dependence of statistical qualities of the algorithm on its parameters (e.g., on
the number of steps for which we are waiting before the final decision).

Even if the extent of this contribution is rather limited, all the Section 2 is
devoted to a formalized definition of statistical estimation of values of upper
semilattice-valued measures in order to prove that this notion can be completely
defined and processed within the standard framework of the axiomatic proba-
bility theory. Section 3 shows that statistical estimation of possibilistic distribu-
tions meets the basic paradigmatic property of standard statistical estimations
according to which reasonably defined qualities of such estimations improve with
their size increasing. Finally, Section 4 offers the notion of π-quasi-supremum as
a useful, even if not generally acceptable substitution of the notion of supremum
at least in some particular cases of incomplete upper semilattices. The section
further presents some results on δ-statistical optimality.

2 Statistical Estimations of Lattice-Valued Possibility
Degrees – a Formalized Model

Let T be a nonempty set, let ≤T be a partial ordering relation on T , so that
T = 〈T,≤T 〉 defines a p.o.set. Suppose, moreover, that T meets the conditions
imposed on upper semilattice, so that, for each finite set A0 ⊂ T the supremum
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t∈A0

t (
∨T A0 in abbreviation) is defined. As the empty subset of T is also

finite,
∨T

t∈∅ t =
∨T ∅ is defined and denoted by 0T as it obviously plays the role

of the minimum or zero element of T (obviously, if T is infinite, the supremum
element

∨T
t∈T t =

∨T
T need not be defined).

Let Σ be a nonempty set, the elements of Σ will be denoted as η, η∗, ηi, and
similarly. A mapping π : Σ → T is called a T -(valued possibilistic) distribution
on Σ, if

∨T T (denoted also by 1T ) is defined and if
∨T

t∈Σ π(η) = 1T holds. This
is the case where the space Σ is π-finite, i.e., the set {π(η) : η ∈ Σ} has finite
cardinality (i.e., card({π(η) : η ∈ Σ} < ∞) holds); in this case all subsets of Σ

are also π-finite, hence, the possibilistic measure Π(A) =
∨T

η∈A π(η) is defined
for each A ⊂ Σ.

Our aim will be to replace or to extend the value
∨T

η∈A π(η) by the value∨T ,N
i=1 π(η∗

i ), (an abbreviation for
∨T

η∗
i

N

i=1
π(η∗

i )), where η∗
1 , η∗

2 , . . . η∗
N are “appro-

priately at random sampled” elements of the space Σ. The first formal notion
needed in order to build the necessary mathematical construction is that of
probability space.

Let Ω be a nonempty set, the elements of which are denoted by ω and are
called elementary random events. Let A ⊂ P(Ω) be a non-empty system of
subsets of Ω which defines a σ-field, so that, for each E1, E2, · · · ∈ A also the
sets Ω−Ei and

⋃∞
i=1 Ei are in A. Let P : A → [0, 1] be a mapping (set function

on A, as a matter of fact) such that P (Ω) = 1 and P (
⋃∞

i=1 Ei) = Σ∞
i=1P (Ei) for

each sequence of mutually disjoint sets E1, E2, . . . from A, i.e., Ei ∩ Ej = ∅ for
each i �= j. Such a set function P is called σ-additive probability measure defined
on measurable space 〈Ω,A〉 and the ordered triple 〈Ω,A, P 〉 is called probability
space.

Let 〈Ω,A, P 〉 be a probability space, let X = 〈X,S〉 be a measurable space,
i.e., X is a nonempty set and S is a nonempty σ-field of subsets of X. A map-
ping f : Ω → X is called random variable, defined on the probability space
〈Ω,A, P 〉, if for each set S ⊂ X, S ∈ S, the relation {ω ∈ Ω : f(ω) ∈ S} ∈ A
holds, consequently, the probability P ({ω ∈ Ω : f(ω) ∈ S}) is defined. A se-
quence {f1, f2, . . . }∞i=1 of random variables is called independent and identically
distributed sequence of random variables (i.i.d. sequence, in abbreviation), if for
each A ∈ S and each j = 1, 2, . . . the identity P ({ω ∈ Ω : fj(ω) ∈ A}) =
P ({ω ∈ Ω : f1(ω) ∈ A}) holds and, moreover, if for each 1 ≤ i, i �= j, and each
Si, Sj ∈ S, the relation

P ({ω∈Ω : fi(ω)∈Si, fj(ω)∈Sj}) =
= P ({ω∈Ω : fi(ω)∈Si}) · P ({ω∈Ω : fj(ω)∈Sj}) (2.1)

is valid.
Take the space Σ of elementary possibilistic events, take a nonempty σ-field

E of subsets of Σ so that the pair 〈Σ, E〉 defines a measurable space, take a
probability space 〈Ω,A, P 〉. Let η∗ : Ω → Σ be a mapping such that, for each
E ∈ E , {ω ∈ Ω : η∗(ω) ∈ E} ⊂ A holds, so that the probability P ({ω ∈ Ω :
η∗(ω) ∈ E}) is defined. Hence, η∗(ω) ∈ Σ is an at random sampled element
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of the elementary possibilistic space Σ. Combining the mapping η∗ with the
mapping π : Σ → T we obtain the mapping π(η∗(·)) : Ω → T. Supposing that
F ⊂ P(T ) is a σ-field of subsets of T and that {ω ∈ Ω : π(η∗(ω)) ∈ F} ∈ A holds
for each F ∈ F , the mapping π(η∗(·)) : Ω → T defines a random variable on
the probability space 〈Ω,A, P 〉 which takes its values in the measurable space
〈T,F〉. Informally defined, π(η∗(ω)) is the possibility degree ascribed by the
mapping (possibilistic distribution on Σ, if it is the case) π to the at random
sampled element η∗(ω) of the space Σ of elementary possibilistic events.

Let A ⊂ Σ be given, let η∗
1 , η∗

2 , . . . be an infinite sequence of statistically inde-
pendent and identically distributed random variables defined on the probability
space 〈Ω,A, P 〉, taking values in the measurable space 〈Σ, E〉 and such that, for
each ω ∈ Ω and each i = 1, 2, . . . , η∗

i (ω) ∈ A ⊂ Σ holds. Hence, for each in-
teger N ≥ 1, 〈η∗

1(ω), η∗
2(ω), . . . η∗

N (ω)〉 is a finite sequence of elements of A and
〈π(η∗

1(ω)), π(η∗
2(ω)), . . . , π(η∗

N (ω))〉 is the corresponding sequence of their possi-
bility degrees defined by the mapping π : Σ → T, T = 〈T,≤T 〉. Obviously, each
π(η∗

i (ω)), i = 1, 2, . . . , ω ∈ Ω, is an element of the upper semilattice T = 〈T,≤T 〉,
consequently, the value

∨T ,N
i=1 π(η∗

i (ω)) is defined and belongs to T.

Supposing that
∨T ,N

i=1 π(η∗
i (·)) : Ω → T defines a random variable which takes

the probability space 〈Ω,A, P 〉 into the measurable space 〈T,F〉, i.e., if for each
F ∈ F the relation {ω ∈ Ω :

∨T ,N
i=1 π(η∗

i (ω)) ∈ F} ∈ A holds, the mapping∨T,N
i=1 π(η∗

i (ω)) : Ω → T is called the statistical estimation (if
∨T

η∈A π(η) is
defined) or the statistical extension (if

∨T
η∈A π(η) is not defined) of the value of

the partial T -valued possibilistic measure Π , induced by π, to the set A ⊂ Σ,
let us denote it by Π(A).

Before going on with the mathematical considerations, some comments may be
of use, let us begin with the terms statistical estimations and statistical extension.
As a rule, the term estimation is used when some value is correctly and precisely
defined, but for some reasons this value cannot be explicitly specified. E.g., the
expected value of a random variable may be defined as a function of empirical
values, but in practice only more or less good averages of a series of values taken
from repeated random samples may be used as a statistical estimation of the
expected value in question. When modifying the definition of expected value in
such a way that expected value of an integer-valued random variable must be
also defined by an integer, then the expected number of points occurring on dice
when tossing is not defined and the value 3.5 may be taken as extension, but
not as the expected value of the number of points on the tossed dice.

The difference between the two notions is obvious when considering the prob-
lem how to measure the quality of statistical estimations and extensions. For
estimations, the closer the estimation is to the estimated value, or the closer the
probability, that these values are identical or sufficiently close to each other, is to
1, the better is the estimation. For extensions the situation is more difficult. If
Π(A) =

∨T
η∈A π(η) is defined, then the statistical estimation

∨T ,N
i=1 π(η∗

i (ω))
is the best possible, if both the values are identical and in this case, with
the probability one, the equality

∨T ,N
i=1 π(η∗

i (ω)) =
∨T ,N+1

i=1 π(η∗
i (ω)) holds. If
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η∈A π(η) is not defined, we may (and will) measure the quality of the exten-

sion Π(A) =
∨T ,N

i=1 π(η∗
i (ω)) by the criterion according to which the probability

P

({
ω ∈ Ω :

T ,N+1∨
i=1

π(η∗
i (ω)) >

T ,N∨
i=1

π(η∗
i (ω))

})
, (2.2)

i.e., the probability that the value of the “supremum” of the values π(η), η ∈ A,
will increase when taking into consideration one more sample from A ⊂ Σ should
be either 0 or as close to 0 as possible.

We have purposely formalized the notions of statistical estimation and exten-
sion at a rather general and abstract level with the aim to demonstrate that
this problem can be defined and solved at the same level of description and pro-
cessing as it is common in standard works on probability theory. However, in
order to arrive at some more explicit results, let us assume the following simpli-
fying conditions to hold. The space Σ is supposed to be infinite and countable,
and the σ-field E of measurable subsets of Σ is defined by the power-set P(Σ).
So, random variables η∗ are defined on 〈Ω,A, P 〉 as mapping ascribing to each
ω ∈ Ω the value η∗(ω). For each η ∈ Σ the value P ({ω ∈ Ω : η∗(ω) = η}) is
defined (and denoted, if no misunderstanding menaces) by p(η). Consequently,
for each A ⊂ Σ, the value P (A) is defined by P (A) = Ση∈Ap(η).

3 Asymptotic Properties of Statistical Estimations of
Upper-Semilattice-Valued Possibilistic Degrees

Let 〈η∗
1 , η∗

2 , . . . 〉 be an infinite sequence of statistically independent random vari-
ables distributed identically with η∗, let N = 1, 2, . . . , let η∗(ω) ∈ A for each
ω ∈ Ω hold. Define

ΠN (η∗, ω) =
T ,N∨
i=1

π(η∗
i (ω)). (3.1)

The last supremum, hence, also the value ΠN (η∗, ω) is always defined. If Π(A)
is defined, then ΠN (η∗, ω) is called the statistical estimation of Π(A), if Π(A)
is not defined, then ΠN(η∗, ω) is called the statistical extension of Π to A. In
order to simplify our notation, we will use the term “statistical estimation of
Π(A)” in both the cases, carefully keeping in mind the important differences
staying behind both these approaches.

Lemma 1. For each A ⊂ Σ, each N = 1, 2, . . . and each ω ∈ Ω the inequality
ΠN (η∗, ω) ≤T ΠN+1(η∗, ω) holds.

If Π(A) =
∨T

η∈A π(η) is defined, i.e., if A is a π-finite subset of Σ, then for
each N = 1, 2, . . . , and each ω ∈ Ω the relation ΠN(η∗, ω) ≤T Π(A) holds.

Proof. Obvious.
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Definition 1. The statistical estimation ΠN (η∗, ω) of the value Π(A) for A ⊂
Σ is statistically optimal, if

P ({ω ∈ Ω : ΠN+1(η∗, ω) = ΠN (η∗, ω)}) = 1 (3.2)

holds.

In a perhaps more intuitive setting, up to the cases with zero global probability
P, the statistical estimation

∨T ,N
i=1 π(η∗

i (ω)) of Π(A) cannot be improved, i.e.,
enlarged w.r.to the partial ordering ≤T on T, no matter how large finite number
of samples made by random variables η∗

i , i > N, may be taken.

Lemma 2. Let Π(A) =
∨T

η∈A π(η) be defined, let ΠN(η∗, ω) = Π(A) hold.
Then ΠN (η∗, ω) is statistically optimal statistical estimation of the value Π(A).

Proof. Obvious.

Under some more conditions also an assertion inverse to that of Lemma 2 may
be stated and proved.

Theorem 1. Let A ⊂ Σ be π-finite, let Σ be an infinite countable set, let
E = P(Σ), let η∗ : 〈Ω,A, P 〉 → 〈Σ, E〉 be such that p(η) = P ({ω ∈ Ω : η∗(ω) =
η}) > 0 holds iff η ∈ A, let 〈η∗

1 , η∗
2 , . . . 〉 be an infinite sequence of statistically

independent and identically distributed copies of the random variable η∗. Then
the statistical estimation

∨T ,N
i=1 π(η∗

i (ω)) of the value Π(A) =
∨T

η∈A π(η) is sta-
tistically optimal iff the identity

∨T ,N
i=1 π(η∗

i (ω)) = Π(A) holds.

Proof. Due to Lemma 2, the only we have to prove is that if
∨T ,N

i=1 π(η∗
i (ω)) �=

Π(A), i.e., if
∨T ,N

i=1 π(η∗
i (ω)) <T Π(A) is the case, then

P

({
ω ∈ Ω :

T ,N+1∨
i=1

π(η∗
i (ω)) >T

T ,N∨
i=1

π(η∗
i (ω))

})
> 0 (3.3)

follows. Hence, we have to prove that if ΠN (η∗, ω) <T Π(A) holds, then with
a positive probability the statistical estimation ΠN (η∗, ω) of Π(A) can be im-
proved when taken one more random sample η∗

N+1(ω) ∈ A.
As for each ω ∈ Ω and each i = 1, 2, . . . holds that η∗

i (ω) ∈ A and {π(η∗
i (ω)) :

i = 1, 2, . . .} ⊂ {π(η) : η ∈ A}, both with the probability one, the inequal-
ity
∨T ,N

i=1 π(η∗
i (ω)) <T Π(A) may happen only when there exists η0 ∈ A such

that η0 �= η∗
i (ω), i = 1, 2, . . . , N, and

∨T ,N
i=1 π(η∗

i (ω)) ∨ π(η0) >
∨T ,N

i=1 π(η∗
i (ω))

hold together. In other words,
∨T ,N

i=1 π(η∗
i (ω)) < Π(A) yields that there exists

an element η0 ∈ A not sampled yet by the samples η∗
1(ω), η∗

2(ω), . . . , η∗
N (ω) but

such that the value π(η0) augments the value ΠN (η∗, ω) =
∨T ,N

i=1 π(η∗
i (ω)). How-

ever, with the positive probability p(η0) the case η∗
N+1(ω) = η0 occurs, so that

ΠN+1(η∗, ω) > ΠN (η∗, ω) holds with probability p(η0) > 0. Hence, ΠN(η∗, ω)
is not statistically optimal statistical estimation of Π(A) and the assertion is
proved.
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Theorem 2. Let the notations and conditions of Theorem 1 hold with the only
exception that the set A need not be π-finite. Let A0 be finite subset of A ⊂ Σ
such that, for each η� ∈ A, the relation

Π(A0) =
T∨

η∈A0

π(η) =
T∨

η∈A0∪{η�}
π(η) = Π((A0) ∪ {η�}) (3.4)

holds. Then ΠN(η∗, ω) tends to Π(A0) in probability P with N increasing, so
that the relation

lim
N→∞

P ({ω ∈ Ω : ΠN(η∗, ω) = Π(A0)}) = 1 (3.5)

is valid.

Proof. Let A0 = {η1, η2, . . . , ηK} ⊂ Σ. An easy combinatoric consideration yields that

P ({ω ∈ Ω : {η1, η2, . . . , ηK} 
⊂ {η∗
1(ω), η∗

2(ω), . . . , η∗
N (ω)}})

= P

(
K⋃

j=1

({ω ∈ Ω : ηj 
∈ {η∗
1 (ω), . . . , η∗

N (ω)}})
)

≤

≤
K∑

j=1

P ({ω ∈ Ω : ηj 
∈ {η∗
1(ω), η∗

2(ω), . . . , η∗
N (ω)}}). (3.6)

For each j = 1, 2, . . . , K

P ({ω ∈ Ω : ηj 
∈ {η∗
1(ω), η∗

2(ω), . . . , η∗
N (ω)}}) = (1 − p(ηj))N → 0 (3.7)

with N → ∞ holds. Hence, given E > 0, for each j = 1, 2, . . . , K there exists nj ∈
{1, 2, . . . } such that for each N ≥ nj , P ({ω ∈ Ω : ηj 
∈ {η∗

1(ω), . . . , η∗
N (ω)}}) < E holds.

Setting N0 ≥ max{nj : j ≤ K}, we obtain that P ({ω ∈ Ω : ηj 
∈ {η∗
1(ω), . . . , η∗

N (ω)}}) <
E holds for each j ≤ K supposing that N ≥ N0 is the case.

Consequently,

P ({ω ∈ Ω : {η1, . . . , ηK} 
⊆ {η∗
1(ω), . . . , η∗

N (ω)}}) ≤

≤
K∑

i=1

P ({ω ∈ Ω : ηj 
∈ {η∗
1(ω), η∗

2(ω), . . . , η∗
N (ω)}}) ≤ KE (3.8)

follows, if N ≥ N0 is the case. As E > 0 is arbitrary,

P ({ω ∈ Ω : {η1, . . . , ηL} 
⊂ {η∗
1 (ω), . . . , η∗

N (ω)}}) → 0 (3.9)

holds for each fixed L with N → ∞, hence,

P ({ω ∈ Ω : {η1, . . . , ηK} ⊂ {η∗
1 (ω), . . . , η∗

N (ω)}}) → 1 (3.10)

holds with n → ∞. As A0 = {η1, η2, . . . , ηK}, (3.10) yields that, for N increasing, with
the probability increasing to 1 the relation

ΠN (η∗, ω) =

T ,N∨
i=1

π(ηi(ω)) =

(T ,K∨
j=1

π(ηj)

)
∨T
(T ,N∨

i=1

π(η∗
i (ω))

)
=

= Π(A0) ∨T (π(η∗
1(ω)) ∨T π(η∗

2(ω)) ∨T · · · ∨T π(η∗
N (ω))) = Π(A0), (3.11)
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as Π(A0) ∨T π(η�) = Π(A0) due to the assumptions imposed on A0 and the principle
of finite mathematical induction is applied. Hence, the relation

lim
N→∞

P ({ω ∈ Ω : ΠN(η∗, ω) = Π(A0)}) = 1 (3.12)

holds and the assertion is proved.

4 Some More Results on Upper Semilattice-Valued
Lattices

Let us reconsider, once more, the conditions of Theorem 2. If there exists a finite
subset A0 ⊂ A meeting the condition (3.4), the value Π(A0) copies the properties
of
∨T

A (if defined) at least in the sense that no element of A, joined with A0,
is able to make the value Π(A0) larger. The notion of π-quasi-supremum of A
tries to define this property explicitly.

Definition 2. Under the notation introduced above, the value Π(A0) =
∨T

η∈A0

π(η) is called the π-quasi-supremum of A and denoted by Qπ(A), if A0 is a finite
subset of A ⊂ Σ such that, for each η� ∈ A, Π(A0 ∪ {η�}) = Π(A0) holds. I.e.,
Π(A0) is the π-quasi supremum of A, if

T∨
η∈A0

π(η) =

⎛⎝ T∨
η∈A0

π(η)

⎞⎠ ∨T π(η�) (4.1)

is valid for each η� ∈ A (in other notation, if π(η�) ≤T Π(A0) is the case).

We have to prove that the value Qπ(A), if defined, is defined uniquely (like it
is the case for the standard supremum and infimum operations). Let A ⊂ Σ
be given, let A0 ⊂ A, B0 ⊂ A be finite subsets of A such that both Π(A0)
and Π(B0) define π-quasi-suprema Qπ

1 (A) and Qπ
2 (A). In this case, however,

the identity Qπ
1 (A) = Qπ

2 (A) follows. Indeed, let A0 = {a1, a2, . . . aK} ⊂ A, let
B0 = {b1, b2, . . . , bL} ⊂ A. Then, applying (4.1) we obtain that

Π(A0) =
T ,K∨
i=1

π(ai) =

(T ,K∨
i=1

π(ai)

)
∨T π(b1) =

(T ,K∨
i=1

π(ai)

)
∨T π(b1) ∨T π(b2)

=

(T ,K∨
i=1

π(ai)

)
∨T (π(b1) ∨T π(b2) ∨T · · · ∨T π(b2)) = Π(A0) ∨T Π(B0).

(4.2)

Repeating this construction and consideration once more, but now starting from
Π(B0) and adding, step by step, the values π(a1), π(a2), . . . , π(aK), we arrive
at the equality Π(B0) = Π(B0) ∨T Π(A0), hence, the identity Π(A0) = Π(B0)
follows, so that the π-quasi-supremum Qπ(A) is defined uniquely supposing that
it is defined.
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On the other side, the π-quasi-supremum Qπ(A) need not be defined in gen-
eral, i.e., it is possible that there is no finite A0 ⊂ A meeting the conditions
imposed on Qπ(A). E.g., consider Σ = {η1, η2, . . . } and T = {t1, t2, . . . } to-
gether with binary relation ≤T such that ti <T tj holds iff i < j is the case
(obviously, T = N = {1, 2, . . .} and the standard linear ordering ≤ on N will
do). The pair T = 〈T,≤T 〉 then defines the upper semilattice. Let π : Σ → T
be defined by π(ηi) = ti for each i ∈ N , let A = {ηi1 , ηi2 , . . . }, i1 < i2 < . . . be
any infinite subset of Σ. Then no finite subset A0 ⊂ A possesses the property
that Π(A0) =

∨T
η∈A0

π(η) defines the π-quasi-supremum of A. Indeed, denote
by α(A0) ∈ N the value α(A0) = max{j ∈ N : ηj ∈ A0}. Then

Π(A0) =
T∨

η∈A0

π(η) =
T ,α(A0)∨

i=1,ηi∈A0

π(ηj) =
T ,α(A0)∨

i=1

ti = tα(A0). (4.3)

As the set A is infinite, there exists j0 ∈ N such that ηj0 ∈ A and j0 > α(A0)
hold together. In this case, however, the relation π(ηj0 ) = tj0 >T tα(A0) = Π(A0)
follows (cf. (4.3)), so that the inequality Π(A0) ∨T π(ηj0 ) = π(ηj0) >T Π(A0)
holds. Hence, Π(A0) does not define the π-quasi-supremum of A.

It is perhaps worth being introduced explicitly, that the class of subsets A ⊂ Σ
for which π-quasi-supremum Qπ(A) is defined is larger than the class of all π-
finite subsets of Σ. Indeed, if A is π-finite, then there exists a finite set A0 ⊂ A
such that π(A0) =

∨T
η∈A0

π(η) =
∨T

η∈A π(η), so that Π(A0) obviously defines
the π-quasi-supremum of A. On the other side, when there exists a finite set
A0 ⊂ A which defines the value Qπ(A), it is possible that A− A0 is an infinite
set and the set of different values π(η), η ∈ A− A0, is also infinite and for each
η ∈ A−A0 the relation π(η) ≤T Π(A0) holds, hence, the set A is not π-finite.

Definition 3. Let the notations and conditions of Definition 1 hold. The sta-
tistical estimation ΠN (η∗, ω) of the value Π(A) for A ⊂ Σ is δ-statistically
optimal, where δ is a given real number from (0, 1], if the relation

P ({ω ∈ Ω : ΠN+1(η∗, ω) = ΠN(η∗, ω)}) > 1− δ (4.4)
is valid.

Hence, ΠN (η∗, ω) is statistically optimal estimation of Π(A) in the sense of
Definition 1 iff ΠN (η∗, ω) is δ-statistically optimal in the sense of Definition 3
for every δ > 0.

Theorem 3. Let 〈Ω,A, P 〉 be a probability space, let 〈Σ,P(Σ)〉 be the complete
measurable space over a countable set Σ of elementary possibilistic states. Let
T = 〈T,≤T 〉 be an upper semilattice, let π : Σ → T be a mapping such that∨T

η∈Σ π(η) = 1T =
∨T

η∈Σ η =
∨T

T holds supposing that
∨T

T is defined. Let
A ⊂ T be given, let η∗ : 〈Ω,A, P 〉 → 〈Σ,P(Σ)〉 be a random variable such that
P ({ω ∈ Ω : η∗(ω) = η}) > 0 is the case iff η ∈ A holds.

Let 〈η∗
1 , η∗

2 , . . . 〉 be an infinite sequence of statistically independent random vari-
ables each of them being distributed identically with η∗, let N = 1, 2, . . . . Define
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ΠN (η∗, ω) =
T ,N∨
i=1

π(η∗
i (ω)). (4.5)

Then, for each δ > 0, the assertion

lim
N→∞

P
({

ω∈Ω : ΠN (η∗,ω) defines a δ-statistically optimal
statistical estimation of the value Π(A)

})
= 1 (4.6)

holds.

Proof. Let δ > 0 be given. According to the conditions imposed on η∗ and
consequently, on each η∗

1 , η∗
2 , . . . , there exits a finite set A0 ⊂ Σ such that

P (A0) = P ({ω ∈ Ω : η∗(ω) ∈ A0}) = P ({ω ∈ Ω : η∗
i (ω) ∈ A0}) =

=
∑

η∈A0

P ({ω ∈ Ω : η∗
1(ω) = η}) > 1− δ (4.7)

holds. Hence, if ΠN(η∗, ω) ⊃ A0 is the case, then the inequality ΠN+1(η∗, ω) >T
ΠN (η∗, ω) may happen to be valid only when η∗

N+1(ω) ∈ A−A0 holds. However,
the probability of this random event does not exceed δ, as proved in (4.7). As
shown in Theorem 1, for each finite A0 ⊂ A the inclusion ΠN (η∗, ω) ⊃ A0 holds
with the probability increasing to 1 with N →∞, the same limit assertion is valid
for the probability that ΠN (η∗, ω) defines a δ-statistically optimal statistical
estimation of the value Π(A). The theorem is proved.

5 Conclusions

In this contribution we analyzed an alternative mathematical model of uncer-
tainty quantification and processing which combines two qualitatively different
approaches to the idea of uncertainty. The first one takes the uncertainty in the
sense of fuzziness and vagueness formalized above by the notion of possibilis-
tic space 〈E, E〉, the other approach is that of randomness, formalized by the
standard notion of probability space and probability algorithm. What may be
perhaps of interest is the mutual relation of both the uncertainty processing tools
which copies the structure of probability algorithms, well-known from numerous
theoretical and practical procedures.

At least the two directions of further developing of the basic ideas of mixed un-
certainty quantification and processing models might be considered. First, more
sophisticated details of the probability algorithm sketched above and perhaps
some of its interesting applications should be analyzed and discussed. Second,
different combinations of various models of uncertainty quantification and pro-
cessing should be considered. E.g., in the first step probability algorithm for
classical real-valued quantification are applied, but the quality of the achieved
results, e.g., the distance of these results from the ideally perfect masterpiece,
are quantified in the terms of a possibilistic lattice-valued measure.
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The authors hope to have a possibility, sometimes in the future, to return to
these and related problems more closely.

Important note concerning the references: for the reader’s convenience, the list
of references contains not only the items namely referred in the text, but also
some works thematically tightly close to the subject of this paper, so making its
understanding more easy.
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Abstract. Qualitative causal possibilistic networks are important tools
for handling uncertain information in the possibility theory framework.
Despite their importance, no compilation has been performed to ensure
causal reasoning in possibility theory framework. This paper proposes
two compilation-based inference algorithms for min-based possibilistic
causal networks. The first is a possibilistic adaptation of the probabilis-
tic inference method [8] and the second is a purely possibilistic approach.
Both of them are based on an encoding of the network into a proposi-
tional theory and a compilation of this output in order to efficiently com-
pute the effect of both observations and interventions, while adopting a
mutilation strategy.

1 Introduction

Possibilistic networks [2] provide efficient tools to deal with uncertain data. They
compactly represent the prior background knowledge and efficiently reason in the
presence of new information. While the quantitative (or product-based) possi-
bilistic networks are very similar to probabilistic Bayesian networks, the qual-
itative (or min-based) ones, which are the focus of this paper, have significant
differences. Emphasis has recently placed on inference in possibilistic networks
[2,4], especially when it is dealt with compilation [1].

Causal possibilistic networks are updated in the presence of two types of
information: observations which are the results of testing some variables and in-
terventions which correspond to external actions forcing some variables to have
some specific values. From a representational point of view, interventions are
distinguished from observations using the concept of the ’do’ operator [13,15].
From a reasoning point of view, an intervention on a variable A is represented
using the so-called mutilation, by ignoring relations between the intervened vari-
able A and its direct causes. Handling sets of observations and interventions is
an important issue that can be useful where some variables are directly observed
and/or forced to take some values by performing interventions.

In [1], we have proposed compilation-based inference methods for min-based
possibilistic networks that only deal with observations. The idea in [1] consists
in encoding the network using a propositional theory and then compiling the

W. Liu (Ed.): ECSQARU 2011, LNAI 6717, pp. 700–712, 2011.
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resulting encoding to have a polytime possibilistic inference. However, there is
no compilation that has been proposed for min-based possibilistic causal net-
works that takes into account the concept of interventions. In this paper, we will
propose two mutilated-based approaches which deal with inference in min-based
possibilistic causal networks under a compilation framework. Our objective is to
ensure an efficient computation of the effect of both observations and interven-
tions by avoiding a re-compilation of the network each time an intervention or
an observation is taken place, which is considered intractable.

The remaining paper is organized as follows: Section 2 presents a brief re-
fresher on possibility theory and compilation languages. Section 3 describes the
inference process using the so-called mutilated Π-DNNFs (Possibilistic Decom-
posable Negation Normal Form). Inference using mutilated compiled possibilistic
bases is presented in Section 4. Section 5 concludes the paper.

2 Basic Backgrounds on Possibility and Compilation

Let V = {X1, X2, ..., XN} be a set of variables. We denote by DXi = {x1, .., xn}
the domain associated with the variable Xi. By xi we denote any instance of
Xi. By xij we denote the jth instance of Xi. When there is no confusion we use
xi to mean any instance of Xi. Ω denotes the universe of discourse, which is the
Cartesian product of all variable domains in V . Each element ω ∈ Ω is called a
state of Ω. ω[Xi] = xi denotes an instantiation of Xi in ω.

2.1 Possibility Theory

One of the basic concepts in possibility theory (see [11] for more details) is the
concept of possibility distribution, denoted by π. It is a mapping from Ω to
the unit interval [0, 1]. In this paper, we consider the qualitative interpretation
of this scale where only the ordering induced by degrees is important. Given
a possibility distribution π, we can define a mapping grading the possibility
measure of an event φ ⊆ Ω by Π(φ) = maxω∈φπ(ω). Π has a dual measure
which is the necessity measure defined by N(φ) = 1−Π(¬φ).

Conditioning consists in modifying our initial knowledge, encoded by π, by
the arrival of a new certain piece of information φ ⊆ Ω. The qualitative setting
leads to the well known definition of min-conditioning [11]:

Π(ψ | φ) =
{

Π(ψ ∧ φ) if Π(ψ ∧ φ) < Π(φ)
1 otherwise. (1)

One of the well-used and developed compact representations of a possibility
distribution is the concept of a possibilistic knowledge base [14]. Denoted by Σ,
it is made up of a finite set of weighted formulas. Formally,

Σ = {(αi, ai), i = 1, .., n, ai �= 0}. (2)

Each possibilistic logic formula (αi, ai) expresses that the propositional for-
mula αi is certain to at least the level ai, or more formally by N(αi) ≥ ai, where
N is the necessity measure associated to αi.
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The following subsection represents another compact representation of possi-
bility distribution that deals with both observations and interventions.

2.2 Possibilistic Causal Networks

A possibilistic causal network is a graphical way to represent uncertain infor-
mation [4]. Over a set of variables V , a possibilistic causal network, denoted by
ΠGmin is composed of:
- A graphical component that is a DAG where nodes represent variables and edges
encode not only dependencies between variables but also direct causal relation-
ships [4]. The parent set of any variable Xi, denoted by Ui = {Ui1, Ui2, ..., Uim}
where m is the number of parents of Xi, represents all direct causes for Xi. In
what follows, we use xi, ui, uij to denote, respectively, possible instances of Xi,
Ui and Uij .
- A numerical component that quantifies different links. Uncertainty of each
node in ΠGmin is represented by a local normalized possibility distribution in
the context of its parents (i.e., ∀ui, maxxiΠ(xi|ui) = 1).

The set of a priori and conditional possibility degrees in a ΠGmin induces
a unique joint possibility distribution defined by the following min-based chain
rule:

π(X1, .., XN) = min
i=1..N

Π(Xi | Ui). (3)

Causal networks are updated in the presence of two types of information: set
of observations (evidences) which are the results of testing some variables, and
a set of interventions which represent external events, coming from outside the
system and forcing some variables to take some specific values [15]. Interventions,
denoted by do(xI ) have a reasoning and a representational interpretations. This
paper focuses on the reasoning aspect.

Mutilation. From a reasoning point of view, an intervention is handled by the
so-called mutilation operation [15], which refers to altering the network structure
by excluding all direct causes related to the variable of interest and maintaining
the remaining variables intact [15]. The possibility distribution associated with
the mutilated network ΠGmut is denoted by πm. The effect of do(xI ) is to
transform π(ω) into πm(ω|xI), which gives us [4]:

∀ω; πm(ω|xI) = π(ω|do(xI )). (4)

By mutilating the network, parents of XI become independent of XI . More-
over, the event that attributes the value xI to XI becomes sure after performing
intervention do(xI). More formally, πm(xI) = 1 and ∀xi, xi �= xI , πm(xi) = 0.
The effect of do(xI) on π is given as follows, ∀ω:

π(ω|do(xI)) =
{

mini�=I π(xi|ui) if ω[Xi] = xI

0 otherwise. (5)
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Fig. 1. A causal possibilistic network ΠGmin

Example 1. Let us consider the ΠGmin of Figure 1. Let C be the variable in
ΠGmin forced to take the value c1 by the intervention do(c1). The possibility
distribution πm(A, B, C) associated with ΠGmut represents the effect of do(c1)
on π(A, B, C). The intervention do(c1) implies πm(c1) = 1 and πm(c2) = 0. For
instance, π(a1, b2, c1|do(c1)) = πm(a1, b2, c1) = min(πm(a1), πm(b2), πm(c1)) =
min(0.7, 0.4, 1) = 0.4.

The effect of interventions on the remaining network is defined by applying
conditioning on the mutilated network after observation as follows:

Proposition 1. Let ΠGmin be a min-based possibilistic causal network. Let
do(xI) be an intervention forcing XI to take the value xI . Let ΠGmut be the
mutilated network obtained after mutilation. Then, ∀ω, ∀xI ∈ DXI ,π(ω|do(xI ))=
πm(ω|XI = xI).

2.3 Compilation Concepts

Knowledge compilation is an artificial intelligence area related to a mapping
problem from intractable logical theories (typically, from propositional knowl-
edge bases in a CNF form) into suitable target compilation languages. These
latters are characterized by a succinctness criteria and a set of queries and
transformations performed in polynomial time with respect to the size of com-
piled bases [6]. There are several compilation languages as it has been studied
in the knowledge map of [10]. We are in particular interested in Decomposable
Negation Normal Form (DNNF) [7] and Valued Negation Normal Form (VNNF)
[12].

DNNF language. The Negation Normal Form (NNF) language represents the
pivotal language from which a variety of target compilation languages give rise
by imposing some conditions on it. For instance, the DNNF language is the set
of all NNFs satisfying decomposability: conjuncts of any conjunction share no
variables [7]. DNNF supports a rich set of polynomial-time operations which
can be performed simply and efficiently. Our choice is especially motivated by
the set of operations that supports and its succinctness [10].

DNNF supports several transformations and queries. We restrict our attention
to conditioning and forgetting operations:

- Conditioning: Let α be a propositional formula. Let ρ be a consistent term,
then conditioning α on ρ, denoted by α|ρ generates a new formula in which each
propositional variable Pi ∈ α is set to:
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Pi =
{
* if Pi is consistent with ρ 1

⊥ otherwise .
(6)

- Forgetting: Let α be a propositional formula. Let P be a finite set of proposi-
tional variables Pi, then the forgetting of P from α, denoted by ∃P.α is equivalent
to a formula that does not mention any variable Pi from P . It can be inductively
defined as follows:

∃Pi.α = α|Pi ∨ α|¬Pi. (7)

where α|Pi (resp. α|¬Pi) is the result of conditioning of α on Pi (resp. ¬Pi).

VNNF language. All subsets of NNFs, known as valuable representation lan-
guages for boolean functions, have been extended to represent an enriched class of
functions ranging over an ordered scale, namely Valued Negation Normal Forms
(VNNFs) [12]. The VNNF language is fully characterized by a representation
context ≺ ε, Y, F � consisting of a valuation structure ε, a finite set Y of vari-
ables ranging on finite domains and a set F of primitive or local functions, i.e.,
functions representing preferences or plausibility degrees over assignments. By
valuation structure, we mean a triple ε =≺ E,≥, OP � where (E,≥) is a set
ordered by a relation ≥ and OP is the set of all binary operators ⊗ on E. OP
may contain the operators ∨ and ∧. When ≥ is a total order, min and max are al-
ternative generalizations of the boolean connectives [12]. The VNNF framework
supports a larger family of queries, such as optimization, etc. It also supports
several transformations, namely ⊗-variable elimination (a generalization of clas-
sical forgetting by using ⊗ instead of ∨ in equation (7)).

Π-DNNF [1] is a possibilistic version of DNNF in which conjunctions and
disjunctions are substituted by minimum and maximum operators, respectively.
It is considered as a special case of VNNFs [12] in which E = [0, 1] and OP is
restricted to min and max operators.

3 Causal Inference Using Π-DNNFs

In [1], we already proposed a possibilistic adaptation of the so-called arithmetic
circuit method [8]. This adaptation requires the use of the Π-DNNF language
[1] instead of the propositional DNNF language [7]. The main idea is based on
encoding the possibilistic network using the CNF propositional language, then
compiling it to infer in polytime (i.e., compute efficiently a posteriori possibility
degrees given some evidence on a set of variables). The CNF encoding that we
have used takes advantage of the structure exhibited by network parameters,
known as local structure, which induces a reduction of the time and the size of
factorization [9]. The question is whether this encoding can be adapted to deal
with both observations and interventions. This section shows that the answer
is yes. Of course, since we offer more flexibility, there is an extra-cost. In fact,
1 Pi is consistent with ρ if there exists an interpretation that satisfies both Pi and ρ.
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handling interventions requires that a unique variable should be assigned to
each parameter, while when we only deal with observations, different parameters
(degrees) may be encoded by the same propositional variable. This means that
local structure is only allowed in the non-intervention strategy.

3.1 Did We First Mutilate the Network?

One simple way for handling sets of interventions consists in mutilating ΠGmin,
encoding the resulting graph using a propositional theory and compiling it to
offer a polynomial-time handling of queries. But, handling sets of interventions
by this way is not efficient since it requires a re-compilation of the network each
time an intervention is obtained, which is intractable. Our main contribution
consists in allowing the treatment of both observations and interventions by
avoiding the re-compilation of the network in case of sequences of observations or
interventions are taken place. Handling interventions by mutilation is considered
worthwhile since the initial network is vanished after mutilation, while we focus
on computing the effect of both observations and interventions. For this reason,
in the following subsection we will exhibit the appropriate trick that allows us
to ensure such computation using only one compilation step.

3.2 Inference Process

Given a ΠGmin, we should first encode it using the CNF representation lan-
guage. Using two types of propositional variables namely, evidence indicators
λxi for recording evidences and network parameters θxi|ui

for recording possibil-
ity degrees, the CNF encoding is defined as follows [1]:

Definition 1. Let ΠGmin be a possibilistic causal network, λxij , (i = 1, .., N),
(j = 1, .., n) be the set of evidence indicators and θxi|ui

be the set of parameter
variables, then the encoding Cmin should contain the following clauses:

– ∀ Xi ∈ V , Cmin contains the following two clauses (named indicator clauses):

λxi1 ∨ λxi2 ∨ · · ·λxin (8)

¬λxij ∨ ¬λxik
, j �= k (9)

– ∀ θxi|ui
s.t ui = {ui1, ui2, ..., uim}, Cmin contains the following clauses:

λxi ∧ λui1 ∧ . . . ∧ λuim → θxi|ui
(10)

θxi|ui
→ λxi (11)

θxi|ui
→ λui1 , · · · , θxi|ui

→ λuim (12)

Note that Definition 1 handles n-ary variables. Clauses (8) and (9) state that
indicator variables are exclusive, while clauses (10)-(12) encode network’s struc-
ture. Once we have encoded ΠGmin, we compile Cmin into DNNF (denoted by
CDNNF ) as shown in Figure 2. The resulting compiled base is qualified to be
symbolic since it does not take into consideration any parameter value while
encoding the network.
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Fig. 2. Encoding and compilation steps

Example 2. Let us re-consider the network of Figure 1. According to Algorithm
3.2, we should first encode ΠGmin as follows: Cmin = (λc1∨λc2)∧(¬λc1∨¬λc2)∧
(λc1 ∧ λa1 ∧ λb1 → θc1|a1,b1) ∧ (θc1|a1,b1 → λc1) ∧ (θc1|a1,b1 → λa1) ∧ (θc1|a1,b1 →
λb1) · · · For lack of space, we have only written evidence clauses of the variable
C and θc1|a1,b1 ’s clauses. The full encoding contains 46 clauses.

Computing efficiently the effect of observations in min-based possibilistic causal
networks is ensured in the same spirit as the one given in [1]. While computing
the effect of interventions as outlined Algorithm 3.2 requires a further step in
which a simulation of mutilation is ensured under a compilation framework.

Let do(xI) be an intervention that forces the variable XI to take the value
xI , and x an instantiation of some variables X ⊆ V , then computing Π(x) given
do(xI) is ensured by applying a fundamental function, i.e., Computing as follows:

1. Conditioning CDNNF on xI by setting θxi|ui
of the variable of interest XI

to * or ⊥ depending on xi = xI or xi �= xI , resp.,
2. Conditioning CDNNF on x by setting each λxi to:

λxi =
{
⊥ if ∃ xj ∈ x s.t. xj and xi disagree on values (i.e., xi � x)
* otherwise (i.e., xi ∼ x) (13)

3. Decoding the mutilated and conditioned representation Cm
DNNF |x to have a

valued expression, denoted by Cm
Π−DNNF ,

4. Computing Π(x) by forgetting the remaining variables using the max oper-
ator (i.e., applying max-variable elimination).

The first step represents the mutilation phase under a compilation framework.
Indeed, CDNNF is conditioned on xI , as if we assign πm(xI) = 1 and ∀xi, xi �=
xI , πm(xi) = 0. The motivational factor behind such operation resides in the
symbolic compiled base that does not take into account parameters values. In
fact, given interventions, new possibility degrees are generated which results in
a new compiled base associated with the mutilated network as illustrated by
Figure 3.

In the second step, we should condition CDNNF on x using evidence indi-
cators. The third step consists in decoding the mutilated representation by re-
placing ∨ and ∧ by max and min, respectively and substituting each * and ⊥
by their values. In fact, each * (resp. ⊥) related to evidence indicators or XI ’s
parameter variables is set to 1 (resp. 0), while each * corresponding to non XI ’s
parameter variables is set to its possibility degree. Finally, we compute Π(x)
using Cm

Π−DNNF by forgetting the remaining variables using the max operator.
This operation, which is called max-variable elimination is the key for ensuring
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Fig. 3. The effect of interventions on compiled bases

linear-time inference since Π-DNNF, that is a special case of VNNF, supports
max-variable elimination [12].

It is worth pointing out that our approach takes advantage from the fact that
the compiled base is restricted to a set of symbols without regard to numerical
values as shown in Figure 2. In particular, for any new intervention, we can re-
use the same original encoding with a simple updating of parameters values as
depicted Figure 3. Hence, we can conclude that our method does not depend on
interventions, i.e., even if we grow the number of interventions, the complexity is
not altered since the simulation of mutilation, which is a conditioning operation
is ensured in polynomial time and the computation of the effect of interventions
is also polynomial with respect to the size of the compiled base.

Nevertheless, such encoding requires one variable per parameter, which is not
the case if observations occur since parameters are stationary. Indeed, the so-
called local structure enhancement related to equal parameters, used to reduce
the set of added variables cannot be explored in mutilated Π-DNNF. More
precisely, we cannot attribute the same propositional variable even for equal
parameters within CPTs as in [1]. For instance, assuming that we have θc1|a1,b2 =
θc2|a1,b1 = 0.7. After performing intervention do(c1), θc1|a1,b2 (resp. θc2|a1,b1)
should be set to 1 (resp. 0) which is infeasible if we use the same θ for both of
θc1|a1,b2 and θc2|a1,b1 .

A minor enhancement can be performed after mutilation, which consists in
merging XI ’s network parameters, i.e., each θxI |uI

, ∀uI can be replaced by θxI

since XI and UI are independent after mutilation.

Data: ΠGmin, instance of interest x, evidence e, intervention do(xI)

Result: Πc(x|e, do(xI))

begin
Let Cmin be the CNF encoding obtained using equations (8)-(12)
Let CDNNF be the compilation result of Cmin

Πc(x, e, do(xI)) ← Computing(CDNNF , (x, e, do(xI)))
Πc(e, do(xI)) ← Computing(CDNNF , (e, do(xI)))
if Πc(x, e, do(xI)) ≺ Πc(e, do(xI)) then Πc(x|e, do(xI)) ← Πc(x, e, do(xI))
else Πc(x|e, do(xI)) ← 1
return Πc(x|e, do(xI))

end

Algorithm 1.1. Inference in Mutilated Π-DNNFs
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Proposition 2. Let ΠGmin be a possibilistic network. Let do(xI) be an inter-
vention that forces the variable XI to take the value xI . Then, for any x ∈ DX

and e ∈ DE, we have Πc(x|e, do(xI )) (Algo. 3.2) = Πm(x|e, do(xI )) (Prop. 1).

Example 3. Let us continue Example 3. Let C be the variable in ΠGmin forced
to take the value c1 by the intervention do(c1). After encoding ΠGmin, Cmin is
then compiled into CDNNF , from which we will compute for instance the effect of
do(c1) and a1 on b2, namely computing Πc(b2|a1, do(c1)). We need to compute
both of Πc(b2, a1, do(c1)) and Πc(a1, do(c1)). We start with Πc(b2, a1, do(c1)).
First, we should set each θc1|ui

(resp. θc2|ui
) to * (resp. ⊥) ∀ui and condi-

tion CDNNF on b2, a1 and do(c1). The resulting Cm
DNNF |b2,a1,do(c1)

is then de-
coded into Cm

Π−DNNF as depicted Figure 4. For lack of space, we apply Max-
VariableElimination to an excerpt of Cm

Π−DNNF = min(θa1 , θb2 , θc1).
Max-VariableElimination(Cm

Π−DNNF , θa1) = max (Cm
Π−DNNF |θa1 , Cm

Π−DNNF |
¬θa1)= max(min(0.7, θb2 , θc1),min(0, θb2 , θc1)) = min(0.7, θb2 , θc1),
⇒ Max-VariableElimination(min(0.7, θb2 , θc1), θb2) = min(0.7, 0.4, θc1),
⇒ Max-VariableElimination(min(0.7, 0.4, θc1), θc1) = min(0.7, 0.4, 1) = 0.4.
This value corresponds exactly to the one computed in Example 1. Πc(a1, do(c1))
is computed in the same spirit as Πc(b2, a1, do(c1)). Since Πc(b2, a1, do(c1)) = 0.4
≺ Πc(a1, do(c1)) = 0.7, so Πc(b2|a1, do(c1)) = 0.4.

Fig. 4. Example of Cm
Π−DNNF

4 Causal Inference Using Compiled Possibilistic Bases

In [1], we proposed a purely possibilistic inference method which is not based
on encoding probabilistic works grounded on compilation. The idea consists in
transforming the binary network into a possibilistic knowledge base [3], encoding
it into a CNF encoding by incorporating a set of additional variables correspond-
ing exactly to the different weights of the base [5]. After that, a compilation step
is required from which the inference query should be ensured in polynomial time.
In this section, we will focus on how to enrich this method to compute efficiently
the effect of both observations and interventions.
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The key difference between handling only observations and handling both
observations and interventions resides in the set of additional variables while
encoding the possibilistic knowledge base. In fact, in a causal reasoning, even if
we have the same degree for a set of formulae within the base, we cannot use
the same propositional variable as we did for observations. In other terms, one
variable per degree is used if we handle both observations and interventions as
shown in the following proposition:

Proposition 3. Let ΠGmin be a possibilistic causal network. Let Σmin be its
possibilistic knowledge base expressed by: Σmin = ΣX1∪ΣX2∪· · ·∪ΣXN , ∀Xi ∈ V
s.t. ΣXi = {(¬xi ∨ ¬ui, ai) : ai = 1−Π(xi|ui) �= 0}, then its CNF encoding is
expressed by: KΣ = {αi ∨ Ai : (αi, ai) ∈ Σmin} where Ai is a propositional
variable associated to each degree ai in Σmin.

It is important to note that even if we transform the network into a logic-based
representation, causal links are not lost. Thanks to the parameters that allow us
to encode network’s structure.

Example 4. Let us re-consider the ΠGmin of Figure 1. Its CNF encoding is
expressed by: KΣ = {(c2 ∨ a2 ∨ b1 ∨A1) , (c1 ∨ a2 ∨ b2 ∨A2) , (b1 ∨A3) , (c2∨a1∨
b2 ∨ A4)), (a2 ∨A5) , (c2 ∨ a1 ∨ b1 ∨A6)} s.t. A1, A2, A3, A4, A5 and A6 are
propositional variables associated to 0.9, 0.7, 0.6, 0.5, 0.3 and 0.2, respectively.

Computing the effect of both observations and interventions requires a clausal
deduction test and a conditioning transformation, hence the CNF encoding KΣ

should be compiled only once into the most succinct target compilation language
that supports such operations. Our method is qualified to be flexible since it
permits to exploit efficiently all the existing propositional compilers [1]. Given
an instance of interest x, an evidence e and an intervention do(xI ) performed
on XI , then computing Πc(x|e, do(xI)) using the compiled base Kc requires two
steps as outlined Algorithm 1.2:

(i) Kc should be mutilated by assigning the degree 1 (resp. 0) to variables Ai

corresponding to ¬xI (resp. xI). The objective is to make the connection between
mutilating ΠGmin and mutilating Kc as shown in Figure 3. After mutilation,
variables Ai encoding equal degrees in Kc can be merged into the same variable
Bj . The new set of variables is denoted by B = {B1, . . . , Bg} where g represents
the number of variables after merging.

(ii) We should first test if Kc � B1∨¬e∨¬xI . If this deduction is not satisfied,
we condition Kc on ¬B1 and then test if Kc entails ¬x. If this is the case, we
compute Πc(x|e, do(xI)), else we move to the next Bj and we re-itere the same
treatment. In the worst case, this computation is performed g − 1 times since
the last variable Bg corresponds to the degree 0.

It is worth pointing out that before the mutilation step we can not attribute
the same Ai even for equal degrees in Σmin. For instance, assuming that we have
the following formulae (c1∨a1∨b2, A1) and (c2∨a1∨b1, A1) such that A1 encodes
the degree 0.8. After performing intervention do(c1), we should set the degree 0
(resp. 1) to the Ai corresponding to (c2 ∨ a1 ∨ b1, 0.8) (resp. (c1 ∨ a1 ∨ b2, 0.8)),
which is infeasible if we use the same variable A1. It is also crucial to note
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that our method does not depend on the number of interventions. Thanks to
the symbolic compiled base that allows us to update parameters values linearly
regardless of the number of interventions.

Data: ΠGmin, instance of interest x, evidence e, intervention do(xI)

Result: Πc(x|e, do(xI))

begin
Let Σmin be the possibilistic base of ΠGmin using Proposition
KΣ ← encoding(Σmin, A, n) using Proposition % A : the set of propositional
variables, n: the number of Ai in A
Let Kc be the compilation result of KΣ

Let Ak be the set of propositional variables Ai of ¬xi

foreach Ai ∈ Ak do Degree of Ai ← 1
Let Ac be the set of Ai of the variable of interest Xi except Ak

foreach Ai ∈ Ac do Degree of Ai ← 0
Let B = {B1, . . . , Bg} be the new set of variables after merging
i ← 1, StopCompute ← false, Πc(x|e, do(xI)) ← 1
while (Kc � Bi ∨ ¬e ∨ ¬xI) and (i ≤ g − 1) and (StopCompute=false) do

Kc ← condition (Kc, ¬Bi) using equation (6)
if Kc � ¬x then

StopCompute ← true
Let degree(i) be the weight associated to Bi

Πc(x|e, do(xI)) ← 1-degree(i)

else i ← i + 1

return Πc(x|e, do(xI))

end

Algorithm 1.2. Inference in Mutilated Possibilistic Bases

Proposition 4. Let ΠGmin be a possibilistic network. Let do(xI) be an inter-
vention that forces the variable XI to take the value xI . Then, for any x ∈ DX

and e ∈ DE, we have Πc(x|e, do(xI )) (Algo. 1.2) = Πm(x|e, do(xI )) (Prop. 1).

Example 5. We continue with Example 5. Let C be the variable forced to take the
value c1 by the intervention do(c1), let a1 be an observed evidence, then what is the
effect of do(c1) and a1 on b2? First, we should compile KΣ into DNNF as follows:
Kc = {[((((c2 ∧A2) ∨ c1) ∧ b1) ∨ ((b2 ∧A3) ∧ (c2 ∨ (c1 ∧A1)))) ∧A5 ∧ a1]
∨ [a2 ∧ ((b1 ∧ (c2 ∨ (c1 ∧A4))) ∨ (b2 ∧A3 ∧ (c2 ∨ (c1 ∧A6))))]}. Then, we should
update the degree of Ak={A2} from 0.7 to 1 and set the degree 0 for each variable
in Ac = {A1, A4, A6}. Merging variables gives us the new set of variables B =
{B1(1), B2(0.6), B3(0.3), B4(0)} which substitutes the set A in Kc as follows: Kc =
{[((((c2 ∧B1) ∨ c1) ∧ b1) ∨ ((b2 ∧B2) ∧ (c2 ∨ (c1 ∧B4)))) ∧B3 ∧ a1] ∨ [a2∧
((b1 ∧ (c2 ∨ (c1 ∧ B4))) ∨ (b2 ∧ B2 ∧ (c2 ∨ (c1 ∧ B4))))]}. We are now ready to
compute Πc(b2|a1, do(c1)). The computation process requires two iterations which
means that Πc(b2|a1, do(c1)) = 1 − degree(2) = 1 − 0.6 = 0.4 where degree(2)
designates the weight associated to B2. This value corresponds exactly to the ones
computed in Example 1 and Example 4.
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At this stage, a comparison study between the two proposed methods (i.e., mu-
tilated Π-DNNFs and mutilated possibilistic bases) is crucial. It is clear that
intuitively if we restrict our attention to the binary case, mutilated possibilistic
bases are more compact than mutilated Π-DNNFs even if local structure is not
exploited in both of them. In fact, mutilated possibilistic bases offer less vari-
ables and clauses since no formulae or clauses are associated to degrees equal
to 1. Moreover, only one clause is encoded for each variable Ai which is not the
case for each parameter θxi|ui

in mutilated Π-DNNFs. This note deserves to be
confirmed by an experimental study.

5 Conclusion

This paper proposed compilation-based inference algorithms for min-based pos-
sibilistic causal networks. First, we proposed a compilation-based approach from
which we compute efficiently the effect of both observations and interventions
using mutilated Π-DNNFs. Then, we developed a possibilistic inference method
dealing with mutilated possibilistic bases. Our methods are qualified as flexible
since we compute the effect of observations and interventions from an already
compiled base without a re-compilation cost. However, the inherent cost of inter-
ventions is expensive since we introduce different variables even for equal degrees,
which is not the case for observations. This is the price to be paid if interventions
occur. We have also noticed that intuitively, if we focus on the binary case, muti-
lated possibilistic bases are more compact than mutilated Π-DNNFs. Our future
work consists in studying the representational point of view of interventions un-
der a compilation framework, then comparing mutilated-based approaches with
both augmented-based approaches and the well known junction tree.
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Abstract. The paper investigates a qualitative counterpart of Shafer’s
evidence theory, where the basic probability assignment is turned into a
basic possibility assignment whose weights have 1 as a maximum. The
associated set functions, playing the role of belief, plausibility, common-
ality, and the dual of the latter, are now defined on a “maxitive”, rather
than on an additive basis. Although this possibilistic evidence setting has
been suggested for a long time, and has a clear relation with the study
of qualitative Möbius transforms, it has not been really systematically
studied and considered for itself as a general qualitative representation
framework. It can be viewed as defining imprecise possibilities, and en-
compasses standard possibilitistic representations as a particular case.
The paper particularly focuses on a generalized set-theoretic view of this
setting and discusses the entailment relation between basic possibility
assignments as well as combination rules.

Keywords: Dempster-Shafer evidence theory, possibility theory, knowl-
edge representation.

1 Introduction

Many approaches to the handling of uncertainty and preference, including the
classical ones, heavily rely on a quantitative / additive modeling. Additive struc-
tures are indeed at the basis of the classical approaches and of their generaliza-
tions for the representation of uncertainty (with probability theory and Shafer’s
evidence theory [14]), or in multiple criteria aggregation (with weighted aver-
ages, and more generally Choquet integrals). However, the processing of more
qualitative information has also led to the emergence of “maxitive” settings such
as possibility theory [19], or Sugeno integrals [15].

Shafer’s evidence theory, which, mathematically speaking, includes both prob-
ability theory and possibility theory as particular cases, but also the classical
set-based representation, provides a setting appropriate for representing impre-
cise and uncertain information, by means of a basic probability assignment from
the power set of the referential to the unit interval. In this paper we inves-
tigate a qualitative (maxitive) counterpart to this framework, starting with a
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basic possibility assignment. Such an assignment, whose weights no longer sum
to 1 but have 1 as a maximum, gives birth to a possibilistic evidence setting.
The idea of a basic possibility assignment dates back to a suggestion made in
[7,8]. This notion has been also empirically used in diagnosis contexts for nam-
ing different kinds of assignments, e.g. [17]. Other authors have been interested
in this qualitative counterpart. Thus, in [1] all fuzzy measures are proved to
be equal to a maximum of necessity measures and to a minimum of possibil-
ity measures. In [16], upper and lower possibilities and necessities are expressed
in terms of a basic possibility assignment or a necessity assignment. Moreover,
this qualitative counterpart is closely related to the study of qualitative Möbius
transforms in relation with Choquet and Sugeno integrals [4], and in particular
with the problem of refining qualitative multiple criteria evaluations [5]. Still,
the possibilistic evidence setting has never been much advocated as a general
representation setting worth of interest. This paper tries to remedy this state
of fact. It is organized as follows. Section 2 introduces the basic set functions
associated with a basic possibility assignment. Section 3 shows that this setting
can be understood in terms of imprecise possibilities just as Shafer’s evidence
theory may be viewed as a particular imprecise probability system. Section 4
discusses the relation with qualitative Möbius transforms, showing that differ-
ent basic possibility assignments can be associated with the same system of
set functions. Sections 5 presents an entailment relation between basic possibil-
ity assignments, and Section 6 studies conjunctive or disjunctive combination
rules. The concluding remarks briefly comment on the interest of the companion
“minitive” construct.

2 A Maxitive Weighted Subset Representation
Framework

In evidence theory, given a universe Ω = {1, · · · , N}, called frame of discernment,
information is represented by means of a mapping m, called basic probability
assignment (or mass function) from 2Ω to the unit interval [0, 1], which is such
that

∑n
i=1 m(Ai) = 1, where there is a finite set of focal elements Ai that are

such that m(Ai) > 0. If the information is consistent m(∅) = 0 is assumed. m(A)
is the probability mass allocated to the subset A exactly. Attaching a mass to
a subset without dispatching it inside opens the door to the representation of
partial ignorance. A mass function m is associated to the following set functions:
∀A ⊆ Ω, Bel(A) =

∑
∅�=B⊆A m(B); ∀A ⊆ Ω, P l(A) =

∑
B∩A �=∅ m(B);

∀A ⊆ Ω, Q(A) =
∑

A⊆B m(B); ∀A ⊆ Ω,

Q

(A) =
∑

A∪B �=Ω m(B).
Bel is a belief function, Pl a plausibility function, and Q a commonality function.Q

(A) = 1−Q(A) is rarely considered (Ā denotes the complement of A).

2.1 Set Functions Associated with Possibilistic Evidence

In what can be termed possibilistic evidence theory, the basic building block is a
so-called basic possibility assignment which is a set function σ from a set 2Ω (here
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assumed to be a finite set) to [0, 1], such that
∨

A⊆Ω σ(A) = 1. As in Shafer’s
evidence theory setting, Fσ = {A|σ(A) > 0} is called a body of evidence, and
any element of F is called a focal element. σ may be also viewed as defining a
normalized fuzzy set of subsets, i.e. a particular case of level 2-fuzzy set [18], or
better as a possibility distribution over 2Ω (just as m may be viewed as a prob-
ability distribution over 2Ω). Moreover, a normal basic possibility assignment
satisfies the additional condition σ(∅) = 0. In the following, all the considered
basic possibility assignments are normal. As in evidence theory, a basic possi-
bility assignment σ is associated with set functions now defined on a maxitive
basis, in agreement with a qualitative setting:

Definition 1
∀A ⊆ Ω, Belpos(A) =

∨
B⊆A σ(B), Belpos(∅) = 0, Belpos(Ω) = 1;

∀A ⊆ Ω, P lpos(A) =
∨

∅�=A∩B σ(B), P lpos(∅) = 0, Plpos(Ω) = 1;
∀A ⊆ Ω, Qpos(A) =

∨
A⊆B σ(B), Qpos(∅) = 1, Qpos(Ω) = σ(Ω);

∀A ⊆ Ω,

Qpos
(A) =

∨
A∪B �=Ω σ(B),

Qpos
(∅) =

∨
B �=Ω σ(B),

Qpos
(Ω) = 0.

2.2 Duality Relations

In Shafer’s evidence theory, the belief and plausibility functions Bel and Pl
satisfy ∀A ⊆ Ω, Bel(A) ≤ Pl(A). Moreover, they are related through the duality
relation ∀A ⊆ Ω, P l(A) + Bel(Ā) = 1−m(∅).

It is easy to see that the functions Belpos and Plpos are increasing and satisfy
∀A, Belpos(A) ≤ Plpos(A). Qpos and

Qpos
are decreasing. Having ∀A, Qpos(A) ≤Qpos

(A) also requires σ(Ω) = 0. Moreover, a duality relation exists between
Belpos and Plpos and between Qpos and

Qpos
.

Proposition 1. ∀A ⊆ Ω, P lpos(A) ∨Belpos(Ā) = 1, Qpos(A) ∨ Qpos
(Ā) = 1.

Proof∨
B∩A �=∅ σ(B)∨

∨
B⊆Ā σ(B) =

∨
B∩A �=∅ σ(B)∨

∨
B∩A=∅ σ(B) =

∨
B⊆Ω σ(B) = 1∨

A⊆B σ(B) ∨
∨

B∪Ā �=Ω σ(B)=
∨

B∪Ā=Ω σ(B) ∨
∨

B∪Ā �=Ω σ(B)=
∨

B⊆Ωσ(B)=1

2.3 Particular Cases of Basic Possibility Assignment

Let us see how particular noticeable situations are represented in this setting.

Total imprecision: σ(Ω) = 1 and σ is 0 otherwise. Then, ∀A �= Ω, Belpos(A) =
0, ∀A �= ∅, P lpos(A) = 1. Moreover, ∀A, Qpos(A) = 1; ∀A,

Qpos
(A) = 0.

Partial imprecision: there exists A ⊆ Ω, |A| > 1 such that σ(A) = 1 and for
all B �= A, σ(B) = 0. Then,

Belpos(B) = 1 if A ⊆ B and 0 if A �⊆ B;
Plpos(B) = 1 if A ∩B �= ∅ and 0 if A ∩B = ∅;
Qpos(B) = 1 B ⊆ A and 0 if B �⊆ A;Qpos

(B) = 1 if B ∪A �= Ω.
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Complete knowledge: There exists only one ω ∈ Ω such that σ({ω}) = 1 and
σ is equal to 0 otherwise. Then, ∀A, Belpos(A) = Plpos(A) = 1 if ω ∈ A and 0 if
ω �∈ A. Qpos(A) = 1 if A = {ω} and 0 ∀A �= {ω}; Qpos(A) = 1 if A �= {Ω}, �= {ω}.

Precise uncertainty: σ is a “Bayesian” possibility assignment if σ(A) > 0
implies that A is a singleton. Then Belpos(A) = Plpos(A) =

∨
ω∈A σ(ω) is a pos-

sibility measure. Qpos(A) = 0 for all A such that |A| > 1, Qpos({ω})) = σ({ω}).

Possibilistic uncertainty: σ is not equal to 0 only for some Ai that are nested,
i.e., A1 ⊆ · · · ⊆ An. In Shafer ’s evidence theory, in such a case Pl is a possibility
measure and Bel is a necessity measure. As shown below, we have the same result
in our context. Moreover Qpos and

Qpos
are strong (or guaranteed) possibility

and weak necessity measures respectively, as in bipolar possibility theory [10][2].
First let us introduce the following notations. For any set A ⊆ Ω, A∩

min

denotes the minimum index i such that A∩Ai �= ∅, A⊆
min denotes the minimum

index i such that A ⊆ Ai, and Amax denotes the maximum index i such that
Ai ⊆ A.

Proposition 2

1. Belpos is a necessity measure, i.e. Belpos(A ∩B) = Belpos(A) ∧Belpos(B),
2. Plpos is a possibility measure, i.e. Plpos(A ∪B) = Plpos(A) ∨ Plpos(B),
3. Qpos(A ∪B) = Qpos(A) ∧Qpos(B),
4.

Qpos
(A ∩B) =

Qpos
(A) ∨ Qpos

(B).

Proof: Let A and B be two subsets of Ω.

1. The maximum index such that Ai ⊆ (A ∩ B) is the minimum of the in-
dexes Amax and Bmax. We have Belpos(A ∩ B) =

∨
i≤Amax∧Bmax

σ(Ai) =∨
i≤Amax

σ(Ai) ∧
∨

i≤Bmax
σ(Ai) = Belpos(A) ∧Belpos(B).

2. The minimum index i such that (A ∪ B) ∩ Ai �= ∅ is the minimum of
the indexes A∩

min and B∩
min. So Plpos(A ∪ B) =

∨
i≥A∩

min∧B∩
min

σ(Ai) =∨
i≥A∩

min
σ(Ai) ∨

∨
i≥B∩

min
σ(Ai) = Plpos(A) ∨ Plpos(B).

3. The minimum index i such that A ∪B ⊆ Ai is the maximum of the indexes
A⊆

min and B⊆
min so Qpos(A∪B) =

∨
i≥A⊆

min∨B⊆
min

σ(Ai) = Qpos(A)∧Qpos(B).

4. Ā∪B̄ = A ∩B. The minimum index i such that Ā∪B̄ ⊆ Ai is the maximum
of the indexes Ā⊆

min and B̄⊆
min so

Qpos
(A ∩ B) =

∨
i≤Ā⊆

min∨B̄⊆
min

σ(Ai) =

Qpos
(A) ∨ Qpos

(B).

3 Possibilistic Evidence as Imprecise Possibilities

A consistent probability assignment m defines an imprecise probability in the
sense that m is compatible with any probability distribution p obtained by shar-
ing the masses m(A) between the elements ω in A (assuming Ω finite):

if ∀A ∈ 2Ω, ∃kA ∈ [0, 1]A such that m(A)=
∑

ω∈A kA(ω), and p(ω)=
∑

A�ω kA(ω).
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Clearly
∑

A �=∅ m(A) = 1 ensures that
∑

ω∈Ω p(ω) = 1. Thus, viewing each m(A)
as a mass that can be shared and freely reallocated to the elements of A, m is
associated to the family of probability distributions p that are compatible with
m in the above sense. Then m models a particular imprecise probability system.
Letting P (A) =

∑
ω∈A p(ω), it can be checked that

Bel(A) =
∑

∅�=B⊆A m(B) ≤ P (A) ≤ Pl(A) =
∑

B∩A �=∅ m(B).
Indeed, Bel(A) =

∑
∅�=B⊆A

∑
ω∈B kB(ω) ≤

∑
ω∈A

∑
B�ω kB(ω) = P (A).

We may similarly try to define an imprecise possibility structure. Let us con-
sider a basic possibility assignment σ and Uσ =

⋃
i|σ(Ai)>0 Ai. However, the

situation is slightly more tricky than in the probabilistic case, if we want to
interpret the σ(A)’s as providing an imprecise possibility specification. If it is
so, there should exist a possibility distribution π and mappings κA ∈ [0, 1]A

such that such that σ(A) = maxω∈A κA(ω), and π(ω) = maxB�ω κB(ω). Note
that Π(A) = maxω∈A π(ω) = maxω∈A maxB�ω κB(ω) ≥ σ(A). Note also that
∀ω ∈ Ω−Uσ, π(ω) = 0. Clearly maxA �=∅ σ(A) = 1 ensures that maxω∈Ω π(ω) = 1.
Thus, σ(A) should be understood as a contribution to the specification of the
possibility of A. Let us show that Belpos(A) ≤ Π(A) ≤ Plpos(A).

Indeed, Belpos(A) =
∨

B⊆A σ(B) ≤
∨

B⊆A Π(B) = Π(A). Let B0 denote
the set such that A ∩ B0 �= ∅ and σ(B0) =

∨
B∩A �=∅ σ(B). For all ω ∈ A, ∃B1

such that ω ∈ B1 and π(ω) = κB1(ω). κB1(ω) ≤ σ(B1) ≤ σ(B0) so ∀ω ∈ A,
π(ω) ≤ σ(B0) which entails Π(A) ≤ σ(B0) =

∨
B∩A �=∅ σ(B) = Plpos(A).

Example. Fσ = {A, Ω}. Assume σ(A) ≥ σ(Ω). Then σ(A) = maxω∈A κA(ω),
σ(Ω) = maxω∈Ω κΩ(ω), and π(ω) = max(κA(ω), κΩ(ω)). By convention,
κA(ω) = 0 if ω �∈ A. Then Π(A) = max(σ(A), maxω∈A κΩ(ω)) = σ(A). But,
Π(Ω) = max(maxω∈Ω κA(ω), σ(Ω)) = σ(A). If σ(A) < σ(Ω), σ(A) ≤ Π(A) ≤
σ(Ω) = Π(Ω) = 1.

4 Non Unicity of the Basic Possibility Assignment

A belief function Bel (or its dual Pl) is associated with only one mass function
which is not tue in the maxitive setting as it can be seen in the following example:

{1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
σ1 1 0 1 0 0 0 1
σ2 1 0 1 1 1 1 0

Belpos
1 = Belpos

2 1 0 1 1 1 1 1

Moreover the equivalence ∀A ⊆ Ω, Bel1(A) ≤ Bel2(A) ⇔ Pl2(A) ≤ Pl1(A) is
not true for the set functions Belpos and Plpos. For example if we consider

{1} {2} {1, 2}
σ1 0 1 0
σ2 1 1 1

we have Belpos
1 ≤ Belpos

2 and Plpos
1 ≤ Plpos

2 .
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Proposition 3. Let Belpos
1 and Belpos

2 associated respectively with σ1 and σ2.
If Belpos

1 and Belpos
2 are equal then σ1 and σ2 are equal on the singletons.

In Shafer’s evidence theory, the mass function associated to a belief function is
computed with the Möbius transform. In our context, the qualitative Möbius
transform [11,12,5] associates a possibilistic belief function Belpos = v to an
interval of basic possibility assignments, as stated in the following definition:

Definition 2. Let v : 2Ω → [0, 1] be an increasing set function, its qualitative
Möbius transform is {σ| ∀A ⊆ Ω v(A) =

∨
B⊆A σ(B)} = {σ|σ ∈ [σ∗, σ

∗]}
where σ∗ and σ∗ are the basic possibility assignments defined as follows:
∀A ⊆ Ω, σ∗(A) = v(A),
∀A ⊆ Ω, σ∗(A) = 0 if ∃B ⊂ A s.t. v(B) = v(A) and σ∗(A) = v(A) otherwise.

The sets A such that σ∗(A) �= 0 are such that ∀B ⊂ A, σ∗(B) is either 0 or
v(B) with v(B) < v(A). So we have for all B ⊂ A, σ∗(B) < σ∗(A). A can be
viewed as the minimal set in the sense of inclusion satisfying σ∗(A) = v(A). In
the following, the sets A such that σ∗(A) �= 0 are named the minimal sets of v.

Applying this result to the set function Belpos gives birth to an interval
[σB

∗ , σB∗]. Let us present an example.

{1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
Belpos 1 0 1 1 1 1 1

σ∗ 1 0 1 1 1 1 1
σ∗ 1 0 1 0 0 0 0

Similarly the set function Plpos corresponds to an interval [σP
∗ , σP∗].

We have σB
∗ ≤ σP

∗ ≤ σB∗ ≤ σP∗. So if we know Belpos and Plpos everywhere
σ is uniquely determined if and only if σP

∗ = σB∗.
The set function Qpos is not an increasing set function, but we can define an

interval of basic possibility assignments associated with Qpos as before, using a
result proved for the “minitive” set function

∧
A⊆B σ(B) in [5].

Definition 3. Let v : 2Ω → [0, 1] be a decreasing set function, its transform is
{σ| ∀A ⊆ Ω v(A) =

∨
B⊆A σ(B)} = {σ|σ ∈ [σ∗, σ

∗]}
where σ∗ and σ∗ are the basic possibility assignments defined as follows:
∀A ⊆ Ω, σ∗(A) = v(A),
∀A ⊆ Ω, σ∗(A) = 0 if ∃B s.t. A ⊂ B and v(B) = v(A); σ∗(A) = v(A)

otherwise.

Similarly to the case where v was an increasing function, the sets A such that
σ∗(A) �= 0 can be viewed as the maximal sets in the sense of inclusion satisfying
σ∗(A) = v(A). In the following these sets are named the maximal sets of v.

Applying this result to the set functions Qpos and

Qpos
leads to the intervals

[σQ
∗ , σQ∗] and [σ

Q

∗ , σ

Q

∗].
When the four functions Belpos, Plpos, Qpos and

Qpos
are defined everywhere

σ is unique if and only if the intersection of the four involved intervals is only
one basic possibility assignment. This is not always the case. For example we can
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consider Ω = {1, 2, 3} and the following basic possibility assignments σ1 and σ2:
σ1 equal to 1 on {1}, {3} {1, 2, 3} and 0 on the other sets; σ2 equal to 0 on {2}
and 1 on the other sets. In this example we have Belpos

1 = Belpos
2 , Plpos

1 = Plpos
2 ,

Qpos
1 = Qpos

2 and

Qpos

1 =

Qpos

2 .
Using the previous results we can define two equivalence relations as follows.

Definition 4. σ1 ∼Belpos σ2 if and only if Belpos
1 = Belpos

2 .
σ1 ∼Qpos σ2 if and only if Qpos

1 = Qpos
2 .

The first relation σ1 ∼Belpos σ2 implies that σ1∗ = σ2∗. So σ1 and σ2 have the
same minimal sets. The second one σ1 ∼Qpos σ2 implies that σ1 and σ2 have the
same maximal sets.

5 Entailment between Basic Possibility Assignments

Basic possibility assignments are generalized sets. This section deals with the no-
tion of entailment between pieces of information represented by basic possibility
assignments, viewed as an inclusion between these generalized sets.

5.1 Definitions

Taking lesson from the additive case [9], there are two points of view for defining
that Fσ1 is included in Fσ2 :

Definition 1. Fσ1 ⊆ Fσ2 ⇔ Belpos
2 ≤ Belpos

1 and Fσ1⊆̄Fσ2 ⇔ Qpos
1 ≤ Qpos

2 .

Proposition 1

Fσ1 ⊆ Fσ2 ⇔ ∀B ∈ Fσ2∃A ∈ Fσ1 such that A ⊆ B and σ2(B) ≤ σ1(A)
Fσ1⊆̄Fσ2 ⇔ ∀A ∈ Fσ1∃B ∈ Fσ2 such that A ⊆ B and σ1(A) ≤ σ2(B).

Proof: Let us prove the first equivalence.
If Fσ1 ⊆ Fσ2 then for all B ∈ Fσ2 , Belpos

2 (B) = ∨A⊆Bσ2(A) ≤ Belpos
1 (B) =

∨A⊆Bσ1(A) which implies σ2(B) ≤ ∨A⊆Bσ1(A) and ∃A ⊆ B such that σ2(B) ≤
σ1(A).
Reciproquely, if ∀B ∈ Fσ2 ∃A ∈ Fσ1 such that A ⊆ B and σ2(B) ≤ σ1(A)
then σ2(B) ≤ ∨C⊆Aσ1(C) = Belpos

1 (A) ≤ Belpos
1 (B). So for all B ∈ Fσ2

σ2(B) ≤ Belpos
1 (B). It is true particularly for all C ⊆ B so σ2(C) ≤ Belpos

1 (C) ≤
Belpos

1 (B) which implies Belpos
2 (B) = ∨C⊆Bσ2(C) ≤ Belpos

1 (B) i.e. Fσ1 ⊆ Fσ2 .
The proof of the second equivalence is similar using that Fσ1⊆̄Fσ2 implies for

any A, σ1(A) ≤
∨

A⊆B σ2(B).
Note that the first equivalence states that each element of Fσ2 contains an el-
ement of Fσ1 which is at least as good as it. The other one is to consider that
each element of Fσ1 is included in an element of Fσ2 which is at least as good
as it.

Hence it seems natural to state the following definition.

Definition 5. σ1 � σ2 if and only if Belpos
2 ≤ Belpos

1 and Qpos
1 ≤ Qpos

2 .
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Note that in Shafer evidence theory Pl appears when defining inclusion since
Fσ1 ⊆ Fσ2 ⇔ ∀A ⊆ Ω, [Bel1(A), P l1(A)] ⊆ [Bel2(A), P l2(A)]. In our context it
is not the case, since we do not have Belpos

2 ≤ Belpos
1 ⇔ Plpos

1 ≤ Plpos
2 . In case

σ1 and σ2 are two consonant basic possibility assignments (i.e. their respective
focal elements are nested), we have σ1 � σ2 ⇒ Plpos

1 ({ω}) ≤ Plpos
2 ({ω}), i.e. a

fuzzy set inclusion holds between the contour functions.
We conclude this part by defining the core and the support of Fσ.

Definition 6. core(σ) = {A ⊆ Ω |σ(A) = 1 and ∀B, s.t. B ⊂ A, σ(B) �= 1}.
sup(σ) = {A ⊆ Ω |σ(A) = 1 and ∀B ⊆ Ω s.t. A ⊂ B, σ(B) �= 1}.

5.2 Behavior of Cores and Supports with Respect to Entailment

Let us study the behavior of this entailment on the core and the support We
have the following results.

Proposition 4. Let σ1 and σ2 be two basic possibility assignments.
If σ1 � σ2 then

∀A ∈ core(σ2) ∃B B ⊆ A and B ∈ core(σ1),
∀A ∈ sup(σ1) ∃B A ⊆ B and B ∈ sup(σ2).

Proof: If we consider A ∈ core(σ2) then σ2(A) = 1 ≤
∨

B⊆A σ1(B), so there
exits B ⊆ A such that σ1(B) = 1, so A contains a set which belongs to core(σ1).

If we consider A ∈ sup(σ1) then σ1(A) = 1 ≤
∨

A⊆B σ2(B), so there exists
A ⊆ B such that σ2(B) = 1, which entails that A is contained in a set which
belongs to sup(σ2).

The following examples prove that we may have σ1 � σ2 with core(σ2) �⊆
core(σ1) or sup(σ1) �⊆ sup(σ2).

Example: Ω = {1, 2}, σ1 and σ2 are defined as follows:

{1} {2} {1, 2}
σ1 1 0 1
σ2 0 0 1

we have {1, 2} ∈ core(σ2) and {1, 2} �∈ core(σ1).

Example: Ω = {1, 2}, σ1 and σ2 are defined as follows:

{1} {2} {1, 2}
σ1 1 1 0
σ2 0 1 1

we have {2} ∈ sup(σ1) and {2} �∈ sup(σ2).

Proposition 5. Let σ1, σ2 be two basic possibility assignments such that σ1 � σ2

and σ2 � σ1, hence core(σ1) = core(σ2) and sup(σ1) = sup(σ2).

Proof: We consider A ∈ core(σ1). According to the previous property, σ2 � σ1

implies ∃B B ⊆ A and B ∈ core(σ2). If B �= A, then σ1 � σ2 implies ∃C C ⊆ B
and C ∈ core(σ1). We have C ⊂ A which contradicts A ∈ core(σ1). So B = A
which entails core(σ1) ⊆ core(σ2). Similarly, according to the symmetry of the
proposition we can prove core(σ2) ⊆ core(σ1).
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We consider A ∈ sup(σ1). According to the previous property, σ1 � σ2 implies
∃B A ⊆ B and B ∈ sup(σ2). If B �= A, then σ2 � σ1 implies ∃C B ⊆ C and
C ∈ sup(σ1). We have A ⊂ C which contradicts A ∈ sup(σ1). So B = A which
entails sup(σ1) ⊆ sup(σ2). Similarly, we can prove sup(σ2) ⊆ sup(σ1).

Proposition 6. In the binary case, if σ1, σ2 are two basic possibility assign-
ments such that core(σ1) = core(σ2) and sup(σ1) = sup(σ2) then σ1 � σ2 and
σ2 � σ1.

Proof: We consider a set A. If there is no B ⊆ A such that σ1(B) = 1 then A
does not contain a set which is in core(σ1). So A does not contain a set that is
in core(σ2), so ∀B ⊆ A, σ2(B) = 0. In consequence Belpos

1 (A) = Belpos
2 (A) = 0.

If there exists B ⊆ A such that σ1(B) = 1 then A contains a set that is in
core(σ1). So A contains a set which is in core(σ2) so Belpos

1 (A) = Belpos
2 (A) = 1.

Similarly using the supports instead of the cores we can prove that Qpos
1 (A) =

Qpos
2 (B).

Note that σ1 � σ2 and σ2 � σ1 is equivalent to σ1 ∼Belpos σ2 and σ1 ∼Qpos σ2.
So if two basic possibility assignments are in the same equivalence class with
respect to Belpos and Qpos then they have the same core and the same support.

6 Combination Laws

In Shafer’s evidence theory, beside the well-known Dempster rule of combination
[14] which corresponds to the conjunction of random sets, other combination laws
have been proposed for fusing two mass functions. In particular, the disjunctive
rule of combination appears to be another basic rule [9]. It has been shown that
the Dempster rule of combination corresponds to the product of the commonality
functions, while the disjunctive rule corresponds to the product of the belief
functions. As shown below, these results have counterparts in the qualitative
maxitive setting.

6.1 The Definitions

Thus, in our context, it is natural to define the following conjunctive and dis-
junctive combination laws.

Definition 7. Let σ1 and σ2 be two basic possibility assignments.

The combination rule is:
(σ1 ⊗ σ2)(∅) = 0 and ∀A ⊆ Ω, (σ1 ⊗ σ2)(A) =

∨
B∩C=A �=∅ σ1(B) ∧ σ2(C).

The condition rule is:
(σ1 ⊕ σ2)(∅) = 0 and ∀A ⊆ Ω, (σ1 ⊕ σ2)(A) =

∨
B∪C=A �=∅ σ1(B) ∧ σ2(C).

Note that the first combination rule was already suggested in [8].
The set function σ1 ⊗ σ2 is a basic possibility assignment if and only if there

exists B and C such that B ∩ C �= ∅ and σ1(B) = σ2(C) = 1. For example if
either σ1 � σ2 or σ2 � σ1 then σ1 ⊗ σ2 is a basic possibility assignment.

In our context σ1 ⊕ σ2 is a basic possibility assignment because the basic
possibility assignments are supposed to be normal.



722 H. Prade and A. Rico

6.2 Properties of the Combination Rule

Commutativity. Using the definition it is easy to see that ⊗ is commutative:
σ1 ⊗ σ2 = σ2 ⊗ σ1 for all σ1, σ2.

Neutral element. Let σ0 be the basic possibility assignment equal to 0 every-
where except on Ω. σ0 is neutral with respect to ⊗ i.e. σ0 ⊗ σ = σ for all σ:
σ0 ⊗ σ(A) =

∨
B∩C=A σ0(B)∧ σ(C), if B �= Ω then σ0(B)∧ σ(C) = 0 and if

B = Ω then σ0(B) ∧ σ(C) = σ(C).
Associativity. We consider three basic possibility assignments σ1, σ2 and σ3.

We have to prove that for all A, ((σ1 ⊗ σ2)⊗ σ3)(A) = (σ1 ⊗ (σ2 ⊗ σ3))(A).
These two expressions are equal to ∨B∩C∩D=Aσ1(B) ∧ σ2(C) ∧ σ3(D).

We denote Belpos
1 ⊕ Belpos

2 the possibilistic belief associated to σ1 ⊕ σ2 and
Qpos

1 ⊗ Qpos
2 the possibilistic commonality function associated to σ1 ⊗ σ2. The

following properties which have counterparts in Dempster Shafer theory are still
satisfied in our context.

Proposition 7. Belpos
1 ⊕Belpos

2 = Belpos
1 ∧Belpos

2 .

Proof: First let us prove that Belpos
1 ⊕Belpos

2 ≤ Belpos
1 ∧Belpos

2 .

Belpos
1 ⊕Belpos

2 (A) =
∨

B⊆A(σ1 ⊕ σ2)(B)
=
∨

B⊆A

∨
C∪D=B(σ1(C) ∧ σ2(D))

=
∨

C∪D⊆A(σ1(C) ∧ σ2(D))

If we consider C and D such that C ∪D ⊆ A. We have σ1(C) ≤
∨

C⊆A σ1(C)
and σ2(D) ≤

∨
D⊆A σ2(D) so σ1(C)∧σ2(D) ≤ (

∨
C⊆A σ1(C))∧(

∨
D⊆A σ2(D)) =

Belpos
1 (A) ∧Belpos

2 (A) which implies Belpos
1 ⊕Belpos

2 ≤ Belpos
1 ∧Belpos

2 .
Now let us prove that Belpos

1 ⊕Belpos
2 ≥ Belpos

1 ∧Belpos
2 .

Belpos
1 (A) ∧ Belpos

2 (A) = (
∨

C⊆A σ1(C)) ∧ (
∨

D⊆A σ2(D)) = σ1(C0) ∧ σ2(D0)
where C0 ∪ D0 ⊆ A. We have σ1(C0) ∧ σ2(D0) ≤

∨
C∪D⊆A(σ1(C) ∧ σ2(D)) =

Belpos
1 ⊕Belpos

2 (A).

Proposition 8. Qpos
1 ⊗Qpos

2 = Qpos
1 ∧Qpos

2 .

Proof: This proof is similar to the previous one.
(Qpos

1 ⊗ Qpos
2 )(A) =

∨
A⊆C∩D(σ1(C) ∧ σ2(D)), if we consider C and D such

that A ⊆ C ∩ D we have σ1(C) ∧ σ2(D) ≤ (
∨

A⊆C σ1(C)) ∧ (
∨

A⊆D σ2(D)) =
Qpos

1 (A) ∧Qpos
2 (A). So Qpos

1 ⊗Qpos
2 ≤ Qpos

1 ∧Qpos
2 .

For the other inequality, Qpos
1 (A)∧Qpos

2 (A) = σ1(C0)∧σ2(D0) where A ⊆ C0∩
D0. So we have σ1(C0)∧σ2(D0) ≤

∨
A⊆C∩D(σ1(C)∧σ2(D)) = (Qpos

1 ⊗Qpos
2 )(A)

which entails Qpos
1 ∧Qpos

2 ≤ Qpos
1 ⊗Qpos

2 .

7 Concluding Remarks

In this paper, we have outlined a presentation of the basic properties of a qual-
itative representation setting that extends possibility theory by dealing, in a
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maxitive way, with possibility distributions on the power set of the frame of
discernment. Then, a basic possibility assignment may be seen as a collection of
a series of possibility qualifications [20] of events of interest. Here rather than
selecting a particular possibility distribution that agrees with the qualification,
we keep the specification has such, still being able to process it by computing
measures associated to events, by defining entailments, and fusing information.
This is certainly a very weak way of specifying information, but which may make
sense especially in discrete universes.

This qualitative setting has been obtained by substituting the additive struc-
ture of Shafer’s evidence theory with a maxitive structure. It is rather remarkable
that while replacing the sum with the maximum, we preserve good structural
properties that parallel the situation in the additive case. It is clear that we may
have replaced the sum by the minimum, instead of the maximum, thus obtaining
a minitive structure with quite similar properties, but with a different interpre-
tation. For instance, considering Belnec(A) =

∧
B⊆A σ(B) clearly suggests that

σ should be now understood as a necessity qualification. But here, in contrast
with possibilistic logic [6] where the necessity measure is defined from a possi-
bility distribution, it is only the pieces of knowledge that are explicitly stated
through σ that are taken into account in the inference.

Beyond the results presented in this paper, many questions remain. Let us
mention some of them. In Shafer’s evidence theory the separable belief functions
are decomposable in terms of simple support functions and this decomposition is
unique. It seems also natural to define simple support functions in our context,
but it is not clear if the decomposition will always be possible and unique.
Another question is the counterpart in our setting (or in the minitive context)
of the lower and upper additivity properties of belief and plausibility functions,
which have been already shown to have a counterpart in a logic of incomplete
information [3].

Besides, we have recently proposed a method to describe acceptable objects
by means of Sugeno integral [13]. More precisely considering objects described
by combinations of properties we have investigated the potential use of Sugeno
integrals as a representation tool for these objects. The Sugeno integral was de-
fined using the measure which is named Belpos in this paper. We expect that
the entailment between the basic possibility assignments help us to better under-
stand the entailment between the Sugeno integrals in order to understand how
the objects are selected with the Sugeno integrals. Still another direction for
further research is the use of the equivalence classes defined with the qualitative
Möbius transform in order to propose a method with an acceptable complexity.
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Abstract. In this paper, we define an approach to database preference
queries based on the fusion of local orders. The situation considered is
that of queries involving incommensurable partial preferences, possibly
associated with scoring functions. The basic principle is to rank the tu-
ples according to each partial preference, then to merge the local orders
obtained, using a linear function for aggregating the local scores attached
to the tuples. Basically, a local score expresses the extent to which a tuple
is strictly better than many others and not strictly worse than many oth-
ers with respect to the partial preference attached to a given attribute.
This model refines Pareto order for queries of the Skyline type.

1 Introduction

Approaches to database preference queries may be classified into two categories
according to their qualitative or quantitative nature [1]. In the latter, preferences
are expressed quantitatively by a monotone scoring function (the overall score
is positively correlated with partial scores). Representatives of this family of
approaches are top-k queries [2], fuzzy-set-based approaches (e.g., [3]), and the
model proposed in [4]. However, it is well known that scoring functions cannot
represent all preferences that are strict partial orders [5], not even those that
occur in database applications in a natural way [6]. Another issue is that devising
the scoring function may not be simple. In the qualitative approach, preferences
are defined through binary preference relations. Since binary preference relations
can be defined in terms of scoring functions, the qualitative approach is more
general than the quantitative one. Among the representatives of this second
family of approaches, let us mention those relying on a dominance relation, e.g.
Pareto order, as Preference SQL [7] and Skyline queries [8].

In [9], we introduced a preference query model inspired by the notion of out-
ranking which was initially proposed in a decision-making context [10]. The
approach assumes available a set of scoring functions which translate partial
preferences that are supposed to be incommensurable. The proposal relies on
an outranking measure out(t, t′) which aggregates the numbers of (weighted)
partial preferences either concordant, discordant or indifferent with a given or-
dering between two tuples t and t′. Finally, the tuples are ordered on the basis
of their global “quality”, i.e., a tuple is all the more preferred as it outranks
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many other tuples (and is not outranked by many), and the mechanism pro-
posed yields a total order (unlike Pareto-order based approaches). A variant of
this model, which uses fuzzy concordance, discordance and indifference relations,
is described in [11]. Both variants refine the (Pareto) order obtained while using
regular Skyline queries. A drawback of the outranking-based preference query
model is that queries have a data complexity in θ(n2) since they involve pairwise
tuple comparisons. On the other hand, recent works on Skyline queries show that
their evaluation — whose data complexity is also quadratic if a straightforward
evaluation method is used — can be significantly optimized using a strategy
based on presorting [12,13].

In the present paper, we propose an approach which shares some concepts
with the outranking-based model described in [9,11] — and which also refines
Pareto order —, but leads to queries having a linear data complexity. The basic
principle is to rank the tuples according to each partial preference, then to merge
the local orders obtained, using a linear function for aggregating the local scores
attached to the tuples. A local score does not correspond to a rank, but rather
expresses the extent to which a tuple is strictly better than many others and not
strictly worse than many others with respect to the partial preference attached
to the considered attribute. This approach extends the well-known voting rule
called Borda method in the following respects: i) it is able to deal with ties and
“pseudo-ties” (i.e., ties defined according to an indifference relation), ii) it allows
for a graded view of the notions “better” and “worse”.

The remainder of this paper is structured as follows. Section 2 describes two
related preference query models, namely that based on Pareto order and that
based on the notion of outranking. Section 3 is devoted to three variants of the
new approach we propose, which is based on the fusion of local orders. Section 4
deals with query evaluation, whereas Section 5 concludes the paper and outlines
perspectives for future research.

2 Related Approaches

2.1 Pareto-Order-Based Approaches

Let us first recall the general principle of queries based on the use of Pareto order.
Let {G1, G2, ..., Gn} be a set of the atomic preferences. We denote by t �Gi t′

(resp. t �Gi t′) the statement “tuple t satisfies preference Gi better than (resp.
as least as good as) tuple t′”. Using Pareto order, a tuple t dominates another
tuple t′ iff

∀i ∈ {1, . . . , n}, t �Gi t′ and ∃k ∈ {1, . . . , n}, t �Gk
t′.

In other words, t dominates t′ if it is at least as good as t′ regarding every
preference, and is strictly better than t′ regarding at least one preference. The
following example uses the syntax of the language Preference SQL [7], which is
a typical representative of a Pareto-based approach.
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Example 1. Let us consider a relation car of schema (make, category, price,
color, mileage) whose extension is given in Table 1, and the query:

select * from car where mileage ≤ 20,000
preferring (category = ‘SUV’ else category = ‘roadster’) and (make = ‘VW’
else make = ‘Ford’ else make = ‘Opel’);

The idea is to retain the tuples which are not dominated in the sense of the
preferring clause. Here, t1, t4, t5, t6 and t7 are discarded since they are Pareto-
dominated by t2 and t3. On the other hand, t2 and t3 are incomparable and the
final answer is {t2, t3}.2

Table 1. An extension of relation car

make category price color mileage

t1 Opel roadster 4500 blue 20,000
t2 Ford SUV 4000 red 20,000
t3 VW roadster 5000 red 10,000
t4 Opel roadster 5000 red 8,000
t5 Fiat roadster 4500 red 16,000
t6 Renault sedan 5500 blue 24,000
t7 Seat sedan 4000 green 12,000

When the number of dimensions on which preferences are expressed gets high,
many tuples may become incomparable. Several approaches have been proposed
to define an order for two such tuples in the context of skylines, based on:

– the number of other tuples that each of the two tuples dominates (notion of
k-representative dominance proposed by Lin et al. [14]) or

– some preference order of the attributes; see for instance the notions of k-
dominance and k-frequency introduced by Chan et al. [15,16].

See also [17] where different fuzzy extensions of skyline queries are proposed and
discussed.

2.2 Outranking-Based Approach

The approach proposed in [11] assumes that a scoring function is associated with
each partial preference, but the preferences do not have to be commensurable.
The outranking relation which is the basis of the approach relies on two basic
notions, concordance and discordance. Concordance represents the proportion of
preferences which validate the assertion “t is preferred to t′”, denoted by t � t′,
whereas discordance represents the proportion of preferences which contradict
this assertion.

Let A1, A2, ..., An be the attributes concerned respectively by the set of
preferences G = {G1, G2, ..., Gn}. Let g1, g2, ..., gn be the scoring functions
associated to preferences G1, G2, ..., Gn respectively.
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Indifferent preferences: Each preference Gj may be associated with a thresh-
old qj . Preference Gj is indifferent with the statement “t is preferred to t′” iff
|gj(t.Aj) − gj(t′.Aj)| ≤ qj . This notion makes it possible to take into account
uncertainty or tolerance on the definition of the elementary preferences.

Concordant preferences: Gj is concordant with the statement “t is preferred
to t′” iff gj(t.Aj) > gj(t′.Aj) + qj .

Discordant preferences: Preference Gj is discordant with the statement “t is
preferred to t′” iff gj(t′.Aj) > gj(t.Aj) + qj .

We denote by C(t, t′) (resp. I(t, t′), resp. D(t, t′)) the set of concordant (resp.
indifferent, discordant) preferences from G w.r.t. t � t′. One may also attach a
weight wj to each preference Gj expressing its importance. It is assumed that
the sum of the weights equals 1. Let us define:

conc(t, t′) =
∑

Gj∈C(t, t′)

wj ,

disc(t, t′) =
∑

Gj∈D(t, t′)

wj , and

ind(t, t′) =
∑

Gj∈I(t, t′)

wj

where wj is the importance attached to preference Gj . The outranking degree
attached to the statement t � t′ (meaning “t is at least as good as t′”), denoted
by out(t, t′), reflects the truth of the statement: most of the important criteria
are concordant or indifferent with t � t′ and few of the important criteria are
discordant with t � t′. It is evaluated by the following formula:

out(t, t′) = conc(t, t′) + ind(t, t′) = 1− disc(t, t′). (1)

Let us denote by r the relation concerned. The tuples of r can be ranked on the
basis of an aggregation of the outranking degrees:

1. for every tuple t, one computes the degree:

μ(t) =
Σt′∈r\{t}out(t, t′)

|r| − 1

where |r| denotes the cardinality of r. Degree μ1(t) expresses the extent to
which t is better to (or as good as) most of the other tuples from r, where
the fuzzy quantifier most is assumed to be defined as

μmost(x) = x, ∀x ∈ [0, 1].

2. one ranks the tuples in increasing order of μ(t).

It is important to emphasize that the ranking obtained refines Pareto order when
∀j, qj = 0, i.e., for Pareto-order-based queries.
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Example 2. Let us consider the extension of the relation car from Table 1 and
the preferences:
for make:
1/{VW} � 0.8/{Audi, BMW} � 0.6/{Seat} � 0.4/{Opel, Ford} � 0.2/other ;
qmake = 0.2; wmake = 0.2;
for category:
1/{sedan} � 0.7/{roadster} � 0.6/{coupe} � 0.4/{SUV} � 0.2/other ;
qcat = 0.2; wcat = 0.3;
for price:
score(price) = 1 if price ≤ 4000, 0 if price ≥ 6000, linear in-between;
qpr = 0.2; wpr = 0.2;
for color:
1/{blue, black} � 0.8/{red} � 0.5/{yellow, green} � 0.3/{white};
qcol = 0.2; wcol = 0.1;
for mileage:
score(mileage) = 1 if mileage ≤ 15,000, 0 if mileage ≥ 20,000, linear in-between;
qmi = 0.2; wmi = 0.2;

The satisfaction degrees associated with the data from Table 1 and related to
the partial preferences are given in Table 2. The final result is:

0.87/t7 > 0.77/t5 > 0.73/t4 > 0.67/t3 > 0.6/{t1, t6} > 0.53/t2. 2

Table 2. Satisfaction degrees related to the partial preferences

make category price color mileage

t1 0.4 0.7 0.75 1 0
t2 0.4 0.4 1 0.8 0
t3 1 0.7 0.5 0.8 0.5
t4 0.4 0.7 0.5 0.8 1
t5 0.2 0.7 0.75 0.8 0.8
t6 0.2 1 0.25 1 0
t7 0.6 1 1 0.5 1

A variant of this approach is proposed in [9] where i) the comparison of tuples
is based on discriminating preferences only (“strict” preference model), ii) the
transition between the notions of concordance and indifference (resp. indifference
and discordance) is fuzzy whereas it is crisp in [11].

A somewhat related approach, also based on a pairwise comparison of objects,
is presented in [18]. The authors consider a voting problem where voters have
expressed their preferences on a single set of objects, in the shape of strict partial
order relations. Their approach aims at extracting a unique strict partial order
relation corresponding to a social set of preferences, by determining the minimum
number of votes a pairwise preferences should receive in order to qualify as a
social pairwise preference. The main differences with respect to the approach
presented further concern: i) the use of the number of votes instead of the number
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of objects strictly preferred to a given object, as the central concept for building
the overall order, ii) the fact that the input partial order relations are strict
(which implies the absence of ties).

3 A New Approach Based on a Fusion of Local Orders

As mentioned before, the outranking-based approach assumes that a scoring
function is associated with each partial preference. In the order-based approach
proposed here, such an assumption is not necessary. In the basic version (cf.
Subsection 3.1), one only assumes available an ordering — which may include
ties — of the tuples for each partial preference. Therefore, this basic approach is
purely qualitative. If scoring functions are available (cf. Subsection 3.2), they do
not have to be commensurable (as in the outranking-based approach). Unlike the
outranking-based approach, however, the data complexity of query evaluation is
not in θ(n2) but in θ(n) — indeed, we will see that the different ordered lists
do not even have to be constructed. The major difference with respect to the
outranking-based approach is that the evaluation is made column by column
(i.e., attribute by attribute) instead of relying on a pairwise comparison of the
rows (i.e., of the tuples).

Since rankings without scores are not very informative — they say nothing
about the “distance” (in terms of satisfaction) between two elements —, we
propose a gradual version of the model (cf. Subsection 3.3), which takes into
account the extent to which an attribute value is preferred to another one in the
computation of the scores (partial and global) attached to a tuple.

3.1 Basic Version

Let n be the number of tuples in relation r, and p the number of attributes
on which a preference is expressed in the query. Let {A1, . . . , Ap} be these
attributes (i.e., a partial preference is associated with every Ai).

The algorithm is as follows:

1 for every tuple t do
2 σ1 ← 0; σ2 ← 0;
3 for every attribute Ai do
4 σ1 = σ1 + number of tuples strictly before t on Ai;
5 σ2 = σ2 + number of tuples strictly after t on Ai;
6 done;
7 σ(t) = 1

2 ·
(

σ2−σ1
p · (n−1) + 1

)
8 done;
9 rank the tuples in decreasing order of their σ value;

Remark 1. If σ(t) = σ2−σ1
p · (n−1) were used instead, one would get a degree in

[−1, 1] instead of [0, 1], thus the normalization.
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Remark 2. The final degree σ(t) does not have the meaning of a satisfaction
degree, but rather indicates the extent to which there are many tuples which are
(partially) worse than t and few tuples better than it.

It is straightforward to prove that the order obtained refines Pareto order.

Proof. Let us consider a pair (t, t′) such that t is better (dominates) t′ in the
sense of Pareto order. One thus have σ1(t) < σ1(t′) and σ2(t) > σ2(t′). Hence
σ(t) > σ(t′). �
Example 3 (without scoring functions). Let r be a relation involving four
attributes A1, A2, A3, A4 and six tuples t1 . . . t6. Let us consider the partial
preferences:

– A1 : {t1} � {t4} � {t2} � {t3, t6} � {t5}
– A2 : {t4} � {t3} � {t1, t6} � {t5} � {t2}
– A3 : {t5} � {t1, t3, t4} � {t6} � {t2}
– A4 : {t4} � {t2} � {t6} � {t1} � {t5} � {t3}.

One gets:

– for t1 : σ1 = 0 + 2 + 1 + 3 = 6, σ2 = 5 + 2 + 2 + 2 = 11, σ = 0.62
– for t2 : σ1 = 2 + 5 + 5 + 1 = 13, σ2 = 3 + 0 + 0 + 4 = 7, σ = 0.35
– for t3 : σ1 = 3 + 1 + 1 + 5 = 10, σ2 = 1 + 4 + 2 + 0 = 7, σ = 0.42
– for t4 : σ1 = 1 + 0 + 1 + 0 = 2, σ2 = 4 + 5 + 2 + 5 = 16, σ = 0.85
– for t5 : σ1 = 5 + 4 + 0 + 4 = 13, σ2 = 0 + 1 + 5 + 1 = 7, σ = 0.35
– for t6 : σ1 = 3 + 2 + 4 + 2 = 11, σ2 = 1 + 2 + 1 + 3 = 7, σ = 0.4

and the final result is: 0.85/t4 � 0.62/t1 � 0.42/t3 � 0.4/t6 � 0.35/{t2, t5}. 2

Remark 3. Notice that in the absence of ties, this approach is equivalent to the
Borda method since in this case σ2 is the Borda count and σ1 + σ2 = (n− 1)p.

3.2 Taking Scoring Functions into Account

In the case where one has available a scoring function associated with each partial
preference, one may rewrite lines 4 and 5 of the algorithm Section 3.1 with:

σ1 = σ1 + |{t′ ∈ r | μAi(t
′) > μAi(t)}|

σ2 = σ2 + |{t′ ∈ r | μAi(t
′) < μAi(t)}|.

Example 4. Let us consider the relation represented in Table 3. One assumes
that the scales used for the scores are:

– for A1: A � B � . . . � E
– for A2: 100 � 99 . . . � 0
– for A3: 20 � 19 � . . . � 0.
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Table 3. Scores attached to the tuples of relation r

μA1 μA2 μA3

t1 A 100 15
t2 E 50 11
t3 B 100 9
t4 B 50 15

One gets:

– for t1 : σ1 = 0 + 0 + 0 = 0, σ2 = 3 + 2 + 2 = 7, σ = 0.89
– for t2 : σ1 = 3 + 2 + 2 = 7, σ2 = 0 + 0 + 1 = 1, σ = 0.17
– for t3 : σ1 = 1 + 0 + 3 = 4, σ2 = 1 + 2 + 0 = 3, σ = 0.44
– for t4 : σ1 = 1 + 2 + 0 = 3, σ2 = 1 + 0 + 2 = 3, σ = 0.5

and the final result is: 0.89/t1 � 0.5/t4 � 0.44/t3 � 0.17/t2. 2

Remark 4. With a Pareto-order-based approach, one would get the result {t1}.

One can refine the approach further by considering an indiscernability area in-
stead of strict equality for defining ties (cf. the notion of indifference in the
outranking-based approach). Besides, one may also generalize the approach by
assigning an importance degree to each partial preference, and one then com-
putes σ1 and σ2 by means of a weighted mean instead of a sum, thus lines 4 and
5 of the algorithm from Subsection 3.1 become:

σ1 = σ1 + |{t′ ∈ r | μAi(t
′) > μAi(t) + qi}| × wi

σ2 = σ2 + |{t′ ∈ r | μAi(t
′) + qi < μAi(t)}| × wi.

Example 5 (with indifference thresholds and importance weights).
With the query from Example 2 and the data from Table 1, one gets:

– for t1: σ1 = 1× 0.2 + 2× 0.3 + 2× 0.2 + 0 + 4× 0.2 = 2
σ2 = 0 + 1× 0.3 + 2× 0.2 + 1× 0.1 + 0 = 0.8
thus σ = 0.43,

– for t2: σ1 = 2.8, σ2 = 1.1, σ = 0.41, etc

and the final result is:

0.66/t7 > 0.52/{t3, t5} > 0.49/t4 > 0.46/t6 > 0.43/t1 > 0.41/t2.

Notice that this order is very similar to that obtained with the outranking-based
approach (cf. Example 2), excepted for tuples t4 and t5 which get a slightly worse
ranking as they are indifferently preferred to most of the other tuples. 2
The approach proposed here could also be used to merge the lists of documents
produced by different search engines (or information retrieval systems) for a
given query. Bordogna and Pasi also proposed an approach with such an ob-
jective and the same general philosophy [19], but they use a so-called Induced
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Ordered Average (IOWA) operator to merge the ordered lists. Another impor-
tant difference wrt our approach is that they aggregate the positions of the
documents in the lists.

Another type of approach could consist in looking for the global order which
has the highest average correlation degree (in the sense of the classical correlation
indices, e.g., Kendall’s τ or Spearman’s indice, see, e.g., [20]) with the orders
associated with the different partial preferences. However, such an approach is
likely to be intractable.

3.3 Gradual Extension

An improvement of the previous approach is to refine σ1 and σ2 by taking into
account a certain form of graduality in the interpretation of the notions “worse”
and “better”. Each scoring function μAi may be associated with an ordinal scale
li,1 � li,2 � . . . � li,ni . One defines: ϕ(li,j , li,k) = max(k−j, 0). The computation
of σ1 (resp. σ2) (cf. lines 4 and 5 of the algorithm from Subsection 3.1) can now
be refined the following way:

σ1 = σ1 +
∑

t′∈r\{t}

ϕ(μAi(t′), μAi(t))
ni − 1

σ2 = σ2 +
∑

t′∈r\{t}

ϕ(μAi(t), μAi(t′))
ni − 1

.

Example 6. With this new definition and the data from Table 3, one gets:

– for t1 : σ1 = 0 + 0 + 0 = 0, σ2 = 1+1+4
4 + 50+50

100 + 4+6
20 = 3, σ = 0.67

– for t2 : σ1 = 4+3+3
4 + 50+50

100 + 4+4
20 = 3.9, σ2 = 0 + 0 + 2

20 = 0.1, σ = 0.29
– for t3 : σ1 = 1

4 + 0 + 6+2+6
20 = 0.95, σ2 = 3

4 + 50+50
100 + 0 = 1.75, σ = 0.54

– for t4 : σ1 = 1
4 + 50+50

100 + 0 = 1.25, σ2 = 3
4 + 0 + 4+6

20 = 1.25, σ = 0.5

and the final result (which differs from that previously obtained) is:

0.67/t1 � 0.54/t3 � 0.5/t4 � 0.29/t2.2

Remark 5. This approach still refines Pareto order.

4 Query Processing

The idea is the following:

– for each class Lij — corresponding to a distinct score — of each partial
preference Pi (associated with an attribute Ai), one runs a query in order
to compute the number of tuples t from relation r such that t.Ai ∈ Lij . In
order to perform this step, either one has available an extended group by
clause as that proposed in [21] (it is the ideal solution since a single query
is then necessary to compute the cardinalities of all the classes associated
with a given attribute), or one runs as many queries as there are classes
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associated with the attribute. This latter solution is used in the example
hereafter. Notice that still another solution would be to build a temporary
table containing the scores (but such a table can be very large). In the case
where Pi is modelled by a fuzzy set, it is necessary to first discretize the
degree in order to have a finite number of classes (one may take for instance
0.1 = ]0, 0.1], 0.2 = ]0.1, 0.2], . . . , 1 = ]0.9, 1]).

– for each tuple t of the relation considered, one checks, for each attribute Ai

concerned by a preference, which class Lij the value t.Ai belongs to. This
makes it possible to compute σ1 et σ2 (on the basis of i) the cardinalities
computed at the previous step, and ii) the ordering between the classes),
thus, finally, the value of σ(t).

– one ranks the t’s in decreasing order of σ(t).

This processing method is much more efficient than that aimed at outranking-
based queries, since its data complexity is in θ(n) instead of θ(n2). Notice that
it is not necessary to effectively build the ordered lists to be merged.

Example 7. Let us use again the data from Table 3. Let us denote by nbcl(i)
the number of classes associated with attribute Ai. First, for every attribute Ai,
one performs the following treatment:

for j = 1 to nbcl(i) do
select count(*) as cardij from r where Ai in Lij

done.

These queries return:

– for attribute A1:
• L11 associated with score A: card11 = 1,
• L12 associated with score B: card12 = 2,
• L13 associated with score C: card13 = 0,
• L14 associated with D: card14 = 0,
• L15 associated with score E: card15 = 1.

– for attribute A2 (representing only the nonempty classes):
• L21 associated with score 100: card21 = 2,
• L22 associated with score 50: card22 = 2.

– for attribute A3 (representing only the nonempty classes):
• L31 associated with score 9 : card31 = 1,
• L32 associated with score 11 : card32 = 1,
• L33 associated with score 15 : card33 = 2.

The scan of the relation leads to the following evaluations:

– tuple t1
• attribute A1: since t1.A1 = ‘A’, one deduces from the previous cardinal-

ities that there are 2 + 0 + 0 + 1 = 3 tuples strictly worse than t1, and 0
better. Thus σ1 = 0 and σ2 = 3.

• attribute A2: since t1.A2 = 100, one deduces from the previous cardinal-
ities that there are 2 tuples strictly worse than t1, and 0 better. Thus
σ1 = 0 + 0 = 0 and σ2 = 3 + 2 = 5.
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• attribute A3: since t1.A3 = 15, one deduces from the previous cardinali-
ties that there are 1 + 1 = 2 tuples strictly worse than t1, and 0 better.
Thus σ1 = 0 + 0 = 0 et σ2 = 5 + 2 = 7.

• Finally σ(t) = 1
2 ·
(

7−0
3 · (4−1) + 1

)
= 8

9 ≈ 0.89.
– tuple t2: using the same principle, one gets: σ1 = 3 + 2 + 2 = 7, σ2 =

0 + 0 + 1 = 1, σ = 0.17,
– tuple t3: using the same principle, one gets: σ1 = 1 + 0 + 3 = 4, σ2 =

1 + 2 + 0 = 3, σ = 0.44,
– tuple t4: using the same principle, one gets: σ1 = 1 + 2 + 0 = 3, σ2 =

1 + 0 + 2 = 3, σ = 0.5.2
Overall, the number of scans of the relation only depends on the total number
of preference classes.

Taking into account indifference and importances does not raise any problem.
Similarly, the impact of graduality on the evaluation method is very limited.
One just has to take into account the “distance” between two classes during the
computation of σ1 and σ2. Data complexity does not change.

5 Conclusion

In this paper, we have defined an approach to database preference queries which
shares some concepts with the outranking-based model described in [9,11], but
leads to queries having a linear data complexity. The situation considered is that
of queries involving incommensurable partial preferences, possibly associated
with scoring functions. The basic principle is to rank the tuples according to
each partial preference, then to merge the local orders obtained, using a linear
function for aggregating the local scores attached to the tuples. Basically, a local
score expresses the extent to which a tuple is strictly better than many others
and not strictly worse than many others with respect to the partial preference
attached to a given attribute. In the graded version of this model, local scores
also take into account the extent to which an attribute value is better (or worse)
than another. As the outranking-based model, this model refines Pareto order
for queries of the Skyline type. Considering its good data complexity and the
fact that it yields a total order (unlike Pareto-order-based approaches), we think
that it constitutes an interesting alternative to approaches such as Skyline or
Preference SQL — which may produce a huge number of incomparable tuples.

Perspectives for future work concern (i) implementation aspects, (ii) experi-
mentations and a user-study aimed notably at comparing the results obtained
when using this approach with those produced by Skyline queries, outranking-
based queries, and fuzzy queries (assuming that preferences are commensurable
in this latter case and aggregated using, e.g., a weighted mean).
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7. Kießling, W., Köstler, G.: Preference SQL — design, implementation, experiences.
In: Bressan, S., Chaudhri, A.B., Li Lee, M., Yu, J.X., Lacroix, Z. (eds.) CAiSE
2002 and VLDB 2002. LNCS, vol. 2590, pp. 990–1001. Springer, Heidelberg (2003)
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Abstract. An event DB is a database about states (of the world) and events (taken
by an agent) whose effects are not well understood. Event DBs are omnipresent
in the social sciences and may include diverse scenarios from political events and
the state of a country to education-related actions and their effects on a school
system. We consider the following problem: given an event DB K representing
historical events (what was the state and what actions were done at various past
time points), and given a goal we wish to accomplish, what “change attempts”
can the agent make so as to “optimize” the potential achievement of the goal? We
define a formal version of this problem and derive results on its complexity. We
then present a basic algorithm that provably provides a correct solution to finding
an optimal state change attempt, as well as an enhanced algorithm that is built on
top of the well known trie data structure and is also provably correct. We show
correctness and algorithmic complexity results for both algorithms and report on
experiments comparing their performance on synthetic data.

1 Introduction

A large number of well known data sets in the social sciences have a tabular form. Each
row refers to a period of time, and each column represents a variable that characterizes
the state of some entity during a time period. These variables naturally divide into those
actionable variables we can control (which we will call “action variables”) and those we
cannot (which we will call “state variables”). For example, data sets regarding school
performance for various U.S. states contain “state variables” such as the graduation rate
of students in the state and the student to staff ratio during some time frame, while the
“action” variables might refer to the level of funding provided per student during that
time frame, the faculty salary levels during that time period, etc. Clearly, a U.S. state can
attempt to change the levels of funding per student and/or change the faculty salaries
in an attempt to increase the graduation rate. In a completely different setting, political
science data sets about the stability of a country (such as the data sets created by the
well known Political Instability Task Force [2]) may have “state variables” such as the
Gross Domestic Product (GDP) of a country during a time period, the infant mortality
rate during the same time period and the number of people killed in political conflict in
the country during that time period, while “action” variables might include information
about the investment in hospitals or education during that time frame, the number of
social workers available, and so forth. A government might want to see what actionable
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policies it can attempt to achieve a certain goal (e.g., bringing the infant mortality rate
below some threshold).

These are just two examples of problems that are not easily solved using current
algorithms for reasoning about actions in AI or by AI planning systems. The main
reasons are the following (i) the relationships between the actions and their impact
on the state are poorly understood, (ii) a set of actions, taken together, might have a
cumulative effect on a state that might somehow be more than a naive combination
of the effects of those actions individually—which of course are not known anyway,
and (iii) the actions under consideration may not succeed—an attempt to raise hospital
funding may be blocked for reasons outside of anyone’s control.

In this paper, we first propose (Section 2) the notion of an event DB (this is not novel,
but generalizes several social science data sets). Section 3 defines the concept of “state
change attempts” (SCAs for short) and formulates the problem of finding “optimal”
SCAs towards a given goal; we present results on the computational complexity of
finding optimal SCAs. In Section 4, we first present a straightforward algorithm called
DSEE OSCA to compute optimal SCAs, and then develop a vastly improved algorithm
called TOSCA based on tries in Section 5. Though tries are a well known data structure,
the novelty of our work is rooted in how TOSCA uses tries to solve optimal SCA
computation problems with lower computational complexity. Finally, in Section 6, we
briefly describe an implementation of both algorithms, together with an experimental
analysis to demonstrate that TOSCA is quite tractable on data sets of reasonable size.

2 Preliminaries on Event DBs

An event DB is a relational database whose rows correspond to some time period
(explicit or implicit) and whose columns are of two types—state attributes and ac-
tion attributes. Throughout this paper, we assume the existence of some arbitrary, but
fixed set A = {A1, . . . , An} of action attributes, and another arbitrary, but fixed set
S = {S1, . . . , Sm} of state attributes. As usual, each attribute (state or action) A has a
domain dom(A), which in this work we assume to be finite. A tuple w.r.t. (A,S) is any
member of dom(A1) × · · · × dom(An) × dom(S1) × · · · × dom(Sm). We use t(Si)
(resp. t(Aj)) in the usual way to denote the value assigned to attribute Si (resp. Aj) by a
tuple. An event databaseK is a finite set of tuples w.r.t. (A,S). We assume all attributes
A have domain dom(A) ⊂ R. We useA to represent the set dom(A1)×· · ·×dom(An)
and S to represent the set dom(S1)× · · ·× dom(Sm). We say a tuple is an action tuple
if it contains only values for the action attributes and that it is a state tuple if it contains
only values for the state attributes.

Example 1. Throughout this paper, the “School” data set is a data set from the U.S.
State Education Data Center about U.S. school performance. Figure 1 presents a small
part of this data set; we call it the school event DB. The columns labeled A1, ..., A4 rep-
resent action attributes, while the columns labeled S1, ..., S5 represent state attributes.

The school dataset contains nine attributes explained at the bottom of Figure 1. Math
and reading scores obtained from standardized tests are combined into one annual pro-
ficiency score. School administrators’s have the goal of increasing proficiency and grad-
uation percentages by certain amounts.
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A1 A2 A3 A4 S1 S2 S3 S4 S5
t1: 9,532 61.6 7.8 4.2 81.1 49.1 51.3 50.6 Yes
t2: 9,691 63.2 7.8 5.7 82.3 52.1 54.6 53.3 No
t3: 9,924 63.8 8.1 3.1 82.0 59.8 60.4 60.1 Yes
t4: 10,148 64.2 7.6 3.4 83.4 60.5 64.2 63.3 Yes
t5: 10,022 64.0 7.2 2.9 83.2 63.9 68.9 66.9 Yes

Fig. 1. Small instance of an event DB containing hypothetical school performance data. Action
variables are A1: Funding ($/Student), A2: Salaries (% of Total Funding), A3: Student/Staff Ra-
tio, A4: Proficiency Increase Target; state variables are S1: Graduation (%), S2: Math Proficiency,
S3: Reading Proficiency, S4: Proficiency Score, S5: Target Reached.

3 Optimal State Change Attempts

In this section, we formalize the notion of a state change attempt (SCA). The idea
is that when an SCA is successfully applied to a given tuple, it changes the action
attributes with the hope of these changes resulting in a change in the state. For example,
decreasing class size may lead to better proficiency scores.

Definition 1. A simple SCA is a triple (Ai, vf , vt) where vf , vt ∈ Dom(Ai) for some
Ai ∈ A. A (non-simple) SCA is a set {(Ai1 , vf 1, vt1), . . . , (Aik

, vf k, vtk)} of simple
SCAs such that ij �= ik for all j �= k.

When clear from context, we will refer to these concepts as simple changes and changes,
respectively. Intuitively, a simple SCA modifies one attribute, while a state change at-
tempt may modify more than one.

Definition 2. Given a tuple t, an action attribute Ai, and vf , vt ∈ Dom(Ai), a simple
SCA (Ai, vf , vt) is applicable w.r.t. t iff t(Ai) = vf . The result of applying a simple
SCA that is applicable w.r.t. t is a tuple t′ where t′(Ai) = vt and t′(Aj) = t(Aj) for
all attributes (action and state) Aj �= Ai. We use γ(t, (Ai, vf , vt)) to denote tuple t′.

A state change attempt SCA = {Ai1 , vf 1, vt1), . . . , (Aik
, vf k, vtk)} is applicable

w.r.t. t iff all (Aij , vf j , vt j) for 1 ≤ j ≤ k are applicable to w.r.t. t.

The application of SCA to t will be denoted with γ(t,SCA); note that an SCA only
changes action attributes.

Example 2. A simple SCA w.r.t. the school data from Example 1 could be the follow-
ing: a1 = (A1, 8700, 8850), i.e, funding is increased from $8,700 to $8,850 per student,
or a2 = (A2, 62.3, 65), i.e., salaries are increased from 62.3% to 65% of the budget.
Let SCA = {a1, a2} be an SCA. If we assume that the values of the action attributes in
the current environment are t = (8700, 64, 7, 3.2), then a1 is applicable w.r.t. t, but a2

is not. The result of applying a1 to t is γ(t, (A1, 8700, 8850)) = t′ = (8850, 64, 7, 3.2).

The result of applying an SCA is therefore the result of applying each simple change.
However, these changes do not occur without cost.

Definition 3. Let a = (Ai, vf , vt) be a simple state change attempt. The cost of at-
tempting a is given by a real-valued function cost : {A1, . . . , Am} × R × R → R,
where cost(Ai, vf , vt) is the cost of changing action attribute Ai from vf to vt .
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Cost functions will be highly dependent on the application domain, and we assume
them to be provided by a user. The cost of an attempt, cost(SCA) =

∑
a∈SCA cost(a),

is the sum of the costs of the simple state change attempts in SCA.

Example 3. Let a1 =(A1, 8700, 8850), a2 =(A2, 62.3, 65) be the same simple changes
from Example 2, and a3 = (A4, 3.8, 3.9) be a third simple change (i.e., increment the
proficiency increase target from 3.8 to 3.9). A possible cost function could be defined
in terms of monetary cost, in which: cost(a1) = 150 ∗ s (where s is a constant set to the
number of students affected), cost(a2) = 2.7 ∗A1, and cost(a3) = 0.

Thus far, we have studied SCAs that are always successful. However, in general, we
cannot expect this to be the case—the funding per student may not change simply be-
cause one attempted to change it. We will assume state change attempts are only proba-
bilistically successful—they only induce the change attempted according to a specified
probability. Further, we will assume that the probability of any simple change occurring
successfully depends on the entire set of changes attempted.

Example 4. Consider the situation described in Example 3. Here the state change at-
tempt a2 increases teacher salaries from 62.3% to 65%. On its own, attempting this
change may anger taxpayers (who would pay for the increase) and may only have a 10%
probability of succeeding. Likewise, increasing per student funding might have a 15%
chance of success. However, if the taxpayers are willing to increase teacher salaries,
then they may also tend to approve per student funding increases, perhaps leading to a
joint probability of 9% that both of these will occur when attempted together.

Let SCA and SCA′ ⊆ SCA be SCAs; let pOccur(SCA′|SCA) denote the probability
that only the actions in SCA′ occur given that SCA is attempted. Such probabilities
can either be derived from historical data or be explicitly stated by a user. When we
say that a state change attempt SCA is “attempted” for a tuple t describing the current
situation, this means that each SCA′ ⊆ SCA has the chance pOccur(SCA′|SCA) of
being successful, i.e., of having γ(t,SCA′) be the resulting tuple.

Effect Estimators. The goal of this paper is to allow an end user to take an event DBK
and a goal G (some desired outcome condition on state attributes) and find an SCA that
“optimally” achieves goal G. We assume w.l.o.g. that goals are expressed as standard
conjunctive selection conditions [8] on state attributes. We now define effect estimators.

Definition 4. For action tuple t and goal G, an effect estimator is a function ε(t, G) →
[0, 1] that maps a tuple and a goal to a probability p ∈ [0, 1].

Intuitively, ε(t, G) specifies the conditional probability of goal G holding given that we
are in a situation where the action attributes are as specified in t. This quantity can be
estimated in many ways, some of which will be investigated below.

Probabilistic State Change Effectiveness. As mentioned above, we assume an envi-
ronment where, just because an SCA is performed, it is not necessarily the case that all
parts of the SCA will actually accomplish the attempted change. When one attempts
to change the situation via SCA, any subset of SCA may succeed. For instance, if one
tries to decrease the student/staff ratio and increase the funding per student, perhaps the
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student/staff ratio increases as expected, but that the funding per student remains the
same. Thus to truly gauge the effectiveness of a state change attempt, we must consider
the probability of each subset of the attempt occurring.1

Definition 5. The probability of a state change attempt SCA = { (Ai1 , vf 1, vt1), . . . ,
(Aik

, vf k, vtk) } satisfying goal G when applied to action tuple t is pEff(t, G,SCA, ε)=∑
SCA′∈P(SCA)pOccur(SCA′|SCA) · ε(γ(t,SCA′), G), where P(SCA) denotes the

power set of SCA.

pEff(t, G,SCA, ε) is computed by summing over all the state changes that may oc-
cur given the attempt of SCA: since any subset can occur, this summation ranges over
SCA′ ⊆ SCA. For each SCA′ that may occur, one multiplies its probability of oc-
curring given that SCA was attempted

(
pOccur(SCA′|SCA)

)
times the effectiveness

of the given attempt according to ε (recall that γ(t,SCA′) is the action tuple resulting
from the application of SCA′ to the original action tuple t). The following result shows
that for arbitrary effect estimators, computing state change effectiveness is intractable.

Proposition 1. For condition G, state change attempt SCA, action tuple t, and effect
estimator ε, deciding if pEff(t, G,SCA, ε) > 0 is NP-hard w.r.t. |A|. If ε(.) can be
computed in PTIME w.r.t. |A|, the problem is NP-complete.2

The Highest Probability SCA (HPSCA) Problem. Let A = 〈A1, . . . , An〉 and S =
〈S1, . . . , Sm〉, K be an event DB, t be an action tuple describing the current values of
the action attributes, G be a goal over S, cost and pOccur be the functions as mentioned
earlier, and p ∈ [0, 1] be a real number; does there exist a change attempt SCA such
that pEff(t, G,SCA, ε) ≥ p?

The above problem is stated as a decision problem; a search problem, to find such an
SCA, can be analogously stated. We refer to any state change attempt that is a solution
to this problem as an optimal state change attempt (OSCA, for short).

Theorem 1. If the effect estimator used can be computed in PTIME, the Highest Prob-
ability SCA problem is #P -hard and in PSPACE w.r.t. |A|.

The #P -hard reduction uses #SAT (the language {〈F, n〉}, where F is a formula with
exactly n solutions), and membership in PSPACE is shown by giving algorithms.

A Basic Algorithm. We will now provide a basic algorithm to solve the HPSCA prob-
lem. It works by first enumerating each possible state change attempt with size at most
h, then choosing the one that has the highest probability. Since there are only O(|A|h)
such state change attempts, this algorithm runs in O(|A|h), which is PTIME with re-
spect to the number of action attributes |A|.

Proposition 2. Algorithm 1 runs in time in O(|A|h), and returns (SCA, c, ef ) where
|SCA| ≤ h, c = cost(SCA) and ef = pEff(t, G,SCA, ε), such that there is no other
(SCA, c′, ef ′) with c′ < c and ef ′ > ef .

To extend this technique to the non-limited, general version of the problem, one simply
needs to solve the limited version of the problem with h equal to |A|:

1 In this work, we assume that each simple change attempt either succeeds or fails completely.
2 NP-hardness is shown via reduction from subset sum.
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Algorithm 1: solveHPSCA(t, G, ε, h, p)

1. Let R = ∅ // the set to be returned.

2. Add (∅, 0, pEff(t, G, ∅, ε)) to R. // Initialize R with empty state change attempt.

3. For each Ai ∈ A

4. For each value v ∈ dom(Ai)

5. continue if v = t(Ai) // Go to next value, t won’t be changed by this SCA.

6. // iterate over all members of R, growing those which are small enough.

7. For each (SCA, c, ef ) ∈ R

8. continue if |SCA| = h.

9. Let SCA′ = SCA ∪ {(Ai, t(Ai), v)}.

10. Let c′ be the cost of SCA′ and ef ′ be pEff(t, G,SCA′, ε).

11. Add (SCA′, c′, ef ′) to R.

12. return (SCA, c, ef ) ∈ R s.t. ef ≥ p and � ∃(SCA, c′, ef ′) ∈ R with c′ < c and ef ′ > ef ; false otherwise.

Fig. 2. Returns (SCA, c, ef ), where c is the cost of state change attempt SCA and ef is the
probability of effectiveness of SCA s.t. ef is highest and c is lowest

4 Different Kinds of Effect Estimators

In this section we introduce several effect estimators which specify the likelihood of a
given action tuple satisfying a given goal condition G. An effect estimate answers the
question: “if I succeed in changing the environment in this way, what is the probability
that this new environment satisfies my goal?”

Learning Algorithms as Effect Estimators. We now show how to take any super-
vised learning algorithm (e.g., neural nets, decision trees, etc.) and apply it to the event
databaseK to get an effect estimator. We abstractly model a machine learning algorithm
as a learner, which, given the appropriate information, will produce a classifier.

Definition 6. For event DB K and goal condition G, a classification algorithm is a
function learner : (K, G) %→ classifier, where classifer is a function from action
tuples to the interval [0, 1]. Given a classification algorithm learner, a learned effect
estimator is defined to be εlrn(learner,K)(t, G), returning learner(K, G)(t).

For instance, neural networks [7] fit this definition: we first define learner to be a func-
tion that generates a neural network with input nodes for each action attribute and ex-
actly one output node with a domain of [0, 1]. The learner function then trains the net-
work via backpropagation according toK and G. The resulting network is the classifier
function, and will, given a set of values for the action attributes, return a value in the
interval [0, 1]. We can use a classification algorithm to create a learned effect estimator.

Data Selection Effect Estimators. In this section we examine the special case of an
effect estimator that uses selection operations in a database to create an estimation. For
our purposes, selection operations will be denoted σG(K), where K is an event DB and
G is some goal condition on the state tuples. σG(K) returns the subset of K satisfying
the condition G.

Definition 7. For goal G and action tuple t, a data selection effect estimator is a func-
tion that takes an event DB K as input and returns an effect estimator: ε∗ : K %→
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(t, G) %→ p, where p ∈ [0, 1]. We require that ε∗ be implemented with a fixed number
of selection operations on K and that ε∗(K)(t, G) be 0 if there is no tuple in K whose
action attributes match t.

A data selection effect estimator differs from a normal effect estimator in that it de-
pends explicitly on selection from event DB K. While data selection effect estimators
are limited to using only selection operators we will see that there are many ways to
specify the relationship between G and the situation described by t using only selection
operations. We abuse the notation used for selection operators in databases by writing
σt(K) to denote the selection of all the tuples in K that have the values described by t
for the corresponding attributes.

Definition 8. The data ratio effect estimator is defined: ε∗r(K)(t, G)
def
= |σt∧G(K)|

|σt(K)| when-
ever |σt(K)| > 0, and zero otherwise.

The data ratio effect estimator returns the marginal probability of G occurring given
that the values specified by the action tuple t occur.

Example 5. Suppose we have a school metrics database containing only three columns:
class size, teacher salary and graduation rate. The class size and teacher salary are action
attributes, while the graduation rate is a state attribute. We want to determine from the
data what fraction of the time a graduation rate is at least 95% for an average class size
of 20 and an average teacher salary of $60,000. According to ε∗r , this fraction is the
fraction of tuples in the database with class size 20 and teacher salary $60,000 that have
a graduation rate over 95% divided by the total number of tuples in the database with
class size 20 and teacher salary $60,000.

One important feature of the data ratio effect estimator is that when there is no infor-
mation on a given tuple, it assumes the tuple to be a negative instance. This allows it
to quickly eliminate possibilities not contained in the database, and reduces the search
space needed to compute optimal state change attempts. Further examples of data selec-
tion effect estimators include cautious or optimistic ratio effect estimators, which take
the confidence interval into account.

Definition 9. The cautious ratio effect estimator returns the probability of G given t

to be the low end of the 95% confidence interval: ε∗c95K(t, G)
def
= ε∗r(K)(t, G) − 1.96 ·√

ε∗
r(K)(t,G)(1−ε∗

r(K)(t,G))
|σt(K)| (if σt(K) is empty, ε∗c95(K)(t, G) is defined to be zero).

There is a whole class of cautious ratio effect estimators: one for every confidence level
(90%, 80%, 99%, etc.). There are also optimistic ratio effect estimators which return
the high end rather than the low end of the confidence interval.

Since data selection effect estimators are computed via a finite number of selection
operations, effect estimators can always be computed in time in O(|K|). The complex-
ity of finding SCAs changes when we insist on using data selection effect estimators.
Problems that were NP-complete or #P -hard w.r.t. the size of the action schema are
polynomial in |K| when only data selection effect estimators are allowed.
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Algorithm 2: DSEE OSCA(DB K, Goal G, Action tuple env, p)

1. Let Dat1 = ∅ // Dat1 will contain state change attempts and their probability of occurrence.

2. // Iterate through all tuples satisfying G in K.

3. For t ∈ σG(K) do // Create SCA s.t. γ(env,SCA) equals t on action attributes.

4. SCA = {(A, env(A), t(A)) | env(A) �= t(A)}
5. If (SCA, ·) ∈ Dat1 then continue. // Already visited

6. Let f = ε∗r(K)(t, G).

7. Add (SCA, f) to Dat1.

8. Let Dat2 = ∅
9. For (SCA, f) ∈ Dat1 do

10. Let nextF = pOccur(SCA|SCA) · f .

11. For (SCA′, f ′) ∈ Dat1 do

12. If SCA′ � SCA then

13. nextF = nextF + pOccur(SCA′|SCA) · f ′

14. Add (SCA, ef ) where (SCA,nextF) to Dat2.

15. Remove any (SCA, ef ) from Dat2 where ef < p.

16. return argmin(SCA,ef )∈Dat2(cost(SCA)).

Fig. 3. A brute force algorithm for solving the HPSCA problem

Proposition 3. For goal G, state change attempt SCA, action tuple t, and event DB
K, if the effect estimator ε∗ is a data selection effect estimator then deciding whether
pEff(t, G,SCA, ε∗(K)) > 0 takes O(|K|2) time.

Theorem 2. If the effect estimator is a data selection effect estimator, then the HPSCA
problem can be solved in O(|K|2) time.

Computing OSCAs with Data Selection Effect Estimators. Using data selection ef-
fect estimators, we can devise algorithms to find optimal SCAs. In this section we use
only the data ratio effect estimator (Definition 8). Figure 2 presents the DSEE OSCA
algorithm to solve the HPSCA problem.

Proposition 4. Algorithm 2 computes SCA such that pEff(env , G,SCA, ε∗r(K)) ≥ p
and there is no other feasible state change attempt SCA′ such that cost(SCA′) <
cost(SCA) and pEff(env , G,SCA′, ε∗r(K)) ≥ p.

The DSEE OSCA algorithm works by selecting all tuples in the event DBK satisfying
the goal condition, then adding the pair (SCA, f) to a data structure Dat1 where f is
the chance that SCA, when successful, results in a state satisfying the goal G (i.e.,
ε∗r(K)(t, G)). In the next loop, two things happen: (i) f is multiplied by the probability
that SCA is successful, and (ii) we iterate through all state change attempts and sum
the probability of occurrence of each subset of SCA with that subset’s probability of
satisfying the goal G, adding the result to data structure Dat2. At this point Dat2
contains pairs (SCA, ef), where ef is the probability of effectiveness of SCA according
to Definition 5. The algorithm then prunes all state change attempts without sufficiently
high probabilities of effectiveness, and returns the one with the lowest cost.

Proposition 5. Algorithm 2 runs in time O(|K|2).
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Alg. 3: TOSCA(Trie T , Goal G, Action tuple env , p)

1. Let Dat1 = TOSCA-Helper(T, G, env).

2. Let Dat2 = ∅.

3. For (SCA, f) ∈ Dat1 do

4. Let nextF = pOccur(SCA|SCA) · f .

5. For (SCA′, f) ∈ Dat1 do

6. If SCA′ � SCA then

7. nextF = nextF + pOccur(SCA′|SCA) · f ′

8. Add (SCA, ef ) with (SCA, nextF) to Dat2.

9. Remove any (SCA, ef ) from Dat2 where ef < p.

10. return arg min(SCA,ef )∈Dat2(cost(SCA)).

Fig. 4. Computes a state change attempt with
minimal cost and probability of effectiveness at
least p using a trie.

Alg. 4: TOSCA-Helper(Trie T , Goal G, Action tuple env )

1. If T is a leaf node // Similar to Algorithm 2...

2. Let Dat = ∅
3. For t ∈ σG(tuples(T ))

4. // Create SCA s.t. γ(env, SCA) = t

5. SCA = {(A, env(A), t(A))|t(A) �= env(A)}
6. If (SCA, ·) ∈ Dat then continue to next t

7. f = ε∗
r(tuples(T ))(t, G).

8. Add (SCA, f) to Dat.

9. return Dat.

10. Else // Recursively call for all children of T .

11. Let (A, Edges) = T .

12. return the set

∪(v−,v+,N)∈EdgesTOSCA-Helper(N, G, env)

Fig. 5. Returns a set of (SCA, v) pairs, where
SCA is a state change attempt and v is
ε∗(K)(G, Sit = γ(SCA, env)).

5 Trie-enhanced Optimal State Change Attempt (TOSCA)

In this section, we present the TOSCA algorithm that uses tries [3] to improve the
performance of finding an optimal state change attempt. In TOSCA, a trie is used to
index the event DB to reduce the search space necessary for the data selection effect
estimator in the DSEE OSCA algorithm (Figure 3). An internal trie node is a pair
(Atr ,Edges) where Atr ∈ A∪S is an attribute and Edges contains (v−, v+, N) pairs,
where v− and v+ are values from Dom(Atr) with v− < v+ and N is another trie
node. A leaf node in a trie maintained by TOSCA is simply a set of tuples from the DB,
denoted tuples(N). Tries have a unique root node.

A trie is data correct if for any leaf node N there is a unique path from the root
(Atr1,Edges1), . . . , (Atrk−1,Edgesk−1), N such that for all t ∈ tuples(N) and all
i between 1 and k − 1, there is (v−, v+, (Atr i+1,Edges i+1)) ∈ Edges i such that
v− ≤ t(Atr i) < v+. That is, the path to a leaf node determines which tuples are
stored there. A trie is construction correct if for all sibling nodes (v−1 , v+

1 , N1) and
(v−2 , v+

2 , N2), v−1 ≥ v+
2 or v−2 ≥ v+

1 .
The Trie-enhanced Optimal State Change Attempt (TOSCA) algorithm uses tries to

reduce the average case run time for computing optimal state change attempts. TOSCA
is divided into the base and a helper, Algorithms 3 and 4 (Figures 4 and 5) respectively.

Example 6. In our example run of Algorithm 3, we use a simple database containing
four tuples {(A1 = 1, S1 = 1), (A1 = 2, S1 = 1), (A1 = 3, S1 = 0), (A1 = 3, S1 =
1)}, and the trie T pictured in Figure 6. We use the tuple (A1 = 0) as the action
tuple env, the goal condition S1 = 1, and the threshold 0.7 as p. The first step of
Algorithm 3 is to create Dat1 via Algorithm 4, which recursively traverses the trie,
beginning at node A. At node B, Algorithm 4 recognizes a leaf node and selects tuples
from that node that satisfy the goal condition, iterating through them in turn beginning
with (A1 = 1, S1 = 1). The state change attempt that changes the environment tuple
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Fig. 6. The trie used in Example 6

(A1 = 0) to (A1 = 1, S1 = 1) is SCA = {(A1, 0, 1)}. The time saving step of the
algorithm now occurs at line 7, where we run ε∗r on the database tuples(T ) instead of
the entire database (line 6 of Algorithm 2). Because there is only one tuple in tuples(T )
with A1 = 1, and because that tuple also satisfies the goal condition, f is set to 1 and
({(A1, 0, 1)}, 1) is added to Dat. Similarly, ({A1, 0, 2}, 1) is added on the next tuple:
(A1 = 2, S1 = 1), finishing the call to node B.

The call to node C has slightly different results. The only member of tuples(T ) to
satisfy the goal condition is (A1 = 3, S1 = 1). Further, ε∗r produces a result of 1/2,
as of the two tuples with value 3 for A1, only one of them satisfies the condition that
S1 = 1. The returned set from this recursive call contains only ({(A1, 0, 3)}, 1/2).

After merging all recursive calls, the set { ({(A1, 0, 3)}, 1/2), ({(A1, 0, 2)}, 1),
({(A1, 0, 1)}, 1) } is returned and labeled Dat1 by Algorithm 3. The next loop mul-
tiplies the second value of each member of Dat1 by the probability of the associated
state change attempt occurring, which is provided by a user a priori and we will as-
sume to be 3/4 for all state change attempts. The inner loop then adds the probabilities
associated with subsets of the state change attempt (of which there are none in this ex-
ample). This results in the data structure Dat2 consisting of pairs (SCA, pEff(env, S1 =
1,SCA, ε∗r)), or {({(A1, 0, 3)}, 3/8), ({(A1, 0, 2)}, 3/4), ({(A1, 0, 1)}, 3/4)}.

At this point, those members of Dat2 with too low a probability of effectiveness are
eliminated (only ({A1, 0, 3}, 3/8)) and the SCA with lowest cost is returned.

Proposition 6. Algorithm 3 computes SCA s.t. pEff(env , G,SCA, ε∗r(K)) ≥ p and
there is no other feasible state change attempt SCA′ such that cost(SCA′) < cost(SCA)
and pEff(env, G,SCA′, ε∗r(K)) ≥ p.

The worse case time complexity of Algorithm 3 is O(|K|2). However, the complexity
of Algorithm 4 is O(|K| · k), where k is the size of the largest leaf node in trie T . Since
Algorithm 4 replaces the loop on line 9 of Algorithm 2 —a loop that takes time O(|K|2)
—we can expect speedup proportional to k/|K|. Since, in the average case, k will be
|K|/2h, (h is the trie’s height) this speedup can be large.

While k is bounded by |K|, it is usually much smaller: on the order of |K|/2h for a
trie of height h. We expect Dat1 to have size O(|K|), as it will be the same as Dat1 on
line 9 of Algorithm 2. It was produced by at most 2·|K|/k recursive calls to Algorithm 4
(there are at most 2 · |K|/k nodes in the trie). When given a leaf node, Algorithm 4 takes
time in O(k2). Thus the run time of Algorithm 4 is in O(|K| · k). The loop on line 3
then runs in time in O(|K|2) (it is the same loop as in Algorithm 2), resulting in an
overall run time in O(|K|2). However, we will see that in practice, substantial speedup
is achieved by using the O(|K| · k) Algorithm 4 rather than O(|K|2).
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6 Experimental Evaluation

We performed experiments to answer two main questions, with the following setup. We
automatically generated k tuples with 4 action attributes and 3 state attributes. Each
tuple’s value for the action attributes was chosen randomly from [0, 1]. To generate the
values for the state attribute, we generated random boolean formulas over the action
attributes consisting of the operators <, >, =, �=, and ∧. We allowed at most three “∧”
connectives in each formula. In a given tuple, each state attribute value is set to 1 if
its associated formula is satisfied by the action attributes in that tuple, and set to 0
otherwise. Because we have the formula defining the state attributes, we can check
the accuracy of the state change attempts returned by each algorithm. To do this, we
apply the state change attempt and determine the state attribute values. The accuracy
of a given algorithm will be the fraction of the time the resulting values for the state
attributes satisfy the goal condition. Unfortunately, due to space limitations, we cannot
include here experiments evaluating accuracy; we will provide a more comprehensive
experimental analysis, including results on real world data, in future work.

Question 1: Which techniques scale best w.r.t number of tuples? We want to how
DSEE OSCA and TOSCA scale when presented with large amounts of data, i.e., num-
ber of tuples. In these experiments, we provided the algorithms with 1,000 to 10,000
tuples. The results in Figure 7 show TOSCA to perform better than DSEE OSCA
as the database increases in size. Note that TOSCA does have a pre-computation step
whose running time has been left out of these figures. However, the time needed to com-
pute the trie is several orders of magnitude smaller than the running time of TOSCA,
with only 91 ms to construct a trie with 10K tuples.

Question 2: Which techniques scale best w.r.t. number of attributes and their do-
main size? Figure 8 shows how DSEE OSCA and TOSCA scale as the number of
attributes increases in a database with 8, 000 tuples. This graph shows TOSCA out-
performing DSEE OSCA; it is important because the trie in TOSCA should lose ef-
ficiency as the number of attributes increases (the trie’s depth equals the number of
attributes). However, this shows that the decrease in the trie’s efficiency does not affect
the ability of the trie to offer TOSCA a speedup. Finally, Figure 9 shows TOSCA also
outperforming DSEE OSCA when the domain size of action attributes is varied.
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7 Related Work and Conclusions

There is substantial work in the AI-planning community on discovering sequences of
actions that lead to a given outcome (sometimes specified as a goal condition similar
to this work), see [5] for an overview. However, AI planning assumes the effects of
actions to be explicitly specified. Similarly, another related area is that of Reasoning
about Actions [1,6]; work in this area generally assumes that descriptions of effects of
actions on fluent predicates, causal relationships between such fluents, and conditions
that enable actions to be performed are available. Our work approaches a similar prob-
lem in a fundamentally different and data-driven way, assuming (i) actions only change
certain parameters in the system, (ii) all attempted changes succeed probabilistically
depending on the set of attempted changes, and (iii) the effects of the changed parame-
ters on the state can only be determined by appeal to past data. Finally, research within
the Machine Learning community on the problem of classification [4] is also related
to our endeavor. The main differences between that research and our own is that we
are not only interested in classifying situations in past data (this is actually aided by
the fact that goal conditions are provided), but in how to arrive once again at similar
situations. As we have seen, this also involves analyzing costs of performing actions
and their probabilities of success.

In this paper we have shown that determining optimal state change attempts is not an
easy problem, since we prove that the optimization task belong to complexity classes
widely believed to be intractable. However, we show that TOSCA is provably correct,
and report preliminary experimental results on synthetic data showing that it is faster
than a basic solution and tractable for reasonably sized inputs.

In future work, we will provide a more comprehensive empirical evaluation, includ-
ing results on real world data and accuracy; finally, we will also investigate other inter-
esting variants of the problem of finding optimal state change attempts.
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Abstract. A Boolean logic-based evaluation of a database query returns
true on match and false on mismatch. Unfortunately, there are many
application scenarios where such an evaluation is not possible or does
not adequately meet user expectations about vague and uncertain con-
ditions. Consequently, there is a need for incorporating impreciseness and
proximity into a logic-based query language. In this work we propose a
probabilistic interpretation for our query language CQQL which is based
on a geometric retrieval model. In detail, we show that the CQQL can
evaluate arbitrary similarity conditions in a probabilistic fashion. Fur-
thermore, we lay a theoretical foundation for the combination of CQQL
with other probabilistic semantics.

1 Introduction

Evaluating a traditional logic-based database query against a data tuple yields
true on match and false on mismatch. Unfortunately, there are many applica-
tion scenarios where such an evaluation is not possible or does not adequately
meet user needs about vague and uncertain conditions. Thus, there is a need
for incorporating the concepts of impreciseness and proximity into a logic-based
query language. An interesting approach is applying similarity predicates as
‘price about 100 ’ or ‘location is close to Berlin’ within such a query language.
Data objects fulfill this kind of predicates to a certain degree which can be repre-
sented by a value out of the interval [0, 1]. Based on these score values a ranking
of all data objects is possible which distinguishes result items.

Our retrieval model presented in [10] incorporates score values into a logic-
based query language by exploiting a vector space model known from quan-
tum mechanics and quantum logic [9]. Based on this model and a logic-based
weighting approach we developed the calculus query language CQQL, Commut-
ing Quantum Query Language, as an extension of the relational domain calculus
[8].

A popular probabilistic approach known from Information Retrieval expresses
a score value by a probability of relevance [12]: What is the probability that a user
rates a data object as relevant? In our adaption the underlying test criterion is
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embodied by a logic-based similarity condition. Consequently, we interpret the
evaluation result of a similarity condition as a probability of relevance.

Besides those relevance probabilities probabilistic databases have been estab-
lished as a challenging research field. In probabilistic databases a tuple may
belong in the database with some amount of confidence. The semantics of such
probabilistic databases are often given by the possible-world-semantics [2]. In
this case several possible states of a given application system are managed in
one integrated database.

Scenario: In order to demonstrate our ideas and concepts we use a run-
ning example and introduce a classification of different query types. The applied
scenario represents a simple crime solver inspired by [13]. To be more precise,
we work with a deterministic and a probabilistic table containing a record of
registered criminals and a file of witness statements. In the deterministic table
criminals, given in Figure (1) and abbreviated by crim, following attributes are
stored: name, status, sex, age and height. Thereby, the domains for the attributes
status and sex are given by {free, jail, parole} and {female, male}.

In addition, during an investigation it was possible to gather witness state-
ments about a given crime. So, we can state that each witness saw one single
person characterised by his/her sex (attribute obs_sex ) and an estimated age
(attribute obs_age) annotated by a confidence value (see Figure (2)).

Criminals (crim)
TID name status sex age height
t1 Bonnie free female 36 170
t2 Clyde jail male 44 188

t3 Al parole male 47 190

Fig. 1. Registered criminals

Observation (obs)
TID witness obs_sex obs_age Pr
t4 Amber male 30 0.3
t5 Mike female 20 0.7
t6 Carl female 30 0.9

Fig. 2. Witness statements

Classification: For specifying a classification of different query types we iden-
tify two significant criteria concerning query language expressiveness and the un-
derlying relational data basis: (i) incorporating the concepts of impreciseness and
proximity in terms of similarity predicates and (ii) modeling different possible
database states.

We denote the fulfilling of one of these criteria by the term uncertain. That
means, we apply certain or uncertain queries on certain or uncertain relation
data. Please be aware that the terms certain and uncertain can be used in dif-
ferent meanings. In our model we use the term uncertain on the data modeling
aspect. So, a user, for example, does not know which is the correct instance
of his/her data. Consequently, the user annotates his/her data by a confidence
value expressing a probability of occurrence.

Next we present four query classes which are built by applying the two clas-
sification criteria orthogonally. Additionally, we give a characteristic example
query referring to our running scenario for each class.

(i) Certain queries on certain data CQonCD: The class CQonCD contains
queries formed by Boolean conditions on deterministic relational data. According
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to our scenario a typical query of CQonCD is given by “Determine all criminals
who have the status free”. The corresponding expression πname(σst=f (crim)) is
formulated in relational algebra.

(ii) Uncertain queries on certain data UQonCD: The class UQonCD stands
for queries which supports impreciseness and proximity by integrating similarity
predicates. A UQonCD-query is given by “Determine all criminals who have the
status free or parole and his/her age is around 30 and his/her body height is
about 180 cm”. A corresponding CQQL similarity condition can be expressed as
‘(st = f ∨ st = p) ∧ age ≈ 30 ∧ hei ≈ 180’.

(iii) Certain queries on uncertain data CQonUD: The queries of the class
CQonUD are typical for probabilistic databases with possible-world-semantics. As
an example query we examine “Determine all criminals who were possibly ob-
served. That means, his/her age is within an interval of 10 years around an
observed age and his/her observed sex is matching”. For formalising this CQonUD-
query we use the PRA algebra developed by Fuhr et. al [5]: πname(crim ��FB

obs), whereby the join condition FB ≡ (sex = obs_sex ∧ age ∈ [obs_age −
5, obs_age + 5]) is evaluated as Boolean condition.

(iv) Uncertain queries on uncertain data UQonUD: If we augment pos-
sible-world-semantics by similarity conditions, a query class with an expanded
expressiveness is emerging. That means, in the class UQonUD we apply similarity
conditions on data objects which are given in a specific possible database state.
The class UQonUD obviously subsumes the first three classes. As an example
query for UQonUD we give a variant of the last CQonUD-query: “Determine all
criminals who were possibly observed. That means, his/her age is similar to an
observed age and his/her observed sex is matching”. In order to exemplify this
query we extend the PRA algebra by similarity conditions evaluated by CQQL:
πname(crim ��(sex=obs_sex∧age≈obs_age) obs).

The main motivation of our research is the development of a unifying probabilis-
tic query framework called ProQua which comprehends all four query classes.
The underlying idea of ProQua is the combination of relevance probabilities
known from Information Retrieval and possible-world-semantics applied in prob-
abilistic databases.

As an essential step we connect our geometric retrieval model to probability
theory by presenting a probabilistic interpretation in this paper. After defining
an appropriate probability space we will be able to build a unifying data and
query model for UQonUD-queries. Therefore, the main contributions of this work
are twofold: (i) adapting and tailoring our CQQL retrieval model for a probabilis-
tic interpretation in Section (3) and (ii) developing a probability interpretation
of CQQL by building a probability space covering arbitrary UQonCD-queries in
Section (4).

As a further result we lay a theoretical foundation for combining vector space-
based retrieval approaches (e.g. term vector model, latent semantic analysis,
support vector machines, etc.) with probabilistic databases.
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2 Related Work

In the last decade a huge amount of probabilistic relational database approaches
as [2,1,4,5,3,7,13] have been proposed. They all support the processing of prob-
abilistic relational data, i.e., queries from class CQonUD.

Besides computation complexity the expressiveness of the applied query lan-
guages is a significant comparison criterion. Especially, the groundbreaking pa-
pers [5] and [3] explicitly discuss the integration of similarity predicates, i.e., the
additional support of UQonCD-queries.

Fuhr and Roellecke [5] propose to model similarity predicates as built-in pred-
icates. That means, the corresponding scoring functions are encoded as usual
probability relations. Unfortunately, in this case it is not allowed to apply alge-
bra operations arbitrarily any more. Contrarily, Dalvi and Suciu [3] suggest to
calculate the score values of all similarity predicates in advance. After such a
pre-processing step the calculated score values are getting integrated in a prob-
abilistic relation as occurrence probabilities. This method is restricted to the
set of conjunctive queries, because the defined join operation for probabilistic
relations always aggregates probabilities conjunctively. Further approaches as
[13,7] offer the opportunity to model uncertainty on attribute level. In this case
the evaluation of a similarity predicate could be encoded in the corresponding
uncertain attribute. But once again this approach is only working for conjunc-
tive queries, because the probability for an entire tuple is always combined by a
conjunctive join operation.

We can summarise that the discussed approaches [5], [3], [7] and [13] are not
supporting arbitrary logic-based similarity queries from UQonCD or UQonUD. As we
see in Section (4) the probabilistic interpretation of CQQL can process arbitrary
UQonCD-queries. If we combine CQQL with the possible-world-semantics, we are
also able to handle queries from UQonUD.

In contrast to established probabilistic systems, fuzzy databases as [6] sup-
port arbitrary UQonCD- and UQonUD-queries using fuzzy logic [14]. However, fuzzy
databases are not based on probabilistic semantics and the result of a query
evaluated by fuzzy logic does not meet user expectations adequately. Especially,
the result of the minimum function, which is the only t-norm with the logic
properties idempotence and distributivity, depends only on one input parameter
(dominance problem) [11].

3 CQQL Retrieval Model

In this section we tailor the underlying theoretical model of CQQL in order to
provide the foundation of our probabilistic interpretation presented in the next
section. For this purpose we use the introduced UQonCD-condition ‘(st=f ∨ st=
p) ∧ age≈30∧ hei≈180’ applied on the table criminals as a running example.
Thereby, the example subconditions ‘(st=f ∨ st=p)’, ‘age≈30’ and ‘hei≈180’
are abbreviated by sc1, sc2 and sc3.

In general, the CQQL model enables the logic-based construction of queries
out of Boolean and similarity predicates. The underlying idea is to apply the
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Table 1. Correspondences between query processing and the model of CQQL

query processing CQQL model
value domain ↔ vector space

Dom(t) ↔ H

tuple to be queried ↔ tuple vector
t ↔ #»

t

condition ↔ condition space
c ↔ cs[c]

evaluation ↔ squared cosine of the angle
between #»

t and cs[c]
evalt(c) ↔ cos2(�(

#»
t, cs[c]))

theory of vector spaces, also known from quantum mechanics and quantum logic,
for query processing. Table (1) gives analogies between query processing concepts
and the vector space model of CQQL.

Before we go into more detail, we summarise the basic idea of evaluating
a single tuple t against a given CQQL condition c. We start by considering a
vector space H being the domain of tuple t. All attribute values of a tuple t
are embodied by the direction of a tuple vector #»

t of length one. A condition c
itself corresponds to a vector subspace of H denoted as cs[c]. For distinguishing
the subspace cs[c] from the containing vector space H we call cs[c] as condition
space of c.

The evaluation result evalt(c) is determined by the minimal angle between
tuple vector #»

t and condition space cs[c] denoted as �( #»
t, cs[c]). The squared

cosine of this angle, i.e., cos2(�( #»
t, cs[c])), is a value out of the interval [0, 1] and

can therefore be interpreted as a similarity measure as well as a score value.
For instance, if the tuple vector belongs to the condition space, i.e.,

�( #»
t, cs[c]) = 0◦, then we interpret the condition outcome as a complete match:

cos2(0◦) = 1. Contrarily, a right angle of 90◦ between #»
t and cs[c] leads to a

complete mismatch: cos2(90◦) = 0.
In order to construct the elements H, #»

t and cs[c] of Table (1) we employ a
typical bottom-up strategy which is built on the logical structure of condition c.
In this composition predicates (denoted as pr) are the smallest evaluable entities
which are getting combined by the logical connectors ∧,∨ and ¬. We exploit this
construction principle (going from single predicates over combined subconditions
to a final condition) in order to deploy the required elements H, #»

t and cs[c].
According to their semantics predicates can be classified into two different

main types: Boolean and similarity predicates. For instance, our running example
condition includes four predicates ‘st = f ’, ‘st = p’, ‘age ≈ 30’ and ‘hei ≈ 180’,
whereby the first and second are classified as Boolean predicates and the last
two conditions are typical similarity predicates.

In order to preserve the character of a Boolean algebra we need the following
restriction in CQQL [8]: In a valid condition any attribute must not be queried
by more than one constant in different similarity predicates. Consequently, the
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������
������
������
������

������
������
������
������#»p

#»
f ≡ #        »

t1[st] #    »
170≡ #           »

t1[hei]

#    »
180≡cs[sc3]

# »
44≡ #            »

t2[age]

# »
36≡ #            »

t1[age]

#    »⊥st≡ #        »

t2[st]

B(H[age]) = { # »
30,

#     »¬30}
B(cs[sc2]) = { # »

30}

sc2 ≡ age≈30

H[age]

# »
30≡cs[sc2]

#     »¬30

⊗ ⊗

B(H[hei]) = { #    »
180,

#        »¬180}
B(cs[sc3]) = { #    »

180}

sc3 ≡ hei≈180

H[hei]
#    »
188≡ #           »

t2[hei]

#        »¬180

B(H[st]) = { #»
f , #»p ,

#    »⊥st}
B(cs[sc1]) = { #»

f , #»p }

cs[sc1]

sc1 ≡ (st=f∨st=p)

H[st]

Fig. 3. Basic modules for the running example condition

condition ‘age≈30 ∧ age≈35’ is not allowed in CQQL. However, the condition
‘(age ≈ 30 ∧ sex = f) ∨ (age ≈ 30 ∧ sex = m)’ is valid, because age is queried
by the same constant 30. We emphasise that this restriction corresponds to the
independence assumption of tuple-independent and block-independent proba-
bilistic databases (see Section (2)). In fact, the similarity predicates ‘age≈ 30’
and ‘age ≈ 35’, for example, cannot be evaluated to 1 (complete fulfilling) for
a certain person at the same time. In this sense they are not independent and
violates therefore the constraint of independence.

As the first construction step we set up a separate vector space H[A] for each
queried attribute A of tuple t. In the case of our example condition we achieve
three initial vector spaces: H[st], H[age] and H[hei]. Such vector spaces possess
the character of basic modules for the final vector space H.

There are two types of information entities which have to be encoded in a
basic module H[A]. On one hand, we have to deal with the value of the queried
tuple attribute. For example, considering tuple t1 of criminals. So, the tuple
vector

#        »

t1[st] must express the value free by its direction. On the other hand,
the comparison constant of the querying predicate (denoted by con1(pr)) must
be integrated as condition space cs[pr]. Taking the predicate ‘st= f ’ as example,
we get the value free as condition constant which has to be embodied in the
condition space cs[st=f ].

Boolean basic modules: For a Boolean attribute (queried by a Boolean
predicate and denoted by BA) each comparison constant querying BA constitutes
a single base vector of H[BA]. So, we define the basis B(H[BA]) for a Boolean
module as B(H[BA]) := { #»

bv | val(
#»

bv) ∈ con2(BA)} ∪ { #      »⊥BA}, whereby con2(BA)
returns all comparison constants regarding BA and val( #»v ) gives the encoded
value of #»v , e.g., con2(st) = {free, parole} and val(

#»

f ) = f . The vector
#      »⊥BA

represents all domain values which do not occur as comparison constant in the
given condition. The constructed base vectors must always form an orthonormal1
basis.

1 Two vectors are orthonormal, if they are both of unit length and perpendicular, i.e.,
they enclose a right angle.
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For instance, a 3-dimensional Boolean basic module H[st] is built for the
attribute status, whereby the base vectors are given by

#»

f ≡(1, 0, 0)t, #»p ≡(0, 1, 0)t

and
#    »⊥st≡(0, 0, 1)t.

In order to encode the attribute value t[A] and the condition constant con1(pr)
we map the corresponding elements

#     »

t[A] and cs[pr] to a base vector embodying
the corresponding domain value or

#      »⊥BA, respectively. Figure (3) depicts the
Boolean basic module for the attribute status.

Similarity basic modules: A similarity basic module for a similarity at-
tribute (queried by a similarity predicate pr and denoted by SA) has in its
simplest form two dimensions. So, the attribute value and the condition con-
stant are represented by not necessarily orthogonal vectors embedded in the
2-dimensional vector space H[SA] (see Figure (3)).

The embedding of
#        »

t[SA] and cs[p] in H[SA] is determined by a scoring func-
tion SFSA : Dom(SA)×Dom(SA) → [0, 1] which calculates cos2(

#        »

t[SA], cs[pr]) as
SFSA(t[SA],con1(pr)). This scoring function expresses a similarity measure. In
general, any set of similarity values which can be produced by the squared scalar
product is supported. That is, the similarity values must form a semi-positive
definite correlation matrix. Please notice that in a basic module a condition space
cs[pr] only spans one dimension and is therefore equivalent to a single vector.

Combining modules: In order to handle multi-attribute tuples and complex
conditions we combine basic modules, tuple vectors and condition spaces by
means of the tensor product denoted as ⊗. This algebraic operation is motivated
by the 4th postulate of quantum mechanics [9]. This postulate defines how to
assemble various quantum systems (in our case basic modules) to one system.
The base vectors of the composed system are here constructed by applying the
tensor product to base vectors of the respective subsystems.

Precisely, the tensor product of two 2-dimensional vectors #»x and #»y is defined
as: #»x ⊗ #»y ≡ #»x #»y := (x1, x2)t ⊗ (y1, y2)t ≡ (x1y1, x1y2, x2y1, x2y2)t. Additionally,
we extend the tensor product of two vectors to two sets of vectors as { # »x1, . . . ,

# »xn}⊗
{ #»y1, . . . ,

#  »ym} := { # »x1
#»y1, . . . ,

# »x1
#  »ym, # »x2

#»y1, . . . ,
# »x2

#  »ym, . . . , # »xn
#»y1, . . . ,

# »xn
#  »ym}.

For applying the 4th postulate of quantum mechanics we have to deal with
orthonormal bases for basic modules (denoted as B(H[A])) and condition spaces
(denoted as B(cs[c])). These base vector sets span the whole corresponding vec-
tor and condition spaces. Hence, we use base vector sets to identify and combine
vector and condition spaces.

(i) Combining modules H[A]: For combining two arbitrary modules H[A1]
and H[A2] we apply the tensor product on the respective base vector sets, i.e.,
B(H[A1,A2]) := B(H[A1])⊗B(H[A2]). Thus, the base vector sets for the merged
modules H[st,age] is given by { #»

f
# »30,

#»

f
#    »¬30, #»p

# »30, #»p
#    »¬30,

#    »⊥st
# »30,

#    »⊥st
#    »¬30}.

(ii) Combining tuple vectors
#     »

t[A]: We merge two tuple vectors
#       »

t[A1] and
#       »

t[A2] by applying the tensor product on vectors directly:
#                 »

t[A1, A2] :=
#       »

t[A1] ⊗
#       »

t[A2]. Please notice that
#                 »

t[A1, A2] is still normalised. The tuple vectors for t1
and t2 are given by

#»

f
# »
36

#    »
170 and

#    »⊥st
# »
44

#    »
188.
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(iii) Combining condition spaces cs[c]: The combination of two condition
spaces cs[c1] and cs[c2] is realised in two steps:

(a) transferring cs[c1] and cs[c2] into the merged module vector space H[attr(c1),
attr(c2)] by applying the tensor product on the basis of a condition space and
the basis of the opposite module vector space, i.e., B(cs[c1])′ := B(cs[c1]) ⊗
B(H[attr(c2)]) and B(cs[c2])′ := B(H[attr(c1)]) ⊗ B(cs[c2]), whereby the aux-
iliary function attr(c) returns the queried attributes of condition c, and

(b) applying the corresponding set operations (∧↔∩,∨↔∪,¬↔\) on the trans-
ferred base vector sets, i.e., B(cs[c1 ∧ c2]) := B(cs[c1])′ ∩ B(cs[c2])′, B(cs[c1 ∨
c2]) := B(cs[c1])′ ∪ B(cs[c2])′ and B(cs[¬c]) := B(H[attr(c)]) \ B(cs[c]). The
combined base vector set B(cs[sc1 ∧ sc2]) is computed as
(B(cs[sc1])′ ⊗ B(H[age])) ∩ (B(H[st]) ⊗ B(cs[sc2])′) = { #»

f
# »30, #»p

# »30}.

Geometric evaluation: Referring to the law of cosine2 the squared cosine
of the minimum angle between #»

t and cs[c] can be computed by using the
scalar product between #»

t and an orthonormal basis for cs[c], i.e., evalt(c) :=
cos2(�( #»

t, cs[c])) =
∑

#»
bv∈B(cs[c])(

#»
t ∗ #»

bv)2. In the remainder we denote the scalar
product of two vectors as a star (∗) and the multiplication of two numbers as a
centered dot (·).

4 Probabilistic Interpretation

In this section we develop a probabilistic interpretation for the CQQL retrieval
model presented in the last section. The main idea of our probabilistic interpreta-
tion is a mapping between elements of the CQQL retrieval model and a discrete
probability space (Ω,F , P t). This mapping, given in Table (2), guarantees the
same results for the geometric and probabilistic evaluation.

Next we define probability spaces (Ω,F , P t) for each queried tuple t and
specify the semantics of a CQQL condition c as an event E[c] out of F . Based
on the events E[c] we are able to evaluate a given tuple t against a CQQL
condition c as evalt(c) := P t(E[c]).

Generally, the definition of a probability space requires three steps: (i) defining
a sample space Ω, a σ-algebra F and a probability measure P t, (ii) proving that
σ-additivity holds for P t and (iii) verifying that P t(Ω) sums up to 1.

We tailored our CQQL retrieval model in a way that all constructed sample
spaces are countable, despite the underlying attribute domains can be contin-
uous. So, we can comfortably define F as the power set of Ω: F := P(Ω).
Thus, σ-additivity holds for each P t, if we declare the probability measure
P t : P(Ω) → [0, 1] pointwise by a probability function pt : Ω → [0, 1]. That
means, P t(E) :=

∑
ω∈E pt(ω). Consequently, in our case we have only to define

Ω and pt and prove that P t(Ω) equals 1.
For building (Ω,F , P t) we basically use our bottom-up strategy generating

H, #»
t and cs[c]. Therefore, at the beginning we define a probability space for

2 Law of cosine: # »x1 ∗ # »x2 = || # »x1|| · || # »x2|| · cos(�( # »x1,
# »x2)).
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Table 2. Analogies between the CQQL model and its probabilistic interpretation

CQQL model prob. interpretation
vector space ↔ sample space

basis of H ↔ Ω

tuple vector ↔ probability function
#»
t ↔ pt(ω), ω ∈ Ω

condition space ↔ event
cs[c] ↔ E[c] ⊂ Ω

evaluation by angle ↔ probability measure
cos2(�(

#»
t, cs[c])) ↔ P t(E[c])

each basic module in a similar way to the construction of separate vector spaces
in Section (3).

Boolean basic modules: For specifying the sample space ΩBA for a Boolean
attribute BA we use the base vector set B(H[BA]), i.e., ΩBA := B(H[BA]). So,
the sample space Ωst is given by B(H[st]) = { #»

f , #»p ,
#    »⊥st}. The respective prob-

ability function pt
BA is built in two steps. First we define ∀ #»

bv ∈ (ΩBA \ { #      »⊥BA}) :
pt

BA(
#»

bv) := cos2(�(
#        »

t[BA], cs[BA = val(
#»

bv)])) = (
#        »

t[BA] ∗ #»

bv)2. This part sets the
connection between the geometric and the probabilistic evaluation. Particularly,
it means that pt

BA equals 1, if t[BA] = val(
#»

bv), and pt
BA(

#»

bv) = 0 otherwise, be-
cause we compute the squared scalar product of two vectors of an orthonormal
basis. Secondly, we set pt

BA(
#      »⊥BA) := 1, if t[BA] /∈ con2(BA), and pt

BA(
#      »⊥BA) := 0

otherwise.

Lemma 1. The triple (ΩBA,P(ΩBA), P t
BA) based on a Boolean predicate pr

querying BA and a tuple t is a probability space.
Proof.
Case 1: t[BA] ∈ con2(BA) ⇒ ΩBA = {

#        »

t[BA]} ∪ (ΩBA \ {
#        »

t[BA]}) ⇒ P t
BA(ΩBA) =

pt
BA(

#        »

t[BA]) +
∑
#»
bv∈

(ΩBA−{ #      »

t[BA]})

pt
BA(

#»

bv) = 1 + 0 = 1.

Case 2: t[BA] /∈ con2(BA) ⇒ ΩBA = { #      »⊥BA} ∪ (ΩBA \ { #      »⊥BA}) ⇒ P t
BA(ΩBA) =

pt
BA(

#      »⊥BA) +
∑
#»
bv∈

(ΩBA−{ #     »⊥BA})

pt
BA(

#»

bv) = 1 + 0 = 1.

Similarity basic modules: Again we specify the sample space ΩSA of a simi-
larity attribute SA by the corresponding base vector set, i.e., ΩSA := B(H[SA]) =
{

#                 »

con1(pr),
#                     »

¬con1(pr)}, whereby pr is the predicate querying SA. Then Ωage is
given by { # »

30,
#     »¬30}.

The probability function pt
SA is derived from the geometric evaluation of ‘SA≈

con1(pr)’. So, we obtain
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pt
SA(

#»

bv) :=

{
cos2(�(

#        »

t[SA], cs[SA≈val(
#»

bv)]) if
#»

bv is not negated
cos2(�(

#        »

t[SA], cs[¬(SA≈val(
#»

bv))]) if
#»

bv is negated

=

{
SFSA(t[SA], val(

#»

bv)) if
#»

bv is not negated
1 − SFSA(t[SA], val(

#»

bv)) if
#»

bv is negated.

Thus, for setting pt
SA we use the score function SFSA which produces a similar-

ity value (see Section (3)). This similarity value is here interpreted as relevance
probability for a similarity predicate.

Lemma 2. The triple (ΩSA,P(ΩSA), P t
SA) based on a similarity predicate pr

querying SA and a tuple t is a probability space.
Proof. P t

SA(ΩSA) = pt
SA(

#                 »

con1(pr)) + pt
SA(

#                     »

¬con1(pr)) = SFSA(t[SA], con1(pr)) +
(1 − SFSA(t[SA], con1(pr))) = 1

Combined probability space: In order to generate a probability space
which is corresponding to the combined vector space H we build a product
probability space. For the sake of clarity, we order the attributes of a tuple t
as t ≡ t[BA1, . . . , BAn, SA1, . . . , SAm] abbreviated by t[BA1, . . . , SAm]. Then
we define the product sample space Ω as cartesian product of the basic sample
spaces, i.e., Ω := ΩBA1 × . . . × ΩBAn × ΩSA1 × . . . × ΩSAm .

The probability function pt is defined as pt((
#         »

bvBA1
, . . . ,

#          »

bvSAm
)) :=

cos2(�(
#                                 »

t[BA1,. . .,SAm], cs[c1∧. . .∧cn+m])), whereby ci is a predicate or a negated
predicate. The structure of ci depends on the predicate type, i.e., ∀i = 1, . . . , n :
ci ≡ (BAi = val(

#        »

bv
BAi

)) and ∀j = n+1, . . . , n+ m the condition cj is given by
cj ≡ SAj ≈ val(

#        »

bv
SAj

), if
#        »

bv
SAj

is not negated and cj ≡ ¬(SAj ≈ val(
#        »

bv
SAj

)) if
#        »

bvSAj
is negated.

The condition space cs[c1 ∧ . . .∧ cn+m] expresses a conjunction of disjoint
attribute constraints. So, each basic probability space ΩBA1 , . . . , ΩSAm is bijec-
tively restricted by a condition of c1, . . . , cn+m. Therefore, we achieve a single
base vector for the condition space cs[c1∧ . . .∧cn+m] as

#         »

bv
BA1

· · · #          »

bv
SAm

. Using
this single base vector and the equivalence

#                               »

t1[A1, . . . , An] ∗
#                               »

t2[A1, . . . , An] = (
#          »

t1[A1] ∗
#          »

t2[A1]) · . . . · (
#          »

t1[An] ∗
#          »

t2[An])

we can compute pt by multiplying the probability functions pt
BA1

, . . . , pt
SAm

:

pt((
#         »

bv
BA1

, . . . ,
#          »

bv
SAm

)) := cos2(α(
#                                    »

t[BA1, . . . , SAm], cs[c1∧. . .∧cn+m]))

= (
#                                    »

t[BA1, . . . , BAn] ∗ #         »

bv
BA1

· · · #          »

bv
SAm

)2

= (
#           »

t[BA1] ∗
#         »

bv
BA1

)2 · . . . · (
#            »

t[SAm] ∗ #          »

bv
SAm

)2

= pt
BA1

(
#         »

bv
BA1

) · . . . · pt
SAm

(
#          »

bv
SAm

)



A Probabilistic Interpretation for a Geometric Similarity Measure 759

Theorem 1. The triple (Ω,P(Ω), P t) based on a CQQL condition c and a tuple
t is a probability space.
Proof.
P t(Ω) =

∑
(

#         »
bv

BA1
,...,

#          »
bv

SAm
)∈Ω

pt((
#         »

bv
BA1

, . . . ,
#          »

bv
SAm

)) =
∑

(
#         »
bv

BA1
,...,

#          »
bv

SAm
)∈Ω

(pt
BA1

(
#         »

bv
BA1

) · . . . · pt
SAm

(
#          »

bv
SAm

))

=
∑

#         »
bv

BA1
∈

ΩBA1

pt
BA1

(
#         »

bvBA1
) · . . . ·

∑
#          »
bv

SAm
∈

ΩSAm

pt
SAm

(
#          »

bvSAm
) = 1 · . . . · 1 = 1

Probabilistic evaluation: After verifying the probability space (Ω,P(Ω),
P t) we investigate the evaluation of a tuple t against a condition c. Respecting
the probabilistic interpretation a condition c represents an event E[c] out of
P(Ω). In order to calculate the probability of such an event we use the defined
probability measure P t.

First we set E[pr] for a predicate pr to E[pr] := {( #         »

bv
BA1

,. . . ,
#                 »

con1(pr), . . . ,
#          »

bv
SAm

) | #        »

bv
BAi

∈ ΩBAi ,
#        »

bv
SAj

∈ ΩSAj , BAi �= attr(pr), SAj �= attr(pr)}. Thus,

for the predicate ‘st = f ’ we generate {( #»

f ,
# »
30,

#    »
180), (

#»

f ,
# »
30,

#        »¬180), (
#»

f ,
#     »¬30,

#    »
180),

(
#»

f ,
#     »¬30,

#        »¬180)}.
Events expressing combined conditions can be constructed by applying the

corresponding set operations: E[c1∧c2] := E[c1]∩E[c2], E[c1∨c2] := E[c1]∪E[c2]
and E[¬c] := Ω \ E[c].

In general, we can calculate P t(E[c]) by enumerating the elementary events of
E[c]: evalt(c) := P t(E[c]) =

∑
ω∈E[c] p

t(ω). This method equals the evaluation
formula for the geometric evaluation of Section (3), but now we are able to exploit
characteristics of the defined probability space. Thus, we can apply following
standard evaluation rules provided the events E[c1] and E[c2] are independent:

evalt(pr) := P t(E[pr])
= SFattr(pr)(t[attr(pr)], con1(pr)) if pr is a predicate

evalt(c1∧c2) := P t(E[c1]∩E[c2]) = P t(E[c1]) · P t(E[c2])

evalt(c1∨c2) := P t(E[c1]∪E[c2]) = P t(c1)+P t(c2)−P t(c1) · P t(c2)

evalt(¬c) := P t(Ω \ E[c]) = 1 − P t(c).

Because of the separate construction of the underlying basic modules (see Sec-
tion (3)) it can be proved that events E[pr1], . . . , E[prn] generated by CQQL
predicates are independent. Two complex events E[c1] and E[c2] are indepen-
dent, if the underlying conditions c1 and c2 do not contain overlapping similarity
predicates. For instance, we must not use the evaluation rules on the condition
‘(age≈30 ∧ age≈30)’.

For conditions including overlapping similarity predicates we apply the well-
known sieve formula after performing two transformation steps: (i) building the
equivalent disjunctive normal form DNF (c) of condition c and then (ii) simpli-
fying the generated conjuncts Ki of DNF (c) by the logical laws of idempotence,
complement and absorption (denoted as K ′

i):
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evalt(c) := P t(E[simpl(DNF (c))]) =
n∑

i=1

(−1)i−1
∑

1≤j1<...<ji≤n

evalt(K ′
j1)·. . .·evalt(K ′

ji
)

5 Conclusion and Outlook

In this work we have developed a probabilistic interpretation for a quantum logic-
based retrieval model. It provides an important milestone for the development
of our unifying probabilistic query framework called ProQua which combines
possible-world-semantics with relevance probabilities.
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