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Abstract

Stilbenoids are a class of plant phenolics containing C6–C2–C6 unit in their

structures and classified into five groups, covering stilbenes, oligostilbenes,

bibenzyls, bisbibenzyls, and phenanthrenes. They have been a hot research topic

for their intricate structures and diverse biological activities. Resveratrol and

combretastatin A-4 are the star compounds due to their potent cardioprotective,

chemopreventive, and antitumor properties and have the potential to be developed

as new drugs. The stilbenoids do not enjoy a wide distribution and are only found

in special genus. Although the constituent unit is simple, the structures of

stilbenoids highlight the chemical diversity by different substitutes and various

oligomeric styles. In a biogenesis viewpoint, they are formed by a branch of the

flavonoid biosynthetic pathway. This chapter provides a summary of the occur-

rence, phytochemisty, biosynthesis, and biological aspects of the stilbenoids.

Keywords

Bibenzyls • bioactivities • biosynthesis • bisbibenzyls • occurrence •
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1 Introduction

The term “stilbenoids” was proposed by Gorham in 1980 [1, 2], which refers to a

class of plant phenolics with 1,2-diphenylethylene or 1,2-diphenylethane nucleus in

their structures. Stilbenoids are regarded as plant phytoalexins and have been a hot

research topic for their intricate structures and diverse biological activities. The

phytochemical research concerning the stilbenoids developed quickly in recent

years. More than 1,000 compounds belonging to this group have been discovered,

compared with just over 100 listed in 1980 and about 300 in 1995 [2]. Recent

advances in analytical and spectroscopic techniques, especially the NMR methods,

speed up the discovery and elucidation of the intricate structures of stilbenoids. The

intricate structures and stereochemistry of oligostilbenes and bisbibenzyls were

established based on the modern techniques. Furthermore, these compounds

demonstrated diverse biological activities, including antitumor, antimicrobial,

antioxidant effects, antiplatelet aggregation, phytotoxicity, etc. These bioactive

compounds and their derivatives are of great interest for drug research and devel-

opment as a result of their potential in therapeutic or preventive applications,

exemplified by resveratrol and combretastatin A-4. In this chapter, we will give

an overview of structural features, occurrence, phytochemical aspects, biosynthe-

sis, and biological activities of the stilbenoids.

2 Phytochemical Aspects

According to their structural characteristics, stilbenoids are mainly divided into five

categories, stilbenes, oligostilbenes, bibenzyls, bisbibenzyls, and phenanthrenes.
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In the section of phytochemical aspects, the structural characteristic, distribution,

typical representatives, and their structures of each group are introduced.

2.1 Stilbenes

Stilbenes possess a skeleton with two aromatic rings joined by a methylene bridge.

The simple stilbene nucleus is generally substituted by different groups of

hydroxyl, methyl, methoxy, prenyl, geranyl, etc., and combined with sugars to

form glycosides. The double bonds in naturally occurring stilbenes are usually

E-configuration, but stilbenes with Z-configuration are also observed. The com-

pounds of this group highlight the chemical structural diversity through the mod-

ification of above styles on the nucleus. About 125 new stilbenes have been

discovered between the year of 1995 and 2008 [3]. Theymainly occur in the families

of Aceraceae, Anchinoidae, Asteraceae, Bombycidae, Burseraceae, Combretaceae,

Cyperaceae, Dipterocarpaceae, Euphorbiaceae, Gnetaceae, Hepaticae, Iridaceae,

Leguminosae, Lejeuneaceae, Liliaceae, Meliaceae, Moraceae, Ophioglossaceae,

Orchidaceae, Polygonaceae, Rosaceae, Stemonaceae, Vitaceae, and Zingiberaceae.

Resveratrol 1 is the most famous representative of this group and occurs in

Polygonum cuspidatum root and Vitis species. It is a phytotoxin produced by

several plants in response to infection or other stresses and attracted attention for

its cardioprotective effect in red wine. In addition, it is the most important unit for

the construction of oligomeric stilbenes.

Combretastatins, a series of bioactive stilbenes (combretastatin A series),

bibenzyls (B series), phenanthrenes (C series), and macrocyclic lactone (D series),

were obtained from the African willow tree Combretum caffrum (Combretaceae).

Among them, the A series of combretastatins belonging to stilbenes, including

combretastatins A-1 to A-6 2–7, are found to be tubulin polymerization inhibitors.

Typical stilbenes substituted with hydroxyls, methyl, methoxy, menthane

groups, and their origin were listed as follows. Trans-4-[2-(3,5-dimethoxyphenyl)

ethenyl]-1,2-benzenediol 8was isolated from Sphaerophysa salsula (Leguminosae)

[4]. Thunalbene 9 was obtained from Thunia alba (Orchidaceae), and the structure

was designated as 3,30-dihydroxy-5-methoxystilbene [5]. The Phragmipedium
species produced three new stilbenes including 2,30-dihydroxy-50-methoxystilbene

10, 2,3-dihydroxy-30,50-dimethoxystilbene 11, and 2,30-dihydroxy-5,50-
dimethoxystilbene 12 [6]. Phoyunbenes A-D 13–16 were found in Pholidota
yunnanensis (Orchidaceae) [7]. 5,40-Dihydroxy-3-methoxystilbene 17, 3,5-

dihydroxy-40-methoxystilbene 18, and (E)-3,30-dimethoxy-4,40-dihydroxystilbene
19 were isolated from Rumex bucephalophorus and Leuzea carthamoides [8, 9],

respectively. Two Z-type stilbenes named (Z)-3-methoxy-5-hydroxystilbene 20 and
(Z)-3,5-dihydroxystilbene 21, together with a menthane-substituted stilbene (E)-1-
(1-terpinen-4-olyl)-3-methoxystilbene 22, were obtained from aerial parts of

Alpinia katsumadai (Zingiberaceae) [10, 11].
There are two stilbene representatives isolated from special origins. Bryophytes

are characterized by the production of bisbibenzyls, and no stilbene has been
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obtained before the isolation of 3,4-dihydroxy-30-methoxystilbene 23 from

Marchesina bongardiana (Lejeuneaceae) [12]. Kirkpatrickia variolosa, a kind of

Antarctic red sponge of Anchinoidae family, yielded a triacetate derivative

3,4,5-triacetoxystilbene 24 which was the only marine natural stilbene [13].

Two stilbene glycosides, named (E)-3,40-dimethoxyl-5-rutinosyl stilbene 25
and 3,5-dimethoxy-40-O-(b-rhamnopyranosyl-(1→6)-b-glucopyranoside)stilbene
26, were isolated from Guibourtia tessmanii (Leguminosae) [14, 15]. Acer mono
(Aceraceae), a Korean folk medicine for hemostasis, produced two new

stilbene glycosides 5-O-methyl-(E)-resveratrol 3-O-b-D-glucopyranoside 27 and

5-O-methyl-(E)-resveratrol 3-O-b-D-apiofuranosyl-(1→6)-b-D-glucopyranoside
28 [16].

  9 R1=R2=R4=R5=H, R3=OH,R6=Me
10 R1=R2=R3=R5=H, R4=OH,R6=Me
11 R1=R2=H, R3=R4=OH, R5=Me,R6=Me
12 R1=OMe, R2=R3=H, R4=OH, R5=H,R6=Me
13 R1=R2=R4=OMe,R3=OH,R5=H,R6=Me
14 R1=R5=H,R2=OH,R3=OMe,R4=OMe,R6=Me
15 R1=R2=R5=H,R3=OH,R4=OMe,R6=Me
16 R1=R2=R5=H,R3=OMe,R4=OMe,R6=Me
17 R1=R3=R4=H,R2=OH,R5=H,R6=Me
18 R1=R3=R4=H,R2=OMe,R5=R6=H

OR6

OR5

R4

R3
R2

R1

O

22

OMe

20 R=Me
21 R=H

OR

HOHO

OH

OCH3

OCH319

  8 R=OMe
23 R=H

OH

OMe

R
OH

OMe

OMe

OH

MeO
OMe

7

OMe

R2O

R3

OR4

R1O

OMe

2 R1=R2=Me, R3=OH, R4=H
3 R1,R2= –CH2–, R3=R4=H
4 R1=Me, R2=R3=R4=H
5 R1=R2=Me, R3=R4=H
6 R1=R4=Me, R2=R3=H

HO

OH

OH1
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O
O

OR

OH
OH

OH

27 R=H
28 R=apiose

OH

OMe

24 R1=R2=R3=Ac
25 R1=rutinosyl,R2=R3=Me
26 R1=R2=Me,R3=rutinosyl

OR2

OR3

R1O

Prenyl substitution is a conventional derivatization style in stilbenes, exempli-

fied by artoindonesianin N 29 from Artocarpus gomezianus [17]. The prenyl groups
in stilbenes cyclize to form new derivatives. 4-Hydroxy-50-methoxy-

600,600-dimethylpyran[200,300:30,40]stilbene 30, 3,50-dimethoxy-4-hydroxy-600,600-
dimethylpyran[200,300:30,40]stilbene 31, and 3,4,5-trimethoxy-600,600-dimethylpyran

[200,300:30,40]stilbene 32, with dimethylchromene ring in their structures, have been

obtained from Lonchocarpus utilis (Leguminosae) [18]. Furthermore,

schweinfurthins A-C 33–35 from the leaves of Macaranga schweinfurthii
(Euphorbiaceae) are typical samples of the prenylated stilbenes [19].

29

HO

OMe

OH

30 R1=R3=H,R2=R4=OMe
31 R1=R4=OMe,R3=H,R2=OH
32 R1=R2=R3=OMe,R4=H

O

R4

R1

R2

R3

OR1

HO OH

OH

OR2

H

33 R1=OH, R2=H
34 R1=OH, R2=Me

OH

OH

OH
HO

35

Arylbenzofuran derivatives are a group of special stilbenes formed by C7–O–C7

linkage, for instance, gnetofurans B 36 and C 37 from Gnetum klossii [20].

In addition, schoenoside 38, a phenylbenzofuran glucoside discovered from

Schoenocaulon officinale (Liliaceae), as well as stemofurans A-C 39–41 from

Stemona collinsae belongs to this group [21, 22].
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O

OH

OH

R1

39 R1=R2=H
40 R1=H,R2=OH
41 R1=Me,R2=H

O

OH

OGlc

MeO

HO

3836 R=Me
37 R=H

O

OMe OH

OR

HO

R2

2.2 Oligostilbenes

The structures of oligostilbenes are produced by coupling between homogeneous or

heterogeneous monomeric stilbenes, leading to the construction of dimer, trimer, and

even the octamer. They do not enjoy a wide distribution in plant kingdom and have

been found in the family of Agavaceae, Apiaceae, Arecaceae, Celastraceae,

Cyperaceae, Dipterocarpaceae, Gnetaceae, Haemodoraceae, Iridaceae, Leguminosae,

Moraceae, Musaceae, Orchidaceae, Pinaceae, Polygonaceae, Ranunculaceae,

Vitaceae, and Welwitschiaceae. Thereinto, Vitaceae, Leguminosae, Gnetaceae, and

Dipterocarpaceae are particular rich resource of this group.

Oligostilbenes are constructed by C–C or C–O–C linkage of various stilbene

units with diverse coupling patterns and producing structures with diverse skel-

etons, complex configurations, and different degrees of oligomerization. The

most common monomeric stilbene units which comprised the oligostilbenes

are resveratrol, isorhapontigenin, piceatannol, oxyresveratrol, etc. (Fig. 62.1).

Therefore, oligostilbenes are classified into six groups which are resveratrol

oligomers, isorhapontigenin oligomers, piceatannol oligomers, oxyresveratrol

oligomers, resveratrol and oxyresveratrol oligomers, and finally miscellaneous

oligomers [3].

2.2.1 Resveratrol Oligomers
The group of resveratrol oligomers comprises the largest number of oligostilbenes

and is characterized by the polymerization of two to eight resveratrols. About 180

constituents of this group covering dimer to octamers have been reported, which is

produced by diverse polymeric styles.

Vitisinol A 42 isolated from Vitis thunbergii is a dimer linked by four C–C or

C–O–C bonds [23]. Two dimeric stilbene glycosides 43 and 44 were reported from
Polygonum cuspidatum (Polygonaceae) [24]. Thereinto, 44 is a symmetrical mol-

ecule and possesses a novel four-membered ring which is very rare in natural

products. Isoampelopsin F 45 linked by three C–C bonds and heimiol A 46 with

seven-member ring were isolated from Parthenocissus tricuspidata and

Neobalanocarpus heimii [25]. A novel resveratrol dimer with a five-membered

lactone ring, namely, shorealactone 47, was obtained from Shorea hemsleyana [26].
Schneide reported the isolation of anigopreissin A 48 from the Anigozanthos
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preissii (Haemodoraceae) andMusa cavendish (Musaceae), which is the first dimer

containing unsaturated benzofuan moiety [27]. Moreover, an aldehyde-substituted

derivative, (−)-viniferal 49, was isolated from Vitis vinifera [28].

Two trimers containing rare tribenzobicyclo[3.3.2]decatriene system were

isolated from Vatica rassak and V. pauciflora, named vaticanol G 50 and

vaticaside D 51 [29, 30]. Caragaphenol A 52, with a nine-membered ring in the

molecules, was found in Caragana stenophylla [31]. Three isomers which have

bicyclo[5.3.0]decane ring system were obtained including amurensin G 53 from

Vitis amurensis [32] and suffruticosols A 54 and B 55 from Paeonia suffruticosa
(Ranunculaceae) [33].

Two new resveratrol pentamers, named amurensins E 56 and F 57, have been
isolated from Vitis amurensis [34]. The isolation and structural elucidation

of a hexamer vaticanol D 58 and a heptamer vaticanol J 59 from Vatica rassak
have been reported [29]. An octamer vateriaphenol A 60 from Vateria
indica was reported by Ito and coworkers, and it is the largest molecules of

stilbenoids [35].

O

O

HO OH

H

H H

HO OH

H

42

OHGlcO

OH

HO

OHGlcO

OH43

H

H

H

H

HO

HO

OGlc

OH

OGlc

OH

44

45

HO OH
OH

H

HO

HO

OH

H
H

H
O

HO

OH

HO

OH
OH

H

H

H
H

46

HO

O OH

O
O

HO

O

O

HO

HO

OH

H

H H
H OH

H

OH
H

47

OH

HO R2

R1

R3 R1=OH,R2=R3=H             resveratrol
R1=R2=OH,R3=H             piceatannol
R1=R3=OH,R2=H             oxyresveratrol
R1=OH,R2=OCH3,R3=H   isorhapontigenin

Fig. 62.1 Units comprising oligomeric stilbenes
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2.2.2 Isorhapontigenin Oligomers
Oligostilbenes of this group mainly occur in the genus of Gnetum. The representa-
tives comprise gnetuhainins P 61 and I 62 from G. hainanense [36, 37], dimeric

stilbene epimers gnetifolins M 63 and N 64 from G. montanum [38], gnemonol

M 65 fromG. gnemon [39], gneafricanin F 66 found inG. africanum [40], as well as

bisisorhaphontigenin B 67 obtained from G. africanum [41]. With the exception of

Gnetum species, Salacia lehmbachii produced three isorhapontigenin dimers,

named lehmbachols A-C 68–70 [42]. The only two isorhapontigenin trimers,

gnetuhainins N 71 and O 72, which are stereoisomers have been found in Gnetum
hainanense [43]. A tetramer named gnetuhainin R 73 was obtained from the same

species (G. hainanense) [44].

HO
OH

HO

MeO
OMe

OH
H

OH
HO

HH

H
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HO
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HO
OMe
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H
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H

H

H
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H

H
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H
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HO OMe
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H

H
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HO

MeO

OMeHO

OH

HO OH

HO

H H
OH

H

H

63 H-7a=β
64 H-7a=α

7a

HO

OH

R

OMe
MeO

HO HH

H

OH

10

OHHO

68 R=OMe
69 R=OMe diastereoisomer of 322
70 R=OCH2Me
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OMe
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HO

7c
8c HH

71 H-7c=α,H-8c=β
72 H-7c=β,H-8c=α

2.2.3 Piceatannol Oligomers
Only piceatannol dimers have been discovered from the plant species. Longusol

C 74 and gneafricanin C 75 were isolated from Cyperus longus and Gnetum
africanum [40, 45]. Tibeticanol 76 was obtained from Caragana tibetica [46].

Two piceatannol dimer glycosides named piceasides A–B 77–78 were isolated

from Norway spruce Picea abies as a mixture in a ration of 1:1 [47].

O

OH

HO

HO

OH

H

H
O

OH

OH
74 75

O

OH

OH

OH

HO

OH

HO

OH

H

H

OH

OH

HO

OH

OH
OH

HO

OH
76

O

HO

OH

GlcO

OH

H

H

OH

OGlc

OH77 7aR, 8aR
78 7aS, 8aS

7a
8a

2.2.4 Oxyresveratrol Oligomers
Andalasin A 79 and artogomezianol 80 were isolated from Artocarpus gomezianus
(Moraceae) [48]. Structures 79 and 80 are possible intermediates in the biogenesis
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of oxyresveratrol dimers. Parvifolol C 81 and gnetumontanin A 82 were discovered
in two Gnetum species G. parvifolium and G. montanum [49, 50].

O OH

HO

OH
OH

HO

HO

H

H

H

H

OH

81

OH

HO
OH

OH

OH

OHOH

OH79

OH

HO
OH

OH

OH

OH

OH

HO

80

O

HO

HO

OH

OH

OH

H

H

82

OH

OH

2.2.5 Resveratrol and Oxyresveratrol Oligomers
The resveratrol and oxyresveratrol oligomers are only obtained from the genus Gnetum
(Gnetaceae) and polymerize by oxidative coupling between resveratrol and

oxyresveratrol. About 24 compounds of this group have been elucidated. A dimer

containing a benzofuran and a dihydrobenzofuran moiety, named gnemonol G 83, was
isolated fromG. gnemon [51]. Four stilbene dimers, gnetuhainins A 84, B 85, D 86 and
E87,wereobtained fromG.hainanense [52].Gnemonoside J88, a diglucosideof84,was
isolated fromG.africanum [53].Three stereoisomers includingparvifololsA89andB90
and gnetuhainin S 91 have been founded fromG. parvifolium andG. hainanense [44, 49,
54].GnemonolA92andits stereoisomersandgnemonol I93composedof tworesveratrol

units and one oxyresveratrol unit were discovered inG. gnemon [51, 55]. Gnemonol J 94
fromG. gnemon possesses the same skeleton of 92 and 93; however, it is coupled by one
resveratrolunitandtwooxyresveratrolunits [51].GnemonolC95 fromG.gnemonoides is
a stilbene tetramer constructed by three resveratrol and one oxyresveratrol units [55].

83

OH

O

HO

H

H
OHO

OH

HO

O OH

OHRO

HO

OH

OR

H

H

84 R=H
85 R=H, 7a,8a-didehydro
88 R=Glc

7a
8a
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86 H-7b=β,H-8b=α
87 H-7b=α,H-8b=β
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91 H-8b=β,H-7b=α

O

HO OH

HO

OH

OH

OH

H
H H

H
7b
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92 R=H,H-7b=α,H-7a/8a=trans
93 R=H,H-7b=β,H-7a/8a=trans
94 R=OH,H-7b=α,H-7a/8a=trans
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OH
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OHO

OH
HO
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H
H

H

HO
O
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OH
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H H

H

95

HO

2.2.6 Miscellaneous Oligomers
Oligostilbenes polymerize from different stilbene units with the exception of

resveratrol and oxyresveratrol oligomers, and containing miscellaneous structural

skeleton will be classified into this group. Longusol B 96 from Cyperus longus
[45] is a stilbene dimer composed of resveratrol and piceatannol units.

Gnetuhainin Q 97, an isorhapontigenin and resveratrol dimer, was found in

Gnetum hainanense [36]. The first isorhapontigenin and oxyresveratrol dimer

named gnetuhainin J 98 was isolated from G. hainanense [37]. An

isorhapontigenin and piceatannol dimer, gneafricanin B 99 was discovered in

Gnetum africanum [41]. Two isorhapontigenin and 2-hydroxyisorhapontigenin

dimers were obtained from G hainanense and named gnetuhainin G 100.
An isorhapontigenin and gnetol dimer gnetuhainin K 101 was isolated from

G. hainanense [36].
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2.3 Bibenzyls

The bibenzyls are characterized by the presence of one 1,2-diphenylethane struc-

ture in their molecules. Similar with the stilbene structures, there are hydroxyls,

methyl, methoxy, prenyl, geranyl, etc., located in the structures of bibenzyls.

Bibenzyls have been mainly isolated from bryophytes. In addition, a few com-

pounds of this group were reported from the genera of Stemona, Dendrobium, and
Polygonum.

According to the suggestion given by Gorm et al. [56], bibenzyl compounds are

classified into four groups. However, a few groups of bibenzyls are new addition to
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the growing list of naturally occurring bibenzyls, such as tyrolobibenzyls.

In addition, bibenzyls containing isoprene units, regardless of branched or hetero-

cyclic ring-forming isoprene units, are regarded as the same group. Therefore, the

bibenzyls are reclassified into five groups according to their substitute patterns on

both the benzene nucleus and ethylidene bridge.

2.3.1 Group A: Simple Bibenzyls
Bibenzyls having halogenated, hydroxylated, methyled, methoxylated, carboxyl-

ate, benzoyl, and/or methylenedioxy substitutes constitute the group of simple

bibenzyls. The representatives are 20,60-bis(p-hydroxybenzyl)-3,30-dihydroxy-5-
methoxybibenzyl 102 from Bletilla formosana [57], bulbophyllum 103 from

Bulbophyllum protractum [58], 2-carboxy-4-hydroxy-3,40-dimethoxybibenzyl 104
from Plagiochila species [59], 2-chloro-3-hydroxybibenzyl 105 from Riccardia
marginata [60], 1-(30,50-dihydroxyphenyl)-2-(40-hydroxyphenyl)-ethane-1,2-diol
106 from Polygonum cuspidatum [61], methyl 4-hydroxy-40-O-methyllunularate

107 from Plagiochila spinulosa [62], tragopogonic acid 108 from Tragopogon
porrifolius [63], and 2,4,6-trichloro-3-hydroxybibenzyl 109 from Riccardia
marginata [60].

OCH3
HO

OH

O
O

103

OCH3

HOOC OH

H3CO
104

Cl
OH

105

HO

OH

OCH3

OH
102

OH

OH

HO

OH

OH

OH

106

OCH3

HO

107

COOCH3
OH

OH

OH

HO

O
COOH

108 109

Cl

Cl Cl

HO

2.3.2 Group B: Isoprene Unit–Substituted Bibenzyls
Bibenzyls of this group are characterized by the presence of prenyl, geranyl,

and/or farnesyl substitutes. Isoprene units in the structures may be branched

and/or form five- to seven-member rings. The typical compounds of this

group are bauhinols A 110 and B 111 from Bauhinia saccocalyx [64],
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2-carboxy-3-methoxy-4,6-di-(3-methyl-2-butenyl)-5,40-dihydroxy-bibenzyl 112
from Lethocolea glossophylla [65], 2-isopropenyl-6-hydro-4-(2-phenylethyl)

dihydrobenzoluran 113 from Radula perrottetii [66], and 3,5,40-trihydroxy-4-
(3,7,11-trimethyl-2,6,10-dodecatrienyl)bibenzyl 114 from Radula species [67].

OH

HO

HOOC
OCH3

112

OH

OCH3

H3C

HO

111

OH

OCH3

H3C

O

110

OH

O

113

OH

HO

OH

114

2.3.3 Group C: Glycosylated Bibenzyls
Bibenzyls conjugated with glycosyl substitutes on the aromatic rings or benzylic

methylenes (excluding tyrolobibenzyls) belong to this group. The representatives of

this group include 20-carboxy-4,30-dihydroxybibenzyl-3-O-b-D-glucopyranoside
115 from Ricciocarpus natans [68], 2-carboxyl-3,40-dihydroxy-5-b-D-
xylopyranosyloxybibenzyl 116 and 5,40-dihydroxy-3-a-L-rhamnopyranosyl-(1→3)-

b-D-xylopyranosyloxybibenzyl 117 from Tragopogon porrifolius [63], and

combretastatin B-1,20-b-D-glucoside 118 from Combretum erythrophyllum [69].

OH

HO R1

OR2

116 R1=COOH, R2=β-D-xylopyranosyl
117 R1=H, R2=α-L-rhamnopyranosyl-
       (1→3)-β-D-xylopyranosyl 

115 118

OH
HOOC

HO
OGlc

H3CO
OH

OCH3

OCH3

OCH3

OGlc

2.3.4 Group D: Tyrolobibenzyls
Tyrolobibenzyls are a new class of naturally occurring bibenzyl derivatives

possessing a unique phenylethyl-benzofuran skeleton. Tyrolobibenzyls A 119,
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B 120, D 121, and F 122 from Scorzonera humilis L. (Asteraceae) are the typical

constituents of this group [70–72].

119 R=H
120 R=OH
122 R=OGlc

OH

R

O
O

O O
HO OH

OH

OH
O

OH

O

O O

OH

OH
O

HO

121

O
OHOH

CH2OH

2.3.5 Group E: Other Bibenzyls
The hydrogenated bibenzyls 123–124 from Plagiochila longispina [73],

dihydrocoumarin-type bibenzyl 125 from Vittaria anguste-elongata [74], cannabi-

noid-type bibenzyl 126 from Radula marginata [75], and dihydrophenanthrene

hybrids such as shancilin 127 from Pleione bulbocodioides, and terpenoid hybrid

spinuloplagin A from Plagiochila spinulosa 128 are classified into this group.

O

OH
HOOC H

H

126

OH

OCH3

OCH3

HO

HO

O

H

OMe

O
O

COOMe

128127

O

OH
OH

OHO

H3CO

125

OCH3

OH

OCH3

OCH3O

123 124

2.4 Bisbibenzyls

Bisbibenzyls are dimeric bibenzyls and chemically constructed by two lunularin

moieties with diarylether and/or biphenyl linkages, and producing cyclic and

acyclic four aromatic rings system. They are usually distributed in liverworts and
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Table 62.1 Cyclic and acyclic bis(bibenzyl) types and their distribution

Subclass Type Structure

Linkage

pattern Family member Distribution

Cyclic Marchantin 1
2

3
4

5

6

7
8
9

10

11

12
13

14

1�

2�

3�
4�

5�

6�

7�
8�

9�
10�

11�
12�

13�

14�

O

O

C1-O-C20 and

C14-O-C110

linkage

Marchantins A-P,

Marchantinquinone

Aneuraceae

Grimaldiaceae

Jungermanniaceae

Marchantiaceae

Monocleaceae

Isomarchantin O

O

C1-O-C20 and

C13-O-C100

linkage

Isomarchantins B and

C Ptychantols A-C

Jungermanniaceae

Lejeuneaceae

Marchantiaceae

Neomarchantin O

O

C1-O-C20 and

C12-O-C110

linkage

Neomarchantins

A and B; Pakyonol

Grimaldiaceae

Marchantiaceae

Monocleaceae

Schistochilaceae

Riccardin I O C1-O-C20 and

C14-C120

linkage

Riccardins A, C-H Grimaldiaceae

Marchantiaceae

Monocleaceae

Aneuraceae

Jungermanniaceae

Riccardin II O

O

C1-O-C20 and

C13-O-C120

linkage

Riccardin B Aneuraceae

Marchantiaceae

Isoriccardin O C1-O-C20 and

C12-C100

linkage

Isoriccardin C

Isoriccardinquinones

A and B

Marchantiaceae

Plagiochin O C1-O-C20 and

C14-C100

linkage

Plagiochins A-E Plagiochilaceae

(continued)
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Table 62.1 (continued)

Subclass Type Structure

Linkage

pattern Family member Distribution

Isoplagiochin I

O

C6-C20 and

C14-O-C110

linkage

Isoplagiochins

A-B, E-G.

Plagiochilaceae

Isoplagiochin II C6-C20 and

C14-C120

linkage

Isoplagiochins

C and D; Bazzanins

A-J, L-S

Blasiacea

Herbertaceae

Plagiochilaceae

Planusin O C6-O-C20 and

C13-C100

linkage

Planusin A Plagiochilaceae

Acyclic Perrottetin O C1-O-C20

linkage

Perrottetins E-H Jungermanniaceae

Pelliaceae

Radulaceace

Isoperrottetin C6-C20

linkage

Isoperrottetin A Moraceae

Radulaceace

Paleatin

O

C14-O-C110

linkage

Paleatins A-B Marchantiaceae

Plagilin C5-C30

linkage

Plagilin, Vitamin E Plagiochilaceae

Isoplagilin C5-C20

linkage

Isoplagilin Plagiochilaceae

(continued)
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rarely found in other plant species. The first bisbibenzyl not obtained from liver-

worts is perrottetin H 149, which was isolated from a pteridophyte Hymenophyllum
barbatum [2]. It is also believed that the distribution of bisbibenzyls in both

pteridophytes and liverwort is an important marker of determining the evolutionary

ladder of terrestrial spore-forming plants.

Bisbibenzyls are classified into ten types of cyclic bisbibenzyls and six types of

acyclic bisbibenzyls on the basis of basic bisbibenzyls skeletons (see Table 62.1). Over

100 cyclic and acyclic bisbibenzyls have been obtained from plant kingdom to date.

2.4.1 Macrocyclic Bisbibenzyls
According to the constitution of the macrocyclic ring, these bisbibenzyls can be

divided into three main groups, those with two diarylether bonds (marchantins,

isomarchantins, neomarchantins, and riccardins II), those with two biphenyl bonds

(isoplagiochin II), or those with one diarylether bond and one biphenyl bond (riccardin

I, isoriccardin C, plagiochins, isoplagiochin I, and planusin A) (see Table 62.1). The

range of macrocyclic structures is extended ultimately and derived from additional

functions (e.g., carbonyl, hydroxyl, and methoxyl) on both the benzene nucleus and

ethylidene bridge and the ways in which aromatic rings are linked.

Asakawa and his coworkers reported the isolation of a marchantin-type macrocy-

clic bisbibenzyl marchantin P 129 from the liverwort Marchantia chenopoda
collected in Venezuela [76]. Three isomarchantin-type macrocyclic bisbibenzyls

were isolated from the liverwort Ptychantus striatus, belonging to the Lejeuneaceae,

and designated them as ptychantols A-C 130–132 [77]. Neomarchantins A and B

133–134 were obtained from Schistochila glaucescens [78].
Two riccardin I-type compounds, riccardins F 135 and H 136, were isolated from

Blasia pusilla [79] and Marchantia polymorpha [80], respectively. Riccardin B 137
fromPreissia quadrata belongs to the riccardin II-type bisbibenzyls. Isoriccardin C 138,
a compound of isoriccardin group, was obtained from Plagiochila sciophila [81].

Plagiochins A-B 139 and 140 were plagiochin-type constituents from Plagiochila
fruticosa [81]. Isoplagiochins E-F 141–142, belonging to the isoplagiochin I-type

bisbibenzyls, have been isolated from several Plagiochila species. Isoplagiochins

C 143 and D 144 with two biphenyl linkages, which are different from isolagiochin

I-type bisbibenzyls, represent isolagiochin II-type of macrocyclic bisbibenzyls.

Planusin A 145 with a cis-stilbene moiety was discovered from cultured cells of the

liverwort Heteroscyphus planus and classified into planusin-type bisbibenzyls [82].

Table 62.1 (continued)

Subclass Type Structure

Linkage

pattern Family member Distribution

Plagiolin C5-C70

linkage

Plagiolin Plagiochilaceae
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O
OH

O OH

137

O
OH

OHHO
HO

138

2.4.2 Acyclic Bisbibenzyls
Compared with cyclic bisbibenzyls, acyclic bisbibenzyls receive less attention due

to their small number and poor structural diversity. Some novel acyclic

bisbibenzyls, however, have been obtained in the past few years. These

bisbibenzyls can be divided into two main groups, those with one diarylether

bond (perrottetins and paleatins) or those with one biphenyl bond (isoperrottetin

A, plagilins, isoplagilin, plagiolin, artogomezianol, and andalasin). The linkages

occurred between two aromatic rings or between one benzene nucleus and

ethylidene bridge (see Table 62.1).

Perrottetins and isoperrottetins represent the most frequently encountered skeletal

types of acyclic bisbibenzyls. They are of much interest for the investigation of biogen-

esis of macrocyclic bisbibenzyls, for example, the derivatives of riccardin, plagiochin,
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ptychantol, and isoplagiochin types. Examples of the perrottetin-type compounds are

perrottetinsE-H146–149. Theyhavebeen found in different liverwort species and a fern
Hymenophyllum barbatum [83]. Isoperrottetin A 150 and its chlorinated derivative 151
belong to isoperrottetin-type compounds [66, 84], which contain one biphenyl bond

between aromatic rings instead of one diarylether bond for perrottetins.

Plagilin 152, isoplagilin 153, and plagiolin 154 were obtained from a neotropical

Plagiochila species [85]. Another plagilin-type bisbibenzyl, vittarin-E 155, has been
isolated from the whole plant of Vittaria anguste-elongata [74]. This is one more

evidence for the occurrence of acyclic bisbibenzyls in the pteridophytes.

Paleatins A 156 and B 157 were isolated from the methanol extract of

Marchantia paleacea var. diptera [86]. These phenolic compounds are of interest

because they are the linear analogues of the macrocyclic bisbibenzyl ethers and

possible biogenetic precursors of the plagiochins and riccardins.

O
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HO

HO
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OH

O
OR1
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146  R1=R2=H
147  R1=H, R2=OH
148  R1=CH3, R2=OH
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Cl Cl
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151
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HO OH
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OHOH
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H3CO OCH3
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2.5 Phenanthrenes

The phenanthrenes are a rather uncommon group of aromatic constituents formed by

oxidative coupling of the aromatic rings of stilbene precursors and existed in the form

of monomers, dimers, and even trimers [87]. A large number of phenanthrenes have

been isolated from higher plants (mainly in the Orchidaceae family) and covering 49

species. The generaDendrobium, Bulbophyllum, Eria,Maxillaria, Bletilla,Coelogyna,
Cymbidium, Ephemerantha, and Epidendrum were particularly rich resources of phen-

anthrenes. In addition, a few phenanthrenes have been discovered in the family of

Dioscoreaceae, Combretaceae and Betulaceae, and the Hepaticae class. The greatest

number of phenanthrenes has been obtained from the Juncus species.

2.5.1 Monomeric Phenanthrenes
Most of the phenanthrenes are present in the form of monomers, containing about

210 compounds. Hydroxyl and methyloxyl are the most common substitutes located

in the phenanthrene skeletons and occupy about 50% of all monomers. For instance,

coeloginanthrin 158 from Coelogyne cristata [88], 4-methoxyphenanthrene-

2,3,7-triol 159 and 4-methoxyphenanthrene-2,3,6,7-tetrol 160 from Bulbophyllum
vaginatum [89], as well as 2-methoxy-3,4,7-trihydroxy-phenanthrene 161 from

B. inconsipicum [90] are hydroxyl- and/or methyloxyl-substituted ones.

With the exception of hydroxy and methyloxy groups, methyl-, hydroxymethyl-,

carboxy-, formyl-, prenyl-, and vinyl-substituted compounds are observed, with

stemanthrenes A-D 162–165, 166, 167, dehydroeffusal 168, and gancaonin U 169
as the representatives [91–94]. Furthermore, glycosides were isolated from the

plants of Juncus effusus, Epimedium koreanum, Dendrobium chrysanthum, and
Bulbophyllum striata, for example, effuside I 170, epimedoicarisoside A 171, and
denchryside A 172 [95–97].

Phenanthraquinones are special phenanthrenes with quinone group in the struc-

tures. Ephemeranthoquionone 173 from Dendrobium plicatile, cymbinodin A 174
from C. aloifolium, and moniliformin 175 from D. moniliforme were typical

constituents of this group [98–100].
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H3CO

163
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159 R=H
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2.5.2 Dimeric Phenanthrenes
The dimeric phenanthrenes are commonly constructed by 1-10 linkage of mono-

mers, and the dimers with 1-30, 1-80, and 3-30 link patterns also existed. Nearly

40 dimeric phenanthrenes have been found in the plants [87]. The representatives

are cirrhopetalanthrin 176 from Cremastra maculosum [101], blestrianol A 177
from Bletilla striata [102], blestriarene B 178 from Bletilla formosana [57], and

spiranthesol 179 from Spiranthes sinensis [103].

MeO OH
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OMeHO
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1 8�
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2.5.3 Triphenanthrene
Hitherto, only one triphenanthrene 180 has been reported from the tubers of an

orchidaceous plant Cremastra appendiculata [104].

OH

HO
OH

OMe

OH

HO OMe

MeO

MeO

180

3 Biosynthesis

3.1 Biosynthesis of Stilbenes

The biosynthesis of simple stilbenes has been found out, and it shared

a similar biosynthetic pathway with the flavonoids. Taking resveratrol for

example, it starts from a cinnamoyl-CoA unit and extended the chain with

three malonyl-CoA molecules (Scheme 62.1) [105]. Then, the resveratrol

structure is produced by aldol reaction with the presence of stilbene synthase.

Nevertheless, the flavonoids are formed depending on chalcone synthase and

Claisen reaction.

3.2 Biosynthesis of Oligostilbenes

Sotheeswaran has mentioned that the oligostilbenes with dihydrobenzofuran

moiety are biosynthesized through an important intermediate trans-e-viniferin
[106]. Combined with the reported work of oligostilbenes, the biosynthesis of

oligostilbenes is summarized. For instance, the dimers named (+)-ampelopsin

B, (−)-ampelopsin D, and (+)-ampelopsin F are produced by isomerization

and/or rearrangement of trans-e-viniferin (Scheme 62.2). The differences in

their structures are caused by the different protonation position at the

initial stage of reaction. Furthermore, trans-e-viniferin is able to transform

to the isomers (Scheme 62.3) and then forming the tetramers, (+)-vitisin A,

(−)-vitisin B, (+)-hopeaphenol, and (+)-viniferol A, etc., by oxidative coupling

(Scheme 62.4) [2, 107].
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3.3 Biosynthesis of Bibenzyls and Bisbibenzyls

The biosynthesis of marchantins A and C has been certified by a C-labeled

precursor feeding experiment. It shows that rings A and C of the marchantin

molecules are derived from the benzene ring of L-phenylalanine. The bibenzyl
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lunularic acid is biosynthesized through dihydro-p-coumaric acid coupling with

three malonyl-CoA units and then coupled in typical ways to form bisbibenzyls

marchantins A and C (Scheme 62.5) [108].

Evidences have confirmed that bisbibenzyls can be produced by the coupling

of two phenolic systems by means of free-radical reactions. These reactions can

be mediated by oxidase enzymes. C–C bonds involving positions ortho or para to
the original phenols, or ether linkages, may be formed in coupling of two of these

bibenzyl structures [105]. A previous hypothesis for the biogenesis of
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marchantins, riccardins, and plagiochins considers cyclization of open-ring pre-

cursors, such as perrottetin E 146, through intramolecular phenol oxidation,

accompanied by C–O or C–C linkage of the terminal m-hydroxyphenyl units
[109]. Likewise, isoplagiochins A-D might be biosynthesized from isoperrottetin

A 150 (Scheme 62.6) [110].

3.4 Biosynthesis of Phenanthrenes

Bibenzyls are regarded as the bicyclic intermediates of 9,10-dihydrophenanthrenes,

and the biosynthetic pathway of 9,10-dihydrophenanthrenes was proposed as

showed in Scheme 62.7. Oxidative coupling of the bibenzyl intermediate leads to

the formation of phenanthrene [2].

OHO

OH OH

OH OH

OH

OH

OH OH

OH

O

O

OH OH

OO

O O

OO

prelunularin postulated bis(bibenzyl)-
building block: lunularin

OH

perrottetin E 146

isoperrottetin A 150 isoplagiochins I Iisoplagiochins II

marchantins isomarchantin

riccardin I isoriccardin

Scheme 62.6
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4 Biological Activities

4.1 Antitumor Activity

4.1.1 Stilbenes and Oligostilbenes
Resveratrol, as a representative compound of stilbene, possesses diverse pharma-

cological activities. The antitumor property has taken the spotlight for its cancer

preventive effect on skin cancer in a mice model. Subsequently, plenty of in vivo

experiments targeting different tumor model were carried out to evaluate its

therapeutic effects on tumors [111]. The results definitely show that resveratrol is

able to inhibit or possess chemopreventive functions on different tumors, including

breast cancer, liver cancer, gastric cancer, colorectal cancer, prostate cancer,

leukemia, lung cancer, neuroblastoma, etc. In these experiments, the incidences,

tumor volume, and metastasis are improved. Clinical trials of investigating

resveratrol’s effects on colon cancer and melanoma (skin cancer) are intending to

launch.

Combretastatins attract a lot of interests for their potent antitumor properties by

inhibiting tubulin polymerization and disrupting the formation of tumoral vascula-

ture. Combretastatin A-4 5 was proved to be the most potent candidate of

combretastatins with GI50 of 3.20 nM in an antitumor screening project against

the NCI-60 human tumor cell lines, followed by combretastatins A-1 2 and A-2 3
[112]. Further studies focused on the antitumor mechanism of combretastatins, and

the results suggested that compounds 2, 3, and 5 possessed potent antimitotic effect

through binding to the tubulin at colchicine site [113]. Combretastatin A-4, its

prodrug combretastatin A-4 phosphate (CA-4-P), and other analogues are currently

being investigated in the clinical trials. CA-4-P, being developed as vascular

targeting agents, in combination with carboplatin has entered into phase III clinical

trial for the treatment of anaplastic thyroid cancer.

The seeds of Iris halophila (Iridaceae) produced halophilol A, which possesses

moderate cytotoxicity against KB cells and human mammary epithelial cells

3× Malonyl-CoA

HO

OCH3 OCH3

OH

CoASC
O

S-Adenosyl-methionine

S-Adenosyl-homocysteine

HO

HO
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(HMECs) with IC50 values of 17.28 and 22.47 μM [114], respectively. The prenyl

stilbenes 30–32 with dimethylchromene ring exhibit cytotoxic activity against

Hepa-1clc7 cells with IC50 values of 8.5, 13.0, and 7.0 μM [18], respectively.

Tested in the NCI-60 cell line human cancer screen, schweinfurthins A 33 and

B 34 show significant cytotoxic activity with mean panel GI50 of 0.36 and 0.81 μM.

Schweinfurthins E-H were isolated from M. alnifolia [115] and display potent

antiproliferative effect against A2780 human ovarian cancer cell line with IC50

values ranging from 0.26 to 5.0 μM, respectively. Lakoochins A and B also possess

cytotoxic activity against breast cancer cell line (6.1 and 3.1 μg/mL) and nasopha-

ryngeal carcinoma cell line (20 and 6.1 μg/mL) [116].

4.1.2 Oligostilbenes
Three trimers nepalensinols A, C, and D and three tetramers nepalensinols B, G,

and F were obtained from Kobresia nepalensis (Cyperaceae) [117, 118]. The

inhibitory effect of the above six oligomers against the decatenation activity of

topoisomerase II on kinetoplast DNA is evaluated with IC50 values ranging from

0.02 to 10.8 μg mL−1. Among them, nepalensinol B exhibits the strongest activity

with an IC50 of 0.02 μg mL−1, much better than the clinical antitumor drugs

daunorubicin (IC50 4.8 μg mL−1) and etoposide (IC50 70.0 μg mL−1). Vaticanol

C is a resveratrol tetramer with dibenzobicyclo[3.2.1]octadiene moiety, is widely

distributed in Dipterocarpaceae species, and shows potent growth suppressive

activity with IC50 values of 5.9 μMagainst HL60 cells. Upunaphenol A is a hexamer

obtained from Upuna borneensis and was found to suppress cell growth in HL60

cells through induction of apoptosis with IC50 at 9.2 μM [119].

4.1.3 Bibenzyls and Bisbibenzyls
Erianin (also named dihydrocombretastatin A-4), a dihydro derivative of

combretastatin A-4 which has been initiated phase II clinical trial as antitumor

agent, possessed potent cytotoxicity toward diverse cancer cell lines. It was eval-

uated against A-549 lung carcinoma, MCF-7 breast carcinoma, HT-29 colon

adenocarcinoma, SKMEL-5 melanoma, and MLM melanoma cell lines with

ED50 ranging from 0.002 to 0.33 μM, respectively [120]. It also showed potent

inhibitory activity on the proliferation of HL-60 cells (IC50 38 nM) and was able to

alter expression of bcl-2 and bax genes in HL-60 cells [121].

Bauhinols A 110 and B 111 exhibit significant cytotoxicity against NCI-H187

(small-cell lung cancer) and BC (breast cancer) cell lines with IC50 values ranging

from 1.1 to 9.7 μg/mL. In addition, bauhinol A 110 is active toward KB cells (IC50

4.5 μg/mL) [64]. 3,5-Dihydroxy-4-methylbibenzyl shows cytotoxic activity, which

is able to inhibit the growth rate of P-388 leukemia and hepatoma cell lines by

99.7% and 83.6% at 10 μg/mL, respectively [122].

The bisbibenzyls neomarchantins A 133 and B 134, marchantin C, and

Glaucescens Bis Bibenzyl A and B possess moderate cytotoxicity against P-388

leukemia cells with IC50 ranging from 8 to 18 μg/mL [123]. Riccardin C and

pusilatins B-C display moderate cytotoxicity against KB cells with ED50 of 7.1 to

16.4 μg/mL [79].
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4.1.4 Phenanthrenes
The cytotoxic activities both in vitro and in vivo of lusianthridin and denbinobin

isolated from Dendrobium nobile are evaluated. Both of them exhibit potent

antitumor effects against A549 human lung carcinoma, SK-OV-3 human ovary

adenocarcinoma, and HL-60 human promyelocytic leukemia with EC50 values

ranging from 0.11 to 9.8 μg/mL [124].

Dimeric phenanthrenes denthyrsinol, denthyrsinone, and monomer denthirsinin

demonstrate potent cytotoxicity against cervix adenocarcinoma HeLa, K-562, and

MCF-7 cells with IC50 values from 1.6 to 9.9 μM [125]. A series of phenanthrenes,

including 7-hydroxy-2,3,4,8-tetramethoxyphenanthrene, 3-hydroxy-2,4,-

dimethoxy-7,8-methylenedioxyphenanthrene, 2-hydroxy-3,5,7-trimethoxyphe-

nanthrene, 2-hydroxy-3,5,7-trimethoxy-9,10-dihydrophenanthrene, and confusarin

are evaluated on their antitumor properties against HeLa cell line with IC50 values

of 0.97–14.21 μM. [126, 127].

3,6-Dihydroxy-l,7-dimethyl-9-methoxyphenanthrene 181 and 3,6-dihydroxy-L-

hydroxymethyl-9-methoxy-7-methylphenanthrene 182 are found to demonstrate

significant cytotoxic responses against several tumor cell lines (Table 62.2). Com-

pound 181 is more active against drug-resistant KB cells, while 182 is active against
HT (fibrosarcoma) and U373 (glioma) cell lines [128].

4.2 Antioxidant Activity

4.2.1 Stilbenes and Oligostilbenes
Lespedezavirgatol was obtained from Lespedeza virgata and shows potent anti-

oxidant property. Its oxygen radical absorbance capacity (ORAC) value for

Trolox equivalents is 762.96 at 1.5 μM, much better than 164.56 of vitamin C.

Inhibitory effects of lespedezavirgatol against lipid peroxidation toward

malondialdehyde levels in rat kidney homogenate and plasma are also evaluated

with IC50 values of 0.16 and 0.18 mM, better than the control vitamin C, with

IC50 values of 5.54 and 3.05 mM. The above results suggest that lespedeza-

virgatol is a potent candidate for antioxidants [129]. Tibeticanol 76 was obtained

Table 62.2 In vitro cytotoxic activity of 181 and 182 with human cancer cell lines (ED50 mg/mL)

Human cancer cell lines

A-431 BC1 Col2 HT KB

KB-V

(+VLB)

KB-V

(�VLB) Mel2 LNCaP Lu1 U373 ZR-75-1

181 11.3 6.9 13.1 5.5 15.0 0.8 3.0 10.0 19.0 6.1 >20 11.2

182 9.4 13.4 >20 3.1 6.4 3.6 5.9 9.2 10.3 19.9 3.2 10.5

A-431, human epidermoid carcinoma; BC1, human breast cancer; Co12, human colon cancer; HT,

human fibrosarcoma; KB, human oral epidermoid; KB-V(+VLB), drug-resistant KB + vinblastine

(1 lag/mL); KB-V(�VLB), drug-resistant KB (no vinblastine); LNCaP, human prostate cancer;

Lul, human lung cancer; Mel2, human melanoma; U373, human glioma; ZR-75-1, hormone-

dependent human breast cancer
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from Caragana tibetica and exhibits strong superoxide anion scavenging activity
with an IC50 of 1.33 μM [46].

A series of oligostilbenes isolated from Vitis thunbergii are evaluated on their
antioxidant properties based on the radical scavenging effect of the stable

ABTS•+ free radical. The results are shown in Table 62.3. All of the tested

compounds are more active than the positive control Trolox and display free-

radical scavenging activity with EC50 values from 2.8 to 13.8 μM. Among them,

(+)-e-viniferin shows the most potent radical scavenging potency with EC50 of

2.8 μM [23].

4.2.2 Bibenzyls and Bisbibenzyls
Marchantin H is able to inhibit nonenzymatic iron-induced lipid peroxidation in rat

brain homogenates and NADPH-dependent microsomal lipid peroxidation with an

IC50 of 0.51 and 0.32 μM [130]. It also possesses inhibitory effects of copper-

catalyzed oxidation of human low-density lipoprotein. Marchantinquinone exhibits

inhibitory effects of Fe2+-induced lipid peroxidation in rat brain homogenates (IC50

15.3 μM) and displays radical scavenging activity [131]. Schwartner et al. reported

the antioxidative potential of three macrocyclic bisbibenzyls [marchantins A, B,

and D], one acyclic bisbibenzyl (paleatin B) and a prenylated bibenzyl (perrottetin

D) by pulse-radiolytic and EPR-spectroscopic techniques. The results confirm that

these compounds are effective antioxidants [132]. Isoamoenylin and 5,40-dihydroxy-
3-a-L-rhamnopyranosyl-(1→3)-b-D- xylopyranosyloxybibenzyl showed radical

scavenging activity, comparable with the control vitamin C and ascorbic acid

[63, 133]. Five prenylated dihydrostilbenes, a,a-dihydro-3,5,3,4-tetrahydroxy-
4,5-diisopentenylstilbene, a,a-dihydro-3,5,3,4-tetrahydroxy-5-isopentenylstilbene
183, a,a-dihydro-3,5,4-trihydroxy-4,5-diisopentenylstilbene, a,a-dihydro-3,5,4-
trihydroxy-5-isopentenyl stilbene, and a,a-dihydro-3,5,3-trihydroxy-4-methoxy-

5-isopentenylstilbene 184, from Glycyrrhiza glabra were tested for antioxidant

effects by measuring the absolute inhibition rate constant (kinh) of the oxidation

process. Compounds 183 and 184 display potent antioxidant properties with kinh
values of 1.1 � 104 and 0.9 � 104 M−1s−1 [134].

Table 62.3 Effect of compounds from V. thunbergii on ABTS+ scavenging

Compounds Free-radical scavenging activity (EC50 mM)

Vitisinol B 3.6 � 0.1

Vitisinol C 4.5 � 0.1

Vitisinol D 4.1 � 0.1

(+)-e-Viniferin 2.8 � 0.1

(�)-Viniferal 4.4 � 0.1

Ampelopsin C 5.4 � 1.2

Miyabenol A 6.6 � 1.2

(+)-Vitisin A 13.8 � 2.7

(+)-Vitisin C 4.8 � 0.1

Trolox (positive control) 28.4 � 5.2
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4.3 Antiplatelet Activity

Resveratrol prevents platelet aggregation and thrombus formation in vitro. In

a hypercholesterolaemic diet-induced rabbit model, administration of resveratrol

inhibited the platelet aggregation. This effect was also verified by reducing the

atherosclerotic area and the size of the thrombus generated by laser-induced

damage to the endothelium in mice.

Vitis thunbergii (Vitaceae), a folk medicine in Taiwan, produced several resver-

atrol oligomers, including vitisinol C with a tropilene structure in molecule, vitisinols

B and D, and some known compounds (−)-viniferal, (+)-e-viniferin, and (+)-vitisin C,
etc. The isolated compounds were evaluated for antiplatelet aggregation activities

induced by arachidonic acid (AA) and 9,11-dideoxy-11a,9a-epoxy-
methanoprostaglandin F2a (U46619). Most of the tested oligomers demonstrate

potent antiplatelet aggregation property with IC50<10 μM, more positive than aspirin

(EC50 32.7 μM). In the above bioassay, (−)-viniferal and (+)-vitisin C are most

effective against aggregation induced by AA and U46619, with IC50 values of 5.7

and 3.1 μM, respectively [23]. The results are summarized in Table 62.4.

Marchantinquinone displays potent inhibitory activity on the aggregation of

washed rabbit platelets induced by thrombin, arachidonic acid (AA), collagen,

U46619, and platelet-activating factor (PAF) [135, 136]. It inhibits thromboxane

B2 (TxB2) formation induced by thrombin, PAF, and collagen. In addition,

marchantinquinone is able to inhibit the rising intracellular Ca2+ concentration

stimulated by five inducers mentioned above [136]. Gigantol exhibits antiplatelet

aggregation activity on SD-rat platelet aggregation [137]. 3-Methylgigantol pos-

sesses significant inhibitory effects against aggregation induced by AA, collagen,

and PAF [138]. Among them, 3-methylgigantol is most potent effective against

AA-induced aggregation (IC50 30 μM). Moscatilin is able to inhibit AA- and

collagen-induced platelet aggregations [139]. Perrottetin E 146 shows inhibitory

activity of thrombin (IC50 18 μM) [140].

Table 62.4 Effect of compounds isolated from V. thunbergii on the platelet aggregation induced
by AA and U46619

IC50 (mM)

Compounds AA U46619

Vitisinol B >100 7.8 � 2.2

Vitisinol C 13.4 � 2.2 10.5 � 3.4

Vitisinol D 15.0 � 4.8 5.7 � 1.4

(�)-Viniferal 7.0 � 2.9 3.1 � 2.5

Ampelopsin C 8.1 � 1.1 5.9 � 0.9

Miyabenol A 9.0 � 1.6 7.5 � 2.0

(+)-Vitisin A 10.3 � 1.2 13.3 � 2.1

(+)-Vitisin C 5.7 � 1.3 3.9 � 0.7

Aspirin (positive control) 32.7 � 6.4 Not detected
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The phenanthrenes, erianthridin, and denbinobin display potent antiplatelet

activity on washed rabbit platelets against aggregation induced by either thrombin,

arachidonic acid (AA), collagen, or PAF at a dose of 100 μg/mL. Erianthridin is

proved to be the most potent compound with an IC50 of 9 μM against AA-induced

aggregation [138].

4.4 Antidiabetic Activity

5,40-Dihydroxystilbene-3-O-a-arabinopyranoside, named rumexoid, was found in

Rumex bucephalophorus (Polygonaceae). This compound and resveratrol display

potent a-glucosidase inhibitory activity even better than the commercial

antidiabetic agent acarbose [141]. 20-O-Demethylbidwillol B and addisofurans

A-B were prenyl-substituted arylbenzofurans isolated from Erythrina addisoniae.
Those compounds are inhibitors of type II diabetes target protein tyrosine phos-

phatase 1B with IC50 values of 13.6–15.7 μM. The linear prenyl chain was

responsible for its inhibitory activity, and the cyclization of prenyl group decreased

this effect [142]. In a bioassay-guided fractionation against a-glucosidase, 13-
hydroxykompasinol A and scirpusin C were obtained from the seeds of Syagrus
romanzoffiana and possess potent inhibitory activity against a-glucosidase type IV
from Bacillus stearothermophilus with the IC50 value of 6.5 and 4.9 μM [143].

4.5 Antimicrobial Activity

4.5.1 Stilbenes and Oligostilbenes
Machaeriol B, a compound with hexahydro-6H-benzo[c]chromene system, was

obtained fromMachaerium multiflorum (Leguminosae), and it demonstrates potent

antimalarial activity (IC50 0.12 μg/mL) against Plasmodium falciparum
[144]. Preracemosols A and B exhibit moderate antimalarial activity with

EC50 of 18.0 and 3.0 mg/mL, respectively [145]. Trans-4-isopentenyl-
3,5,20,40-tetrahydroxystilbene was discovered in Artocarpus integer (Moraceae)

and possesses antimalarial activity against Plasmodium falciparum
(EC50¼1.7 μg mL−1) [146]. This is the first report of antimalarial activity of

stilbenes.

A series of arylbenzofuran-type stilbenes, guided by bioautographic assay for

antifungal activity against Cladosporium herbarum, have been isolated from the

root of Stemona collinsae (Stemonaceae) and tested in microwells against another

four microfungi Alternaria citri, Fusarium avenaceum, Pyricularia grisea, and
Botrytis cinerea [22]. Among them, stemofuran B shows the highest antifungal

potency against above four parasitic fungi with EC50 values of 1.4 μg/mL.

Stemofuran E exhibited antifungal property against C. herbarum with EC50 of

0.09 μg/mL.

Stilbene derivatives were obtained from Calligonum leucocladum, and the

structures were determined as (E)-resveratrol 3-(6-galloyl)-O-b-D-glucopyranoside.
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Although ineffective when tested alone, it is able to restore oxacillin’s effectiveness

against oxacillin/methicillin-resistant Staphylococcus aureus when used in combi-

nation. The galloyl group may play a role in this synergistic activity [147].

Hopeanolin was obtained from the stem bark of Hopea exalata and exhibits

potent antifungal properties against six types of pathogenic fungi Alternaria
attenata, Alternaria solani, Colletotrichum lagenarium, Fusarium oxysporum f.
sp. vasinfectum, Pyricularia oryzae, and Valsa mali with MIC values ranging

from 0.10 to 22.5 μg mL−1 [148].

4.5.2 Bibenzyls and Bisbibenzyls
Bryophytes normally grow in humid habitats; however, they are seldom damaged

by fungi. It indicates that bryophytes are able to elaborate constitutive and inducible

antifungal natural products against adverse effects. A large amount of bibenzyls and

bisbibenzyls with antifungal activity have been found in plants, primarily in

bryophytes (Table 62.5), which provided important sources for research and devel-

opment of antifungal agents. The antifungal effects of bibenzyls and bisbibenzyls

were summarized in Table 62.5.

The bibenzyls 4-hydroxy-30-methoxybibenzyl, 2,4,6-trichloro-3-

hydroxybibenzyl, 2, 4-dichloro-3-hydroxylbibenzyl, 2-chloro-3-hydroxybibenzyl,

together with bisbibenzyls neomarchantins A 133 and B 134, and marchantin

C show antimicrobial activity against the gram-positive bacterium Bacillus subtilis
[60, 123, 150]. In addition, 4-hydroxy-30-methoxybibenzyl is active toward

Escherichia coli [150].

4.6 Anti-inflammatory Activity

Anti-inflammatory properties of resveratrol have been confirmed, which is an

effective inhibitor of cyclooxygenase (COX) in vitro. It is also found that resver-

atrol significantly reduces acute and chronic chemically induced edema, lipopoly-

saccharide-induced airway inflammation, and osteoarthritis. Resveratrol could also

present as an alternative, instead of aspirin, for treatments of chronic inflammation

because of the latter’s side effect on the stomach. Resveratrol derivatives displayed

similar anti-inflammatory effects. For instance, resveratrol (E)-dehydrodimer 11-O-
b-D-glucopyranoside and resveratrol (E)-dehydrodimer from Vitis vinifera show

significant inhibitory activity against cyclooxygenase-1 (COX-1) with IC50 of 5.2

and 4.3 μM and against cyclooxygenase-2 (COX-2) with IC50 of 7.5 and 3.7 μM.

From the above results, these two compounds seem to be the worthy candidates for

further research to find application in anti-inflammatory treatment [151].

(+)-Vitisifuran A and heyneanol A were found in Vitis genus and display potent

inhibition on biosynthesis of LTB4 with inhibitory rate of 72% and 76% at

a concentration of 10 μM [152]. A tetramer named gnetuhainin R 73 was obtained

from the same species (G. hainanense) and shows potent histamine receptor

antagonism (IC50 0.1 μM) [44]. Aiphanol exhibited significant inhibitory activities

against COX-1 (IC50 1.9 μM) and COX-2 (9.9 μM) [153].
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Stemofurans B, D, G, and J and stilbostemin G were reported possessing anti-

inflammatory effects with IC50 values ranging from 3.7 to 26.3 μM by inhibiting

leukotriene formation [154]. The inhibition of lipopolysaccharide-induced nitric oxide

synthase (NOS) by 19 bisbibenzyls in RAW 264.7 macrophages has been reported,

andmarchantin A is most effective with IC50 values of 1.44 μM. The structure-activity

relationship (SAR) is discussed, and the phenolic hydroxyl groups and diarylether

bonds play important roles in its inhibitory effect [155]. Pusilatins B-C exhibit

selective DNA polymerase-b inhibitory activity with IC50 of 13.0 and 5.16 μM [79].

Bauhinol B 111 and 3,5-dihydroxy-2-(3-methyl-2-butenyl)bibenzyl are potent inhib-

itors of COX-1 and COX-2 with IC50 ranging from 1.3 to 9.0 μg/mL [134].

Phenanthrenes obtained from the Stemona species were evaluated on their

leukotriene biosynthesis inhibition property using human neutrophile granulocytes

in vivo. Stemanthrenes A 162 and D 165 display inhibitory activity in a dose-

dependent manner, with IC50 values of 8.5 and 4.8 μM. Stemanthrenes B 163 and

C 164 possess 100% inhibition against leukotriene biosynthesis at 25 μM. The

phenanthrenes might be responsible for the anti-inflammatory and antiasthmatic

principles of the Stemona species [154]. Denbinobin, a phenanthraquinone from

Dendrobium moniliforme, shows in vitro anti-inflammatory activity. It inhibits the

formation of tumor necrosis factor and prostaglandin E2 induced by lipopolysac-

charide in RAW 264.7 and N9 cells at a dose of 1 μM [100].

4.7 Neuroprotective Activity

In vivo pharmacological studies have indicated that resveratrol has

a neuroprotective effect, including reduced lipid, peroxidation and neurological

cell destruction, attenuation of induced lesion areas, induced tolerance to brain

injury, reduced frequency of seizures, impairment of motor coordination, and

enhancement of learning [111].

Stilbostemin B 30-b-D-glucopyranoside, stilbostemin H 30-b-D-glucopyranoside,
and stilbostemin I 200-b-D-glucopyranoside possess significant neuroprotective

activity against 6-hydroxydopamine-induced neurotoxicity in human neuroblas-

toma SH-SY5Y cells [156]. Hopeahainol A from Hopea hainanensis contains an
unprecedented carbon skeleton and shows potent acetylcholinesterase inhibitory

effect with an IC50 value of 4.33 μM, comparable even to that of huperzine A (IC50

1.6 μM) [157]. The tetramer neohopeaphenol A from the same species also displays

significant inhibitory action against AChE with an IC50 value of 7.66 μM [158].

4.8 Hepatoprotective Activity

Acer mono (Aceraceae), a Korean folk medicine for hemostasis, produces two

potent hepatoprotective stilbene glycosides, 5-O-methyl-(E)-resveratrol 3-O-b-D-
glucopyranoside and 5-O-methyl-(E)-resveratrol 3-O-b-D-apiofuranosyl-(1→6)-b-
D-glucopyranoside [16]. Those two compounds significantly prevent the depletion
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of glutathione (GSH) in H2O2-injured primary cultured rat hepatocytes and potently

restore the level of GSH depleted by buthionine sulfoximine or diethylmaleate in

the presence or absence of H2O2. In addition, they preserve the effects of antiox-

idant enzymes such as superoxide dismutase, glutathione reductase, and glutathione

peroxidase reduced by H2O2 insults. Therefore, it is concluded that both com-

pounds exerted significant hepatoprotective effects against H2O2-induced hepato-

toxicity by maintaining the antioxidant defense system [159].

4.9 Cardioprotective Activity

It is well known that drinking wine and grape juices will reduce cardiovascular,

cerebrovascular, and peripheral vascular risks due to the presence of resveratrol. As

a natural antioxidant, resveratrol is able to prevent LDL oxidation, scavenge

intracellular reactive oxygen species, lower the oxidative stress, and induce NO

synthesis. Resveratrol modulates various aspects of cardiovascular diseases and is

effective against atherosclerosis, hypertension, ischemia reperfusion injury and

heart failure, and many other cardiac dysfunctions [111].

4.10 Phytotoxicity

The phenanthrenes, ephemeranthol-A and fimbriol A from Epidendrum rigidum,
together with erianthridin from M. densa demonstrated phytotoxicity against

Amaranthus hypochondriacus with IC50 values of 0.12, 5.9, and 58.2 μM [160].

The phenanthrenes from the Juncus genus show growth inhibitory effects against

the green alga Selenastrum capricornutum with IC50 values ranging from 11.1 to

19.9 μM [161].

Bibenzyls are elaborated to confer the producing plants’ selective advantage

against the competition from the other plants and microbial attack. Gigantol,

batatasin III, 2,3-dimethoxy-9,10-dihydrophenathrene-4,7-diol, and 3,4,9-

trimethoxyphenanthrene-2,5-diol from the orchid Epidendrum rigidum inhibit rad-

icle growth of Amaranthus hypochondriacus with IC50 of 0.65, 0.1, 0.12, and

5.9 μM [160].

5 Conclusion

Stilbenoids represent a group of important natural products in the plant kingdom.

The developments of modern analytical methods accelerate the discovery of these

compounds, and to this day more than 1,000 stilbenoids have been isolated. For the

stilbenes, bibenzyls, and phenanthrenes, these three groups shared the feature of

their nucleus with hydroxyls, methyl, methoxy, prenyl, geranyl, glycosyl, etc.,

substituents. The oligostilbenes and bisbibenzyls are formed by polymerization of

stilbene and bibenzyl units, and the diverse polymerized patterns produced their
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diverse structures. They display diverse biological activities and have the

potential to be developed as new drugs, especially in the field of antitumor, anti-

inflammation, and cardioprotective drug research. The representative compounds

resveratrol and combretastatin A-4 phosphate are currently being evaluated as

drugs for the treatment of Alzheimer’s disease and tumors in clinical trials and

have shown satisfactory therapeutic effects. Furthermore, resveratrol displays

developing prospects as a cardioprotective drug.

There are problems that need to be noted. Concerning the oligostilbenes, they

commonly possess large molecules, intricate structures, and complex stereochem-

istry, and these characteristics cause troubles in structure identification and chem-

ical total synthesis, therefore, limiting the probability to be developed to new drug.

The bisbibenzyls are mainly distributed in the bryophytes, which are very small

terrestrial spore-forming green plants, and different for collections. Therefore,

getting enough plant materials for phytochemical investigation and new drug

research is really a Gordian knot and resorts to the chemical synthesis for resolving

the resource problems.
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