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Abstract

Flavonoids exert a multiplicity of neuroprotective actions within the brain,

including a potential to protect neurons against injury induced by neurotoxins,

an ability to suppress neuroinflammation, and the potential to promote memory,
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learning, and cognitive function. These effects appear to be underpinned by their

interaction with critical protein and lipid kinase signaling cascades in the brain

leading to an inhibition of apoptosis triggered by neurotoxic species and to

a promotion of neuronal survival and synaptic plasticity. Through these mech-

anisms, the consumption of flavonoid-rich foods throughout life holds the

potential to limit neurodegeneration, decrease neuroinflammation, and prevent

or reverse age-dependent loses in cognitive performance. The intense interest in

the development of drugs capable of enhancing brain function means that

flavonoids may represent important precursor molecules in the quest to develop

a new generation of brain-enhancing drugs.

Keywords

Flavonoids • memory • neurodegeneration • neuroinflammation • signaling

pathways

Abbreviations

AD Alzheimer’s disease

Arc/Arg3.1 Activity-regulated cytoskeletal-associated protein

ASK1 Apoptosis signal-regulating kinase 1

BBB Blood-brain barrier

BDNF Brain-derived neurotrophic factor

CaMKIV Calcium/calmodulin kinase IV

CREB Cyclic AMP regulatory-binding protein

EGCG Epigallocatechin-3-gallate

ERK1/2 Extracellular signal-regulated kinase 1 and 2

GSPE Grape seed polyphenolic extract

JNK c-jun N-terminal kinase

LTP Long-term potentiation

MAPK Mitogen-activated protein kinase

MPTP 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

mTOR The mammalian target of rapamycin

NGF Nerve growth factor

PD Parkinson’s disease

PI-3K Phosphoinositide 3-kinase

PKB Protein kinase B

PKC Protein kinase C

ROS Reactive oxygen species

1 Introduction

Due to significant advances in medical science over the past century, there has been

a gradual increase in human life span, with people over the age of 60 expected to
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double between 2000 and 2050 [1]. Although this is a great achievement, an

increase in age-related diseases including neurodegenerative disorders has been

observed to parallel the extended life span. This will soon have profound econom-

ical and social implications, and it is already becoming a burden for health-care

systems. Aging is an important risk factor for neurodegenerative diseases, of which

Alzheimer’s disease and Parkinson’s disease are the most common. Neuronal loss

underlies the clinical impairment in these conditions, and this cell death is associ-

ated with numerous pathogenic cellular and molecular events [2]. The majority of

existing drug treatments for neurodegenerative disorders can afford symptomatic

relief but are not disease-modifying, that is, cannot prevent the underlying degen-

eration of neurons. Therefore, there is an urgent need to develop therapeutic

interventions capable of preventing the progressive loss of neurons. Because

many of these neurodegenerative diseases have been linked to increases in oxida-

tive stress, strong efforts have been aimed at exploring dietary and therapeutic

antioxidant strategies to combat the neuronal damage. Recent attention has focused

on the neuroprotective effects of major dietary polyphenols called flavonoids,

which have been effective in protecting against both age-related cognitive and

motor decline in vivo. While historically research focused on their antioxidant

properties [3], recent data support the view that flavonoids, and their in vivo

metabolites, do not act as conventional hydrogen-donating antioxidants but may

exert modulatory actions in cells through actions at protein kinase and lipid kinase

signaling pathways [4]. This chapter will highlight the neuroprotective mechanisms

of flavonoids through their ability to interact with neuronal signaling pathways and

their potential to modulate neuroinflammation, to counteract neurotoxin-induced

neurodegenerative disorders, and to enhance memory, learning, and cognitive

performances.

2 Flavonoid Bioavailability and Accessibility to the Brain

Many studies have reported the bioavailability of flavonoids in the systemic

circulation [5–8], however, little is known about their uptake within the central

nervous system (CNS; brain and spinal cord). In order to understand whether these

phenolic compounds affect neurons and glial cells, it is crucial to ascertain their

presence within the cerebral tissue. In order for flavonoids to access the brain, they

must first cross a tightly regulated, selectively permeable endothelial cell layer

which isolates the CNS tissue from the vasculature, the blood-brain barrier (BBB).

The BBB is permeable to nutrients and actively excludes many substances from the

central nervous system [9]. Using in vitro models, researchers have provided the

first information on the capacity of flavonoids to traverse the BBB [10] and

demonstrated that less polar O-methylated metabolites appear to be capable to

greater brain uptake than the more polar flavonoid glucuronides [11]. The degree

of entry of flavonoids or their metabolites into the CNS was also observed to depend

on their interactions with transporters, such as P-glycoprotein, expressed in the

BBB whose function is to export xenobiotics and unwanted metabolites [12].
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For example, P-glycoprotein is considered to be responsible for the differences

between naringenin and quercetin flux into the brain in situ [10]. Further to in vitro

models, animal investigations have also substantiated these findings and indicated

that flavanones were able to enter the brain following their intravenous administra-

tion [13], while epigallocatechin gallate [14], epicatechin [15], and anthocyanins

[16, 17] were found in the brain after their oral administration. Furthermore, several

anthocyanins have been identified in different regions of the rat [18, 19] and pig

brains [20, 21] of blueberry-fed animals. Altogether, these results indicate that

many flavonoids are able to traverse the BBB and localize in the brain, suggesting

that they can directly exert neuroprotective and neuromodulatory actions.

3 Flavonoids and Memory, Learning, and Neurocognitive
Performance

There is a growing interest in the potential of phytochemicals to improve memory,

learning, and general cognitive ability [22, 23]. A recent prospective study aimed at

examining flavonoid intake in relation to cognitive function and decline has pro-

vided strong evidence that dietary flavonoid intake is associated with better cogni-

tive evolution, that is, the preservation of cognitive performance with aging [24].

In particular, subjects included in the two highest quartiles of flavonoid intake had

better cognitive evolution than subjects in the lowest quartile and after 10 years

follow-up. Subjects with the lowest flavonoid intake had lost on average 2.1 points

on the Mini-Mental State Examination, whereas subjects with the highest quartile

had lost 1.2 points. Such data provides a strong indication that regular flavonoid

consumption may have a positive effect on neurocognitive performance as we age.

There has been much interest in the neurocognitive effects of soy isoflavones,

primarily in postmenopausal women [25, 26]. Isoflavone supplementation has been

observed to have a favorable effect on cognitive function [27], particularly verbal

memory, in postmenopausal women [28], and a 6- and 12-week supplementation was

observed to have a positive effect on frontal lobe function [29]. Furthermore, animal

studies have also indicated that isoflavones are capable of improving cognitive function

[30, 31]. However, there is still uncertainty regarding their effects as some large

intervention trials have reported that isoflavone supplementation does not lead to

cognitive improvements [32]. The rationale behind the potential of isoflavones to

exert positive effects on cognitive function is believed to lie primarily in their potential

to mimic the actions and functions of estrogens in the brain [33]. For example,

postmenopausal women who undertake estrogen replacement therapy have

a significantly lower risk for the onset of Alzheimer’s disease than women who do

not [34]. They may also be effective by affecting the synthesis of acetylcholine and

neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and nerve

growth factor (NGF) in hippocampus and frontal cortex [35, 36].

There is also extensive evidence that berries, in particular blueberries, are

effective at reversing age-related deficits in motor function and spatial working

memory [37–39]. In addition to spatial memory, blueberry supplementation has
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been shown to improve “object recognition memory” [40] and “inhibitory fear

conditioning learning” [41, 42]. Blueberry appears to have a pronounced effect on

short-term memory [42] and has also been shown to improve long-term reference

memory following 8 weeks of supplementation [38]. Tests using a radial arm maze

have supported these findings and have provided further evidence for the efficacy of

blueberries [39]. Indeed, these have shown that improvements in spatial memory

may emerge within 3 weeks, the equivalent of about 3 years in humans. The

beneficial effects of flavonoid-rich foods and beverages on psychomotor activity

in older animals have also been reported [37, 43]. In addition to those with berries,

animal studies with tea [44] and pomegranate juice [45] or pure flavonols such as

quercetin, rutin [46], or fisetin [47] have provided further evidence that dietary

flavonoids are beneficial in reversing the course of neuronal and behavioral aging.

The flavonoid-rich plant extract, Ginkgo biloba, has also been shown to induce

positive effects on memory, learning, and concentration [48, 49].Ginkgo biloba has
a prominent effect on brain activity and short-term memory in animals and humans

suffering from cognitive impairment [50, 51] and promotes spatial learning in aged

rodents [52, 53]. Furthermore, Ginkgo biloba promotes inhibitory avoidance con-

ditioning in rats with high-dose intake leading to short-term, but not long-term,

passive avoidance learning in senescent mice [54, 55]. However, the pharmacolog-

ical mechanisms by which Ginkgo biloba promotes cognitive effects are unclear,

with its ability to elicit a reduction in levels of reactive oxygen species (ROS) [56],

to increase cerebral blood flow [57], to modulate membrane fluidity [54], to interact

with muscarinic cholinergic receptors [58], and to protect the striatal dopaminergic

system [59] all being suggested as possible mechanisms underlying its actions in

the CNS.

4 Flavonoids and Neurodegeneration

There are a number of epidemiological studies which suggest that plant-derived

flavonoid-rich foods or supplements might delay the initiation and progression of

Alzheimer’s disease (AD) and related neurodegenerative disorders. With regard to

AD, independent prospective cohort studies have associated the consumption of

polyphenolic-rich vegetables, fruit juices, and red wine with delayed onset of the

disease [60, 61]. This is in accordance with previous studies linking high consump-

tion of flavonoids to improvements in dementia [24, 62], and collectively, these

reports lend some support to the underlying hypothesis that dietary intervention

with plant-derived flavonoid-rich foods or supplements could impact on the devel-

opment of AD. Not all prospective studies have reached the same positive conclu-

sions however, and in the Honolulu-Asia aging study, midlife flavonoid intake, as

estimated using mean intake of green and black tea, was not associated with altered

risk of late-life incident dementia [5]. Despite this, much of the subsequent work in

the field has focused on the potential bioactivity of catechins which are abundant in

tea. Indeed, the green tea flavanol epigallocatechin-3-gallate (EGCG) is regarded as

a lead candidate molecule for use in AD and is part of an ongoing clinical trial
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where it is being given in combination with donepezil to 50 patients with AD

(NCT00951834).

Many of the preclinical studies of the effects of flavonoids in AD have focused

on models where there is increased production of beta-amyloid (Ab). Ab is a small

protein produced by the enzymatic cleavage of amyloid precursor protein (APP).

Ab is aggregation prone and forms oligomeric species which are directly toxic to

synapses and can aggregate further to form amyloid plaques, extracellular protein

deposits which are a hallmark of Alzheimer’s disease pathology [63]. Studies using

transgenic mouse models of AD pathology have begun to address the possible

mechanisms involved in the apparently beneficial effects of catechin-rich diets.

Oral administration of EGCG for 6 months to Tg2576 mice, a strain which

overexpresses the Swedish mutation of APP, reduced Ab pathology and improved

cognition [64]. Similarly, long-term green tea catechin administration improved

spatial learning and memory in senescence-prone mice [65]. The mechanisms

underlying these changes are not clear but might be linked to increased non-

amyloidogenic processing of APP, through stimulating the activity of a-secretase,
which cleaves APP at a site which prevents the formation Ab species [66–68], or

could be due to disruption of the interaction of amyloid with cAbl/Fe65 which

might alter its ability to be processed into toxic species [69]. Alternatively, it is

conceivable that EGCG reduces Ab plaque pathology by inhibiting amyloid aggre-

gation and fibrillization either as a result of metal chelation activity [70–72] or by

favoring the formation of nontoxic (off-target) oligomers [73]. Interestingly, in

addition to possessing the ability to inhibit the formation of b-sheet rich amyloid

fibrils, EGCG also converts large mature Ab fibrils into smaller nontoxic aggre-

gates [74]. These are significant observations although very serious consideration

must be given as to whether dietary EGCG could drive Ab disaggregation in AD

brain as the micromolar concentrations required to exert these effects in vitro will

not be easily achievable in vivo. Anti-amyloidogenic activity is not unique to

EGCG, and a number of other flavonoids, most notably myricetin, bind to Ab
fibrils and prevent further fibrillization [75–77]. Gallic acid and catechin-rich grape

seed polyphenolic extract (GSPE) administered for 5 months to Tg2576 mice also

inhibited cognitive deterioration coincident with reduced levels of soluble high

molecular weight oligomers of Ab [78]. Repeated intraperitoneal injection of the

polymethoxylated citrus flavone, nobiletin, has similar effects [79]. However, it is

worth noting that beneficial effects have been observed with flavonoids in some AD

mouse models without obvious alterations in pathology. For example, feeding

blueberry to APP + PS1 double transgenic mice prevented deficits in cognitive

performance at 12 months but without altering the Ab burden [80].

Although these are clearly important studies in that they show in principle that

chronic exposure to polyphenolics can influence AD pathology and behavior

in vivo, it is likely that the optimal flavonoid structures possessing the necessary

bioactivity and bioavailability have not yet been identified. Other mechanisms of

action are also possible. Interestingly in this regard, certain flavonols and flavones

have been reported to inhibit and suppress expression of an enzyme BACE-1, which

is required for the production of Ab from APP [81, 82]. This observation is
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consistent with some of the observed Ab lowering effects reported for flavonoid-

rich extracts in vivo and in vitro. The identification of those flavonoid structures

possessing the greatest potential inhibitory activity at BACE-1 and defining their

precise mechanisms of action are needed.

Despite the well-established and compelling link between Ab and AD, Ab
pathology and cognitive deficits are not well correlated. Consequently, beneficial

effects of flavonoids on cognition may be unrelated to changes in Ab per se but to

key downstream changes, for example, in phosphorylation and fibrillization of tau,

a protein which, when abnormally phosphorylated, is found in neurofibrillary

tangles: another pathological hallmark of AD. Indeed, a number of flavonoids

including myricetin and epicatechin 5-gallate have been shown to potently inhibit

heparin-induced tau aggregation [83]. Moreover, grape seed polyphenolic extract

(GSPE) also inhibits tau fibrillization, promotes the loss of preformed tau aggre-

gates, and disrupts paired helical filaments [84–87]. (�)-Epigallocatechin-3-gallate

(EGCG) appears to have broadly similar effects. (�)-Epicatechin and hesperetin

hold the potential to inhibit the development of tau pathology through an alternative

mechanism relating to their ability to enhance phosphorylation of a key regulatory

enzyme, Akt, to inhibit GSK3b-induced hyperphosphorylation of tau [88, 89].

Whatever the mechanisms involved, collectively, this suggests that orally active

flavonoids could have utility in AD beyond anti-Ab actions.

The potential utility of flavonoids in neurodegeneration extends beyond

dementia, and there is also considerable interest in their therapeutic potential

in Parkinson’s disease (PD). The neurodegeneration observed in PD appears

to be triggered by multifactorial events including neuroinflammation,

glutamatergic excitotoxicity, increases in iron, and/or depletion of endogenous

antioxidants. There is a growing body of evidence to suggest that flavonoids may

be able to counteract the neuronal injury underlying these disorders and thus

slow the progression of the disease [23, 90]. There is good evidence to suggest

that the consumption of green tea may have a beneficial effect in reducing the

risk of PD [91], as has been extensively reviewed elsewhere [92, 93]. The

efficacy of green tea is likely to be mediated by the effects of EGCG, which

has been shown to attenuate the selective degeneration of dopamine neurons in

animal models of PD induced by toxins including 6-hydroxydopamine [94] and

MPTP [95]. The mechanism of protection is not known, but EGCG has been

noted to interact with and modulate signaling pathways involved in

neuroprotection, notably protein kinase C (PKC) and PI3 kinase, and has been

implicated in reducing dopamine neuron damage in the substantia nigra by the

chelation of iron: a mechanism which is also relevant to AD pathology. In vitro

studies have also indicated that flavonoids might act to prevent PD pathology

via their ability to prevent the formation of the endogenous neurotoxin,

5-S-cysteinyl-dopamine [96, 97].

EGCG can also reduce hippocampal neuronal injury induced by transient global

ischemia [98]. Neuroprotective effects of flavonoids have also been observed in

animal models of Huntington’s disease, where the flavonol fisetin has been reported

to be effective in reducing pathophysiology through its actions on the extracellular
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signal-regulated kinase (ERK) pathway [99, 100]. Collectively, these studies sug-

gest that flavonoids have the potential to confer benefit in diverse neurodegenera-

tive disorders. Some of the major neuroprotective mechanisms are discussed in

more detail below.

On a note of caution, however, there is still insufficient data to support the

clinical use of flavonoids in the treatment of neurodegeneration, and there have

been a number of disappointing results from human intervention studies for demen-

tia with various dietary polyphenolics and antioxidants such as curcumin and

Gingko biloba. The challenge ahead, therefore, is to proceed cautiously until

rigorous randomized controlled clinical trials have been undertaken to determine

empirically if flavonoids have efficacy in individuals affected by dementia and

other neurodegenerative conditions.

5 Flavonoids and Neuroinflammation

Neuroinflammation is an important defense mechanism in the CNS which typically

results from cellular damage but may also arise from other stimuli including

infection. While it is a beneficial process, sustained neuroinflammatory processes

are known to participate in CNS disease states [101]. For example,

neuroinflammation contributes to the progressive neuron death observed in

Alzheimer’s disease [102], Parkinson’s disease [103], and also with neuronal cell

death and damage associated with cerebral ischemia [104].

Neuroinflammation is a complex process which involves several CNS cell types

and is characterized by a strong reaction of glial cells, namely, microglia: cells

within the CNS with an immune function, similar to macrophages; and astrocytes:

cells which support neuronal function and maintain BBB integrity. During

neuroinflammation, proinflammatory chemical mediators can be released from

cells resident in the CNS, including neurons themselves, endothelial cells of the

vasculature, and glial cells [101]. If the BBB is impaired, the neuroinflammatory

stimulus may involve infiltrating T and B lymphocytes and macrophages which

interact with cells resident in the CNS (neurons, microglia, astrocytes) through

a complex series of interactions which are not completely understood [105]. In

either case, the neuroinflammatory state is characterized by a marked activation of

microglia and astrocytes. This response is typically associated with a coordinated

cellular response which includes activation of intracellular pathways dependent on

the proinflammatory transcription factor NF-kB (nuclear factor kappa-light-chain-

enhancer of activated B cells). During neuroinflammation, activated microglia and

astrocytes can release a number of factors which are toxic to neurons; these include

inflammatory cytokines such as interleukin-1 beta (IL1b), tumor necrosis factor

alpha (TNFa), nitric oxide (NO), and glutamate [101, 106, 107].

The best example of a CNS disease state with a major neuroinflammatory compo-

nent is multiple sclerosis (MS), a chronic debilitating disease which is characterized by

demyelination, progressive irreversible axonal damage, and inflammation [105]. The

most effective therapies to date act by reducing inflammation and activation of the
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immune system [108], showing that suppression of neuroinflammation has a positive

effect in the disease. Dietary modification to improve multiple sclerosis symptoms and

progression is an attractive proposition. Many patients with MS already use special

diets, for example, gluten-free and milk-free or dietary supplementation with polyun-

saturated fatty acids, vitamins, antioxidants, and/or herbal supplements (e.g., Gingko
biloba). However, so far, a truly beneficial supplement or protective factor with a sound

scientific base has not been elucidated. In part, this is attributed to poor design of the

clinical trials [109] but also reflects the fact that the most potent interventions have not

been found or, indeed, searched for systematically. Although to date there is no

correlation between dietary intake of fruit and vegetables and incidence of MS [110,

111], flavonoids have the potential to be clinically useful in abrogating MS pathology.

The studies to date have not excluded links between fruit and vegetable consumption

and lowered MS incidence [112]. Dietary supplementation with flavonoid compounds

has not been tested in man.

There is data which show encouraging positive effects of flavonoids in animal

and in vitro models relevant to MS. A flavanol, (�)-epigallocatechin-3-O-gallate
(EGCG), delivered orally reduces symptom severity in the autoimmune enceph-

alomyelitis model of relapsing-remitting MS by reducing inflammation and

increasing neuroprotection [113]. The flavonol quercetin has also been reported

to be effective in the Experimental Autoimmune Encephalomyelitis (EAE) mouse

model and reduces T cell proliferation in vitro at concentrations exceeding 10 mM
[114]. Two Dutch groups independently identified a number of promising flavo-

noids using in vitro assays. Hendriks et al. [115] tested six flavonoids and found

that one, luteolin, was the most effective at suppressing myelin phagocytosis by

the macrophage cell line RAW 264.7 (IC50 of 20 mM). Several other flavonoids

(quercetin, fisetin, and apigenin) were also effective in this assay but with

potencies an order of magnitude lower. In the rat EAE model, luteolin (but not

quercetin) showed clinical protection [116]. A separate group tested six flavo-

noids for their ability to alter T cell proliferation [117]. They showed that

micromolar concentrations of luteolin, apigenin, fisetin, and quercetin (but not

morin or hesperetin) suppress the production of the cytokine interferon-gamma

(IFNg) from lymph node-derived T cells but, paradoxically, worsen clinical

severity in the EAE model. There is strong evidence that the flavone wogonin

and a related compound baicalein can inhibit inflammatory responses in macro-

phages in vitro and in vivo [118, 119]. Thus, the studies to date show promising

proof of concept of beneficial effects of flavonoids in suppressing immune and

inflammatory responses in models of MS.

During activation of glial cells in neuroinflammatory states, various transcription

factors including NF-kB, activator protein-1 (AP-1), and the signal transducer and

activator of transcription-1 (STAT-1) have been shown to be involved in

proinflammatory responses in astrocytes and microglia [120–124] which can con-

tribute to neuronal death. Of these transcription factors, the NF-kB system is the

most studied system in the context of neuroinflammation. Suppression of this

pathway can be neuroprotective [125]. Its activation is seen in a number of neuro-

degenerative states, for example, in postmortem Alzheimer’s disease patients, cells
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in the vicinity of b-amyloid plaques show increased NF-kB immunoreactivity.

Numerous flavonoids have been shown to have the ability to inhibit NF-kB in

different cell types. The flavonol quercetin (50 mM) reduces phosphorylation of

NF-kB subunits in human peripheral blood mononuclear cells [126] and suppresses

NF-kB in a microglial cell line [127]. The flavanone oroxylin A (80 mM) reduces

LPS-induced NO production and NF-kB activity in RAW 246.7 macrophages [128].

The flavone apigenin (5–15 mM) blocks LPS stimulation of the NF-kB pathway in

RAW 246.7 macrophages and reduces kB-transcriptional activity [129]. The

flavanol EGCG (5–15 mM) reduces LPS-induced NFkB-activity in peritoneal mac-

rophages [130] and reduces T cell proliferation accompanied by inhibition of NF-k
B [113]. Catechin (0.13–2 mM) has been reported to increase mouse microglial cell

survival following exposure to the oxidative agent tert-butyl hydroperoxide (tBHP)
by suppressing NF-kB activation [131]. The flavone luteolin (20 mM) reduced LPS-

induced NF-kB transcriptional activity in fibroblasts [132]. The flavone wogonin

(50 mM) was shown to reduce NF-kB activation in C6 glioma cells and prevent

microglial activation [133], and baicalein is reported to inhibit NO� production

and NF-kB activity in microglia [134, 135]. The isoflavone genistein has been

shown to reduce expression of iNOS in astrocytes, through inhibition of NF-kB
activation [136]. While the data gives proof of principle that NF-kB is a potential

target of flavonoids, the concentrations required for positive effects of those

particular compounds in vitro are high, in the micromolar range, that is, at

concentrations which cannot be obtained through the diet. It is likely that, for

most of those studies, the antioxidant effects of the flavonoids used account for

the positive effects on suppressing NF-kB activation. We have tested dietary-

relevant concentrations of flavonoids and shown them to be bioactive in

suppressing certain responses in primary astrocytes mediated by transcription

via the antioxidant response element [137]. However, at this concentration

range (0.1–1 mM), we find flavonoids of different classes are unable to suppress

NF-kB signaling pathways in primary astrocytes [169]. Therefore, while flavo-

noids may be effective agents at suppressing neuroinflammation in vivo, at this

time, we do not regard the NF-kB signaling system as the primary signaling

system responsible for the effects of flavonoids in vivo.

6 Mechanisms Underpinning the Beneficial Effects
of Flavonoids

Historically, the biological actions of flavonoids have been attributed to their

antioxidant properties, either through their reducing capacities per se or through

their possible influences on intracellular redox status. However, their classical

hydrogen-donating antioxidant activity is unlikely to be the sole explanation for

the bioactivity of flavonoids in vivo, as during absorption they are extensively

metabolized to glucuronides, sulfates, and O-methylated forms which are reduced

in their antioxidant potential [4]. Rather, it has become evident that flavonoids are

more likely to exert their neuroprotective actions by the modulation of intracellular
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signaling cascades, of particular interest in this context are those protein kinases

which are central to pro-survival or pro-death pathways in neurons.

After ingestion, flavonoids are thought to reach sufficiently high concentrations

in the CNS, that is, in the high nanomolar range, to exert pharmacological activity

by binding to specific protein targets. Numerous studies now show important

effects of flavonoids at sub-micromolar concentrations where antioxidant effects

are unlikely to be relevant. The effects of flavonoids on neuronal signaling path-

ways are highly concentration dependent and are likely to be related to their ability

to exert high-affinity receptor agonist-like actions at low concentrations (low to mid

nanomolar) and direct enzyme inhibition at higher concentrations (high nanomolar

to micromolar) [138, 139].

The precise site for the first point of interaction of flavonoids with neurons is still

unclear in most cases. Potential flavonoid-binding sites on neurons include adeno-

sine [140], GABAA [141, 142], and testosterone receptors [143], and a specific

plasma membrane binding site for polyphenols in CNS tissue has been proposed

[144]. Evidence indicates that they are capable of regulating signaling pathways,

particularly protein kinases, in a number of ways which include: (1) binding to

enzymes or receptors which control kinase activation, (2) by modulating the

activity of kinases directly, (3) by affecting the function of important phosphatases,

which act in opposition to kinases, and (4) by modulating signaling cascades lying

downstream of kinases, that is, transcription factor activation to selectively control

gene expression [23, 145]. It is beyond the scope of this chapter to list all the

pathways which have been shown to be regulated by flavonoids, so we focus on

a few key signaling pathways which are intimately associated with neuron survival

and plasticity.

There is much evidence to support the actions of nanomolar concentrations of

flavonoids, in particular flavanols and flavanones, on the ERK pathway [89, 146],

which are, in general, calcium dependent and mediated by interactions with upstream

kinases MEK1 and MEK2 and potentially membrane receptors [147]. ERK activation

often leads to the activation of the cAMP response element-binding protein (CREB),

a transcription factor. CREB is considered to be critical in the induction of long-lasting

changes in synaptic plasticity and memory [148, 149]. CREB activation regulates the

expression of a number of important genes, including brain-derived neurotrophic factor

(BDNF), thus has a pivotal role in controlling neuronal survival and synaptic function

in the adult central nervous system [150, 151]. Regulation of BDNF is of particular

interest as it is linked with the control of synaptic plasticity and long-term memory

[152]. Decreases in BDNF and pro-BDNF have been reported in Alzheimer’s disease

[153], and a polymorphism that replaces valine for methionine at position 66 of the pro-

domain of BDNF is associated with memory defects and abnormal hippocampal

function in humans [154].

Recent studies have shown that spatial memory performance in rats

supplemented with blueberry correlates well with the activation of (CREB) and

with increases of BDNF in the hippocampus [42]. Blueberry flavonoid-induced

activation of CREB and BDNF expression has also been shown to lead to the

activation of the PI3 kinase/Akt signaling pathway [42], via the binding of BDNF to
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pre- or postsynaptic TrkB receptors. Fisetin, a flavonoid found in strawberries, has

been shown to improve long-term potentiation and to enhance object recognition in

mice by a mechanism dependent on the activation of ERK and CREB [155].

In general, in vitro studies show that many flavonoids, at submicromar concen-

trations, activate ERK, as determined by measuring increased phosphorylation of

this enzyme. In cortical neurons, the flavanol (�)-epicatechin (0.1 and 0.3 mM)

induces both ERK1/2 and CREB activation [47], while nanomolar concentrations

of quercetin are effective at enhancing CREB activation [156]. Other flavonoids

have also been found to influence the ERK pathway, with the citrus flavanone,

hesperetin, capable to activating ERK1/2 signaling in cortical neurons at nanomolar

concentrations [157], and flavanols such as EGCC restoring ERK1/2 activities in

6-hydroxydopamine-treated or serum-deprived neurons [94]. This ability to acti-

vate the ERK pathway is not restricted to neurons and has also been observed in

fibroblasts exposed to nanomolar concentrations of epicatechin [158].

As well as effecting the ERK/CREB/BDNF axis, flavonoids are known to

modulate the activity of an enzyme system associated with neuroprotection, Akt

(also known as PKB). One of the major enzymes which controls Akt/PKB activity

is the lipid kinase, PI3K. In cortical neurons, flavonoids such as the citrus flavanone

hesperetin (0.1 and 0.3 mM) cause the activation of Akt/PKB and the consequent

inhibition of proteins associated with cell death such as apoptosis signal-regulating

kinase 1 (ASK1), Bad, caspase-9, and caspase-3 [89]. The activation of Akt by

flavonoids in hippocampal neurons has been shown to trigger the increased trans-

lation of specific mRNA subpopulations [159], including the activity-regulated

cytoskeletal-associated protein (Arc/Arg3.1) [42]. Arc is also under the regulatory

control of both BDNF [160] and ERK signaling [161]. Increased Arc expression

may facilitate changes in synaptic strength and the induction of morphological

changes in dendritic spines [162]. In support of this, studies have indicated that

changes in neuronal morphology occur in response to flavonoid supplementation

[163] and that certain flavonoids can influence neuronal dendrite outgrowth in vitro

[164] (Fig. 84.1).

As well as pro-survival effects, some flavonoids may inhibit important protec-

tive enzymes. Flavonoids can inhibit PI3K via direct interactions with its ATP

binding site [165]. The structure of flavonoids determines whether or not they act as

potent inhibitors of PI3K [166]. One of the most selective PI3K inhibitors available,

LY294002, was modeled on the structure of quercetin [167, 168]. Quercetin and

some of its in vivo metabolites have been shown to be neurotoxic in vitro, by

inhibiting pro-survival Akt/PKB signaling pathways by a mechanism of action

consistent with quercetin and its metabolites acting at and inhibiting PI3K activity

[156]. In addition, some flavonoids may be capable of interacting directly with ERK

kinases, such as MEK-1 to cause ERK inhibition: the flavone backbone (2-phenyl-

1,4-benzopyrone) has close structural homology to a specific MEK-1 inhibitor,

PD98059 (20-amino-30-methoxyflavone). This data suggests that flavonoid supple-

mentation must be treated with caution; while many compounds are likely to

enhance neuroprotective signaling, others may produce unwanted inhibition of

key enzymes important for cell survival.
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7 Summary

The neuroprotective actions of dietary flavonoids involve a number of effects

within the brain, including a potential to protect neurons against injury induced

Fig. 84.1 The interaction of flavonoids with cellular signaling pathways involved in
neurodegeneration, neuroinflammation, and learning and memory. Flavonoid-induced activation

and/or inhibition of MAP kinase and PI3 kinase signaling leads to the activation of transcription

factors which drive gene expression. For example, activation of ERK/Akt and the downstream

transcription factor CREB by flavonoids may promote changes in neuronal viability and synaptic

plasticity, which ultimately influence neurodegenerative processes. Flavonoid-induced inhibition

of the JNK, ASK1, and p38 pathways leads to an inhibition of both apoptosis in neurons and

a reduction of neuroinflammatory reactions in microglia (reduction in iNOS expression and NO�

release). Alternatively, their interaction with signaling may lead to direct activation of proteins

such as eNOS, which controls nitric oxide release in the vasculature and thus may influence

cerebral blood flow
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by neurotoxins, an ability to suppress neuroinflammation, and the potential to

promote memory, learning, and cognitive function. This multiplicity of effects

appears to be underpinned by their capacity to interact with important neuronal

signaling cascades in the brain leading to an inhibition of apoptosis triggered by

neurotoxic species and to a promotion of neuronal survival and differentiation.

Although the consumption of flavonoid-rich foods throughout life may hold

a potential to limit neurodegeneration and prevent or reverse age-dependent

deteriorations in cognitive performance, at present, the precise temporal nature

of the effects of flavonoids on these events is unclear. For example, when one

needs to begin consuming flavonoids in order to obtain maximum benefits is not

yet known. There are a vast number of flavonoids available, and while many

have similar beneficial effects on neuroprotection in animal models, those

flavonoids which are the most effective are not yet known. Due to the intense

interest in the development of drugs capable of enhancing brain function,

flavonoids may represent important precursor molecules in the quest to develop

a new generation of brain-enhancing drugs.
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