

Lecture Notes in Artificial Intelligence 6793
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Kai Brünnler George Metcalfe (Eds.)

Automated Reasoning
withAnalytic Tableaux
and Related Methods

20th International Conference, TABLEAUX 2011
Bern, Switzerland, July 4-8, 2011
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Kai Brünnler
Universität Bern
Institut für Informatik und Angewandte Mathematik
Neubrückstr. 10, 3012 Bern, Switzerland
E-mail: kai@iam.unibe.ch

George Metcalfe
Universität Bern
Mathematisches Institut
Sidlerstr. 5, 3012 Bern, Switzerland
E-mail: george.metcalfe@math.unibe.ch

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-22118-7 e-ISBN 978-3-642-22119-4
DOI 10.1007/978-3-642-22119-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011930102

CR Subject Classification (1998): I.2.3, F.4.1-2, I.2, D.1.6, D.2.4

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the research papers presented at the 20th International
Conference on Automated Reasoning with Analytic Tableaux and Related Meth-
ods (TABLEAUX 2011) held July 4-8, 2011 in Bern, Switzerland.

The Program Committee of TABLEAUX 2011 received 34 submissions. Each
paper was reviewed by at least three referees and, following a thorough and
lively online discussion phase, 16 research papers and 2 system descriptions were
accepted based on their originality, technical soundness, presentation, and rel-
evance to the conference. We would like to sincerely thank both the authors
for their contributions and the members of the Program Committee and addi-
tional referees for their much appreciated time, energy, and professionalism in
the review and selection process.

In addition to the contributed papers, the program of TABLEAUX 2011
included three keynote talks by distinguished researchers in the field of au-
tomated reasoning and proof theory: Maria Paola Bonacina (Università degli
Studi di Verona, Italy), Ulrich Furbach (University of Koblenz-Landau, Ger-
many), and Kazushige Terui (Kyoto University, Japan). There were also two
tutorials: “Tableaux(-like) Methods for the Satisfiability Problems of Temporal
Logics” by Martin Lange (University of Kassel, Germany), and “Introduction to
Proof Nets” by Lutz Strassburger (INRIA Saclay, France).

Two workshops are held in conjunction with TABLEAUX 2011: “FTP 2011,
the 8th International Workshop on First-Order Theorem Proving” chaired by
Martin Giese (University of Oslo, Norway), and the second edition of “Gentzen
Systems and Beyond” organized by Roman Kuznets and Richard McKinley (Uni-
versity of Bern, Switzerland).

We would like to thank the members of the Organizing Committee for their
much appreciated support and expertise: Samuel Bucheli, Roman Kuznets,
Richard McKinley, and Nia Stephens-Metcalfe.

Finally, we would like to thank our sponsors for their generous and very
welcome support: the Bürgergemeinde Bern, the Kurt Gödel Society, the Swiss
Academy of Sciences, the Swiss Mathematical Society, the Swiss National Science
Foundation, the Hasler Foundation, and the University of Bern. We would also
like to acknowledge the Easychair conference management system which greatly
facilitated the smooth running of the review process and compilation of these
proceedings.

May 1, 2011
George Metcalfe

Kai Brünnler

Organization

Program Committee

Arnon Avron Tel Aviv University, Israel
Peter Baumgartner National ICT, Australia
Bernhard Beckert Karlsruhe Institute of Technology, Germany
Torben Braüner Roskilde University, Denmark
Kai Brünnler University of Bern, Switzerland
Agata Ciabattoni TU Vienna, Austria
Marta Cialdea Mayer University of Rome 3, Italy
Roy Dyckhoff University of St. Andrews, UK
Martin Giese University of Oslo, Norway
Valentin Goranko Technical University of Denmark
Rajeev Gore The Australian National University
Ullrich Hustadt University of Liverpool, UK
Reiner Hähnle Chalmers University of Technology, Sweden
Martin Lange University of Kassel, Germany
George Metcalfe University of Bern, Switzerland
Dale Miller INRIA Saclay, France
Neil Murray University at Albany SUNY, USA
Nicola Olivetti Paul Cézanne University, France
Jens Otten Potsdam University, Germany
Dirk Pattinson Imperial College London, UK
Andre Platzer Carnegie Mellon University, USA
Renate Schmidt University of Manchester, UK
Viorica Sofronie-

Stokkermans MPI, Saarbrücken, Germany
Ulrich Ultes-Nitsche University of Fribourg, Switzerland
Luca Viganò University of Verona, Italy
Arild Waaler University of Oslo, Norway

Additional Reviewers

Antonsen, Roger
Bı́lková, Marta
Cerrito, Serenella
Chapman, Peter
Dawson, Jeremy
Deyoung, Henry

Egly, Uwe
Facchini, Alessandro
Fermüller, Christian
Garg, Deepak
Giese, Martin
Gladisch, Christoph

VIII Organization

Gliozzi, Valentina
Hetzl, Stefan
Hodkinson, Ian
Jia, Limin
Khodadadi, Mohammad
Klebanov, Vladimir
Kontchakov, Roman
Kuznets, Roman
Lian, Espen H.
Martins, Joao
Matusiewicz, Andrew
Pozzato, Gian Luca
Qi, Guilin
Ramanayake, Revantha
Renshaw, David

Roschger, Christoph
Sauro, Luigi
Schneider, Thomas
Serre, Olivier
Shapirovsky, Ilya
Son, Tran Cao
Stolpe, Audun
Straccia, Umberto
Strassburger, Lutz
Terui, Kazushige
Tishkovsky, Dmitry
Tiu, Alwen
Wischnewski, Patrick
Zeilberger, Noam

Previous Meetings

1992 Lautenbach, Germany
1993 Marseille, France
1994 Abingdon, UK
1995 St. Goar, Germany
1996 Terrasini, Italy
1997 Pont-à-Mousson, France
1998 Oisterwijk, The Netherlands
1999 Saratoga Springs, USA
2000 St. Andrews, UK
2001 Siena, Italy (part of IJCAR)
2002 Copenhagen, Denmark
2003 Rome, Italy
2004 Cork, Ireland (part of IJCAR)
2005 Koblenz, Germany
2006 Seattle, USA (part of IJCAR)
2007 Aix-en-Provence, France
2008 Sydney, Australia (part of IJCAR)
2009 Oslo, Norway
2010 Edinburgh, UK (part of IJCAR)

TABLEAUX Steering Committee

Rajeev Goré (President) Australian National University, Australia
Kai Brünnler University of Bern, Switzerland
Martin Giese University of Oslo, Norway
Valentin Goranko Technical University of Denmark

Organization IX

Reiner Hähnle Chalmers University of Technology, Sweden
George Metcalfe University of Bern, Switzerland
Angelo Montanari University of Udine, Italy
Neil Murray University at Albany - SUNY, USA

Sponsors

Bürgergemeinde Bern
Haslerstiftung
Kurt Gödel Society
Swiss Academy of Sciences
Swiss Mathematical Society
Swiss National Science Foundation
University of Bern

Table of Contents

On Interpolation in Decision Procedures . 1
Maria Paola Bonacina and Moa Johansson

First-Order Tableaux in Applications (Extended Abstract) 17
Ulrich Furbach

Proof Theory and Algebra in Substructural Logics 20
Kazushige Terui

CSymLean: A Theorem Prover for the Logic CSL over Symmetric
Minspaces . 21

Régis Alenda and Nicola Olivetti

Schemata of SMT-Problems . 27
Vincent Aravantinos and Nicolas Peltier

Kripke Semantics for Basic Sequent Systems . 43
Arnon Avron and Ori Lahav

Hybrid and First-Order Complete Extensions of CaRet 58
Laura Bozzelli and Ruggero Lanotte

Optimal Tableau Systems for Propositional Neighborhood Logic over
All, Dense, and Discrete Linear Orders . 73

Davide Bresolin, Angelo Montanari, Pietro Sala, and Guido Sciavicco

Craig Interpolation in Displayable Logics . 88
James Brotherston and Rajeev Goré

A Tableaux Based Decision Procedure for a Broad Class of Hybrid
Formulae with Binders . 104

Serenella Cerrito and Marta Cialdea Mayer

Basic Constructive Connectives, Determinism and Matrix-Based
Semantics . 119

Agata Ciabattoni, Ori Lahav, and Anna Zamansky

On the Proof Complexity of Cut-Free Bounded Deep Inference 134
Anupam Das

The Modal µ-Calculus Caught Off Guard . 149
Oliver Friedmann and Martin Lange

XII Table of Contents

A Conditional Constructive Logic for Access Control and Its Sequent
Calculus . 164

Valerio Genovese, Laura Giordano, Valentina Gliozzi, and
Gian Luca Pozzato

A Tableau Calculus for a Nonmonotonic Extension of EL⊥ 180
Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and
Gian Luca Pozzato

Correctness and Worst-Case Optimality of Pratt-Style Decision
Procedures for Modal and Hybrid Logics . 196

Mark Kaminski, Thomas Schneider, and Gert Smolka

Cut Elimination for Shallow Modal Logics . 211
Björn Lellmann and Dirk Pattinson

A Non-clausal Connection Calculus . 226
Jens Otten

MetTeL: A Tableau Prover with Logic-Independent Inference
Engine . 242

Dmitry Tishkovsky, Renate A. Schmidt, and Mohammad Khodadadi

A Hypersequent System for Gödel-Dummett Logic with Non-constant
Domains . 248

Alwen Tiu

MaLeCoP: Machine Learning Connection Prover . 263
Josef Urban, Jǐŕı Vyskočil, and Petr Štěpánek

Author Index . 279

On Interpolation in Decision Procedures�

Maria Paola Bonacina and Moa Johansson

Dipartimento di Informatica, Università degli Studi di Verona
Strada Le Grazie 15, I-37134 Verona, Italy

mariapaola.bonacina@univr.it, moakristin.johansson@univr.it

Abstract. Interpolation means finding intermediate formulae between
given formulae. When formulae decorate program locations, and describe
sets of program states, interpolation may enable a program analyzer to
discover information about intermediate locations and states. This mech-
anism has an increasing number of applications, that are relevant to pro-
gram analysis and synthesis. We study interpolation in theorem proving
decision procedures based on the DPLL(T) paradigm. We survey interpo-
lation systems for DPLL, equality sharing and DPLL(T), reconstructing
from the literature their completeness proofs, and clarifying the require-
ments for interpolation in the presence of equality.

1 Introduction

Automated deduction and program verification have always been connected,
as described, for instance, in [34] and [1]. A theorem proving technique that
has recently found application in verification is interpolation. Informally, inter-
polants are formula ‘in between’ other formulæ in a proof, containing only their
shared symbols. Interpolation was proposed for abstraction refinement in soft-
ware model checking, first for propositional logic and propositional satisfiability
[25], and then for quantifier-free fragments of first-order theories, their combina-
tions, and satisfiability modulo theories [18,26,35,21,11,12,17,6,7,9]. Considered
theories include equality [26,16], linear rational arithmetic [26,21], Presburger
or linear integer arithmetic [21,6], or fragments thereof [12], and arrays without
extensionality [21,7,8]. In these papers the theory reasoning is done either by spe-
cialized sequent-style inference systems [18,26,6,7] or by satisfiability procedures,
such as congruence closure for equality [16], integrated in a DPLL(T) framework
[35,11,12,17]. Subsequently, interpolation was suggested for invariant generation,
and in the context of inference systems for first-order logic with equality, based
on resolution and superposition [27,23,19]. An early lead towards this application
can be traced back to [10]. More recently, interpolation was related to abstract
interpretation [14] and applied to improve the quality of annotations [28].

The aim of this paper is to present the core of the state of the art in inter-
polation for the proofs generated by theorem provers for satisfiability modulo

� Research supported in part by MIUR grant no. 2007-9E5KM8 and EU COST Action
IC0901.

K. Brünnler and G. Metcalfe (Eds.): TABLEAUX 2011, LNAI 6793, pp. 1–16, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 M.P. Bonacina and M. Johansson

theories, also known as SMT-solvers, based on the DPLL(T) paradigm (e.g.,
[31,33]), where DPLL refers to the Davis-Putnam-Logemann-Loveland proce-
dure for propositional satisfiability, and T =

⋃n
i=1 Ti is a union of theories.

In this paper we present:

– A framework of definitions for interpolation, including that of completeness
of an interpolation system;

– Two interpolation systems for propositional logic, HKPYM [20,24,32] and
MM [25,26], already surveyed in [15], with a reconstruction of the proof of
completeness of HKPYM in [35];

– An analysis of interpolation in the presence of equality, which explains the
relation between the notion of equality-interpolating theory of [35] and that of
separating ordering of [27,23,19] and provides a proof of the result that the
quantifier-free fragment of the theory of equality is equality-interpolating,
which was sketched in [35];

– The interpolation system of [35] for equality sharing [29], which we name
EQSH, with a reconstruction of its proof of completeness in [35] and the
observation that it applies also to model-based theory combination [13];

– The interpolation system for DPLL(T) obtained in [35] by uniting HKPYM
and EQSH, which we name HKPYM–T.

We emphasize the contributions of [35], because it is where the crucial notion
of equality-interpolating theory appeared, and because all subsequent papers
that we are aware of refer to [35] for the proofs of completeness of HKPYM
and EQSH, whence HKPYM–T. However, those proofs appeared only in the
technical report companion to [35], and with discrepancies in definitions and
notations between [35] and the technical report. Thus, we choose to present
them here.

2 A Framework of Definitions for Interpolation

We assume the basic definitions commonly used in theorem proving. Let A and
B be two formulæ with respective signatures ΣA and ΣB:

Definition 1. A non-variable symbol is A-colored, if it is in ΣA\ΣB; B-colored,
if it is in ΣB \ΣA; and transparent, if it is in ΣT = ΣA ∩ΣB.

Let LX denote, ambiguously, the language of ΣX -terms, ΣX -literals or ΣX -
formulæ, where X stands for either A, B or T .

Definition 2. A formula I is an interpolant of formulæ A and B such that
A � B, or an interpolant of (A,B), if (i) A � I, (ii) I � B and (iii) I ∈ LT .

The following classical result is known as Craig’s Interpolation Lemma:

Lemma 1. Let A and B be closed formulæ such that A � B. If ΣT contains at
least one predicate symbol, an interpolant I of (A,B) exists and it is a closed
formula; otherwise, either B is valid and I is �, or A is unsatisfiable and Iis ⊥.

On Interpolation in Decision Procedures 3

From now on we consider only closed formulæ. Since most theorem provers work
refutationally, it is useful to adopt the following:

Definition 3. A formula I is a reverse interpolant of formulæ A and B such
that A,B �⊥, if (i) A � I, (ii) B, I �⊥ and (iii) I ∈ LT .

A reverse interpolant of (A,B) is an interpolant of (A,¬B). A theory is pre-
sented by a set T of sentences, meaning that the theory is the set of all logical
consequences of T . If ΣT is the signature of T , LT is redefined to be the language
built from ΣT ∪ΣT , so that theory symbols are transparent:

Definition 4. A formula I is a theory interpolant of formulæ A and B such
that A �T B, if (i) A �T I, (ii) I �T B and (iii) I ∈ LT . A formula I is
a reverse theory interpolant of formulæ A and B such that A,B �T⊥, if (i)
A �T I, (ii) B, I �T⊥ and (iii) I ∈ LT .

The distinction between interpolant and reverse interpolant appeared in [23].
Since we consider refutational systems, and in keeping with most of the litera-
ture, we write “interpolant” for “reverse interpolant” and omit “theory,” unless
relevant. Because most systems work with clauses, that are disjunctions of liter-
als, from now on A and B are sets of clauses.

Definition 5. A ground term, literal, or clause is transparent, if all its symbols
are; A-colored, if it contains at least one A-colored symbol, and the others are
transparent; B-colored, if it contains at least one B-colored symbol, and the others
are transparent; and AB-mixed, otherwise. A clause is colorable if it contains
no AB-mixed literals.

Some authors use A-local in place of A-colored, B-local in place of B-colored,
and AB-common, or global, in place of transparent. In the following “colored”
may mean non-transparent.

Definition 6. Let C be a disjunction (conjunction) of literals. The projection
C|X of C on LX is the disjunction (conjunction) obtained by removing from C
any literal whose atom is not in LX . If C is a disjunction and C|X is empty,
then C|X =⊥; if C is a conjunction and C|X is empty, then C|X = �.

Projection commutes with negation (¬(C|X) = (¬C)|X) and distributes over
conjunction and disjunction: (C∨D)|X = C|X∨D|X and (C∧D)|X = C|X∧D|X .
Since transparent literals of C belong to both C|A and C|B, if C is a conjunction,
C|A ⇒ C|T and C|B ⇒ C|T ; if C is a disjunction, C|T ⇒ C|A and C|T ⇒ C|B .
Alternatively, transparent literals may be put only in the projection on LB:

Definition 7. Let C be a disjunction (conjunction) of literals. The asymmetric
projections of C are C\B = C|A \ C|T and C ↓B= C|B.

Since [25], approaches to interpolation work by annotating each clause C in
a refutation of A and B with auxiliary formulæ, unnamed in [25,26], named
C-interpolants in [23], and partial interpolants in [35,15,6]:

4 M.P. Bonacina and M. Johansson

Definition 8. A partial interpolant PI(C) of a clause C occurring in a refuta-
tion of A∪B is an interpolant of gA(C) = A∧¬(C|A) and gB(C) = B∧¬(C|B).

If C is the empty clause, which is written � and represents a contradiction,
PI(C) is an interpolant of (A,B). Since A ∧ B � C, gA(C) ∧ gB(C) = A ∧B ∧
¬C �⊥, and it makes sense to seek an interpolant of gA(C) and gB(C), which
may be seen as an interpolant of (A,B) in a proof of C. We also write c|X , PI(c),
gA(c) and gB(c) if c is the label of clause C, written c : C. By Definition 3 applied
to Definition 8, a partial interpolant needs to satisfy the following requirements:

1. gA(C) � PI(C) or A ∧ ¬(C|A) � PI(C) or A � C|A ∨ PI(C)
2. gB(C) ∧ PI(C) �⊥ or B ∧ ¬(C|B) ∧ PI(C) �⊥ or B ∧ PI(C) � C|B, and
3. PI(C) is transparent.

Indeed, since the signatures of gA(C) and gB(C) are ΣA and ΣB, transparency
is always with respect to A and B.

3 Transition Systems, Proofs and Interpolation Systems

DPLL and DPLL(T) are presented as transition systems (e.g., [31,4]) that op-
erate in two modes, search mode and conflict resolution mode. In search mode,
the state has the form M ||F , where F is a set of clauses and M is a sequence
of assigned literals, that represents a partial assignment to ground literals, pos-
sibly with a justification, and therefore a partial model, or a set of candidate
models. An assigned literal can be either a decided literal or an implied literal. A
decided literal represents a guess, and has no justification (decision or splitting).
An implied literal lC is a literal l justified by a clause C: all other literals of C
are false in M so that l needs to be true (unit propagation). If there is a clause C
whose literals are all false in M , C is in conflict, it is called conflict clause, and
the system switches to conflict resolution mode, where the state has the form
M ||F ||C. In conflict resolution mode, a conflict clause C ∨ ¬l may be resolved
with the justification D ∨ l of l in M to yield a new conflict clause C ∨D (ex-
planation). Any clause thus derived can be added to F (learning). Backjumping
unassigns at least one decided literal and drives the system back from conflict
resolution mode to search mode. In state M ||F ||�, unsatisfiability is detected.

Definition 9. Let U1 stand for DPLL and U2 for DPLL(T), and S be the input
set of clauses. A transition system derivation, or Uj-derivation, where j ∈ {1, 2},
is a sequence of state transitions Δ0 =⇒Uj Δ1 =⇒Uj . . . Δi =⇒Uj Δi+1 =⇒Uj . . .,
where ∀i ≥ 0, Δi is of the form Mi ||Fi or Mi ||Fi ||Ci, each transition is deter-
mined by a transition rule in Uj, Δ0 = ||F0 and F0 = S.

As noticed first in [36], according to [34], a proof produced by DPLL is made of
propositional resolution steps between conflict clauses (explanations). Let C∗ =
{Ci|i > 0} be the set of all conflict clauses in a derivation:

Definition 10. For DPLL-derivation Δ0 =⇒U1 . . . Δi =⇒U1 Δi+1 =⇒U1 . . ., for
all C ∈ C∗ the DPLL-proof tree ΠU1(C) of C is defined as follows:

On Interpolation in Decision Procedures 5

– If C ∈ F0, ΠU1(C) consists of a node labelled by C;
– If C is generated by resolving conflict clause C1 with justification C2, ΠU1(C)

consists of a node labelled by C with subtrees ΠU1(C1) and ΠU1(C2).

If the derivation halts reporting unsatisfiable, ΠU1(�) is a DPLL-refutation.

Since a justification C2 is either an input clause or a learnt clause, which was
once a conflict clause, ΠU1(C2) is defined.

DPLL(T) builds into DPLL a T -satisfiability procedure, that decides whether
a set of ground T -literals has a T -model. In most cases, T is a union of the-
ories

⋃n
i=1 Ti, and a T -satisfiability procedure is obtained by combining n Ti-

satisfiability procedures, that we name Qi, for 1 ≤ i ≤ n, according to equal-
ity sharing [29] (see Chapter 10 of [5] for a modern presentation). The Ti’s are
quantifier-free fragments of first-order theories such as the theory of equality, lin-
ear arithmetic or theories of common data structures. For the theory of equality,
also known as equality with uninterpreted, or free, symbols (EUF), the satisfia-
bility procedure is based on congruence closure (e.g., [30], and Chapter 9 of [5]
for a modern presentation).

Equality sharing requires that the Ti’s are pairwise disjoint, which means
the only shared symbol, beside constants, is equality, and stably infinite, which
means that any quantifier-free Ti-formula has a Ti-model if and only if it has
an infinite one. Equality sharing separates occurrences of function symbols
from different signatures to ensure that each Qi’s deals with Ti-literals: for
example, f(g(a)) � b, where f and g belong to different signatures, becomes
f(c) � b ∧ g(a) � c, where c is a new constant. Each Qi propagates all disjunc-
tions of equalities between shared constants that are Ti-entailed by the problem.
If a theory is convex, whenever a disjunction is entailed, a disjunct is also entailed,
and therefore it is sufficient to exchange equalities. Model-based theory combina-
tion [13] is a version of equality sharing that assumes that each Qi maintains a
candidate Ti-model, and replaces propagation of entailments by addition to M
of equalities that are true in the current candidate Ti-model. These equalities
are guesses, because it is not known whether they are true in all Ti-models con-
sistent with M . If one of them turns out to be inconsistent, backjumping will
withdraw it and update the Ti-model.

In DPLL(T), the T -satisfiability procedure propagates T -consequences of M
to the DPLL engine: if whenever literals l1, . . . , ln are true, some literal l must
also be true in T , l is added to M with the T -lemma ¬l1 ∨ . . . ∨ ¬ln ∨ l as
justification (theory propagation); if a subset l1, . . . , ln ofM is T -inconsistent, the
system switches to conflict resolution mode with T -conflict clause ¬l1∨ . . .∨¬ln.
Proofs produced by DPLL(T) are ground, but not propositional, and include also
T -conflict clauses. Thus, we need to assume that the Qi’s and their combination
produce proofs, that we denote by ΠT (C):

Definition 11. For DPLL(T)-derivation Δ0 =⇒U2 . . .Δi =⇒U2 Δi+1 =⇒U2 . . .,
for all C ∈ C∗ the DPLL(T)-proof tree ΠU2(C) of C is defined as follows:

– If C ∈ F0, ΠU2(C) consists of a node labelled by C;

6 M.P. Bonacina and M. Johansson

– If C is generated by resolving conflict clause C1 with justification C2, ΠU2(C)
consists of a node labelled by C with subtrees ΠU2(C1) and ΠU2(C2);

– If C is a T -conflict clause, ΠU2(C) = ΠT (C).

If the derivation halts reporting unsatisfiable, ΠU2(�) is a DPLL(T)-refutation.

An interpolation system is a mechanism to annotate clauses in a proof with
partial interpolants; its most important property is completeness:

Definition 12. An interpolation system is complete for transition system U , if
for all sets of clauses A and B, such that A ∪ B is unsatisfiable, and for all
U-refutations of A ∪B, it generates an interpolant of (A,B).

Since PI(�) is an interpolant of (A,B), in order to prove that an interpolation
system is complete, it is sufficient to show that it annotates the clauses in any
refutation with clauses that are partial interpolants.

We conclude recalling that stable infiniteness is connected to interpolation:
the set of disjunctions of equalities exchanged by T1 and T2 in equality sharing
is a reverse interpolant of (F1, F2), where Fi, for i ∈ {1, 2}, is the conjunction
of input Ti-literals after separation. Stable-infiniteness ensures that quantifier-
free interpolants suffice (cf. Chapter 10 of [5] for details). This is obviously
not sufficient to make a combination of interpolating satisfiability procedures
interpolating, because (F1, F2) is a partition of the input based on the signatures
of T1 and T2, whereas we need to generate interpolants of an arbitrary partition
(A,B) of the input where both A and B may mix T1-symbols and T2-symbols.

4 Propositional Interpolation Systems

If the input S = A∪B is a set of propositional clauses, the set of literals that may
appear in a refutation is determined once and for all by the set of literals that
occur in S. Since input literals are either A-colored or B-colored or transparent,
there are no AB-mixed literals in proofs. Interpolation systems attach a partial
interpolant to every resolution step, distinguishing whether the literal resolved
upon is A-colored or B-colored or transparent. The first interpolation system
for propositional resolution, called HKP in [15] from the initials of three inde-
pendent authors, appeared in [20,24,32]. We call it HKPYM, because Yorsh and
Musuvathi reformulated it and reproved it complete in the context of DPLL(T):

Definition 13 (HKPYM interpolation system). Let c : C be a clause that
appears in a refutation of A ∪B by propositional resolution:

– If c : C ∈ A, then PI(c) =⊥,
– If c : C ∈ B, then PI(c) = �,
– If c : C ∨D is a propositional resolvent of p1 : C ∨ l and p2 : D ∨ ¬l then:
• If l is A-colored, then PI(c) = PI(p1) ∨ PI(p2),
• If l is B-colored, then PI(c) = PI(p1) ∧ PI(p2) and
• If l is transparent, then PI(c) = (l ∨ PI(p1)) ∧ (¬l ∨ PI(p2)).

On Interpolation in Decision Procedures 7

The system of [25,26], that we call MM, allows a more informative interpolant
for clauses in A and treats transparent literals resolved upon like B-colored ones:

Definition 14 (MM interpolation system). Let c : C be a clause that ap-
pears in a refutation of A ∪B by propositional resolution:

– If c : C ∈ A, then PI(c) = C|T ,
– If c : C ∈ B, then PI(c) = �,
– If c : C ∨D is a propositional resolvent of p1 : C ∨ l and p2 : D ∨ ¬l then:
• If l is A-colored, then PI(c) = PI(p1) ∨ PI(p2),
• If l is B-colored or transparent, then PI(c) = PI(p1) ∧ PI(p2).

Intuitively, HKPYM is symmetric with respect to A and B, and assumes the
symmetric notion of projection (cf. Definition 6), while MM is slanted towards
B, and assumes the asymmetric notion of projection (cf. Definition 7). In [35],
projection is defined to be asymmetric; however, the proof of completeness of
HKPYM in the companion technical report, requires projection to be symmetric.
The following proof fixes this discrepancy:

Theorem 1 (Yorsh and Musuvathi, 2005). HKPYM is a complete interpo-
lation system for propositional resolution.

Proof: We need to prove that for all clauses c : C in the refutation, PI(c) satifies
Requirements (1), (2) and (3) listed at the end of Section 2. The proof is by
induction on the structure of the refutation.
Base case:

– If c : C ∈ A, then ¬(C|A) = ¬C; and gA(c) = A ∧ ¬C =⊥, since C ∈ A.
Since PI(c) =⊥, both (1) and (2) reduce to ⊥ � ⊥, which is trivially true,
and PI(c) is trivially transparent.

– If c : C ∈ B, then ¬(C|B) = ¬C; and gB(c) = B ∧ ¬C = ⊥, since C ∈ B.
Since PI(c) = �, (1) is trivial, (2) reduces to ⊥ � ⊥, which is trivially true,
and PI(c) is trivially transparent.

Induction hypothesis: for k ∈ {1, 2} PI(pk) satifies Requirements (1), (2) and (3).
Induction case:

(a) l is A-colored: PI(c) = PI(p1) ∨ PI(p2).
First we observe that p1|A ∧ p2|A ⇒ C|A ∨ D|A (*). Indeed, since l is A-
colored, p1|A = (l∨C)|A = l∨C|A and p2|A = (¬l∨D)|A = ¬l∨D|A. Then,
p1|A ∧ p2|A = (l ∨ C|A) ∧ (¬l ∨D|A)⇒ C|A ∨D|A by resolution.
We show (1) gA(c)⇒ PI(c):
gA(c) = A ∧ ¬((C ∨D)|A) = A ∧ ¬(C|A ∨D|A)
A ∧ ¬(C|A ∨D|A)⇒ A ∧ ¬(p1|A ∧ p2|A) by (*)
A∧¬(p1|A∧p2|A) = A∧(¬p1|A∨¬p2|A) = (A∧¬p1|A)∨(A∧¬p2|A) = gA(p1)∨
gA(p2) and gA(p1) ∨ gA(p2)⇒ PI(p1) ∨ PI(p2) by induction hypothesis.
We show (2) gB(c) ∧ PI(c)⇒⊥:
gB(c) ∧ PI(c) = B ∧ ¬((C ∨D)|B) ∧ PI(c) = B ∧ ¬(C|B ∨D|B) ∧ PI(c) =

8 M.P. Bonacina and M. Johansson

B ∧ ¬(C|B) ∧ ¬(D|B) ∧ (PI(p1) ∨ PI(p2))⇒
(B ∧ ¬(C|B) ∧ PI(p1)) ∨ (B ∧ ¬(D|B) ∧ PI(p2)) =
(B ∧ ¬((l ∨ C)|B) ∧ PI(p1)) ∨ (B ∧ ¬((¬l ∨D)|B) ∧ PI(p2)) =
(because l �∈ LB and, therefore, C|B = (l ∨ C)|B and D|B = (¬l ∨D)|B)
= (B ∧ ¬(p1|B) ∧ PI(p1)) ∨ (B ∧ ¬(p2|B) ∧ PI(p2)) =
(gB(p1)∧PI(p1))∨ (gB(p2)∧PI(p2))⇒⊥ ∨ ⊥=⊥ by induction hypothesis.
Requirement (3) follows by induction hypothesis.

(b) l is B-colored: PI(c) = PI(p1) ∧ PI(p2).
Similar to Case (a), we have that p1|B ∧ p2|B ⇒ C|B ∨D|B (**).
We show (1) gA(c)⇒ PI(c):
gA(c) = A ∧ ¬((C ∨D)|A) = A ∧ ¬(C|A ∨D|A) = A ∧ ¬(C|A) ∧ ¬(D|A) =
A ∧ ¬((l ∨ C)|A) ∧ ¬((¬l ∨D)|A) =
(because l �∈ LA and, therefore, C|A = (l ∨ C)|A and D|A = (¬l ∨D)|A)
= A ∧ ¬(p1|A) ∧ ¬(p2|A) = (A ∧ ¬(p1|A)) ∧ (A ∧ ¬(p2|A)) = gA(p1) ∧ gA(p2)
and gA(p1) ∧ gA(p2)⇒ PI(p1) ∧ PI(p2) by induction hypothesis.
We show (2) gB(c) ∧ PI(c)⇒⊥:
gB(c) ∧ PI(c) = B ∧ (¬((C ∨D)|B)) ∧ PI(p1) ∧ PI(p2) =
B ∧ (¬(C|B ∨D|B)) ∧ PI(p1) ∧ PI(p2)⇒ by (**)
B∧ (¬(p1|B ∧p2|B))∧PI(p1)∧PI(p2) = B∧ (¬(p1|B)∨¬(p2|B))∧PI(p1)∧
PI(p2) = [(B ∧ ¬(p1|B)) ∨ (B ∧ ¬(p2|B))] ∧ PI(p1) ∧ PI(p2) =
(gB(p1) ∧ PI(p1) ∧ PI(p2)) ∨ (gB(p2) ∧ PI(p1) ∧ PI(p2))⇒
(gB(p1)∧PI(p1))∨ (gB(p2)∧PI(p2))⇒⊥ ∨ ⊥=⊥ by induction hypothesis.
Requirement (3) follows by induction hypothesis.

(c) l is transparent: PI(c) = (l ∨ PI(p1)) ∧ (¬l ∨ PI(p2)).
We show (1) gA(c)⇒ PI(c), or, equivalently, gA(c) ∧ ¬PI(c)⇒⊥:
gA(c) ∧ ¬PI(c) = A ∧ (¬(C|A ∨D|A)) ∧ ¬[(l ∨ PI(p1)) ∧ (¬l ∨ PI(p2))] =
A ∧ ¬(C|A) ∧ ¬(D|A) ∧ [¬(l ∨ PI(p1)) ∨ ¬(¬l ∨ PI(p2))] =
[A∧¬(C|A)∧¬(D|A)∧¬(l∨PI(p1))]∨[A∧¬(C|A)∧¬(D|A)∧¬(¬l∨PI(p2))]⇒
[A ∧ ¬(C|A) ∧ ¬(l ∨ PI(p1))] ∨ [A ∧ ¬(D|A) ∧ ¬(¬l ∨ PI(p2))] =
[A∧¬(C|A)∧¬l∧¬PI(p1)]∨ [A∧¬(D|A)∧ l∧¬PI(p2)] = (l is transparent)
= [A ∧ ¬((l ∨ C)|A) ∧ ¬PI(p1)] ∨ [A ∧ ¬((¬l ∨D)|A) ∧ ¬PI(p2)] =
(gA(p1)∧¬PI(p1))∨(gA(p2)∧¬PI(p2))⇒⊥ ∨ ⊥=⊥ by induction hypothesis.
We show (2) gB(c) ∧ PI(c)⇒⊥:
gB(c) ∧ PI(c) = B ∧ ¬(C|B ∨D|B) ∧ [(l ∨ PI(p1)) ∧ (¬l ∨ PI(p2))] =
B ∧ ¬(C|B) ∧ ¬(D|B) ∧ [(l ∨ PI(p1)) ∧ (¬l ∨ PI(p2))] (***)
at this point we reason that l is either true or false; if l is true, l holds, l
subsumes l ∨ PI(p1) and simplifies ¬l ∨ PI(p2) to PI(p2); if l is false, ¬l
holds, ¬l subsumes ¬l∨PI(p2) and simplifies l∨PI(p1) to PI(p1); thus, (***)
implies [B∧¬(C|B)∧¬(D|B)∧l∧PI(p2)]∨[B∧¬(C|B)∧¬(D|B)∧¬l∧PI(p1)]
which implies [B ∧ ¬(D|B) ∧ l ∧ PI(p2)] ∨ [B ∧ ¬(C|B) ∧ ¬l ∧ PI(p1)] =
[B ∧ ¬(D|B ∨ ¬l) ∧ PI(p2)] ∨ [B ∧ ¬(C|B ∨ l) ∧ PI(p1)] = (l is transparent)
= (B ∧ ¬(p2|B) ∧ PI(p2)) ∨ (B ∧ ¬(p1|B) ∧ PI(p1)) =
(gB(p2)∧PI(p2))∨ (gB(p1)∧PI(p1))⇒⊥ ∨ ⊥=⊥ by induction hypothesis.
Requirement (3) holds by induction hypothesis and l being transparent. �

On Interpolation in Decision Procedures 9

5 Interpolation and Equality

In propositional logic the notion of being A-colored, B-colored and transparent
is stable: if a literal is transparent in the initial state of a derivation, it will be
transparent in all. Once equality is added, even in the ground case, this is no
longer obvious. Assume that ta is an A-colored ground term, tb is a B-colored
ground term, and the AB-mixed equation ta � tb is derived. The congruence
classes of ta and tb have to be merged. Assume that the congruence class of ta
only contains A-colored terms, that of tb only contains B-colored terms, and ta
and tb are the representatives of their congruence classes. If tb were chosen as the
representative of the new class, it should become transparent. If either one of the
two classes already contains a transparent term t, the AB-mixed equation ta � tb
is not problematic, because t can be the representative of the new class. The issue
is the same if we reason about equality by rewriting: if an AB-mixed equation
ta � tb is generated, where both ta and tb are in normal form with respect to
the current set of equations, and ta � tb in the ordering, all occurrences of ta,
including those in A, should be replaced by tb, which should become transparent.
In order to prevent such instability of transparency, one needs to require that
all theories are equality-interpolating, a property that appeared first in [35]:

Definition 15. A theory T is equality-interpolating if for all T -formulæ A and
B, whenever A ∧B |=T ta � tb, where ta is an A-colored ground term and tb is
a B-colored ground term, then A ∧ B |=T ta � t ∧ tb � t for some transparent
ground term t.

Then, in congruence closure, it is sufficient to adopt t as the representative of the
new congruence class. Operationally, as suggested in [35], if ta � tb is generated
before ta � t and tb � t, one may add a new transparent constant c and the
equations ta � c and tb � c: if the theory is equality-interpolating, c � t will be
generated eventually, so that c is only a name for t. In a rewrite-based setting,
one needs to assume the following:

Definition 16. An ordering � is separating if t � s whenever s is transparent
and t is not, for all terms, or literals, s and t.

Thus, both ta and tb will be rewritten to t. This requirement on the ordering
appeared in [27], under the name AB-oriented ordering, and then in [22], where
it was justified intuitively in terms of symbol elimination: since interpolants
have to be transparent, the ordering should orient equations in such a way that
rewriting eliminates colored symbols. However, it was not related to the notion
of equality-interpolating theory.

Ground proofs made only of equalities and containing no AB-mixed equality
were termed colorable in [17]. We adopt the name and apply it to any proof made
of clauses:

Definition 17. A proof is colorable if all its clauses are.

10 M.P. Bonacina and M. Johansson

If A-local, B-local and AB-common, or global, are used in place of A-colored,
B-colored and transparent, respectively, acceptable proofs are called local.

It was proved in [35] that the quantifier-free fragments of the theories of
equality, linear arithmetic and non-empty, possibly cyclic lists are equality-
interpolating. The proof that the theory of lists is equality-interpolating relies
on that for the theory of equality. However, the proof for the latter was only
sketched in [35] (cf. Lemma 2 in [35]), and therefore we reconstruct it here using
the notion of separating ordering:

Lemma 2. If the ordering is separating, all ground proofs by resolution and
rewriting are colorable.

Proof: By induction on the structure of the proof:
Base Case: By definition, there are no AB-mixed literals in the input.
Induction Hypothesis: The premises do not contain AB-mixed literals.
Induction Case:

– Resolution: Since a ground resolvent is made of literals inherited from its
parents, it does not contain AB-mixed literals by induction hypothesis.

– Rewriting: let s � r be a ground equation such that s � r, and l[s] be the
literal it applies to. By induction hypothesis, neither s � r nor l[s] are AB-
mixed. Thus, since the ordering is separating and s � r, either r has the
same color as s or it is transparent. If s and r have the same color, also l[s]
and l[r] have the same color. If s is colored and r is transparent, then l[r]
either has the same color as l[s] or it is transparent, the latter if s was its
only colored term. In either case, l[r] is not AB-mixed. �

To show the following we only need to consider purely equational proofs, that
are represented as equational chains. Unfailing, or ordered, completion reduces
any ground equational proof s ∗↔ t to a rewrite proof, or valley proof in the form
s

∗→ ◦ ∗← t (see [2] for a recent treatment with ample references):

Theorem 2. The quantifier-free fragment of the theory of equality is equality-
interpolating.

Proof: Assume ground completion employs a separating ordering. If A ∧ B |=
ta � tb, where ta is an A-colored ground term and tb is a B-colored ground
term, then, since unfailing completion is refutationally complete, it generates a
contradiction from A∪B ∪ {ta �� tb}. The only rôle of ta �� tb in the derivation is
to be rewritten, until a contradiction is generated in the form t �� t. The resulting
proof is made only of rewriting steps and therefore it is a rewrite proof ta

∗→ t
∗←

tb. Since the ordering is separating, this proof contains no AB-mixed equations
by Lemma 2, which means that it must contain at least a transparent term.
Since the ordering is separating, the smallest term t is transparent. It follows
that A ∧B |= ta � t ∧ tb � t, because the inferences are sound. �

From now on, we assume that the built-in theories Ti, 1 ≤ i ≤ n, are equality-
interpolating, so that there are no AB-mixed literals, and all proofs are colorable.

On Interpolation in Decision Procedures 11

6 Interpolation for Equality Sharing and DPLL(T)

The treatment of interpolation for equality sharing in [35] temporarily assumes
that the theories in T =

⋃n
i=1 Ti are convex, so that it is sufficient to propagate

equalities. We do not need to assume convexity, not even as a temporary as-
sumption, neither we need to deal with propagation of disjunctions, because we
adopt model-based theory combination, where only equalities are propagated.
For equality sharing, the input A ∪ B is a set of ground T -literals, or unit
T -clauses. Separation applies in such a way to respect colors: for example, if
f(g(a)) � b, where f and g belong to the signatures of different theories, be-
comes f(c) � b ∧ g(a) � c, the new constant c is stipulated to be A-colored,
B-colored or transparent, depending on whether g(a) is A-colored, B-colored or
transparent, respectively.

Every Qi deals with a set Ai ∪ Bi ∪ K, where Ai contains the Ti-literals in
A, Bi contains the Ti-literals in B, and K is the set of propagated equalities.
Although for equality sharing it suffices to propagate equalities between shared
constants, in DPLL(T) the propagation is done by adding the literal to M ,
and model-based theory combination may propagate equalities between ground
terms. Thus, we assume that K is a set of equalities between ground terms.

We assume that each Qi is capable of generating Ti-interpolants for its
proofs. A crucial observation in [35] is that these Ti-interpolants cannot be
Ti-interpolants of (A,B), since the input to Qi is Ai ∪ Bi ∪ K. They are Ti-
interpolants of some partition (A′, B′) of Ai ∪ Bi ∪ K. This is where the as-
sumption that theories are equality-interpolating plays a rôle: K contains no
AB-mixed literals. Therefore, it is possible to define A′ and B′ based on colors
as defined by the original (A,B) partition, using projections with respect to A
and B: let A′ be (Ai∪Bi∪K)|A = Ai∪K|A andB′ be (Ai∪Bi∪K)|B = Bi∪K|B.
It follows that LA′ = LA, LB′ = LB , and what is transparent with respect to
(A′, B′) is transparent with respect to (A,B), so that Ti-interpolants of (A′, B′)
can be used to build the T -interpolant of (A,B):

Definition 18. For all ground literals l, such that Ai ∪ Bi ∪ K �Ti l, where
Ai is the set of Ti-literals in A, Bi is the set of Ti-literals in B, and K is
a set of propagated equalities between ground terms, the theory-specific partial
interpolant of l, denoted by PIi

(A′,B′)(l), is the Ti-interpolant of (A′∧¬(l|A), B′∧
¬(l|B)) generated by Qi, where A′ = Ai ∪K|A and B′ = Bi ∪K|B.

Note how there is no need to require that only equalities between shared con-
stants are propagated.

In equality sharing the refutation is found by one of the theories, and therefore
has the form Ai ∪ Bi ∪ K �Ti⊥ for some i. The method of [35] shows how
to extract a T -interpolant of (A,B) from such a refutation, by combining the
theory-specific partial interpolants computed by the Qi’s for the propagated
equalities in K. We state it as an interpolation system for equality sharing:

Definition 19 (EQSH interpolation system). Let C be a literal, or unit
clause, that appears in a refutation of A ∪B by equality sharing:

12 M.P. Bonacina and M. Johansson

– If C ∈ A, then PI(C) = ⊥,
– If C ∈ B, then PI(C) = �,
– If Ai ∪Bi ∪K �Ti C for some i, 1 ≤ i ≤ n, then

PI(C) = (PIi
(A′,B′)(C) ∨

∨

l∈A′
PI(l)) ∧

∧

l∈B′
PI(l),

where A′ = Ai ∪K|A and B′ = Bi ∪K|B.

If there were only one theory, K would be empty, and the partial interpolant in
the inductive case of Definition 19 would be equal to the theory-specific partial
interpolant in that theory.

Theorem 3 (Yorsh and Musuvathi, 2005). EQSH is a complete interpola-
tion system for equality sharing.

Proof: We need to prove that for all unit clauses C in the refutation, PI(C)
satifies Requirements (1), (2) and (3), listed at the end of Section 2, in theory
T . The base case is the same as for Theorem 1. The inductive case, for a C such
that Ai ∪Bi ∪K �Ti C for some i, 1 ≤ i ≤ n, requires another induction on K:
Base case: if K = ∅, then A′ = Ai, B′ = Bi, and PI(C) = PIi

(A′,B′)(C).
By Definition 18, PI(C) is a Ti-interpolant of (Ai ∧¬(C|A), Bi ∧¬(C|B)); since
Ai ⊆ A and Bi ⊆ B, PI(C) is also a T -interpolant of A∧¬(C|A) and B∧¬(C|B).
Induction case: if K �= ∅, then A′ = Ai ∪ K|A, B′ = Bi ∪ K|B and PI(C) =
(PIi

(A′,B′)(C) ∨
∨

l∈K|A PI(l)) ∧
∧

l∈K|B PI(l), because PI(l) = ⊥ for all l ∈ Ai

and PI(l) = � for all l ∈ Bi.
We continue with the main claim:
Induction hypothesis: for all l ∈ K|A, PI(l) is a T -interpolant of (A∧¬(l|A), B∧
¬(l|B)), that is, a T -interpolant of (A∧¬l, B), because l|A = l and l|B = ⊥, since
l ∈ K|A; for all l ∈ K|B, PI(l) is a T -interpolant of (A∧¬(l|A), B∧¬(l|B)), that
is, a T -interpolant of (A,B ∧ ¬l), because l|A = ⊥ and l|B = l, since l ∈ K|B;
so that the inductive hypothesis is:

– For all l ∈ K|A,
(1A) A ∧ ¬l �T PI(l) or, equivalently, A �T l ∨ PI(l),
(2A) B ∧ PI(l) �T⊥,
(3A) PI(l) is transparent; and
– For all l ∈ K|B,
(1B) A �T PI(l),
(2B) B ∧ ¬l ∧ PI(l) �T⊥, or, equivalently, B ∧ PI(l) �T l,
(3B) PI(l) is transparent.

Induction case:

1. A ∧ ¬(C|A) �T PI(C):
By Definition 18, Ai ∧K|A ∧¬(C|A) �Ti PI

i
(A′,B′)(C), or, equivalently, Ai ∧

¬(C|A) �Ti ¬K|A ∨ PIi
(A′,B′)(C) (*), where ¬K|A is the disjunction ¬l1 ∨

. . . ∨ ¬lq, if K|A is the conjunction l1 ∧ . . . ∧ lq. By induction hypothesis

On Interpolation in Decision Procedures 13

(1A), we have A �T lj ∨ PI(lj) for 1 ≤ j ≤ q (**). By q resolution steps
between (*) and (**), and since A ⇒ Ai, it follows that A ∧ ¬(C|A) �T
PIi

(A′,B′)(C) ∨
∨

l∈K|A PI(l). By induction hypothesis (1B), A �T PI(l) for
all l ∈ K|B. Therefore, we conclude that A ∧ ¬(C|A) �T (PIi

(A′,B′)(C) ∨
∨

l∈K|A PI(l)) ∧
∧

l∈K|B PI(l).
2. B ∧ ¬(C|B) ∧ PI(C) �T⊥:

By Definition 18, Bi ∧K|B ∧ ¬(C|B) ∧ PIi
(A′,B′)(C) �Ti⊥. Since B ⇒ Bi,

we have B∧K|B ∧¬(C|B)∧PIi
(A′,B′)(C) �Ti⊥ (*). By induction hypothesis

(2A), B ∧ PI(l) �T⊥ for all l ∈ K|A, and thus B ∧
∨

l∈K|A PI(l) �T⊥,
and B ∧K|B ∧ ¬(C|B) ∧

∨
l∈K|A PI(l) �T⊥ (**). Combining (*) and (**)

gives B∧K|B∧¬(C|B)∧(PIi
(A′,B′)(C)∨

∨
l∈K|A PI(l)) �T⊥, or, equivalently,

B∧¬(C|B)∧(PIi
(A′,B′)(C)∨

∨
l∈K|A PI(l)) �T ¬K|B (†), where ¬K|B is the

disjunction ¬l1∨ . . .∨¬lq , if K|B is the conjunction l1∧ . . .∧ lq. By induction
hypothesis (2B), B ∧ PI(lj) �T lj for 1 ≤ j ≤ q (‡). By q resolution steps
between (†) and (‡), we get B ∧ ¬(C|B) ∧ (PIi

(A′,B′)(C) ∨
∨

l∈K|A PI(l)) ∧∧
l∈K|B PI(l) �T⊥, that is, B ∧ ¬(C|B) ∧ PI(C) �T⊥.

3. PI(C) is transparent, because PIi
(A′,B′)(C) is transparent by Definition 18,

and the PI(l)’s are transparent by induction hypotheses (3A) and (3B). �

This proof does not depend on assuming that K contains only equalities between
shared constants, neither does it depend on assuming that K contains all such
equalities entailed by the theories. Thus, EQSH is a complete interpolation sys-
tem for equality sharing, regardless of whether equality sharing is implemented
in its original form, or by model-based theory combination.

Having an interpolation system for DPLL and an interpolation system for
equality sharing, we have all the ingredients for an interpolation system for
DPLL(T). Let A andB be two sets of ground T -clauses, for which we need to find
a T -interpolant. Let CPT be the set of the T -conflict clauses that appear in the
DPLL(T)-refutation of A∪B (cf. Definition 11). Such a refutation shows that A∪
B is T -unsatisfiable, by showing that A∪B∪CPT is propositionally unsatisfiable.
An interpolation system for DPLL(T) will be given by an interpolation system
for propositional resolution plus partial interpolants for the T -conflict clauses.
A clause C is a T -conflict clause, because its negation ¬C, which is a set, or
conjunction, of literals, was found T -unsatisfiable. Then, (¬C)|A ∧ (¬C)|B is
T -unsatisfiable, and we can compute a T -interpolant of ((¬C)|A, (¬C)|B) by
EQSH. This T -interpolant provides the partial interpolant for C.

We call the resulting interpolation system HKPYM–T, because it is obtained
by adding to HKPYM (cf. Definition 13) another case for T -conflict clauses. The
case for T -conflict clauses is a third base case, because they are sort of input
clauses from the point of view of the propositional engine:

Definition 20 (HKPYM–T interpolation system). Let c : C be a clause
that appears in a DPLL(T)-refutation of A ∪B:

– If c : C ∈ A, then PI(c) =⊥,

14 M.P. Bonacina and M. Johansson

– If c : C ∈ B, then PI(c) = �,
– If c : C is generated by T-Conflict, PI(c) is the T -interpolant of

((¬C)|A, (¬C)|B) produced by EQSH from the refutation ¬C �T⊥;
– If c : C ∨D is a propositional resolvent of p1 : C ∨ l and p2 : D ∨ ¬l then:
• If l is A-colored, then PI(c) = PI(p1) ∨ PI(p2),
• If l is B-colored, then PI(c) = PI(p1) ∧ PI(p2) and
• If l is transparent, then PI(c) = (l ∨ PI(p1)) ∧ (¬l ∨ PI(p2)).

The case analysis on literals resolved upon remains unchanged, because the re-
quirement that all theories in T are equality-interpolating guarantees that the
T -conflict clauses do not introduce in the proof AB-mixed literals. The com-
pleteness of HKPYM–T follows from the completeness of HKPYM and EQSH.

7 Future Work

We are working on interpolation for superposition [3] in order to obtain an in-
terpolation system for the theorem proving method DPLL(Γ +T) [4], which
integrates a superposition-based inference system Γ into DPLL(T). Interpola-
tion for ground superposition proofs was approached in [27] and then explored
further in [23], using a notion of colored proof, which is stronger than colorable,
since it excludes AB-mixed clauses. The observation that a separating ordering
makes proofs colorable (cf. Lemma 2) generalizes easily to ground proofs in a
full-fledged superposition-based inference system [3]. The analysis of interpola-
tion and equality reported here means that for DPLL(Γ+T) we need to assume
that the built-in theories in T are equality-interpolating and the ordering used
by Γ is separating. The remark that the interpolation system of [35] for equality
sharing works also for model-based theory combination is another step towards
interpolation in DPLL(Γ+T), since DPLL(Γ+T) uses model-based theory com-
bination.

References

1. Bonacina, M.P.: On theorem proving for program checking – Historical perspective
and recent developments. In: Fernandez, M. (ed.) Proc. of the 12th Int. Symp. on
Principles and Practice of Declarative Programming, pp. 1–11. ACM Press, New
York (2010)

2. Bonacina, M.P., Dershowitz, N.: Abstract canonical inference. ACM Trans. on
Computational Logic 8(1), 180–208 (2007)

3. Bonacina, M.P., Johansson, M.: On theorem proving with interpolation for program
checking. In: Technical report, Dipartimento di Informatica. Università degli Studi
di Verona (April 2011)

4. Bonacina, M.P., Lynch, C.A., de Moura, L.: On deciding satisfiability by theorem
proving with speculative inferences. Journal of Automated Reasoning, 1–29 (in
press); (Published online December 22, 2010) doi:10.1007/s10817-010-9213-y

5. Bradley, A.R., Manna, Z. (eds.): The Calculus of Computation – Decision Proce-
dures with Applications to Verification. Springer, Heidelberg (2007)

On Interpolation in Decision Procedures 15

6. Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: An Interpolating Sequent Cal-
culus for Quantifier-Free Presburger Arithmetic. In: Giesl, J., Hähnle, R. (eds.)
IJCAR 2010. LNCS, vol. 6173, pp. 384–399. Springer, Heidelberg (2010)

7. Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: Program verification via Craig
interpolation for Presburger arithmetic with arrays. Notes of the 6th Int. Verifica-
tion Workshop (2010), http://www.philipp.ruemmer.org/

8. Bruttomesso, R., Ghilardi, S., Ranise, S.: Rewriting-based quantifier-free interpola-
tion for a theory of arrays. In: Proc. of the 22nd Int. Conf. on Rewriting Techniques
and Applications, LIPICS. Leibniz-Zentrum für Informatik, Dagsthul Publishing
(2011)

9. Bruttomesso, R., Rollini, S., Sharygina, N., Tsitovich, A.: Flexible interpolation
generation in satisfiability modulo theories. In: Proc. of the 14th Int. Conf. on
Computer-Aided Design, pp. 770–777. IEEE Computer Society Press, Los Alamitos
(2010)

10. Chadha, R., Plaisted, D.A.: On the mechanical derivation of loop invariants. Jour-
nal of Symbolic Computation 15(5-6), 705–744 (1993)

11. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient Interpolant Generation in Satis-
fiability Modulo Theories. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 397–412. Springer, Heidelberg (2008)

12. Cimatti, A., Griggio, A., Sebastiani, R.: Interpolant Generation for UTVPI. In:
Schmidt, R. (ed.) CADE-22. LNCS (LNAI), vol. 5663, pp. 167–182. Springer, Hei-
delberg (2009)

13. de Moura, L., Bjørner, N.: Model-based theory combination. In: Krstić, S., Oliveras,
A. (eds.) CAV 2007. ENTCS, vol. 198(2), pp. 37–49. Elsevier, Amsterdam (2008)

14. D’Silva, V.: Propositional Interpolation and Abstract Interpretation. In: Gordon,
A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 185–204. Springer, Heidelberg (2010)

15. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant Strength.
In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944,
pp. 129–145. Springer, Heidelberg (2010)

16. Fuchs, A., Goel, A., Grundy, J., Krstić, S., Tinelli, C.: Ground Interpolation for the
Theory of Equality. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS,
vol. 5505, pp. 413–427. Springer, Heidelberg (2009)

17. Goel, A., Krstić, S., Tinelli, C.: Ground Interpolation for Combined Theories. In:
Schmidt, R. (ed.) CADE-22. LNCS, vol. 5663, pp. 183–198. Springer, Heidelberg
(2009)

18. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Leroy, X. (ed.) Proc. of the 31st ACM SIGACT-SIGPLAN Symp. on
Principles of Programming Languages, pp. 232–244. ACM Press, New York (2004)

19. Hoder, K., Kovács, L., Voronkov, A.: Interpolation and Symbol Elimination in
Vampire. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173,
pp. 188–195. Springer, Heidelberg (2010)

20. Huang, G.: Constructing Craig interpolation formulas. In: Proc. of the 1st Annual
Int. Conf. on Computing and Combinatorics, pp. 181–190. Springer, Heidelberg
(1995)

21. Kapur, D., Majumdar, R., Zarba, C.G.: Interpolation for data structures. In: De-
vambu, P. (ed.) Proc. of the 14th ACM SIGSOFT Symp. on the Foundations of
Software Engineering, ACM Press, New York (2006)

22. Kovács, L., Voronkov, A.: Finding loop invariants for programs over arrays using a
theorem prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503,
pp. 470–485. Springer, Heidelberg (2009)

http://www.philipp.ruemmer.org/

16 M.P. Bonacina and M. Johansson

23. Kovács, L., Voronkov, A.: Interpolation and Symbol Elimination. In: Schmidt, R.
(ed.) CADE-22. LNCS (LNAI), vol. 5663, pp. 199–213. Springer, Heidelberg (2009)

24. Kraj́ıček, J.: Interpolation theorems, lower bounds for proof systems, and indepen-
dence results for bounded arithmetic. Journal of Symbolic Logic 62(2), 457–486
(1997)

25. McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: Hunt, W.J.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

26. McMillan, K.L.: An interpolating theorem prover. Theoretical Computer Sci-
ence 345(1), 101–121 (2005)

27. McMillan, K.L.: Quantified Invariant Generation Using an Interpolating Saturation
Prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 413–427. Springer, Heidelberg (2008)

28. McMillan, K.L.: Lazy Annotation for Program Testing and Verification. In: Cook,
B., Jackson, P., Touili, T. (eds.) CAV 2010. LNCS, vol. 6174, pp. 104–118. Springer,
Heidelberg (2010)

29. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. on Programming Languages and Systems 1(2), 245–257 (1979)

30. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure.
Journal of the ACM 27(2), 356–364 (1980)

31. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T).
Journal of the ACM 53(6), 937–977 (2006)

32. Pudlàk, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. Journal of Symbolic Logic 62(3), 981–998 (1997)

33. Sebastiani, R.: Lazy satisfiability modulo theory. Journal on Satisfiability, Boolean
Modelling and Computation 3, 141–224 (2006)

34. Shankar, N.: Automated deduction for verification. ACM Computing Sur-
veys 41(4), 40–96 (2009)

35. Yorsh, G., Musuvathi, M.: A Combination Method for Generating Interpolants. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 353–368. Springer,
Heidelberg (2005); Early version in MSR-TR-2004-108 (October 2004)

36. Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based
checker: practical implementations and other applications. In: Proc. of the Conf. on
Design Automation and Test in Europe, pp. 10880–10885. IEEE Computer Society
Press, Los Alamitos (2003)

First-Order Tableaux in Applications

(Extended Abstract)

Ulrich Furbach

Department of Computer Science
University of Koblenz-Landau

uli@uni-koblenz.de

High performance first-order theorem proving is dominated by saturation-based
proof procedures. This is true, at least when one looks at competitions like the
yearly CASC, the CADE ATP System Competition, where the winners in the
CNF division (conjunctive normal form, non-propositional problems) usually use
superposition-based calculi. This was different in the early days of CASC, when
a tableau prover (SETHEO) even won the MIX category.

Since many years the Koblenz AI Group has been focusing its research on
tableau-based automated reasoning. As an attempt to bring together the best
of two worlds, namely a ‘single proof object’ from tableau proving and free
variables from resolution, we came up with the hyper tableau calculus [2] in
the 1990s. This is a clause normal form tableau calculus which implements the
main idea from hyperresolution, which is a kind of simultaneous resolution of all
negative literals in a clause. When the calculus extends a branch of the tableau,
the unifier, which is constructed for this inference rule, is applied only to the
variables of the newly generated leaves – there are no rigid variables anymore.

In [3] we managed to incorporate efficient equality handling into hyper table-
aux. We used an adapted version of the superposition inference rule, where
equations used for paramodulation are drawn (only) from a set of positive unit
clauses, which forms the current candidate model. The calculus also features a
generic, semantically justified simplification rule which covers many redundancy
elimination techniques known from superposition theorem proving. This is im-
plemented in the theorem prover E-KRHyper, which is the main tool for the
applications described in the following.

Applications. In applications it turned out to be very helpful to use the proof ob-
ject which is manipulated by the calculus, i. e. the computation, as a result of the
proof. In the projects Slicing Book and in2math we used the hyper tableau proof
to ‘calculate’ a LaTex document (see [1]). For this an entire book is represented
as a knowledge base of small pieces of LaTex code together with meta-data. If a
user wants to read such a book, his personalized invocation of the book is formu-
lated as a query, for which a proof attempt is made by the prover. If this results
in an open branch, the nodes of the branch contain the identifiers of those LaTex
pieces which together form the document which meets the users requirements.

Another application of E-KRHyper is within the LogAnswer -project ([5]).
LogAnswer is an open domain question answering system; it receives a natural-
language question regarding any topic, and it returns a natural-language answer

K. Brünnler and G. Metcalfe (Eds.): TABLEAUX 2011, LNAI 6793, pp. 17–19, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

18 U. Furbach

found in a knowledge base. The knowledge base consists of several parts: A for-
mal logical representation of a snapshot of the entire German Wikipedia. These
are 12 millions sentences which are transformed semi-automatically into a logical
representation. A second part consists of background knowledge, e. g . knowledge
about spatial and temporal relations, which is necessary to answer arbitrary nat-
ural language questions. Such a question is transformed into a logical represen-
tation; let us consider the question ‘Rudy Giuliani war Bürgermeister welcher
US-Stadt?’1 as a running example. The system generates from the Wikipedia
text 200 answer candidates, which are text passages which might contain ma-
terial to answer the question. For each of the 200 candidates the system takes
the logical representation and tries to prove the given query. For the entire pro-
cessing, the linguistic analysis of the query, the search for the 200 candidates
and the 200 proof tasks the system has a time limit of 5 seconds (this is the
maximum time we can keep the user waiting for an answer). While adapting the
E-KRHyper prover for this application we found several interesting problems
which might be of interest for other applications as well:

Time Restrictions. As mentioned above, the system has to perform over 200
proof tasks within short time; hence there is no chance to allow the prover a
very deep analysis within every proof. For each of the subgoals we give a time
limit which forces the prover to abort the current subgoal and to proceed with
the next one. In other words, completeness is no issue for this application. In
most cases we get a time-out for some of the proof attempts for a subgoal, even
if there exists a proof.

Relaxations. If LogAnswer gets a time-out for a subgoal, it deletes this subgoal
and tries the entire proof again. In our example query, which contains the nick-
name ‘Rudy’, it may happen that the knowledge base contains a passage about
the mayor Rudolph Giuliani and hence the system cannot prove that Rudy is the
mayor. Deleting the subgoal, which asked for the given name Rudy, results in a
proof with one relaxation. However we have to rate the generated answer a bit
lower in confidence, because of the relaxation. Currently we are working towards
using abductive reasoning for relaxations. Instead of deleting a subgoal we are
substituting it by a more general one, which can be deduced from a background
knowledge base.

Background Knowledge Base. Currently LogAnswer uses background knowledge
which consists of approx. 12,000 axioms. We are planning to extend this by us-
ing the general ontology OpenCyc, which contains 3.3 million formulae. This
mere number of the formulae challenges a prover. State of the art is to parti-
tion this huge set of clauses according to a given query and to use only those
partitions which are necessary for the proof. In our case the partitioning via
pre-processing is not possible, because relaxation results in several, previously
not known queries. As a way out we are working towards clustering methods,
which can be used without knowing the query in advance.
1 Rudy Giuliani was mayor of which US city?

First-Order Tableaux in Applications (Extended Abstract) 19

Webservices. Another possibility to extend the knowledge base is to use ex-
ternal webservices. We modified and extended the inference rules of the hyper
tableau calculus, such that calls of external services can be managed. Currently
E-KRHyper is connected to Yahoo GeoPlanet, a weather service and a currency
converter.

Over the years we learned from various applications that theorem provers for
applications cannot be used off the peg. They have to be modified and extended
and indeed, it turned out that this offers a lot of interesting and challenging
theoretical problems.

Currently we are working towards an application where LogAnswer is a par-
ticipant in a question answering forum. For such an application it is of particular
importance to avoid wrong answers, which can occur although the calculus is
correct (see [4]).

References

1. Baumgartner, P., Furbach, U., Gross-Hardt, M., Sinner, A.: Living Book – De-
duction, Slicing, and Interaction. Journal of Automated Reasoning 32(3), 259–286
(2004)

2. Baumgartner, P., Furbach, U., Niemelä, I.: Hyper tableaux. In: Alferes, J.J., Pereira,
L.M., Orlowska, E. (eds.) JELIA 1996. LNCS, vol. 1126, pp. 1–17. Springer,
Heidelberg (1996)

3. Baumgartner, P., Furbach, U., Pelzer, B.: Hyper tableaux with equality. In: Pfen-
ning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 492–507. Springer, Heidel-
berg (2007)

4. Dong, T., Furbach, U., Glöckner, I., Pelzer, B.: A natural language question answer-
ing system as a participant in human Q&A portals. To appear in IJCAI (2011)

5. Furbach, U., Glöckner, I., Pelzer, B.: An application of automated reasoning in
natural language question answering. AI Commun. 23(2-3), 241–265 (2010)

Proof Theory and Algebra

in Substructural Logics

Kazushige Terui

RIMS, Kyoto University,
Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan

It is quite well understood that propositional logics are tightly connected to
ordered algebras via algebraic completeness, and because of this connection proof
theory is often useful in the algebraic context too. A prominent example is that
one deductively proves the interpolation theorem for a given logic in order to
derive the algebraic amalgamation property for the corresponding variety as a
corollary. Other examples include uniform interpolation, disjunction property,
local deduction theorem, and termination of complete proof search with their
corresponding algebraic properties.

Proof theory is, however, not merely an external device for deriving algebraic
consequences as corollaries. The connection is even tighter, and it also works
inside algebra as a source of various algebraic constructions. For instance, Mae-
hara’s sequent-based method for proving the interpolation theorem gives rise to a
direct construction of an algebra required for the amalgamation property. Find-
ing a new variant of sequent calculus (such as hypersequent calculus) amounts
to finding a new variant of MacNeille completions (generalizations of Dedekind’s
completion Q ↪→ R). Proving cut elimination for such a generalized sequent cal-
culus is closely related to proving that a variety is closed under the corresponding
generalized completions. Finally, transforming Hilbert axioms into Gentzen rules
is not only important for proving cut elimination and related conservativity re-
sults, but also crucial for ensuring that the above proof theoretic constructions
do work in algebra properly.

In this talk, we will discuss such internal contributions of proof theory in
algebra. Our basic framework is substructural logics, which comprise linear, rel-
evance, fuzzy and superintuitionistic logics. Algebraically, they correspond to
varieties of residuated lattices, that include Heyting algebras and many others.
We will exemplify several proof theoretic methods that directly work for resid-
uated lattices, then develop a general theory for such internal constructions in
terms of residuated frames, and see their possibilities and limitations in terms
of the substructural hierarchy — a hierarchy that classifies nonclassical axioms
according to how difficult they are to deal with in proof theory.

K. Brünnler and G. Metcalfe (Eds.): TABLEAUX 2011, LNAI 6793, p. 20, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

CSymLean: A Theorem Prover for the Logic

CSL over Symmetric Minspaces

Régis Alenda and Nicola Olivetti

LSIS - UMR CNRS 6168, Université de Provence – St-Jérôme, Marseille (France)
regis.alenda@lsis.org, nicola.olivetti@univ-cezanne.fr

Abstract. The logic CSL of comparative concept similarity has been
introduced by Sheremet, et al. to capture a form of qualitative similarity
comparison. We present here CSymLean, the first theorem-prover for
CSL interpreted on symmetric minspaces. It is a Prolog implementation
of a labelled tableau calculus recently proposed for this logic, and it is
inspired by the Lean methodology.

1 The Logic CSL

CSL is a propositional modal logic introduced by Sheremet, Tishkovsky, Wolter
and Zakharyaschev for reasoning about the comparative similarity between con-
cepts and/or objects [4]. In CSL one can formulate assertions of the form “ob-
jects A are more similar to B than to C”. This type of assertions may be added
to an ontology to express qualitative comparisons between concepts. Moreover,
CSL can also be interpreted as a formalism for spatial reasoning where ”similar-
ity” is replaced by ”spatial closeness”. Formulas of CSL are defined as follows:
C,D

def= ⊥ | Pi | ¬C | C �D | C �D | C ⇔ D.
The semantics of CSL is defined in terms of distance spaces [4], that is to

say Kripke models equipped by a distance function. Different properties of the
distance function (namely, symmetry, triangular inequality and existence of the
minimum of a set of distances) give rise to variants of CSL. Its relations with
topological modal logics, axiomatisation, decidability and other properties are
extensively investigated in [5]. In this paper, we consider the case of CSL defined
by symmetric distances spaces where the minimum of a set of distances always
exists, the so-called symmetric minspace models. Briefly, a symmetric minspace
model has the form I = (Δ, d, .I) where Δ is a non-empty set and d is a metric
from Δ to R

≥0 satisfying the additional minspace property 1; the interpretation
of ⇔ is given by (A⇔ B)I = {x|d(x,AI) < d(x,BI)}.

It has been shown in [3] that the semantics of CSL can be equivalently formu-
lated in terms of preferental models that abstract away any reference to numeric
distances. The preferential semantics is closer to the standard semantics of modal
logic and it is more suitable for studying proof systems and automated deduction

1 The property is the following: d(C,D)
def
= inf{d(x, y) | x ∈ C, y ∈ D} = min{d(x, y) |

x ∈ C, y ∈ D} for all non-empty subsets C,D of Δ.

K. Brünnler and G. Metcalfe (Eds.): TABLEAUX 2011, LNAI 6793, pp. 21–26, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

22 R. Alenda and N. Olivetti

(T1⇔):
Γ [x : A ⇔ B, y : C]

Γ, y : ¬B | Γ, y : B
(F1⇔):

Γ [x : ¬(A ⇔ B), y : C]

Γ, y : A | Γ, y : ¬A

(T2⇔):
Γ [x : A ⇔ B]

Γ, z : f(x,A), z : A
(∗) (F2⇔):

Γ [x : ¬(A ⇔ B), y : A]

Γ, z : f(x,B), z : B
(∗)

(T3⇔):
Γ [x : A ⇔ B, z : f(x,A), y : B]

Γ, {x, z} < {x, y} (F3⇔):
Γ [x : ¬(A ⇔ B), z : f(x,B), y : A]

Γ, {x, y} ≤ {x, z}

(cnt):
Γ [x : A, y : B]

Γ (y/x) | Γ, {x, x} < {x, y}, {y, y} < {y, x} (asm):
Γ [{x, y} < {z, u}]
Γ, {z, u} ≤ {x, y}

(mod):
Γ [{x, y} ≤ {v, w}, {v, w} ≤ {z, u}]

Γ, {x, y} ≤ {z, u} (tr):
Γ [{x, y} < {v, w}, {v, w} < {z, u}]

Γ, {x, y} < {z, u}

(r⊥):
Γ [{x, y} < {z, u}, {x, y} ≤ {z, u}]

⊥ (⊥):
Γ [x : A, x : ¬A]

⊥
(*) z is a new label not occurring in the current branch.

Fig. 1. Tableau calculus TCSLs for CSL [3]

for this logic. In particular the tableau calculus implemented by CSymLean is
based on the preferential semantics of CSL. In a preferential model I = (Δ,<, .I)
the distance function is replaced by a total preorder < between two-element mul-
tisets of elements of the domain: {x, y} ≤ {z, u} stands for d(x, y) ≤ d(z, u). The
relation < satisfies some additional conditions, namely, pair-centering ({x, x} <
{x, y} or x = y), modularity, asymmetry, and limit assumption (for all non-
empty subsets C,D of Δ, min<{{x, y}|x ∈ C, y ∈ D} �= ∅). The interpretation
of ⇔ is given by:

(A⇔ B)I =
{
x ∈ Δ

∣
∣∃y ∈ AI , ∀z ∈ BI , {x, y} < {x, z}

}
.

A labelled tableau calculus TCSLs is presented in Figure 1 (obvious boolean
rules are omitted). Tableau formulas are either of the form x : A, or {x, y} <
{z, u} or z : f(x,A), the latter meaning intuitively that z is an A-element whose
distance from x is minimal. A tableau set Γ is a set of tableau formulas and
a tableau derivation is a tree whose nodes are tableau sets. The notation Γ [A]
means that A occurs in Γ . In the (cnt) rule Γ (y/x) denotes the result of sub-
stituting y by x in every tableau formulas of Γ . Finally, a rule is dynamic if it
introduces a new label (the rules (T2⇔) and (F2⇔)), and static if it does not.

In order to make the calculus terminating, some restrictions (blocking) on the
application of the rules are needed. Given a derivation branch B we assume a
chronological (hence strict) order in the introduction of the labels and we define
ΠΓ (x) = {A|A ∈ LCSL and x : A ∈ Γ}. There are three restrictions: the first one
(irredundancy) prevents unnecessary applications of the rules to a tableau set
if the corresponding saturation condition is already fulfilled by the tableau set,
the others two are: (Subset blocking) Do not apply (T2⇔) to x : A⇔ B ∈ Γ ,
or (F2⇔) to x : ¬(A⇔ B), y : A in Γ if there exists a label z older than x and
such that ΠΓ (x) ⊆ ΠΓ (z). (Centering) Apply (cnt) to x : A, y : B in Γ only if
x is older than y.

We say that a tableau set is finished if it is closed (ie: it contains ⊥) or no rule
is applicable to it and that a tableau derivation is finished if every leaf tableau
set is finished. Moreover, we say that a tableau set Γ in a derivation is bad if (i) it

A Theorem Prover for the Logic CSL over Symmetric Minspaces 23

is open (ie: not closed), (ii) it is finished (iii) there exist some label x and y such
that x is older than y and ΠΓ (y) ⊆ ΠΓ (x). Finally, a tableau derivation is closed
if all its leaf nodes are either closed or bad. A tableau derivation for a formula C
is a derivation whose root node is the tableau set {x : C} (for an arbitrary label
x). The formula C is satisfiable iff there exists an open tableau derivation for C.
Observe that the tableau calculus contains a non-standard closure condition: bad
tableau sets, although open, are disregarded; the intuitve reason is that they may
potentially provide an infinite model which would violate the limit assumption.

As shown in [3], the calculus is sound and complete for CSL over symmetric
minspaces; moreover, it always terminates under the above restricions, without
assuming any futher constraint on rule application strategy.

2 The Theorem Prover CSymLean

In this section we describe CSymLean, a Prolog implementation2 of the calcu-
lus TCSLs. The theorem prover is implemented using SWI-Prolog. The main
predicate, implementing the tableau calculus, is:

csl lean aux(Gamma, Labels, OldCCS, PrefRel, NPrefRel)

which succeeds if and only if Γ is unsatisifable, where the tableau set Γ is
partitioned into the Prolog lists Gamma, PrefRel and NPrefRel. Gamma is a list
containing, for each label x occurring in a tableau set, a pair [X,Formulas]
where Formulas is the list of all formulas F such that x : F ∈ Γ . In other
words, formulas of each node are grouped by the labels. Labels are represented
by Prolog’s constants. The argument Labels is the list of labels introduced in the
current tableau set. It has to be noted that this list is sorted (by construction)
in anti-chronological order. The predicate NewLabel is called by the dynamic
rules to create a new label, which will be added to the head of the list. OldCCS
is a list of pairs [X,A], where X is a label and A is a formula, used by dynamic
rules to check wether a label with f(x,A) already exists in the tableau set. The
lists PrefRel and NPrefRel contain lists [x,y,z,u], representing formulas of
the form {x, y} < {z, u} and {x, y} ≤ {z, u} respectively. To add a preferential
relation, we call the predicate addPrefRel(X,Y,Z,U,Prel,NewPrel) which is
defined as follows:

addPrefRel(X,Y,Z,U,PRel,NPrel) :-
ordLabel(X,Y,X1,Y1),
ordLabel(Z,U,Z1,U1),
union([[X1,Y1,Z1,U1]],PRel,NPrel).

ordLabel(X,Y,Y,X) :- Y @< X, !.
ordLabel(X,Y,X,Y) :-.

Each pair of label is sorted according to the Prolog ordering of terms to encode
the fact that {x, y} = {y, x}. Thus, addPrefRel(X,Y,Z,U,Prel,NewPrel) is
equivalent to addPrefRel(Y,X,U,Z,Prel,NewPrel). As described in [3], we can
2 The source files can be found at: http://www.lsis.org/alendar/csymlean/

24 R. Alenda and N. Olivetti

adapt CSymLean to the non symmetric case by deleting the first clause of the
definition of ordLabel, so that the pairs will not be treated as symmetric.

As an example, to check whether (A ⇔ B) � (B ⇔ A) is unsatisfiable, one
queries CSymLean with the goal:

csl lean aux([[x,(a<<-b) and (b<<-a)], [x], [], [], []).

Each clause of the predicate csl clean aux encodes a rule. Their structure is
the same; each clause looks for a formula to which the corresponding rule could
be applied, then it checks if one of the termination restrictions prevent applica-
bility, and finally, the rule is applied. For instance, the clause which implements
the (F3⇔) rules is:

csl lean aux(Gamma, Labels, OldCCS, PrefRel, NPrefRel) :-
member([Z,ZFormulas],Gamma),
member(f(X,B),ZFormulas),
memberchk([X,XFormulas],Gamma),
member(neg(A <<- B), XFormulas),
member([Y,YFormulas],Gamma),
memberchk(A,YFormulas),
\+inPrel(X,Y,X,Z,NPrefRel),!,
addPrefRel(X,Y,X,Z,NPrefRel,NewNPrefRel),
csl lean aux(Gamma, Labels, OldCCS, PrefRel, NewNPrefRel).

The centering rule is not implemented by a csl lean aux clause and is han-
dled differently: when a dynamic rule needs to introduce a new label, it calls
the predicate csl lean cent. Intuitively, this predicate corresponds to an eager
application of the centering rule, just after the introduction of a new label.

Before applying a dynamic rule, we have to check whether its application is
blocked by subset blocking. This is implemented by the predicate
subsetBlocked(X,Gamma,LabelList),where X is a label, which succeeds if there
exists a label Y older than X such that ΠΓ (X) ⊆ ΠΓ (Y). For instance, here is the
clause implementing the (T 2⇔) rule:

csl lean aux(Gamma, Labels, OldCCS, PrefRel, NPrefRel):-
member([X,XFormulas],Gamma),
member(A <<- , XFormulas),
\+memberchk([X,A], OldCCS),
\+subsetBlocked(X,Gamma,Labels),!,
csl lean cent([A, f(X,A)],Labels,Gamma, Labels,

[[X,A]|OldCCS], PrefRel, NPrefRel).

If no rule is applicable (i.e: the tableau set is finished), we have to check whether
we have found a bad set. This is implemented by the last clause of csl lean aux,
which suceeds (and thus closes the branch) if there is a label in the tableau set
which is blocked by subset blocking.

csl lean aux(Gamma, Labels, , ,) :- isBadSet(Gamma,Labels).
isBadSet(Gamma,[X|Lab]) :- subsetBlocked(X,Gamma,[X|Lab]), !.
isBadSet(Gamma,[|Lab]) :- isBadSet(Gamma,Lab).

A Theorem Prover for the Logic CSL over Symmetric Minspaces 25

Statistics and Performance
We have tested CSymLean over randomly generated formulas (valid, unsatisfi-
able and satisfiable) on an Intel Core 2 Quad @ 2.0Ghz machine (4GB RAM)
with SWI Prolog 5.8.0 (32-bits version). The test samples have been generated
by fixing two parameters:

– the number of propositional variables involved in the generated formulas;
– the depth of connectives, i.e. the maximum level of nesting of connectives in

the generated formulas. This corresponds to the depth of the formula tree.

We consider two other theorem provers: CSymLean-NoSym is the non-symmetric
version of CSymLean, and CslLean 1.0 is an implementation of another tableau
calculus for the non symmetric case [2,1]. The table below shows the number of
proofs successfully completed (with either a positive or a negative answer) with
respect to a 1s time limit. The first column shows the two parameters taken
into account in generating test formulas mentioned above, namely the number
of propositional variables and the depth of the formulas. For each row, we have
considered 1000 test samples.

Prop. vars - Depth CSymLean CSymLean-NoSym CslLean 1.0
2 - 2 1000 1000 998
2 - 4 965 969 937
3 - 4 966 967 941
5 - 7 568 573 652

We also tested it on a set of significant formulas including various instances
of CSL axioms (the list is available on the web page), axioms from modal and
conditional logics that can be translated in CSL, and finally the following for-
mula, which is unsatisfiable in symmetric minspaces whereas it is satisfiable in
non-symmetric ones [4], which seems particularly hard3:

p ��(p→ (q ⇔ r)) ��(q → (r ⇔ p)) ��(r → (p⇔ q)).

3 Conclusion and Further Work

We have presented CSymLean, the first theorem prover for CSL over symmet-
ric minspaces, based on a recently proposed tableau calculus for this logic. Al-
though it does not comprise any optimization, its performances are encouraging.
Of course many optimizations are possible, either based on refinements of the
calculus itself (logical restrictions on the rules), or on a more efficient handling
of data structures and rule application. We intend to experiment both.

References

1. Alenda, R., Olivetti, N., Pozzato, G.L.: Csl-lean: A theorem-prover for the logic of
comparative concept similarity. In: Proc. M4M-6. ENTCS, vol. 262, pp. 3–16 (2010)

2. Alenda, R., Olivetti, N., Schwind, C.: Comparative concept similarity over
minspaces: Axiomatisation and tableaux calculus. In: Giese, M., Waaler, A. (eds.)
TABLEAUX 2009. LNCS, vol. 5607, pp. 17–31. Springer, Heidelberg (2009)

3 It took 3.8 seconds for CSymLean to prove its unsatisfiability.

26 R. Alenda and N. Olivetti

3. Alenda, R., Olivetti, N., Schwind, C., Tishkovsky, D.: Tableau calculi for CSL over
minspaces. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 52–66.
Springer, Heidelberg (2010)

4. Sheremet, M., Tishkovsky, D., Wolter, F., Zakharyaschev, M.: Comparative similar-
ity, tree automata, and diophantine equations. In: Sutcliffe, G., Voronkov, A. (eds.)
LPAR 2005. LNCS (LNAI), vol. 3835, pp. 651–665. Springer, Heidelberg (2005)

5. Sheremet, M., Wolter, F., Zakharyaschev, M.: A modal logic framework for reasoning
about comparative distances and topology. Annals of Pure and Applied Logic 161(4),
534–559 (2010)

Schemata of SMT-Problems�

Vincent Aravantinos and Nicolas Peltier

Laboratoire d’Informatique de Grenoble/CNRS
{Vincent.Aravantinos,Nicolas.Peltier}@imag.fr

Abstract. A logic is devised for reasoning about iterated schemata of
SMT problems. The satisfiability problem is shown to be undecidable
for this logic, but we present a proof procedure that is sound, complete
w.r.t. satisfiability and terminating for a precisely characterized class of
problems. It is parameterized by an external procedure (used as a black
box) for testing the satisfiability of ground instances of the schema in
the considered theory (e.g. integers, reals etc.).

1 Introduction

In [1] a logic is defined for reasoning on schemata of propositional formulae. It
extends standard propositional logic by using indexed symbols (e.g. p0, pi, pi+1,
etc.), arithmetic parameters (i.e. constant symbols interpreted as natural num-
bers) and iterated connectives such as

∨n
i=0 pi or

∧n
i=0 pi (where n denotes a

parameter, not a fixed number) that can be viewed as formulae with bounded
quantifiers ∃i ∈ [0, n], pi and ∀i ∈ [0, n], pi. It is shown that the validity prob-
lem is undecidable when arbitrary indices and (linear) arithmetic expressions are
considered. The problem is co-semi-decidable and decision procedures of “reason-
able” complexity can be defined for some interesting classes (see [2] for details).
A simple example is the following schema: p0 ∧ pn+1 ∧

∧n
i=0(pi ⇔ ¬pi+1), that

is satisfiable if and only if n is odd. This formula can be reduced into a propo-
sitional one by fixing the value of n, e.g. for n← 0: p0 ∧ p1 ∧ (p0 ⇔ ¬p1), or for
n← 1: p0 ∧ p2 ∧ (p0 ⇔ ¬p1)∧ (p1 ⇔ ¬p2). A SAT-solver can determine whether
the formula is satisfiable or unsatisfiable for a given value of n and a model can
be found (if it exists) by enumerating all possible values (n← 0, 1, 2, . . .). How-
ever, proving that such a formula is unsatisfiable for all values of n (which is the
case for instance if one adds the constraint n = 2 × m) is much more difficult,
and usually requires to use some particular form of mathematical induction. The
proof procedure described in [1] combines usual tableaux-based decomposition
rules with lazy instantiation of the parameter and a loop detection mechanism
that captures a restricted form of “descente infinie” induction reasoning ensuring
completeness in some cases.

Our aim in this paper is to extend these results to schemata of (quantifier-free)
SMT-problems (standing for Satisfiability Modulo Theory). Proving the unsat-
isfiability (or satisfiability) of a ground formula modulo some background theory
� This work has been partly funded by the project ASAP of the French Agence Na-

tionale de la Recherche (ANR-09-BLAN-0407-01).

K. Brünnler and G. Metcalfe (Eds.): TABLEAUX 2011, LNAI 6793, pp. 27–42, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

28 V. Aravantinos and N. Peltier

is an essential problem in computer science, in particular for the automatic veri-
fication of complex systems. In software verification for example, the background
theory can define data structures such as integers, arrays or lists. These problems
are known as T -decision problems or more commonly, SMT problems, and the
tools capable of solving these problems are known as T -decision procedures, or
SMT solvers. A lot of research has been devoted to the design of SMT solvers
that are both efficient and scalable. A survey can be found in [3].

The schemata we consider in this paper may be seen as (count-
ably infinite) families of SMT-problems, parameterized by a natu-
ral number n. Both the signature of problems and the set of axioms
may depend on n. Consider for instance the following formula, rep-
resentative of those arising in, e.g, verifying programs handling arrays:∧n

i=0 ai+1 � ai∧
∧n

i=0 bi+1 	 bi∧a0 � b0∧an+1 	 c∧bn+1
 c. It is not hard to
see that this example is unsatisfiable. Again, by instantiating n, say to 1, we get
a ground formula: a1 � a0∧a2 � a1∧b1 	 b0∧b2 	 b1∧a0 � b0∧a2 	 c∧b2
 c.
The satisfiability of this formula modulo, e.g., arithmetic can be tested by
any SMT-solver. However proving that the original schema is unsatisfiable for
every n ∈ N is out of the scope of these tools. One can of course encode such a
schema as a non-ground (i.e. with universal quantifier) SMT-problem, simply
by considering n as a constant symbol of sort integer, by writing indices as
arguments, and by replacing iterated connectives by quantifiers:

∀i, 0 	 i ∧ i 	 n⇒ a(i + 1) � a(i)
∧ ∀i, 0 	 i ∧ i 	 n⇒ b(i + 1) 	 b(i)
∧ a(0) � b(0) ∧ a(n + 1) 	 c ∧ b(n + 1)
 c

However, this is of no practical use since of course there is no complete and
terminating procedure for solving non-ground SMT-problem. The heuristics that
are used by SMT-solvers to handle quantifiers, although rather efficient and pow-
erful in some cases, cannot handle such formulae. For instance the well-known
SMT-solver Yices [6] that uses E-matching [5] for instantiating universally quan-
tified variables fails to establish the unsatisfiability of this schema. Some com-
plete techniques have been proposed for instantiating universal quantifiers [7]
but they do not terminate in our case. Alternatively, indexed constant symbols
can be modeled by arrays (with quantifiers on the indices), however the ob-
tained formulae are again outside the known decidable classes [4]. The reason is
that the formulae obtained by encoding schemata of SMT-problems cannot, in
general, be reduced to unsatisfiable ground formulae by finitely grounding the
universally quantified variables: the logic is not compact and using mathematical
induction is required. Our approach extends SMT-solvers with a limited form of
mathematical induction.

2 Preliminaries

We define the logic of T -schemata, where T is a theory (more precisely a class of
interpretations) for which the satisfiability problem is assumed to be decidable.

Schemata of SMT-Problems 29

2.1 Syntax

We consider terms built on a signature containing indexed constants and func-
tion symbols, where the indices are arithmetic expressions. We assume that the
symbols are indexed by at most one index (e.g. ai,j is forbidden) and that the
expressions contain at most one occurrence of an arithmetic variable (e.g. ai+j

and even ai+i are not allowed, but fi+1(ai) and f0(ai) are)1. We also assume
that the considered formulae contain a unique parameter, which is interpreted
by a natural number. More formally:

Let n and i be two distinct symbols. n is the parameter and i is the index
variable. The set of index expressions is {i, i+1}∪{succk(0) | k ∈ N}∪{succk(n) |
k ∈ N}. As usual, the expressions succk(0) and succk(n) (where k ∈ N) are
written k and n + k respectively.

Let Sorts denote a set of sort symbols (containing in particular a symbol
bool) and let F denote a set of function symbols, partitioned into two disjoint
sets F = FI FNI: the indexed symbols FI and the non-indexed symbols FNI.
Each symbol f ∈ F is mapped to a unique profile of the form s1, . . . , sk → s,
where k ∈ N and s1, . . . , sk, s ∈ Sorts. This is written f : s1, . . . , sk → s or
simply f : s if k = 0 (in this case f is a constant). If s = bool then f is
a predicate symbol. We call k the arity of f . We assume that FNI contains in
particular a symbol true : bool.

The set T(s) of terms of sort s is the smallest set of expressions satisfying
the following conditions:
- If f : s1, . . . , sk → s is a non-indexed function symbol and if u1, . . . , uk are

terms of sort s1, . . . , sk respectively, then f(u1, . . . , uk) is a term of sort s.
- If f : s1, . . . , sk → s is an indexed function symbol, if α is an index expression

and if u1, . . . , uk are terms of sort s1, . . . , sk respectively, then fα(u1, . . . , uk)
is a term of sort s.

Note that, by construction, the only variable occurring in a term is i (there are
no non-arithmetic variables).

For instance, if FI = {a : elem, f : elem, elem → elem} and FNI = {b :
elem, p : elem → bool} then a0, an, ai+1, fn+2(a0, b), f0(ai+1, a3) are terms of
sort elem and p(ai+1) is a term of sort bool. Terms such as ai+2, ai+n are not
allowed (indeed, i + 2 and i + n are not index expressions).

Now we define the syntax of formulae. For technical convenience, we assume
that all formulae are in negative normal form. An atom is of the form u ≈ v,
where u and v are two terms of the same sort. An atom of the form u ≈ true is
non-equational. A literal is of the form u ≈ v or u �≈ v. For readability a literal
u ≈ true or u �≈ true is simply written u or ¬u; false is a shorthand for ¬true.

An iteration body is inductively defined as either a literal not containing n or
a formula of the form φ∨ψ or φ∧ψ where φ and ψ are iteration bodies. Finally,
a schema is inductively defined as follows:
1 Removing these conditions yields undecidable logics, even in the purely propositional

case [1,2], thus we prefer to add them immediately rather than defining a very general
formalism that will have to be strongly restricted at a later stage (as done in [1]).

30 V. Aravantinos and N. Peltier

- A literal not containing i is a schema.
- If φ and ψ are schemata then φ ∨ ψ and φ ∧ ψ are schemata.
- If φ is an iteration body containing i and α is an index expression of the form
k or n + k (where k ∈ N) then

∨α
i=0 φ and

∧α
i=0 φ are schemata.

For readability, we will sometimes use the abbreviation u ≈ v ⇒ ψ (resp.
u �≈ v ⇒ ψ) for u �≈ v ∨ ψ (resp. u ≈ v ∨ ψ).

S denotes the set of all schemata. A schema is iteration-free iff it contains no
iterated connective

∨
or

∧
and parameter-free if it contains no occurrence of n.

A sentence is a schema that is both iteration-free and parameter-free. Such a
schema may be viewed as a standard (quantifier-free) formula in the usual sense
(with function symbols indexed by natural numbers), but we prefer not to use
the word “formula” to avoid confusions.

For instance φ1 :
∨n

i=0 (ai+1 ≈ f(bi) ∧ bi+1 ≈ g(ai)), φ2 : an+1 ≈ f(bn) ∧
bn+1 ≈ g(an), φ3 :

∨3
i=0 (ai+1 ≈ f(bi) ∧ bi+1 ≈ g(ai)) and φ4 : a1 ≈ f(b0)∧ b1 ≈

g(a0) are schemata. φ2 and φ4 are iteration-free, φ3 and φ4 are parameter-free
and φ4 is a sentence.

An expression may be a term, a vector of terms, an iteration body or a schema.
It is ground if it contains no occurrence of i (notice that it may contain the
parameter n) and non-indexed if it contains no indexed symbols (by definition
all non-indexed expressions are ground).

Let α be a ground index expression. If φ is an iteration body then φ{i← α}
denotes the iteration-free schema obtained from φ by replacing all occurrences
of i by α. If φ is a schema or an index expression, then φ{n← α} is the schema
or index expression obtained from φ by replacing all occurrences of n by α.

If φ is an iteration-free schema or an iteration body, we denote by Ind(φ) the
set of index expressions occurring in φ: Ind(uα) def= {α}, Ind(u ≈ v) = Ind(u �≈
v) = Ind(u) ∪ Ind(v), Ind(φ � ψ) def= Ind(φ) ∪ Ind(ψ) if � ∈ {∨,∧}.

2.2 Semantics

The semantics is straightforwardly defined. The only difference with first-order
logic is that the parameter must be interpreted by a natural number and that
the index variable ranges over N. More precisely, a schema interpretation (or
interpretation for short) I is a function mapping n to a natural number 〈n〉I ,
mapping each sort s ∈ Sorts to a non-empty set 〈s〉I , mapping each non-indexed
function symbol f : s1, . . . , sk → s to a function 〈f〉I : 〈s1〉I , . . . , 〈sk〉I → 〈s〉I
and mapping each indexed function symbol f : s1, . . . , sk → s to a family of
functions 〈f〉Il : 〈s1〉I , . . . , 〈sk〉I → 〈s〉I (where l ∈ N). The function x �→ 〈x〉I is
then extended to any ground term or atom and to any schema as follows:

- If α is an index expression, then 〈α〉I def= α{n ← 〈n〉I}. Notice that 〈α〉I is
then equivalent to a natural number.

- 〈f(v1, . . . , vk)〉I def= 〈f〉I(〈v1〉I , . . . , 〈vk〉I).
- 〈fα(v1, . . . , vk)〉I def= 〈f〉I〈α〉I (〈v1〉I , . . . , 〈vk〉I).
- 〈

∨α
i=0 φ〉

I def= true if there exists l ∈ [0, 〈α〉I] such that 〈φ{i← l}〉I = true.

Schemata of SMT-Problems 31

- 〈
∧α

i=0 φ〉
I def= true if for all l ∈ [0, 〈α〉I] we have 〈φ{i← l}〉I = true.

We omit the definitions for the symbols ≈, �≈,∨,∧, which are standard. If φ
is a schema, we write I |= φ iff 〈φ〉I = true. In this case, I is a model of φ and
φ is satisfiable.

Usually, satisfiability is tested w.r.t. a particular class of interpretations, in
which the semantics of some of the symbols is fixed (for instance the sort symbol
int is interpreted as Z and + is interpreted as the addition). Let T be a class
of interpretations. φ is T -satisfiable iff there exists I ∈ T such that I |= φ.
Two schemata φ and ψ are T -equivalent iff we have I |= φ ⇔ I |= ψ for every
interpretation I ∈ T and T -sat-equivalent iff φ and ψ are both T -satisfiable
or both T -unsatisfiable. We assume that there exists an algorithm for checking
whether a given sentence (i.e. a schema without iterated connective and without
parameter) is T -satisfiable or not.

A function f is non-built-in if its interpretation is arbitrary, i.e. for every
interpretation I ∈ T , the interpretation obtained from I by changing only the
interpretation of f is also in T . We assume that every indexed symbol is non-
built-in (i.e. the only symbols whose interpretation is fixed are non-indexed).

Note that if I is an interpretation and α is a ground expression, then by
definition I ◦ {n �→ α} is also an interpretation. I ◦ {n �→ α} and I coincide
on every symbol, except on n. If α ∈ N then 〈n〉I◦{n �→α} = α and otherwise
〈n〉I◦{n �→α} = 〈α〉I .

There exists an algorithm transforming every parameter-free schema φ into a
sentence that is T -equivalent to φ. Thus the T -satisfiability problem is decidable
for parameter-free schemata.

As usual in SMT problems, we shall assume that the schemata are flattened,
i.e. for every term of the form f(u1, . . . , uk) occurring in the schema (where
f is possibly indexed) u1, . . . , uk are (possibly indexed) constant symbols (this
ensures that the set of terms is finite). This is not restrictive, for instance a term
of the form f(g(ai), gi+1(a0)) can be replaced by f(bi, ci), where the axioms∧n

i=0 bi ≈ g(ai) and
∧n

i=0 ci ≈ gi+1(a0) are added to the schema.

2.3 Extensions of the Language

Several extensions of this basic language can be considered. We did not include
them in the previous definitions because they do not increase the expressive
power, but for readability we shall sometimes use them in the following.

- Inequality tests. Atoms of the form i ≤ k (where k ∈ N) can be added
in iteration bodies. This does not increase the expressive power since such
atoms can be equivalently replaced by atoms of the form p≤ki , where p≤k is a
fresh constant symbol of sort bool (depending on k), defined by the following
axioms: p≤k0 ∧ · · · ∧ p≤kk ∧ ¬p

≤k
k+1 ∧

∧n
i=0(p

≤k
i+1 ⇒ p≤ki).

- Arbitrary lower bounds. Iterations whose lower bound is distinct from 0
can easily be expressed using the previous atoms:

∧n
i=k φ is written

∧n
i=0(i ≤

k − 1 ∨ φ) (if k > 0).

32 V. Aravantinos and N. Peltier

- Arbitrary translations. Terms of the form ai+k can also be consid-
ered, where k > 1. Indeed, such a term can be replaced by a fresh
constant symbol a+k

i , where a+k is defined by the following axioms:
∧n+k

i=0

(
a+0
i ≈ ai ∧ a+1

i ≈ a+0
i+1 ∧ · · · ∧ a+k

i ≈ a+k−1
i+1

)
.

- Additional parameters. Inequalities of the form i ≤ m where m is an addi-
tional parameter interpreted as an element of [0, n] can be encoded by atoms
p≤m
i defined by the following axioms: ¬p≤m

n+1 ∧ p
≤m
0 ∧

∧n
i=0(p

≤m
i+1 ⇒ p≤m

i). Then
i ≈ m can be defined using

∧n
i=0(p

=m
i ⇔ p≤m

i ∧¬p
≤m
i+1) and a disequality m �≈ k

can be tested by the schema:
∧n

i=0(¬p=m
i ∨ ¬p=k

i).
- Using the parameter in iteration bodies. A term of the form an can be

replaced by a fresh non-indexed constant b, with the axiom: b ≈ an.
In all the previous definitions, we assumed that the defined indexed symbols

are used only in the range [0, n]. If it is not the case (for instance if an equality
test i ≤ k appears in the scope of an iteration

∨n+2
i=1) then the definitions should

be extended accordingly (we omit the details for conciseness).

2.4 Undecidability

The next theorem states that the considered logic is undecidable in general.

Theorem 1. The satisfiability problem is undecidable for S.

This result does not follow from the undecidability results in [1] or [2] (for
propositional schemata) because the schemata considered here are much more
restricted. The satisfiability problem is actually decidable if we restrict to propo-
sitional formulae (see Section 4.1). Intuitively, even though the language is suffi-
ciently restricted to obtain decidability in the non-equational case, the equational
part of the language adds enough power to “retrieve” the undecidability. This
shows that the extension of schemata to SMT-problems is a difficult task.

3 Proof Procedure

We define a proof procedure for testing the satisfiability of schemata that is
sound and complete w.r.t. satisfiability. We show that, under some particular
semantic conditions (depending both on the theory T and on the considered
class of schemata), this procedure can be turned into a decision procedure.

3.1 Enumerating Interpretations

We first define a semi-decision procedure for schemata. It is parameterized by
a simplification function which is a function replacing a schema by a set of
schemata (interpreted as a disjunction) in such a way that satisfiability is pre-
served.

Definition 1. Let φ be a schema and let Ψ be a set of schemata. We write
φ � Ψ iff the following conditions hold:

Schemata of SMT-Problems 33

1. For every I ∈ T , if I |= φ then there exists ψ ∈ Ψ such that I |= ψ.
2. For every I ∈ T , if there exists ψ ∈ Ψ such that I |= ψ then there exists an

interpretation J ∈ T such that J |= φ and 〈n〉J = 〈n〉I .
For instance, we have φ ∨ ψ � {φ, ψ}, (φ ∨ φ′) ∧ ψ � {φ ∧ ψ, φ′ ∧ ψ}, or
p0 ∧ φ � {φ} if the indexed predicate symbol p does not occur in φ. We also
have

∨n+1
i=0 φ � {

∨n
i=0 φ, φ{i← n+1}}. However we have ¬p0∧pn �� {true} or

¬p0 ∧
∨n

i=0 pi �� {true} (although ¬p0 ∧ pn, ¬p0 ∧
∨n

i=0 pi and true are T -sat-
equivalent). Notice that if φ � Ψ then φ is T -sat-equivalent to the disjunction
of the schemata in Ψ . Furthermore, if φ and the disjunction of the schemata in
Ψ are equivalent then obviously φ � Ψ .

Definition 2. A simplification function is a total function Γ : S → 2S such
that for every φ ∈ S, φ � Γ (φ).

As explained in the Introduction, a trivial way to construct a model of a schema
φ (if it exists) is to enumerate all the possible values for n and then test the
T -satisfiability of the obtained sentences. Definition 3 formalizes this idea in a
way that will be convenient for our purpose. We enumerate all possible instances
of φ by instantiating recursively n by n+ 1. A given simplification function Γ is
systematically applied to the instantiated schemata:

Definition 3. Let Γ be a simplification function. The Γ -expansion of a schema
φ ∈ S is the set of schemata EΓ (φ) inductively built as follows:

1. φ ∈ EΓ (φ).
2. If ψ ∈ EΓ (φ) then Γ (ψ{n← n + 1}) ⊆ EΓ (φ).

Theorem 2. Let Γ be a simplification function. A schema φ is T -satisfiable iff
EΓ (φ) contains a schema ψ such that ψ{n← 0} is T -satisfiable.

Theorem 2 implies that T -satisfiability is semi-decidable for schemata in S.
Indeed, to test whether φ ∈ S is T -satisfiable, it suffices to construct the
Γ -expansion EΓ (φ) of φ (using a straightforward simplification function, e.g.
Γ (φ) = {φ}). By Definition 3, EΓ (φ) is recursively enumerable. By Theorem 2,
φ is T -satisfiable iff a schema ψ such that ψ{n ← 0} is T -satisfiable is eventu-
ally obtained. The satisfiability of ψ{n← 0} is obviously decidable.Of course, as
such, this algorithm is very inefficient and seldom terminates (when the schema
at hand is unsatisfiable): its efficiency and termination essentially depend on the
choice of the simplification function.

The next definition states a condition on Γ ensuring that all the schemata in
EΓ (φ) remain in a given class.

Definition 4. Let C be a class of schemata. A simplification function Γ is C-
preserving iff φ ∈ C ⇒ Γ (φ{n← n + 1}) ⊆ C.
Obviously, if C be a class of schemata and Γ is a C-preserving simplification
function, then φ ∈ C ⇒ EΓ (φ) ⊆ C.

Many distinct semi-decision procedures can be obtained, simply by replacing
the simplification function Γ by concrete procedures. In the next section, we
define a simplification function that ensures termination.

34 V. Aravantinos and N. Peltier

3.2 Termination

The intuitive idea is the following: the Γ -expansion of a given schema φ is infinite
in general, since the recursive replacement of n by n + 1 creates schemata with
increasingly deep index expressions. For instance from

∧n
i=0(pi ⇒ pi+1) one gets

∧n+1
i=0(pi ⇒ pi+1),

∧n+2
i=0(pi ⇒ pi+1), . . . A first step towards termination would

be to have the iteration
∧n

i=0(pi ⇒ pi+1) instead of this infinite set of iterations.
This is easily obtained by unfolding the previous iterations (i.e. taking out the
ranks n + 1, n + 2, etc.). However we are of course left with the new formulae
introduced by those unfoldings. For instance, in the same example, one would get
pn+1 ⇒ pn+2, pn+2 ⇒ pn+3, etc. One way to obtain termination is if we are able
to somehow simplify those new formulae (of course this simplification depends
on the considered theory T) so that they belong to a finite set. This goal can be
reached, in particular, if the indices of the involved atoms are restricted to be
lower than n+ k for some fixed k ∈ N. It is actually sufficient to consider k = 1,
which leads to the following notion:

Definition 5. A schema is n-elementary if it contains no index of the form
n + k where k > 1.

The major problem is, of course, to transform the schemata into n-elementary
ones (preserving T -sat-equivalence). This may be done, in some particular cases,
by using decomposition and simplification rules. In the previous example, the
unfolding yields:

∧n
i=0(pi ⇒ pi+1) ∧ (pn+1 ⇒ pn+2). Then, in order to eliminate

all the indices greater than n + 1, we only have to eliminate pn+2, which can
be done in this simple case by considering all the possible values for pn+2 (true
or false). This yields the disjunction of the following schemata:

∧n
i=0(pi ⇒

pi+1) ∧ ¬pn+1 (if pn+2 is false) and
∧n

i=0(pi ⇒ pi+1) (if pn+2 is true).
Of course this case is an easy one, since the domain of the constant symbols

is finite (thus every constant can be eliminated, if needed, by instantiation).
But consider the case:

∧n+1
i=0(ai ≈ f(ai+1)). Here the unfolding yields the literal

an+1 ≈ f(an+2). Since the domain is, a priori, not finite, the same technique
cannot apply. Thus the ability to eliminate an+2 depends on the theory T : if, for
instance, f is the successor function on N then it suffices to state that an+1
 0.

To ensure that non-n-elementary literals can always be eliminated, we will
have to impose additional conditions on the class of interpretations T and on
the considered schemata. To restrict the class of schemata we shall actually
impose conditions on the literals occurring in it:

Definition 6. A frame L is a finite set of literals such that for every λ ∈ L, the
two following conditions hold:

1. λ{i← n + 1} ∈ L.
2. If λ is n-elementary then λ{n← n + 1} ∈ L.

A schema φ is L-dominated if every literal occurring in φ (both in iteration
bodies and outside iterations) is in L.

Schemata of SMT-Problems 35

Those conditions are useful to ensure that a class of n-elementary schemata is
closed under replacement of n by n + 1 and unfolding of the iterations.

Example 1. The following set L is a frame: {f(ai) ≈ bi, f(ai) �≈ g(bi+1), f(an) ≈
bn, f(an) �≈ g(bn+1), f(an+1) ≈ bn+1, f(an+1) �≈ g(bn+2), f(an+2) ≈ bn+2}. The
literals f(ai) ≈ bi, f(ai) �≈ g(bi+1), f(an) ≈ bn, f(an) �≈ g(bn+1) and f(an+1) ≈
bn+1, are n-elementary, f(an+1) �≈ g(bn+2) and f(an+2) ≈ bn+2 are not.
φ : (

∨n
i=0 f(ai) ≈ bi) ∧ f(an) �≈ g(bn+1) and ψ : (

∧n
i=0 f(ai) �≈ g(bi+1)) ∨

f(an+2) ≈ bn+2 are L-dominated. φ is n-elementary, ψ is not.

The definition of the simplification function is divided into two steps: unfolding
and decomposition.

Unfolding. The first step simply aims at unfolding iterations, for instance by
replacing

∨n+1
i=0 φ by

∨n
i=0 φ ∨ φ{i ← n + 1}. Obviously this is possible only if

the lower bound of the iteration is strictly lower than the upper bound.

Definition 7. If φ is a schema, we denote by unfold(φ) the schema obtained
from φ by replacing every subschema of the form

∧n+k
i=0 ψ or

∨n+k
i=0 ψ occurring in

φ such that k > 0 by (respectively): (
∧n

i=0 ψ)∧ψ{i← n+1}∧· · ·∧ψ{i← n+k}
and (

∨n
i=0 ψ) ∨ ψ{i← n + 1} ∨ · · · ∨ ψ{i← n + k}.

The unfolding transformation does not affect the semantics of the considered
schema. It is useful only to extract (when possible) the last operands of the
iterations in order to pave the way for the elimination of the terms with greatest
indices, which is done in the next subsection.

Decomposing Schemata. The second step is more complex. It aims at elim-
inating, in a schema φ, all the symbols whose index is greater than n + 1. This
is the crucial part of our procedure, since the elimination of those symbols will
ensure that only finitely many distinct schemata can be generated, hence that
EΓ (φ) is finite. We now introduce the conditions on L and T that ensure that
the elimination of literals whose indices are strictly greater than n+1 is feasible.

If I, J are two interpretations, we write I ∼L J iff I and J coincide on every
literal obtained from a literal in L by replacing i by a natural number lower
or equal to n. More precisely, I ∼L J if I and J coincide on n and on every
sort symbol in Sorts, and if for every literal λ ∈ L containing i and for every
k ∈ [0, 〈n〉I] we have 〈λ{i← k}〉I = 〈λ{i← k}〉J .

Definition 8. A frame L is stably decomposable, relatively to a function Δ :
S→ S, iff for all ground non-n-elementary literals λ1, . . . , λk ∈ L the following
conditions hold:

- Δ(λ1 ∧ · · · ∧ λk) is a boolean combination of ground n-elementary literals in
L.

- For every interpretation I, I |= Δ(λ1 ∧ · · · ∧ λk) iff there exists an interpre-
tation J such that J ∼L I and J |= λ1 ∧ · · · ∧ λk.

36 V. Aravantinos and N. Peltier

In what follows, we assume the existence of a frame L and of a function Δ s.t. L
is stably decomposable w.r.t. Δ. Both depend on the theory T . Thus, applying
our method to a theory T requires that T be accompanied with a frame L and
a function Δ (examples are provided in Section 4).

We now define the simplification function. It is defined by means of a tableaux
calculus, using the usual propositional decomposition rules. These rules are re-
stricted to apply only on non-n-elementary schemata. The goal is to decompose
the schema in order to get rid of all non-n-elementary literals occurring at non-
root level. Then a new rule is defined, the so-called Elimination rule, in order
to eliminate non-n-elementary literals at root level, by taking advantage of the
existence of a function Δ satisfying the conditions of Definition 8.

A branch is a conjunction of schemata and a tableau is a set of branches. As
usual, tableaux are constructed using a set of expansion rules that are written

in the form: S
S1 . . . Sk

meaning that a branch that is of the form S ∧ S′

(up to the AC-properties of the connective ∧) is deleted from the tableau and
replaced by the k branches S1 ∧S′, . . . , Sk ∧S′. If k = 0 the rule simply deletes

(or closes) the branch. This is written
S
⊥ . Initially, the tableau contains only

one branch, defined by the schema at hand. We denote by ρ the following set of
expansion rules:

∨-Elimination: φ ∨ ψ
φ ψ

If φ ∨ ψ is not n-elementary.

Closure: φ ∧ ¬φ
⊥

Elimination: λ1 ∧ · · · ∧ λk

Δ(λ1 ∧ · · · ∧ λk)
If {λ1, . . . , λk} ⊆ L is the set of all the non-
n-elementary literals occurring in the branch.

We do not need a specific rule for the connective ∧ since branches are consid-
ered as conjunctions (thus the ∧-rule is implicitly replaced by the associativity of
∧). Note that there are no rules for the connectives

∨n
i=0 and

∧n
i=0. The reason

is that our goal is only to get rid of non-n-elementary literals, so that termina-
tion can be ensured (satisfiability will be tested afterward, using usual decision
procedures, as explained in Section 3.1). Moreover, due to the restrictions on the
syntax, the body of these connectives cannot contain non-n-elementary literals,
neither explicitly (as it would be the case in, e.g.,

∨n
i=0 pn+2) nor implicitly (as

in
∨n

i=0 pi+2). Indeed, n cannot occur in iterations bodies and the indices con-
taining i must be of the form i or i + 1, thus their value is bounded by n + 1.
This explains why we do not have to decompose such schemata.

Proposition 1. The non-deterministic application of the rules in ρ terminates
on any schema.

For every schema φ, we denote by ρ∗(φ) an arbitrarily chosen normal form of
the tableau {φ} by the rules in ρ. Since tableaux are defined as sets of schemata
(conjunctions), ρ∗(φ) is a set of (irreducible) schemata (i.e. the leaves).

Schemata of SMT-Problems 37

Example 2. Let φ = {(an+2 � 0 ∧ an+2 ≈ bn+1 ∨ pn+1 ∨ pn) ∧ ¬pn+1 ∧
(pn ∨ qn+1)}. The application of the rules ∨-Elimination and Closure yields the
two following branches:

an+2 � 0 ∧ an+2 ≈ bn+1 ∧ ¬pn+1 ∧ (pn ∨ qn+1)

and
pn ∧ ¬pn+1 ∧ (pn ∨ qn+1)

Notice that the schema (pn∨qn+1) is not decomposed, because it is n-elementary.
The second branch contains no non-n-elementary schema hence is irreducible.
The non-n-elementary conjuncts in the first branch are an+2 � 0 and an+2 ≈
bn+1. The rule Elimination applies, and the function Δ replaces these conjuncts
by some T -sat-equivalent conjunction of n-elementary literals. In this case, it is
intuitively obvious that we should take: Δ(an+2 � 0 ∧ an+2 ≈ bn+1) = bn+1 � 0
(see Section 4 for the formal definition). Thus ρ∗(φ) = {bn+1 � 0∧¬pn+1 ∧ (pn ∨
qn+1), pn ∧ ¬pn+1 ∧ (pn ∨ qn+1)}.

Let S(L) be the class of schemata φ such that unfold(φ{n ← n + 1}) is L-
dominated and such that the upper bound of all iterations in φ is n.

Lemma 1. ρ∗ ◦ unfold is an S(L)-preserving simplification function2.

Note that Proposition 1 and Lemma 1 still hold if the Closure rule is simply
removed. This rule is useful only to prune the search space by removing some
(unsatisfiable) branches. From a purely theoretical point of view, it would be
possible to postpone all satisfiability tests to the second phase of the procedure,
when n is instantiated by 0 and when the obtained formula is fed to the SMT-
solver (according to Theorem 2). One could also use a more powerful Closure rule
which tests for T -satisfiability instead of simply detecting trivial contradictions
(then a branch containing, e.g., 1 = 0 would be closed immediately).

To ensure termination, we introduce a contraction operation: φ∧φ→ φ which
is applied modulo the usual AC properties of the connective ∧. Obviously this
rule preserves equivalence. A set of schemata is finite up to contraction if its
normal form by the previous rule is finite.

Theorem 3. Let L be a stably decomposable frame. If φ ∈ S(L) then
Eρ∗◦unfold(φ) is finite up to contraction3. Thus the satisfiability problem is decid-
able for S(L).

4 Examples of Stably Decomposable Frames

Theorems 2 and 3 define a procedure for deciding the satisfiability of schemata
in S(L). However, it relies on the fact that L is stably decomposable, and on the
2 See Definition 4 for the notion of S(L)-preserving function.
3 See Definition 3 for the notation EΓ (φ).

38 V. Aravantinos and N. Peltier

existence of a function Δ satisfying the conditions of Definition 8. Thus, it would
be of no use if no concrete example of (reasonably expressive) stably decompos-
able frame could be exhibited. The purpose of the present section is precisely to
turn this abstract and generic result into concrete decision procedures.

4.1 Literals Containing at Most One Index

The first example is independent of the theory T . Intuitively, it corresponds to
the case in which each literal contains at most one index. We assume in this
section that all non-indexed symbols have a fixed interpretation in T (hence
they are built-in).

Let L� be the set of flattened literals λ such that Ind(λ) ∈ {{n}, {n+ 1}, {n+
2}, {i}, {i + 1}, {0}}. It is easy to check that L� is a frame (it is finite if the
signature is finite). Let Δ� be the function defined as follows:

Δ�(λ1 ∧ · · · ∧ λk) def=
{

true if (λ1 ∧ · · · ∧ λk) {n← 0} is T -satisfiable
false otherwise.

Theorem 4. L� is stably decomposable w.r.t. Δ�.

For instance, any purely propositional schema (i.e. any schema in which all atoms
are non-equational) is in S(L�)4. Such schemata are essentially equivalent to the
ones considered in [1]. The function Δ� should be compared with the pure literal
rule in [1] that serves a similar purpose. The intuition is that the interpretation
of the non-n-elementary literals does not interfere with the one of n-elementary
literals. Notice that the analysis is much simpler in the present paper due to the
strong syntactic restrictions.

4.2 Ordered Theories

The second example is more specific and also more complex. We assume that
the signature contains a predicate symbol 	 interpreted as a non-strict ordering
(in T). Let C≈, C be two disjoint sets of indexed constant symbols. Intuitively,
the constants in C will only occur at the root level in non-strict inequations
or equations, whereas the ones in C≈ only occur in equations of some particular
form. More precisely, we assume that every constant symbol a ∈ C≈ is mapped to
a finite set of terms θ(a), intended to denote the set of terms u such that an+2 ≈ u
is allowed to occur in the considered schema. Furthermore, we assume that for
all u, v ∈ θ(a), there exists an iteration-free n-elementary schema τ(u ≈ v)
such that τ(u ≈ v) ≡T u ≈ v. The intuition is as follows. If u and v occur in
θ(a), then the considered schema will possibly contain a conjunction of the form
an+2 ≈ u∧an+2 ≈ v. As explained in Section 3.2, the symbol an+2 will have to be
eliminated (since it is non-n-elementary) by applying an appropriate function Δ.
But to this purpose, one necessarily has to ensure that the equation u ≈ v holds.
The existence of the function τ guarantees that this property can be expressed
as an n-elementary schema.
4 Provided indices greater than n + 2 or 0 are eliminated as explained in Section 2.3.

Schemata of SMT-Problems 39

Definition 9. Let L be the set of literals λ satisfying one of the following
conditions:

- λ is of the form u 	 v5, where each of the u, v is either a non-indexed term or
of the form aα where a ∈ C and α ∈ {n, n+ 1, n+ 2, i, i+ 1}.

- λ is of the form an+2 ≈ u where a ∈ C≈ and u ∈ θ(a).
- λ is of the form ai+1 ≈ v (resp. an+1 ≈ v) where a ∈ C≈ and v{i← n+1} ∈ θ(a)
(resp. v{n← n + 1} ∈ θ(a)).

It is easy to check that L is a frame. We assume furthermore that for every
a ∈ C≈ and for all terms u, v ∈ θ(a), τ(u ≈ v) is L-dominated.

Before proceeding, we give a concrete example of a theory T for which θ(a)
and τ can be defined (it will be used in forthcoming examples).

Example 3. Assume that Sorts contains in particular the sort symbols nat, int
and real with their usual meanings. We assume that the signature contains the
usual functions + and 	6and built-in constant symbols 0, . . . , k of sort nat. If
a : s ∈ C≈, we define θ(a) as the set containing all terms in 0, . . . , k (if s is nat)
and all terms of the form an+1 + u where u is either a non-indexed term or of
the form bn+1 where b ∈ C. Then the function τ can be defined as follows:

- τ(an+1 + u ≈ an+1 + v) def= u ≈ v.
- τ(l ≈ l′) def= l ≈ l′ if Ind(l ≈ l′) = ∅.
- τ(an+1 +u ≈ l) def=

∨
l1+l2=l(an+1 ≈ l1∧u ≈ l2) if l ∈ {0, . . . , k}. Note that the

number of pairs (l1, l2) such that l1 + l2 = l must be finite since by definition
of θ(a), a (and thus l, l1 and l2) must be of sort nat. Hence this iteration is
not a formal one but belongs to the meta-language. This would not be the
case if a was of sort int or real.

It is easy to check that this function τ satisfies the desired properties.

Definition 10. Let Δ be the function defined as follows. For every conjunction
of literals φ, we denote by E(φ) the smallest set of schemata such that:

- If φ contains two literals of the form an+2 ≈ u and an+2 ≈ v then τ(u ≈ v) ∈
E(φ).

- If φ |= u 	 v, u 	 v is an n-elementary literal in L and u �= v then u 	 v ∈
E(φ).
We define: Δ(φ) def=

∧
ψ∈E(φ) ψ. Notice that E(φ) is necessarily finite.

Example 4. Let a : nat, b : int ∈ C≈, c : int, d : int ∈ C, e : int and f : int.
Let θ(a) = {an+1 + 1, 0, 1, 2} and θ(b) = {bn+1 + cn+1, bn+1 + e}.

Let φ be the conjunction of the following literals:

an+2 ≈ an+1 + 1 an+2 ≈ 2 bn+2 ≈ bn+1 + cn+1

bn+2 ≈ bn+1 + e cn+1 	 dn+2 dn+2 	 dn+1 dn+2 	 f + 1

5 Of course, equations u ≈ v can also be considered, as abbreviations for u � v∧v � u.
6 For readability, we use the same notation for the symbols + and � whatever may

be the type of their arguments.

40 V. Aravantinos and N. Peltier

Then Δ(φ) is the conjunction of the following schemata:

an+1 ≈ 1 cn+1 ≈ e cn+1 	 dn+1 cn+1 	 f + 1

Theorem 5. L is stably decomposable w.r.t. Δ.

Another trivial example of stably decomposable sets of literals that we do not
develop here, is the one in which every constant symbol indexed by an expression
n+ l where l > 1, is of a finite sort. Indeed, in this case all such constants can be
straightforwardly eliminated by replacing them by each possible value (yielding
a disjunction of n-elementary schemata).

5 Examples

We provide in this section some examples of application of our technique.

Example 5. Let φ be the schema considered in the Introduction:
∧n

i=0 (ai+1 � ai) ∧
∧n

i=0 (bi+1 	 bi) ∧ a0 � b0 ∧ an+1 	 c ∧ bn+1 � c+ 1.

We compute the set of schemata Eρ∗◦unfold(φ). According to the definition,
n must be instantiated by n + 1 and the iterations are unfolded, yielding:∧n

i=0 (ai+1 � ai)∧an+2 � an+1∧
∧n

i=0 (bi+1 	 bi)∧bn+2 	 bn+1∧a0 � b0∧an+2 	
c ∧ bn+2 � c + 1. In order to get rid of the symbols indexed by n + 2, we ap-
ply the rules in ρ. Since the schema is already a conjunction of iterations and
literals, no rule applies, except Elimination. The conjunction of literals that are
not n-elementary is an+2 � an+1 ∧ bn+2 	 bn+1 ∧ an+2 	 c ∧ bn+2 � c + 1. Ap-
plying the function Δ (see Definition 10), we obtain: c � an+1 ∧ c+ 1 	 bn+1.
Replacing the previous conjunction by its image by Δ yields a schema that is
actually identical to the first one. Hence the procedure stops (no further schema
is generated) and we get Eρ∗◦unfold(φ) = {φ}. By Theorem 2, the T -satisfiability
of φ is thus equivalent to the one of φ{n← 0} which can be easily tested by any
SMT-solver.

Example 6. Consider the algorithm below, counting the number of occurrences
o of an element e in an array t. We want to check that if the final value of o
is 1 then the formula ∀i, j, ai ≈ e ∧ aj ≈ e ⇒ i ≈ j holds. This is modeled
by a schema φ defined as follows (oi : nat denotes the value of o at step i and
ti : int is t[i], notice that we cannot use the theory of arrays, since no stably
decomposable frame has been defined for this theory – this is left to future work).

i← 0
o← 0
while i 	 n do

if t[i] = e then
o← o+ 1

end if
i← i+ 1

end while

φ :

o0 ≈ 0∧n
i=0 (ti ≈ e⇒ oi+1 ≈ oi+1)∧n
i=0 (ti �≈ e⇒ oi+1 ≈ oi)

on+1 ≈ 1∨n
i=0 (i ≈ m ∧ ti ≈ e)∨n
i=0 (i ≈ k ∧ ti ≈ e)

m �≈ k

Schemata of SMT-Problems 41

m, k are additional parameters interpreted as elements of [0, n]. These
parameters and the literals i ≈ m, i ≈ k and m �≈ k can be encoded in our
language as explained in Section 2.3 (we omit the translation for readability).
The schema is in S(L) (with t ∈ C and o ∈ C≈). The reader can check that
Eρ∗◦unfold(φ) = {φ, ψ1, ψ2, ψ3}, where ψ1, ψ2 and ψ3 are defined respectively by:

ψ1 : ψ2 : ψ3 :
o0 ≈ 0∧n

i=0 ti ≈ e⇒ oi+1 ≈ oi+1∧n

i=0 ti 	≈ e⇒ oi+1 ≈ oi
on+1 ≈ 0
tn+1 ≈ e
n + 1 ≈ m∨n

i=0 i ≈ k ∧ ti ≈ e
m 	≈ k

o0 ≈ 0∧n

i=0 ti ≈ e⇒ oi+1 ≈ oi+1∧n

i=0 ti 	≈ e⇒ oi+1 ≈ oi
on+1 ≈ 0
tn+1 ≈ e
n + 1 ≈ k∨n

i=0 i ≈ m ∧ ti ≈ e
m 	≈ k

o0 ≈ 0∧n

i=0 ti ≈ e⇒ oi+1 ≈ oi+1∧n

i=0 ti 	≈ e⇒ oi+1 ≈ oi
on+1 ≈ 0
tn+1 ≈ e∨n

i=0 i ≈ m ∧ ti ≈ e∨n

i=0 i ≈ k ∧ ti ≈ e
m 	≈ k

In order to check that φ is T -unsatisfiable, one only has to test the T -
satisfiability of the sentences φ{n← 0}, ψ1{n← 0}, ψ2{n← 0} and ψ3{n← 0}.

6 Conclusion

A logic has been defined for reasoning on parameterized families of SMT-
problems and a sound and complete (w.r.t. satisfiability) proof procedure has
been designed. It does not terminate in general (the logic is proven to be unde-
cidable) but we have devised semantic conditions on the underlying theory and
on the considered class of formulae that ensure that this proof procedure can
be turned into a decision procedure by adding appropriate simplification rules.
Then, concrete examples of theories and classes of schemata satisfying these con-
ditions have been provided. Some simple examples of application have also been
proposed. Our method relies on the use of an external decision procedure for
the underlying theory. It applies to a wide range of theories (provided they are
decidable). In the present work, we mainly focus on examples in verification, but
one could also handle for instance schemata of formulae in (decidable) modal or
description logics.

The implementation of this technique is part of future work. Another obvious
line of research is to identify other classes of stably decomposable frames (see
Section 3.2) in order to extend the scope of our results (in particular, the impor-
tant theory of arrays should be considered). Concerning potential applications
in verification, automatic procedures for extracting schemata modeling the al-
gorithms as the ones in Section 5 ought to be devised and comparison with the
numerous existing techniques should be provided. A longer term goal would be to
consider quantification, either as standard quantification such as ∀x, ∀y, p(x, y)
or of schemata of quantifications such as ∀x1, . . . , xn, p(x1, . . . , xn) (where the
indexed variables and dots are part of the language).

42 V. Aravantinos and N. Peltier

References

1. Aravantinos, V., Caferra, R., Peltier, N.: A schemata calculus for propositional logic.
In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 32–46.
Springer, Heidelberg (2009)

2. Aravantinos, V., Caferra, R., Peltier, N.: Decidability and undecidability results
for propositional schemata. Journal of Artificial Intelligence Research 40, 599–656
(2011)

3. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories.
In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Sat-
isfiability. Frontiers in Artificial Intelligence and Applications, ch. 26, vol. 185,
pp. 825–885. IOS Press, Amsterdam (2009)

4. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2005)

5. de Moura, L.M., Bjørner, N.: Efficient E-Matching for SMT Solvers. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg
(2007)

6. Dutertre, D., de Moura, L.M.: The YICES SMT-solver. In: SMT-COMP: Satisfia-
bility Modulo Theories Competition, http://yices.csl.sri.com

7. Ge, Y., de Moura, L.M.: Complete instantiation for quantified formulas in satis-
fiabiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306–320. Springer, Heidelberg (2009)

http://yices.csl.sri.com

Kripke Semantics for Basic Sequent Systems

Arnon Avron and Ori Lahav�

School of Computer Science, Tel Aviv University, Israel
{aa,orilahav}@post.tau.ac.il

Abstract. We present a general method for providing Kripke seman-
tics for the family of fully-structural multiple-conclusion propositional
sequent systems. In particular, many well-known Kripke semantics for a
variety of logics are easily obtained as special cases. This semantics is
then used to obtain semantic characterizations of analytic sequent sys-
tems of this type, as well as of those admitting cut-admissibility. These
characterizations serve as a uniform basis for semantic proofs of analyt-
icity and cut-admissibility in such systems.

1 Introduction

This paper is a continuation of an on-going project aiming to get a unified
semantic theory and understanding of analytic Gentzen-type systems and the
phenomenon of strong cut-admissibility in them. In particular: we seek for gen-
eral effective criteria that can tell in advance whether a given system is analytic,
and whether the cut rule is (strongly) admissible in it (instead of proving these
properties from scratch for every new system). The key idea of this project is
to use semantic tools which are constructed in a modular way. For this it is es-
sential to use non-deterministic semantics. This was first done in [6], where the
family of propositional multiple-conclusion canonical systems was defined, and
it was shown that the semantics of such systems is provided by two-valued non-
deterministic matrices – a natural generalization of the classical truth-tables.
The sequent systems of this family are fully-structural (i.e. include all standard
structural rules), and their logical derivation rules are all of a certain “ideal”
type. Then single-conclusion canonical systems were semantically characterized
in [5], using non-deterministic intuitionistic Kripke frames. In both works the
semantics was effectively used for the goals described above.

The goal of the present paper is to extend the framework, methods, and results
of [6] and [5] to a much broader family of sequent systems: the family of what
we call basic systems, which includes every multiple-conclusion propositional
sequent system we know that has all of Gentzen’s original structural rules. Thus
this family includes the various standard sequent systems for modal logics, as
well as the usual multiple-conclusion systems for intuitionistic logic, its dual, and
bi-intuitionistic logic — none of which is canonical in the sense of [6,5].

The structure of the paper is as follows. We begin by precisely defining the
family of basic systems. We then generalize Kripke semantics, and present a
� This research was supported by The Israel Science Foundation (grant no. 280-10).

K. Brünnler and G. Metcalfe (Eds.): TABLEAUX 2011, LNAI 6793, pp. 43–57, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

44 A. Avron and O. Lahav

general method for providing such semantics for any given basic system. This
method is modular, as we separately investigate the semantic effect of every logi-
cal rule of a basic system (and in fact even of the main ingredients of such rules),
and combine these effects to obtain the full semantics of the system. In a variety
of important cases, this leads to the known semantics of the corresponding logic.
In addition, this method can be applied to new basic systems, including basic
systems with non-deterministic connectives. Based on this method, in sections 5
and 6 we present semantic characterizations of analyticity and cut-admissibility
in basic systems. These characterizations pave the way to uniform semantic
proofs of these properties1.

Two important notes before we start: first, we consider here derivations from a
set of assumptions (or “non-logical axioms”), and so we deal with strong sound-
ness and completeness, and strong cut-admissibility ([2]). Second, we only in-
vestigate here propositional systems and logics, leaving the more complicated
first-order case to a future work.

Most of the proofs are omitted due to lack of space, and will appear in the
full version of the paper.

2 Preliminaries

In what follows L is a propositional language, and FrmL is its set of wffs. We
assume that p1, p2, . . . are the atomic formulas of L. Since we only deal with
fully-structural systems, it is most convenient to define sequents using sets:

Definition 1. A signed formula is an expression of the form f:ψ or t:ψ, where
ψ is a formula. A sequent is a finite set of signed formulas.

We shall usually employ the usual sequent notation Γ⇒Δ, where Γ and Δ are
finite sets of formulas. Γ ⇒Δ is interpreted as {f:ψ | ψ ∈ Γ} ∪ {t:ψ | ψ ∈ Δ}.
We also employ the standard abbreviations, e.g. Γ, ϕ instead of Γ ∪ {ϕ}, and
Γ⇒ instead of Γ⇒∅.

Definition 2. An L-substitution is a function σ : FrmL → FrmL, such that
σ(�(ψ1, . . . , ψn)) = �(σ(ψ1), . . . , σ(ψn)) for every n-ary connective � of L. An
L-substitution is extended to signed formulas, sequents, etc. in the obvious way.

Given a set μ of signed formulas, we denote by frm[μ] the set of (ordinary)
formulas appearing in μ, and by sub[μ] the set of subformulas of the formulas
of frm[μ]. frm and sub are extended to sets of sets of signed formulas in the
obvious way. Given a set E of formulas, a formula ψ (resp. sequent s) is called
an E-formula (E-sequent) if ψ ∈ E (frm[s] ⊆ E).
1 Many efforts have been devoted to characterize cut-free sequent systems. For ex-

ample, a semantic characterization of cut-admissibility was the subject of [7]. There,
however, the authors consider substructural single-conclusion systems, and use phase
semantics, which is significantly more abstract and complex than Kripke semantics.

Kripke Semantics for Basic Sequent Systems 45

3 Basic Systems

In this section we precisely define the family of basic systems, and present some
examples of them. For doing so, we define the general structure of derivation
rules allowed to appear in basic systems. Rules of this structure will be called
basic rules. A key idea here is to explicitly differentiate between a rule and its
application. Roughly speaking, the rule itself is a schema that is used in proofs
by applying some substitution and (optionally) adding context-formulas.

To explain the intuition behind the following definition of a basic rule, we
begin with specific examples. Consider the following schemas for introducing a
unary connective � (used in usual systems for modal logics, see e.g. [17]):

(1)
Γ, ψ⇒Δ
Γ,�ψ⇒Δ

(2)
�Γ⇒ψ

�Γ⇒�ψ
(3)

Γ1,�Γ2⇒ψ
�Γ1,�Γ2⇒�ψ

�Γ here is an abbreviation for {�ϕ | ϕ ∈ Γ}. An obvious distinction in these
schemas is the distinction between context formulas and non-context formulas
(see e.g. [15]). Here Γ, Γ1 and Γ2 are sets of context formulas, and ψ and �ψ
are non-context formulas. While the exact number of non-context formulas is
explicitly specified in the scheme, any number of context formulas is possible.
These three schemas demonstrate three possibilities regarding context-formulas:

1. No constraint on context-formulas on either side of the sequent (as in (1)).
2. Limiting the allowed set of context-formulas (as in (2), where only �-formulas

may appear on the left, and no context-formulas are allowed on the right).
3. Modifying some context-formulas in the rule application (as in (3), where Γ1

in the premise becomes �Γ1 in the conclusion).

To deal with the different options concerning the treatment of context formu-
las, we associate with each rule a set of context-relations. The context-relations
determine the required relation between the context formulas of the premises of
the rule and those of the corresponding conclusion.

Definition 3

1. A context-relation is a finite binary relation between signed formulas. Given
a context-relation π, we denote by π̄ the binary relation between signed
formulas π̄ = {〈σ(x), σ(y)〉 | σ is an L-substitution, and 〈x, y〉 ∈ π}. A pair
of sequents 〈s1, s2〉 is called a π-instance if there exist (not necessarily dis-
tinct) signed formulas x1, . . . , xn and y1, . . . , yn such that s1 = {x1, . . . , xn},
s2 = {y1, . . . , yn}, and xiπ̄yi for every 1 ≤ i ≤ n.

2. A basic premise is an ordered pair of the form 〈s, π〉, where s is a sequent
and π is a context-relation.

3. A basic rule is an expression of the form S/C, where S is a finite set of basic
premises, and C is a sequent.

4. An application of the basic rule {〈s1, π1〉, . . . , 〈sn, πn〉}/C is any inference
step of the following form:

σ(s1) ∪ c1 . . . σ(sn) ∪ cn
σ(C) ∪ c′1 ∪ . . . ∪ c′n

46 A. Avron and O. Lahav

where σ is an L-substitution, and 〈ci, c′i〉 is a πi-instance for every 1 ≤ i ≤ n.

Example 1. Below we present well-known examples of basic rules and context
relations used in them (note that the names given here to these context-relations
will be used in the sequel):

Implication. The usual rules for classical implication are the two basic rules
{〈⇒p1, π0〉, 〈p2⇒ , π0〉}/p1 ⊃ p2⇒ and {〈p1⇒p2, π0〉}/ ⇒p1 ⊃ p2, where
π0 = {〈f:p1, f:p1〉, 〈t:p1, t:p1〉}. π0 is the most simple context-relation, and
it is used in all sequent systems. By definition, π0-instances are the pairs of
the form 〈s, s〉. Thus, applications of these rules have the form (respectively):

Γ1⇒Δ1, ψ Γ2, ϕ⇒Δ2

Γ1, Γ2, ψ ⊃ ϕ⇒Δ1, Δ2

Γ, ψ⇒Δ,ϕ
Γ⇒Δ,ψ ⊃ ϕ

For intuitionistic implication, one replaces the second rule with the rule
{〈p1⇒p2, πint〉}/ ⇒ p1 ⊃ p2, where πint = {〈f:p1, f:p1〉}. πint-instances are
all pairs of the form 〈Γ⇒ , Γ⇒〉. Thus, applications of this rule allow to
infer Γ⇒ψ ⊃ ϕ from Γ, ψ⇒ϕ.

Exclusion. The rules for dual-intuitionistic exclusion (in a multiple-conclusion
sequent system) are the basic rules {〈 p1⇒p2, {〈t:p1, t:p1〉}〉}/p1−< p2⇒
and {〈⇒p1, π0〉, 〈p2⇒ , π0〉}/ ⇒p1−< p2 (see [8]). Applications of these rule
have the form:

ψ⇒Δ,ϕ
ψ−< ϕ⇒Δ

Γ1⇒Δ1, ψ Γ2, ϕ⇒Δ2

Γ1, Γ2⇒Δ1, Δ2, ψ−< ϕ

Modal Necessity. Different basic rules for introducing � are used in different
modal logics (see [17] for a survey; for GL see e.g. [13,1]). For example, the
systems K, K4, GL, S4 and S5 are obtained by adding the following rules
to the standard sequent system for classical logic:
(K) {〈⇒p1, πK〉}/ ⇒ �p1. where πK = {〈f:p1, f:�p1〉} (πK -instances are

all pairs of the form 〈Γ⇒ ,�Γ⇒〉).
(K4) {〈⇒p1, πK4〉}/ ⇒�p1, where πK4 = {〈f:p1, f:�p1〉, 〈f:�p1, f:�p1〉}.
(GL) {〈�p1⇒p1, πK4〉}/ ⇒�p1.
(S4) {〈⇒p1, πS4〉}/ ⇒�p1 where πS4 = {〈f:�p1, f:�p1〉}.
(S5) {〈⇒p1, πS5〉}/ ⇒�p1 where πS5 = {〈f:�p1, f:�p1〉, 〈t:�p1, t:�p1〉}.
(�⇒) In S4 and S5, the following rule is also added: {〈p1⇒ , π0〉}/�p1⇒ .

Applications of these rules have the form:

(K)
Γ⇒ψ

�Γ⇒�ψ
(K4)

Γ1,�Γ2⇒ψ
�Γ1,�Γ2⇒�ψ

(GL)
Γ1,�Γ2,�ψ⇒ψ
�Γ1,�Γ2⇒�ψ

(S4)
�Γ⇒ψ

�Γ⇒�ψ
(S5)

�Γ⇒�Δ,ψ
�Γ⇒�Δ,�ψ

(�⇒)
Γ, ψ⇒Δ
Γ,�ψ⇒Δ

Finally, we define basic systems, and the consequence relations induced by them.

Kripke Semantics for Basic Sequent Systems 47

Definition 4

– A basic system G consists of a finite set of basic rules, such that:
1. The identity axiom is in G. The identity axiom is the basic rule ∅/p1⇒p1.

Applications of this rule provide all axioms of the form ψ⇒ψ.
2. The cut rule is in G. Cut is the basic rule {〈p1⇒ , π0〉, 〈⇒p1, π0〉}/ ⇒ .

Applications of this rule allow one to infer Γ1, Γ2⇒Δ1, Δ2 from Γ1, ψ⇒
Δ1 and Γ2⇒Δ2, ψ.

3. The weakening rules are in G. These are the basic rules {〈⇒ , π0〉}/p1⇒
and {〈⇒ , π0〉}/ ⇒p1. Applications of them allow one to infer Γ, ψ⇒Δ
and Γ⇒Δ,ψ from Γ⇒Δ.

We denote by ΠG the set of context-relations appearing in the rules of G.
– A sequent s follows in basic system G from a set of sequents S (S G s) if

there exists a proof in G of s from S.

Example 2. We list some known sequent systems, each of which is either a basic
system, or it can easily be shown to be equivalent to a basic system:

– The family of canonical systems studied in [6] (which includes the proposi-
tional part of Gentzen’s LK for classical logic).

– The propositional part of LJ′ from [14] (the multiple-conclusion version of
Gentzen’s LJ for intuitionistic logic).

– The propositional part of SLK1 from [8] for bi-intuitionistic logic.
– All modal ordinary sequent systems described in [17], as well as that for GL

described in Example 1.
– The (fully-structural) sequent systems for finite-valued logics in [3].
– All paraconsistent sequent systems investigated in [4].

4 Kripke Semantics

In this section we introduce a method for providing Kripke semantics for any
given basic system. We provide a general definition of a (Kripke-) frame, and
show that every basic system G induces a class of frames for which it is strongly
sound and complete. Various fundamental soundness and completeness theorems
for known logics are easily obtained as special cases.

Definition 5. A frame is a tuple 〈W,R, v〉, where W is a set (of worlds),
R is a finite set of binary relations on W (called accessibility relations), and
v : W × FrmL → {t, f} is a valuation function. Given a frame 〈W,R, v〉, we say
that a signed formula of the form f:ψ (resp. t:ψ) is true in a world a ∈ W if
v(a, ψ) = f (v(a, ψ) = t).

Three notions of truth of sequents are defined as follows:

Definition 6. Let W = 〈W,R, v〉 be a frame, and s be a sequent.

1. s is true in some a ∈W if there exists x ∈ s such that x is true in a.
2. Let R ∈ R. s is R-true in a ∈ W if s is true in every b ∈W such that aRb.

48 A. Avron and O. Lahav

3. W is a model of s if s is true in every a ∈ W . W is a model of a set of
sequents S if it is a model of every s ∈ S.

Since we deal with arbitrary basic systems, no constraints on the set of relations
and on the valuation function were imposed in the definition of a frame. These
constraints are directly related to the context-relations and the basic rules of a
specific basic system. The idea is that each context-relation and each basic rule
imposes constraints on the set of frames. Next we describe these constraints.

Definition 7. Let G be a basic system. A frame W = 〈W,R, v〉 is G-legal if
the following conditions are met:

(1) R consists of a relation Rπ for every context-relation π ∈ ΠG, where Rπ0 is
the identity relation.

(2) For every a, b ∈ W , and π ∈ ΠG, if aRπb then for every two signed formulas
x, y such that xπ̄y, either x is not true in b or y is true in a.

(3) For every a ∈ W , L-substitution σ, and S/C ∈ G, if σ(s) is Rπ-true in a for
every 〈s, π〉 ∈ S, then σ(C) is true in a.

Example 3. The constraints imposed by the context-relations πint and πK ac-
cording to condition (2) of the previous definition are:

(1) Assume that πint ∈ ΠG. In G-legal frames, if aRπintb, then for every formula
ψ, either f:ψ is not true in b or f:ψ is true in a. Or equivalently, if aRπintb
and v(a, ψ) = t, then v(b, ψ) = t. Thus πint imposes the usual persistence
condition of intuitionistic logic (with respect to Rπint).

(2) Assume that πK ∈ ΠG. In G-legal frames, if aRπK b, then either f:ψ is not
true in b or f:�ψ is true in a. Equivalently, if aRπK b and v(a,�ψ) = t, then
v(b, ψ) = t. Thus πK imposes “one half” of the usual semantics of �.

Example 4. We present the constraints imposed by some basic rules according
to condition (3) of the previous definition:

(1) Assume that G contains a rule of the form {〈⇒p1, π〉}/ ⇒�p1. In G-legal
frames, v(a,�ψ) = t whenever v(b, ψ) = t for every world b such that aRπb.
Thus this rule imposes the “other half” of the usual semantics of �.

(2) Assume that G contains a rule of the form {〈⇒p1, π〉, 〈p2⇒ , π〉}/p1 ⊃ p2⇒.
In G-legal frames, v(a, ψ ⊃ ϕ) = f if v(b, ψ) = t and v(b, ϕ) = f for every
world b such that aRπb.

(3) Assume that G contains a rule of the form {〈p1⇒p2, π〉}/ ⇒ p1 ⊃ p2. In
G-legal frames, v(a, ψ ⊃ ϕ) = t whenever for every world b such that aRπb,
either v(b, ψ) = f or v(b, ϕ) = t.

(4) Assume that G contains a rule of the form {〈⇒ , π〉}/ ⇒ (application of
this rule allow to infer s′ from s where 〈s, s′〉 is a π-instance). In G-legal
frames, (⇒) (the empty sequent) should be true in every world, in which it
is Rπ-true. Since (⇒) is not true in any world, this condition would hold
iff for every world a there exists a world b such that aRπb. In other words,
if {〈⇒ , π〉}/ ⇒ is in G, then Rπ should be a serial relation.

Kripke Semantics for Basic Sequent Systems 49

Example 5. Let LK be the usual basic system for classical logic. Here ΠLK =
{π0}. In LK-legal frames, R consists of one relation Rπ0 which is the identity re-
lation. π0 imposes a trivial condition, v(a, ψ) = v(b, ψ) whenever a = b. The basic
rules of LK impose the usual truth-tables in each world, e.g. v(a, ψ ⊃ ϕ) = t iff
either v(a, ψ) = f or v(a, ϕ) = t.

Example 6. Assume that G contains the two standard rules for intuitionistic
implication. Example 4 (3) and the combination of Example 3 (1) and Example
4 (2) together imply that in G-legal frames v(a, ψ ⊃ ϕ) = t iff for every world b
such that aRπintb, either v(b, ψ) = f or v(b, ϕ) = t. Thus the two rules and πint
impose the usual Kripke semantics of intuitionistic implication.

We define the semantic consequence relation induced by a basic system G.

Definition 8. Let G be a basic system, and S∪{s} be a set of sequents. S �G s
if every G-legal frame which is a model of S is also a model of s.

Remark 1. It can easily be seen that in any basic system G like LK, in which
ΠG = {π0}, it suffices to consider only trivial Kripke frames which have a single
world, and the corresponding accessibility relation is the identity relation.

Theorem 1 (Strong Soundness and Completeness). G=�G for every
basic system G.

Theorem 1 generalizes several well-known completeness theorems for specific
basic systems. For example:

Example 7 (KD). Let KD be the basic system for the modal logic KD (see
[17]) obtained adding the rules {〈⇒p1, πK〉}/ ⇒�p1 and {〈⇒ , πK〉}/ ⇒ to the
usual system for classical logic. Applications of the latter allow to infer �Γ⇒
from Γ⇒ . As ΠKD = {π0, πK}, KD-legal frames include two relations, Rπ0

(the identity relation) and RπK . Following Examples 3, 4 and 5, all connectives
of KD have their usual semantics. By Example 4, in the presence of the second
rule, RπK is a serial relation. Thus, we obtain the usual semantics of KD.

Theorem 1 is sometimes difficult to use directly. However, there is a subclass of
G-legal frames that is still sufficient for completeness, and in many cases leads
to simpler conditions on the accessibility relations.

Definition 9. Given a basic system G, a G-legal frameW = 〈W,R, v〉 is called
maximal if for every a, b ∈ W , and π ∈ ΠG, aRπb iff (if and only if) for every
two signed formulas x, y such that xπ̄y, either x is not true in b or y is true in a.

Proposition 1. Let G be a basic system, and W = 〈W,R, v〉 be a maximal
G-legal frame. The following hold for every π1, π2, π3 ∈ ΠG:

(1) If π1 = ∅, then Rπ1 is the full relation.
(2) If π̄3 = π̄1 ∪ π̄2, then Rπ3 = Rπ2 ∩Rπ1 . In particular:

(a) If π̄1 ⊆ π̄2, then Rπ2 ⊆ Rπ1 .

50 A. Avron and O. Lahav

(b) If π̄1 ⊆ π̄0, then Rπ1 is a reflexive relation.
(3) If π̄3 ⊆ π̄1 ◦ π̄2, then Rπ2 ◦ Rπ1 ⊆ Rπ3 . In particular, if π̄1 ⊆ π̄1 ◦ π̄1, then

Rπ1 is a transitive relation.
(4) If xπ̄2y implies yπ̄1x (where f:ψ

.= t:ψ and t:ψ
.= f:ψ), then Rπ1 ⊆ R−1

π2
. In

particular, if xπ̄1y implies yπ̄1x, then Rπ1 is a symmetric relation.

Example 8. Assume that π0, πint ∈ ΠG (as in the system for intuitionistic logic).
Since ¯πint ◦ ¯πint = ¯πint, Rπint is a transitive relation in maximal G-legal frames.
Since ¯πint ⊆ π̄0, Rπint is reflexive. We obtain that in maximal G-legal frames
Rπint is a preorder, as Kripke semantics for intuitionistic logic is usually defined.

Theorem 2. Let G be a basic system, and S∪{s} be a set of sequents. If S ��G s
then there exists a maximal G-legal frame which is a model of S, but not of s.

Taken together, Theorems 1 and 2 imply various well-known completeness the-
orems for specific basic systems. Indeed, with the exception of GL (which we
discuss later), for every system in Example 2 our semantics is equivalent to the
usual Kripke semantics of the corresponding logic. Here are some other examples:

Example 9 (KB). Let KB be the basic system for the modal logicKB ([17]), ob-
tained from the system for classical logic by adding the rule {〈⇒p1, π〉}/ ⇒�p1,
where π = {〈f:p1, f:�p1〉, 〈t:�p1, t:p1〉}. Applications of this rule allow to infer
�Γ⇒Δ,�ψ from Γ⇒�Δ,ψ. KB-legal frames include two relations, Rπ0 (the
identity relation) and Rπ. The rules of KB dictate the usual semantics of modal
logic for every connective. By Proposition 1, in maximal KB-legal frames Rπ is
a symmetric relation. It follows that KB is sound and complete with respect to
usual symmetric Kripke frames.

Example 10 (Intuitionistic S5). Consider the basic system G3 from [11] (ob-
tained from the propositional part of LJ′ by adding the usual S5 rules for �).
Here ΠG3 = {π0, πint, πS5}. Maximal G3-legal frames include three relations,
Rπ0 (the identity relation), a preorder Rπint , and an equivalence relation RπS5 .
πS5 and the rules for � enforce the usual Kripke semantics of � with respect to
RπS5 . πint and the rules for the intuitionistic connective dictate the usual Kripke
intuitionistic semantics with respect to Rπint . Note that πint also enforces per-
sistence of �-formulas, i.e. if aRπintb and v(a,�ψ) = t then v(b,�ψ) = t. This
condition is equivalent to the following one: if aRπintb and v(c, ψ) = t for every
world c such that aRπS5c, then v(d, ψ) = t for every world d such that bRπS5d.
The Kripke semantics presented in [11] is not identical to the one obtained by our
method. In particular, in our semantics RπS5 should be an equivalence relation,
and no direct conditions bind Rπint and RπS5 .

Example 11. Consider the basic system G obtained from the propositional part
of LJ′ by adding the rules: {〈⇒¬p1, πS4〉}/ ⇒�¬p1 and {〈p1⇒ , π0〉}/�p1⇒ .
Applications of the first rule allow to infer �Γ⇒�¬ψ from �Γ⇒¬ψ. Maximal
G-legal frames include the identity relation Rπ0 , and two preorders Rπint and
RπS4 , such that Rπint ⊆ RπS4 . The rules of LJ′ dictate the usual semantics of
the intuitionistic connectives, The two other rules and πS4 impose the following

Kripke Semantics for Basic Sequent Systems 51

three conditions: (1) if v(b,¬ψ) = t for every world b such that aRπS4b then
v(a,�¬ψ) = t; (2) if v(a, ψ) = f then v(a,�ψ) = f; (3) if v(a,�ψ) = t then
v(b,�ψ) = t for every world b such that aRπS4b. As in Example 10, πint also
enforces persistence of �-formulas. But, since Rπint ⊆ RπS4 , this condition must
hold if (3) holds. In this case we get non-deterministic semantics. To see this,
note that if ψ is not of the form ¬ϕ and v(b, ψ) = t whenever aRπS4b, then
v(a,�ψ) can be freely chosen between t and f.

Remark 2. The last example provides a case in which the various constraints
imposed by the rules (and context-relations) of a system do not uniquely deter-
mine the truth-value of a compound formula. Another, more natural, example is
given by the system for primal intuitionistic logic from [10] (see also [5]). These
examples demonstrate the need in general of non-deterministic semantics.

Example 12 (GL). Let GL be the basic system for the modal logic of provability
GL (see Example 1). It is well-known that GL is sound and complete with
respect to the set of modal Kripke frames whose accessibility relation is transitive
and conversely well-founded. However, GL is not strongly complete with respect
to this set of frames ([16]), and the compactness theorem fails for the logic
induced by this semantics. Using our method, one obtains a different Kripke
semantics for GL with an unusual interpretation of �. Indeed, maximal GL-
legal frames include one (non-trivial) transitive relation, RπK4 . The rules and
context-relations of GL impose the usual truth-tables in every world for the
classical connectives. Concerning �, a maximal GL-legal frame admits the usual
semantics of �, and it should also satisfy the following condition: if v(b, ψ) = f
for some b such that aRπK4b, then there is some c such that aRπK4c, v(c, ψ) = f
and v(c,�ψ) = t. By Theorems 1 and 2, GL is strongly sound and complete
with respect to this semantics (and so the compactness theorem does hold for
this semantic consequence relation). It can easily be verified that every usual
GL-frame is GL-legal. However, the converse is not true.

5 Semantic Characterization of Analyticity

In this section we investigate the crucial property of analyticity in the frame-
work of basic systems. Roughly speaking, a sequent system is (strongly) analytic
if whenever some sequent is provable in it (from a set of assumptions), then
this sequent can be proven using only the syntactic material available within
(the assumptions and) the proven sequent. For the formal definition, we use the
following relation:

Definition 10. Let G be a basic system, S ∪ {s} be a set of sequents, and E
be a set of formulas. S EG s if there exists a proof in G of s from S, containing
only formulas from E .

Definition 11. A basic system G is analytic if S G s implies S sub[S∪{s}]
G s.

The following are two major consequences of analyticity.

52 A. Avron and O. Lahav

Proposition 2 (Consistency). Let G be an analytic basic system. Assume
that the basic rule ∅/ ⇒ is not in G. Then, �G⇒ .

Proof. Assume that G⇒ . Since G is analytic, ∅G⇒ . The only way one can
prove ⇒ without using any formulas, is using a rule of the form ∅/ ⇒ . ��

Proposition 3 (Decidability). Let G be an analytic basic system. Given a
finite set S of sequents and a sequent s, it is decidable whether S G s or not.

Proof. Let S′ be the set of sequents consisting of formulas from sub[S ∪ {s}],
and let n = |S′|. Since G is analytic, if S G s then there exists a proof of s
from S in G having length ≤ n (viewing a proof as a sequence), and consisting
only of sequents from S′. Thus an exhaustive proof-search is possible. ��

We shall obtain a characterization of analyticity by identifying a semantic conse-
quence relation that corresponds to EG. For this purpose, we define semiframes.

Definition 12. Let E be a set of formulas.

1. An E-semiframe is a tuple 〈W,R, v〉, where W and R are as in Definition 5,
and v : W × E → {t, f} is a valuation function.

2. Given an E-semiframe 〈W,R, v〉, a signed formula of the form f:ψ (resp. t:ψ)
is true in some world a ∈W if ψ ∈ E and v(a, ψ) = f (v(a, ψ) = t).

3. A frame 〈W,R, v′〉 (see Definition 5) extends an E-semiframe 〈W,R, v〉 if
v′(a, ψ) = v(a, ψ) whenever ψ ∈ E .

Note that a frame (Definition 5) is obtained as a special case, when E = FrmL.

Definition 13. Given an E-semiframe W = 〈W,R, v〉 and a sequent s:

1. s is true in some a ∈W if s is an E-sequent and there exists x ∈ s such that
x is true in a.

2. Let R ∈ R. s is R-true in a ∈ W if s is an E-sequent and s is true in every
b ∈W such that aRb.

3. W is a model of a sequent s if s is true in every a ∈ W . W is a model of a
set of sequents S if it is a model of every s ∈ S.

(Maximal) G-legal semiframes are defined as follows:

Definition 14. Let G be a basic system, and E be a set of formulas.

– An E-semiframe W = 〈W,R, v〉 is G-legal if the following hold:
(1) R consists of a relation Rπ for every context-relation π ∈ ΠG, where

Rπ0 is the identity relation.
(2) For every a, b ∈ W , and π ∈ ΠG, if aRπb then for every two signed
E-formulas x, y such that xπ̄y, either x is not true in b, or y is true in a.

(3) For every a ∈W , L-substitution σ, and S/C ∈ G, if frm[σ(C)] ⊆ E , and
σ(s) is Rπ-true in a for every 〈s, π〉 ∈ S, then σ(C) is true in a.

– A G-legal E-semiframeW = 〈W,R, v〉 is called maximal if for every a, b ∈ W
and π ∈ ΠG, the converse of the condition in (2) holds as well.

Kripke Semantics for Basic Sequent Systems 53

Proposition 4. Let G be a basic system, and W = 〈W,R, v〉 be a maximal
G-legal E-semiframe.

1. (1), (2) and (4) from Proposition 1 hold without any changes.
2. If for every two signed E-formulas x, y, xπ̄3y implies that there exists a signed
E-formula z such that xπ̄1z and zπ̄2y, then Rπ2 ◦Rπ1 ⊆ Rπ3 .

3. |W | ≤ 2|E|.

We now define the semantic consequence relation �E
G, and prove a stronger

soundness and completeness theorem.

Definition 15. Let G be a basic system, S ∪ {s} be a set of sequents, and E
be a set of formulas. S �E

G s if every G-legal E-semiframe which is a model of
every E-sequent s′ ∈ S, is also a model of s.

Theorem 3. Let G be a basic system, and E be a set of formulas.

1. EG=�E
G.

2. If S ��E
G s then there exists a maximal G-legal E-semiframe which is a model

of every E-sequent s′ ∈ S, but not a model of s.

Theorems 1 and 2 are derived now as corollaries, by choosing E = FrmL. To-
gether with Proposition 4, Theorem 3 makes it possible to have a semantic
decision procedure for G in case G is analytic (compare with the syntactic one
in Proposition 3). Indeed, let E = sub[S ∪ {s}]. To decide whether S G s, it
suffices to check triples of the form 〈W,R, v〉 where |W | ≤ 2|E|, |R| = |ΠG|, and
v ∈ W × E → {t, f}. S �EG s iff one of these semiframes is a G-legal model of S,
which is not a model of s. If G is analytic, then S EG s iff S G s. In this case
the semantics is effective, leading to a counter-model search procedure. Another
corollary is the following characterization of analyticity.

Corollary 1 (Semantic Characterization of Analyticity). A basic system
G is analytic iff for every S and s, S �G s implies S �sub[S∪{s}]

G s.

The above characterization might be quite complicated to be used in practice.
We present a simpler sufficient criterion:

Corollary 2. Let G be a basic system. If every maximal G-legal E-semiframe
can be extended to a G-legal frame for every finite set E of formulas closed under
subformulas, then G is analytic.

The last corollary provides a uniform and simple method of proving that a
specific basic system is analytic. Indeed, the required “extension property” can
very easily be proved for the Kripke semantics of various basic systems mentioned
above. This includes (the propositional parts of): LK, LJ′, SLK1 from [8],
various systems for modal logics from [17] (including those presented in Examples
7 and 9), the family of coherent canonical systems from [6], and many more.
Hence all of them are analytic.2

2 Concerning SLK1, it was shown in [9] and [12] that it does not enjoy cut-
admissibility. From our results it follows that it is nevertheless analytic. This answers
a question raised in [12].

54 A. Avron and O. Lahav

Remark 3. The criterion given in Corollary 2 is not necessary for analyticity.
For example, the system GL (see Example 12) is analytic (and even enjoys
strong cut-admissibility, as can be shown by a straightforward generalization
of the proof of cut-admissibility for it given in [1]), yet it does not meet the
semantic condition of Corollary 2. To see this, let E = {p1,�p1}, and let W =
〈W, {RπK4}, v〉 be an E-semiframe, where W = {a, b}, RπK4 = {〈a, a〉, 〈a, b〉},
v(a, p1) = v(b, p1) = v(a,�p1) = f and v(b,�p1) = t. W is a maximal GL-legal
E-semiframe, but it cannot be extended to a GL-legal frame: there is no way to
assign a truth-value to ��p1. This phenomenon might be connected with the
fact that the natural first-order extension of GL does not enjoy cut-admissibility
([1]). Further research is needed to clarify this issue (and hopefully to find an
effective semantic criterion which is both sufficient and necessary).

Remark 4. While analyticity is defined using the subformula relation, it is also
possible to study more general notions of analyticity. Indeed, let � be any partial
order on FrmL, such that {ψ | ψ � ϕ} is finite and computable for every ϕ. For
every set S of sequents, let �[S] = {ψ | ∃ϕ ∈ frm[S].ψ � ϕ}. It is now possible
to define �-analyticity as in Definition 11 with � instead of sub. Consistency and
decidability of a basic system follow from its �-analyticity. By a straightforward
generalization of Corollary 1, we obtain that a basic system G is �-analytic
iff S �G s implies S ��[S∪{s}]

G s. This can be used for basic systems which
are not strictly analytic, but are nevertheless �-analytic for some well-founded
partial order on FrmL. For example, this is the case with some systems of the
family LJ(S) in [4], which extend LJ′ with different rules for negation. For these
systems, it can be proven that whenever S s, then there also exists a proof
involving only subformulas of S ∪ {s} and their negations.

6 Semantic Characterization of Strong Cut-Admissibility

While analyticity of a proof system suffices for many desirable properties, cut-
admissibility is traditionally preferred (especially if all other rules enjoy the
subformula property, in which case cut-admissibility implies analyticity). Since
in this work we deal with proofs from arbitrary sets of assumptions (not nec-
essarily the empty one), we again consider a stronger property: the one which
was called strong cut-admissibility in [2]. In this section we provide a seman-
tic characterization of the basic sequent systems which enjoy this property. This
characterization can serve as a uniform basis for semantic proofs of many (strong)
cut-admissibility theorems in various basic systems.

Definition 16. Let G be a basic system, S ∪ {s} be a set of sequents, and E
be a set of formulas. S Ecuts

G s if there exists a proof in G of s from S, in which
the cut formula of every application of the cut rule is in E .

Definition 17. A basic system G enjoys strong cut-admissibility if S G s

implies S frm[S]cuts

G s.

Kripke Semantics for Basic Sequent Systems 55

As for analyticity, the semantic characterization of cut-admissibility is obtained
by identifying a semantic consequence relation that corresponds to Ecuts

G . For
that purpose, we define another generalization of frames, called quasiframes.

Definition 18. Let E be a set of formulas.

1. An E-quasiframe is a tuple 〈W,R, v〉, where W and R are as in Defini-
tion 5, and v : W × FrmL → {t, f, i} is a valuation function, such that
v(w,ψ) ∈ {t, f} for every ψ ∈ E .

2. Given an E-quasiframe 〈W,R, v〉, a signed formula of the form f:ψ (resp. t:ψ)
is true in some world a ∈W if v(a, ψ) ∈ {f, i} (v(a, ψ) = {t, i}).

3. A frame 〈W,R, v′〉 (see Definition 5) refines an E-quasiframe 〈W,R, v〉 if
v′(a, ψ) ≥k v(a, ψ) for every a ∈W and ψ ∈ FrmL, where the partial order
≥k on {t, f, i} is defined by: x ≥k x,t ≥k i, and f ≥k i.

The third truth-value i is used in quasiframes to distinguish the formulas that
belong to E (on which cut is allowed) from those that do not. Note that if ψ �∈ E
then v(a, ψ) can be i, making both f:ψ and t:ψ true in a. Note also that a frame
(Definition 5) is again obtained as a special case: it is an FrmL-quasiframe.
Definition 6 is extended to quasiframes without any changes. (Maximal) G-legal
quasiframes are defined as follows:

Definition 19. Let G be a basic system, and E be a set of formulas.

1. An E-quasiframe W = 〈W,R, v〉 is G-legal if the conditions formulated in
Definition 7 hold for W , except for the third condition, which should apply
to all basic rules except for the cut-rule.

2. A G-legal E-quasiframeW is called maximal if the condition in Definition 9
holds for W .

Proposition 5. Properties (1) − (3) from Proposition 1 hold for maximal G-
legal quasiframes.

We now define the relation �Ecuts

G , and strengthen Theorems 1 and 2.

Definition 20. Let G be a basic system, S ∪{s} be a set of sequents, and E be
a set of formulas. S �Ecuts

G s if every G-legal E-quasiframe which is a model of S,
is also a model of s.

Theorem 4. Let G be a basic system, and E be a set of formulas.

1. Ecuts

G =�Ecuts

G .
2. If S ��Ecuts

G s then there exists a maximal G-legal E-quasiframe which is a
model of S, but not a model of s.

The following characterization of strong cut-admissibility is a simple corollary.

Corollary 3 (Semantic Characterization of Strong Cut-Admissibility).
A basic system G enjoys strong cut-admissibility iff S �G s implies S �Ecuts

G s
where E = frm[S].

56 A. Avron and O. Lahav

Example 13. It is well-known that the system S5 (see Example 1) does not admit
strong cut-admissibility. We demonstrate this fact using our semantic character-
ization. Let s be the sequent⇒ p1,�¬�p1. It is easy to see that s is provable
in S5 (using a cut on �p1), and so (by soundness) �S5 s. Let E = {p1,�¬�p1}.
We show that ��Ecuts

S5 s by constructing a S5-legal E-quasiframe W = 〈W,R, v〉
which is not a model of s. Let W = {a0, b0}, and R = {Rπ0 , RπS5}, where Rπ0 is
the identity relation, and RπS5 = {〈a0, a0〉, 〈b0, b0〉, 〈a0, b0〉}. Define v(a0, p1) =
v(a0,�¬�p1) = f and v(a0, ψ) = i for other formulas, v(b0, p1) = v(b0,�p1) = t,
v(b0,¬�p1) = v(b0,�¬�p1) = f, and v(b0, ψ) = i for other formulas. One can
now verify that W is not a model of s and that it a S5-legal E-quasiframe.
Indeed, all conditions from Definition 7 are met. For example:3

– The conditions imposed by πS5 are: (1) if aRπS5b and v(a,�ψ) = t then
v(b,�ψ) = t; (2) if aRπS5b and v(a,�ψ) = f then v(b,�ψ) = f. Both (1)
and (2) hold for W .

– The rules for � impose the following conditions: (1) if v(b, ψ) ∈ {t, i} for
every b such that aRπS5b, then v(a,�ψ) ∈ {t, i}; (2) if v(a, ψ) ∈ {f, i} then
v(a,�ψ) ∈ {f, i}. Again, both (1) and (2) hold for W .

Corollary 3 implies that S5 does not admit strong cut-admissibility.

We present a simpler sufficient criterion for strong cut-admissibility.4

Corollary 4. Let G be a basic system. If every maximal G-legal E-quasiframe
can be refined to a G-legal frame, then G enjoys (strong) cut-admissibility.

Example 14. It is easy to verify that the criterion given in Corollary 4 holds
for the systems LK, LJ′, K,K4, and S4 from Example 1, and for KD from
Example 7. Hence all these systems enjoy strong cut-admissibility.

Example 15 (Intuitionistic S4). Consider the basic system G0 from [11], ob-
tained from the propositional part of LJ′ by adding the usual S4 rules for �

(see Example 1). Maximal G0-legal quasiframes include Rπ0 (the identity rela-
tion), and two preorders Rπint and RπS4 , such that Rπint ⊆ RπS4 . The context-
relations and the rules of this system dictate the usual Kripke semantics of �

with respect to RπS4 , and of the intuitionistic connectives with respect to Rπint .
It is straightforward to verify that every maximal G0-legal quasiframe can be
refined to a G0-legal frame. It follows that G0 enjoys (strong) cut-admissibility.

7 Further Research Topics

The examples we have given are somewhat limited in comparison to the gener-
ality of the framework we have presented. For example, the conclusions of the
3 The condition of Definition 9 also holds for W, and so W is a maximal S5-legal

quasiframe. Recall that property (4) from Proposition 1 does not necessarily hold
for quasiframes, and so RπS5 can be non-symmetric.

4 Here too the example of GL shows that this is not a necessary criterion.

Kripke Semantics for Basic Sequent Systems 57

basic rules were all either singletons or empty, and only one context-relation was
involved in every basic rule. We leave it as a further research to exploit the full
power of this framework. In addition, the following extensions of the framework
will be investigated in the future: single-conclusion systems, hypersequential sys-
tems, systems employing more than two signs, substructural systems, first order
logics and beyond.

References

1. Avron, A.: On Modal Systems having arithmetical interpretations. Journal of
Symbolic Logic 49, 935–942 (1984)

2. Avron, A.: Gentzen-Type Systems, Resolution and Tableaux. Journal of Auto-
mated Reasoning 10, 265–281 (1993)

3. Avron, A.: Classical Gentzen-type Methods in Propositional Many-Valued Log-
ics. In: Fitting, M., Orlowska, E. (eds.) Beyond Two: Theory and Applications
of Multiple-Valued Logic, Studies in Fuzziness and Soft Computing, vol. 114,
pp. 117–155. Physica Verlag, Heidelberg (2003)

4. Avron, A.: A Non-Deterministic View on Non-Classical Negations. Studia Log-
ica 80, 159–194 (2005)

5. Avron, A., Lahav, O.: On Constructive Connectives and Systems. Journal of Log-
ical Methods in Computer Science 6 (2010)

6. Avron, A., Lev, I.: Non-deterministic Multiple-valued Structures. IJCAR 2001 15
(2005); Avron, A., Lev, I.: Canonical Propositional Gentzen-Type Systems. In:
Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083,
p. 529. Springer, Heidelberg (2001)

7. Ciabattoni, A., Terui, K.: Towards a Semantic Characterization of Cut-
Elimination. Studia Logica 82, 95–119 (2006)

8. Crolard, T.: Subtractive Logic. Theoretical Computer Science 254, 151–185 (2001)
9. Goré, R., Postniece, L.: Combining Derivations and Refutations for Cut-free Com-

pleteness in Bi-intuitionistic Logic. Journal of Logic and Computation 20(1),
233–260 (2010)

10. Gurevich, Y., Neeman, I.: The Infon Logic: the Propositional Case. To appear in
ACM Transactions on Computation Logic 12 (2011)

11. Ono, H.: On some intuitionistic modal logic, pp. 687–722. Publications of Research
Institute for Mathematical Sciences, Kyoto University (1977)

12. Pinto, L., Uustalu, T.: Proof Search and Counter-Model Construction for Bi-
intuitionistic Propositional Logic with Labelled Sequents. In: Giese, M., Waaler,
A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 295–309. Springer, Heidelberg
(2009)

13. Sambin, G., Valentini, S.: The modal logic of provability. The sequential approach.
Journal of Philosophical Logic 11, 311–342 (1982)

14. Takeuti, G.: Proof Theory. North-Holland, Amsterdam (1975)
15. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge University

Press, Cambridge (1996)
16. Rineke, V.: Provability Logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of

Philosophy (2010), http://plato.stanford.edu/entries/logic-provability/

(revision November 2010)
17. Wansing, H.: Sequent Systems for Modal Logics. In: Gabbay, D.M., Guenthner, F.

(eds.) Handbook of Philosophical Logic, 2nd edn. vol. 8, pp. 61–145 (2002)

http://plato.stanford.edu/entries/logic-provability/

Hybrid and First-Order Complete Extensions of CaRet

Laura Bozzelli1 and Ruggero Lanotte2

1 DLSIIS, Technical University of Madrid (UPM), Madrid, Spain
2 Università dell’Insubria, Via Valleggio 11, 22100 - Como, Italy

Abstract. We investigate the hybrid extension of CaRet, denoted HyCaRet, ob-
tained by adding the standard existential binder operator ∃. We show that the one
variable fragment 1-HyCaRet of HyCaRet is expressively complete for the first-
order logic FOµ which extends FO over words with a binary matching predicate.
While all the known FOµ-complete and elementary extensions of CaRet can be
linearly translated in 1-HyCaRet, 1-HyCaRet can be exponentially more succinct
than them. Moreover, the complexity of its satisfiability and pushdown model-
checking problems are 2EXPTIME-complete, which is the same complexity as
that of two known FOµ-complete extensions of CaRet suitable for compositional
and modular reasoning, namely CaRet + ‘within’ and CaRet + ‘forgettable past’.
Finally, we show that for each h≥ 1, satisfiability and pushdown model-checking
of the fragment HyCaReth of HyCaRet consisting of formulas with nesting depth
of ∃ at most h is exactly (h+1)-EXPTIME-complete.

1 Introduction

The linear temporal logic CaRet and its extensions. CaRet [AEM04] is a well-known
context–free extension of LTL + Past, obtained by adding non-regular versions of the
standard LTL + Past temporal modalities. Even though verifying context-free proper-
ties of pushdown systems is in general undecidable, model checking pushdown systems
against CaRet is decidable with the same complexity as standard LTL model-checking
for pushdown systems, i.e. EXPTIME-complete [BEM97]. In [AM04], the class of non-
deterministic visibly pushdown automata (NVPA) is proposed as an automata-theoretic
generalization of CaRet. NVPA are pushdown automata where the input symbol deter-
mines when the automaton can push or pop, and thus the stack depth at every position.
The resulting class of languages (visibly pushdown languages or VPL) is closed under
all boolean operations, and problems such as universality and inclusion that are unde-
cidable for context–free languages are EXPTIME–complete for VPL. Moreover, NVPA
have the same expressiveness as MSOµ [AM04], which extends the classical monadic
second-order logic (MSO) over words with a binary matching predicate. The logic
CaRet is less expressive than NVPA and is easily expressible in the first-order frag-
ment FOµ of MSOµ. However, it is an open question whether CaRet is FOµ-complete
[AAB08].

More recently, some elementary and FOµ-complete extensions of CaRet have been
introduced. In particular, Alur et al. [AAB08] propose two extensions of CaRet. One, the
logic NWTL+, is obtained by adding since and until modalities interpreted on
summary paths. The other one, more suitable for modular and compositional reasoning,
extends CaRet with the non-regular unary modality “within” W. Satisfiability and push-
down model-checking of NWTL+ (resp., CaRet + W) are EXPTIME-complete (resp.,

K. Brünnler and G. Metcalfe (Eds.): TABLEAUX 2011, LNAI 6793, pp. 58–72, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Hybrid and First-Order Complete Extensions of CaRet 59

2EXPTIME-complete). An other extension of CaRet has been studied in [Boz08], where
the extension is obtained by adding the well-known unary regular modality “from now
on” N [LS95,LMS02]. Satisfiability and pushdown model checking for the resulting
logic are shown to be 2EXPTIME-complete.

As illustrated in [AM06], besides software model checking, the theory of CaRet
and VPL has applications also in the processing of semistructured data, such as XML
documents, where each open-tag is matched with a closing-tag in a well-nested manner.

Hybrid logics. Hybrid logics extend temporal logics by first-order concepts which pro-
vide very natural modeling facilities. The main ingredients that set hybrid logics apart
from temporal logics are operators for accessing states by names and for dynamically
creating new names for states. Applications of hybrid logics range from verification
tasks to reasoning about semistructured data [FR06]. Full regular linear-time hybrid
logic has been investigated in [FRS03]. Like LTL, it is FO-complete, but its satisfiabil-
ity problem is non-elementary, and this already holds for the fragment with only two
variables [SW07]. However, for its one-variable fragment, which is still FO-complete,
satisfiability is elementary and precisely EXPSPACE-complete [SW07,BL08].

Our contribution. In this paper we introduce and investigate a non-regular linear-time
hybrid logic, denoted by HyCaRet, which extends CaRet by (position) variables and the
binder modality ∃x, which binds variable x to some position of the given word.

First, we show that the one-variable fragment 1-HyCaRet of HyCaRet is FOµ-
complete, and this, surprisingly, already holds for weak 1-HyCaRet, obtained by dis-
allowing all non-regular until modalities. Moreover, 1-HyCaRet represents a unifying
and convenient framework for specifying FOµ-properties. Indeed, we demonstrate that
all the known FOµ-complete and elementary extensions of CaRet, namely CaRet +
W, CaRet + N, and NWTL+, can be linearly translated into 1-HyCaRet, but (weak) 1-
HyCaRet can be ‘simultaneously’ more succinct than them (w.r.t. the same family of
FOµ-properties). Moreover, for this new logic, the complexity of its satisfiability and
pushdown model-checking problems is the same as that of CaRet + N and CaRet +
W, i.e., 2EXPTIME-complete. Compared with NWTL+, we pay for conciseness with
added complexity. However, we think that the semantics of 1-HyCaRet-modalities is
more suitable for reasoning and verification tasks than that of NWTL+-modalities. Fur-
thermore, we conjecture that there is no elementary translation from (weak) 1-HyCaRet
to NWTL+ (resp., CaRet + W, CaRet + N).

Second, we show that for each h≥ 1, satisfiability and pushdown model-checking of
the fragment HyCaReth of HyCaRet consisting of formulas with nesting depth of ∃ at
most h is exactly (h+1)-EXPTIME-complete (and this already holds for the two-variable
fragment of HyCaReth). For the upper bounds, we exploit an automata-theoretic ap-
proach based on a translation of HyCaRet formulas into a subclass of generalized Büchi
(one-way) alternating jump automata (AJA) [Boz07]. The construction, which gener-
alizes the standard tableau-based construction for LTL, is direct and compositional, and
is based on a non-trivial characterization of the satisfaction relation, for a given for-
mula ϕ, in terms of sequences of pairs of sets associated with ϕ satisfying determined
requirements which can be checked by AJA. Moreover, the AJA Aϕ associated with a
HyCaRet formula ϕ has a special structure, and we show that it can be translated into
an equivalent Büchi NVPA Pϕ which has the same size as Aϕ w.r.t. |ϕ|. This translation
is direct and is a non-trivial readaptation of the standard construction used to convert a

60 L. Bozzelli and R. Lanotte

Büchi one-way alternating finite-state word automaton into an equivalent nondetermin-
istic one [MH84]. Finally, for the logic 1-HyCaRet, we show that nested occurrences of
∃ can be avoided at no cost, hence membership in 2EXPTIME for its satisfiability and
pushdown model-checking problems follows from the above results.

Due to lack of space, many proofs are omitted and can be found in [BL11].

2 Preliminaries

2.1 The Linear Hybrid Logic HyCaRet and Known Extensions of CaRet

A pushdown alphabet Σ is a finite alphabet which is partitioned in three disjoint sets
Σint , Σc, and Σr, where Σint is a set of internal actions, Σc is a set of calls, and Σr is a set
of returns. For a word w over Σ, |w| is the length of w (we set |w| = ∞ if w is infinite).
For all i ≤ j < |w|, w(i) is the ith symbol of w, w[i, j] is the finite word w(i)w(i + 1)
. . .w(j), and wi and w[i, |w|] denote the suffix of w from position i. A finite word w is
well-matched if inductively or (1) w is empty, or (2) w = σw′, σ ∈ Σint and w′ is well-
matched, or (3) w = σcw′σrw′′, σc ∈ Σc, σr ∈ Σr, and w′ and w′′ are well-matched. Let
i be a call position of a word w (i.e. w(i) ∈ Σc). If there is j > i such that j is a return
position of w (i.e. w(j) ∈ Σr) and w[i+1, j−1] is well-matched (note that j is uniquely
determined), we say that j is the matching return of i, and i is the matching call of j. We
consider five different notions of successor for a position i along a word w [AEM04]:

– The forward local successor of i along w, written succ(+,w, i), is i+1 if i+1 < |w|,
and it is ⊥ otherwise (the symbol ⊥ is for ‘undefined’).

– The backward local successor, succ(−,w, i), is i−1 if i > 0, and it is ⊥ otherwise.
– The forward abstract successor of i along w, succ(a+,w, i). If w(i) ∈ Σc, then

succ(a+,w, i) is the matching return of i if any, otherwise succ(a+,w, i) = ⊥. If
instead w(i) /∈ Σc, then succ(a+,w, i) = i+1 if i+1 < |w| and i+1 is not a matched
return position, and succ(a+,w, i) =⊥ otherwise.

– The backward abstract successor of i along w, succ(a−,w, i). If there is a position
j of w such that succ(a+,w, j) = i (note that j < i and j is uniquely determined),
then succ(a−,w, i) = j; otherwise, succ(a−,w, i) = ⊥.

– The caller of i along w, succ(c,w, i), points to the greatest call position ic < i such
that either succ(a+,w, ic) = ⊥ or succ(a+,w, ic) > i if such a call position exists;
otherwise, succ(c,w, i) =⊥.

w =
0 1 2 3 4 5 6 7 8 9 10

succ(c,w,7)

succ(a+,w,7)
succ(a+,w,1)� ��

c c i c i r r c i r i

i = internal action

c = call

r = return

For i < |w| and dir ∈ {+,−,a+,a−,c}, the dir-path of w from i, is the maximal
sequence of positions ν = j0, j1, . . . such that j0 = i and jh = succ(dir,w, jh−1) for each
0 < h < |ν|. Intuitively, the forward and backward abstract paths (i.e., the a+-paths
and a−-paths) capture the local computation within a procedure removing computation
fragments corresponding to nested calls, while a caller path (i.e., a c-path) captures the

Hybrid and First-Order Complete Extensions of CaRet 61

content of the call-stack of a procedure. For example, in the figure above, the sequence
4,3,1,0 is a caller path, while the sequence 1,6,7,9,10 is a forward abstract path.

The hybrid logic HyCaRet: Fix a finite set AP of atomic propositions and let call,ret,
int be three special symbols not in AP. The pushdown alphabet induced by AP is Σ =
{call,ret, int}×2AP, where Σint = {int}×2AP, Σc = {call}×2AP, and Σr = {ret}×2AP.
Fix a countable set {x1,x2, . . .} of variables. The syntax of HyCaRet on AP is as follows:

ϕ ::= true | p | xh | ¬ϕ | ϕ∧ϕ | Xdirϕ | ϕU dirϕ | ϕ Ũc ϕ | ∃xh.ϕ
where p ∈ AP∪{call,ret, int}, and dir ∈ {+,−,a+,a−,c}. For each type of successor,
HyCaRet provides the corresponding versions of the usual ‘next’ operator and ‘until’
operator. Moreover, the logic provides the forward version of the caller until operator
U c, denoted Ũc, and the standard existential binder operator ∃. As in standard LTL,
for each dir ∈ {+,−,a+,a−,c}, we will use Fdirϕ as an abbreviation for trueUdirϕ,
and Gdirϕ for ¬Fdir¬ϕ. A formula ϕ is open if there is some variable xh which occurs
free in ϕ (i.e., the occurrence is not in the scope of ∃xh). A non-open formula is called
sentence. The size |ϕ| of a formula ϕ is the number of distinct subformulas of ϕ.

HyCaRet is interpreted on words w over Σ = {call,ret, int}×2AP. A valuation for w
is a mapping g assigning to each variable a position j < |w|. The satisfaction relation
(w, i,g) |= ϕ, meaning that ϕ holds at position i along w w.r.t. the valuation g, is defined
by induction as follows (we omit the rules for boolean connectives which are standard):

(w, i,g) |= p iff w(i) = (d,Y) and either p ∈ Y or p = d
(w, i,g) |= xh iff g(xh) = i
(w, i,g) |= Xdirϕ iff succ(dir,w, i) �=⊥ and (w,succ(dir,w, i),g) |= ϕ
(w, i,g) |= ϕ1 Udirϕ2 iff for the dir-path ν = j0, j1, . . . of w from i, there is n < |ν|

such that (w, jn,g) |= ϕ2 and for all 0≤ h <n,(w, jh,g) |= ϕ1

(w, i,g) |= ϕ1 Ũcϕ2 iff there is a prefix of a caller-path j0, j1, . . . , jn of w leading to
jn = i s.t.(w, j0,g) |= ϕ2, and for all 0 < h≤ n,(w, jh,g) |= ϕ1

(w, i,g) |= ∃xh.ϕ iff (w, i,g[xh← m]) |= ϕ for some m < |w|

where g[xh← m](xh) = m and g[xh← m](xi) = g(xi) for i �= h. Note that the satisfac-
tion relation depends only on the values assigned to the variables occurring free in the
formula. We write (w, i) |= ϕ to mean that (w, i,g0) |= ϕ, where g0(xh) = 0 for each h.

As example, let us consider the requirement: “before any occurrence of condition
cond within a procedure A, every request p is followed by a response q”, which can be
expressed in the one-variable fragment of HyCaRet as follows, where tA holds iff the
control is within procedure A:

G+[(tA ∧ cond) −→ ∃x.(x ∧ Ga−(p → Fa+
(q ∧ F+x)))]

In the following, unless stated otherwise, a given HyCaRet formula is assumed to
be a sentence. Note that the fragment of HyCaRet obtained by disallowing variables
and ∃ corresponds to full CaRet [AEM04], while the fragment of HyCaRet obtained by
disallowing the non-regular modalities, i.e. Xdir, U dir, Ũc with dir ∈ {a+,a−,c}, corre-
sponds to standard linear hybrid logic [FRS03]. W.l.o.g. we assume that if a formula ϕ
uses at most n-variables, these variables are x1, . . . ,xn, and we write (w, i, j1, . . . , jn) |= ϕ
to mean that (w, i,g) |= ϕ for any valuation g for w such that g(xh) = jh for 1≤ h≤ n.

We denote by weak HyCaRet, the set of HyCaRet formulas obtained by disallowing
the non-regular modalities, with the exception of the non-regular next-modalities Xa+

62 L. Bozzelli and R. Lanotte

and Xc. For each k ≥ 0, k-HyCaRet denotes the fragment of HyCaRet using at most k
variables. For all h,k≥ 0, HyCaReth and k-HyCaReth denote the fragments of HyCaRet
and k-HyCaRet, respectively, where the nesting depth of the binder ∃-operator is at most
h. The weak versions of the considered fragments are defined in the obvious way. In the
rest of this Section, we recall known extensions of the logic CaRet.

CaRet with forgettable past [Boz08]: this logic is obtained from CaRet by adding the
regular unary modality “from Now on” N [LS95,LMS02], which intuitively chops away
the past. Formally, the semantics of N is as follows: (w, i) |= Nϕ iff (wi,0) |= ϕ.

CaRet plus “within” [AEM04,AAB08]: this logic is obtained from CaRet by adding
the non-regular unary modality ‘within’ W, whose semantics is given by

(w, i) |= Wϕ iff w(i) is a call and(w[i,rw(i)],0) |= ϕ
where rw(i) = succ(a+,w, i) if i is a matched-call position, and rw(i) = |w| otherwise.
In other words, Wϕ evaluates ϕ on a subword restricted to a single procedure.

The logics NWTL and NWTL+[AAB08]: these logics are based on the notion of sum-
mary path. Formally, for a word w, i ≤ j < |w|, a summary path of w from i to j is
a sequence i = j0 < j1 . . . < jn = j such that for each 0 ≤ h < n: if jh is a matched-
call and succ(a+,w, jh)≤ j, then jh+1 = succ(a+,w, jh); otherwise jh+1 = jh +1. Note
that there is exactly one summary path from i to j. The logic NWTL+ extends CaRet
with the binary modalities Uσ and Sσ, which correspond to the standard until and since
modalities of LTL interpreted on summary paths. Thus, for example, (w, i) |= ϕ1 Uσϕ2

iff there is j ≥ i such that for the summary path i = j0 < j1 . . . < jn = j from i to j,
(w, j) |= ϕ2 and (w, jp) |= ϕ1 for each 0 ≤ p < n. NWTL is obtained from NWTL+ by
disallowing modalities Udir, Ũc,Xc, where dir ∈ {+,−,a+,a−,c}. 1

The satisfiability problem for any of the considered logics F is to decide given a
formula ϕ of F, whether L(ϕ) �= /0, where L(ϕ) denotes the set of infinite words w such
that (w,0) |= ϕ. Given two formulas ϕ1 and ϕ2, we say that ϕ1 and ϕ2 are (globally)
equivalent iff for each word w and 0≤ i < |w|, (w, i) |= ϕ1⇔ (w, i) |= ϕ2.

We will use the following notion. For a word w over a pushdown alphabet Σ and
i < |w|, the next unmatched return of i in w, UM(w, i), is defined as: if the caller of i is
defined and has matching return ir, then UM(w, i) = ir; otherwise, UM(w, i) =⊥.

2.2 Automata for Visibly Pushdown Languages

A Büchi Nondeterministic Visibly Pushdown Automaton (NVPA) [AEM04] is a tuple
P = 〈Σ,Q,Q0,Γ,Δ,F〉, where Σ = Σc ∪Σr ∪Σint is a pushdown alphabet, Q is a finite
set of states, Q0 ⊆ Q is the set of initial states, Γ is the finite stack alphabet, Δ ⊆ (Q×
Σc×Q×Γ)∪(Q×Σr×(Γ∪{γ0})×Q)∪(Q×Σint×Q) is the transition relation (where
γ0 /∈ Γ is the stack bottom symbol), and F ⊆ Q is a Büchi condition on Q. On reading a
call σc, P chooses a push transition of the form (q,σc,q′,B), pushes the symbol B �= γ0

onto the stack, and the control changes from q to q′. On reading a return σr, P chooses
a pop transition of the form (q,σr,B,q′), where B is popped from the stack. Finally, on

1 The caller until modalities in [AAB08] have semantics slightly different from that considered
here and in [AEM04]. They can be trivially expressed in terms of the caller until modalities
Uc, Ũc considered here and the next modalities Xa+

and Xc.

Hybrid and First-Order Complete Extensions of CaRet 63

reading an internal action σint , P can choose only transitions of the form (q,σint ,q′)
which do not use the stack. The notion of ω-language L(P) accepted by P is defined
as for standard Büchi pushdown automata (for details, see [BL11]). An ω-language L
over Σ is a visibly pushdown language (VPL) if L = L(P) for some Büchi NVPA P .

We also recall the class of generalized Büchi Alternating Jump Automata (AJA)
[Boz07], which capture exactly the class of VPL. AJA extend standard alternating finite–
state automata by also allowing non-local moves: on reading a matched-call σc, a copy
of the automaton can move (jump) in a single step to the matching-return of σc.

For a set X , Bp(X) denotes the set of positive boolean formulas over X built from
elements in X using∨ and∧. A subset Y of X satisfies θ∈Bp(X) iff the truth assignment
assigning true to the elements in Y and false to the elements of X \Y satisfies θ.
A generalized Büchi AJA is a tuple A = 〈Σ,Q,Q0,δ,F 〉, where Σ is a pushdown al-
phabet, Q is a finite set of states, Q0 ⊆ Q is the set of initial states, δ : Q× Σ →
Bp({+,a+}×Q×Q) is the transition function, and F = {F1, . . . ,Fk} is a set of sets
of accepting states. A run of A over an infinite word w ∈ Σω is a N×Q-labeled tree
r such that the root is labeled by (0,q0) with q0 ∈ Q0 and for each node x with la-
bel (i,q) (describing a copy of A in state q which reads w(i)), there is a minimal set
H = {(dir1,q′1,q

′′
1), . . . ,(dirm,q′m,q′′m)} ⊆ {+,a+}×Q×Q satisfying δ(q,w(i)) such

that x has m children x1, . . . ,xm, and for each 1 ≤ h ≤ m: xh has label (i + 1,q′′h) if
succ(dirh,w, i) = ⊥, and label (succ(dirh,w, i),q′h) otherwise. The run r is accepting if
for each infinite path x0x1 . . . in the tree and each accepting component F ∈ F , there are
infinitely many i ≥ 0 such that xi is labeled by some state in F . The ω-language of A ,
L(A), is the set of w ∈ Σω such that there is an accepting run r of A over w.

Pushdown model-checking: In order to model verification problems of pushdown sys-
tems M using specifications (such as NVPA) denoting VPL languages, we choose a suit-
able pushdown alphabet Σ = Σc∪Σr∪Σint , and associate a symbol in Σ with each transi-
tion of M with the restriction that push transitions are mapped to Σc, pop transitions are
mapped to Σr, and transitions that do not use the stack are mapped to Σint . Note that M
equipped with such a labeling is a Büchi NVPA where all the states are accepting. The
specification S describes another VPL L(S) over Σ, and M is correct iff L(M)⊆ L(S).

Given a class C of finite specifications S describing VPL over a pushdown alphabet
Σ, the pushdown model checking problem against C -specifications is to decide, given a
pushdown system M over Σ and a specification S in the class C , whether L(M)⊆ L(S).
Note that all the considered linear logics capture a subclass of the class of VPL.

3 Expressiveness and Succinctness of 1-HyCaRet

In this section, we show that the (weak) one-variable fragment of HyCaRet is expres-
sively complete for the first-order logic FOµ [AM04], which extends standard FO over
words with a binary matching predicate µ(x,y) that holds iff y is the matching return
for the call position x. Moreover, while the FOµ-complete logics NWTL +, CaRet + N,
and CaRet + W can be linearly translated into 1-HyCaRet, 1-HyCaRet is exponentially
more succinct than them. Note that FOµ can be trivially and linearly translated into
HyCaRet, and vice-versa [AAB08].

FOµ-completeness of weak 1-HyCaRet: We show that NWTL, which is FOµ-complete
[AAB08], can be linearly translated into weak 1-HyCaRet. Hence, the result follows.

64 L. Bozzelli and R. Lanotte

We need preliminary results (Claims 1–4 below) whose proofs are in [BL11]. Fix a word
w (over a pushdown alphabet Σ) and two positions i≤ j < |w|. We say that the summary
path of w from i to j is of type I if either j = i, or j > i and j is a matched return position
whose matching call succ(a−,w, j) satisfies succ(a−,w, j) < i. Moreover, we say that
the summary path of w from i to j is of type II if either j = i, or j > i and i is a call
position such that either succ(a+,w, i) =⊥ or succ(a+,w, i) > j.

Claim 1: let π be a summary path of w from i to j ≥ i of type I. Then, for all h ∈ [i, j[,
π visits position h if and only if succ(c,w,h) �=⊥ and succ(c,w,h) < i.

Claim 2: let π be a summary path of w from i to j ≥ i of type II. Then, for all h ∈ [i, j],
π visits position h if and only if UM(w,h) �=⊥ implies UM(w,h) > j.

Claim 3: A sequence π = i0 < i1 < .. . < ip of positions in w is a summary path of w iff
there are two positions NI and NII such that i0≤NI ≤NII ≤ ip and π is the concatenation
of three summary paths:

– the first one is a summary path of w from i0 to NI of type I;
– the second one is a prefix leading to position NII of the forward abstract path of w

from position NI ;
– the third one is a summary path of w from NII to ip of type II.

Claim 4: let ϕ1 and ϕ2 be two weak 1-HyCaRet formulas. Then, one can construct
in linear time two weak 1-HyCaRet formulas Ua+

(ϕ1,ϕ2) and Ua−(ϕ1,ϕ2) such that
Ua+

(ϕ1,ϕ2)≡ ϕ1 Ua+
ϕ2 and Ua−(ϕ1,ϕ2)≡ ϕ1 Ua−ϕ2.

Theorem 1. Weak 1-HyCaRet is FOµ-complete. Moreover, NWTL+ can be linearly
translated into 1-HyCaRet, and NWTL can be linearly translated into weak 1-HyCaRet.

Proof. Since NWTL is known to be FOµ-complete [AAB08], it suffices to show that
NWTL can be linearly translated into weak 1-HyCaRet. The next modality Xa− can
be easily translated into weak 1-HyCaRet. It remains to show that given two weak
1-HyCaRet formulas ϕ1 and ϕ2, one can construct in linear time two weak 1-HyCaRet
formulas, denoted by Uσ(ϕ1,ϕ2) and Sσ(ϕ1,ϕ2), such that Uσ(ϕ1,ϕ2)≡ ϕ1 Uσϕ2 and
Sσ(ϕ1,ϕ2)≡ ϕ1S

σϕ2. Here, we illustrate the construction of Uσ(ϕ1,ϕ2) (the construc-
tion of Sσ(ϕ1,ϕ2) is given in [BL11]). First, by using Claims 1 and 2, we construct
in linear time two weak 1-HyCaRet formulas Uσ

I (ϕ1,ϕ2) and Uσ
II(ϕ1,ϕ2) such that:

(w, i) |= Uσ
I (ϕ1,ϕ2) (resp., (w, i) |= Uσ

II(ϕ1,ϕ2)) iff there is j > i so that the summary
path π of w from i to j is of type I (resp., type II), and ϕ1 “until” ϕ2 holds along π.

Uσ
I (ϕ1,ϕ2) := ∃x.

[
x ∧ X+F+

(
ret ∧ ϕ2 ∧

(
X−(¬call ∧ Xc X+F+ x)

)
∧

X−G−
(
F− x → Xc X+F+ x→ ϕ1

))]

Uσ
II(ϕ1,ϕ2) := ∃x.

(
(X+F+ x) ∧ call ∧ (Xa+

true→ Xa+
X−F− x) ∧ F+(x ∧ϕ2)∧

G+(
X+F+ x →

(
Xc Xa+

true→ Xc Xa+
X−F− x

)
→ ϕ1

))

By Claim 4, we can construct in linear time a weak 1-HyCaRet formula U a+
(ϕ1,ϕ2)

such that U a+
(ϕ1,ϕ2)≡ ϕ1 U a+

ϕ2. Then, the formula Uσ(ϕ1,ϕ2) is given by

Uσ(ϕ1,ϕ2) := U a+
(ϕ1,ϕ2) ∨ Uσ

I (ϕ1, U
a+

(ϕ1,ϕ2)) ∨ Ua+
(ϕ1, U

σ
II(ϕ1,ϕ2)) ∨

Uσ
I (ϕ1, Ua+

(ϕ1, U
σ
II(ϕ1,ϕ2)))

Hybrid and First-Order Complete Extensions of CaRet 65

By Claim 3 it follows that Uσ(ϕ1,ϕ2)≡ ϕ1 Uσϕ2. ��

Moreover, we show the following (a proof is given in [BL11]).

Theorem 2. CaRet + N and CaRet + W can be linearly translated into 1-HyCaRet.

Succinctness issues: We show that weak 1-HyCaRet can be simultaneously exponen-
tially more succinct than CaRet + N, CaRet + W, and NWTL+, i.e. for some set of
propositions AP, there is a family (ϕn)n∈N of weak 1-HyCaRet formulas over AP such
that for each n, ϕn has size polynomial in n and each equivalent formula of any of the
logics CaRet + N, CaRet + W, and NWTL+ has size at least 2Ω(n).
Let AP = {a,b,c,0,1,$,#}. An n-configuration is a finite word C over 2AP of the form
{d1} ·w1 . . .{d2n} ·w2n s.t. for each 1 ≤ i ≤ 2n, di ∈ {a,b} and wi ∈ {{0},{1}}n is the
binary code of i−1. A finite word w over the pushdown alphabet Σ = {call,ret, int}×
2AP is n-good iff w = w1 ·w2, where w1 is a well-matched word over Σ whose projection
over 2AP is of the form {c}k for some k≥ 0, and w2 satisfies the following: w2 consists
of internal actions, and the projection of w2 over 2AP has the form {$} ·C1 · {$} . . .{$} ·
Cp · {$} such that p > 1, for each 1 ≤ h≤ p, Ch is a n-configuration, and there is k > 1
such that Ck = C1. An infinite n-good word is of the form w · (int,{#})ω such that w is
a finite n-good word. Note that the set of infinite n-good words is not ω-regular.

Lemma 1. For each n ≥ 1, there is a weak 1-HyCaRet formula ϕn over AP of size
O(n2) such that L(ϕn) is the set of infinite n-good words.

Lemma 2. For each n ≥ 1, any generalized Büchi AJA accepting the set of infinite

n-good words needs at least 22Ω(n)
states.

The proof of Lemmata 1 and 2 are given in [BL11]. In particular, the proof of Lemma 2
is based on the following additional result of independent interest: for an AJA over finite
words with k states accepting the language L, one can build a dual deterministic NVPA
over finite words of size 2O(k) accepting the reverse of L, where a dual NVPA is defined
as a NVPA with the difference that the automaton pushes onto the stack on reading
returns, pops the stack on reading calls, and does not use the stack on internal actions.

For each n, let ϕn be the weak 1-HyCaRet formula of Lemma 1 of size O(n2), and
let ψn (resp., θn) be an equivalent CaRet + N (resp., NWTL+) formula. Since ψn can
be translated into a generalized Büchi AJA of size 2O(|ψn|) accepting L(ψn) = L(ϕn)
[Boz08], by Lemma 2 it follows that |ψn| is at least 2Ω(n). Moreover, since the NWTL +

formula θn can be translated into a Büchi NVPA of size 2O(|θn|) accepting L(θn) = L(ϕn)
[AAB08], and Büchi NVPA can be translated in quadratic time into equivalent Büchi
AJA [Boz07], by Lemma 2 it follows that |θn| is at least 2Ω(n). Since CaRet + W can be
linearly translated into CaRet + N [Boz08], by Theorem 2 we obtain the following.

Theorem 3. 1-HyCaRet (resp., weak 1-HyCaRet) is (resp., can be) simultaneously ex-
ponentially more succinct than CaRet + W, CaRet + N, and NWTL+.

4 Decision Procedures for HyCaRet

In this section we describe an optimal automata-theoretic algorithm to solve satisfia-
bility and pushdown model-checking of HyCaRet and 1-HyCaRet, which is based on

66 L. Bozzelli and R. Lanotte

a direct translation of HyCaRet formulas into a subclass of generalized Büchi AJA, we
call AJA with main states (MAJA). Formally, a generalized Büchi MAJA is a generalized
Büchi AJA whose set of states is partitioned into a set Qm of main states and into a set
Qs of secondary states. Moreover, the following semantic requirement holds: in each
run of the MAJA and for each input position i, there is at most one copy of the automa-
ton which is in a main state and reads position i (i.e., for each i≥ 0, there is at most one
node in the run-tree whose label has the form (i,q), where q is a main state).

Theorem 4. Given a generalized Büchi MAJA A with set of states Q = Qm ∪Qs and
acceptance condition F = {F1, . . . ,Fk}, one can construct a Büchi NVPA PA with size
polynomial in |Qm| and singly exponential in k and |Qs| such that L(PA) = L(A).

Sketched proof. In order to obtain an equivalent Büchi NVPA of the desired size, we can-
not use the construction in [Boz07] to convert a parity two-way AJA into an equivalent
Büchi NVPA with a single exponential-time blow-up. Instead the construction proposed
here is a non-trivial readaptation of the standard construction used to convert a Büchi
one-way alternating finite-state word automaton into an equivalent nondeterministic one
with a single exponential-time blow-up [MH84].

Fix a generalized Büchi MAJA A = 〈Σ,Q = Qm∪Qs,Q0,δ,F 〉. By using the standard
construction to convert a generalized Büchi nondeterministic finite-state word automa-
ton (NWA) into an equivalent Büchi NWA (see, for example, [Wol00]), we can easily
convert A into an equivalent Büchi MAJA whose set of states Q′ = Q′m ∪Q′s satisfy
|Q′m| = k · |Qm| and |Q′s| = k · |Qs|. Thus, in the following, we can assume that A is a
Büchi MAJA, i.e., F = {F} is a singleton.

We construct a Büchi NVPA PN with number of states O(|Qm| · 2O(|Qs|)) accepting
L(A). Essentially, for the given input word w, PN guesses a run r of A over w and
checks that it is accepting. At a given position i > 0 of a run of PN , PN keeps track by
its finite control of the set Ui of states of A associated with the nodes of r whose input
position is i and which have been obtained from the parent node by an ordinary move
(obviously, if i is not a matched return position, then all the nodes of r whose input posi-
tion is i have been obtained in this way). If i is a matched return position with matching
call ic, then the NVPA on reading w(ic) pushes onto the stack the guessed set Ri of states
of A associated with the copies of A which read i and have been obtained by a jump-
move (starting from position ic). This ensures that Ri is on the top of the stack when
the input position i is read. Moreover, in order to check that r is accepting, the set Ui,
where Ui = Ui if i is not a matched return position, and Ui = Ui∪Ri otherwise, is split
into two sets, say U

1
i and U

2
i , in order to distinguish between paths of the run tree r that

hit F recently and paths that did not hit F recently. The crucial observation is that each
infinite path of r from the root visits all the positions i such that UM(w, i) =⊥, and the
set of these positions is always infinite (also if we remove from this set those positions
j such that j is a matched return). Thus, by König’s Lemma, if r is accepting, then the
set of input positions can be partitioned into infinitely many nonempty segments such
that: (1) for each segment, its starting position i satisfies UM(w, i) = ⊥ and i is not a
matched return, and (2) each suffix of an infinite path of r that starts at the beginning
of a segment will visit an accepting state in F before reaching the end of the segment.
Then, the set U

1
i (resp., U

2
i) represents the set of states associated with the copies of the

automaton A (reading i) in r that have not visited so far (have already visited) a state in

Hybrid and First-Order Complete Extensions of CaRet 67

F in the current segment. Furthermore, in the construction we use the fact that for each
input position i , there is at most one node of r whose label is of the form (i,q), where
q is a main state. Details of the construction of PN are given in [BL11]. ��
In the following, first we give a characterization of the satisfaction relation (w,0) |= ϕ,
for a given formula HyCaRet ϕ, in terms of sequences of pairs of sets associated with ϕ
satisfying determined requirements which can be checked by generalized Büchi MAJA.
Then, we describe the translation into MAJA based on this characterization. For all
n,k≥ 0, let Tower(n,0) = n and Tower(n,k + 1) = 2Tower(n,k).

Characterization of the satisfaction relation. Fix n≥ 1 and a (possibly open) formula
ϕ in n-HyCaRet over a finite set AP of atomic propositions. Let [n] = {1, . . . ,n} and
Σ = {call,ret, int}×2AP. For clarity of presentation, we assume that ϕ does not contain
occurrences of modality Ũc. It is easy to extend the construction to allow also Ũc with-
out changing the time complexity of the translation (for details see [BL11]). We denote
by d∃(ϕ) the nesting depth of modality ∃ in ϕ. A formula ψ is a first-level subformula of
ϕ if there is an occurrence of ψ in ϕ which is not in the scope of modality ∃. The closure
cl(ϕ) of ϕ is the smallest set containing true, each proposition in AP∪{call,ret, int},
variable xh for each h ∈ [n], Xdirtrue for each dir ∈ {+,−,a+,a−,c}, all the first-level
subformulas of ϕ, Xdir(ψ1 Udirψ2) for any first-level subformula ψ1 Udirψ2 of ϕ, and
the negations of all these formulas (we identify ¬¬ψ with ψ). For each forward local
until formula ψ1 U+ψ2 ∈ cl(ϕ), we introduce a new symbol τψ2 associated with the
liveness requirement ψ2, and denote by P(ϕ) the set of these symbols. The intended
meaning of proposition τψ2 is as follows: fix a word w and a matched-call position ic
with matching return ir such that UM(w, ic) =⊥. Then, τψ2 ‘holds’ at position ic iff ψ2

holds at some position in [ic, ir] (w.r.t. a fixed valuation of variables x1, . . . ,xn).
Essentially, for each infinite word w over Σ and valuation j1, . . . , jn of variables

x1, . . . ,xn, we associate to w infinite sequences π = (Ar
0,A0),(Ar

1,A1) . . . of pairs of sets,
where for each i≥ 0, Ai is an atom and intuitively describes a maximal set of subformu-
las of ϕ which can hold at position i along w w.r.t. the valuation j1, . . . , jn of variables
x1, . . . ,xn, while Ar

i = /0 if UM(w, i) =⊥, and Ar
i = AUM(w,i) otherwise. The set Atoms(ϕ)

of atoms of ϕ is defined by induction on d∃(ϕ). In particular, we require that each atom
A ∈ Atoms(ϕ) contains some arbitrary elements of P(ϕ) and the following objects:

– some formulas in cl(ϕ). As for LTL, the set S of these formulas has to satisfy ad-
ditional requirements, which syntactically capture the semantic of boolean connec-
tives, the fixpoint characterization of the until modalities in terms of the next modal-
ities of the same type, and some consistency constraints between different next
modalities. Thus, for example, we require that for each ψ1 U dirψ2 ∈ cl(ϕ) (where
dir ∈ {+,−,a+,a−,c}), ψ1 Udirψ2 ∈ S iff either ψ2 ∈ S or ψ1,X

dir(ψ1 Udirψ2)∈ S.
– for each k ∈ [n], A contains exactly one pair of the form (xk,dir) for some dir ∈
{+,−,0} (with xk ∈A iff (xk,0)∈A). Intuitively, if A is associated with position i of
the word w, then for each k ∈ [n], the unique pair (xk,dir) ∈ A keeps track whether
the position jk referenced by variable xh strictly precedes (dir =−), strictly follows
(dir = +), or coincides (dir = 0 and xh ∈ A) with the current position i.

– for each ∃xh.ψ ∈ cl(ϕ), A contains tuples of the form (Br,B,ψ,h), where B ∈
Atoms(ψ) and Br ∈ { /0}∪Atoms(ψ). Intuitively, if A is associated with position
i of the word w w.r.t. the valuation j1, . . . , jn of variables x1, . . . ,xn, then B de-
scribes the set of subformulas of ψ which hold at position i of w w.r.t. a valuation of

68 L. Bozzelli and R. Lanotte

variables x1, . . . ,xn of the form j1, . . . , jh−1,m, jh+1, . . . , jn for some position m≥ 0
(in particular, we syntactically require that for each k ∈ [n] \ {h}, (xk,dir) ∈ B iff
(xk,dir)∈A). Thus, the semantics of the binder modality ∃ is syntactically captured
by requiring that: ∃xh.ψ ∈ A if and only if there is (Br,B,ψ,h) ∈ A such that ψ∈ B.

Formally, the set Atoms(ϕ) is inductively defined as: A ∈ Atoms(ϕ) ⇔ A ⊆ cl(ϕ)∪
P(ϕ)∪

⋃

h∈[n]

({xh}×{−,0,+})∪
⋃

∃xh.ψ∈cl(ϕ)

(Atoms(ψ)∪{ /0})×Atoms(ψ)×{ψ}×{h}

and the following additional conditions hold:

1. true ∈ A and A contains exactly one proposition in {call,ret, int};
2. if ψ ∈ cl(ϕ), then ψ ∈ A iff ¬ψ /∈ A;
3. if ψ1∧ψ2 ∈ cl(ϕ), then ψ1∧ψ2 ∈ A iff ψ1,ψ2 ∈ A;
4. if ψ1 U dirψ2 ∈ cl(ϕ) for dir ∈ {+,−,a+,a−,c}, then ψ1 Udirψ2 ∈ A iff either ψ2 ∈

A or ψ1,X
dir(ψ1 Udirψ2) ∈ A;

5. if Xdirψ ∈ A (where dir ∈ {−,a+,a−,c}), then Xdirtrue ∈ A;
6. if ¬X−true ∈ A, then ¬Xa−true,¬Xctrue ∈ A, and (xh,−) /∈ A for each h ∈ [n];
7. for each h ∈ [n], xh ∈ A iff (xh,0) ∈ A;
8. for each h ∈ [n], A contains exactly one pair of the form (xh,dir) for some dir ∈
{−,0,+};

9. if (Br,B,ψ,h) ∈ A, then (i) ¬X−true ∈ B iff ¬X−true ∈ A, (ii) for each p ∈ AP∪
{call,ret, int}, p ∈ A iff p ∈ B, and (iii) for each k ∈ [n] with k �= h and dir ∈
{−,0,+}, (xk,dir) ∈ B iff (xk,dir) ∈ A;

10. for each ∃xh.ψ ∈ cl(ϕ), there is (Br,B,ψ,h) ∈ A such that xh ∈ B;
11. for each ∃xh.ψ ∈ cl(ϕ), ∃xh.ψ ∈ A iff there is (Br,B,ψ,h) ∈ A with ψ ∈ B.

Assuming w.l.o.g. that each proposition p ∈ AP occurs in ϕ, and x1, . . . ,xn occur
in ϕ, by construction it follows that |Atoms(ϕ)| = Tower(O(|ϕ|),d∃(ϕ)+ 1). For A ∈
Atoms(ϕ), let σ(A) = (d,A∩AP), where d is the unique element in A∩{call,ret, int}.
Let π = (Ar

0,A0),(Ar
1,A1) . . . be an infinite sequence of pairs in (Atoms(ϕ)∪ { /0})×

Atoms(ϕ) and w ∈ Σω. We say that π is a ϕ-sequence over w iff for each i ≥ 0:
(1) Ar

i = /0 if UM(w, i) = ⊥, and Ar
i = AUM(w,i) otherwise, (2) w(i) = σ(Ai), and (3)

(Ar
i+1,Ai+1) ∈ Jump Succϕ(Ar

i ,Ai). The function Jump Succϕ (which is formally de-
fined in [BL11]) syntactically, locally, and recursively captures the semantics of the
regular and non-regular next modalities. For example, if w(i) is a call, w(i + 1) is not
a return, and UM(w, i+ 1) �=⊥, then UM(w, i+ 1) represents the matching return posi-
tion of i along w. Thus, in particular, we have to require that the forward-abstract-next
requirements in Ai are exactly the ones that hold in Ar

i+1, i.e. for each Xa+ψ ∈ cl(ϕ),
Xa+ψ ∈ Ai iff ψ ∈ Ar

i+1. Moreover, the definition of Jump Succϕ ensures that for each
k ∈ [n], there is at most a position jk such that xk ∈ A jk . We say that the ϕ-sequence
π is good if such a jk exists (intuitively, in this case, π is associated with the valuation
j1, . . . , jn of variables x1, . . . ,xn). Furthermore, there are some subtleties in the definition
of Jump Succϕ ensuring that for each i≥ 0 and (Br,B,ψ,h) ∈ Ai:

Condition A: there is a ψ-sequence ρ = (Br
0,B0),(Br

1,B1), . . . over w s.t. (Br
i ,Bi) =

(Br,B) and (Br
j,B j,ψ,h)∈A j for each j≥ 0 (hence, for k∈ [n]\{h}, xk ∈B j iff xk ∈A j).

Finally, we have to require that the ϕ-sequence π =(Ar
0,A0),(Ar

1,A1) . . . on w satisfies
additional non-local fairness requirements in order to ensure that it is good, and to

Hybrid and First-Order Complete Extensions of CaRet 69

capture the liveness requirements ψ2 in forward until subformulas ψ1 Udirψ2 of ϕ with
dir ∈ {+,a+}. Formally, we say that π is fair iff the following is inductively satisfied:

1. there is K ≥ 0 s.t. for each h∈ [n], (xh,−)∈ AK and for all i≥K if (Br,B,ψ,h)∈ Ai

and Ar
i = /0, then there is a fair ψ-sequence over the suffix wi of w from (Br,B);

2. if ψ1 Ua+
ψ2 ∈ cl(ϕ) , then for infinitely many h≥ 0, {ψ2,¬(ψ1 U a+

ψ2)}∩Ah �= /0
and Ar

h = /0;
3. if ψ1 U+ψ2 ∈ cl(ϕ), then for infinitely many h ≥ 0, Ar

h = /0, and or ψ2 ∈ Ah, or

¬(ψ1 U+ψ2) ∈ Ah, or (τψ2 ,X
a+
true ∈ Ah and σ(Ah) ∈ Σc).

As we will see, the MAJA associated with ϕ guesses a ϕ-sequence π over the in-
put word and checks that it is fair. The automaton keeps tracks by its finite control of
the current pair of π, and in particular, its ‘main’ copy tracks an infinite path in the
run which visits all and only the nodes associated with the pairs (Ar,A) of π such that
Ar = /0 (i.e., the next unmatched return of the current position is undefined). Thus, the
acceptance condition of the MAJA (when interpreted on the main path) reflects Proper-
ties 2 and 3 above. In particular, the propositions τψ2 are used to guarantee that in case
ψ1 U+ψ2 is asserted at a node x of the main path and the liveness requirement ψ2 does
not hold along the suffix of the main path from x, then ψ2 holds at some other position
j ≥ i (i.e., there is a pair (Ar,A) with Ar �= /0 of the guessed ϕ-sequence associated with
position j for some j ≥ i such that ψ2 ∈ A). Moreover, Property 1 and Condition A
above ensure that the semantics of HyCaRet is recursively fully captured. In particular,
we obtain the following two results, whose proofs are given in [BL11].

Lemma 3. Each fair ϕ-sequence (Ar
0,A0),(Ar

1,A1), . . . on a word w s.t. ¬X−true∈A0

is good (i.e., for each k ∈ [n], there is exactly one position jk such that xk ∈ A jk).

Lemma 4. Let π = (Ar
0,A0),(Ar

1,A1), . . . be a fair ϕ-sequence over w with ¬X−true∈
A0. Then, for all i ≥ 0, m ≥ i, and (Br,B,ψ,h) ∈ Ai, there exists a fair ψ-sequence
(Br

0,B0),(Br
1,B1), . . . over w such that (Br

i ,Bi) = (Br,B), ¬X−true ∈ B0, for each j ≤
m, (Br

j,B j,ψ,h) ∈ A j, and for each k ∈ [n]\ {h} and l ≥ 0, xk ∈ Bl iff xk ∈ Al.

Now, we show that the notion of good fair ϕ-sequence over w provides a characteriza-
tion of the satisfaction relation (w,0) |= ϕ.

Theorem 5 (Correctness). Let π = (Ar
0,A0),(Ar

1,A1), . . . be a fair ϕ-sequence over w∈
Σω such that ¬X−true ∈ A0, and for each h ∈ [n], let jh be the unique index such that
xh ∈ A jh .2 Then, for each i≥ 0 and ψ ∈ cl(ϕ), (w, i, j1, . . . , jh) |= ψ⇔ ψ ∈ Ai.

Proof. By induction on d∃(ϕ). The base step (d∃(ϕ) = 0) and the induction step (d∃(ϕ)
> 0) are similar, and we focus on the induction step. Thus, we can assume that the
theorem holds for each formula θ and fair θ-sequence such that ∃xh.θ ∈ cl(ϕ) for some
h ∈ [n] (note that if d∃(ϕ) = 0, there is no such formula). Fix a fair ϕ-sequence π =
(Ar

0,A0),(Ar
1,A1), . . . over w ∈ Σω such that ¬X−true ∈ A0, and for each h ∈ [n], let jh

be the unique index such that xh ∈ A jh . Let i≥ 0 and ψ ∈ cl(ϕ). By a nested induction
on the structure of ψ, we show that (w, i, j1, . . . , jn) |= ψ⇔ ψ ∈ Ai. Here, we consider
the case where ψ = ∃xh.ψ1 for some h ∈ [n] (for the other cases, see [BL11]):

2 whose existence is guaranteed by Lemma 3

70 L. Bozzelli and R. Lanotte

(w, i, j1, . . . , jn) |= ψ⇒ψ ∈ Ai: assume that (w, i, j1, . . . , jn) |= ψ. Then, for some l ≥ 0,
(w, i, j1, . . . , jh−1, l, jh+1, . . . , jn) |= ψ1. By Property 10 in definition of atom, there is
(Br,B,ψ1,h) ∈ Al such that xh ∈ B. Since ¬X−true ∈ A0, by Lemma 4 there is a
fair ψ1-sequence ρ = (Br

0,B0),(Br
1,B1), . . . over w such that (Br

l ,Bl) = (Br,B) (hence,
xh ∈ Bl), ¬X−true ∈ B0, (Br

i ,Bi,ψ1,h) ∈ Ai, and for each k ∈ [n]\{h}, xk ∈ B jk . Since
the theorem holds for ψ1 (and the fair ψ1-sequence ρ = (Br

0,B0),(Br
1,B1), . . .) and

(w, i, j1, . . . , jh−1, l, jh+1, . . . , jn) |= ψ1, it follows that ψ1 ∈ Bi. Since (Br
i ,Bi,ψ1,h)∈ Ai,

by Property 11 in definition of atom we obtain that ψ ∈ Ai.
ψ ∈ Ai ⇒ (w, i, j1, . . . , jn) |= ψ: let ψ ∈ Ai. By Property 11 in def. of atom there is
(Br,B,ψ1,h) ∈ Ai with ψ1 ∈ B. Since ¬X−true ∈ A0, by Lemma 4 there is a fair ψ1-
sequence ρ = (Br

0,B0),(Br
1,B1), . . . over w such that (Br

i ,Bi) = (Br,B), ¬X−true ∈ B0,
and for each k∈ [n]\{h}, xk ∈B jk . Let l≥ 0 be the unique index such that xh ∈Bl . Since
the theorem holds for ψ1 and ψ1 ∈ Bi, we obtain that (w, i, j1, . . . , jh−1, l, jh+1, . . . , jn) |=
ψ1, hence (w, i, j1, . . . , jn) |= ψ. ��

Theorem 6 (Completeness). For each infinite word w over Σ and j1, . . . , jn ∈N, there
exists a fair ϕ-sequence π = (Ar

0,A0),(Ar,A1), . . . over w such that ¬X−true∈ A0 and
for each k ∈ [n], xk ∈ A jk .

Theorem 6 is proved in [BL11]. By Theorems 5–6, we obtain the desired result.

Corollary 1. For each word w ∈ Σω, (w,0) |= ϕ iff there is a fair ϕ-sequence π =
(Ar

0,A0),(Ar
1,A1), . . . on w s.t. ϕ,¬X−true,xh ∈ A0 for each h ∈ [n] (note that Ar

0 = /0).

Translation into MAJA Now, we illustrate the translation of HyCaRet formulas into
generalized Büchi MAJA based on the result of Corollary 1.

Theorem 7. Let ϕ be a n-HyCaRet formula for some n ≥ 1. Then, one can construct a
generalized Büchi MAJA Aϕ with O(|ϕ|) accepting components and states Qm∪Qs s.t.
L(Aϕ) = L(ϕ), |Qm|= Tower(O(|ϕ|),d∃(ϕ)+ 1), and |Qs|= Tower(O(|ϕ|),d∃(ϕ)).

Proof. We construct a generalized Büchi MAJA Aϕ of the desired size with set of main
states containing (Atoms(ϕ)∪{ /0})×Atoms(ϕ) and initial states of the form (/0,A) ∈
{ /0}×Atoms(ϕ) with ϕ,¬X−true,xh ∈ A for each h ∈ [n] such that for all main states
of the form (/0,A) and infinite words w, Aϕ has an accepting run over w starting from
(/0,A) if and only if there is a fair ϕ-sequence over w from (/0,A). Hence, the result
follows from Corollary 1. The construction is given by induction on d∃(ϕ). Thus, we
can assume that for each ∃xh.ψ∈ cl(ϕ), one can construct the MAJA Aψ associated with
ψ. We informally describe the construction (the formal definition is given in [BL11]).

Essentially, starting from a main state of the form (0,A), Aϕ guesses a ϕ-sequence
over the input w and checks that it is fair. The first-level copy of Aϕ, which reads all
and only the positions i such that UM(w, i) =⊥, behaves as follows. Assume that i is a
matched-call position and w(i + 1) /∈ Σr (the other cases being simpler). Note that Aϕ
can check whether this condition is satisfied or not. Let (0,A) be the current main state.
Then, Aϕ guesses a pair (A′r,A

′) ∈ Jump Succϕ(/0,A) with A′r �= /0, where A′r represents
the guessed atom associated with the matching return position ir of i. Thus, a copy (the
first-level copy) jumps to the matching-return ir of i in state (/0,A′r) (note that UM(w, i) =
UM(w, ir) =⊥), and another copy moves to position i+ 1 in state (A′r,A

′). The goal of
this last copy is also to check that the guess A′r is correct. The behavior of these auxiliary

Hybrid and First-Order Complete Extensions of CaRet 71

copies, which are in main states of the form (Ar,A) with Ar �= /0 is as follows. If the input
symbol w(i) is a call (note that i is a matched call-position) or (w(i) /∈ Σc and w(i+1) /∈
Σr), the behavior is similar to that of the first-level copy. If instead w(i) = σ(A) is not a
call and w(i+ 1) is a return, then Ar �= /0 is the guessed atom associated with w(i+ 1).
Thus, the considered copy terminates with success its computation iff σ(Ar) = w(i+1)
and (A′r,Ar) ∈ Jump Succϕ(Ar,A) for some A′r (note that since σ(A) /∈ Σc, σ(Ar) ∈ Σr,
and Ar �= /0, the definition of Jump Succϕ ensures that the fulfilment of this condition is
independent on the value of A′r). Moreover, in order to check that Property 1 in definition
of fair ϕ-sequence is satisfied, the first-level copy guesses a point along the input word
(the constant K in Property 1), checks that (xh,−) is in the current atom for each h∈ [n],
and from this instant forward, whenever the first-level copy reads a position j (where
UM(w, j) = ⊥) with associated guessed pair (/0,A), it starts an additional copy of the
MAJA Aψ in the secondary state (Br,B) for each (Br,B,ψ,h) ∈ A (the definition of
Jump Succϕ ensures that Br = /0). The construction guarantee that in each run and for
each input position i, there is exactly one node of the run whose label has the form (i,q),
where q is a main state. Thus, the semantic requirement in def. of MAJA is satisfied.

Finally, the acceptance condition of Aϕ extends the acceptance conditions of the
MAJAs Aψ, where ∃xh.ψ ∈ cl(ϕ) for some h ∈ [n], with additional sets used to check
that the infinite sequence of states visited by the first-level copy of Aϕ (note that these
states correspond to the pairs (Ar,A) visited by the guessed ϕ-sequence over w such
that Ar = /0) satisfies Properties 2 and 3 in definition of fair ϕ-sequence. ��

For the one-variable fragment of HyCaRet, we can do better.

Theorem 8. Given a 1-HyCaRet formula ϕ over AP, one can construct a Büchi NVPA
Pϕ on {call,ret, int}×2AP of size doubly exponential in the size of ϕ s.t. L(Pϕ) = L(ϕ).

Proof. Note that for ÂP⊃ AP and a Büchi NVPA P on {call,ret, int}×2ÂP, L(P) can

be seen as a language on ({call,ret, int}× 2AP)× 2ÂP\AP. Since we can easily build a
Büchi NVPA of the same size as P accepting the projection of L(P) on {call,ret, int}×
2AP, the result follows from Theorems 7 and 4, and the following claim, essentially
establishing that nested occurrences of ∃ in 1-HyCaRet can be avoided at no cost.

Claim. For a 1-HyCaRet formula ϕ over AP, one can construct a 1-HyCaRet1 formula
ψ (d∃(ψ) ≤ 1) on a set of propositions ÂP⊇ AP s.t. |ψ|= O(|ϕ|) and for each infinite
word w over {call,ret, int}×2AP, (w,0) |= ϕ iff there is an ÂP-extension ŵ of w (i.e., for
each i≥ 0, ŵ(i) = (d,X1∪X2), where (d,X1) = w(i) and X2 ⊆ ÂP\AP) s.t. (ŵ,0) |= ψ.

The claim above is a generalization of a similar result given in [SW07] for the one-
variable fragment of regular linear hybrid logic (a proof is given in [BL11]). ��

Now, we can prove the main result of this Section. For h ≥ 1, let h-EXPTIME be the
class of languages which can be decided in deterministic time of exponential height h.

Theorem 9. For each h ≥ 1 and n ≥ 2, satisfiability and pushdown model-checking of
(weak) HyCaReth and (weak) n-HyCaReth are (h + 1)-EXPTIME-complete. Moreover,
for (weak) 1-HyCaRet , the same problems are 2EXPTIME-complete.

Proof. By Theorems 7 and 4 (resp., Theorem 8) for a HyCaReth (resp., 1-HyCaRet)
formula ϕ, one can build an equivalent Büchi NVPA Pϕ of size Tower(O(|ϕ|),h + 1)

72 L. Bozzelli and R. Lanotte

(resp., Tower(O(|ϕ|),2)). Moreover, for a pushdown system M and a HyCaRet formula
ϕ, checking whether L(M) ⊆ L(ϕ) reduces to checking emptiness of L(M)∩L(P¬ϕ),
where P¬ϕ is the Büchi NVPA associated with ¬ϕ. By [AM04] this can be done in time
polynomial in the size of M and P¬ϕ. Since nonemptiness of Büchi NVPA is in PTIME,
the upper bounds follows. The proof for the lower bounds is given in [BL11]. ��

References

AAB08. Alur, R., Arenas, M., Barcelo, P., Etessami, K., Immerman, N., Libkin, L.: First-order
and temporal logics for nested words. Logical Methods in Computer Science 4(4)
(2008)

AEM04. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and returns. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 467–481. Springer,
Heidelberg (2004)

AM04. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proc. 36th STOC,
pp. 202–211. ACM, New York (2004)

AM06. Alur, R., Madhusudan, P.: Adding nesting structure to words. In: Ibarra, O.H., Dang, Z.
(eds.) DLT 2006. LNCS, vol. 4036, pp. 1–13. Springer, Heidelberg (2006)

BEM97. Bouajjani, A., Esparza, J., Maler, O.: Reachability Analysis of Pushdown Automata:
Application to Model-Checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR
1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

BL08. Bozzelli, L., Lanotte, R.: Complexity and succinctness issues for linear-time hybrid
logics. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI),
vol. 5293, pp. 48–61. Springer, Heidelberg (2008)

BL11. Bozzelli, L., Lanotte, R.: Hybrid and first-order complete extensions of CARET. Tech-
nical report - (2011), http://dscpi.uninsubria.it/staff/Lanotte

Boz07. Bozzelli, L.: Alternating automata and a temporal fixpoint calculus for visibly push-
down languages. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS,
vol. 4703, pp. 476–491. Springer, Heidelberg (2007)

Boz08. Bozzelli, L.: Caret with forgettable past. In: Proc. 5th Workshop on Methods for Modal-
ities. ENTCS. Elsevier, Amsterdam (2008)

FR06. Franceschet, M., de Rijke, M.: Model checking hybrid logics (with an application to
semistructured data). J. Applied Logic 4(3), 279–304 (2006)

FRS03. Franceschet, M., de Rijke, M., Schlingloff, B.H.: Hybrid logics on linear structures: Ex-
pressivity and complexity. In: Proc. 10th TIME, pp. 166–173. IEEE Computer Society,
Los Alamitos (2003)

LMS02. Laroussinie, F., Markey, N., Schnoebelen, P.: Temporal logic with forgettable past. In:
Proc. 17th LICS, pp. 383–392. IEEE Comp. Soc. Press, Los Alamitos (2002)

LS95. Laroussinie, F., Schnoebelen, P.: A hierarchy of temporal logics with past. Theoretical
Computer Science 148(2), 303–324 (1995)

MH84. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoretical Computer
Science 32, 321–330 (1984)

SW07. Schwentick, T., Weber, V.: Bounded-variable fragments of hybrid logics. In: Thomas,
W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 561–572. Springer, Heidelberg
(2007)

Wol00. Wolper, P.: Constructing automata from temporal logic formulas: A tutorial. In:
Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and FMPA 2000.
LNCS, vol. 2090, pp. 261–277. Springer, Heidelberg (2001)

http://dscpi.uninsubria.it/staff/Lanotte

Optimal Tableau Systems for Propositional

Neighborhood Logic over All, Dense, and
Discrete Linear Orders

Davide Bresolin1, Angelo Montanari2,
Pietro Sala1, and Guido Sciavicco3,4

1 Department of Computer Science, University of Verona, Verona, Italy
{davide.bresolin,pietro.sala}@univr.it

2 Department of Mathematics and Computer Science,
University of Udine, Udine, Italy
angelo.montanari@dimi.uniud.it

3 Department of Information, Engineering and Communications,
University of Murcia, Murcia, Spain

guido@um.es
4 University of Information Science and Technology, Ohrid, Macedonia

guido.sciavicco@uist.edu.mk

Abstract. In this paper, we focus our attention on tableau systems
for the propositional interval logic of temporal neighborhood (Proposi-
tional Neighborhood Logic, PNL for short). PNL is the proper subset of
Halpern and Shoham’s modal logic of intervals whose modalities corre-
spond to Allen’s relations meets and met by. We first prove by a model-
theoretic argument that the satisfiability problem for PNL over the class
of all (resp., dense, discrete) linear orders is decidable (and NEXPTIME-
complete). Then, we develop sound and complete tableau-based decision
procedures for all the considered classes of orders, and we prove their
optimality. (As a matter of fact, decidability with respect to the class of
all linear orders had been already proved via a reduction to the decidable
satisfiability problem for the two-variable fragment of first-order logic of
binary relational structures over ordered domains).

1 Introduction

Propositional interval temporal logics play a significant role in computer science,
as they provide a natural framework for representing and reasoning about tem-
poral properties [10]. This is the case, for instance, of natural language semantics,
where significant interval-based logical formalisms have been developed to rep-
resent and reason about tenses and temporal prepositions, e.g., [17]. As another
example, the possibility of encoding and reasoning about various constructs of
imperative programming in interval temporal logic has been systematically ex-
plored by Moszkowski in [15]. Unfortunately, for a long time the computational
complexity of most interval temporal logics has limited their systematic inves-
tigation and extensive use for practical applications: the two prominent ones,

K. Brünnler and G. Metcalfe (Eds.): TABLEAUX 2011, LNAI 6793, pp. 73–87, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

74 D. Bresolin et al.

namely, Halpern and Shoham’s HS [12] and Venema’s CDT [18], are highly un-
decidable. A renewed interest in interval temporal logics has been stimulated by
a number of recent positive results [13].

A general, non-terminating, tableau system for CDT, interpreted over par-
tially ordered temporal domains, has been devised in [11]. It combines features
of the classical tableau method for first-order logic with those of explicit tableau
methods for modal logics with constraint label management, and it can be easily
tailored to most propositional interval temporal logics proposed in the literature,
including propositional temporal neighborhood logic. A tableau-based decision
procedure for Moszkowski’s ITL [15], interpreted over finite linearly ordered do-
mains, has been devised by Bowman and Thompson [2]. As a matter of fact,
decidability is achieved by making a simplifying assumption, called locality prin-
ciple, that constrains the relation between the truth value of a formula over
an interval and its truth values over the initial subintervals of that interval.
Tableau-based decision procedures have been recently developed for some mean-
ingful fragments of HS, interpreted over relevant classes of temporal structures,
without resorting to any simplifying assumption. The most significant ones are
the logics of temporal neighborhood and those of the subinterval relation.

In the following, we focus our attention on the propositional fragment of
Neighborhood Logic [8], called Propositional Neighborhood Logic (PNL). PNL
can be viewed as the fragment of HS that features the two modal operators
〈A〉 and 〈A〉, that respectively correspond to Allen’s relations meets and met-by.
Basic logical properties of PNL have been investigated by Goranko et al. in [9].
The authors first introduce interval neighborhood frames and provide representa-
tion theorems for them; then, they develop complete axiomatic systems for PNL
with respect to various classes of interval neighborhood frames. The satisfiability
problem for PNL has been addressed by Bresolin et al. in [3]. Decidability over
the classes of all linearly ordered domains, well-ordered domains, finite linearly
ordered domains, and natural numbers has been proved via a reduction to the
satisfiability problem for the two-variable fragment of first-order logic of binary
relational structures over ordered domains [16].

Despite these significant achievements, the problem of devising decision pro-
cedures of practical interest for PNL has been only partially solved. A tableau
system for its future fragment RPNL, interpreted over the natural numbers, has
been developed in [7], and later extended to full PNL over the integers [4], while
a tableau system for RPNL over the class of all linear orders can be found in [5].
In this paper, we develop a NEXPTIME tableau-based decision procedure for
PNL interpreted over the class of all linear orders and then we show how to
tailor it to the subclasses of dense linear orders and of (weakly) discrete linear
orders. NEXPTIME-hardness can be proved exactly as in [7], and thus the pro-
posed procedures turn out to be optimal. From a technical point of view, the
proposed tableau systems are quite different from that for RPNL. Besides addi-
tional rules for the past-time existential and universal modalities, a revision of
the definition of blocked points is needed, to distinguish between right-blocked
(points that do not require the addition of new points to their future) and

Optimal Tableau Systems for Propositional Neighborhood Logic 75

left-blocked (points that do not require the addition of new points to their past)
points. These changes have a relevant impact on the way in which soundness,
completeness, and termination of the tableau systems can be proved.

The paper is organized as follows. In Section 2, we introduce syntax and se-
mantics of PNL. Then, in Section 3 we introduce the notion of labeled interval
structure (LIS) and we show that PNL satisfiability can be reduced to the ex-
istence of a fulfilling LIS. In Section 4 we prove the decidability of PNL over
different classes of linear orders by a model-theoretic argument. Next, in Section
5, by taking advantage of the results given in the previous section, we develop
optimal tableau-based decision procedures for PNL over the considered classes of
linear orders. Conclusions provide an assessment of the work and outline future
research directions.

2 Propositional Neighborhood Logic

In this section, we give syntax and semantics of PNL interpreted over different
classes of linear orders. Let D be a set of points and D = 〈D,<〉 be a linear order
on it. We say that D is (weakly) discrete if any point having a successor (resp.,
predecessor) has an immediate one and that D is dense if for every pair of points
di < dj there exists a point dk such that di < dk < dj . In the following, we
will focus our attention on the representative classes of all linear orders, dense
linear orders, and (weakly) discrete linear orders. In fact, similar results can be
obtained for other classes of linear orders [3].

An interval on D is an ordered pair [di, dj] such that di, dj ∈ D and di < dj
(strict semantics)1. The set of all intervals over D will be denoted by I(D). For
every pair of intervals [di, dj], [d′i, d

′
j] ∈ I(D), we say that [d′i, d

′
j] is a right (resp.,

left) neighbor of [di, dj] if and only if dj = d′i (resp., d′j = di).
The language of PNL consists of a set AP of propositional letters, the con-

nectives ¬ and ∨, and the modal operators 〈A〉 and 〈A〉. The other connectives,
as well as the logical constants � (true) and ⊥ (false), can be defined as usual.
Formulae of PNL, denoted by ϕ, ψ, . . ., are recursively defined by the following
grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈A〉ϕ | 〈A〉ϕ.
We denote by |ϕ| the length of ϕ, that is, the number of symbols in ϕ (in the
following, we shall use | | to denote the cardinality of a set as well). A formula of
the form 〈A〉ψ, ¬〈A〉ψ, 〈A〉ψ, or ¬〈A〉ψ is called a temporal formula (from now
on, we identify ¬〈A〉¬ψ with [A]ψ and ¬〈A〉¬ψ with [A]ψ).

An interval model for a PNL formula is a pair M = 〈D,V〉, where D = 〈D,<〉
and V : I(D) �→ 2AP is a valuation function assigning to every interval the set
of propositional letters true over it. Given a model M = 〈D,V〉 and an interval
[di, dj] ∈ I(D), the semantics of PNL is defined recursively by the satisfiability
relation � as follows:
1 As an alternative, one may assume a non-strict semantics which admits point inter-

vals, that is, intervals of the form [di, di]. It is not difficult to show that all results
in the paper can be adapted to the case in which non-strict semantics is assumed.

76 D. Bresolin et al.

– for every propositional letter p ∈ AP , M, [di, dj] � p iff p ∈ V([di, dj]);
– M, [di, dj] � ¬ψ iff M, [di, dj]
� ψ;
– M, [di, dj] � ψ1 ∨ ψ2 iff M, [di, dj] � ψ1 or M, [di, dj] � ψ2;
– M, [di, dj] � 〈A〉ψ iff ∃dk ∈ D such that dk > dj and M, [dj , dk] � ψ;
– M, [di, dj] � 〈A〉ψ iff ∃dk ∈ D such that dk < di and M, [dk, di] � ψ.

We do not impose any constraint on the valuation function, thus placing
ourselves in the most general (and difficult) setting. As an example, given an
interval [di, dj], it may happen that p ∈ V([di, dj]) and p
∈ V([d′i, d

′
j]) for all

intervals [d′i, d
′
j] (strictly) contained in [di, dj].

It can be shown that PNL is expressive enough to distinguish between satis-
fiability over the class of all linear orders and the class of discrete (resp., dense)
linear orders. As a matter of fact, PNL also allows one to distinguish between
satisfiability over the class of all (resp., dense, discrete) linear orders and over
the integers. To this end, it suffices to exhibit a formula that is satisfiable over
the former and unsatisfiable over the latter. The formulae are the following:

– Let ImmediateSucc be the PNL formula 〈A〉〈A〉p ∧ [A][A][A]¬p. It is pos-
sible to show that ImmediateSucc is satisfiable over the class of all (resp.,
discrete) linear orders, but it is not satisfiable over dense linear orders.

– Let NoImmediateSucc be the PNL formula (〈A〉�∧ [A](p∧ [A]¬p∧ [A]p))∧
〈A〉〈A〉[A]([A]p ∨ 〈A〉〈A〉¬p). It is possible to show that NoImmediateSucc
is satisfiable over the class of all (resp., dense) linear orders, but it is not
satisfiable over discrete linear orders.

– Let [G] be the universally-in-the-future operator defined as follows: [G]ψ =
ψ ∧ [A]ψ ∧ [A][A]ψ and let seqp be a shorthand for p → 〈A〉p. Consider
the formula AccPoints = 〈A〉p ∧ [G]seqp ∧ 〈A〉[G]¬p. It is possible to show
that AccPoints is unsatisfiable over Z, while it is satisfiable whenever the
temporal structure in which it is interpreted has at least one accumulation
point, that is, a point which is the right bound of an infinite (ascending)
chain of points, thus including all, dense, and discrete linear orders.

Detailed proofs of these statements are given in [6]. A precise characterization
of PNL expressiveness with respect to that of the other HS fragments can be
found in [14].

3 Labeled Interval Structures and Satisfiability

In this section, we introduce preliminary notions and we state basic results on
which our tableau method for PNL relies. Let ϕ be a PNL formula to be checked
for satisfiability and let AP be the set of its propositional letters. The closure
CL(ϕ) of ϕ is the set of all subformulae of ϕ and of their negations (we identify
¬¬ψ with ψ). Moreover, the set of temporal formulae of ϕ is the set TF(ϕ) =
{〈A〉ψ | 〈A〉ψ ∈ CL(ϕ)} ∪ {[A]ψ | [A]ψ ∈ CL(ϕ)} ∪ {〈A〉ψ | 〈A〉ψ ∈ CL(ϕ)} ∪
{[A]ψ | [A]ψ ∈ CL(ϕ)}. Finally, a maximal set of requests for ϕ is a set S ⊆

Optimal Tableau Systems for Propositional Neighborhood Logic 77

TF(ϕ) that satisfies the following conditions: (i) for every 〈A〉ψ ∈ TF(ϕ), 〈A〉ψ ∈
S iff ¬〈A〉ψ
∈ S; (ii) for every 〈A〉ψ ∈ TF(ϕ), 〈A〉ψ ∈ S iff ¬〈A〉ψ
∈ S. By
induction on the structural complexity of ϕ, we can easily prove that, for every
formula ϕ, |CL(ϕ)| is less than or equal to 2 · (|ϕ| + 1), while |TF(ϕ)| is less
than or equal to 2 · |ϕ|. We are now ready to introduce the notion of ϕ-atom.

Definition 1. A ϕ-atom is a set A ⊆ CL(ϕ) such that (i) for every ψ ∈ CL(ϕ),
ψ ∈ A iff ¬ψ
∈ A, and (ii) for every ψ1 ∨ ψ2 ∈ CL(ϕ), ψ1 ∨ ψ2 ∈ A iff ψ1 ∈ A
or ψ2 ∈ A.

We denote the set of all ϕ-atoms by Aϕ. It can be easily checked that |Aϕ| ≤
2|ϕ|+1. We now define a suitable labeling of intervals based on ϕ-atoms.

Definition 2. A ϕ-labeled interval structure (ϕ-LIS for short) is a pair L =
〈D,L〉, where D = 〈D,<〉 and L : I(D) �→ Aϕ is a labeling function such that,
for every pair of neighboring intervals [di, dj], [dj , dk] ∈ I(D), it holds that (i) for
every [A]ψ ∈ CL(ϕ), if [A]ψ ∈ L([di, dj]), then ψ ∈ L([dj , dk]), and (ii) for every
[A]ψ ∈ CL(ϕ), if [A]ψ ∈ L([dj , dk]), then ψ ∈ L([di, dj]).

For the sake of simplicity, hereafter we will write LIS for ϕ-LIS. We say that
a LIS L = 〈D,L〉 is discrete (resp., dense) if D is discrete (resp., dense). If we
interpret the labeling function as a valuation function, LISs represent candidate
models for ϕ: the truth of formulae devoid of temporal operators follows from
the definition of ϕ-atom, and universal temporal conditions, imposed by [A]/[A]
operators, are forced by conditions (i) and (ii). To actually get a model for ϕ, we
must also guarantee the satisfaction of existential temporal conditions, imposed
by 〈A〉/〈A〉 operators. To this end, we introduce the notion of fulfilling LIS.

Definition 3. A LIS L = 〈D,L〉 is fulfilling iff (i) for every temporal formula
〈A〉ψ ∈ TF(ϕ) and every interval [di, dj] ∈ I(D), if 〈A〉ψ ∈ L([di, dj]), then
there exists a right neighbor interval [dj , dk] ∈ I(D) such that ψ ∈ L([dj , dk]) and
(ii) for every temporal formula 〈A〉ψ ∈ TF(ϕ) and every interval [di, dj] ∈ I(D),
if 〈A〉ψ ∈ L([di, dj]), then there exists a left neighbor interval [dk, di] ∈ I(D) such
that ψ ∈ L([dk, di]).

The next theorem proves that for any given formula ϕ, the satisfiability of ϕ is
equivalent to the existence of a fulfilling LIS with an interval labeled by ϕ.

Theorem 1. A PNL formula ϕ is satisfiable iff there exists a fulfilling LIS
L = 〈D,L〉 with ϕ ∈ L([di, dj]) for some [di, dj] ∈ I(D).

The implication from left to right is straightforward; the opposite implication is
proved by induction on the structural complexity of the formula [6]. From now
on, we say that a fulfilling LIS L = 〈D,L〉 satisfies ϕ if and only if there exists
an interval [di, dj] ∈ I(D) such that ϕ ∈ L([di, dj]).

Definition 4. Given a LIS L = 〈D,L〉 and d ∈ D, the set of future temporal
requests of d is the set REQL

f (d) = {(A)ξ ∈ TF(ϕ) : ∃d′ ∈ D (A)ξ ∈ L([d′, d])},
where (A) ∈ {〈A〉, [A]}, and the set of past temporal requests of d is the set
REQL

p (d) = {(A)ξ ∈ TF(ϕ) : ∃d′ ∈ D (A)ξ ∈ L([d, d′])}, where (A) ∈ {〈A〉, [A]}.
The set of temporal requests of d is the set REQL(d) = REQL

p (d) ∪ REQL
f (d).

78 D. Bresolin et al.

Definition 5. Given a LIS L = 〈D,L〉, d ∈ D, and 〈A〉ψ ∈ REQL(d) (resp.,
〈A〉ψ ∈ REQL(d)), we say that 〈A〉ψ (resp., 〈A〉ψ) is fulfilled for d in L if
there exists d′ ∈ D, with d′ > d (resp., d′ < d), such that ψ ∈ L([d, d′]) (resp.,
ψ ∈ L([d′, d])). We say that d is fulfilled in L if for every 〈A〉ψ ∈ REQL(d)
(resp., 〈A〉ψ ∈ REQL(d)) 〈A〉ψ (resp., 〈A〉ψ ∈ REQL(d)) is fulfilled for d in L.

Definition 6. Given a LIS L = 〈D,L〉 for a PNL formula ϕ and d ∈ D, we
say that d (resp., REQ(d)) is unique in L if for every d̃ ∈ D, with d̃
= d,
REQ(d̃)
= REQ(d).

Given a formula ϕ, let REQϕ be the set of all possible sets of requests. It is not

difficult to show that |REQϕ | is equal to 2
|TF(ϕ)|

2 .

Definition 7. Given a LIS L = 〈D,L〉, with D = 〈D,<〉, D′ ⊆ D, and R ∈
REQϕ, we say that R occurs n times in D′ iff there exist exactly n distinct points
di1 , . . . , din ∈ D′ such that REQL(dij) = R, for all 1 ≤ j ≤ n.

4 Decidability of PNL

In this section, we prove that the satisfiability problem for PNL over the classes
of all linear orders is decidable. Moreover, we explain how to tailor the proof to
the cases of dense and discrete linear orders.

Definition 8. Let ϕ be a PNL formula, A be a ϕ-atom, and S1, S2 ⊆ TF(ϕ) be
two maximal sets of requests. The triplet 〈S1, A, S2〉 is an interval-tuple iff

(i) for every [A]ψ ∈ S1, ψ ∈ A;
(ii) for every [A]ψ ∈ S2, ψ ∈ A;
(iii) for every 〈A〉ψ ∈ TF(ϕ), 〈A〉ψ ∈ A iff 〈A〉ψ ∈ S2;
(iv) for every 〈A〉ψ ∈ TF(ϕ), 〈A〉ψ ∈ A iff 〈A〉ψ ∈ S1;
(v) for every ψ ∈ A such that 〈A〉ψ ∈ TF(ϕ), 〈A〉ψ ∈ S1;
(vi) for every ψ ∈ A such that 〈A〉ψ ∈ TF(ϕ), 〈A〉ψ ∈ S2.

Let L = 〈D,L〉 be a LIS for a PNL formula ϕ. By Definition 2 and Definition
4, it easily follows that, for every d, d′ ∈ D, the triplet 〈REQL(d),L([d, d′]),
REQL(d′)〉 is an interval-tuple.

Definition 9. Let L = 〈D,L〉 be a LIS and 〈R,A,R′〉 be an interval-tuple.
If there exists [d, d′] ∈ I(D) such that L([d, d′]) = A, REQL(d) = R, and
REQL(d′) = R′, we say that 〈R,A,R′〉 occurs in L (at [d, d′]). Moreover, if
〈R,A,R′〉 occurs in L at [d, d′] and both d and d′ are fulfilled in L, we say that
〈R,A,R′〉 is fulfilled in L (via [d, d′]).

Definition 10. Given a finite LIS L = 〈D,L〉 for a PNL formula ϕ, we say
that L is a pseudo-model for ϕ if every interval-tuple 〈R,A,R′〉 that occurs in
L is fulfilled.

Optimal Tableau Systems for Propositional Neighborhood Logic 79

From the fact that all interval-tuples are fulfilled in L, that is, L is a pseudo-
model for ϕ, it does not follow that L is fulfilling, since in L there can be multiple
occurrences of the same interval-tuple, associated with different intervals. Thus,
to turn a pseudo-model into a fulfilling LIS (for ϕ) some additional effort is
needed. The next definition introduces an important ingredient of such a process.

Definition 11. Let ϕ be a PNL formula and L = 〈D,L〉 be a fulfilling LIS that
satisfies it. For any d ∈ D, we say that:

(future) a set ESdf ⊆ D is a future essential set for d if (i) for every 〈A〉ψ ∈
REQL(d), there exists d′ ∈ ESdf such that ψ ∈ L([d, d′]) (fulfilling condition)
and (ii) for every d′ ∈ ESdf there exists a formula 〈A〉ψ ∈ REQL(d) such
that, for every d′′ ∈ (ESdf \ {d′}), ¬ψ ∈ L([d, d′′]) (minimality);

(past) a set ESdp ⊆ D is a past essential set for d if (i) for every 〈A〉ψ ∈
REQL(d), there exists d′ ∈ ESdp such that ψ ∈ L([d′, d]) (fulfilling condition)
and (ii) for every d′ ∈ ESdp there exists a formula 〈A〉ψ ∈ REQL(d) such
that, for every d′′ ∈ (ESdp \ {d′}), ¬ψ ∈ L([d′′, d]) (minimality).

Let d ∈ D. By Definition 11, for all d′ ∈ ESdf (resp., d′ ∈ ESdp), there exists at
least one formula ψ belonging to L([d, d′]) (resp., L([d′, d]) only. On the contrary,
we cannot exclude the existence of formulas ψ that belong to the labeling of more
than one interval [d, d′] (resp., [d′, d]), with d′ ∈ ESdf (resp., d′ ∈ ESdp).

The decidability of the satisfiability problem for PNL over the class of all
linear orders rests on the following lemma.

Lemma 1. Given a pseudo-model L = 〈D,L〉 for a PNL formula ϕ, there exists
a fulfilling LIS L′ that satisfies ϕ.

Proof. We show how to obtain a fulfilling LIS L′ starting from the pseudo-
model L as the limit of a possibly infinite sequence of pseudo-models L0(=
L),L1,L2, In the following, we describe how to obtain the pseudo-model
Li+1 = 〈Di+1,Li+1〉, with Di+1 = 〈Di+1, <〉, from the pseudo-model Li =
〈Di,Li〉, with Di = 〈Di, <〉, for any i ≥ 0. Let Qi be the queue of all points
d ∈ Di that must be checked for fulfillment (Q0 consists of all and only the
points d ∈ D such that d is not fulfilled in L). If Qi is empty, then we stop the
procedure by putting L′ = Li. Otherwise, Li+1 is built as follows. Let d be the
first element of the queue Qi. If d is fulfilled, we remove it from the queue and
put Li+1 = Li (every point in the queue is not fulfilled at insertion time; how-
ever, it may happen that subsequent expansions of the domain make it fulfilled
before the time at which it is taken into consideration). Otherwise, either there
exists 〈A〉ψ ∈ REQLi(d) which is not fulfilled, or there exists 〈A〉ψ ∈ REQLi(d)
which is not fulfilled, or both.
Suppose that there exists (at least) one 〈A〉-formula in REQLi(d) which is not
fulfilled. Two cases may arise:

1) There exists d′ > d such that REQLi(d′) = REQLi(d) and d′ is fulfilled. Let
ESd

′
f = {d1, ..., dk}. For j = 1, . . . , k, we proceed as follows:

80 D. Bresolin et al.

a) If dj is unique, we put Li+1([d, dj]) = Li([d′, dj]). We prove that such
a replacement does not introduce new defects for dj . Suppose by con-
tradiction that it is not the case. Then there must exist a formula
〈A〉θ ∈ REQLi(dj) that is fulfilled only by the interval [d, dj] (in Li).
Since the interval-tuple 〈REQLi(d), Li([d, dj]),REQLi(dj)〉 is fulfilled
in Li, there exists an interval [d′′, d′′′] such that 〈REQLi(d),Li([d, dj]),
REQLi(dj)〉 is fulfilled in Li via [d′′, d′′′]. Since dj is unique, d′′′ = dj .
However, since d in not fulfilled in Li, d′′
= d, and thus the interval
[d′′, dj] fulfills 〈A〉θ, in contradiction with the hypothesis that 〈A〉θ causes
a defect for dj . This case is depicted in Figure 1.

d′′ d d′ dj

Li([d
′′, dj])

Li([d, dj])

Li([d
′, dj])

d′′ d d′ dj

Li+1([d
′′, dj]) = Li([d

′′, dj])

Li+1([d, dj]) = Li([d
′, dj])

Li+1([d
′, dj]) = Li([d

′, dj])

Fig. 1. Relabeling of the interval [d, dj] in Case 1a

b) If dj is not unique, there exists d
= dj , with REQLi(d) = REQLi(dj). In
such a case, we introduce a new point d̂ immediately after dj with the
same requests as dj , that is, we put Di+1 = Di ∪ {d̂}, with dj < d̂

and for all d̃, if d̃ > dj , then d̃ > d̂, and we force REQLi+1(d̂) to
be equal to REQLi(dj). To this end, for every d′′ /∈ {d, dj, d′}, we
put Li+1([d′′, d̂]) = Li([d′′, dj]) (when d′′ < d̂) and Li+1([d̂, d′′]) =
Li([dj , d′′]) (when d′′ > d̂). Moreover, we put Li+1([d, d̂]) = Li([d′, dj])
and Li+1([d′, d̂]) = Li([d, dj]), as depicted in Figure 2. In such a way, d
satisfies over [d, d̂] the request that d′ satisfies over [d′, dj]. At the same
time, we guarantee that d̂ satisfies the same past requests that dj satis-
fies: d̂ satisfies over [d, d̂] (resp., [d′, d̂]) the request that dj satisfies over
[d′, dj] (resp., [d, dj]) and it satisfies the remaining past requests over in-
tervals that start at the same point where the intervals over which dj sat-
isfies them start. Finally, if d > dj , we put Li+1([dj , d̂]) = Li([dj , d]), and
Li+1([dj , d̂]) = Li([d, dj]) otherwise. For all the remaining pairs dr, ds the
labeling remains unchanged, that is, Li+1([dr, ds]) = Li([dr, ds]). Now,
we observe that, by definition of Li+1, if dj is fulfilled (in Li), then d̂ is

Optimal Tableau Systems for Propositional Neighborhood Logic 81

fulfilled (in Li+1), while if dj is not fulfilled (in Li), being d̂ fulfilled or
not (in Li+1) depends on the labeling of the interval [dj , d̂]. If d̂ is not
fulfilled (in Li+1), we insert it into the queue Qi+1.

d
. . .

d′
. . .

dj d̂

Li([d
′, dj])

Li+1([d, d̂]) = Li([d
′, dj])

Li([d, dj])

Li+1([d
′, d̂]) = Li([d, dj])

Fig. 2. Labeling of the intervals [d, d̂] and [d′, d̂] in Case 1b

2) For every d′ > d, with REQLi(d′) = REQLi(d), d′ is not fulfilled. Let d′ < d
such that REQLi(d′) = REQLi(d), d′ is fulfilled, and, for every d′ < d′′ < d,
if REQLi(d′′) = REQLi(d), then d′′ is not fulfilled. For every point d̃ ∈
D, we define the set PastLi(d̃) = {REQLi(d̂) | d̂ < d̃}. As a preliminary
step, we prove that PastLi(d′) = PastLi(d). Suppose, by contradiction, that
there exists d′ < d′′ < d such that REQLi(d′′) /∈ PastLi(d′). Since Li is a
pseudo-model, there exist d, d

′ ∈ Di such that the interval-tuple 〈REQLi(d′′),
Li([d′′, d]),REQLi(d)〉 is fulfilled in Li via [d, d

′
]. By definition, both d and

d
′
are fulfilled; moreover, REQLi(d) = REQLi(d′′), REQLi(d

′
) = REQLi(d),

and Li([d, d
′
]) = Li([d′′, d]). Since REQLi(d′′) /∈ PastLi(d′), d′ < d and

thus d′ < d
′
. However, since d′ is the largest fulfilled element in Di with

REQLi(d′) = REQLi(d), d
′
cannot be greater than d′ (contradiction). Hence,

PastLi(d′) = PastLi(d).
Let ESd

′
f = {d1, ..., dk}. For every j = 1, ..., k, we proceed as follows:

a) If dj is unique, then dj > d, since PastLi(d′) = PastLi(d). We proceed
as in Case 1a.

b) If dj is not unique and dj > d, then we proceed as in Case 1b.
c) If dj is not unique and d′ < dj < d, then we introduce a new point

d̂ immediately after d with the same requests as dj , that is, we put
Di+1 = Di ∪ {d̂}, with d < d̂ and for all d̃, if d̃ > d, then d̃ >

d̂, and we force REQLi+1(d̂) to be equal to REQLi(dj). To this end,
for every

←−
d with

←−
d < dj (resp., for every

−→
d with

−→
d > d̂), we put

Li+1([
←−
d , d̂]) = Li([

←−
d , dj]) (resp., Li+1([d̂,

−→
d]) = Li([dj ,

−→
d])). Then,

82 D. Bresolin et al.

for all dj ≤
←→
d < d, there exists d′′ < d′ such that REQLi(d′′) =

REQLi(
←→
d), since PastLi(d′) = PastLi(d). Hence, we put Li+1([

←→
d , d̂]) =

Li([d′′, dj]). Moreover, we put Li+1([d, d̂]) = Li([d′, dj]). Finally, if d̂ is
not fulfilled, we insert it into the queue Qi+1. This case is depicted in
Figure 3.

d′′ ←−
d d′ dj

←→
d d d̂

−→
d

Fig. 3. Labeling of intervals starting/ending in d̂ in Case 2c

The case in which there exists (at least) one 〈A〉-formula in REQLi(d) which is
not fulfilled is completely symmetric, and thus its description is omitted. This
concludes the construction of Li+1. Since all points which are fulfilled in Li
remain fulfilled in Li+1, it is immediate to conclude that Li+1 is a pseudo-model.
Moreover, as d is fulfilled in Li+1, it can be safely removed from the queue. As
it can be easily checked, the proposed construction does not remove any point,
but it can introduce new ones, possibly infinitely many. However, the use of a
queue to manage points which are (possibly) not fulfilled guarantees that the
defects of each of them sooner or later will be fixed.

To complete the proof, it suffices to show that the fulfilling LIS L′ for ϕ we
were looking for is the limit of this (possibly infinite) construction. Let L−

i be
equal to Li devoid of the labeling of all intervals consisting of a (non-unique)
point in Qi and a unique point (in Di\Qi). We define L′ as the (possibly infinite)
union ∪i≥0L−

i (if Qi turns out to be empty for some i, then L′ is simply equal to
Li). It is trivial to check that for every pair Di, Di+1, Di ⊆ Di+1. To prove that
for every pair L−i , L−i+1, it holds that L−i ⊆ L−i+1, we observe that: (i) the labeling
of intervals whose endpoints are both non-unique points (resp., unique points)
never changes, that is, it is fixed once and for all, and (ii) for every pair of point
d, d′ ∈ Di \Qi such that d is a non-unique point and d′ is a unique one, if d < d′

(resp., d′ < d), then Lj([d, d′]) = Li([d, d′]) (resp., Lj([d′, d]) = Li([d′, d])) for

Optimal Tableau Systems for Propositional Neighborhood Logic 83

all j ≥ i, that is, the labeling of an interval consisting of a non-unique point and
a unique one may possibly change when the non-unique point is removed from
the queue and then it remains unchanged forever (notice that non-unique points
which are fulfilled from the beginning never change “their labeling”). Finally, to
prove that all points are fulfilled in ∪i≥0L−

i , it is sufficient to observe that: (i) all
unique points belong to D0 and are fulfilled in the restriction of L0 to D0 \Q0

(and thus in L−
0), and (ii) for every i ≥ 0, all points in Di \ Qi are fulfilled in

L−
i and the first element of Qi may be not fulfilled in Li (and thus in L−

i), but
it is fulfilled in L−

i+1. Every point is indeed either directly inserted into Di \Qi
or added to Qi (and thus it becomes the first element of Qj for some j > i) for
some i ≥ 0. ��

Lemma 2. Given a PNL formula ϕ and a fulfilling LIS L = 〈D,L〉 that satisfies
it, there exists a pseudo-model L′ for ϕ, with |D′| ≤ 2 · |ϕ| · 23·|ϕ|+1.

Decidability of PNL over the class of all linear orders immediately follows.

Theorem 2. The satisfiability problem for PNL over the class of all linear or-
ders is decidable.

We conclude the section by explaining how to tailor the above proofs to the cases
of dense and discrete linear orders (details can be found in [6]).

To cope with dense linear orders, we introduce the notion of covering.

Definition 12. Let L = 〈D,L〉 be a pseudo-model for a PNL formula ϕ and
d ∈ D. We say that d is covered if either d is not unique or (d is unique and)
both its immediate predecessor (if any) and successor (if any) are not unique.
We say that L is covered if every d ∈ D is covered.

The construction of Lemma 1 is then revised to force each point in a pseudo-
model for ϕ to be covered so that we can always insert a point in between any
pair of consecutive points, thus producing a dense model for ϕ.

To deal with discrete orders, we make us of the notion of safe pseudo-model.

Definition 13. Let L = 〈D,L〉 be a pseudo-model for a PNL formula ϕ and
d ∈ D. We say that d is safe if either d is not unique or (d is unique and) both
its immediate predecessor (if any) and successor (if any) are fulfilled. We say
that L is safe if every d ∈ D is safe.

Such a safety condition guarantees that the building procedure of Lemma 1 can
be done in such a way that all points added during the construction get their
(definitive) immediate successor and immediate predecessor in at most one step.

As for complexity, it is possible to show that forcing covering (resp., safety)
does not cause any exponential blow-up in the maximum size of a pseudo-model.
More formally, by suitably adapting Lemma 2, we can prove that if ϕ is satisfiable
over dense (resp., discrete) linear orders, then there exists a covered (resp., safe)
pseudo-model L = 〈D,L〉 for it with |D| ≤ 4 · |ϕ| · 23·|ϕ|+1 (resp., |D| ≤ 2 ·
|ϕ| · 24·|ϕ|+1). It easily follows that the satisfiability problem for PNL over all
(resp., dense, discrete) linear orders belongs to the NEXPTIME complexity class.

84 D. Bresolin et al.

NEXPTIME-hardness immediately follows from [7], where a reduction of the
exponential tiling problem, which is known to be NEXPTIME-complete [1], to
the satisfiability problem for the future fragment of PNL is provided (as it can
be easily verified, the reduction is completely independent from the considered
linear order). This allows us to conclude that the satisfiability problem for PNL
over all (resp., dense, discrete) linear orders is NEXPTIME-complete.

5 Tableau Systems for PNL

In this section, we develop tableau-based decision procedures for PNL over all,
dense, and discrete linear orders. We describe in detail the tableau system for
the general case (all linear orders), and then we briefly explain how to specialize
it to deal with the dense and discrete cases. The presentation is organized as
follows. First, we give the rules of the tableau system; then, we describe expansion
strategies and blocking conditions; finally, we state termination, soundness, and
completeness of the method. We conclude the section by proving the optimality
of all the proposed tableau-based decision procedures.

We preliminarily introduce basic concepts and notation. A tableau for a
PNL formula ϕ is a special decorated tree T . We associate a finite linear or-
der DB = 〈DB, <〉 and a request function REQB : DB �→ REQϕ with every
branch B of T . Every node n in B is labeled with a pair 〈[di, dj], An〉 such that
the triple 〈REQB(di), An, REQB(dj)〉 is an interval-tuple. The initial tableau
for ϕ consists of a single node (and thus of a single branch B) labeled with the
pair 〈[d0, d1], Aϕ〉, where DB = {d0 < d1} and ϕ ∈ Aϕ.

Given a point d ∈ DB and a formula 〈A〉ψ ∈ REQB(d), we say that 〈A〉ψ
is fulfilled in B for d if there exists a node n′ ∈ B such that n′ is labeled
with 〈[d, d′], An′〉 and ψ ∈ An′ . Similarly, given a point d ∈ DB and a formula
〈A〉ψ ∈ REQB(d), we say that 〈A〉ψ is fulfilled in B for d if there exists a node
n′ ∈ B such that n′ is labeled with 〈[d′, d], An′〉 and ψ ∈ An′ . Given a point
d ∈ DB, we say that d is fulfilled in B if every 〈A〉ψ (resp., 〈A〉ψ) in REQB(d)
is fulfilled in B for d.

Let T be a tableau and B be a branch of T , with DB = {d0 < . . . < dk}. We
denote by B · n the expansion of B with an immediate successor node n and by
B · n1| . . . |nh the expansion of B with h immediate successor nodes n1, . . . , nh.
To possibly expand B, we apply one of the following expansion rules:

1. 〈A〉-rule. If there exist dj ∈ DB and 〈A〉ψ ∈ REQB(dj) such that 〈A〉ψ is not
fulfilled in B for dj , we proceed as follows. If there is not an interval-tuple
〈REQB(dj), Aψ, S〉, with ψ ∈ Aψ, we close the branch B. Otherwise, let
〈REQB(dj), Aψ , S〉 be such an interval-tuple. We take a new point d and we
expand B with h = k−j+1 immediate successor nodes n1, . . . , nh such that,
for every 1 ≤ l ≤ h, DB·nl

= DB ∪{dj+l−1 < d < dj+l} (for l = h, we simply
add a new point d, with d > dk, to the linear order), nl = 〈[dj , d], Aψ〉, with
ψ ∈ Aψ, REQB·nl

(d) = S, and REQB·nl
(d′) = REQB(d′) for every d′ ∈ DB.

2. 〈A〉-rule. It is symmetric to the 〈A〉-rule and thus its description is omitted.

Optimal Tableau Systems for Propositional Neighborhood Logic 85

3. Fill-in rule. If there exist two points di, dj , with di < dj , such that there is not
a node in B decorated with the interval [di, dj], but there exists an interval-
tuple 〈REQB(di), A,REQB(dj)〉, we expand B with a node n = 〈[di, dj], A〉.
If such an interval-tuple does not exist, then we close B.

The application of any of the above rules may result in the replacement of
the branch B with one or more new branches, each one featuring one new node
n. However, while the Fill-in rule decorates such a node with a new interval
whose endpoints already belong to DB, the 〈A〉-rule (resp., 〈A〉-rule) adds a
new point d to DB which becomes the ending (resp., beginning) point of the
interval associated with the new node.

We say that a node n = 〈[di, dj], A〉 in a branch B is active if for every prede-
cessor n′ = 〈[d, d′], A′〉 of n in B, the interval-tuples 〈REQB(di), A,REQB(dj)〉
and 〈REQB(d), A′,REQB(d′)〉 are different. Moreover, we say that a point d ∈
DB is active if and only if there exists an active node n in B such that n =
〈[d, d′], A〉 or n = 〈[d′, d], A〉, for some d′ ∈ DB and some atom A. Given a
non-closed branch B, we say that B is complete if for every di, dj ∈ DB, with
di < dj , there exists a node n in B labeled with n = 〈[di, dj], A〉, for some atom
A. It can be easily seen that if B is complete, then the tuple 〈DB, I(DB),LB〉
such that, for every [di, dj] ∈ I(DB), LB([di, dj]) = A if and only if there exists
a node n in B labeled with 〈[di, dj], A〉, is a LIS. Given a non-closed branch B,
we say that B is blocked if B is complete and for every active point d ∈ B we
have that d is fulfilled in B.

We start from an initial tableau for ϕ and we apply the expansion rules to
all the non-blocked and non-closed branches B. The expansion strategy is the
following one:

1. Apply the Fill-in rule until it generates no new nodes in B.
2. If there exist an active point d ∈ DB and a formula 〈A〉ψ ∈ REQB(d) such

that 〈A〉ψ is not fulfilled in B for d, then apply the 〈A〉-rule on d. Go back
to step 1.

3. If there exist an active point d ∈ DB and a formula 〈A〉ψ ∈ REQB(d) such
that 〈A〉ψ is not fulfilled in B for d, then apply the 〈A〉-rule on d. Go back
to step 1.

A tableau T for ϕ is final if and only if every branch B of T is closed or blocked.

Theorem 3 (Termination). Let T be a final tableau for a PNL formula ϕ and
B be a branch of T . We have that |B| ≤ (2 · |ϕ| ·23·|ϕ|+1) · (2 · |ϕ| ·23·|ϕ|+1−1)/2.

Theorem 4 (Soundness). Let T be a final tableau for a PNL formula ϕ. If T
features one blocked branch, then ϕ is satisfiable over all linear orders.

Theorem 5 (Completeness). Let ϕ be a PNL formula which is satisfiable
over the class of all linear orders. Then there exists a final tableau for ϕ with at
least one blocked branch.

86 D. Bresolin et al.

The above tableau system can be tailored to the dense and discrete cases.
As for the dense case, it suffices to apply the following rule immediately after

the 〈A〉/〈A〉-rules:

Dense rule. If there exist two consecutive non-covered points di, di+1, we proceed
as follows. If there is not an interval-tuple 〈REQB(di), A, S〉 for some S ∈ REQϕ

and A ∈ Aϕ, we close the branch B. Otherwise, let 〈REQB(di), A, S〉 be such an
interval-tuple. We expand B with a node n, labeled with 〈[di, d], A〉, such that
REQB·n(d) = S and DB·n = DB ∪ {di < d < di+1}.

The discrete case is more complex. First, we partition nodes (intervals) in two
classes, namely, free and unit nodes. Free nodes are labeled with triples of the
form 〈[d, d′], A, free〉, meaning that a point can be added in between d and d′;
unit nodes, labeled with triples of the form 〈[d, d′], A, unit〉, denote unit intervals
(insertions are forbidden). The set of expansion rules is then updated as follows.
The Fill-in rule remains unchanged. The 〈A〉/〈A〉-rules are revised to prevent
the insertion of points inside unit-intervals. The introduction of unit intervals is
managed by two additional rules (Predecessor and Successor rules) to be applied
immediately after the 〈A〉/〈A〉-rules.

Successor rule. If there exists dj ∈ DB such that dj is unique in DB, its im-
mediate successor dj+1 in DB is not fulfilled, there exists a node n labeled
by 〈[dj , dj+1], An, free〉, for some atom An, in B, and there exists no node n′

labeled by 〈[dj , dj+1], An′ , unit〉, for some atom An′ , in B, then we proceed
as follows. We expand B with 2 immediate successor nodes n1, n2 such that
n1 = 〈[dj , dj+1], An, unit〉 and n2 = 〈[dj , d], A′, unit〉, with dj < d < dj+1 and
there exists an interval-tuple 〈REQB(dj), A′, S〉, for some A′ and S (the exis-
tence of such an interval tuple is guaranteed by the existence of a node n with
label 〈[dj , dj+1], An, free〉). We have that DB·n1 = DB and DB·n2 = DB ∪ {dj <
d < dj+1}. Moreover, REQB·n2

(d) = S and REQB·n2
(d′) = REQB(d′) for every

d′ ∈ DB.

Predecessor rule. Symmetric to the successor rule and thus omitted.
As for the complexity, in both cases (dense and discrete), no exponential

blow-up in the maximum length of a branch B (with respect to the general
case) occurs. More formally, following the reasoning path of Theorem 3, we can
prove that the maximum length of a branch B in the dense (resp., discrete) case
is |B| ≤ (4 · |ϕ| · 23·|ϕ|+1 − 1) · (4 · |ϕ| · 23·|ϕ|+1 − 2)/2 (resp., |B| ≤ (2 · (3 · |ϕ|+
1) · 23·|ϕ|+1) · (2 · (3 · |ϕ|+ 1) · 23·|ϕ|+1 − 1)/2). Optimality easily follows.

6 Conclusions and Future Work

In this paper, we have developed an optimal tableau system for PNL interpreted
over the class of all linear orders, and we have shown how to adapt it to deal
with the subclasses of dense and (weakly) discrete linear orders. We are currently
working at the implementation of the three tableau systems.

Optimal Tableau Systems for Propositional Neighborhood Logic 87

References

1. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives
of Mathematical Logic. Springer, Heidelberg (1997)

2. Bowman, H., Thompson, S.: A decision procedure and complete axiomatization
of finite interval temporal logic with projection. Journal of Logic and Computa-
tion 13(2), 195–239 (2003)

3. Bresolin, D., Goranko, V., Montanari, A., Sciavicco, G.: Propositional interval
neighborhood logics: Expressiveness, decidability, and undecidable extensions. An-
nals of Pure and Applied Logic 161(3), 289–304 (2009)

4. Bresolin, D., Montanari, A., Sala, P.: An optimal tableau-based decision algorithm
for propositional neighborhood logic. In: Thomas, W., Weil, P. (eds.) STACS 2007.
LNCS, vol. 4393, pp. 549–560. Springer, Heidelberg (2007)

5. Bresolin, D., Montanari, A., Sala, P., Sciavicco, G.: Optimal tableaux for right
propositional neighborhood logic over linear orders. In: Hölldobler, S., Lutz, C.,
Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 62–75. Springer,
Heidelberg (2008)

6. Bresolin, D., Montanari, A., Sala, P., Sciavicco, G.: Tableau-based decision proce-
dures for Propositional Neighborhood Logic. Technical Report 01, Dipartimento di
Matematica e Informatica, Università di Udine, Italy (2010)

7. Bresolin, D., Montanari, A., Sciavicco, G.: An optimal decision procedure for
Right Propositional Neighborhood Logic. Journal of Automated Reasoning 38(1-3),
173–199 (2007)

8. Chaochen, Z., Hansen, M.R.: An adequate first order interval logic. In: de Roever,
W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536,
pp. 584–608. Springer, Heidelberg (1998)

9. Goranko, V., Montanari, A., Sciavicco, G.: Propositional interval neighborhood
temporal logics. Journal of Universal Computer Science 9(9), 1137–1167 (2003)

10. Goranko, V., Montanari, A., Sciavicco, G.: A road map of interval temporal logics
and duration calculi. Journal of Applied Non-Classical Logics 14(1-2), 9–54 (2004)

11. Goranko, V., Montanari, A., Sciavicco, G., Sala, P.: A general tableau method
for propositional interval temporal logics: theory and implementation. Journal of
Applied Logic 4(3), 305–330 (2006)

12. Halpern, J., Shoham, Y.: A propositional modal logic of time intervals. Journal of
the ACM 38(4), 935–962 (1991)

13. Montanari, A.: Back to interval temporal logics. In: Garcia de la Banda, M., Pon-
telli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 11–13. Springer, Heidelberg (2008)

14. Montanari, A., Puppis, G., Sala, P.: Maximal decidable fragments of halpern and
shoham’s modal logic of intervals. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199,
pp. 345–356. Springer, Heidelberg (2010)

15. Moszkowski, B.: Reasoning about digital circuits. Tech. rep. stan-cs-83-970, Dept.
of Computer Science, Stanford University, Stanford, CA (1983)

16. Otto, M.: Two variable first-order logic over ordered domains. Journal of Symbolic
Logic 66(2), 685–702 (2001)

17. Pratt-Hartmann, I.: Temporal prepositions and their logic. Artificial Intelli-
gence 166(1-2), 1–36 (2005)

18. Venema, Y.: A modal logic for chopping intervals. Journal of Logic and Computa-
tion 1(4), 453–476 (1991)

Craig Interpolation in Displayable Logics

James Brotherston1 and Rajeev Goré2

1 Dept. of Computing, Imperial College London
J.Brotherston@imperial.ac.uk

2 School of Computer Science, ANU Canberra
Rajeev.Gore@anu.edu.au

Abstract. We give a general proof-theoretic method for proving Craig
interpolation for displayable logics, based on an analysis of the individual
proof rules of their display calculi. Using this uniform method, we prove
interpolation for a spectrum of display calculi differing in their structural
rules, including those for multiplicative linear logic, multiplicative addi-
tive linear logic and ordinary classical logic. Our analysis of proof rules
also provides new insights into why interpolation fails, or seems likely to
fail, in many substructural logics. Specifically, contraction appears par-
ticularly problematic for interpolation except in special circumstances.

1 Introduction

I believe or hope that Display logic can be used as a basis for establishing
an interpolation theorem; but that remains to be seen.

Nuel D. Belnap, Display Logic [1], 1982

Craig’s original interpolation theorem for first-order logic [6] states that for
any provable entailment F � G between formulas, an “intermediate formula” or
interpolant I can be found such that both F � I and I � G are provable and
every nonlogical symbol occurring in I occurs in both F and G. This seemingly
innocuous property turns out to have considerable mathematical significance be-
cause Craig interpolation is intimately connected with consistency, compactness
and definability (see [8] for a survey). In computer science, it plays an important
rôle in settings where modular decomposition of complex theories is a concern,
and has been applied to such problems as invariant generation [16], type infer-
ence [12], model checking [5,15] and the decomposition of complex ontologies [13].
Whether a given logic satisfies interpolation is thus of practical importance in
computer science as well as theoretical importance in logic.

In this paper, we give a proof-theoretic method for establishing Craig in-
terpolation in the setting of Belnap’s display logic. Display logic is a general
consecution framework which allows us to combine multiple families of logical
connectives into a single display calculus [1]. Display calculi are characterised by
the availability of a “display-equivalence” relation on consecutions which allows
us to rearrange a consecution so that a selected substructure appears alone on
one side of the proof turnstile. Various authors have shown how to capture large

K. Brünnler and G. Metcalfe (Eds.): TABLEAUX 2011, LNAI 6793, pp. 88–103, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Craig Interpolation in Displayable Logics 89

classes of modal and substructural logics within this framework [2,11,14,20], and
how to characterise the class of Kripke frame conditions that can be captured by
displayed logics [10]. A major advantage of display calculi is that they enjoy an
extremely general cut-elimination theorem which relies on checking eight simple
conditions on the rules of the calculus. Restall has also shown how decidability
results can be obtained from cut-free display calculi [17].

In the case that a cut-free sequent calculus à la Gentzen is available, inter-
polation for the logic in question can typically be established by induction over
cut-free derivations (see e.g. [4]). Besides its theoretical elegance, this method
has the advantage of being fully constructive. One of the main criticisms lev-
elled against display calculi is that they do not enjoy a true sub-formula property
and hence, in contrast to the situation for sequent calculi, Belnap’s general cut-
elimination theorem cannot be used to prove results like interpolation for display
calculi. Indeed, to our knowledge there are no interpolation theorems for display
calculi in the literature. Here we (partially) rebut the aforementioned criticism
by giving a general Craig interpolation result for a large class of displayed logics.

The main idea of our approach is to construct a set of interpolants at each
step of a given proof, one for every possible “rearrangement” of the consecution
using both display-equivalence and any native associativity principles. Our aim
is then to show that, given interpolants for all rearrangements of the premises
of a rule, one can find interpolants for all rearrangements of its conclusion. This
very general interpolation method applies to a wide range of logics with a display
calculus presentation and is potentially extensible to even larger classes of such
logics. However, some proof rules enjoy the aforementioned property only under
strong restrictions, with contraction being the most problematic among the rules
we study in this paper. This gives a significant new insight into the reasons why
interpolation fails, or appears likely to fail, in many substructural logics.

Section 2 introduces the display calculi that we work with throughout the
paper. We develop our interpolation methodology incrementally in Sections 3, 4
and 5. Section 6 concludes. The proofs in this paper have been abbreviated for
space reasons; detailed proofs can be found in an associated technical report [3].

2 Display Calculus Fundamentals

We now give a basic display calculus which can be customised to various logics by
adding structural rules. In general, one may formulate display calculi for logics
involving arbitrarily many families of formula and structure connectives. To limit
the bureaucracy and technical overhead due to such generality, we limit ourselves
in this paper to display calculi employing only a single family of connectives. For
similar reasons, we also restrict to commutative logics.

Definition 2.1 (Formula, Structure, Consecution). Formulas and struc-
tures are given by the following grammars, where P ranges over a fixed infinite
set of propositional variables, F ranges over formulas, and X over structures:

F ::= P | � | ⊥ | ¬F | F & F | F ∨ F | F → F | �a | ⊥a | F &a F | F ∨a F
X ::= F | ∅ | �X | X ; X

90 J. Brotherston and R. Goré

(The subscript “a” is for “additive”.) A structure is called atomic if it is either
a formula or ∅. When we reason by induction on a structure X , we typically
conflate the cases X = F and X = ∅ into the case where X is atomic. We
use F,G, I etc. to range over formulas, W,X, Y, Z etc. to range over structures,
and A,B etc. to range over atomic structures. We write V(X) for the set of
propositional variables occurring in the structure X . If X and Y are structures
then X � Y is a consecution. We use C, C′ etc. to range over consecutions.

Definition 2.2 (Interpretation of structures). For any structure X we de-
fine the formulas ΨX and ΥX by mutual structural induction on X as:

ΨF = F Ψ∅ = � ΥF = F Υ∅ = ⊥
Ψ�X = ¬ΥX ΨX1;X2 = ΨX1 & ΨX2 Υ�X = ¬ΨX ΥX1;X2 = ΥX1 ∨ ΥX2

For any consecution X � Y we define its formula interpretation to be ΨX � ΥY .

Definition 2.3 (Antecedent and consequent parts). A part of a structure
X is an occurrence of one of its substructures. We classify the parts of X as
either positive or negative in X as follows:

– X is a positive part of itself;
– a negative / positive part of X is a positive / negative part of �X ;
– a positive / negative part of X1 orX2 is a positive / negative part ofX1 ; X2.

Z is said to be an antecedent / consequent part of a consecution X � Y if it is a
positive / negative part of X or a negative / positive part of Y .

Definition 2.4 (Display-equivalence). We define display-equivalence ≡D to
be the least equivalence on consecutions containing the (symmetric) relation �D

given by the following display postulates :

X ;Y � Z �D X � �Y ;Z �D Y ;X � Z
X � Y ;Z �D X ; �Y � Z �D X � Z;Y
X � Y �D �Y � �X �D ��X � Y

Note that Defn. 2.4 builds in the commutativity of ; on the left and right of
consecutions, i.e., we are assuming both & and ∨ commutative.

Proposition 2.5 (Display property). For any antecedent / consequent part
Z of a consecution X � Y , one can construct a structure W such that X � Y ≡D
Z �W / X � Y ≡D W � Z, respectively.

Proof. (Sketch) For any X � Y , the display postulates of Defn. 2.4 allow us to
display each of the immediate substructures of X and Y (as the antecedent or
consequent as appropriate). The proposition follows by iterating. 	

Rearranging X � Y into Z �W or W � Z in Prop. 2.5 is called displaying Z.
Figure 1 gives the proof rules of a basic display calculus D0 which only uses the

logical connectives �, ⊥, ¬, &, ∨, and→. Figure 2 presents “structure-free” rules

Craig Interpolation in Displayable Logics 91

Identity rules:

(Id)
P � P

X ′ � Y ′
X � Y ≡D X ′ � Y ′ (≡D)

X � Y

Logical rules:

∅ � X
(�L)

� � X
(�R)

∅ � �
F ;G � X

(&L)
F & G � X

X � F Y � G
(&R)

X ; Y � F & G

(⊥L)
⊥ � ∅

X � ∅
(⊥R)

X � ⊥
F � X G � Y

(∨L)
F ∨G � X ; Y

X � F ;G
(∨R)

X � F ∨G
�F � X

(¬L)
¬F � X

X � �F
(¬R)

X � ¬F
X � F G � Y

(→L)
F → G � �X ; Y

X ; F � G
(→R)

X � F → G

Fig. 1. Proof rules for the basic display calculus D0

(⊥aL)
⊥a � X

Fi � X
i ∈ {1, 2} (&aL)

F1 &a F2 � X
F � X G � X

(∨aL)
F ∨a G � X

(�aR)
X � �a

X � F X � G
(&aR)

X � F &a G

X � Fi

i ∈ {1, 2} (∨aR)
X � F1 ∨a F2

Fig. 2. Structure-free proof rules for the “additive” logical connectives

for the additive logical connectives �a, ⊥a, &a and ∨a, and Figure 3 presents
some structural rules governing the behaviour of the structural connectives ∅,
‘;’ and �. The rules in Figures 2 and 3 should be regarded as optional: if D is a
display calculus and R is a list of rules from Figures 2 and 3 then the extension
D+R of D is the display calculus obtained from D by adding all rules in R. We
write D+

0 to abbreviate the extension of D0 with all of the structure-free rules
in Figure 2.

We prove interpolation by induction over cut-free derivations, so we omit the
cut rule from D0. The following theorem says that this omission is harmless.

Theorem 2.6. The following cut rule is admissible in any extension of D0:

X � F F � Y
(Cut)

X � Y

Proof. (Sketch) Given the display property (Prop. 2.5), we verify that the proof
rules in Figures 1–3 meet Belnap’s conditions C1–C8 for cut-elimination [1]. 	

92 J. Brotherston and R. Goré

∅;X � Y
(∅CL)

X � Y
X � Y ; ∅

(∅CR)
X � Y

X � Y
(∅WL)

∅;X � Y
X � Y

(∅WR)
X � Y ; ∅

(W ;X);Y � Z
(α)

W ; (X;Y) � Z
X � Z

(W)
X; Y � Z

X;X � Y
(C)

X � Y

Fig. 3. Some structural rules

Comment 2.7. Under the formula interpretation of consecutions given by Def-
inition 2.2, certain of our display calculi can be understood as follows:

DMLL = D0+(α), (∅CL), (∅CR), (∅WL), (∅WR) is multiplicative linear logic (LL);
DMALL = D+

0 + (α), (∅CL), (∅CR), (∅WL), (∅WR) is multiplicative additive LL;
DCL = D0 +(α), (∅CL), (∅CR), (W), (C) is standard classical propositional logic.

3 Interpolation: Nullary, Unary and Structure-Free Rules

We now turn to our main topic: whether interpolation holds in our display calculi.

Definition 3.1 (Interpolation). A display calculus D has the interpolation
property if for any D-provable consecutionX � Y there is an interpolant formula
I such that X � I and I � Y are both D-provable with V(I) ⊆ V(X) ∩ V(Y).

We note that, by cut-admissibility (Theorem 2.6), the existence of an interpolant
for a consecution C implies the provability of C.

We aim to emulate the spirit of the classical proof-theoretic approach to in-
terpolation for cut-free sequent calculi such as Gentzen’s LK (see e.g. [4]). That
is, given a cut-free display calculus proof of a consecution, we aim to construct
its interpolant by induction over the structure of the proof. However, the dis-
play postulates introduce a difficulty: for example, given an interpolant I for
X ; Y � Z, it is not clear how to use I to obtain an interpolant for X � �Y ; Z.
In fact, similar problems arise for sequent calculi as well (e.g., in the classical
negation rules of LK), and the usual solution is to simultaneously construct inter-
polants for all possible decompositions of each sequent. We employ an analogue
of this strategy for the setting of display calculi: we simultaneously construct in-
terpolants for all possible rearrangements of each consecution, where the notion
of “rearrangement” is provided by the combination of display-equivalence and,
if it is present in the calculus, the associativity rule (α). The latter inclusion is
necessary for similar reasons to those for the inclusion of the display postulates.

Definition 3.2. Let D be a display calculus and C, C′ be consecutions. We
define C →A C′ to hold iff D includes (α) and C is the premise of an instance of
(α) with conclusion C′. Then the relation →AD is defined to be →A ∪�D and
the relation ≡AD is defined to be the reflexive-transitive closure of →AD.

Clearly ≡D ⊆≡AD, and ≡AD is exactly ≡D in any display calculus without (α).

Craig Interpolation in Displayable Logics 93

Comment 3.3. The relation ≡AD is indeed an equivalence relation. Further-
more, the following proof rule is derivable in any extension of D0:

X ′ � Y ′
X � Y ≡AD X ′ � Y ′ (≡AD)

X � Y
Our definition of ≡AD gives rise to the following “local AD-interpolation” prop-
erty for display calculus proof rules.

Definition 3.4 (LADI property). A proof rule of a display calculus D with
conclusion C is said to have the local AD-interpolation (LADI) property if, given
that for each premise of the rule Ci we have interpolants for all C′i ≡AD Ci, we
can construct interpolants for all C′ ≡AD C.
Lemma 3.5. If the proof rules of a display calculus D each have the LADI
property, then D has the interpolation property.

Proof. (Sketch) We require an interpolant for each D-provable consecution C.
We construct interpolants for all C′ ≡AD C by induction on the proof of C, using
LADI for the proof rules at each induction step, giving an interpolant for C. 	

Thus the LADI property gives a sufficient condition, in terms of individual proof
rules, for interpolation to hold in display calculi. In proving this property for a
given rule, we will require to track the atomic parts of a consecution being
rearranged using ≡AD, and possibly substitute other structures for these parts.
It is intuitively obvious how to do this: the next definitions formalise the concept.

Definition 3.6 (Substitution). Let Z be a part of the structure X . We write
the substitution notation X [Y/Z], where Y is a structure, to denote the replace-
ment of Z (which we emphasise is a substructure occurrence) by the structure
Y . We extend substitution to consecutions in the obvious way.

Definition 3.7 (Congruence). Let C →AD C′, whence C and C′ are obtained
by assigning structures to the structure variables occurring in our statement of
some display postulate (see Defn. 2.4) or the rule (α) (see Figure 3). Two atomic
parts A and A′ of C and C′ respectively are said to be congruent if they occupy
the same position in the structure assigned to some structure variable.

(E.g., the two indicated occurrences of F are congruent in X ; (F ; ∅) � Z →AD

X � �(F ; ∅);Z, as are the two indicated occurrences of ∅, because they occupy
the same position in the structure (F ; ∅) assigned to the structure variable Y in
our statement of the display postulate X ;Y � Z �D X � �Y ;Z.)

We extend congruence to atomic parts A and A′ of consecutions C and C′
such that C ≡AD C′ by reflexive-transitive induction on ≡AD in the obvious way.
That is, any atomic part of C is congruent to itself, and if C →AD C′′ ≡AD C′
then A and A′ are congruent if there is an atomic part A′′ of C′′ such that A is
congruent to A′′ and A′′ is congruent to A′.

Finally, we extend congruence to non-atomic parts of consecutions as follows.
If C ≡AD C′ and Z, Z ′ are parts of C, C′ respectively then Z and Z ′ are congruent
if every atomic part A of Z is congruent to an atomic part A′ of Z ′, such that
the position of A in Z is identical to the position of A′ in Z ′.

94 J. Brotherston and R. Goré

Comment 3.8. If C ≡AD C′ then, for any atomic part of C, there is a unique
congruent atomic part of C′. Moreover, congruent parts of C and C′ are oc-
currences of the same structure. We use identical names for parts of ≡AD-
related consecutions to mean that those parts are congruent. E.g., we write
C[Z/A] ≡AD C′[Z/A] to mean that the two indicated parts A are congruent.

Lemma 3.9 (Substitution lemma). If C ≡AD C′ and A is an atomic part of
C then, for any structure Z, we have C[Z/A] ≡AD C′[Z/A].

Proof. (Sketch) Since the display postulates and the associativity rule (α) are
each closed under substitution of an arbitrary structure for congruent atomic
parts, this follows by an easy reflexive-transitive induction on C ≡AD C′. 	

Proposition 3.10. The proof rules (≡D), (Id), (�L), (�R), (⊥L), (⊥R), (¬L),
(¬R), (&L), (∨R), and (→R) each have the LADI property in any extension
of D0. Furthermore, the associativity rule (α) has the LADI property in any
extension of D0+(α), and the structure-free rules (�aR), (⊥aL), (&aL), (&aR),
(∨aL), and (∨aR) each have the LADI property in any extension of D+

0 .

Proof. (Sketch) We treat each rule separately, noting that (≡D) and (α) are more
or less immediate by assumption. We just show one case here, the structure-free
rule (∨aL). In that case, we must produce interpolants for all W � Z ≡AD
F ∨a G � X . We distinguish two subcases: either the indicated F ∨a G oc-
curs in W or in Z. We suppose it occurs in Z, so that by Lemma 3.9 we
have F � X ≡AD W � Z[F/F ∨a G] and G � X ≡AD W � Z[G/F ∨a G]. Let
I1 and I2 be the interpolants given by assumption for W � Z[F/F ∨a G] and
W � Z[G/F ∨a G] respectively. We claim that I1 &a I2 is an interpolant1 for
W � Z. The variable condition is easily seen to hold, so it remains to check
the provability conditions. Given that W � I1 and W � I2 are provable by as-
sumption, we can derive W � I1 &a I2 by a single application of (&aR). Fi-
nally, given that I1 � Z[F/F ∨a G] and I2 � Z[G/F ∨a G] are provable by as-
sumption, we must show that I1 &a I2 � Z is provable. First, since the indi-
cated F ∨a G occurs in Z by assumption, we have I1 &a I2 � Z ≡D F ∨a G � U
for some U by the display property (Prop. 2.5). Thus by Lemma 3.9 we have
I1 &a I2 � Z[F/F ∨a G] ≡D F � U and I1 &a I2 � Z[G/F ∨a G] ≡D G � U . So
we can derive I1 &a I2 � Z as follows:

···
I1 � Z[F/F ∨a G]

(&aL)
I1 &a I2 � Z[F/F ∨a G]

(≡D)
F � U

···
I2 � Z[G/F ∨a G]

(&aL)
I1 &a I2 � Z[G/F ∨a G]

(≡D)
G � U

(∨aL)
F ∨a G � U

(≡D)
I1 &a I2 � Z

If the indicated F ∨aG instead occurs in W , then the argument is similar but we
pick the interpolant to be I1 ∨a I2. This completes the case, and the proof. 	

1 Equivalently, ¬(¬I1 ∨a ¬I2) also works. Note that, because of the display postulate
X � Y �D �Y � �X , it is not possible to construct ¬-free interpolants in general.

Craig Interpolation in Displayable Logics 95

4 Interpolation: Binary Logical Rules

We now extend our basic method for proving LADI of display calculus proof rules
to the binary logical rules of D0. These cases are considerably harder than the
simple rules considered in the previous section because they combine arbitrary
structures from the two premises, leading to many new ≡AD-rearrangements of
the conclusion compared to the premises. To deal with this complexity, we will
require several technical substitutivity lemmas for ≡AD.

The following notion of deletion of a part of a structure is similar to that used
by Restall [17]. We write �n for a string of n occurrences of �. Recall that identical
names are used to denote congruent parts of ≡AD-equivalent consecutions.

Definition 4.1 (Deletion). A part Z of a structure X is delible from X if X
is not of the form �nZ for some n ≥ 0, i.e., X contains a substructure occurrence
of the form �nZ;W (up to commutativity of “;”). If Z is delible from X , we
write X \ Z for the structure X [W/(�nZ;W)], the result of deleting Z from X .

A part Z of a consecution C is delible from C if it can be deleted from the
side of C of which it is a part, and we write C \ Z for the consecution obtained
by deleting Z from the appropriate side of C.

The following lemma says that ≡AD-rearrangement is (essentially) preserved
under deletion of congruent parts. This is crucial to the subsequent substitutivity
Lemmas 4.3 and 4.5, which say that ≡AD-rearrangement does not depend on the
presence of “contextual” structure not directly affected by the rearrangement.

Lemma 4.2 (Deletion lemma). Let C be a consecution and let A be an atomic
part of C. If C ≡AD C′ and A is delible from C then the following hold:

1. if A is delible from C′ then C \A ≡AD C′ \A;
2. if A is not delible from C′ then one side of C′ is of the form �m(Z1;Z2) and

we have C \A ≡AD Z1 � �Z2 if (Z1;Z2) is an antecedent part of C′, and
C \A ≡AD �Z1 � Z2 if (Z1;Z2) is a consequent part of C′.

Proof. (Sketch) By reflexive-transitive induction on C ≡AD C′. In the reflexive
case we have C′ = C and are trivially done. In the transitive case we have C ≡AD
C′′ →AD C′, and we distinguish subcases on C′′ →AD C′. The nonstraightforward
subcases are those where A is delible from C′′ but not from C′ or vice versa. For
example, consider the case S;T � U →AD S � �T ;U , and suppose (for 1) that A
is delible from S � �T ;U but not from S;T � U . Then we must have U = �nA,
whence we have by part 2 of the induction hypothesis that (S;T � U) \A ≡AD
S � �T (because S;T is an antecedent part of S;T � U). Then 1 holds as required
because, given U = �nA, we have S � �T = (S � �T ;U) \A. 	

Lemma 4.3 (Substitutivity I). For all W,X, Y, Z, if W � X ≡AD W � Y
then Z � X ≡AD Z � Y , and if X �W ≡AD Y �W then X � Z ≡AD Y � Z.

Proof. (Sketch) By Lemma 3.9 it suffices to consider the case in which Z is a
formula F . We prove both implications simultaneously by structural induction

96 J. Brotherston and R. Goré

on W . The atomic case follows by Lemma 3.9. The case W = �W ′ is straightfor-
ward by induction hypothesis. In the case W = W1;W2 we obtain, for the first
implication, F ;G � X ≡AD F ;G � Y using the induction hypothesis. Thus we
obtain, by Lemma 4.2, (F ;G � X) \G ≡AD (F ;G � Y) \G, i.e. F � X = F � Y
as required. The second implication is similar. 	

Definition 4.4. Let C ≡AD C′ and let Z, Z ′ be parts of C and C′ respectively.
We write Z ′ �Z if every atomic part of Z ′ is congruent to an atomic part of Z.

Lemma 4.5 (Substitutivity II). For all structures W,W ′, X, Y and for any
atomic structure A, all of the following hold:

1. if W � X ≡AD W ′ � Y and W ′ �W then ∃U. W � A ≡AD W ′ � U ;
2. if X �W ≡AD W ′ � Y and W ′ �W then ∃U. A �W ≡AD W ′ � U ;
3. if W � X ≡AD Y �W ′ and W ′ �W then ∃U. W � A ≡AD U �W ′;
4. if X �W ≡AD Y �W ′ and W ′ �W then ∃U. A �W ≡AD U �W ′.

(Also, in each case we still have W ′ �W under the replacement of X by A.)

Proof. (Sketch) We show all four implications simultaneously by structural in-
duction on X . The atomic case follows from Lemma 3.9. The case X = �X ′ is
straightforward by induction hypothesis. In the case X = X1;X2 we obtain, for
the first implication, W � A;A ≡AD W ′ � V for some V using the induction hy-
pothesis (twice). Since W ′ �W , both indicated occurrences of A must occur in,
and be delible from V . Thus by Lemma 4.2, we have W � A ≡AD W ′ � (V \A)
and are done by taking U = V \A. The other implications are similar. 	

Our final lemma says that if two separate structures have been “mixed up” by
≡AD, then the resulting structure can be “filtered” into its component parts.

Lemma 4.6 (Filtration). Let X ;Y � U ≡AD W � Z, where W � X ;Y but
W � X and W � Y . Then there exist W1 and W2 such that W � Z ≡AD
W1;W2 � Z with W1 �X and W2 �Y . Similarly, if X ;Y � U ≡AD Z �W with
W � X ;Y but W � X and W � Y , then there exist W1 and W2 such that
Z �W ≡AD Z �W1;W2 with W1 �X and W2 � Y .

Proof. (Sketch) We prove both implications simultaneously by structural induc-
tion on W . The difficult case is when W = W1;W2. If W1 � X and W2 � Y
or vice versa then we are done. If not, in the case of the first implication we
have X ;Y � U ≡AD W1;W2 � Z where W1;W2 �X ;Y and either W1 � X and
W1 � Y , orW2 � X andW2 � Y (we assume both here). It is clear by inspection
of the display postulates that this situation can only arise when the rule (α) is
present. Using the induction hypotheses, we obtainW ′

1�X ,W ′′
1 �Y , W ′

2�X and
W ′′

2 � Y such that W1;W2 � Z ≡AD (W ′
1;W

′′
1); (W ′

2;W
′′
2) � Z. Thus, given that

≡AD incorporates (α), we obtain W1;W2 � Z ≡AD (W ′
1;W ′

2); (W ′′
1 ;W ′′

2) � Z
where (W ′

1;W
′
2) �X and (W ′′

1 ;W ′′
2) � Y as required. 	

Theorem 4.7 (Binary rules). The rules (&R), (∨L) and (→L) all have the
local AD-interpolation property in any extension of D0.

Craig Interpolation in Displayable Logics 97

Proof. (Sketch) We consider the case (&R), in which case we must produce
interpolants for all W � Z ≡AD X ;Y � F&G. We suppose the indicated F&G
occurs in Z, in which case W �X ;Y , and distinguish three subcases: W �X ;
W�Y ; and W � X , W � Y . We just show the last case, the hardest. By the first
part of Lemma 4.6 there exist W1 and W2 such that W � Z ≡AD W1;W2 � Z
with W1 �X and W2 �Y . Thus we have X � �Y ;F & G ≡AD W1 � �W2;Z with
W1 �X , and Y � �X ;F & G ≡AD W2 � �W1;Z with W2 �Y . Hence by part 1 of
Lemma 4.5 we have X � F ≡AD W1 � U1 for some U1 and Y � G ≡AD W2 � U2

for some U2. Let I1, I2 be the interpolants given by assumption for W1 � U1 and
W2 � U2 respectively. We claim that I1 & I2 is an interpolant for W � Z.

First, we show that W � I1 & I2 is provable. We have W1 � I1 and W2 � I2
provable by assumption, so W1;W2 � I1 & I2 is provable by applying (&R).
Since W1;W2 � Z ≡AD W � Z, we have W1;W2 � I1 & I2 ≡AD W � I1 & I2
by Lemma 4.3, and so W � I1 & I2 is provable by applying the rule (≡AD).

Next, we must show that I1 & I2 � Z is derivable, given that I1 � U1 and
I2 � U2 are derivable. First, note that becauseX � F ≡AD W1 � U1 andW1�X ,
the indicated F is a part of U1, and thus I1 � U1 ≡D V1 � F for some V1 by
Prop. 2.5. Similarly, I2 � U2 ≡D V2 � G for some V2. Next, using Lemma 3.9, we
have W1 � �W2;Z ≡AD W1 � U1[(�Y ;F & G)/F]. Thus by Lemma 4.3 we have
I1 � �W2;Z ≡AD I1 � U1[(�Y ;F & G)/F]. Since I1 � U1 ≡D V1 � F we have,
using Lemma 3.9, I1 � �W2;Z ≡AD V1;Y � F & G. Now, since Y � G ≡AD
W2 � U2 we obtain using Lemma 3.9W2 � �I1;Z ≡AD W2 � U2[(�V1;F & G)/G].
So by applying Lemma 4.3 we have I2 � �I1;Z ≡AD I2 � U2[�V1;F & G/G].
Since I2 � U2 ≡D V2 � G we obtain I1; I2 � Z ≡AD V1;V2 � F & G (again using
Lemma 3.9). This enables us to derive I1 & I2 � Z as follows:

···
I1 � U1

(≡D)
V1 � F

···
I2 � U2

(≡D)
V2 � G

(&R)
V1;V2 � F & G

(≡AD)
I1; I2 � Z

(&L)
I1 & I2 � Z

Finally, we check the variable condition. We have V(I1) ⊆ V(W1) ∩ V(U1) and
V(I2) ⊆ V(W2) ∩ V(U2). It is clear that V(W1) ⊆ V(W) and V(W2) ⊆ V(W)
because W � Z ≡AD W1;W2 � Z. Moreover, V(U1) ⊆ V(Z) because we have
X � F ≡AD W1 � U1 and X � �Y ;F & G ≡AD W1 � �W2;Z while W1 �X and
W2 � Y (or, alternatively, it is clear by inspection of the derivation above).
Similarly V(U2) ⊆ V(Z) and thus V(I1 & I2) ⊆ V(W) ∩ V(Z) as required.

The subcases W �X and W � Y are similar except that we directly use the
interpolant given by just one of the premises. If the indicated F&G occurs in
W rather than Z we again distinguish three subcases and take the interpolant
I1 ∨ I2 in the analogue of the subcase above. This completes the proof. 	

98 J. Brotherston and R. Goré

Corollary 4.8. For any D ∈ {D0,D+
0 ,D0 + (α),D+

0 + (α)}, the proof rules of
D all have the LADI property in (any extension of) D, and thus D has the
interpolation property.

Proof. LADI for the proof rules of D in any extension of D is given by Prop. 3.10
and Theorem 4.7. Interpolation for D then follows by Lemma 3.5. 	

5 Interpolation: Structural Rules

We now examine the LADI property for the structural rules given in Figure 3.

Proposition 5.1 (Unit contraction rules). The unit left-contraction rule
(∅CL) has the LADI property in any extension of D0 + (∅CL). Similarly, the
rule (∅CR) has the LADI property in any extension of D0 + (∅CR).

Proof. (Sketch) We consider (∅CL) here; (∅CR) is similar. We require to con-
struct interpolants for all W � Z ≡AD X � Y . First, by reflexive-transitive in-
duction on W � Z ≡AD X � Y , we show that ∅;X � Y ≡AD (W � Z)[(∅;U)/U]
or ∅;X � Y ≡AD (W � Z)[(�∅;U)/U] for some U . We claim that the assumed
interpolant I for W ′ � Z ′ is an interpolant for W � Z. The variable condition is
easily seen to be satisfied, so it remains to check the provability conditions. We
assume without loss of generality that U is a part of Z, so that W � I is provable
by assumption. To prove I � Z, we start with the assumed derivation of I � Z ′

and use Prop. 2.5 to display the structure ∅;U or �∅;U . We then remove the ∅
using (∅CL) and obtain I � Z by inverting the previous display moves. 	

Proposition 5.2 (Unit weakening rules). The unit weakening rule (∅WL)
has the LADI property in any extension of D0+(∅WL). Similarly, the rule (∅WR)
has the LADI property in any extension of D0 + (∅WR).

Proof. (Sketch) We just consider (∅WL), as (∅WR) is similar. We require to
find interpolants for all W � Z ≡AD ∅;X � Y . We distinguish two cases. First
of all, if the indicated ∅ is not delible from W � Z, then W or Z is of the
form �n∅. We suppose Z = �n∅ in which case n must be odd (because the
indicated ∅ is an antecedent part of ∅;X � Y and thus of W � Z) and we pick
the interpolant for W � Z to be ¬�. The variable condition is trivially satisfied,
and ¬� � Z = ¬� � �n∅ is easily provable.W � ¬� is provable from the premise
X � Y using the rule (∅WL) and the derived rule (≡AD) by observing that
∅;X � Y ≡AD ∅ � �W . The case where W = �n∅ is symmetric.

If the indicated ∅ is delible fromW � Z then, by Lemma 4.2, we haveX � Y =
(∅;X � Y) \ ∅ ≡AD (W � Z) \ ∅. We claim that the interpolant I given for
(W � Z) \ ∅ by assumption is also an interpolant for W � Z. Without loss of
generality, we assume that the indicated ∅ occurs in Z, so that (W � Z) \ ∅ =
W � (Z \ ∅). It is easy to see that the required variable condition holds. It re-
mains to check the provability conditions. We have W � I provable by assump-
tion, so it just remains to show that I � Z is provable, given that I � (Z \ ∅)
is provable. By the definition of deletion (Defn. 4.1), Z \ ∅ = Z[U/(�n∅;U)] for

Craig Interpolation in Displayable Logics 99

some U . Thus, by Prop. 2.5, and assuming (�n∅;U) an antecedent part of Z, we
have I � Z ≡D ∅;U � V and I � (Z \ ∅) ≡D U � V for some V (note that the
same V is obtained in both cases). Thus we can derive I � Z from I � (Z \ ∅)
by applications of (≡D) and (∅WL). 	

Theorem 5.3 (Weakening). The weakening rule (W) has the LADI property
in any extension of D0 + (W), (∅CL) or D0 + (W), (∅CR).

Proof. (Sketch) We require to find interpolants for all W � Z ≡AD X ;X ′ � Y .
We distinguish three cases: W �X ′; Z �X ′; and W � X ′, Z � X ′. In the case
W �X ′, we choose the interpolant I to be � if (∅CL) is available (which guaran-
teesW � � is provable), or ¬⊥ if (∅CR) is available (which guaranteesW � ¬⊥ is
provable). To see that I � Z is provable, note that W � Z ≡AD X ′ � �X ;Y with
(�X ;Y)�Z. Thus, using part 4 of Lemma 4.5, we have I � Z ≡AD X ;U � Y for
some U , whence we can derive I � Z from the premise X � Y by applying (W)
and the derived rule (≡AD). The case Z�X ′ is symmetric. In the case W � X ′

and Z � X ′, we first show that there are atomic parts A1, . . . , An of X ′ with

X � Y ≡AD (. . . (((W � Z) \A1) \A2) . . .) \An = W ′ � Z ′

(This can be proven by structural induction on X ′, using Lemma 4.2 in the
atomic case.) We claim that the interpolant I for W ′ � Z ′ given by assumption
is also an interpolant for W � Z. First we check the variable condition. We have
V(I) ⊆ V(W ′) ∩ V(Z ′) by assumption. It is clear that V(W ′) ⊆ V(W) and
V(Z ′) ⊆ V(Z) since W ′ and Z ′ are obtained by deleting some parts of W and
Z respectively. Thus V(I) ⊆ V(W) ∩ V(Z) as required.

It remains to check the provability conditions. We have W ′ � I provable by
assumption. By the definition of deletion (Defn. 4.1), W ′ is obtained from W
by replacing a number of substructure occurrences of the form �nA;S by S.
We obtain the required derivation of W � I by, working backwards, using the
display property (Prop. 2.5) to display each such �nA;S and then removing �nA
using (W). (Formally, we proceed by induction on the number of substructure
occurrences deleted from W to obtain W ′.) Deriving I � Z is similar. 	

Proposition 5.4 (Contraction). The contraction rule (C) has the LADI prop-
erty in any extension of D0 + (α).

Proof. (Sketch) We require to find interpolants for all W � Z ≡AD X � Y . First,
using the fact that ≡AD contains (α) by assumption, we show that there exist
atomic parts A1, . . . , An of X such that

X ;X � Y ≡AD (W � Z)[(A1;A1)/A1, . . . , (An;An)/An] = W ′ � Z ′

(This is proven by structural induction on X , using Lemma 3.9 in the atomic
case.) We claim that the interpolant I for W ′ � Z ′ given by assumption is also
an interpolant for W � Z. We have V(I) ⊆ V(W ′) ∩ V(Z ′) by assumption and,
clearly, V(W) = V(W ′) and V(Z) = V(Z ′), so we easily have the required
variable condition V(I) ⊆ V(W) ∩ V(Z).

100 J. Brotherston and R. Goré

D(+)
0

Cor. 4.8

(α)
Cor. 4.8

(∅CL)
Prop. 5.1

(∅CR)
Prop. 5.1

(∅WL)
Prop. 5.2

(∅WR)
Prop. 5.2

(C)
Prop. 5.4

(W)
Thm. 5.3

Fig. 4. Diagrammatic summary of our results. Local AD-interpolation of the proof
rule(s) at a node holds in a calculus with all of the proof rules at its ancestor nodes.

Next we check the provability conditions. We have W ′ � I provable by as-
sumption, and W ′ is obtained from W by replacing a number of its atomic parts
A by the structure A;A. We obtain the required derivation of W � I by, working
backwards, using the display property (Prop. 2.5) to display each such A and
then duplicating it using (C). (Formally, we proceed by induction on the number
of atomic parts of W duplicated to obtain W ′.) Deriving I � Z is similar. 	

Our reliance on the presence of the associativity rule (α) in Prop. 5.4 can be
motivated by considering the following instance of contraction:

(X1;X2); (X1;X2) � Y
X1;X2 � Y

For the LADI property, we need in particular an interpolant for X1 � �X2;Y ≡D
X1;X2 � Y . However, without associativity, we cannot rearrange the premise
into X1;X1 � (�X2; �X2);Y as would otherwise be provided by Prop. 5.4. The
best we can do without associativity is X1 � �X2; (�(X1;X2);Y), whose inter-
polant I is too weak to serve as an interpolant for X1 � �X2;Y both in terms of
provability and in terms of the variable condition. A similar problem occurs if
there is more than one binary structural connective, even if both are associative.

The various conditions for the LADI property to hold of each proof rule are
set out in Figure 4. In consequence, we have the following interpolation results.

Theorem 5.5 (Interpolation). Let D be an extension of D0 where: if D con-
tains (C) it must also contain (α), and if D contains (W) then it must also
contain either (∅CL) or (∅CR). Then D has the interpolation property.

Proof. By Lemma 3.5 it suffices to prove the LADI property in D for each proof
rule of D. The rules of D0, and (α) if applicable, satisfy the LADI property in
D by Corollary 4.8. The other structural rules of D, if applicable, satisfy LADI
in D by Theorem 5.3 and Propositions 5.1, 5.2 and 5.4.

Drawing on the observations in Comment 2.7, Thm 5.5 yields the following:

Corollary 5.6. DMLL, DMALL and DCL all have the interpolation property.

Craig Interpolation in Displayable Logics 101

6 Related and Future Work

Our central contribution is a general, fully constructive proof-theoretic method
for proving Craig interpolation in a large class of displayable logics, based upon
an analysis of the individual rules of the display calculi. This analysis is “as
local as possible” in that the LADI property required for each proof rule typ-
ically depends only on the presence of certain other rules in the calculus, and
the syntax of the rule itself. The practicality and generality of our method is
demonstrated by its application to a fairly large family of display calculi differ-
ing in their structural rules (and the presence or otherwise of additive logical
connectives). We obtain by this uniform method the interpolation property for
MLL, MALL and ordinary classical logic, as well as numerous variants of these
logics. To our knowledge, ours are the first interpolation results based on display
calculi, thereby answering positively Belnap’s long-standing open question (see
p1) about this possibility.

While interpolation based on display calculi appears to be new, interpolation
for substructural logics is of course not new. The closest work to ours is probably
Roorda’s on interpolation for various fragments of classical linear logic [18], using
induction over cut-free sequent calculus proofs. Roorda also identifies fragments
where interpolation fails (usually because certain logical connectives are unavail-
able). Many of Roorda’s positive interpolation results overlap with our own but
we cover some additional logics (e.g., nonassociative, strict or affine variants,
plus full classical logic) and offer an analysis of the roles played by individual
structural rules. An entirely different approach to interpolation for substructural
logics is offered by Galatos and Ono [9], who establish very general interpolation
theorems for certain substructural logics extending the Lambek calculus, based
on their algebraisations.

Our methodology transfers easily to calculi for intuitionistic logics in which our
“classical” display postulates (Defn. 2.4) are replaced by “residuated” ones of the
form X,Y � Z �D X � Y, Z �D Y,X � Z (where the comma is interpreted as
conjunction in antecedent position and as implication in consequent position). A
more challenging technical extension is to the case where we have such a family
of structural connectives alongside the first, as is typically needed to display
relevant logics [17] or bunched logics [2]. Here, the main technical obstacle is in
extending the substitutivity principles in Section 4 to the more complex notion
of display-equivalence induced by this extension. Other possible extensions to
our calculi include the addition of modalities, quantifiers or linear exponentials.
In the main, these extensions appear more straightforward than adding new
connective families, since they necessitate little or no modification to display-
equivalence. We also note that our notion of interpolant in this paper is relatively
blunt since it does not distinguish between positive and negative occurrences of
variables. It should be possible to read off a sharpened version of interpolation,
that does make this distinction, more or less directly from our proof.

As well as showing interpolation for a variety of substructural logics, our proof
gives insights into the reasons why interpolation fails in some logics. Specifi-
cally, we identify contraction as being just as problematic for interpolation as it

102 J. Brotherston and R. Goré

typically is for decidability (and even weakening causes an issue for interpola-
tion when the logic lacks strong units). Our interpolation method is bound to fail
for any multiple-family display calculus including a contraction rule, due to our
observation that contraction generally has the required LADI property only in
circumstances which are precluded by the presence of multiple binary structural
connectives. This observation is in keeping with the fact that interpolation fails
for the relevant logic R, as shown by Urquhart [19], since its display calculus
employs two families of connectives and a contraction rule. We conjecture that
interpolation might fail in bunched logics such as BI for similar reasons.

The technical overhead of our method is fairly substantial, but the tech-
niques themselves are elementary: we mainly appeal to structural and reflexive-
transitive inductions. This means that our proofs are good candidates for mech-
anisation in a theorem proving assistant. Dawson is currently working on an
Isabelle formalisation of our proofs, based upon earlier work on mechanising dis-
play calculus with Goré [7]. As well as providing the greatest possible degree
of confidence in our proofs, such a mechanisation might eventually provide the
basis for an automated interpolation tool.

References

1. Belnap Jr., N.D.: Display logic. Journal of Philosophical Logic 11, 375–417 (1982)
2. Brotherston, J.: A unified display proof theory for bunched logic. In: Proceedings

of MFPS-26. ENTCS, pp. 197–211. Elsevier, Amsterdam (2010)

3. Brotherston, J., Goré, R.: Craig interpolation in displayable logics. Tech. Rep.
DTR11-1, Imperial College London (2011)

4. Buss, S.R.: Introduction to Proof Theory. In: Handbook of Proof Theory, ch. I.
Elsevier Science, Amsterdam (1998)

5. Caniart, N.: merit: An interpolating model-checker. In: Touili, T., Cook, B., Jack-
son, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 162–166. Springer, Heidelberg (2010)

6. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. Journal of Symbolic Logic 22(3), 269–285 (1957)

7. Dawson, J.E., Goré, R.: Formalised cut admissibility for display logic. In: Carreño,
V.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410, pp. 131–147.
Springer, Heidelberg (2002)

8. Feferman, S.: Harmonious logic: Craig’s interpolation theorem and its descendants.
Synthese 164, 341–357 (2008)

9. Galatos, N., Ono, H.: Algebraization, parametrized local deduction theorem and
interpolation for substructural logics over FL. Studia Logica 83, 279–308 (2006)

10. Goré, R.: Gaggles, Gentzen and Galois: How to display your favourite substructural
logic. Logic Journal of the IGPL 6(5), 669–694 (1998)

11. Goré, R.: Substructural logics on display. Logic J of the IGPL 6(3), 451–504 (1998)

12. Jhala, R., Majumdar, R., Xu, R.-G.: State of the union: Type inference via craig
interpolation. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424,
pp. 553–567. Springer, Heidelberg (2007)

13. Konev, B., Lutz, C., Ponomaryov, D., Wolter, F.: Decomposing description logic
ontologies. In: 12th Knowledge Representation and Reasoning Conf. AAAI, Menlo
Park (2010)

Craig Interpolation in Displayable Logics 103

14. Kracht, M.: Power and weakness of the modal display calculus. In: Wansing, H.
(ed.) Proof Theory of Modal Logic, pp. 93–121. Kluwer Academic Publishers,
Boston (1996)

15. McMillan, K.L.: Applications of craig interpolants in model checking. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 1–12. Springer,
Heidelberg (2005)

16. McMillan, K.L.: Quantified invariant generation using an interpolating saturation
prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 413–427. Springer, Heidelberg (2008)

17. Restall, G.: Displaying and deciding substructural logics 1: Logics with contrapo-
sition. Journal of Philosophical Logic 27, 179–216 (1998)

18. Roorda, D.: Interpolation in fragments of classical linear logic. Journal of Symbolic
Logic 59(2), 419–444 (1994)

19. Urquhart, A.: Failure of interpolation in relevant logics. Journal of Philosophical
Logic 22, 449–479 (1993)

20. Wansing, H.: Displaying Modal Logics. Kluwer, Boston (1998)

A Tableaux Based Decision Procedure for a

Broad Class of Hybrid Formulae with Binders

Serenella Cerrito1 and Marta Cialdea Mayer2

1 Lab. Ibisc, Université d’Evry Val d’Essonne, France
2 Università di Roma Tre, Italy

Abstract. In this paper we provide the first (as far as we know) direct
calculus deciding satisfiability of formulae in negation normal form in the
fragment of hybrid logic with the satisfaction operator and the binder,
where no occurrence of the � operator is in the scope of a binder. A
preprocessing step, rewriting formulae into equisatisfiable ones, turns the
calculus into a satisfiability decision procedure for the fragment HL(@, ↓)
\�↓�, i.e. formulae in negation normal form where no occurrence of the
binder is both in the scope of and contains in its scope a � operator.

The calculus is based on tableaux, where nominal equalities are treated
by means of substitution, and termination is achieved by means of a form
of anywhere blocking with indirect blocking. Direct blocking is a relation
between nodes in a tableau branch, holding whenever the respective labels
(formulae) are equal up to (a proper form of) nominal renaming. Indirect
blocking is based on a partial order on the nodes of a tableau branch, which
arranges them into a tree-like structure.

1 Introduction

The Hybrid Logic HL(@, ↓) is an extension of modal (propositional, possibly
multi-modal) logicK by means of three constructs: nominals (propositions which
hold in exactly one state of the model), the satisfaction operator @ (allowing one
to state that a given formula holds at the state named by a given nominal), and
the binder ↓, accompanied by state variables, which allows one to give a name
to the current state (see [2] for an overview of the subject).

The satisfiability problem for formulae of basic Hybrid Logic HL(@) (with-
out the binder)1 is decidable, and it stays decidable even with the addition of
other operators, such as the global and converse modalities. On the contrary, an
unrestricted addition of the binder causes a loss of decidability [1,3].

However, similarly to what happens for first order logic, one can obtain decid-
able fragments of hybrid logic with the binder by imposing syntactic restrictions
on the way formulae are built. Some decidability results are proved in [13], which

1 The notation HL(Op1, ..., Opn) is commonly used to denote the extension of modal
logic K by means of the operators Op1...Opn. In particular, HL(@, ↓, E, �−) and
HL(@, E, �−) include the existential global modality E (and its dual A) and the
converse operator �− (and its dual �−).

K. Brünnler and G. Metcalfe (Eds.): TABLEAUX 2011, LNAI 6793, pp. 104–118, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Tableaux for Hybrid Formulae with Binders 105

considers full Hybrid Logic HL(@, ↓,E,�−), that will henceforth be abbreviated
as FHL. In that work it is proved that the source of undecidability is the occur-
rence of a specific modal pattern in formulae in negation normal form (NNF).
A pattern π is a sequence of operators, and a formula is a π-formula, where
π = Op1...Opn, if it is in NNF and contains some occurrence of Op1 that con-
tains in its scope an occurrence of Op2, that in turn has in its scope an occurrence
of Op3, etc. For simplicity, moreover, when the � operator is used in a pattern, it
actually stands for any universal operator, i.e. one of the modalities �,�− or A.
In particular, a �↓-formula is a hybrid formula in NNF where some occurrence
of the binder is in the scope of a universal operator; a ↓�-formula is a hybrid
formula in NNF where some occurrence of a universal operator is in the scope of
a binder; and a �↓�-formula is a hybrid formula in NNF containing a universal
operator in the scope of a binder, which in turn occurs in the scope of a uni-
versal operator. Finally, if π is a pattern, the fragment HL(Op1, ..., Opk) \ π is
constituted by the class of NNF hybrid formulae in HL(Op1, ..., Opk) excluding
π-formulae.

The main decidability result on syntactic restrictions proved in [13] is the
following:

1. The satisfiability problem for FHL \�↓� is decidable.

This result is tight, in the sense that there is no pattern π that contains �↓�
as a subsequence and such that the satisfiability problem for FHL \ π is still
decidable. Therefore, the fragment FHL \�↓� is particularly interesting.

For the aim of the present work, it is important to recall the intermediate
results allowing [13] to prove 1:

2. The satisfiability problem for FHL \�↓ is decidable. This is proved by show-
ing that there exists a satisfiability preserving translation from FHL \�↓ to
HL(@,E,�−). The translation is obtained by first replacing any occurrence
of the binder by a full existential quantification over states (i.e. ↓x.F is re-
placed by ∃x(x∧F)); in the resulting formula, no existential quantifier is in
the scope of a universal operator, so that the existential quantifiers can be
moved in front of the formula, and, finally, they are skolemized away by use
of fresh nominals.

3. The satisfiability problem for FHL \ ↓� is decidable. This holds because the
standard translation ST of FHL into first order classical logic [1,13] maps
formulae in the considered fragment into universally guarded formulae [13],
that have a decidable satisfiability problem [8].

Result 1 easily follows from 2 and 3. Let in fact F be any formula in FHL \�↓�.
Any occurrence of the binder that contains in its scope a universal operator is
not, in its turn, in the scope of a universal operator. Therefore it can be skolem-
ized away like in the proof of 2. Repeating this transformation for every ↓�-
subformula of F , an equisatisfiable formula F ′ is obtained, where no occurrence
of a universal operator is in the scope of a binder. Satisfiability of F ′ can be
decided because of result 3.

106 S. Cerrito and M. Cialdea Mayer

The above sketched approach to proving result 1 shows also that any decision
procedure for formulae in FHL \↓� can easily be turned into a decision procedure
for formulae in the largest fragment FHL \�↓�, by preprocessing formulae.

Satisfiability of formulae in the fragment FHL \↓� can be tested by translation,
by use of any calculus for the guarded fragment, such as the tableau calculi
defined in [9,10], or the decision procedure based on resolution given in [7].
The translation can be obtained in polynomial time [13], hence the theoretical
complexity does not increase. However, in practice, the overhead coming from the
translation cannot be completely ingnored. In fact, the standard translation of F
is a universally guarded formula, which has to be rewritten into an equisatisfiable
guarded one [8]. Moreover, decision procedures for guarded logic such as the above
mentioned ones apply to constant-free formulae. Since formulae obtained from
the translation may in general contain constants (deriving from nominals), a
further rewriting would be necessary to eliminate them [8,12].

Beyond the generally recognized interest of having direct calculi for modal log-
ics, we therefore consider that the problem of defining direct decision procedures
for decidable fragments of hybrid logics deserves a specific attention.

In this paper we provide the first (as far as we know) direct calculus deciding
satisfiability of formulae in HL(@, ↓) \ ↓�. A preprocessing step, rewriting a
formula into an equisatisfiable one, like explained above, turns the calculus into
a satisfiability decision procedure for HL(@, ↓) \�↓�.

The work is organized as follows. In the rest of this section we recall the
syntax and semantics of HL(@, ↓). In Section 2 we define the tableau system,
and section 3 contains a brief outline of the termination and completeness proofs,
whose details can be found in [6]. Section 4 concludes this work, and includes a
comparison of some aspects of our work with techniques already present in the
literature.

Hybrid Logic. Let PROP (the set of propositional letters) and NOM (the set
of nominals) be disjoint sets of symbols. Let VAR be a set of state variables.
Hybrid formulae F in HL(@, ↓) are defined by the following grammar:

F := p | a | x | ¬F | F ∧ F | F ∨ F | �F | �F | t : F | ↓x.F

where p ∈ PROP, a ∈ NOM, x ∈ VAR and t ∈ VAR ∪ NOM. In this work, the
notation t : F is used rather than the more usual one @tF . We use metavariables
a, b, c, possibly with subscripts, for nominals, while x, y, z are used for variables.

A formula of the form a : F is called a satisfaction statement, whose outermost
nominal is a and F is its body. The operator ↓ is a binder for state variables. A
variable x is free in a formula if it does not occur in the scope of a ↓x. A formula
is ground if it contains no free variables.

A subformula of a formula F is a substring of F (possibly F itself) that is itself
a formula. An instance of a formula F is an expression obtained by replacing
every free variable of F with some nominal.

An interpretation M is a tuple 〈W,R,N, I〉 where W is a non-empty set
(whose elements are the states of the interpretation), R ⊆ W ×W is a binary

Tableaux for Hybrid Formulae with Binders 107

relation on W (the accessibility relation), N is a function NOM → W and I a
function W → 2PROP. We shall write wRw′ as a shorthand for 〈w,w′〉 ∈ R.

A variable assignment σ forM is a function VAR→W . If x ∈ VAR and w ∈
W , the notation σwx stands for the variable assignment σ′ such that: σ′(y) = σ(y)
if y �= x and σ′(x) = w.

If M = 〈W,R,N, I〉 is an interpretation, w ∈ W , σ is a variable assignment
for M and F is a formula, the relation Mw, σ |= F is inductively defined as
follows:

1. Mw, σ |= p if p ∈ I(w), for p ∈ PROP.
2. Mw, σ |= a if N(a) = w, for a ∈ NOM.
3. Mw, σ |= x if σ(x) = w, for x ∈ VAR.
4. Mw, σ |= ¬F ifMw, σ �|= F .
5. Mw, σ |= F ∧G ifMw, σ |= F and Mw, σ |= G.
6. Mw, σ |= F ∨G if eitherMw, σ |= F orMw, σ |= G.
7. Mw, σ |= a : F ifMN(a), σ |= F , for a ∈ NOM.
8. Mw, σ |= x : F ifMσ(x), σ |= F , for x ∈ VAR.
9. Mw, σ |= �F if for each w′ such that wRw′, Mw′ , σ |= F .

10. Mw, σ |= �F if there exists w′ such that wRw′ andMw′ , σ |= F .
11. Mw, σ |= ↓x.F ifMw, σ

w
x |= F .

A formula F is satisfiable if there exist an interpretation M, a variable as-
signment σ for M and a state w of M, such that Mw, σ |= F . Two formulae
F and G are logically equivalent (F ≡ G) when, for every interpretation M,
assignment σ and state w ofM, Mw, σ |= F if and only ifMw, σ |= G.

It is worth pointing out that, if t ∈ VAR ∪ NOM and F is a formula:

¬(t : F) ≡ t : ¬F ¬↓x.F ≡ ↓x.¬F ¬�F ≡ �¬F ¬�F ≡ �¬F

This allows one to restrict attention to formulae in negation normal form (NNF).

2 The Tableau Calculus

A tableau branch is a sequence of nodes n0, n1, ..., where each node is labelled by
a ground satisfaction statement in NNF, and a tableau is a set of branches. If n
occurs before m in the branch B, we shall write n < m. The label of the node
n will be denoted by label(n). The notation (n) a : F will be used to denote the
node n, and simultaneously say that its label is a : F .

A tableau for a formula F is initialized with a single branch, constituted by
the single node (n0) a0 : F , where a0 is a new nominal. The formula a0 : F is
the initial formula of the tableau, which is assumed to be ground and in NNF.

A tableau is expanded by application of the rules in Table 1, which are applied
to a given branch. Their reading is standard: a rule is applicable if the branch
contains a node (two nodes) labelled by the formula(e) shown as premiss(es) of
the rules. The rules ∧,@, ↓,� and � add one or two nodes to the branch, labelled
by the conclusion(s); the rule ∨ replaces the current branch B with two branches,

108 S. Cerrito and M. Cialdea Mayer

Table 1. Expansion rules

a : (F ∧G)

a : F
a : G

(∧) a : (F ∨G)

a : F | a : G
(∨)

a : b : F
b : F

(@)
a : ↓x.F

a : F [a/x]
(↓)

[B]
a : b

B[b/a]
(=)

(not applicable if a = b)

a : �F a : �b
b : F

(�)

a : �F

a : �b
b : F

(�)

where b is a new nominal
(not applicable if F is a nominal)

each of which is obtained by adding B a new node, labelled, respectively, by the
formula shown on the left and right below the inference line.

The � rule has two premisses, which must both occur in the branch, in any
order. The leftmost premiss of the � rule is called its major premiss, the right-
most one its minor premiss. The minor premiss is a relational formula, i.e. a
satisfaction statement of the form a : �b (where b is a nominal). A formula of
the form �F is called a universal formula. The � rule is called blockable rule,
a formula of the form a : �F , where F is not a nominal, is a blockable formula
and a node labelled by a blockable formula is a blockable node.

If F is a formula, the notation F [a/x] is used to denote the formula that is
obtained from F replacing a for every free occurrence of the variable x. Analo-
gously, if a and b are nominals, F [b/a] is the formula obtained from F replacing
b for every occurrence of a. The equality rule (=) does not add any node to the
branch, but modifies the labels of its nodes. The schematic formulation of this
rule in Table 1 indicates that it can be fired whenever a branch B contains a
nominal equality of the form a : b (with a �= b); as a result of the application of
the rule, every node label F in B is replaced by F [b/a].

The first node of a branch B is called the top node and its label the top
formula of B. The nominals occurring in the top formula are called top nominals.
Note that the notion of top nominal is relative to a tableau branch. In fact,
applications of the equality rule may change the top formula, hence the set of top
nominals.

In the following definition, the current branch is left implicit, so as to lighten
the notation.

Definition 1. If a node n is added to a branch by application of the rule R to
the node m then we write m �R n. In the case of rules with two conclusions,

Tableaux for Hybrid Formulae with Binders 109

we write m �R (n, k), or, sometimes, m �R n and m �R k. In the case of the
two premisses rule � we write (m, k) �� n.

Note that the application of the equality rule does not change nodes, but only
their labels, therefore it does not change the relation �R between nodes, for any
rule R.

We say that a formula a : F occurs in a tableau branch B (or a : F ∈ B) if for
some node n of the branch, label(n) = a : F . Similarly, a nominal occurs in a
branch B if it occurs in the label of some node of B. Finally, a nominal a labels
a formula F in B if a : F ∈ B.

Termination is achieved by means of a loop-checking mechanism using nominal
renaming. In fact, in the presence of the binder, non-top nominals may occur in
the body of any node label. In order to define this mechanism, some preliminary
definitions are necessary.

Definition 2 (Nominal compatibility and mappings). If B is a tableau
branch and a is a nominal occurring in B, then

ΦB(a) = {p | p ∈ PROP and a : p ∈ B} ∪ {�F | a : �F ∈ B}

If a and b are nominals occurring in a tableau branch B, then a and b are
compatible in B if ΦB(a) = ΦB(b), i.e. if they label the same propositions in
PROP and the same universal formulae.

A mapping π for a branch B is an injective function from non-top nominals
to non-top nominals such that for all a, a and π(a) are compatible in B.

A mapping π for B maps a formula F to a formula G if:

1. π(F) = G;
2. π is the identity for all nominals which do not occur in F .

A formula F can be mapped to a formula G in B if there exists a mapping π
for B mapping F to G.

Since a mapping π is the identity almost everywhere, it can be represented
by a finite set of pairs of the form {b1/a1, ..., bn/an} where ai �= bi, whenever
π(ai) = bi and π(c) = c for all c �∈ {a1, ..., an}.

The application of the blockable rule is restricted by blocking conditions: a
direct blocking condition, which forbids the application of the blockable rule to
a node n, whenever the label of a previous node can be mapped to label(n);
and also an indirect blocking condition. In fact, since a node may be (directly)
blocked in a branch after that it has already been expanded, all the nodes which,
in some sense, depend from that expansion must be blocked too. So, a notion of
indirect blocking is needed, which in turn requires a new partial order on nodes.
The following definition introduces a binary relation on nodes, which organizes
them into a family of trees.

Definition 3. Let B be a tableau branch. The relation n ≺B m between nodes
of B is inductively defined as follows:

110 S. Cerrito and M. Cialdea Mayer

Base case. If n �� (m, k), then n ≺B m and n ≺B k;
Inductive cases. If m ≺B n, then:

1. if n �R k, where R ∈ {∨,@, ↓,∧}, then m ≺B k;
2. if label(n) is a relational formula and for some n′, (n′, n) �� k, then

m ≺B k.

If m ≺B n then n is said to be a child of m w.r.t. ≺B, and m the parent of n.
A node n in B is called a root node if it has no parent. Two nodes n and k are
called siblings if either both of them are root nodes, or for some m, m ≺B n and
m ≺B k.

The relation ≺+
B is the transitive closure of ≺B. If n ≺+

B m, then n is an
ancestor of m and m a descendant of n w.r.t. ≺B.

In other terms, when the blockable rule is applied to a node n, a first pair
of children of n w.r.t. ≺B is generated. The application of rules other than �

generates siblings, where, in the case of the two premisses rule �, it is the minor
premiss which is added a sibling. Intuitively, when n ≺B m, n is the node which
is taken to be the main “responsible” of the presence of m in the branch. In
fact, the first “children” of a node n are nodes obtained from n by application of
the blockable rule. And, if a node m is obtained from m′ (as the minor premiss,
in the case of the � rule) by means of applications of non-blockable rules, then
they are “siblings” w.r.t. ≺B.

Example 1. As an example, consider the tableau branch for

F = a : (�p ∧ �↓x.�(p ∧ ¬x ∧ ↓y.a : �y))

represented in Figure 1. Node numbering reflects the order in which nodes are
added to the branch. The right column reports the �R relation justifying the
addition of the corresponding node to the branch. W.r.t. the relation ≺B, 0, 1
and 3 are root nodes with no children; 2 is also a root node, with children 4, 5, 6
and 7; nodes 8–17 are all children of 7.

The relation ≺B enjoys the following important properties:

1. For each node n in a tableau branch B, there exists at most one node m such
that m ≺B n. Therefore, there is exactly one maximal chain

n1 ≺B n2 ≺B ... ≺B nk = n

where n1 is any root node.
2. If for some n, m ≺B n, then m is a blockable node. Therefore, for any chain

n1 ≺B n2 ≺B ... ≺B nk ≺B nk+1

n1, ..., nk are all blockable nodes.

Consequently, ≺B arranges the nodes of a branch into a forest of trees, where
non-terminal nodes are blockable nodes.

We can now define the notions of direct and indirect blocking.

Tableaux for Hybrid Formulae with Binders 111

(0) a0 : a : (�p ∧�↓x.�(p ∧ ¬x ∧ ↓y.a : �y))

(1) a : (�p ∧�↓x.�(p ∧ ¬x ∧ ↓y.a : �y)) 0 �@ 1
(2) a : �p 1 �∧ 2
(3) a : �↓x.�(p ∧ ¬x ∧ ↓y.a : �y) 1 �∧ 3
(4) a : �b 2 �� 4
(5) b : p 2 �� 5
(6) b : ↓x.�(p ∧ ¬x ∧ ↓y.a : �y) (3, 4) �� 6
(7) b : �(p ∧ ¬b ∧ ↓y.a : �y) 6 �↓ 7
(8) b : �c 7 �� 8
(9) c : p ∧ ¬b ∧ ↓y.a : �y 7 �� 9
(10) c : p ∧ ¬b 9 �∧ 10
(11) c : ↓y.a : �y 9 �∧ 11
(12) c : p 10 �∧ 12
(13) c : ¬b 10 �∧ 13

(14) c : a : �c 11 �↓ 14

(15) a : �c 14 �@ 15
(16) c : ↓x.�(p ∧ ¬x ∧ ↓y.a : �y) (3, 15) �� 16

(17) c : �(p ∧ ¬c ∧ ↓y.a : �y) 16 �↓ 17

Fig. 1. A tableau branch for a : (�p ∧�↓x.�(p ∧ ¬x ∧ ↓y.a : �y))

Definition 4 (Direct and indirect blocking). A node (n) a : �F is directly
blocked by (m) b : �G in B if

– m < n, m is neither directly blocked in B nor it has any ancestor w.r.t. ≺B
which is directly blocked in B;

– b : G can be mapped to a : F in B.

A node n is directly blocked in B if it is blocked by some m in B, and it is
indirectly blocked in B if it has an ancestor w.r.t. ≺B which is directly blocked in
B. An indirectly blocked node is called a phantom node (or, simply, a phantom).

The tableau branch B represented in Figure 1 represents a blocking case: node
17 is blocked by 7, because b e c are compatible (ΦB(b) = ΦB(c) = {p}).

It must be remarked that the blocking relation is dynamic, i.e. blockings are
not established forever, since they are relative to a tableau branch, and can
be undone when expanding the branch. In fact, a node may be blocked in a
branch B and then unblocked after expanding B, because the addition of new
nodes or changes in node labels may destroy nominal compatibility. Possibly, a
new blocking can be introduced (but compatibilities must be checked again), by
means of a different mapping.

The application of the expansion rules is restricted by the following conditions:

Definition 5 (Restrictions on the expansion rules). The expansion of a
tableau branch B is subject to the following restrictions:

R1. no node labelled by a formula already occurring in B as the label of a non-
phantom node is ever added to B;

112 S. Cerrito and M. Cialdea Mayer

R2. a blockable node n cannot be expanded if there are k0, k1 ∈ B such that
n �� (k0, k1);

R3. a phantom node cannot be expanded by means of a single-premiss rule, nor
can it be used as the minor premiss of the � rule;

R4. a blockable node cannot be expanded if it is directly blocked in B.

It is worth pointing out that termination would not be guaranteed if restric-
tion R1 were replaced by the condition that a node (or pair of nodes) is never
expanded more than once on the branch.

A branch is closed whenever it contains, for some nominal a, either a pair of
nodes (n) a : p, (m) a : ¬p for some p ∈ PROP, or a node (n) a : ¬a. As usual,
we assume that a closed branch is never expanded further on. A branch which
is not closed is open. A branch is complete when it cannot be further expanded.
For instance, the tableau branch represented in Figure 1 is complete and open.

This section concludes with some further examples. In each of them, B denotes
the considered branch, and the notation Bn is used to denote the branch segment
up to node n, while Φn abbreviates ΦBn .

Example 2. Figure 2 represents a closed one-branch tableau for

F = (�↓x.�(x : p)) ∧ (�↓y.�(y : ¬p)) ∧ (�↓z.(�(z : p) ∧�(z : ¬p)))

where the first applications of the ∧-rule are collapsed into one.

(0) a0 : F
(1) a0 : �↓x.�x : p 0 �∧ 1
(2) a0 : �↓y.�y : ¬p 0 �∧ 2
(3) a0 : �↓z.(�(z : p)

∧�(z : ¬p)) 0 �∧ 3
(4) a0 : �a 1 �� 4
(5) a : ↓x.�x : p 1 �� 5

(6) a : �a : p 5 �↓ 6
(7) a : �a1 6 �� 7
(8) a1 : a : p 6 �� 8
(9) a : p 8 �@ 9

(10) a0 : �b 2 �� 10
(11) b : ↓y.�y : ¬p 2 �� 11

(12) b : �b : ¬p 11 �↓ 12
(13) b : �b1 12 �� 13

(14) b1 : b : ¬p 12 �� 14
(15) b : ¬p 14 �@ 15
(16) a0 : �c 3 �� 16
(17) c : ↓z.(�(z : p)

∧�(z : ¬p)) 3 �� 17

(18) c : �c : p ∧�c : ¬p 17 �↓ 18
(19) c : �c : p 18 �∧ 19
(20) c : �c : ¬p 18 �∧ 20
(21) c : �c1 19 �� 21
(22) c1 : c : p 19 �� 22

(23) c : p 22 �@ 23
(24) c : �c2 20 �� 24
(25) c2 : c : ¬p 20 �� 25

(26) c : ¬p 25 �@ 26

Fig. 2. Example 2

The relation ≺B in this branch can be described as follows: 0–3 are root
nodes, 1 ≺B {4, 5, 6}, 6 ≺B {7, 8, 9}, 2 ≺B {10, 11, 12}, 12 ≺B {13, 14, 15},
3 ≺B {16, 17, 18, 19, 20}, 19 ≺B {21, 22, 23}, 20 ≺B {24, 25, 26}.2

2 n ≺B {m1, ..., mk} abbreviates n ≺B m1 and ... n ≺B mk.

Tableaux for Hybrid Formulae with Binders 113

The branch is closed because of nodes 23 and 26. In B20, node 19 is not
blocked by 6, since a : �a : p cannot be mapped to c : �c : p because c and a
are not compatible in B20 (Φ20(c) = Ø �= {p} = Φ20(a)); therefore, node 19 can
be expanded. In the same branch segment, on the contrary, node 20 is blocked
by 12, because Φ20(c) = Ø = Φ20(b).

When the construction proceeds, expanding the non-blocked node 19, and
nodes 21–23 are added to the branch, c and b are no more compatible (Φ23(c) =
{p} while Φ23(b) is still empty), so node 20 is unblocked and it is expanded,
producing 24–26 and the branch closes.

Note moreover that, after the addition of node 23, a and c become compatible,
so that in B23 node 19 is blocked by 6, and 21–23 are phantom nodes. Since 20 is
not a descendant of 19 w.r.t. ≺B, it is not a phantom, thus it can be expanded.

Example 3. This example shows the need of indirect blocking (restriction R3)
to ensure termination. Let

F = a : ((�↓x.�↓y.(x : p ∧ a : �y)) ∧�q)

Figure 3 shows a complete branch in a tableau for F .

(1) a0 : F
(2) a : ((�↓x.�↓y.

(x : p ∧ a : �y)) ∧�q) 1 �@ 2
(3) a : �↓x.�↓y.

(x : p ∧ a : �y) 2 �∧ 3
(4) a : �q 2 �∧ 4
(5) a : �b 4 �� 5
(6) b : q 4 �� 6
(7) b : ↓x.�↓y.

x : p ∧ a : �y) (3, 5) �� 7

(8) b : �↓y.(b : p ∧ a : �y) 7 �↓ 8
(9) b : �b1 8 �� 9

(10) b1 : ↓y.(b : p ∧ a : �y) 8 �� 10

(11) b1 : (b : p ∧ a : �b1) 10 �↓ 11
(12) b1 : b : p 11 �∧ 12
(13) b1 : a : �b1 11 �∧ 13
(14) b : p 12 �@ 14

(15) a : �b1 13 �@ 15
(16) b1 : ↓x.�↓y.

(x : p ∧ a : �y) (3, 15) �� 16

(17) b1 : �↓y.(b1 : p ∧ a : �y) 16 �↓ 17
(18) b1 : �b2 17 �� 18
(19) b2 : ↓y.(b1 : p ∧ a : �y) 17 �� 19

(20) b2 : (b1 : p ∧ a : �b2) 19 �↓ 20
(21) b2 : b1 : p 20 �∧ 21
(22) b2 : a : �b2 20 �∧ 22
(23) b1 : p 21 �@ 23

(24) a : �b2 22 �@ 24
(25) b2 : ↓x.�↓y.

(x : p ∧ a : �y) (3, 24) �� 25

(26) b2 : �↓y.(b2 : p ∧ a : �y) 25 �↓ 26
(27) b2 : �b3 26 �� 27
(28) b3 : ↓y.(b2 : p ∧ a : �y) 26 �� 28

(29) b3 : (b2 : p ∧ a : �b3) 28 �↓ 29
(30) b3 : b2 : p 29 �∧ 30
(31) b3 : a : �b3 29 �∧ 31
(32) b2 : p 30 �@ 32

(33) a : �b3 31 �@ 33

Fig. 3. Example 3

The relation ≺B in this branch can be described as follows: the root nodes are
1–4, 4 ≺B {5, ..., 8}, 8 ≺B {9, ..., 17}, 17 ≺B {18, ..., 26} and 26 ≺B {27, ..., 33}.

In B17 node 17 is not blocked by 8 because Φ17(b) = {q, p} �= Ø = Φ17(b1).
And it is not blocked by 8 in Bn for any n ≥ 23 either, where Φn(b) = {q, p} �=

114 S. Cerrito and M. Cialdea Mayer

{p} = Φn(b1). Moreover in B26 node 26 is blocked neither by 8 nor by 17, because
Φ26(b) = {q, p}, Φ26(b1) = {p}, and Φ26(b2) = Ø.

But in B33 node 26 is blocked by 17, because Φ33(b1) = {p} = Φ33(b2).
Therefore, its children w.r.t. ≺B33 , i.e. 27–33 are all phantom nodes, and, in
particular, node 33 cannot participate, with node 3, to an expansion via the �

rule.
Without restriction R3, the construction of the branch would go on forever.

In fact, the following nodes could be added:

(34) b3 : ↓x.�↓y.(x : p ∧ a : �y) (3, 33) �� 34

(35) b3 : �↓y.(b3 : p ∧ a : �y) 34 �↓ 35

In B35 node 35 would not be blocked, because Φ35(b3) = Ø, while Φ35(b1) =
Φ35(b2) = {p}. So a sequence of new nodes could be added, with labels obtained
from the labels of 27–34, by renaming b2 with b3 and b3 with a new nominal b4.
A neverending story ...

3 Properties of the Calculus

The tableau calculus defined in Section 2 is trivially sound. Moreover it ter-
minates and can be proved complete, provided that the initial formula is in the
HL(@, ↓) \↓� fragment. Since space restrictions do not allow for a full account of
the termination and completeness proofs, which are in some points quite subtle,
this section gives only a brief and simplified outline of these proofs. Their details
can be found in [6].

For the purposes of proving termination and completeness, the main property
of the considered fragment is that, if �G is a subformula of the initial formula,
it contains no free variable. As a consequence, for any node label of the form
a : �G, G does not contain any non-top nominal. In other terms, �G is a
subformula of the top formula of the branch (strong subformula property).

A looser subformula property holds for node labels in general: if a : F is
the label of some node in a tableau branch B, then F is an instance of some
subformula F ′ of the top formula of B, i.e. F is obtained from F ′ by replacing
the free variables occurring in F ′ with nominals (loose subformula property).

Termination is proved by showing that the nodes of a branch B are arranged
by ≺B into a bounded sized set of trees, each of which has bounded width and
bounded depth. Hence any tableau branch B has a number of nodes that is
bounded by a function of the size N of the initial formula.

The above statement is proved by use of the following intermediate results:

1. The number of siblings w.r.t. ≺B of any node n is bounded by a function of
N . This is not as trivial a task as it may appear at first sight. In fact, it is
not sufficient to show that the number of formulae that can label the siblings
of a given node is bounded, because, in principle, a given formula might be
the label of an infinite number of nodes. In fact, notwithstanding restriction
R1, distinct node labels can become equal by effect of substitution.

Tableaux for Hybrid Formulae with Binders 115

However, it can be shown that the label of any sibling of n has a matrix
taken from a bounded stock of formulae, that can be built in the language
of the branch at the time n is added to it. Node labels with a same matrix
are always equal, at any construction stage of the branch, since they are
obtained from the same formula (matrix) by application of the same nominal
renaming. Since siblings always have the same phantom/non-phantom state,
restrictions R1 and R3 ensure that any node can only produce a bounded
number of siblings.
Note that the above sketched reasoning would not work if it were the ma-
jor premiss of the � rule to be added a sibling w.r.t. ≺B. In fact, a node
labelled by a universal formula can in principle produce an infinite number
of expansions.

2. The length of any chain of nodes n1 ≺B n2 ≺B ... ≺B nk is bounded by
a function of N . This is due to the “loose” subformula property and the
fact that the set of elements in PROP ∪ {�G | �G occurs in some node
label} is bounded by N (by the “strong” subformula property). Therefore,
restrictions R2 and R4 ensure that the blockable rule cannot be applied to
extend any chain of nodes beyond a given depth.

It is worth pointing out that the considerations underlying the termination
argument in [6] establish a doubly exponential upper bound on the number of
nodes in a tableau branch. Therefore, the decision procedure defined in this paper
is not worst-case optimal, since the satisfiability problem for HL(@, ↓) \ ↓� is in
2-ExpTime [13].

Completeness is proved in the standard way, by showing how to define a
model of the initial formula from a complete and open tableau branch. However,
for the calculus defined in this work, the fact that the labels of blocked and
blocking nodes are not identical must be taken into account. A model cannot be
simply built from a set of states consisting of equivalence classes of nominals,
and establishing that two nominals are in the same class whenever some blocking
mapping maps one to the other. In fact, it might be the case that a nominal a
is mapped to a nominal b to block a given node, although the branch contains a
node labelled by a : ¬b (like in Example 1).

Thus, a different approach is followed, showing that a (possibly infinite) model
can be built out of a complete and open branch B by means of a preliminary
infinitary extension N∞

B of a subset N 0 of B. More precisely, N 0 is the union of
the non-phantom nodes in B and the nodes (n) a : F where either F ∈ PROP or
F has the form �G.
N∞

B is built by stages, as the union of a (possibly infinite) series of extensions
N 0 ⊆ N 1 ⊆ N 2.... of N 0. The purpose of each stage is the creation of a witness
for a given blockable node, where a nominal b is called a witness for a node
labelled by a blockable formula of the form a : �F if there exist nodes labelled,
respectively, by a : �b and b : F . Each sequence of (labelled) nodes N i is
associated a blocking relation Bi, containing triples of the form (n,m, π), where
n andm are nodes,m < n and π is an injective mapping such that π(label(m)) =
label(n). The construction ensures that:

116 S. Cerrito and M. Cialdea Mayer

1. for any (n,m, π) ∈ Bi:
(a) n and m are labelled by blockable formulae;
(b) m ∈ N 0 and it has a witness in N 0.

2. For any blockable node n ∈ N i, if n has no witness in N i, then (n,m, π) ∈
Bi, for some m and π.

Each extension N i is built so as to add a witness to the first “blocked” node
n ∈ N i−1, i.e. such that for some m and π, (n,m, π) ∈ Bi−1. The label of each
new node added to N i is obtained from a node in N 0 by suitably renaming non-
top nominals. Specifically, an injective mapping θi is defined, that will guide the
construction of the new nodes of N i. The mapping θi is the identity except for
the following cases:

– if a occurs in label(m), then θi(a) = π(a);
– if b is the witness of m and b does not occur in label(m), then θi(b) = bi,

where bi is a fresh nominal. Note that, at the time the witness of m was
added to the branch by an application of the � rule, it was obviously fresh
w.r.t. to the current branch, but it may subsequently have been replaced by
the equality rule.

The sequence N i is then obtained from N i−1 by adding new nodes, labelled by
θi(label(k)) for each k ∈ N 0 such that θi(label(k)) does not already occur in
N i−1. Hence, in particular, a pair of nodes is added, representing the fact that
bi is the witness of n in N i.

Consistently, the triple (n,m, π) is removed from the blocking relation. Pos-
sibly, new nodes with no witness are created; for each of them, a blocking node
and blocking mapping are defined, and the corresponding triple is added to Bi.

Each of the sets of nodes N i enjoys a form of saturation property: it is consis-
tent (there are no labels of the form a : ¬a, or both a : p and a : ¬p), it does not
contain non-trivial equalities (a : b with a �= b, so that the equality rule does not
need to be taken into account), and, for any node or pair of nodes in N i that
could be the premiss(es) of some expansion rule other than �, its expansion(s)
are also in N i.

The proof of such a saturation property exploits the following (non trivial)
properties of the construction:

– If i > 0 and θi is the mapping used to extend N i−1 to N i, then for any
nominal a, a and θi(a) are compatible in N i;

– for every triple (n,m, π) ∈ Bi and for any nominal a, a and π(a) are com-
patible in N i.

In the union N∞
B =

⋃
i∈INN i every blockable node has a witness, and a model

can be defined from it, made up of a state for each nominal occurring in N∞
B .

Such a model can easily be extended to a model of the initial formula.

4 Concluding Remarks

In this work a tableau calculus for HL(@, ↓) is defined, which is provably termi-
nating (independently of the rule application strategy) and complete for formulae

Tableaux for Hybrid Formulae with Binders 117

belonging to the fragment HL(@, ↓) \↓�. A preprocessing step transforming for-
mulae into equisatisfiable ones turns the calculus into a satisfiability decision
procedure for HL(@, ↓) \�↓�.

The main features of the calculus can be summarized as follows. A tableau
branch is a sequence of nodes, each of which is labelled by a satisfaction state-
ment. Since nominal equalities are dealt with by means of substitution, different
occurrences of the same formula may occur as labels of different nodes in a
branch. The fact that when two formulae become equal by the effect of substitu-
tion the corresponding nodes do not collapse, allows for the definition of a binary
relation ≺B on nodes which organizes them into a family of trees. Each tree of
the family has a bounded width, and this is due to the fact that, when apply-
ing the two premisses � rule, it is the minor premiss, labelled by a relational
formula, which is taken to be the “main responsible” of the expansion.

The fact that each tree has a bounded depth is guaranteed by a blocking
mechanism which forbids the application of the � rule to a node n whenever
it has already been applied to another node whose label is equal to the label
of n, modulo non-top nominal renaming (accompanied by suitable restrictions).
Renaming is essential, because, in the presence of the binder, non-top nominals
may occur in the body of any node label. The blocking mechanism is anywhere
blocking, paired with indirect blocking, relying on the relation ≺B.

This mechanism differs from [4,5], where calculi for hybrid logic with the global
and converse modalities (and no binders) are defined. In fact, such calculi adopt
ancestor blocking, where nominals (and not nodes) are blocked, and indirect
blocking relies on a partial order on nominals (instead of nodes). Differently
from [5], moreover, the calculus defined in this work does not require nominal
deletion to ensure termination. This is due, again, to the fact that a branch is
not a set of formulae, but a sequence of nodes.

Also the tableau system defined in [11] for hybrid logic with the difference
and converse modalities makes use of ancestor blocking, relying on an ancestor
relation among nominals. The blocking mechanism used for converse free formu-
lae in the same work is different and more similar to ours. In fact, an existential
formula, such as, for instance, a : �F , is blocked (independently of its outer-
most nominal a) whenever there exists a nominal b labelling both F and every
formula G such that a : �G is in the branch. However, the sub-calculus does not
terminate unless applications of the � rule are prioritized.

A tableau calculus testing satisfiability of formulae in the constant-free clique
guarded fragment has been proposed in [9]. A restriction of the algorithm to the
guarded fragment has been defined and implemented [10]. A tableau branch, in
these calculi, is a tree of nodes, and the label of each node is a set of formu-
lae. A node is directly blocked by a previously created node if, essentially, their
labels are the same modulo constant renaming. Our comparison modulo renam-
ing method was in fact originally inspired by [9,10] (although there are some
differences). A further contact point between these calculi and ours is anywhere
blocking coupled with indirect blocking (which, in [9,10] relies on the ancestor
relation in the tree).

118 S. Cerrito and M. Cialdea Mayer

We are presently working at the next natural step, i.e. the extension of the
calculus to the global and converse modalities, so as to obtain a tableau based
decision procedure for the fragment HL(@, ↓,E,�−) \�↓�.

References

1. Areces, C., Blackburn, P., Marx, M.: A road-map on complexity for hybrid logics.
In: Flum, J., Rodŕıguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 307–321.
Springer, Heidelberg (1999)

2. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., Wolter, F., van Benthem,
J. (eds.) Handbook of Modal Logics, pp. 821–868. Elsevier, Amsterdam (2007)

3. Blackburn, P., Seligman, J.: Hybrid languages. Journal of Logic, Language and
Information 4, 251–272 (1995)

4. Bolander, T., Blackburn, P.: Termination for hybrid tableaus. Journal of Logic and
Computation 17(3), 517–554 (2007)

5. Cerrito, S., Cialdea Mayer, M.: Nominal substitution at work with the global and
converse modalities. In: Beklemishev, L., Goranko, V., Shehtman, V. (eds.) Ad-
vances in Modal Logic, vol. 8, pp. 57–74. College Publications (2010)

6. Cerrito, S., Cialdea Mayer, M.: A calculus for a decidable fragment of hybrid logic
with binders. Technical Report RT-DIA-181-2011, Dipartimento di Informatica e
Automazione, Università di Roma Tre (2011),
http://www.dia.uniroma3.it/Plone/ricerca/technical-reports/2011

7. Ganzinger, H., De Nivelle, H.: A superposition decision procedure for the guarded
fragment with equality. In: Proc. 14th Symposium on Logic in Computer Science,
pp. 295–305. IEEE Computer Society Press, Los Alamitos (1999)

8. Grädel, E.: On the restraining power of guards. Journal of Symbolic Logic 64,
1719–1742 (1998)

9. Hirsch, C., Tobies, S.: A tableau algorithm for the clique guarded fragment. In:
Wolter, F., Wansing, H., de Rijke, M., Zakharyaschev, M. (eds.) Advances in Modal
Logic, vol. 3, pp. 257–277. CSLI Publications, Stanford (2001)

10. Hladik, J.: Implementation and optimisation of a tableau algorithm for the guarded
fragment. In: Egly, U., Fermüller, C.G. (eds.) TABLEAUX 2002. LNCS (LNAI),
vol. 2381, pp. 145–159. Springer, Heidelberg (2002)

11. Kaminski, M., Smolka, G.: Terminating tableau systems for hybrid logic with dif-
ference and converse. Journal of Logic, Language and Information 18(4), 437–464
(2009)

12. ten Cate, B., Franceschet, M.: Guarded fragments with constants. Journal of Logic,
Language and Information 14, 281–288 (2005)

13. ten Cate, B.D., Franceschet, M.: On the complexity of hybrid logics with binders.
In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 339–354. Springer, Heidelberg
(2005)

http://www.dia.uniroma3.it/Plone/ricerca/technical-reports/2011

Basic Constructive Connectives, Determinism

and Matrix-Based Semantics

Agata Ciabattoni1, Ori Lahav2,�, and Anna Zamansky1

1 Vienna University of Technology
2 Tel Aviv University

{agata,annaz}@logic.at, orilahav@post.tau.ac.il

Abstract. (Non-)deterministic Kripke-style semantics is used to char-
acterize two syntactic properties of single-conclusion canonical sequent
calculi: invertibility of rules and axiom-expansion. An alternative matrix-
based formulation of such semantics is introduced, which provides an
algorithm for checking these properties, and also new insights into basic
constructive connectives.

1 Introduction

Single-conclusion canonical systems were introduced in [3] to provide a general
characterization of basic constructive connectives.1 These systems are single-
conclusion sequent calculi, which in addition to the axioms and structural rules
of Gentzen’s LJ calculus have only logical rules, in which exactly one occur-
rence of a connective is introduced and no other connective is mentioned. It
was shown in [3] that every single-conclusion canonical system induces a class of
Kripke frames, for which it is strongly sound and complete. The key idea behind
this semantics is to relax the principle of truth-functionality, and to use non-
deterministic semantics, in which the truth-values of the subformulas of some
compound formula ψ do not always uniquely determine the truth-value of ψ. The
non-deterministic Kripke-style semantics was also applied in [3] to characterize
the single-conclusion canonical systems that enjoy cut-admissibility.

As shown in [3], basic constructive connectives include the standard intuitionis-
tic connectives together with many others. Some of these connectives induce a de-
terministic Kripke-style semantics, while others only have a non-deterministic one.
The first goal of this paper is to investigate the relationship between determinism
of basic constructive connectives and two syntactic properties of their rules: invert-
ibility and completeness of atomic axioms (axiom-expansion). Invertibility of rules
is important for guiding proof search in sequent calculi and simplifies automated
proofs of cut-admissibility. Axiom expansion is sometimes considered crucial when
designing “well-behaved” sequent systems. Here we prove that the determinism of
the underlying Kripke-style semantics is a necessary and sufficient condition for
a basic constructive connective to admit axiom expansion. The same connection
� Supported by The Israel Science Foundation (grant no. 280-10).
1 See e.g. [9,5] for alternative proposals.

K. Brünnler and G. Metcalfe (Eds.): TABLEAUX 2011, LNAI 6793, pp. 119–133, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

120 A. Ciabattoni, O. Lahav, and A. Zamansky

also holds with the invertibility of the right introduction rule for the connective,
provided that the calculus contains exactly one such rule.

A similar investigation was carried out in [2] for multiple-conclusion canonical
calculi. This was based on their (much simpler) semantics, defined in terms
of non-deterministic two-valued matrices ([1]) – a natural generalization of the
standard two-valued truth-tables.

Despite the important properties discussed above, the formulation of the non-
deterministic Kripke-style semantics in [3] does not provide an algorithmic ap-
proach for checking determinism of basic constructive connectives. Accordingly,
the second goal of this paper is to overcome this problem by providing an alterna-
tive formulation of this semantics based on a generalization of non-deterministic
two-valued matrices. These generalized matrices, used to characterize the set of
frames induced by a single-conclusion canonical system, have two main advan-
tages. First, decidability: there is a simple algorithm for checking whether the
induced semantics is deterministic, which in turn can be used for deciding in-
vertibility and axiom-expansion in single-conclusion canonical systems. Second,
modularity: the semantic effect of each syntactic rule can be directly read off
the corresponding matrix, therefore providing new insights into the semantic
meaning of basic constructive connectives.

2 Preliminaries

In what follows L is a propositional language, and FrmL is its set of wffs. We
assume that the atomic formulas of L are p1, p2, We use Γ,Σ,Π,E to denote
finite subsets of FrmL, where E is used for sets which are either singletons or
empty. A (single-conclusion) sequent is an expression of the form Γ ⇒ E. We
denote sequents of the form Γ ⇒ {ϕ} (resp. Γ ⇒ ∅) by Γ ⇒ ϕ (resp. Γ ⇒).
Below we shortly reproduce definitions and results from [3].

Definition 1. A substitution is a function σ : FrmL → FrmL, such that for
every n-ary connective � of L we have: σ(�(ψ1, . . . , ψn)) = �(σ(ψ1), . . . , σ(ψn)).
A substitution is extended to sets of formulas in the obvious way.

Henceforth we denote by σid the substitution σ, such that σ(p) = p for every
atomic formula p. Moreover, given formulas ψ1, . . . , ψn, σψ1,...,ψn denotes the
substitution σ such that σ(pi) = ψi for 1 ≤ i ≤ n and σ(pi) = pi for i > n.

2.1 Single-Conclusion Canonical Systems

Definition 2. A single-conclusion sequent calculus is called a (single-conclusion)
canonical system iff its axioms are sequents of the form ψ ⇒ ψ (identity axioms),
cut and weakening are among its rules, and each of its other rules is either a single-
conclusion canonical right rule or a single-conclusion canonical left rule, where:

1. A (single-conclusion canonical) left rule for a connective � of arity n is an
expression of the form: 〈{Πi ⇒ Ei}1≤i≤m, {Σi ⇒}1≤i≤k〉/ � (p1, . . . , pn)⇒,

Basic Constructive Connectives, Determinism and Matrix-Based Semantics 121

where m, k ≥ 0,Πi ∪Ei ⊆ {p1, . . . , pn} for 1 ≤ i ≤ m, and Σi ⊆ {p1, . . . , pn}
for 1 ≤ i ≤ k. The sequentsΠi ⇒ Ei (1 ≤ i ≤ m) are called the hard premises
of the rule, while Σi ⇒ (1 ≤ i ≤ k) are its soft premises, and �(p1, . . . , pn)⇒
is its conclusion.
An application of such rule is any inference step of the form:

{Γ, σ(Πi)⇒ σ(Ei)}1≤i≤m {Γ, σ(Σi)⇒ E}1≤i≤k
Γ, σ(�(p1, . . . , pn))⇒ E

where Γ ⇒ E is an arbitrary sequent, and σ is a substitution.
2. A (single-conclusion canonical) right rule for a connective � of arity n is an ex-

pression of the form: {Πi ⇒ Ei}1≤i≤m/ ⇒ �(p1, . . . , pn), wherem, andΠi ⇒
Ei are as above. Πi ⇒ Ei (1 ≤ i ≤ m) are called the premises of the rule, and
⇒ �(p1, . . . , pn) is its conclusion.
An application of such rule is any inference step of the form:

{Γ, σ(Πi)⇒ σ(Ei)}1≤i≤m
Γ ⇒ σ(�(p1, . . . , pn))

where Γ is a finite set of formulas and σ is a substitution.

Given a canonical system G, and a set of sequents S∪{s}, we write S �G s iff there
exists a derivation in G of s from S.

The following condition of coherence,2 characterizing (a stronger form of) cut-
admissibility in canonical systems, is an extension of the analogous condition for
multiple-conclusion canonical systems (see [1]).

Definition 3. A set R of canonical rules for an n-ary connective � is coherent
if S1 ∪ S2 ∪ S3 is classically inconsistent whenever R contains both 〈S1, S2〉/ �
(p1, . . . , pn)⇒ and S3/⇒ �(p1, . . . , pn). A canonical system G is called coherent
if for each connective �, the set of rules for � in G is coherent.

2.2 Non-deterministic Kripke-Style Semantics

Definition 4. Let F be a set of formulas closed under subformulas. An F -
semiframe is a triple W = 〈W,≤, v〉 such that:

1. 〈W,≤〉 is a nonempty partially ordered set, whose elements are called worlds.
2. v is a function from W × F to {t, f} obeying the persistence condition, i.e.

v(a, ϕ) = t implies v(b, ϕ) = t for every b ≥ a.

When F = FrmL then the F-semiframe is called a frame.

Definition 5. Let W = 〈W,≤, v〉 be an F-semiframe, and let a ∈W .

2 Coherence is also equivalent to the reductivity condition of [6], which applies in
presence of arbitrary structural rules.

122 A. Ciabattoni, O. Lahav, and A. Zamansky

1. A sequent Γ ⇒ E is locally true in a iff Γ ∪ E ⊆ F and either v(a, ψ) = f
for some ψ ∈ Γ , or E = {ϕ} and v(a, ϕ) = t.

2. A sequent s is true in a iff s is locally true in every b ≥ a.
3. W is a model of a sequent s if s is locally true in every b ∈W . W is a model

of a set of sequents S if it is a model of every s ∈ S.

Definition 6. Let W = 〈W,≤, v〉 be an F-semiframe.

1. Let σ be a substitution, and let a ∈ W .
(a) σ (locally) satisfies a sequent Γ ⇒ E in a if σ(Γ) ⇒ σ(E) is (locally)

true in a.
(b) σ fulfils a left rule r in a if it satisfies in a every hard premise of r, and

locally satisfies in a every soft premise of r.
(c) σ fulfils a right rule r in a if it satisfies in a every premise of r.

2. Let r be a canonical rule for an n-ary connective �.W respects r if for every
a ∈ W and every substitution σ: if σ fulfils r in a and σ(�(p1, . . . , pn)) ∈ F
then σ locally satisfies r’s conclusion in a.

3. Given a coherent canonical system G, W is called G-legal if it respects all
the rules of G.

Henceforth, when speaking of (local) trueness of sequents and fulfilment of rules
by substitutions, we add “with respect to W”, whenever the (semi)frame W is
not clear from context.

Note that a certain substitution σ may not fulfil any right rule for an n-ary
connective � in a world a of a G-legal frame, and at the same time σ may not
fulfil any left rule for � in all worlds b ≥ a. In this case there are no restrictions
on the truth-value assigned to σ(�(p1, . . . , pn)) in a, and the semantics of G is
non-deterministic.

Definition 7. Let G be a coherent canonical system, and S ∪ {s} be a set of
sequents. S �G s iff every G-legal frame which is a model of S is a model of s.

Theorem 1 (7.1 in [3]). Let G be a coherent canonical system, and F be
a set of formulas closed under subformulas. If W = 〈W,≤, v〉 is a G-legal F-
semiframe, then v can be extended to a function v′ so that W ′ = 〈W,≤, v′〉 is a
G-legal frame.

The above theorem ensures that the semantics of G-legal semiframes is analytic,
in the sense that every G-legal semiframe can be extended to a G-legal (full)
frame. This means that in order to determine whether S �G s, it suffices to
consider semiframes, defined only on the set of all subformulas of S ∪ {s}.

The following theorems establish an exact correspondence between coherent
canonical systems, Kripke semantics and (strong) cut-admissibility. In what fol-
lows, G is a coherent canonical system.

Theorem 2 (6.1 in [3]). If S �G s then S �G s.

Theorem 3 (6.3 in [3]). If S �G s then S �G s, and moreover, there exists a
proof in G of s from S in which all cut-formulas appear in S.

Basic Constructive Connectives, Determinism and Matrix-Based Semantics 123

Theorem 3 will be strengthened in the proof of Theorem 4 below. In order to
make this paper self-contained, we include here an outline of the original proof.

Proof (Outline). Assume that s does not have a proof in G from S in which all
cut-formulas appear in S (call such a proof a legal proof). We construct a G-legal
frame W which is a model of S but not of s. Let F be the set of subformulas of
S ∪ {s}. Given a set E ⊆ F , which is either a singleton or empty, call a theory
T ⊆ F E-maximal if there is no finite subset Γ ⊆ T such that Γ ⇒ E has a legal
proof, but every proper extension T ′ ⊆ F of T contains such a finite subset Γ .
Now let W = 〈W,⊆, v〉, where W is the set of all E-maximal theories for some
E ⊆ F , and v is defined inductively as follows:
For atomic formulas, v(T , p) = t iff p ∈ T . Suppose v(T , ψi) has been defined
for every T ∈ W and 1 ≤ i ≤ n. We let v(T , �(ψ1, . . . , ψn)) = t iff at least one
of the following holds with respect to the semiframe at this stage:

1. There exists a right rule for � which is fulfilled in T by σψ1,...,ψn .
2. �(ψ1, . . . , ψn) ∈ T and there do not exist T ′ ∈ W , T ⊆ T ′, and a left rule

for � which is fulfilled in T ′ by σψ1,...,ψn .

One can now prove that W is a G-legal frame. The fact that W is a model of S
but not of s follows from the following properties:
For every T ∈W and every formula ψ ∈ F :

(a) If ψ ∈ T then v(T , ψ) = t.
(b) If T is {ψ}-maximal then v(T , ψ) = f .

(a) and (b) are proven together by a simultaneous induction on the complexity
of ψ. For atomic formulas they easily follow from v’s definition, and the fact
that p⇒ p is an axiom. For the induction step, assume that (a) and (b) hold for
ψ1, . . . , ψn ∈ F . We prove (b) for �(ψ1, . . . , ψn) ∈ F ((a) is proved analogously).
Assume that T is {�(ψ1, . . . , ψn)}-maximal, but v(T , �(ψ1, . . . , ψn)) = t. Thus
�(ψ1, . . . , ψn) /∈ T (because �(ψ1, . . . , ψn)⇒ �(ψ1, . . . , ψn) is an axiom). Hence
there exists a right rule, {Πi ⇒ Ei}1≤i≤m/⇒ �(p1, . . . , pn), which is fulfilled
in T by the substitution σ = σψ1,...,ψn . It follows that there exists 1 ≤ i0 ≤ m
such that Γ, σ(Πi0)⇒ σ(Ei0) has no legal proof for any finite Γ ⊆ T . Extend
T ∪ σ(Πi0) to a σ(Ei0)-maximal theory T ′. The induction hypothesis implies
that σ does not locally satisfyΠi0 ⇒ Ei0 in T ′. Thus contradicts our assumption.

��

We now present some examples of canonical rules and their induced semantics
(see [3] for more examples).

Example 1 (Implication). All the rules of Gentzen’s LJ calculus for intuitionistic
logic are canonical. For instance, the rules for implication are:

〈{⇒ p1}, {p2 ⇒}〉 / p1 ⊃ p2 ⇒ and {p1 ⇒ p2} / ⇒ p1 ⊃ p2

124 A. Ciabattoni, O. Lahav, and A. Zamansky

A frameW = 〈W,≤, v〉 respects the rule (⊃⇒) iff for every a ∈ W , v(a, ϕ ⊃ ψ) =
f whenever v(b, ϕ) = t for every b ≥ a and v(a, ψ) = f . W respects (⇒⊃) iff for
every a ∈ W , v(a, ϕ ⊃ ψ) = t whenever for every b ≥ a, either v(b, ϕ) = f or
v(b, ψ) = t. Using the persistence condition, it is easy to see that the two rules
impose the well-known Kripke semantics for intuitionistic implication ([8]).

Example 2 (Affirmation). The unary connective � is defined by the rules:

〈∅, {p1 ⇒}〉 / � p1 ⇒ and {⇒ p1} / ⇒� p1

A frame W = 〈W,≤, v〉 respects the rule (�⇒) if v(a,� ψ) = f whenever
v(a, ψ) = f . It respects (⇒�) if v(a,� ψ) = t whenever v(b, ψ) = t for every
b ≥ a. By the persistence condition, this means that for every a ∈W , v(a,� ψ)
simply equals v(a, ψ).

Example 3 (Weak Affirmation). The unary connective � is defined by the rules:

〈{p1 ⇒}, ∅〉 / � p1 ⇒ and {⇒ p1} / ⇒� p1

A frame W = 〈W,≤, v〉 respects the rule (�⇒) if v(a,� ψ) = f whenever
v(b, ψ) = f for every b ≥ a. It respects (⇒�) if v(a,� ψ) = t whenever v(b, ψ) =
t for every b ≥ a. This implies that v(a,� ψ) is free to be t or f when v(a, ψ) = f
and v(b, ψ) = t for some b > a (hence this semantics is “non-deterministic”).
In particular it follows that this connective cannot be expressed by the usual
intuitionistic connectives.

Applications of the rules for ⊃ are the standard ones, while those for � and �
have the following forms:

Γ, ϕ⇒ E
Γ,� ϕ⇒ E

Γ ⇒ ϕ
Γ ⇒� ϕ

Γ, ϕ⇒
Γ,� ϕ⇒ E

Γ ⇒ ϕ
Γ ⇒� ϕ

3 Deterministic Connectives

In general, an n-ary connective � is called deterministic (see e.g. [2]), if the truth-
functionality principle holds for it. In other words, the truth-values assigned to
ψ1, . . . , ψn uniquely determine the truth-value assigned to �(ψ1, . . . , ψn). Adapt-
ing this property for Kripke-style semantics, one can require that the truth-values
assigned to ψ1, . . . , ψn in every world of the frame would uniquely determine
whether or not the frame is a model of ⇒ �(ψ1, . . . , ψn) (i.e. �(ψ1, . . . , ψn) is
true in all worlds). This can be formalized as follows.

Definition 8. Two F-semiframes W1 and W2 agree on some ψ ∈ F , if either
both are models of ⇒ ψ, or both are not models of ⇒ ψ.

Henceforth we denote by SF [ψ] and PSF [ψ] the sets of subformulas of a formula
ψ and proper subformulas of ψ, respectively.

Definition 9. Let G be a coherent canonical system.

Basic Constructive Connectives, Determinism and Matrix-Based Semantics 125

1. Given a formula ψ, a G-legal PSF [ψ]-semiframe W is called ψ-determined
in G if all G-legal SF [ψ]-semiframes extending W agree on ψ.

2. � admits unique analycity in G if for every ψ1, . . . , ψn ∈ FrmL, every G-
legal PSF [�(ψ1, . . . , ψn)]-semiframe is �(ψ1, . . . , ψn)-determined in G.

Example 4. Consider the coherent canonical system G consisting of the two rules
for � from Example 3. Let W = {a, b} and ≤= {〈a, a〉, 〈b, b〉, 〈a, b〉}. Consider
a {p1}-semiframe W = 〈W,≤, v〉, where v(a, p1) = f and v(b, p1) = t. Let
W1 = 〈W,≤, v1〉 and W2 = 〈W,≤, v2〉 be two {p1,� p1}-semiframes which
extendW , where v1(a,� p1) = f and v1(b,� p1) = v2(a,� p1) = v2(b,� p1) = t.
Following Example 3, both semiframes are G-legal. Clearly, W1 and W2 do not
agree on � p1. It follows that � does not admit unique analycity in G.

We introduce below an alternative definition of determinism of connectives and
show its equivalence with unique analycity.

Definition 10. A {p1, . . . , pn}-semiframe W = 〈W,≤, v〉, such that 〈W,≤〉 has
a minimum is called an n-atomic frame. We denote by min(W) the minimum of
〈W,≤〉.

Definition 11. An n-ary connective � is called deterministic in a coherent
canonical system G, if for every n-atomic frame W = 〈W,≤, v〉, either σid fulfils
a right rule for � in min(W), or σid fulfils a left rule for � in some b ∈ W .

Proposition 1. If an n-ary connective � is deterministic in a coherent canon-
ical system G, then for every G-legal frame W = 〈W,≤, v〉, a ∈ W and a
substitution σ, either σ fulfils a right rule for � in a, or σ fulfils a left rule for �
in some b ∈W such that b ≥ a.

Proof. LetW = 〈W,≤, v〉 be a G-legal frame, let a ∈W , and let σ be a substitu-
tion. Define an n-atomic frame W ′ = 〈W ′,≤′, v′〉, where W ′ = {b ∈ W | b ≥ a},
≤′ is the restriction of ≤ to W ′, and v′(b, pi) = v(b, σ(pi)) for 1 ≤ i ≤ n and
b ∈ W ′. Note that a = min(W ′). Since � is deterministic in G, either σid fulfils
a right rule r for � in min(W ′) with respect to W ′, or σid fulfils a left rule r for
� in some b ∈ W ′ such that b ≥′ a with respect to W ′. In the first case, it easily
follows that σ fulfils r in a with respect to W . Similarly, in the second case, it
follows that since b ≥′ a, also b ≥ a, and so σ fulfils r in b with respect toW . ��

Proposition 2. Let G be a coherent canonical system. A connective � is deter-
ministic in G iff it admits unique analycity in G.

Proof. (⇒) : Assume that � is deterministic in G. Let ψ1, . . . , ψn ∈ FrmL and
let W = 〈W,≤, v〉 be a G-legal PSF [�(ψ1, . . . , ψn)]-semiframe. We show that
W is �(ψ1, . . . , ψn)-determined in G. Indeed, let W1 = 〈W,≤, v1〉 and W2 =
〈W,≤, v2〉 be G-legal SF [�(ψ1, . . . , ψn)]-semiframes which extend W . We show
that v1(a, �(ψ1, . . . , ψn)) = v2(a, �(ψ1, . . . , ψn)) for every a ∈W , and so W1 and
W2 agree on ψ. Let a ∈ W . By Proposition 1, and since v1 and v2 are defined
identically on ψ1, . . . , ψn one of the following holds:

126 A. Ciabattoni, O. Lahav, and A. Zamansky

– σψ1,...,ψn fulfils a right rule for � in a with respect to W1 and to W2. Since
they are both G-legal, v1(a, �(ψ1, . . . , ψn)) = v2(a, �(ψ1, . . . , ψn)) = t.

– σψ1,...,ψn fulfils a left rule for � in some b ≥ a with respect to W1 and toW2.
Since they are both G-legal, v1(b, �(ψ1, . . . , ψn)) = v2(b, �(ψ1, . . . , ψn)) = f .
By the persistence condition v1(a, �(ψ1, . . . , ψn)) = v2(a, �(ψ1, . . . , ψn)) = f .

(⇐) : Assume that � is not deterministic in G. By definition, there exists an
n-atomic frame, W = 〈W,≤, v〉, such that σid does not fulfil any right rule for
� in min(W), and it does not fulfil any left rule for � in any b ∈ W . Since W
is n-atomic frame, it is vacuously G-legal. Define W1 = 〈W,≤, v1〉 and W2 =
〈W,≤, v2〉 to be SF [�(p1, . . . , pn)]-semiframes which extend W such that: (1)
v1(min(W), �(p1, . . . , pn)) = f and v1(b, �(p1, . . . , pn)) = t for every b > min(W);
and (2) v2(b, �(p1, . . . , pn)) = t for every b ∈ W . It is easy to see thatW1 andW2

are G-legal extensions of W . Clearly W1 and W2 do not agree on �(p1, . . . , pn).
��

4 Axiom-Expansion

Below we show that in a coherent canonical system determinism of its connectives
is equivalent to axiom expansion. We use the terms atomic axioms for axioms
of the form p ⇒ p (where p is an atomic formula), and non-atomic axioms for
axioms of the form �(ψ1, . . . , ψn)⇒ �(ψ1, . . . , ψn).

Definition 12. An n-ary connective � admits axiom-expansion in a coherent
canonical system G, if �(p1, . . . , pn) ⇒ �(p1, . . . , pn) has a cut-free proof in G
that does not contain non-atomic axioms.

Let G be a coherent canonical system in the language L. Henceforth we denote
by G� the system G augmented with the rules for � in Example 2 (G = G� if
�∈ L). It is easy to see that G� is coherent.

Lemma 1. Let � be an n-ary connective (n ≥ 1), and G be a coherent canonical
system. If �G� �(p1, . . . , pn)⇒ �(� p1, . . . , pn) then � is deterministic in G.

Proof. Assume that � is not deterministic in G. Thus, there exists an n-atomic
frame, W = 〈W,≤, v〉, such that σid does not fulfil any right rule for � in
min(W), and it does not fulfil any left rule for � in any b ∈ W . Let F =
{p1, . . . , pn,� p1, �(� p1, . . . , pn), �(p1, . . . , pn)}. Define an F -semiframe W1 =
〈W,≤, v1〉 which extends W : (a) For every b ∈ W , v1(b, �(p1, . . . , pn)) = t
and v1(b,� p1) = v(b, p1); (b) v1(min(W), �(� p1, . . . , pn)) = f , and v1(b, �(�
p1, . . . , pn)) = t for every b > min(W). It is easy to see that W1 is a G�-legal
F -semiframe. Hence by Theorem 1, it can be extended to a G�-legal frameW ′

1.
W ′

1 is not a model of �(p1, . . . , pn)⇒ �(� p1, . . . , pn) (since it is not locally true
in min(W)). Therefore, ��G� �(p1, . . . , pn)⇒ �(� p1, . . . , pn). ��

Theorem 4. Let G be a coherent canonical system. An n-ary connective � ad-
mits axiom-expansion in G iff � is deterministic in G.

Basic Constructive Connectives, Determinism and Matrix-Based Semantics 127

Proof. (⇒) : Assume we have a cut-free proof δ of �(p1, . . . , pn)⇒ �(p1, . . . , pn)
in G that uses only atomic axioms. By suitably modifying δ we can obtain a proof
δ� of �(p1, . . . , pn) ⇒ �(� p1, . . . , pn) in the extended system G�. The claim
therefore follows by Lemma 1. δ� is obtained from δ as follows: as δ contains only
atomic axioms, the formula �(p1, . . . , pn) is inferred in succedents of sequents in
(possibly) various nodes of δ by applications of weakening or of right rules for �.3
In the first case, we simply replace each application of weakening with formula
�(p1, . . . , pn), with an application of weakening with formula �(� p1, . . . , pn).
When �(p1, . . . , pn) is inferred in a sequent Γ ⇒ �(p1, . . . , pn) by a right rule r for
�, we consider the premise of this application. These have the form Γ,Π, p1 ⇒ E;
Γ,Π ⇒ p1; and/or Γ,Π ⇒ E. Therefore we first apply the left and/or right rules
for � to infer Γ,Π,� p1 ⇒ E and/or Γ,Π ⇒� p1, and then we apply r to derive
the sequent Γ ⇒ �(� p1, . . . , pn). The rest of the proof is changed accordingly.

(⇐) : We first prove the following strengthening of Theorem 3: (∗) If S �G s
then there exists a proof in G of s from S in which all cut-formulas appear in
S, and identity axioms of the form �(ψ1, . . . , ψn) ⇒ �(ψ1, . . . , ψn) are not used
when � is deterministic in G. Since every frame is a model of �(p1, . . . , pn) ⇒
�(p1, . . . , pn) for every n-ary connective �, it follows that when � is deterministic
in G, �(p1, . . . , pn) ⇒ �(p1, . . . , pn) has a cut-free proof in G that uses only
atomic axioms.

To prove (∗), note that the only place in which non-atomic axioms are used in
the proof of Theorem 3 (see a proof outline in Section 2) is for proving property
(b), namely that if T is {ψ}-maximal then v(T , ψ) = f .4 More specifically, non-
atomic axioms are only used to dismiss the possibility that �(ψ1, . . . , ψn) ∈ T
when T is {�(ψ1, . . . , ψn)}-maximal and v(T , �(ψ1, . . . , ψn)) = t. If � is deter-
ministic in G, we can handle this possibility as follows:

SinceW isG-legal and v(T , �(ψ1, . . . , ψn)) = t, there cannot existT ′ ∈ W ,
T ⊆ T ′, and a left rule for � which is fulfilled in T ′ by σψ1,...,ψn . When � is
deterministic in G, by Proposition 1, there exists a right rule for �, which is
fulfilled in T by σψ1,...,ψn . The rest of the proof proceeds as in the original
proof.

��

Remark 1. [6] investigates single-conclusion systems with non-standard sets of
structural rules. An algebraic semantics using phase spaces is provided for left
and right introduction rules for connectives; a result similar to Theorem 4 is
shown, namely a connective � has a “deterministic semantics”(i.e., the interpre-
tations for the left and right rules coincide) iff � admits axiom expansion.

5 Invertibility of Rules

We investigate the connection between rules invertibility and determinism in
coherent canonical systems.
3 Weakening can also be done by applying a left rule which does not have soft premises.
4 Identity axioms are not needed to prove property (a) (see Theorem 6.3 in [3]).

128 A. Ciabattoni, O. Lahav, and A. Zamansky

Definition 13. A canonical rule r is canonically invertible in a coherent canon-
ical system G iff each premise of r has a proof in G from r’s conclusion.

In contrast with the multiple-conclusion case (see [2]) determinism does not
guarantee invertibility of left rules and the latter does not imply determinism.
One direction can be easily seen by considering the usual left rule for implication
(Example 1): ⊃ is deterministic but (⊃⇒) is not canonically invertible. The other
direction follows by the next example:

Example 5. � is non-deterministic in a canonical system including the two rules
for � (see Example 4). However, the left rule for � is canonically invertible (p1 ⇒
can be easily derived from � p1 ⇒ using an identity axiom, the rule (⇒�) and
a cut on � p1).

For right rules the following theorem holds (notice that the (⇒) direction needs
the existence in G of exactly one right rule for �):

Theorem 5. If a coherent canonical system G includes exactly one right rule
for an n-ary connective �, then � is deterministic in G if and only if this rule is
canonically invertible in G.

Proof. (⇒): Let r be the right rule for �, and let s be one of its premises. We
show that ⇒ �(p1, . . . , pn) �G s. Canonical invertibility of r then follows by
Theorem 3. For this we show that every G-legal frame that is not a model of s
is also not a model of ⇒ �(p1, . . . , pn). Let W = 〈W,≤, v〉 be a G-legal frame,
which is not a model of s. By definition, σid does not locally satisfy s in some
a ∈W . Hence, σid does not fulfil r in a. Since � is deterministic in G and � has
no other right rules, Proposition 1 implies that there exists a left rule for �, which
is fulfilled by σid in some b ≥ a. But, since W is G-legal, W respects this rule,
and hence v(b, �(p1, . . . , pn)) = f . Hence, W is not a model of ⇒ �(p1, . . . , pn).

(⇐): Let r be a right rule for �. Assume that � is not deterministic in G. Thus,
there exists an n-atomic frame, W = 〈W,≤, v〉, such that σid does not fulfil r in
min(W), and it does not fulfil any left rule for � in any b ∈ W . In particular,
there exists a premise s of r, which is not satisfied in min(W) by σid. Define
an extension of W , W1 = 〈W,≤, v1〉, which is an SF [�(p1, . . . , pn)]-semiframe,
such that for every a ∈ W , v1(a, �(p1, . . . , pn)) = t. It is easy to see that W1 is
a G-legal SF [�(p1, . . . , pn)]-semiframe. Thus, by Theorem 1, it can be extended
to a G-legal frame, W ′

1 = 〈W,≤, v′1〉. W ′
1 is a model of ⇒ �(p1, . . . , pn), but it is

not a model of s. By Theorem 3, ⇒ �(p1, . . . , pn) ��G s. ��

6 Matrix-Based (Kripke) Semantics

The formulation of the Kripke-style semantics presented in Section 2.2 is too ab-
stract to provide a constructive method for checking determinism of connectives
in canonical systems. In this section we introduce an alternative formulation
of this semantics, which is a generalization of the two-valued non-deterministic
matrices used in [1,2] to characterize multiple-conclusion canonical systems. The

Basic Constructive Connectives, Determinism and Matrix-Based Semantics 129

new formulation can be constructively extracted from the rules of a canonical
calculus, and it provides an algorithmic and natural way of checking determinism
of logical connectives.

For an intuitive motivation of this approach, recall that in a (standard or
non-deterministic) two-valued matrix, the interpretation of an n-ary connective
� is a function applied to n-ary vectors of truth-values. Thus, the truth-value of
�(ψ1, . . . , ψn) depends on (although is not necessarily uniquely
determined by) the truth-values assigned to ψ1, . . . , ψn. In the context of Kripke-
style frames, however, the interpretation is more complex: the truth-value as-
signed to �(ψ1, . . . , ψn) in a world a depends, in addition to the truth-values
assigned to ψ1, . . . , ψn in a, also on the truth-values assigned to these formulas in
all worlds b ≥ a. However, which truth-values are assigned to ψ1, . . . , ψn in which
world is immaterial, what matters is their distribution5 D = {〈vb1, . . . , vbn〉| b ≥
a}, where vbi is the truth-value assigned to ψi in the world b. This information
can be captured by an n-ary distribution vector of the form 〈〈va1 , . . . , van〉, D〉.
Note that since ≥ is reflexive, 〈va1 , . . . , van〉 ∈ D for all frames. Moreover, a for-
mula assigned t in some world a remains true also in all accessible worlds b ≥ a.
This can be formalized as follows:
Definition 14. For n ≥ 1, an n-ary distribution vector V is a pair of the form
〈〈x1, . . . , xn〉, D〉 where x1, . . . , xn ∈ {t, f}, D ⊆ {t, f}n, and which satisfies: (i)
〈x1, . . . , xn〉 ∈ D, and (ii) if xi = t then yi = t for all 〈y1, . . . , yn〉 ∈ D. We
denote the set of n-ary distribution vectors by Vn.

Definition 15. A two-valued distribution Nmatrix (2Nmatrix) M for L is a
set of (two-valued) interpretations, such that for every n-ary connective � of L,
M includes an interpretation function �̃M : Vn → P+({t, f}).
Definition 16. Let 〈x1, . . . , xn〉 ∈ {t, f}n. A sequent Π ⇒ E over {p1, . . . , pn}
is compatible with 〈x1, . . . , xn〉 if any two-valued valuation v, such that v(pi) = xi
satisfies Π ⇒ E (i.e., there is some 1 ≤ i ≤ n, such that either pi ∈ Π and
v(pi) = f , or pi ∈ E and v(pi) = t).

Definition 17. Let V = 〈x,D〉 be any n-ary distribution vector.
1. A right rule r is V -valid if every premise of r is compatible with every y ∈ D.
2. A left rule of r is V -valid if every hard premise of r is compatible with every

y ∈ D, and every soft premise of r is compatible with x.

Definition 18. Let G be a coherent canonical system. The 2Nmatrix MG in-
duced by G is defined as follows. For every n-ary connective � and every V ∈ Vn:

�̃MG(V) =

⎧
⎪⎨

⎪⎩

{t} G has a V -valid right rule for �
{f} G has a V -valid left rule for �
{t, f} otherwise

5 A “distribution-based approach” is usually used to interpret quantifiers in many-
valued matrices (see, e.g. [11]). For instance, the classical interpretation of ∀ is a
function ∀̃ : P+({t, f}) → {t, f}. Given a structure with a set of elements D, we
compute ∀̃({v(ψ{a/x})| a ∈ D}), where a is an individual constant denoting a for
every a ∈ D.

130 A. Ciabattoni, O. Lahav, and A. Zamansky

It is easy to see that checking V -validity of rules is constructive. The following
proposition guarantees that �̃MG is well-defined:

Proposition 3. A coherent canonical system G has no pair of a left and a right
rules for the same n-ary connective �, which are both V -valid for some V ∈ Vn.

Proof. Suppose by contradiction that there are a right rule rr and a left rule rl
for � in G, which are both V -valid for some V = 〈x,D〉 ∈ Vn. Since x ∈ D,
all the premises of rr and rl are compatible with x. Thus these premises are all
satisfiable by a classical two-valued valuation, and so are classically consistent,
in contradiction to the coherence of G. ��

It is important to note that given a coherent canonical system G, its associated
2Nmatrix MG does not yet faithfully represent the meaning of the connectives
of G, asMG might contain some options forbidden by the persistence condition.

Example 6. Let G be the canonical system consisting only of the right rule for
implication and G′ be the system obtained by adding to G the left rule for im-
plication (see Example 1). The induced 2NmatricesMG andMG′ are displayed
in the table below (columns ⊃̃MG and ⊃̃MG′ , respectively). Note that ⊃̃MG′
contains some non-deterministic choices, although the semantics for implication
given in Example 1 is completely deterministic.

D ⊃̃MG ⊃̃MG′ R(⊃̃MG′)
〈t, t〉 {〈t, t〉} {t} {t} {t}
〈t, f〉 {〈t, f〉} {t, f} {f} {f}
〈t, f〉 {〈t, f〉, 〈t, t〉} {t, f} {f} {f}
〈f, t〉 {〈f, t〉} {t} {t} {t}
〈f, t〉 {〈f, t〉, 〈t, t〉} {t} {t} {t}
〈f, f〉 {〈f, f〉} {t} {t} {t}
〈f, f〉 {〈f, f〉, 〈t, t〉} {t} {t} {t}
〈f, f〉 {〈f, f〉, 〈f, t〉} {t} {t} {t}
〈f, f〉 {〈f, f〉, 〈t, f〉} {t, f} {t, f} {f}
〈f, f〉 {〈f, f〉, 〈t, t〉, 〈f, t〉} {t} {t} {t}
〈f, f〉 {〈f, f〉, 〈t, f〉, 〈f, f〉} {t, f} {t, f} {f}
〈f, f〉 {〈f, f〉, 〈t, f〉, 〈f, t〉} {t, f} {t, f} {f}
〈f, f〉 {〈f, f〉, 〈t, f〉, 〈f, t〉, 〈t, t〉} {t, f} {t, f} {f}

We now formulate a procedure for removing the illegal options. As shown below,
its application to any 2Nmatrix MG leads to a matrix-based representation
which faithfully reflects the semantics from Section 2.2.

Definition 19. Let �̃ : Vn → P+({t, f}) be an interpretation of an n-ary con-
nective �. The reduced interpretation R(�̃) is obtained by the following algorithm:

- L0 ← �̃ and i← 0.
Repeat

– i← i+ 1 and Li ← Li−1.

Basic Constructive Connectives, Determinism and Matrix-Based Semantics 131

– Let V = 〈x,D〉, such that Li−1(V) = {t, f}. If there is some y ∈ D, such
that for every D′ ⊆ D, such that 〈y,D′〉 ∈ Vn: Li−1(〈y,D′〉) = {f}, then
Li(V)← {f}.

Until Li = Li−1

Example 7. By applying the algorithm to the 2NmatrixMG′ in Example 6, we
obtain the reduced 2Nmatrix displayed in the last column of the table above
(denoted by R(⊃̃MG′)). Note that R(⊃̃MG′) does not codify a particular Kripke
frame, as in the matrix-based semantics for intuitionistic logic described in [10];
R(⊃̃MG′) represents instead the “semantic meaning” of intuitionistic implication.

Below we show that for any coherent canonical system G, the determinism of
R(�̃MG) is equivalent to the determinism of � in G (in the sense of Definition
11), thus obtaining an algorithm for checking the latter.

Definition 20. Given an n-atomic frameW = 〈W,≤, v〉, the distribution vector
VW induced by W is defined as follows: VW = 〈〈v(a, p1), . . . , v(a, pn)〉,DW〉,
where a = min(W) and DW = {〈v(b, p1), . . . , v(b, pn)〉| b ∈W}.

Lemma 2. Let W be an n-atomic frame. σid fulfils a canonical rule r in
min(W) with respect to W iff r is VW -valid.

Lemma 3. Let G be a coherent canonical system for L and � an n-ary connec-
tive of L. If R(�̃MG)(V) = {f}, then for every n-atomic frame W inducing V ,
σid fulfils a left rule for � of G in some world b ≥ min(W) with respect to W.

Proof. We prove by induction on i that the claim holds for every Li as defined
in Definition 19. It follows that the claim holds for R(�̃MG). For i = 0, Li =
�̃MG , and hence the claim follows from Lemma 2 by the definition of MG.
Suppose that the claim holds for all i < k and let i = k. Let W be an n-
atomic frame inducing V ∈ Vn. If Lk−1(V) = {f}, the claim holds by the
induction hypothesis. Otherwise Lk−1(V) = {t, f}, and there is some y ∈ D,
such that for every D′ ⊆ D for which 〈y,D′〉 ∈ Vn: Lk−1(〈y,D′〉) = {f}. Let
b ≥ min(W) be a world such that v(b, pi) = yi (it exists since y ∈ D). Let
D0 = {〈v(c, p1), . . . , v(c, pn)〉| c ≥ b}. Since D0 ⊆ D, Lk−1(V0) = {f}, where
V0 = 〈y,D0〉. Let W0 be the subframe of W , such that min(W0) = b. Since W0

induces V0, by the induction hypothesis, there is some c ≥ b, in which σid fulfils
a left rule r in G for � with respect to W0. It easily follows that σid fulfils r in
c ≥ b ≥ min(W) with respect to W . ��

Theorem 6. Let G be a coherent canonical system. An n-ary connective � is
deterministic in G if and only if R(�̃MG) is deterministic (i.e. R(�̃MG)(V) is
either {t} or {f} for every V ∈ Vn).

Proof. (⇐): Denote by Rr and Rl the sets of right and left rules for � in G
(respectively). Suppose that � is deterministic in G, and assume by contradiction
that R(�̃MG)(V) is not deterministic. Define a partial order on n-ary vectors over
{t, f} as follows: x <n y if for every 1 ≤ i ≤ n: either xi = yi or xi = f and

132 A. Ciabattoni, O. Lahav, and A. Zamansky

yi = t. Choose V = 〈x,D〉 ∈ Vn to be such that R(�̃MG)(V) = {t, f} and x
is maximal with respect to <n. We construct an n-atomic frame W , such that
σid does not fulfil any r ∈ Rr in min(W), and any r ∈ Rl in any b ≥ min(W)
(with respect to W). If D = {x}, then let W be the n-atomic frame with one
world a, such that v(a, pi) = xi. Since R(�̃MG)(V) = {t, f}, it must be the case
that �̃MG(V) = {t, f}. Then by definition of MG, there is no V -valid rule in
Rr∪Rl. By Lemma 2, σid does not fulfil any r ∈ Rr∪Rl in a with respect to W .
Otherwise, D = {x, y1, . . . , ym}. Let W be the n-atomic frame W = 〈W,≤, v〉,
such that W = {a, a1, . . . , am}, where a < aj for all 1 ≤ j ≤ m, v(a, pi) = xi,
and v(aj , pi) = yji . Like in the above case, it can be shown that σid does not fulfil
any r ∈ Rr ∪Rl in a = min(W). It remains to show that no r ∈ Rl is fulfilled in
aj . Suppose by contradiction that this is the case for some r ∈ Rl and aj . LetW ′

be the subframe ofW such that min(W ′) = aj . The distribution vector induced
by W ′ is Vj = 〈yj , {yj}〉. By Lemma 2, r is Vj -valid, and so �̃M(Vj) = {f}.
Hence also R(�̃MG)(Vj) = {f}. One of the following cases holds:

– For all D0 ⊆ D, such that V ′ = 〈yj , D0〉 ∈ Vn, R(�̃MG)(V ′) = {f}. But
then R(�̃MG)(V) = {f}, contradicting our assumption.

– There is some D0 ⊆ D, such that V ′ = 〈yj , D0〉 ∈ Vn and R(�̃MG)(V ′) =
{t}, and so also �̃M(V ′) = {t}. This means that there exists some V ′-valid
r ∈ Rr. By definition, r is 〈yj , D′〉-valid for every D′ ⊆ D0. It follows that
�̃M(〈yj , {yj}〉) = {t}, in contradiction to our assumption.

– There is some D0 ⊆ D, such that V ′ = 〈yj , D0〉 ∈ Vn and R(�̃MG)(V ′) =
{t, f}. But since x <n yj , this is in contradiction to the maximality of x.

Thus it cannot be the case that σid fulfils a rule from Rl in some aj ≥ min(W),
hence � is not deterministic in G, in contradiction to our assumption.

(⇒): Suppose that R(�̃MG) is deterministic and assume by contradiction that
there is some n-atomic frameW , such that σid does not fulfil any right rule of G
for � in min(W), and any left rule of G for � in any b ≥ W . Let V be the distri-
bution vector induced byW . By Lemma 2, there is no V -valid right rule for � in
G, and so by definition ofMG, �̃M(VW) �= {t}, and so also R(�̃MG)(VW) �= {t}.
Since R(�̃MG) is deterministic, it must be the case that R(�̃MG)(VW) = {f}.
But then by Lemma 3, for every n-atomic frame W ′ inducing V , σid fulfils a
left rule for � in G in some b ≥ min(W ′). In particular, this holds for W , in
contradiction to our assumption. ��

Corollary 1. For a coherent canonical system G, the following questions are
decidable: (i) Is � deterministic in G? (ii) Does G admit axiom-expansion? (iii)
(If G has exactly one right rule r for �) is r invertible?.

Finally, we establish the equivalence between the new matrix-based semantics
and the non-deterministic Kripke-style semantics of [3].

Theorem 7. Let G be a coherent canonical system. A frame W = 〈W,≤, v〉 is
G-legal (see Definition 6) iff for every a ∈ W and every formula �(ψ1, . . . , ψn),

Basic Constructive Connectives, Determinism and Matrix-Based Semantics 133

v(a, �(ψ1, . . . , ψn)) ∈ �̃MG(〈x,D〉), where x = 〈v(a, ψ1), . . . , v(a, ψn)〉 and D is
the set {〈v(b, ψ1), . . . , v(b, ψn)〉| b ≥ a}.

Proof. (⇒): Suppose that W is G-legal. Let a ∈W and �(ψ1, . . . , ψn) ∈ FrmL.
Suppose that �̃MG(〈x,D〉) = {t}. By definition ofMG, there is some right rule
r for � in G, such that every premise of r is compatible with every y ∈ D.
It is easy to see that this implies that σψ1,...,ψn fulfils r in a. Since W is G-
legal, it respects r, and so ⇒ �(ψ1, . . . , ψn) is locally true in a. It follows that
v(a, �(ψ1, . . . , ψn)) = t. The case when �̃MG(〈x,D〉) = {f} is handled similarly.

(⇐): Suppose that for every a ∈ W and every formula ϕ = �(ψ1, . . . , ψn),
v(a, ϕ) ∈ �̃MG(〈〈v(a, ψ1), . . . , v(a, ψn)〉, {〈v(b, ψ1), . . . , v(b, ψn)〉| b ≥ a}〉). Let r
be a right rule in G for an n-ary connective � (left rules are handled similarly). We
prove that W respects r. Suppose that a substitution σ fulfils r in some a ∈ W .
Hence, it locally satisfies every premise of r in every b ≥ a. Let xbi = v(b, σ(pi))
for every b ≥ a. It is easy to see that every premise of r is compatible with
〈xb1, . . . , xbn〉 for every b ≥ a. By definition of MG, �̃(〈x,D〉) = {t}, where x =
〈xa1 , . . . , xan〉 and D = {〈xb1, . . . , xbn〉| b ≥ a}. Therefore, v(a, σ(�(p1, . . . , pn))) ∈
{t}. Hence σ locally satisfies r’s conclusion in a. ��

References

1. Avron, A., Lev, I.: Non-deterministic Multi-valued Structures. Journal of Logic
and Computation 15, 241–261 (2005)

2. Avron, A., Ciabattoni, A., Zamansky, A.: Canonical calculi: Invertibility, axiom
expansion and (Non)-determinism. In: Frid, A., Morozov, A., Rybalchenko, A.,
Wagner, K.W. (eds.) CSR 2009. LNCS, vol. 5675, pp. 26–37. Springer, Heidelberg
(2009)

3. Avron, A., Lahav, O.: On Constructive Connectives and Systems. Logical Methods
in Computer Science 6(4:12) (2010)

4. Avron, A., Zamansky, A.: Non-deterministic Semantics for Logical Systems - A
Survey. In: Gabbay, D., Guenther, F. (eds.) Handbook of Philosophical Logic.
Kluwer, Dordrecht (to appear, 2011)

5. Bowen, K.A.: An extension of the intuitionistic propositional calculus. Indagationes
Mathematicae 33, 287–294 (1971)

6. Ciabattoni, A., Terui, K.: Towards a semantic characterization of cut-elimination.
Studia Logica 82(1), 95–119 (2006)

7. Gurevich, Y., Neeman, I.: The logic of Infons. Bulletin of European Association
for Theoretical Computer Science 98 (June 2009)

8. Kripke, S.: Semantical analysis of intuitionistic logic I. In: Crossly, J., Dummett,
M. (eds.) Formal Systems and Recursive Functions, pp. 92–129 (1965)

9. McCullough, D.P.: Logical connectives for intuitionistic propositional logic. Journal
of Symbolic Logic 36(1), 15–20 (1971)

10. Mints, G.: A Short Introduction to Intuitionistic Logic. Plenum Publishers, New
York (2000)

11. Urquhart, A.: Many-valued Logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook
of Philosophical Logic, vol. 2, pp. 249–295. Kluwer Academic Publishers, Boston
(2001)

On the Proof Complexity of Cut-Free

Bounded Deep Inference

Anupam Das

University of Bath

Abstract. It has recently been shown that cut-free deep inference sys-
tems exhibit an exponential speed-up over cut-free sequent systems, in
terms of proof size. While this is good for proof complexity, there remains
the problem of typically high proof search non-determinism induced by
the deep inference methodology: the higher the depth of inference, the
higher the non-determinism. In this work we improve on the proof search
side by demonstrating that, for propositional logic, the same exponential
speed-up in proof size can be obtained in bounded-depth cut-free sys-
tems. These systems retain the top-down symmetry of deep inference,
but can otherwise be designed at the same depth level of sequent sys-
tems. As a result the non-determinism arising from the choice of rules at
each stage of a proof is smaller than that of unbounded deep inference,
while still giving access to the short proofs of deep inference.

1 Introduction

Deep inference is a proof methodology whose proof systems allow the application
of inference rules on any connective appearing in a formula, in contrast to tradi-
tional proof systems whose inference rules only operate on the main connective
of a formula. Within deep inference several formalisms have been defined, the
most developed being the Calculus of Structures (CoS), and more recently an
extension of it, Open Deduction [8]. Throughout this work we use the latter, but
present complexity results for CoS so that they are more directly comparable
to existing results. The two systems are polynomially equivalent and, for the
reader familiar with CoS, the use of open deduction can be considered as just a
convenient notation to present CoS proofs more clearly and with less syntax.

In this paper we consider “cut-free” or “analytic” deep inference systems as

defined in [3]. For deep inference systems the “cut” rule is
A ∧ Ā
−−−−−−

f
, which can be

considered a generalized version of the cut from sequent calculi since it can be
applied in any context. There are cut-elimination procedures for deep inference
systems and they yield the results we would expect from such procedures, e.g.
consistency of the system and Herbrand’s Theorem. There is also a generalized
version of the subformula property for cut-free deep inference systems: atoms
appearing in a proof are just those that appear in its conclusion. This specializes
to the traditional subformula property when restricted to the sequent calculus. A

K. Brünnler and G. Metcalfe (Eds.): TABLEAUX 2011, LNAI 6793, pp. 134–148, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On the Proof Complexity of Cut-Free Bounded Deep Inference 135

more detailed account of the cut rule in deep inference systems and the corollaries
of cut-elimination can be found in [2].

Recently, in [3], Bruscoli and Guglielmi have shown that cut-free deep in-
ference systems exhibit an exponential speedup over cut-free sequent systems in
size of proofs. The Statman tautologies are shown to have polynomial-size proofs
in the cut-free calculus of structures, while their proofs in cut-free sequent cal-
culi have long been known to grow exponentially [6]. The first three Statman
tautologies are shown below, from which the basic pattern should be apparent:

S1 ≡ (c1 ∧ d1) ∨
[
c̄1 ∨ d̄1

]
,

S2 ≡ (c2 ∧ d2) ∨
[(([

c̄2 ∨ d̄2

]
∧ c1

)
∧
([
c̄2 ∨ d̄2

]
∧ d1

))
∨
[
c̄1 ∨ d̄1

]]
,

S3 ≡ (c3 ∧ d3) ∨
(([

c̄3 ∨ d̄3

]
∧ c2

)
∧
([
c̄3 ∨ d̄3

]
∧ d2

))
∨

((([
c̄3 ∨ d̄3

]
∧
[
c̄2 ∨ d̄2

])
∧ c1

)
∧
(([

c̄3 ∨ d̄3

]
∧
[
c̄2 ∨ d̄2

])
∧ d1

))
∨

[
c̄1 ∨ d̄1

]
.

It is not difficult to see that cut-free sequent calculus proofs of these tautologies
are forced to create O(2n) branches, as demonstrated in [5]. However with deep
inference systems it is possible to prove these formulae ‘from the inside out’
by copying the first disjunct into each following disjunct, reducing the formula
to the previous tautology and repeating the process, yielding polynomial-size
proofs.

It can be argued that the use of deep inference in this case is trivial as inference
rules operate just beneath the surface of the formula; in particular the number of
∧-∨ alternations, or depth, of the Statman tautologies is constant. In this paper
we introduce systems where the depth at which inference rules may apply is
bounded. We refer to these as bounded-depth systems, although this should not
be confused with bounded-depth Frege systems in which the depth of formulae
appearing in a proof, rather than inference steps, is bounded.

In [3] it was conjectured that bounded-depth deep inference systems, while
still giving polynomial-size proofs of the Statman tautologies, would result in an
exponential blowup in the size of proofs for some other classes of tautologies. In
Sect. 3 we prove this to be false; we construct a polynomial transformation of
cut-free deep inference proofs to ones whose inference rules are not only bounded
in depth but “shallow”, in the sense that sequent calculus rules are shallow.

The result is possible because deep inference systems benefit over sequent
systems not only in the depth of their inference steps, but also in the top-down
symmetry they exhibit. A CoS derivation is a sequence of formulae in which the
main connective may change many times, and so the system admits a notion of
duality of inference rules. In contrast, sequent calculi have a strict tree structure
with the implicit connective between branches being conjunction. For example
consider the following rules from deep inference:

A
c↑ −−−−−−
A ∧A

(A ∧B) ∨ (C ∧D)
m −−−−−−−−−−−−−−−−−−−−−

[A ∨ C] ∧ [B ∨D]
cocontraction medial

136 A. Das

The first rule is an example of duality in deep inference systems: it is the dual
rule for contraction. However neither rule can be fully captured by a sequent
calculus; looking at the rules bottom-up, if the conjuncts in the conclusions are
separate branches in a sequent calculus proof, the two branches would need
to collapse into a single branch in order to obtain the premiss, which is not
permitted. However this flexibility alone, it turns out, admits enough top-down
symmetry to enjoy the same proof complexity as deep inference systems, and in
Conclusion 5.1 we present a sequent-like system that exemplifies this.

In the literature there is generally a distinction made between systems contain-
ing cocontraction and ones that do not, as it is conjectured that cocontraction
allows for an exponential speedup in size of proofs [3]. In this paper we consider
only systems containing cocontraction and show that bounded-depth systems can
polynomially simulate full deep inference. The analogous problem for systems
without cocontraction remains open, although in Conclusion 5.2 we conjecture
that an analogous result does not hold. Work in this area is ongoing, and may
provide new directions for the wider problem of the effect of cocontraction on
proof complexity in general (see Conclusion 5.3).

2 Preliminaries

Here we give only a brief account of the open deduction formalism and its usual
proof systems for propositional logic, but a more comprehensive introduction
can be found in [8].

Definition 1 (Formulae and Contexts). The language of open deduction is
a propositional language consisting of units t, f, countably many atoms which we
denote a, b, c, d, possibly with subscripts and superscripts, two binary connectives
∧ and ∨ and an involution a �→ ā, defined only on the set of atoms, representing
negation, all with their usual classical interpretations.

Formulae are built freely in the usual way and we use A, B, C, D as metavari-
ables ranging over formulae of the language. We extend negation to all formulae
by identifying Ā with the negation normal form of A. For clarity we use paren-
theses for conjunctions and brackets for disjunction, and we sometimes omit
external parentheses/brackets of a formula, and internal ones under associativ-
ity. For example the following are all formulae:

a ∧
[
b̄ ∨ c

]
t ∧ d f ∨

(
a ∧ b̄

)
≡ t ∧ [ā ∨ b]

Definition 2 (Derivations). All formulae are derivations, and we define, for
a formula A, its premiss and conclusion (pr(A), cn(A) resp.) as A. If Φ, Ψ
are derivations then Φ � Ψ is a derivation for � ∈ {∧,∨}, with pr(Φ � Ψ) ≡

pr(Φ) � pr(Ψ) and cn(Φ � Ψ) ≡ cn(Φ) � cn(Ψ).
Φ

ρ −−
Ψ

is a derivation just if
cn(Φ)

ρ −−−−−−
pr(Ψ)

is an inference step associated with some rule ρ, and has premiss pr(Φ) and
conclusion cn(Ψ). Inference rules can operate anywhere in a formula, not just
on the main connective. If pr(Φ) ≡ t then we call Φ a proof.

On the Proof Complexity of Cut-Free Bounded Deep Inference 137

Rebracketing rules Unit rules

A ∨B
= −−−−−−−
B ∨ A

[A ∨B] ∨ C
= −−−−−−−−−−−−−−
A ∨ [B ∨ C]

A
u1↑ −−−−−

A ∧ t

A ∧ t
u2↑ −−−−−

A

f
u3↑ −−−−

f ∧ f

f ∧ f
u4↑ −−−−

f

A ∧B
= −−−−−−−
B ∧ A

(A ∧B) ∧ C
= −−−−−−−−−−−−−−
A ∧ (B ∧ C)

A ∨ f
u1↓ −−−−−−

A

A
u2↓ −−−−−−

A ∨ f

t ∨ t
u3↓ −−−−

t

t
u4↓ −−−−

t ∨ t

commutativity associativity

Fig. 1. Inference rules for equality

For a derivation Φ its size, |Φ|, is the number of unit and atom occurrences
in it and its length, l(Φ), is the number of inference steps appearing in it.

Definition 3 (Contexts). A context is a formula with one hole appearing in
place of a subformula, e.g. a ∧ { }, b ∨ (a ∧ { }) ∨ f, and is denoted by ξ{ }. The
hole can be filled with any formula or derivation; we denote a context ξ{ } filled
with a derivation Φ by ξ{Φ}.

Definition 4 (Systems). A system is a set of inference rules, and if all infer-
ence rules appearing in a derivation (resp. proof) Φ belong to a system S then
we say Φ is a S-derivation (resp. S-proof). If Φ is a S-derivation with premiss

A and conclusion B we write
A
Φ
∥∥∥∥S
B

. If A ≡ t, i.e. Φ is a proof, then we write
−
Φ
∥∥∥∥S
B

.

Definition 5 (Sequential and Synchronal Forms). We define two impor-
tant forms of a derivation. The first is sequential form, where the derivation
is just a sequence of formulae, and so also a CoS derivation. The second is
synchronal form, where every inference step operates as shallow as possible, i.e.
every inference step is just an instance of the inference rule itself with formulae
substituted in for the metavariables. For every derivation both forms exist; syn-
chronal form is unique while sequential form, in general, is not, and there is at
most only a quadratic difference in the size of the two forms [4]. For example we
present a derivation in synchronal and two sequential forms:

A
−−
C

∧
B
−−
D

A ∧B
−−−−−−−
A ∧D
−−−−−−−
C ∧D

A ∧ B
−−−−−−−
C ∧B
−−−−−−−
C ∧D

Note 6 (Equality Rules). We define the equality inference rules on formulae in
Fig. 1. For the sake of clearer analysis of proof complexity and depth we consider
them as real inference rules inducing actual inference steps (like in [9]), rather
than a set of equations governing the sameness of formulae. When we introduce
our notion of depth, and bounded-depth systems, the same restrictions we impose

138 A. Das

Structural rules Logical rules

KSg+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
c↑ −−−−−−−
A ∧A

(A ∧ B) ∨ (C ∧D)
m −−−−−−−−−−−−−−−−−−−−−−

[A ∨ C] ∧ [B ∨D]

cocontraction medial

t
i↓ −−−−−−−
A ∨ Ā

f
w↓ −−
A

A ∨A
c↓ −−−−−−−

A

A ∧ [B ∨ C]
s −−−−−−−−−−−−−−
(A ∧B) ∨ C

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

KSg
interaction weakening contraction switch
or identity

Fig. 2. Systems KSg and KSg+

on the other inference rules also apply to the equality rules, so there is no doubt
that the inference rules we apply really do have bounded depth.

When defining proof systems in this section, we implicitly assume that all the
equality inference rules are also in that system. However we distinguish between
the rebracketing rules and the unit rules in notation as we usually consider them
separately. We in fact make little use of the unit rules and include them only
as convention. In Sect. 4 we show that units and the unit rules can be dropped
with no major effect on proof complexity.

Definition 7. We define KSg = {i↓,w↓, c↓, s}, and KSg+ = KSg ∪ {c↑,m} and
these rules are defined in Fig. 2. As usual, both these systems also contain all
equality inference rules. These systems are sound and complete [1].

Definition 8 (Complexity). We say that a system S p-simulates a system T
if there is a polynomial p such that for every T -proof Ψ there is a S-proof Φ
with the same conclusion such that |Φ| ≤ p(|Ψ |). If the condition also holds for
all derivations, preserving premises as well as conclusions, then we say that S
strongly p-simulates T . When two systems p-simulate (resp. strongly p-simulate)
each other, we say they are p-equivalent (resp. strongly p-equivalent).

Definition 9 (Depth). For a formula A its depth, d(A), is the maximum num-
ber of alternations of ∧ and ∨ in its formula tree. The depth of a hole (resp. sub-
formula) in a context, d({ }, ξ{ }), is the number of alternations in the path to
the hole (resp. subformula) in the context’s formula tree. In a sequential deriva-
tion the depth of an inference step is the depth of the hole of the largest context
common to both its premiss and conclusion. The depth of an inference step is
invariant among its various sequential forms and so we extend uniquely this no-
tion for all derivations. When calculating depth we adopt the convention that
every formula or context has an outer ∧. For example:

d(a ∨ (b ∧ c)) = d({ }, a ∨ (b ∧ { })) = 2 d(a ∧ (b ∧ (c ∧ d))) = 0

On the Proof Complexity of Cut-Free Bounded Deep Inference 139

Notation 10. For a system S we write k-S to denote the system whose deriva-
tions are just S-derivations where all inference steps have depth less than or
equal to k. We call k-S a k-depth system. For an inference step ρ, we often

indicate its depth in parentheses on the right, e.g.
A

ρ(3) −−
B

indicates that d(ρ) = 3,

and we write S ∪{ρ(k)} to denote the system whose derivations are just S ∪{ρ}-
derivations with all ρ steps having depth k. For a context ξ{ }, the depth of its
hole may be indicated as a superscript, e.g. ξ2{ } for a context with a hole at
depth 2.

3 The Depth-Change Trick

In this section we present our main result, that bounded-depth KSg+ strongly p-
simulates any cut-free deep inference system. The result also holds for KSg∪{c↑},
and the problem remains open for systems without cocontraction.

Throughout this section we present derivations in sequential form, i.e. CoS
derivations, both for clarity and to establish complexity results directly compa-
rable to existing ones. Derivations are often presented with long sequences of
commutativity and associativity steps, and sometimes brackets (resp. paranthe-
ses) are omitted in large disjunctions (resp. conjunctions). From the point of
view of complexity this shortens proofs by at most cubic degree and so preserves
p-simulation. A proof of the following lemma can be found in [3]:

Lemma 11. Every rebracketing
A
Φ
∥∥∥∥{=}
B

can be achieved with quadratic length,

i.e. there exists
A
Ψ
∥∥∥∥{=}
B′

such that l(Ψ) = O(B2), and so |Ψ | = O(B3).

In this section we work in KSg+, the system of all the usual “analytic” rules for
propositional logic. The medial rule is, in fact, derivable from the other rules
and so does not have a major effect the complexity of the system:

(A ∧B) ∨ (C ∧D)
4·u2↓ −−−

([A ∨ f] ∧ [B ∨ f]) ∨ ([A ∨ f] ∧ [B ∨ f])
4·w↓ −−

([A ∨ C] ∧ [B ∨D]) ∨ ([A ∨ C] ∧ [B ∨D])
c↓ −−

[A ∨ C] ∧ [B ∨D]

In particular the main result presented here, that bounded-depth KSg+ strongly
p-simulates unbounded-depth KSg+, also holds for KSg ∪ {c↑}, i.e. without me-
dial. However since the derivation of medial contains depth 3 rule applications
(the weakening steps), the result would only hold for systems of depth greater
than or equal to 3, which is somewhat less clean than the result for KSg+.

140 A. Das

Definition 12. Observe the following derivations in 1-KSg+:

A ∨ (B ∧ C)
c↑(1) −−−−−−−−−−−−−−−−−−−−

(A ∧ A) ∨ (B ∧ C)
m(0) −−−−−−−−−−−−−−−−−−−−

[A ∨B] ∧ [A ∨ C]

(A ∧B) ∨ (A ∧ C)
m(0) −−−−−−−−−−−−−−−−−−−−

[A ∨A] ∧ [B ∨ C]
c↓(0) −−−−−−−−−−−−−−−−−−−

A ∧ [B ∨ C]

[A ∨B] ∧ [A ∨ C]
=(0) −−−−−−−−−−−−−−−−−−−

[A ∨B] ∧ [C ∨A]
s(1),s(0) −−−−−−−−−−−−−−−−−−−

A ∨ (B ∧ C) ∨A
=(1) −−−−−−−−−−−−−−−−−−

A ∨A ∨ (B ∧ C)
c↓(1) −−−−−−−−−−−−−−−−−−

A ∨ (B ∧ C)

A ∧ [B ∨ C]
c↑(0) −−−−−−−−−−−−−−−−−−

A ∧A ∧ [B ∨ C]
=(0) −−−−−−−−−−−−−−−−−−

A ∧ [B ∨ C] ∧ A
2·s(0) −−−−−−−−−−−−−−−−−−−−

(A ∧ B) ∨ (C ∧A)
=(1) −−−−−−−−−−−−−−−−−−−−

(A ∧ B) ∨ (A ∧ C)

From these we define four macro-rules, collectively known as the distributivity
laws, which should be understood as abbreviations for the above derivations:

A ∨ (B ∧ C)
d2↑ −−−−−−−−−−−−−−−−−−−

[A ∨B] ∧ [A ∨ C]

(A ∧ B) ∨ (A ∧ C)
d2↓ −−−−−−−−−−−−−−−−−−−−

A ∧ [B ∨ C]

[A ∨B] ∧ [A ∨ C]
d1↓ −−−−−−−−−−−−−−−−−−−

A ∨ (B ∧ C)

A ∧ [B ∨ C]
d1↑ −−−−−−−−−−−−−−−−−−−−

(A ∧ B) ∨ (A ∧ C)

Like switch and medial, these rules can increase or decrease the depth of a
formula. However, unlike switch and medial, all the above rules are invertible,
indeed rules in the same column are inverse to each other, and rules in the same
row are dual to each other. This invertibility allows us to “unfold” formulae at
will, bringing subformulae out to whatever depth we wish, and then pushing
them back down again. For example the following transformation decreases the
depth of an inference step by 1, where D is a formula at depth 2 containing its
premiss and ξ2 is the context of D:

ξ2{D}
ρ(k+1) −−−−−−−−

ξ2{D′}
� ρ′ :

ξ2{D}
∥∥∥∥∥∥∥{=(k)}

A ∧ [B ∨ (C ∧D)]
d2↑ −−−−−−−−−−−−−−−−−−−−−−−−

A ∧ [B ∨ C] ∧ [B ∨D]
ρ(k) −−−−−−−−−−−−−−−−−−−−−−−−−

A ∧ [B ∨ C] ∧ [B ∨D′]
d1↓ −−−−−−−−−−−−−−−−−−−−−−−−−

A ∧ [B ∨ (C ∧D′)]
∥∥∥∥∥∥∥{=(k)}

ξ2{D′}

(1)

The transformation is local and so preserves derivability. We extend this trick
to show that a 1-depth system strongly p-simulates unbounded depth systems.

On the Proof Complexity of Cut-Free Bounded Deep Inference 141

ξ2r{D}
ρ(2r) −−−−−−−−−

ξ2r{D′} � ρ′ :

ξ2r{D}
Ψ−1
1

∥∥∥∥∥∥∥∥∥∥
{=(1)}

A ∧
[
B1 ∨

(
C1 ∧ ξ2(r−1)

1 {D}
)]

d2↑ −−−
A ∧

(
[B1 ∨ C1] ∧

[
B1 ∨ ξ2(r−1)

1 {D}
])

Ψ−1
2

∥∥∥∥∥∥∥∥∥∥
{=(1)}

...

Ψ−1
r

∥∥∥∥∥∥∥∥∥∥
{=(1)}

A ∧ [B1 ∨ C1] ∧ · · · ∧ [Br ∨ (Cr ∧D)]
d2↑ −−

A ∧ [B1 ∨ C1] ∧ · · · ∧ ([Br ∨ Cr] ∧ [Br ∨D])
ρ(1) −−−

A ∧ [B1 ∨ C1] ∧ · · · ∧ ([Br ∨ Cr] ∧ [Br ∨D′])
d1↓ −−−

A ∧ [B1 ∨ C1] ∧ · · · ∧ [Br ∨ (Cr ∧D′)]

Ψr

∥∥∥∥∥∥∥∥∥∥
{=(1)}

...

Ψ3

∥∥∥∥∥∥∥∥∥∥
{=(1)}

(A ∧ [B1 ∨ C1]) ∧
(
[B2 ∨ C2] ∧

[
B2 ∨ ξ2(r−2)

2 {D′}
])

d1↓ −−−
(A ∧ [B1 ∨ C1]) ∧

[
B2 ∨

(
C2 ∧ ξ2(r−2)

2 {D′}
)]

Ψ2

∥∥∥∥∥∥∥∥∥∥
{=(1)}

A ∧
(
[B1 ∨ C1] ∧

[
B1 ∨ ξ2(r−1)

1 {D′}
])

d1↓ −−
A ∧

[
B1 ∨

(
C1 ∧ ξ2(r−1)

1 {D′}
)]

Ψ1

∥∥∥∥∥∥∥∥∥∥
{=(1)}

ξ2r{D′}

Fig. 3. Full depth-decreasing transformation of an inference step

Theorem 13 (The Depth-Change Trick). 1-KSg+ strongly p-simulates
KSg+.

Proof. Suppose ρ is an inference rule with depth 2r ≥ 2 1. Let D be its premiss,
D′ its conclusion and ξ its context. Let ξi{D} be the smallest subformula of
ξ{D} at depth 2i containing D, so that d(ξi{ }) = 2(r− i). In Fig. 3 we define a
transformation of ρ to a derivation ρ′ that has the same premiss and conclusion
but contains only at most depth 1 inference steps.
When d(ρ) ≤ 1 we define ρ′ = ρ, with ρ construed as a length 1 derivation. We
can now extend the transformation to whole derivations as follows:

1 If d(ρ) is odd then the derivation is the same, but in the middle D would now appear
in a disjunction, still at depth 1.

142 A. Das

A ∧ [B ∨ [C ∨D]]
ρ −−−−−−−−−−−−−−−−−−−−−
A ∧ [B ∨ [C ∨D′]]

� ρ′ :

A ∧ [B ∨ [C ∨D]]
= −−−−−−−−−−−−−−−−−−−−
A ∧ [[B ∨ C] ∨D]

ρ −−−−−−−−−−−−−−−−−−−−−
A ∧ [[B ∨ C] ∨D′]

= −−−−−−−−−−−−−−−−−−−−−
A ∧ [B ∨ [C ∨D′]]

A ∧ [B ∨ (C ∧D)]
ρ −−−−−−−−−−−−−−−−−−−−−−
A ∧ [B ∨ (C ∧D′)]

� ρ′ :

A ∧ [B ∨ (C ∧D′)]
d2↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A ∧ ([B ∨ C] ∧ [B ∨D′])
= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(A ∧ [B ∨ C]) ∧ [B ∨D′]
ρ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(A ∧ [B ∨ C]) ∧ [B ∨D]
= −−−−−−−−−−−−−−−−−−−−−−−−−−−−
A ∧ ([B ∨ C] ∧ [B ∨D])

d1↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−
A ∧ [B ∨ (C ∧D)]

Fig. 4. Interweaving rebracketing and distributivity steps

Φ :

A0
ρ1 −−−...
ρn −−−
An

� Φ′ :

A0
ρ′1 ===...
ρ′n ===
An

The depth of a formula is less than or equal to its size so we have ri ≤ |Ai|, where
2ri is the depth of ρi. Each Ψk is a rebracketing step which has cubic complexity
in the size of its conclusion, by Lemma 11, and the conclusions of Ψk have size
at most k · |Ai|. From this we calculate |ρ′i| ≤ 2 ·

∑r
k=1 |Ψk| ≤

∑r
k=1(k · |Ai|)3 ≤

|Ai|3
∑r

k=1 k
3 = O(|Ai|3 · r4) = O(|Ai|7), and so |Φ′| = O(|Φ|7). �

Note 14 (The Complexity of the Depth-Change Trick). The upper bound of the
polynomial degree of inefficiency estimated above, 7, can be improved upon
vastly, for example by interweaving the rebracketing and distributivity steps.

Consider the transformation of an inference rule in Fig. 4. When d(ρ) ≤ 1 we
define ρ′ = ρ, with ρ construed as a length 1 derivation. If the size of the
conclusion is n, then the transformation only needs to be applied at most n− 1
times (i.e. the number of connectives) to guarantee that ρ applies at depth less
than or equal to 1. Each application of the transformation at most adds n then
multiplies by 6, and so applying it n−1 times gives |ρ′| ≤

∑n−1
i=1 6 · i ·n = O(n3).

So the depth-change trick can be achieved with at most a cubic loss in efficiency.
In comparison, local systems in CoS, ones that operate only on atoms, suffer a
quadratic loss in efficiency, as shown in [3].

4 Reducing Non-determinism

Having shown that bounded-depth systems have similar size proofs as deep in-
ference, we can now construct systems that have far less non-determinism than
those in deep inference: at each stage of a proof there are fewer choices available.

On the Proof Complexity of Cut-Free Bounded Deep Inference 143

Axiom Structural rules Logical rules

K̇Ṡg+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
c↑ −−−−−−

A ∧ A

(A ∧ B) ∨ (C ∧ D)
m −−−−−−−−−−−−−−−−−−−−

[A ∨ C] ∧ [B ∨ D]

cocontraction medial

i↓ −−−−−−
A ∨ Ā

A
i↓ −−−−−−−−−−−−−

A ∧
[
B ∨ B̄

]
A

w↓ −−−−−−
A ∨ B

A ∨ A
c↓ −−−−−−

A

A ∧ [B ∨ C]
s −−−−−−−−−−−−−
(A ∧ B) ∨ C

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

K̇Ṡg
identity weakening contraction switch

Fig. 5. Unit-free systems K̇Ṡg and K̇Ṡg+

In this section we restrict our bounded-depth system to further reduce this
non-determinism. Proofs and derivations are given in synchronal form for con-
venience and we introduce a new measure, known as the height of a derivation,
for inductions. We give only proof sketches of theorems for the sake of brevity.

Definition 15 (Height of a Derivation). The height of a proof/derivation is
defined inductively as follows:

h(a) = 0
h(Φ ∧ Ψ) = max(h(Φ), h(Ψ))
h(Φ ∨ Ψ) = max(h(Φ), h(Ψ))

h

(
Φ
−−
Ψ

)

= 1 + h(Φ) + h(Ψ)

Remark 16. The height of a derivation is not invariant among its various forms.
Height is equal to length for sequential derivations but this is not, in general, true
for derivations in synchronal form. For example, the three forms of a derivation
given in Definition 5 have heights 1, 2, 2 respectively.

Units and unit rules, it turns out, do not play a major role in proof complexity; in
most circumstances we can polynomially transform a proof with units and unit
rules to one without. The system we present in Fig. 5 is similar to the unit-free
system appearing in [10]. From the point of view of proof search, the advantage
of this is clear: fewer rules and no constants means less non-determinism.

Definition 17 (Unit-Free Systems). The language of unit-free open deduc-
tion is just the language of open deduction with all units removed. Unit-free
derivations are derivations containing no units (and so no instances of the unit
rules), and a unit-free proof is a unit-free derivation with empty premiss. With
inference rules defined as in Fig. 5 define K̇Ṡg = {i↓,w↓, c↓, s} and K̇Ṡg+ =
{i↓,w↓, c↓, c↑, s,m} respectively, along with all rebracketing rules but not the unit
rules.

The special cases when a proof-with-units cannot be transformed to a unit-free
proof is when the conclusion “reduces”, in some sense, to just a unit. Otherwise
we reduce the conclusion to some unique unit-free formula and construct a proof
of that. This reduction is captured by the following equivalence relation:

144 A. Das

Definition 18 (Unitary Equivalence on Formulae). We define unitary
equivalence, ∼=, on formulae by closing the following equations by reflexivity,
symmetry, transitivity and by applying context closure.

A ∨ f ∼= A ∼= f ∨A
A ∧ t ∼= A ∼= t ∧ A
A ∨ t ∼= t ∼= t ∨A
A ∧ f ∼= f ∼= f ∧A

Context Closure:

if A ∼= B then ξ{A} ∼= ξ{B}

Remark 19. ∼= is an equivalence relation on formulae, and each formula’s equiv-
alence class contains either t, f or a unique unit-free formula, which we call its
reduction. The reduction of a formula can be calculated in polynomial time [3].

Theorem 20 (Dropping Units). A KSg+-proof whose conclusion reduces to
a unit-free formula A can be polynomially transformed to a unit-free proof of A.

Proof. Replace instances of units and unit rules with the appropriate unit-free
rules and formulae. The exceptional cases are when t appears in a disjunction
or f appears in a conjunction in the conclusion. For example:

−∥∥∥∥
(

A ∧ B
w↓ −−−−−−−−−−−−
A ∧ [B ∨ t]

)

−∥∥∥∥
⎛

⎜
⎝

A ∧B
u2↓ −−−−−−−−−−−−

[A ∨ f] ∧ B
s −−−−−−−−−−−−−−−−
A ∨ (B ∧ f)

⎞

⎟
⎠

In both examples the conclusion reduces to A from premiss A ∧ B, which is an
instance of coweakening (see [3]). We show the admissibility of coweakening by
transforming the proof of A ∧ B to a proof, of equal length, of a formula that
reduces to A as follows: replace each atom of B in the conclusion with t, then
mimic the proof of A ∧ B upwards. Identity steps affected by this substitution
are replaced by weakening to give a valid proof. �

Corollary 21. 1-K̇Ṡg+ p-simulates KSg+ over unit-free formulae.

Proof. The proof of the depth-change trick (Theorem 13) makes no use of units
and so can be replicated for the unit-free system in the obvious manner. �

Henceforth rules and systems are assumed to be unit-free if not already specified,
implicitly containing the rebracketing rules but not the unit rules.

In what follows we drop the structural rules contraction, identity and weak-
ening from the system; again, this provides a clear advantage from the point of
view of proof search. It is known that these rules can be dropped in both sequent
and deep inference systems and dropping these rules for bounded-depth systems
does not have a major effect on proof complexity.

Before we can drop the structural rules, we must replace switch and medial
with distributivity rules d1↓ and d2↓. Whether these rules are better or worse
for proof search is debatable: on one hand they can blow up a formula exponen-
tially large, while the former rules are linear, but on the other hand, since they

On the Proof Complexity of Cut-Free Bounded Deep Inference 145

A
w↓ −−−−−−−
A ∨ C

∧ [B ∨ C]

d1↓ −−−−−−−−−−−−−−−−−−−−−−
(A ∧B) ∨ C

A ∧B
w↓ −−−−−−−−−−−−−−−−−−−−−−

(A ∧B) ∨ (A ∧D)
d2↓ −−−−−−−−−−−−−−−−−−−−−−−−−

A ∧ [B ∨D]

∨

C ∧D
w↓ −−−−−−−−−−−−−−−−−−−−−−

(C ∧ B) ∨ (C ∧D)
d2↓ −−−−−−−−−−−−−−−−−−−−−−−−−

C ∧ [B ∨D]
d2↓ −−

[A ∨ C] ∧ [B ∨D]

switch(0) medial(0, 1)

A ∧ [B ∨ C]
w↓ −−

(A ∧ [B ∨ C]) ∨ (D ∧ [B ∨ C])
d2↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[A ∨D] ∧ [B ∨ C]

∨

D
d2↓ −−−−−−−−−−−−−−−−−−−−−−−−−−

(A ∧D) ∨
D

c↑ −−−−−−−
D ∧D

w↓ −−−−−−−−−−−−−−−−−−−−−−−
[A ∨D] ∧D

d2↓ −−
A ∨D

w↓ −−−−−−−−−−−−
A ∨ C ∨D

∧ [B ∨ C ∨D]

d1↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(A ∧ B) ∨ C ∨D

switch(1)

Fig. 6. Derivations of switch and medial in 1-{i↓,w↓, c↓, c↑, d1↓, d2↓}

are invertible, there is no need to check the validity of the inference, which is
beneficial from the point of view of automated deduction. In actuality the two
sets of rules are easily derivable from each other in the presence of contraction
and cocontraction, and so the first point is irrelevant.

Theorem 22. 1-{i↓,w↓, c↓, c↑, d1↓, d2↓} p-simulates KSg+.

Proof. See Fig. 6 for derivations of switch and medial in the former system. �

Corollary 23. d1↑(0),d2↑(0) are derivable in 1-{w↓, c↑, d1↓, d2↓}.

Proof. Immediate from Definition 12 and derivations in Fig. 6. �

Remark 24. Since we can derive the inverse distributivity rules without identity
or contraction, we can also use the depth-change trick after absorbing these rules.

Lemma 25. c↓(2) is derivable in 2-{w↓, c↑, d1↓, d2↓}.

Proof. See Fig. 7. �

Theorem 26 (Dropping Contraction). 1-{i↓,w↓, c↑, d1↓, d2↓} p-simulates
KSg+.

Proof. Call the former system 1-S for convenience. We work in 2-(S ∪ {c↓}),
which contains 1-(S ∪{c↓}) and so p-simulates KSg by Theorem 22, and observe
that every sound instance of contraction can either be pushed to depth 2 using
distributivity or otherwise trivially eliminated. By Lemma 25 it follows that 2-S
p-simulates KSg+. Finally 1-S p-simulates 2-S by Remark 24. �

146 A. Das

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B
c↑ −−−−−−−
B ∧B

∨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C ∧

D ∨D
c↑ −−−−−−−−−−−−−−−−−−−−−

[D ∨D] ∧ [D ∨D]
d1↓ −−−−−−−−−−−−−−−−−−−−−−−−

D ∨ (D ∧D)
c↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[D ∨ (D ∧D)] ∧ [D ∨ (D ∧D)]
d1↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(D ∧D) ∨ (D ∧D)
d2↓ −−−

D
c↑ −−−−−−−
D ∧D

w↓ −−−−−−−−−−−−−−−−−−−−−−
(D ∧D) ∨ (D ∧ C)

∧ [D ∨D]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

d2↓ −−−

C ∧D
w↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−
B ∨ (C ∧ B) ∨ (C ∧D)

∧

[D ∨ C] ∧ [D ∨D]
d1↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

D
w↓ −−−−−−−−−−−−−−
D ∨ (C ∧ B)

∨ (C ∧D)

d1↓ −−−
(B ∧D) ∨ (C ∧B) ∨ (C ∧D)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −−
(B ∧ B) ∨ (B ∧D)

d2↓ −−−−−−−−−−−−−−−−−−−−−−
B ∧ [B ∨D]

∨
(C ∧B) ∨ (C ∧D)

d2↓ −−−−−−−−−−−−−−−−−−−−−−
C ∧ [B ∨D]

d2↓ −−
[B ∨ C] ∧ [B ∨D]

d1↓ −−−−−−−−−−−−−−−−−−−−−
B ∨ (C ∧D)

Fig. 7. Derivation of c↓(2) in 2-{w↓, c↑, d1↓, d2↓}

Identity can be dropped since all instances can be pushed to the top of a proof
and incorporated within an axiom. Weakening, on the other hand plays an es-
sential role in the depth-change trick and dropping identity, but can nonetheless
be proved from scratch. The following lemma is proved in [1]:

Lemma 27. A K̇Ṡg+-derivation can be polynomially transformed into one where
all identity steps appear at the top and have depth 0.

Definition 28. Generalized identity is the axiom id −−−−−−−−−−−−−−−−−∧
iBi ∨ Ai ∨ Āi

.

Theorem 29 (Dropping Identity). 1-{id,w↓, c↑, d1↓, d2↓} p-simulates KSg+.

Proof. Identity is not used in the depth-change trick so just drop identity first,
by Lemma 27, then apply the depth-change trick (Theorem 13). �

Theorem 30 (Dropping Weakening). 1-{id, c↑, d1↓, d2↓} p-simulates KSg+.

Proof. We notice that any sound instance of weakening in a proof can be trans-
formed to depth 1 instances, of the same height, using distributivity. Then ob-
serve that any depth 1 instance of weakening in a proof can always be “moved”
up above another rule, possibly reducing depth and using distributivity if nec-
essary, thereby reducing the height of its application. The theorem follows by
induction on the height of an instance of weakening. �

On the Proof Complexity of Cut-Free Bounded Deep Inference 147

Γ
c2 −−−−−−−
Γ Γ

Γ,A ∨ B
∨2 −−−−−−−−−−

Γ,A,B

Γ,A ∧B,C ∧D
∧2 −−−−−−−−−−−−−−−−−−−−
Γ,A,C Γ,B,D

id −−−−−
A, Ā

Γ
w −−−−−
Γ,A

Γ,A,A
c1 −−−−−−−−

Γ,A

Γ,A,B
∨1 −−−−−−−−−−
Γ,A ∨ B

Γ,A B,Δ
∧1 −−−−−−−−−−−−−−
Γ,A ∧ B,Δ

identity weakening contraction disjunction conjunction

Fig. 8. System cut-free GS1p+

5 Conclusions

In this paper we showed that cut-free bounded-depth systems containing cocon-
traction can polynomially simulate their unbounded-depth counterparts, and
have discussed their complexity. We argued the favorability of such systems for
proof-search and further improved the situation by showing the admissibility of
units, unit rules and certain structural rules with at most polynomial increase
in proof size. Now we present some directions in which research in this area may
continue, and for which the results presented here may be beneficial.

5.1 Applications to Sequent Calculi

Sequent calculi can essentially be considered depth 1 systems, since the relation
between branches is conjunction and the comma is interpreted as disjunction. It
is therefore possible to embed our systems into a sequent-like system, augmented
slightly to give it top-down symmetry. We present an example of such a system
in Fig. 8, based on the one-sided calculus called GS1p in [11], although less non-
deterministic systems can be designed by making use of the results in Sect. 4.
While this system is less deterministic than standard sequent calculi it is still a
vast improvement to the non-determinism present in unbounded deep inference.

5.2 Bounded-Depth Systems Not Containing Cocontraction

While we have proved that bounded-depth KSg ∪ {c↑} polynomially simulates
unbounded-depth KSg ∪ {c↑}, it remains open whether a similar result can be
obtained for KSg. We think that this is unlikely as the depth-change trick is
reliant on cocontraction to compress proofs. It is simple to observe that the
inverse distributivity rules, d1↑ and d2↑, cannot be derived in a system not
containing cocontraction. We make the following conjecture:

Conjecture 31. No bounded-depth KSg system polynomially simulates KSg.

If the conjecture is true, then it would be interesting to see how the efficiency of
bounded-depth systems without cocontraction change as the bound on depth is
increased. One might intuitively expect a hierarchy of systems, each unable to p-
simulate its successor, however it is also possible that all bounded-depth systems
are p-equivalent but still not p-equivalent to the unbounded depth system.

148 A. Das

5.3 The Effect of Cocontraction on Proof Complexity

It is currently an open problem as to whether KSg can p-simulate KSg ∪ {c↑}
but this is thought unlikely to be the case [3]. It is believed that cocontraction
compresses proofs by sometimes an exponential factor and this is supported by
observational evidence, as well as research in “atomic flows” [7].

An answer to the previous question, on bounded-depth KSg, is probably easier,
but may shed some light on this situation.

Acknowledgement. The author thanks Alessio Guglielmi for reading the
manuscript thoroughly and making several suggestions including, significantly,
that the depth-change trick could be extended to simulate systems of unbounded
depth.

References

1. Brünnler, K.: Deep Inference and Symmetry in Classical Proofs. Logos Verlag,
Berlin (2004), http://www.iam.unibe.ch/~kai/Papers/phd.pdf

2. Brünnler, K.: Deep inference and its normal form of derivations. In: Beckmann, A.,
Berger, U., Löwe, B., Tucker, J.V. (eds.) CIE 2006. LNCS, vol. 3988, pp. 65–74.
Springer, Heidelberg (2006), http://www.iam.unibe.ch/~kai/Papers/n.pdf

3. Bruscoli, P., Guglielmi, A.: On the proof complexity of deep inference. ACM Trans-
actions on Computational Logic 10(2), article 14, 1–34 (2009),
http://cs.bath.ac.uk/ag/p/PrComplDI.pdf

4. Bruscoli, P., Guglielmi, A., Gundersen, T., Parigot, M.: Quasipolynomial nor-
malisation in deep inference via atomic flows and threshold formulae (2009),
http://cs.bath.ac.uk/ag/p/QuasiPolNormDI.pdf (submitted)

5. Clote, P., Kranakis, E.: Boolean Functions and Computation Models. Springer,
Heidelberg (2002)

6. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
Journal of Symbolic Logic 44(1), 36–50 (1979)

7. Guglielmi, A., Gundersen, T.: Normalisation control in deep inference via
atomic flows. Logical Methods in Computer Science 4(1:9), 1–36 (2008),
http://www.lmcs-online.org/ojs/viewarticle.php?id=341

8. Guglielmi, A., Gundersen, T., Parigot, M.: A proof calculus which reduces syntactic
bureaucracy. In: Lynch, C. (ed.) RTA 2010. Leibniz International Proceedings in
Informatics (LIPIcs), vol. 6, pp. 135–150. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik (2010), http://drops.dagstuhl.de/opus/volltexte/2010/2649

9. Straßburger, L.: From deep inference to proof nets. In: Bruscoli, P., Lamarche,
F., Stewart, C. (eds.) Structures and Deduction. pp. 2–18. Technische Universität
Dresden, iCALP Workshop (2005) ISSN 1430-211X,
http://www.lix.polytechnique.fr/~lutz/papers/deepnet-SD05.pdf

10. Straßburger, L.: Extension without cut (2009),
http://www.lix.polytechnique.fr/~lutz/papers/psppp.pdf (submitted)

11. Troelstra, A., Schwichtenberg, H.: Basic Proof Theory. Cambridge Tracts in Theo-
retical Computer Science, vol. 43. Cambridge University Press, Cambridge (1996)

http://www.iam.unibe.ch/~kai/Papers/phd.pdf
http://www.iam.unibe.ch/~kai/Papers/n.pdf
http://cs.bath.ac.uk/ag/p/PrComplDI.pdf
http://cs.bath.ac.uk/ag/p/QuasiPolNormDI.pdf
http://www.lmcs-online.org/ojs/viewarticle.php?id=341
http://drops.dagstuhl.de/opus/volltexte/2010/2649
http://www.lix.polytechnique.fr/~lutz/papers/deepnet-SD05.pdf
http://www.lix.polytechnique.fr/~lutz/papers/psppp.pdf

The Modal µ-Calculus Caught Off Guard

Oliver Friedmann1 and Martin Lange2

1 Dept. of Computer Science, University of Munich, Germany
2 Dept. of Elect. Eng. and Computer Science, University of Kassel, Germany

Abstract. The modal μ-calculus extends basic modal logic with second-
order quantification in terms of arbitrarily nested fixpoint operators. Its
satisfiability problem is EXPTIME-complete. Decision procedures for
the modal μ-calculus are not easy to obtain though since the arbitrary
nesting of fixpoint constructs requires some combinatorial arguments for
showing the well-foundedness of least fixpoint unfoldings. The tableau-
based decision procedures so far also make assumptions on the unfoldings
of fixpoint formulas, e.g. explicitly require formulas to be in guarded
normal form. In this paper we present a tableau calculus for deciding
satisfiability of arbitrary, i.e. not necessarily guarded μ-calculus formu-
las. The novel contribution is a new unfolding rule for greatest fixpoint
formulas which shows how to handle unguardedness without an explicit
transformation into guarded form, thus avoiding a (seemingly) exponen-
tial blow-up in formula size. We prove soundness and completeness of
the calculus, and discuss its advantages over existing approaches.

1 Introduction

The modal μ-calculus Lμ as introduced by Kozen [12] is a fundamental modal fix-
point logic. It is expressively equivalent to the bisimulation-invariant fragment
of monadic second-order logic [10] and can therefore express all bisimulation-
invariant properties of Kripke structures that can be defined using finite au-
tomata or any other machinery with at most regular expressive power. Conse-
quently, there are embeddings of temporal logics like CTL and CTL∗ into Lμ
[5,3], as well as of dynamic logics like PDL [12], even when extended with certain
extras [7].

Decidability of Lμ can be established [13] by observing that its semantics can
be expressed in monadic second-order logic which is known to be decidable due to
Rabin’s famous result from 1969 [18]. This, however, only gives a non-elementary
upper complexity bound. The easy embedding of PDL yields a lower bound of
deterministic exponential time, also known by the time of Lμ’s invention [8].

Closing this gap has taken some time and effort. Emerson and Streett showed de-
cidability in deterministic triple exponential time [20]. Their procedure reduces the
satisfiability problem to the problem of testing a finite tree automaton for empti-
ness. This finite tree automaton is obtained as the product of two
automata: the first, called local automaton, accepts all locally-consistentHintikka-
tree structures for the input formula. A second automaton, called global automa-
ton, is needed which checks for well-foundedness of the unfolding relation for least

K. Brünnler and G. Metcalfe (Eds.): TABLEAUX 2011, LNAI 6793, pp. 149–163, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

150 O. Friedmann and M. Lange

fixpoint constructs. The product of these two accepts exactly the Hintikka tree
models of the original formula which is sufficient for deciding satisfiability. Later,
Emerson and Jutla have improved the involved automata-theoretic constructions
to obtain EXPTIME-completeness of this problem [6].

There are also tableau-based decision procedure for (fragments) of Lμ. Kozen
gave a tableau calculus in the introductory paper but could only prove soundness
and completeness for the so-called aconjunctive fragment [12]. This has been
extended by Walukiewicz to the so-called weak aconjunctive fragment [22] in
the context of finding a complete axiom system for Lμ. The differences between
tableau-based satisfiability checking and a proof system for validity are, however,
merely a matter of taste in this setting. The property of being aconjunctive
implies that any least fixpoint construct can only regenerate in a foreseeable
way through a sequence of Hintikka sets which eliminates a large part of the
difficulty in deciding well-foundedness of the unfolding relation. Bradfield and
Stirling wrote “it is an open question whether the tableau technique can be made
to work directly for all formulae” [2]. A tableau calculus which also works for
non-aconjunctive formulas has recently been presented by Jungteerapanich [11].

These tableau-based decision procedures still impose a restriction on the syn-
tax of formulas. They only work for formulas in guarded form which intuitively
ensures that every infinite sequence of Hintikka sets corresponds to an infinite
sequence of states in a Kripke model. Guardedness synchronizes all subformu-
las in a tableau node via the usual rule for modalities. When applying rules to
unguarded formulas in an arbitrary order, it is possible to leave infinite unfold-
ings of least fixpoint formulas undetected by continuously unfolding a greatest
fixpoint construct.

It is known that every formula can be transformed into an equivalent guarded
one. Such constructions are presented in several places in the literature, either
without an explicit analysis of the incurring blow-up which is easily seen to be ex-
ponential [1,22], or stating that the blow-up is polynomial, for instance quadratic
[15] or even just linear [14]. While the latter two seem to be correct, their ana-
lyzes are both flawed. This is also indicated by the fact that both constructions
are actually the same but are said to be linear once and quadratic the other time.
Still, both analyzes do not handle multiple occurrences of variables correctly, and
there are unguarded formulas which are transformed into exponentially larger
ones by these constructions, e.g. μX1 . . . μXn.X1 ∨ . . .∨Xn ∨〈a〉(X1 ∧ . . .∧Xn).
This is even true for the stronger measurement of size as number of subformulas.
Thus, all transformations into guarded form known until now are exponential,
and we strongly doubt the existence of a polynomial translation.

In this paper we present a tableau-based decision procedure for the full Lμ
in unrestricted form. The requirement for guardedness is eliminated using a
special unfolding rule for greatest fixpoint formulas. Intuitively, unfolding of
greatest fixpoint constructs leads to two subgoals: one containing this unfolding,
the other one not containing it. We prove soundness and completeness of this
calculus and show how to obtain a decision procedure from it. This uses some

The Modal μ-Calculus Caught Off Guard 151

automata-theoretic machinery similar to the use of the global automata in the
approaches of Emerson et al.

The paper provides the following benefits: it presents a novel approach of
dealing with unguarded fixpoint formulas inside a tableau calculus. This may be
applicable to other logics with similar syntactic facets (like nested Kleene stars
in PDL for instance). With the required pre-transformation into guarded form,
Jungteerapanich’s tableaux only lead to a nondeterministic double exponential
time algorithm. The decision procedure derived from the tableaux presented here
runs in deterministic single exponential time. This even marginally beats the
worst-case runtime of the automata-theoretic procedure. Finally, the tableaux
presented here are used in what seems to be the first attempt at implementing
a decision procedure for Lμ, realized in the tool MLSolver [9].

The paper is organised as follows. Sect. 2 recalls Lμ and necessary techni-
calities. Sect. 3 presents the tableaux calculus. The proofs of soundness and
completeness of these tableaux are tedious and require the usual combinatorial
arguments seen in other correctness proofs for Lμ. Therefore they are deferred
to an appendix. Sect. 4 shows how to obtain a complexity-theoretically optimal
decision procedure for Lμ from these tableaux.

2 The Modal µ-Calculus

Transition Systems. A labeled transition system (LTS) over a set of action names
Σ and a set of atomic propositions P is a tuple T = (S,−→, �) where S is a set
of states, −→ ⊆ S × Σ × S defines a set of transitions between states that are
labeled with action names, and � : S → 2P labels each state with a set of atomic
propositions that are true in this state.

Syntax. Let Σ and P be as above and V be a set of variables. Formulas of the
modal μ-calculus Lμ in positive normal form are given as follows.

ϕ ::= q | q | X | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | μX.ϕ | νX.ϕ

where X ∈ V , q ∈ P , and a ∈ Σ.
The operators μ and ν act as binders for the variables in a formula. A free

occurrence of a variable X is therefore one that does not occur under the scope
of such a binder. We assume all formulas ϕ to be well-named in the sense that
each variable is bound at most once. We will write σ for either μ or ν.

We write ϕ[ψ/X] to denote the formula that results from ϕ by replacing every
free occurrence of the variable X in it with the formula ψ.

Fischer-Ladner Closure. The Fischer-Ladner closure of a formula ϕ is the least
set Cl (ϕ) that contains ϕ and satisfies the following.

– If ψ1 ∧ ψ2 ∈ Cl (ϕ) or ψ1 ∨ ψ2 ∈ Cl(ϕ) then ψ1, ψ2 ∈ Cl(ϕ).
– If 〈a〉ψ ∈ Cl(ϕ) or [a]ψ ∈ Cl(ϕ) then ψ ∈ Cl (ϕ).
– If σX.ψ ∈ Cl(ϕ) then ψ[σX.ψ/X] ∈ Cl(ϕ).

It is a standard exercise to show that |Cl(ϕ)| is linear in the syntactic length of
ϕ. We therefore define |ϕ| := |Cl(ϕ)|.

152 O. Friedmann and M. Lange

Fixpoint Nestings. Let ϕ be fixed and take two fixpoint formulas σX.ψ, σ′Y.ψ′ ∈
Cl(ϕ). The latter depends on the former if this X occurs freely inside of ψ′. Let
	ϕ be the reflexive-transitive closure of this dependency order. The alternation
depth of ϕ, ad(ϕ), is the maximal length of a
ϕ-chain s.t. adjacent formulas in
this chain are of different fixpoint type μ or ν.

Semantics. Formulas of Lμ are interpreted in states s of an LTS T = (S,−→, �)
which we assume fixed for the moment. Let ρ : V → 2S be an environment used
to interpret free variables. We write ρ[X �→ T] to denote the environment which
maps X to T and behaves like ρ on all other arguments. The semantics is given
as a function mapping a formula to the set of states that it is true in w.r.t. the
environment.

[[q]]ρ = {s ∈ S | q ∈ �(s)}
[[q]]ρ = {s ∈ S | q �∈ �(s)}
[[X]]ρ = ρ(X)
[[ϕ ∨ ψ]]ρ = [[ϕ]]ρ ∪ [[ψ]]ρ
[[ϕ ∧ ψ]]ρ = [[ϕ]]ρ ∩ [[ψ]]ρ
[[〈a〉ϕ]]ρ = {s ∈ S | ∃t ∈ [[ϕ]]ρ with s a−→ t}
[[[a]ϕ]]ρ = {s ∈ S | ∀t ∈ S : if s a−→ t then t ∈ [[ϕ]]ρ}
[[μX.ϕ]]ρ =

⋂
{T ⊆ S | [[ϕ]]ρ[X �→T] ⊆ T }

[[νX.ϕ]]ρ =
⋃
{T ⊆ S | T ⊆ [[ϕ]]ρ[X �→T]}

Two formulas ϕ and ψ are equivalent, written ϕ ≡ ψ, iff for all LTS and all
environments ρ we have [[ϕ]]ρ = [[ψ]]ρ. We may also write s |=ρ ϕ instead of
s ∈ [[ϕ]]ρ.

Guarded Form. A formula ϕ is guarded w.r.t. a variable X iff every occurrence
of X that is bound by some σX.ψ is in the scope of a modal operator 〈a〉 or [a]
within ψ. A formula ϕ is guarded iff ϕ is guarded w.r.t. every bound variable.

Proposition 1 ([1,22,14,15]). For every ϕ ∈ Lμ there is a guarded ϕ′ s.t.
ϕ′ ≡ ϕ, |ϕ′| = 2O(|ϕ|), and ad(ϕ′) = ad(ϕ).

We remark that guarded transformation can increase the number of μ-bound
variables in a formula, even exponentially. This measure is used at the end of
Sect. 4 in a comparison of different decision procedures.

3 Tableaux for the Modal µ-Calculus

We fix a formula ϑ and present a calculus of infinite tableaux for this particular
ϑ. A pre-tableau for ϑ is a possibly infinite but finitely-branching tree in which
nodes are labeled with subsets of Sub(ϑ), the set of subformulas of ϑ. The root is
labeled with the singleton set containing ϑ, and successors in the tree are being
built using the rules in Fig. 1.

The Modal μ-Calculus Caught Off Guard 153

(Or)
ϕ0 ∨ ϕ1, Φ

ϕi, Φ
(And)

ϕ0 ∧ ϕ1, Φ

ϕ0, ϕ1, Φ
(FPμ)

μX.ϕ, Φ

ϕ[μX.ϕ/X], Φ

(FPU
ν)

νX.ϕ, Φ

Φ ϕ[νX.ϕ/X], Φ
(FPG

ν)
νX.ϕ, Φ

ϕ[νX.ϕ/X], Φ
X guarded in ϕ

(Mod)
〈a1〉ϕ1, . . . , 〈an〉ϕn, [b1]ψ1, . . . , [bm]ψm, q1, . . . , qk, p1, . . . , ph

ϕ1, {ψi | a1 = bi} ϕ2, {ψi | a2 = bi} . . . ϕn, {ψi | am = bi} ∀i, j.qi �= pj

Fig. 1. The tableaux rules for Lμ satisfiability

The rules for the boolean connectives are straight-forward, and the modal rule
(Mod) is also the usual one. Least fixpoint variables are handled using simple un-
folding with rule (FPμ). The handling of greatest fixpoints is different, though.
Rule (FPUν) creates two subgoals, one containing the usual unfolding of the fix-
point formula, the other one consisting of the current side formulas only. This
rule can be applied to unfold any greatest fixpoint formula. On the other hand,
rule (FPGν) is the usual unfolding rule which can only be applied to formulas in
which the bound variable is guarded.

A formula ϑ induces the connection relation�⊆ 2Sub(ϑ)×Sub(ϑ)× 2Sub(ϑ)×
Sub(ϑ) defined as follows. We have Φ,ϕ� Ψ, ψ iff there is an instance of a rule
of Fig. 1 s.t.

– ϕ ∈ Φ, ψ ∈ Ψ , and
– Φ is the conclusion (on top), Ψ is one of the premisses (below), and
– either ϕ is not principal in this rule application and ψ = ϕ, or ϕ is a principal

formula in Φ and ψ is a replacement of ϕ.

For example, in rule (And), ϕ0∧ϕ1 is connected to both ϕ0 and ϕ1. In rule (Mod),
�ψj is connected to ψj in any premiss, literals are not connected to anything,
and ♦ϕi is only connected to ϕi in the i-th premiss; etc.

A thread in an infinite pre-tableaux branch Φ0, Φ1, Φ2, . . . is an infinite se-
quence ϕ0, ϕ1, ϕ2, . . . s.t. Φi, ϕi � Φi+1, ϕi+1 for every i ∈ N. It is called active
if the thread’s formulas are principal infinitely often.

Note that only the unfolding rules (FPμ) and (FPUν) do not decrease the size
of a principal formula. Hence, each active thread must contain infinitely many
formulas of the form σX.ψ. A thread is called μ-thread if the greatest (w.r.t.

ϑ) formula occurring in it is of the form μX.ϕ. If it is of the form νX.ϕ then
the thread is a ν-thread. The variable X is called thread variable. The following
is not hard to see.

Lemma 1. Every infinite branch in pre-tableau contains at least one active
thread and every active thread is either of type μ or ν.

A tableau for ϑ is a pre-tableau s.t. every finite branch ends in a node labeled
with �-formulas and consistent literals only, and every infinite branch does not
have an active μ-thread.

154 O. Friedmann and M. Lange

νX. (〈a〉X ∨ μY.(X ∨ 〈b〉Y)) ∧ νR.μS. (([a]S) ∨ ([b]R))
(And)

νX. (〈a〉X ∨ μY.(X ∨ 〈b〉Y)) , νR.μS. (([a]S) ∨ ([b]R))
(FPG

ν)
νX. (〈a〉X ∨ μY.(X ∨ 〈b〉Y)) , μS.

(
([a]S) ∨ ([b]ϕR)

)

(FPμ)
νX. (〈a〉X ∨ μY.(X ∨ 〈b〉Y)) , ([a]ϕS) ∨ ([b]ϕR)

(Or)
νX. (〈a〉X ∨ μY.(X ∨ 〈b〉Y)) , [a]ϕS

(FPU
ν) 〈a〉ϕX ∨ μY.(ϕX ∨ 〈b〉Y), [a]ϕS
(Or)

〈a〉ϕX, [a]ϕS
(Mod)

νX. (〈a〉X ∨ μY.(X ∨ 〈b〉Y)) , μS.
(
([a]S) ∨ ([b]ϕR)

)

(FPμ)
νX. (〈a〉X ∨ μY.(X ∨ 〈b〉Y)) , ([a]ϕS) ∨ ([b]ϕR)

(Or)
νX. (〈a〉X ∨ μY.(X ∨ 〈b〉Y)) , [b]ϕR

(FPU
ν) 〈a〉ϕX ∨ μY.(ϕX ∨ 〈b〉Y), [b]ϕR
(Or)

μY.(ϕX ∨ 〈b〉Y), [b]ϕR
(FPμ)

ϕX ∨ 〈b〉ϕY , [b]ϕR
(Or)

〈b〉ϕY , [b]ϕR
(Mod)

μY.(ϕX ∨ 〈b〉Y), νR.μS. (([a]S) ∨ ([b]R))
(FPμ)

ϕX ∨ 〈b〉ϕY , νR.μS. (([a]S) ∨ ([b]R))
(Or)

νX. (〈a〉X ∨ μY.(X ∨ 〈b〉Y)) , νR.μS. (([a]S) ∨ ([b]R))

[b]ϕR

.

.

.

[a]ϕS
(Mod)

μS.
(
([a]S) ∨ ([b]ϕR)

)

(FPμ)
([a]ϕS) ∨ ([b]ϕR)

(Or)
[b]ϕR

(Mod)
νR.μS. (([a]S) ∨ ([b]R))

(FPG
ν)

μS.
(
([a]S) ∨ ([b]ϕR)

)

Fig. 2. A tableau for νX. (〈a〉X ∨ μY.(X ∨ 〈b〉Y)) ∧ νR.μS. (([a]S) ∨ ([b]R)).

Example 1. Consider ϕ = νX. (〈a〉X ∨ μY.(X ∨ 〈b〉Y))∧νR.μS. (([a]S) ∨ ([b]R))
which states that every path consists of a- and b-labelings, every path has in-
finitely many b’s, and that there exists a path with infinitely many a’s. This
formula is obviously satisfiable.

See Fig. 2 for a tableau witnessing the satisfiability of ϕ. We write ϕF as an
abbreviation for the fixpoint bodies, i.e. ϕS = ([a]S) ∨ ([b]R), etc.; the tableau
has only infinite branches, and every thread is a ν-thread. All threads are marked
by the arrow notation.

At this point, we only state correctness of the tableau calculus. The proofs of
soundness and completeness are technical using some combinatorial machinery
– as is usual for Lμ– but do not necessarily provide new insights into the theory
of this logic. Therefore they are deferred to an appendix.

Theorem 1. Let ϑ ∈ Lμ. Then ϑ is satisfiable iff there is a tableau for ϑ.

We conclude this section with a remark on the handling of greatest fixpoint
formulas. Many formulas used in applications are naturally guarded. Since the
tableau calculus is sound and complete for the entire Lμ, it can be used for
guarded formulas as well. However, handling guarded greatest fixpoint operators
with rule (FPUν) may introduce unnecessary subgoals. Rule (FPG

ν can therefore
be regarded as an optimization. However, it is not a priori clear whether it is
advisable to use this optimization. It clearly reduces the number of immediate
subgoals in a tableau but these subgoals may be present somewhere else any-
way in which case it only reduces the number of connections between subgoals.
Neither decreases the asymptotic complexity of the calculus.

The Modal μ-Calculus Caught Off Guard 155

4 A Decision Procedure Based on Tableaux

A natural question is: can the tableaux of the previous section be used to decide
satisfiability for Lμ? In this section we will show that the answer is positive
and compare the resulting procedure with existing ones. The procedure works
as follows. We first show that pre-tableau branches without μ-threads can be
recognized by a deterministic parity automaton (DPA). The pre-tableaux nodes
can be annotated with states of this DPA resulting in a graph equipped with
a parity condition. There are two kinds of branching in this graph: existential
branching corresponding to choices with rule (OR), and universal branching cor-
responding to choices between different subgoals. This graph is finite and forms
a parity game [16]. The question whether or not a tableau exists for an input
formula reduces to the problem of solving this game.

4.1 Automata-Theoretic Machinery

Again, we fix a formula ϑ. It induces an alphabet Σϑ representing transitions
from a goal to a subgoal in a rule application. These symbolic alphabet letter
should determine a subgoal of a given goal uniquely and succinctly. Clearly this
can be done by naming the principal formula, possibly its replacement, as well
as the number of the subgoal of which there can at most be |ϑ| many. It is clearly
possible to realize this in an alphabet Σϑ of size O(|ϑ|3).

With an infinite branch ρ = Φ0, Φ1, . . . of a pre-tableau for ϑ we associate a
word wρ ∈ Σω

ϑ in the natural way: the i-th letter of wρ is the symbol representing
the application of the rule between Φi and Φi+1. Let BadBranch(ϑ) be the set
of all words representing an infinite branch in a pre-tableau for ϑ which contains
an active μ-thread, i.e. the set of all branches which may not occur in a tableau.

A nondeterministic parity automaton (NPA) is a tuple A = (Q,Σ, q0, δ, Ω)
where Q is a finite set of states, Σ is the underlying alphabet, q0 ∈ Q is a
designated starting state, δ ⊆ Q × Σ × Q is the transition relation as usual,
and Ω : Q → N is the priority function. A run ρ = q0, q1, . . . on an infinite
word w ∈ Σω is defined as usual. It is accepting if the highest priority occurring
infinitely often in Ω(q0), Ω(q1), . . . is even. Let |A| denote the size of A, measured
as its number of states. Its index, idx (A), is the number of distinct priorities
assigned to its states. An NPA as above is deterministic (DPA) if δ : Q×Σ → Q
in effect. A nondeterministic Büchi automaton (NBA) is an NPA as above with
Ω : Q→ 1, 2.

Lemma 2. There is an NPA B′
ϑ over Σϑ s.t. |B′

ϑ| ≤ 2 · |ϑ|, idx (B′
ϑ) ≤ ad(ϑ)+2,

and L(B′
ϑ) = BadBranch(ϑ).

Proof. The NPA simply guesses threads by tracing single formulas from Cl(ϑ)
in its state set. Upon reading an input letter it knows whether the next rule
application transforms the currently traced subformula or whether it remains the
same on that thread. In order to distinguish inactive threads from active threads,
the NBA utilizes a bit to indicate that the focussed thread has been unfolded in
the last transition. A parity condition that reflects the alternation depth of each
formula inside Cl(ϑ) can then be used in order to recognise BadBranch(ϑ). ��

156 O. Friedmann and M. Lange

It is a standard exercise in automata theory to show that every NPA can equiv-
alently be transformed into an NBA with a quadratic blow-up only.

Lemma 3. There is an NBA Bϑ over Σϑ s.t. |Bϑ| ≤ 2 · |ϑ| · (ad(ϑ) + 2), and
L(Bϑ) = BadBranch(ϑ).

As said above, the goal is to create a parity game as a product of all possible
pre-tableau nodes with the states of a automaton recognizing branches that do
not contain a μ-thread. Hence, complementation of the automaton Bϑ is needed.
Moreover, this automaton needs to be deterministic to ensure that common pre-
fixes of two different branches can be paired with a single run of the automaton.

Theorem 2 ([17]). For every NBA B with n states there is a DPA A with
2O(n logn) states and index O(n) s.t. L(A) = L(B).

Combining this theorem with Lemma 3 yields the following. Note that ad(ϑ) ≤
|ϑ|, and that if k ≤ n then log(nk) ≤ 2 · logn.

Corollary 1. Let ϑ ∈ Lμ with n := |ϑ| and k := ad(ϑ). There is a DPA Aϑ
over Σϑ s.t. the number of states in Aϑ is bounded by 2O(n·k·logn), its index is
O(n · k), and L(Bϑ) = BadBranch(ϑ).

4.2 Reduction to Parity Game Solving

The algorithmic solution to the satisfiability problem is provided by a reduction
to parity game solving. A parity game is a tuple G = (V, V0, V1, E, v0, Ω) s.t.
(V,E) is a directed graph with total edge relation E and node set partitioned
into V0 and V1, v0 is a designated starting node, and Ω : V → N is a priority
function. The game is played between two players 0 and 1 who push a token
along the edges of a the graph starting in v0. If the token is on a node in Vi
then player i chooses a successor node. An infinite sequence of nodes created in
this way is a ply and it is won by player i iff the highest priority seen infinitely
often in this sequence is i modulo 2. A winning strategy is as usual a strategy
for a player that lets them win every play regardless of the opponent’s choices.
We write |G| for the number of nodes in the game G, and idx (G) for its index,
i.e. number of distinct priorities.

Proposition 2. Let ϑ be a formula with n := |ϑ| and k := ad(ϑ). There is a
parity game Gϑ with |G| ≤ 2O(n·k·logn) and idx (G) ≤ O(n · k), that is won by
player 0 iff ϑ is satisfiable.

Proof. Let Aϑ = (Q,Σϑ, q0, δ, Ω). The nodes of the game Gϑ are of the form
2Cl(ϑ)×Q; the designated node v0 is ({ϑ}, q0). A node w = (Ψ, q′) is a successor
of v = (Φ, q) if a uniquely (for (Φ, q)) chosen rule is applied to Φ that yields Ψ as
one of its premisses, this rule is represented by r ∈ Σϑ and δ(q, r) = q′ where δ is
the transition function of Aϑ. The node ownership in the game is determined by
these uniquely chosen rules: player 0 owns nodes in which rule (Or) is applied,

The Modal μ-Calculus Caught Off Guard 157

Aut [6] Tab [11] GameG (here) Game (here)

unguardedness welcome yes no no yes

worst-case runtime 2O(n2m2 log n) 2NEXPTIME 22O(n)
2O(n2k2 log n)

small model property 2O(nm log n) 22O(n)
22O(n)

2O(nk log n)

branching-degree n 2O(n) 2O(n) n

implemented no no yes [9] yes [9]

Fig. 3. Comparison of different decision methods on formulas of size n and alternation
depth k and number of least fixpoint variables m

while player 1 owns all the other nodes. Finally, the priority of a game node
(Φ, q) is simply Ω(q).

It is not hard to see that winning strategies for player 0 exactly correspond to
tableaux for ϑ. Hence, with Thm. 1, player 0 wins node v0 iff ϑ is satisfiable. ��

Proposition 3. Satisfiability of a Lμ formula ϑ with n := |ϑ| and k := ad(ϑ)
can be decided in time 2O(n2·k2·logn).

Proof. Follows immediately from Prop. 2 with the fact that the asymptotically
best known algorithms for solving parity games run in time mO(p) where m is
the number of nodes and p is the number of priorities in the game [19]. ��

The subgame induced by a winning strategy for player 0 is in effect a model for
ϑ. This immediately yields a small model property for Lμ.

Proposition 4. Let ϑ ∈ Lμ with n := |ϑ| and k := ad(ϑ). If ϑ is satisfiable
then it has a model of size 2O(nk·logn) and branching-degree at most n.

4.3 Comparison

We compare the presented method (Game) to existing methods, namely the
automata-theoretic one by Emerson et al. (Aut) [21,6] and the purely tableau-
based one by Jungteerapanich (Tab) [11]. Additionally we consider the method
which works as described above but uses pre-transformation into guarded form
and rule (FPGν) instead (GameG). The input formula is parameterized by its size
n, its alternation-depth k, and the number of distinct μ-bound variables in it m.
Note that we always have k ≤ m < n.

The reasoning behind the run-time and small model property of method Aut
are as follows. A formula ϑ of size n with m μ-bound variables can be translated
into a Streett automaton of size 2O(n·m·logn) and O(n ·m) acceptance pairs [21].1

Emptiness of a Streett tree automaton with s states and p pairs can be decided in
time (s · p)O(p) [6], hence the worst-case runtime of 2O(n2·m2 log n) observing that
m < n. This uses an equivalence-preserving reduction from Streett automata

1 Emerson et al. claim that the global automaton used in their construction is of linear
size n, but its description shows that it really is of size n ·m.

158 O. Friedmann and M. Lange

of that size to Rabin automata of size s2 with p pairs [6]. Every Rabin tree
automaton with e edges and p pairs accepts a tree that is finitely representable
with O(e) nodes [4]. In this case, we have e = O(n ·m ·s2) because a transition to
a tuple of size j counts as j edges, and the branching-degrees of these automata
are linear in the size of the original formula. Putting this all together, we obtain
a small model property of 2O(n·m·logn).

It is worth mentioning that conceptually, the method presented here is very
close to the purely automata-theoretic method Aut. However, separating the
local and global consistency checks into pre-tableau rules and automata-theoretic
machinery for the thread structure in tableaux yields a cleaner presentation of
the method’s ingredients. The slight asymptotic speed-up using the exponent k
instead of m where k ≤ m is owed to using the more modern concept of parity
automata rather than Streett automata.

The main advantage of Tab is the fact that tableaux in that calculus are
finite as opposed to the infinite ones used here. The price to pay for this seems
to be the non-optimal complexity bound. It is not clear whether there is also a
deterministic algorithm for that calculus and whether it can be made to work
on unguarded formulas as well thus losing one exponential in worst-case runtime
and small model property.

Finally, we remark on the lack of experimental data in this paper. Note that
the only two decision procedures which can be compared empirically are Game
and GameG. However, since guarded transformation incurs an exponential blow-
up, the results are pretty unspectacular: on guarded formulas there is no real
difference between the two, and on unguarded formulas GameG is generally
exponentially worse than Game.

References

1. Banieqbal, B., Barringer, H.: Temporal logic with fixed points. In: Banieqbal, B.,
Pnueli, A., Barringer, H. (eds.) Temporal Logic in Specification. LNCS, vol. 398,
pp. 62–73. Springer, Heidelberg (1989)

2. Bradfield, J., Stirling, C.: Modal logics and μ-calculi: an introduction. In: Bergstra,
J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra. Elsevier, Amsterdam
(2001)

3. Dam, M.: CTL∗ and ECTL∗ as fragments of the modal μ-calculus. TCS 126(1),
77–96 (1994)

4. Emerson, E.A.: Automata, tableaux and temporal logics. In: Parikh, R. (ed.) Logic
of Programs 1985. LNCS, vol. 193, pp. 79–87. Springer, Heidelberg (1985)

5. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science. Formal Models and Semantics, vol. B, ch. 16,
pp. 996–1072. Elsevier and MIT Press, New York, USA (1990)

6. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of pro-
grams. SIAM Journal on Computing 29(1), 132–158 (2000)

7. Emerson, E.A., Lei, C.L.: Efficient model checking in fragments of the propo-
sitional μ–calculus. In: Symposion on Logic in Computer Science, pp. 267–278.
IEEE, Washington, D.C. (1986)

The Modal μ-Calculus Caught Off Guard 159

8. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Jour-
nal of Computer and System Sciences 18(2), 194–211 (1979)

9. Friedmann, O., Lange, M.: A solver for modal fixpoint logics. In: Proc. 6th Work-
shop on Methods for Modalities, M4M-6. Elect. Notes in Theor. Comp. Sc., vol. 262,
pp. 99–111 (2010)

10. Janin, D., Walukiewicz, I.: On the expressive completeness of the propositional μ-
calculus with respect to monadic second order logic. In: Sassone, V., Montanari, U.
(eds.) CONCUR 1996. LNCS, vol. 1119, pp. 263–277. Springer, Heidelberg (1996)

11. Jungteerapanich, N.: A tableau system for the modal μ-calculus. In: Giese, M.,
Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 220–234. Springer, Hei-
delberg (2009)

12. Kozen, D.: Results on the propositional μ-calculus. TCS 27, 333–354 (1983)
13. Kozen, D., Parikh, R.: A decision procedure for the propositional μ-calculus. In:

Clarke, E., Kozen, D. (eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 313–325.
Springer, Heidelberg (1984)

14. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
branching-time model checking. Journal of the ACM 47(2), 312–360 (2000)

15. Mateescu, R.: Local model-checking of modal mu-calculus on acyclic labeled tran-
sition systems. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280,
pp. 281–295. Springer, Heidelberg (2002)

16. McNaughton, R.: Infinite games played on finite graphs. Annals of Pure and Ap-
plied Logic 65(2), 149–184 (1993)

17. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. In: Proc. 21st Symp.on Logic in Computer Science (LICS 2006),
pp. 255–264. IEEE Computer Society, Los Alamitos (2006)

18. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Trans.of Amer. Math.Soc. 141, 1–35 (1969)

19. Schewe, S.: Solving parity games in big steps. In: Arvind, V., Prasad, S. (eds.)
FSTTCS 2007. LNCS, vol. 4855, pp. 449–460. Springer, Heidelberg (2007)

20. Streett, R.S., Emerson, E.A.: The propositional μ-calculus is elementary. In:
Paredaens, J. (ed.) ICALP 1984. LNCS, vol. 172, pp. 465–472. Springer, Heidelberg
(1984)

21. Streett, R.S., Emerson, E.A.: An automata theoretic decision procedure for the
propositional μ-calculus. Information and Computation 81(3), 249–264 (1989)

22. Walukiewicz, I.: Completeness of Kozen’s axiomatisation of the propositional
μ-calculus. Inf. and Comput. 157(1–2), 142–182 (2000)

A Correctness Proofs

A.1 Approximants and Signatures

We need fixpoint approximants in order to prove absence of any μ-threads in
tableaux. Here we introduce them via annotations of fixpoint formulas with
ordinal numbers. These annotated fixpoint formulas are interpreted in a way that
is different to ordinary fixpoint formulas. Let T = (S,−→, �) be the underlying
transition system.

[[μ0X.ψ]]ρ := ∅ [[ν0X.ψ]]ρ := S

[[μα+1X.ψ]]ρ := [[ψ]]ρ[X �→[[μαX.ψ]]ρ] [[να+1X.ψ]]ρ := [[ψ]]ρ[X �→[[ναX.ψ]]ρ]

[[μλX.ψ]]ρ :=
⋃

α<λ

[[μαX.ψ]]ρ [[νλX.ψ]]ρ :=
⋂

α<λ

[[ναX.ψ]]ρ

160 O. Friedmann and M. Lange

where α is an arbitrary ordinal and λ is a limit ordinal.
A signatureis an annotation of a formulas fixpoint subformulas with ordinal

numbers. We distinguish two types of signatures: a μ-signature annotates least
fixpoint subformulas, a ν-signature annotates greatest fixpoint subformulas. We
write ϕζ to denote the annotation of fixpoint formulas of corresponding type in
ϕ with the values in ζ. Remember that fixpoint subformulas of a formula ϑ are
partially ordered by
. This extends to a lexicographic and well-founded order
of μ- or ν-signatures on ϑ which we will also call
.

The following lemma summarizes well-known facts about signatures that will
be used in the proofs later on.

Lemma 4. Let s be a state in a transition system T , ϕ ∈ Lμ.

1. s ∈ [[ϕ]]ρ iff there is a μ-signature ζ s.t. s ∈ [[ϕζ]]ρ.
2. s �∈ [[ϕ]]ρ iff there is a ν-signature ζ s.t. s �∈ [[ϕζ]]ρ.
3. Letϕ′ result fromϕ by replacing someμX.ψ in it with its unfoldingψ[μX.ψ/X].

Suppose there is a μ-signature ζ s.t. s ∈ [[ϕζ]]ρ. Then there is a μ-signature ζ′

with ζ
/ ζ′ and s ∈ [[ϕ′ζ′]]ρ.
4. Letϕ′ result fromϕ by replacing some νX.ψ in it with its unfoldingψ[νX.ψ/X].

Suppose there is a ν-signature ζ s.t. s �∈ [[ϕζ]]ρ. Then there is a ν-signature ζ′

with ζ
/ ζ′ and s �∈ [[ϕ′ζ′]]ρ.

A.2 Soundness

We represent (pre-)tableaux as pointed directed acyclic graphs (V, v0,≺,M)
with V being the set of nodes, v0 being the initial node, ≺ being the transition
relation and M being a labeling function that maps each node v ∈ V to the
corresponding sequent.

Let P = (V, v0,≺,M) be a tableau for ϑ. A ν-strategy for P is a partial
map � : V → V that is defined on every node v that is the conclusion of the
application of the (FPUν)-rule and fulfills for every such v that v ≺ �(v).

A branch v0, v1, . . . in P conforms with � iff for every i with vi being the
conclusion of the application of the (FPUν)-rule it holds that �(vi) = vi+1. We
say that a node v ∈ V is �-reachable iff v belongs to a �-conforming branch. The
set of �-reachable nodes is denoted by V�. The pair (P , �) is called collapsible
if every �-conforming branch in P is either finite or comprises infinitely many
applications of the (Mod)-rule.

Let (P , �) be collapsible. We define a lift operation l(P,�) : V� → V� that
maps every node v ∈ V� to v if v is a sink or the conclusion of the application
of the (Mod)-rule and otherwise to l(P,�)(w) where w is the uniquely defined
�-conforming successor of v. As (P , �) is collapsible, l(P,�) is indeed well-defined.

Every collapsible (P , �) for a formula ϑ induces an generic interpretation
T(P,�) = (V�,−→, �) with � : v �→ M(v) ∩ P and v

a−→w for two nodes v, w ∈ V�
iff there is an u ∈ V with v ≺ u connected via an a-label and l(P,�)(u) = w.

Next, we define an annotation that counts for every formula ϕ in a sequent,
how often every ν-bound variable has been unfolded since the last occurrence

The Modal μ-Calculus Caught Off Guard 161

of the modal rule. This will help us to define a generic ν-strategy that results
in collapsible tableaux while ensuring that every potentially relevant unguarded
ν-bound variable that occurs in a thread is unfolded at least once.

Let P = (V, v0,≺,M) be a tableau for ϑ. The ν-variable annotation for P is
a function AP that maps every node v ∈ V and every formula ϕ ∈ M(v) to a
set of sets of ν-variables AP (v, ϕ).

We define the function inductively. For the initial v0, AP(v0, ϑ) = {∅}. Let
now v, u ∈ V with v ≺ u and AP(v, ∗) be already defined. Then

– AP(u, ϕ) = {∅} ifM(v) is the conclusion of a (Mod)-application,
– AP(u, ϕ) = {U ∪{X} | (U \ {X}) ∈ A′

P(u, ϕ)} if ϕ = ψ[νX.ψ/X] and νX.ψ
is principal in M(v), and

– AP(u, ϕ) = A′
P (u, ϕ) otherwise,

where A′
P(u, ϕ) :=

⋃
{AP(v, ψ) | (M(v), ψ)� (M(u), ϕ)}.

Next, we define a canonic ν-strategy �P for a tableau P as follows. Let v be
a node in P s.t.M(v) is the conclusion of an application of the (FPUν)-rule with
νX.ψ as principal formula and let u be the successor of v discarding the fixpoint
body and w be the successor following the fixpoint body. Then �P(v) = w if
there is an U ∈ AP (v, νX.ψ) with X �∈ U and �P(v) = u otherwise.

Lemma 5. Let P be a tableau for ϕ. Then (P , �P) is collapsible.

Proof. Assume that (P , �P) is not collapsible, hence there is an infinite �P -
conforming branch v0, v1, . . . in P that contains only finitely many applications
of the (Mod)-rule. Let i∗ ≥ 0 s.t. M(vi) is not the conclusion of the application
of a (Mod)-rule for all i ≥ i∗.

First observe the following fact. Let i ≥ i∗ and ϕ ∈ M(vi). Let U ∈ AP(vi, ϕ).
This implies that there is a (prefix of a) thread s going through ϕ in the node
vi s.t. between i∗ and i, we have

– zero unfoldings for fixpoints νX.ψ with X �∈ U , and
– one unfolding for fixpoints νX.ψ with X ∈ U .

Let now t = ϕ0, ϕ1, . . . be an active thread with thread variable X , existing
due to Lemma 1. Due to the fact that P is a tableau, X must be of type ν.

Let j0, j1, . . . be an infinite sequence of ascending numbers with j0 ≥ i∗ s.t.
ϕjk = νX.ψ is the principal formula in M(vjk) for all k.

For every jk, there is an U ∈ AP (vjk , νX.ψ) s.t. X �∈ U by the canonic ν-
strategy. In other words, for every k there is a (prefix of a) thread sk going
through νX.ψ in the node vjk s.t. between i∗ and jk, we have no more than one
unfolding per ν-fixpoint.

Now note that by the pigeonhole principle (infinitely many sk share the same
prefixes and they need to split infinitely often), there are infinitely many sk
which are principal between i∗ and jk. By König’s Lemma, this implies that
there is an active thread s that has no more than one unfolding per ν-fixpoint.

Since s is clearly not a ν-fixpoint, it follows by Lemma 1 that s is a μ-fixpoint.
But this is impossible with P being a tableau. ��

162 O. Friedmann and M. Lange

Due to the fact that (P , �P) is always collapsible, we can define the canonic
interpretation TP as T(P,�P).

Theorem 3 (Soundness). A formula ϑ is satisfiable if there is a tableau P for
ϑ. Particularly, T(P,�P) |= ϑ.

Proof. By contradiction assume that T(P,�P) �|= ϑ. We extract a branch v0, v1, . . .
in P , a sequence of formulas ϕ0, ϕ1, . . . with ϕi ∈M(vi) for all i and a sequence
of ν-signatures ζ0
 ζ1
 . . . s.t. the following conditions hold for all i.

1. ζi is the least ν-signature s.t. l(P,�P)(vi) �|= ϕζi

i

2. (M(vi), ϕi)� (M(vi+1), ϕi+1)
3. ϕi = νX.∗ principal implies that ζi
/ ζi+1

In the following construction of signatures, we will simply show that there
are signatures fulfilling all properties disregarding being the least one. Then,
we simply select the subsequent signature to be the least one fulfilling the first
property. Note that this signature then also fulfills all the other properties.

For i = 0 let v0 be the root of P , ϕ0 := ϑ and ζ0 be the smallest ν-signature
s.t. l(P,�P)(v0) �|= ϕζ00 which exists due the Lemma 4.

For i� i+ 1 we distinguish on the subsequent rule application. Note that is
impossible that vi ends in a sink. If the next rule to be applied is the (Mod)-rule,
we distinguish on whether ϕi = 〈a〉ϕi+1 or ϕi = [a]ϕi+1 which are the only
possible cases due to the construction of T(P,�P). If ϕi = 〈a〉ϕi+1 let vi+1 be the
successor of vi following ϕi+1 and note that l(P,�)(vi+1) �|= ϕζi

i+1 indeed holds. If
ϕi = [a]ϕi+1, select vi ≺ vi+1 s.t. l(P,�)(vi+1) �|= ϕζi

i+1 holds.
Otherwise let vi+1 be the unique successor of vi. Assume that ϕi is principal in

the following rule application since otherwise simply set ϕi+1 := ϕi. Otherwise,
if ϕi = ψ0∨ψ1 let ϕi+1 be the unique successor of ϕi and note that all conditions
hold. If ϕi = ψ0 ∧ ψ1 let j = 0, 1 s.t. l(P,�P)(vi+1) �|= ψζi

j and set ϕi+1 := ψj .
If otherwise ϕi = σX.ψ let ϕi+1 be the unique successor of ϕi and note that

due to Lemma 4 there is a signature ζ′i+1 s.t. all conditions hold.
We finally need to show that it is impossible that ϕi = νX.ψ for some ν-

bound X whenever the respective (FPUν)-rule application does not follow ψ. By
contradiction assume that ϕi = νX.ψ principal for some ν-bound X and there
is no set U ∈ AP(vi, νX.ψ) with X �∈ U . By construction of AP , this implies
that there is some j < i with l(P,�P)(vj) = l(P,�P)(vi), vj = νX.ψ and vj+1 =
ψ[νX.ψ/X]. By construction of the sequence of signatures, it follows that ζj

/ ζj+1
 ζi. But this cannot be the case with ζj and ζi both being the least
ν-signature that falsifies X w.r.t. the same state.

As the modal rule is applied infinitely often in the extracted branch, ϕ0, ϕ1, . . .
is an active thread. Since P is a tableau, ϕ0, ϕ1, . . . is a ν-thread.

Let X∗ be the outermost variable in ϕ0, ϕ1, . . . that is unfolded infinitely
often. Let i∗ be arbitrary s.t. there is no variable Y > X∗ with ϕj = σY.∗ for
any j ≥ i∗. Consider the sequence of signatures ζi∗
 ζi∗+1
 . . . and note that
we have:

The Modal μ-Calculus Caught Off Guard 163

ζi
/ ζi+1 whenever ϕi = νX∗.ψ and ϕi+1 = ψ[νX∗.ψ/X∗]

Therefore we have an infinitely descending sequence ζi∗ , ζi∗+1, . . . which is
impossible as ordinals are well-founded. ��

A.3 Completeness

Theorem 4 (Completeness). There is a tableau for a fromula ϑ if ϑ is sat-
isfiable.

Proof. Let ϑ be a closed formula and T = (S,−→, �) be a transition system and
s0 ∈ S be a state s.t. s0 |= ϑ.

We inductively construct a state-labeled pre-tableau as follows. Starting with
the labeled sequence s0 : ϑ, we apply the following rules in an arbitrary but
eligible ordering systematically backwards.

(Or)
s : ϕ0 ∨ ϕ1, Φ
s : ϕi, Φ

(∗) (And)
s : ϕ0 ∧ ϕ1, Φ
s : ϕ0, ϕ1, Φ

(FPμ)
s : μX.ϕ, Φ

s : ϕ[μX.ϕ/X], Φ
(FPUν)

s : νX.ϕ, Φ
s : Φ s : ϕ[νX.ϕ/X], Φ

(Mod)
s : 〈a1〉ϕ1, . . . , 〈an〉ϕn, [b1]ψ1, . . . , [bm]ψm, q1, . . . , qk, p1, . . . , ph

s1:ϕ1,{ψi | a1=bi} s2:ϕ2,{ψi | a2=bi} . . . sm:ϕn,{ψi | am=bi}
(∗∗)

with the following side conditions:

– (∗): For every μ-signature ζ with s |= (ϕ0 ∨ ϕ1)ζ it holds that s |= ϕζi .
– (∗∗): s |= (〈a1〉ϕ1, . . . , 〈an〉ϕn, [b1]ψ1, . . . , [bm]ψm, q1, . . . , qk, p1, . . . , ph) im-

plies for every i that s −→ai si and si |= (ϕi, {ψj | ai = bj}). Additionally,
for every μ-signature ζ and every i it holds that s |= (〈a〉ϕi)ζ implies si |= ϕζi .

Consider that this construction indeed yields pre-tableau with each state-
labeled sequence s : Φ satisfying s |= Φ as well as all side conditions due to
Lemma 4. Moreover note that every finite branch ends in a node labeled with
[∗]-formulas and consistent literals only.

By contradiction assume that the pre-tableau is not a tableau, hence there is
a labeled branch s0 : Φ0,s1 : Φ1,. . . (with Φ0 = {ϑ}) and a μ-thread t =t0,t1,. . .
with ti ∈ Φi for all i.

We argue as in the soundness proof that this is impossible. ��

A Conditional Constructive Logic for Access Control
and Its Sequent Calculus

Valerio Genovese1,�, Laura Giordano2, Valentina Gliozzi3, and Gian Luca Pozzato3

1 University of Luxembourg and Università di Torino, Italy
valerio.genovese@uni.lu

2 Dip. di Informatica, Università del Piemonte Orientale, Italy
laura@mfn.unipmn.it

3 Dip. di Informatica, Università di Torino, Italy
{gliozzi,pozzato}@di.unito.it

Abstract. In this paper we study the applicability of constructive conditional
logics as a general framework to define decision procedures in access control
logics. To this purpose, we formalize the assertion A says φ, whose intended
meaning is that principal A says that φ, as a conditional implication. We in-
troduce CondACL , which is a conservative extension of the logic ICL recently
introduced by Garg and Abadi. We identify the conditional axioms needed to
capture the basic properties of the “says” operator and to provide a proper defi-
nition of boolean principals. We provide a Kripke model semantics for the logic
and we prove that the axiomatization is sound and complete with respect to the
semantics. Moreover, we define a sound, complete, cut-free and terminating se-
quent calculus for CondACL , which allows us to prove that the logic is decidable.
We argue for the generality of our approach by presenting canonical properties of
some further well known access control axioms. The identification of canonical
properties provides the possibility to craft access control logics that adopt any
combination of axioms for which canonical properties exist.

1 Introduction

Access control is concerned with the decision of accepting or denying a request from
a principal (e.g., user, program) to do an operation on an object. In practice, an ac-
cess control system is a product of several, often independent, distributed entities with
different policies that interact in order to determine access to resources. In order to
specify and reason about such systems, many formal frameworks have been proposed
[2,5,15,18,19]. A common feature of most well-known approaches is the employment
of constructive logics enriched with formulas of the form A says ϕ, intuitively mean-
ing that the principal A asserts or supports ϕ to hold in the system. In [1] it is shown
that an intuitionistic interpretation of the modality “says” allows to avoid unexpected
conclusions that are derivable when says is given an axiomatization in classical logic.

In [11] an access control logic, ICL, is defined as an extension of intuitionistic propo-
sitional logic, in which the operator says is given a modal interpretation in the logic

� Valerio Genovese is supported by the National Research Fund, Luxembourg.

K. Brünnler and G. Metcalfe (Eds.): TABLEAUX 2011, LNAI 6793, pp. 164–179, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Conditional Constructive Logic for Access Control and Its Sequent Calculus 165

S4. The treatment of the operator says as a modality can also be found in [6], which
introduces a logical framework, FSL, based on multi-modal logic methodology.

Even if there is some agreement on looking at the says construct as a modal oper-
ator, the correspondence between its axiomatization and the semantic properties asso-
ciated with axioms in the Kripke semantics is mainly unexplored. In fact, some of the
axioms of access control logics are non-standard in modal literature. The identification
of canonical properties for well-known axioms of access control logics permits to study
them separately and naturally yields completeness for logics that adopt combinations
of them. This methodology is significant if we want logic to be employed to compare
different access control models, because different systems adopt different axioms de-
pending on the specific application domain.

In this paper we show that conditional logics [21] can provide a general framework
to define axiomatization, semantics and proof methods for access control logics. As a
starting point, we concentrate on a specific combination of axioms, those of the logic
CondACL , which is a conservative extension of the logic ICL introduced in [11]. In
Section 5 we will point out a few possible extra axioms, which are well known in the
access control literature, and we provide semantic conditions for them.

CondACL integrates access control logics with intuitionistic conditional logics. We
formalize the says operator as a conditional normal modality so that A says φ is re-
garded as a conditional implication A ⇒ φ, meaning that proposition φ holds in all
the preferred worlds for the principal A. The generality of this approach allows a nat-
ural formalization of boolean principals [11], that is, principals which are formed by
boolean combination of atomic principals.

From the access control point of view, the says operator satisfies some basic axioms
of access control logics [11,10]. We define a sound and complete Kripke semantics for
CondACL as well as a sound, complete, cut-free labelled sequent calculus for it. We are
also able to obtain a decision procedure and a complexity upper bound for CondACL ,
namely that provability in CondACL is decidable in PSPACE. This is in agreement with
[11], which provides a PSPACE complexity result for the logic ICL.

The paper is structured as follows. In Section 2 we introduce the axiomatization
and the semantics for the intuitionistic conditional logic CondACL and we compare
it with existing approaches. In Section 3 we show that the axiomatization is sound
and complete with respect to the semantics. In Section 4 we define a cut-free sequent
calculus for CondACL , we prove its soundness, completeness and termination, and we
provide a complexity upper bound. In Section 5 we provide semantic conditions for
some further axioms of access control logics. Section 6 contains the conclusions and a
discussion of related work.

2 The Logic CondACL

In this section, we introduce the conditional intuitionistic logic CondACL for access
control by defining its axiomatization and Kripke semantics. The formulation of the
“says” modality as a conditional operator allows boolean principals to be modelled
in a natural way, since in a conditional formula A says φ, both A and φ are arbitrary
formulas. For instance, we can write, A ∧ B says φ to mean that principals A and B
jointly say that φ, andA∨B says φ to mean that principalsA andB independently say

166 V. Genovese et al.

that φ. Indeed, conditional logics provide a natural generalization of multimodal logics
to the case when modalities are labelled by arbitrary formulas.

2.1 Axiom System

We define the language L of the logic CondACL . Let ATM be a set of atomic proposi-
tions. The formulas of L are defined inductively as follows: if P ∈ ATM , then P ∈ L;
⊥ ∈ L, where⊥ is a proposition which is always false; if A, ϕ, ϕ1 and ϕ2 are formulas
of L, then ¬ϕ, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 → ϕ2, and A says ϕ are formulas of L.

The intended meaning of the formula A says ϕ, where A and ϕ are arbitrary for-
mulas, is that principal A says that ϕ, namely, “the principal A asserts or supports ϕ”
[11]. Although the principal A is an arbitrary formula, in order to stress the fact that a
formula is playing the role of a principal, we will denote it by A,B,C, . . . while we
will use greek letters for arbitrary formulas.

The axiomatization of CondACL contains few basic axioms for access control logics
[11,1], as well as additional axioms governing the behavior of boolean principals. Be-
cause we privilege the modularity of the approach, we are interested in considering each
axiom separately. As a consequence, the resulting axiomatization might be redundant.

Basic Axioms. The axiom system of CondACL contains the following axioms and in-
ference rules, which are intended to capture the basic properties of the says operator.

(TAUT) all tautologies of intuitionistic logic
(K) A says (α→ β)→ (A says α→ A says β)
(UNIT) α→ (A says α)
(C) A says (A says α→ α)
(MP) If � α and � α→ β then � β
(RCEA) If � A↔ B then � (A says γ)↔ (B says γ)
(RCK) If � α→ β then � (A says α)→ (A says β)

We say that a formula α is a theorem of the logic, and write � α if there is a derivation
of α from the above axioms and rules. We say that α can be derived from a set of
formulas Γ , and write Γ � α, if there are γ1, . . . γn in Γ such that � γ1 ∧ . . . ∧ γn →
α. The rule (MP) is modus ponens. (RCK) and (RCEA) are standard inference rules
for conditional logics. (RCK) plays the role of the rule of Necessitation (if � φ then
� �φ) in modal/multimodal logic. (RCEA) makes the formulasA says φ andB says φ
equivalent when the principals A and B are equivalent. The axiom (K) belongs to the
axiomatization of all normal modal logics and it is derivable in “normal” conditional
logics. (UNIT) and (K) are the characterizing axioms of the logic ICL [11], while (C)
has been included in the axiomatization of the logic DTL0 in [10]. The choice of the
above axiom is meaningful in the context of access control, in fact it can be proved that
what can be derived in ICL can also be derived in CondACL , i.e. �ICL ϕ implies � ϕ.

Axioms for boolean principals. The axioms introduced above do not enforce by them-
selves any intended property of boolean principals. In this subsection, we discuss the
properties that are intended for boolean principals and we introduce axioms which cap-
ture such properties. Specifically, we focus on the intended meaning of conjunctions
and disjunctions among principals.

A Conditional Constructive Logic for Access Control and Its Sequent Calculus 167

Our interpretation of the statement A ∧ B says φ is that A and B jointly (combin-
ing their statements) say that φ. It comes from the interpretation of the statement as a
conditional implication: A and B (jointly) conditionally prove φ. Instead, our interpre-
tation of the statementA∨B says φ is that A andB disjointly (independently) say that
φ, which comes from the reading of the conditional formula as A and B (disjointly)
conditionally prove φ. Concerning the statementA∨B says φ, we expect that if bothA
says φ and B says φ, then A and B disjointly (independently) say that φ. This property
can be captured by the following axiom:

A says φ ∧B says φ→ A ∨B says φ

which corresponds to the well known axiom (CA) of conditional logics [21]. Similarly,
we can expect that the converse axiom

A ∨B says φ→ A says φ ∧B says φ

holds. The two axioms together enforce the property that A and B disjointly say that φ
if and only if A says that φ and B says that φ .

Concerning A ∧B says φ, we expect that A and B jointly say that φ when either A
or B says that φ. This condition can be enforced by introducing the axiom

A says φ→ A ∧B says φ

which, although is a controversial axiom of conditional logics, called monotonicity1, is
harmless in this intuitionistic setting. Also, we would like to have the property that if
A∧B says φ then, by combining the statements of A and B, φ can be concluded. This
is not equivalent to saying that either A says φ or B says φ. Indeed, the axiom (A ∧
B says φ) → (A says φ) ∨ (B says φ) is too strong and not wanted. In the following
we show that the wanted property can be captured in a propositional axiomatization.

Although a principal is an arbitrary formula and it also includes negation and impli-
cation, no specific properties are intended for such formulas, and no specific axioms are
introduced for them.

The axiomatization of CondACL includes (in addition) the following axioms:

(CA) A says φ ∧B says φ→ A ∨B says φ
(CA-conv) A ∨B says φ→ A says φ
(Mon) A says φ→ A ∧B says φ
(DT) A ∧B says φ→ (A says (B → φ))
(ID) A says A

The first three axioms are those introduced above. (DT) and (ID) are used together
to enforce the property that if A ∧ B says φ then, by combining the statements of A
and B, φ can be concluded. The two axioms allow propositions representing principals
to occur on the right of the says modality. The intended meaning of (DT) is that, if
A ∧ B says φ, then A says that φ holds in all B worlds (worlds visible to the princi-
pal B). The meaning of (ID) is that “A says that principal A is visible”. We will come
back to the intended meaning of these axioms when describing the semantic conditions
associated with the axioms. Nonetheless, our axiomatization does account for arbitrary

1 In general, conditional logics only allow weaker forms of monotonicity, encoded, for instance,
by the axiom (CV) of Lewis’ logic VC.

168 V. Genovese et al.

Boolean combinations of principals (as in [11]), as a principal A can be an arbitrary
formula. As a difference, we do not force any specific interpretation for implication
within principals, which instead in ICLB [11] is used to capture the “speaks for” op-
erator. Observe that, by the normality of the conditional says modality, the principal
A ∧ B is, for instance, equivalent to the principal A ∧ B ∧ A. This is an advantage of
conditional logic over a multi-modal logic in which principals are simply regarded as
labels of modalities.

Theorem 1. The above axiomatization is consistent.

Proof. Consistency immediately follows from the fact that, by replacingA says B with
the intuitionistic implicationA→ B, we obtain axioms which are derivable in intuition-
istic logic. �

Let us observe that the above interpretation of conjunction and disjunction between
principals is different from the one given in the logic ICLB [11], which actually adopts
the opposite interpretation of ∧ and ∨: in Garg and Abadi’s logic ICLB, A ∧ B says φ
is the same as A says φ ∧ B says φ, whileA∨B says φmeans that, by combining the
statements of A and B, φ can be concluded. Due to this, the properties of the principal
A ∧B in our logic are properties of the principal A ∨ B in their logic, and vice-versa,
the properties of the principal A ∨ B in our logic are properties of the principal A ∧ B
in their logic. Observe that the axioms, (trust), (untrust) and (cuc’) of the logic ICLB

are not derivable from our axiomatization. Also, the addition of the axiom (untrust)

 says ⊥ to our axiomatization would entail that for all principals A, A says ⊥, which
is an unwanted property.

2.2 Semantics

The semantics of the logic CondACL is defined as follows.

Definition 1. A CondACL model has the form M = (S,≤, {RA}, h) where: S �= ∅
is a set of items called worlds; ≤ is a preorder over S; RA is a binary relation on S
associated with the formula A; h is an evaluation function ATM −→ Pow(S) that
associates to each atomic proposition P the set of worlds in which P is true.

We define the truth conditions of a formula φ ∈ L with respect to a world t ∈ S
in a modelM, by the relationM, t |= φ, as follows. We use [|φ|] to denote {y ∈ S |
M, y |= φ}.

1. M, t |= P ∈ ATM iff, for all s such that t ≤ s, s ∈ h(P)
2. M, t |= ϕ ∧ ψ iffM, t |= ϕ andM, t |= ψ
3. M, t |= ϕ ∨ ψ iffM, t |= ϕ orM, t |= ψ
4. M, t |= ϕ→ ψ iff for all s such that t ≤ s (ifM, s |= ϕ thenM, s |= ψ)
5. M, t |= ¬ϕ iff, for all s such that t ≤ s,M, s �|= ϕ
6. M, t �|= ⊥
7. M, t |= A says ψ iff, for all s such that tRAs,M, s � ψ.

We say that φ is valid in a modelM ifM, t |= φ for all t ∈ S. We say that φ is valid
tout court (and write |= φ) if φ is valid in every model. We extend the notion of valid-
ity to a set of formulas Γ in the obvious way: for all t,M, t |= Γ ifM, t |= ψ for all

A Conditional Constructive Logic for Access Control and Its Sequent Calculus 169

ψ ∈ Γ . Last, we say that φ is a logical consequence of Γ (and write Γ |= φ) if, for all
modelsM, for all worlds t, ifM, t |= Γ , thenM, t |= φ.
The relations ≤ and RA must satisfy the following conditions:

(S-Int) ∀t, s, z ∈ S, if s ≤ t and tRAz then sRAz;
(S-UNIT) ∀t, s ∈ S, if sRAt, then s ≤ t;

(S-C) ∀t, s, z ∈ S, if sRAt and t ≤ z, then zRAz;
(S-CA) RA∨B(t) = RA(t) ∪RB(t).

(S-Mon) ∀t, s, z ∈ S, if sRA∧Bt, then sRAt and sRBt;
(S-DT) ∀t, s, z ∈ S, if sRAt and t ≤ z, and z ∈ [|B|], then sRA∧Bz;
(S-ID) ∀t, s ∈ S, if sRAt, then t ∈ [|A|];

(S-RCEA) if [|A|] = [|B|], then RA = RB .

Condition (S-Int) enforces the property that when a formulaA says φ is true in a world
t, it is also true in all worlds reachable from s by the relation ≤ (i.e., in all worlds s
such that t ≤ s). All the other semantic conditions are those associated with the axioms
of the logic, apart from condition (S-RCEA), which is the well-known condition for
normality in conditional logics, claiming that the accessibility relationRA is associated
with the semantic interpretation ofA. (S-CA) is the semantic condition for both axioms
(CA) and its converse. Notice that, the fact that we represent the binary relation RA as
indexed by an arbitrary formula does not mean that the semantics for conditional logic
is second-order. In fact,RA represent a selection function (which is used in most formu-
lations of conditional logic semantics), in which sRAt corresponds to t ∈ f([|A|], s),
where [|A|] is a set of worlds. In this view, the semantic conditions above must be in-
tended as first-order because they quantify over individuals (i.e. worlds) and subsets of
the domain (indexes of the binary relation) identified by formulas of the language 2.

Note also that the semantic conditions for some of the axioms, as for instance (DT),
slightly departs from the semantic condition usually given to these axioms in condi-
tional logic. This is due to the fact that CondACL is an intuitionistic conditional logic
and the implication occurring within axioms is intuitionistic implication.

Concerning the interpretation of boolean conditionals and, in particular, of the con-
junction between principals, it can be proved that, from the semantic conditions (S-
Mon), (S-ID) and (S-DT) it follows that:

RA∧B(t) = RA(t) ∩RB(t).

By the presence of the axiom (C), it turns out that the semantic condition (S-DT) can
be equivalently expressed as follows:

Proposition 1. In the axiomatization of CondACL , the following are equivalent:

1. ∀t, s, z ∈ S, if sRAt and t ≤ z, and z ∈ [|B|], then sRA∧Bz;
2. ∀t, s ∈ S, if sRAt and t ∈ [|B|], then sRA∧Bt.

This allows the semantic condition (S-DT) to be equivalently expressed as follows:
2 It is well known that the extension of first-order logic with quantification over a family of

subsets of the domain does not add expressivity because it is equivalent to multi-sorted first-
order logic (see [8] Section 4.4).

170 V. Genovese et al.

(S-DT) ∀t, s ∈ S, if sRAt and t ∈ [|B|], then sRA∧Bt.

It is worth noticing that the notion of logical consequence defined above can be used to
verify that a request φ of a principal A is compliant with a set of policies. Intuitively,
given a set of formulas Γ representing policies, we say that A is compliant with Γ iff
Γ,A says φ |= φ. For instance, if Γ contains the following formulas:

- Admin1 says (SuperUser user1 → write perm user1)

- Admin2 says SuperUser user1
- ((Admin1 ∧Admin2) says delete file1)→ delete file1

- Admin1 ∧Admin2 says ((write perm user1 ∧ (user1 says delete file1))→ delete file1)

we obtain that Γ, user1 says delete file1 |= delete file1 .

3 Soundness and Completeness

In this section we prove that the axiomatization of the logic CondACL given above is
sound and complete with respect to the semantics of Definition 1. The completeness
proof we present is based on the proof of completeness for the Kripke semantics of in-
tuitionistic logic in [23] and extends it to deal with the modalities says in the language
and, more precisely, with the interplay between the relation ≤ and the accessibility
relations RA associated with the modalities.

Definition 2 (Consistency). Let Γ be a set of well formed formulas. Γ is consistent iff
Γ �� ⊥. If Γ has an infinite number of formulas, we say that Γ is consistent iff there are
no finite Γ0 ⊂ Γ such that Γ0 � ⊥.

Definition 3 (Saturation). Let Γ be a set of well formed formulas, we say that Γ is
saturated iff 1. Γ is consistent (Definition 2); 2. if Γ � ϕ, then ϕ ∈ Γ ; 3. if Γ � ϕ ∨ ψ,
then Γ � ϕ or Γ � ψ.

Lemma 1 (Saturated Extensions). Let Γ be a set of well formed formulas. Suppose
Γ �� ϕ, then there is a saturated set Γ ∗ such that Γ ∗ �� ϕ.

Definition 4 (Canonical model construction). Let Γ0 be any saturated set of formu-
las. Then we define M = (S,≤, {RA}, h) such that: S is the set of all saturated
Γ ⊇ Γ0; Γ1 ≤ Γ2 iff Γ1 ⊆ Γ2; Γ1RAΓ2 iff {α | A says α ∈ Γ1} ⊆ Γ2; for all
P ∈ ATM , h(P) = {Γ ∈ S | P ∈ Γ}.

We can prove the following Lemmas:

Lemma 2. For all Γ ∈ S and each formula ϕ ∈ L, we have that M, Γ |= ϕ iff ϕ ∈ Γ .

Lemma 3. Let M be the canonical model as defined in Definition 4. M satisfies the
conditions (S-Int), (S-UNIT), (S-C), (S-CA), (S-Mon), (S-DT), (S-ID), and (S-RCEA).

By the above lemmas, we can conclude tha the axiomatization of the logic CondACL

given in Section 2.1 is complete with respect to the semantics in Definition 1:

A Conditional Constructive Logic for Access Control and Its Sequent Calculus 171

Theorem 2 (Soundness and Completeness). Given a formula ϕ ∈ L, |= ϕ iff � ϕ.

Proof. Soundness is straightforward. Concerning the completeness, for a contradiction,
suppose �� ϕ. Then by Lemma 1 there is a saturated extension Γ ∗ such that Γ ∗ �� ϕ,
hence ϕ �∈ Γ ∗. By Definition 4 and Lemmas 2 and 3, we conclude that there is a
(canonical) model M = (S,≤, {RA}, h), with Γ ∗ ∈ S, such that M, Γ ∗ �|= ϕ. It
follows that ϕ is not logically valid, i.e. �|= ϕ. �

4 A Sequent Calculus for CondACL

In this section we present a cut-free sequent calculus for CondACL . Our calculus is
called SCondACL and it makes use of labels to represent possible worlds, following the
line of SeqS, a sequent calculus for standard conditional logics introduced in [22]. We
also show that we can control the application of some crucial rules of SCondACL , obtain-

ing a terminating calculus ŜCondACL . This calculus describes a decision procedure for
CondACL , and allows us to conclude that provability is decidable in O(n2logn) space.

In addiction to the language L of the logic CondACL , we consider a denumerable
alphabet of labels A, whose elements are denoted by x, y, z, Moreover, in order to
obtain a terminating calculus, we define the set LP ⊆ L of principals involved in the
computation. Given a set of policies Γ , a request ϕ of compliance of a principal A (i.e.
we want to verify whether Γ,A says ϕ |= ϕ), we assume that the set LP contains at
least A and all principals B such that, for some φ, B says φ appears in Γ .

The calculus SCondACL manipulates three types of labelled formulas: 1. world for-
mulas, denoted by x : α, where x ∈ A and α ∈ L, used to represent that the formula α

holds in a world x; 2. transition formulas, denoted by x
A−→ y, representing that xRAy;

3. order formulas of the form y ≥ x representing the preorder relation ≤. A sequent is
a pair 〈Γ,Δ〉, usually denoted with Γ ⇒ Δ, where Γ and Δ are multisets of labelled
formulas. The intuitive meaning of a sequent Γ ⇒ Δ is: every model that satisfies all
labelled formulas of Γ in the respective worlds (specified by the labels) satisfies at least
one of the labelled formulas of Δ (in those worlds). This is made precise by the notion
of validity of a sequent given in the next definition:

Definition 5 (Sequent validity). Given a model M = (S,≤, {RA}, h) for L, and a
label alphabetA, we consider a mapping I : A → S. Let F be a labelled formula, we

defineM |=I F as follows: • M |=I x : α iffM, I(x) |= α; • M |=I x
A−→ y iff

I(x)RAI(y); • M |=I y ≥ x iff I(x) ≤ I(y). We say that Γ ⇒ Δ is valid inM if,
for every mapping I : A → S, ifM |=I F for every F ∈ Γ , thenM |=I G for some
G ∈ Δ. We say that Γ ⇒ Δ is valid in CondACL if it is valid in everyM.

In Figure 1 we present the rules of the calculus SCondACL for CondACL . As usual,
we say that a sequent Γ ⇒ Δ is derivable in SCondACL if it admits a derivation. A
derivation is a tree whose nodes are sequents. A branch is a sequence of nodes Γ1 ⇒
Δ1, Γ2 ⇒ Δ2, . . . , Γn ⇒ Δn, . . . Each node Γi ⇒ Δi is obtained from its immediate
successor Γi−1 ⇒ Δi−1 by applying backward a rule of SCondACL , having Γi−1 ⇒
Δi−1 as the conclusion and Γi ⇒ Δi as one of its premises. A branch is closed if one

172 V. Genovese et al.

(AX) (AX⊥) (AX≥)Γ, x : ⊥ ⇒ Δ Γ ⇒ Δ, x ≥ xΓ, F ⇒ Δ, F

(→ L)(→ R)

(says R) (says L)

(∧R) (∧L)

(Unit)
Γ, z ≥ y, y ≥ x ⇒ Δ

Γ, z ≥ x, z ≥ y, y ≥ x ⇒ Δ

Γ, x
A−→ y ⇒ Δ

Γ, y ≥ x, x
A−→ y ⇒ Δ

Γ, x : P ⇒ Δ
Γ, x : P ⇒ Δ, y ≥ x Γ, x : P, y : P ⇒ Δ

(ATM)

Γ, x
A−→ y ⇒ Δ, x

B−→ y
(EQ)

Γ, x : α → β ⇒ Δ
Γ, x : α → β ⇒ Δ, y ≥ x Γ, x : α → β ⇒ Δ, y : α Γ, x : α → β, y : β ⇒ Δ

Γ ⇒ Δ, x : α → β

Γ, y ≥ x, y : α ⇒ Δ, y : β

Γ ⇒ Δ, x : A says α

Γ, y ≥ x, y
A−→ z ⇒ Δ, z : α

Γ, x : A says α ⇒ Δ
Γ, x : A says α ⇒ Δ, y ≥ x Γ, x : A says α ⇒ Δ, y

A−→ z Γ, x : A says α, z : α ⇒ Δ

Γ, x : α ∧ β ⇒ Δ

Γ, x : α ∧ β ⇒ Δ, y ≥ x Γ, x : α ∧ β, y : α, y : β ⇒ Δ

Γ ⇒ Δ, x : α ∧ β

Γ, y ≥ x ⇒ Δ, y : α Γ, y ≥ x ⇒ Δ, y : β

Γ, z ≥ y, x
A−→ y ⇒ Δ

Γ, z ≥ y, x
A−→ y, z

A−→ z ⇒ Δ
(C) (CA)

(ID)

(DT) (MON)

(CA − conv)
Γ, x

A∨B−→ y ⇒ Δ

Γ, x
A∨B−→ y, x

A−→ y ⇒ Δ Γ, x
A∨B−→ y, x

B−→ y ⇒ Δ

Γ, x
A∧B−→ y ⇒ Δ

Γ, x
A∧B−→ y, x

A−→ y, x
B−→ y ⇒ Δ

u : B ⇒ u : Au : A ⇒ u : B Γ, x
A−→ y, y : A ⇒ Δ

Γ, x
A−→ y ⇒ Δ

Γ, x
A−→ y ⇒ Δ

Γ, x
A−→ y, x

A∧B−→ y ⇒ Δ

Γ, x
A−→ y ⇒ Δ

Γ, x
A∨B−→ y, x

A−→ y ⇒ Δ

F either x : P, P ∈ ATM or y ≥ x
P ∈ ATM

y and z new

y new

y new

Γ, x
A−→ y ⇒ Δ, y : B

A ∨ B ∈ LP

A ∧ B ∈ LP

(TR)

u new

Fig. 1. The sequent calculus SCondACL
. Rules for ¬ and ∨ are omitted to save space.

(AX)
. . . , z ≥ x ⇒ z : α, z ≥ x

(AX)
. . . , x : α, z : α ⇒ z : α

(ATM)
z ≥ x, z ≥ y, y ≥ x, x ≥ u, x : α, y

A−→ z ⇒ z : α
(TR)

z ≥ y, y ≥ x, x ≥ u, x : α, y
A−→ z ⇒ z : α

(Unit)
y ≥ x, x ≥ u, x : α, y

A−→ z ⇒ z : α
(saysR)

x ≥ u, x : α ⇒ x : A says α
(→ R)

⇒ u : α → (A says α)

Fig. 2. A derivation in SCondACL
for (UNIT)

of its nodes is an instance of axioms, namely (AX), (AX≥), and (AX⊥), otherwise it
is open. We say that a tree is closed if all its branches are closed. A sequent Γ ⇒ Δ has
a derivation in SCondACL if there is a closed tree having Γ ⇒ Δ as a root.

The rule (EQ) is used in order to support the rule (RCEA): if a sequent Γ, x
A−→ y ⇒

Δ,x
B−→ y has to be proved, then the calculus SCondACL checks whether A and B are

equivalent, i.e. A↔ B. To this aim, the (EQ) rule introduces a branch in the backward
derivation, trying to find a proof for both sequents u : A⇒ u : B and u : B ⇒ u : A.
The restrictions on the rules (∨R), (∧R), (¬R), (→ R), (says R), and (EQ) are
necessary to preserve the soundness of the calculus. As an example, in Figure 2 we
show a derivation in SCondACL of an instance of the axiom (UNIT). In order to show
that the formula α → (A says α) is valid, we build a derivation in SCondACL for the
sequent⇒ u : α→ (A says α).

The calculus SCondACL is sound and complete with respect to the semantics:

Theorem 3 (Soundness and Completeness of SCondACL). A sequent Γ ⇒ Δ is valid
in the sense of Definition 5 if and only if Γ ⇒ Δ is derivable.

A Conditional Constructive Logic for Access Control and Its Sequent Calculus 173

Proof. (Soundness). By induction on the height of the derivation of Γ ⇒ Δ. We only

present the inductive step for the case in which the derivation of Γ ′, x A−→ y ⇒ Δ ends

by an application of (Unit): by inductive hypothesis, the premise Γ ′, x A−→ y, y ≥
x⇒ Δ is a valid sequent. By absurd, the conclusion is not, i.e. there is a modelM and

a function I such thatM |=I F for every F ∈ Γ ′,M |=I x
A−→ y (i.e., I(x)RAI(y)),

whereasM �|=I G for any G ∈ Δ. By (S-UNIT) in Definition 1, we have that, since
I(x)RAI(y), also I(x) ≤ I(y), thenM |=I y ≥ x, against the validity of the premise.

(Completeness). It is an easy consequence of the admissibility of cut and of some
basic standard structural properties (height-preserving admissibility of weakening and
invertibility of the rules). The proof of the admissibility of (cut) is inspired by the work
of Negri [20] and is omitted due to space limitations. We have to prove that the axioms
are derivable and that the set of derivable formulas is closed under (MP), (RCEA),
and (RCK). In Figure 2 we have shown a derivation of the axiom (UNIT). Derivations
for (TAUT), (K), (C), (CA), (CA-conv), (Mon), (DT), and (ID) are omitted for lack of
space. For (MP), suppose we have a derivation for (i) ⇒ x : α and (ii) ⇒ x : α→ β.
Since weakening is admissible, we have that also (i′) ⇒ x : α, x : β and (ii′) x :
α⇒ x : α→ β, x : β have a derivation in SCondACL . Since (cut) is admissible, we can
conclude that⇒ x : β is derivable as follows:

(i
′
) ⇒ x : α, x : β

(ii
′
)x : α ⇒ x : α → β, x : β

x : α → β, x : α ⇒ x : β, x ≥ x

x : α → β, x : α ⇒ x : β, x : α

x : α → β, x : α, x : β ⇒ x : β
(→ L)

x : α → β, x : α ⇒ x : β
(cut)

x : α ⇒ x : β
(cut)

⇒ x : β

For (RCEA), we proceed as follows. As usual, � A ↔ B is a shorthand for � A → B
and � B → A. Suppose we have a derivation for⇒ u : A→ B and for⇒ u : B → A.
We have shown that we have derivations for u : A ⇒ u : B and u : B ⇒ u : A. The
following derivation shows that also ⇒ u : (A says γ) → (B says γ) is derivable in
SCondACL (the other half is symmetric):

. . . , y ≥ x ⇒ y ≥ x, . . .

u : A ⇒ u : B u : B ⇒ u : A
(EQ)

. . . , y
B−→ z ⇒ y

A−→ z, , z : γ ⇒ z : γ, . . .
(says L)

y ≥ x, x ≥ u, x : A says γ, y
B−→ z ⇒ z : γ

(saysR)
x ≥ u, x : A says γ ⇒ x : B says γ

(→ R)
⇒ u : (A says γ) → (B says γ)

For (RCK), suppose there is a derivation for⇒ y : α → β. Since (→ R) is invertible,
we have also a derivation of (I) z ≥ y, z : α ⇒ z : β and, by weakening, of (I ′) z ≥
y, y ≥ x, y A−→ z, x ≥ u, x : A says α, z : α⇒ z : β, from which we conclude:

174 V. Genovese et al.

. . . , y ≥ x ⇒ y ≥ x . . .

. . . , y
A−→ z ⇒ y

A−→ z, . . .

(I′) z ≥ y, y ≥ x, y
A−→ z, x ≥ u, x : A says α, z : α ⇒ z : β

(Unit)
y ≥ x, y

A−→ z, x ≥ u, x : A says α, z : α ⇒ z : β
(says L)

y ≥ x, y
A−→ z, x ≥ u, x : A says α ⇒ z : β

(saysR)
x ≥ u, x : A says α ⇒ x : A says β

(→ R)
⇒ u : (A says α) → (A says β) �

Completeness of SCondACL with respect to CondACL models of Definition 1 immedi-
ately follows from the completeness of the axiomatization of CondACL with respect to
the semantics, shown in Theorem 2. We have that a formula ϕ ∈ L is valid if and only
if the sequent⇒ u : ϕ has a derivation in SCondACL .

4.1 Termination and Complexity of SCondACL

In general, cut-freeness alone does not ensure the termination of proof search in a se-
quent calculus; the presence of labels and of rules such as (says L), (→ L), (Unit),
(ID), . . ., which increase the complexity of the sequent in a backward proof search,
are potential causes of a non-terminating proof search. However, we can prove that the
above mentioned “critical” rules can be applied in a controlled way, and then that the
rules of SCondACL introduce only a finite number of labels. These facts allow us to de-

scribe a decision procedure ŜCondACL for the logic CondACL , and to give an explicit
complexity bound for it. First of all, we need the following lemmas:

Lemma 4. If a sequent Γ ⇒ Δ, y ≥ x is derivable in SCondACL , then either Γ ⇒ Δ is
derivable or y ≥ x ∈ Γ or y = x.

Lemma 5. If a sequent Γ ⇒ Δ, y
A−→ z is derivable in SCondACL , then either Γ ⇒ Δ

is derivable or y
A′
−→ z ∈ Γ .

The following facts allow to obtain a terminating calculus from SCondACL :
• The rules of SCondACL introduce only a finite number of labels in a backward proof
search: labels are only introduced by the rules (⊗R), where⊗ stands for {¬,→,∧,∨},
by formulas occurring negatively in the initial sequent, which are finite.
• It is useless to apply the rules (TR), (Unit), (ID), (C), (CA), (CA− conv), (DT),
and (MON) more than once on the same principal formula. As an example, let us

consider the rule (Unit): we can restrict its application to Γ, x
A−→ y ⇒ Δ only to the

case in which the rule has not been previously applied to x
A−→ y in that branch, i.e. if

y ≥ x �∈ Γ . Similarly for the other rules.
• A backward application of (CA − conv) introduces A ∨ B in the premise, where
A ∨ B is a principal belonging to LP. The same for (DT), introducing A ∧ B. Since
LP is finite, these rules will be applied a finite number of times in the same branch.
• Each of the rules (⊗L), applied to a sequent Γ, x : φ ⇒ Δ, leads to a premise
of the form Γ, x : φ ⇒ Δ, y ≥ x, and can thus be reapplied without any control.
However, it is useless to apply (⊗L) on the same formula x : φ more than once in each

A Conditional Constructive Logic for Access Control and Its Sequent Calculus 175

branch in a backward proof search, introducing the same formula y ≥ x in the leftmost
premise. Moreover, by Lemma 4 we can restrict the choice of the order formula y ≥ x
to introduce in a way such that either y ≥ x ∈ Γ or y = x: this is explained by the fact
that no rule of SCondACL have a formula y ≥ x in the right-hand side of a sequent as
a principal formula. Therefore, the only way to prove it in a backward search is either
by (AX), i.e. by a sequent also having y ≥ x in its left-hand side (then, we can choose
among y ≥ x already in Γ) or by (AX≥), thus choosing y = x. The same for (ATM).

This is not enough to ensure termination. Indeed, a sequence of applications of (⊗L),
(⊗R) and (TR) might lead to the generation of infinite labels in a branch. As an ex-
ample, consider the sequent x : (P → Q)→ R ⇒, to which (→ L) can be applied by
using x itself, obtaining x : (P → Q) → R ⇒ x : P → Q in the premise in the mid-
dle. We can then apply (→ R), obtaining y ≥ x, x : (P → Q) → R, y : P ⇒ y : Q,
where y is a new label. y can then be used to apply (→ L), leading to a premise
y ≥ x, x : (P → Q) → R, y : P ⇒ y : Q, y : P → Q, to which a further application
of (→ R) introduces a new label z in the premise z ≥ y, y ≥ x, x : (P → Q)→ R, y :
P, z : P ⇒ y : Q, z : Q. An application of (TR) introduces z ≥ x in the left-hand side
of the sequent, then (→ L) can be applied to x : (P → Q)→ R by using z, obtaining
the sequent z ≥ x, z ≥ y, y ≥ x, x : (P → Q) → R, y : P, z : P ⇒ y : Q, z : Q, z :
P → Q, to which (→ R) can be further applied to introduce a new label z′ ≥ z, then
z′ ≥ x by (TR) and so on. Termination is ensured by the following side condition on
the application of the rules (⊗L). Given a sequent Γ ⇒ Δ and two labels x and y such
that y ≥ x ∈ Γ , we define the distance d(y, x) between the two labels as: d(x, x) = 0
and d(y, x) = n if n is the length of the longest sequence of order formulas in Γ “con-
necting” the two labels, i.e. y ≥ z1, z1 ≥ z2, . . . , zn−1 ≥ x ∈ Γ . Given a derivation
starting with⇒ x0 : φ, let τ be the heigth of the parse tree of φ. We can show that we
can restrict the application of a rule (⊗L) to x : α ⊗ β to the case in which the label y
used in the premise(s) is such that d(y, x) ≤ τ , that is to say it is useless to apply the
rule by using a label whose distance with x is higher than the height of the parse tree of
the initial formula.
• Similarly to the previous point, it is useless to apply (says L) on the same formula
x : A says αmore than once in each branch, introducing (backward) the same formulas

y ≥ x and y
A−→ z in the leftmost and in the inner premises, respectively. Moreover,

by Lemma 5, the choice of the transition y
A−→ z to be used is restricted to formulas

such that, for some formula A′, there exists y
A′
−→ z ∈ Γ . Intuitively, this follows from

the fact that a transition formula on the right-hand side of a sequent can only be proved
by an application of (EQ). Moreover, since (EQ) only involves transition formulas, the

premise introducing y
A−→ z can be reduced to y

A′
−→ z ⇒ y

A−→ z.
The resulting terminating calculus ̂SCondACL is shown in Figure 3. ŜCondACL is equiva-

lent to SCondACL , i.e. Γ ⇒ Δ in SCondACL if and only if Γ ⇒ Δ in ̂SCondACL . This itself
gives the decidability of CondACL .

Theorem 4. The sequent calculus ŜCondACL
ensures a terminating proof search, and the

logic CondACL is decidable.

176 V. Genovese et al.

(AX) (AX⊥) Γ, x : ⊥ ⇒ Δ

(says R)(says L)

(Unit)
Γ, z ≥ y, y ≥ x ⇒ Δ

Γ, z ≥ x, z ≥ y, y ≥ x ⇒ Δ

Γ, x
A−→ y ⇒ Δ

Γ, y ≥ x, x
A−→ y ⇒ Δ

Γ, x : P ⇒ Δ

Γ, x : P, y : P ⇒ Δ
(ATM)

Γ, x
A−→ y ⇒ Δ, x

B−→ y
(EQ)

Γ ⇒ Δ, x : A says α

Γ, y ≥ x, y
A−→ z ⇒ Δ, z : α

Γ, x : A says α ⇒ Δ

Γ, x : A says α, z : α ⇒ Δ

Γ, z ≥ y, x
A−→ y ⇒ Δ

Γ, z ≥ y, x
A−→ y, z

A−→ z ⇒ Δ
(C) (CA)

(ID)

(DT) (MON)

(CA − conv)
Γ, x

A∨B−→ y ⇒ Δ

Γ, x
A∨B−→ y, x

A−→ y ⇒ Δ Γ, x
A∨B−→ y, x

B−→ y ⇒ Δ

Γ, x
A∧B−→ y ⇒ Δ

Γ, x
A∧B−→ y, x

A−→ y, x
B−→ y ⇒ Δ

u : B ⇒ u : Au : A ⇒ u : B Γ, x
A−→ y, y : A ⇒ Δ

Γ, x
A−→ y ⇒ Δ

Γ, x
A−→ y ⇒ Δ

Γ, x
A−→ y, x

A∧B−→ y ⇒ Δ

Γ, x
A−→ y ⇒ Δ

Γ, x
A∨B−→ y, x

A−→ y ⇒ Δ

P ∈ ATM
if y : P 	∈ Γ

y and z newy new

if z ≥ x 	∈ Γ if y ≥ x 	∈ Γ if y : A 	∈ Γ

if z
A−→ z 	∈ Γ if {x A−→ y, x

B−→ y} ∩ Γ = ∅ if x
A∨B−→ y 	∈ Γ

if x
A∧B−→ y 	∈ Γ if {x A−→ y, x

B−→ y} 	⊆ Γ

Γ, x
A−→ y ⇒ Δ, y : B

y ≥ x ∈ Γ

Γ, x : P ⇒ Δ, x : P

y ≥ x ∈ Γif
or x = y

y
A′
−→ z ∈ Γ

y ≥ x ∈ Γif

P ∈ ATMif

or x = y

y
A′
−→ z ⇒ y

A−→ z

Γ, x : α → β, y : β ⇒ ΔΓ, x : α → β ⇒ Δ, y : α

and d(y, x) ≤ τ

A ∨ B ∈ LP

A ∧ B ∈ LP

(→ L)

(→ R)

Γ, x : α → β ⇒ Δ

Γ ⇒ Δ, x : α → β

Γ, y ≥ x, y : α ⇒ Δ, y : β

and

(TR)

u new

Fig. 3. The terminating calculus ̂SCondACL
. To save space, we omit the rules for ∧. (AX) is

restricted to atomic formulas. (AX≥) is no needed due to the reformulation of the other rules.

Proof. Given a formula φ, just observe that there is only a finite number of derivations
of the sequent⇒ x0 : φ, as both the length of a proof and the number of labelled formu-
las which may occur in it is finite. �

We can give an explicit space complexity bound for CondACL . As usual, a proof may
have an exponential size because of the branching introduced by the rules. However we
can obtain a much sharper space complexity bound since we do not need to store the
whole proof, but only a sequent at a time plus additional information to carry on the
proof search; this standard technique is similar to the one adopted in [16,22].

Theorem 5. Provability in CondACL is decidable in O(n2 logn) space.

5 Other Axioms

This work can be considered as a first step towards providing a general framework for
the definition of axiomatization, semantics and proof methods for access control logics
by the application of constructive conditional logics. While here we have considered the
logic CondACL , other axioms have been proposed in the literature and different access
control logics have been defined through their combination. Among the most relevant
axioms we mention the following ones:

(C4) (A says (A says α))→ (A says α)
(I) (A says α)→ (B says A says α)
(Speaks For) (A⇒ B)→ ((A says α)→ (B says α))
(Handoff) (A says (B ⇒ A))→ (B ⇒ A)

(C4) belongs to the original axiomatization of the logic ICL defined in [11], where it
replaces the axiom (C). In [13] it has been shown that the semantical property corre-
sponding to (C4) is the following:

(S-C4) ∀t, s ∈ S, if sRAt, then ∃z ∈ S such that sRAz and zRAt

A Conditional Constructive Logic for Access Control and Its Sequent Calculus 177

(I) is introduced in the axiomatization of the logic Binder [7], which extends the logic
ABLP [3,17] in order to express the so called authorization policies. Notice that this is
a weaker version of (Unit). The corresponding semantical property is:

(S-I) ∀t, s, u ∈ S, if tRBs and sRAu, then tRAu

The connective⇒ occurring in (Speaks For) and (Handoff) is a well known connective
introduced in the logic ABLP [3,17] to reason about transfer of authority from one
principal to another.A⇒ B (A speaks for B) means that if A says α, then also B says
α for any α. The axioms (Speaks for) and (Handoff) relate the connective⇒ with the
says modality. The semantic conditions for the axioms (Speaks For) and (Handoff)

have been studied in [14]. Our next step will be to extend our conditional framework
in order to capture these axioms, so to provide automated deduction tools for the above
mentioned logics including them.

6 Related Work and Conclusions

Related Work. The formal study of properties of access control logics is a recent re-
search trend. As reported in [12], constructive logics are well suited for reasoning about
authorization, because constructive proofs preserve the justification of statements dur-
ing reasoning and, therefore, information about accountability is not lost. Classical log-
ics, instead, allows proofs that discard evidence.

Abadi in [1] presents a formal study about connections between many possible ax-
iomatizations of the says, as well as higher-level policy constructs such as delegation
(speaks-for) and control. Abadi provides a strong argument to use constructivism in
logic for access control, in fact he shows that from a well-known axiom like Unit in a
classical logic we can deduce K says ϕ→ (ϕ ∨K says ψ). The axiom above is called
Escalation and it represents a rather degenerate interpretation of says, i.e., if a principal
says ϕ then, either ϕ is permitted or the principal says anything. On the contrary, if we
interpret the says within an intuitionistic logic we can avoid Escalation.

Although several authorization logics employ the says modality, a limited amount of
work has been done to study the formal logical properties of says, speaks-for and other
constructs.

Garg and Abadi [11] translate existing access control logics into S4 by relying on a
slight simplification of Gödel’s translation from intuitionistic logic to S4, and extending
it to formulas of the form A says ϕ.

Garg [10] adopts an ad-hoc version of constructive S4 called DTL0 and embeds
existing approaches into it. Constructive S4 has been chosen because of its intuitionis-
tic Kripke semantics which DTL0 extends by adding views [10], i.e., a mapping from
worlds to sets of principals.

Boella et al. [6] define a logical framework called FSL (Fibred Security Language),
based on fibring semantics [9] by looking at says as a (fibred) modal operator.

It has to be observed that, adopting a fixed semantics like S4 does not permit to
study the correspondence between axioms of access control logics and Kripke struc-
tures. Suppose we look at says as a principal indexed modality �K , if we rely on S4

178 V. Genovese et al.

we would have as an axiom �Kϕ → ϕ, which means: everything that K says is per-
mitted. To overcome this problem, both in [10,11], Kripke semantics is sweetened with
the addition of views which relativize the reasoning to a subset of worlds. Although
this approach provides sound and complete semantics for a certain combination of ax-
ioms (those included in ICL), it breaks the useful bound between modality axioms and
relations of Kripke structures.

Conclusions. We defined an intuitionistic conditional logic for Access Control called
CondACL . The major contribution of our conditional approach w.r.t. works in [10,11]
is the identification of canonical properties for axioms of the logic (in particular Unit
and C), i.e., first-order conditions on Kripke structures that are necessary and sufficient
for the corresponding axiom to hold. [6,13,14] identify canonical properties for other
access control axioms (e.g., C4, speaks-for, hand-off).

We believe that this methodology has several advantages. First, conditional logics al-
low a natural formalization of the says modality including the specification of boolean
principals as arbitrary formulas. In spite of this generality, we have shown that prov-
ability in CondACL is decidable in O(n2logn) space, in agreement with the results
given in [11] for the logic ICL. Second, the identification of canonical properties for
access control axioms provides a natural deconstruction of access control logics. By
deconstruction we mean the possibility to craft access control logics that adopt any
combination of axioms for which canonical properties exist. For instance, not all access
control systems adopt Unit as an axiom [18,4,15], but the translation in [11] does not
provide an embedding in S4 for a logic without Unit. In general, the approach in [11]
does not provide a methodology to deconstruct access control logics. In our approach,
instead, we can formalize a logic and a calculus without Unit which is still sound and
complete, by dropping the semantic condition (S-UNIT) and the corresponding rule
(Unit) in the calculus.

We believe that choosing axioms for access control logics depends on the needs of
security practitioners. By looking at says as a conditional modality, we can offer a
formal framework to study the axioms of access control via canonical properties on the
semantics, and to build calculi to carry out automated deduction. Of course, for each
combination of axioms, the decidability and the complexity of the resulting logic as
well as the termination of the calculus have to be determined. To this concern, we have
followed the approach proposed in [22] for standard normal conditional logics, which
we have extended here to deal with an intuitionistic logic as well as with specific access
control axioms.

For the time being, CondACL only includes few widely accepted axioms of access
control logics but it can be extended in order to cope with richer axioms, as well as with
the well known notion of “speaks for”. This is what we plan to do in future work.

References

1. Abadi, M.: Variations in Access Control Logic. In: van der Meyden, R., van der Torre, L.
(eds.) DEON 2008. LNCS (LNAI), vol. 5076, pp. 96–109. Springer, Heidelberg (2008)

2. Abadi, M., Burrows, M., Lampson, B.W., Plotkin, G.D.: A calculus for access control in
distributed systems. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 1–23.
Springer, Heidelberg (1992)

A Conditional Constructive Logic for Access Control and Its Sequent Calculus 179

3. Abadi, M., Burrows, M., Lampson, B.W., Plotkin, G.D.: A calculus for access control in
distributed systems. ACM Trans. on Progr. Languages and Systems 15(4), 706–734 (1993)

4. Becker, M.Y., Fournet, C., Gordon, A.D.: Design and semantics of a decentralized authoriza-
tion language. In: IEEE Comp. Security Foundations Symp (CSF), pp. 3–15 (2007)

5. Bertolissi, C., Fernández, M., Barker, S.: Dynamic event-based access control as term rewrit-
ing. In: Barker, S., Gail-Joon, A. (eds.) DBSec 2007. LNCS, vol. 4602, pp. 96–109. Springer,
Heidelberg (2007)

6. Boella, G., Gabbay, D., Genovese, V., van der Torre, L.: Fibred security language. Studia
Logica 92(3), 395–436 (2009)

7. DeTreville, J.: Binder, a logic-based security language. In: IEEE Symposium on Security and
Privacy, pp. 105–113 (2002)

8. Enderton, H.B.: A Mathematical Introduction to Logic, 2nd edn. Academic Press, New York
(2000)

9. Gabbay, D.M.: Fibring Logics. Oxford University Press, Oxford (1999)
10. Garg, D.: Principal centric reasoning in constructive authorization logic. In: IMLA (2008)
11. Garg, D., Abadi, M.: A modal deconstruction of access control logics. In: Amadio, R.M.

(ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 216–230. Springer, Heidelberg (2008)
12. Garg, D., Pfenning, F.: Non-interference in constructive authorization logic. In: CSFW-19,

pp. 283–296 (2006)
13. Genovese, V., Giordano, L., Gliozzi, V., Pozzato, G.L.: A constructive conditional logic for

access control: a preliminary report. In: Proc. of ECAI 2010. Frontiers in Artificial Intel-
ligence and Applications, vol. 215, pp. 1073–1074. IOS Press, Amsterdam (2010) (short
paper)

14. Genovese, V., Rispoli, D., Gabbay, D.M., van der Torre, L.: Modal Access Control Logic:
Axiomatization, Semantics and FOL Theorem Proving. In: Proc. of STAIRS 2010. Frontiers
in Artificial Intelligence and Applications, vol. 222, pp. 114–126. IOS Press, Amsterdam
(2010)

15. Gurevich, Y., Roy, A.: Operational semantics for DKAL: Application and analysis. In:
Fischer-Hübner, S., Lambrinoudakis, C., Pernul, G. (eds.) TrustBus 2009. LNCS, vol. 5695,
pp. 149–158. Springer, Heidelberg (2009)

16. Hudelmaier, J.: AnO(n log n)-space decision procedure for intuitionistic propositional logic.
Journal of Logic and Computation 3(1), 63–75 (1993)

17. Lampson, B.W., Abadi, M., Burrows, M., Wobber, E.: Authentication in distributed systems:
Theory and practice. ACM Trans. on Computer Systems 10(4), 265–310 (1992)

18. Lesniewski-Laas, C., Ford, B., Strauss, J., Morris, R., Kaashoek, M.F.: Alpaca: extensible
authorization for distributed services. In: Proc. of ACM CCS 2007, pp. 432–444 (2007)

19. Li, N., Grosof, B.N., Feigenbaum, J.: Delegation logic: A logic-based approach to distributed
authorization. ACM Trans. Inf. Syst. Secur. 6(1), 128–171 (2003)

20. Negri, S.: Proof analysis in modal logic. J. of Philosophical Logic 34, 507–544 (2005)
21. Nute, D.: Topics in Conditional Logic. Reidel, Dordrecht (1980)
22. Olivetti, N., Pozzato, G.L., Schwind, C.B.: A Sequent Calculus and a Theorem Prover for

Standard Conditional Logics. ACM Transactions on Computational Logics 8(4) (2007)
23. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics: An Introduction (1988)

A Tableau Calculus for a
Nonmonotonic Extension of EL⊥

Laura Giordano1, Valentina Gliozzi2, Nicola Olivetti3, and Gian Luca Pozzato2

1 Dip. di Informatica, U. Piemonte O., Alessandria, Italy
laura@mfn.unipmn.it

2 Dip. Informatica, Univ. di Torino, Italy
{gliozzi,pozzato}@di.unito.it

3 LSIS-UMR CNRS 6168, Marseille, France
nicola.olivetti@univ-cezanne.fr

Abstract. We introduce a tableau calculus for a nonmonotonic extension of low
complexity Description Logic EL⊥ that can be used to reason about typicality
and defeasible properties. The calculus deals with Left Local knowledge bases
in the logic EL⊥Tmin recently introduced in [8] . The calculus performs a two-
phase computation to check whether a query is minimally entailed from the initial
knowledge base. It is sound, complete and terminating. Furthermore, it is a de-
cision procedure for Left Local EL⊥Tmin knowledge bases, whose complexity
matches the known results for the logic, namely that entailment is in Πp

2 .

1 Introduction

Nonmonotonic extensions of Description Logics (DLs) have been actively investigated
since the early 90s, [14,4,2,3,7,11,10,9,6]. The reason is that DLs are used to represent
classes and their properties, so that a nonmonotonic mechanism is wished to express
defeasible inheritance of prototypical properties. A simple but powerful nonmonotonic
extension of DL is proposed in [11,10,9]: in this approach “typical” or “normal” proper-
ties can be directly specified by means of a “typicality” operator T enriching the under-
lying DL; the typicality operator T is essentially characterised by the core properties of
nonmonotonic reasoning axiomatized by preferential logic [12]. In ALC + T [11], one
can consistently express defeasible inclusions and exceptions such as: typical students
do not pay taxes, but working students do typically pay taxes, but working student hav-
ing children normally do not: T(Student) � ¬TaxPayer ; T(Student �Worker) �
TaxPayer ; T(Student�Worker�∃HasChild .�) � ¬TaxPayer . Although the oper-

ator T is nonmonotonic in itself, the logicsALC+T and EL+⊥
T [10] are monotonic.

As a consequence, unless a knowledge base (KB) contains explicit assumptions about
typicality of individuals (e.g. that john is a typical student), there is no way of inferring
defeasible properties of them (e.g. that john does not pay taxes). In [9], a non monotonic
extension ofALC+T based on a minimal models semantics is proposed. The resulting
logic, calledALC +Tmin, supports typicality assumptions; as an example, for a TBox
specified by the inclusions above, inALC+Tmin the following inference holds: TBox
∪ {Student(john)} |=ALC+Tmin ¬TaxPayer (john).

K. Brünnler and G. Metcalfe (Eds.): TABLEAUX 2011, LNAI 6793, pp. 180–195, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Tableau Calculus for a Nonmonotonic Extension of EL⊥ 181

Similarly to other nonmonotonic DLs, adding the typicality operator with its minimal
models semantics to a standard DL, such as ALC, leads to a very high complexity
(namely query entailment in the resulting logic is in CO-NEXPNP [9]). This fact has
motivated the study of nonmonotonic extensions of low complexity DLs [3] such as
EL⊥ of the EL family [1] which are nonetheless well-suited for encoding large KBs.
In the same vein, we consider here the extension of the low complexity logic EL⊥ with
the typicality operator based on the minimal models semantics introduced in [9]. But
the restriction to EL⊥ does not suffice: as recently shown, deciding entailment in the
resulting logic EL⊥Tmin is unfortunately EXPTIME-hard [8]. This result is analogous
to the one for circumscribed EL⊥ KBs [3]. However, it has been shown in [8] that
the complexity drops to Πp

2 for the fragment of Left Local EL⊥Tmin KBs. Similar
fragments have been previously studied for circumscribed EL⊥ KBs [3] obtaining the
same complexity. To the best of our knowledge, however, no deduction calculi for these
fragments with circumscription are known at present.

In this paper, we concentrate on the Left Local fragment of EL⊥Tmin. This frag-
ment is determined by restricting the extistential quantification on concepts appearing
on the left side of a concept inclusion: only existentially quantified concepts of the form
∃R.� are allowed. For this fragment, we propose a tableau calculus for deciding min-
imal entailment in Πp

2 . It is a two-phase calculus: in the first phase, candidate models
(complete open branches) falsifying the given query are generated, in the second phase
the minimality of candidate models is checked by means of an auxiliary tableau con-
struction. The latter tries to build a model which is “more preferred” than the candidate
one: if it fails (being closed) the candidate model is minimal, otherwise it is not. Both
tableaux constructions comprise some non-standard rules for existential quantification
in order to constrain the domain (and its size) of the model being constructed. The sec-
ond phase makes use in addition of special closure conditions to prevent the generation
of non-preferred models. It comes as a surprise that the modification of the existen-
tial rule is sufficient to match the optimal complexity, so that the calculus provide in
itself a constructive proof of the upper bound of this fragment (obtained in [8] by a
non-constructive semantical argument).

2 The Typicality Operator T, the Logic EL⊥Tmin and its Left
Local Fragment

Before describing EL⊥Tmin, let us briefly recall the underlying monotonic logic

EL+⊥
T [10], obtained by adding to EL⊥ the typicality operator T. The intuitive idea

is that T(C) selects the typical instances of a concept C. In EL+⊥
T we can therefore

distinguish between the properties that hold for all instances of concept C (C � D),
and those that only hold for the normal or typical instances of C (T(C) � D).

Formally, the EL+⊥
T language is defined as follows.

Definition 1. We consider an alphabet of concept names C, of role names R, and of
individualsO. Given A ∈ C and R ∈ R, we define

C := A | � | ⊥ | C �C CR := C | CR �CR | ∃R.C CL := CR | T(C)

182 L. Giordano et al.

A KB is a pair (TBox, ABox). TBox contains a finite set of general concept inclusions
(or subsumptions) CL � CR. ABox contains assertions of the form CL(a) andR(a, b),
where a, b ∈ O.

The semantics of EL+⊥
T [10] is defined by enriching ordinary models of EL⊥ by a

preference relation < on the domain, whose intuitive meaning is to compare the “typi-
cality” of individuals: x < y, means that x is more typical than y. Typical members of
a concept C, that is members of T(C), are the members x of C that are minimal with
respect to this preference relation.

Definition 2 (Semantics of T). A modelM is any structure 〈Δ,<, I〉 where Δ is the
domain; < is an irreflexive and transitive relation over Δ that satisfies the following
Smoothness Condition: for all S ⊆ Δ, for all x ∈ S, either x ∈ Min<(S) or ∃y ∈
Min<(S) such that y < x, where Min<(S) = {u : u ∈ S and �z ∈ S s.t. z < u}.
Furthermore, < is multilinear: if u < z and v < z, then either u = v or u < v or
v < u. I is the extension function that maps each concept C to CI ⊆ Δ, and each role
r to rI ⊆ ΔI × ΔI . For concepts of EL⊥, CI is defined in the usual way. For the T
operator: (T(C))I = Min<(CI).

Definition 3 (Model satisfying a Knowledge Base). Given a modelM, I can be ex-
tended so that it assigns to each individual a of O a distinct element aI of the domain
Δ.M satisfies a KB (TBox,ABox), if it satisfies both its TBox and its ABox, where:

– M satisfies an inclusion C � D if CI ⊆ DI .M satisfies TBox if it satisfies all its
inclusions.

– M satisfies C(a) if aI ∈ CI and aRb if (aI , bI) ∈ RI . M satisfies ABox if it
satisfies all its formulas.

The operator T [11] is characterized by a set of postulates that are essentially a refor-
mulation of KLM [12] axioms of preferential logic P. T has therefore all the “core”
properties of nonmonotonic reasoning as it is axiomatised by P. The semantics of the
typicality operator can be specified by modal logic. The interpretation of T can be split
into two parts: for any x of the domain Δ, x ∈ (T(C))I just in case (i) x ∈ CI , and
(ii) there is no y ∈ CI such that y < x. Condition (ii) can be represented by means
of an additional modality �, whose semantics is given by the preference relation < in-
terpreted as an accessibility relation. Observe that by the Smoothness Condition, � has
the properties of Gödel-Löb modal logic of provability G. The interpretation of � inM
is as follows:

(�C)I = {x ∈ Δ | for every y ∈ Δ, if y < x then y ∈ CI}

We immediately get that x ∈ (T(C))I iff x ∈ (C ��¬C)I . From now on, we consider
T(C) as an abbreviation for C ��¬C.

The main limit of EL+⊥
T is that it is monotonic. Even if the typicality operator T

itself is nonmonotonic (i.e. T(C) � E does not imply T(C � D) � E), the logic

EL+⊥
T is monotonic: what is inferred from KB can still be inferred from any KB’

with KB ⊆ KB’. In order to perform nonmonotonic inferences, as done in [9], we

strengthen the semantics of EL+⊥
T by restricting entailment to a class of minimal (or

A Tableau Calculus for a Nonmonotonic Extension of EL⊥ 183

preferred) models. We call the new logic EL⊥Tmin. Intuitively, the idea is to restrict
our consideration to models that minimize the non typical instances of a concept.

Given a KB, we consider a finite set LT of concepts: these are the concepts whose
non typical instances we want to minimize. We assume that the set LT contains at least
all concepts C such that T(C) occurs in the KB or in the query F , where a query F is
either an assertion C(a) or an inclusion relation C � D. As we have just said, x ∈ CI
is typical if x ∈ (�¬C)I . Minimizing the non typical instances of C therefore means
to minimize the objects not satisfying �¬C for C ∈ LT. Hence, for a given model
M = 〈Δ,<, I〉, we define:

M�−
LT

= {(x,¬�¬C) | x �∈ (�¬C)I , with x ∈ Δ,C ∈ LT}.

Definition 4 (Preferred and minimal models). Given a model M = 〈Δ <, I〉 of a
knowledge base KB, and a modelM′ = 〈Δ′, <′, I ′〉 of KB, we say thatM is preferred
to M′ with respect to LT, and we write M <LT M′, if (i) Δ = Δ′, (ii) M�−

LT
⊂

M′�−
LT

, (iii) aI = aI
′

for all a ∈ O.M is a minimal model for KB (with respect to LT)
if it is a model of KB and there is no other modelM′ of KB such thatM′ <LT M.

Definition 5 (Minimal Entailment in EL⊥Tmin). A query F is minimally entailed
in EL⊥Tmin by KB with respect to LT if F is satisfied in all models of KB that are
minimal with respect to LT. We write KB |=EL⊥Tmin

F .

Example 1. The KB of the Introduction can be reformulated as follows in EL+⊥
T:

TaxPayer �NotTaxPayer � ⊥; Parent � ∃HasChild .�; ∃HasChild .� � Parent ;
T(Student) � NotTaxPayer ; T(Student � Worker) � TaxPayer ; T(Student �
Worker � Parent) � NotTaxPayer . Let LT = {Student,Student � Worker ,
Student � Worker � Parent}. Then TBox ∪ {Student(john)} |=EL⊥Tmin

NotTaxPayer (john), since johnI ∈ (Student��¬Student)I for all minimal models
M = 〈Δ<, I〉 of the KB. In contrast, by the nonmonotonic character of minimal entail-
ment, TBox ∪ {Student(john),Worker (john)} |=EL⊥Tmin

TaxPayer (john). Last,
notice that TBox ∪ {∃HasChild .(Student �Worker)(jack)} |=EL⊥Tmin

∃ HasChild .TaxPayer (jack). The latter shows that minimal consequence applies to
implict individuals as well, without any ad-hoc mechanism.

In [8] (Theorem 3.1), it has been proven that entailment in EL⊥Tmin is EXPTIME hard.
In order to lower the complexity of minimal entailment in EL⊥Tmin, we consider a
syntactic restriction on the KB called Left Local KBs. This restriction is similar to the
one introduced in [3] for circumscribed EL⊥ KBs.

Definition 6 (Left Local knowledge base). A Left Local KB only contains subsump-
tions CLLL � CR, where C and CR are as in Definition 1 and:

CLLL := C | CLLL � CLLL | ∃R.� | T(C)

There is no restriction on the ABox.

Observe that the KB in the Example 1 is Left Local, as no concept of the form ∃R.C
with C �= � occurs on the left hand side of inclusions.

184 L. Giordano et al.

In [8] (Theorem 3.12), it has been proven that the problem of deciding whether KB
|=EL⊥Tmin

F is in Πp
2 . In this paper, we focus our attention to Left Local KBs.

3 The Tableau Calculus for Left Local EL⊥Tmin

In this section we present a tableau calculus TABEL⊥T
min for deciding whether a query

F is minimally entailed from a Left Local knowledge base in the logic EL⊥Tmin.

The calculus TABEL⊥T
min performs a two-phase computation in order to check whether

a query F is minimally entailed from the initial KB. In the first phase, a tableau calcu-

lus, called TABEL⊥T
PH1 , simply verifies whether KB ∪ {¬F} is satisfiable in an EL⊥T

model, building candidate models. In the second phase another tableau calculus, called

TABEL⊥T
PH2 , checks whether the candidate models found in the first phase are minimal

models of KB, i.e. for each open branch of the first phase, TABEL⊥T
PH2 tries to build a

model of KB which is preferred to the candidate model w.r.t. Definition 4. The whole

procedure TABEL⊥T
min is formally defined at the end of this section (Definition 12).

As usual, TABEL⊥T
min tries to build an open branch representing a minimal model

satisfying KB ∪ {¬F}. The negation of a query ¬F is defined as follows:

Definition 7 (Negation of a query). Given a query F , we define its negation ¬F :

– if F ≡ C(a), then ¬F ≡ (¬C)(a)
– if F ≡ C � D, then ¬F ≡ (C � ¬D)(x), where x does not occur in KB.

Notice that we introduce the connective ¬ in a very “localized” way. This is very
different from introducing the negation all over the knowledge base, and indeed it does
not imply that we jump out of the language of EL⊥Tmin.

TABEL⊥T
min makes use of labels, which are denoted with x, y, z, Labels represent

either a variable or an individual of the ABox, that is to say an element ofO∪V . These

labels occur in constraints (or labelled formulas), that can have the form x
R−→ y or

x : C, where x, y are labels, R is a role and C is either a concept or the negation of a
concept of EL⊥Tmin or has the form �¬D or ¬�¬D, where D is a concept.

Let us now analyze the two components of TABEL⊥T
min , starting with TABEL

⊥T
PH1 .

3.1 First Phase: The Tableaux Calculus TABEL⊥T
P H1

A tableau of TABEL⊥T
PH1 is a tree whose nodes are tuples 〈S | U |W 〉. S is a set of con-

straints, whereas U contains formulas of the form C � DL, representing subsumption
relations C � D of the TBox. L is a list of labels, used in order to ensure the termi-
nation of the tableau calculus. W is a set of labels xC used in order to build a “small”
model, matching the results of the Small Model Theorem in [8]. A branch is a sequence
of nodes 〈S1 | U1 | W1〉, 〈S2 | U2 | W2〉, . . . , 〈Sn | Un | Wn〉 . . ., where each node
〈Si | Ui | Wi〉 is obtained from its immediate predecessor 〈Si−1 | Ui−1 | Wi−1〉
by applying a rule of TABEL

⊥T
PH1 , having 〈Si−1 | Ui−1 | Wi−1〉 as the premise and

〈Si | Ui | Wi〉 as one of its conclusions. A branch is closed if one of its nodes is an
instance of a (Clash) axiom, otherwise it is open. A tableau is closed if all its branches
are closed.

A Tableau Calculus for a Nonmonotonic Extension of EL⊥ 185

The calculus TABEL⊥T
PH1 is significantly different in two respects from the calculus

ALC + Tmin presented in [9]. First, the rule (∃+) is split in the following two rules:

〈S, u : ∃R.C | U | W 〉
〈S, u

R−→ xC , xC : C | U | W ∪ {xC}〉 . . .
(∃+)1〈S, u

R−→ y1, y1 : C | U | W 〉 〈S, u
R−→ ym, ym : C | U | W 〉

(∃+)2
〈S, u : ∃R.C | U | W 〉

〈S, u
R−→ xC | U | W 〉 . . .〈S, u

R−→ y1, y1 : C | U | W 〉 〈S, u
R−→ ym, ym : C | U | W 〉

if xC �∈ W and y1, . . . , ym are all the labels occurring in S

if xC ∈ W and y1, . . . , ym are all the labels occurring in S

When the rule (∃+)1 is applied to a formula u : ∃R.C, it introduces a new label
xC only when the set W does not already contain xC . Otherwise, since xC has been

already introduced in that branch, u
R−→ xC is added to the conclusion of the rule

rather than introducing a new label. As a consequence, in a given branch, (∃+)1 only
introduces a new label xC for each conceptC occurring in the initial KB in some ∃R.C,
and no blocking machinery is needed to ensure termination. As it will become clear in
the proof of Theorem 1, this is possible since we are considering Left Local KBs, which
have small models; in these models all existentials ∃R.C occurring in KB are made true
by reusing a single witness xC (Theorem 3.12 in [8]). Notice also that the rules (∃+)1
and (∃+)2 introduce a branching on the choice of the label used to realize the existential
restriction u : ∃R.C: just the leftmost conclusion of (∃+)1 introduces a new label (as

mentioned, the xC such that xC : C and u
R−→ xC are added to the branch); in all the

other branches, each one of the other labels yi occurring in S may be chosen.
Second, in order to build multilinear models of Definition 2, the calculus adopts

a strengthened version of the rule (�−) used in TABALC+T
min [9]. We write S as an

abbreviation for S, u : ¬�¬C1, . . . , u : ¬�¬Cn. Moreover, we define SMu→y = {y :

¬D, y : �¬D | u : �¬D ∈ S} and, for k = 1, 2, . . . , n, we define S
�−k

u→y = {y :
¬�¬Cj � Cj | u : ¬�¬Cj ∈ S ∧ j �= k}. The strengthened rule (�−) is as follows:

〈S, x : Ck, x : �¬Ck, SM
u→x, S

�−k

u→x | U | W 〉
. . .

(�−)

〈S, y1 : Ck, y1 : �¬Ck, SM
u→y1

, S
�−k

u→y1
| U | W 〉

〈S, u : ¬�¬C1,¬�¬C2, . . . , u : ¬�¬Cn | U | W 〉

〈S, ym : Ck, ym : �¬Ck, SM
u→ym

, S
�−k

u→ym
| U | W 〉

for all k = 1, 2, . . . , n, where y1, . . . , ym are all the labels occurring in S and x is new.
Rule (�−) contains: - n branches, one for each u : ¬�¬Ck in S; in each branch a

new typical Ck individual x is introduced (i.e. x : Ck and x : �¬Ck are added), and
for all other u : ¬�¬Cj , either x : Cj holds or the formula x : ¬�¬Cj is recorded;
- other n×m branches, where m is the number of labels occurring in S, one for each
label yi and for each u : ¬�¬Ck in S; in these branches, a given yi is chosen as a
typical instance of Ck , that is to say yi : Ck and yi : �¬Ck are added, and for all other

186 L. Giordano et al.

u : ¬�¬Cj , either yi : Cj holds or the formula yi : ¬�¬Cj is recorded. As shown
in the proof of Theorem 1, this rule is sound with respect to multilinear models. The
advantage of this rule over the (�−) rule in the calculus TABALC+T

min is that all the
negated box formulas labelled by u are treated in one step, introducing only a new label
x in (some of) the conclusions.

Notice that in order to keep S readable, we have used �. This is the reason why our
calculi contain the rule for �, even if this constructor does not belong to EL⊥Tmin.

In order to check the satisfiability of a KB, we build its corresponding constraint
system 〈S | U | ∅〉, and we check its satisfiability.

Definition 8 (Corresponding constraint system). Given a knowledge base
KB=(TBox,ABox), we define its corresponding constraint system 〈S | U | ∅〉 as
follows:

– S = {a : C | C(a) ∈ ABox} ∪ {a R−→ b | R(a, b) ∈ ABox}
– U = {C � D∅ | C � D ∈ TBox}

Definition 9 (Model satisfying a constraint system). LetM = 〈Δ, I,<〉 be a model
as defined in Definition 2. We define a function α which assigns to each variable of V an
element of Δ, and assigns every individual a ∈ O to aI ∈ Δ.M satisfies a constraint
F under α, writtenM |=α F , as follows:

– M |=α x : C iff α(x) ∈ CI

– M |=α x
R−→ y iff (α(x), α(y)) ∈ RI

A constraint system 〈S | U | W 〉 is satisfiable if there is a modelM and a function α
such thatM satisfies every constraint in S under α and that, for all C � DL ∈ U and
for all x ∈ Δ, we have that if x ∈ CI then x ∈ DI .

Proposition 1. Given a KB=(TBox,ABox), it is satisfiable if and only if its correspond-
ing constraint system 〈S | U | ∅〉 is satisfiable.

To verify the satisfiability of KB ∪ {¬F}, we use TABEL⊥T
PH1 to check the satisfiability

of the constraint system 〈S | U | ∅〉 obtained by adding the constraint corresponding
to ¬F to S′, where 〈S′ | U | ∅〉 is the corresponding constraint system of KB. To this

purpose, the rules of the calculus TABEL⊥T
PH1 are applied until either a contradiction is

generated (Clash) or a model satisfying 〈S | U | ∅〉 can be obtained from the resulting
constraint system.

Given a node 〈S | U | W 〉, for each subsumption C � DL ∈ U and for each label
x that appears in the tableau, we add to S the constraint x : ¬C �D: we refer to this
mechanism as unfolding. As mentioned above, each formula C � D is equipped with
a list L of labels in which it has been unfolded in the current branch. This is needed to
avoid multiple unfolding of the same subsumption by using the same label, generating
infinite branches.

Before introducing the rules of TABEL⊥T
PH1 we need some more definitions. First,

as in [5], we define an ordering relation ≺ to keep track of the temporal ordering of
insertion of labels in the tableau, that is to say if y is introduced in the tableau, then x ≺

A Tableau Calculus for a Nonmonotonic Extension of EL⊥ 187

〈S, u : ∃R.C | U | W 〉
〈S, u

R−→ xC , xC : C | U | W ∪ {xC}〉 . . .
(∃+)1

if y : ¬C �∈ S

〈S | U,C 	 DL | W 〉

if x occurs in S and x �∈ L

(Unfold)〈S, x : T(C) | U | W 〉 〈S, x : ¬T(C) | U | W 〉
〈S, x : C, x : �¬C | U | W 〉 〈S, x : ¬C | U | W 〉 〈S, x : ¬�¬C | U | W 〉

(T+) (T−)

(
+) (
−)

(cut)

x occurs in S
if x : ¬�¬C �∈ S and x : �¬C �∈ S

C ∈ LT

〈S, x : ¬D | U | W 〉〈S, x : ¬C | U | W 〉〈S, x : C, x : D | U | W 〉
〈S, x : C
 D | U | W 〉 〈S, x : ¬(C
 D) | U | W 〉

〈S, x : C, x : ¬C | U | W 〉 (Clash)⊥(Clash)¬�

〈S, x : �¬C | U | W 〉〈S, x : ¬∃R.C, x
R−→ y, y : ¬C | U | W 〉

〈S, x : ¬∃R.C, x
R−→ y | U | W 〉

(∃−)

(Clash)

〈S, x : ¬�¬C | U | W 〉
〈S | U | W 〉

〈S, x : ⊥ | U | W 〉〈S, x : ¬� | U | W 〉

〈S, x : ¬C D | U,C 	 DL,x | W 〉

(∃+)2
〈S, u : ∃R.C | U | W 〉

〈S, u
R−→ xC | U | W 〉

〈S, x : C | U | W 〉 〈S, x : D | U | W 〉
〈S, x : C D | U | W 〉

(+)

〈S, u
R−→ y1, y1 : C | U | W 〉

. . .〈S, u
R−→ y1, y1 : C | U | W 〉

〈S, u
R−→ ym, ym : C | U | W 〉

〈S, u
R−→ ym, ym : C | U | W 〉

〈S, x : Ck, x : �¬Ck, SM
u→x, S

�−k

u→x | U | W 〉
. . .

(�−)

〈S, y1 : Ck, y1 : �¬Ck, SM
u→y1

, S
�−k

u→y1
| U | W 〉

〈S, u : ¬�¬C1,¬�¬C2, . . . , u : ¬�¬Cn | U | W 〉

〈S, ym : Ck, ym : �¬Ck, SM
u→ym

, S
�−k

u→ym
| U | W 〉

k = 1, 2, . . . , n

x new

if xC �∈ W and y1, . . . , ym are all the labels occurring in S

if xC ∈ W and y1, . . . , ym are all the labels occurring in S

if y1, . . . , ym are all the labels occurring in S, y1 �= u, . . . , ym �= u

Fig. 1. The calculus TABEL⊥T
PH1

y for all labels x that are already in the tableau. Furthermore, if x is the label occurring
in the query F , then x ≺ y for all y occurring in the constraint system corresponding to
the initial KB. Moreover, we define the satisfiability of a branch of a tableau:

Definition 10 (Satisfiability of a branch). A branch B of a tableau of TABEL⊥T
PH1 is

satisfiable by a modelM if there is a mapping α from the labels in B to the domain of
M such that for all constraint systems 〈S | U | W 〉 on B, M satisfies under α (see
Definition 9) every constraint in S and, for all C � DL ∈ U and for all x occurring in
S, we have that if α(x) ∈ CI then α(x) ∈ DI .

The rules of TABEL⊥T
PH1 are presented in Figure 1. Rules (∃+1) and (�−) are called

dynamic since they can introduce a new variable in their conclusions. The other rules
are called static. We do not need any extra rule for the positive occurrences of the �
operator, since these are taken into account by the computation of SMx→y of (�−). The

(cut) rule ensures that, given any conceptC ∈ LT, an open branch built by TABEL⊥T
PH1

contains either x : �¬C or x : ¬�¬C for each label x: this is needed in order to allow
TABEL⊥T

PH2 to check the minimality of the model corresponding to the open branch.

188 L. Giordano et al.

The rules of TABEL⊥T
PH1 are applied with the following standard strategy: 1. apply

a rule to a label x only if no rule is applicable to a label y such that y ≺ x; 2. apply
dynamic rules only if no static rule is applicable. The calculus so obtained is sound and
complete with respect to the semantics in Definition 9.

Fact 1. The only negated existential formulas that can occur in the tableau are (i) either
general existential formulas x : ¬∃R.C that derive from the negation of the query; (ii)
or y : ¬∃R.�, that can occur at any point of the branch and that derive from (Unfold)
applied to a subsumption ∃R.� � D.

Theorem 1 (Soundness of TABEL⊥T
PH1). If KB �|=EL⊥Tmin

F , then the tableau for the
constraint system corresponding to KB ∪ {¬F} contains an open branch, which is
satisfiable (via an injective assignment from labels to domain elements) in a minimal
model of KB.

Proof. (Sketch) If KB �|=EL⊥Tmin
F , then there is a minimal model of KB that satisfies

¬F . By Definition 3, each individual occurring in KB is assigned to a different domain
element (unique name assumption). It can be shown that this also holds for the con-
straint system corresponding to KB, which is therefore satisfiable by a minimal model
of KB via an injective mapping from labels to domain elements. We show that each

rule of TABEL⊥T
PH1 preserves satisfiability by an injective mapping in a minimal model

of KB. From this, we conclude that the branch is open, since no instance of the clash
axioms would be satisfiable by an injective mapping in a minimal model of KB.

As an example of how we show that rules preserve satisfiability in a minimal model
through an injective mapping, we consider here rules (∃+)1, (∃+)2, and (�−).

For (∃+)1, assume there is a minimal modelM = 〈Δ, I,<〉 of KB that satisfies
the branch obtained before the application of the rule and premise of the rule (under
an injective assignment α). In this model, α(u) ∈ (∃R.C)I , i.e. there is z ∈ Δ with
(α(u), z) ∈ RI and z ∈ CI . If the branch contains a label yi such that α(yi) = z,

then the consequence of the rule in which u
R−→ yi, yi : C appear is satisfiable by

the same model under the same assignment. Otherwise, consider the branch containing

u
R−→ xC , xC : C. xC is new, hence we can extendα so that α(xC) = z. α so extended

is obviously still injective, andM satisfies this branch.
For (∃+)2 the reasoning is a bit more tricky. Suppose the portion of the branch al-

ready obtained and the premise of the rule, 〈S, u : ∃R.C | U | W 〉, are satisfiable
by a minimal model M of KB under an assignment α. In M, (α(u), z) ∈ RI and
z ∈ CI , for some z. We reason by cases. (A) If the branch contains a label yi such that

α(yi) = z, then the consequence of the rule in which u
R−→ yi, yi : C appear is satis-

fiable by the same model under the same assignment. (B) Otherwise, we show that the

conclusion containing u
R−→ xC is satisfiable by a minimal modelM′ of KB, that also

satisfies the previous portion of the branch. We distinguish two cases. (i) In the branch
there is no occurrence of ¬∃R.D (for any D), thenM′ is obtained fromM by simply
adding (α(u), α(xC)) to RI . α has not been modified and therefore remains injective.
Furthermore, since this addition does not modify the valuation function, and by this
fact it does not modify the boxed formulas holding in the model,M′ is still a minimal
model of KB. Furthermore,M′ satisfies the same branch formulas as M, as well as

A Tableau Calculus for a Nonmonotonic Extension of EL⊥ 189

〈S, u : ∃R.C | U | W 〉. (ii) In the branch there is an occurrence of u : ¬∃R.D. Then
by Fact 1, this is the only negated formula different from ∃R.C occurring in the branch,
and hence u is the starting label. SinceM satisfies u : ∃R.C under α, (α(u), z) ∈ RI ,
and z ∈ CI . Consider now α′, equal to α, apart from the fact that α′(xC) = z. α′ is still
injective. Indeed, the branch does not contain a label yi such that α(yi) = z, otherwise
we would be in case (A). It can be verified thatM satisfies 〈S, u : ∃R.C | U | W 〉,
as well as the previous branch formulas, under α′. Indeed, by the strategy, the only
formula labelled by xC at the moment in which we apply (∃+)2 is xC : C (we start
considering xC only after having applied all the rules to u, which is the starting label),
and this is satisfied in M′ under α′. All the other constraints that do not involve xC
remain satisfied even in α′ that coincides with α on all other labels.

For (�−), we prove that if a node 〈S, u : ¬�¬C1, . . . , u : ¬�¬Cn | U |W 〉 is satis-
fiable in a minimal multi-linear modelM = 〈W , <, V 〉 under a certain injective α then

also one of the conclusions of the rule, namely 〈S, x : Ck, x : �¬Ck, SMu→x, S
�−k

u→x |
U | W 〉 where x is a new label, is satisfiable in the same minimal model, under an
extension of α. Let α(u) = uI , where uI ∈ Δ. There are z1 < uI , . . . , zn < uI ,
such that zi ∈ Min<(Ci), thus zi ∈ (Ci � �¬Ci)I , for i = 1, 2, . . . , n. Since
M is a multi-linear model, the zi, i = 1, 2, . . . , n, whenever distinct, are totally or-
dered: we have that zi < uI , so that they must belong to the same component. Let
zk be the maximum of zi (1 ≤ i ≤ n), i.e. for each zi, i = 1, 2, . . . , n, we have
either (i) zi = zk or (ii) zi < zk. In case (i), we have that zk ∈ CIi . In case (ii)
we have that zk ∈ (¬�¬Ci)I . We have shown that for each i �= k, zk ∈ CIi or
zk ∈ (¬�¬Ci)I . If there is a label y on the branch such that α(y) = zk, then the

conclusion 〈S, y : Ck, y : �¬Ck, SMu→y, S
�−k

u→x | U | W 〉 is satisfiable under an as-

signment α, which is injective. Indeed, we have thatM |=α S
M
u→y andM |=α S

�−k

u→y .
Otherwise, since x does not occur in S, we extend α in a way such that α(x) = zk, and

the conclusion 〈S, x : Ck, x : �¬Ck, SMu→x, S
�−k

u→x | U | W 〉 is satisfiable under the
injective assignment α. �

We can furthermore prove completeness of TABEL⊥T
PH1 . The proof is quite straightfor-

ward and is omitted due to space limitations.

Theorem 2 (Completeness of TABEL
⊥T

PH1). Given a constraint system 〈S | U | W 〉, if

it is unsatisfiable, then it has a closed tableau in TABEL⊥T
PH1 .

Let us conclude this section by analyzing termination and complexity of TABEL⊥T
PH1 .

In general, non-termination in labelled tableau calculi can be caused by two different
reasons: 1. some rules copy their principal formula in the conclusion(s), and can thus
be reapplied over the same formula without any control; 2. dynamic rules may generate
infinitely-many labels, creating infinite branches. As mentioned above, differently from

the calculus for ALC + Tmin in [11,9], the calculus TABEL⊥T
PH1 ensures termination

without adopting the standard blocking machinery.
Concerning the first source of non-termination (point 1), the only rules copying their

principal formulas in their conclusions are (∃−) and (Unfold). However, the side condi-
tions on the application of such rules avoid multiple applications on the same formula.

190 L. Giordano et al.

Concerning the second source of non-termination (point 2), we can prove that only
finitely-many labels are introduced on a branch. Intuitively, the (∃+)1 rule introduces
at most one new label xC for each concept C belonging to the initial node. Moreover,
thanks to the properties of �, no other additional machinery is required to ensure ter-
mination. Indeed, it can be shown that the interplay between rules (T−) and (�−) does
not generate branches containing infinitely-many labels. Intuitively, the application of
(�−) to x : ¬�¬C, x : ¬�¬C1, . . . , x : ¬�¬Ck adds y : �¬C to the conclusion, so
that (T−) can no longer consistently introduce y : ¬�¬C. It is also worth noticing
that the (cut) rule does not affect termination, since it is applied only to the finitely
many formulas belonging to LT.

Theorem 3 (Termination of TABEL⊥T
PH1). Let 〈S | U | ∅〉 be the corresponding con-

straint system of a KB. Any tableau generated by TABEL⊥T
PH1 for 〈S | U | ∅〉 is finite.

Let us conclude this section by estimating the complexity of TABEL⊥T
PH1 . Let n be the

size of the initial KB, i.e. the length of the string representing KB, and let 〈S | U | ∅〉
its corresponding constraint system. We assume that the size of F and LT is O(n).

Theorem 4 (Complexity of Phase 1). Given a KB and a query F , the problem of
checking whether KB ∪{¬F} is satisfiable is in NP.

Proof. (Sketch) The calculus builds a tableau for 〈S | U | ∅〉 whose branches’s size
is O(n). This immediately follows from the fact the dynamic rules (∃+)1 and (�−)
generate at most O(n) labels in a branch. Indeed, the rule (∃+)1 introduces a new
label xC for each concept C occurring in KB, then at most O(n) labels. Concerning
(�−), consider a branch generated by its application to a constraint system 〈S, u :
¬�¬C1 . . . , u : ¬�¬Cn | U | W 〉. In the worst case, a new label x1 is introduced.
Suppose also that the branch under consideration is the one containing x1 : C1 and
x1 : �¬C1. The (�−) rule can then be applied to formulas u : ¬�¬Ck , introducing
also a further new label x2. However, by the presence of x1 : �¬C1, the rule (�−) can
no longer consistently introduce x2 : ¬�¬C1, since x2 : �¬C1 ∈ SMx1→x2

. Therefore,
(�−) is applied to ¬�¬C1 . . .¬�¬Cn in u. This application generates (at most) one
new world x1 that labels (at most) n− 1 negated boxed formulas. A further application
of (�−) to ¬�¬C1 . . .¬�¬Cn−1 in x1 generates (at most) one new world x2 that
labels (at most) n − 2 negated boxed formulas, and so on. Overall, at most O(n) new
labels are introduced by (�−) in each branch. For each of these labels, static rules apply
at most O(n) times: (Unfold) is applied at most O(n) times for each C � D ∈ U , one
for each label introduced in the branch. The rule (cut) is also applied at mostO(n) times
for each label, since LT contains at most O(n) formulas. As the number of different
concepts in KB is at most O(n), in all steps involving the application of boolean rules,
there are at most O(n) applications of these rules. Therefore, the length of the tableau
branch built by the strategy is O(n2). Finally, we observe that all the nodes of the
tableau contain a number of formulas which is polynomial in n, therefore to test that a
node is an instance of a (Clash) axiom has at most complexity polynomial in n. �

Notice that the above strategy is able to build branches of polynomial length thanks to
the presence of the rule (cut). Indeed, the key point is that, when the rule (�−) building

A Tableau Calculus for a Nonmonotonic Extension of EL⊥ 191

(∃+)

(Unfold)

(Clash)〈S, x : C, x : ¬C | U | K〉

(Clash)∅ (Clash)�−〈S | U | ∅〉 〈S, x : ¬�¬C | U | K〉
if x : ¬�¬C �∈ K

〈S | U,C 	 DL | K〉

x ∈ D(B) and x �∈ L

〈S, x : C
 D | U | K〉
〈S, x : C, x : D | U | K〉 〈S, x : ¬C | U | K〉 (T+)

(T−)

(
+) (
−)

(cut)

if x : ¬�¬C �∈ S and x : �¬C �∈ S
C ∈ LT

〈S, x : ¬D | U | K〉
〈S, x : ¬(C
 D) | U | K〉

〈S, x : �¬C | U | K〉 〈S, x : ¬�¬C | U | K〉
〈S | U | K〉〈S, x : ¬T(C) | U | K〉

〈S, x : ¬C | U | K〉 〈S, x : ¬�¬C | U | K〉

〈S, x : T(C) | U | K〉
〈S, x : C, x : �¬C | U | K〉

〈S, u : ¬�¬C1, . . . , u : ¬�¬Cn | U | K, u : ¬�¬C1, . . . , u : ¬�¬Cn〉

(Clash)⊥〈S, x : ¬� | U | K〉 (Clash)¬� 〈S, x : ⊥ | U | K〉

(�−)

〈S, x : ¬C D | U,C 	 DL,x | K〉

x ∈ D(B)

〈S, u
R−→ y1, y1 : C | U | K〉

〈S, u : ∃R.C | U | K〉
〈S, u

R−→ ym, ym : C | U | K〉

〈S, ym : Ck, ym : �¬Ck, SM
u→ym

, S
�−k

u→ym
| U | K〉

. . .

〈S, y1 : Ck, y1 : �¬Ck, SM
u→y1

, S
�−k

u→y1
| U | K〉 . . .

if D(B) = {y1, . . . , ym}

if D(B) = {y1, . . . , ym} and y1 �= u, . . . , ym �= u

Fig. 2. The calculus TABEL⊥T
PH2 . To save space, we omit the rule (�+).

multilinear models is applied to a given label u, all negated boxed formulas u : ¬�¬Ck
belong to current set of formulas. It could be the case that, after an application of (�−)
by using u, the same label u is used in one of the conclusions of another application
of (�−), say to some xi. Therefore, the application of static rules could introduce u :
¬�¬C, and a further application of (�−) could be needed. However, since (cut) is a
static rule, and since C ∈ LT because ¬�¬C has been generated by unfolding some
T(C) � D in the TBox, either u : ¬�¬C or u : �¬C have already been introduced in
the branch before the second application of (�−), which is a dynamic rule.

3.2 The Tableaux Calculus TABEL⊥T
P H2

Let us now introduce the calculus TABEL⊥T
PH2 which, for each open branch B built by

TABEL⊥T
PH1 , verifies whether it represents a minimal model of the KB.

Definition 11. Given an open branch B of a tableau built from TABEL⊥T
PH1 , we define:

– D(B) as the set of labels occurring on B;
– B�−

= {x : ¬�¬C | x : ¬�¬C occurs in B}.
A tableau of TABEL⊥T

PH2 is a tree whose nodes are tuples of the form 〈S | U | K〉,
where S and U are defined as in a constraint system, whereas K contains formulas

of the form x : ¬�¬C, with C ∈ LT. The basic idea of TABEL⊥T
PH2 is as follows.

Given an open branch B built by TABEL⊥T
PH1 and corresponding to a model MB of

192 L. Giordano et al.

KB ∪ {¬F}, TABEL⊥T
PH2 checks whetherMB is a minimal model of KB by trying to

build a model of KB which is preferred toMB. To this purpose, it keeps track (in K)
of the negated box used in B (B�−

) in order to check whether it is possible to build

a model of KB containing less negated box formulas. The tableau built by TABEL⊥T
PH2

closes if it is not possible to build a model smaller thanMB , it remains open otherwise.
Since by Definition 4 two models can be compared only if they have the same domain,

TABEL⊥T
PH2 tries to build an open branch containing all the labels appearing on B, i.e.

those in D(B). To this aim, the dynamic rules use labels in D(B) instead of introducing

new ones in their conclusions. The rules of TABEL
⊥T

PH2 are shown in Fig. 2.
More in detail, the rule (∃+) is applied to a constraint system containing a formula

x : ∃R.C; it introduces x
R−→ y and y : C where y ∈ D(B), instead of y being a new

label. The choice of the label y introduces a branching in the tableau construction. The
rule (Unfold) is applied to all the labels of D(B) (and not only to those appearing in
the branch). The rule (�−) is applied to a node 〈S, u : ¬�¬C1, . . . , u : ¬�¬Cn | U |
K〉, when {u : ¬�¬C1, . . . , u : ¬�¬Cn} ⊆ K , i.e. when the negated box formulas
u : ¬�¬Ci also belong to the open branch B. Even in this case, the rule introduces
a branch on the choice of the individual yi ∈ D(B) to be used in the conclusion. In
case a tableau node has the form 〈S, x : ¬�¬C | U | K〉, and x : ¬�¬C �∈ K , then

TABEL⊥T
PH2 detects a clash, called (Clash)�− : this corresponds to the situation where

x : ¬�¬C does not belong to B, while the model corresponding to the branch being
built contains x : ¬�¬C, and hence is not preferred to the model represented by B.

The calculus TABEL⊥T
PH2 also contains the clash condition (Clash)∅. Since each ap-

plication of (�−) removes the negated box formulas x : ¬�¬Ci from the set K , when
K is empty all the negated boxed formulas occurring in B also belong to the current

branch. In this case, the model built by TABEL⊥T
PH2 satisfies the same set of x : ¬�¬Ci

(for all individuals) as B and, thus, it is not preferred to the one represented by B.

Let us now analyze soundness and completeness of TABEL⊥T
PH2 . First, given a branch

B, we associate with B a relation< defined as follows: y < u if y is the label chosen in
the conclusion of the application of the rule (�−) to u : ¬�¬C. We define a canonical
model MB for B as follows: MB = 〈ΔB , <

′, I〉 where: - ΔB = {x : x is a label
appearing in B}; - <′ is the transitive closure of relation < associated with B; - I is
an interpretation function such that for all atomic concepts A, AI = {x such that x :
A occurs in B}. I is then extended to all concepts C in the standard way, according to

the semantics of the operators. For role namesR, RI = {(x, y) : x R−→ y occurs in B}.

Lemma 1. If a branch B is satisfiable by an injective mapping in a minimal model of
KB, then the canonical modelMB for B is a minimal model of KB satisfying B.

Theorem 5 (Soundness and completeness of TABEL⊥T
PH2). Given a KB and a query

F , let 〈S′ | U | ∅〉 be the corresponding constraint system of KB, and 〈S | U | ∅〉 the

corresponding constraint system of KB ∪ {¬F}. An open branch B built by TABEL⊥T
PH1

for 〈S | U | ∅〉 is satisfiable by an injective mapping in a minimal model of KB iff the

tableau in TABEL⊥T
PH2 for 〈S′ | U | B�−〉 is closed.

A Tableau Calculus for a Nonmonotonic Extension of EL⊥ 193

Proof. In order to show the soundness (if direction), we show that if the tableau in

TABEL⊥T
PH2 for 〈S′ | U | B�−〉 is closed, thenMB (which by Theorem 2 is a model

of B) is a minimal model of KB that satisfies B (hence B is satisfiable by an injective
mapping in a minimal model of KB). We show the contrapositive, that if MB was
not minimal (i.e. if there was a modelM of KB with same domain as MB but with

M�− ⊂ MB�−
) then there would be an open branch in TABEL⊥T

PH2 by showing that:
(i)〈S′ | U | B�−〉 would be satisfiable inM, (ii) each rule of the calculus preserves the
satisfiability inM, and (iii) that no clash condition is satisfiable in such a model.

We now consider the completeness (only if direction). By hypothesis B is satisfiable
by an injective mapping in a minimal model for KB. By Lemma 1,MB is a minimal

model of KB satisfying B. We want to show that the tableau in TABEL⊥T
PH2 for 〈S′ | U |

B�−〉 is closed. For a contradiction, suppose that the tableau was open, with an open
branch B’. It can be easily shown that the canonical model for B’,MB′

, is still a model
of KB which is preferred to MB . Indeed, the domain of MB coincides with that of

MB′
(which is D(B)). Clearly, MB′�−

LT
⊂ MB�−

LT
, since B’�

− ⊂ B�−
, otherwise

by (Clash)∅ B’ would be closed, and by (cut) for all C ∈ LT, for all labels x, either
x : �¬C ∈ B’ or x : ¬�¬C ∈ B’ . Hence,MB′

would be preferred toMB , against
the minimality ofMB. This contradiction forces us to conclude that there cannot be an

open B’ in TABEL⊥T
PH2 , and that the tableau must be closed. �

TABEL⊥T
PH2 always terminates. Termination is ensured by the fact that dynamic rules

make use of labels belonging to D(B), which is finite, rather than introducing “new”
labels in the tableau.

Theorem 6 (Termination of TABEL⊥T
PH2). Let 〈S′ | U | B�−〉 be a constraint system

starting from an open branch B built by TABEL⊥T
PH1 , then any tableau generated by

TABEL⊥T
PH2 is finite.

It is possible to show that the problem of verifying that a branch B represents a minimal

model for KB in TABEL⊥T
PH2 is in NP in the size of B.

The overall procedure TABALC+T
min is defined as follows:

Definition 12. Let KB be a knowledge base whose corresponding constraint system is
〈S | U | ∅〉. Let F be a query and let S′ be the set of constraints obtained by adding to

S the constraint corresponding to ¬F . The calculus TABEL⊥T
min checks whether a query

F is minimally entailed from a KB by means of the following procedure: (phase 1) the

calculus TABEL⊥T
PH1 is applied to 〈S′ | U | ∅〉; if, for each branch B built by TABEL⊥T

PH1 ,

either (i) B is closed or (ii) (phase 2) the tableau built by the calculus TABEL⊥T
PH2 for

〈S | U | B�−〉 is open, then KB |=LT

min F , otherwise KB �|=LT

min F .

Theorem 7 (Soundness and completeness of TABEL⊥T
min). TABEL⊥T

min is a sound and
complete decision procedure for verifying if KB |=LT

min F .

Proof. (Soundness) If KB �|=LT
min F , and KB ∪ {¬F} is satisfiable by a minimal model

of KB, then by Theorem 1, TABEL
⊥T

PH1 generates an open branch, which is satisfiable

194 L. Giordano et al.

(via an injective assignment from labels to domain elements) in a minimal model of

KB. By Theorem 5 for this branch the tableau in TABEL⊥T
PH2 is closed. In this case, (i)

and (ii) in Definition 12 do not hold, and the procedure correctly says that KB �|=LT

min F .
(Completeness) Let KB |=LT

min F . For contraposition, let B be an open branch (if any)

generated by TABEL⊥T
PH1 . If this branch were satisfiable by an injective mapping in a

minimal model of KB, then by Proposition 1, also KB ∪ {¬F} would be, against the
hypothesis that KB |=LT

min F . Hence, B is not satisfiable by an injective mapping in a

minimal model of KB, and by Theorem 5 the tableau in TABEL⊥T
PH2 for 〈S′ | U |B�−〉 is

open. �

We can also prove that the complexity of TABEL⊥T
min matches the known results for

minimal entailment in Left Local EL⊥Tmin:

Theorem 8 (Complexity of TABEL⊥T
min). The problem of deciding whether KB |=LT

min

F by means of TABEL⊥T
min is in Πp

2 .

Proof. We first consider the complementary problem: KB �|=LT
min F . This problem can

be solved according to the procedure in Definition 12: by nondeterministically generat-

ing an open branch of polynomial length in the size of KB in TABEL⊥T
PH1 (a modelMB

of KB ∪ {¬F}), and then by calling an NP oracle which verifies thatMB is a minimal
model of KB. In fact, the verification thatMB is not a minimal model of the KB can be
done by an NP algorithm which nondeterministically generates a branch in TABEL⊥T

PH2

of polynomial size in the size ofMB (and of KB), representing a modelMB′
of KB

preferred toMB. Hence, the problem of verifying that KB �|=LT
min F is in NPNP, i.e. in

Σp
2 , and the problem of deciding whether KB |=LT

min F is in CO-NPNP, i.e. in Πp
2 . �

4 Conclusions
In this work we have provided a two-phase tableau calculus TABEL⊥T

min for checking
minimal entailment in a nonmonotonic extension of the Left Local fragment of the logic
EL⊥Tmin, a family of low complexity DLs EL⊥. The proposed calculus matches the
known complexity results for such DL, namely that entailment is in Πp

2 [8]. Of course,
many optimizations are possible and we intend to study them in future work.

As mentioned in the Introduction, several nonmonotonic extensions of DLs have
been proposed in the literature [14,4,2,3,7,11,10,9,6] and we refer to [11] for a survey.
Concerning nonmonotonic extensions of low complexity DLs, the complexity of cir-
cumscribed fragments of the EL⊥ and DL-lite families have been studied in [3]. The
contribution of this paper is to provide a calculus for the Left Local fragment of EL⊥

under minimal entailment. We expect that our tableau calculus can also be adapted to
deal with the DL-litecT fragment, for which a Πp

2 upper bound has been proved in [8].
Recently, a fragment of EL⊥ for which the complexity of circumscribed KBs is poly-
nomial has been identified in [13]. In future work, we shall investigate complexity of
minimal entailment and proof methods for such a fragment extended with T.

A Tableau Calculus for a Nonmonotonic Extension of EL⊥ 195

Acknowledgements. This work has been partially supported by the Project “MIUR
PRIN08 LoDeN: Logiche Descrittive Nonmonotone: Complessitá e implementazioni”.

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: IJCAI, pp. 364–369 (2005)
2. Baader, F., Hollunder, B.: Priorities on defaults with prerequisites, and their application in

treating specificity in terminological default logic. J. of Automated Reasoning (JAR) 15(1),
41–68 (1995)

3. Bonatti, P., Faella, M., Sauro, L.: Defeasible inclusions in low-complexity dls: Preliminary
notes. In: IJCAI, pp. 696–701 (2009)

4. Bonatti, P.A., Lutz, C., Wolter, F.: Description logics with circumscription. In: KR,
pp. 400–410 (2006)

5. Buchheit, M., Donini, F.M., Schaerf, A.: Decidable reasoning in terminological knowledge
representation systems. J. Artif. Int. Research (JAIR) 1, 109–138 (1993)

6. Casini, G., Straccia, U.: Rational closure for defeasible description logics. In: Janhunen, T.,
Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 77–90. Springer, Heidelberg (2010)

7. Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation
as failure. ACM Trans. Comput. Log. 3(2), 177–225 (2002)

8. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Reasoning about typicality in low com-
plexity DLs: the logics EL⊥TTmin and DL-litecTTmin. To appear in IJCAI (2011)

9. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Reasoning about typicality in prefer-
ential description logics. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS
(LNAI), vol. 5293, pp. 192–205. Springer, Heidelberg (2008)

10. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Prototypical reasoning with low com-
plexity description logics: Preliminary results. In: Erdem, E., Lin, F., Schaub, T. (eds.) LP-
NMR 2009. LNCS, vol. 5753, pp. 430–436. Springer, Heidelberg (2009)

11. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.:ALC+TTmin: a preferential extension
of description logics. Fundamenta Informaticae 96, 1–32 (2009)

12. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and
cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)

13. Bonatti, P.A., Faella, M., Sauro, L.: EL with default attributes and overriding. In: Patel-
Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B.
(eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 64–79. Springer, Heidelberg (2010)

14. Straccia, U.: Default inheritance reasoning in hybrid kl-one-style logics. In: IJCAI,
pp. 676–681 (1993)

Correctness and Worst-Case Optimality

of Pratt-Style Decision Procedures
for Modal and Hybrid Logics

Mark Kaminski1, Thomas Schneider2, and Gert Smolka1

1 Saarland University, Germany
{kaminski,smolka}@ps.uni-saarland.de

2 University of Bremen, Germany
tschneider@informatik.uni-bremen.de

Abstract. We extend Pratt’s worst-case optimal decision procedure for
PDL to a richer logic with nominals, difference modalities, and inverse
actions. We prove correctness and worst-case optimality. Our correctness
proof is based on syntactic models called demos. The main theorem states
that a formula is satisfiable if and only if it is contained in a demo. From
this theorem the correctness of the decision procedure is easily obtained.
Our development is modular and we extend it stepwise from modal logic
with eventualities to the full logic.

1 Introduction

Propositional dynamic logic (PDL) is an expressive extension of modal logic
designed for reasoning about properties of programs and goes back to Fischer
and Ladner [9]. Its satisfiability problem is ExpTime-complete [24], and the first
worst-case optimal decision procedure was given in [25]. Nominals are the basic
feature of hybrid logic, which extends modal logic and goes back to Arthur Prior
[26]. Nominals denote single states in models, allowing to express properties that
are not expressible in standard modal logic, such as irreflexivity. The difference
modality D says that a property holds in some state different from the current
state, and was first described in [28]. It can be simulated using nominals and the
global modality E via a satisfiability-preserving translation [11]. Nominals can
be expressed using D, the dual of D.

We consider combinations of PDL with nominals, difference modalities and
converse actions, and we are interested in worst-case optimal decision procedures
for such combinations. Let HPDL−

D denote the logic that combines all these
features. Its computational complexity is known: the satisfiability problem is
ExpTime-complete. The lower bound follows from that for PDL by Fischer and
Ladner [10]. The upper bound is due to [5, 1] via a chain of reductions that
consecutively replaces D with E, removes E and converse, and ends in PDL.

The bounded model property of PDL [10]—every satisfiable formula s is sat-
isfiable in a model of size exponential in |s|—yields a straightforward guess-and-
check decision procedure, whose determinization requires doubly exponential
time. Pratt devised a worst-case optimal decision procedure for PDL in [25],

K. Brünnler and G. Metcalfe (Eds.): TABLEAUX 2011, LNAI 6793, pp. 196–210, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Pratt-Style Decision Procedures for Modal and Hybrid Logics 197

based on Hintikka structures as a nonstandard notion of a model. These con-
sist of Hintikka sets—consistent, downward saturated theories—and syntactic
links. The search for a model is performed using tree-shaped tableaux of poten-
tially infinite size. Using the classical filtration argument from [10] underlying
the bounded model theorem (BMT), the possibly infinite tableau is filtered into
a graph-shaped tableau of at most exponential size, and a straightforward pro-
cedure for searching a subgraph that represents a satisfying model is applied.
In [24], Pratt describes a much leaner worst-case optimal procedure that, again,
starts from all Hintikka subsets of the given formula’s closure and then deletes
those that contain unsatisfied diamonds. The resulting substructure contains a
satisfying model if one exists. We call this type of procedure Pratt-style and its
two stages construct and prune. Pratt’s procedure is described in [16, 22, 17, 3],
where [3] uses a stricter notion of Hintikka sets and excludes tests.

A practical problem with Pratt-style procedures is that the initial construct
stage is “best-case exponential”, although certainly not every Hintikka set plays
a role in a satisfying model. This problem is reduced in decision procedures
based on (non-branching) tableaux, such as Pratt’s procedure in [25]. They
make construct more goal-directed by restricting the creation of new nodes—
representatives of Hintikka sets—to those that reduce formulas in nodes already
present. Such tableau-based procedures exist for different modal-like logics and
are often optimized further by interleaving construct and prune [12, 14].

Decision procedures based on branching tableau systems [27, 18, 6, 4, 21] enjoy
wide regard in automated reasoning with modal and description logics.They
typically run in worst-case non-deterministic doubly exponential time, but highly
optimized systems work well in practice [15, 30]. However, there are exponential-
time algorithms based on branching tableaux for description logics [7, 12].

Automata-theoretic decision procedures exploit some form of tree-model
property of the logic in question, transfer a given formula into an automaton
of typically exponential size, and thus reduce satisfiability to the emptiness
problem of the automata model corresponding to the logic. This approach is
applied to expressive modal logics extending PDL [31, 29]. However, in general,
the complexity is “best-case exponential” again.

This paper presents a modular approach to obtaining lean proofs of the BMT
and the correctness of worst-case optimal Pratt-style decision procedures for the
above mentioned extensions of PDL. These decision procedures will be able to
handle hybrid operators in an additional deterministic guess stage. We use the
notion of a demo—a syntactic representation of a satisfying model in terms of
Hintikka sets. With this notion, we tailor the proofs of the BMT for said logics to
the expressive features involved. We will analyze the conceptual, technical and
computational costs required for incorporating each of those features, as well as
their combinability. The strengths of the modular approach are the following.

– We refactor the standard proofs leading to the the BMT such that standard
induction over term lengths suffices.

– The explicit use of demos makes the BMT proofs transparent and reusable
for the correctness of the decision procedure.

198 M. Kaminski, T. Schneider, and G. Smolka

– The addition of the above named expressive features is modular: different
features can be added independently by combining the techniques needed
for every single feature.

– To our knowledge, this is the first explicit and simple worst-case optimal
decision procedure for a logic that combines PDL and hybrid operators.

The paper is organized as follows. We will introduce hybrid PDL, introduce
demos for test-free PDL and discuss their relevant properties, present the decision
procedure, discuss extentions of the language separately, and relate this approach
to those in the literature.

2 Preliminaries: Hybrid PDL

Let Pred and Act be countably infinite sets, whose elements are called predi-
cates and actions , respectively. Let Nom ⊆ Pred be the set of all nominals . We
assume formulas to be in negation normal form (NNF), i.e., negation is allowed
to occur only directly in front of predicates. We also assume programs to be
in converse normal form (CNF), i.e., the converse operator is allowed to occur
only directly after actions. Formulas s and programs α of HPDL−

D are defined by
mutual recursion as follows, where p ∈ Pred and a ∈ Act.

s ::= p | ¬p | s∧s | s∨s | 〈α〉s | [α]s | Ds | Ds α ::= a | a− | αβ | α+β | α∗ | s

We denote predicates by p, q, . . . , nominals by x, y, . . . , formulas by s, t, . . . , ac-
tions by a, b, . . . and programs by α, β, . . . The operator D is called the difference
modality, and D is its dual. If we want to denote the fragment of HPDL−

D with-
out converse, nominals, and/or difference modalities, we leave out the superscript
“−”, the leading H and/or the subscript D.

Choosing to adapt NNF and CNF is not crucial for our approach to work. It
merely simplifies technical details and is no computational obstacle: any formula
can be transformed into an equivalent formula in NNF and CNF in linear time.

In order to capture tests as programs, and only for this purpose, we use Tait
negation: ∼s denotes the NNF of ¬s, with the obvious consequence ∼∼s = s.
We further use the notation |s| to denote the size of a formula, which is defined
as usual, with the only exception being |¬p| = |p|. This ensures that |∼s| = |s|.

We recall the standard operations on binary relations R,S over a set X .

R0 = {(x, x) | x ∈ X} Rn = R ◦Rn−1 (n � 1) R∗ =
⋃

n�0

Rn

R− = {(x, y) | (y, x) ∈ R}
R ◦ S = {(x, z) | ∃y ∈ X : (x, y) ∈ R and (y, z) ∈ S}

As usual, the semantics of HPDL−
D is defined in terms of Kripke models. A

model M consists of

– a nonempty set |M| of states,
– a transition relation a−→M ⊆ |M| × |M| for every a ∈ Act,

Pratt-Style Decision Procedures for Modal and Hybrid Logics 199

– a set Mp ⊆ |M| for every p ∈ Pred, where |Mx| = 1 for every x ∈ Nom.

The transition relations for complex programs and the satisfaction relation be-
tween models, states and formulas (M, w |= s) are defined via mutual induction.

αβ−→M = α−→M ◦
β−→M

a−−→M = a−→−
M

α∗
−→M = α−→∗

M

α+β−→M = α−→M ∪
β−→M

s−→M = {(w,w) |M, w |= s}

M, w |= p ⇐⇒ w ∈Mp for p ∈ Pred

M, w |= ¬p ⇐⇒ w /∈Mp for p ∈ Pred

M, w |= s ∧ t ⇐⇒ M, w |= s and M, w |= t

M, w |= 〈α〉s ⇐⇒ M, v |= s for some v ∈ |M| with w α−→M v

M, w |= Ds ⇐⇒ M, v |= s for some v �= w

The satisfaction relation for the remaining operators can be obtained from the
equivalences s ∨ t ≡ ¬(¬s ∧ ¬t), [α]s ≡ ¬〈α〉¬s, and Ds ≡ ¬D¬s.

We extend the notion of satisfaction to sets A of formulas in the obvious way:
M, w |= A if M, w |= s for all s ∈ A.

A literal is a formula of the form p, ¬p, 〈a〉s, [a]s, 〈a−〉s, [a−]s, Ds or Ds,
where p ∈ Pred, a ∈ Act, and s is an arbitrary formula.

A Hintikka set is a partial description of a possible state. It contains formulas
satisfied by that state. A system of Hintikka sets then represents a satisfying
model, and our goal is to show that every satisfiable formula is contained in a
Hintikka set that is part of a finite such system. More precisely, a Hintikka set
is a nonempty set H that satisfies the following properties.

For every p ∈ Pred: {p,¬p} �⊆ H
s ∧ t ∈ H =⇒ s ∈ H and t ∈ H
s ∨ t ∈ H =⇒ s ∈ H or t ∈ H
〈t〉s ∈ H =⇒ t ∈ H and s ∈ H
[t]s ∈ H =⇒ ∼t ∈ H or s ∈ H

〈αβ〉s ∈ H =⇒ 〈α〉〈β〉s ∈ H
[αβ]s ∈ H =⇒ [α][β]s ∈ H
〈α+β〉s ∈ H =⇒ 〈α〉s ∈ H or 〈β〉s ∈ H
[α+β]s ∈ H =⇒ [α]s ∈ H and [β]s ∈ H
〈α∗〉s ∈ H =⇒ 〈α〉〈α∗〉s ∈ H or s ∈ H
[α∗]s ∈ H =⇒ [α][α∗]s ∈ H and s ∈ H

A Hintikka system S is a finite, nonempty set of Hintikka sets. We say that a
formula s is contained in S if it is contained in some H ∈ S.

In order to restrict the choice of possible elements of a Hintikka set, we assume
a finite, nonempty formula universe F, which is modelled on the Fischer-Ladner
closure [10] of a given formula s. F consists of formulas in NNF and satisfies the
following closure properties.

s ∈ F and t is a subformula of s =⇒ t ∈ F
〈αβ〉s ∈ F =⇒ 〈α〉〈β〉s ∈ F
[αβ]s ∈ F =⇒ [α][β]s ∈ F
〈α+β〉s ∈ F =⇒ 〈α〉s, 〈β〉s ∈ F
[α+β]s ∈ F =⇒ [α]s, [β]s ∈ F

〈α∗〉s ∈ F =⇒ 〈α〉〈α∗〉s ∈ F
[α∗]s ∈ F =⇒ [α][α∗]s ∈ F
[t]s ∈ F =⇒ ∼t ∈ F

200 M. Kaminski, T. Schneider, and G. Smolka

This is a slight variation of the definitions in the literature [9, 22, 17]. Still, we
can use the following original result.

Lemma 1 ([9]). For every formula s, one can compute a finite formula universe
F such that s ∈ F and the cardinality of F is linear in the size of s.

3 Demos as a Syntactic Representation of Models

From now on, all formulas, Hintikka sets and systems range over a given F.
We aim at the following criterion for syntactically demonstrating that a given

formula s is satisfiable: s is satisfiable if and only if s occurs in a Hintikka system
S that sufficiently describes a model. We call such a system a demo. A maximal
demo corresponds to the result of any of the elimination procedures for Hintikka
systems described in [25, 17, 3]. The notion of a demo derives from that of an
evident subset of a Pratt-style graph tableau in [20]. Making the demo notion
explicit will allow for factoring the bounded model theorem into lemmas that use
simpler inductions. The main lemmas, demo existence and satisfaction lemmas
will almost immediately imply correctness of the decision procedure.

In this section, we introduce the notion of a demo and study it in depth. In
order to keep the presentation simple, we begin with test-free PDL and will add
nominals, difference modalities, tests and converse separately in Sections 5–8.
This will allow us to to isolate the conceptual, technical, and computational cost
of adding those features.

Definition 2. Let S be a Hintikka system. The transition relation α−→S ⊆ S×S
is defined as follows.

a−→S =
{
(H,H ′)

∣
∣ ∀s :

(
[a]s ∈ H ⇒ s ∈ H ′)

}

αβ−→S = α−→S ◦
β−→S

α+β−→S = α−→S ∪
β−→S

α∗
−→S = α−→∗

S

Proposition 3. Let S ⊆ S′ be Hintikka systems. Then α−→S ⊆ α−→S′ .

Definition 4. A Hintikka system D is a demo if the following is satisfied.

(D�) If 〈α〉s ∈ H ∈ D, then there is some H ′ ∈ D with H α−→DH ′ and s ∈ H ′.

It suffices to require (D�) only for programs α that are actions or iterations β∗.
The remaining cases would then follow via the definition of Hintikka sets. For
clarity of the presentation, however, we do not make this restriction.

Example 5. The figure below shows a demo that consists of three Hintikka
sets:

{
〈a∗〉p, 〈a〉〈a∗〉p, [a]¬p

}
,
{
〈a∗〉p, 〈a〉〈a∗〉p, ¬p

}
and

{
p
}
. Sets related by a−→

are connected with an arrow. Arrows for a∗−→ are implicit.

〈a∗〉p, 〈a〉〈a∗〉p, [a]¬p 〈a∗〉p, 〈a〉〈a∗〉p, ¬p p

Pratt-Style Decision Procedures for Modal and Hybrid Logics 201

The following fact is obvious from the formulation of Demo Condition (D�):
demos are closed under union, and therefore there is a unique maximal demo for
F. This will be important for the correctness of the decision procedure.

In order to establish that demos represent exactly models modulo F, we show
that (a) every model induces a demo in the natural way, and (b) every demo has
a model that satisfies all of the demo’s members. We start with (a).

Given a model M and a state w ∈ |M|, let HM,w = {s ∈ F | M, w |= s} be
the Hintikka set induced by w in M. The following proposition is obvious.

Proposition 6. HM,w is a Hintikka set.

From now on, we write Hw instead of HM,w if no confusion can arise. We now
consider the system of all Hintikka sets induced by M, i.e., SM = {Hw | w ∈
|M|}. In order to establish that SM is a demo, we need the following lemma,which
is proven via straightforward induction on the size of α in [19].

Lemma 7. Let M be a model and v, w ∈ |M|. If v α−→M w, then Hv
α−→SM

Hw.

Lemma 8. SM is a demo.

Proof. Let 〈α〉s ∈ Hw ∈ SM. Then M, w |= 〈α〉s, that is, there is some v ∈ |M|
such that w α−→M v and M, v |= s. Due to Lemma 7 and the definition of Hv,
we obtain Hw

α−→SM
Hv and s ∈ Hv.

Lemma 9 (Demo existence). For every satisfiable formula s ∈ F, there is a
demo D over F that contains s.

Proof. Let M, w |= s. Take D = SM, which contains Hw with s ∈ Hw.

As for the direction (b) above, we start by making some general statements
about Hintikka systems. The first such statement is that S, together with the
transition relations a−→S , induces a model MS as follows.

Definition 10. Let S be a Hintikka system. MS is the model defined by |MS | =
S, a−→MS = a−→S , MSp = {H ∈ S | p ∈ H}.

In general, MS does not need to satisfy the Hintikka sets in S. However, under
additional conditions categorized under the notion of a demo, there is a direct
correspondence between Hintikka systems and models. The following two lemmas
are proven via straightforward induction on the size of α in [19].

Lemma 11. Let S be a Hintikka system and α a program. Then α−→S ⊆ α−→MS .

Lemma 12. Let S be a Hintikka system with H,H ′ ∈ S and [α]s ∈ H α−→MSH
′.

Then s ∈ H ′.

Lemma 13 (Demo satisfaction). If D is a demo then, for all H ∈ D :
MD, H |= H.

202 M. Kaminski, T. Schneider, and G. Smolka

The proof is via induction on the size of the formulas in H , see [19]. The following
central insight about demos follows directly from Lemmas 9, 13.

Theorem 14. A formula s is satisfiable if and only if s is contained in a demo.

Lemmas 9 and 13 also imply the Bounded Model Theorem for test-free PDL,
which has been established in [10] for PDL: every satisfiable formula s is satisfi-
able in a finite model of size exponential in |s|.

4 The Decision Procedure

We use Pratt’s approach of constructing the set of all Hintikka sets and pruning
it to the greatest demo. The correctness of this procedure will immediately follow
from the fact that pruning respects demos: every single pruning action does not
remove any Hintikka set that is part of a demo contained in the system before
the pruning action. This argument exploits the existence of a maximal demo,
which is not guaranteed in the presence of nominals or D.

We define a relation between Hintikka systems that represents a single pruning
action: let S p→ S′ if S′ can be obtained from S by deleting some H ∈ S that
violates the Demo Condition (D�), i.e., for some 〈α〉s ∈ H ∈ S, there is no
H ′ ∈ S such that H α−→S H ′ and s ∈ H ′. We further define S p� S′ to hold if
S p→∗ S′ and S′ p→S′′ for no S′′.

The following proposition is immediate because (1) every pruning action re-
moves only Hintikka sets that violate the demo condition, and (2) when no more
pruning can be done, all Hintikka sets in S′ satisfy the demo condition.

Proposition 15. 1. If S p→S′ and D is a demo with D ⊆ S, then D ⊆ S′.
2. If S p� S′ �= ∅, then S′ is a demo.

Theorem 16. If S p� S′ and S contains a demo, then S′ is the greatest demo
contained in S.

Proof. Due to Prop. 15 S′ contains all demos contained in S, including the
greatest such demo. Due to S′ is a demo itself, hence it is contained in the
greatest demo contained in S. Both inclusions together yield the equality. ��

The following method decides satisfiability of a given formula s by pruning the
system of all Hintikka sets and checking whether s is contained in the resulting
demo.

Decision method for PDL-satisfiability

Input: formula s

1. Compute the formula universe F for s.
2. H = {H | H is a Hintikka set with H ⊆ F}
3. Compute D with H p�D.
4. s is satisfiable iff s ∈ H for some H ∈ D.

Pratt-Style Decision Procedures for Modal and Hybrid Logics 203

The above decision method is a notational variant of Pratt’s [24] decision pro-
cedure. By making the notion of a demo explicit. We can conclude correctness
directly from Theorem 16, while the correctness proofs in [22, 17] use complex
inductive arguments quite similar to the proofs of the filtration theorem. Steps 1
and 2 correspond to Stage construct, and Step 3 to prune. The transition rela-
tions α−→S are not computed upfront. Instead, whenever the decision procedure
needs to decide for a pair of Hintikka sets whether they are in some α−→S , it
does so via the inductive definition of α−→S , in time polynomial in |α| multiplied
by the sizes of the Hintikka sets.

We now convince ourselves that the above method is worst-case optimal, i.e.,
that it runs in time exponential in |s|, looking at each step in turn.

1. Due to Lemma 1, the cardinality of F is linear in |s|. Furthermore, if F is
taken to be the smallest formula universe that contains s, then F can be
computed in time polynomial in |s| by following the closure properties.

2. In order to compute H, one can create all exponentially many subsets of
F and remove those that are not Hintikka sets. Checking the Hintikka set
properties of any such H requires time at most polynomial in the cardinality
of H , which in turn is linear in |s|. In preparation for the following step,
all transition relations α−→S over H can be precomputed and reused for
every S during the pruning phase. For every α, determining α−→S takes time
quadratic in the cardinality of H.

3. Since the number of Hintikka sets decreases with every single pruning action,
there can be at most exponentially many pruning actions. Each of them can
be performed in time exponential in |s|: traverse through all Hintikka sets
H in the remaining system S and all formulas 〈α〉s ∈ H , and check whether
some H ′ ∈ S exists with H α−→S H ′.

4. Traversing through all Hintikka sets left and through their contents to search
for s is clearly in exponential time as well.

For practical purposes, creating all Hintikka sets in the first place is highly
inefficient. We have discussed possible optimizations in Section 1.

5 Nominals

Extending the demo notion with nominals is rather straightforward. We need
to introduce the notion of nominal coherence: a Hintikka system H is nominally
coherent if every nominal x ∈ F occurs in exactly one H ∈ S. Now the definition
of a demo (Def. 4) and of MS , as well as the assumptions of Lemma 11 have to
be extended by the requirement (DN) that D and S be nominally coherent.1

Demos for PDL with nominals are no longer closed under union, but this will
not affect the proofs of Section 3. We only need to extend the proof of Lemma
1 While it would suffice for the proofs in this section to require that every nominal

x ∈ F occurs in at most one H ∈ S , this would not be enough in the presence of
difference modalities. Otherwise, {{x,¬y, Dx}} would be a nominally coherent demo
although its only member is unsatisfiable.

204 M. Kaminski, T. Schneider, and G. Smolka

8 by saying that SM satisfies (DN): if x ∈ F, then x denotes a unique state
wx ∈ |M|. Therefore, x is contained in the unique induced Hintikka set Hwx .

So far, the addition of nominals has been at no extra conceptual or technical
cost. When it comes to pruning, however, we can no longer remove arbitrary
Hintikka sets that “violate the demo conditions”. For example, if the same nom-
inal x is contained in two Hintikka sets H,H ′ of the system S and we remove H ,
then further pruning actions carried out to restore (D�) could lead to H ′ being
deleted as well. More generally, since there may not need to be a unique maxi-
mal demo, Theorem 16 does not hold. However, it can be reestablished using an
additional assumption here and in the preceding proposition.

Proposition 17. Let S be nominally coherent. Then the following hold.
1. If S contains a demo, then it contains a unique maximal demo.
2. If S p→S′ and D ⊆ S is a demo, then D ⊆ S′ and S′ is nominally coherent.
3. If S p� S′ and S′ is nominally coherent, then S′ is a demo.

Proof. We call a Hintikka set that contains a nominal a nominal set .
1. Let D1,D2 be two demos contained in S. Then, due to S,D1,D2 being

nominally coherent, both Di contain all nominal sets in S. Therefore and
because (D�) is robust under union, we have that D1 ∪ D2 ⊆ S.

2. Every pruning action removes only Hintikka sets that violate (D�); hence
no Hintikka set from D is removed. Because S is nominally coherent and D
contains all nominal sets in S, S′ is nominally coherent too.

3. Since S′ is nominally coherent, it cannot be empty. Because no more pruning
can be done, all Hintikka sets in S′ satisfy (D�) as well. ��

Theorem 18. If S p�S′ with S and S′ being nominally coherent, then S′ is the
unique maximal demo contained in S.
Proof. The unique maximal demo contained in S exists because of Proposition
17 (1);we call it D. Due to (3),S′ is a demo contained in S and therefore contained
in D. Due to 2,S′ contains all demos contained in S, including D. Both inclusions
together yield the equality. ��
The decision method from Section 4 can now be extended by inserting a guess
stage between Steps 2 and 3 that guesses a maximal nominally coherent sub-
system of the system H of all Hintikka sets, which contains one maximal demo.
As explained above, the transition relations α−→S do not need to be computed
upfront. The nondeterministic procedure is given below.

Decision method for HPDL-satisfiability

Input: formula s

1. Compute the formula universe F for s.
2. H = {H | H is a Hintikka set with H ⊆ F}
3. Guess a maximal nominally coherent subset H′ of H.
4. Compute D with H′ p�D.
5. Return “satisfiable” iffD is nominally coherent and s ∈ H for someH ∈ D.

Pratt-Style Decision Procedures for Modal and Hybrid Logics 205

We now show that this method has a determinization that runs in exponential
time. Let x1, . . . , xn be the linearly many nominals in F. For x1, Step 3 can guess
a Hintikka set in H that contains x1 and remove all other Hintikka sets that
contain x1. This action can be iterated for all other xi. Should no Hintikka set
be left that contains xi, then Step 3 rejects straightaway. Otherwise the reduced
Hintikka system after the n-th iteration is a maximal nominally coherent subset
of H. Steps 4 and 5 are then applied deterministically to that subset.

We consider the set of computation paths of this nondeterministic algorithm.
Every path contains n guesses of an element from a subset of H—from a set
exponential in |s|. Each such exponential guess can be implemented as a sequence
of polynomially many binary guesses, inducing a binary tree of polynomial depth.
Since n is linear in |s|, the binary tree induced by the sequence of all n exponential
guesses is still of polynomial depth. In every leaf of this tree, a deterministic
exponential time computation takes place. Hence, the tree has only exponentially
many nodes and can be searched deterministically in exponential time.

To summarize, adding nominals requires no significant computational costs as
long as only worst-case complexity is concerned. Our decision method remains
correct if Step 2 is replaced by the creation of a closed tableau completed via rules
extending those in [20]. However, both versions of our method are impractical
because prune is repeated a number of times that is linear in the size of H
or the completed tableau. It would be more practical to interleave guess with
construct, but it is currently not clear how to realize this.

6 Difference Modalities

To deal with the difference operators, several changes to the conceptual, technical
and computational part are necessary.

Since Ds and Ds do not say anything about the current state, it is not the
notion of a Hintikka set that needs extending, but the notion of a demo. We add
the following conditions to Def. 4.

(DD) If Ds ∈ H ∈ D, then there is some H ′ ∈ D such that H ′ �= H and s ∈ H ′.
(DD) If Ds ∈ H ∈ D, then, for all H ′ ∈ D such that H ′ �= H , we have s ∈ H ′.

Because of Condition (DD) alone, demos for PDL extended by D are not closed
under union. This is not surprising because D can be used to express that a given
predicate behaves as a nominal: p ∧ D¬p. We will therefore have to adapt the
decision procedure to the presence of D at the end of this section. In contrast,
adding only D to PDL does not make closure under unions invalid.

However, the proof of Lemma 8 does not go through for the D case without
further assumptions. Consider, for example, F = {p,Dp} and the model M with
|M| = {v, w} and Mp = {v, w}. Then M, v |= Dp and Dp ∈ Hv. Since Hv = Hw,
the system SM consists of only Hv and (DD) is violated.

To solve this problem, we assume an injective function that assigns to every
literal Ds ∈ F a nominal xDs ∈ F that is isolated, i.e., which occurs in no
other formula in F. Intuitively, xDs is supposed to denote a state that satisfies s,

206 M. Kaminski, T. Schneider, and G. Smolka

provided that such a state exists. If it does, all states that are different from the
one denoted by xDs satisfy Ds. As we will see below, this implies that, whenever
a state w satisfies Ds, then there is a state v that satisfies s with Hv �= Hw.

It remains to ensure that the xDs denote the correct states in M. We call
a model M nice for F if, for all Ds ∈ F such that s is satisfiable in M, the
conjunction s ∧ xDs is satisfiable in M too. Since we require that the xDs are
isolated, we do not restrict generality by assuming that satisfying models are
nice. Lemma 8 is now reformulated as follows.

Lemma 19. If M is nice for F, then SM is a demo.

Proof. (D�) and (DN) are shown as in the proof of Lemma 8.

(DD) Let Ds ∈ Hw ∈ SM. Then there is some v �= w with M, v |= s. In case
M, w |= xDs, we conclude that xDs ∈ Hw and xDs /∈ Hv. Therefore,
Hv �= Hw. Otherwise, since M is nice, we can assume w.l.o.g. that v is
precisely the state with M, v |= xDs ∧ s. This implies Hv �= Hw, too. In
both cases, we have s ∈ Hv from M, v |= s.

(DD) Let Ds ∈ Hw ∈ SM, and let H ′ ∈ SM with H ′ �= Hw. Hence H ′ = Hv for
some v �= w. From M, w |= Ds, we conclude M, v |= s, i.e., s ∈ Hv. ��

We further need to incorporate the assumptions of models being nice into Lemma
9 and its proof (see [19]).

Lemma 20 (Demo existence for HPDLD). For every satisfiable formula s ∈
F, there is a demo D over F that contains s.

Extending the proof of Lemma 13 is straightforward if we add two cases.

s = Dt. If Dt ∈ H ∈ D, then Demo Condition (DD) requires the existence of
an H ′ ∈ D with H ′ �= H and t ∈ H ′. The induction hypothesis yields
MD, H ′ |= t and, therefore, MD, H |= Dt.

s = Dt. Analogous to the previous case, using Demo Condition (DD).

We conclude that the conceptual cost of adding the existential difference modal-
ity is significant, while the technical additions are straightforward once a suitable
definition of the auxiliary nominals is in place. The universal difference operator
has not caused any difficulties so far, but it will lose its harmlessness when it
comes to the decision procedure.

First, we need to incorporate D into the definition of pruning, which is now
defined as follows: let S p→ S′ if S′ can be obtained from S by deleting some
H ∈ S that violates (D�) or (DD), i.e., one of the following two cases occurs:

1. For some 〈α〉s ∈ H ∈ S, there is no H ′ ∈ S such that H α−→SH ′ and s ∈ H ′.
2. For some Ds ∈ H ∈ S, there is no H ′ ∈ S such that H ′ �= H and s ∈ H ′.

Since we have lost the existence of a greatest demo not only because of the
auxiliary nominals, but also due to the presence of D, we will have to revisit the
assumptions of Proposition 17 and Theorem 18. It suffices to add the requirement

Pratt-Style Decision Procedures for Modal and Hybrid Logics 207

that S satisfies (DD) to both assumptions and observe that all subsets of S then
satisfy (DD). The proofs then go through unchanged.

Therefore, the decision method from the previous section can be reused if we
reformulate Step 3 as follows:

Guess a maximal subset H′ of H that is nominally coherent and satisfies (DD).

Since H′ needs to be pruned to a demo (candidate) D, we ensure (DD) by
distinguishing three cases for every formula Ds ∈ F about its occurrence in a
maximal demo D ⊆ H.

(D1) Ds is not contained in D. We can therefore discard all Hintikka sets in H
that contain Ds because they cannot occur inH′. This ensures that neither
H nor H′ violates (DD) with Ds.

(D2) All Hintikka sets in D contain s. Then, for the same reason as above, it
is safe to discard all Hintikka sets in H, ensuring that neither H nor H′

violates (DD) with Ds.
(D3) D contains Hintikka sets H,H ′ with Ds ∈ H and s ∈ H ′. If s ∈ H , we are

in Case (D2) due to (DD). Hence s /∈ H , and therefore Ds is in no Hintikka
set other than H . In this case, it is safe to choose one H containing Ds
and not s to remain in H and H′, and all other Hintikka sets that contain
Ds or not s can be discarded.

It therefore suffices to add another linear number of guessing actions out of an
exponential supply to the guessing phase, and the previous arguments about the
determinization in exponential time still apply.

While the addition of D causes significant conceptual overhead, the extension
of the decision method with D within the given time bounds is non-trivial.

7 Tests

We redefine the transition relation for tests: s−→S = {(H,H) | s ∈ H ∈ S}.
In order to prove that the Hintikka system SM induced by a model is a demo,

it suffices to add one straightforward case to the proof of Lemma 7.

α = t. If v t−→M w, then v = w and M, v |= t. Then we also have that Hv = Hw

and t ∈ Hv. Hence, Hv
t−→SM

Hw.

For the other direction—every demo is satisfied by its induced model—the
missing cases in Lemmas 11 and 12 require additional assumptions, which are
added in the following. The proofs need to be redone only for the cases of tests,
see [19].

Lemma 21. Let S be a Hintikka system and α a program such that, for all tests
t in α and all H ∈ S, t ∈ H implies MS , H |= t. Then α−→S ⊆ α−→MS .

Lemma 22. Let S be a Hintikka system with H,H ′ ∈ S satisfying

208 M. Kaminski, T. Schneider, and G. Smolka

– [α]s ∈ H α−→MS H
′, and

– For all tests t in α and H ∈ S: if ∼t ∈ H, then MS , H |= ∼t.
Then s ∈ H ′.

The formulation of the decision procedure is unaffected by the addition of tests.
The only difference in detail is that t−→H needs to be computed by cycling
through all the exponentially many H ∈ H and their linear-size contents.

The surprising consequence is that, even in the presence of tests, a compli-
cated induction order can be avoided in the proofs leading to the demo theorem,
provided that the theorem is sufficiently factored out into lemmas.

8 Converse Actions

The extension with converse actions is straightforward: in Definition 2, we need
to replace the case for a−→S with

a−→S =
{
(H,H ′)

∣
∣ ∀s :

(
[a]s ∈ H ⇒ s ∈ H ′) and

(
[a−]s ∈ H ′ ⇒ s ∈ H

)}
,

and add the case a−−→S = a−→−
S , where a−→−

S denotes the inverse of a−→S . All
proofs of Sections 3 and 4 go through after a straightforward converse case has
been added for Lemmas 7, 11, and 12; details are given in [19].

We conclude that adding converse is conceptually, technically and computa-
tionally easy in our setting.This is different for tableau-based decision proce-
dures, where converse operators cause significant technical difficulties [2, 14].

9 Related Work

We have given a Pratt-style worst-case optimal decision procedure for test-free
PDL and step-wise extended it to capture nominals, difference modalities, tests
and converse. The correctness of this method is based on transparent proofs of
the bounded model theorem (BMT). We now discuss how our approach relates
to known approaches of this type.

The basis for our approach is Pratt’s work [24], where he sketches a decision
method that adds pruning to Fischer and Ladner’s method [10], without a formal
correctness proof. This is probably the most straightforward way of obtaining the
exponential-time upper bound. We have extended Pratt’s method with hybrid
operators and converse.

Variations of Pratt’s straightforward approach are given in the literature [16,
22, 17, 3]. In order to establish the BMT, the authors of [16, 22, 17] use either
simultaneous induction over formulas and programs, or a non-standard induction
over an order on formulas with and without flags. The correctness of the decision
procedure is not immediate, and requires to partially repeat the course of the
proof of the BMT. The procedure in [3, Section 6.8] requires Hintikka sets to
be upwards saturated, and its proofs use a simpler induction scheme. However,
that approach does not include tests. In contrast to [16, 22, 17], our technique
factorizes the BMT in a way that every lemma can be proven using a single

Pratt-Style Decision Procedures for Modal and Hybrid Logics 209

induction over the subterm relation. The demo notion and its properties can be
directly used to conclude the correctness of the decision procedure.

In [23], the authors state that HPDL− has the same deterministic upper bound
as PDL without giving an explicit decision procedure. The work in [5, 1] estab-
lishes a chain of polynomial-time satisfiability-preserving translations HPDL−

D→
HPDL−

E →HPDL−→PDL−→PDL, again without an explicit decision procedure.
In contrast to the work in [25, 12, 14, 20], our approach does not build a

tableau in Stage construct, and therefore the edges of the transition relation do
not need to be an explicit part of our Hintikka systems. The approach in [20] uses
the notion of a clause instead of a Hintikka set and a support relation between
clauses and formulas. The support closures of clauses—i.e., their supported sets
of formulas—are exactly the Hintikka sets. Without the need for computational
optimizations, Hintikka sets are sufficient for our approach and more convenient.
While the decision procedure in [20] runs in NExpTime for nominals, we show
how to obtain an ExpTime procedure, answering the question from [20] whether
a demo can be found efficiently w.r.t. the size of the tableau.

In [14], a more practical worst-case optimal decision method for PDL− is given
and implemented. In contrast, we have acknowledged above that our procedure is
not implementable, and this is not the purpose of this paper. We have examined
how Pratt’s most simple optimal procedure scales to more expressive features
and, in our point of view, this serves the understanding of this type of procedure
rather than its implementation.

Syntactic descriptions of models related to demos can be found in [8]. Their
Hintikka structures for CTL are richer: they contain the transition relation ex-
plicitly and may contain several copies of a Hintikka set.

For future work, it would be interesting to examine whether our approach
can be extended to the hybrid μ-calculus and whether graded modalities can be
incorporated. On the more practical side, a natural next step is to study how
to transfer our approach into a decision procedure that interleaves building a
(graph) tableau and pruning in the presence of hybrid operators.

Acknowledgments. We thank the anonymous reviewers for helpful comments.

References

[1] Areces, C., Blackburn, P., Marx, M.: The computational complexity of hybrid
temporal logics. L. J. IGPL 8(5), 653–679 (2000)

[2] Baader, F., Sattler, U.: Tableau algorithms for description logics. In: Dyckhoff, R.
(ed.) TABLEAUX 2000. LNCS, vol. 1847, pp. 1–18. Springer, Heidelberg (2000)

[3] Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. CUP (2001)
[4] Bolander, T., Blackburn, P.: Termination for hybrid tableaus. J. Log. Com-

put. 17(3), 517–554 (2007)
[5] De Giacomo, G.: Decidability of class-based knowledge representation formalisms.

Ph.D. thesis, Università degli Studi di Roma “La Sapienza” (1995)
[6] De Giacomo, G., Massacci, F.: Combining deduction and model checking into

tableaux and algorithms for converse-PDL. Inf. Comput. 162(1-2), 117–137 (2000)
[7] Donini, F.M., Massacci, F.: EXPtime tableaux for ALC. AI 124(1), 87–138 (2000)

210 M. Kaminski, T. Schneider, and G. Smolka

[8] Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-
poral logic of branching time. J. Comput. System Sci. 30(1), 1–24 (1985)

[9] Fischer, M.J., Ladner, R.E.: Propositional modal logic of programs. In: Proc.
STOC, pp. 286–294. ACM, New York (1977)

[10] Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
Comput. System Sci., 194–211 (1979)

[11] Gargov, G., Goranko, V.: Modal logic with names. J. Philos. L. 22, 607–636 (1993)
[12] Goré, R., Widmann, F.: An optimal on-the-fly tableau-based decision procedure

for PDL-satisfiability. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp.
437–452. Springer, Heidelberg (2009)

[13] Goré, R.P., Nguyen, L.A.: EXPTIME tableaux with global caching for description
logics with transitive roles, inverse roles and role hierarchies. In: Olivetti, N. (ed.)
TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 133–148. Springer, Heidelberg
(2007)

[14] Goré, R., Widmann, F.: Optimal and cut-free tableaux for propositional dynamic
logic with converse. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173,
pp. 225–239. Springer, Heidelberg (2010)

[15] Haarslev, V., Möller, R.: RACER system description. In: Goré, R.P., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–705. Springer,
Heidelberg (2001)

[16] Harel, D.: Dynamic logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philo-
sophical Logic, vol. II, pp. 497–604. Reidel, Dordrechtz (1984)

[17] Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. The MIT Press, Cambridge (2000)
[18] Hollunder, B., Nutt, W., Schmidt-Schauß, M.: Subsumption algorithms for concept

description languages. In: Proc. ECAI, pp. 348–353 (1990)
[19] Kaminski, M., Schneider, T., Smolka, G.: Correctness and worst-case optimality

of Pratt-style decision procedures for modal and hybrid logics. Technical report,
Saarland University (2011), http://tinyurl.com/hpdldc

[20] Kaminski, M., Smolka, G.: Clausal graph tableaux for hybrid logic with eventu-
alities and difference. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS,
vol. 6397, pp. 417–431. Springer, Heidelberg (2010)

[21] Kaminski, M., Smolka, G.: Terminating tableaux for hybrid logic with eventuali-
ties. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 240–254.
Springer, Heidelberg (2010)

[22] Kozen, D., Tiuryn, J.: Logics of programs. In: Handbook of Theoretical Computer
Science. Formal Models and Sematics, vol. B, pp. 789–840. Elsevier, Amsterdam
(1990)

[23] Passy, S., Tinchev, T.: An essay in combinatory dynamic logic. Inf. Comput. 93(2),
263–332 (1991)

[24] Pratt, V.R.: Models of program logics. In: Proc. FOCS, pp. 115–122 (1979)
[25] Pratt, V.R.: A near-optimal method for reasoning about action. J. Comput. Sys-

tem Sci. 20(2), 231–254 (1980)
[26] Prior, A.: Past, Present and Future. OUP, England (1967)
[27] Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with compli-

ments. AI 48(1), 1–26 (1991)
[28] Segerberg, K.: A note on the logic of elsewhere. Theoria 46(2-3), 183–187 (1980)
[29] Streett, R.S., Emerson, E.A.: An automata theoretic decision procedure for the

propositional µ-calculus. Inform. and Control 81, 249–264 (1989)
[30] Tsarkov, D., Horrocks, I., Patel-Schneider, P.F.: Optimizing terminological rea-

soning for expressive description logics. J. Autom. Reas. 39(3), 277–316 (2007)
[31] Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of pro-

grams. J. Comput. System Sci. 32, 183–221 (1986)

http://tinyurl.com/hpdldc

Cut Elimination for Shallow Modal Logics�

Björn Lellmann and Dirk Pattinson

Department of Computing, Imperial College London, UK

Abstract. Motivated by the fact that nearly all conditional logics are axioma-
tised by so-called shallow axioms (axioms with modal nesting depth ≤ 1) we
investigate sequent calculi and cut elimination for modal logics of this type. We
first provide a generic translation of shallow axioms to (one-sided, unlabelled)
sequent rules. The resulting system is complete if we admit pseudo-analytic cut,
i.e. cuts on modalised propositional combinations of subformulas, leading to a
generic (but sub-optimal) decision procedure. In a next step, we show that, for
finite sets of axioms, only a small number of cuts is needed between any two ap-
plications of modal rules. More precisely, completeness still holds if we restrict
to cuts that form a tree of logarithmic height between any two modal rules. In
other words, we obtain a small (PSPACE-computable) representation of an ex-
tended rule set for which cut elimination holds. In particular, this entails PSPACE

decidability of the underlying logic if contraction is also admissible. This leads
to (tight) PSPACE bounds for various conditional logics.

1 Introduction

Cut elimination is without doubt a central theme in proof theory. Not only do cut-free
sequent systems provide for reasonably simple syntactical proofs of results like inter-
polation, they also pave the way for decision procedures via backwards proof search.
While there are a variety of methods to construct a cut-free sequent system for specific
logics (and at least as many different sequent calculi), the general approach is to come
up with a sequent system tailored to the logic at hand, and then show cut elimination for
this particular system. While this approach works very well for specific logics, a good
deal of ingenuity is required to construct the actual system. Since this method consumes
both a lot of time and effort, this raises the question whether there is a generic method
to construct cut-free calculi, and in particular, whether we can delegate the task of con-
structing these systems. Our motivation for investigating this question mainly stems
from automated proof search and questions of complexity, where the shape and struc-
ture of the rules of a cut-free system are not important, as long as we can recognise
rule instances fast enough. Our ultimate aim in this somewhat radical endeavour is to
synthesise algorithms that recognise instances of a cut-free sequent system, given an
axiomatisation of the logic under consideration.

This paper reports on our first results on this programme in the context of modal
logic: we study the question to what extent we can convert a Hilbert-style axiomatisa-
tion of a general, not necessarily normal modal logic into a cut-free sequent system such

� Supported by EPSRC-Project EP/H016317/1.

K. Brünnler and G. Metcalfe (Eds.): TABLEAUX 2011, LNAI 6793, pp. 211–225, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

212 B. Lellmann and D. Pattinson

that rule instances are decidable in a moderate complexity class. Our point of departure
is the class of logics that can be axiomatised by shallow axioms, i.e. axioms of modal
nesting depth ≤ 1. These logics are known to be decidable by semantic arguments via
coalgebraic semantics [10] and the finite model property, and (reassuringly) exclude
modal logics that are known to be undecidable [6]. Indeed, one of the questions is to
what extent the decidability of these logics can be reflected purely syntactically.

The motivating examples in this endeavour are the systems of conditional logics.
While there is a plethora of systems [7], nearly all of these are axiomatised by shal-
low axioms. Recent activity in this area has led to methods for constructing (labelled)
sequent systems for some of these systems [8], and to generic cut elimination proofs
for unlabelled systems given by a set of rules [11]. We extend the latter approach by a
generic method to construct rules of an unlabelled sequent system from a set of shallow
axioms. For the system obtained in this way we show two main results, namely com-
pleteness and decidability of the system, where the cut rule is replaced by the pseudo-
analytic cut rule (a variant of the analytic cut rule), and full cut elimination for the
system extended by a tractable set of rules. The latter result breathes the spirit of our
radical approach driven by proof search. The crucial fact is that the extended rule set is
generically constructed and has a small (polysize) representation. We also show that ad-
missibility of the contraction rule in the extended system implies a PSPACE decidability
result for the corresponding logic. While this still leaves the question whether generic
positive results concerning admissibility of contraction hold, we apply our method suc-
cessfully to various conditional logics.

Related work. Criteria for cut elimination are discussed for instance in [12] for a wide
class of logics, but not touching upon the automatic construction of rules or calculi
that admit cut elimination. Cut elimination for canonical calculi (where each sequent
rule only allows the introduction of one logical connective) are discussed in [1]. This
approach in general is unsuitable for modal calculi, since these typically introduce more
than one connective at a time. Algorithmic aspects of cut elimination are investigated
in [2] but with a focus on deciding whether a calculus enjoys this property, in contrast
to the main aspect of this paper which aims to construct a calculus that enjoys cut
elimination algorithmically. The present paper is a continuation of work reported in
[11] that gives criteria and a semi-algorithmic method to obtain calculi admitting cut
elimination, and our focus here is to obtain these calculi purely algorithmically.

2 Preliminaries and Notation

Throughout the paper, we consider a modal similarity type Λ consisting of modal oper-
ators with arities and a denumerable set V of propositional variables. Given Λ, the set
of Λ-formulas is given by the grammar

F(Λ) � φ, ψ ::= p | ¬φ | φ ∧ ψ | ♥(φ1, . . . , φn)

where p ∈ V and ♥ ∈ Λ is n-ary. We employ a classical reading of the propositional
part of the language and use the standard abbreviations for other propositional connec-
tives. The modal rank of a formula is given inductively by rk (p) = 0, rk (¬φ) = rk (φ),

Cut Elimination for Shallow Modal Logics 213

rk (φ1 ∧ φ2) = maxi=1,2 rk (φi) and rk (♥(φ1, . . . , φn)) = 1 + max1≤i≤n rk (φi). If
σ : V → F(Λ) is a substitution, we write φσ for the result of replacing every oc-
currence of p in φ by σ(p) and [φ/p] is the substitution defined by [φ/p](q) = φ if
p = q and [φ/p](q) = q otherwise. We denote the propositional variables that occur in
a formula φ by Var(φ). If S ⊆ F(Λ) is a set of formulas, we write Λ(S) for the set
{♥(φ1, . . . , φn) | ♥ ∈ Λ n-ary, φ1, . . . , φn ∈ S} of formulas that arise by applying
precisely one modality ♥ ∈ Λ to formulas in S, and ¬S is the set {¬φ | φ ∈ S}
of negations of formulas in S. Similarly, Prop(S) is the set of propositional combina-
tions of formulas in S. A clause over S is a finite disjunction l1 ∨ · · · ∨ ln of literals
li ∈ S ∪ ¬S (i = 1, . . . , l). If l ∈ S ∪ ¬S, then ∼ l is the normalised negation of l,
given by ∼ l = ¬l if l ∈ S and ∼ l = l′ if l = ¬l′ ∈ ¬S. Two formulas φ, ψ ∈ F(Λ)
are propositionally equivalent if φ ↔ ψ is a substitution instance of a propositional
tautology. To make contraction explicit, we take a Λ-sequent to be a finite multiset
of Λ-formulas. If S ⊆ F(Λ) is a set of formulas, we write S(S) for the set of se-
quents containing only elements in S and S(Λ) for S(F(Λ)). The number of elements
of Γ ∈ S(Λ) counting multiplicities is written as ||Γ ||. We employ usual notation and
identify a formula φ ∈ F(Λ) with the singleton sequent φ and write Γ,Δ for the (multi-
set) union of sequents Γ,Δ ∈ S(Λ). If Γ is a Λ-sequent, Supp (Γ) denotes the support
of Γ , i.e. the set of Λ-formulas that occur in Γ with positive multiplicity. Substitution
extends to sequents pointwise (preserving multiplicity), that is, Γσ = φ1σ, . . . , φnσ
if Γ = φ1, . . . , φn. A sequent Γ ∈ S(Λ) is propositionally equivalent to a formula
φ ∈ F(Λ) if

∨
Γ ↔ φ is a propositional tautology. A set {Γ1, . . . , Γn} of sequents is a

conjunctive normal form (cnf) of a formula φ ∈ F(Λ) if φ and (
∨
Γ1) ∧ · · · ∧ (

∨
Γn)

are propositionally equivalent. If φ, ψ ∈ F(Λ), we use the shorthand φ = ψ to denote
the set of sequents containing ¬φ, ψ and φ,¬ψ. This convention is extended to chains
of equations φ1 = · · · = φn in the obvious way.

3 From Hilbert Systems to Sequent Systems

Our starting point in this paper is a modal logic axiomatised by shallow axioms (axioms
with modal rank≤ 1) in a Hilbert system that we convert to a set of sequent rules, taking
special care of propositional formulas occurring in the scope of a modality.

Definition 1. A shallow axiom over a similarity type Λ is a formula φ ∈ F(Λ) with
rk (φ) ≤ 1. A shallow clause is of the form c = cp ∨ cd where cp is a clause over
V and cd is a clause over Λ(Prop(V)). A decomposition of a shallow clause c is a
triple (cp, cd, σ) where cp, cd are clauses as above with Var(cd) ∩ Var(cp) = ∅, and
σ : V → Prop(V) is a substitution with c = cp ∨ cdσ.

Insisting that a modal logic is axiomatised purely in terms of shallow axioms clearly ex-
cludes a large variety of logics (the most basic example is the modal logic K extended
with the transitivity axiom �p→ ��p). On the other hand, nearly all conditional log-
ics studied in the literature are axiomatised using shallow axioms [7]. Technically, the
restriction to (finitely many) shallow axioms implies that all logics under considera-
tion are in fact decidable, a property that fails for logics that are axiomatised by more
general classes of axioms [6].

214 B. Lellmann and D. Pattinson

Example 2. 1. Over the similarity type Λ = {�}, the axioms defining the modal
logic (K), i.e. �p ∧ �q → �(p ∧ q) and �� as well as the reflexivity axiom �p→ p
are shallow. Transitivity ��p→ �p fails to be shallow.

2. The syntax of many conditional logics is given by the similarity type Λ = {>}
where > is a binary operator that we write in infix notation. All of the axioms

(CM) (p > (q ∧ r))→ (p > q) (CC) (p > q) ∧ (p > r)→ (p > (q ∧ r))
(CS) (p ∧ q)→ (p > q) (CA) (p > r) ∧ (q > r)→ ((p ∨ q) > r)
(MP) (p > q)→ (p→ q) (CMon) (p > q) ∧ (p > r)→ ((p ∧ q) > r)
(ID) (p > p) (CV) (p > q) ∧ ¬(p > ¬r)→ ((p ∧ r) > q)

that define e.g. the conditional systems B = {CM,CC,CA,CMon, ID}, SS = B ∪
{CS,MP}, and V = B ∪ {CV} are shallow [7].

We define modal Hilbert systems in the standard way by closing under modus ponens,
uniform substitution and the modal congruence rule. This allows us e.g. to derive the
necessitation rule p/�p for � from the axiom ��.

Definition 3. SupposeA ⊆ F(Λ). The predicateHA � is the least subset of formulas
containingA and all propositional tautologies that is closed under uniform substitution
(HA � φσ if HA � φ), modus ponens (HA � ψ if HA � φ → ψ and HA � φ)
and congruence (HA � ♥(φ1, . . . , φn) ↔ ♥(ψ1, . . . , ψn) if HA � φi ↔ ψi for all
i = 1, . . . , n).

Given a set of shallow axioms, we now construct an equivalent sequent system that
extends propositional logic with shallow rules. As we are working in a generic setup, it
is more convenient to have negation as an explicit logical operator rather than dealing
with formulas in negation normal form as the latter would require that the similarity
type Λ is closed under formal duals. Consequently our analysis is based on the system
G consisting of all rule instances

Γ, p,¬p Γ,¬⊥
Γ,¬φ,¬ψ
Γ,¬(φ ∧ ψ)

Γ, φ Γ, ψ

Γ, φ ∧ ψ
Γ, φ

Γ,¬¬φ
where p ∈ V is a propositional variable, φ, ψ ∈ F(Λ) are formulas and Γ ∈ S(Λ) is a
sequent. Here, Γ is the context and a formula that appears in the conclusion but not the
context is called principal. The system G is complete for classical propositional logic
[14]. Extensions of G with weakening, cut, context-sensitive cut and contraction

(W)
Γ

Γ, φ
(Cut)

Γ, φ Δ,¬φ
Γ,Δ

(Cutcs)
Γ, φ Γ,¬φ

Γ
(Con)

Γ, φ, φ

Γ, φ

are denoted by suffixing with the respective rule names so that e.g. GWCon is the sys-
tem G extended with weakening and contraction. We writeΩ �G Δ if Δ can be derived
in G from premises inΩ and we use the same notation for extensions of G with a subset
of {W,Con,Cut,Cutcs}. A sequent Γ is a propositional consequence of sequents in Ω

Cut Elimination for Shallow Modal Logics 215

if Ω �GCutCon Γ , this is also denoted by Ω �PL Γ . Shallow axioms are incorporated
into these systems by converting them into sequent rules of a specific form:

Definition 4. A shallow rule is given by a triple R = (Premc (R) ,Premn (R) , Σ)
consisting of a finite set Premc (R) = {Γ1, . . . , Γl} ⊆ S(V ∪ ¬V) of contextual
premises, a finite set Premn (R) = {Δ1, . . . , Δm} ⊆ S(V ∪ ¬V) of non-contextual
premises and a sequent Σ ∈ S(Λ(V) ∪ ¬Λ(V)) of principal formulas where all vari-
ables that occur in Σ are pairwise distinct. If σ : V → F(Λ) is a substitution and
Γ ∈ S(Λ) is a sequent (the context), then

(Rσ)
Γ, Γ1σ,Σσ . . . Γ, Γlσ,Σσ Δ1σ . . . Δmσ

Γ,Σσ

is an instance of R. If no confusion between contextual and non-contextual premises
can arise, we write a shallow rule given by the above data in the more suggestive form

(R)
Γ1, Γ,Σ . . . Γl, Γ,Σ Δ1 . . . Δm

Γ,Σ
.

The principal formulas of a shallow rule R (or rule instance Rσ) of the form above are
the (substituted) elements of Σ, written as PF (R) (resp. PF (Rσ)). We write Prem (R)
(resp. Prem (Rσ)) for the set of (substituted) premises of R, and Concl (Rσ) for the
conclusion of (Rσ). We identify shallow rules modulo injective renaming of variables.

The requirement that the variables in the principal formulas are pairwise distinct poses
no restriction, since we may introduce fresh variables and new premises stating equiv-
alences. The separation between contextual and non-contextual premises is important
for two reasons: first, when passing from rules to instances, the contextual premises not
only copy the context from premise to conclusion, but also the principal formulas. This
is important for admissibility of contraction, as it allows to propagate a contraction be-
tween principal formulas and context. Mutatis mutandis, it is precisely this mechanism
that allows to show admissibility of contraction in a sequent calculus for the modal logic
T , i.e. K extended with the rule Γ,¬φ,¬�φ/Γ,¬�φ. Second, contextual premises re-
ceive special treatment in proof search, as the premise is a superset of the conclusion.

Example 5. Over the similarity types introduced in Section 2, we can form the follow-
ing shallow rules, which we present in the suggestive notation of Definition 4.

1. Over Λ = {�}, both (RK) ¬p,¬q,r ¬r,p ¬r,q
Γ,¬�p,¬�q,�r and (RT) Γ,¬p,¬�p

Γ,¬�p are shallow.
Here the premises inRK are non-contextual whereas the premise inRT is contextual.

2. Over Λ={>}, both (RCC) p1=p2=p3 ¬q,¬r,s ¬s,q ¬s,r
Γ,¬(p1>q),¬(p2>r),(p3>s)

and (RCS) Γ,p Γ,q
Γ,(p>q)

are shallow.

Every set R of shallow rules induces a sequent calculus by augmenting instances of
rules inR with the modal congruence rule and propositional reasoning.

Definition 6. Suppose R is a set of shallow rules. The predicate GR � is the least set
of sequents closed under the propositional rules of G, instances of shallow rules in R,
and instances of the modal congruence rules

¬φ1, ψ1 ¬ψ1, φ1 . . . ¬φn, ψn ¬ψn, φn
Γ,¬♥(φ1, . . . , φn),♥(ψ1, . . . , ψn)

216 B. Lellmann and D. Pattinson

where Γ ∈ S(Λ), ♥ ∈ Λ is n-ary and φ1, . . . , φn ∈ F(Λ). Use of additional rules is
indicated by suffixing so that e.g. GRWCutcs � denotes derivability in GR extended
with weakening and context-sensitive cut.

We employ the usual definitions of a proof (a tree constructed from proof rules), the
depth of a proof (the height of this tree) and (depth-preserving) admissibility of proof
rules [14]. Often, a statement holds for extensions of GR with several principles. We in-
dicate this using square brackets. For example, a statement involving GR[WCon] holds
for an extension of GR with a (possibly empty) subset of {W,Con}.

Lemma 7 (Admissibility of weakening and inversion). SupposeR is a set of shallow
rules over a similarity type Λ. Then the weakening rule (W) and the rules

Γ, φ ∧ ψ
Γ, φ

Γ, φ ∧ ψ
Γ, ψ

Γ,¬(φ ∧ ψ)
Γ,¬φ,¬ψ

Γ,¬¬φ
Γ, φ

are depth-preserving admissible in GR[CutCutcsWCon].

Our next goal is to convert shallow axioms into shallow rules and confirm that (for now,
with help of cut and contraction) this does not change the notion of derivability.

Definition 8. Suppose that c is a shallow clause with decomposition (cp, cd, σ) where
Var(cd) = {q1, . . . , qn} and cp = l1 ∨ · · · ∨ lm. If furthermore

– the sequents Δ1, . . . , Δk are a cnf of
∧n
i=1(qi ↔ σ(qi))

– the sequent Σ ⊆ Λ(V) ∪ ¬Λ(V) is propositionally equivalent to cd

then the shallow rule

Γ,∼ l1 . . . Γ,∼ lm Δ1 . . . Δk

Γ,Σ

is called a rule form of c. A rule form of a shallow axiom φ is a set R = {r1, . . . , rk}
of shallow rules where each ri is a rule form of a shallow clause ci such that

∧n
i=1 ci

and φ are propositionally equivalent. Finally, a rule form of a set A = {φ1, . . . , φn} of
shallow axioms is a setR = R1 ∪ · · · ∪ Rn where eachRi is a rule form of φi.

In other words, a rule form of a shallow axiom φ is constructed by first converting φ
into conjunctive normal form, obtaining shallow clauses c1, . . . , cn. For each shallow
clause, we obtain a rule by replacing propositional formulas φi that occur as arguments
of modal operators by new variables qi and then add the clauses of a conjunctive nor-
mal form of qi ↔ φi to the premises. The operation of adding a context amounts to
considering a shallow clause c = cp ∨ cm as an implication ¬cm → cp that induces a
rule cp → φ/¬cm → φ which is then interpreted as a sequent rule.

Example 9. The rulesRK ,RT ,RCC andRCS presented in Example 5 are rule forms
of the homonymous axioms introduced in Example 2.

As a first sanity check, we confirm that the Hilbert calculus given by a set of shallow
axioms is equivalent to the sequent calculus given by their rule forms, at least as long
as we admit cut and contraction in the latter.

Cut Elimination for Shallow Modal Logics 217

Proposition 10. Suppose thatA is a set of shallow axioms andR is a rule form ofA.

1. GRCutCon � φ for every φ ∈ A.

2. HA �
∨
Γ0 whenever HA �

∨
Γi (all 1 ≤ i ≤ n) and Γ1 . . . Γn/Γ0 is an

instance of a shallow rule inR.

In the presence of cut and contraction, equivalence of both systems is then immediate:

Corollary 11. Suppose that A is a set of shallow axioms and R is a rule form of A.
ThenHA �

∨
Γ whenever GRCutCon � Γ , for all sequents Γ ∈ S(Λ).

Clearly, our goal is the elimination of both cut and contraction where the latter can (at
least in the first instance) be handled on the basis of rule forms.

Definition 12. A setR of shallow rules is contraction closed, if, for every rule instance
(Rσ) with Concl (Rσ) = Γ, φ, φ there exists an instance (Sτ) with Concl (Sτ) = Γ, φ
such that Premc (Rσ) �GWCon Δ for all Δ ∈ Premc (Sτ), and Premn (Rσ) �GWCon Π
for all Π ∈ Premn (Sτ).

This definition allows us to propagate contraction over the application of modal rules.
Combined with an induction on the depth of the derivation this yields:

Proposition 13. Suppose that R is contraction closed. Then GR[Cutcs] � Γ iff
GRCon[Cutcs] � Γ for all sequents Γ ∈ S(Λ). Moreover, the proof in GR[Cutcs]
has at most the same height, uses the same number of (instances of) shallow rules and
the same cut formulas.

4 Cut-Closure and Pseudo-Analytic Cut

We now set out to establish the first main result of this paper, and show that the cut rule
can be restricted to pseudo-analytic cut, i.e. cuts on formulas that arise by applying a
modal operator to a propositional combination of subformulas of the conclusion of the
cut rule, which leads to a generic decidability result for logics axiomatised with shallow
rules. To achieve this, we first normalise shallow rules so that only variables occurring
in the conclusion are allowed in the premise. This way backwards proof search does
not introduce new variables. In a second step, we close a normalised rule set under cuts
between rule conclusions, and observe that this closure process can be simulated with
pseudo-analytic cut. We first analyse the process of eliminating unnecessary variables.

Definition 14. A setR of shallow rules is normalised if in each rule inR all variables
occurring in the premises also occur in the conclusion.

Superfluous variables in the premises of rules are eliminated as follows.

Definition 15 (p-elimination). Let S be a set of sequents and p ∈ V a propositional
variable. The p-elimination of S, written Sp is defined by

Sp = {Γ�p,Δ�¬p ∈ N | Γ, p ∈ S and Δ,¬p ∈ S}∪{Δ ∈ S∩N | {p,¬p}∩Δ = ∅}

where Γ � φ denotes the sequent Γ with all occurrences of φ removed (in the multiset
sense) andN = {Γ ∈ S(Λ) | Γ∩¬Γ = ∅} is the set of non-axiomatic sequents overΛ.
If p = (p1, . . . , pn) is a finite sequence of variables, we write Sp = (. . . (Sp1) . . .)pn .

218 B. Lellmann and D. Pattinson

In other words, Sp contains all results of multicutting elements of S on p that are not
trivially derivable. The next lemma shows that Sp is propositionally equivalent to S.

Lemma 16. Suppose S ⊆ S(Λ(V)) is a finite set of sequents over Λ(V) and p ∈ V .
Then all Δ ∈ Sp are derivable from S in GCutCon with cuts only on p. Moreover,
there exists a formula φ = φ(S, p) such that Γ [φ/p] is derivable from Sp in G for each
Γ ∈ S. The formula φ can be chosen as a conjunction of disjunctions of sequents in Sp.

Rules with unnecessary variables in the premises can therefore be normalised by suc-
cessively eliminating these variables.

Example 17. If S contains the sequents p = t and q ∧ r = s, then Sr consists of p = t
and ¬s, q. We may therefore replace the rule form of the axiom (CM)(p > (q ∧ r))→
(p > q) on the left

p = t ¬q,¬r, s ¬s, r ¬s, q
Γ,¬(p > s), (t > q)

RCM
p = t ¬s, q

Γ,¬(p > s), (t > q)

with its r-eliminated version (shown on the right).

Lemma 16 allows us to replace shallow rules with their normalised version, and we
will assume from now on that all shallow rules are normalised. We now construct a cut-
closed set cc (R) from a setR of shallow rules: we consider two shallow rules together
with an application of cut to their conclusions as a rule in its own right, but eliminate all
variables that occur in the premises, but not in the conclusion, of (new) rules that arise
in this way. This process then takes the following form:

Definition 18. Let R1, R2 ∈ R be given by (Ωc, Ωn, Γ) and (Υc, Υn, Δ), respectively
and suppose that σ, τ are renamings such that Γσ = Γ ′,M and Δτ = Δ′,¬M .
Then cut(R1σ,R2τ,M) is the shallow rule given by ((Υc ∪ Υn ∪ Ωc ∪ Ωn)p, (Υn ∪
Ωn)p, Γ

′, Δ′) if M = ♥p for p = (p1, . . . , pn).

This definition ensures that the new (non-) contextual premises arise from the old (non-
contextual) premises by removing variables that no longer occur in the conclusion.

Example 19. For the rules (RCC) = p1=p2=p ¬q1,¬q2,q ¬q,q1 ¬q,q2
Γ,¬(p1>q1),¬(p2>q2),(p>q) and (RCM) =

p=r ¬q,s
Γ,¬(p>q),(r>s) fromR(CM) we obtain the rule

(CCm) = cut(RCC, RCM, (p > q)) =
p1 = p2 = r ¬q1,¬q2, s

Γ,¬(p1 > q1),¬(p2 > q2), (r > s) .

The cut closure of a rule set is then constructed by adding more and more (normalised)
cuts until the set is saturated. Formally we have:

Definition 20. Let R be a set of shallow rules. The cut closure of R is the ⊆-minimal
set cc (R) with R ⊆ cc (R), such that for every R1, R2 ∈ cc (R) and renamings σ, τ
with Concl (R1σ) = Γ,M and Concl (R2τ) = Δ,¬M we have cut(R1σ,R2τ,M) ∈
cc (R).

Not surprisingly, cut is admissible over the cut closure of a rule set.

Cut Elimination for Shallow Modal Logics 219

Proposition 21. GRCutCon � Γ iff Gcc (R)Con � Γ for all sequents Γ .

In general, we may restrict cuts to formulas that arise as φ = φ(p, S) in Lemma 16, i.e.
conjunctions of disjunctions, which allows the following restriction on the cut rule:

Definition 22. A pseudo-analytic cut is a cut
Γ, ϕ Δ,¬ϕ

Γ,Δ
, where ϕ=♥(ψ1, . . . , ψn),

and for 1 ≤ i ≤ n each ψi is a conjunction of disjunctions of formulas occurring
possibly negated under a modal operator in Γ,Δ. For a set S of sequence rules define
SCutpa to be the set S together with the cut rule restricted to pseudo-analytic cuts.

Corollary 23. GRCutCon � Γ iff GRCutpaCon � Γ for all sequents Γ .

Distributivity allows us to restrict to a single layer of conjunctions and disjunctions.

Lemma 24. If GRCutpaCon � Γ for a set R of shallow rules and a sequent Γ , then
GRCutCon � Γ with cuts only on modalised conjunctions of disjunctions of possibly
negated subformulas of Γ .

As pseudo-analytic cuts suffice, for a conclusion of a cut rule there are only finitely
many possible cut formulas. In order to get a generic decidability result, we need to
assume that the rule set is tractable in the following sense.

Definition 25 (from [13]). A set R of shallow rules is PSPACE-tractable, if there are
multivalued functions f taking sequents to sets of encodings of instances of rules in
R, and g, taking encodings of rule instances to sets of sequents, such that for all se-
quents Γ,Δ and encodings �Rσ� of a rule instance we have �Rσ� ∈ f(Γ) ⇐⇒
Concl (Rσ) = Γ and Δ ∈ g(�Rσ�) ⇐⇒ Δ ∈ Prem (Rσ) , and whose graphs are
decidable in space polynomial in the length of the first argument.

We assume that sequents are encoded as lists of formulas. Note that the length of the
encoding of a sequent is at least the number of formulas in the sequent.

Theorem 26. LetR be a PSPACE-tractable and contraction closed set of shallow rules.
Then the derivability problem for GRConCut is in 3EXPTIME.

Example 27. This theorem induces a uniform decidability proof (albeit with a subopti-
mal complexity bound) for all logics axiomatised by finitely many shallow axioms, e.g.
for the conditional logics B, SS and V of Example 2.

5 Cut Elimination Using Small Representations

In the previous section, we have constructed the cut-closure of a given set of shallow
rules, and we have argued that a sequent calculus using this set enjoys cut elimination.
However, the construction of the cut closure does not yield a concrete representation of a
cut-closed rule set. The main result of this section establishes that the rules constituting
a cut-closed set can always be represented in space polynomial in the rule conclusion.
In particular, we demonstrate that instances of cut-closed rule sets can be decided in
PSPACE. This entails that the corresponding derivability problem is decidable in poly-
nomial space. Technically, we show that rules of a cut-closed rule set are represented
by proof trees whose inner nodes are applications of cut, and we give explicit bounds
on the size of these trees, which yield polynomial representability.

220 B. Lellmann and D. Pattinson

Definition 28. A shallow rule R1 = (Ωc, Ωn, Σ) subsumes a shallow rule R2 =
(Ξc, Ξn, Π), if there is a renaming σ with Σσ = Π such that Ξc ∪ Ξn �PL Δσ
for everyΔ ∈ Ωc, andΞn �PL Υσ for every Υ ∈ Ωn. Two shallow rules are equivalent
if they mutually subsume each other.

While the pseudo-analytic cut yields decidability, there is room for improvement in
complexity by considering polynomial-size representations of cc (R).

Definition 29. Let R be a set of shallow rules. An R-cut tree with conclusion Γ and
leafs (Riσ) (where 1 ≤ i ≤ n, Ri ∈ R and σi : V → V is a renaming) is a proof of
Γ from the conclusions of the (Riσ) using only cuts on principal formulas of the Riσ.
The number of nodes in a cut tree is denoted by size (D), its height by depth (D).

In the above definition, we emphasise that only applications of cut are allowed in a cut
tree, and the cut formulas have to be principal formulas of the rules at the leafs.

Example 30. The following is a KT -cut-tree for the sequent u,¬�p,¬�q,¬�r:

¬p,¬q, s ¬s, p ¬s, q
¬�p,¬�q,�s (RK)

¬s,¬r, t ¬t, s ¬t, r
¬�s,¬�r,�t (RK)

u,¬t
u,¬�t (RT)

u,¬�s,¬�r
u,¬�p,¬�q,¬�r

Clearly, the cuts introduced in a cut tree may introduce new variables that are present
in the premises of the Riσ, but not in the conclusion Γ . We eliminate these as before.

Definition 31. Let R be a set of shallow rules, and D an R-cut-tree. The shallow rule
r(D) represented by D is the leaf of D if depth (D) = 0. If depth (D) > 0, then D is
of the form D1 D2

Γ , where Γ arises from the conclusions of D1 and D2 by a cut on
M . In this case, r(D) = cut(r(D1), r(D2),M) where r(D1) and r(D2) are the rules
represented by D1 and D2.

Equivalence of cut trees and cut closure is clear from the definitions:

Lemma 32. A shallow rule lies in cc (R) iff it is represented by anR-cut tree.

Application of Lemma 16 shows that cut trees differing only in the order of the cuts
represent basically the same rule instance, a fact that we record here for later use.

Lemma 33. Let R be a set of shallow rules. Let Γ be a sequent and let D1,D2 be
R-cut-trees with conclusion Γ and leafs R1σ1, . . . , Rnσn. Then the rules represented
by D1 and D2 are equivalent.

The main difficulty that we have to overcome in order to obtain small representations
of cut-closed rules lies in the fact that the number of literals in either premise of an
application of cut may both increase and decrease as we move up a cut tree. This non-
monotonic behaviour disappears if we only consider cuts involving sequents consisting
of at least three elements. This suffices for our purpose, since we can absorb cuts in-
volving smaller sequents into the rule set at very little extra cost.

Cut Elimination for Shallow Modal Logics 221

Definition 34. A shallow rule is small if it has at most two principal formulas. A set
R of shallow rules is 2-cut closed if for every two rules R1, R2 ∈ R with conclusions
Σ1 and Σ2, such that R1 or R2 is small, and any two renamings σ1, σ2 : V → V for
which Σ1σ1 = Γ,M and Σ2σ2 = Δ,¬M there exists a rule R ∈ R that subsumes
cut(R1σ1, R2σ2,M). The 2-cut closure 2cc (R) of a set R of shallow rules is the ⊆-
minimal, 2-cut closed set of shallow rules containingR.

Example 35. The rule set CK containing (RCM), (RCC) and (CCm) is 2-cut closed,
but not cut closed.

Passing from a finite set of shallow rules to its 2-cut closure is a preprocessing step that
adds finitely many missing rules. Crucially, computing a 2-cut closure is independent
of the size of any sequent to which proof search is applied and therefore adds a constant
time overhead. The most important ramification of 2-cut closure is the existence of
small representations of elements in the cut closure of a given set of shallow rules. We
approach this result by means of a sequence of lemmas, the first one establishing that
we may always assume that leafs of a cut tree are labelled with ‘large’ rules.

Lemma 36. Let R be a 2-cut closed set of shallow rules, and let D be an R-cut-tree
with conclusion Γ and leafsR1, σ1, . . . , Rnσn. Then there exists anR-cut-treeD′ with
conclusion Γ and leafs R′

1σ
′
1, . . . , R

′
k, σ

′
k such that

1. if ||Γ || ≤ 2 then D′ has depth 0 (and therefore consists of a single leaf R′
1σ

′ only)
2. if ||Γ || > 2 then R′

iσ
′ have at least 3 principal formulas each

3. size (D′) ≤ size (D) and the rules represented by D and D′ are equivalent.

Since cuts between sequents of length at least three increase the length of the sequent,
the size of the cut-tree is bounded in terms of the conclusion of the represented rules.

Corollary 37. LetR be a 2-cut closed set of shallow rules, and let Γ be a sequent with
||Γ || ≥ 3. Then every rule in cc (R) with conclusion Γ is represented by an R-cut tree
of size ≤ 2||Γ || − 5.

A bound on the depth of a cut tree is obtained from the following adaption of the 2-3-
Lemma of [5]. Here for a tree T and a node x in T the subtree of T generated by x is
denoted by Tx, and the number of nodes in T by |T |.

Lemma 38. Let k ∈ N and T be a tree, such that k+1 < |T | and each node has at most

k children. Then there is a node x in T , such that
⌈

1
k+2 · |T |

⌉
≤ |Tx| ≤

⌊
k+1
k+2 · |T |

⌋
.

Lemma 39. Let R be a 2-cut closed set of shallow rules where the every rule has at
most k principal formulas, and let Γ be a sequent with ||Γ || ≥ 3. Then every instance of
a rule in cc (R) with conclusion Γ can be represented by an R-cut-tree of size at most
2||Γ || − 5 and depth at most ck · log2 ||Γ ||+ k for ck = (log2

k+2
k+1)−1.

Crucially, his bound ensures a small size of the cut-tree and the premises of the rep-
resented rule. This provides us with a tractable representation of the cut closure of R.

222 B. Lellmann and D. Pattinson

Definition 40. LetR be a set of shallow rules with at most k principal formulas each.
The rule set generated byR is the setR∗ of rules represented by 2cc (R)-cut-trees with
conclusion Γ and depth at most ck · log2 ||Γ ||+ k.

Theorem 41. Let R be a finite set of shallow rules. Then R∗ is PSPACE-tractable and
cut elimination holds in GRCon, i.e. GRCutCon � Γ iff GR∗Con � Γ .

6 Proof Search in GR∗

In the previous section, we have seen that cut can be eliminated by passing from a
given rule set to its cut closure. The polynomial representability of the latter does not
yet guarantee that proof search can be accomplished in polynomial space, as instances
of shallow rules propagate the conclusion to contextual premises. In this section, we
introduce histories (in the spirit of [4]) that avoid infinite branches during proof search.

Definition 42. Let R be a set of shallow rules. An R-history is a multiset h with
Supp (h) ⊆ {(R, σ) | R ∈ R, σ : Var(R) → F(Λ)} consisting of rule/substitution
pairs. A sequent with history is a pair (h, Γ), written as h | Γ where h is a R-history.
We write h, (R, σ) for the (multiset) union of h and {(R, σ)}.

The notion of R-histories extends to equivalence classes of rules modulo injective re-
namings in the obvious way. Histories are used to prevent shallow rules from being
applied repeatedly to the same formulas in the system GR2 introduced next. The sys-
tem GR1 is an intermediate system, which only keeps track of the rules.

Definition 43. LetR be a set of shallow rules. The system GR1 consists of the propo-
sitional rules extended with history

h | Γ, p,¬p h | Γ,¬⊥
h | Γ,¬φ,¬ψ
h | Γ,¬(φ ∧ ψ)

h | Γ, φ h | Γ, ψ
h | Γ, φ ∧ ψ

h | Γ, φ
h | Γ,¬¬φ

and all instances-with-history

(Rσ)
h, (R, σ) | Γ, Γ1σ,Σσ . . . h, (R, σ) | Γ, Γnσ,Σσ ∅ | Δ1σ . . . ∅ | Δkσ

h | Γ,Σσ

of shallow rules R ∈ R with contextual premises Γ1, . . . , Γn, non-contextual premises
Δ1, . . . , Δk and principal formulas Σ. In GR2, instances-with-history above are sub-
ject to the side condition (R, σ) /∈ h.

Since propositional rules do not interfere with histories, it is easy to see that admissi-
bility of weakening, contraction and inversion carries over to GR1.

Lemma 44 (Admissibility of Weakening and inversion). For every ϕ, ψ ∈ F(Λ),
sequent Σ, andR-history h the rule instances

h | Σ,¬¬ϕ
h | Σ,ϕ

h | Σ,¬(ϕ ∧ ψ)
h | Σ,¬ϕ,¬ψ

h | Σ, (ϕ ∧ ψ)
h | Σ,ϕ

h | Σ, (ϕ ∧ ψ)
h | Σ,ψ

h | Γ
h, (R, σ) | Γ,Δ

are depth-preserving admissible in GR1. Moreover, the number of instances of shallow
rules in the proof is preserved.

Cut Elimination for Shallow Modal Logics 223

Lemma 45 (Admissibility of Contraction). LetR be a contraction closed set of shal-
low rules. Then all instances of

h, (R, σ) | Γ
h | Γ

h | Γ, φ, φ
h | Γ, φ

are admissible in GR1 preserving the number of shallow rules in a proof.

This gives the equivalency of GRCon and GR1.

Lemma 46. LetR be a set of shallow rules and Γ a sequent.

1. GR1 � ∅ | Γ iff there is a history h such that GR1 � h | Γ .

2. ifR is contraction closed, then GRCon � Γ iff GR1 � ∅ | Γ .

In fact, subsequent applications of a shallow rule to the same formulas in a branch of a
proof in GR1 can be eliminated. This gives us equivalency with GR2.

Lemma 47. Let R be a set of shallow rules and Γ a sequent. If GR1 � h | Γ , then
GR2 � h | Γ . Moreover, there exists a proof of h | Γ in GR2 where every contextual
premise of an application of a shallow rule contains a formula not in the conclusion.

The fact that contextual premises of applications of shallow rules are bigger than the
conclusion ensures that the search space in backwards proof search forGR2 is of depth
polynomial in the number of subformulas of the root sequent. Summing up we get:

Theorem 48. LetR be a contraction closed set of shallow rules.

1. For every sequent Γ we have GRCon � Γ iff GR2 � ∅ | Γ .

2. For PSPACE-tractableR, derivability in GR2 is in PSPACE.

Together with the results of the previous section this gives the following main theorem:

Theorem 49. LetA be a finite set of shallow axioms andR be a 2-cut-closed rule form
of A. IfR∗ is contraction closed, then derivability inHA is in PSPACE.

Clearly the requirement of R∗ being contraction closed presents a gaping hole in our
treatment so far. However, we can establish this property for several examples.

7 Applications: Exemplary Complexity Bounds

Using the machinery of the previous sections, proving PSPACE-bounds for shallow log-
ics boils down to proving admissibility of contraction in the rule set generated by the
rules corresponding to the axioms. In Example 35 we have seen that the set

CK =

⎧
⎪⎪⎨

⎪⎪⎩

p1 = p2 = p q1 ∧ q2 = q

Γ,¬(p1 > q1),¬(p2 > q2), (p > q),
p = r ¬q, s

Γ,¬(p > q), (r > s),

p1 = p2 = p ¬q1,¬q2, q
Γ,¬(p1 > q1),¬(p2 > q2), (p > q)

⎫
⎪⎪⎬

⎪⎪⎭

is 2-cut closed. It is clear that it is also contraction closed. This also holds for CK∗:

224 B. Lellmann and D. Pattinson

Lemma 50. The set CK∗ is contraction closed.

As another example consider the axiom CEM = (p > q) ∨ (p > ¬q) of conditional
excluded middle. Turning this into a rule yields

(CEM)
p1 = p2 ¬q1,¬q2 q1, q2
Γ, (p1 > q1), (p2 > q2)

.

Let CKCEM := 2cc (CK ∪ {CEM}). A little computation shows

Lemma 51. The set CKCEM∗ is closed under contraction.

In order to add more axioms to CK and CKCEM we need to reconcile the definitions
of cut and contraction closed rule sets. This can be done by restricting the rule format.

Definition 52. A shallow rule has complete premises, if every variable occurring in a
principal formula occurs in every premise.

By soundness of the rules of PL and reasoning about propositional valuations it can be
seen that for these rules the two definitions are compatible:

Lemma 53. Let A be a finite set of variables, and let Γ1, . . . , Γn, Γ be sequents over
A ∪ ¬A with every variable occurring in every sequent. Then {Γ1, . . . , Γn} �PL Γ iff
{Γ1, . . . , Γn} �GWCon Γ .

This allows us to add rules with at most one principal formula to a rule set without
destroying contraction closure.

Theorem 54. LetR be a finite set of shallow rules with complete premises, and letR be
a shallow rule with complete premises and one principal formula. If R∗ is contraction
closed, then there is a PSPACE-tractable set Q of shallow rules, such that for every
sequent Γ we have G(R ∪ {R})CutCon � Γ iff GQ � Γ .

As a special case, this means that we may add shallow rules with one literal in the
conclusion to the sets CK and CKCEM , and still retain the PSPACE bound.

Theorem 55. Let A ⊆ {CEM, ID,MP,CS}. Then the logic CK +A is in PSPACE.

This reproves the PSPACE upper bounds for these logics found in [9], [8], and [11].

8 Conclusion

In this paper we have reported our first successes in synthetically constructing sequent
calculi that admit cut elimination. We have converted shallow modal axioms into se-
quent rules so that the resulting system together with the cut and contraction rules is
sound and complete with respect to the Hilbert-system. It was also shown to stay com-
plete, if the cuts are restricted to pseudo-analytic cuts. This led to a generic decidability
result and a 3EXPTIME upper bound for logics axiomatised by a PSPACE-tractable set
of shallow axioms. Since in particular all finite sets of axioms are PSPACE-tractable,
logics axiomatised by a finite set of shallow axioms are decidable in 3EXPTIME. The
method then was extended to generically construct PSPACE-tractable sets of rules from

Cut Elimination for Shallow Modal Logics 225

finite sets of shallow axioms in such a way, that the resulting sequent system eliminates
the cut rule. If the so constructed rule set is closed under the contraction rule, then the
logic axiomatised by the corresponding axioms is decidable in polynomial space.

Our success is clearly partial in that we do not yet know under which conditions clo-
sure under contraction can also be obtained. This is the subject of future work, possibly
borrowing from the theory of vector addition systems [3] to control the multiplicities of
formulas. For now, contraction closure needs to be established by hand, and doing so,
we have applied our method to various systems in conditional logics. This led to new
proofs of PSPACE upper bounds for these systems.

References

1. Avron, A., Lev, I.: Canonical propositional gentzen-type systems. In: Goré, R.P., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 529–544. Springer, Heidelberg (2001)

2. Ciabattoni, A., Leitsch, A.: Towards an algorithmic construction of cut-elimination proce-
dures. Math. Struct. in Comp. Sci. 18(1), 81–105 (2008)

3. Esparza, J., Nielsen, M.: Decidability issues for petri nets - a survey. Bulletin of the
EATCS 52, 244–262 (1994)

4. Heuerding, A., Seyfried, M., Zimmermann, H.: Efficient loop-check for backward proof
search in some non-classical propositional logics. In: Miglioli, P., Moscato, U., Ornaghi, M.,
Mundici, D. (eds.) TABLEAUX 1996. LNCS, vol. 1071, pp. 210–225. Springer, Heidelberg
(1996)

5. Lewis II, P.M., Stearns, R.E., Hartmanis, J.: Memory bounds for recognition of context-free
and context-sensitive languages. In: FOCS, pp. 191–202 (1965)

6. Kurucz, Á., Németi, I., Sain, I., Simon, A.: Decidable and undecidable logics with a binary
modality. J. of Log., Lang. and Inf. 4(3), 191–206 (1995)

7. Nute, D., Cross, C.B.: Conditional logic. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook
of Philosophical Logic, vol. 4, pp. 1–98. Kluwer, Dordrecht (2001)

8. Olivetti, N., Pozzato, G.L., Schwind, C.B.: A sequent calculus and a theorem prover for
standard conditional logics. ACM Trans. Comput. Logic 8(4), 22/1–22/51 (2007)

9. Olivetti, N., Schwind, C.B.: A calculus and complexity bound for minimal conditional logic.
In: ICTCS, pp. 384–404 (2001)

10. Pattinson, D., Schröder, L.: Beyond rank 1: Algebraic semantics and finite models for coal-
gebraic logics. In: Amadio, R. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 66–80. Springer,
Heidelberg (2008)

11. Pattinson, D., Schröder, L.: Generic modal cut elimination applied to conditional logics. In:
Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 280–294. Springer,
Heidelberg (2009)

12. Rasga, J.: Sufficient conditions for cut elimination with complexity analysis. Ann. Pure
Appl.Logic 149, 81–99 (2007)

13. Schröder, L., Pattinson, D.: PSPACE bounds for rank-1 modal logics. ACM Trans. Comput.
Logic (TOCL) 10(2), 13:1–13:33 (2009)

14. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge Tracts In The-
oretical Computer Science, vol. 43. Cambridge University Press, Cambridge (2000)

A Non-clausal Connection Calculus

Jens Otten

Institut für Informatik, University of Potsdam
August-Bebel-Str. 89, 14482 Potsdam-Babelsberg, Germany

jeotten@cs.uni-potsdam.de

Abstract. A non-clausal connection calculus for classical first-order logic is pre-
sented that does not require the translation of input formulae into any clausal
form. The definition of clauses is generalized, which may now also contain (sub-)
matrices. Copying of appropriate (sub-)clauses in a dynamic way, i.e. during the
actual proof search, is realized by a generalized extension rule. Thus, the cal-
culus combines the advantage of a non-clausal proof search in tableau calculi
with the more efficient goal-oriented proof search of clausal connection calculi.
Soundness, completeness, and (relative) complexity results are presented as well
as some optimization techniques.

1 Introduction

Connection calculi are a well-known basis to automate formal reasoning in classical
first-order logic. Among these calculi are the connection method [3,4], the connection
tableau calculus [9] and the model elimination calculus [10]. The main idea of con-
nection calculi is to connect two atomic formulae P and ¬P with the same predicate
symbol but different polarity. The set {P,¬P} is called a connection and corresponds
to a closed branch in the tableau framework [6] or an axiom in the sequent calculus [5].
As the proof search is guided by connections it is more goal-oriented compared to the
proof search in sequent calculi or (standard) analytic tableau calculi.

The clausal connection calculus works for first-order formulae in disjunctive normal
form or clausal form. Formulae that are not in this form have to be translated into clausal
form. The standard transformation translates a first-order formula F into clausal form
by applying the distributivity laws. In the worst case the size of the resulting formula
grows exponentially with respect to the size of the original formulaF . This increases the
search space significantly when searching for a proof of F in the connection calculus.

A structure-preserving translation into clausal form, e.g. [14], introduces definitions
for subformulae. Tests show that even such an optimized translation introduces a sig-
nificant overhead for the proof search [12] as additional formulae are introduced. Both
clausal form translations modify the structure of the original formula, making it more
difficult to translate a found proof back into a more human-oriented form, e.g. [5]. For
some logics, e.g. intuitionistic logic, these translations do not preserve logical validity.

A non-clausal connection calculus that works directly on the structure of the origi-
nal formula does not have these disadvantages. There already exist a few descriptions
of non-clausal connection calculi [1,4,7,8]. But the cores of these calculi do not add any
copies of quantified subformulae to the original formulae, i.e. they are only complete
for ground formulae. To deal with first-order logic, e.g., copies of subformulae need

K. Brünnler and G. Metcalfe (Eds.): TABLEAUX 2011, LNAI 6793, pp. 226–241, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Non-clausal Connection Calculus 227

to be added iteratively [8]. But this introduces a large amount of redundancy as copies
of subformulae that are not required for a proof are still used during the proof search.
Implementations of this approach, e.g. [16], show a rather modest performance. For a
more effective non-clausal proof search, clauses have to be added carefully and dynam-
ically during the proof search, in a way similar to the approach used for copying clauses
in clausal connection calculi. To this end, the existing clausal connection calculus has
to be generalized and its rules have to be carefully extended.

The rest of the paper is structured as follows. In Section 2 the standard clausal con-
nection calculus is presented. Section 3 introduces the main ideas of a non-clausal proof
search before the actual non-clausal calculus is described in Section 4. Section 5 con-
tains correctness, completeness and complexity results. Some optimizations and exten-
sions are presented in Section 6, before Section 7 concludes with a short summary.

2 The Clausal Connection Calculus

The reader is assumed to be familiar with the language of classical first-order logic,
see, e.g., [4]. In this paper the letters P,Q,R are used to denote predicate symbols,
f to denote function symbols, a, b, c to denote constants and x to denote variables.
Terms are denoted by t and are built from functions, constants and variables. Atomic
formulae, denoted by A, are built from predicate symbols and terms. The connectives
¬, ∧, ∨, ⇒ denote negation, conjunction, disjunction and implication, respectively. A
(first-order) formula, denoted by F,G,H , consists of atomic formulae, the connectives
and the existential and universal quantifiers, denoted by ∀ and ∃, respectively. A literal,
denoted by L, has the form A or ¬A. The complement L of a literal L is A if L is of
the form ¬A, and ¬A otherwise. A clause, denoted by C, is of the form L1 ∧ . . . ∧ Ln
where Li is a literal. A formula in disjunctive normal form or clausal form has the form
∃x1 . . .∃xn(C1∨ . . .∨Cn) where each Ci is a clause. For classical logic every formula
F can be translated into a validity-preserving formula F ′ in clausal form. A clause can
be written as a set of literals {L1, . . . , Ln}. A formula in clausal form can be written
as a set of clauses {C1, . . . , Cn} and is called a matrix, denoted by M . In the graphical
representation of a matrix, its clauses are arranged horizontally, while the literals of
each clause are arranged vertically. A polarity is used to represent negation in a matrix,
i.e. literals of the form A and ¬A are represented by A0 and A1, respectively.

Example 1 (Matrix in Clausal Form). Let F1 be the formula

(∀x((¬P (x)∨Q(f(x))) ⇒ (Q(x)∧(Q(a)⇒ R(b))∧¬R(x)))∧Q(f(b)))⇒ P (a) .

The matrix M1 of the formula F1 is

{ {P 0(a)}, {P 1(x), Q1(x)}, {P 1(x), Q0(a), R1(b)}, {P 1(x), R0(x)},
{Q0(f(x)), Q1(x)}, {Q0(f(x)), Q0(a), R1(b)}, {Q0(f(x)), R0(x)}, {Q1(f(b))} } .

The graphical representation ofM1 (with some variables renamed) is shown in Figure 1.

A connection is a set of the form {A0, A1}. A path through M = {C1, . . ., Cn} is a
set of literals that contains one literal from each clause Ci ∈M , i.e. ∪ni=1{L′

i} with
L′
i ∈Ci. A term substitution σ is a mapping from the set of variables to the set of terms.

228 J. Otten

⎡

⎢
⎢
⎢
⎣

[
P 0(a)

]
[
P 1(x′)

Q1(x′)

]
⎡

⎢
⎣

P 1(x̄)
Q0(a)

R1(b)

⎤

⎥
⎦

[
P 1(x)
R0(x)

] [
Q0(f(x))
Q1(x)

]
⎡

⎣
Q0(f(x))
Q0(a)
R1(b)

⎤

⎦

[
Q0(f(x̂))

R0(x̂)

]
[
Q1(f(b))

]

⎤

⎥
⎥
⎥
⎦

1.

2.

3.

4.

5.

6.

Fig. 1. Proof search in the connection calculus using the graphical matrix representation

In σ(L) all variables of the literal L are substituted according to their mapping in σ.
A[x\t] denotes the formula in which all free occurrences of x in A are replaced by t.

Example 2 (Connection, Path, Term Substitution). Consider the matrix M1 of Exam-
ple 1.{P 0(a), P 1(x)} and {R0(x), R1(b)} are connections, {P 0(a), P 1(x), Q0(f(x)),
R0(x), Q1(f(b))} is a path through M1, and σ(x)= a is a term substitution.

The matrix characterization [4] of validity is the underlying basis of the connection
calculus and used for the proof in Section 5.1. The notion of multiplicity is used to en-
code the number of clause copies used in a connection proof. It is a function μ : C→ IN ,
where C is the set of clauses inM , that assigns each clause inM a natural number spec-
ifying how many copies of this clause are considered in a proof. In the copy of a clause
C all variables in C are replaced by new variables.Mμ is the matrix that includes these
clause copies. A connection {L1, L2} with σ(L1)= σ(L2) is called σ-complementary.

Theorem 1 (Matrix Characterization). A matrix M is classically valid iff there exist
a multiplicity μ, a term substitution σ and a set of connections S, such that every path
through Mμ contains a σ-complementary connection {L1, L2} ∈ S.

See [4] for a proof of Theorem 1. The connection calculus uses a connection-driven
search strategy in order to calculate an appropriate set of connections S. Proof search
in the connection calculus starts by selecting a start clause. Afterwards connections are
successively identified in order to make sure that all paths through the matrix contain a
σ-complementary connection for some term substitution σ. This process is guided by
an active path, a subset of a path throughM .

Example 3 (Proof Search in the Clausal Connection Calculus). Consider the matrixM1

of Example 1. The six steps required for a proof in the connection calculus forM1, using
the graphical matrix representation, are depicted in Figure 1. The literals of each con-
nection are connected with a line. The literals of the active path are boxed. In the start
step the first clause {P 0(a)} is selected as start clause (step 1). While the extension step
connects to a literal in a copy of a clause (steps 2, 3, 5 and 6), the reduction step connects
to a literal of the active path (step 4). x′, x̄ and x̂ are fresh variables. With the term sub-
stitution σ(x′)= a, σ(x̄)= a and σ(x̂)= b all paths through the matrixM1 contain a σ-
complementary connection from the set {{P 0(a), P 1(x′)}, {Q1(x′), Q0(a)}, {P 1(x̄),
P 0(a)}, {R1(b), R0(x̂)}, {Q0(f(x̂)), Q1(f(b))}}. Therefore,M1 and F1 are valid.

The proof search is now specified more precisely by a formal calculus [4,12,13].

A Non-clausal Connection Calculus 229

Axiom (A) {},M, Path

Start (S)
C2,M, {}
ε, M, ε

and C2 is copy of C1∈M

Reduction (R)
C,M,Path∪{L2}

C∪{L1},M, Path∪{L2} with σ(L1)=σ(L2)

Extension (E)
C2\{L2},M, Path∪{L1} C,M,Path

C∪{L1},M, Path

and C2 is a copy of
C1∈M and L2∈C2

with σ(L1)=σ(L2)

Fig. 2. The clausal connection calculus

Definition 1 (Clausal Connection Calculus). The axiom and the rules of the clausal
connection calculus are given in Figure 2. The words of the calculus are tuples of the
form “C,M,Path”, where M is a matrix, C and Path are sets of literals or ε. C is
called the subgoal clause and Path is called the active path. C1 and C2 are clauses, σ
is a term substitution, and {L1, L2} is a σ-complementary connection. The substitution
σ is global (or rigid), i.e. it is applied to the whole derivation.

An application of the start, reduction or extension rule is called a start, reduction, or
extension step, respectively. A derivation for C,M,Path with the term substitution σ,
in which all leaves are axioms, is called a clausal connection proof for C,M,Path. A
clausal connection proof for the matrix M is a clausal connection proof for ε,M, ε.

Theorem 2 (Correctness and Completeness). A matrix M is valid in classical logic
iff there is a clausal connection proof for M .

The proof is based on the matrix characterization and can be found in [4]. Proof search
in the clausal connection calculus is carried out by applying the rules of the calculus in
an analytic way, i.e. from bottom to top. During the proof search backtracking might be
required, i.e. alternative rules need to be considered if the chosen rule does not lead to
a proof. Alternative applications of rules occur whenever more than one rule or more
than one instance of a rule can be applied, e.g. when choosing the clause C1 in the start
and extension rule or the literal L2 in the reduction and extension rule. No backtracking
is required when choosing the literal L1 in the reduction or extension rule as all literals
in C are considered in subsequent proof steps anyway. The term substitution σ is calcu-
lated, step by step, by one of the well-known algorithms for term unification, e.g. [15],
whenever a reduction or extension rule is applied.

Example 4 (Clausal Connection Calculus). Consider the matrix M1 of Example 1.
A derivation for M1 in the clausal connection calculus with σ(x′)= a, σ(x̄)= a and
σ(x̂)= b is given in Figure 3 (some parentheses are omitted). Since all leaves are ax-
ioms it represents a clausal connection proof and thereforeM1 and F1 are valid.

3 Non-clausal Proof Search

In this section the definitions of matrices and paths are generalized and the main ideas
of the non-clausal connection calculus are illustrated with an introductory example.

230 J. Otten

{},M1, {P 0a,Q1x′, R1b,Q0fx̂} A {},M1,{P 0a,Q1x′, R1b} A

{Q0fx̂},M1, {P 0a,Q1x′, R1b} E {},M1,{P 0a,Q1x′} A

{R1b},M1,{P 0a,Q1x′} E

{P 1x̄, R1b},M1,{P 0a,Q1x′} R {},M1,{P 0a} A

{Q1x′},M1, {P 0a} E {},M1, {} A

{P 0a},M1, {}
E

ε,M1, ε
S

Fig. 3. A proof in the clausal connection calculus

Table 1. Matrix of a formula F p

type F p M(F p)

atomic A0 {{A0}}
A1 {{A1}}

α (¬G)0 M(G1)
(¬G)1 M(G0)
(G ∧H)1 {{M(G1)}, {M(H1)}}
(G ∨H)0 {{M(G0)}, {M(H0)}}
(G⇒ H)0 {{M(G1)}, {M(H0)}}

type F p M(F p)

β (G ∧H)0 {{M(G0),M(H0)}}
(G ∨H)1 {{M(G1),M(H1)}}
(G⇒ H)1 {{M(G0),M(H1)}}

γ (∀xG)1 M(G[x\x∗]1)
(∃xG)0 M(G[x\x∗]0)

δ (∀xG)0 M(G[x\t∗]0)
(∃xG)1 M(G[x\t∗]1)

3.1 Non-clausal Matrices

First of all, the definition of matrices is generalized to arbitrary first-order formulae.

Definition 2 (Matrix). A (non-clausal) matrix is a set of clauses, in which a clause is
a set of literals and matrices. Let F be a formula and p be a polarity. The matrix of F p,
denoted by M(F p), is defined inductively according to Table 1. The matrix of F is the
matrix M(F 0). x∗ is a new variable, t∗ is the Skolem term f∗(x1, . . . , xn) in which f∗

is a new function symbol and x1, . . . , xn are the free variables in ∀xG or ∃xG.

In the graphical representation of a matrix, its clauses are arranged horizontally, while
the literals and (sub-)matrices of each clause are arranged vertically. A matrix M can
be simplified by replacing matrices and clauses of the form {{X1, ..., Xn}} within M
by X1, ..., Xn. Whereas the definition of paths needs to be generalized to non-clausal
matrices, all other concepts used for clausal matrices, e.g. the definitions of connections
and term substitutions and the matrix characterization, remain unchanged.

Definition 3 (Path). A path through a matrix M (or a clause C) is inductively defined
as follows. The (only) path through a literal L is {L}. If p1, . . . , pn are paths through
the clauses C1, . . . , Cn, respectively, then p1 ∪ . . . ∪ pn is a path through the matrix
M = {C1, . . . , Cn}. If p1, . . . , pn are paths through the matrices/literalsM1, . . . ,Mn,
respectively, then p1, . . . , pn are also paths through the clause C = {M1, . . . ,Mn}.

Example 5 (Matrix, Path). Consider the formulaF1 of Example 1. The simplified (non-
clausal) matrix M∗

1 of F1 is {{P 0(a)}, {{{P 1(x)}, {Q0(f(x))}}, {{Q1(x)}, {Q0(a),

A Non-clausal Connection Calculus 231

⎡

⎢
⎢
⎢
⎢
⎢
⎣

⎡

⎢
⎣P

0(a)

⎤

⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

[[
P 1(x)

][
Q0(f(x))

]]

⎡

⎣
[
Q1(x)

]
⎡

⎣
Q0(a)

R1(b)

⎤

⎦
[
R0(x)

]
⎤

⎦

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣Q

1(f(b))

⎤

⎥
⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Fig. 4. Graphical representation of M∗
1

R1(b)}, {R0(x)}}}, {Q1(f(b))}}. Its graphical representation is shown in Figure 4.
{P 0(a), Q1(x), Q0(a), R0(x), Q1(f(b))} is one of the three paths throughM∗

1 .

3.2 An Introductory Example

In order to carry out proof search for non-clausal matrices the rules of the clausal con-
nection calculus need to be adapted. The following example illustrates the main ideas.

Example 6 (Proof Search Using Non-clausal Matrices). Consider the first-order for-
mula F1 of Example 1 and its graphical matrix representation in Figure 4. The non-
clausal connection proof is depicted in Figure 5. Again, the proof search is guided by
an active path, whose literals are boxed. Literals of connections are connected with
a line. In the first step the start clause {P 0(a)} is selected. The second proof step is
an extension step and connects P 0(a) with P 1(x′) applying the substitution σ(x′)= a.
Variables of the clause used for the extension step are always renamed. Next, all remain-
ing paths through the second matrix of the second clause have to be investigated. To this
end, the next extension step connectsQ1(x′) with Q0(a) of the clause {Q0(a), R1(b)}.
Now, all paths containing the literals P 0(a), Q1(x′), and R1(b) still need to be inves-
tigated. The fourth proof step connects R1(b) with R0(x̂) contained in a copy of the
second clause, as a connection to R0(x′) with σ(x′)= a is not possible. The clauses
in the copied clause occurring next to R0(x̂), i.e. {Q1(x̂)} and {Q0(a), R1(b)}, are
deleted, as all paths through these two clauses contain the σ-complementary connec-
tion {R1(b), R0(x̂)} with σ(x̂)= b as well. The fifth and last (extension) step connects
Q0(f(x̂)) with Q1(f(b)). This concludes the proof and every path through the shown
matrix contains a σ-complementary connection. Hence, F1 is valid. The proof uses only
four connections compared to five connections required in the clausal connection proof.

⎡

⎢
⎢
⎢
⎢
⎢
⎣

⎡

⎢
⎣P

0(a)

⎤

⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

[[
P 1(x′)

][
Q0(f(x′))

]]

⎡

⎣
[
Q1(x′)

]
⎡

⎣
Q0(a)

R1(b)

⎤

⎦
[
R0(x′)

]
⎤

⎦

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

[[
P 1(x̂)

][
Q0(f(x̂))

]]

[
[
R0(x̂)

]
]

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣Q

1(f(b))

⎤

⎥
⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎦

1.

2.

3.
4.

5.

Fig. 5. Proof search in the non-clausal connection calculus using the graphical representation

232 J. Otten

The study of the previous example suggests the following. The axiom as well as the
start and reduction rules are the same for the clausal and the non-clausal calculus. The
extension rule connects a literal L1 of the subgoal clause to a literal L2 occurring in a
copy C2 of an extension clause C1. {L1, L2} need to be σ-complementary for some σ
and L1 is added to the active path. Either C1 contains a literal of the active path (fourth
step in Example 6); or there is a path that contains the active path and L2, and if C1

has a parent clause, it contains a literal of the active path (third step). All literals of the
new subgoal clause of C2 that occur besides L2, i.e. in a common path with L2, are
deleted from the new subgoal clause (fourth step). Finally, if a subgoal clause contains
a matrix M , the proof search continues with a clause C ∈M (third step). Alternative
clauses C′ ∈M have to be considered on backtracking.

4 The Non-clausal Connection Calculus

This section introduces basic concepts and the formal non-clausal connection calculus.

4.1 Basic Concepts

The term α-related is used to express the fact that a clause occurs besides a literal in
a matrix. Furthermore, the definitions of free variables and clause copies have to be
generalized to cover non-clausal matrices.

Definition 4 (α-Related Clause). Let C be a clause in a matrix M and L be a literal
in M . C is α-related to L, iff M contains (or is equal to) a matrix {C1, . . . , Cn} such
that C =Ci or Ci contains C, and Cj contains L for some 1≤ i, j≤n with i �= j. C is
α-related to a set of literals L, iff C is α-related to all literals L∈L.

Definition 5 (Free Variables). Let M be a matrix and C be a clause in M . The free
variables of C are all variables that do only occur in C and (possibly) in literals L such
that C is α-related to L.

In the non-clausal calculus copies of clauses could be simply added to the matrix. As
this would widen the search space, clauses are replaced by their copies instead.

Definition 6 (Copy of Clause). Let M be a matrix and C be a clause in M . In the
copy of the clause C, all free variables in C are replaced by new variables.M [C1\C2]
denotes the matrix M , in which the clause C1 is replaced by the clause C2.

As explained in Section 3.2 an appropriate clause C1 has to be used when the extension
rule is applied. EitherC1 has to contain an element of the active path, then it was already
used before, or C1 needs to be α-related to all literals of the active path and it has to
contain all subgoals that still need to be investigated. This is the case if C1 has no parent
clause or its parent clause contains a literal of the active path. The parent clause of a
clause C is the smallest clause that contains C.

Definition 7 (Parent Clause). Let M be a matrix and C be a clause in M . The clause
C′= {M1, . . . ,Mn} inM is called the parent clause ofC iffC ∈Mi for some 1≤ i≤n.

A Non-clausal Connection Calculus 233

Definition 8 (Extension Clause). Let M be a matrix and Path be a set of literals.
Then the clause C in M is an extension clause of M with respect to Path, iff either C
contains a literal of Path, or C is α-related to all literals of Path occurring in M and
if C has a parent clause, it contains a literal of Path.

In the extension rule of the clausal connection calculus (see Section 2) the new subgoal
clause is C2 \ {L2}. In the non-clausal connection calculus the extension clause C2

might contain clauses that are α-related to L2 and do not need to be considered for the
new subgoal clause. Hence, these clauses can be deleted from the subgoal clause. The
resulting clause is called the β-clause of C2 with respect to L2.

Definition 9 (β-Clause). Let C = {M1, . . . ,Mn} be a clause and L be a literal in C.
The β-clause of C with respect to L, denoted by β-clauseL(C), is inductively defined:

β-clauseL(C) :=
{
C \ {L} if L ∈ C,
{M1, . . . ,Mi−1, {Cβ},Mi+1, . . . ,Mn} otherwise,

where C′ ∈Mi contains L and Cβ := β-clauseL(C′).

4.2 The Calculus

The non-clausal connection calculus has the same axiom, start rule, and reduction rule
as the clausal connection calculus. The extension rule is slightly modified and a decom-
position rule is added that splits subgoal clauses into their subclauses.

Definition 10 (Non-Clausal Connection Calculus). The axiom and the rules of the
non-clausal connection calculus are given in Figure 6. The words of the calculus are
tuples “C,M,Path”, where M is a matrix, C is a clause or ε and Path is a set of
literals or ε. C is a called the subgoal clause. C1, C2, and C3 are clauses, σ is a
term substitution, and {L1, L2} is a σ-complementary connection. The substitution σ
is rigid, i.e. it is applied to the whole derivation.

An application of the start, reduction, extension or decomposition rule is called start,
reduction, extension, or decomposition step, respectively. Observe that the non-clausal
calculus reduces to the clausal calculus for matrices that are in clausal form.

Definition 11 (Non-Clausal Connection Proof). Let M be a matrix, C be a clause,
and Path be a set of literals. A derivation for C,M,Path with the term substitution
σ in the non-clausal connection calculus, in which all leaves are axioms, is called a
(non-clausal) connection proof for C,M,Path. A (non-clausal) connection proof for
M is a non-clausal connection proof for ε,M, ε.

Proof search in the non-clausal connection calculus is carried out in the same way as
in the clausal connection calculus (see Section 2), i.e. the rules of the calculus are ap-
plied in an analytic way. Additional backtracking might be required when choosing the
clause C1 in the decomposition rule. No backtracking is required when choosing the
matrix M1 in the decomposition rule as all matrices (and literals) in C are considered
in subsequent proof steps anyway. The term substitution σ is calculated by one of the
well-known algorithms for term unification, e.g. [15].

234 J. Otten

Axiom (A) {},M, Path

Start (S)
C2,M, {}
ε, M, ε

and C2 is copy of C1∈M

Reduction (R)
C,M,Path∪{L2}

C∪{L1},M, Path∪{L2} with σ(L1)=σ(L2)

Extension (E)
C3,M [C1\C2], Path∪{L1} C,M,Path

C∪{L1},M, Path

and C3:=β-clauseL2(C2),C2 is copy of C1,C1 is an extension clause
of M wrt. Path∪{L1}, C2 contains L2 with σ(L1) =σ(L2)

Decomposition (D)
C ∪ C1,M, Path

C∪{M1},M, Path
with C1∈M1

Fig. 6. The non-clausal connection calculus

Example 7 (Non-Clausal Connection Calculus). Consider the matrix M∗
1 of Exam-

ple 5. A derivation for M∗
1 in the non-clausal connection calculus with σ(x′)= a,

σ(x̂)= b, M ′ = { {P 0(a)}, {{{P 1(x′)}, {Q0(f(x′))}}, {{Q1(x′)}, {Q0(a), R1(b)},
{R0(x′)}}}, {Q1(f(b))} } and M̂={ {P 0(a)}, {{{P 1(x̂)}, {Q0(f(x̂))}}, {{Q1(x̂)},
{Q0(a), R1(b)}, {R0(x̂)}}}, {Q1(f(b))} } is given in Figure 5. Since all leaves are
axioms it represents a (non-clausal) connection proof and, therefore, M∗

1 and F1 are
valid. This proof corresponds to the graphical proof representation given in Figure 1.

5 Correctness, Completeness and Complexity

In this section it is shown that the non-clausal connection calculus is sound and com-
plete. Furthermore, its complexity is compared to the clausal connection calculus.

5.1 Correctness

Definition 12 (Superset Path through Clause). Let p be a set of literals. p is a superset
path through C, denoted by C�p, iff there is path p′ through {C} with p′ ⊆ p.

{}, M̂, {P 0a,Q1x′, R1b, Q0fx̂}
A

{}, M̂, {P 0a,Q1x′, R1b}
A

{Q0fx̂}, M̂, {P 0a,Q1x′, R1b}
E

{{{P 1x̂}, {Q0fx̂}}}, M̂, {P 0a,Q1x′, R1b}
D

{},M ′, {P 0a,Q1x′} A

{R1b},M ′, {P 0a,Q1x′} E {},M ′, {P 0a} A

{Q1x′},M ′, {P 0a} E

{{{Q1x′}, {Q0a,R1b}, {R0x′}}},M ′, {P 0a} D {},M∗
1 , {}

A

{P 0a},M∗
1 , {}

E

ε,M∗
1 , ε

S

Fig. 7. A proof in the non-clausal connection calculus

A Non-clausal Connection Calculus 235

Lemma 1 (Correctness of the Non-Start Rules). If there is a connection proof for
C,M,Path with the term substitution σ, then there is a multiplicity μ such that every
path p through Mμ with Path⊆ p and C�p contains a σ-complementary connection.

Proof. The proof is by structural induction on the construction of connection proofs.
Induction hypothesis (IH): If Proof is a connection proof for C,M,Path with σ, then
there is a μ such that every path p through Mμ with Path⊆ p and C�p contains a
σ-complementary connection.

1. Axiom: Let {},M, Path be a connection proof. Let μ≡ 1 and σ(x)= x for all
x. Then {}�p holds for no path p throughMμ. Thus, IH follows.

2. Reduction: Let Proof
C,M,Path∪{L2} be a connection proof for C,M,Path∪{L2}

for some σ. According to IH there is a μ such that every p through Mμ with
Path∪{L2}⊆p and C�p contains a σ-complementary connection. Then the deriva-

tion
Proof

C,M,Path∪{L2}
C∪{L1},M, Path∪{L2} R

with τ(σ(L1))= τ(σ(L2)) for some term substitution

τ is a connection proof for C∪{L1},M, Path∪{L2}. Let μ′ :=μ and σ′ := τ ◦ σ.
Every path p′ through Mμ′

with Path∪{L2}⊆ p′ and C ∪{L1}�p′ contains a σ′-
complementary connection as well, since σ′(L1)=σ′(L2).

3. Extension: Let Proof1
C3,M [C1\C2], Path∪{L1} and Proof2

C,M,Path
be connection proofs for

C3, M [C1\C2], Path∪{L1} and C,M,Path, respectively, for some σ, with C3:=β-
clauseL2(C2), C2 is a copy of C1, C1 is an extension clause of M wrt. Path∪{L1},
and C2 contains the literal L2 with τ(σ(L1))= τ(σ(L2)) for some substitution τ .
According to IH there is a μ1 such that every path p through (M [C1\C2])μ1 with
Path∪ {L1}⊆ p and C3�p contains a σ-complementary connection, and there is a μ2

such that every p through Mμ2 with Path⊆ p and C�p contains a σ-complementary

connection. Then
Proof1

C3,M [C1\C2], Path∪{L1}
Proof2

C,M,Path

C∪{L1},M, Path
E

is a connection proof for

C∪{L1},M, Path. This last extension step is illustrated below. It has to be shown
that there is a multiplicity μ′ and a substitution σ′ such that every path p′ throughMμ′

with Path⊆ p′ and C ∪{L1}�p′ contains a σ′-complementary connection. Let M ′ be
the matrix M in which the (sub-)matrix {. . . , C1, . . .} that contains C1 is replaced by
the matrix {. . . , C1, C2, . . .}, i.e. the clause C2 is added to M as shown below.

⎡
⎢⎢⎢⎢⎢⎣

. . .

⎡
⎢⎢⎣

L1

.

.

.
C
.
.
.

⎤
⎥⎥⎦ . . .

⎡
⎢⎢⎢⎢⎢⎣

:⎡
⎢⎢⎣ . . .

⎡
⎢⎣

.

.

.[
.

]
.
.
.

⎤
⎥⎦

︸ ︷︷ ︸
C1

C3︷ ︸︸ ︷⎡
⎢⎣

.

.

.[
. . . L2 . . .

]
.
.
.

⎤
⎥⎦

︸ ︷︷ ︸
C2

. . .

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎦

. . .

⎤
⎥⎥⎥⎥⎥⎦

According to Def. 8 the following cases for the extension clause C1 need to be consid-
ered:

1. If the extension clause C1 contains a literal of Path, then every path p′ throughM ′

with Path∪{L1}⊆ p′ is a superset path through C2 as well, i.e. C2�p′.

236 J. Otten

2. Otherwise, C1 is α-related to all literals in Path∪{L1} occurring in M ′.

(a) If C1 has no parent clause, then for every p′ through M ′ C1�p′ holds. Then
for every p′ throughM ′ with Path∪{L1}⊆p′ it is C1�p′ and hence C2�p′.

(b) Otherwise, the parent clause of C1 contains an element of Path∪{L1}. As
C1 is α-related to Path∪{L1}, there is a Ĉ containing a literal of Path∪{L1}
with C1, Ĉ ∈M̂ . Therefore, for every p′ throughM ′ with Path∪{L1}⊆ p′ it
is C1�p′ and thus C2�p′.

C3 is the β-clause of C2 with respect to L2, i.e. L2 and all clauses that are α-related
to L2 are deleted from C2. According to Def. 9 the only element deleted from a clause
is the literal L2. Therefore, for all p′ through M ′ with Path∪{L1}⊆ p′ it is C3�p′
or {L2}�p′. The same holds if copies of clauses are added to M ′. Let μ′ be the multi-
plicity where all copies according to μ1 and μ2 as well as the clause copy C2 are con-
sidered. Let σ′ := τ ◦ σ. Then C3�p′ or L2 ∈ p′ holds for every p′ through Mμ′

with
Path∪{L1}⊆p′. As there is a proof for C3,M [C1\C2], Path∪{L1} with σ, every
p through (M [C1\C2])μ1 , and hence through Mμ′

, with Path∪{L1}⊆p and C3�p
contains a σ-complementary, and hence a σ′-complementary connection. Furthermore,
every p′ with Path∪{L1}⊆ p′ that includes L2 contains a σ′-complementary connec-
tion as σ′(L1)=σ′(L2). Therefore, every p′ throughMμ′

with Path∪{L1}⊆p′ con-
tains a σ′-complementary connection. Then every p′ throughMμ′

, with Path⊆ p′ and
{L1}�p′ contains a σ′-complementary connection. As there is a proof for C,M,Path
with σ, every p throughMμ2 , and thus throughMμ′

, with Path⊆ p and C�p contains
a σ-complementary, and hence a σ′-complementary, connection. Then every p′ through
Mμ′

, with Path⊆ p′ and C ∪{L1}�p′ contains a σ′-complementary connection.

4. Decomposition: Let Proof
C ∪ C1,M, Path

be a connection proof forC∪C1,M, Path

for some σ. According to IH there is a μ such that every p through Mμ with Path⊆ p

andC ∪C1�p contains aσ-complementary connection. Then
Proof

C ∪ C1,M, Path

C∪{M1},M, Path
D

with

C1 ∈M1 is a connection proof for C∪{M1},M, Path. Let μ′ :=μ and σ′ :=σ. Every
p′ through Mμ′

with Path⊆p′ and C ∪{M1}�p′ contains a σ′-complementary con-
nection as well, since C1 ∈M1 and thus for all p′ the following holds: if C ∪{M1}�p′
then C ∪C1�p′. ��

Theorem 3 (Correctness of the Non-Clausal Connection Calculus). A formula F is
valid in classical logic, if there is a non-clausal connection proof for its matrix M .

Proof. Let M be the matrix of F . If there is a non-clausal connection proof for ε,M, ε,

it has the form
:

C2,M, {}
ε,M, ε

S
in which the clause C2 is a copy of C1 ∈M . There has to

be a proof for C2,M, {} for some σ. According to Lemma 1 there is a μ such that every
path p through Mμ with {}⊆p and C2�p contains a σ-complementary connection.
As {}⊆ p and C2�p hold for all p through Mμ, every path through Mμ contains a
σ-complementary connection. According to Theorem 1 the formula F is valid. ��

A Non-clausal Connection Calculus 237

5.2 Completeness

Definition 13 (Vertical Path Through Clause). Let X be a matrix, clause, or literal.
A vertical path p throughX , denoted by p‖X , is a set of literals ofX and inductively de-
fined as follows: {L}‖L for literal L; p‖M for matrix M where p‖C for some C ∈M ;
p‖C for clause C �= {} where p=

⋃
Mi∈C pi and pi‖Mi; {}‖C for clause C = {}.

Lemma 2 (Clauses and Vertical Paths). Let M be the (non-clausal) matrix of a first-
order formula F and M ′ be the matrix of the standard translation of F into clausal
form (see Example 1). Then for every clause C′ ∈M ′ there is an “original” clause
C ∈M with C′‖C. If there is a connection proof for C′,M, Path, then there is also
a connection proof for C,M,Path. This also holds if the clauses D′ :=C′ \ {L} and
D :=β-clauseL(C) are used, for some literal L, instead of C′ and C, respectively.

Proof. The existence of a clause C ∈M for every C′ ∈M ′ with C′‖C follows from
Def. 2 and Def. 13. C,M,Path can be derived from C′,M, Path by several decom-
position steps. In D the literal L and all clauses that are α-related to L, i.e. that do not
contain literals of D′, are deleted from C. Therefore, it is D′‖D and D,M,Path can
be derived from D′,M, Path as well. ��

Lemma 3 (Completeness of the Non-Start Rules). Let M be the matrix of a first-
order formula F and M ′ be the matrix of the standard translation of F into clausal
form. If there is a clausal connection proof for C,M ′, Path with the term substitution
σ, then there exists a non-clausal connection proof for C,M,Path with σ.

Proof. The idea is to translate a clausal connection proof for M ′ into a non-clausal
connection proof for M . The proof is by structural induction on the construction of
a clausal connection proof. Induction hypothesis: If there is a clausal connection proof
forC,M ′, Pathwith the term substitution σ, then there exists a non-clausal connection
proof for C,M,Path with the substitution σ. For the induction start the (only) axiom
of the calculus is considered. For the induction step reduction and extension rules are
considered. The axiom and reduction rule are essentially identical for the clausal and
non-clausal calculus. For the extension rule Lemma 2 has to be applied. The details of
the (straightforward) proof are left to the interested reader.

��

Theorem 4 (Completeness of the Non-Clausal Connection Calculus). If a formula
F is valid in classical logic, there is a non-clausal connection proof for its matrix M .

Proof. Let F be a valid formula, M be the non-clausal matrix of F and M ′ its matrix
in clausal form. According to Theorem 2 there exists a clausal connection proof forM ′

and for ε,M ′, ε. Let C′
2,M

′, ε be the premise of the start step in which C′
2 is a copy of

C′
1 ∈M ′. According to Lemma 3 there is a non-clausal proof for C′

2,M, ε. Let C1 be
the original clause of C′

1 in M . According to Lemma 2 there is a non-clausal proof for
C2,M, ε where C2 is a copy of C1. Thus, there is a proof for ε,M, ε and for M . ��

238 J. Otten

5.3 Complexity

Definition 14 (Size of Connection Proof). The size of a (clausal or non-clausal) con-
nection proof is the number of proof steps in the connection proof.

Theorem 5 (Linear Simulation of Clausal Calculus). Let M be the matrix of a for-
mula F and M ′ be the matrix of the standard translation of F into clausal form. Fur-
thermore, let n be the size of a clausal connection proof for M ′ and m be the size of its
largest subgoal clause. Then there is a non-clausal proof for M with size O(m ·n).

Proof. The same technique used for the proof of Lemma 3 can be used to translate a
clausal proof for M ′ into a non-clausal proof for M . Reduction steps can be directly
translated without any modifications. Every start or extension step is translated into one
start or extension step and a number of decomposition steps in the non-clausal proof,
respectively. The number of decomposition steps is limited by twice the size of the
subgoal clause in the clausal proof. ��

Theorem 6 (No Polynomial Simulation of Non-Clausal Calculus). Let M be the
matrix of a formula F and M ′ be the matrix of the standard translation of F into
clausal form. There is a class of formulae for which there is no clausal proof for M ′

with size O(nk) for a fixed k∈ IN , where n is the size of a non-clausal proof for M .

Proof. Consider the (valid) formula class ((∀x1P1x1)⇒ P1c1))∧ . . . ∧((∀xmPmxm)
⇒ Pmcm)) for some m∈ IN and the graphical representation of its matrix M shown
below. The non-clausal connection proof for M with the term substitution σ(xi)= ci,
for 1≤ i≤m, has the following (simplified) graphical matrix representation

⎡

⎢
⎢
⎢
⎢
⎣

⎡

⎢
⎢
⎢
⎢
⎣

[
[P 1

1 x1] [P 0
1 c1]

]

.

.

.[
[P 1

mxm] [P 0
mcm]

]

⎤

⎥
⎥
⎥
⎥
⎦

⎤

⎥
⎥
⎥
⎥
⎦

and consists of one start step,m decomposition steps, andm extension steps. Therefore,
the size of the non-clausal connection proof is n=2m+1. The clausal matrix M ′ has
the form {{P 1

1 x1, . . . , P
1
mxm}, {P 1

1 x1, . . . , P
0
mcm}, . . . , {P 0

1 c1, . . . , P
0
mcm}, {P 0

1 c1,
. . . , P 0

mcm}} and consists of m · 2m literals. In a clausal proof for M ′ every clause of
M ′ has to be considered, i.e. every literal of M ′ has to be an element of at least one
connection. Therefore,m · 2m−1 is the minimal number of connections and the minimal
size of every clausal connection proof for M ′. Hence, there is no clausal connection
proof for M ′ with size O(nk) for some fixed k ∈ IN .

��

Theorem 6 holds for the structure-preserving translation into clausal form introduced in
[12] as well. An example for an appropriate problem class is given in [2].

6 Optimizations and Extensions

In this section the connection calculus is further simplified. Some optimizations tech-
niques and an extension of the calculus to some non-classical logics are described.

A Non-clausal Connection Calculus 239

6.1 A Simplified Connection Calculus

If the matrices that are used in the non-clausal connection calculus are slightly modified,
the start and reduction rule are subsumed by the decomposition and extension rule.

Definition 15 (Simplified Connection Calculus). The simplified connection calculus
consists only of the axiom, the extension rule and the decomposition rule of the non-
clausal connection calculus (see Definition 10). It is shown in Figure 8.

Axiom (A) {},M, Path

Extension (E)
C3,M [C1\C2], Path∪{L1} C,M,Path

C∪{L1},M, Path

and C3:=β-clauseL2(C2),C2 is copy of C1,C1 is an extension clause
of M wrt. Path∪{L1}, C2 contains L2 with σ(L1) =σ(L2)

Decomposition (D)
C ∪ C1,M, Path

C∪{M1},M, Path
with C1∈M1

Fig. 8. The simplified connection calculus

Theorem 7 (Correctness & Completeness of the Simplified Connection Calculus).
Let F be a first-order formula and M its matrix. Let M∗ be the matrix M , in which all
literals L∈C with |C|> 1 in M are replaced by the matrix {{L}}. Then F is valid in
classical logic iff there is a simplified connection proof for {M∗},M∗, {}.

Proof. The start rule and the reduction rule are subsumed by the decomposition rule
and the extensions rule, respectively. As the remaining rules of the calculus are not
modified, the simplified connection calculus is correct and complete. ��

6.2 Optimizations

Positive Start Clause. As for the clausal connection calculus, the start clause of the
non-clausal connection calculus can be restricted to positive clauses.

Definition 16 (Positive Clause). A clause C is a positive clause iff there is a vertical
path p through C, i.e. C‖p, that contains only literals with polarity 0.

Lemma 4 (Positive Start Clause). The non-clausal connection calculus remains cor-
rect and complete, if the clause C1 of the start rule is restricted to positive clauses and
all clauses in C2 that are not positive are deleted from C2.

Proof. Correctness is preserved. Completeness follows from the fact that every con-
nection proof for M has to use all literals (within connections) from a vertical path p
through some clause C ∈M such that p contains only literals with polarity 0. ��

Regularity. Regularity is an effective technique for pruning the search space in clausal
connection calculi [9]. It can be used for the non-clausal calculus as well.

240 J. Otten

Definition 17 (Regularity). A connection proof is regular iff there are no two literals
L1, L2 in the active path with σ(L1)= σ(L2).

The regularity condition is integrated into the calculus of Figure 6 by adding a restric-
tion to the reduction and extension rule: ∀L′ ∈C ∪{L1} : σ(L′) �∈σ(Path).

Lemma 5 (Regularity).M is valid iff there is a regular connection proof for M .

Proof. Regularity preserves correctness. Completeness follows from the fact that the
clausal connection calculus with regularity is complete [9] and that it can be simulated
by the non-clausal calculus with regularity (see Section 5.2). ��

Restricted Backtracking. Proof search in the (clausal and non-clausal) connection
calculus is not confluent, i.e. it might end up in dead ends. To achieve completeness
backtracking is required (see remarks in Section 2 and 4.2), i.e. alternative rules or rule
instances need to be considered. The main idea of restricted backtracking [12] is to cut
off any so-called non-essential backtracking that occurs after a literal is solved. Even
though this strategy is incomplete, it is very effective [12]. It can be used straight away
to prune the search space in the non-clausal connection calculus as well.

6.3 Non-classical Logics

The matrix characterization of classical validity (see Theorem 1) can be extended to
some non-classical logics, such as modal and intuitionistic logic [18]. To this end a
prefix, i.e. a string consisting of variables and constants, which essentially encodes the
Kripke world semantics, is assigned to each literal. For a σ-complementary connection
{L1 : p1, L2 : p2} not only the terms of both literals need to unify under a term substitu-
tion σ, i.e. σ(L1)= σ(L2), but also the corresponding prefixes p1 and p2 are required to
unify under a prefix substitution σ′, i.e. σ′(p1)= σ′(p2). Therefore, by adding prefixes
to the presented non-clausal connection calculus, it can be used for some non-classical
logics as well [8]. For the proof search an additional prefix unification algorithm [11,17]
is required that unifies the prefixes of the literals in every connection.

7 Conclusion

A formal non-clausal connection calculus has been introduced that can be used for
proof search in classical and some non-classical first-order logics. It does not require
the translation of the input formula into any clausal form but preserves its structure.
The calculus generalizes the clausal connection calculus by modifying the extension
rule and adding a decomposition rule. Copying of clauses is done in a dynamic way
and significant redundancy is removed by considering only β-clauses for new subgoal
clauses. Thus, the calculus combines the advantages of a non-clausal proof search in
tableau calculi [6] with the more goal-oriented search of clausal connection calculi [4].

In [7] a technique similar to β-clauses is used to prove completeness for non-clausal
connection tableaux. But this technique is not used explicitly within the tableau calculus
itself. Furthermore, only ground formulae are considered and a more general regularity
condition is used, which is not restricted to literals of the active path.

A Non-clausal Connection Calculus 241

This paper provides the formal basis for a planned competitive implementation of a
non-clausal connection calculus in an elegant and compact style [12,13]. Future work
includes the development of further non-clausal optimization techniques.

Acknowledgements. The author would like to thank Wolfgang Bibel for his helpful
comments on a preliminary version of this paper.

References

1. Andrews, P.B.: Theorem Proving via General Matings. Journal of the ACM 28, 193–214
(1981)

2. Antonsen, R., Waaler, A.: Liberalized Variable Splitting. Journal of Automated Reason-
ing 38, 3–30 (2007)

3. Bibel, W.: Matings in Matrices. Communications of the ACM 26, 844–852 (1983)
4. Bibel, W.: Automated Theorem Proving. Vieweg, Wiesbaden (1987)
5. Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39,

176–210, 405–431 (1935)
6. Hähnle, R.: Tableaux and Related Methods. In: Robinson, A., Voronkov, A. (eds.) Handbook

of Automated Reasoning, pp. 100–178. Elsevier, Amsterdam (2001)
7. Hähnle, R., Murray, N.V., Rosenthal, E.: Linearity and Regularity with Negation Normal

Form. Theoretical Computer Science 328, 325–354 (2004)
8. Kreitz, C., Otten, J.: Connection-based Theorem Proving in Classical and Non-classical Log-

ics. Journal of Universal Computer Science 5, 88–112 (1999)
9. Letz, R., Stenz, G.: Model Elimination and Connection Tableau Procedures. In: Robinson,

A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 2015–2114. Elsevier, Ams-
terdam (2001)

10. Loveland, D.: Mechanical Theorem-Proving by Model Elimination. Journal of the ACM 15,
236–251 (1968)

11. Otten, J.: Clausal Connection-Based Theorem Proving in Intuitionistic First-Order Logic.
In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 245–261. Springer,
Heidelberg (2005)

12. Otten, J.: Restricting Backtracking in Connection Calculi. AI Communications 23, 159–182
(2010)

13. Otten, J., Bibel, W.: leanCoP: Lean Connection-based Theorem Proving. Journal of Symbolic
Computation 36, 139–161 (2003)

14. Plaisted, D., Greenbaum, S.: A Structure-preserving Clause Form Translation. Journal of
Symbolic Computation 2, 293–304 (1986)

15. Robinson, A.: A Machine-oriented Logic Based on the Resolution Principle. Journal of the
ACM 12, 23–41 (1965)

16. Schmitt, S., Lorigo, L., Kreitz, C., Nogin, A.: JProver: Integrating Connection-Based The-
orem Proving into Interactive Proof Assistants. In: Goré, R., Leitsch, A., Nipkow, T. (eds.)
IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 421–426. Springer, Heidelberg (2001)

17. Waaler, A.: Connections in Nonclassical Logics. In: Robinson, A., Voronkov, A. (eds.) Hand-
book of Automated Reasoning, pp. 1487–1578. Elsevier, Amsterdam (2001)

18. Wallen, L.: Automated Deduction in Nonclassical Logics. MIT Press, Washington (1990)

������: A Tableau Prover with

Logic-Independent Inference Engine�

Dmitry Tishkovsky, Renate A. Schmidt, and Mohammad Khodadadi

School of Computer Science, The University of Manchester
{dmitry,schmidt,khodadadi}@cs.man.ac.uk

Abstract. MetTeL is a generic tableau prover for various modal, intu-
itionistic, hybrid, description and metric logics. The core component of
MetTeL is a logic-independent tableau inference engine. A novel feature
is that users have the ability to flexibly specify the set of tableau rules to
be used in derivations. Termination can be achieved via a generalisation
of a standard loop checking mechanism or unrestricted blocking.

1 Introduction

MetTeL is a lightweight generic tableau prover implemented in Java. Its main
purpose is to provide a tool for experimenting with tableau calculi for newly
invented non-classical logics for which there are no known sound and complete
decision procedures. The first versions of MetTeL were designed for deciding
logics of metric and topology [4]. In 2005, when the implementation started,
there were no known tableau calculi for these logics. To allow for the testing of
different sets of tableau rules, much effort was invested in a generic, modular
design of MetTeL. A natural hierarchy of Java classes was implemented so
that tableau calculi could be implemented quickly and with little effort.

The extendable design led to quick implementations of tableau decision pro-
cedures for many other non-classical logics including, e.g., intuitionistic propo-
sitional logic, the expressive description logic ALBO [5], and the extension
ALBOid with role identity. Most recently, we have extended MetTeL with a
rule specification language giving users the facility to define the tableau rules
to be used during the derivation. Skolem terms have replaced the use of nom-
inals in the rules for expanding existential quantification formulae. MetTeL
provides several novel engineering solutions. For enforcing termination it im-
plements generic loop-checking mechanisms and is the first to implement the
unrestricted blocking mechanism introduced in [5].

MetTeL decides the following logics: classical and intuitionistic propositional
logic, hybrid logic HL(@,u) with the universal modality, the logicMT of metric
and topology, and all sublogics of the description logic ALBOid. At the moment,
MetTeL is the only tableau prover that can decide logics of metric and topol-
ogy and description logics with role negation [5]. Using the facility to specify

� The work is supported by research grant EP/H043748/1 of the UK EPSRC.

K. Brünnler and G. Metcalfe (Eds.): TABLEAUX 2011, LNAI 6793, pp. 242–247, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

MetTeL: A Tableau Prover with Logic-Independent Inference Engine 243

tableau rules MetTeL can be used as a prover for many other more expressive
or even undecidable logics. MetTeL has been compared on a class of metric and
topology problems with the first-order resolution provers Spass and Vampire,
where it performed better [4].

Closely related to MetTeL are the prover engineering platforms LoTREC [3]
and the Tableau WorkBench [1]. These systems give users the possibility to pro-
gram their own tableau prover for modal-type logics using meta-programming
languages for building and manipulating formulae, and controlling the tableau
derivation process. Being targeted at users and logicians with limited experience
in constructing tableau derivations or building tableau provers, the objective of
MetTeL is slightly different. MetTeL has been designed to have a simple and
easy to use input language. Tableau rules are specified following the standard
premises/conclusions notation found in the literature and are always interpreted
as expansion rules. The specification language is therefore easy to learn and re-
member. Notable is that Skolem terms are used and that these can occur in both
conclusion and premise positions of the same or different rules. E.g., the follow-
ing rule is specifiable in MetTeL: @g(i)♦j, @jp/@g(i)p | @i♦h(p, i, j), @h(p,i,j)p.
The rule partly formalises the co-cover property in models for modal logic S4,
where g(i) denotes a Skolem term representing the co-cover of nominal i, and
h(p, i, j) represents a successor of i depending on nominal j and proposition p [2].
Another difference is that LoTREC and the Tableau WorkBench do not yet im-
plement unrestricted blocking.

MetTeL is available from http://www.mettel-prover.org.

2 Input Syntax

The language for specifying formulae is a many-sorted language with five sorts,
namely, formulae, relational formulae (or roles), nominal terms including Skolem
terms, attributes and rational parameters from metric logic. The available prede-
fined connectives include negation ~, conjunction &, disjunction |, logical equiv-
alence <−>, implication −>, modal box and dia (synonyms: description logic
forall and exists), the ‘closer’ operator << of similarity logic, the @ operator
of hybrid logic, and the relational operators: inverse −, union +, intersection &,
negation ~, composition ;, and reflexive-transitive closure ∗. The language also
includes the propositional constants FALSE and TRUE and allows arbitrary names
for relational constants. E.g., although relational identity id is not a predefined
symbol it can be encoded in the rule specification language. Here are three ex-
amples of formulae specifiable in MetTeL:

box box{~(~R | S)} FALSE
(@i dia{R} j & @j dia{R} k) −> @i dia{R} k
exists{a<x;a<y} P −> exists{a<(x+y)} P

The first formula encodes role inclusion R � S in ALBOid. The second formula
defines R as a transitive relation in hybrid logic. The last formula expresses
the triangle property of metric relations (if there is a path to a property P
consisting of two distances for an attribute a which are strictly less than x and y
respectively, then there is an a-distance to P which is strictly less than x + y).

http://www.mettel-prover.org

244 D. Tishkovsky, R.A. Schmidt and M. Khodadadi

The tableau rule specification language is illustrated by these examples.

@i (P|Q) / { @i P } | { @i Q };
@i (~P & ~Q) / { @i ~P, @i ~Q };
@i ~(dia{R} P), @i dia{R} j / { @j ~P };
@i dia{R} P / { @f[i,R,P] P, @i dia{R} f[i,R,P] };
@i P, @i ~P / { FALSE };

The premises and conclusions are separated by / and each rule is terminated
by ;. The first rule is the or rule, defined as a branching rule which creates a
splitting point adding @i P to the left branch and @i Q to the right branch.
The other rules are non-branching rules. The second rule is an instance of the
standard and rule. The third rule is the standard box rule rewritten in terms of
the negated diamond. Note the use of the Skolem term f[i,R,P] in the next
rule; it represents the created witness with dependence on i,R,P. Rules, like the
last rule, with FALSE belonging to the conclusion are closure rules.

3 Implementation Details

All expressions over the five sorts are internally represented as extensions of the
basic MettelExpression interface. For efficiency reasons, each kind of expression
is represented as a separate Java class which is not parameterised by connec-
tives. At runtime, the creation of expression objects is managed by means of
a factory pattern implemented as MettelObjectFactory and ensures that each ex-
pression is represented by a single object. Each class implementing the interface
MettelExpression is required to implement two methods: (i) a method for match-
ing the current object with the expression object supplied as a parameter. This
method returns the substitution which unifies the current expression with the
parameter. (ii) The second method is the inverse of the first method, i.e., it re-
turns an instance of the current expression with respect to a given substitution.

In order to allow user-defined rules, tableau rules are implemented by a single
class called MettelGeneralTableauRule.

Every expression undergoes on-the-fly preprocessing during its creation in the
appropriate factory object. The default implementation of the MettelObjectFactory
interface automatically simplifies formulae, removing, e.g., multiple negations in
subformulae and reformulating formulae in terms of a minimal and independent
set of connectives. Since there is a direct dependence between the connectives
and the specified rules, and all rules are created by a factory object, rules are
automatically simplified as well.

Various implementations of the MettelPreprocessor interface are available to
perform more complex preprocessing: E.g., MettelAtPreprocessor attaches @n0

to (unprefixed) formulae in the problem set, where n0 is a fresh nominal. The
MettelGodelPreprocessor translates intuitionistic formulae into modal logic S4.

Every node of the tableau is represented as a tableau state object comprising
of a set of formulae associated with the node and methods for manipulating the
formulae and realising rule applications.

MetTeL: A Tableau Prover with Logic-Independent Inference Engine 245

Rule application is implemented as follows. Every rule is applied to a tableau
state. A tuple of formulae from the set of active formulae associated with the
tableau state is selected and the formulae in the tuple are matched with the
premises of the chosen rule. Since matching is computationally expensive, it
is performed only once for any given formula and a premise of a rule. This is
achieved by maintaining sets of all the substitutions obtained from matching the
selected formula with the rule premise. All the selected formulae are discarded
from the set of active formulae associated with the rule. If the tuple of the selected
formulae match the premises of the rule, the resulting substitution object is
passed to the conclusions of the rule. The final result of a rule application is a
set of branches which are sets of formulae obtained by applying the substitution
to the conclusions of the rule.

Two blocking mechanisms for detecting ‘loops’ in derivations are implemented
in MetTeL. The first blocking mechanism is a generalisation of anywhere equal-
ity loop checking used in some description logic systems. The main difference
is that instead of requiring that all local rules are applied before rules that in-
troduce new nominal terms, every rule keeps track of formulae that depend on
a given nominal term. Once no more local rules are applicable to any pair of
nominals the blocking test is performed for the nominals. If successful, an equal-
ity is added to the current tableau state for subsequent rewriting. The second
available blocking mechanism is the unrestricted blocking mechanism [5]. This
is realised through a branching rule which attempts to equate nominal terms by
case analysis.

During the inference process nominal terms, including those introduced during
existential quantifier expansion, are kept in a linear ordering that is compatible
with the subterm ordering and the order in which they are introduced. As soon
as equalities are added by the blocking mechanisms or a tableau rule, these are
used to rewrite all expressions in the current branch. Larger nominal terms are
always rewritten to nominal terms smaller under the ordering.

4 Using ������

The binary version of MetTeL is distributed as a jar-file and requires Java
Runtime Environment, Version 1.5.0 or later. MetTeL can be called from the
command line as follows.
> java −jar mettel.jar [−tbl <tabl−fname>] [−i <in−fname>]

In which file the tableau calculus and the input problem are defined can be
specified with the −tbl and −i options. The predefined calculi can be used via
the options listed in Table 1. If the options are in conflict then the last one given
has priority. The input problem can optionally be read from standard input.

Assuming the sample tableau rules from Section 2 are stored in the file
sampleTableau.t.mtl, executing this command

> java −jar mettel.jar −tbl sampleTableau.t.mtl
box{R}(Q&P) & dia{R}~Q

246 D. Tishkovsky, R.A. Schmidt and M. Khodadadi

Table 1. Predefined tableau calculi

Option Tableau calculus for

-bool Classical propositional logic.
-hl Hybrid logic HL(@) with relational union and composition (Default).
-hlu Like -hl plus the universal modality.
-met Metric logic without the ‘closer’ operator.
-topo Metric logic with the topology operator but without the ‘closer’ operator [4].
-albo ALBO with the unrestricted blocking rule mechanism [5].
-alboid Like -albo plus identity

produces the output: Unsatisfiable. If the formula box{R}(Q&P)&dia{R}P
had been typed at the terminal, the output would have been:
Satisfiable
MODEL:[(@{f(n0,R,P)}P), (@{n0}(exists{R}f(n0,R,P))), (@{f(n0,R,P
)}(~((~Q)|(~P)))), (@{n0}(~((exists{R}((~Q)|(~P)))|(~(exists{R}P
))))), (@{n0}(~(exists{R}((~Q)|(~P))))), (@{n0}(exists{R}P)), (@
{f(n0,R,P)}Q)]
Filtered model:[(@{f(n0,R,P)}P), (@{n0}(exists{R}f(n0,R,P))), (@
{f(n0,R,P)}Q)]

As can be seen in this example models are presented in long and compact format.

5 Concluding Remarks

Mettel is a new type of tableau prover where users have the option of either
using one of several predefined tableau calculi or define their own set of tableau
rules to be used for constructing derivations. In order to make it even easier for
users to obtain an automated theorem prover designed for a specific logic we
plan to implement the tableau calculus synthesis framework described in [6] and
incorporate it into MetTeL.

References

1. Abate, P., Goré, R.: The Tableaux Work Bench. In: Cialdea Mayer, M., Pirri, F.
(eds.) TABLEAUX 2003. LNCS, vol. 2796, pp. 230–236. Springer, Heidelberg (2003)

2. Babenyshev, S., Rybakov, V., Schmidt, R.A., Tishkovsky, D.: A tableau method for
checking rule admissibility in S4. Electron. Notes Theor. Comput. Sci. 262, 17–32
(2010)

3. Gasquet, O., Herzig, A., Longin, D., Sahade, M.: LoTREC: Logical tableaux research
engineering companion. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI),
vol. 3702, pp. 318–322. Springer, Heidelberg (2005)

4. Hustadt, U., Tishkovsky, D., Wolter, F., Zakharyaschev, M.: Automated reasoning
about metric and topology (System description). In: Fisher, M., van der Hoek, W.,
Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 490–493.
Springer, Heidelberg (2006)

MetTeL: A Tableau Prover with Logic-Independent Inference Engine 247

5. Schmidt, R.A., Tishkovsky, D.: Using tableau to decide expressive description logics
with role negation. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-
I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825,
pp. 438–451. Springer, Heidelberg (2007)

6. Schmidt, R.A., Tishkovsky, D.: Automated synthesis of tableau calculi. In: Giese,
M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 310–324. Springer,
Heidelberg (2009)

A Hypersequent System for Gödel-Dummett

Logic with Non-constant Domains

Alwen Tiu

College of Engineering and Computer Science
The Australian National University

Abstract. Gödel-Dummett logic is an extension of first-order intuition-
istic logic with the linearity axiom (A ⊃ B)∨ (B ⊃ A), and the so-called
“quantifier shift” axiom ∀x(A ∨ B(x)) ⊃ A ∨ ∀xB(x). Semantically, it
can be characterised as a logic for linear Kripke frames with constant
domains. Gödel-Dummett logic has a natural formalisation in hyperse-
quent calculus. However, if one drops the quantifier shift axiom, which
corresponds to the constant domain property, then the resulting logic has
to date no known hypersequent formalisation. We consider an extension
of hypersequent calculus in which eigenvariables in the hypersequents
form an explicit part of the structures of the hypersequents. This extra
structure allows one to formulate quantifier rules which are more refined.
We give a formalisation of Gödel-Dummett logic without the assumption
of constant domain in this extended hypersequent calculus. We prove cut
elimination for this hypersequent system, and show that it is sound and
complete with respect to its Hilbert axiomatic system.

1 Introduction

Gödel logics refer to a family of intermediate logics (i.e., logics between intuition-
istic and classical logics) that can be characterised by the class of rooted linearly
ordered Kripke models, or alternatively, as many-valued logics whose connectives
are interpreted as functions over subsets of the real interval [0, 1]. Its conception
dates back to the seminal work by Gödel on the (non-existence of) finite matrix
characteristic for propositional intuitionistic logic [14]. Dummett [12] gives an
axiomatisation of a (propositional) Gödel logic over an infinite set of truth val-
ues, by extending intuitionistic logic with the linearity axiom (A ⊃ B)∨(B ⊃ A).
This logic is called LC, but also known as Gödel-Dummett logic. In the first-
order case, Gödel logics (viewed as logics of linear Kripke frames) are usually
formalised with the assumption of constant domain, i.e., it assumes the same
domain of individuals for all worlds, which is captured via the quantifier shift
axiom (∀x.A ∨B) ⊃ ∀x.(A ∨B), where x is not free in B.

Traditional cut-free sequent calculi for LC have been studied in several pre-
vious works [21,10,1,13]. Due to the linearity axiom, the formalisation of LC in
traditional sequent calculi requires a non-standard form of introduction rule for
implication, e.g., in Corsi’s calculus [10], the introduction rule for ⊃ involves a
simultaneous introduction of several ⊃-formulae (see Section 6). Avron proposed

K. Brünnler and G. Metcalfe (Eds.): TABLEAUX 2011, LNAI 6793, pp. 248–262, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Hypersequent System for Gödel-Dummett Logic 249

another proof system for Gödel-Dummett logic in the framework of hypersequent
calculus [3] (see also [5] for related work on Gödel logics in hypersequent cal-
culi). A hypersequent is essentially a multiset of sequents. In Avron’s notation,
a hypersequent with n member sequents is written as Γ1 ⇒ C1 | · · · | Γn ⇒ Cn.
The structural connective | here is interpreted as disjunction.

In contrast to Corsi’s sequent calculus, the introduction rules for the hyper-
sequent calculus for Gödel-Dummett logic are the standard ones. Linearity is
captured, instead, using a structural rule, called the communication rule:

G | Γ,Δ⇒ C G | Γ,Δ⇒ D

G | Γ ⇒ C | Δ⇒ D
com

In the first-order case, a standard right-introduction rule for ∀ is

G | Γ ⇒ A(y)
G | Γ ⇒ ∀x.A(x) ∀r

where y is not free in the conclusion. Notice that in the premise of the rule, im-
plicitly the scope of y is over the entire hypersequent. If the structural connective
| is interpreted as disjunction and eigenvariables are interpreted as universally
quantified variables, the rule essentially encapsulates the quantifier shift axiom.
It would seem therefore that in the traditional hypersequent calculus, one is
forced to accept the quantifier shift axiom as part of the logic.

In this paper, we are interested in seeing whether there is a way to formalise
intermediate logics in hypersequent calculus in which the quantifier shift axiom
may not hold. We study a particular logic with this property, i.e., what is called
quantified LC in [11] (we shall refer to it as QLC below) , which is an extension
of the first-order intuitionistic logic with the linearity axiom (but without the
quantifier shift axiom). In semantic terms, this logic is just a logic of linearly
ordered frames with nested domains. A sequent calculus for this logic was first
considered by Corsi [10], and later Avellone, et. al. [2], where, again as in the
propositional case, there is a simultaneous introduction rule for both ∀ and ⊃ .

The key idea to the hypersequent formalisation of QLC here is to explicitly
represent eigenvariables as part of the structure of a hypersequent and to use
that extra structure to control the use of eigenvariables. The idea of explicit
representation of eigenvariables in sequent calculus is not new and has been
considered in the abstract logic programming literature, see e.g., [17]. An intu-
itionistic sequent in this case is a structure of the form Σ;Γ ⇒ C where Σ here
is a set of eigenvariables, called the signature of the sequent. The introduction
rules for ∀ would then be of the forms:

Σ � t : term G | Σ;A(t), Γ ⇒ C

G | Σ; ∀x.A(x), Γ ⇒ C
∀l

G | Σ, y;Γ ⇒ A(y)
G | Σ;Γ ⇒ ∀x.A(x) ∀r

Notice that in ∀r, the eigenvariable y is explicitly added to Σ (reading the rule
upward). Notice also that in instantiating a universal quantifier on the left, one
needs to be able to form the term t given the signature Σ. This is enforced by

250 A. Tiu

the judgment Σ � t : term in the premise. In the simplest case, it just means
that the free variables of t need to be already in Σ. It is easy to see that the
quantifier shift axiom may not be immediately provable using the above rules.

An immediate problem with the explicit representation of eigenvariables in
hypersequents is that there seems to be no way to interpret rules in the hy-
persequent calculus as valid formulae in QLC. This complicates the proof of
soundness of the hypersequent calculus via an encoding in the Hilbert system
for QLC (see the discussion in Section 5). For example, if one were to inter-
pret the signature Σ as universal quantifiers whose scope is over the sequent it
is attached to, then the com-rule (see Section 3) turns out to be unsound for
QLC. The solution attempted here is to interpret eigenvariables in a signature
as an encoding of an existence predicate, that was first introduced in Scott’s exis-
tence logic [19]. Intuitively, a sequent such as x;A(x)⇒ B(x) can be interpreted
as the formula E(x) ∧ A(x) ⊃ B(x), where E here is an existence predicate.
Using this interpretation, however, we cannot directly prove soundness of our
hypersequent system with respect to QLC, as QLC does not assume such an
existence predicate. To overcome this problem, we use a result by Iemhoff [15]
relating Gödel logics with non-constant domains with Gödel logics with constant
domains extended with the existence predicate. Section 5 gives more details of
this correspondence.

The remainder of this paper is structured as follows. Section 2 reviews the
syntax and the semantics of Corsi’s QLC. Section 3 presents a hypersequent
calculus for QLC, called HQLC, and Section 4 shows how cut elimination can
be proved for HQLC. The hypersequent system HQLC actually captures a
richer logic than QLC, as it permits a richer term language than that allowed in
QLC. What we aim to show here is that cut elimination still holds provided the
term formation judgment (Σ � t : term) satisfies four abstract properties, so our
cut elimination result applies to extensions of QLC with richer term structures.
Section 5 shows that HQLC, restricted to a term language containing only
constant symbols as in QLC, is sound and complete w.r.t. QLC. Section 6
discusses related work and some directions for future work.

2 Semantics and an Axiomatic System of Quantified LC

The language GD of first-order Gödel-Dummett logic with nested domain is as
in first-order intuitionistic logic. We consider here the connectives ⊥ (‘false’),
	 (‘true’), ∧, ∨, ⊃, ∃ and ∀. We assume some given constants, but do not
assume any function symbols. First-order variables are ranged over by x, y and z;
constants by a,b,c; and predicate symbols by p and q. Given a formula C, FV (C)
denotes the set of free variables in C. This notation generalizes straightforwardly
to sets of formulas, e.g., if Γ is a (multi)set of formulas, then FV (Γ) is the set
of free variables in all the formulas in Γ.

A Kripke modelM for GD is a quadruple 〈W,R,D, I〉 where

– W is a non-empty set of worlds;
– R is a binary relation on W ;

A Hypersequent System for Gödel-Dummett Logic 251

– D is the domain function assigning each w ∈ W a non-empty set Dw such
that Dv ⊆ Dw whenever vRw;

– I is an interpretation function such that for each w ∈ W , for each constant
c, Iw(c) ∈ Dw, and for each n-ary predicate p, Iw(p) ⊆ Dn

w, such that
Iv(c) = Iw(c) and Iv(p) ⊆ Iw(p) whenever vRw.

The forcing relation M, w |= A is defined as in the usual definition in first-
order intuitionistic logic (see, e.g., [24]). Let QLC [11] be the axiomatic system
extending Hilbert’s system for first-order intuitionistic logic (see, e.g., [23]) with
the linearity axiom (A ⊃ B) ∨ (B ⊃ A).

Theorem 1 ([11]). QLC is sound and complete with respect to GD, for the
class of Kripke models based on linearly ordered frames (reflexive, transitive,
connected and antisymmetric) with nested domains.

3 The Hypersequent System HQLC

Definition 2. A sequent is a syntactic expression of the form Σ;Γ ⇒ C where
Σ is a set of eigenvariables, Γ is a multiset of formulae and C is a formula.
Σ here is called the signature of the sequent. A hypersequent is a multiset of
sequents. When writing hypersequents, we shall use the symbol | to separate in-
dividual sequents in the multiset. Thus, the following is a hypersequent with n
members: Σ1;Γ1 ⇒ C1 | · · · | Σn;Γn ⇒ Cn.

A substitution θ is a mapping from variables to terms such that the domain of θ,
i.e., {x | θ(x) �= x} is finite. We denote with dom(θ) the domain of θ, and with
ran(θ) the range of θ, i.e., the set {θ(x) | x ∈ dom(θ)}. When we want to be
explicit about the domain and range of a substitution, we enumerate them as a
list of mappings, e.g, [t1/x1, . . . , tn/xn] denotes a substitution which maps xi to
ti, with domains {x1, . . . , xn}. A renaming substitution is a substitution which
is an injective map between variables.

Substitutions are extended to mappings from terms to terms or formulae to
formulae in the obvious way, taking care of avoiding capture of free variables
in the range of substitutions. Given a multiset Γ and a substitution θ, Γθ de-
notes the multiset resulting from applying θ to each element of Γ. The result of
applying a substitution θ to a signature Σ is defined as follows:

Σθ =
⋃
{FV (θ(x)) | x ∈ Σ}.

For example, if Σ = {x, y} and θ = [a/x, y/z] then Σθ = {y}. The result of
applying a substitution θ to a sequent Σ;Γ ⇒ C is the sequent Σθ;Γθ ⇒ Cθ.
Application of a substitution to a hypersequent is defined as applications of the
substitution to its individual sequents.

We shall assume a given relation � between a signature Σ and a term t,
capturing a notion of wellformedness of terms. We shall write Σ � t : term to
denote that the term t is wellformed under Σ. The judgment Σ � t : term can

252 A. Tiu

Cut and identity:

Σ;Γ, p(�t)⇒ p(�t) | H id
Σ;Γ ⇒ B | H1 Σ;B,Δ⇒ C | H2

Σ;Γ,Δ⇒ C | H1 | H2
cut

Structural rule:

Σ1, Σ2;Γ,Δ⇒ B | Σ2;Δ⇒ C | H Σ1;Γ ⇒ B | Σ1, Σ2;Γ,Δ⇒ C | H
Σ1;Γ ⇒ B | Σ2;Δ⇒ C | H com

Logical rules:

Σ;⊥, Γ ⇒ A | H ⊥l
Σ;Γ ⇒ � �r

Σ;Γ,A ⊃ B ⇒ A | Σ;Γ,A ⊃ B ⇒ C | H Σ;Γ,A ⊃ B,B ⇒ C | H
Σ;Γ,A ⊃ B ⇒ C | H ⊃ l

Σ;Γ,A⇒ B | H
Σ;Γ ⇒ A ⊃ B | H ⊃ r

Σ;Γ,A1, A2 ⇒ B | H
Σ;Γ,A1 ∧A2 ⇒ B | H ∧l Σ;Γ ⇒ A | H Σ;Γ ⇒ B | H

Σ;Γ ⇒ A ∧ B | H ∧r

Σ;Γ,A⇒ C | H Σ;Γ,B ⇒ C | H
Σ;Γ,A ∨B ⇒ C | H ∨l

Σ;Γ ⇒ A1 | Σ;Γ ⇒ A2 | H
Σ;Γ ⇒ A1 ∨A2 | H ∨r

Σ 	 t : term Σ;Γ,A[t/x],∀x.A⇒ B | H
Σ;Γ,∀x.A⇒ B | H ∀l

Σ, y;Γ ⇒ A[y/x] | H
Σ;Γ ⇒ ∀x.A | H ∀r

Σ, y;Γ,A[y/x]⇒ B | H
Σ;Γ, ∃x.A⇒ B | H ∃l Σ 	 t : term Σ;Γ ⇒ A[t/x] | Σ;Γ ⇒ ∃x.A | H

Σ;Γ ⇒ ∃x.A | H ∃r

Fig. 1. The hypersequent system HQLC. In the rules ∃l and ∀r, the eigenvariable y
is not free in the conclusion.

be seen as a typing judgment familiar from programming languages. It can also
be thought as a formalisation of a form of existence predicate from existence
logic [19] (see Section 5).

For the purpose of proving cut-elimination, the particular definition of the
judgment � is not important, as long as it satisfies the following properties:

P1 If Σ � t : term then FV (t) ⊆ Σ.
P2 If Σ � t : term and x �∈ Σ, then Σ, x � t : term.
P3 If Σ � t : term and θ is a renaming substitution, then Σθ � tθ : term.
P4 If Σ, x � t : term, where x �∈ Σ, and Σ � s : term then Σ � t[s/x] : term.

A Hypersequent System for Gödel-Dummett Logic 253

A consequence of P1 is that (Σ � x : term) implies x ∈ Σ. The converse does
not hold in general, e.g., consider the case where � is the empty relation.

In the case of QLC, since we assume no function symbols, the term formation
rule is very simple; Σ � t : term holds iff either t is a constant or it is a variable
in Σ. It is obvious that P1 – P4 hold in this case. But in general, any term
formation judgments that satisfy the above four properties can be incorporated
in our proof system and cut elimination will still hold. For example, one can have
a term language based on Church’s simply typed λ-calculus, e.g., as in the (first-
order/higher-order) intuitionistic systems in [17]. The term formation judgment
in this case would be the usual typing judgment for simply typed λ-calculus.

The hypersequent system HQLC is given in Figure 1. Notice that unlike tra-
ditional hypersequent calculi for Gödel-Dummett logic, HQLC does not have
external weakening or external contraction rules. Both contraction and weaken-
ing are absorbed into logical rules. But as we shall see in Section 4, weakening and
contraction are admissible in HQLC. Admissibility of contraction allows one to
simplify slightly the Gentzen style cut elimination for HQLC (see Section 4).
The ∨r rule is non-standard, but is needed to absorb contraction. If one ignores
the signature part of the hypersequents and the term formation judgments, the
inference rules of HQLC are pretty standard for a hypersequent calculus.

Given a formula A, we say that A is provable in HQLC if the sequent
FV (A); .⇒ A is derivable in HQLC.

4 Cut Elimination for HQLC

The cut elimination proof presented here is a variant of a Gentzen style cut
elimination procedure for Gödel-Dummett logic [3,5]. But we note that it is also
possible to extend the Schütte-Tait style of cut elimination in [4,9] to HQLC.
We use a different form of multicut (see Section 4.3) to simplify slightly the main
argument in cut elimination, but the proof is otherwise a fairly standard Gentzen
style cut elimination proof. Before we proceed to the main cut elimination proof,
we first establish some properties of derivations and rules in HQLC. Some proofs
are omitted here, but they can be found in an extended version of this paper.

In a derivation of a hypersequent, one may encounter eigenvariables which
are not free in the root hypersequent; we call these internal eigenvariables of the
derivation. The names of those eigenvariables are unimportant, so long as they
are chosen to be sufficiently fresh, in the context of the rules in which they are
introduced. It is easy to prove by induction on the length of derivation and the
fact that � is closed under renaming (property P3) that given a derivation of a
hypersequent, there is an isomorphic derivation of the same hypersequent which
differs only in the choice of naming of the internal eigenvariables. In the follow-
ing proofs, we shall assume implicitly such a renaming is carried out during an
inductive step so as to avoid name clash. Given a derivation Π , we denote with
|Π | its length.

254 A. Tiu

4.1 Signature Weakening and Substitution

Lemma 3 (Signature weakening). Let Π be a derivation of the hypersequent
Σ;Γ ⇒ Δ | H. Then for every variable x, there is a derivation Π ′ of Σ, x;Γ ⇒
Δ | H such that |Π ′| = |Π |.
Proof. By simple induction on |Π | and property P2. ��
Definition 4. A substitution [t/x] is said to respect a sequent Σ;Γ ⇒ C if
x ∈ Σ ∪FV (Γ,C) implies Σ \ {x} � t : term. It is said to respect a hypersequent
H if it respects every sequent in H.

Lemma 5 (Substitution.). Let Π be a derivation of a hypersequent H and let
[t/x] be a substitution respecting H. Then there exists a derivation Π ′ of H [t/x]
such that |Π ′| = |Π |.
Proof. By induction on Π . The only non-trivial cases are when Π ends with ∀l
or ∃r. We show the former here, the latter can be dealt with analogously. So
suppose Π is as shown below (we assume w.l.o.g. y is not free in H):

Σ � s : term
Π1

Σ;Γ,A[s/y]⇒ B | H ′

Σ;Γ, ∀y.A⇒ B | H ′ ∀l

Then Π ′ is the derivation below

Σ′ � s[t/x] : term
Π ′

1

Σ′;Γ [t/x], A[t/x][s[t/x]/y]⇒ B[t/x] | H ′[t/x]
Σ′;Γ [t/x], ∀y.A[t/x]⇒ B[t/x] | H ′[t/x]

∀l

where Σ′ = Σ[t/x] and Π ′
1 is obtained from the induction hypothesis. Note that

as y is not free in t, we have A[t/x][s[t/x]/y] = A[s[t/x]/y][t/x], so the induction
hypothesis is indeed applicable to Π1.

We still need to make sure thatΠ ′ is indeed a well-formed derivation, i.e., that
the judgment (Σ′ � s[t/x] : term) is valid. There are two subcases to consider.
The first is when x ∈ Σ, i.e., Σ = Σ′ ∪ {x}. The fact that Σ � s[t/x] : term
holds follows from property P4 of the relation � .

Otherwise, x �∈ Σ. In this case we have Σ′ = Σ and Σ � s : term. The
latter, together with P1, implies that x �∈ FV (s), and therefore s[t/x] = s and
Σ′ � s[t/x] : term holds. ��

4.2 Invertible and Admissible Rules

A rule ρ is said to be strictly invertible if for every instance of ρ, whenever its
conclusion is cut-free derivable, then there is a cut-free derivation with the same
or smaller length of for each of its premises. We say that ρ is invertible if it
satisfies the same condition, except for the proviso on the length of derivations.

Lemma 6. Suppose Π is a derivation of Σ;Γ ⇒ C | H. Then for any A, there
exists a derivation Π ′ of Σ;A,Γ ⇒ C | H such that |Π | = |Π ′|.

A Hypersequent System for Gödel-Dummett Logic 255

Lemma 7. The rules ∧l, ∧r, ∨l, ⊃ r, ∃l and ∀r are strictly invertible.

Proof. Straightforward by induction on the length of derivation. In the cases of
∃l and ∀r, we need Lemma 3, and in the case of ⊃ r, we need Lemma 6. ��

Lemma 8. The rule ∨r is invertible.

A rule ρ is said to be admissible if whenever all its premises are cut-free derivable,
then its conclusion is also cut-free derivable, without using ρ. It is said to be
height-conserving admissible if given the derivations of its premises, one can
derive the conclusion with less or the same length as the maximum length of its
premise derivations. Using the invertibility of rules in Lemma 7 and Lemma 8,
it can be proved that the following structural rules are admissible:

Σ;Γ ⇒ B | H
Σ;A,Γ ⇒ B | H wl

Σ;A,A, Γ ⇒ B | H
Σ,A, Γ ⇒ B | H cl

H
H | G

ew
H | H
H

ec

Lemma 9. The rules wl and cl are height-conserving admissible.

Lemma 10. The rules ew and ec are admissible.

4.3 Cut Elimination

We first generalise the cut rule to the following multicut

Σ1;Δ1 ⇒ A | H1 · · · Σn;Δn ⇒ A | Hn G

Σ1;Δ1, Γ1 ⇒ B1 | · · · | Σn;Δn, Γn ⇒ Bn | H1 | · · · | Hn | H
mc

where G is the hypersequent Σ1;A,Γ1 ⇒ B1 | · · · | Σn;A,Γn ⇒ Bn | H. The
formula A is called the cut formula of the mc rule. The premise Σi;Δi ⇒ A | Hi

is called a minor premise of the mc rule. The premise G is called the major
premise. Notice that each minor premise pairs with only one sequent in the
major premise, unlike Avron’s extended multicut [3] where the minor premise
can pair with more than one sequent in the major premise.

A version of multicut similar to mc was proposed by Slaney [20] and was later
used by McDowell and Miller in a cut-elimination proof for an intuitionistic
logic [16]. In permutation of mc over (implicit) contraction in logical rules in
the major premise, there will be no need to contract the hypersequents in the
corresponding minor premise as is typical in Gentzen’s multicuts, but one would
instead duplicate the derivation of the minor premise (see the cut elimination
proof below for more details). The use of mc allows one to simplify slightly the
structure of the main arguments in the cut elimination proof (i.e., permutation of
mc rule over other rules). In the cut elimination proof in [5], which uses Avron’s
multicuts [3], one needs to prove a lemma concerning cut-free admissibility of
certain generalised ∃l and ∨r rules, e.g.,

256 A. Tiu

H | Γ1, A(a)⇒ C1 | · · · | Γn, A(a)⇒ Cn

H | Γ1, ∃x.A(x)⇒ C1 | · · · | Γn, ∃x.A(x)⇒ Cn
∃l∗

where a is not free in the conclusion. The need to prove admissibility of this rule
(and a similar version for ∨l) does not arise in here, due to the admissibility of
(both internal and external) contraction and the mc rule.

The cut rank of an instance of an mc rule, with minor premise derivations
Π1, . . . , Πn, major premise derivation Π , and cut formula A, is the triple

〈|A|, |Π |, {|Π1|, . . . , |Πn|}〉

of the size of the cut formulae, the length of the major premise derivation, and
the multiset of lengths of the minor premise derivations. Cut ranks are ordered
lexicographically, where the last component of the triple is ordered according to
multiset ordering. It can be shown that this order is wellfounded.

Theorem 11. Cut elimination holds for HQLC.

Proof. Suppose we have a derivation Ξ ending with an mc, with minor premise
derivations Π1, . . . , Πn and major premise derivation Π , and the cut formula A.
We assume w.l.o.g. that all Πi and Π are cut free. Cut elimination is proved by
induction on the cut rank, by removing the topmost cuts in succession.

We show that, we can reduce the mc rule to one with a smaller cut rank.
In the reduction of mc, the last rule applied to the major premise derivation
will determine which of the minor premises is selected for reduction. Note that
since the order of the sequents in the major premise and the order of the minor
premises in mc do not affect the cut rank, w.l.o.g., we assume that the derivation
Π ends with a rule affecting Σ1;A,Γ1 ⇒ C1, and/or Σ2;A,Γ2 ⇒ C2 (if it ends
with a com rule). So, in the case analysis on the possible reductions we shall
only look at the first and/or the second minor premises.

If Π ends with any rule affecting only H , then the mc rule can be easily
permuted up over the rule, and it is eliminable by the induction hypothesis.

Otherwise, Π must end with a rule affecting one (or two, in case of com) of
the sequents used in the cut rule. Without loss of generality, assume it is either
the first and/or the second sequent. There are several cases to consider. We show
a case involving the ∃ quantifier to illustrate the use of the substitution lemma.

Suppose Π1 ends with ∃r and Π ends with ∃l, both with the cut formula as
the principal formula, i.e., they are of the following forms, respectively:

Σ1 � t : term
Π ′

1

Σ1;Δ1 ⇒ A′(t) | Σ1;Δ1 ⇒ ∃x.A′(x) | H1

Σ1;Δ1 ⇒ ∃x.A′(x) | H1
∃r

Ψ
Σ1, x;A′(x), Γ1 ⇒ B1 | · · ·
Σ1; ∃x.A′(x), Γ1 ⇒ B1 | · · ·

∃l

Let Ξ1 be

A Hypersequent System for Gödel-Dummett Logic 257

Π2

Σ2;Δ2 ⇒ A | H2

· · · Πn

Σn;Δn ⇒ A | H2

Ψ [t/x]
Σ1;A′(t), Γ1 ⇒ B1 | · · ·

Σ1;A′(t), Γ1 ⇒ B1 | Σ2;Δ2, Γ2 ⇒ B1 | · · · | Σn;Δn, Γn ⇒ Bn | · · ·
mc

where Ψ [t/x] is the result of substituting x by t in Ψ (see Lemma 5). Let Ξ2 be

Π ′
1

Σ1;Δ1 ⇒ A′(t) | Σ1;Δ1 ⇒ A | H1

Π2· · ·
· · · Πn· · · Π· · ·

Σ1;Δ1 ⇒ A′(t) | Σ1;Δ1, Γ1 ⇒ B1 | · · ·
mc

Then Ξ reduces to the derivation:

Ξ1

Σ1;Δ1 ⇒ A′(t) | Σ1;Δ1, Γ1 ⇒ B1 | · · ·
Ξ2

Σ1;A′(t), Γ1 ⇒ B1 | · · ·
Σ1;Δ1, Γ1 ⇒ B1 | Σ1;Δ1, Γ1 ⇒ B1 | · · ·

mc

Σ1;Δ1, Γ1 ⇒ B1 | · · · | Σn;Δn, Γn ⇒ Bn | · · ·
ec

where the double lines indicate multiple applications of the rule ec (which is
cut-free admissible by Lemma 10). It is clear that the cut ranks in the reduct
of Ξ are smaller than the cut rank of Ξ so by the induction hypothesis, all the
cuts in the reduct can be eliminated. ��

5 Soundness and Completeness of HQLC

One way of proving soundnesss of HQLC would be to interpret hypersequents
as formulae, and show that the formula schemes corresponding to inference rules
can be proved in the Hilbert system QLC. Unfortunately, there does not seem
to be an easy way to interpret hypersequent rules as valid formulae in QLC.
The main problem is in the interpretation of eigenvariables in hypersequents,
in particular, their intended scopes within the hypersequents. If a variable, say
x, appears in the signatures of two different sequents in a hypersequent, then
there is a question of what should be the scope of that variable. There are two
possible encodings: one in which the signature in a sequent is seen as implicitly
universally quantified over the sequent, and the other in which the scope of
signatures is over the entire hypersequent. Consider for example the following
hypersequent:

x, y;A(x, y)⇒ B(x, y) | x, z;C(x, z)⇒ D(x, z).

The standard encoding of hypersequents without signatures is to interpret⇒ as
implication and | as disjunction. If we interpret signatures as having local scopes
over the individual sequents, then the above hypersequent would be encoded as

(∀x∀y.(A(x, y) ⊃ B(x, y)) ∨ (∀x∀z.(C(x, z) ⊃ D(x, z)).

258 A. Tiu

If we interpret signatures as having global scopes, then the two occurrences
of x in the signatures will be identified as a single universal quantifier:

∀x∀y∀z.(A(x, y) ⊃ B(x, y)) ∨ (C(x, z) ⊃ D(x, z)).

Under the second interpretation, the ∀r rule is obviously invalid in QLC as its
validity would entail the quantifier shift axiom. Under the first interpretation,
the com-rule would be unsound. To see why, consider the hypersequent:

x; p(x)⇒ q(x) | x; q(x)⇒ p(x).

This hypersequent is provable in HQLC. But if we follow the first interpreta-
tion, then it would entail that (∀x.p(x) ⊃ q(x)) ∨ (∀x.q(x) ⊃ p(x)) is valid in
QLC, which is wrong, as it is not valid even classically. It might be possible to
reformulate the com-rule to avoid this problem, but it is at present not clear
how this could be done.

The approach followed in this paper is to interpret the rules of HQLC in a
Gödel-Dummett logic extended with an existence predicate [15]. The existence
predicate was introduced by Scott [19] in an extension to intuitionistic logic,
and has recently been formalised in sequent calculus [6]. We first extend the lan-
guage of intuitionistic logic with a unary predicate E representing the existence
predicate. The semantics of the extended logic is as in intuitionistic logic, but
with the interpretation of the existence predicate satisfying: Iw(c) ∈ Iw(E) for
every w ∈W and every constant symbol c in QLC.

Let GDc be the standard Gödel-Dummett logic with constant domain, and let
GDce be GDc extended with the existence predicate. The key to the soundness
proof is a result by Iemhoff [15] which relates GD and GDce. This is achieved via
a function �.� encoding an intuitionistic formula without the existence predicate
into one with the existence predicate, satisfying:

– �p(�t)� = p(�t), for any predicate symbol p,
– �.� commutes with all propositional connectives,
– �∃x.A� = ∃x.E(x) ∧ �A�, and
– �∀x.A� = ∀x.E(x) ⊃ �A�.

The following is a corollary of a result by Iemhoff (see Lemma 4.3 in [15]).

Theorem 12. A closed formula A is valid in GD iff �A� is valid in GDce.

The soundness proof below uses the following interpretation of sequents and
hypersequents. Given a multiset Γ = {A1, . . . , An}, we denote with �Γ � the
formula �A1� ∧ · · · ∧ �An�. Given a set of eigenvariable Σ = {x1, . . . , xn}, we
write E(Σ) to denote the formula E(x1)∧· · · ∧E(xn). Let τs be a function from
sequents to formulaes such that

τs(Σ;Γ ⇒ C) = E(Σ) ∧ �Γ � ⊃ �C�.

The function τh mapping a hypersequent to a formula is defined as:

τh(S1 | · · · | Sn) = ∀�x.
∨

i

τs(Si)

A Hypersequent System for Gödel-Dummett Logic 259

where �x is the list of all variables in the hypersequent and each Si is a sequent.
We shall overload the symbol τh to denote the translation function for the term
formation judgment, which is defined as follows (where Σ = {�x}):

τh(Σ � t : term) = ∀�x.E(Σ) ⊃ E(t).

For the remainder of this section, we shall assume that the term formulation
judgment � is defined as follows:

x ∈ Σ
Σ � x : term Σ � c : term c is a constant

Since the domains are assumed to be always non-empty, we assume that there
is at least one constant symbol. It is easy to show that properties P1 – P4 hold
for this definition of � . Additionally, we also have the following lemma.

Lemma 13. For any term t, Σ � t : term, provided that FV (t) ⊆ Σ.

Lemma 14. If H is provable in HQLC then τh(H) is valid in GDce.

Proof. Given a rule ρ with premises H1, . . . , Hn and conclusion H , we show that
if τh(H1), . . . , τh(Hn) are valid in GDce then τh(Hn+1) is valid in GDce. It is
not difficult to verify that (e.g., using the hypersequent system in [5])

τh(H1) ∧ · · · ∧ τh(Hn) ⊃ τh(Hn+1)

is a tautology in GDc, hence it is also valid in GDce. Therefore a cut-free deriva-
tion in HQLC can be simulated by a chain of modus ponens using the tautologies
encoding its rule instances, with two assumptions: the encodings of the identity
rule and the term formation judgment. The former is obviously valid, so we show
the latter. That is, τh(Σ � t : term) is valid in GDce, whenever Σ � t : term
holds. This is straightforward from the definition of � . ��

Theorem 15. If A is provable in HQLC then A is provable in QLC.

Proof. We first show that for every closed formula A, if A is provable in HQLC
then A is provable in QLC. By Lemma 14, τh(FV (A); .⇒ A) is valid in GDce.
Since A is closed, FV (A) = ∅, therefore τh(FV (A); . ⇒ A) = �A�. Then, by
Theorem 12, A is valid in GD, and by Theorem 1, A is provable in QLC.

Now, if A is not closed, i.e., FV (A) �= ∅, then we have that ∀�x.A, where
{�x} = FV (A), is also provable in HQLC, hence by the above result, ∀�x.A is
provable in QLC. To show that A is also provable in QLC, we do a detour
through Corsi’s sequent calculus for QLC [10], where it is easily shown that
∀�x.A is provable iff A is provable in the sequent calculus. ��

Theorem 16. If A is provable in QLC then A is provable in HQLC.

Proof. We first show that whenever A is provable in QLC then the sequent
Σ; .⇒ A is derivable in HQLC for some Σ ⊇ FV (A). This is done by induction
on the length of derivation in QLC.

260 A. Tiu

It is enough to show that every instance of the axioms of QLC and its infer-
ence rules, modus ponens and the quantifier introduction (i.e., generalisation),
are derivable in HQLC. The generalisation rule is trivially derivable. To derive
modus ponens, in addition to using cut, we need Lemma 3 and Lemma 7 (in-
vertibility of ⊃). The linearity axiom is easily derived using the com-rule. The
non-trivial part is the derivations of the following axioms that involve quantifiers:

(Ax1) ∀x.A ⊃ A[t/x] (Ax2) A[t/x] ⊃ ∃x.A

We show here a derivation of (any instance of) (Ax1); the other is similar. In
this case, we let Σ be the set of all free variables in (Ax1). Then we have:

Σ � t : term Σ; ∀x.A,A[t/x]⇒ A[t/x] id

Σ; ∀x.A⇒ A[t/x] ∀l

Σ; .⇒ ∀x.A ⊃ A[t/x]
⊃ r

Note that the judgment Σ � t : term is valid, by Lemma 13.
Now, we need to show that A is provable in HQLC, i.e., that the sequent

FV (A); . ⇒ A is derivable. By the above result, we have a derivation Π of the
sequent Σ; .⇒ A for some Σ ⊇ FV (A). Note that Σ may contain more variables
than FV (A). But since we assume that the domains are non-empty, we have at
least one constant, say c, in the language. Let �y be the variables in Σ \ FV (A).
Then by applying the substitution lemma (Lemma 5), i.e., substituting all �y
with c, to Π , we get a derivation of FV (A); .⇒ A. ��

The derivation of ∀x.A ⊃ A[t/x] in the completeness proof above relies on
the underlying assumption that all closed terms denote existing objects (see
Lemma 13). A similar completeness result is shown in [6], where Gentzen’s LJ
is shown to be equivalent to a specific existence logic called LJE(ΣL). The in-
tuitionistic fragment of HQLC can be seen as the equivalent of LJE(ΣL).

6 Related and Future Work

A cut-free sequent calculus for QLC was first introduced by Corsi in [10]. Avel-
lone, et. al., gave a tableau calculus for the same logic [2], and showed how their
tableau calculus can also be converted into a cut-free sequent calculus. Both se-
quent calculi are multiple-conclusion calculi and use a simultaneous introduction
rule for ⊃ and ∀:

Γ,A1 ⇒ B1, Δ1 · · · Γ,Am ⇒ Bm, Δm Γ ⇒ C1(a), Λ1 · · · Γ ⇒ Cn(a), Λn

Γ ⇒ Δ

where Δ = {A1 ⊃ B1, , · · · , Am ⊃ Bm, ∀x.C1(x), · · · , ∀x.Cn(x)}, Δi = Δ\ {Ai ⊃
Bi} and Λi = Δ \ {∀x.Ci(x)}.

The idea of giving quantifiers an explicit structural component in sequents has
been considered in a number of previous work. Wansing [25] studies substructural

A Hypersequent System for Gödel-Dummett Logic 261

quantifiers in modal logic, in which the Barcan formula may or may not hold,
using the display calculus framework. The treatment of quantifiers as structural
connectives has also been explored in the calculus of structures, e.g., [7,22], and
in nested sequent calculi [8].

As should be clear from the soundness proof in Section 5, the existence pred-
icate is implicit in our notion of hypersequents. One could also consider an
approach where the existence predicate is an explicit part of the language of
hypersequents and extends the methods in [6] to prove cut elimination. In this
setting, the term formation judgment would be encoded as a set of axioms gov-
erning the derivability of the existence predicate, and a form of cut elimination
can be proved following [6], showing that cuts can be restricted to a simple form
where the cut formula contains only the existence predicate.

We note that although we prove soundness w.r.t. a logic without function
symbols, the soundness proof shown here can be generalised straightforwardly
to logics with function symbols.

From a proof theoretic perspective, the solution proposed here is not entirely
satisfactory, due to the lack of a clear formula-interpretation of hypersequents,
hence the inability to get a direct encoding of HQLC into the Hilbert axiomatic
system QLC. It would seem more natural to treat the signature in a sequent
as binders, along the line of the framework proposed in [8]. This would entail a
move from hypersequent to a sort of nested hypersequent (or perhaps a variant
of tree-hypersequent [18]) and deep-inference rules. Our reliance on the semantic
correspondence in Theorem 12 means that the current approach is difficult to
generalize to other logics where the existence predicate is not so well understood.

References

1. Avellone, A., Ferrari, M., Miglioli, P.: Duplication-free tableau calculi and related
cut-free sequent calculi for the interpolable propositional intermediate logics. In:
Logic Journal of the IGPL, vol. 7(4), pp. 447–480 (1999)

2. Avellone, A., Ferrari, M., Miglioli, P., Moscato, U.: A tableau calculus for Dum-
mett predicate logic. In: Proc. of the Eleventh Brazilian Conference on Mathe-
matical Logic 1996. Contemporary Mathematics, vol. 235, pp. 135–150. American
Mathematical Society, Providence (1999)

3. Avron, A.: Hypersequents, logical consequence and intermediate logics for concur-
rency. Ann. Math. Artif. Intell. 4, 225–248 (1991)

4. Baaz, M., Ciabattoni, A.: A schütte-tait style cut-elimination proof for first-order
gödel logic. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI),
vol. 2381, pp. 24–37. Springer, Heidelberg (2002)

5. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Hypersequent calculi for Gödel logics -
a survey. J. Log. Comput. 13(6), 835–861 (2003)

6. Baaz, M., Iemhoff, R.: Gentzen calculi for the existence predicate. Studia Log-
ica 82(1), 7–23 (2006)

7. Brünnler, K.: Cut elimination inside a deep inference system for classical predicate
logic. Studia Logica 82(1), 51–71 (2006)

8. Brünnler, K.: How to universally close the existential rule. In: Fermüller, C.G.,
Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 172–186. Springer, Heidelberg
(2010)

262 A. Tiu

9. Ciabattoni, A.: A proof-theoretical investigation of global intuitionistic (fuzzy)
logic. Arch. Math. Log. 44(4), 435–457 (2005)

10. Corsi, G.: A cut-free calculus for Dummett’s LC quantified. Zeitschr. f. math. Logik
und Grundlagen d. Math. 35, 289–301 (1989)

11. Corsi, G.: Completeness theorem for Dummett’s LC quantified and some of its
extensions. Studia Logica 51(2), 317–336 (1992)

12. Dummett, M.: A propositional calculus with denumerable matrix. J. Symbolic
Logic 24(2), 97–106 (1959)

13. Dyckhoff, R.: A deterministic terminating sequent calculus for Gödel-Dummett
logic. Logic Journal of the IGPL 7(3), 319–326 (1999)

14. Gödel, K.: On the intuitionistic propositional calculus. In: Feferman, S., Dawson Jr,
S.W., Kleene, S.C., Moore, G.H., Solovay, R.M., van Heijenoort, J. (eds.) Collected
Works, vol. 1. Oxford University Press, Oxford (1986)

15. Iemhoff, R.: A note on linear Kripke models. J. Log. Comput. 15(4), 489–506 (2005)
16. McDowell, R., Miller, D.: Cut-elimination for a logic with definitions and induction.

Theor. Comput. Sci. 232(1-2), 91–119 (2000)
17. Miller, D.: A logic programming language with lambda-abstraction, function vari-

ables, and simple unification. J. Log. Comput. 1(4), 497–536 (1991)
18. Poggiolesi, F.: The tree-hypersequent method for modal propositional logic. Trends

in Logic: Towards Mathematical Philsophy, 9–30 (2009)
19. Scott, D.: Identity and existence in intuitionistic logic. In: Fourman, M., Mulvey, C.,

Scott, D. (eds.) Applications of Sheaves. Lecture Notes in Mathematics, vol. 753,
pp. 660–696. Springer, Berlin (1979)

20. Slaney, J.K.: Solution to a problem of Ono and Komori. Journal of Philosophical
Logic 18, 103–111 (1989)

21. Sonobe, O.: A Gentzen-type formulation of some intermediate propositional logics.
J. Tsuda College 7, 7–14 (1975)

22. Tiu, A.: A local system for intuitionistic logic. In: Hermann, M., Voronkov, A.
(eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 242–256. Springer, Heidelberg
(2006)

23. Troelstra, A., Schwichtenberg, H.: Basic Proof Theory. Cambridge University Press,
Cambridge (1996)

24. van Dalen, D.: Logic and Structure. Springer, Heidelberg (2004)
25. Wansing, H.: Displaying Modal Logic. Kluwer Academic Publishers, Boston (1998)

MaLeCoP
Machine Learning Connection Prover

Josef Urban1,�, Jǐŕı Vyskočil2,��, and Petr Štěpánek3,���

1 Radboud University Nijmegen, The Netherlands
2 Czech Technical University

3 Charles University, Czech Republic

Abstract. Probabilistic guidance based on learned knowledge is added
to the connection tableau calculus and implemented on top of the lean-
CoP theorem prover, linking it to an external advisor system. In the
typical mathematical setting of solving many problems in a large com-
plex theory, learning from successful solutions is then used for guiding
theorem proving attempts in the spirit of the MaLARea system. While
in MaLARea learning-based axiom selection is done outside unmodified
theorem provers, in MaLeCoP the learning-based selection is done inside
the prover, and the interaction between learning of knowledge and its
application can be much finer. This brings interesting possibilities for
further construction and training of self-learning AI mathematical ex-
perts on large mathematical libraries, some of which are discussed. The
initial implementation is evaluated on the MPTP Challenge large theory
benchmark.

1 Introduction

This paper describes addition of machine learning and probabilistic guidance to
connection tableau calculus, and the initial implementation in the leanCoP sys-
tem using an interface to an external advice system. The paper is organized as
follows:1 Section 1 describes the recent developments in large-theory automated
reasoning and motivation for the research described here. Section 2 describes the
machine learning (data-driven) paradigm and its use in guiding automated rea-
soning. Section 3 shortly summarizes the existing leanCoP theorem prover based
on connection tableaux. Section 4 explains the general architecture for combining
external machine learning guidance with a tableau prover. Section 5 describes
our experimental implementation. Section 6 describes some experiments done
with the initial implementation. Section 7 concludes and discusses future work
and extensions.

� Supported by The Netherlands Organization for Scientific Research (NWO) grants
Learning2Reason and MathWiki.

�� Supported by the Czech institutional grant MSM 6840770038.
��� Supported by the Grant Agency of Charles University, grant 9828/2009.

1 We would like to thank the anonymous referees for helping to significantly improve
the presentation of this work.

K. Brünnler and G. Metcalfe (Eds.): TABLEAUX 2011, LNAI 6793, pp. 263–277, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

264 J. Urban, J. Vyskočil, and P. Štěpánek

1.1 Large-Theory Automated Reasoning

In the recent years, increasing amount of mathematics and knowledge in gen-
eral is being expressed formally, in computer-understandable and computer-
processable form. Large formal libraries of re-usable knowledge are built with
interactive proof assistants, like Mizar, Isabelle, Coq, and HOL (Light). For exam-
ple, the large Mizar Mathematical Library (MML) contains now (February 2011)
over 1100 formal articles from various fields, covering substantial part of under-
graduate mathematics. At the same time, the use of the formal approach is also
increasing in non-mathematical fields, for example in software and hardware ver-
ification and in common-sense reasoning about real-world knowledge. This again
leads to growth of formal knowledge bases in these fields.

Large formal theories are a recent challenge for the field of automated rea-
soning. The ability of ATP systems to reason inside large theories has started
to improve after 2005, when first-order ATP translations of the particular for-
malisms used e.g. by Mizar [16], Isabelle [5], SUMO, and Cyc started to appear,
and large theory benchmarks and competitions like MPTP Challenge and CASC
LTB were introduced. The automated reasoning techniques developed so far for
large theories can be broadly divided into two categories:

1. Techniques based purely on heuristic symbolic analysis of formulas available
in problems.

2. Techniques taking into account also previous proofs.

The SInE preprocessor by Kryštof Hoder [4,17] seems to be so far the most suc-
cessful heuristic in the first category. In domains like common-sense reasoning
that typically lack large number of previous nontrivial and verified proofs and
lemmas, and mostly consist of hierarchic definitions, such heuristics can some-
times even provide complete strategies for these domains.2 MaLARea [18] is an
example of a system from the second category. It is strong in hard mathematical
domains, where the knowledge bases contain much less definitions than nontriv-
ial lemmas and theorems, and previous verified proofs can be used for learning
proof guidance. This approach is described in the next section, giving motivation
for the work described in this paper.

2 Machine Learning in Large Theory ATP

Thedata-driven [12] approaches to constructing algorithmshavebeen recently suc-
cessful in AI domains like web search, consumer choice prediction, autonomous
vehicle control, and chess. In contrast to purely theory-driven approaches, when
whole algorithmsare constructed explicitlybyhumans, thedata-drivenapproaches
rely on deriving substantial parts of algorithms from large amounts of data. In the
ATP domain, the use of machine learning started to be explored by the Munich

2 For example, a Prolog-based premise selection preprocessor was used by Vampire in
the CYC category of the 2008 CASC LTB competition to solve all problems.

MaLeCoP 265

group [3]. The E prover [11] by Stephan Schulz contains several hooks where al-
gorithms can be optimized based on machine learning. The most advanced tech-
nique there being probably matching of abstracted previous proof traces for guid-
ing the inference (given clause loop) process. Simpler techniques like optimization
of strategy selection or scheduling are used not only by E prover, but also, e.g.,
by the Vampire system [10]. In 2007 the Machine Learner for Automated Reasoning
(MaLARea [18]) started to be developed, triggeredby the translation of theMizar li-
brary to first-orderATP format and the need to provide efficient reasoning over the
ca 50000 theorems and definitions in it. We explain here the basic idea of learning
from proofs, which is in several modified forms used also in MaLeCoP.

The basic idea of the machine learning approach is to learn an association
from features (in the machine learning terminology) of the conjectures (or even
of the whole problems when speaking generally) to proving methods that are
successful when the features are present. In MaLARea, this general setting is
instantiated in the following way: The features characterizing a conjecture are
the symbols appearing in them, and the proving method is an ordering of all
the axioms according to their expected relevance to proving the conjecture. One
might think of this as the particular set of symbols determining a particular
sublanguage (and thus also a subtheory) of a large theory, and the corresponding
ordering of all the available axioms as, e.g., a frequency of their usage in a
book written about that particular subtheory. Once a sufficient body of proofs
is known, a machine learning system (SNoW [2] is used by MaLARea in naive
Bayes mode) is trained on them, linking conjecture symbols with the axioms that
were useful for proving the conjectures. For learning and evaluation in SNoW,
all symbols and axiom names are disjointly translated to integers. The integers
corresponding to symbols are the input features, and those corresponding to
axioms are the output features of the learning process.

MaLARea can work with arbitrary ATP backends (E and SPASS by default),
however, the communication between learning and the ATP systems is high-
level: The learned relevance is used to try to solve problems with varied limited
numbers of the most relevant axioms. Successful runs provide additional data for
learning (useful for solving related problems), while unsuccessful runs can yield
countermodels, which can be in MaLARea re-used for semantic pre-selection and
as additional input features for learning.

An advantage of the high-level approach is that it gives a generic inductive
(learning)/deductive (ATP) metasystem to which any ATP can be easily plugged
as a blackbox. Its disadvantage is that it does not attempt to use the learned
knowledge for guiding the ATP search process once the axioms are selected.
Hence the logical next step described in this paper: We try to suggest how to
use the learned knowledge for guiding proof search inside a theorem prover.
We choose the leanCoP theorem prover for the experiments, both because of its
simplicity and easiness of modification, and for a number of interesting properties
described below that make it suitable for interaction with learning. The next
section summarizes leanCoP.

266 J. Urban, J. Vyskočil, and P. Štěpánek

3 leanCoP: Lean Connection-Based Theorem Prover

3.1 Why leanCoP

leanCoP is an economically written connection-based theorem prover. The main
theorem prover can be written on a couple of lines in Prolog, while its perfor-
mance is surprisingly good, especially when goal-directness is important. The
reasons for choosing leanCoP for our experiments can be summarized in the
following points:

– leanCoP already has good performance on the MPTP Challenge benchmark [7].
This guarantees sufficient amount of proofs to learn from.

– The implementation is simple, high-level, and Prolog-based, making it easy
to experiment with. Our experience with modifying C-written ATPs (even
very nicely written like the E prover as in [15]) is that it always involves a
lot of low-level implementation work.

– The tableau calculus seems to be quite suitable for the kind of additions
that we want to experiment with. It has a transparent notion of proof state
(branch that needs to be closed, open goals) to which advising operations
can be applied. This contrasts with resolution ATPs that have just several
large piles of clauses describing the proof state.

– The integration of learning and ranking and its use can be very tight, allowing
implementation of techniques similar to just-in-time compilation. This means
keeping track of frequent requests – especially in the many-problems/large-
theory setting – and providing (possibly asynchronous) advice for them.

– We hope that the simple Prolog setting should allow easy additional experi-
ments. This could include simple addition of other kinds of external advisors
(e.g. for computer algebra), experiments with online learning from closed
branches, and experiments with probabilistic finding of decision procedures
(expressed just as sets of Prolog clauses), with the possibility of Prolog tech-
niques for program transformation of the found algorithms.

3.2 The Basic leanCoP Procedure and its Parametrization

For further understanding, it is good to summarize the main features of lean-
CoP [6,8]. leanCoP is an automated theorem prover for classical first-order logic
with equality. It uses an optimized structure-preserving transformation into
clausal form (DNF, see also below), to which connected tableau search (with
iterative deepening to guarantee completeness) is then applied. The reduction
rule of the connection calculus is applied before the extension rule, and open
branches are selected in a depth-first way. Additional inference rules and strate-
gies are regularity, lemmata, and restricted backtracking. leanCoP has several
parameters influencing its work [8]3, which can also be used for defining various
strategies and scheduling over them:

– if the option def is used, new definitions are introduced systematically during
the clausification to shorten the resulting clause set

3 This description is also relevant for leanCoP 2.1.

MaLeCoP 267

– if the option nodef is used, no new definitions are introduced in clausification
– if none of the options def, nodef is used, and the formula has the form X → Y ,

then X is processed as in the nodef case, while Y as in the def case
– if option reo(N) is used, the set of clauses is shuffled using N as a parameter
– if option cut is used, there is no backtracking after successfully closed branches
– if option scut is used, backtracking is restricted for alternative start clauses
– if option conj is used, a special literal is added to the conjecture clauses in

order to mark them as the only possible start clauses.

4 The General Architecture

As mentioned in the introduction, our goal is to experiment with smart (external)
proof search guidance used inside theorem provers’ internal mechanisms, not
just outside them for premise pruning as MaLARea does. Our goal is an AI
architecture that is closer to human thinking in that it does not blindly try
every deductive possibility, but chooses the best course of action based on its
knowledge of the world and previous experiences. The architecture should be
able to learn both from successes and from mistakes, and update its decision
mechanisms when such new knowledge is available. We also want our architecture
to be not just a theoretical toy, but a system that actually proves theorems, and
does that (at least often) more efficiently than the unguided systems thanks to
the smart guidance. This set of requirements seems to be quite an ambitious
program, below we explain our general approach, problems encountered, and
the initial implementation.

4.1 The Concerns

The particular task that we initially consider is advising clause selection in the
extension steps of the tableau proving process. The obvious intuition that this
is the core source of possible speedups (once smart guidance is provided) is
demonstrated below in the Evaluation section.

Several concerns like speed, generality, and extendability influence the gen-
eral design. Measurements show that leanCoP can do an order of several hundred
thousands basic inferences (extension steps) per minute on recent hardware.4 In
large mathematical theories, typically thousands of different symbols appear,
and thousands of theorems are available for proving. If a smart (external) mech-
anism for formula/clause selection in such large theories took a minute for its
recommendation, and we were using the mechanism for each inference, the in-
ference speed would drop from hundreds of thousands to one per minute. With
sufficiently “complicated AI” implementations of the external advice such (and
much higher) times are conceivable. Even worse, one can still argue that it might
be the right thing to do when solving hard problems, because the raw inference
4 All measurements are done on the server of the Foundations group at Radboud

University Nijmegen (RU), which is eight-core Intel Xeon E5520 2.27GHz with 8GB
RAM and 8MB CPU cache.

268 J. Urban, J. Vyskočil, and P. Štěpánek

speed matters very little when we traverse superexponential search space. Obvi-
ously, doing experimental research in such setting would be very costly. That’s
why we want to have reasonable speed of the guiding mechanism for experiments,
and possibly use it only in the most critical choices.

Several options can be considered for implementing the guidance mechanism:

1. Using a raw external learning/advising system like SNoW in MaLARea, via
socket communication with the theorem proving process.

2. Implementing the learning/advising system directly as a part of the prover.
3. Compiling/linking an external system directly with the theorem prover’s

binary (to avoid communication overhead).
4. Using an interface layer (directly in the prover or as a separate tool) that

talks to the external tools, organizes their work, and talks to the prover.
5. Combinations of above.

Generality and extendability requirements tell us to avoid the second option,
at least in the experimental phase, because we want to be able to easily plug in
different external advice systems. For example, the SNoW system itself provides
several learning mechanisms (winnow, perceptron, naive bayes) and a number
of options to them. Kernel-based learning has been also recently experimented
with in the context of premise selection [14], improving the guidance precision.
The general design suggested below and instantiated in our prototype5 uses the
fourth option from the above list.

4.2 The Design

The general design that we propose is as follows (see also Figure 1): The theorem
prover (P) should have a sufficiently fast communication channel to a general
advisor (A) that accepts queries (proof state descriptions) and training data
(characterization of the proof state6 together with solutions7 and failures) from
the prover, processes them, and replies to the prover (advising, e.g., which clauses
to choose). The advisor A also talks to external system(s) (E). A translates the
queries and information produced by P to the formalism used by a particular
E, and translates E’s guidance back to the formalism used by P. At suitable
time, A also hands over the (suitably transformed) training data to E, so that E
can update its knowledge of the world on which its advice is based. A is free to
spawn/query as many instances/versions of Es as necessary, and A is responsible
for managing the guidance provided by them. Particular instances of Es that we
have in mind are learning systems, however we believe that the tableau setting
is also suitable for linking of SMT solvers, computer algebra systems, and all
kinds of other AI systems, probably in a more straightforward way than for the
resolution-based systems [13,9].

5 http://mws.cs.ru.nl/~urban/malecop/
6 Instantiated, e.g., as the set of literals/symbols on the current branch.
7 Instantiated, e.g., as the description of clauses used at particular proof states.

http://mws.cs.ru.nl/~urban/malecop/

MaLeCoP 269

external system:
SNoW

machine learning system

specific communication
protocol of
every external system

P1

A

E1

receives a list of IDs of advised axioms
where ordering on the list

represents usefulness of axioms

sends a query
as a list of

symbols from an
actual sub-problem

theorem prover
based on leancop

alternative prover
using same IDs of

axioms

general advisor

a cache with a binary relation of queries from
provers and answers from external systems

alternative
external system

(i.e. CAS, SMT, …)

E2

P2

Fig. 1. The General Architecture

5 MaLeCoP: Machine Learning Connection Prover

The above general ideas have been initially implemented by using a modified
version of leanCoP as P, the SNoW machine learner/advisor as E, and writing a
general managing library in Perl for A. These components and their linking are
explained below.

5.1 The Theorem Prover

The theorem prover we choose is leanCoP (version 2.1), however a number of
modifications have to be made so that it fits into the general architecture. Here
we mention some of them.

Consistent Clausification. The original leanCoP interleaves various clausifi-
cation strategies with the tableau search. This means that sometimes significant
changes can be done by changing the clausification (see, e.g., the options def,
nodef, reo in Section 3). Changing the clausification however means that differ-
ent skolem symbols and new definitions are produced, and clauses have different
names and shapes. Additionally, the original leanCoP works in a one-problem-
at-a-time setting, always inventing new names for skolem symbols and new

270 J. Urban, J. Vyskočil, and P. Štěpánek

definitions for each problem, despite the fact that the formulas/clauses are shared
among many problems. This would not work in our setting, because the guidance
is trained on symbol names and clause names. In other words, it is necessary
to change leanCoP in such a way so that its various settings always work with
the same clause normal form, and so that the new symbols are introduced con-
sistently (with the same name) in all problems that share a particular formula.
This is done by splitting the work of leanCoP on a large number of problems
into two phases:

1. Common clausification done for all problems together, with consistent intro-
duction of new symbols.

2. The separate tableau search, starting already with the clausified problem.

The 252 large MPTP Challenge problems contain 1485 unique formulas with
a lot of repetition across the problems (this is the large consistent theory as-
pect), yielding 102331 (nonunique) formulas in all 252 problems all together.
These 1485 formulas are consistently clausified in the first phase to 6969 unique
clauses, appearing all together 396927 times in the jointly clausified problems,
and containing 2171 unique symbols. This level of consistency and sharing on
the symbol and clause level should ensure good transfer of knowledge during the
learning and advice phases. As a byproduct of the clausification we also pro-
duce a mapping of clauses to symbols contained in them, a mapping of clauses
to hashes of all terms contained in them, and a listing of all symbol names
and clause names. These are later used by the general advisor (A) and external
system(s) E.8

Strategies for Guidance. While we try to make the access to the advice as
fast as possible (by caching in the advisor, etc.), it turns out that on average it
takes about 0.2 second to the SNoW system to produce advice. This is certainly
a bottleneck we need to work on, on the other hand, evaluation of a Bayes
net on nearly 7000 targets, and their sorting according to the activation weight
might really justify these times. In that case further work on faster external
systems will be needed. As it is now, one external advice costs an order of one
thousand leanCoP inferences. That is why we need to define strategies trading
in a reasonable way the external advice for internal inferencing. The current set
of strategies is as follows:

1. original leancop: This mode works exactly as the original core leanCoP
prover, however using the consistent clausification (affecting some options)
as described above.

2. naive: From all the literals on the current branch symbols are extracted,
and sent to the advisor. The advisor replies with an ordered list of recom-
mended clauses for the current inference. If none of these clauses succeeds,
the conjecture clauses are tried. This mode can obviously be incomplete if

8 The term hashes are not used yet for learning/advice, and we also do not provide
semantic (model) features as in MaLARea SG1 [18].

MaLeCoP 271

the advice is bad and a non-conjecture clause is needed. It is also demands
advice for every inference, making it currently very slow.

3. naive and complete: As naive, but if no advised clause succeeds, all re-
maining clauses from the problem are tried in their original order in the
problem. This makes this strategy complete, yet still very slow.

4. full caching and complete:Produces same results asnaive and complete,
however it applies internal caching in Prolog to cut down the number of slow
external queries. For every external query the advised clauses are cached in the
advised order in a new clause database, and if the query is repeated this clause
database is used instead of asking the external advisor again. This obviously
increases the memory consumption of the Prolog process.

5. smart caching and complete: Works in the same way as naive and
complete, using a similar method as full caching and complete. How-
ever new clauses databases are created only for the advised clauses (not for
all clauses as in full caching and complete). If the new database is not
successful, then the original leanCoP database is used.

6. smart caching: Works as smart caching and complete, however it caches
only the advised clauses. The original clause database is never used, making
this strategy incomplete.

7. original leancop with first advice: At the start of the proof search one
query is made to the advisor sending all conjecture symbols. A new Prolog
database is created containing the advised clauses in the advised order, fol-
lowed by the rest of the clauses in the original order. This database is then
used in the rest of proof search without further queries to the advisor. This
is obviously very fast and complete, but the use of external advice is very
limited.

8. leancop ala malarea: As original leancop with first advice, however
only the advised clauses and conjecture clauses are asserted into the new
database. This results in an incomplete search limited in the same way as in
MaLARea.

9. limited smart with first advice(Depth): This uses smart caching un-
til the Depth in tableau is reached, then it proceeds as
original leancop with first advice. The first stages thus cause incom-
pleteness. External queries are limited to Depth, which allows us to be flex-
ible with trading speed for precision.

10. limited smart and complete with first advice(Depth): Uses
smart caching and complete until Depth, then again
original leancop with first advice.

11. scalable with first advice(Limit,Mode After Limit): This is a metas-
trategy. Its basis is original leancop with first advice. If the clause
search does not succeed for Limit-th clause (in the original database) of
a particular literal (extension step), the strategy Mode After Limit is used
for the next clause search. This again is used to limit the uses of the (typ-
ically expensive) Mode After Limit strategy to “justified cases”, when the
original proof search seems to be bad.

272 J. Urban, J. Vyskočil, and P. Štěpánek

12. scalable with first advice(Limit,Query Limit,Mode After Limit):
This is an extension of the previous metastrategy. When the Limit-th clause
search fails, the branching factor is computed (by counting all clauses to which
a connection can be made at the point). If it is greater than Query Limit, the
strategy Mode After Limit is used. Otherwise the original database
(original leancop with first advice) is used. This strategy provides even
finer language for limiting the number of external queries to the most impor-
tant branchings.

Learning and Other Options. The basic learning in MaLARea is used to
associate conjecture symbols with premises used in the conjecture’s proof.9 This
learning mode corresponds well to the original leancop with first advice
strategy above, and various metastrategies re-using it. For learning clause se-
lection on branches we can further use another information supplied by the
prover: successful clause choices done for particular paths in the proof. If the
MACHINE LEARNING OF SUBTREES option is set, the prover generates for each
proved subtree a list of symbols present on the current path (input features for
learning), together with the successfully used clause (output feature for learn-
ing). However, the notion of “success” is relative: a success in a subtree does
not imply a success in the whole proof. That is why we only collect this in-
formation from successful proofs, after re-running them just with the necessary
clauses. This should avoid learning from any “pseudo successes”. The informa-
tion extracted from subtrees also contains the cost (again in terms of inference
numbers) of finishing the subtree. We do not use this information yet in learning,
however we plan to use learning on this data for gradually overcoming the most
costly bad clause choices. This could be used to attack hard unsolved problems,
by interleaving the learning to avoid such traps with re-newed proof attempts.

The original options cut, scut, comp(L), reo(N), conj work (after possible re-
implementation) also in the modified leanCoP, i.e., it still makes sense to pass
them to the clausal prover. Options def, nodef however have to be fixed during
the clausification stage, and cannot be changed later.

5.2 The General Advisor and the External System

The general advisor is a simple layer of functions written in Perl providing com-
munication with leanCoP via a TCP socket, and talking to SNoW either via a
TCP socket or via a UNIX FIFO (named pipe). The advisor takes queries in the
forms of symbol lists from the prover, and translates the symbols into the numeric
representation used by SNoW, feeding it to SNoW afterward and translating the
SNoW output (again a series of numbers) back into the clause names. The or-
dered list of clause names is then handed over to leanCoP. The advisor starts by
loading the symbol and clause tables produced by the clausification phase. The
library obviously also implements management of the training examples pro-
duced by the proof runs, it manages the prover runs and the external system’s
9 In machine learning terminology, the conjecture symbols are the input features, and

the premises are the output features (targets).

MaLeCoP 273

training and querying. In addition to that, the advisor also implements a sim-
ple fast cache of queries (just a Perl hash) which considerably speeds up the
external advice on previously seen queries. While the SNoW system averages
to about five answered queries per second, the advisor cache can answer more
than one thousand queries per second, which makes it comparable to the lean-
CoP inference speed. Thus a sufficiently big pre-computed cache (typically from
many problems) speeds up proof attempts relying on external advice consid-
erably. The cache size for the experiments described below – which issued ca
hundred thousand queries to SNoW in total – is about 500MB, which is quite
manageable.

As already mentioned SNoW is used as the external learning/advice system,
to which the prover talks via the advisor. The biggest concern is its raw speed
in the advice mode. The overall SNoW CPU time used for about 120 thousand
queries is seven hours. Future work could include experiments with using several
SNoW instances using just a limited number of targets relevant for each problem,
and improvement of SNoW’s speed when evaluating a large number of targets.

6 Evaluation

6.1 Dataset

The evaluation is done on the MPTP Challenge10 data (specifically on its harder
– Chainy – division), and does not use the CASC LTB11 data. This (together
with our machine learning systems not competing in recent CASCs) has recently
raised questions. The explanation follows.

The MPTP Challenge is a benchmark specifically created to allow comparison
of learning and non-learning ATP approaches. While still reasonably small for
experiments, it seems to provide sufficient amount of data for testing the data-
driven approaches to ATP. Although the MPTP Challenge design (by the first
author) was borrowed by the first CASC LTB in 2008, the main motivation, i.e.,
providing suitable benchmark for both learning and non-learning ATP methods,
has been practically abandoned by CASC LTB in 2009. The number of prob-
lems in CASC LTB (and specifically hard problems solvable only by learning)
and the learning options have been reduced, and the original “AI” competition
mechanism was largely changed back towards the old-style one-problem-at-a-
time CASC rules. In short, machine learning makes little sense when done only
on a few examples, which is what CASC LTB currently allows. To help to rem-
edy this, in addition to the MPTP Challenge, several mathematical large-theory
benchmarks have been recently defined in [17] and used for ATP evaluation in
real mathematical setting.

6.2 Results in Proof Shortening

The first test conducted is evaluation of the learning’s ability to guide the search
for proofs in problems that were already solved. This is a sanity check telling us
10 http://www.tptp.org/MPTPChallenge/
11 The CADE ATP System Competition Large Theory Batch division.

http://www.tptp.org/MPTPChallenge/

274 J. Urban, J. Vyskočil, and P. Štěpánek

Table 1. Comparison of number of inferences for the 73 problems solved by original
leanCoP, and by leanCoP using guidance trained on the 73 solutions

problem orig. inferences guided inferences problem orig. inferences guided inferences

t69 enumset1 676 177 t12 xboole 1 314 291

t13 finset 1 397 99 t17 xboole 1 263 81

t15 finset 1 16 26 t19 xboole 1 1533 757

l82 funct 1 748 1106 t1 xboole 1 305 225

t35 funct 1 813 148 t26 xboole 1 55723 18209

t70 funct 1 1631 669 t28 xboole 1 320 327

t8 funct 1 388 664 t2 xboole 1 22 16

t7 mcart 1 15863 39 t36 xboole 1 477 113

t10 ordinal1 42729 645 t37 xboole 1 27 63

t12 pre topc 29 26 t39 xboole 1 12452 68164

t116 relat 1 6751 162 t3 xboole 1 35 78

t117 relat 1 14191 2588 t45 xboole 1 3434 520

t118 relat 1 516 293 t48 xboole 1 108205 3863

t119 relat 1 32721 1431 t60 xboole 1 131 96

t144 relat 1 117908 1577 t63 xboole 1 2733 479

t146 relat 1 33580 1370 t7 xboole 1 211 89

t167 relat 1 156202 1629 t83 xboole 1 1885 326

t20 relat 1 1359 405 t8 xboole 1 4018 2612

t30 relat 1 754 583 t44 yellow 0 1533 989

t56 relat 1 3793 181 t6 yellow 0 3605 138

t60 relat 1 6251 148 l1 zfmisc 1 22281 233

t64 relat 1 43674 1491 l23 zfmisc 1 230 126

t88 relat 1 10285 1749 l25 zfmisc 1 4495 799

t90 relat 1 27169 875 l28 zfmisc 1 59233 6095

t99 relat 1 478 124 l50 zfmisc 1 3182 200

t16 relset 1 1931 130 t106 zfmisc 1 92 131

l3 subset 1 12295 5052 t10 zfmisc 1 2055 2115

t50 subset 1 46702 2071 t119 zfmisc 1 16954 199

t54 subset 1 1064 217 t1 zfmisc 1 13471 843

l1 wellord1 29925 4580 t37 zfmisc 1 46 63

l29 wellord1 1059 180 t39 zfmisc 1 45 116

t20 wellord1 60844 1821 t46 zfmisc 1 17 26

t32 wellord1 35573 3607 t65 zfmisc 1 23503 1966

t7 wellord2 107 63 t6 zfmisc 1 1650 112

t3 xboole 0 696 609 t8 zfmisc 1 71884 1321

t4 xboole 0 47 150 t92 zfmisc 1 19 26

l32 xboole 1 19088 589

Averages: 15678 2042 Avrg. ratio: 19.80

how much is the overall architecture working as expected. We want to know if
it provides the right advice on the problems that it has already seen and been
trained on.

The evaluation is done as follows. The original leanCoP (the original leancop
strategy, see 5.1) is run with 20s timelimit on the 252 large problems from the
MPTP Challenge, solving 73 of them. The guidance system is then trained on the 73
proofs, together with 630 path/clause choices corresponding to the proofs,12 703

12 See the option MACHINE LEARNING OF SUBTREES described in 5.1.

MaLeCoP 275

training examples in total. Then we try to solve the 73 problems again, this time us-
ing the trained guidance in the limited smart with first advice(4)mode (see
above for detailed description). Again, 20s timelimit (excluding the guidance) is
used, and all 73 problems are solved with the guidance. For comparison of the proof
search we use the number of extension steps done by leanCoP. This seems to be a
suitable metric which abstracts from the communication overhead and the over-
head for running the guidance system(s). The following Table 1 shows the results
of this comparison. The guidance helps in this case to shorten the proof search on
average by a factor of 20, and in some cases (t167 relat 1) by nearly a factor of 100.
This seems to be sufficiently convincing as a sanity check for the guidance archi-
tecture. Several other strategies were evaluated in this mode too, however we do
not show their results here for lack of space.

6.3 Solving New Problems

The main test of any learning system is its ability to generalize over the provided
data, and give good advice for new queries. This is measured by attempting to
solve the remaining MPTP Challenge problems by using the guidance system
trained on the 73 problems solved by original leanCoP. We do not (yet) iterate
the learning as in MaLARea, and just evaluate the performance and behavior of
the overall architecture with various settings using the initially trained guidance.

As mentioned above, some settings now require a lot of CPU time from the
trained advisor, so we only evaluate seven interesting advanced strategies that
make the experiments feasible in a couple of hours. The seven strategies (num-
bered as follows) solve all together 15 problems unsolved in the first run (each

Table 2. Comparison of number of inferences for the 15 problems solved all together
by the seven strategies (empty entries were not solved within the time limit)

problem 1 2 3 4 5 6 7

t26 finset 1 4033

t72 funct 1 1310

t143 relat 1 28458 59302 61660

t166 relat 1 17586 4067 5263

t65 relat 1 79756 36217

t43 subset 1 82610

t16 wellord1 37148

t18 wellord1 3517 2689 2524

t33 xboole 1 3659 16456 16902 17925

t40 xboole 1 16488 15702 28404

t30 yellow 0 24277

l2 zfmisc 1 85086

l3 zfmisc 1 79786

l4 zfmisc 1 17074 9584 14299 30273

t9 zfmisc 1 80684 77532

276 J. Urban, J. Vyskočil, and P. Štěpánek

again uses the 20s timelimit, excluding the guidance time). The comparison of
the successes and inference numbers are shown in Table 2.

1. leancop ala malarea
2. limited smart with first advice(3)
3. scalable with first advice(40,limited smart and complete with first

advice(3))
4. scalable with first advice(3,20,original leancop)
5. limited smart with first advice(4)
6. scalable with first advice(3,20,limited smart with first advice(5))
7. limited smart and complete with first advice(3)

7 Discussion, Future Work

A number of future directions are already discussed above. The slow external ad-
vice is currently a clear bottleneck, necessitating further tuning of strategies that
can use the advice only in critical places. Combination of complete and incom-
plete strategies is an interesting topic for research, and when looking at Table 2,
there does not seem to be any clear choice. Learning has been so far done only
on symbols extracted from the clauses, while in MaLARea the term structure
and (counter) models are used too. This is probably a straightforward addition,
which will however again raise the number of features used by SNoW, possibly
making SNoW even slower. We have so far not run the full inductive/deductive
loop as in MaLARea, which will be enriched by the training data extracted from
successful subtrees. An interesting addition is also gradual learning of important
choices from unsuccessful proof attempts, which could lead to quite intelligently
behaving proving systems. Another option is learning of sequences of clauses
that lead to success for particular classes of inputs. Such sequences are sufficient
for defining algorithms in Prolog, and if it is possible to detect terminating be-
havior, they could be called decision procedures. A nice feature of such futuristic
scenarios is that the input classes together with the algorithms defined for them
could be tested for theoremhood, just by adding them as new conjectures to the
whole large theory we work in. Such data-driven methods might produce a large
number of heuristics that are easier to acquire automatically on a large number
of problems than both the existing manual research in finding of suitable simpli-
fication orderings for small domains, and research in manual crafting of decision
procedures for particular classes of problems and adding them to ATPs.

A probably much simpler (but less “AI”) way how to add decision procedures
in our setting is just by querying external computer algebra systems and other
solvers for the literals on the current path. As mentioned above, the tableau
setting seems to be quite suitable for such extensions, and probably more suitable
than the resolution setting. Quite surprisingly, it seems that this is the first time
a tableau system is being linked to external advice mechanisms.

MaLeCoP 277

References

1. Armando, A., Baumgartner, P., Dowek, G. (eds.): IJCAR 2008. LNCS (LNAI),
vol. 5195. Springer, Heidelberg (2008)

2. Carlson, A., Cumby, C., Rosen, J., Roth, D.: SNoW User’s Guide. Technical Report
UIUC-DCS-R-99-210, University of Illinois at Urbana-Champaign (1999)

3. Denzinger, J., Fuchs, M., Goller, C., Schulz, S.: Learning from Previous Proof Ex-
perience. Technical Report AR99-4, Institut für Informatik, Technische Universität
München (1999)

4. Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: CADE 11
(2011) (To appear)

5. Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J.
Autom. Reasoning 40(1), 35–60 (2008)

6. Otten, J., Bibel, W.: leanCoP: Lean Connection-Based Theorem Proving. Journal
of Symbolic Computation 36(1-2), 139–161 (2003)

7. Otten, J.: leanCoP 2.0 and ileanCoP 1.2: High performance lean theorem proving
in classical and intuitionistic logic (system descriptions). In: Armando, A., et al.
(eds.) [1], pp. 283–291

8. Otten, J.: Restricting backtracking in connection calculi. AI Commun. 23(2-3),
159–182 (2010)

9. Prevosto, V., Waldmann, U.: SPASS+T. In: Sutcliffe, G., Schmidt, R., Schulz, S.
(eds.) ESCoR 2006. CEUR, vol. 192, pp. 18–33 (2006)

10. Riazanov, A., Voronkov, A.: The Design and Implementation of Vampire. AI Com-
munications 15(2-3), 91–110 (2002)

11. Schulz, S.: E: A Brainiac Theorem Prover. AI Communications 15(2-3), 111–126
(2002)

12. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press, Cambridge (2004)

13. Suda, M., Sutcliffe, G., Wischnewski, P., Lamotte-Schubert, M., de Melo, G.: Exter-
nal Sources of Axioms in Automated Theorem Proving. In: Mertsching, B., Hund,
M., Aziz, Z. (eds.) KI 2009. LNCS, vol. 5803, pp. 281–288. Springer, Heidelberg
(2009)

14. Tsivtsivadze, E., Urban, J., Geuvers, H., Heskes, T.: Semantic graph kernels for
automated reasoning. In: SDM 2011 (to appear, 2011)

15. Urban, J.: MoMM - fast interreduction and retrieval in large libraries of formalized
mathematics. International Journal on Artificial Intelligence Tools 15(1), 109–130
(2006)

16. Urban, J.: MPTP 0.2: Design, implementation, and initial experiments. J. Autom.
Reasoning 37(1-2), 21–43 (2006)

17. Urban, J., Hoder, K., Voronkov, A.: Evaluation of automated theorem proving on
the Mizar Mathematical Library. In: ICMS, pp. 155–166 (2010)

18. Urban, J., Sutcliffe, G., Pudlák, P., Vyskočil, J.: MaLARea SG1- machine learner
for automated reasoning with semantic guidance. In: Armando, et al. (eds.) [1],
pp. 441–456

Author Index

Alenda, Régis 21
Aravantinos, Vincent 27
Avron, Arnon 43

Bonacina, Maria Paola 1
Bozzelli, Laura 58
Bresolin, Davide 73
Brotherston, James 88

Cerrito, Serenella 104
Ciabattoni, Agata 119
Cialdea Mayer, Marta 104

Das, Anupam 134

Friedmann, Oliver 149
Furbach, Ulrich 17

Genovese, Valerio 164
Giordano, Laura 164, 180
Gliozzi, Valentina 164, 180
Goré, Rajeev 88

Johansson, Moa 1

Kaminski, Mark 196
Khodadadi, Mohammad 242

Lahav, Ori 43, 119
Lange, Martin 149
Lanotte, Ruggero 58
Lellmann, Björn 211

Montanari, Angelo 73

Olivetti, Nicola 21, 180
Otten, Jens 226

Pattinson, Dirk 211
Peltier, Nicolas 27
Pozzato, Gian Luca 164, 180

Sala, Pietro 73
Schmidt, Renate A. 242
Schneider, Thomas 196
Sciavicco, Guido 73
Smolka, Gert 196
Štěpánek, Petr 263

Terui, Kazushige 20
Tishkovsky, Dmitry 242
Tiu, Alwen 248

Urban, Josef 263

Vyskočil, Jǐŕı 263

Zamansky, Anna 119

	Title
	Preface
	Organization
	Table of Contents
	On Interpolation in Decision rocedures
	Introduction
	A Framework of Definitions for Interpolation
	Transition Systems, Proofs and Interpolation Systems
	Propositional Interpolation Systems
	Interpolation and Equality
	Interpolation for Equality Sharing and DPLL(T)
	Future Work
	References

	First-Order Tableaux in Applications
	References

	Proof Theory and Algebra in Substructural Logics
	CSymLean: A Theorem Prover for the Logic CSL over Symmetric Minspaces
	The Logic CSL
	The Theorem Prover $CSymLean$
	Conclusion and Further Work
	References

	Schemata of SMT-Problems
	Introduction
	Preliminaries
	Syntax
	Semantics
	Extensions of the Language
	Undecidability

	Proof Procedure
	Enumerating Interpretations
	Termination

	Examples of Stably Decomposable Frames
	Literals Containing at Most One Index
	Ordered Theories

	Examples
	Conclusion
	References

	Kripke Semantics for Basic Sequent Systems
	Introduction
	Preliminaries
	Basic Systems
	Kripke Semantics
	Semantic Characterization of Analyticity
	Semantic Characterization of Strong Cut-Admissibility
	Further Research Topics
	References

	Hybrid and First-Order Complete Extensions of CaRet
	Introduction
	Preliminaries
	The Linear Hybrid Logic HyCaRet and Known Extensions of CaRet
	Automata for Visibly Pushdown Languages

	Expressiveness and Succinctness of 1-HyCaRet
	Decision Procedures for HyCaRet
	References

	Optimal Tableau Systems for Propositional Neighborhood Logic over All, Dense, and Discrete Linear Orders
	Introduction
	Propositional Neighborhood Logic
	Labeled Interval Structures and Satisfiability
	Decidability of PNL
	Tableau Systems for PNL
	Conclusions and Future Work
	References

	Craig Interpolation in Displayable Logics
	Introduction
	Display Calculus Fundamentals
	Interpolation: Nullary, Unary and Structure-Free Rules
	Interpolation: Binary Logical Rules
	Interpolation: Structural Rules
	Related and Future Work
	References

	A Tableaux Based Decision Procedure for a Broad Class of Hybrid Formulae with Binders
	Introduction
	The Tableau Calculus
	Properties of the Calculus
	Concluding Remarks
	References

	Basic Constructive Connectives, Determinism and Matrix-Based Semantics
	Introduction
	Preliminaries
	Single-Conclusion Canonical Systems
	Non-deterministic Kripke-Style Semantics

	Deterministic Connectives
	Axiom-Expansion
	Invertibility of Rules
	Matrix-Based (Kripke) Semantics
	References

	On the Proof Complexity of Cut-Free Bounded Deep Inference
	Introduction
	Preliminaries
	The Depth-Change Trick
	Reducing Non-determinism
	Conclusions
	Applications to Sequent Calculi
	Bounded-Depth Systems Not Containing Cocontraction
	The Effect of Cocontraction on Proof Complexity

	References

	The Modal μ-Calculus Caught Off Guard
	Introduction
	The Modal μ-Calculus
	Tableaux for the Modal μ-Calculus
	A Decision Procedure Based on Tableaux
	Automata-Theoretic Machinery
	Reduction to Parity Game Solving
	Comparison

	References

	A Conditional Constructive Logic for Access Control and Its Sequent Calculus
	Introduction
	The Logic $CondACL$
	Axiom System
	Semantics

	Soundness and Completeness
	A Sequent Calculus for $CondACL$
	Termination and Complexity of $SCondACL$

	OtherAxioms
	Related Work and Conclusions
	References

	A Tableau Calculus for a\\ Nonmonotonic Extension of \mathcal{EL}^\bot
	Introduction
	The Typicality Operator \tip, the Logic \eltm and its Left Local Fragment
	The Tableau Calculus for Left Local \eltm
	First Phase: The Tableaux Calculus \primoel
	The Tableaux Calculus \secondoel

	Conclusions
	References

	Correctness and Worst-Case Optimality of Pratt-Style Decision Procedures for Modal and Hybrid Logics
	Introduction
	Preliminaries: Hybrid PDL
	Demos as a Syntactic Representation of Models
	The Decision Procedure
	Nominals
	Difference Modalities
	Tests
	Converse Actions
	Related Work
	References

	Cut Elimination for Shallow Modal Logics
	Introduction
	Preliminaries and Notation
	From Hilbert Systems to Sequent Systems
	Cut-Closure and Pseudo-Analytic Cut
	Cut Elimination Using Small Representations
	Proof Search in GR
	Applications: Exemplary Complexity Bounds
	Conclusion
	References

	A Non-clausal Connection Calculus
	Introduction
	The Clausal Connection Calculus
	Non-clausal Proof Search
	Non-clausal Matrices

	The Non-clausal Connection Calculus
	The Non-clausal Connection Calculus
	Basic Concepts
	The Calculus

	Correctness, Completeness and Complexity
	Correctness
	Completeness
	Complexity

	Optimizations and Extensions
	A Simplified Connection Calculus
	Optimizations
	Non-classical Logics

	Conclusion
	References

	#METTEL$: A Tableau Prover with Logic-Independent Inference Engine
	Introduction
	Input Syntax
	Implementation Details
	Using $METTEL$
	Concluding Remarks
	References

	A Hypersequent System for G¨odel-Dummett Logic with Non-constant Domains
	Introduction
	Semantics and an Axiomatic System of Quantified LC
	The Hypersequent System HQLC
	Cut Elimination for HQLC
	Signature Weakening and Substitution
	Invertible and Admissible Rules
	Cut Elimination

	Soundness and Completeness of HQLC
	Related and Future Work
	References

	$MaLeCoP$ Machine Learning Connection Prover
	Introduction
	Large-Theory Automated Reasoning

	Machine Learning in Large Theory ATP
	$leanCoP$: Lean Connection-Based Theorem Prover
	Why leanCoP
	The Basic leanCoP Procedure and its Parametrization

	The General Architecture
	The Concerns
	The Design

	MaLeCoP: Machine Learning Connection Prover
	The Theorem Prover
	The General Advisor and the External System

	Evaluation
	Dataset
	Results in Proof Shortening
	Solving New Problems

	Discussion, Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

