
Nivalenol (Fungal Sesquiterpenes) 100
Yoshiko Sugita-Konishi and Makoto Kimura

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3124

2 General Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3125

2.1 Common/Systematic Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3125

2.2 Molecular Formula/Molecular Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3126

2.3 General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3126

2.4 Spectral Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3126

3 Mycology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3126

4 Biosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3129

4.1 History of Trichothecene Biosynthesis Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3129

4.2 Formation of 12, 13-Epoxytrichothec-9-ene Skeleton

(Trichothecene Skeleton): Early Stage of Biosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3129

4.3 Molecular and Genetic Studies of F. sporotrichioides as a Basis to
Understand NIV Biosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3130

4.4 Biosynthesis of NIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3133

5 Toxicology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3134

5.1 Absorption, Distribution, Metabolites, and Excretion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3134

5.2 Acute Toxicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3136

5.3 Short-Term Studies of Toxicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3136

5.4 Chronic Studies and Carcinogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3139

5.5 Genotoxicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3141

5.6 Immunotoxicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3142

6 Other Toxicities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3144

7 Outbreaks Associated with NIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3144

8 Analytical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3144

Y. Sugita-Konishi (*)

Division of Microbiology, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan

e-mail: ykonishi@nihs.go.jp

M. Kimura

Division of Molecular and Cellular Biology, Laboratory of Gene Regulation, Department of

Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya

University, Nagoya, Aichi, Japan

e-mail: mkimura@agr.nagoya-u.ac.jp

K.G. Ramawat, J.M. Mérillon (eds.), Natural Products,
DOI 10.1007/978-3-642-22144-6_135, # Springer-Verlag Berlin Heidelberg 2013

3123

mailto:ykonishi@nihs.go.jp
mailto:mkimura@agr.nagoya-u.ac.jp


9 Exposure Assessment of NIV and Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3145

9.1 Occurrence of NIV in Food and Feed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3147

9.2 NIV Intake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3148

9.3 International Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3149

9.4 Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3150

10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3150

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3150

Abstract

Nivalenol (NIV) belongs to the B-type trichothecene mycotoxins produced by

Fusarium species. The occurrence of NIV contamination is limited to certain

areas around the world, such as Japan, Korea, New Zealand, and a part of

Europe, where it has had adverse effects on human and animal health.

This chapter focuses on the mycology, occurrence, biosynthesis, toxicology,

methods of analysis, and risk assessment of NIV.

Keywords

Analysis method • biosynthesis • exposure assessment • mycology • nivalenol •

toxicity

Abbreviations

bw Body weight

DON Deoxynivalenol

ECEU European Commission Union

EFSA European Food Safety Authority

FHB Head blight

FX Fusarenon-X (4-acetyl NIV)

JECFA Joint expert committee of food additives

LD50:5 50% lethal dose

LOAEL Low-observed-adverse-effect level

LPS Lipopolysaccharide

NIV Nivalenol

S9 S9 liver microsomal enzymes

SCF Scientific Committee on Food

ZEN Zearalenone

1 Introduction

Nivalenol (NIV) was discovered by Japanese scientists from the culture medium of

Fusarium nivale strain Fn-2B obtained from Fusarium head blight-infected wheat, in

Japan [1]. Subsequently, Fn-2B was reclassified as a new species, F. kyushuense
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O’Donnell & T. Aoki [2] from molecular phylogenetic analyses. Other Japanese

researchers identified the chemical structure of NIV, fusarenon-X (4-acetyl NIV), and

deoxynivalenol (DON) [3–6].

Trichothecenemycotoxins are themainmycotoxins producedbyFusarium species.

Although there are macrocyclic and non-macrocyclic mycotoxins, the latter primarily

contaminate wheat, barley, and maize and are classified into two types: Type A,

including T2 toxin and HT2 toxin, diacetoxyscirpenol, and neosolaniol and type B,

including DON, NIV, and 4-acetyl NIV. T2 toxin is reportedly the causative agent of

outbreaks of foodborne diseases that occurred in the Orenburg region of the USSR

during the 1930s–1940s. This outbreak was termed alimentary toxic aleukia (ATA),

and symptoms of this disease include nausea, emesis, diarrhea, leukopenia, hemor-

rhages, and shock-mediated death.

Although the outbreak caused by type B trichothecenes is less severe than ATA,

acute human illnesses caused by the consumption of Fusarium-infected wheat and

barley have been reported in Japan, India, and China [7–9]. In these outbreaks,

DON, NIV, and zearalenone were commonly detected in food.

Concerning type B trichothecenes, chronic and acute adverse health effects are

of considerable concern. DON and NIV have been reported to suppress the immune

system, depending on the dose and frequency of exposure [10].

Compared to DON, the distribution of NIV-producing fungi is limited and

lacks toxicological and exposure data. DON has been evaluated by the FAO/

WHO Joint Expert Committee of Food Additives while NIV has not. In countries

where NIV contaminates cereals, the adverse health effect induced by NIV is

a serious problem, and NIV is considered to be one of the mycotoxins whose risk

needs to be assessed and regulated. In Europe, a large-scale surveillance of

trichothecenes in food from 2000 to 2002 revealed the occurrence of NIV

contamination [11]. In Japan, as NIV-producing fungi also occur, the occurrence

of DON and NIV were surveyed in food. Risk assessment has been completed by

the Food Safety Commission (FSC) of Japan. The European Commission’s (EC)

(now the European Union, or EU) Scientific Committee on Food (SCF) evaluated

and determined a provisional daily tolerable intake as 0.7 mg/kg of body weight

(bw) [12], but the FSC of Japan concluded that this level should be 0.4 mg/kg
of bw.

This chapter reviews the latest findings on the mycology, biosynthesis,

occurrence, toxicology, analytical methods of analysis, and risk assessment of NIV.

2 General Biology

2.1 Common/Systematic Name

CAS (No.23282-20-4)

3a, 4b, 7a, 15-tetrahydroxy-12, 13-epoxytrichothec-9-en-8-one, IUPAC
12, 13-epoxy-3a, 4b, 7a, 15-tetrahydroxytrichothec-9-en-8-one

100 Nivalenol (Fungal Sesquiterpenes) 3125



2.2 Molecular Formula/Molecular Weight

C15H20O7: 312. 32
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2.3 General Characteristics

Crystals frommethanol; mp., 80–90 �C; dried in presence of P2O5 in reduced pressure;

mp., 222–223 �C, tetraacetate; mp., 168–170 �C, [a]D
24+ 21.54� (c ¼ 1.3, in EtOH)

2.4 Spectral Data

l#Max "MeOH 218 Nm (Ɛ ¼ 7,500), Tetraacetate, 227 Nm (Ɛ ¼ 7,900)

3 Mycology

Fusarium head blight (FHB) is a harmful disease that infects wheat, barley, and

other cereals. This disease not only reduces grain yield and quality but also causes

the contamination of trichothecene mycotoxins such as DON and NIV and other

mycotoxins in the grain. The pathogens of FHB, Fusarium species, can be classified

into two chemotaxonomic groups, the DON chemotype and the NIV chemotype

[13–15]. Lee et al. [14] clarified that a single gene (Tri13) is responsible for the

differential ability to produce DON or NIV. Fusarium DON chemotypes are found

worldwide, while NIV chemotypes are found in more restricted regions, namely,

limited areas of Asia, Africa, Europe, and North America [16, 17]. F. kyushuense
and F. graminearum complex species (F. asiaticum, F. culmorum, F.
crookwellense, F. equiseti, and F. poae) are also reported to produce NIV

(Table 100.1).

The F. graminearum species complex [F. graminearum Schwabe; teleomorph:

Gibberella zeae (Schwein.) Petch] is a species complex consisting of at least nine
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biogeographically structured lineages based on molecular phylogenetic analyses

using worldwide collections. The lineages are as follows: lineage 1 is

F. austroamericanum, lineage 2 is F. meridionale, lineage 3 is F. boothii, lineage
4 is F. mesoamericanum, lineage 5 is F. acacia-mearnsii, lineage 6 is F. asiaticum,
lineage 7 is F. graminearum s. str., lineage 8 is F. cortaderia, while lineage 9 is

F. brasilicum. On potato dextran agar (PDA), the F. graminearum species complex

produces abundant white mycelia that become yellow to brownish or rose-colored

as the cultures age (for 2 weeks); the color of the bottom surface of the colony is

usually deep red. The undersurface is usually carmine red (Fig. 100.1).

Macroconidia are usually long, slender, and slightly curved to straight, with

five to six septa and a well-developed foot cell. Microconidia are absent;

chlamydospores are rare but may form in macroconidia [18].

Trichothecene chemotypes of the F. graminearum species complex consist of

three production groups according to strain differences: DON and 3-acetyl

deoxynivalenol (3ADON), DON and 15-acetyl deoxynivalenol (15ADON), and

NIV [13–15]. In the F. graminearum species complex, lineage classification is not

well correlated with the trichothecene chemotype [19, 20].

Regional mycological studies discovered that geographic differences exist

among these trichothecene chemotypes [21, 22]. The 3ADON productive group

Table 100.1 NIV-producing fungi

Fusarium species

Production of

mycotoxins

Commodity Country/regionDON NIV

F. graminearum
complex species

+ + Wheat variety,

rice, maize

Whole world

F. graminearum + - Wheat variety,

rice, maize

Temperate zone (cold zone of the

northern hemisphere, especially):

Japan (all), Korea, China

F. asiaticum - + Wheat variety,

rice

Temperate zone (especially warm

temperature regions): Japan (Honshu

and the south), Korea, China

F. vorosii + - Wheat Japan (Hokkaido), Hungary

F. culmorum + + Wheat variety,

maize

Temperate zone (especially cold

regions): Europe, Asia, Africa, North

and South America, Oceania

F. crookwellense - + Wheat variety,

maize

Temperate zone (especially cold

region): Japan (Hokkaido)

F. equiseti - + Wheat variety,

maize

Subtropics, temperate zone

F. kyushuense - + Wheat variety,

rice

Japan (western Japan), China

F. poae - + Wheat variety,

maize

Temperate zone (especially cold

regions): Japan (Hokkaido)

F. pseudograminearum + - Wheat variety Chiefly Australia

100 Nivalenol (Fungal Sesquiterpenes) 3127



was not detected in 15 strains of F. graminearum s. str., and all 13 strains of

F. cortaderia in New Zealand were of the NIV production group [23]. The NIV

production group in F. asiaticum has been identified and is likely to represent

about 25 % of the population of the F. graminearum species complex in

Louisiana, USA [24]. In Japan, F. graminearum s. str. is predominant in

the northernmost island (Hokkaido), while in southern areas, F. asiaticum is

predominant [25].

In terms of pathogenicity, DON-producing strains are more aggressive and

virulent than NIV producers [26, 27]. However, the NIV production group in

F. asiaticum isolated from the western part of Japan was significantly more virulent

than the most virulent DON chemotype F. graminearum s. str. strains [28].

Fusarium culmorum (W. G. Smith) Sacc. is the second most important FHB

pathogen in wheat and strains of both DON and NIV producers exist. F. culmorum
inhabits cooler areas such as North, Central, and Western Europe; North America;

and Eastern Australia. Strains of both the DON and NIV production groups were

isolated from England and Wales: in the south and west of England andWales, NIV

chemotypes are predominant, whereas in the north and east, DON chemotypes are

predominant [29].

Fusarium poae (Peck) Wollenw. exists in Europe, North America, and Japan.

It is one of the causative fungi causing FHB in small-grain cereals. In the north-

ernmost area of Japan, the NIV production group in F. poae plays a role in the

contamination of grains with NIV [30]. The NIV production group of F. poae was
frequently found in Sweden, and NIV contamination has become a considerable

concern in Scandinavia [31].

Fusarium crookwellense L.W. Burgess, P. E. Nelson & Toussoun was first

isolated in Australia in 1971 as a new species [32]. It is another FHB pathogen

Fig. 100.1 Fusarium graminearum. (a): giant colony on PDA (reverse side) (b) Macroconidia
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found in small-grain cereals in Poland, New Zealand, China, Canada, Japan, and

other countries [33]. F. crookwellense isolated from scabby wheat in the northern-

most area of Japan produced NIV, 4-acety NIV, and zearalenone (ZEN) when

cultured on rice-based medium [30].

4 Biosynthesis

4.1 History of Trichothecene Biosynthesis Studies

In earlier days, biosynthesis studies of trichothecenes were initiated using

Trichothecium roseum as a model [34]. Having elucidated the scheme of biosyn-

thesis from farnesyl pyrophosphate (FPP; 1) (see Fig. 100.2), via a cyclized product
trichodiene (TDN; 2), to trichothecin [35, 36], researchers have moved to study

Fusarium species that produce agriculturally important trichothecenes, such as T-2

toxin, DON, and NIV. Feeding experiments with TDN demonstrated its precursor

role in DON biosynthesis [37], as was the case of T. roseum. Other postulated
intermediates in the biosynthetic pathway were thereafter proven by blocked

mutant analysis, precursor feeding experiments, and molecular genetic approaches

using Fusarium species, including F. culmorum, F. graminearum, and/or

F. sporotrichioides [38–40]. Compared to trichothecenes of other fungal genera,

Fusarium trichothecenes are distinguished by the presence of a hydroxyl or

O-acetyl at C-3.

4.2 Formation of 12, 13-Epoxytrichothec-9-ene Skeleton
(Trichothecene Skeleton): Early Stage of Biosynthesis

In the biosynthesis of Fusarium trichothecenes, TDN is oxygenated by

a cytochrome P450 monooxygenase (CYP) in the following order: 2a-hydroxylation,
12, 13-epoxidation, 11a-hydroxylation, and 3a-hydroxylation (Fig.100.2). The last

oxygenation step proceeds only in Fusarium species, which makes Fusarium
trichothecenes unique among all others (lacking a C-3 substituent) of

non-Fusarium origin. Under acidic conditions, the resulting fully oxygenated

intermediate, isotrichotriol (3), appears to undergo second cyclization

nonenzymatically to give isotrichodermol (4) [41], the first trichothecene inter-

mediate with a toxic 12,13-epoxytrichothec-9-ene skeleton (for a comprehensive

review, see ref. [42]). Although isotrichodermol was not isolated as a natural

product from wild-type Fusarium strains in the biosynthesis studies of many

research groups, this may not be unreasonable in view of the importance of

3-O-acetylation in trichothecene biosynthesis; perhaps, isotrichodermol must

readily be converted to isotrichodermin (ITD; 5) (see Fig. 100.2) for self-

protection of the trichothecene-producing fusaria [43]. ITD, a natural product

isolated from a wild-type strain, is further metabolized to various important

Fusarium trichothecenes [44].
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4.3 Molecular and Genetic Studies of F. sporotrichioides as
a Basis to Understand NIV Biosynthesis

In 1989, the first isolation and characterization of trichothecene biosynthetic gene

was reported for T-2 toxin-producing F. sporotrichioides using an antibody raised

against a purified enzyme [45]; this gene, designated Tri5 (formerly Tox5 in the

literature), is responsible for the first committed step in the biosynthesis. Since

cosmid clones containing Tri5 complemented the tri3– and tri4– blocked mutants,

but not the tri1– mutant, at least some of the trichothecene biosynthetic genes

(Tri genes) proved to be clustered around Tri5 [46]. On the basis of this finding,

other Tri genes, including Tri3 and Tri4, were identified on this core gene cluster.

Three additional Tri genes necessary for T-2 toxin biosynthesis, Tri101 alone and

FPP(1)

PPO 10

9

8
7

6

11

5

4
3

2

12

13

TDN (2)

2

2α-hydroxytrichodiene

OH

12

12,13-epoxy-9,10-trichoene-2α-ol

OH

O13 11

isotrichodiol

OH

O

OH

PPO

nerolidyl pyrophosphate

3

isotrichotriol(3)

OH

O

OH

OH

Tri5 Tri4

Tri4
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2 OH
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O
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O 3
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Fig. 100.2 A common pathway to ITD in the biosynthesis of Fusarium trichothecenes. These

early steps are conserved between type A (e.g., T-2 toxin) and type B (e.g., NIV) trichothecene

producers. Tri genes that are responsible for these steps are indicated below the half-brackets in red

letters. Functional groups highlighted in red indicate that they appeared as the results of expression

of these Tri genes. Oxygen atom involved in intramolecular attack to C-11 in the nonenzymatic

cyclization is shown in blue
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Tri1 and Tri16 adjacent to each other, occur separated from the core gene cluster

(for reviews, see ref. [42, 47]). Roles of the Tri genes in T-2 toxin biosynthesis were
examined by molecular genetic approaches, including targeted gene disruption and

heterologous gene expression. The functions of F. sporotrichioides pathway Tri
genes (FsTri genes) are summarized as follows (see Figs. 100.2 and 100.3):

1. Tri5 (encoding trichodiene synthase). TRI5 catalyzes cyclization of all-trans-
FPP via nerolidyl pyrophosphate to TDN [36, 45].

2. Tri4 (encoding a multifunctional CYP responsible for conversion of TDN to

isotrichotriol). Fusarium TRI4 [48], which is grouped into a CYP58 family,

catalyzes four consecutive oxygenation steps from TDN to isotrichotriol as

follows: TDN ! 2a-hydroxytrichodiene ! 12,13-epoxy-9,10-trichoene-2a-ol
! isotrichodiol ! isotrichotriol [49].

3. Tri101 (encoding trichothecene 3-O-acetyltransferase). TRI101 catalyzes

conversion of isotrichodermol to ITD [50]. Different from other pathway Tri
genes, Tri101 was first cloned from F. graminearum as a gene that confers

resistance to T-2 toxin; subsequent analysis with F. sporotrichioides revealed
its orthologue in the region of synteny [51]. In addition to isotrichodermol,

many trichothecenes, including DON, T-2 toxin, and NIV, serve as good sub-

strates of TRI101 [42]. In the amino acid sequence of TRI101, consensus

sequences of acetyltransferases, HXXXDG and DFGWGKP, are found [50].

Apart from its role of self-protection against trichothecenes, C-3 acetyl is

essential to serve as substrates of the enzymes in later steps in the biosynthesis.

4. Tri11 (encoding ITD C-15 hydroxylase). TRI11, the first member of a new

CYP family CYP65A1, catalyzes hydroxylation of ITD to give

15-deacetylcalonectrin (15-deCAL; 6) [52].
5. Tri3 (encoding 15-deCAL 15-O-acetyltransferase). TRI3 catalyzes

15-O-acetylation of 15-deCAL to give calonectrin (CAL; 7) [53]. Other tricho-
thecenes also serve as good substrates of TRI3. However, compared to

3-acetyltrichothecenes, 3-hydroxytrichothecenes are rather poor substrates

[54]. The two consensus sequences of acetyltransferases described in the

above section (3) were conserved in TRI3 as was the case with TRI101.

6. FsTri13 (encoding 3-acetyltrichothecene C-4 hydroxylase). In T-2 toxin bio-

synthesis, FsTRI13 catalyzes hydroxylation at C-4 of CAL [55]. In addition to

CAL, other trichothecenes with functional groups at C-8 (and also at C-7) serve

as good substrates of FsTRI13.

7. Tri7 (hypothesized to encode 3-acetyltrichothecene 4-O-acetyltransferase). TRI7
is involved in 4-O-acetylation of 3, 15-diacetoxyscirpenol (3, 15-DAS; 8)
and its derivatives in T-2 toxin biosynthesis [56]. However, different from

TRI101 and TRI3, TRI7 does not possess the consensus sequences conserved

among acetyltransferase family; TRI7 shows no amino acid sequence similarity

to any other proteins reported so far. Attempts to prepare recombinant TRI7

were not successful, and its enzymatic function has not yet been rigorously

proven.

8. FsTri1 (encoding 3-acetyltrichothecene C-8 hydroxylase). FsTRI1 mainly

catalyzes hydroxylation of 3, 4, 15-triacetoxyscirpenol (3, 4, 15-TAS; 9)
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are not illustrated. Tri genes that are responsible for these steps are indicated in red letters.

Functional groups highlighted in red indicate that they appeared as the results of expression of

these Tri genes
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(and to a lesser extent CAL) to give 3-acetylneosolaniol (3-ANEO; 10) (and
8-hydroxycalonectrin) in T-2 toxin biosynthesis [57]. FsTRI1 shows broad

substrate specificities and also accept ITD (5) and 3, 15-DAS as substrates.

The broad substrate specificity of FsTRI1 and FsTRI13 allow branching of the

biosynthetic pathway after CAL (7) in T-2 toxin biosynthesis (Fig. 100.3).

9. FsTri16 (encoding an acyltransferase necessary for formation of ester side

chain groups at C-8). FsTRI16 mainly catalyzes esterification at C-8 of

3-ANEO to give 3-acetyl T-2 toxin (11) [58].
10. Tri8 (encoding trichothecene deacetylase). TRI8 removes an acetyl from C-8 of

the trichothecene skeleton in T-2 toxin biosynthesis [59].

In addition to the pathway Tri genes, the core gene cluster contained two

regulatory Tri genes and one transporter Tri gene, which are important for T-2

toxin production: Tri6 encoding a zinc fingerlike transcription factor [60], Tri10
encoding a novel protein with a role of other Tri gene activation [61, 62], and

FsTri12 encoding a trichothecene efflux pump [63]. FsTri12 is indispensable for

a high level production of T-2 toxin.

The structure of the core gene cluster and the function of the Tri genes were

conserved between F. sporotrichioides and F. graminearum [14, 55, 56, 64, 65].

In this way, the identification of FsTri genes served as a useful tool for molecular

biological analysis of F. graminearum that produce type B trichothecenes [66].

4.4 Biosynthesis of NIV

Compared to the structure of T-2 toxin, NIV is characterized by the presence of

a keto at C-8 and a hydroxyl at C-7; also, C-4 and C-15 are not acetylated, and

instead, hydroxyls are attached to these positions (see Fig. 100.3). To elucidate the

biosynthetic pathway of NIV, FgTri genes in the core gene cluster were isolated on
the basis of nucleotide sequence similarity, and their functions were characterized

by the molecular approaches. As to the homologues of FsTri1 and FsTri16 that

occur outside the core genes cluster, their sequences shared similarity only at the

amino acid sequence level; Tri1 is much more divergent between these Fusarium
species (viz., 59 % identity between FsTRI1 and FgTRI1), and Tri16 was found as

a pseudogene adjacent to FgTri1 [67]. The results of targeted gene disruption and

heterologous gene expression suggested that most of the enzymes encoded by the

FgTri genes show the same features as those of F. sporotrichioides. However, the
following two enzymes exhibit significant differences in their activities depending

on their origin:

1. Compared to FsTRI13, the substrates of FgTRI13 appear to be limited to a group

of trichothecenes that have a hydroxyl at C-7 and/or a keto at C-8.

2. FgTRI1, but not FsTRI1, catalyzes oxygenation at both C-7 and C-8 of

4-deoxytrichothecenes [68].

Together with the analyses of other FgTri genes, a major biosynthetic pathway

to NIV is hypothesized to proceed as illustrated in Fig. 100.3: ITD! 15-deCAL!
CAL ! 7,8-dihydroxycalonectrin (DHC, 12) ! 3,15-diacetyldeoxynivalenol
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(3,15-diADON, 13) ! 3,15-diacetylnivalenol (3,15-diANIV, 14) !
3,4,15-triacetylnivalenol (3,4,15-triANIV, 15) ! 4,15-diacetylnivalenol

(4,15-diANIV, 16)! 4-acetylnivalenol (4-ANIV, 17)! NIV (18). In this scheme,

all the biologically acetylatable position, namely, C-3, C-15, and C-4, are once

acetylated in this order in the biosynthesis and then deacetylated at a later

stage. Recently, a gene responsible for deacetylation at C-4 of 4-ANIV

was identified and characterized. This gene, designated Tri104, is separated

from all other known Tri genes in the genome of F. graminearum (our unpublished

results).

5 Toxicology

5.1 Absorption, Distribution, Metabolites, and Excretion

NIV is mainly absorbed from the intestine, and 11–48 % of administered NIV

remains in human bodies until 7.5 h post administration [69]. Acetyl NIV is

immediately converted into NIV in serum after intravenous and oral administration.

The bioavailability of acetyl NIV was 9.8 % and 19.5 % in broiler chickens and

ducks, respectively [70].

In vivo examination using healthy swine showed that NIV was mainly

absorbed from the ileum [71]. In vitro examination using a Caco-2 cell line

(human intestinal epithelial cell line) showed that apical to basal transportation

of NIV was simple diffusion depending on energy [72]. The maximum concen-

tration of 3H-labeled NIV and acetyl NIV was detected in serum after 60 min

and 30 min in female ICR mice. The area under the curve of acetyl

NIV was 10-fold higher than that of NIV. Acetyl NIV is metabolized in the

liver and kidney [72].

NIV is converted by intestinal flora bacteria into less toxic de-epoxy NIV in

the intestine as is DON. When NIV was anaerobically cultured with swine

feces in vitro, NIV was converted into epoxy NIV. Swine that lacked

de-epoxidation ability acquired this ability after their faeces with known

de-epoxidation ability (containing as yet unclassified intestinal flora bacteria

with de-epoxidation ability) were spread out in pens [73]. When NIV and stomach

juice of bovine lumen were anaerobically cocultured in vitro, about 80 % of NIV

was converted into de-epoxy NIV [73]. NIV and acetyl NIV are distributed in the

serum, liver, kidney, and placenta [74]. Eighty percent of administered NIV was

excreted in feces as de-epoxy NIV, while 1 % was excreted in urine as NIV in

Wistar rats [75]. In chickens, trace levels of NIV were detected in liver and bile,

while NIV and de-epoxy NIV were excreted through the feces in more than 10 %

of administered NIV [76]. NIV and acetyl NIV were transmitted to milk in

lactating mice [74].

As shown in Fig. 100.4, NIV is metabolized by intestinal flora into de-epoxy

NIV and then excreted to urine and feces, while acetyl NIV is converted into NIV in

serum and organs.
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5.2 Acute Toxicity

Acute toxicity of NIV is shown in Table 100.2.

In 6-week-old male ddY mice, the 50 % lethal dose (LD50) of NIV was

38.9 mg/kg of bw after oral administration, 7.4 mg/kg of bw after intraperitoneal

injection, 7.2 mg/kg of bw after subcutaneous injection, and 7.3 mg/kg of bw after

intravenous injection. Mice died within 3 days due to the effusion of blood

and congestion in the intestine. In 5-week-old F344 rats, the LD50 of NIV was

19.5 mg/kg of bw/os and 0.9 mg/kg of bw after subcutaneous injection. Diarrhea

and congestion in the gastrointestine were observed. In duck, vomiting was

observed after 1.0 mg/kg of bw of NIV, and 0.4 mg/kg of bw of acetyl NIV

was administered by subcutaneous injection [79].

5.3 Short-Term Studies of Toxicity

Short-term studies of toxicity were performed in mice, rats, pigs, and chickens, as

summarized in Table 100.3.

5.3.1 Mice
C57BL/6 mice were given moldy rice containing at 0, 5, 10, and 30 mg/kg of NIV for

24 days. At 30 mg/kg of NIV, a significant reduction in red blood cell number was

observed, but organ weight and the rate of weight gain did not change [80]. When

using a diet containing NIV-contaminated rice at 0, 6, 12, and 30 mg/kg for 4 or

12 weeks, weight gain was inhibited in a dose-dependent manner. From these results,

LOAEL was estimated to be 0.7 mg/kg of bw [82].

5.3.2 Rats
When Sprague-Dawley rats were treated with diets containing NIV at 0, 6, and

12 mg/kg for 2 or 4 weeks, a significant reduction in feed intake was observed

after 1–2 weeks in the group given 0.6 mg/kg of NIV. However, rats recovered

after 4 weeks. The low-observed-adverse-effect level (LOAEL) was estimated at

0.6 mg/kg of bw based on the reduction in organ weight [83]. Toxicity studies of

single oral administrations using male and female F344 rats showed sedation,

eyelid closure, staggering gait, diarrhea, and congestion of the lung and digestive

tract. The oral LD50 value was estimated at 19.5 mg/kg in both sexes in a repeat

oral test, purified NIV was given orally at daily doses of 0.4 and 2.0 mg/kg of bw

for 30 days. Takahashi et al. reported subchronic toxicity using F344 rats fed

Table 100.2 LD50 of NIV after oral administration

Animal and strains LD50 (mg/kg bw) References

Mouse, ddY, male, 6 weeks old 38.9 [77]

Rat, F344, male, female, 5 weeks old 19.5 [78]

3136 Y. Sugita-Konishi and M. Kimura



T
a
b
le

1
0
0
.3

S
h
o
rt
-t
er
m

st
u
d
ie
s
o
f
N
IV

S
tu
d
y
,

st
ra
in
,
se
x
,

ag
e,
g
ro
u
p

R
o
u
te

o
f

ad
m
in
is
tr
at
io
n

p
er
io
d

D
o
se

C
ri
ti
ca
l
ef
fe
ct

L
O
A
E
L

(m
g
/k
g

b
w
/d
ay
)

N
O
A
E
L

(m
g
/k
g

b
w
/d
ay
)

N
o
te
s

R
ef
er
en
ce
s

(m
g
/k
g

o
f
d
ie
t)

(m
g
/k
g

b
w
/d
ay
)

M
o
u
se
,

C
5
7
B
L
/6
,

6
w
ee
k
s

D
ie
t,
co
n
ta
m
.

2
4
d
ay
s

0
,
5
,
1
0
,
3
0

0
,
0
.6
,
1
.2
,
3
.5

a
D
ec
re
as
in
g
tr
en
d
o
f
er
y
th
ro
cy
te
s
an
d

le
u
k
o
cy
te
s
in

a
fe
ed

o
f
3
0
m
g
/k
g

3
.5

a
1
.2

a
U
se
d

ri
ce

m
o
ld

[8
0
]

P
o
ly
ri
b
o
so
m
e
d
am

ag
e
o
f
b
o
n
e
m
ar
ro
w

ce
ll
s

in
a
fe
ed

o
f
3
0
m
g
/k
g

M
o
u
se
,

C
5
4
B
1
6
,

7
w
ee
k
s

F
o
rc
ed

o
ra
l

d
o
sa
g
e
3

ti
m
es

p
er

w
ee
k
,
2
8
d
ay
s

0
,
0
.0
1
4
,
0
.0
7
1
,

0
.3
5
5
,
1
.7
7
4
,

8
.8
7
0
m
g
/k
g
b
w
,

3
ti
m
es
/w
ee
k

In
cr
ea
se

in
p
la
sm

a
p
h
o
sp
h
at
e,
d
ec
re
as
e
o
f

u
re
a,
al
k
al
in
e
p
h
o
sp
h
at
as
e
ac
ti
v
it
y
,
an
d

in
cr
ea
se

o
f
Ig
G
in

8
.8
7
0
m
g
/k
g
b
w
/d
ay

3
.8

b
0
.7
6
b

[8
1
]

M
o
u
se
,

C
5
7
B
L
/6
,

7
w
ee
k
s

D
ie
t,
co
n
ta
m
.

4
o
r
1
2
w
ee
k
s

0
,
6
,
1
2
,
3
0

0
,
0
.7
,
1
.4
,
3
.5

a
R
ed
u
ce
d
b
w
g
ai
n
an
d
fe
ed

in
ta
k
e;

d
o
se
-

d
ep
en
d
en
t
in
cr
ea
se

in
se
ru
m

al
k
al
in
e

p
h
o
sp
h
at
as
e
ac
ti
v
it
y
;
d
ec
re
as
e
in

ad
ip
o
se

ti
ss
u
e

0
.7

a
U
se
d

ri
ce

m
o
ld

[8
2
]

R
at
,

S
p
ra
g
u
e-

D
aw

le
y
,

6
w
ee
k
s

D
ie
t,
co
n
ta
m
.

1
4
o
r
2
8
d
ay
s

0
,
6
,
1
2

0
,
0
.6
,
1
.2

c
R
ed
u
ce
d
fe
ed

in
ta
k
e
(e
ar
ly

ad
m
in
is
tr
at
io
n
),

o
rg
an

w
ei
g
h
t
ch
an
g
es
,
in
cr
ea
se

in
C
Y
P
2
B
1
/2

o
f
li
v
er

m
ic
ro
so
m
al
,
sl
ig
h
t
g
u
id
an
ce

o
f

C
Y
P
1
A
2
in

th
e
fe
ed

m
o
re

th
an

1
.5

k
g
/m

l
b
w

0
.6

c
–

–
[8
3
]

R
at
,
F
3
4
4
,

5
w
ee
k
s

F
o
rc
ed

o
ra
l

d
o
sa
g
e

3
0
d
ay
s

0
,
0
.4
,
2
.0

N
o
ab
n
o
rm

al
it
ie
s
in

se
ru
m

(b
io
ch
em

ic
al

an
d
h
em

at
o
lo
g
ic
al

as
sa
y
s)

2
.0

0
.4

–
[7
8
]

T
h
e
w
ei
g
h
t
o
f
li
v
er

an
d
sp
le
en

in
cr
ea
se
d

in
te
n
ti
o
n
al
ly
;
h
o
w
ev
er
,
it
d
id

n
o
t
ch
an
g
e

af
te
r
a
h
is
to
p
at
h
o
lo
g
ic
al

in
sp
ec
ti
o
n
u
si
n
g

2
.0

m
g
/k
g
b
w

R
at
,
F
3
4
4
,

6
w
ee
k
s

D
ie
t,
co
n
ta
m
.

9
0
d
ay
s

0
,
6
.2
5
,
2
5
,
1
0
0

0
,
0
.4
,
1
.5
,
6
.9

R
ed
u
ce
d
b
w
in

m
o
re

th
an

1
.5

k
g
/m

l
b
w

1
.5

0
.4

–
[8
4
]

R
at
,
F
3
4
4
,

6
w
ee
k
s

D
ie
t,
co
n
ta
m
.

9
0
d
ay
s

0
,
6
.2
5
,
2
5
,
1
0
0

0
,
0
.4
,
1
.5
,
6
.9

R
ed
u
ce
d
b
w
,
lo
o
se

p
as
sa
g
e,
th
y
m
ic

at
ro
p
h
y
,

d
ec
re
as
e
in

th
e
n
u
m
b
er

o
f
b
o
n
e
m
ar
ro
w

ce
ll
s,

d
if
fu
se

h
y
p
er
tr
o
p
h
y
o
f
b
as
o
p
h
il
ic

ce
ll
s
w
it
h

0
.4

–
–

[8
5
]

(c
on

ti
nu

ed
)

100 Nivalenol (Fungal Sesquiterpenes) 3137



T
a
b
le

1
0
0
.3

(c
o
n
ti
n
u
e
d
)

S
tu
d
y
,

st
ra
in
,
se
x
,

ag
e,
g
ro
u
p

R
o
u
te

o
f

ad
m
in
is
tr
at
io
n

p
er
io
d

D
o
se

C
ri
ti
ca
l
ef
fe
ct

L
O
A
E
L

(m
g
/k
g

b
w
/d
ay
)

N
O
A
E
L

(m
g
/k
g

b
w
/d
ay
)

N
o
te
s

R
ef
er
en
ce
s

(m
g
/k
g

o
f
d
ie
t)

(m
g
/k
g

b
w
/d
ay
)

an
in
cr
ea
se

o
f
ca
st
ra
ti
o
n
ce
ll
s
in

th
e
an
te
ri
o
r

p
it
u
it
ar
y
,
in
cr
ea
se

in
th
e
at
re
ti
c
fo
ll
ic
le

in

fe
ed

w
it
h
m
o
re

th
an

1
.5

k
g
/m

l

M
al
e
b
w
w
as

re
d
u
ce
d
b
y
a
d
ie
t
o
f
m
o
re

th
an

2
5
m
g
/k
g

F
em

al
e
w
h
it
e
b
lo
o
d
ce
ll
co
u
n
t
w
as

re
d
u
ce
d

b
y
a
d
ie
t
o
f
m
o
re

th
an

6
.2
5
m
g
/k
g

P
ig
,

5
1
d
ay
s
(6

m
al
es
/

g
ro
u
p
)

D
ie
t,
co
n
ta
m
.

2
1
d
ay
s

0
,
2
.5
,
5

G
as
tr
o
in
te
st
in
al
er
o
si
o
n
an
d
re
n
al
d
is
ea
se

in
so
m
e

D
ec
re
as
e
in

sp
le
en

ce
ll
s
in

th
e
fe
ed

o
f
5
m
g
/k
g

T
im

e-
d
ep
en
d
en
t
in
cr
ea
se

in
th
e
am

o
u
n
t
o
f
Ig
A
-

p
ro
d
u
ci
n
g
fe
ed

m
o
re

th
an

2
.5

m
g
/k
g

–
–

–
[8
6
]

C
h
ic
k
en
,

7
d
ay
s
(6

m
al
es
/

g
ro
u
p
)

D
ie
t,
co
n
ta
m
.

2
0
d
ay
s

E
x
p
er
im

en
t
I:

0
,
0
.5
,
2
.5
,
5
,

E
x
p
er
im

en
t
II
:

0
,
3
,
6
,
1
2

E
x
p
er
im

en
t
I:
In
cr
ea
se

in
p
la
sm

a
u
ri
c
ac
id

co
n
ce
n
tr
at
io
n
in
th
e
fe
ed

co
n
ta
in
in
g
5
an
d
2
.5
m
g
/k
g

E
x
p
er
im

en
t
II
:
F
ee
d
ef
fi
ci
en
cy

an
d
ra
te
o
f
w
ei
g
h
t

g
ai
n
an
d
fo
o
d
co
n
su
m
p
ti
o
n
w
er
e
re
d
u
ce
d
in
th
e

fe
ed

co
n
ta
in
in
g
6
an
d
1
2
m
g
/k
g

–
–

–
[8
7
]

C
h
ic
k
en
,

w
h
it
e

le
g
h
o
rn
,

la
y
er
,

5
5
w
ee
k
s

D
ie
t,
co
n
ta
m
.

5
0
d
ay
s

0
,
1
,
3
,
5

D
ec
re
as
es

in
al
k
al
i
p
h
o
sp
h
at
as
e,
to
ta
l
p
ro
te
in

g
lu
co
se

in
p
la
sm

a
in

fe
ed

w
it
h
5
m
g
/k
g

G
as
tr
o
in
te
st
in
al

er
o
si
o
n
,
d
u
o
d
en
u
m

in
te
rn
al

b
le
ed
in
g
,
sw

o
ll
en

cl
o
ac
a,
an
d
o
v
id
u
ct
s
w
it
h

im
m
at
u
re

eg
g
s
in

fe
ed

w
it
h
3
an
d
5
m
g
/k
g

L
ig
h
t,
en
la
rg
ed
,
an
d
fr
ag
il
e
li
v
er
s
at
1
m
g
/k
g
fe
ed

–
–

–
[7
6
]

a
C
o
rr
es
p
o
n
d
in
g
v
al
u
e
o
f
E
U
S
ci
en
ti
fi
c
C
o
m
m
it
te
e
fo
r
F
o
o
d

b
V
al
u
e
co
rr
es
p
o
n
d
in
g
to

d
o
se
/d
ay
,
th
re
e
ti
m
es

a
w
ee
k

c
E
st
im

at
ed

in
ta
k
e
am

o
u
n
t
b
y
co
rr
es
p
o
n
d
in
g
v
al
u
e
o
f
E
U
S
ci
en
ti
fi
c
C
o
m
m
it
te
e
fo
r
F
o
o
d

3138 Y. Sugita-Konishi and M. Kimura



a diet containing 0, 6.25, 25, or 100 ppm of pure NIV for 90 days. A decrease in

bw and loose stools were observed at 100 ppm. In both sexes, bw was also reduced

at 25 ppm in males from 6 weeks. In a hematological observation, the white blood

cell count decreased after exposure to 100 ppm in males and to 6.25 ppm in

females. Based on hematological data, the LOAEL of NlV was determined to be

less than 6.25 ppm (corresponding to 0.4 mg/kg of bw/day for both males and

females) [86].

5.3.3 Pigs
After pigs were exposed to purified NIV, no feed refusal, vomiting, or change

in clinical appearance occurred, but a macroscopic examination showed

gastrointestinal erosion and signs of nephropathy at low doses. Exposure to

a high dose of NIV decreased the number of spleen cells. Histological

data indicated that exposure of pigs to NIV in the diet caused pathological

changes in the kidneys and gastrointestinal tract and reduced the number of

splenocytes [87].

5.3.4 Chickens
When male broiler chickens were exposed to feed containing NIV, there was an

increase in the uric acid concentration in serum, reduction in the rate of weight gain,

gastrointestinal erosion, duodenum internal bleeding, swollen cloaca, and oviducts

with immature eggs [76].

5.4 Chronic Studies and Carcinogenesis

Two long-term studies have been reported by the same Japanese group. In both

studies, moldy rice powder containing NIV was used as the diet. This moldy rice

was estimated to contain 3,147 mg/kg of NIV but no fusarenon-X. The first was

a 1-year feeding study in which female C57BL/6CrSlc (SPF, 7-week-old mice)

were given diets containing 0, 6, 12, and 30 mg/kg NIV; bw gain and feed

efficiency showed a dose-dependent correlation. No changes were observed in

the liver, thymus, spleen, kidneys, stomach, adrenal glands, pituitary gland,

ovaries, sternum, bone marrow, lymph node, brain, and small intestines with or

without Peyer’s patch portion. Leukopenia was observed in the group adminis-

tered 30 mg/kg NIV after 6 months and in all NIV-treated groups after 1 year. The

LOAEL was determined to be 6 mg/kg of diet (corresponding to 0.68 mg/kg of

bw) [77]. The other report was a 2-year feeding study in which the feeding

conditions were identical to the 1-year feeding study. A reduction in bw gain

was observed in all treated groups of animals. In the group given 30 mg/kg of

NIV, leukopenia was observed, but it was not statistically significant. No tumors

were found in any of the treated groups. Compared with the ratio of naturally

occurring tumors, there was no difference between the treatment group and the

control group. The LOAEL was 6 mg/kg feed (corresponding to 0.66 mg/kg

of bw) [89] (Table 100.4).
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5.5 Genotoxicity

Table 100.5 shows a summary of the results of genotoxicity studies of NIV. Some

in vitro studies have been reported (Table 100.5A) using V79-E cells (a Chinese

hamster lung-derived cell line), NIV induced cell cycle retardation. In the presence of

metabolic activation (S9mix), slight chromosomal aberrationswere seen.Theseeffects

were nonspecific, suggesting that they were caused by inhibited protein synthesis [89].

In a chromosome aberration test using V79 cells, NIV purified from contaminated

corn and barley induced, at 0.001–0.03 mg/mL and 0.03 mg/mL, respectively, a two to

three-fold increase in chromosomal aberrations compared with the control [91, 92].

In a short-term transformation assay using v-Ha-Ras-transfected BALB/3 T3 cells,

NIV showed no initiation or promotion activity [96]. A single-cell gel electrophoresis

Table 100.5 Genotoxicity studies of NIV

Endpoint Test system Concentrations

Results

References

Without

a metabolic

activation

system

With

a metabolic

activation

system

A: In vitro studies

Sister

chromatid

exchange

Chinese hamster

V79-E cells

5–50 mM/plate Slightly pos. Slightly

pos.

[89]

Chromosome

aberrations

Chinese hamster

V79-E cells

5–50 mM/plate Neg. Slightly

pos.a
[89]

Chromosome

aberrations

Chinese hamster

V79 cells

0.001–0.03

mg/mL

Pos.

(3-fold)

N/a [90]

Chromosome

aberrations

Chinese hamster

V79 cells

0.03 mg/mL Pos.

(3-fold)

N/a [91]

Transformation v-Ha-ras-

transfected

BALB/3 T3

mouse embryo

cells

0.01–0.2

mg/mL

Neg. N/a [96]

DNA damage

(comet assay)

CHO cells 50–100 mg/mL Pos. N/a [92]

B: In vivo study

DNA damage

(comet assay)

(Male) ICR mice

treated with NIV

(20 mg/kg bw)

Oral administration: pos.

(kidneys, bone marrow,

stomach, jejunum, and colon)

[92]

Intraperitoneal

administration:

pos. (colononly)

aAll aberrations were daughter chromatid exchange

N/a Not tested
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(comet) assay of NIV was conducted using CHO cells and ICRmice (4 males/group).

At 50 and 100 mg/mL, NIV damaged the DNA of CHO cells in the absence of

a metabolic activation system [92].

In an in vivo comet assay (Table 100.5B), oral treatment with NIV (20 mg/kg

bw) resulted in DNA damage in the kidneys, bone marrow, stomach, jejunum, and

colon. After intraperitoneal administration of NIV, no DNA damage was observed

except in the colon [92].

5.6 Immunotoxicity

5.6.1 Effects on Immune Responses
As many scientists have indicated, NIV stimulates or suppresses the immune

system depending on the dose as well as the presence of DON. Oral administra-

tion of 10 and 15 mg of NIV induced apoptosis in CD4(+) and CD8 (+) cells in

thymus, Peyer’s patch, and spleen in a dose-dependent manner [93, 94]. The

effect of NIV on susceptibility against infectious diseases was shown by an

in vivo infection experiment using BALB/c mice in which NIV at 6 mg/kg had

no effect on survival rate against Salmonella infection [95]. However, in an

in vitro experiment using RAW 264.7 cells, NIV inhibited the transcription

activity and expression of inducible NO synthase (iNOS) by lipopolysaccharide

(LPS) [96] (Sugiyama 2010).

5.6.2 Changes in Serum IgA Levels and IgA Nephropathy
Increasing IgA and induction of IgA nephropathy by NIV have been reported.

These effects have been observed in mice but not in rats ([84], Table 100.6).

After C57BL/6 mice (ten males/group) were treated three times/week for 4 weeks

by oral gavage with NIV (solvent: 5 % gum arabic water solution), the highest dose in

that experiment (8.870 mg/kg bw) group showed a significant increase in plasma IgG

but no changes in IgA [81], but 0.071 mg/kg bw/day and higher dose groups

(0.355 mg/kg bw/day) showed a significant increase in plasma IgA [98]. When

C3H/HeN, C3H/HeJ, and BALB/c mice (9–12 females/group) were treated for 4 or

8 weeks with feed containing 0, 6, or 12 mg/kg feed (corresponding to 0, 0.9, or

1.8 mg/kg bw/day, respectively) of purified NIV, the NIV-treated groups demon-

strated an increase in IgA accumulation in glomeruli and increased serum IgA,

particularly in the 12 mg/kg feed dose group at 8 weeks [99]. In a single oral

administration study, Peyer’s patches of BALB/c mice given NIV at 0 or 15 mg/kg

bw showed a significant increase in all B cell subpopulations, particularly IgA + B

cells, with the numbers of IgA + and IgM + B cells remaining higher than those of the

control group [100] (#649).

Interestingly, an experiment using ovalbumin-TCR Tg (OVA-specific T cell

receptor transgenic) mice (4 males/group) indicated that NIV significantly inhibited

total IgE production and OVA-specific IgE, IgG1, and IgA production [101]. In

F344 rats, NIV increased IgM level significantly but not IgG and IgA level even in

the group given an oral dose of 6.9 mg/kg bw/day [84].
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In pigs fed with purified NIV at 0, 2.5, or 5 mg/mg in feed for 21 days, no

significant differences were observed in plasma IgA levels between the control and

treatment groups [87].

6 Other Toxicities

NIV inhibits protein and DNA synthesis but not RNA synthesis [102]. NIV

inhibited protein synthesis in rabbit reticulocytes with an IC50 value of 6 mg/mL

[103]. Cytotoxicity of NIV, 4-acetyl NIV, and de-epoxy NIV on 3 T3 cell growth

was IC50 1.19 � 0.06 mM (373 � 20 ng/mL), 0.72 � 0.04 mM (255 � 13 ng/mL),

and 64.2 � 3.14 mM (19030 � 930 ng/mL), respectively [104].

7 Outbreaks Associated with NIV

Outbreaks linked with Fusarium-contaminated cereal-based foods occurred in

Japan and Korea during the 1940s–1960s [9]. The symptoms reported were nausea,

diarrhea, and emesis. In China, more than 30 gastroenteritis outbreaks from 1961 to

1981 were associated with the consumption of “scabby,” i.e., Fusarium-infected
wheat, barley, or maize [8]. Trichothecenes were predicted to be the causative

agent. An outbreak of trichothecenes occurred in the Kashmir Valley, India, during

June to September 1987 in which 50,000 people suffered from gastrointestinal

disorders [105, 106]. The cause of the outbreak was assumed to be the consumption

of bread made from mold-damaged wheat, evidenced by the presence of molds such

as Fusarium sp. and Aspergillus sp. and varying quantities of trichothecene myco-

toxins. The concentration of DON, acetyl DON, NIV, and T-2 toxin in causative

wheat was 0.34–8.4, 0.6–2.4, 0.03–0.1, and 0.55–4 mg/kg, respectively [105, 106].

8 Analytical Methods

Since NIV occurs as a co-contaminant with other trichothecene mycotoxins, it is

often analyzed simultaneously with the co-contaminants rather than alone. Analyt-

ical methods developed so far include thin layer chromatography (TLC); capillary

gas chromatography (GC) with electron-capture detection (ECD), flame ionization

detection (FID), or mass spectrometric detection (GC/MS); high-performance

liquid chromatography (HPLC) with ultraviolet (UV), fluorescence, or mass spec-

trometric detection; supercritical fluid chromatography (SFC); and time-of-flight

mass spectrometry (LC/TOF-MS).

Usually, to analyze trichothecenes in foods and feeds, solvent extraction is

essential. Aqueous methanol and acetonitrile are commonly used for extraction.

For applying GC–MS, HPLC, and LC–MS/MS, a sample needs to be cleaned up

with a charcoal-alumina-celite, florisil, silica gel, or solid-phase extraction column.

For laboratory experiments, TL is very useful because of its low cost and simplicity.
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However, for surveillance studies, trichothecene mycotoxins coexist with other

trichothecenes, and a simultaneous analytical method for the determination of

some trichothecenes and Fusarium toxins is considered to be more practical than

a single method. A decade ago, GC was very popular to analyze some trichothecene

mycotoxins in food, but for GC analysis, various derivatives are needed that are

sometimes troublesome.

GC is typically used conventionally for simultaneous analysis for trichothecene

mycotoxins and ZEN but requires trimethylsilyl derivatization before analysis.

GC–FID produced good results in a validation of the EU Standards, Measurements

and Testing Programme [107]. However, the GC method requires a derivatization

procedure, which generally causes a loss of time and recovery.

On the other hand, LC using UV requires no derivatization procedure [108–111].

HPLC–UV (220 nm) for the GC–MS determination of DON and NIV has been

developed in Japan.

Over several years, many LC–MS and LC–MS/MS methods were reported for the

simultaneous analysis of trichothecene mycotoxins, including DON and NIV. These

methods have been applied to the hygienic control and surveillance of mycotoxins.

However, LC–MS requires the use of expensive internal standards such as isotopically

substituted compounds. Meanwhile, the precision of LC–UV has been valued,

although its sensitivity is lower than that of LC–MS.

A selective analytical method based on HPLC, combined with atmospheric pres-

sure photoionization (APPI) mass spectrometry, has been developed for the simulta-

neous determination of NIV andDON. A liquid chromatography/atmospheric pressure

chemical ionization mass spectrometry (LC/APCI–MS) method based on time-of-

flight MS (TOF/MS) with a real-time reference mass correction technique was also

developed for the simultaneous determination of Fusarium mycotoxins (NIV, DON,

fusarenon-X, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, HT-2 toxin, T-2

toxin, diacetoxyscirpenol, ZEN) and Aspergillus mycotoxins (aflatoxin B1, aflatoxin

B2, aflatoxin G1, aflatoxin G2) in corn, wheat, cornflakes, and biscuits [112].

Sulyok et al. [113] reported the first validated method for the determination of 39

mycotoxins in wheat and maize by liquid chromatography with electrospray ioniza-

tion–triple quadrupole mass spectrometry (LC/ESI–MS/MS) without the need for any

cleanup. The 39 analytes included A and B trichothecenes (including deoxynivalenol-

3-glucoside), ZEN and related derivatives, fumonisins, enniatins, ergot alkaloids,

ochratoxins, aflatoxins, and moniliformin, and six trichothecene mycotoxins (NIV,

DON, fusarenon-X, 15-acetyldeoxynivalenol, 3-acetyldeoxynivalenol, and T-2 toxin).

Taken together, these analytical methods should be chosen for any purpose.

For surveillance, GC–MS and LC–MS/MS are efficient because of their sensitivity,

and for enforcement of regulation, HPLC would be useful.

9 Exposure Assessment of NIV and Regulation

Exposure to mycotoxins depends on the contamination level in different foods and on

the intake of those foods, which is influenced by the dietary culture of each country.
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These data are based on established regulation levels of individuals or international

institutes. For mycotoxins, it is ideal to correct the actual monitoring data over several

years in raw and processed food. Especially, since exposure to trichothecenes and

their toxicity are of concern in young children, it is important to assess the intake by

age layers. FAO/WHO organized the Global Environment Monitoring System/Food

Contamination Monitoring and Assessment Programme (GEMS/Food) and utilizes

this information to assess the intake of mycotoxins (Table 100.7).

9.1 Occurrence of NIV in Food and Feed

Compared to the worldwide distribution of DON, NIV contamination is

found only in limited areas. In Fig. 100.5, the commodities contaminated

with NIV that have been reported are plotted [120]. Contamination of

cereals (wheat, oats, barley, maize, rice, rye) has been frequently found in

Far East Asia (China, Korea, Japan), Southeast Asia (the Philippines, Vietnam),

Oceania (New Zealand, Australia) Europe (Germany, Poland, Norway, the

Netherlands), and Eastern Europe (Lithuania). The contamination of soybeans

(50 mg/kg of NIV) has also been reported in Australia [121].

From SCOOP data [11], food and food raw materials were shown to be contam-

inated by trichothecenes (DON, NIV, FX, T-2, and HT2 toxin, T-2 triol, diacetox-

yscirpenol, neosolaniol, and verrucarol).

Fig. 100.5 Distribution of food contaminated with NIV (Modification cited by Ref. [120])
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Table 100.8 shows NIV contamination in European countries. Among the

cereals, mainly wheat, oats, wheat, barley, and rye are exposed to NIV. In Europe,

the level and frequency of DON contamination are often higher than NIV contam-

ination. Thus, it is generally believed that DON is more predominant than NIV and

that their contamination levels shift in a parallel manner, i.e., when the DON level

decreases, the NIV level also decreases. However, in the southern island of Japan

(Kyushu), only the NIV-producing group strain exists (described in 1.3. mycology).

Since commodities harvested from this area are contaminated with NIV, it has

become a serious problem for human health.

Far East countries, including Japan, Korea, and China, are also suffering from

NIV contamination of grain. In Japan, NIV concentration in barley was higher than

that in wheat, while in Korea, barley was the most susceptible commodity contam-

inated with NIV. NIV contamination in rice has been reported in Korea but not in

Japan. Since rice is the dietary staple in most Far East countries, even if the

contamination level is low, it is of concern to human health (Table 100.9).

9.2 NIV Intake

The surveillance of NIV in food and estimated NIV intake were conducted in limited

countries [22, 126].Table 100.10showsestimatedNIV intake in theEU,UK, and Japan.

Table 100.8 NIV contamination in food in European Union member states

Commodities % Positive Mean (mg/kg) Maximum (mg/kg)

Wheat 14 24 440

Maize 35 np 340

Barley 8 15 351

Oats 21 56 1,860

Rye 5 np 48

Adapted from Ref. [11]

Table 100.9 Occurrence of nivalenol in wheat in Eastern Asia (2002–2007)

Country Commodities Mean (mg/kg) Maximum level (mg/kg) References

Japan Wheat 35 1,000 [122]

Barley 172 3,000

Korea Maize 168 332 [123]

[124]Barley 390 2,038

Rice (brown rice) 164 569

China Wheat 29 1,035 [125],

Corn 18 1,400
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As shown in Table 100.10, viewing the entire population, the highest mean and

95th percentile of estimated NIV intake was shown in Austria. Among the exposed

adults, in France, the estimated intake of NIV was highest compared to adults of

other countries. However, the intake by children was higher than by adults.

In young children, mean intake in the UK was 62–64 ng/kg bw/day, and these

values were higher than in Japanese children.

9.3 International Evaluation

The FAO/WHO Joint Expert committee of Food Additives has not evaluated NIV

contamination levels. The IARC has evaluated carcinogenesis of the toxins pro-

duced from F. graminearum, F. culmorum, and F. crookwellense, such as ZEN,

DON, and acetyl NIV [127]. Their conclusion was that metabolites of these three

Fusarium species should be placed in group 3, i.e., not classified as carcinogenic for

humans.

The Scientific Committee for Food (EC) reported values for DON in 1999, for

NIV in 2000, and for T-2 and HT-2 toxins in 2002[128]. According to their opinion,

Table 100.10 Estimated NIV intake

Country Age Sex NIV intake mean (95 % tile) ng/kg bw/day

Austria Whole population 78 (274)

Denmark Whole population 30 (72)

France Adult 58 (99)

Finland Adult 27 (np)

Norway Adult M 57 (110)

Adult F 50 (93)

Sweden Adult 6 (13)

UK Adult M 25 (np)

Adult F 17 (np)

France Children 94 (307)

Norway 1–6 years 113 (263)

UK Infant 62 (np)

1–4 years 64 (np)

4–6 years 64 (np)

7–10 years 50 (np)

11–14 years 34 (np)

Japan 1–6 years 10 (330)

7–14 years 10 (230)

15–19 years 10 (180)

>20 years >10 (110)

Adapted from Refs. [11, 122]

np not provided
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temporary tolerable daily intake (t-TDI) of NIV was estimated to be 0.7 mg/kg
based on NOAEL and 0.7 mg/kg temporary bw based on the results of 1- and 2-year

repeated dose studies reported by Ref. [77, 88].

In 2010, the FSC of Japan evaluated DON and NIV and concluded that

the provisional maximum tolerable daily intake (PMTDI) of NIV was 0.4 mg/kg
bw/day based on LOAEL (0.4 mg/kg bw/day) of subacute repeated dose toxicity

studies using purified NIV [86]. As the PMTDI of DONwas adopted to be 1.0 mg/kg
bw, it had the same value as JECFA and EFSA.

9.4 Regulation

To date, no country has established a standard for NIV yet. However, regarding the

risk assessment of NIV, Japan and EU lead the world. These countries have serious

problems related to the management of NIV-producing fungi. The establishment of

a regulation level for NIV is one of the effective means to prevent contamination of

NIV in cereal grain.

10 Conclusion

Because NIV is a minor mycotoxin in the world, information for risk assessment is

very poor. Of course, European countries and Japan have recognized the threat

posed by NIV to human health and have started to evaluate this risk. In the risk

assessment of NIV, it is recommended to take into account the effect of

co-contamination with other trichothecene mycotoxins, namely, DON. As further

studies, combination toxicology studies of NIV and DON are needed.
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